
Coordinated Negotiated Search: A Generic Framework for 
Distributed Planning, Scheduling and Resource Allocation 

Final Technical Report 
Period:   5/15/92-5/14/95 

ELECTE 
NOV 0 3 1995 

Victor R. Lesser, Principal Investigator 

Distributed Artificial Intelligence Laboratory 
Computer Science Department, Box 34610 

Lederle Graduate Research Center 
University of Massachusetts 
Amherst, MA 01003-4610 

(413)454-1322 

Sponsored by Advanced Research Projects Agency 
ARPA Order No. 8744 

Grant Number: N00014-92-J-1698 
Contract Period: 5/15/92-5/14/95 

Contract Dollars: $927,729 

1 DBTMBI3TION STATEMENT A 
Approved tea public released 

Dittnbunco Uaiiautod 

19951101 028 DTI©Q; „WISH«"8"" 



CONTENTS 

1 Numerical Productivity Measures 

2 Executive Summary 

3 Summary of Technical Results 

4 Publications, Reports and Articles 

5 Technology Transfer 

6 Appendices 

Appendix A:   Designing a Family of Coordination Algorithms 

3 

4 

4 

7 

12 

13 

Appendix B:   Understanding the Role of Negotiation in Distributed Search Among 
Heterogeneous Agents 

Appendix C:   Exploiting Meta-level Information in a Distributed Scheduling System 

Appendix D:   Issues in Automated Negotiation and Electronic Commerce: Extending 
the Contract Net Framework 

Accesion For 

N71S    CRA&I 
DTIC    TAB 
Unannounced 
Justification 

By   
Distribution / 

i 
D 
D 

Availability Codes 

Dist 

A-f 

Avail and/or 
Special 



1 NUMERICAL PRODUCTIVITY MEASURES 

Refereed papers submitted but not yet published: 2 

Refereed papers published: 42 

Unrefereed reports and articles: 17 

Books or parts thereof submitted but not yet published: 2 

Books or parts thereof published: 2 

Patents filed but not yet granted: 0 

Patents granted: 0 

Invited presentations: 8 

Contributed presentations: 58 

Honors received: 30 

Prizes or awards received: 0 

Promotions obtained: 3 

Graduate Students supported: 8 

Post-docs supported: 4 

Minorities supported: 0 



2 EXECUTIVE SUMMARY 

Computer-based, decentralized decision making involving planning, scheduling, and 
resource allocation (DPSRA) problems is increasingly important as we attempt to create 
agile military and commercial organizations that can exploit the enormous amount of 
information that is available on-line and the emerging capability for on-line organizational 
interaction (e.g., enterprise integration systems, the electronic marketplace, etc.). Examples 
of DPSRA problems include logistical resource scheduling, crisis management, and 
concurrent engineering. The design of such applications is fraught with difficulties because 
agents in such systems cannot independently avoid conflicts, cannot access a global 
perspective to schedule their actions, cannot easily search for solutions in isolation, cannot 
respond statically to real-time deadlines, and must cope with an uncertain and changing 
environment. A major hurdle facing the construction of DPSRA applications is the lack of a 
generic framework for solving the difficulties outlined above. This generic framework will 
make it possible to significantly speed up the development of future DPSRA applications. 

Central to our approach is the creation of a Coordinated Negotiated Search (CNS) 
framework—one that views negotiation and coordination as integral parts of the 
cooperative search process for a solution mutually acceptable to all agents. This framework 
integrates a wide range of negotiation strategies for different situations. These strategies are 
based on a sophisticated view of negotiation as a multi-level, multi-stage, and multi- 
anchored process in which agents not only exchange domain proposals and critiques but 
also exchange meta-level information about their dynamically evolving local and composite 
search spaces. These strategies do not depend solely on centralized mediation, or unlimited 
communication or computational resources, or on agents having homogeneous structures 
or representations. DPSRA systems will not work on only one problem at a time, but rather 
on a continually evolving set of interrelated problems. Coordination strategies are based on 
domain independent coordination relationships among tasks. This approach clearly 
delineates the coordination component of a distributed agent from the agent's local 
scheduling mechanisms. Strategies for coordination (of problem solving, negotiation, and 
monitoring) have been modeled and analyzed based on the quantitative properties of these 
coordination relationships and of other characteristics of the environment. 

The specific applications we have used to exemplify the coordination and negotiation issues 
of DPSRA systems are airline terminal resource scheduling (gates, fuel trucks, bag trucks, 
etc.), multi-depot vehicle routing, and cooperative agent design of steam condensers. 
Recent work, though not yet completely implemented, has involved a cooperative 
information gathering application running on the Internet. Additionally, a sophisticated 
simulation system, called TAEMS, has also been constructed for testing the effectiveness 
of different coordination strategies. 

3 SUMMARY OF TECHNICAL RESULTS 

The following represent the major technical accomplishments of the contract: 

• Development of GPGP, the first domain-independent architecture for distributed, real- 
time agent coordination. 

A family of generic, real-time distributed coordination algorithms for use with cooperative 
agents has been developed, called GPGP. This family allows for a wide range of 
cooperation strategies, tailored to the needs of the specific application environment, to be 
implemented within a simple and extensible framework. This framework makes a clear 
separation among the coordination module, the local real-time scheduler and the application 



program. This is important because in many real applications we do not want to replace the 
existing application, but rather improve its performance by applying coordination 
techniques. Thus, these coordination mechanisms must interact smoothly with existing 
system components. 

• Development of TAEMS, a simulation system and formal language for studying agent 
coordination issues. 

As part of the effort in developing GPGP, we have also completed a formal framework, 
TAEMS (Task Analysis, Environment Modeling, and Simulation), for specifying task 
environments and analyzing coordination algorithms with respect to multiple performance 
criteria, and we have implemented a simulator. TAEMS allows users to do both exploratory 
research into possible performance effects and to verify analytically derived models of the 
effects of environmental characteristics on coordination algorithm performance. We used 
this framework to build a model of a simplified, distributed interpretation task, and 
examined the question of how various organizations of agents would perform in this 
environment, building an analytic model for describing the performance of three 
coordination algorithms. It has also been applied recently to a problem involving NASA 
regarding how to coordinate its proposed distributed data analysis centers. 

• Development of TEAM, a reusable agent architecture for concurrent engineering design 
and its realization in a sophisticated design application involving seven expert systems. 

To support the integration of heterogeneous and reusable agents into functional agent sets, 
a multiagent framework, TEAM, has been implemented. Conflict is an integral part of 
problem solving in multi-agent systems and is often the focal point of interaction among 
agents. Our work acknowledges conflict as a driving force in the control of distributed- 
search activity. The effectiveness of this architecture has been investigated in a seven-agent 
steam condenser design system. This system outperforms an existing mechanical design 
system that exploits the same knowledge but is not structured as a multiagent negotiation 
process. 

• Development of DARM,  a complex distributed  scheduling  system  involving  the 
scheduling of resources at an airport. 

The DARM (Distributed Airport Resource Manager) distributed scheduling application has 
been used to verify and extend earlier work by Sycara et al. on the importance and role of 
meta-level information in achieving efficient distributed scheduling. A testbed has been 
created that can be configured as a community of two or more agents, each with its own 
resources (i.e., gates, fuel trucks, baggage handlers) and each responsible for satisfying its 
own schedule of arriving and departing flights. The need for cooperation and negotiation 
arises because an individual agent may lack sufficient resources to satisfy its schedule and 
may have to borrow these resources from other agents. By coordinating the individual 
scheduling efforts so that each agent understands the probable requirements of other agents, 
the likelihood increases that remote agents will be able to lend the appropriate resource at the 
time it is required. In the event that no globally satisfactory solution can be found, agents 
must negotiate in order to determine which local constraints can be relaxed to enable such a 
solution to be developed. The presence of meta-level information allows agents to more 
accurately determine whether to solve subproblems locally (through backtracking and 
constraint relaxation) or whether to apply to other agents for resources. This system is the 
most sophisticated distributed scheduling application developed to date and therefore 
represents an important data point in assessing the feasibility of a distributed scheduling 
approach for real applications. A side benefit of this effort has been the development of the 



DSS domain independent job shop scheduling system whose performance benchmarks are 
comparable or better than existing systems. 

• Development of a new negotiation protocol for electronic commerce; the advantages of 
this protocol over the contract-net protocol have been formally justified. 

We have significantly extended the original contract-net negotiation protocol for use with 
self-interested agents involved in electronic commerce. An important aspect of this protocol 
is that it allows for a contract to specify a unilateral decommitant penalty. We have shown 
that this capability improves expected social welfare and Pareto efficiency of contracts by 
allowing better accommodation of future events. 

Based on these technical accomplishments and the verification of the usefulness of these 
approaches both empirically through implementing them on complex applications and 
through formal analytic techniques, we have made significant progress in our goal of 
developing generic architectures appropriate for distributed planning, scheduling, and 
resource allocation (DPSRA) problems. 



4 PUBLICATIONS, REPORTS AND ARTICLES 

4.1 Refereed Papers Accepted but not yet Published 

Lander, S. and Lesser, V. "Sharing Meta-Information to Guide Cooperative Search Among 
Heterogeneous Reusable Agents," to appear in IEEE Transactions on Knowledge and 
Data Engineering. 

NagendraPrasad, M.V., Lesser, V. and Lander, S. "Reasoning and Retrieval in Distributed 
Case Bases," to appear in Journal of Visual Communication and Image Representation, 
Special Issue on Digital Libraries. 

4.2 Refereed Papers Published 

Decker, K. and Lesser, V. "Coordination Assistance for Mixed Human and Computational 
Agents." In Proceedings of the Second International Conference on Concurrent 
Engineering Research and Applications, McLean, Virginia, August 1995. 

Decker, K. and Lesser, V. "Designing a Family of Coordination Algorithms," Proceedings 
of the First International Conference on Multiagent Systems, San Francisco, June 1995. 
AAAI Press. 

Decker, K.S.  and Lesser, V.R. "Designing a family of coordination algorithms" in the 
Proceedings of 13th International Distributed Artificial Intelligence Workshop, July 
1994. 

Decker, K.S. and Lesser, V.R. "Communication in the Service of Coordination," in the 
Proceedings of the Workshop on Planning for Interagent Communication, AAAI, Seattle, 
WA, July 1994. 

Decker, K. and Lesser, V. "Task Environment Centered Design of Organizations" in 
Computational Organization Design, Working Notes of the AAAI Spring Symposium, 
Ingemar Hulthage (ed.), 1994. 

Decker, K. and Lesser, V., "Examples of Quantitative Modeling of Complex 
Computational Task Environments," Workshop on AI and Theories of Groups & 
Organizations: Conceptual and Empirical Research, AAAI-93, Washington, DC, 1993. 

Decker, K. and Lesser, V.R. "Quantitative Modeling of Complex Environments," 
International Journal of Intelligent Systems in Accounting, Finance and Management, 
special issue on Mathematical and Computational Models of Organizations: Models and 
Characteristics of Agent Behavior. Vol. 2: 215-234, 1993. 

Decker, K. and Lesser, V., "Analyzing a Quantitative Coordination Relationship," Group 
Decision and Negotiation, 2:195-217, 1993. 

Decker, K. and Lesser, V. "An Approach to Analyzing the Need for Meta-Level 
Communication," Proceedings of the 13th International Joint Conference on Artificial 
Intelligence, 1993. 

Decker, K. and Lesser, V. "A One-Shot Dynamic Coordination Algorithm for Distributed 
Sensor Networks," Proceedings of the Eleventh National Conference on Artificial 
Intelligence, pp. 210-216, 1993. 



Decker, K. and Lesser, V. "Quantitative Modeling of Complex Computational Task 
Environments," Proceedings of the Eleventh National Conference on Artificial 
Intelligence, pp. 217-224, 1993. 

Decker, K. and Lesser, V., "Quantitative Modeling of Complex Computational Task 
Environments," Twelfth International Workshop on Distributed Artificial Intelligence, 
1993. 

Decker, K. and Lesser, V., "Analyzing the Need for Meta-Level Communication," Twelfth 
International Workshop on Distributed Artificial Intelligence, 1993. 

Decker, K. S., Garvey, A.J., Lesser, V.R., and Humphrey, M.A., "An Approach to 
Modeling Environment and Task Characteristics for Coordination," AAAI Workshop on 
Enterprise Integration, San Jose, July 1992. 

Decker, K. and Lesser, V., "Generalizing The Partial Global Planning Algorithm," 
International Journal on Intelligent Cooperative Information Systems, 1(2):319-346, 
1992. 

Garvey, A. and Lesser, V. "Design-to-time Scheduling and Anytime Algorithms." 
Proceedings of the Workshop on Anytime Algorithms and Deliberation Scheduling, 
IJCAI-95, Montreal, Canada. 

Garvey, A. and Lesser, V., "A Survey of Research in Deliberative Real-Time Artificial 
Intelligence," The Journal of Real-Time Systems, 6(3):317-347, May 1994. 

Garvey, A. and Lesser, V., "Research Summary of Investigations Into Optimal Design-to- 
time Scheduling," in Proceedings of AAAI Workshop on Experimental Evaluation of 
Reasoning and Search Methods, Seattle, WA, July 1994. 

Garvey, A., Decker, K. and Lesser, V. "A Negotiation-based Interface Between a Real- 
time Scheduler and a Decision-Maker," in Proceedings of Workshop on Models of 
Conflict Management in Cooperative Problem Solving, AAAI, Seattle, WA, July 1994. 

Garvey, A., Humphrey, M., and Lesser, V. "Task Interdependencies in Design-to-time Real- 
time Scheduling," Proceedings of the Eleventh National Conference on Artificial Intelligence, 
pp. 580-585, 1993. 

Garvey, A. and Lesser, V., "Scheduling Satisficing Tasks with a Focus on Design-to-time 
Scheduling," Proceedings of IEEE Workshop on Imprecise and Approximate Computation, 
Phoenix, AZ, pp. 25-29, December 1992. 

Lander, S. and Lesser, V. "Organizing Cooperative Search Among Heterogeneous Expert 
Agents," AI in Collaborative Design Workshop, AAAI-93, Washington, D.C., 1993. 

Lander, S. and Lesser, V. "Understanding the Role of Negotiation in Distributed Search Among 
Heterogeneous Agents," Proceedings of the 13th International Joint Conference on Artificial 
Intelligence, Chambery, France, 1993. 

Lander, S. and Lesser, V. "Understanding the Role of Negotiation in Distributed Search 
Among Heterogeneous Agents," IJCAI-93 Workshop on Computational Models of 
Conflict Management in Cooperative Problem Solving, IJCAI-93, Chambery, France, 
August 1993. 



Lander, S.E., Lesser, V.R. and Nagendraprasad, M. "Knowledge Sharing Among 
Heterogeneous Reusable Agents in Cooperative Distributed Search" in the Proceedings of 13th 
International Distributed Artificial Intelligence Workshop, Seattle, July 1994. 

Lander, S. and Lesser, V. "Understanding the Role of Negotiation in Distributed Search 
among Heterogeneous Agents," Twelfth International Workshop on Distributed Artificial 
Intelligence, 1993. 

Lander, S. and Lesser, V., "Customizing Distributed Search Among Agents with 
Heterogeneous Knowledge," Proceedings of the First International Conference on 
Information and Knowledge Management, pp. 335-344, Baltimore, MD, November 
1992. 

Lander, S. and Lesser, V.R. "Negotiated Search: Organizing Cooperative Search Among 
Heterogeneous Expert Agents," in Proceedings of the Fifth International Symposium on 
Artificial Intelligence, Applications in Manufacturing and Robotics, Cancun, Mexico, 
December 1992. 

Mammen, D. and Victor R. Lesser, "Using Textures to Control Distributed Problem 
Solving," in Proceedings of the Workshop on Cooperation Among Heterogeneous 
Intelligent Systems, AAAI-92, San Jose, July 1992. 

Neiman, D., Hildum, D., Lesser, V. and Sandholm, T. "Exploiting Meta-level Information 
in a Distributed Scheduling System," in Proceedings of Twelfth National Conference on 
Artificial Intelligence, Seattle, WA, July/August 1994. 

Oates, T., Nagendra Prasad, M.V., Lesser, V.R. , and Decker, K.S. "A Distributed 
Problem Solving Approach to Cooperative Information Gathering," AAAI Spring 
Symposium, Stanford CA, March 1995. 

Sandholm, T. and Lesser, V. "Coalition Formation among Bounded Rational Agents." 
14th International Joint Conference on Artificial Intelligence (IJCAI-95), Montreal, 
Canada, August 1995. 

Sandholm, T. and Lesser, V. "Equilibrium Analysis of the Possibilities of Unenforced 
Exchange in Multiagent Systems." 14th International Joint Conference on Artificial 
Intelligence (IJCAI-95), Montreal, Canada, August 1995. 

Sandholm, T. and Lesser, V. "On Automated Contracting in Multi-enterprise 
Manufacturing." Proceedings of Conference on Improving Manufacturing Performance 
in a Distributed Enterprise: Advanced Systems and Tools, Edinburgh, Scotland, July 
1995. 

Sandholm, T. and Lesser, V. "Issues in Automated Negotiation and Electronic Commerce: 
Extending the Contract Net Framework." in Proceedings of First International 
Conference on Multiagent Systems (ICMAS-95), San Francisco, June 1995. 

Sandholm, T. "A New Order Parameter for 3SAT," in Proceedings of the AAAI-94 
Workshop on Experimental Evaluation of Reasoning and Search Methods, August 1994. 

Sandholm, T. and Lesser, V. "Utility-Based Termination of Anytime Algorithms," in the 
Proceedings of European Conference on AI: 1994 Workshop on Decision Theory for 
DAI Applications, 1994. 



Sandholm, T. and Lesser, V.R. "An Exchange Protocol Without Enforcement" in the 
Proceedings of 13th International Distributed Artificial Intelligence Workshop, Seattle, 
July 1994. 

Sandholm, T. "An Implementation of the Contract Net Protocol Based on Marginal Cost 
Calculations," Proceedings of the Eleventh National Conference on Artificial Intelligence, 
pp. 256-262, 1993. 

Sandholm, T. "An Implementation of the Contract Net Protocol Based on Marginal Cost 
Calculations," Twelfth International Workshop on Distributed Artificial Intelligence, 
1993. 

Sugawara, T. and Lesser, V. "Learning Coordination Plans in Distributed Problem- 
Solving Environments." Abstract in Proceedings of the First International Conference on 
Multi-Agent Systems, San Francisco, June 1995. AAAI Press. 

Sugawara, T. and Lesser, V., "On-Line Learning of Coordination Plans," Twelfth 
International Workshop on Distributed Artificial Intelligence, 1993. 

4.3 Unrefereed Reports and Articles: 

Decker, K. and Lesser, V. "Coordination Assistance for Mixed Human and Computational 
Agents." Computer Science Technical Report 95-31, University of Massachusetts, 1995. 

Decker, K. and Lesser, V.R. "Designing a Family of Coordination Algorithms," Computer 
Science Technical Report 94-14, University of Massachusetts at Amherst, January 1994. 

Decker, K. and Lesser, V. "Quantitative Modeling of Complex Computational Task 
Environments," Computer Science Technical Report 93-21, University of Massachusetts, 
1993. 

Decker, K. and Lesser, V., "Analyzing the Need for Meta-Level Communication," 
Computer Science Technical Report 93-22, University of Massachusetts, 1993. 

Garvey, A. and Lesser, V. "Design-to-time Scheduling With Uncertainty," University of 
Massachusetts Computer Science Department Technical Report 95-03, 1995. 

Garvey, A., Decker, K. and Lesser, V. "A Negotiation-based Interface Between a Real- 
time Scheduler and a Decision-Maker," Computer Science Technical Report 94-08, 
University of Massachusetts at Amherst, January 1994. 

Garvey, A. and Lesser, V., "A Survey of Research in Deliberative Real-Time Artificial 
Intelligence," Computer Science Technical Report 93-84, University of Massachusetts, 
November 1993. 

Lander, S.E. and Lesser, V.R. "Sharing Meta-Information to Guide Cooperative Search 
among Heterogeneous Reusable Agents," Computer Science Technical Report 94-48, 
University of Massachusetts, June 1994. 

Mammen, D., Fujita, S. and Lesser, V. "Predicting Solution Time for Constraint 
Satisfaction Problems Using Backtracking." Computer Science Technical Report 95-44, 
University of Massachusetts, Amherst, 1995. 

10 



Mammen, D. and Lesser, V.R., "Interdependent Suproblems in Distributed Problem 
Solving," Computer Science Technical Report 93-58, University of Massachusetts, 
1993. 

Nagendra Prasad, M., Lesser, V., and Lander, S. "Retrieval and Reasoning in Distributed 
Case Bases." Computer Science Technical Report 95-27, University of Massachsuetts at 
Amherst, March 1995. 

Oates, T., Nagendra Prasad, M. and Lesser, V. "Cooperative Information Gathering: A 
Distributed Problem Solving Approach." Computer Science Technical Report 94-66, 
University of Massachusetts at Amherst, 1994. 

Sandholm, T. and Lesser, V. "Advantages of a Leveled Commitment Contracting 
Protocol." Extended version. University of Massachusetts at Amherst, Computer Science 
Technical Report 95-72, 1995. 

Sandholm, T. and Lesser, V. "Coalition Formation among Bounded Rational Agents." 
Extended version. University of Massachusetts at Amherst, Computer Science Technical 
Report TR 95-71, 1995. 

Sandholm, T. and Lesser, V.R. "An Exchange Protocol Without Enforcement." Computer 
Science Technical Report 94-44, University of Massachusetts, July 1994. 

Sandholm, T. and Lesser, V. "Utility-Based Termination of Anytime Algorithms." 
Computer Science Technical Report 94-54, University of Massachusetts, July 1994. 

Sugawara, T. and Lesser, V., "On-Line Learning of Coordination Plans," Computer 
Science Technical Report 93-27, University of Massachusetts, 1993. 

4.4 Books or Parts Thereof Published 

Decker, K. S., Garvey, A.J., Lesser, V.R., and Humphrey, M.A., "An Approach to 
Modeling Environment and Task Characteristics for Coordination," in Enterprise 
Integration Modeling: Proceedings of the First International Conference, Charles J. 
Petrie, Jr. (ed.). Cambridge: MIT Press, 1992, pp. 379-388. 

Garvey, A. and Lesser, V., "Representing and Scheduling Satisficing Tasks," in Imprecise 
and Approximate Computation, S. Natarajan (ed.). Norwell, MA: Kluwer Academic 
Publishers, pp. 23-34, 1995. 

4.5 Books or Parts Thereof Accepted but not yet Published 

Decker, K.S., "Distributed Artificial Intelligence Testbeds," to appear in Foundations of 
Distributed Artificial Intelligence, Wiley Inter- Science, Chapter 5, G. O'Hare and N. 
Jennings (eds.). 

Decker, K.S., "TAEMS: A framework for analysis and design of coordination 
mechanisms," to appear in Foundations of Distributed Artificial Intelligence, Wiley Inter- 
Science, Chapter 17, G. O'Hare and N. Jennings (eds.). 

11 



4.6  Ph.D.  Dissertations 

Decker, Keith S. "Environment Centered Analysis and Design of Coordination Mechanisms," 
Ph.D. Dissertation and Computer Science Technical Report 95-69, University of 
Massachusetts at Amherst, May 1995. 

Hildum, David W. "Flexibility in a Knowledge-Based System for Solving Dynamic Resource- 
Constrained Scheduling Problems," Ph.D. Dissertation and Computer Science Technical 
Report 94-77, University of Massachusetts at Amherst, September 1994. 

Lander, Susan E. "Distributed Search and Conflict Management Among Reusable 
Heterogeneous Agents," Ph.D. Dissertation and Computer Science Technical Report 94- 
32, University of Massachusetts at Amherst, April 1994. 

5 TECHNOLOGY TRANSFER 

FY92 

• Professor  Paul Cohen is using the underlying   scheduler developed for the airplane 
scheduler application to do the scheduling of shipping in his transportation simulation 
framework. 

FY93 

•Professor Victor Lesser's contributions to the ARPA Review Panel on Advanced 
Distributed Simulation, headed by Dexter Fletcher of IDA for Colonel Reddy at ARPA, 
was greatly influenced by the research on this contract. 

