REPORT DOCUMENTATION PAGE AFOSR-TR-95 Ministry Market M	/95 14:56 🖀 409 84	5 2891 TAMU H	BIOLOGY	Le le	003
1. AGENCY USE ONLY (I KAND ADDRESS) 3-82003 [Call 1. AGENCY USE ONLY (I KAND ADDRESS) <	REPORT DO	DOUMENTATION PA	GE	AFOSR-TR-95	
1. JEENCY USE ONLY Trave Danks 2. JEENCE ONLY TRAVE DANKS 3. JEENCE ONLY TRAVE 2. JEENCE ONLY TRAVES 3. JEENCE ONLY TRAVES	Jou, reparting burgers for this relieven of inte- schering and maintenting the cuta recover, and alleration of intermation, including suggestions are produced. Suite 1206, Arthoriton, VA 22202	completing and residenting for relievants in Inf reducing this burgers, to wayping in lives 4307, and the he Ottice of Management and i	nopulitar, michaeling I Mormation, Sand Ci Segurion Maxicol, I Jedget, P-primetrik	0695	
A Init and Journal Melatonin, The Pineal Gland and Circadian Rhythms \$317,790 Melatonin, The Pineal Gland and Circadian Rhythms \$317,790 AUTHOR(S) Vincent M. Cassone DIFICE Vincent M. Cassone DIFICE Control (Control (Contro) (Contro) (Control (Control (Control (Contro) (Control		1) 2 REPORT DATE 9-25-95		until 2/28/95	
AUTHOR(S) Vincent M. Cassone Different M. Cassone	TITLE AND SUBTITLE			5. FUNDING NUMBERS	
AUTHOR(S) Vincent M. Cassone T. FERFORMING GREANIZATION NAME(S) AND ADDRESS Texas A&M Research Foundation Mail Stop 3578 Texas A&M University College Station, TX 77843 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Office of Scientific Research / N/L Bolling Air Force Base District of Columbia Or Halood To follow a structure base Distribution / Availability StatEMENT Distribution / Availability StatEMENT Table College Control of the circadian clock. Exogenous melatonin entrains the rat clock and does not require the presence of the pineal gland. The pineal gland is important for circadian thythmicity. Pinealectomy exacerbates the disruptive effects of LL on thythmicity. This may he due to a role of the pineal gland and melatonin in clock light sensitivity, since pinealectomized rats' periods decelerate more rapidly in increasing light than do those of sham- Operated rats. It may also be due to a role of in coupling circadian components since multiple oupus of the clock are disrupted by pinealectomy equivalently. The rat circadian clock regulates a pethora of peripheral processes by modulation of sympathetic tone. This regulation is responsible for the circadian thythm in heart rate. The avian visual system contains high affinity melatonin receptors. These receptors are responsible for a circadian nedulation of metabolic and electrical activity in visual structures. Melatonin receptors are regulated by the circadian clock. Receptor binding is rhythmic, high during the day and low during the night, does not depend on the pineal gland or melatonin receptors from chick brain. 15. NUMBER OF PAGES	Melatonin, The Pinea	1 Gland and Circadian	Rhythms	\$317,790	
AUTHOR(S) Vincent M. Cassone PERFORMING ORGANIZATION NAME(S) AND ADDRESS PERFORMING ORGANIZATION NAME(S) AND ADDRESS PERFORMING ORGANIZATION NAME(S) AND ADDRESS PERFORMING ORGANIZATION ORGANIZATION Mail Stop 3378 PERFORMING ORGANIZATION NAME(S) AND ADDRESS PERFORMING ORGANIZATION ORGANIZATION Mail Stop 3378 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(E) Air Force Office of Scientific Research / N/L Solling Air Force Base District of Columbia Or Hadood Or Hadood District of Columbia Distribution Joint Columbia Distribution Joint Columbia Distribution Joint Columbia Distribution Distribution Distribution Distresention Distribution				AFOSE_ 90-0244	
Vincent M. Cassone Vince	AUTHOR(S)				
