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During the period of this report, we completed construction of what we believe to be the 

first neural network of biology-like pulsating neuron. The network consists of N=32 PUTONs 

(programmable unijunction transistor neurons). The coupling between neurons was realized by 

way of a JPL programmable synaptic weight chip. Methods for monitoring the collective firing 

activity and characterizing the spiking behavior of neurons in the network were also developed. A 

simplified circuit diagram of the network, with only one PUTON shown, is given in Fig. 1. The 

mode of coupling between neuron and mutual control of firing activity in this first embodiment is 

via modulation of the grid voltage of the PUTON by the net input from its presynaptic neurons. 

Other modes of coupling, e.g. by modulating the extinction voltage will be studied in the future. 

To date, we find that when the connection weights matrix is selected randomly, the 

network cannot reach phase-lock. However any structuring in the connectivity matrix results 

usually in phase-locking manifested by ordered firing of the neurons. The network is capable 

therefore of self-organization which makes it potentially capable of carrying out optimization and 

learning tasks. We have also verified that when phase-lock is established, the net synaptic input to 

each neuron is periodic (see Fig. 2). This justifies our earlier use of periodic (cosinusoidal) signals 

to characterize the behavior of a single isolated PUTON by bifurcation diagrams, that illustrate the 

functional complexity of these processing units. 

One important aspect of exploring the dynamics of the pulsating network is that it 

demonstrates potential for solving temporal optimization problems whose solutions involve a 

temporal ordering of events; a good example is the N-city Traveling Salesman Problem (TSP-N). 

Spiking networks in this regard have an advantage over embedding and solving TSP-N in 

networks of sigmoidal neurons in that only N spiking neurons are needed instead of the usual N^ 

sigmoidal neuron. This can be significant advantage when N is large. Furthermore, the speed 

advantage of solving the TSP-N with analog hardware over numerical (digital) solutions is 

preserved in spiking network. This speed advantage becomes significant as N is increased, 

because while solution time in digital hardware grows exponentially with N, the time needed to 

reach phase-lock in our pulsating network does not change significantly with N (N was changed 
from N=5 to its maximum value in our network Nmax = 32). 

Several techniques for inducing meaningful phase-lock states in our network were studied. 

One simple method of setting initial conditions for the network that we used, is to temporarily 

reduce the supply voltage of the PUTONs to a low value, such that none of the neurons can fire, 

and then gradually increase the supply voltage back to its original value. In many cases, the 

network will reach another steady-state (phase-lock state), which will sometimes correspond to a 

better solution. Another, is a method for annealing the network by temporarily removing one of 
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the neurons from the network, and then re-inserting it. This is accomplished by temporarily setting 

the weights between a specified neuron and each of the remaining neurons to zero, and then 

returning them to their original values. 

A way of allowing the system to develop in a specific order is to include only two neurons 

in the network in the beginning, and then gradually include one by one other neurons into the 

network. This procedure can be realized by setting the weights to zero for those neurons not 

included in the network, and then gradually changing the relevant weights to the desired values. 

The order in which the neurons are added can however influence the steady-state solutions of the 

system. 
In our experiments on the network, we focused on the phase-locking phenomenon of the 

network as a possible mechanism for solving optimization problems. There are, however, other 

dynamics of the network that can be exploited. From the experiments performed on single 

neurons, we know that our neuron models can exhibit chaotic dynamics. Therefore, there are 

other possible applications of such behavior to be explored. Further work in studying the network 

of pulsed neurons is to build networks that implement other mechanisms of coupling among the 

neurons. It can be expected that such networks will exhibit more complicated dynamics than those 

exhibited so far by our current network. 

One goal of our work with the spiking network is to gain insight into how the order of 

firing of neurons can be controlled by the weights matrix and initial conditions. This facet of the 

work is important because it is related to the more challenging task of finding a rule or algorithm 

for learning in pulsating neural networks. A learning rule for pulsating neural network would have 

far reaching implications because it implies ability to learn, recognize, or generate spatio-temporal 

patterns more naturally and directly than in the limited methods developed for sigmoidal networks. 