FY94-95 

• Collaboration with Professor Lee Osterweil (who is supported under ARPA funds in the 
Arcadia Project) to use their knowledge-based scheduler to schedule software activities. 

• Generated proposals with Raytheon and Crystaliz to develop negotiation protocols for use 
with KQML. 

• Continued collaboration with Professor Lee Osterweil (who is supported under ARPA 
funds in the Arcadia Project) to use the DSS knowledge-based scheduler to schedule 
software activities. 

• Experiences gained from the TEAM concurrent engineering architecture is being applied 
to Ford Research Labs problems through a contract with Blackboard Technology, Inc. 

12 



APPENDICES 

A. Designing a Family of Coordination Algorithms 

B. Understanding   the Role  of Negotiation   in Distributed  Search  Among 
Heterogeneous  Agents 

C. Exploiting Meta-level Information in a Distributed Scheduling System 

D. Issues   in Automated Negotiation  and Electronic  Commerce:  Extending 
the Contract Net Framework 

13 



APPENDIX A 



Designing a Family of Coordination Algorithms 1 

Keith S. Decker and Victor R. Lesser 

Department of Computer Science 

University of Massachusetts, Amherst, MA 01003 

DECKER@CS.UMASS.EDU 

UMass Computer Science Technical Report 94—14 

August 9, 1995 

Abstract 

Many researchers have shown that there is no single best organization or coordination 

mechanism for all environments. This paper discusses the design and implementation of an 

extendable family of coordination mechanisms, called Generalized Partial Global Planning 

(GPGP). The set of coordination mechanisms described here assists in scheduling activities for 

teams of cooperative computational agents. The GPGP approach has several unique features. 

First, it is not tied to a single domain. Each mechanism is defined as a response to certain 

features in the current task environment. We show that different combinations of mechanisms 

are appropriate for different task environments. Secondly, the approach works in conjunction 

with an agent's existing local planner/scheduler. Finally, the initial set of five mechanisms 

presented here generalizes and extends the Partial Global Planning (PGP) algorithm. In 

comparison to PGP, GPGP schedules tasks with deadlines, it allows agent heterogeneity, it 

exchanges less global information, and it communicates at multiple levels of abstraction. We 

analyze the performance of several GPGP algorithm family members and one centralized upper 

bound reference algorithm, using data from simulations of multiple agent teams working in 

abstract task environments. We show how to decide if adding a new mechanism is useful, 

and suggest a way to prune the search for an appropriate combination of mechanisms in an 

environment. 

1A shorter version of this paper appeared in the Proceedings of the First International Conference on 
Multi-Agent Systems (ICMAS-95), San Francisco, June 1995. This work was supported by DARPA 
contract N00014-92-J-1698, Office of Naval Research contract N00014-92-J-1450, and NSF contract 
IRI-9321324. The content of the information does not necessarily reflect the position or the policy of 

the Government and no official endorsement should be inferred. 



1    Introduction 

This paper presents a formal description of the implementation of a domain independent 

scheduling coordination approach which we call Generalized Partial Global Planning (GPGP). 

The GPGP approach consists of an extendable set of modular coordination mechanisms, any 

subset or all of which can be used in response to a particular task environment. Each mechanism 

is defined using our formal framework for expressing coordination problems (ITEMS [8]). GPGP 

both generalizes and extends the Partial Global Planning (PGP) algorithm [10]. 

Our approach has several unique features: 

• Each mechanism is defined as a response to certain features in the current subjective task 

environment. Each mechanism can be removed entirely, or can be parameterized so that 

it is only active for some portion of an episode. New mechanisms can be defined; an initial 

set of five mechanisms is examined that together approximate the original PGP behavior. 

Eventually we intend to develop a library of reusable coordination mechanisms. The 

individual coordination mechanisms rest on a shared substrate that arbitrates between 

the mechanisms and the agent's local scheduler in a decision-theoretic manner. 

• GPGP works in conjunction with an existing agent architecture and local scheduler. The 

experimental results reported here were achieved using a 'design-to-time' real-time local 

scheduler developed by Garvey [13]. 

• GPGP, unlike PGP, is not tied to a single domain. GPGP allows more agent heterogene- 

ity than PGP with respect to agent capabilities. GPGP mechanisms in general exchange 

less information than the PGP algorithm, and the information that GPGP mechanisms 

exchange can be at different levels of abstraction. PGP agents communicated com- 

plete schedules at a single, fixed level of abstraction. GPGP mechanisms communicate 

scheduling commitments to particular tasks, at any convenient level of abstraction. 

The GPGP approach views coordination as modulating local control, not replacing it. This 

process occurs via a set of domain-independent coordination mechanisms that post constraints 

to the local scheduler about the importance of certain tasks and appropriate times for their 

initiation and completion. An example of a GPGP coordination mechanism is the one that 

handles simple method redundancy. If more than one agent has an otherwise equivalent 

method for accomplishing a task, then an agent that schedules such a method will commit to 

executing it, and will notify the other agents of its commitment. If more than one agent should 

happen to commit to a redundant method, the mechanism takes care of retracting all but one 

of the redundant commitments. 

By concentrating on the creation of local scheduling constraints, we avoid the sequentiality 

of scheduling in the original PGP algorithm that occurs when there are multiple plans. By 

having separate modules for coordination and local scheduling, we can also take advantage of 

advances in real-time scheduling to produce cooperative distributed problem solving systems 

that respond to real-time deadlines. We can also take advantage of local schedulers that have 

a great deal of domain scheduling knowledge already encoded within them. Finally, our 

approach allows consideration of termination issues that were glossed over in the PGP work 

(where termination was handled by an external oracle).   Nothing in ITEMS  the underlying 



task structure representation, requires agents to be cooperative, antagonistic, or simply self- 

motivated. 
Besides the obvious connections to the earlier PGP work, GPGP builds on work by 

von Martial [20] in detecting and reacting to relationships (such as von Martial's "favor" 

relationship). GPGP also uses a notion of social commitments similar to those discussed by 

[2, 19, 1, 15]. Durfee's newer work [9] is based on a hierarchical behavior space representation 

that like GPGP allows agents to communicate at multiple levels of detail. The mechanisms 

presented in this paper deal with coordination while agents are scheduling (locating in time) 

their activities rather than while they are planning to meet goals. This allows them to be 

used in distributed scheduling systems, agenda-based systems (like blackboard systems), or 

systems where agents instantiate previous plans (like case-based planning systems). The focus 

on mechanisms for coordinating schedules is thus slightly different from work that focuses 

on multi-agent planning [14, 11]. Shoham and Tennenholtz's 'social laws' approach [18] can 

be viewed as one which tries to change the (perceived) structure of the tasks by, for example, 

restricting the agents' possible activities. Intelligent agents might use all of these approaches at 

one time or another. 
The next section will briefly re-introduce our framework for representing coordination 

problems, and summarize the assumptions we make about an agent's internal architecture. 

We then describe the GPGP substrate and five coordination mechanisms.1 Previous work has 

shown how the GPGP approach can duplicate and extend the behaviors of the PGP algorithm 

[5]; Section 4 summarizes several new results that are reported in [4] concerning this approach's 

performance, adaptability, and extendibility. We conclude with a look at our future directions. 

1.1    Representing The Task Environment 

Coordination is the process of managing interdependencies between activities [17]. If we view 

an agent as an entity that has some beliefs about the world and can perform actions, then the 

coordination problem arises when any or all of the following situations occur: the agent has 

a choice of actions it can take, and that choice affects the agent's performance; the order in 

which actions are carried out affects performance; the time at which actions are carried out 

affects performance. The coordination problem of choosing and temporally ordering actions 

is made more complex because the agent may only have an incomplete view of the entire task 

structure of which its actions are a part, the task structure may be changing dynamically, and 

the agent may be uncertain about the outcomes of its actions. If there are multiple agents in 

an environment, then when the potential actions of one agent are related to those of another 

agent, we call the relationship a coordination relationship. Each GPGP coordination mechanism 

is a response to some coordination relationship. 

The TJEMS framework (Task Analysis, Environment Modeling, and Simulation) [8] rep- 

resents coordination problems in a formal, domain-independent way. We have used it to 

represent coordination problems in distributed sensor networks, hospital patient scheduling, 

airport resource management, distributed information retrieval, pilot's associate, local area net- 

work diagnosis, etc.   [4].  In this paper we will describe an agent's current subjective beliefs 

1These five mechanisms are oriented towards producing PGP-like 'cooperative team' behavior. Mechanisms 
for self-interested agents are also possible. 



about the structure of the problem it is trying to solve by using the ITEMS framework [8, 4]. 

For this purpose, there are two unique features of ITEMS. The first is the explicit, quantitative 

representation of task interrelationships as functions that describe the effect of activity choices 

and temporal orderings on performance. The second is the representation of task structures at 

multiple levels of abstraction. The highest level of abstraction is called a task group, and contains 

all tasks that have explicit computational interrelationships. A task is simply a set of lower-level 

subtasks and/or executable methods. The components of a task have an explicitly defined effect 

on the quality of the encompassing task. The lowest level of abstraction is called an executable 

method. An executable method represents a schedulable entity, such as a blackboard knowledge 

source instance, a chunk of code and its input data, or a totally-ordered plan that has been 

recalled and instantiated for a task. A method could also be an instance of a human activity at 

some useful level of detail, for example, "take an X-ray of patient Is left foot". 

A coordination problem instance (called an episode E) is defined as a set of task groups, 

each with a deadline D(7~), such as E = (7i, I2, ■ ■ ■, Tn)- Figure 1 shows an objective2 task 

group and agent As subjective view of that same task group. A common performance goal 

of the agent or agents is to maximize the sum of the quality achieved for each task group 

before its deadline. A task group consists of a set of tasks related to one another by a subtask 
relationship that forms an acyclic graph (here, a tree). Tasks at the leaves of the tree represent 

executable methods, which are the actual instantiated computations or actions the agent will 

execute that produce some amount of quality (in the figure, these are shown as boxes). The 

circles higher up in the tree represent various subtasks involved in the task group, and indicate 

precisely how quality will accrue depending on what methods are executed and when. The 

arrows between tasks and/or methods indicate other task interrelationships where the execution 

of some method will have a positive or negative effect on the quality or duration of another 

method. The presence of these interrelationships make this an NP-hard scheduling problem; 

further complicating factors for the local scheduler include the fact that multiple agents are 

executing related methods, that some methods are redundant (executable at more than one 

agent), and that the subjective task structure may differ from the real objective structure. 

2    Summary of the GPGP algorithm family approach 

This section will provide a quick overview of the GPGP approach. Figure 2 shows a simple 

two-agent example that we will use. Each agent has as part of its architecture a belief database, 

local scheduler, and coordination module. The local scheduler uses the information in the 

belief database to schedule method execution actions for the agent in an attempt to maximize its 

performance. We add to this a coordination module that is in charge of communication actions, 

information gathering actions, and in making and breaking commitments to complete tasks in 

the task structure. The coordination module consists of several coordination mechanisms, each 

of which notices certain features in the task structures in the belief database, and responds 

by taking certain communication or information gathering actions, or by proposing new 

commitments. The coordination mechanisms rest in a shared coordination module substrate 

that keeps track of local commitments and commitments received from other agents, and that 

chooses from among multiple schedules if the local scheduler returns multiple schedules. 

The word objective' refers to the fact that this is the true, real structure. 



t A inicial subjecche view 

agent     method (executable task) 

©task with quality 
accrual function min 

       subtask relationship 

enables relationship 

£-►     facilitates relationship 

Agent B initial subjective view 

Figure 1: Agent A and B's subjective views (bottom) of a typical objective task group (top) 

In these environments, the agents attempt to maximize the system-wide total utility (a 

quantity called 'quality', described later) by executing sequences of interrelated 'methods'. The 

agents do not initially have a complete view of the problem solving situation, and the execution 

of a method at one agent can either positively or negatively affect the execution of other methods 

at other agents. We will show examples of the effect of the environment on the performance 

of a GPGP family member, and show an environment where family member A is better than 

B, and a different environment where B is better than A. "We will return to the demonstration 

of meta-level information being more useful when there is a large amount of variance between 

episodes in an environment. 

Here is a short example intended only to give the reader a feel for the overall approach. 

In Figure 2, both agents have executed an initial information gathering action, and have 

their initial views of the task structure (everything in the agents' belief database except for the 

shaded tasks (Tasks 2, 5, D and E), and the relationships touching the shaded tasks). One 

of the coordination mechanisms (Mech. 1, update non-local views) performs an information 

gathering action to determine which tasks may be related to tasks at other agents ("detect 

coordination relationships"). These tasks are then exchanged between the agents, resulting in 

the belief databases shown in the figure (including the shaded tasks). Other mechanisms react 

to the task structure. One mechanism (Mech. 5, handle soft predecessors) notices that Task 2 

at Agent Y faci litates Task 5 at Agent X. In order that Agent X might schedule to take advantage 

of this, Agent Y's mechanism makes a local intermediate deadline commitment to complete 

its Task 2 by time 7 with minimum quality 45 (you and I may infer that Y intends to execute 

Method B, but that local information is not a part of the commitment). A commitment is 

made in two stages: first it is made locally to see if it is possible as far as the agent's local 

scheduler is concerned, and then it is made non-locally and communicated to the other agents 

that are involved. Note that the deadline on the non-local version of this commitment is later 

(time 8) to take into account the communication delay (here, 1 time unit). Similarly, Agent 



'1- \ 
.max 

name 
duratior 
quality local method (an executable task) 

' T   j    local task with 
\mmj    quality accrual function min 

      subtask relationship 

 >.    enables relationship 

 •$&>'     facilitates relationship 

Objective task or method 
in the environment 

Subjective representation of 
another agent's task 
(non-local view) 

Agent X 
Belief 
Database 

Figure 2: An Overview of Generalized Partial Global Planning 

X has a mechanism (Mech. 3, handle simple redundancy) that notices that either agents X or 

Y could do Task 4. Agent X does eventually commit to this task (the process is a bit more 

complicated as will be explained later) and communicates this commitment to Agent Y. 

In both cases the agents' local schedulers use the information about the task structure they 
have in their belief database, and the local and non-local commitments, to construct schedules. 

The local scheduler may return multiple schedules for several reasons we explain later. Each 

schedule is evaluated along the dimensions of the performance criteria (such as total final quality 

and termination time) and for what (if any) local commitments are violated. If a commitment 

is violated, the local scheduler may suggest an alternative (for instance, relaxing a quality or 

intermediate deadline constraint). The coordination module chooses a schedule from this set, 

and handles the retraction of any violated commitments. 

2.1    The Agent Architecture 

We make few assumptions about the architecture of the agents. The agents have a database that 

holds their current beliefs about the structure of the tasks in the current episode; we represent 

this information using ITEMS. The agents can do three types of actions: they can execute 

methods from the task structure, send direct messages to one another, and do "information 

gathering". Information gathering actions model how new task structures or communications 

get into the agent's belief database. This could be a combination of external actions (checking 

the agent's incoming message box) and internal planning. Method execution actions cause 

quality to accrue in a task group (as indicated by the task structure). Communication actions 

are used to send the results of method executions (which in turn may trigger the effects of 



various task interrelationships) or meta-level information. 

Formally, we write B^x) to mean agent A subjectively believes x at time t (from 

Shoham[19]). We will shorten this to B(x) when the particular agent or time is not important. 

An agent's subjective beliefs about the current episode include the agent's beliefs about task 

groups, subtasks, executable methods, and interrelationships (e.g., B{% € E),B(Ta,Mb £ 

73,£(eriables(:ro>Mt))). 
The GPGP family of coordination mechanisms also makes a stronger assumption about the 

agent architecture. It assumes the presence of a local scheduling mechanism (to be described in 

the next section) that can decide what method execution actions should take place and when. 

The local scheduler attempts to maximize a (possibly changing) utility function. The current 

set of GPGP coordination mechanisms are for cooperative teams of agents—they assume that 

agents do not intentionally lie and that agents believe what they are told. However, because 

agents can believe and communicate only subjective information, they may unwittingly transmit 

information that is inconsistent with an objective view (this can cause, among other things, 

the phenomena of distraction). Finally, the GPGP family approach requires domain-dependent 

code to detect or predict the presence of coordination relationships in the local task structure. 

In this paper we will refer to that domain-dependent code as the information gathering action 

called detect-coordination-relationships; we will describe this action more in Section 3.2. 

2.2    The Local Scheduler 

Each GPGP agent contains a local scheduler that takes three types of input information 

and produces a set of schedules and alternatives. The first input is the current, subjectively 

believed task structure. Using information about the potential duration, potential quality, and 

interrelationships, the local scheduler chooses and orders executable methods in an attempt to 

maximize a pre-defined utility function. In this paper the utility function is the sum of the 

task group qualities EreE Q(T, D(T)), where Q(T, t) denotes the quality of T at time t as 
defined in [8]. Quality does not accrue after a task group's deadline. 

The second input is a set of commitments C. These commitments are produced by the 

GPGP coordination mechanisms, and act as extra constraints on the schedules that are produced 

by the local scheduler. For example, if method 1 is executable by agent A and method 2 is 

executable by agent B, and the methods are redundant, then one of agent A's coordination 

mechanisms may commit agent A to do method 1. Commitments are social-—directed to 

particular agents in the sense of the work of Shoham and Castelfranchi [1,19]). A local 

commitment C by agent A becomes a non-local commitment when received by another agent 

B. This paper will use two types of commitments: C(Do(T, q)) is a commitment to 'do' 

(achieve quality for) T and is satisfied at the time t when Q(T,t) > q; the second type 

C(DL(T, q, tdi)) is a 'deadline' commitment to do T by time tdi and is satisfied at the time t 

when [Q(T, t) > q] A [t < tdi). When a commitment is sent to another agent, it also implies 

that the task result will be communicated to the other agent (by the deadline, if it is a deadline 
commitment). 

The third input to the local scheduler is the set of non-local commitments NLC made 

by other agents. This information can be used by the local scheduler to coordinate actions 

between agents. For example the local scheduler could have the property that, if method Mi 

is executable by agent A and is the only method that enables method M2 at agent B (and 



agent B knows this), and BA(C(Dl(M1,q,t1))) G BB(NLC), then for every schedule S 

produced by agent B, (M2,t) £ S =>■ t > ti (in other words, agent B only schedules the 

enabled method after the deadline that agent A has committed to. 

A schedule S produced by a local scheduler will consist of a set of methods and start 

times: S = {(Mi, ii), (M2, t2),.. . , (Mn, tn)}. The schedule may include idle time, and the 

local scheduler may produce more than one schedule upon each invocation in the situation 

where not all commitments can be met. The different schedules represent different ways 

of partially satisfying the set of commitments. The function Violated(S') returns the set 

of commitments that are believed to be violated by the schedule. For violated deadline 

commitments C(DL(T, q, tdi)) £ Violated^) the function Alt(C, S) returns an alternative 

commitment C(DL(T, q, tdl)) where t*dl = min t such that Q(T, t) > q if such a t exists, or 

NIL otherwise. For a violated Do commitment an alternative may contain a lower minimum 

quality, or no alternative may be possible. The function Uest(E, S, NLC) returns the estimated 

utility at the end of the episode if the agent follows schedule S and all non-local commitments 

in NLC are kept. 

Thus we may define the local scheduler as a function LS(E, C, NLC) returning a set 

of schedules S = {5i, S2, ■ ■ ■, Sm}. More detailed information about this kind of interface 

between the local scheduler and the coordination component may be found in [12]. This 

is an extremely general definition of the local scheduler, and is the minimal one necessary 

for the GPGP coordination module. Stronger definitions than this will be needed for more 

predictable performance, as we will discuss later. Ideally, the optimal local scheduler would 

find both the schedule with maximum utility Su and the schedule with maximum utility 

that violates no commitments Sy. In practice, however, a heuristic local scheduler will 

produce a set of schedules where the schedule of highest utility Su is not necessarily optimal: 

U(E, Su, NLC) < U(E, Su, NLC). 

3    Five GPGP Coordination Mechanisms 

The role of the coordination mechanisms is to provide information to the local scheduler that 

allows the local scheduler to construct better schedules. This information can be in the form 

of modifications to portions of the subjective task structure of the episode or in the form of 

local and non-local commitments to tasks in the task structure. The five mechanisms we will 

describe in this paper form a basic set that provides similar functionality to the original Partial 

Global Planning algorithm as shown in [5]. Mechanism 1 exchanges useful private views of 

task structures; Mechanism 2 communicates results; Mechanism 3 handles redundant methods; 

Mechanisms 4 and 5 handle hard and soft coordination relationships. More mechanisms can 

be added, such as one to update utilities across agents as discussed in the next section, or to 

balance the load better between agents. The mechanisms are independent in the sense that they 

can be used in any combination. If inconsistent constraints are introduced, the local scheduler 

will return at least one violated constraint in all its schedules. Since the local scheduler typically 

satisfices instead of optimizes, it may do this even if constraints are not inconsistent (i.e. it 

does not search exhaustively). The next section describes how a schedule is chosen by the 

coordination module substrate. 



3.1    The GPGP Coordination Module Substrate 

All the specific coordination mechanisms rest on a common substrate that handles information 

gathering actions, invoking the local scheduler, choosing a schedule to execute (including 

dealing with violated or inconsistent commitments), and deciding when to terminate processing 

on a task group. Information gathering actions include noticing new task group arrivals and 

receiving communications from other agents. Information gathering is done at the start of 

problem solving, when communications are expected from other agents, and when the agent 

is otherwise idle. Communications are expected in response to certain events (such as after 

the arrival of a new task group) or as indicated in the set of non-local commitments NLC. 

This is the minimal general information gathering policy. Termination of processing on a task 

group occurs for an agent when the agent is idle, has no expected communications, and no 

outstanding commitments for the task group. 

Choosing a schedule is more complicated. The agent's local scheduler may return multiple 

schedules because it cannot find a single schedule that both maximizes utility and meets all 

commitments. From the set of schedules S returned by the local scheduler, two particular 

schedules are identified: the schedule with the highest utility SJJ and the best committed 

schedule Sc- If they are the same, then that schedule is chosen. Otherwise, we examine 

the sum of the changes in utility for each commitment. Each commitment, when created, is 

assigned the estimated utility Uest for the task group of which it is a part. This utility may be 

updated over time (when other agents depend on the commitment, for example). We then 

choose the schedule with the largest positive change in utility. This allows us to abandon 

commitments if doing so will result in higher overall utility. The coordination substrate does 

not use the local scheduler's utility estimate Uest directly on the entire schedule because it is 

based only on a local view. The coordination substrate may receive non-local information that 

places a higher utility on a commitment than it has locally. 

For example, at time t agent A may make a commitment C\ on task T £ 7i £ E that 

results in a schedule S\. C\ initially acquires the estimated utility of the task group of which 

it is a part, 11(d) <- Uest{{Ti}, Su BA(NLC)). LetU(d) = 50. After communicating 

this commitment to agent B (making it part of BB(NLC), agent B uses the commitment 

to improve £/est({7i}, S2, ßß(NLC)) to 100. A coordination mechanism can detect this 

discrepancy and communicate the utility increase back to agent A, so that when agent A 

considers discarding the commitment, the coordination substrate recognizes the non-local 

utility of the commitment is greater than the local utility. 

If both schedules have the same utility, the one that is more negotiable is chosen. Every 

commitment has a negotiability index (high, medium, or low) that indicates (heuristically) the 

difficulty in rescheduling if the commitment is broken. This index is set by the individual 

coordination mechanisms. For example, hard coordination relationships like enables that 

cannot be ignored will trigger commitments with low negotiability. If the schedules are still 

equivalent, the shorter one is chosen, and if they are the same length, one is chosen at random. 

After a schedule S is chosen, if Violated(5) is not empty, then each commitment C £ 

Violated(S') is replaced with its alternative C •<— C \ C U Alt(C, S). If the commitment was 

made to other agents, the other agents are also informed of the change in the commitment. 

While this could potentially cause cascading changes in the schedules of multiple agents, it 

generally does not for three reasons:   first, as we mentioned in the previous paragraph less 



important commitments are broken first; secondly, the resiliancy of the local schedulers to 

solve problems in multiple ways tends to damp out these fluctuations; and third, agents are 

time cognizant resource-bounded reasoners that interleave execution and scheduling (i.e., the 

agents cannot spend all day arguing over scheduling details and still meet their deadlines). We 

have observed this useful phenomenon before [4] and plan to analyze it in future work. 