 PERFORMING CREANIZATION NAME(S) AND ADDRESS NOV O 3 1995 PERFORMING CREANIZATION NAME(S) AND ADDRESS (ES) Texas A&N University College Station, TX 77843 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Office of Scientific Research / NC Bolling Air Force Base District of Columbia Or Haddad. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release District of Columbia Or Haddad. DISTRIBUTION / AVAILABILITY STATEMENT Air pineal is a component of the circadian clock. Exogenous melatonin entrains the rat clock and does not require the presence of the pineal gland. The pineal gland is important for circadian rhythmicity. Pinealectomy exacerbates the disruptive effects of LL on rhythmicity. The art pineal is a component of the circadian clock. Exogenous melatonin entrains the rat clock and does not require the presence of the pineal gland. The pineal gland is important for circadian rhythmicity. Pinealectomy exacerbates the disruptive effects of LL on rhythmicity. The rat pineal is a component of the circadian clock. Exogenous melatonin entrains the rat clock and does not require the presence of the pineal gland. The pineal gland is important for circadian rhythmicity. Pinealectomy exacerbates the disruptive effects of LL on rhythmicity. This may be due to a role of the pineal gland and melatonin in clock light sensitivity, since pinealectomized rats' periods decelerate more rapidly in increasing light than do bes of sham- operated rats. It may also be due to a role in coupling circadian components since multiple outputs of the clock are disrupted by pinealectomy equivalently. The rat circadian clock regulates a plehora of peripheral processes by modulation of sympathetic tone. This regulation is responsible for the ci	Vincent M. Cassone	F			
Mail Stop 3578 Texas A&N University College Station, TX 77843 F RF 6526 9: SPONSORING/MONITORING AGENCT NAME(S) AND ADDRESS(ES) Air Force Office of Scientific Research / D/C Bolling Air Force Dase District of Columbia 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 90-NL-0244 0: Haddead. 11. SUPPLEMENTARY NOTES DISTRIBUTION, STATEMENT A Approved for public release District of Columbia 90-NL-0244 12. DISTRIBUTION/AVAILABUTY STATEMENT DISTRIBUTION, STATEMENT A Approved for public release 12b. DISTRIBUTION CODE 13: ABSTRACT (Maximum 200 used) The rat pineal is a component of the circadian clock. Exogenous melatonin entrains the rat clock and does not require the presence of the pineal gland. The pineal gland is important for circadian rhythmicity. Pinealectomy exacerbates the disruptive effects of LL on rhythmicity. This may be due to a role of the pineal gland and melatonin in clock light sensitivity, since pinealectomized rats' periods decelerate more rapidly in increasing light than do those of sham- operated rats. It may also be due to a role in coupling circadian components since multiple outputs of the clock are disrupted by pinealectomy equivalently. The rat circadian clock regulates a plethora of peripheral processes by modulation of sympathetic tone. This regulation is responsible for the circadian rhythm in heart rate. The avian visual system contains high affinity melatonin receptors. These receptors are responsible for a circadian modulation of metabolic and electrical activity in visual structures. Melatonin receptors are regulated by the circadian clock. Receptor binding is rhythmic, high during the day and low during the night, does not depend on the pineal gland or melatonin but is abolis		AME(S) AND ADDRESSIES	124 H29	8. FERFORMING ORGANIZATION REPORT NUMBER	1
Texas A6M University College Station, TX 77843 F 9: SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Office of Scientific Research / D/L Bolling Air Force Base District of Columbia 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 90-NL-0244 0r Hadrond. Distribution, STATEMENT A Approved for public release District of Columbia 90-NL-0244 12. DISTRIBUTION/AVAILABUITY STATEMENT Approved for public release Distribution / AVAILABUITY STATEMENT 120. DISTRIBUTION CODE 13: ABSTRACT (Maximum 200 wordd) The rat pincal is a component of the circadian clock. Exogenous melatonin entrains the rat clock and does not require the presence of the pincal gland. The pincal gland is important for circadian rhythmicity. Pincalcotomy exacerbates the disruptive effects of LL on rhythmicity. This may be due to a role of the pincal gland and melatonin in clock light sensitivity, since pincalcotomized rats' periods decelerate more rapidly in increasing light than do those of sham- operated rats. It may also be due to a role in coupling circadian components since multiple outputs of the clock are disrupted