During the period of this report, two reports of our research under this grant were 

published: 

1. Z. Wen, A. Baek, and N.H. Farhat, "Optoelectronic neural dendritic tree processing 

with electron-trapping materials", Optics Letters, vol. 20, pp. 614-616, March, 1995. 

1. J.R. Tower and N. Farhat, "The transversal imager: a photonic neurochip with 

programmable synaptic weights", IEEE Trans, on Neural Networks, vol. 6, pp. 248- 

251, Jan. 1995. 

Copies of these publications are included with this report. 
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Figure 1:  Schematic diagram of the network with modulation of the PUTON's threshold 

voltage. 
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Figure 2: Two typical waveforms of the network, with symmetric random weights 

between 0 and -63. Channel 1: output pulses uol of neuron 1. Channel 2: output pulses 

v02 of neuron 2. Channel 3: gate voltage v3\ of neuron 1. Channel 4: membrane potential 

vmi of neuron 1. 
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Optoelectronic neural dendritic tree processing 
with electron-trapping materials 

Z. Wen, A. Baek, and N. H. Farhat 

Department of Electrical Engineering, University of Pennsylvania, Philadelphia. Pennsylvania 19104 

Received October 3. 1994 

We show that under simultaneous illumination of pulsed blue light and constant IR light the dynamic responses of 
electron-trapping materials could be employed to implement optically controlled neural dendritic responses. The 
importance of neurocomputing with biology-oriented spiking neurons and the role played by dendritic trees are 
discussed. Computer simulations of dendritic responses in biological neuron and experimental results of electron- 
trapping material dynamics are presented. These results show that electron-trapping materials are well suited 
for implementing optically controlled dendritic responses for use in large-scale biology-oriented optoelectronic 
spiking neural networks. 

Electron-trapping materials (ETM's) have received 
much attention in optical information processing, 
erasable three-dimensional optical memory, and op- 
tical neural networks1"3 because of their many attrac- 
tive properties, such as large linear dynamic range, 
high usable resolution, and fast response times. Re- 
cently we initiated a study of the dynamics of ETM's 
under sumultaneous illumination of blue light and 
IR light4 and uncovered a new set of dynamics that 
makes ETM's uniquely suited for use in optoelec- 
tronic implementation of large-scale biology-oriented 
spiking (or pulsating) neural networks. In a pre- 
vious Letter we demonstrated the utility of ETM's 
in producing dense arrays of optoelectronic spiking 
neurons.5 In this Letter we describe the use of 
ETM's in producing optically controlled dendritic 
responses for optoelectronic spiking neural networks. 
The importance of neurocomputing with spiking 
neurons, in particular the role played by the neu- 
rons' dendrites, is first discussed. Then computer 
simulation results of dendritic responses in biological 
neuron and experimental results of ETM dynamics 
are presented. It is shown that ETM's are well 
suited for implementing optically controlled dendritic 
responses, i.e., postsynaptic responses or potentials, 
of the kind needed in optoelectronic implementa- 
tion of large-scale biology-oriented pulsating neural 
networks. 

In contrast to most conventional neural network 
models studied today, which assume that computa- 
tional power stems from the massive interconnec- 
tions (synaptic weights) among the large numbers of 
functionally simple processing elements (sigmoidal or 
binary neurons) and which ignore explicitly the spik- 
ing nature of biological neurons as well as the role 
of relative timing between action potentials, biologi- 
cal neurons are both functionally and structurally 
complex processing elements. It is reasonable to ex- 
pect that this functional complexity would reflect it- 
self in the higher-level computational power of the 
networks they form, and therefore development of 
artificial neuron models that emulate the functional 
complexity of biological neurons would lead to a new 