3.2    Mechanism 1: Updating Non-Local Viewpoints 

Remember that each agent has only a partial, subjective view of the current episode. The 

GPGP mechanism described here can communicate no private information ('none' policy, no 

non-local view), or all of it ('all' policy, global view), or take an intermediate approach ('some' 

policy, partial view). The process of detecting coordination relationships between private and 

shared parts of a task structure is in general very domain specific, so we model this process 

by a new information gathering action, detect-coordination-relationships, that takes some fixed 

amount of the agent's time. This action is scheduled whenever a new task group arrives. 
The set P of privately believed tasks or methods at an agent A (tasks believed at arrival time 

by A only) is then {x | task(x) A Va G A \ A, -^BA(B^(x))}, where A is the set of all 

agents and Ar (a;) is the arrival time of a;. Given this definition, the action detect-coordination- 

relationships returns the set of private coordination relationships PCR = {r | Tx G P A T2 G" 

P A [r(Ti, T2) V r(T2, Ti)]} between private and mutually believed tasks. The action does 

not return what the task T2 is, just that a relationship exists between T\ and some otherwise 

unknown task T2. For example, in the DVMT, we have used the physical organization of agents 

to detect that Agent As task !Z\ in an overlapping sensor area is in fact related to some unknown 

task T2 at agent B (i.e. -S^(5B(T2))) [5]. The non-local view coordination mechanism 

then communicates these coordination relationships, the private tasks, and their context: if 

r{Tx, T2) G PCR and 7\ G P then r and Tx will be communicated by agent A to the set of 

agents {a \ BA(Ba{T2))}. 

method (executable task) 

©task with quality 
accrual function min 

       subtask relationship 

 ■>■    enables relationship 

■' "^p~     facilitates relationship 

Agent As view after communication from B 

B3] [B4| 
Agent B's view after communication from A 

Figure 3: Agents A and B's local views after receiving non-local viewpoint communications via mechanism 1 
(shaded objects). Figure 1 shows the agents' initial states. 

For example, Figure 3 shows the local subjective beliefs of agents A and B after the 

communication from one another due to this mechanism. 



The agents' initial local view was shown previously in Figure 1. In this example, T% and T4 

are two elements in Agent B's private set of tasks P, facilitates^, Ti, <j>d, (j>q) E PCR (the 

facilitation relates a private task to a mutually believed task), and enables(T4, T3) is completely 

local to Agent B (it relates two private tasks). At the start of this section we mentioned that 

coordination relationships exist between portions of the task structure controllable by different 

agents (i.e., in PCR) and within portions controllable by multiple agents. We'll denote the 

complete set of coordination relationships as CR; this includes all the elements of PCR and 

all the relationships between non-private tasks. Some relationships are entirely local—between 

private tasks—and are only of concern to the local scheduler. The purpose of this coordination 

mechanism is the exchange of information that expands the set of coordination relationships 

CR. Without this mechanism in place, CR will consist of only non-private relationships, 

and none that are in PCR. Since the primary focus of the coordination mechanisms is the 

creation of social commitments in response to coordination relationships (elements of CR), 

this mechanism can have significant indirect benefits. In environments where |PCR| tends 

to be small, very expensive to compute, or not useful for making commitments (see the later 

sections), this mechanism can be sucessfully omitted. 

3.3 Mechanism 2: Communicating Results 

The result communication coordination mechanism has three possible policies: communicate 

only the results necessary to satisfy commitments to other agents (the minimal policy); com- 

municate this information plus the final results associated with a task group ('TG' policy), 

and communicate all results ('all' policy3). Extra result communications are broadcast to all 

agents, the minimal commitment-satisfying communications are sent only to those agents to 

whom the commitment was made (i.e., communicate the result of T to the set of agents 

{A E A | B(BA(C(T))}. 

3.4 Mechanism 3: Handling Simple Redundancy 

Potential redundancy in the efforts of multiple agents can occur in several places in a task 

structure. Any task that uses a 'max' quality accumulation function (one possible semantics 

for an 'OR' node) indicates that, in the absence of other relationships, only one subtask needs 

to be done. When such subtasks are complex and involve many agents, the coordination of 

these agents to avoid redundant processing can also be complex; we will not address the general 

redundancy avoidance problem in this paper (see instead [16]). In the original PGP algorithm 

and domain (distributed sensor interpretation), the primary form of potential redundancy 

was simple method redundancy—the same result could be derived from the data from any of 

a number of sensors. The coordination mechanism described here is meant to address this 

simpler form of potential redundancy. 
The idea behind the simple redundancy coordination mechanism is that when more than 

one agent wants to execute a redundant method, one agent is randomly chosen to execute 
it and send the results to the other interested agents. This is a generalization of the 'static' 
organization algorithm discussed by Decker and Lesser [6]—it does not try to load balance, and 
uses one communication action (because in the general case the agents do not know beforehand, 

3 Such a policy is all that is needed in many simple environments. 

10 



without communication, that certain methods are redundant4). The mechanism considers the 
set of potential redundancies RCR = {r G CR | [r = subtask(T, M,min)] A [VM € 
M, method{M)}}. Then for all methods in the current schedule S at time t, if the method is 
potentially redundant then commit to it and send the commitment to Others(M) (non-local 

agents who also have a method in M): 

[(M,tM) G S] A [subtask(T,M,min) G RCR] A [M G M]  => 

[C(Do(M,Qest(M,D(M),S)))eC] A [comm(M, Others(M),*) G X] 

See for example the top of figure 4—both agents commit to Do their methods for 7\. 

After the commitment is made, the agent must refrain from executing the method in 

question if possible until any non-local commitments that were made simultaneously can arrive 

(the communication delay time 8). This mechanism then watches for multiple commitments 

in the redundant set and if they appear, a unique agent is chosen randomly (but identically 

by all agents) from those with the best commitments to keep its commitment. All the other 

agents can retract their commitments. For example the bottom of figure 4 shows the situation 

after Agent B has retracted its commitment to Do Bx. If all agents follow the same algorithm, 

and communication channels are assumed to be reliable, then no second message (retraction) 

actually needs to be sent (because they all choose the same agent to do the redundant method). 

In the implementation described later, identical random choices are made by giving each 

method a unique random identifier, and then all agents choose the method with the 'smallest' 

identifier for execution. 
Initially, all Do commitments initiated by the redundant coordination mechanism are 

marked highly negotiable. When a redundant commitment is discovered, the negotiability of 

the remaining commitment is lowered to medium to indicate the commitment is somewhat 

more important. 

3.5    Mechanism 4: Handling Hard Coordination Relationships 

Hard coordination relationships include relationships like enables(Mi, M2) that indicate that 
Mx must be executed before M2 in order to obtain quality for M2. Like redundant methods, 
hard coordination relationships can be culled from the set CR. The hard coordination 
mechanism further distinguishes the direction of the relationship—the current implementation 
only creates commitments on the predecessors of the enables relationship. We'll let HPCR C 
CR indicate the set of potential hard predecessor coordination relationships. The hard 

coordination mechanism then looks for situations where the current schedule S at time t will 
produce quality for a predecessor in HPCR, and commits to its execution by a certain deadline 

both locally and socially: 

[Qest(T,D(T),S)>0] A [enables(T, M) G HPCR]  => 

[C(DL(T)Qest(T,D(T)!5)1ieariy))GC] A [comm(C,Others(M),f) G X] 

The next question is, by what time (ieariy above) do we commit to providing the answer? 

One solution, usable with any local scheduler that fits our general description in Section 2.2, 

4The detection of redundant methods is domain-dependent, as discussed earlier. Since we are talking here 
about simple, direct redundancy (i.e. doing the exact same method at more than one agent) this detection is very 

straight-forward. 

11 



C7) \miny 

Tl \ «r 

Al 
5 

100 

Bl 
? ■ duration 

quality 

Commitments made from A to B: 

Do(Al,100)[Mech#3] 
Commitments made from B to A. 

DL(T4,50,5) [Mech#5] 
DO(B1,100) [Mech#3] 

Agent A j view after communication from B Agent B 's view after communication from A 

Al Bl 
5 ■> ■< duration 

100 m -< quality 

Commitments made from A to B. 

DO(A1,150) fMech#31 
Commitments made from B to A. 

DL(T4,50,5) TMech#5l 

Schedules: 

1      B4      1       B3 

|   A!   | 

c2           t=5             t-- 10 

B3 
5 

100 

Agent A's view after recieveing B's commitments Agent B 's view after receiving A's commitments 

Figure 4: A continuation of Figures 1 and 2. At top: agents A and B propose certain commitments to one another 
via mechanisms 3 and 5. At bottom: after receiving the initial commitments, mechanism 3 removes agent B's 
redundant commitment. 

is to use the mini such that Q,est(T,D(T), S) > 0. In our implementation, the local 

scheduler provides a query facility that allows us to propose a commitment to satisfy as 'early' 
as possible (thus allowing the agent on the other end of the relationship more slack). We take 
advantage of this ability in the hard coordination mechanism by adding the new commitment 
C(DL(T, Qest{T, D(T), S), "early")) to the local commitment set C, and invoking the local 
scheduler LS(E, C,NLC) to produce a new set of schedules S. If the preferred, highest 
utility schedule Su £ S has no violations (highly likely since the local scheduler can simply 
return the same schedule if no better one can be found), we replace the current schedule with 
it and use the new schedule, with a potentially earlier finish time for T, to provide a value for 
Nearly The new completed commitment is entered locally (with low negotiability) and sent to 
the subset of interested other agents. 

If redundant commitments are made to the same task, the earliest commitment made by 
any agent is kept, then the agent committing to the highest quality, and any remaining ties are 
broken by the same method as before. 

Currently, the hard coordination mechanism is a pro-active mechanism, providing infor- 

12 



mation that might be used by other agents to them, while not putting the individual agent to 

any extra effort. Other future coordination mechanisms might be added to the family that are 

reactive and request from other agents that certain tasks be done by certain times; this is quite 

different behavior that would need to be analyzed separately. 

3.6    Mechanism 5: Handling Soft Coordination Relationships 

Soft coordination relationships are handled analogously to hard coordination relationships ex- 

cept that they start out with high negotiability. In the current implementation the predecessor 

of a facilitates relationship is the only one that triggers commitments across agents, although 

hinders relationships are present. The positive relationship facilitates(Mi, M2, <f>d, 4>q) indi- 

cates that executing Mi before M2 decreases the duration of M2 by a power' factor related to 

4>d and increases the maximum quality possible by a 'power' factor related to <j>q (see [8] for 

the details). A more situation-specific version of this coordination mechanism might ignore 

relationships with very low power'. The relationship hinders(Mi, M2, <f>d, </>q) is negative and 

indicates an increase in the duration of M2 and a decrease in maximum possible quality. A 

coordination mechanism could be designed for hinders (and similar negative relationships) 

and added to the family. To be pro-active like the existing mechanisms, a hinders mechanism 

would work from the successors of the relationship, try to schedule them late, and commit to 

an earliest start time on the successor. Figure 4 shows Agent B making a D commitment to do 

method B4, which in turn allows Agent A to take advantage of the facilitates^, Tl, 0.5, 0.5) 

relationship, causing method A\ to take only half the time and produce 1.5 times the quality. 

4    Experimental Results 

We do not believe that any of the mechanisms that collectively form the GPGP family of 

coordination algorithms are indispensable. "What we can do is evaluate the mechanisms on 

the terms of their costs and benefits to cooperative problem solving both analytically and 

experimentally. This analysis and experimentation takes place with respect to a very general 

task environment that does not correspond to a particular domain. Doing this produces 

general results, but weaker than would be possible to derive in a single fixed domain because 

the performance variance between problem episodes will be far greater than the performance 

variance of the different algorithms within a single episode. Still, this allows us to determine 

broad characteristics of the algorithm family that can be used to reduce the search for a 

particular set of mechanism parameters for a particular domain (with or without machine 

learning techniques; see Section 5). We will also discuss statistical techniques (e.g. paired- 

response simulations) to deal with the large between-episode variances that occur when using 

randomly-generated problems. 

4.1     GPGP Simulation: Issues 

Our model of an abstract task environment, used in these experiments, has ten parameters; 

Table 1 lists them and the values used in the experiments described in the next two sections. 

3 Our earlier work focussed on the analysis of distributed sensor network task environments [6, 7]. 

13 



Figure 2 shows a small example task group. 

Parameter Values (facilitation exps.) Values (clustering exps.) 

Mean Branching factor (Poisson) 1 1 
Mean Depth (Poisson) 3 3 
Mean Duration (exponential) 10 (1 10 100) 

Redundant Method QAF Max Max 

Number of task groups 2 (1 5 10) 
Task QAF distribution (20%/80% min/max) (50%/50% min/max) 

(100%/0% min/max) 
Hard CR distribution (10%/90% enables/none) (0%/100% enables/none) 

(50%/50% enables/none) 

Soft CR distribution (80%/10%/10% facilitates/hinders/none) (0%/10%/90% facilitates/hinders/none) 
(50%/10%/40% facilitates/hinders/none) 

Chance of overlaps (binomial) 10% (0%50% 100%) 
Facilitation Strength .1 .5 .9 .5 

Table 1: Environmental Parameters used to generate the random episodes 

The primary sources of overhead associated with the coordination mechanisms include 

action executions (communication and information gathering), calls to the local scheduler, 

and any algorithmic overhead associated with the mechanism itself. Table 2 summarizes the 

total amount of overhead from each source for each coordination mechanism setting and the 

coordination substrate. L represents the length of processing (time before termination), and 

d is a general density measure of coordination relationships. We believe that all of these 

amounts can be derived from the environmental parameters in Table 1, they can also be 

measured experimentally. Interactions between the presence of coordination mechanisms and 

these quantities include: the number of methods or tasks in E, which depends on the non- 
local view mechanism; the number of coordination relationships |CR| or the subsets RCR 

(redundant coordination relationships), HPCR (hard predecessor coordination relationships), 

SPCR (soft predecessor coordination relationships), which depends on the number of tasks 

and methods as well; and the number of commitments | C |, which depends on each of the 

three mechanisms that makes commitments. 

Mechanism setting Communications Information Gathering Scheduler Other Overhead 

0{LC) 

0 
0{T G E) 
0{T G E) 
O(C) 
0(C + E) 

0{M G E) 
0(RCR*S + CR) 
0(HPCR*S + CR) 
Q(SPCR*S + CR) 

substrate 
nlv none 

some 
all 

comm min 
TG 

all 
redundant on 

hard on 
soft on 

0 
0 
0(dP) 
O(P) 
O(C) 
0(C + E) 

0{M G E) 
O(RCR) 
O(HPCR) 
O(SPCR) 

E+idle 
0 
Edetect-CRs 
Edetect-CRs 

0 
0 
0 
0 
0 
0 

L 
0 
0 
0 
0 
0 

0 

O(HPCR) 
O(SPCR) 

Table 2: Overhead associated with individual mechanisms at each parameter setting 

14 



4.2    General Performance Issues 

We examined the general performance of the most complex (all mechanisms in place) and 

least complex (all mechanisms off) members of the GPGP family in comparison to each other, 

and in comparison to a centralized scheduler reference implementation (as an upper bound). 

We looked at performance measures such as the total final quality achieved by the system, 

the amount of work done, the number of deadlines missed, and the termination time. The 

centralized schedule reference system is not an appropriate solution to the general coordination 

problem, even for cooperative groups of agents, for several reasons: 

• The centralized scheduling agent becomes a possible single point of failure that can cause 

the entire system to fail (unlike the decentralized GPGP system). 

• The centralized scheduling agent requires a complete, global view of the episode—a view 

that we mentioned earlier is not always easy to achieve. We do not account for any costs 

in building such a global view in the reference implementation (viewing it as an upper 

bound on performance). We do not allow dynamic changes in the episodic task structure 

(which might require rescheduling). 

• The centralized reference scheduler uses an optimal single-agent schedule as a starting 

point. The problem of scheduling actions in even fairly simple task structures is in NP, 

and the optimal scheduler's performance grows exponentially worse with the number of 

methods to be scheduled. Since the centralized reference scheduler has a global view and 

schedules all actions at all agents, the size of the centralized problem always grows faster 

than the size of the scheduling problems at GPGP agents with only partial views and 

heuristic schedulers. 

We conducted 300 paired response experiments, using the three algorithms. "Balanced" 

refers to all mechanisms being on, with partial non-local views and communication of com- 

mitted results and completed task groups. "Simple" refers to all mechanisms being off, with no 

non-local view and broadcast communication of all results. "Parallel" refers to the centralized 

reference scheduler that uses a heuristic parallelization of an optimal single agent schedule using 

a complete global view. The experiments were based on the same environmental parameters 

as the facilitation experiments (Table 1). There are several important things to note about this 

class of environments: 

• The size of the episodes was kept artificially small so that the centralized reference 

scheduler could find an optimal schedule in a reasonable amount of run time. 

• The experiments had very low (10%)numbers of enables relationships and a low (20%) 

number of MIN quality accrual functions because they penalize the simple algorithm— 

we demonstrate this in Section 4.4. 

• Deadline pressure was also kept low (it also makes the simple algorithm perform badly). 

In our experiments, the centralized parallel scheduler outperformed our distributed, GPGP 

agents 57% of the time (36% no difference, 7% distributed was better) using the total final 

quality as the only criterion. The GPGP agents produced 85% of the quality that the centralized 

15 



parallel scheduler did, on average. These results need to be understood in the proper context— 
the centralized scheduler takes much more processing time than the distributed scheduler and 
cannot be scaled up to larger numbers of methods or task groups. The centralized scheduler also 
starts with a global view of the entire episode. Table 3 shows the results for all four measured 
criteria by summarizing within-block (paired-response) comparisons. For total final quality 
and number of deadlines missed, "better" simply refers to an episode where the algorithm in 
question had a greater total final quality or missed fewer deadlines, respectively With respect 
to method execution time (a measure of system load) and termination time, "better" refers to 
the fact that one algorithm produced both a higher quality and missed fewer deadlines than 
the other algorithm, or if the two algorithms were the same, then the better algorithm had a 
lower total method execution time (lower load) or terminated sooner.6 

We also looked at performance without any of the mechanisms; on the same 300 episodes 
the GPGP agents produced on average 1.14 times the final quality of the uncoordinated agents. 
Coordinated agents ("balanced") execute far fewer methods because of their ability to avoid 
redundancy. The redundant execution of methods proves a much more hindering element to 
the uncoordinated agents when acting under severe time pressure [4]. Table 4 summarizes the 
results. 

Parallel better Balanced Better Same Significant? 

Total Final Quality 57% 7% 36% yes 
Method Execution Time 80% 7% 13% yes 

Deadlines Missed 1% 1% 98% no 
Termination Time 67% 15% 18% yes 

Table 3: Performance comparison: Centralized Parallel Scheduler vs. Balanced GPGP Coordination and Decen- 
tralized DTT Scheduler 

Simple better Balanced Better Same Significant? 

Total Final Quality 8% 21% 71% yes 
Method Execution Time 12% 72% 16% yes 

Deadlines Missed 0% 4% 96% yes 
Termination Time 9% 58% 33% yes 

Table 4: Performance comparison: Simple GPGP Coordination vs. Balanced GPGP Coordination 

6 Termination within two time units was considered "the same" because the "balanced" algorithm has a fixed 
2-unit startup cost. The average task duration is 10 time units. 

16 



4.3 Taking Advantage of a Coordination Relationship: When to Add a New 
Mechanism 

A practical question to ask is simply whether the addition of a particular mechanism will benefit 

performance for the system of agents. Here we give an example with respect to the soft coordi- 

nation mechanism (Mechanism 5), which will make commitments to facilitation relationships. 

"We ran 234 randomly generated episodes (generated with the environmental parameters shown 

in Table 1) with four agents both with and without the soft coordination mechanism. Because 

the variance between these randomly generated episodes is so great, we took advantage of the 

paired response nature of the data to run a non-parametric Wilcoxon matched-pairs signed- 

ranks test [3]. This test is easy to compute and makes very few assumptions—primarily that the 

variables are interval-valued and comparable within each block of paired responses. For each 

of the 234 blocks we calculated the difference in the total final quality achieved by each group 

of agents and excluded the blocks where there was no difference, leaving 102 blocks. We then 

replace the differences with the ranks of their absolute values, and then replace the signs on the 

ranks. Finally we sum the positive and negative ranks separately. A standardized Z score is then 

calculated. A small value of Z means that there was not much consistent variation, while a large 

value is unlikely to occur unless one treatment consistently outperformed the other. In our 

experiment, the null hypothesis is that the system with the soft coordination mechanism did 

the same as the one without it, and our alternative is that the system with the soft coordination 

mechanism did better (in terms of total final quality). The result here was Z = —6.9, which is 

highly significant, and allows us to reject the null hypothesis that the mechanism did not have 

an effect. 

4.4 Different Family Members for Different Environments 

In this section we show a particular example of how different family members do better and 

worse in different environments. We will concentrate on two distinct family members—the 

'modular agent' archetype (all CR modules on, non-local views, communicate commitments 

and completed task groups), and the 'simple agent' (no CR modules on, no non-local views, 

broadcast all completed methods). The environmental parameter we will vary (derived from 

the screening data collected in Section 5) is QAF-min, the percentage of tasks that have min as 

their quality accumulation function ('AND' semantics). Our hypothesis was that the modular 

agents would do better than the simple agents as QAF-min increased (as more tasks needed to 

be done). We ran 250 paired-response experiments at 5 levels of QAF-min (0, 0.25, 0.5, 0.75, 

1.0) with enables-probability varying also at the same 5 levels, no time pressure, overlaps of 0.5, 

5 task groups, and 4 agents per run. The performance (in terms of total final quality) of the two 

coordination styles was significantly different by the Wilcoxon matched-pairs signed-ranks test 

(199 different pairs, Z = — 3.27, p < 0.0005). More interestingly, we can see the difference 

in performance widening with the value of QAF-min. Figure 5 shows the probability of one 

coordination style or the other doing better (calculated simply from the frequencies) plotted 

verses the value of QAF-min. This allows you to see graphically the difference in the styles as 

QAF-min changes. 

17 



Qaf-Min 

Figure 5: Plot of the probability of the modular or simple coordination styles doing better than the other (total 
final quality) verses the probability of task quality accumulation being MIN (AND-semantics) 

4.5    Meta-level Communication:  Return to Load Balancing through Dy- 
namic Reorganization 

Another question we have examined is the effect of task structure variance on the performance 

of load balancing algorithms. This work is a logical follow-on to the analysis of static, dynamic, 

and negotiated reorganization detailed in [6]. A static organization divides the load up a 

priori—in the case below, by randomly assigning redundant tasks to agents. A one-shot dynamic 

reorganization, like that analyzed in [7], assigns redundant tasks on the basis of the expected 

load on other agents. A meta-level communication (MLC) reorganization assigns redundant 

tasks on the basis of actual information about the particular problem-solving episode at hand. 

Because it requires extra communication, the MLC reorganization is more expensive, but the 

extra information pays off as the variance in static agent loads grows. 

A MLC coordination mechanism (mechanism 6) can be implemented in GPGP. Many 

such implementations are possible; the one that we chose works by altering the way redundant 

commitments are handled. When a commitment is sent to another agent, it is modified to 

include the current load of the agent making the commitment (to be precise, the amount of work 

for the agent in the current schedule). Whenever a decision about redundant commitments 

need to be made at another agent (in mechanisms 3, 4, and 5—simple redundancy, hard, and 

soft successor relationship handling) the load of the agents with the redundant commitments 

are taken into account at the point where ties would have been broken randomly. The agent 

with the lowest load keeps the commitment instead. If the loads are equal, the tie is broken 

randomly as before. 

The effect of this mechanism on the general GPGP environments when agents use the 

default Design-To-Time scheduler is minimal. The heuristics used by the DTT scheduler are 

focused at providing the highest possible total final quality for the agent without violating 

deadlines—this is not the same as terminating quickly, and the scheduler has no heuristics to 

prefer earlier termination times (nor, frankly, should it have them). In a randomly-generated 

task environment, where the methods are assigned to agents randomly (and therefore, somewhat 

evenly) there is rarely any significant change in termination time. 