by pincalectomy equivalently. The rat circadian clock regulates a plethora of peripheral processes by modulation of sympathetic tone. This regulation is responsible for the circadian rhythm in heart rate. The avian visual system contains high affinity melatonin receptors. These receptors are responsible for a circadian modulation of metabolic and electrical activity in visual structures. Melatonin receptors are regulated by the circadian clock. Receptor binding is rhythmic, high during the day and low during the night, does not depend on the pincal gland or melatonin but is abolished by lesions of the suprachiasmatic nucleus. Finally, we have cloned two melatonin receptors		oundation		PF (69/	
 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) AIT FORCE OFFICE OF SCIENTIFIC Research / D/L Bolling Air Force Base District of Columbia Or Haddaad 11. SUPPLEMENTARY NOTES DISTRIBUTION STATEMENT A Approved for public release Distribution (Julimuted) 12. DISTRIBUTION / AVAILABULTY STATEMENT Approved for public release Contents of the release (Distribution (Julimuted)) 13. ASSTRACT (Maximum 200 words) The rat pincal is a component of the circadian clock. Exogenous melatonin entrains the rat clock and does not require the presence of the pincal gland. The pincal gland is important for circadian rhythmicity. Pincalectomy exacerbates the disruptive effects of LL on rhythmicity. This may be due to a role of the pincal gland and melatonin in clock light sensitivity, since pincalectomized rats' periods decelerate more rapidly in increasing light than do those of sham- operated rats. It may also be due to a role in coupling circadian components since multiple outputs of the clock are disrupted by pincalectomy equivalently. The rat circadian clock regulates a plethora of peripheral processes by modulation of sympathetic tone. This regulation is responsible for the circadian rhythm in heart rate. The avian visual system contains high affinity melatonin receptors. These receptors are responsible for a circadian modulation of metabolic and electrical activity in visual structures. Melatonin receptors are regulated by the circadian clock. Receptor binding is rhythmic, high during the day and low during the night, does not depend on the pincal gland or melatonin but is abolished by lesions of the suprachiasmatic nucleus. Finally, we have cloned two melatonin receptors from chick brain. 15. NUMBER OF PAGES 	Texas A&M University		F	מצכמ זא	
Air Force Office of Sciencific Research / DC Bolling Air Force Base District of Columbia Or Haddod 11. SUPPLEMENTARY NOTES DISTRIBUTION STATEMENT Approved for public release Distribution and for public release : Distribution of the close : Distribution of the close : Distribution of the presence of the pineal gland. The pineal gland is important for circadian rhythmicity. Pinealectomy exacerbates the disruptive effects of LL on rhythmicity. This may be due to a role of the pineal gland and melatonin in clock light sensitivity, since pinealectomized rats. It may also be due to a role in coupling circadian clock regulates a plethora of peripheral processes by modulation of sympathetic tone. This regulation is responsible for the circadian rhythm in heart rate. The avian visual system contains high affinity melatonin receptors. These receptors are responsible for a circadian modulation of metabolic and electrical activity in visual structures. Melatonin receptors are regulated by the circadian clock. Receptor binding is rhythmic, high during the day and low during the night, does not depend on the pineal gland or melatonin receptors from chick brain. 15. NUMBER OF PAGES	College Station, TX	77843			
Air Force Office of Scientific Research / DC Bolling Air Force Base District of Columbia Or Haddad 11. SUPPLEMENTARY NOTES DISTRIBUTION STATEMENT A Approved for public release Approved for public release Approved for public release; Approved for public for public release; Approved for public rel					