generation of neural networks with vastly enhanced 
processing power. Recent physiological experimen- 
tal results strongly support these conjectures (see, 
e.g., Refs. 6 and 7). The functional complexity of 
biological neurons stems from two properties: (a) 
the complex dynamics of the excitable biological mem- 
brane and (b) the preprocessing conducted by den- 
drites on incident spike trains from other neurons. 
Our study in modeling the excitable biological mem- 
brane, based on a limit-cycle oscillator employing an 
S-shaped nonlinearity that emulates the excitable 
biological membrane to form what we call bifurca- 
tion neuron, shows that the bifurcation neuron model 
preserves much of the functional complexity of bio- 
logical neurons and, particularly under periodic ac- 
tivation potential, exhibits complex firing modality 
such as integer harmonic and subharmonic phase- 
locked firing, period-m firing, quasi-periodic firing, 
and period-doubling routes to chaos, depending on 
the parameters of its periodic activation.8 A cru- 
cial assumption in the above study is that dendritic 
tree processing produces periodic activation poten- 
tial when the impinging incident spike trains are co- 
herent. Such coherent incident spike activity occurs 
whenever a network of spiking neurons phase locks. 
Therefore dendritic tree processing plays a central 
role in spiking neural networks in their abilities to 
phase lock and to exhibit rich functional complexity. 

In biological neural networks, the arrival of an ac- 
tion potential at a synapse site on the dendrite of 
a target neuron triggers a chain of electrochemical 
events. The result is the production of a postsynap- 
tic potential (PSP) that alters the activation potential 
(membrane potential) at the target neuron's hillock, 
which is the trigger zone for action potential gen- 
eration. The polarity, amplitude, and shape of the 
PSP waveform depend on the type of neurotrans- 
mitter involved in synaptic transmission, on the lo- 
cation of the synapse on the dendritic tree, and on 
the propagation from the synapse to the hillock. In 
an actual situation, the activation potential at the 
hillock of a neuron is the superposition of a large 
number of such PSP's produced by the barrage of ac- 

0146-9592/95/060614-03$6.00/0       © 1995 Optical Society of America 
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ron's hillock to produce periodic activation potential. 
Furthermore, such periodic activation is sufficiently 
robust with fluctuations in synaptic transmission ef- 
ficacy and, to a lesser extent, in synaptic delay time. 

We now show that under simultaneous illumina- 
tion of pulsed blue light and constant IR light the 
ETM responses can be used to implement optically 
controlled dendritic responses. We model ETM dy- 
namics by the following equations0: 

dn(t) 
dt 

aIB(t) - ßn(t)Im{t).. 

I„(t) = KlB(t) + yn{t)Im{t), 

(1) 

(2) 

0.6 0.8 1 1.2 
Elapsed Time [ms] 

Fig. 1. (a) Diagram of a model neuron with a single 
dendrite with 10 excitatory and 10 inhibitory synapses 
used in computer simulations of PSP's formed at the 
hillock by injection of current pulses at selected synapses, 
(b) PSP's generated by a transient diffusion differen- 
tial equation of a passive dendrite for three excitatory 
synapse positions of injected current pulses. Membrane 
resistance, 50 Hem2; membrane capacitance, 1 ^F/cm2; 
intracellular resistance, 100 fi cm (see Ref. 9). 

where n(t) denotes the trapped electron density; hit), 
Im(t), and I0{t) represent the blue light, the IR light, 
and the emitted orange light intensities; a and K 
are coefficients for trap creation and fluorescence by 
the blue light; and y and ß are coefficients for IR- 
stimulated emission and trap erasing by the IR light, 
respectively. The dynamics of interest here is iden- 
tical to the situation considered in Ref. 5, i.e., im is 
static and IB(t) consists of a static term and a pulse- 
modulated term as follows: 

IB(t) = /„ + /! I [u(t - kT) - u(t -kT - Oh   (3) 
k=0 

where u(t) denotes the unit step function, I0 and h 
are the static and pulsed blue light intensities, and T 
and tw are the pulse period and the pulse width, re- 
spectively. The solution for the emitted orange light 
I0(t) during the iVth period is5 