18 



However, if you recall one of our results from [6, 7], you will remember that MLC 

coordination is most useful in environments with high variance in the task structures presented 

to agents. We can look at our experiments in this light, by calculating an endogenous input 

variable for each run that represents the amount of variance in redundant tasks (the ones that 

would potentially be eligible for a load-balancing mechanism decision). Figure 6 shows how 

the probability of terminating more quickly with the MLC load balancing algorithm grows as 

the standard deviation in the total durations of redundant tasks at each agent grows. 

0.75 

I   '   '   '  I 
10 20 30 40 

Initial STD of Redundant Tasks 

Figure 6: Probability that MLC load balancing will terminate more quickly than static load balancing, fitted using 
a loglinear model from actual ITEMS simulation data. 

5    Exploring the Family Performance Space 

Finally, we looked at the multidimensional performance space for the family of coordination 

algorithms over four different performance measures. At the most abstract level, each of the 

five mechanisms are parameterized independently (the first two have three possible settings and 

the last three can be 'in' or out') for a total of 72 possible coordination algorithms. We applied 

two standard statistical clustering techniques to develop a much smaller set of significantly 

different algorithms. The resulting five prototypical' combined behaviors are a useful starting 

point when searching for an appropriate algorithm family member in a new environment. 

The analysis proceeded as follows: we generated one random episode in each of 63 ran- 

domly chosen environments, and ran each of the 72 "agent types" on the episode (4536 cases). 

We collected four performance measures: total quality, number of methods executed, number 

of communication actions, and termination time. We then took this data and standardized 

each performance measure within an environment. So now each measure is represented as the 

number of standard deviations from the mean value in that environment. We then took sum- 

mary statistics for each measure grouped by agent types—this boils the 4536 cases (standardized 

within each environment) into 72 summary cases (summarized across environments). Each 

of the 72 summaries correspond to the average standardized performance of one agent-type 

for the four performance measures.  We then used both a hierarchical clustering algorithm 

19 



2.0 - 

o    1 0 - ■ 

r*i + 
■ 

T 

i 
■Ü 

_|_ 
■ 

s  o.o - 
'5 
s 
1 -1.0  - u 

-2.0  ~ 4- 
-*- 

-r 

y 

1                             1 

< 
I o- 

+ -J 

r 

Balanced     Mute     Myopic    Simple     Tough Balanced     Mute     Myopic    Simple      Tough 

1 -      -^ 

S 
"3. 

-3.0 

: Z 4=- ^_         rri 

1                 1 

J   T=g^ 

-2 -      -^ 

Balanced     Mute     Myopic    Simple      Tough Balanced     Mute     Myopic    Simple     Tough 

Figure 7: Standardized Performance by the 5 named coordination styles. 

(SYSTAT JOIN with complete linkage'7) to produce the following general prototypical agent 

classes (we chose one representative algorithm in each class): 

Simple: No commitments or non-local view, just broadcasts results. 

Myopic: All commitment mechanisms on, but no non-local view. 

Balanced: All mechanisms on. 

Tough-guy: Agent that makes no soft commitments. 

Mute: No communication whatsoever8 

Figure 7 shows the values of several typical performance measures for only the five named 

types. Performance measures were standardized within each episode, (i.e. across all 72 types). 

Shown for each are the means and 10, 25, 50, 75, and 90 percent quantiles. All algorithms' 

performances are significantly different by Tukey Kramer HSD except for: Method Execution 

7Distances are calculated between the farthest points in each cluster. Other distance measures (Euclidean, 
centroid, or Pearson correlation) gave similar results. 

8This algorithm makes no commitments (mechanisms 3, 4, and 5 off) and communicates (mechanism 2) 
only 'satisfied commitments'—therefore it sends no communications ever!. 

20 



(Simple vs.   Mute), Total final quality (Balanced vs. Tough), Deadlines missed (simple vs. 

mute) and (balanced vs. tough). 
We are also analyzing the effect of environmental characteristics on agent performance. 

Figure 8 shows an example of the effect of the amount of overlap (method redundancy) on 
the number of method execution actions for the five named agent types. Note again that the 
balanced and tough agents do significantly less work when there is a lot of overlap (as would 
be expected). The performance of the tough and balanced agents is similar because (from 
Table 1) 1) the algorithms only differ in the way that they handle facilitation, and 2) only half 
the experiments had any facilitation, and when it was present was only at 50% power. 

-d o 
J3 

-0.1 

i—[—i—i    i    r 
0.1        0.3        0.5        0.7 

Overlap 
1.1 

Figure 8: The effecr of overlaps in the task environment on the standardized method execution performance by 
the 5 named coordination styles (smoothed splines fit to the means). 

A linear clustering algorithm, SYSTAT KMEANS, produces a similar result as hierar- 
chical clustering, and also produces the mean value of each performance measure for each 
group. For example, the non-communicating agents have a high negative mean "number-of- 
communications" (-1.16; remember these were averaged from standardized scores) but execute 
more methods on average and produce less final quality. They also terminate slightly quicker 
than average. The "balanced" group, in comparison, communicates a little more than average, 
executes many fewer methods (-1.29—way out on the edge of this statistic), returns better-than- 
average quality and about average termination time. This is reasonable, as avoiding redundant 
work' and other work-reducing ideas are a key feature of the original PGP algorithm replicated 
by this set of mechanisms. 

6    Conclusions and Future Work 

This paper discusses the design of an extendable family of scheduling coordination mechanisms, 
called Generalized Partial Global Planning (GPGP), that form a basic set of coordination 

21 



mechanisms for teams of cooperative computational agents. An important feature of this 

approach includes an extendable set of modular coordination mechanisms, any subset or all 

of which can be used in response to a particular task environment. This subset may be 

parameterized, and the parameterization does not have to be chosen statically, but can instead 

be chosen on a task-group-by-task-group basis or even in response to a particular problem- 

solving situation. For example, Mechanism 5 (Handle Soft Predecessor CRs) might be "on" 

for certain classes of tasks and off' for other classes (that usually have few or very weak soft 

CRs). The general specification of the GPGP mechanisms involves the detection and response 

to certain abstract coordination relationships in the incoming task structure that were not tied 

to a particular domain. We have used TiEMS to model a simple distributed sensor network 

problem, the original DVMT domain, and a hospital scheduling environment. A careful 

separation of the coordination mechanisms from an agent's local scheduler allows each to better 

do the job for which it was designed. We believe this separation is not only useful for applying 

our coordination mechanisms to problems with existing, customized local schedulers, but also 

to problems involving humans (where the coordination mechanism can act as an interface 

to the person, suggesting possible commitments for the person's consideration and reporting 

non-local commitments made by others). 
The GPGP coordination approach as described in this paper has been fully implemented 

in the "ITEMS simulation testbed. Significant experimental validation of the GPGP approach is 

documented in [4]. This paper showed how to decide if the addition of a new GPGP mechanism 

was useful. It showed the general performance of two GPGP family algorithms compared to a 

centralized parallel reference algorithm; GPGP with all mechanisms on produces 85% of the 

quality of the centralized reference scheduler in a random environment. Such performance 

is reasonable and we feel could be made even better by developing better local scheduling 

algorithms and new coordination mechanisms. 
We also demonstrated how a feature of the task environment (the probability of task quality 

accumulation being MAX) can cause different GPGP family members to be preferred. We 

also discussed a sixth mechanism, a load balancing mechanism that communicates meta-level 

information, and showed that it was somewhat more useful when the variance in duration of 

the agents' overlapping tasks was high. This section thus ties-in back to the discussion in [6, 7] 

on the usefulness of meta-level communication (in this case, the transmission of local load 

information) when the inter-episode variance (in this case, in the initial agent loads) is high. 

Finally, we gave a sense of the performance space of the five broadly-parameterized mech- 

anisms using a clustering technique. Clustering can be a useful method for dealing with large 

algorithm spaces to prune search for an appropriate combination of mechanisms. Such meth- 

ods may also lead to ways to learn situation-specific knowledge about the application of certain 

mechanisms in certain situations (perhaps using case-based reasoning techniques). 

We believe that GPGP can become a reusable, domain-independent basis for multi-agent 

coordination when used in conjunction with a library of coordination mechanisms and a 

learning mechanism. We intend to develop such a library of reusable coordination mechanisms. 

For example, mechanisms that work from the successors of hard and soft relationships instead 

of the predecessors, negotiation mechanisms, mechanisms for behavior such as contracting, or 

mechanisms that can be used by self-motivated agents in non-cooperative environments. Many 

of these mechanisms can be built on the existing work of other DAI researchers. Future work will 

also examine expanding the parameterization of the mechanisms and using machine learning 

22 



techniques to choose the appropriate parameter values (i.e., learning the best mechanism set 

for an environment). Finally, we are also beginning work on using the GPGP approach in 

applications ranging from providing human coordination assistance to distributed information 

gathering. 

References 

[1] C. Castelfranchi. Commitments:from individual intentions to groups and organizations. 

In Michael Prietula, editor, AI and theories of groups & organizations: Conceptual and 

Empirical Research. AAAI Workshop, 1993. Working Notes. 

[2] Philip R. Cohen and Hector J. Levesque. Intention is choice with commitment. Artificial 

Intelligence, 42(3):213-261, 1990. 

[3] W. W Daniel. Applied Nonparametric Statistics. Houghton-Mifflin, Boston, 1978. 

[4] Keith S. Decker. Environment Centered Analysis and Design of Coordination Mechanisms. 

PhD thesis, University of Massachusetts, 1995. 

[5] Keith S. Decker and Victor R. Lesser. Generalizing the partial global planning algorithm. 

International Journal of Intelligent and Cooperative Information Systems, 1 (2) :319-346, 

June 1992. 

[6] Keith S. Decker and Victor R. Lesser. An approach to analyzing the need for meta-level 

communication. In Proceedings of the Thirteenth International Joint Conference on Artificial 

Intelligence, pages 360-366, Chambdry, France, August 1993. 

[7] Keith S. Decker and Victor R. Lesser. A one-shot dynamic coordination algorithm for 

distributed sensor networks. In Proceedings of the Eleventh National Conference on Artificial 

Intelligence, pages 210-216, Washington, July 1993. 

[8] Keith S. Decker and Victor R. Lesser. Quantitative modeling of complex computa- 

tional task environments. In Proceedings of the Eleventh National Conference on Artificial 

Intelligence, pages 217-224, Washington, July 1993. 

[9] E. H. Durfee and T. A. Montgomery. Coordination as distributed search in a hierarchical 

behavior space. IEEE Transactions on Systems, Man, and Cybernetics, 21 (6): 1363—1378, 

November 1991. 

[10] E.H. Durfee and V.R. Lesser. Partial global planning: A coordination framework for 

distributed hypothesis formation. IEEE Transactions on Systems, Man, and Cybernetics, 

21(5):1167-1183, September 1991. 

[11] E. Ephrati and J.S. Rosenschein. Divide and conquer in multi-agent planning. In 

Proceedings of the Twelfth National Conference on Artificial Intelligence, pages 375-380, 

Seattle, 1994. AAAI Press/MIT Press. 

23 



[12] Alan Garvey, Keith Decker, and Victor Lesser. A negotiation-based interface between 

a real-time scheduler and a decision-maker. CS Technical Report 94-08, University of 

Massachusetts, 1994. 

[13] Alan Garvey and Victor Lesser. Design-to-time real-time scheduling. IEEE Transactions 

on Systems, Man, and Cybernetics, 23(6):1491-1502, 1993. 

[14] B. Grosz and S. Kraus. Collaborative plans for group activities. In Proceedings of the 

Thirteenth International Joint Conference on Artificial Intelligence, Chambery, France, 

August 1993. 

[15] N. R. Jennings. Commitments and conventions: The foundation of coordination in 

multi-agent systems.  The Knowledge Engineering Review, 8(3):223-250, 1993. 

[16] V R. Lesser. A retrospective view of FA/C distributed problem solving. IEEE Transactions 

on Systems, Man, and Cybernetics, 21(6):1347—1363, November 1991. 

[17] Thomas W. Malone and Kevin Crowston. Toward an interdisciplinary theory of coor- 

dination. Center for Coordination Science Technical Report 120, MIT Sloan School of 

Management, 1991. 

[18] Y. Shoham and M. Tennenholtz. On the synthesis of useful social laws for artificial agent 

societies (preliminary report). In Proceedings of the Tenth National Conference on Artificial 

Intelligence, pages 276-281, San Jose, July 1992. 

[19] Yoav Shoham. AGENTO: A simple agent language and its interpreter. In Proceedings 

of the Ninth National Conference on Artificial Intelligence, pages 704-709, Anaheim, July 

1991. 

[20] Frank v. Martial. Coordinating Plans of Autonomous Agents. Springer-Verlag, Berlin, 1992. 

Lecture Notes in Artificial Intelligence no. 610. 

24 



APPENDIX B 



Understanding the Role of Negotiation in Distributed Search 
Among Heterogeneous Agents 

Susan E. Lander and Victor R. Lesser 
Department of Computer Science 

University of Massachusetts 
Amherst, MA  01003 

{lander,lesser}@cs.umass.edu 

Abstract 

In our research, we explore the role of negotia- 
tion for conflict resolution in distributed search 
among heterogeneous and reusable agents. We 
present negotiated search, an algorithm that ex- 
plicitly recognizes and exploits conflict to direct 
search activity across a set of agents. In nego- 
tiated search, loosely coupled agents interleave 
the tasks of 1) local search for a solution to 
some subproblem; 2) integration of local sub- 
problem solutions into a shared solution; 3) 
information exchange to define and refine the 
shared search space of the agents; and 4) assess- 
ment and reassessment of emerging solutions. 

Negotiated search is applicable to diverse ap- 
plication areas and problem-solving environ- 
ments. It requires only basic search operators 
and allows maximum flexibility in the distribu- 
tion of those operators. These qualities make 
the algorithm particularly appropriate for the 
integration of heterogeneous agents into appli- 
cation systems. The algorithm is implemented 
in a multi-agent framework, TEAM, that provides 
the infrastructure required for communication 
and cooperation. 

1    Introduction 

The current state of knowledge-based technology is 
such that almost every application system is built from 
scratch. In order to move beyond the prohibitive cost of 
constantly reinventing, rerepresenting, and reimplement- 
ing the wheel, researchers are beginning to examine the 
feasibility of building application systems with reusable 
agents [Neches et al., 1991]. A reusable agent is designed 
to work without a priori knowledge of the agent set in 
which it will be embedded, instead using a flexible, reac- 
tive approach to cooperation. Although this flexibility 
can lead to inefficient problem solving, an agent can of- 
ten gather information about the agent set as problem 
solving progresses to improve efficiency. 

This research was supported by ARPA under ONR Contract 
#N00014-92-J-1698. The content of the information does not 
necessarily reflect the position or the policy of the Govern- 
ment, and no official endorsement should be inferred. 

Multi-agent systems do not traditionally acknowledge 
the role of conflict among agents as a driving force in 
the control of problem-solving activity. In reusable-agent 
systems, however, conflict is inevitable since agents are 
implemented at different times by different people and 
in different environments. We present a distributed- 
search algorithm, negotiated search, that uses conflict as 
a source of control information for directing search ac- 
tivity across a set of heterogeneous agents in their quest 
for a mutually acceptable solution. 

The negotiated-search algorithm has been successfully 
incorporated into two implemented systems. In [Lan- 
der and Lesser, 1992b], we describe distributed search 
in the context of a seven-agent steam condenser de- 
sign system and discuss how different operator/agent 
assignments within the negotiated-search algorithm af- 
fect problem solving. In [Lander and Lesser, 1992a], 
a two-agent contract negotiation system is presented, 
and negotiated search is compared to a search strat- 
egy that is tailored to characteristics of that environ- 
ment. Through analysis of the environment and search 
algorithms, we show the versatility and effectiveness of 
negotiated search in reusable-agent systems while also 
pointing out that customized search strategies are in- 
flexible but can improve system performance when they 
can be applied. In this paper, we describe negotiated 
search from an application-independent perspective. 

The need for a flexible algorithm to support reusability 
and heterogeneity motivates particular aspects of nego- 
tiated search: 

• Conflict, negotiation, and democratic determination 
of acceptability are integral parts of the algorithm. 

• Agent coordination is accomplished through clearly 
defined individual roles in the evolution of a shared 
solution. These roles are realized as operators that 
accomplish state transitions on shared solutions. 

• Operators represent standard and widely available 
search and information-assimilation capabilities. A 
particular agent may instantiate all defined opera- 
tors or some subset of defined operators. 

• Whenever possible, feedback is used to refine the 
perceived search spaces of individual agents to more 
closely reflect the true composite search space. 

TEAM agents are not hostile and will not intentionally 



mislead or otherwise try to sabotage another agent's rea- 
soning. They are cooperative in the sense that an agent 
is willing to contribute both knowledge and solutions 
to other agents as appropriate and to accept solutions 
that are not locally optimal in order to find a mutually- 
acceptable solution. Each agent is a stand-alone system 
with specific capabilities that allow it to be included 
in an integrated multi-agent system. We assume that 
agents can be heterogeneous in architecture, inference 
engines, evaluation criteria and priorities for solutions, 
and in long-term knowledge. Each agent does its own in- 
ternal scheduling and has private data, knowledge, and 
history mechanisms. 

In negotiated search, agents interleave the tasks of 1) 
local search for a solution to some subproblem; 2) inte- 
gration of local subproblem solutions into a shared solu- 
tion (the composite solution);1 3) negotiation to define 
and refine the shared search space of the agents; and 4) 
assessment and reassessment of emerging solutions. 

In the remainder of the paper, we first motivate the 
development of our negotiated-search model by present- 
ing an intuitive description of negotiation and, from this 
foundation, constructing an algorithmic model of the ne- 
gotiation process. The next section details negotiated 
search from a state-based perspective similar to that 
used by von Martial to describe negotiation protocols 
in distributed planning [von Martial, 1992]. We then 
present seven basic negotiated-search operators. The fi- 
nal section briefly describes the status of the implemen- 
tation and extensions to this model that are not covered 
in this paper. 

2    An Initial Perspective on Negotiation 

In this section, we begin with an intuitive description of 
negotiation: 

One agent generates a proposal and other 
agents review it. If some other agent doesn't 
like the proposal, it rejects it and provides some 
feedback about what it doesn't like. Some 
agent may generate a counter-proposal. If 
so, the other agents (including the agent that 
generated the first proposal) then review the 
counter-proposal and the process repeats. As 
information is exchanged, conflicts become ap- 
parent among the agents. Agents may respond 
to the conflicts by incrementally relaxing indi- 
vidual preferences until some mutually accept- 
able ground is reached. 

This example captures the primary characteristics that 
one would expect to see: 

• proposals are generated by one or more agents 
• agents evaluate proposals based on their individual 

criteria for solution acceptability 
• agents provide feedback about what they like or 

don't like about particular proposals, resulting in 
a progressively better understanding of the shared 
requirements for solutions over time 

xSathi similarly uses the term composition as the name 
of a specific search operator that combines local informa- 
tion [Sathi and Fox, 1989] 

• agents can play different roles in the negotiation 
process, e.g., an agent can be a reviewer for an- 
other agent's proposal and then be a generator for 
a counter-proposal 

• conflicts exist among the agents' requirements for 
acceptable solutions 

• agents incrementally relax their solution require- 
ments to reach agreement 

• the decision to accept or not accept a proposal is a 
joint, democratic process 

Some extensions to the definition are required. For 
example, it assumes that a proposal becomes a solution 
when it is accepted by all agents. However, this assump- 
tion rules out situations in which high-level problems 
are decomposed and each agent works on some subprob- 
lem. In this case, the proposal an agent makes does not 
represent a complete solution but rather some compo- 
nent of a solution that interacts with other components 
through shared attributes. Evaluation is then indirect 
since an agent cannot evaluate proposals for interact- 
ing components that are outside of its domain of exper- 
tise. In negotiated search, an agent evaluates an external 
interacting-component proposal by creating and evalu- 
ating a compatible local proposal (i.e., one that has the 
same values for shared attributes), thereby focusing on 
how the external proposal affects local quality. 

Although a proposal includes the information required 
to implement a solution, it provides only a surface-level 
view of the reasoning that went into creating it. It is 
sometimes possible to make guesses about other agents' 
requirements that could be used in generating counter- 
proposals. However, in the general case of reusable 
agents, external local evaluation criteria for solutions 
cannot be predicted, nor can they be inferred from the 
"snapshot" provided by a proposal. For proposals and 
counter-proposals to be related, there must be a deeper 
understanding of the shared search space of the agents. 
This understanding is achieved through a feedback sys- 
tem that can be separate from the proposals. 

3    Negotiated Search 

Artificial intelligence researchers have previously used 
the term negotiation with respect to conflict resolu- 
tion and avoidance [Adler et al, 1989, Klein, 1991, 
Lander and Lesser, 1992a, Sycara, 1985, Werkman, 
1992], task allocation [Cammarata et al, 1983, Durfee 
and Montgomery, 1990, Davis and Smith, 1983], and re- 
source allocation [Adler et al., 1989, Conry et al., 1992, 
Sathi and Fox, 1989, Sycara et al, 1991]. Negotiation 
is sometimes treated as an independent process that is 
used to select one of a set of existing alternative solu- 
tions [Zlotkin and Rosenschein, 1990] rather than as an 
inherent part of a solution-generation process. It can be 
difficult under conditions where agents are hostile and 
unwilling to share private information [Sycara, 1985]. 
Negotiation can occur among peers [Cammarata et al, 
1983, Lander and Lesser, 1992b], through a mediator 
or arbitrator [Sycara, 1985, Werkman, 1992], or hier- 
archically through an organization [Durfee and Mont- 
gomery, 1990, Davis and Smith, 1983].  It can occur at 



either the domain or control level of problem-solving. 
Laasri et. al. describe the recursive negotiation model, a 
general model of multi-agent problem solving that details 
various situations that can potentially benefit from nego- 
tiation [Laasri et al., 1992]. In examining this model, it 
becomes clear that negotiation is a pervasive process that 
remains relatively untapped by current computational 
systems. In developing the negotiated-search model, we 
have tried to capture the key requirements for negotia- 
tion without restricting the domain, task decomposition, 
or organizational model of the agent set. 

Several researchers have developed algorithms and 
heuristics for constraint-directed distributed search in 
situations involving multiple homogeneous agents [Sathi 
and Fox, 1989, Sycara et al., 1991, Yokoo et al., 
1992].2 We extend this work to handle situations where 
heterogeneous agents may have different or multiple local 
problem-solving paradigms, instantiate different search 
operators, and where agents may not be able to pro- 
vide specific information to other agents or understand 
information received from other agents. The negotiated- 
search algorithm is particularly suitable to this style of 
problem solving because 1) the required search opera- 
tors represent standard search capabilities; 2) the search 
operators can be flexibly assigned across the agent set 
according to the search capabilities of each agent; and 
3) agents use incremental relaxation of solution require- 
ments to reach mutual acceptability as an inherent part 
of problem solving. 

3.1     The Search Process 

Search is initiated by a problem specification that de- 
tails the form of a solution and values, preferences, or 
constraints on some attributes of that solution. This 
specification is placed in a centralized shared memory as 
are emerging composite solutions.3 Some agent(s) uses 
constraining information from the specification and its 
local solution requirements to propose an initial partial 
solution called a base proposal. The base proposal is then 
extended and evaluated by other agents during future 
processing cycles. When a particular solution cannot be 
extended by some agent due to conflicts with existing so- 
lution attributes, there are two possible outcomes: 1) if 
the conflict is caused by the violation of some hard (non- 
relaxable) requirement, the solution path is pruned (e.g., 
arc 5 in Figure 1); or 2) if the conflict is caused by the vi- 
olation of some soft (relaxable) solution requirement, the 
solution is saved and viewed as a potential compromise 
(e.g, arc 9 in Figure 1). In the first case, no more work 
will be done on that solution, and, to the extent that the 
violated requirement can be communicated to and assim- 
ilated by other agents, future counter-proposals will not 
violate that same requirement. In the second case, the 
violated requirement may eventually be relaxed and, if 
that happens, the potential compromise will become a 

2 Agents may control different resources and have different 
constraints on solutions, but they share a single underlying 
problem-solving paradigm and knowledge representation. 