DISTRIBUTION OF Haddad 11. SUPPLEMENTARY NOTES DISTRIBUTION STATEMENT A Approved for public release 122. DISTRIBUTION/AVAILABILITY STATEMENT 123. DISTRIBUTION/AVAILABILITY STATEMENT 124. DISTRIBUTION/AVAILABILITY STATEMENT 125. DISTRIBUTION/AVAILABILITY STATEMENT 126. DISTRIBUTION/AVAILABILITY STATEMENT 126. DISTRIBUTION/AVAILABILITY STATEMENT 127. ABSTRACT (Maximum 200-words) The rat pineal is a component of the circadian clock. Exogenous melatonin entrains the rat clock and does not require the presence of the pineal gland. The pineal gland is important for circadian rhythmicity. Pinealectomy exacerbates the disruptive effects of LL on rhythmicity. This may be due to a role of the pineal gland and melatonin in clock light sensitivity, since pinealectomized rats' periods decelerate more rapidly in increasing light than do those of sham- operated rats. It may also be due to a role in coupling circadian components since multiple outputs of the clock are disrupted by pinealectomy equivalently. The rat circadian clock regulates a plethora of peripheral processes by modulation of sympathetic tone. This regulation is responsible for the circadian rhythm in heart rate. The avian visual system contains high affinity melatonin receptors. These receptors are responsible for a circadian modulation of metabolic and electrical activity in visual structures. Melatonin receptors are regulated by the circadian clock. Receptor binding is rhythmic, high during the day and low during the night, does not depend on the pineal gland or melatonin but is abolished by lesions of the suprachiasmatic nucleus. Finally, we have cloned two melatonin receptors from chick brain. 15. NUMBER OF PAGES			NC		
OF Hadaad. 11. SUPPLEMENTARY NOTES DISTRIBUTION STATEMENT A Approved tor public releases Distribution global 122. DISTRIBUTION/AVAILABILITY STATEMENT Distribution global 123. DISTRIBUTION/AVAILABILITY STATEMENT Distribution global 124. DISTRIBUTION/AVAILABILITY STATEMENT 125. DISTRIBUTION/AVAILABILITY STATEMENT 126. DISTRIBUTION/AVAILABILITY STATEMENT 127. DISTRIBUTION/AVAILABILITY STATEMENT 128. DISTRIBUTION/AVAILABILITY STATEMENT 129. DISTRIBUTION/AVAILABILITY STATEMENT 120. DISTRIBUTION/AVAILABILITY STATEMENT 120. DISTRIBUTION/AVAILABILITY STATEMENT 120. DISTRIBUTION/AVAILABILITY STATEMENT 120. DISTRIBUTION/AVAILABILITY STATEMENT 121. DISTRIBUTION/AVAILABILITY STATEMENT 122. DISTRIBUTION/AVAILABILITY STATEMENT 123. DISTRIBUTION/AVAILABILITY STATEMENT 124. DISTRIBUTION/AVAILABILITY STATEMENT 125. DISTRIBUTION/AVAILABILITY STATEMENT 126. DISTRIBUTION/AVAILABILITY STATEMENT 127. DISTRIBUTION/AVAILABILITY STATEMENT 128. DISTRIBUTION/AVAILABILITY STATEMENT 129. DISTRIBUTION/AVAILABILITY STATEMENT 120. DISTRIBUTION/AVAILABILITY STATEMENT <td></td> <td></td> <td></td> <td>90-NL-0244</td> <td></td>				90-NL-0244	
11. SUPPLEMENTARY NOTES DISTRIBUTION STATEMENT & Approved for public release Distribution / Availability STATEMENT 12a. DISTRIBUTION / Availability STATEMENT Distribution / Availability STATEMENT Distribution / Availability STATEMENT 13. ABSTRACT (Maximum 200 words) The rat pineal is a component of the circadian clock. Exogenous melatonin entrains the rat clock and does not require the presence of the pineal gland. The pineal gland is important for circadian rhythmicity. Pinealectomy exacerbates the disruptive effects of LL on rhythmicity. This may be due to a role of the pineal gland and melatonin in clock light sensitivity, since pinealectomized rats' periods decelerate more rapidly in increasing light than do those of shampoperated rats. It may also be due to a role in coupling circadian components since multiple outputs of the circadian rhythm in heart rate. The avian visual system contains high affinity melatonin receptors. These receptors are responsible for a circadian modulation of metabolic and electrical activity in visual structures. Melatonin receptors are regulated by the circadian clock. Receptor binding is rhythmic, high during the day and low during the night, does not depend on the pineal gland or melatonin but is abolished by lesions of the suprachiasmatic nucleus. Finally, we have cloned two melatonin receptors from chick brain. 14. SUBJECT TERMS	$\sim \sim \sim \sim$			r	