Io(t) 

ayl0 T r 
K(/O + h) + -~hr + whim 

KIO H ~ r aylilintu 

[exV(ßImT)~ 1] 

exp[-/3ZTR(* - NT - tu.)] 
[1 - exp(-ßImT)] 

t - NT for NT <t<NT + tu 

for NT + tw < t < (N + 1)T 

(4) 

tion potentials from other neurons arriving at any 
time at the synapse sites on its dendrites. The im- 
portance of dendritic tree processing was studied 
recently.9'10 By assuming the dendrite to be passive, 
it is possible for one to derive a transient diffusion 
differential equation (the cable equation) and to de- 
termine the response of a dendrite to current pulses 
injected at different positions along its length.9 In- 
jected current pulses represent the effect of arriving 
action potentials. Using commonly listed dendritic 
parameters,9 we have carried out such a computation 
for the simplified arrangement shown in Fig. 1(a) for 
current pulses of uniform amplitude injected at three 
synapses along the dendrite. The results, given in 
Fig. Kb), show how the shape of the PSP and its 
rise time, peak value, latency (peak position), and de- 
cay time all depend on synapse position (i.e., position 
of injected current). In reality, the peak value also 
depends on the synaptic efficacy. We also carried 
out simulations that confirm that when the incident 
spike trains are correlated, the smoothing responses 
of dendrites lead to PSP's that sum at the neu- 

From Eq. (4) we observe that in the emitted orange 
light the contributions that are due to IR-stimulated 
emission and fluorescence coexist. Fluorescence is 
manifested by sudden jumps at the onset and termi- 
nation of the blue light pulses. On the other hand, 
IR-stimulated emission first undergoes a linear in- 
crease during the blue light pulse in the charging 
process and then decays exponentially after the pulse 
in the discharging process. An experiment has been 
carried out to study ETM dynamics in the above 
situation by using the same experimental setup used 
in Ref. 5. Figure 2 shows the experimental results. 
In all these plots. Il = 3.98 mW/cm2, tw = 25 ms, and 
T = 250 ms. Figure 2(a) shows the ETM responses 
for three different levels of the static blue light in- 
tensity I0, whereas the IR light intensity Im is con- 
stant. In Figs. 2(b) and 2(c), I0 remains unchanged, 
whereas 7IR is varied. From Fig. 2 one observes the 
fluorescence jumps at the blue light pulse edges, lin- 
ear buildup during the pulse, and trailing exponential 
decay after it, as predicted by Eq. (4). Equation (4) 
indicates that varying I0 shifts the ETM response up 
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Fig. 2. Oscilloscope displays of ETM responses. Upper 
trace: Pulsing signal from the programmable liquid- 
crystal beam gate (see Fig. 1 of Ref. 5). Lower trace: 
ETM responses,    (a) Im = 403 mW/cm2, 7() = 4.8 fiW/ 

(middle curve),  and 
(b)  JIR = 128 mW/cm2, 

372 mW/cm2,    70   = 

cm2  (lower curve),  0.22 mW/cm 
0.54 mW/cm2   (upper  curve). 
70   =   29.4MW/cm2.    (c)   7IR 

29.4 /xW/cm2. 

and down, and the results shown in Fig. 2(a) gen- 
erally agree with this. The results in Fig. 2 show, 
however, that the heights of the fluorescence jumps, 
as well as the magnitude of the exponential portion 
of ETM response, vary with 7IR and 70 used. Fur- 
thermore, it appears that the upward jump and the 
downward jump have different heights. The first- 
order linear model of ETM dynamics given in Eqs. (1) 
and (2) fails to predict these subtle effects because 
it neglects nonlinear effects such as trapped elec- 
tron density saturation and dependence of electron- 
trapping efficiency on existing trapped electron 
density. Clearly, to utilize ETM's effectively in ap- 
plications that make use of their unique dynamics 
it is necessary to develop an improved theoretical 
model that would take into account the neglected 
effects mentioned above. We are in the process of 
developing such a model and verifying it experi- 
mentally; the results will be reported elsewhere. 
Nonetheless, we draw attention now to the similarity 
between the PSP's in Fig. 1, which represent bio- 

logical neurons, and the ETM responses in Fig. 2. 
By varying the values of I0 and/or Im, one can con" 
trol the ETM response in various ways, e.g., up and 
down shifts, different heights of fluorescence jumps 
and magnitude of exponential response, and faster 
or slower exponential decays. So we have a unique 
method for crudely emulating dendritic response in 
biological neurons in a fashion useful for realizing 
a dense optically controlled dendritic response array 
(or two-dimensional dendritic trees) for use in large- 
scale biology-oriented optoelectronic spiking neural 
networks. 