3Each agent also has a local short-term memory where it 
stores intermediate results and/or component proposals that 
are linked to composite solutions in shared memory. 

viable solution again. Future counter-proposals will take 
the violated requirement into account but are not guar- 
anteed to avoid the same conflict, since other alternatives 
may be worse. 

In both of the above cases, conflict is used as the trig- 
ger for the communication of feedback information. In 
multi-agent systems, it is always problematic to decide 
what information should be exchanged and when that 
exchange should take place. In general, agents want to 
minimize the amount of information they share since it 
is expensive both to communicate information and to 
assimilate information. On the other hand, sharing in- 
formation that will specifically help another agent avoid 
future conflicts is generally cost effective since it elim- 
inates the expense of generating unproductive solution 
paths [Lander, 1993]. In negotiated search, an agent 
that receives conflict information from another agent can 
choose whether or not to prune its own search to respect 
that information (see Section 4.5). 

Multiple solution paths can be concurrently investi- 
gated in negotiated search. Agents are free to initiate 
solutions at any time either because there aren't any 
promising solutions in the current solution set or because 
they have no other work to do. Advantages to main- 
taining multiple paths include exploiting the potential 
for concurrent activity and having the ability to directly 
compare different potential compromises. There are dis- 
advantages to concurrently exploring multiple solution 
paths however: there will be multiple partial solutions 
that have to be stored at all times, requiring additional 
memory resources. There is also overhead involved in 
focusing on a promising solution path at a particular 
point in problem solving, both from the local and global 
perspectives, and in managing the links between solu- 
tion components along each path. The number of open 
solution paths is highly dependent on the domain, the 
number of agents, and the control policies of individual 
agents. This number can be controlled through param- 
eter settings in TEAM and through the specification of 
which negotiated-search operators will be active for each 
agent in the agent set. 

3.2     A State-Based View of Negotiated Search 

Figure 1 provides a state-based view of the transition 
of a composite (shared) solution from its initial state (a 
problem specification) to a termination state (an infea- 
sible solution, an unacceptable solution, or a complete 
acceptable solution). In this figure, states are defined 
in terms of three attributes of composite solutions: ac- 
ceptability, completeness, and search-state. The possi- 
ble values for acceptability are acceptable, unacceptable, 
and infeasible. Possible values for completeness are com- 
plete and incomplete. Note that complete means that all 
agents have had the opportunity to extend or critique 
the solution. A solution with all required components 
can still be waiting for critiques from other agents and is 
not considered complete in that case. Search-state can 
take the values initial or closed. 

A negotiated-search operator is a search function ap- 
plied by an agent. Each operator has a generic form that 
is expressed in an agent language defined by TEAM, spec- 



Initiate Solution (I)     -^ ^ 

Critique Solution (C)  I             J 

Extend Solution (E)     Intermediate State 

Relax Solution Requirement (R)  

Terminate Search (T)  ™~"™'""'-'-"—■■—~ 

Problem 
2(i) iJJSpectßeatroi^ 

Figure 1: A State-Based View of Negotiated Search 

ifying its inputs, outputs, and functionality. The deci- 
sion to apply a particular operator to a problem-solving 
situation is made by an agent within its local view of 
the problem-solving situation. The arcs in Figure 1 are 
negotiated-search operators that can be applied by some 
agent to a solution. 

Each agent instantiates one or more of the negotiated- 
search operators: initiate-solution, extend-solution, 
critique-solution, and relax-solution-requirement. In ad- 
dition, TEAM instantiates the terminate-search operator. 
These operators will be described in detail below, but 
we provide an overview here to provide a sense of their 
functionality. Initiate-solution is applied by an agent to 
generate a base proposal that will be used as the basis 
for a new composite solution. Extend-solution is applied 
by an agent to: 1) add a component proposal to a com- 
posite solution; 2) evaluate the composite solution from 
a local perspective; and 3) provide feedback information 
if conflicts are detected. Critique-solution is applied to: 
1) evaluate a composite solution (without generating a 
component proposal); and 2) provide feedback informa- 
tion if conflicts are detected. Relax-solution-requirement 
is applied to: 1) select a local requirement to relax; 2) 
update the local database to effect the relaxation; and 
3) reevaluate existing solutions in light of the relaxation. 
Terminate-search is applied by TEAM to change the state 
of the problem solving from initial to closed, thereby 
changing the termination status of solutions. 

The negotiated-search algorithm is applied by a set of 
agents, A- Let A = {A1,A2, A3} and assume that Al 
initiates a solution, A2 extends the solution, and A3 cri- 
tiques some aspect of that solution. We examine a typi- 
cal search in which a conflict occurs. Al first applies the 
operator initiate-solution to a problem specification and 
produces a partial acceptable solution (arc 1). Then Al 
applies extend-solution without detecting a conflict. Al- 

though the solution now has all components specified, it 
is not complete until all critiques have also been received. 
Therefore the solution is now partial and acceptable (arc 
S) . A3 next applies critique-solution, detects a conflict, 
and evaluates the solution as unacceptable (arc 8). This 
solution remains as it is for some amount of time while 
the agents are working on other solution paths. When 
further search fails to produce an acceptable solution, 
A3 decides to relax the requirement that made this solu- 
tion unacceptable. The solution is now acceptable to A3 
and, since it was already complete, it reaches the termi- 
nation state of complete acceptable solution (arcl5). In 
this way, various paths through the state diagram can 
be achieved by the agent set. 

Although the above example describes a sequential or- 
dering of operator applications, TEAM permits concur- 
rency except where there are domain-dependent opera- 
tor preconditions that force sequential execution. Con- 
currency requires that TEAM have mechanisms for han- 
dling conflicts that occur due to the simultaneous de- 
velopment of extending proposals and criticisms. These 
mechanisms are discussed in [Lander, 1993]. 

4    Negotiated Search Operators 
In this section, we present a detailed description of the 
negotiated-search operators. Notice that the operators 
depicted in Figure 1 work at the surface level of problem 
solving: they move a particular solution through various 
states to a termination state. They do not address the 
issue of feedback and its effect on problem solving. Later 
in this section, we will present two operators that an 
agent applies to assimilate conflict information into its 
knowledge base, thereby refining its view of the search 
space. 

4.1     Initiate-Solution 

Initiate-solution is the basic operator for initiating solu- 
tions. It is applied within the agent's view of solution 
requirements: local requirements, those imposed by the 
problem specification, and any known external require- 
ments learned from other agents. Given these require- 
ments, it creates the base proposal. Initiate-solution is 
executed by one or more agents at system start-up time, 
and may be repeatedly executed as earlier proposed so- 
lutions are rejected by other agents or if alternative solu- 
tions are desired. If earlier solutions have been proposed 
and rejected, the initiating agent may have received con- 
flict information that will influence the generation of new 
base proposals. 

At least one agent must instantiate initiate-solution; 
however, instantiating it at multiple agents is likely to 
result in a more diverse set of solution paths and more 
thorough coverage of the composite solution space. De- 
pending on characteristics of the agents and agent set, 
it may also have a distracting effect. Trade-offs between 
coverage and distraction are a ubiquitous problem in dis- 
tributed systems and are discussed generally in [Lesser 
and Erman, 1980] and specifically with respect to nego- 
tiated search in [Lander and Lesser, 1992b]. 

When no base proposal can be found under the exist- 
ing set of requirements, an agent can relax requirements 



to expand the search space. If there are requirements 
on solutions that come from information communicated 
by another agent (external requirements), the initiating 
agent can ignore one or more of these requirements in 
its own search. Notice that the other agent does not ac- 
tually relax the requirements. In this way, each agent 
chooses the set of requirements, both internal and ex- 
ternal, it will attempt to satisfy. When known exter- 
nal requirements are violated, the proposal is suggested 
as a possible compromise rather than a fully acceptable 
solution. The external agent that has its requirements 
violated in the compromise proposal cannot be forced 
to accept it. Because the selection of a mutually ac- 
ceptable solution is democratic, each agent votes on the 
acceptability of a solution. The external agent that has 
the violated requirement (s) can initially vote that the 
solution is unacceptable but, if it does not find a bet- 
ter alternative, it may eventually agree to accept this 
compromise. 

If there are no relaxable external solution requirements 
or if the external requirements are inflexible, an agent 
can relax some local requirement. If no base proposal can 
be found at any level of external or internal requirement 
relaxation, the agent returns a failure along with any 
conflict information it can generate that describes why 
it failed. TEAM returns a failure if no agent can generate 
a new base proposal and all previously created solutions 
have been found to be infeasible. 

4.2     Critique-Solution and Extend-Solution 

The critique-solution operator is applied by an agent to 
evaluate a partially or fully specified composite solution. 
The extend-solution operator is applied by an agent to 
extend and evaluate a partially specified composite so- 
lution. These two operators will be described jointly be- 
cause of their similarity. The input for these operators is 
a composite solution that was initiated by another agent. 
The output for critique-solution is an evaluation, and 
when a conflict is detected, conflict information. The 
output for extend-solution is a proposal, an evaluation, 
and, when a conflict exists, conflict information. 

The extend-solution operator is required in domains 
where solutions comprise interacting components and 
each component is developed by an expert agent. The 
component that an agent develops with extend-solution 
must be compatible with the solution being extended (it 
must have the same values for solution variables that 
overlap). The agent executing the operator searches for 
a compatible proposal under its known solution require- 
ments and the requirements imposed by the assigned pa- 
rameter values of the solution to be extended. 

Although we will not discuss critique-solution fur- 
ther, the following discussion of extend-solution gen- 
erally applies to both operators, except that critique- 
solution evaluates the existing composite solution rather 
than creating and evaluating a compatible proposal. In 
extend-solution, if a compatible proposal is found that 
does not violate any local solution requirements, it is re- 
turned as an acceptable proposal. If the best compatible 
proposal found violates some relaxable (soft) local solu- 
tion requirements (where the best proposal is one that 

maximizes local evaluation), it is returned as unaccept- 
able along with information that describes the conflict. 
Although currently unacceptable, future requirement re- 
laxations may change its status and, therefore, the so- 
lution is saved as a potential compromise. In the final 
case, no compatible proposal can be found without vio- 
lating nonrelaxable (hard) requirements of the executing 
agent. In this case, the agent fails and the solution path 
is marked as infeasible. Conflict information is returned 
whenever possible that describes why the path is infea- 
sible, i.e., what hard requirements were violated. 

4.3     Relax-Solution-Requirement 

Relaxation of solution requirements is a necessary part of 
negotiated search. In order to terminate problem solv- 
ing, agents must reach mutual acceptability on one or 
more solutions. Acceptability is defined as an attribute 
of a composite solution as shown in Figure 1. If any 
agent locally evaluates a solution as unacceptable, the 
solution is considered globally unacceptable. However, 
as can be seen in that figure, a solution that is unac- 
ceptable at some point in time can later become accept- 
able when the agent or agents that reject it relax their 
solution requirements. 

There are three primary forms of relaxation, unilat- 
eral relaxation, feedback-based relaxation, and problem- 
state relaxation. Unilateral relaxation occurs when an 
agent decides to relax a requirement due to its inability 
to find a solution under the problem specification, i.e., 
the agent finds that, given the problem specification and 
its initial solution requirements, it cannot produce a lo- 
cally acceptable proposal. This situation occurs in the 
application of the initiate-solution operator as described 
in Section 4.1. 

Feedback-based relaxation occurs when an agent re- 
laxes a solution requirement because of some explicit 
information about the requirements of some other 
agent(s), i.e, a conflict is found between relaxable local 
solution requirements and less flexible external solution 
requirements. This occurs when external information 
has been received by an agent and is being assimilated 
as described in Section 4.5. 

Problem-state relaxation is a reaction to the lack of 
overall problem-solving progress. In the current TEAM 
framework, problem-state relaxation occurs at specific 
processing-cycle intervals: for example, all agents may 
relax a solution requirement after 10 processing cycles. 
Alternatively, the user can specify the relaxation param- 
eter separately for each agent, so that one agent may 
relax after 10 processing cycles while another will relax 
after 20 processing cycles. Problem-state relaxation oc- 
curs because the problem may be overconstrained by the 
full agent set. The ability to formulate, communicate, 
and assimilate constraining information is not guaran- 
teed to be complete and precise across the agent set and 
the reality is that agents can't always determine whether 
the composite search space is overconstrained. There- 
fore, they must have some heuristic method (as well as 
the deterministic methods above) for deciding when it is 



appropriate to relax requirements.4 Because of problem- 
state relaxation, we can guarantee that if any initial pro- 
posal is generated that can result in a feasible solution, 
either that solution will eventually become acceptable to 
all agents, or some other solution will become acceptable 
to all agents and deadlock will not occur. 

4.4 Terminate-Search 

The operator terminate-search is applied by TEAM, rather 
than by an agent, to change the search phase of the algo- 
rithm from initial to closed when some (user-specified) 
number of acceptable proposals been found.5 As seen 
in Figure 1, when this change occurs, partial and com- 
plete unacceptable solutions move from intermediate to 
termination states. Any partial acceptable solutions are 
completed however to ensure that good partial solutions 
are not abandoned. 

4.5 Assimilating Information 

There are two operators associated with assimilating in- 
formation at an agent: store-received-information and 
retrieve-information. Store-received-information takes 
conflict information from other agents, syntactically 
checks to see if the information already exists in the lo- 
cal knowledge base and, if not, stores it so that it can 
be retrieved. A received requirement may be indexed 
by various attributes including the name of the sending 
agent, the flexibility of the requirement, the names and 
acceptable values of constrained solution attributes, and, 
in the case of ordered solution attributes, whether the re- 
quirement defines a minimum or maximum boundary on 
potential values, e.g., x > 5. 

Retrieve-information is an operator that extends or 
replaces an agent's default capability to retrieve rele- 
vant constraining information from its knowledge base. 
Because an agent's internal knowledge is expected to be 
locally consistent, the default retrieval mechanism gen- 
erally does not handle cases where conflicts may exist 
in the retrieved requirements. Requirement retrieval 
occurs during solution initiation, extension, and criti- 
cism. The goal of the retrieval process is to find the 
most restrictive, but non-conflicting, set of solution re- 
quirements that constrain a solution for the current local 
search problem. Different types of requirements require 
different treatment, but to provide a concrete example 
of retrieval, we present the algorithm used for selecting 
boundary constraints on numerical solution attributes in 
our application systems. Potentially relevant constraints 
are retrieved and sorted into maximum and minimum 
boundary groups. The most restrictive maximum con- 
straint (MAX) and the most restrictive minimum con- 
straint (MIN) from each group are selected (where most 
restrictive means the highest value from the MIN group 
and the lowest value from the MAX group).   Then the 

4Using the number of processing cycles as a heuristic is 
a simplistic approach. More sophisticated mechanisms for 
applying problem-state relaxation based on characteristics of 
problem-solving situation, rather than on time, are discussed 
in [Lander, 1993]. 

5 This is a simplified version of the TEAM termination policy 
that integrates agent acceptability and, optionally, a domain- 
dependent global evaluation of solutions. 

algorithm loops through the following sequence until a 
set of minimum and maximum values is found or until 
it is determined that no non-conflicting set exists. 

LOOP: If the value of MAX is greater than or equal 
to the value of MIN, return MAX and MIN since a non- 
conflicting set has been found. Otherwise, if the flexibil- 
ity of MAX is greater than the flexibility of MIN select 
the next most restrictive maximum constraint (MAX) 
and go to LOOP. Otherwise, if the flexibility of MAX 
is less than the flexibility of MIN, select the next most 
restrictive minimum constraint (MIN) and go to LOOP. 
Otherwise, the flexibility of MAX is equal to the flexi- 
bility of MIN. Then: if MAX is locally owned, select the 
next most restrictive minimum constraint (MIN) and go 
to LOOP. If MAX is not locally owned and MIN is lo- 
cally owned, select the next most restrictive maximum 
constraint (MAX) and go to LOOP. If neither MAX nor 
MIN is locally owned, select the next most restrictive 
minimum constraint (MIN) and go to LOOP. 

In reusable agent sets, operator diversity is expected— 
not every agent will instantiate every operator including 
the store-received-information and retrieve-information 
operators. Because of this, when an agent formulates 
and sends conflict information to another agent, there 
is no guarantee that the receiving agent will use that 
information appropriately. Therefore, although conflict 
information is shared willingly and cooperatively in ne- 
gotiated search, agents do not depend on other agents 
to react in a fixed way to that information. 

4.6     Agent-Level Control of Operator 
Application 

Figure 1 describes domain-independent state precondi- 
tions that must be satisfied before an agent can apply 
one of its operators to a particular solution. However, 
because there are multiple solution paths, and because 
some operators are not directly involved in solution gen- 
eration (e.g., store-received-information), an agent may 
have multiple operators ready to execute at any given 
time. The order in which an agent schedules local opera- 
tors is not mandated by either TEAM or by the negotiated- 
search algorithm. However, because an agent's percep- 
tion of the world changes over time, the order in which 
particular operators are executed does affect system per- 
formance and the effect of local scheduling on the over- 
all behavior of the system should be considered. Some 
general policies for local scheduling are useful in most 
situations, i.e., agents should assimilate any new infor- 
mation received before initiating or critiquing solutions. 
The degree of sophistication required in local scheduling 
though is highly dependent on the application and the 
complexity of required interactions. 

5    Conclusions 

Negotiated search is a flexible and widely applicable 
distributed-search algorithm. It specifically addresses 
issues that arise in multi-agent systems comprised of 
reusable and heterogeneous agents. The algorithm ac- 
knowledges the inevitability of conflict among the agents, 
and exploits that conflict to drive agent interaction and 
guide local search. 



Negotiated search has been implemented in TEAM, a 
generic framework for the integration of reusable agents, 
and consequently, in two application systems built on top 
of TEAM: STEAM (a seven-agent system for the mechani- 
cal design of steam condensers); and AGREE (a two-agent 
system for buy/sell contract negotiation). Testing and 
analysis of the algorithm within the context of the appli- 
cation systems is described in other work [Lander, 1993, 
Lander and Lesser, 1992a, Lander and Lesser, 1992b]. 
Results from experiments conducted with negotiated 
search show that the algorithm can produce high-quality 
solutions. They also support the claim that the al- 
gorithm is flexible enough to work in reusable-agent 
systems where the search operators are randomly dis- 
tributed across the agent set. We see negotiated search 
as a default algorithm—one that will provide reason- 
able solutions in a reasonable amount of time without 
problem-specific customization. As a complementary 
approach to developing this general algorithm, we are 
developing customized algorithms that require specific 
agent characteristics or inter-agent relationships to exist. 
By taking advantage of these characteristics, it is often 
possible to improve solution quality and/or processing- 
time performance. TEAM supports the dynamic selection 
of a search algorithm, thereby enabling an agent set to 
switch to a customized algorithm if the requirements for 
application of the algorithm are met. This work is de- 
scribed in [Lander, 1993]. 

Acknowledgements 

We thank Margaret Connell and Kevin Gallagher for 
their support in this project. GBB, a system integration 
tool from Blackboard Technology Group, was used as 
the basic platform on which our framework was built. 

References 

[Adler et al, 1989] Mark R. Adler, Alvah B. Davis, Robert 
Weihmayer, and Ralph W. Worrest. Conflict-resolution 
strategies for non-hierarchical distributed agents. In 
Michael N. Huhns, editor, Distributed Artificial Intelli- 
gence, Volume 2, Research Notes in Artificial Intelligence. 
Pitman, 1989. 

[Cammarata et al, 1983] S. Cammarata, D. McArthur, and 
R. Steeb. Strategies of cooperation in distributed problem 
solving. In Proceedings of the Eighth International Joint 
Conference on Artificial Intelligence, pages 767-770, Karl- 
sruhe, Federal Republic of Germany, August 1983. 

[Conry et al., 1992] S.E. Conry, K. Kuwabara, V.R. Lesser, 
and R.A. Meyer. Multistage negotiation in distributed 
constraint satisfaction. IEEE Transactions on Systems, 
Man and Cybernetics—Special Issue on Distributed Artifi- 
cial Intelligence, January 1992. 

[Davis and Smith, 1983] Randall Davis and Reid G. Smith. 
Negotiation as a metaphor for distributed problem solving. 
Artificial Intelligence, 20:63-109, 1983. 

[Durfee and Montgomery, 1990] Edmund H. Durfee and 
Thomas A. Montgomery. A hierarchical protocol for coor- 
dinating multiagent behaviors. In Proceedings of the Eighth 
National Conference on Artificial Intelligence, pages 86- 
93, Boston, Massachusetts, August 1990. 

[Klein, 1991] Mark Klein. Supporting conflict resolution in 
cooperative design systems. IEEE Transactions on Sys- 
tems, Man, and Cybernetics, 2l(6):1379-1390, Novem- 
ber/December 1991. 

[Laasri et al, 1992] B. Laasri, H. Laasri, S. Lander, and 
V. Lesser. Toward a general model of intelligent nego- 
tiating agents. The International Journal on Intelligent 
Cooperative Information Systems, 1992. 

[Lander and Lesser, 1992a] Susan E. Lander and Victor R. 
Lesser. Customizing distributed search among agents 
with heterogeneous knowledge. In Proceedings of the 
First International Conference on Information and Knowl- 
edge Management, pages 335-344, Baltimore, Maryland, 
November 1992. 

[Lander and Lesser, 1992b] Susan E. Lander and Victor R. 
Lesser. Negotiated search: Organizing cooperative search 
among heterogeneous expert agents. In Proceedings of the 
Fifth International Symposium on Artificial Intelligence, 
Applications in Manufacturing and Robotics, pages 351- 
358, Cancun, Mexico, December 1992. 

[Lander, 1993] Susan E. Lander. Distributed Search in Het- 
erogeneous and Reusable Multi-Agent Systems. PhD the- 
sis, University of Massachusetts, Amherst, Massachusetts, 
1993. In preparation. 

[Lesser and Erman, 1980] Victor R. Lesser and Lee D. Er- 
man. Distributed interpretation: A model and experi- 
ment. IEEE Transactions on Computers, C-29(12):1144- 
1163, December 1980. 

[Neches et al, 1991] Robert Neches, Richard Fikes, Tim 
Finin, Thomas Gruber, Ramesh Patil, Ted Senator, and 
William R. Swartout. Enabling technology for knowledge 
sharing. AI Magazine, 12(3):36-56, Fall 1991. 

[Sathi and Fox, 1989] Arvind Sathi and Mark S. Fox. 
Constraint-directed negotiation of resource reallocations. 
In Les Gasser and Michael Huhns, editors, Distributed 
Artificial Intelligence, Volume 2, pages 163-193. Pitman, 
Morgan Kaufmann Publishers, 1989. 

[Sycara et al, 1991] K. Sycara, S. Roth, N. Sadeh, and 
M. Fox. Distributed constrained heuristic search. IEEE 
Transactions on Systems, Man and Cybernetics, Fall 1991. 

[Sycara, 1985] Katia Sycara. Arguments of persuasion in 
labour mediation. In Proceedings of the Ninth Interna- 
tional Joint Conference on Artificial Intelligence, pages 
294-296, Los Angeles, California, 1985. 

[von Martial, 1992] Frank von Martial. Coordinating Plans 
of Autonomous Agents. Lecture Notes in Artificial Intelli- 
gence, Springer-Verlag, 1992. 

[Werkman, 1992] Keith J. Werkman. Multiple agent cooper- 
ative design evaluation using negotiation. In Proceedings 
of the Second International Conference on Artificial Intel- 
ligence in Design, Pittsburgh, PA, June 1992. 

[Yokoo et al, 1992] Makoto Yokoo, Edmund H. Durfee, 
Toru Ishida, and Kazuhiro Kuwabara. Distributed con- 
straint satisfaction for formalizing distributed problem 
solving. In Proceedings of the Twelfth International Con- 
ference on Distributed Computing Systems, Yokohama, 
Japan, June 1992. 

[Zlotkin and Rosenschein, 1990] Gilad Zlotkin and Jeffrey S. 
Rosenschein. Negotiation and conflict resolution in non- 
cooperative domains. In Proceedings of the Eighth Na- 
tional Conference on Artificial Intelligence, Boston, Mas- 
sachusetts, July 1990. 