DISTRIBUTION STATEMENT A Approved for public release Distribution Unitmited 12b. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE 12b. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE 12b. DISTRIBUT					
 13. ABSTRACT (Maximum 200 words) The rat pineal is a component of the circadian clock. Exogenous melatonin entrains the rat clock and does not require the presence of the pineal gland. The pineal gland is important for circadian rhythmicity. Pinealectomy exacerbates the disruptive effects of LL on rhythmicity. This may be due to a role of the pineal gland and melatonin in clock light sensitivity, since pinealectomized rats' periods decelerate more rapidly in increasing light than do those of shamoperated rats. It may also be due to a role in coupling circadian components since multiple outputs of the clock are disrupted by pinealectomy equivalently. The rat circadian clock regulates a plethora of peripheral processes by modulation of sympathetic tone. This regulation is responsible for the circadian rhythm in heart rate. The avian visual system contains high affinity melatonin receptors. These receptors are responsible for a circadian modulation of metabolic and electrical activity in visual structures. Melatonin receptors are regulated by the circadian clock. Receptor binding is rhythmic, high during the day and low during the night, does not depend on the pineal gland or melatonin receptors from chick brain. 	120. DISTRIBUTION / AVAILABILITY	Distribute	on Unlimited	120. DISTRIBUTION CODE	
The rat pineal is a component of the circadian clock. Exogenous melatonin entrains the rat clock and does <i>not</i> require the presence of the pineal gland. The pineal gland is important for circadian rhythmicity. Pinealectomy exacerbates the disruptive effects of LL on rhythmicity. This may be due to a role of the pineal gland and melatonin in clock light sensitivity, since pinealectomized rats' periods decelerate more rapidly in increasing light than do those of shamoperated rats. It may also be due to a role in coupling circadian components since multiple outputs of the clock are disrupted by pinealectomy equivalently. The rat circadian clock regulates a plethora of peripheral processes by modulation of sympathetic tone. This regulation is responsible for the circadian rhythm in heart rate. The avian visual system contains high affinity melatonin receptors. These receptors are responsible for a circadian modulation of metabolic and electrical activity in visual structures. Melatonin receptors are regulated by the circadian clock. Receptor binding is rhythmic, high during the day and low during the night, does <i>not</i> depend on the pineal gland or melatonin but is abolished by lesions of the suprachiasmatic nucleus.				DTIC QUALITY INSPEC	rei
	rat clock and does not req for circadian rhythmicity. This may be due to a role pinealectomized rats' perio operated rats. It may also outputs of the clock are dis a plethora of peripheral responsible for the circadia melatonin receptors. These electrical activity in visual	uire the presence of the p Pinealectomy exacerbates e of the pineal gland and ods decelerate more rapidly o be due to a role in cou- rupted by pinealectomy eq processes by modulation an rhythm in heart rate. The receptors are responsible structures. Melatonin rec	vineal gland. The p the disruptive effec melatonin in clock y in increasing ligh pling circadian cor uivalently. The ration of sympathetic to be avian visual system for a circadian mod	ineal gland is important is of LL on rhythmicity. Is light sensitivity, since t than do those of sham- nponents since multiple circadian clock regulates one. This regulation is em contains high affinity hulation of metabolic and d by the circadian clock.	
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 13. SECURITY CLASSIFICATION 20. LIMITATION OF ABS OF REPORT L L L L L L L L L L L L L L L L L L L	Receptor binding is rhyth on the pineal gland or m Finally, we have cloned t 14. SUBJECT TERMS	mic, high during the day elatonin but is abolished wo melatonin receptors fr	and low during the by lesions of the s om chick brain.	uprachiasmatic nucleus.	S