The spiking nature of biology-oriented neural net- 
works makes studying their behavior by computer 
simulation impractical because of the lengthy com- 
puting time involved. In a recent paper Prange and 
Klar.11 argued convincingly that the best way of 
studying and realizing biology-oriented neural net- 
works is through analog complementary metal-oxide 
semiconductor technology rather than digital hard- 
ware. However, they showed that the number of 
neurons one can accommodate on a VSLI chip is lim- 
ited to a hundred or so, even when submicrometer 
complementary metal-oxide semiconductor technol- 
ogy is used, because of the relatively large size of 
the neuron/dendrite cell. By combining ETM's with 
state-of-the art technologies such as smart pixel spa- 
tial light modulators and image intensifiers to form 
dense arrays of spiking neurons and dendritic re- 
sponses, it is feasible that large-scale optoelectronic 
spiking neural networks of 103-104 neurons can be 
realized. Such networks would be invaluable tools 
for modeling, studying, and demonstrating the role of 
synchronicity, bifurcation, and chaos in higher-level 
cortical functions and exploring their use in enhanc- 
ing the performance of artificial neural systems. 

This research was supported by the U.S. Office of 
Naval Research. The ETM film used in this study 
was furnished by the Quantex Corporation, Rockville, 
Maryland 20850. 
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Brief Papers. 

The Transversal Imager: A Photonic Neurochip 
with Programmable Synaptic Weights 

J. R. Tower and N. Farhat 

Abstract— A photonic neural processor implemented in 
NMOS/CCD integrated circuit technology is described. The 
processor performs outer-product processing utilizing optical 
input of the synaptic weights and electrical input of the state 
vector, or, visa versa. The performance of the 32-neuron, 
1024-synapse processor is presented. 

I. INTRODUCTION 

THIS paper describes the design, fabrication, and per- 
formance of an NMOS/CCD integrated circuit which 

performs outer-product, neural network computations. The 
transversal imager integrated circuit utilizes a unique architec- 
ture which permits (1) the synaptic weights to be introduced 
electrically to the complete neural network in parallel, and 
the one-dimensional state vector to be introduced optically, 
or (2) the synaptic weights to be introduced optically to the 
complete neural network in parallel, and the one dimensional 
state vector to be introduced electrically. In both cases, the 
computation of the outer-product between the two-dimensional 
synaptic weight matrix and the one-dimensional state vector 
is performed simultaneously across the integrated circuit. 

The optical input to this electro-optical neural network 
can thus be reduced to the one-dimensional state vector. 
This simplification of the optical input requirements from a 
two-dimensional pattern to a one dimensional pattern has sig- 
nificant impact on system hardware performance, and system 
computational throughput. 

II. DESCRIPTION OF PROCESSING ALGORITHM 

As background for understanding the transversal imager 
architecture, it is useful to discuss the motivation for the archi- 
tecture, namely, the efficient implementation of the Hopfield 
neural network. In the basic Hopfield neural network [1], there 
are N neurons which are connected to each other by the 
synapses. The state of the network is given by the vector V: 

v = (v1,v2,---vN). 
The network interconnections are designated by the synaptic 
interaction matrix W, whereby the weight Wij is the strength 
of the interaction from the jth neuron to the ith neuron. The 

This work was supported in part by SDIO/IST support, through the Office 
of Naval Research. 

J.R. Tower is with the David Sarnoff Research Center, Princeton, NJ USA. 
N. Farhat is with the Department of Electrical Engineering, University of 

Pennsylvania, Philadelphia, PA USA. 
IEEE Log Number 9214272. 

synaptic matrix is of dimension N x N. The state of network 
is updated according to (1) the vector-matrix multiplication: 

and (2) a transfer function: 

Vi = f(Ii) 

where Vi is the updated state of the ith neuron. The state 
of the neuron is either excited (V = 1) or not excited 
(Vi = 0). The interconnection weights are either unipolar 
binary [Wi:,eO(ofr),+l(excite)], bipolar binary [W^e - 1 
(inhibit), +1 (excite)], ternary [W^-e - 1 (inhibit), 0 (off), +1 
(excite)], or analog. The transfer function is typically a sharp 
thresholding function. 