APPENDIX C 



Exploiting Meta-Level Information in a Distributed 
Scheduling System* 

Daniel E. Neiman, David W. Hildum, Victor R. Lesser 

Tuomas W. Sandholm 
Computer Science Department 

University of Massachusetts 

Amherst, MA 01003 
DANN@CS.UMASS.EDU 

May 13, 1994 

Abstract 

In this paper, we study the problem of achieving efficient interaction in a dis- 
tributed scheduling system whose scheduling agents may borrow resources from 
one another. Specifically, we expand on Sycara's use of resource texture measures in 
a distributed scheduling system with a central resource monitor for each resource 
type and apply it to the decentralized case. We show how analysis of the ab- 
stracted resource requirements of remote agents can guide an agent's choice of local 
scheduling activities not only in determining local constraint tightness, but also 
in identifying activities that reduce global uncertainty. We also exploit meta-level 
information to allow the scheduling agents to make reasoned decisions about when 
to attempt to solve impasses locally through backtracking and constraint relaxation 
and when to request resources from remote agents. Finally, we describe the current 
state of negotiation in our system and discuss plans for integrating a more sophis- 
ticated cost model into the negotiation protocol. This work is presented in the 
context of the Distributed Airport Resource Management System, a multi-agent 
system for solving airport ground service scheduling problems. 

This work was partly supported by DARPA contract N00014-92-J-1698 and NSF contracts CDA- 
8922572 and IRI-9208920. The content of this paper does not necessarily reflect the position or the 
policy of the Government and no official endorsement should be inferred. 



1 Introduction 

The problem of scheduling resources and activities is known to be extremely challenging 
[8,7, 14, 11]. The complexity increases when the scheduling process becomes dependent 

upon the activities of other concurrent schedulers. Such interactions between scheduling 

agents arise when, for example, agents must borrow resources from other agents in 

order to resolve local impasses or improve the quality of a local solution. Distributed 

scheduling applications are not uncommon, for example, the classic meeting planning 

problem [13] can be considered as a distributed scheduling problem; the airport ground 

service scheduling (AGSS) problem we address in this paper is another; and similar 

problems may arise in factory floor manufacturing domains. 

In distributed scheduling systems, problem-solving costs will likely increase because 

of the interaction among agents caused by the lending of resources. One method of 

increasing the quality of solutions developed by such multi-agent schedulers and mini- 

mizing the costs of backtracking is to allow agents to communicate abstracted versions 

of their resource requirements and capabilities to other agents. The use of this meta-level 

information allows the scheduling agents to develop models of potential interactions 

between their scheduling processes and those of other agents, where an interaction is 

defined as a time window in which the borrowing or lending of a resource might occur. 

We show how the identification of interactions affects the choice of scheduling heuristics, 

communication, and negotiation policies in a distributed scheduling system. We discuss 

our heuristics in the context of a specific testbed application, the Distributed Airport 

Resource Management System (DlS-ARM). 

2 Related Work 

The use of meta-level information to define the interactions between agents has been 

studied extensively by Durfee and Lesser via the use of partial global plans [5]. This 

work has been extended by Decker and Lesser [3, 4] to incorporate more sophisticated 

coordination relationships. According to this framework, we can view our detection of 

potential loan requests using texture measures to be an identification of facilitating rela- 

tionships, and our modification of the scheduling algorithm as an attempt to exploit this 

perceived relationship. The formulation of distributed constraint satisfaction problems 

as distributed AI was described by Yakoo [16], however, this work concentrated more on 

the problem of distributed backtracking rather than on coordinating agents. 

The problem of coordinating distributed schedulers has been studied extensively by 

Sycara and colleagues [15]. They describe a mechanism for transmitting abstractions of 

resource requirements {textures) between agents. Each agent uses these texture measures 

to form a model of the aggregate system demand for resources.   This model is used 



to allocate resources using various heuristics. For example, a least-constraining-value 

heuristic is used to allocate resources based on the minimization of the probablity that 

the reservation would conflict with any other. For each type of resource, one agent is 

assigned the task of coordinating allocations and determining whether requests can be 

satisfied. All resources of a given type are considered interchangeable and the centralized 

resource monitor does not need to perform significant planning to choose the most 

suitable resource; instead, its role is simply to ensure that each resource is allocated to no 

more agents than can be served by that resource during any given time period. 

We investigate a similar use of abstracted resource demands for a case in which 

centralized resource monitors are not possible since resources of the same type may 

possess unique characteristics, and agents possess proprietary information about local 

resources (such as current location and readiness). Agents may respond to a request 

for a resource either by immediately satisfying it with a reservation, denying it, or by 

performing local problem-solving actions to attempt to produce a suitable reservation. 

In our domain, we have found that Sycara's texture measures alone do not convey 

sufficient information to allow satisfactory scheduling. Their texture measures consist of 

a demand profile for each resource which represents, for each time interval, the sum of 

probabilities that resource requests will overlap that interval. These probabilities are based 

on the assumption that reservations can occur at any time within the requested interval. 

Assignment of resources is then performed using these probabilities to implement a 

least-constraining-value heuristic. 

These texture measures do not capture sufficient information regarding time-shift 

preferences of resource assignments within the specified interval. In our domain, re- 

sources may legally be assigned at any time within the interval between the earliest start 

time and the latest finish time, but for some activities, there exist strong preferences as 

to which end of the interval the assignment is biased. For example, when scheduling 

ground services for an airport, once a flight arrives, it is important to unload baggage as 

early as possible so that necessary transfers can be made to connecting flights. The shift: 

preference can be determined by the assigning agent using domain knowledge, provided 

that it knows the nature of the task generating the request. Because this information is 

not captured in the texture measures, the heuristic described by Sycara, et al. is likely to 

lead to poor schedules within the airport ground service scheduling domain. 

3    Overview: The Distributed Dynamic Scheduling System 

In order to test our approach to solving distributed resource-constrained scheduling prob- 

lems (RCSPs), we have designed a distributed version of a reactive, knowledge-based 

scheduling system called DSS (the Dynamic Scheduling System) [9]. DSS provides a 

foundation for representing a wide variety of real-world RCSPs. Its flexible scheduling 



approach is capable of reactively producing quality schedules within dynamic environ- 

ments that exhibit unpredictable resource and order behavior. Additionally, DSS is 

equipped to manage the scheduling of shared tasks connecting otherwise separate orders, 

and handle RCSPs that involve mobile resources with significant travel requirements. 

DSS is implemented as an agenda-based blackboard system [6, 1] using GBB (the 

Generic Blackboard System) [2]. It maintains a blackboard structure upon which a 

developing schedule is constructed, and where the sets of orders and resources for a 

particular RCSP are stored. A group of knowledge sources are provided for securing the 

necessary resource reservations. These knowledge sources are triggered as the result of 

developments on the blackboard, namely the creation and modification of the service 

goals attached to all resource-requiring tasks. Triggered knowledge sources are placed 

onto an agenda and executed in the order of their priority. 

The Distributed Dynamic Scheduling System (DlS-DSS) maintains separate black- 

board structures for each agent and provides communication utilities for transmitting 
requests and meta-level information between agents. Remote analogues of service goals, 

task structures, and other scheduling entities are created as needed to model the state 

of other agents. The information about other agents' schedules and commitments is 

incomplete and is limited to the content of goals, meta-level information, and those 

parts of the schedule to which the local agent itself has contributed. 

The approach we have taken towards distributing DSS is to view each agent as repre- 

senting an autonomous organization possessing its own resources. It is this autonomous 

nature of the organizations that is the rationale for distributing the resource allocation 

problem. Although a centralized architecture might produce more efficient solutions, 

real world considerations such as cost and ownership often lead to confederations in 

which information transfer regarding commitments and capabilities is limited. In this 

model, the primary relationship between agents is a commitment to exchange resources as 

needed and a willingness to negotiate with other agents to resolve impasses. This model of 

a decentralized group of agents performing independent tasks in a resource-constrained 

environment is similar to the architecture of Moehlman's Distributed Fireboss [10]. We 

distinguish our work from Moehlman's by our use of meta-level information to con- 

trol the decision process by which agents choose to resolve impasses locally, through 

backtracking and constraint relaxation, or through requests to remote agents. 

Because resources are owned by specific agents and possess unique characteristics 

regarding location and travel times that are known only to the owning agent, we can not 

define central resource monitors responsible for allocating each type of resource. This, 

again, distinguishes our approach from that of Sycara, et al. [15]. Agents requiring a 

resource must communicate directly with the agent owning a resource of that type and 

negotiate for its loan. 

This architecture provides a rich domain for the study of agent coordination issues 

in a distributed environment; agents must be able to model the interactions of their tasks 



with those of neighboring agents closely enough to be able to determine which agents 
will be most likely to provide the desired resources at the lowest cost to both agents. 
This coordination requires local reasoning on the part of agents in order to determine 
how to cooperate efficiently with an acceptable level of communication and redundant 

computation. 

3.0.1    Assumptions 

In our work with DlS-DSS, we have made a number of assumptions about the nature of 
agents, schedules, and communication overheads. 

• Agents are cooperative and will lend a resource if it is available. 

• Agents will only request a resource from one agent at a time - this is to avoid 
the possibility of redundant computation and communication if multiple agents 
attempt to provide the resource cf. [12]. 

• Once agents have lent a resource to another agent, they will never renege on this 
agreement. This limits the ability of the system to perform global backtracking; 
we intend to eliminate this restriction in the next version of the system. 

• Communication is asynchronous and can occur at any point during the con- 
struction of a local schedule; therefore requests may arrive before an agent has 
completely determined its own requirements for resources in the time window of 
interest. 

• The cost of messages is largely in the processing and in the inherent delay caused 
by transmission - the amount of data within the message may be large, within 
limits. 

3.0.2    Communication of Abstract Resource Profiles 

Without information regarding other agents' abilities to supply missing resources, an 
agent may be unable to complete a solution, or may be forced to compromise the quality 
of its solution. To allow agents to construct a model of global system constraints and 
capabilities, we have developed a protocol for the exchange and updating of resource 
profiles: summarizations of the agents committed resources, available resources, and 
estimated future demand. 

Upon startup, each agent in DlS-DSS receives a set of orders to be processed. 
The agents examine these orders and generate an abstract description of their resource 
requirements for the scheduling period. This bottleneck-status-list consists of a list of 
intervals, with each interval annotated by a triple: resources in use, resources requested, 



and resources available. The request field of this triplet represents an abstraction of 

the agent's true resource requirements. Certain aspects of a reservation such as mobile 

resource travel times to the objects to be serviced, cannot be easily estimated in advance. 

The time intervals specified for each resource request are pessimistic, consisting of the 

earliest possible start time and latest possible finish times for the activity requesting that 

resource. The true duration of the task can be estimated by the scheduling agent using 

its domain knowledge regarding the typical time required to perform a task. We define 

the demand for a resource r performing task T in interval (tj, tk) to be: 

avg_demand(T,r,£j,ifc) = duration(r,r)/(^ - tj) 

Once resource abstractions have been developed for each resource type required (or 

possessed) by the agent, it transmits its abstractions to all other agents. Likewise, it 

receives abstractions from all agents. Once the agent has received communications from 

all other agents, it prepares a map of global resource requirements and uses it to generate 

a set of data structures called lending possibilities. Each lending possibility represents an 

interval in which some agent appears to have a shortfall in a resource. For each lending 

possiblity, the agent generates a list of possible lenders for that resource, based on the 

global resource map and its knowledge of its own resource requirements. These lending 

possibility structures are used to predict when remote agents may request resources and 

when the local agent may need to borrow resources. This information guides the agent's 

decision-making process in determining both when to process local goals and when and 

from whom to request resources. 

3.1    The Distributed Airport Resource Management System 

The Distributed Airport Research Management System testbed was constructed using 

DlS-DSS to study the roles of coordination and negotiation in a distributed problem- 

solver. DlS-ARM solves distributed AGSS problems where the function of each schedul- 

ing agent is to ensure that each flight for which it is responsible receives the ground 

servicing (gate assignment, baggage handling, catering, fuel, cleaning, etc.) that it re- 

quires in time to meet its arrival and departure deadlines. The supplying of a resource is 

usually a multi-step task consisting of setup, travel, and servicing actions. Each resource 

task is a subtask of the airplane servicing supertask. There is considerable parallelism 

in the task structure: many tasks can be done simultaneously. However, the choice 

of certain resource assignments can often constrain the start and end times of other 

tasks. For example, selection of a specific arrival gate for a plane may limit the choice 

of servicing vehicles due to transit time from their previous servicing locations and may 

limit refueling options due to the presence or lack of underground fuel tanks at that gate. 

For this reason, all resources of a specific type can not be considered interchangeable in 



the AGSS domain. Only the agent that owns the resource can identify all the current 

constraints on that resource and decide whether or not it can be allocated to meet a 

specific demand. 

4    Exploiting Meta-level Information in DlS-DSS 

In this section, we examine three areas in which meta-level abstractions of global resource 

requirements are exploited in DlS-DSS. We show how the goal rating scheme of an agent's 

blackboard-based scheduler is modified to satisfy the twin aims of scheduling based on 

global constraints and of planning activities in order to reduce uncertainty about agent 

interactions. We describe how communication of resource abstractions is based on 

models of agents' interests and the manner in which agents choose between local and 

remote methods of satisfying a request. 

4.1    Scheduling using Texture Measures 

Many scheduling systems divide processing into the categories of variable selection, the 

choice of the next activity to schedule, and value selection, the selection of a resource and 

time slot for that activity. In DlS-DSS, variable selection corresponds to the satisfaction 

of a particular resource request. Value selection is handled in DSS by a collection of 

opportunistic scheduling heuristics. We focus here on the problem of coordinating 

resource requests so that local variable-selection heuristics possess sufficient information 

to make informed decisions. 
In many knowledge-based scheduling systems, the object of control is to arrange 

scheduling activities so that the most tightly constrained activities are scheduled first in 

order to reduce the need for backtracking. In a distributed system, we have an additional 

criterion: to schedule problem-solving activities in such a way that global uncertainty 

about certain tasks is reduced before decisions regarding those tasks are made. A scheduler 

may be uncertain of whether other agents will request a resource in a tightly constrained 

time period and whether other agents will be able to supply a needed resource. While 

the resource abstractions may indicate a loan request is likely, the duration of the loan 

and details of the resource's destination can only be determined once the request has 

been received. Likewise, details of the precise timing and duration of a loan can only be 

determined upon receipt of a remote reservation. We have added coordination heuristics 

to the agenda scheduler of DlS-DSS whose purpose is to promote problematic activities 

in each agent's scheduling queue so that their early execution will reduce uncertainty 

about global system requirements. 

In the DlS-DSS blackboard-based architecture, tasks which require resources generate 

service-goals.   Requests received from remote agents generate remote-service-goals.   Each 



goal stimulates knowledge sources that act to secure an appropriate resource. The order 

of execution of knowledge sources depends on the rating of the stimulating goals. Goals 

are rated using a basic 'most-tightly-constrained-first' opportunistic heuristic. The goals 

are then stratified according to the following scheme, with the uppermost levels receiving 

the highest priority and contention within each level being resolved according to the 

basic rating heuristic. 

1. Tightly constrained goals that may not be satisfiable locally or that can only be 

satisfied by a borrowing event and remote requests that do not overlap any local 

request. 

2. Tightly constrained goals that can only be satisfied locally. 

3. Goals representing requests from remote agents that overlap local goals. 

4. Unconstrained or loosely constrained tasks. 

5. Goals that potentially overlap with tasks of remote agents. 

A goal g is considered to be tightly constrained in interval (tj, tk) if there exists a 

time within that interval such that for each resource type r that can satisfy g, the number 

of unreserved resources is less than the sum of the average demand for all outstanding 

goals. 

V r s.t. Szt(g, r) 3 t G {tj, tk) s.t. 

Navaiiabie(r,t) < ^avg_demand(ia5fc(5r),r,ij,ifc) 

A goal potentially overlaps with a task of a remote agent if there exists a lending- 

possibility data structure for that remote agent describing a potential shortfall within the 

time interval spanned by that goal for some resource type that could satisfy the goal. 

The rationale for this goal ordering is as follows. Goals that can not be satisfied locally 

must be transmitted to remote agents. The transmission of a goal conveys considerably 

more information than is available in the resource texture profiles. The potential lending 

agent will therefore have more accurate information regarding the interval for which the 

resource is desired and the preferred shift preference for the reservation in that interval 

(early or late). Once it has received the goal, it will be able to make more informed 

decisions about the tightness of constraints for both the local and remote goals. If the 

agent is able to satisfy the remote goal, it will be able to update its resource demand 



curve and transmit it to other agents who may also have been potential lenders of that 

resource. For all these reasons, early transmittal and satisfaction of remote service goals 

is desirable. 

Tightly constrained goals that potentially overlap remote requests are deferred until 

some overlapping goal arrives, or until a resource update arrives indicating that the remote 

agent no longer requires that resource, or until no other work is available for the agent 

to perform. By deferring goals until more information about interactions is available, 

the system can avoid making premature decisions while at the same time working on 

unrelated or less constrained tasks. Once a request arrives, conflicts for resources can be 

arbitrated according to which goal is most pressing and least conducive to backtracking 

and/or constraint relaxation. 

There are a number of competing requirements for the rating and processing of 

remote service goals. One would like to process a remote service goal as soon as possible 

in order to return information to the requesting agent. At the same time, both local and 

remote service goals requesting the same type of resource should be rated according to 

the same constraint tightness heuristics. The goal rating function in DlS-DSS attempts 

to satisfy these requirements by prioritizing those remote service goals that do not 

overlap any local service goals and by mapping overlapping remote service goals onto 

the same priority level as those local goals that they overlap. Note that the "overlapping" 

relationship is transitive: if the priority of a goal is reduced while waiting for a remote 

request, any lower rated goal that overlaps that goal's time interval must also wait even 

though it may not directly overlap the interval of the potential remote request. 

4.2    Guiding Communication using Texture Measures 

Reducing communication costs is an important issue in distributed systems. For this 

reason, DlS-DSS agents use the lending possibility models of agent interactions to guide 

communication activities. When its resource requirements change, an agent transmits 

the information about the resource type only to those agents who, based on its local 

information, would be interested in receiving updates concerning that resource type. An 

agent with no surplus resources of a given type may not be interested if the local agent 

increases its need for a particular resource, likewise, an agent with a surplus of a particular 

resource may not need to be notified if an agent reduces its demand for that resource 

type. However, agents who possess shortfalls in a time interval for a particular type of 

resource will receive updates during processing whenever an agent increases the precision 

of its resource abstractions by securing or releasing a resource. 

The use of local knowledge to guide communication episodes may lead to agents' 

knowledge of the global state of the system becoming increasingly out of date. The 

degree to which this should be allowed to happen is dependent upon the acceptable level 

of uncertainty in the system and the accuracy with which resource abstractions can be 



made. 

4.3    Ordering Methods for Achieving Resource Assignments 

In DSS, the process of securing a resource is achieved through a series of increasingly costly 

methods: assignment, preemption, and right shifting. These correspond roughly to 

request satisfaction, backtracking, and constraint relaxation. Preemption is a conservative 

form of backtracking in which existing reservations are preempted in favor of a more 

constrained task. Right shifting satisfies otherwise intractable requests by shifting the time 

interval of the reservation downstream (later) until a suitable resource becomes available. 

Because this method relaxes the latest finish time constraint, it has the potential to 

seriously decrease the quality of a solution. In the AGSS domain, for example, right 

shifting a reservation may result in late departures. 
In DSS, methods are ordered according to increasing cost. In the distributed version 

of the system, the choice and ordering of methods is more complex. When an agent 

cannot immediately acquire a resource locally, it faces a decision: should it perform 

backtracking or constraint relaxation locally, communicating only when it has exhausted 

all local alternatives, or should it immediately attempt to borrow the resource from 

another agent? The decision-making process becomes even more difficult if we allow 

requests from remote agents to take precedence over local requirements such that agents 

may have to perform backtracking or constraint relaxation in order to satisfy a remote 

request. We consider this last decision process a form of negotiation, because it involves 

determining which of two agents should bear the cost of reduced solution quality and/or 

increased problem-solving effort. 
In DlS-DSS, we use the lending possibility data structures to dynamically generate 

plans for achieving each resource assignment. When it appears that a remote agent will 

have surplus resources at the necessary time, then the agent will generate a request as soon 

as it becomes clear that the resource can not be secured locally. If, however, it appears that 

the resource is tightly constrained globally, the agent will choose to perform backtracking 

and/or constraint relaxation operations locally rather than engage in communication 

episodes that will probably prove futile. 
One use of meta-information occurs during the planning for constraint relaxation. 

The scheduling agent attempts to minimize the magnitude of the right shift in order to 

reduce the effect of the constraint relaxation on the quality of the solution. To do this, 

the agent must determine whether the minimum right shift can be achieved locally or 

remotely. However, requiring agents to submit bids detailing their earliest reservations 

for a given resource would be a costly process. Instead, the agent uses the abstractions of 

remote resource availability to generate a threshold value for the right shift delay. If this 

value is less than the delay achieved through right shifting locally, the agent sequentially 

transmits the resource request to the appropriate remote agents.    If a remote agent 

10 



can provide a reservation with a delay of less than or equal to the threshold value, it 

immediately secures the resource. Otherwise, it returns the delay of the earliest possible 

reservation. If no reservation is found, the local agent sets the threshold to the earliest 

possible value returned by some remote agent. This new threshold is then compared to 

the current best local delay (which might have changed due to local scheduling while the 

remote requests were being processed). This process continues until a reservation is made 

or until the threshold becomes greater than the delay achievable by right shifting locally. 

Obviously, the better the initial estimate for the delay threshold, the less communication 

activities will be required. 

The meta-information is also used to determine the order in which agents should 

be asked for resources, beginning with the agent(s) with the least tightly constrained 

resources. 

5    Experimental Results 

The performance of the mechanisms that we have developed for DlS-DSS were tested in 

a series of experiments using a single agent system as a basis for comparison. We used six 

scenarios designed to test the performance of the system in tightly constrained situations. 

The number of orders in each scenario ranged from 10 to 60 and a minimal set of 

resources was defined for each scenario. Each scenario was distributed for a three agent 

case. Orders were assigned to each agent on a round-robin basis such that each agent 

would perform approximately the same amount of work. Resources were distributed 

randomly so that in some cases each agent would possess all necessary resources while in 

other cases, borrowing from remote agents would be necessary. 

We ran DlS-ARM on each scheduling scenario using the following configurations of 

the scheduler: 

• The baseline case with a single agent. 

• The 3 agent case with no use of meta-level information, and an opportunistic 

(most-tightly-constrained-variable-first) goal rating scheme 

• The 3 agent case using the heuristic goal rating scheme incorporating meta-level 

information but requesting resources from remote agents only when all local 

methods have failed. 

• The 3 agent case using heuristic goal rating, meta-level information, and dy- 

namic reordering of resource acquisition methods to account for the probability 

of securing a goal either locally or remotely. 

For each run, we recorded the average tardiness of the schedule, the number of failed 

goals (if any), the number of resource-securing methods tried, the number of requests, the 

11 



number of satisfied remote service goals, and the number of communication episodes that 

occurred during problem solving. In each case, we assumed that communication costs 

were negligible in relation to problem-solving and that requests and resource constraint 

updates would be received on the simulation cycle immediately succeeding the one in 

which they were sent. 
Because of the small number of test cases we have examined in our preliminary 

experiments, we present our results anecdotally As expected, the distributed version of 

the scheduler always produces a schedule of somewhat lower quality than the centralized 

one. When the opportunistic scheduler of the centralized version is used for scheduling 

in a distributed environment, its lack of information about global constraints causes it 

to produce somewhat inferior results. The heuristic incorporating meta-level informa- 

tion consistently outperforms the opportunistic scheduler in terms of the number of 

tardy tasks. The opportunistic scheduler occasionally will produce a schedule with less 

total tardiness than the distributed algorithm. We interpret this as a trade-ofT between 

satisfying global requirements (by delaying certain goal satisfactions until remote infor- 

mation becomes available) and satisfying local requirements by producing needed results 

promptly. This is an interesting trade-off that we intend to study in depth. Attempting 

to always solve problems locally using preemption and constraint relaxation produced 

schedules with much greater delays than when agents dynamically determined when to 

request resources remotely based on the meta-level resource abstractions. 

6    Conclusions and Future Work 

The work we have performed with DlS-DSS is preliminary, but promising. Our results 

indicate that the idea of using meta-level information to schedule activities in order to 

reduce local uncertainty about global constraints results in better coordination between 

agents with a subsequent increase in goal satisfaction. We have also demonstrated that 

meta-level information can be successfully used to guide the choice between satisfying 

goals locally and remotely, and in optimizing the choice of agents from which to request 

resources. 

Our experiments were performed with each agent's orders being defined statically 

before scheduling. This allowed the agents to develop a model of their predicted resource 

requirements before scheduling began. If we were to model a system in which orders 

changed dynamically, either due to equipment failures or timetable changes, we would 

expect the model of global resource requirements to become increasingly inaccurate. We 

would like to understand the implications of allowing jobs to arrive dynamically on the 

performance of a distributed system using meta-level information. 

As well as continuing to explore the role of meta-level resource abstractions, we 

plan to use the DlS-DSS testbed to explore a number of important issues in distributed 

12 



scheduling. One of our primary goals is to expand the idea of negotiation between agents 
that we have touched upon in this paper. Because the airport ground service scheduling 
domain represents a "real world" scenario, we are able to create a meaningful cost model 
involving not only the delay in each schedule, but the probable cost ofthat delay in terms 
of missed connections. By allowing agents to exchange this information when requesting 
resources, they will be able to more meaningfully weigh the importance of local tasks 
against the quality of the global solution. 

References 

[1] N. Carver and V. Lesser. The evolution of blackboard control architectures,. 
Expert Systems with Applications- Special Issue on the Blackboard Paradigm and Its 
Applications, 7(l):l-30, Jan-Mar 1994. 

[2] D. D. Corkill, K. Q. Gallagher, and K. E. Murray. GBB: A generic blackboard 
development system. In Proceedings of the Fifth National Conference on Artificial 
Intelligence, pages 1008-1014, Philadelphia, PA., August 1986. 

[3] Keith S. Decker and Victor R. Lesser. Generalizing the partial global planning 
algorithm. International Journal of Intelligent and Cooperative Information Systems, 
1 (2) :319-346, June 1992. 

[4] Keith S. Decker and Victor R. Lesser. Quantitative modeling of complex compu- 
tational task environments. In Proceedings of the Eleventh National Conference on 
Artificial Intelligence, pages 217-224, Washington, July 1993. 

[5] E.H. Durfee and V.R. Lesser. Partial global planning: A coordination framework 
for distributed hypothesis formation. IEEE Transactions on Systems, Man, and 
Cybernetics, 21 (5): 1167-1183, September 1991. 

[6] Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser, and D. Raj Reddy. The 
hearsay-ii speech-understanding system: Integrating knowledge to resolve uncer- 
tainty. Computing Surveys, 12(2):213-253, June 1980. 

[7] Mark S. Fox. Constraint-Directed Search: A Case Study of Job-Shop Scheduling. PhD 
thesis, Carnegie Mellon University, Pittsburgh PA, December 1983. 

[8] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to 
the Theory of NP-Completeness. W.H. Freeman, New York, 1979. 

[9] David W. Hildum. Flexibility in a Knowledge-Based System for Solving Dynamic 
Resource-Constrained Scheduling Problems. PhD thesis, Computer Science Dept., 
University of Massachusetts, Amherst, MA 01003, May 1994. 

13 



[10] Theresa A. Moehlman, Victor R. Lesser, and Brandon L. Buteau. Decentralized 

negotiation: An approach to the distributed planning problem. Group Decision 

and Negotiation, (2):161-191, 1992. 

[11] Norman Sadeh. Look-Ahead Techniques for Micro-Opportunistic Job Shop Scheduling. 

PhD thesis, Carnegie Mellon University, Pittsburgh PA, March 1991. 

[12] Tuomas Sandholm. An implementation of the contract net protocol based on 

marginal cost calculations. In Proceedings of the Eleventh National Conference on 

Artificial Intelligence, pages 256-262, Washington, July 1993. 

[13] Sandip Sen and Edmund Durfee. A formal analysis of communication and com- 

mitment in distributed meeting scheduling. In Proceedings of the Twelfth Workshop 

on Distributed AI, Hidden Valley, PA, May 1993. 

[14] Stephen F. Smith, Mark S. Fox, and Peng Si Ow. Constructing and maintaining 

detailed production plans: Investigations into the development of knowledge-based 

factory scheduling systems. AI Magazine, 7(4):45-61, Fall 1986. 

[15] K. Sycara, S. Roth, N. Sadeh, and M. Fox. Distributed constrained heuristic 

search. IEEE Transactions on Systems, Man, and Cybernetics, 21(6):l446-l46l, 

November/December 1991. 

[16] M. Yakoo, T. Ishida, and K. Kuwabara. Distributed constraint satisfaction for DAI 

problems. In Proceedings of the 10th International Workshop on Distributed Artificial 

Intelligence, October 1990. 

14 



APPENDIX D 



Issues in Automated Negotiation and Electronic Commerce: Extending 
the Contract Net Framework 

Tuomas Sandholm and Victor Lesser * 
{sandholm, lesser}@cs.umass.edu 

University of Massachusetts at Amherst 
Computer Science Department 

Amherst, MA 01003 

Abstract 

In this paper we discuss a number of previously 
unaddressed issues that arise in automated ne- 
gotiation among self-interested agents whose 
rationality is bounded by computational com- 
plexity. These issues are presented in the con- 
text of iterative task allocation negotiations. 
First, the reasons why such agents need to 
be able to choose the stage and level of com- 
mitment dynamically are identified. A pro- 
tocol that allows such choices through condi- 
tional commitment breaking penalties is pre- 
sented. Next, the implications of bounded ra- 
tionality are analyzed. Several tradeoffs be- 
tween allocated computation and negotiation 
benefits and risk are enumerated, and the ne- 
cessity of explicit local deliberation control is 
substantiated. Techniques for linking negoti- 
ation items and multiagent contracts are pre- 
sented as methods for escaping local optima in 
the task allocation process. Implementing both 
methods among self-interested bounded ratio- 
nal agents is discussed. Finally, the problem 
of message congestion among self-interested 
agents is described, and alternative remedies 
are presented. 

1     Introduction 
The importance of automated negotiation systems is 
likely to increase [Office of Technology Assesment 
(OTA), 1994]. One reason is the growth of a fast and 
inexpensive standardized communication infrastructure 
(EDI, Nil, KQML [Finin et al., 1992], Telescript [General 
Magic, Inc., 1994] etc.), over which separately designed 
agents belonging to different organizations can interact 
in an open environment in real-time, and safely carry out 
transactions [Kristol et al., 1994; Sandholm and Lesser, 
1995d]. Secondly, there is an industrial trend towards 
agile enterprises: small, organizational overhead avoid- 
ing enterprises that form short term alliances to be able 

'This research was supported by ARPA contract N00014- 
92-J-1698. The content does not necessarily reflect the po- 
sition or the policy of the Government and no official en- 
dorsement should be inferred. T. Sandholm also funded by a 
University of Massachusetts Graduate School Fellowship, Leo 
and Regina Wainstein Foundation, Heikki and Hilma Honka- 
nen Foundation, and Ella and George Ehrnrooth Foundation. 

to respond to larger and more diverse orders than they 
individually could. Such ventures can take advantage of 
economies of scale when they are available, but do not 
suffer from diseconomies of scale. This concept paper ex- 
plores the implications of performing such negotiations 
where agents are self-interested (SI) and must make 
negotiation decisions in real-time with bounded or costly 
computation resources. 

We cast such negotiations in the following domain 
independent framework. Each agent has a (possibly 
empty) set of tasks and a (possibly empty) set of re- 
sources it can use to handle tasks. These sets change due 
to domain events, e.g. new tasks arriving or resources 
breaking down. The agents can subcontract tasks to 
other agents by paying a compensation. This subcon- 
tracting process can involve breaking a task into a num- 
ber of subtasks handled by different agents, or clustering 
a number of tasks into a supertask. A task transfer is 
profitable from the global perspective if the contractee 
can handle the task less expensively than the contrac- 
tor, or if the contractor cannot handle it at all, but the 
contractee can. So, the problem has two levels: a global 
task allocation problem, and each agent's local combina- 
torial optimization problem defined by the agent's cur- 
rent tasks and resources. The goal of each agent is to 
maximize its payoff which is defined as its income minus 
its costs. Income is received for handling tasks, and costs 
are incurred by using resources to handle the tasks. We 
restrict ourselves to domains where the feasibility and 
cost of handling a task do not depend on what other 
agents do with their resources or how they divide tasks 
among themselves, but do depend on the other tasks that 
the agent has 2. The global solution can be evaluated 
from a social welfare viewpoint according to the sum of 
the agents' payoffs. 

Reaching good solutions for the global task allocation 
problem is difficult with SI agents, e.g. because they 
may not truthfully share all information. The problem 
is further complicated by the agents' bounded rational- 
ity: local decisions are suboptimal due to the inability 

1In domains where agents represent different real world 
organizations, each agent designer will want its agent to do 
as well as it can without concern for other agents. Conversely, 
some domains are inherently composed of benevolent agents. 
For example, in a single factory scheduling problem, each 
work cell can be represented by an agent. If the cells do not 
have private goals, the agents should act benevolently. 

2 Such domains are a superset of what [Rosenschein and 
Zlotkin, 1994] call Task Oriented Domains, and intersect their 
State Oriented and Worth Oriented Domains. 



to precisely compute the value associated with accepting 
a task. This computation is especially hard if the feasi- 
bility and cost of handling a task depend on what other 
tasks an agent has. These problems are exacerbated by 
the uncertainty of an open environment in which new 
agents and new tasks arrive - thus previous decisions 
may be suboptimal in light of new information. 

The original contract net protocol (CNP) [Smith, 
1980] did not explicitly deal with these issues, which 
we think must be taken into account if agents are to 
operate effectively in a wide range of automated ne- 
gotiation domains. A first step towards extending the 
CNP to deal with these issues was the work on TRA- 
CONET [Sandholm, 1993]. It provided a formal model 
for bounded rational (BR) self-interested agents to make 
announcing, bidding and awarding decisions. It used a 
simple static approximation scheme for marginal cosir 
calculation to make these decisions. The choice of a 
contractee is based solely on these marginal cost esti- 
mates. The monetary payment mechanism allows quan- 
titative tradeoffs between alternatives in an agent's nego- 
tiation strategy. Within DAI, bounded rationality (ap- 
proximate processing) has been studied with cooperative 
agents, but among SI agents, perfect rationality has been 
widely assumed, e.g. [Rosenschein and Zlotkin, 1994; 
Ephrati and Rosenschein, 1991; Kraus et al., 1992]. 
We argue that in most real multiagent applications, 
resource-bounded computation will be an issue, and that 
bounded rationality has profound implications on both 
negotiation protocols and strategies. 

Although the work on TRACONET was a first step to- 
wards this end, it is necessary—as discussed in the body 
of this paper—to extend in significant ways the CNP in 
order for bounded rational self-interested (BRSI) agents 
to deal intelligently with uncertainty present in the ne- 
gotiation process. This new protocol represents a family 
of different protocols in which agents can choose differ- 
ent options depending on both the static and dynamic 
context of the negotiation. The first option we will dis- 
cuss regards commitment. We present ways of varying 
the stage of commitment, and more importantly, how to 
implement varying levels of commitment that allow more 
flexible local deliberation and a wider variety of negoti- 
ation risk management techniques by allowing agents to 
back out of contracts. The second option concerns local 
deliberation. Tradeoffs are presented between negotia- 
tion risks and computation costs, and an approximation 
scheme for marginal cost calculation is suggested that 
dynamically adapts to an agent's negotiation state. The 
third set of options has to do with avoiding local optima 
in the task allocation space by linking negotiation items 
and by contracts involving multiple agents. The fourth 
set of options concerns message congestion management. 
We present these choices in terms of a new protocol for 
negotiation among BRSI agents, that, to our knowledge, 
subsumes the CNP and most—if not all—of its exten- 
sions. 

2     Commitment in negotiation protocols 

2.1 Alternative commitment stages 

In mutual negotiations, commitment means that one 
agent binds itself to a potential contract while waiting for 
the other agent to either accept or reject its offer. If the 
other party accepts, both parties are bound to the con- 
tract. When accepting, the second party is sure that the 
contract will be made, but the first party has to commit 
before it is sure. Commitment has to take place at some 
stage for contracts to take place, but the choice of this 
stage can be varied. TRACONET was designed so that 
commitment took place in the bidding phase as is usual 
in the real world: if a task is awarded to him, the bid- 
der has to take care of it at the price mentioned in the 
bid. Shorter protocols (commitment at the announce- 
ment phase4) can be constructed as well as arbitrarily 
long ones (commitment at the awarding phase or some 
later stage). 

The choice of commitment stage can be a static proto- 
col design decision or the agents can decide on it dynami- 
cally. For example, the focused addressing scheme of the 
CNP was implemented so that in low utilization situa- 
tions, contractors announced tasks, but in high utiliza- 
tion mode, potential contractees signaled availability— 
i.e. bid without receiving announcements first [Smith, 
1980; Van Dyke Parunak, 1987]. So, the choice of a pro- 
tocol was based on characteristics of the environment. 
Alternatively, the choice can be made for each nego- 
tiation separately before that negotiation begins. We 
advocate a more refined alternative, where agents dy- 
namically choose the stage of commitment of a certain 
negotiation during that negotiation. This allows any of 
the above alternatives, but makes the stage of commit- 
ment a negotiation strategy decision, not a protocol de- 
sign decision. The offered commitments are specified in 
contractor messages and contractee messages, Fig. 1. 

2.2 Levels of commitment 

In traditional multiagent negotiation protocols among 
SI agents, once a contract is made, it is binding, i.e. 
neither party can back out. In cooperative distributed 
problem solving (CDPS), commitments are often allowed 
to be broken unilaterally based on some local reasoning 
that attempts to incorporate the perspective of common 
good [Decker and Lesser, 1995]. A more general alter- 
native is to use protocols with continuous levels of com- 
mitment based on a monetary penalty method, where 
commitments vary from unbreakable to breakable as a 
continuum by assigning a commitment breaking cost to 
each commitment separately. This cost can also increase 
with time, decrease as a function of acceptance time of 
the offer, or be conditioned on events in other negotia- 
tions or the environment. Using the suggested message 
types, the level of commitment can also be dynamically 
negotiated over on a per contract or per task set basis. 

3The marginal cost of adding a set of tasks to an agent's 
solution is the cost of the agent's solution with the new task 
set minus the cost of the agent's solution without it. 

4With announcement phase commitment, a task set can 
be announced to only one potential bidder at a time, since 
the same task set cannot be exclusively awarded to many 
agents. 



Among other things, the use of multiple levels of com- 
mitment allows: 

• a low commitment search focus to be moved around in 
the global task allocation space (because decommitting 
is not unreasonably expensive), so that more of that 
space can be explored among SI agents which would 
otherwise avoid risky commitments , 

• flexibility to the agent's local deliberation control, be- 
cause marginal cost calculation of a contract can go on 
even after that contract has already been agreed upon, 

• an agent to make the same low-commitment offer (or 
offers that overlap in task sets) to multiple agents. In 
case more than one accepts, the agent has to pay the 
penalty to all but one of them, but the speedup of being 
able to address multiple agents in committal mode may 
outweigh this risk, 

• the agents with a lesser risk aversion to carry a greater 
portion of the risk. The more risk averse agent can trade 
off paying a higher price to its contractee (or get paid a 
lower price as a contractee) for being allowed to have a 
lower decommitting penalty, and 

• contingency contracts by conditioning the payments and 
commitment functions on future negotiation events or 
domain events. These enlarge the set of mutually bene- 
ficial contracts, when agents have different expectations 
of future events or different risk attitudes [Raiffa, 1982]. 

The advantages of such a leveled commitment protocol 
are formally analyzed in [Sandholm and Lesser, 1995a], 
and are now reviewed. Because the decommitment 
penalties can be set arbitrarily high for both agents, 
the leveled commitment protocol can always emulate the 
full commitment protocol. Furthermore, there are cases 
where there is no full commitment contract among two 
agents that fulfills the participation constraints (agent 
prefers to agree to the contract as opposed to passing) for 
both agents, but where a leveled commitment contract 
does fulfill these constraints. This occurs even among 
risk neutral agents, for example when uncertainty pre- 
vails regarding both agents' future offers received, and 
both agents are assigned a (not too high or low, and not 
necessarily identical) decommitment penalty in the con- 
tract. Among risk neutral agents, this does not occur if 
only one of the agents is allowed the possibility to decom- 
mit (other agent's decommitment penalty is too high), 
or only one agent's future is uncertain. If the agents 
have biased information regarding the future, they may 
perceive that such a contract with a one-sided decom- 
mitment possibility is viable although a full commitment 
contract is not. In such cases, the agent whose informa- 
tion is biased is likely to take the associated loss while 
the agent with unbiased information is not. 

Figure 1 describes the message formats of the new con- 
tracting protocol. A negotiation can start with either a 

CONTRACTOR MESSAGE: 
0. Negotiation identifier 
1. Message identifier 
2. In-response-to (message id) 
3. Sender 
4. Receiver 
5. Terminate negotiation 
6. Alternative 1 

6.1. Time valid through 
6.2. Bind after partner's decommit 
6.3. Offer submission fee 
6.4. Required response submission fee 
6.5. Task set 1 

(a) (Minimum) specification of tasks 
(b) Promised payment fn. to contractee 
(c) Contractor's promised commitment fn. 
(d) Contractee's required commitment fn. 

6.6. Task set 2 

6.i. Task set i-4 
7. Alternative 2 

j. Alternative j-5 

CONTRACTEE MESSAGE:      PAYMENT/DECOMMIT MESSAGE: 
0. Negotiation identifier 0. Negotiation id 
1. Message identifier 1. Message id 
2. In-response-to (message id) 2. Accepted offer id 
3. Sender 3. Acceptance message id 
4. Receiver 4. Sender 
5. Terminate negotiation 5. Receiver 
6. Alternative 1 6. Message type 

6.1. Time valid through (payment/decommit) 
6.2. Bind after partner's decommit    7. Money transfer 
6.3. Offer submission fee 
6.4. Required response submission fee 
6.5. Task set 1 

(a) (Maximum) specification of tasks 
(b) Required payment fn. to contractee 
(c) Contractor's required commitment fn. 
(d) Contractee's promised commitment fn. 

6.6. Task set 2 

6.m. Task set m-4 
7. Alternative 2 

n. Alternative n-5 

Figure 1: Contracting messages of a single negotiation. 

contractor or a contractee message, Fig. 2. A contrac- 
tor message specifies exclusive alternative contracts that 
the contractor is willing to commit to. Within each al- 
ternative, the tasks can be split into disjoint task sets 
by the sender of the message in order for the fields (a) 
- (d) to be specific for each such task set - not neces- 
sarily the whole set of tasks. Each alternative has the 
following semantics. If the contractee agrees to handle 
all the task sets in a manner satisfying the minimum re- 
quired task descriptions (a) (which specify the tasks and 
constraints on them, e.g. latest and earliest handling 
time or minimum handling quality), and the contractee 
agrees to commit to each task set with the level specified 
in field (d), then the contractor is automatically commit- 
ted to paying6 the amounts of fields (b), and can cancel 
the deal on a task set only by paying the contractee a 
penalty (c)r.   Moreover, the contractor is decommitted 

6For example, an agent can accept a task set and later 
try to contract the tasks in that set further separately. With 
full commitment, an agent needs to have standing offers from 
the agents it will contract the tasks to, or it has to be able to 
handle them itself. With the variable commitment protocol, 
the agent can accept the task set even if it is not sure about 
its chances of getting it handled, because in the worst case it 
can decommit. 

6 Secure money transfer can be implemented cryptographi- 
cally e.g. by electronic credit cards or electronic cash [Kristol 
et al., 1994]. 

7 The "Bind after partner's decommit" (6.2) flag describes 
whether an offer on an alternative will stay valid according to 
its original deadline (field 6.1) even in the case where the con- 
tract was agreed to, but the partner decommitted by paying 
the decommitment penalty. 



Contractor decommits 
("Bind after partner's 
decommit"-fieId (6.2) not set 
in contraclee's latest proposal) 

Contractee decommits 
("Bind alter partner's 
decommit"-field (6.2) not set 
in contractor's latest proposal) 

Contractor terminates Contractee terminates 

Contractor misses deadline 
of last alternative in 
contraclee's olfer 

New negotiation over 
same issues and between 
same agents still possible 

Contractee misses deadline 
of last alternative in 
contractor's offer 

Figure 2: State transition diagram of a single negotia- 
tion. 

from all the other alternatives it suggested8. If the con- 
tractee does not accept any of the alternatives, the con- 
tractor is decommitted from all of them. Fields (b), (c) 
and (d) can be functions of time, of negotiation events, 
or of domain events, and these times/events have to be 
observable or verifiable by both the contractor and the 
contractee. A contractee can accept one of the alter- 
natives of a contractor message by sending a contractee 
message that has task specifications that meet the mini- 
mal requirements (a), and payment functions that meet 
the required payment functions (b), and commitment 
functions (c) for the contractee that meet the required 
commitment functions, and commitment functions (d) 
for the contractor that do not exceed the contractor's 
promised commitment. A contractor message can accept 
one of the alternatives of a contractee message analo- 
gously. An agent can entirely terminate a negotiation 
by sending a message with that negotiation's identifier 
(field 0), and the terminate-flag (field 5) set. 

Alternatively, the contractee can send a contractee 
message that neither accepts the contractor message (i.e. 
does not satisfy the requirements) nor terminates the ne- 
gotiation. Such a message is a counterproposal, which 
the contractor then can accept, terminate the negotia- 
tion, or further counterpropose etc. ad infinitum 9. The 
CNP did not allow counterproposing: an agent could bid 
to an announcement or decide not to bid.   A contrac- 

8 Another protocol would have offers stay valid according 
to their original specification (deadline) no matter whether 
the partner accepts, rejects, counterproposes, or does none 
of these. We do not use such protocols due to the harmfully 
(Sec. 3) growing number of pending commitments. 

9An agent that has just (counter)proposed can counter- 
propose again (dotted lines in Fig. 2). This allows it to 
add new offers (that share the "In-response-to"-field with the 
pending ones), but does not allow retraction of old offers. Re- 
traction is problematic in a distributed system, because the 
negotiation partner's acceptance message may be on the way 
while the agent sends the retraction. 

tor had the option to award or not to award the tasks 
according to the bids. Counterproposing among coop- 
erative agents was studied in [Moehlman et al., 1992; 
Sen, 1993]. Our counterproposing mechanism is one way 
of overcoming the problem of lacking truthful abstrac- 
tions of the global search space (defined by the task sets 
and resource sets of all the agents) in negotiation systems 
consisting of SI agents. 

There are no uncommittal messages such as announce- 
ments used to declare tasks: all messages have some com- 
mitment specification for the sender. In early messages 
in a negotiation, these commitment specifications can 
be too low for the partner to accept, and counterpropos- 
ing occurs. Thus, the level and stage of commitment 
are dynamically negotiated along with the negotiation 
of taking care of tasks. 

The presented negotiation protocol is a strict gener- 
alization of the CNP, and can thus always emulate it. 
Moreover, there are cases where this protocol is better 
than the CNP—due to reasons listed earlier. Yet, the de- 
velopment of appropriate negotiation strategies for this 
protocol is challenging—e.g. how should an agent choose 
commitment functions and payment functions? 

2.3     Decommitting: replies vs. timeouts 

The (6.1) field describes how long an offer on an al- 
ternative is valid. If the negotiation partner has not 
answered by that time, the sender of the message gets 
decommitted from that alternative. An alternative to 
these strict deadlines is to send messages that have the 
(b) field be a function of the time of response (simi- 
larly for (c) and (d) fields). This allows a contractor 
to describe a payment that decreases as the acceptance 
of the contractor message is postponed. Similarly, it 
allows a contractee to specify required payments that 
increase as the acceptance of the contractee message is 
postponed. This motivates the negotiation partner to re- 
spond quickly, but does not force a strict deadline, which 
can inefficiently constrain that agent's local deliberation 
scheduling. Both the strict deadline mechanism and this 
time-dependent payment scheme require that the send- 
ing or receival time of a message can be verified by both 
parties. 