III. PRIOR CCD NEURAL NETWORK APPROACHES 

All of the charge coupled device neural processing inte- 
grated circuits reported to date (1) exploit the analog, rather 
than digital, capability of CCD's, and (2) use charge domain 
processing to reduce the area required for interconnections 
and computational circuitry. In the work reported by Sage et 
al. of MIT Lincoln Laboratories [2], surface channel CCD 
technology and metal nitride oxide semiconductor (MNOS) 
technology is combined to produce circuits capable of outer 
product processing. In this approach, state vectors are in- 
troduced electrically, and the analog synaptic weights are 
produced electrically and stored in MNOS gates. The MNOS- 
CCD gates function to store the synaptic weight and to control 
the flow of charge, thereby producing the product of the input 
state and the stored weight. The sum of products is produced in 
the charge domain and then converted to the voltage domain 
to produce, in a Hopfield net application, the desired outer- 
product result. 

In the CCD neural network processor work by Chiang et al 
of MIT Lincoln Laboratory [3], buried channel CCD structures 
are utilized for a variety of functions including the implemen- 
tation of multiplying digital-to-analog converters (MDAC's). 
In this architecture, when applied to the Hopfield algorithm, 
the state vector is introduced electrically to an analog CCD 
register. The synaptic weights are introduced electrically to 
6-bit CCD digital memories. The MDAC's perform the outer- 
product multiplication of the analog state vector and the 6-bit 
digital synaptic weights, with the summation of products being 
achieved in the charge domain. The output charge packets are 

1045-9227/95504.00 © 1995 IEEE 
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Fig. 1.   Transversal imager architecture. 

then converted into the voltage domain to produce the final 
outer product result. 

The CCD neural processor which is most similar to the 
transversal imager is that reported by Agranat, et al. of the 
California Institute of Technology [4]. In this work a Hopfield 
network is realized utilizing buried channel CCD technology. 
The state vector input is binary (+1,0) and is introduced 
electrically. The synaptic weights are input electrically or 
optically, and are analog. The outer product multiplication 
of the binary state vector and each analog synaptic weight 
is performed by controlled (+1 charge flow, 0 no charge 
flow) gating of replicas of the recirculating synaptic weights. 
The gated products are added together in the charge domain, 
forming the outer product sum-of-products. The outer product 
terms are then serially read out in the charge domain to 
an output where the final voltage output is produced. This 
architecture therefore utilizes a two-dimensional optical input 
to introduce the analog synaptic weights, and the binary state 
vector is introduced electrically. 

IV. TRANSVERSAL IMAGER ARCHITECTURE 

The transversal imager concept grew out of work con- 
ducted in the late-1970's and early 1980's in the field of 
programmable CCD analog-binary transversal filters [5], [6]. 
The transversal imager architecture we use is shown in Fig. 1. 
This signal processing imager [7], [8] was designed to per- 
form vector-matrix multiplication by (1) imaging the one- 
dimensional input state vector (V) spread across the rows 
of the N x N image area, (2) performing the interconnect, 
synaptic weighting (W) at each pixel location in parallel, 
(3) performing the summation along each column in parallel, 
and (4) reading out the sum-of-products terms serially. The 
architecture was chosen to realize the following desirable 
features: 

1) Optical input of the one-dimensional state vector. 
2) Electrical input of the matrix weighting at each vector- 

matrix multiplication. 

N x 2N Matrix of 
Electrical Weights 
For Input of Synaptic 
Weights (Ternary) 

N = 32 

N Element Light 
' Source for Input of 

State Vector 
(Binary or Analog) 

Transversal Imager 

N Element Vector 
of Electrical Weights 
For Input of State 
Vector (Binary) 

N = 32 

N x 2N Element 
■ Light Source For 

Input of Synaptic 
Weights (Analog) 

It 
Transversal Imager 

(b) 

"+—^N Element 
^1        Outer Product 

Output 

Fig. 2. (a) Transversal imager configured for optical input of state vector, 
(b) Transversal imager configured for optical input of synaptic weights. 

3) Simultaneous  ternary  weighting  (-1,0,-1-1)  at each 
pixel. 

4) High vector-matrix multiplication frame rate; with frame 
rate dominated by serial output register readout rate. 