An alternative to automatic decommitment by the 
deadline is to have the negotiation partner send a neg- 
ative reply (negotiation termination message) by the 
deadline. These forced response messages are not viable 
among SI agents, because an agent that has decided not 
to accept or counterpropose has no reason to send a re- 
ply. Sending reply messages also in negative cases allows 
the offering agent to decommit before the validity time 
of its offer ends. This frees that agent from consider- 
ing the effects of the possible acceptance of that offer on 
the marginal costs of other task sets that the agent is 
negotiating over. This saved computation can be used 
to negotiate faster on other contracts. Thus, an agent 
considering sending a negative reply may want to send 
it in cases where the offering agent is mostly negotiat- 
ing with that agent, but not in cases, where the offering 
agent is that agent's competing offerer in most other ne- 
gotiations. 



3     Implications of bounded rationality 
Interactions of SI agents have been widely studied in mi- 
croeconomics [Kreps, 1990; Varian, 1992; Raiffa, 1982] 
and DAI [Rosenschein and Zlotkin, 1994; Ephrati and 
Rosenschein, 1991; Kraus et al., 1992; Durfee et al., 
1993], but perfect rationality of the agents has usu- 
ally been assumed: flawless deduction, optimal reason- 
ing about future contingencies and recursive modeling 
of other agents. Perfect rationality implies that agents 
can compute their marginal costs for tasks exactly and 
immediately, which is untrue in most practical situa- 
tions. An agent is bounded rational, because its com- 
putation resources are costly, or they are bounded and 
the environment keeps changing—e.g. new tasks arrive 
and there is a bounded amount of time before each part 
of the solution is used [Garvey and Lesser, 1994; Sand- 
holm and Lesser, 1994; Zilberstein, 1993; Simon, 1982; 
Good, 1971]. Contracting agents have the following ad- 
ditional real-time pressures: 

• A counteroffer or an acceptance message has to be sent 
by a deadline (field 6.1) - otherwise the negotiation ter- 
minates, Fig. 2. If the negotiation terminates, the agent 
can begin a new negotiation on the same issues, but it 
will not have the other agent's commitment at first. 

• Sending an outgoing offer too late may cause the receiv- 
ing agent to make a contract on some of the same tasks 
with some other agent who negotiated earlier—thus dis- 
abling this contract even if the offer makes the dead- 
line. In case this deadline abiding offer is an acceptance 
message—as opposed to a counteroffer—the partner has 
to pay the decommitment penalty that it had declared. 

• The (b)-(d) fields can be functions of response time, 
Fig. 1. An agent may get paid less for handling tasks 
(or pay more for having tasks handled) or be required to 
commit more strongly or receive a weaker commitment 
from the negotiation partner if its response is postponed. 

• The agent's cost of breaking commitments (after a con- 
tract is made) may increase with time. 

This problem setup leads to a host of local delibera- 
tion scheduling issues. An agent has to decide how much 
computation it should allocate to refine its marginal cost 
estimate of a certain task set. With a bounded CPU, if 
too much time is allocated, another agent may win the 
contract before the reply is sent, or not enough time re- 
mains for refining marginal costs of other task sets. If 
too little time is allocated, the agent may make an un- 
beneficial contract concerning that task set. If multiple 
negotiations are allowed simultaneously, the agent has 
to decide on which sets of tasks (offered to it or poten- 
tially offered by it) its bounded computation should be 
focused—and in what order. It may want to ignore some 
of its contracting possibilities in order to focus more de- 
liberation time to compute marginal costs for task sets of 
some selected potential contracts. So, there is a tradeoff 
of getting more exact marginal cost estimates and being 
able to engage in a larger number of negotiations. 

The CNP did not consider an agent's risk attitude to- 
ward being committed to activities it may not be able to 
honor, or the honoring of which may turn out unbenefi- 
cial. In our protocol, an agent can take a risk by making 
offers while the acceptance of earlier offers is pending. 

Contracting during pending commitments speeds up the 
negotiations because an agent does not have to wait for 
results on earlier commitments before carrying on with 
other negotiations. The work on TRACONET formal- 
ized the questions of risk attitude in a 3-stage (announce- 
bid-award) full-commitment protocol, and chose a risk 
taking strategy where each agent ignored the chances of 
pending commitments being accepted in order to avoid 
computations regarding these alternative future worlds. 
This choice was static, but more advanced agents should 
use a risk taking strategy where negotiation risk is explic- 
itly traded off against added computation regarding the 
marginal cost of the task set in the alternative worlds, 
where different combinations of sent pending offers are 
accepted. 

There is a tradeoff between accepting or (counter) 
proposing early on and waiting: 

• A better offer may be received later. 

• Waiting for more simultaneously valid offers enables an 
agent to identify and accept synergic ones: having more 
options available at the decision point enables an agent 
to make more informed decisions. 

• Accepting early on simplifies costly marginal cost com- 
putations, because there are fewer options to consider. 
An option corresponds to an item in the power set of 
offers that an agent can accept or make. 

• By waiting an agent may miss opportunities due to oth- 
ers making related contracts first. 

An agent should anticipate future negotiation and 
domain events in its strategy [Sandholm and Lesser, 
1995b].10 It suffices to take these events into account in 
marginal cost estimation: this will cause the agent to an- 
ticipate with its domain solution. The real marginal cost 
of a task set is the difference in the streams of payments 
and domain costs when an agent has the task set and 
when the agent does not have it. This marginal cost does 
not necessarily equal the cost that is acquired statically 
at contract time (before the realization of unknown fu- 
ture negotiation events and domain events) by taking the 
difference of the cost of the agent's optimal solution with 
the task set and the optimal solution without it. Fur- 
thermore, for BR agents, the marginal cost may change 
as more computation is allocated to the solution includ- 
ing the task set or the solution without it. In general, the 
marginal cost of a task set depends on which other tasks 
the agent has. Therefore, theoretically, the marginal cost 
of a task set has to be computed in all of the alternative 
future worlds, where different combinations of pending, 

10 The agent can believe that domain events occur to the 
agent society according to some distribution and that in 
steady state these events will affect (directly or by negoti- 
ation) the agent according to some distribution. E.g. the 
agent assumes that future tasks end up in its task set ac- 
cording to a distribution. On another level, an agent can 
try to outguess the other agents' solutions so that it can use 
the others marginal costs as a basis for its own marginal cost 
calculation. On a third level, the agent can model what an- 
other agent is guessing about yet another agent, and so on ad 
infinitum. There is a tradeoff between allocating costly com- 
putation resources to such recursive modeling and gaining 
domain advantage by enhanced anticipation. 



to-be-sent, and to-be-received offers have been accepted, 
different combinations of old and to-occur contracts have 
been broken by decommitting (by the agent or its part- 
ners), and different combinations of domain events have 
occurred. Managing such contingencies formally using 
probability theory is intractable: costs of such computa- 
tions should be explicitly traded off against the domain 
advantage they provide. An agent can safely ignore the 
chances of other agents decommitting only if the decom- 
mitment penalties are high enough to surely compensate 
for the agent's potential loss. Similarly, an agent has to 
ignore its decommitting possibilities if its penalties are 
too high. The exponential number of alternative worlds 
induced by decommitting options sometimes increases 
computational complexity more than the benefit from 
the gradual commitment scheme warrants. Moreover, 
the decommitting events are not independent: chains of 
decommitting complicate the management of decommit- 
ment probabilities. Thus, decommitment penalty func- 
tions that increase rapidly in time may often be appro- 
priate for BR agents. 

Because new events are constantly occurring, the de- 
liberation control problem is stochastic. An agent should 
take the likelihood of these events into account in its de- 
liberation scheduling. The performance profile of the lo- 
cal problem solving algorithm should be conditioned on 
features of the problem instance [Sandholm and Lesser, 
1994], on performance on that instance so far [Sandholm 
and Lesser, 1994; Zilberstein, 1993], and on performance 
profiles of closely related optimizations (related calcula- 
tions of marginal costs). These aspects make exact de- 
cision theoretic deliberation control infeasible: approx- 
imations are required. The need for this type of de- 
liberation control has not, to our knowledge, been well 
understood, and analytically developing a domain inde- 
pendent control strategy that is instantiated separately 
(using statistical methods) for each domain would allow 
faster development of more efficient automated negotia- 
tors across multiple domains. 

4    Linking negotiation items 
In early CNP implementations, tasks were negotiated 
one at a time. This is insufficient, if the cost or fea- 
sibility of carrying out a task depend on the carrying 
out of other tasks: there may be local optima, where no 
transfer of a single task between agents enhances the 
global solution, but transferring a larger set of tasks 
simultaneously does. The need for larger transfers is 
well known in centralized iterative refinement optimiza- 
tion [Lin and Kernighan, 1971; Waters, 1987], but has 
been generally ignored in automated negotiation. TRA- 
CONET extended the CNP to handle task interactions 
by having the announcer cluster tasks into sets to be ne- 
gotiated atomically. Alternatively, the bidder could have 
done the clustering by counterproposing. Our protocol 
generalizes this by allowing either party to do the clus- 
tering, Fig. 1, at any stage of the protocol. 

The equivalent of large transfers can be accomplished 
by smaller ones if the agents are willing to take risks. 
Even if no small contract is individually beneficial, the 
agents can sequentially make all the small contracts that 

sum up to a large beneficial one. Early in this sequence, 
the global solution degrades until the later contracts en- 
hance it. When making the early commitments, at least 
one of the two agents has to risk taking a permanent loss 
in case the partner does not agree to the later contracts. 
Our protocol decreases such risks as much as preferred 
by allowing breaking commitments by paying a penalty. 
The penalty function may be explicitly conditioned on 
the acceptance of the future contracts, or it may specify 
low commitment for a short time during which the agent 
expects to make the remaining contracts of the sequence. 

Sometimes there is no task set size such that trans- 
ferring such a set from one agent to another enhances 
the global solution. Yet, there may be a beneficial swap 
of tasks, where the first agent subcontracts some tasks 
to the second and the second subcontracts some to the 
first. Swaps can be explicitly implemented in a negotia- 
tion protocol by allowing some task sets in an alternative 
(Fig. 1) to specify tasks to contract in and some to spec- 
ify tasks to contract out. In the task sets added to imple- 
ment swaps, "Minimum" in field (a) should be changed 
to "Maximum" and vice versa. In field (b), "Promised 
payment fn. to contractee" should be changed to "Re- 
quired payment fn. from contractee" and "Required pay- 
ment fn. to contractee" should be changed to "Promised 
payment fn. from contractee". Alternatively, in proto- 
cols that do not explicitly incorporate swaps, they can be 
made by agents taking risks and constructing the swap 
as a sequence of one way task transfer contracts. Here 
too, the decommitment penalty functions can be condi- 
tioned on later contracts in the sequence or on time to 
reduce (or remove) risk. 

5    Mutual vs. multiagent contracts 
Negotiations may have reached a local optimum with 
respect to each agent's local search operators and mutual 
contract operators (transfers and swaps of any size), but 
solution enhancements would be possible if tasks were 
transferred among more than two agents, e.g. agent A 
subcontracts a task to C and B subcontracts a task to 
C. There are two main ways to implement such deals11: 

1. Explicit multiagent contracts. These contract 
operators can be viewed as atomic operators in the global 
task allocation space. First, one agent (with an incom- 
plete view of the other agents' tasks and resources) has 
to identify the beneficiality of a potential multiagent con- 
tract. Alternatively, the identification phase can be im- 
plemented in a distributed manner. Second, the proto- 
col has to allow a multiagent contract. This can be done 
e.g. by circulating the contract message among the par- 
ties and agreeing that the contract becomes valid only if 
every agent signs. 

2. Multiagent contracts through mutual con- 
tracts. A multiagent contract is equivalent to a se- 
quence of mutual contracts. In cases where a local opti- 
mum with respect to mutual contracts has been reached, 

"Sathi et al. [Sathi and Fox, 1989] did this by having a 
centralized mediator cluster several announcements and bids 
from multiple agents into atomic contracts. That is unrea- 
sonable if decentralization is desired. 



the first mutual contracts in the sequence will incur 
losses. Thus, one or more agents have to incur risk in 
initially taking unbeneficial contracts in unsure anticipa- 
tion of more than compensatory future contracts. Our 
protocol provides mechanisms for decreasing this risk, 
either by conditioning the decommitment penalty func- 
tions on whether the contracts with other agents take 
place, or by choosing the penalties to be low early on 
and increase with time. In the limit, the penalty is zero 
(theoretically possibly even negative) for all contracts in 
the sequence if some contract in it is not accepted. The 
problem with contingency contracts is just the monitor- 
ing of the events that the contract (penalty) is contin- 
gent on: how can the contractee monitor the contractor's 
events and vice versa? 

Sometimes an agent can commit to an unprofitable 
early contract in the sequence without risk even with 
constant high decommitting penalties. E.g. if an agent 
has received committal offers on two contracts, it can 
accept both without risk—assuming that decommitment 
penalties for the two senders are so high that they will 
not decommit. Even though the agent may have some 
offers committed simultaneously, the likelihood of hav- 
ing all the necessary offers committed simultaneously de- 
creases as the number of mutual contracts required in 
the multiagent contract increases. Sometimes there is 
a loop of agents in the sequence of mutual contracts, 
e.g. say that the only profitable operator is the follow- 
ing: agent A gives task 1 to agent B, agent B gives task 
2 to agent C, and agent C gives task 3 to agent A. In 
such cases it is impossible to handle the multiagent con- 
tract as separate mutual contracts without risk (without 
tailoring the decommitment penalty functions). A nego- 
tiating agent should take the possibilities of such loops 
into account when estimating the probabilities of receiv- 
ing certain tasks, because the very offering or accepting 
of a certain task may directly affect the likelihood of 
getting offers or acceptances for other tasks. 

6     Message congestion: Tragedy of the 
commons 

Most distributed implementations of automated con- 
tracting have run into message congestion prob- 
lems [Smith, 1980; Van Dyke Parunak, 1987; Sandholm, 
1993]. While an agent takes a long time to process 
a large number of received messages, even more mes- 
sages have time to arrive, and there is a high risk 
that the agent will finally be saturated. Attempts to 
solve these problems include focused addressing [Smith, 
1980], audience restrictions [Van Dyke Parunak, 1987; 
Sandholm, 1993] and ignoring incoming messages that 
are sufficiently outdated [Sandholm, 1993]. Focused ad- 
dressing means that in highly constrained situations, 
agents with free resources announce availability, while 
in less constrained situations, agents with tasks an- 
nounce tasks. This avoids announcing too many tasks 
in highly constrained situations, where these announce- 
ments would seldom lead to results. In less constrained 
environments, resources are plentiful compared to tasks, 
so announcing tasks focuses negotiations with fewer mes- 
sages. Audience restrictions mean that an agent can only 

announce to a subset of agents which are supposedly 
most potential. 

Focused addressing and audience restrictions are im- 
posed on an agent by a central designer of the agent soci- 
ety. Neither is viable in open systems with SI agents. An 
agent will send a message whenever it is beneficial to it- 
self even though this might saturate other agents. With 
flat rate media such as the Internet, an agent prefers 
sending to almost everyone who has non-zero probabil- 
ity of accepting/counterproposing. The society of agents 
would be better off by less congested communication 
links by restricted sending, but each agent sends as long 
as the expected utility from that message exceeds the 
decrease in utility to that agent caused by the congest- 
ing effect of that message in the media. This defines 
a tragedy of the commons [Turner, 1992; Hardin, 1968] 
(n-player prisoners' dilemma). The tragedy occurs only 
for low commitment messages (usually early in a negotia- 
tion): having multiple high commitment offers out simul- 
taneously increases an agent's negotiation risk (Sec. 2.2) 
and computation costs (Sec. 3). 

The obvious way to resolve the tragedy is a use-based 
communication charge. Another is mutual monitoring: 
an agent can monitor how often a certain other agent 
sends low commitment messages to it, and over-eager 
senders can be punished. By mutual monitoring, audi- 
ence restrictions can also be implemented: if an agent 
receives an announcement although it is not in the ap- 
propriate audience, it can directly identify the sender as 
a violator. Our protocol allows an agent to determine 
in its offer (field 6.4) a processing fee that an accepting 
or counterproposing agent has to submit in its response 
(field 6.3) for the response to be processed. This imple- 
ments a self-selecting dynamic audience restriction that 
is viable among SI agents. 

7    Conclusions 
We introduced a collection of issues that arise in auto- 
mated negotiation systems consisting of BRSI agents. 
Reasons for dynamically chosen commitment stage and 
level were given and a protocol that enables this was pre- 
sented. The need for explicit local deliberation schedul- 
ing was shown by tradeoffs between computation costs 
and negotiation benefits and risk. Linking negotiation 
items and multiagent contracts were presented as meth- 
ods to avoid local optima in the global task allocation 
space, and their implementation among BRSI agents was 
discussed. Finally, message congestion mechanisms for 
SI agents were presented. 

Negotiations among BRSI agents also involve other 
issues (detailed in [Sandholm and Lesser, 1995b] due to 
limited space here) such as: insufficiency of the Vickrey 
auction to promote truth-telling and stop counterspecu- 
lation, usefulness of long term strategic contracts, trade- 
offs between enforced and unenforced contracts [Sand- 
holm and Lesser, 1995d], and knowing when to terminate 
the negotiations when an optimum with respect to the 
current tasks and resources has been reached or when 
further negotiation overhead outweighs the associated 
benefits. Coalition formation among BRSI agents has 
been studied in [Sandholm and Lesser, 1995c]. 



References 
[Decker and Lesser, 1995] Keith Decker and Victor R 

Lesser. Designing a family of coordination algorithms. 
In 1st International Conference on Multiagent Sys- 
tems, San Fransisco, CA, June 1995. 

[Durfee et al., 1993] Edmund H Durfee, J Lee, and Pi- 
otr J Gmytrasiewicz. Overeager reciprocal rational- 
ity and mixed strategy equilibria. In AAAI-93, pages 
225-230, Washington DC, July 1993. 

[Ephrati and Rosenschein, 1991] Eithan Ephrati and 
Jeffrey S Rosenschein. The clarke tax as a consen- 
sus mechanism among automated agents. In AAAI, 
pages 173-178, Anaheim, CA, 1991. 

[Finin et al., 1992] Tim Finin, Rich Fritzson, and Don 
McKay. A language and protocol to support intelligent 
agent interoperability. In Proc. of the CE & CALS 
Washington '92 Conference, June 1992. 

[Garvey and Lesser, 1994] A Garvey and V Lesser. A 
survey of research in deliberative real-time artificial 
intelligence.  Real-Time Systems, 6:317-347, 1994. 

[General Magic, Inc., 1994] General Magic, Inc. Tele- 
script technology: The foundation for the electronic 
marketplace, 1994. White paper. 

[Good, 197l] Irving Good. Twenty-seven principles of 
rationality. In V Godambe and D Sprott, editors, 
Foundations of Statistical Inference. Toronto: Holt, 
Rinehart, Winston, 1971. 

[Hardin, 1968] G Hardin. The tragedy of the commons. 
Science, 162:1243-1248, 1968. 

[Kraus et al., 1992] Sarit Kraus, Jonathan Wilkenfeld, 
and Gilad Zlotkin. Multiagent negotiation under time 
constraints. Univ. of Maryland, College Park, Com- 
puter Science TR-2975, 1992. 

[Kreps, 1990] David M Kreps. A course in microeco- 
nomic theory. Princeton University Press, 1990. 

[Kristol et al., 1994] David M Kristol, Steven H Low, 
and Nicholas F Maxemchuk. Anonymous internet 
mercantile protocol. 1994. Submitted. 

[Lin and Kernighan, 1971] S Lin and B W Kernighan. 
An effective heuristic procedure for the traveling sales- 
man problem. Operations Research, 21:498-516, 1971. 

[Moehlman et al., 1992] T Moehlman, V Lesser, and B 
Buteau. Decentralized negotiation: An approach to 
the distributed planning problem. Group Decision and 
Negotiation, 2:161-191, 1992. 

[Office of Technology Assesment (OTA), 1994] Office of 
Technology Assesment (OTA). Electronic enterprises: 
Looking to the future, 1994. 

[Raffia, 1982] H. Raiffa. The Art and Science of Negoti- 
ation. Harvard Univ. Press, Cambridge, Mass., 1982. 

[Rosenschein and Zlotkin, 1994] Jeffrey S Rosenschein 
and G Zlotkin. Rules of Encounter. MIT Press, 1994. 

[Sandholm and Lesser, 1994] Tuomas W Sandholm and 
Victor R Lesser. Utility-based termination of anytime 
algorithms.   In ECAI Workshop on Decision Theory 

for DAI Applications, pages 88-99, Amsterdam, The 
Netherlands, 1994. Extended version: Univ. of Mass. 
at Amherst, Comp. Sei. Tech. Report 94-54. 

[Sandholm and Lesser, 1995a]Tuomas W Sandholm and 
Victor R Lesser. Advantages of a leveled commit- 
ment contracting protocol. Univ. of Mass. at Amherst, 
Comp. Sei. Tech. Report, 1995. In preparation. 

[Sandholm and Lesser, 1995b] Tuomas W Sandholm 
and Victor R Lesser. Automated contracting among 
self-interested bounded rational agents. Technical re- 
port, University of Massachusetts at Amherst Com- 
puter Science Department, 1995. In preparation. 

[Sandholm and Lesser, 1995c] Tuomas W Sandholm and 
Victor R Lesser. Coalition formation among bounded 
rational agents. In Proc. 14th International Joint Con- 
ference on Artificial Intelligence (IJCAI-95), 1995. 

[Sandholm and Lesser, 1995d] Tuomas W Sandholm 
and Victor R Lesser. Equilibrium analysis of the possi- 
bilities of unenforced exchange in multiagent systems. 
In Proc. 14th International Joint Conference on Arti- 
ficial Intelligence (IJCAI-95), Montreal, 1995. 

[Sandholm, 1993] Tuomas W Sandholm. An implemen- 
tation of the contract net protocol based on marginal 
cost calculations. In Proc. 11th National Conference 
on Artificial Intelligence (AAAI-93), July 1993. 

[Sathi and Fox, 1989] A Sathi and M Fox. Constraint- 
directed negotiation of resource reallocations. In 
Michael N. Huhns and Les Gasser, eds., Distributed 
Artificial Intelligence, vol. 2 of Research Notes in Arti- 
ficial Intelligence, ch. 8, pages 163-193. Pitman, 1989. 

[Sen, 1993] Sandip Sen. Tradeoffs in Contract-Based 
Distributed Scheduling. PhD thesis, Univ. of Michi- 
gan, 1993. 

[Simon, 1982] Herbert A Simon. Models of bounded ra- 
tionality, volume 2. MIT Press, 1982. 

[Smith, 1980] Reid G. Smith. The contract net protocol: 
High-level communication and control in a distributed 
problem solver. IEEE Transactions on Computers, C- 
29(12):1104-1113, December 1980. 

[Turner, 1992] Roy M Turner. The tragedy of the com- 
mons and distributed ai systems. In Proceedings of the 
12th International Workshop on Distributed Artificial 
Intelligence, pages 379-390, May 1992. 

[Van Dyke Parunak, 1987] H Van Dyke Parunak. Man- 
ufacturing experience with the contract net. In 
Michael N. Huhns, editor, Distributed Artificial Intel- 
ligence, Research Notes in Artificial Intelligence, chap- 
ter 10, pages 285-310. Pitman, 1987. 

[Varian, 1992] Hal R Varian. Microeconomic analysis. 
New York: W. W. Norton, 1992. 

[Waters, 1987] C D Waters. A solution procedure for the 
vehicle-scheduling problem based on iterative route 
improvement. Journal of the Operational Research So- 
ciety, 38(9):833-839, 1987. 

[Zilberstein, 1993] Shlomo Zilberstein. Operational ra- 
tionality through compilation of anytime algorithms. 
PhD thesis, University of California, Berkeley, 1993. 