5) High optical integration time duty-cycle; with integration 
time a very high percentage of frame rate. 

Each pixel of the transversal imager consists of two photo- 
capacitors which see the same optical input, two stages of 
an NMOS digital shift register, control gates, and summation 
busses (E+andE~)- The ternary weighting is achieved by 
controlling the transfer of the photocharge integrated in the two 
photo-capacitors. If both photo-capacitors contribute charge 
to the summation plus (£+) bus the pixel weight is +1, if 
both contribute to the summation minus (£-) bus the pixel 
weight is — 1, and if one contributes to the ]T while the 
other contributes to the £}~, the weight is 0. 

The NMOS digital shift registers control the selective trans- 
fer of photocharge to the J2+ bus based on the data in the shift 
register. Once the selective transfer to the column ^ busses 
is completed, all of the photo-capacitors transfer the remaining 
charge to the respective column J2~ busses. In this fashion 
the imaged photocharge is weighted in parallel by selective 
charge transfer. 

The column X)+and XT busses receive the photocharge 
and perform a nearly instantaneous summation of the column 
products in the charge domain. The weighted and summed 
photocharge from the N columns are pulled off of the N—J] 
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Cycle 2 optical integration     / 

Cyde 3 optical integration 

Fig. 3.    Transversal imager operating cycle. 

andN-J^" busses and transferred into a serial output register 
by charge primed couplers [9]. The serial output register 
switches the Y.+ and E~ signals to respective floating 
diffusion output amplifiers after appropriate stage delays. The 
J2+ and XT output amplifiers are differentially sensed to 
produce the desired outer product result. 

The primary operating configuration is shown schematically 
in Fig. 2(a). The optical input of the state vector is provided by 
a display, or more commonly an N element LED array and 
anamorphic optics, which spreads the light across the rows 
of the transversal imager. The state vector may be analog, 
but is usually confined to a binary on or off. Each of the N 
(LED) elements illuminates all of the photo-capacitor pairs 
in it's associated row. The N x 2N elements of the ternary 
synaptic weight matrix are introduced through multiple parallel 
electrical input ports. 

An alternate operating configuration is shown schematically 
in Fig. 2(b). In this configuration, the synaptic weights are 
input optically. A display with N x 27V resolution elements 
or a spatial light modulator with at least N x 2JV elements 
projects the weights. The state vector is introduced electrically 
with either unipolar binary, bipolar binary, or ternary weights. 
The power of this approach is that bipolar analog synaptic 
weights may be achieved with this configuration. Thus, a 
continuous range of both inhibitory and excitatory weights 
may be introduced to the outer product. 

V. OPERATING CYCLE 

To maximize the speed of the transversal imager the device 
was designed to perform simultaneous operations. The device 
operating cycle starts with the initiation of the electrical 
weight read-in through multiple digital input ports (Tl). At 
the completion of the operation, the weighting and summation 
is performed by selective transfer of the photocharge (T2). 
The sum-of-product terms are then transferred into the serial 
output register (T3). This is followed by serial readout and 
development of the final outer-product terms (T4). 

The optical input and the integration of the photocharge may 
occur continually. The only time period where erroneous signal 
can be produced is during the selective transfer (weighting) 
process. This time period is a very small portion of the 
complete cycle time. Therefore, a choice can be made between 
either a small error in the signal with the optical input always 
present or an operational procedure whereby the optical input 
is turned off during the selective transfer process. 

The high optical duty cycle and the rapid weighting oper- 
ation are complemented by a design which permits a rapid 

transfer into the serial output register. These characteristics 
contribute to a high sensitivity and a total latency which is 
dominated by the serial output rate. 

To assure that the weight introduction process is not ad- 
versely impacting the transversal imager cycle time, the digital 
register design incorporates multiple input ports and a digital 
clock rate such that the weight introduction time (Tl) is less 
than the serial readout time (T4). Furthermore, the weight- 
ing/summation process (T2) and the transfer into the serial 
register (T3) are rapid compared to the serial readout time 
(T4). Thus, the device may be run in the manner shown in 
Fig. 3, assuring a cycle time essentially equal to the serial 
output register readout time (T4). 

An approximation of analog synaptic weights can be 
achieved with this processor architecture. By performing 
the above described operating cycle on a series of synaptic 
weight "bit planes," accumulating the outer product terms, and 
then applying the appropriate l/2n weighting, the synaptic 
weights can be implemented to n-bits. The penalty of this 
increased resolution in the weights is the increase from a 
single computational cycle to n cycles. 

VI. PERFORMANCE RESULTS 

A 32 x 32 transversal imager has been fabricated in a 3- 
nm NMOS/ buried channel CCD process. The device has a 
square 200 x 200-/xm pixel pitch. (The pixel size is primarily 
determined by coarse metal design rules, since the host device 
on the wafer is a back-side illuminated, thinned visible im- 
ager.) Each pixel consists of two photo-capacitors, two stages 
of digital shift register, and the associated circuitry to perform 
ternary weighting. 

The results shown are for a serial output register rate of 1.0 
MHz. The various Tl, T2, T3, T4 portions of the cycle are 
being run non-overlapped to simplify the operating electronics 
requirements. The resulting cycle rate is 2500 cycles/s. In this 
operating mode, 8 x 104 differentially sensed outer-product 
terms are produced per second. 

One of the advantages of the transversal imager architecture 
is that the operating cycle does not change if the operating 
mode is changed. The same operating cycle is utilized in the 
optical state vector and electrical synaptic weights mode as 
is used in the optical synaptic weights and electrical state 
vector mode. The transversal imager therefore sustains the 
same outer-product rate in either mode. 

In the results presented below, the actual photocharge 
weighting and summation in the charge domain is completed 
in parallel across the complete array in a time T2 = 20 ps. 
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Fig. 4.    Final outer-product result for uniform optical vector input and ternary 
synaptic weights. 

utilizing a 200 x 200-jUm cell pitch, 1.5-MHz clocking, and 
a non-overlapping operating cycle achieves 5 000 000 analog 
binary operations/s (2 500 000 multiplications, and 2 500 000 
additions). As a neural network processor the current im- 
plementation achieves 32 fully interconnected neurons with 
an interconnection update rate of 2.5 x 106 interconnection 
updates/s. 

This architecture, the overlapped operating cycle discussed, 
and today's silicon IC technology would permit scaling to 
a 75 x 75-jum cell pitch and 10-MHz clocking. This would 
permit realization of a 128 x 128 processor with 128 fully 
interconnected neurons processing at an update rate of 7 x 
108 interconnection updates per second. Furthermore, the 
architecture permits, even at these high processing rates, the 
optical input and the electrical input to both be updated during 
each cycle. This would be very useful for learning algorithms 
where it is desirable to update the synaptic weights frequently. 

The architecture permits extension to larger neural networks 
by tiling of the transversal imager devices in2x2or4x4 
mosaics. In the configuration with optical input of the state 
vector, to achieve these larger networks, an optical input device 
with twice or four times the number of elements would be 
required. The optical input would be spread across the rows 
of the mosaic and the column partial outer-product outputs 
from each device would be combined within the columns 
of the mosaic to produce the desired outer-product result. 
The transversal imager devices would be run in parallel with 
common clocking signals. In this manner the architecture 
can be extended to realization of larger electro-optical neural 
processors. 

Fig. 5.    Final outer-product result for linearly increasing optical vector input 
and uniform negative synaptic weights. 

This time is dominated by the photocharge thermal diffusion 
transfer time, which is long given the large pixels. In this 
20 [is period 2000 analog-binary multiplications and 2000 
additions are performed. 

The preliminary results shown in Fig. 4 show the final 
differential output of 18 columns for a uniform light input 
and a complete column weighting of (left-to-right): -i 1— 
+0000 0000 - + -I . (A portion of the small non-uniformity 
in response is due to non-uniform illumination.) Fig. 5 shows 
the final transversal imager output for a uniform negative 
weight and a wedge-shape optical input pattern. 

VII. CONCLUSION 

A novel electro-optical neural network processor has been 
developed. The processor is based on MOS/CCD integrated 
circuit technology. The 32 x 32 transversal imager demon- 
strated performs ternary weighting. This first implementation 
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