19951101 153

NSN 7540-01-280-5500

Texas A&M Research

Foundation

Box 3578 College Station, TX 77843 409-862-4594 Fax: 409-845-7143

FAX TRANSMISSION COVER SHEET

Date: August 23, 1995

To: Carmen Calvert - AFOSR/PKA

Fax: 202-404-7951

Re: Final Technical Report - Grant 90-NL-0244

Sender: Mari Rhinehart

YOU SHOULD RECEIVE 4 PAGE(S), INCLUDING THIS COVER SHEET. IF YOU DO NOT RECEIVE ALL THE PAGES, PLEASE CALL 409-862-4594.

The following is the Final Technical Report for Grant 90-NL-0244 for your reference. If you have any questions, please call 409-862-4594.

Accesic	n For	1		
NTIS CRA&I DTIC TAB Unannounced Justification				
By Distribution /				
Availability Codes				
Dist	Avail and/or Special			
A-1				

AFOSK-90-0244

6526 trinde

TEXAS A&M UNIVERSITY

Department of Biology

÷ T. – • •

Dr. Genevieve Haddad Program Manager Directorate of Life and Environmental Sciences Department of the Air Force Air Force Office of Scientific Research Bolling Air Force Base, DC 20332-6448

Dear Dr. Haddad, CA

July 12, 1995

I am writing the final report on Air Force Grant 90-NL-0244. This grant has been renewed under a new number, and therefore the original grant is being terminated.

I am very happy to say that we have been very productive with the funds your office has provided. In all we have published or are publishing 18 full-length papers listed below:

1) **Cassone, V.M.** (1991) Melatonin and SCN function. In: <u>Suprachiasmatic Nucleus: The Mind's Clock</u>. DC Klein, RY Moore, SM Reppert (eds) Oxford University Press, NY, pp. 309-323.

2) **Cassone, V.M.**, D.S. Brooks, (1991) The sites of melatonin action in the house sparrow brain. <u>J. Exp. Zool.</u> 260: 302-309

3) **Cassone, V.M.** (1992) The pineal gland influences rat circadian activity rhythms in constant light <u>J. Biol. Rhythms</u> 7: 27-40

4) Brooks, D.S., V.M. Cassone (1992) Daily and circadian regulation of 2[¹²⁵I]iodomelatonin binding in the chick brain. <u>Endocrinology</u> 131: 1297-1304

5) **Cassone, V.M.**, D.S. Brooks, D.B. Hodges, T.A. Kelm, J. Lu, W.S. Warren (1992) Integration of circadian and visual function in mammals and birds: brain imaging and the role of melatonin in biological clock regulation. In: <u>Advances in Metabolic Mapping Techniques for Brain Imaging of Behavioral and Learning Functions.</u> F. Gonzalez-Lima, T. Finkenstaedt and H. Scheich (eds) Kluwer Academic Publishers, Dordrecht/Boston/London, pp. 299-318.

6) **Cassone, V.M.**, W.S. Warren, D.S. Brooks and J. Lu (1993) Melatonin, the pineal gland and circadian rhythms. <u>J. Biol. Rhythms</u> 8, Suppl.: S73-S81

7) Warren, W.S., D.B. Hodges, V.M. Cassone (1993) Pinealectomized rats entrain and phase-shift to melatonin injection in a dose-dependent manner. J. Biol. Rhythms 8: 233-245

8) Lu, J. and V.M. Cassone (1993) Pineal regulation of circadian

315 Biological Sciences Building West • College Station Texos 77843-3258

79MAT 20:71

rhythms of 2-deoxy[¹⁴C]glucose uptake and 2[¹²⁵I]iodomelatonin binding in the visual system of the house sparrow, <u>Passer</u> <u>domesticus</u>. J. Comp. Physiol. A 173: 765-774

9) Lu, J., and V.M. Cassone (1993) Daily melatonin administration synchronizes circadian patterns of brain metabolism and behavior in pinealectomized house sparrows, <u>Passer domesticus</u>. J. Comp. <u>Physiol. A</u> 173: 775-782

10) Warren, W.S., T.H. Champney and V.M. Cassone (1994) The suprachiasmatic nucleus controls circadian rhythms of heart-rate via the sympathetic nervous system. <u>Physiol. Behav.</u> 55: 1091-1099

11) **Cassone, V.M.**, and J. Lu (1994) The pineal gland and avian circadian organization: the neuroendocrine loop. <u>Adv. Pineal Res.</u> 8: 31-40

12) Warren, W.S., and V.M. Cassone (1995) The pineal gland, photoreception and coupling of behavioral, metabolic and cardiovascular circadian outputs. J. Biol. Rhythms 10: 64-79

13) **V.M. Cassone**, D.S. Brooks, and T.A. Kelm (1995) Comparative distribution of 2[¹²⁵I]iodomelatonin binding in the avian brain: outgroup analysis with turtles. <u>Brain Behav. Evol.</u> 45: 241-256

14) Lu, J., M.J. Zoran and V.M. Cassone (1995) Daily and circadian variation in the chick electroretinogram: Effects of melatonin. J. Comp. Physiol. 176:

15) Brooks, D.S. and V.M. Cassone (in press) The distribution of 2-[¹²⁵I]iodomelatonin binding during the development of the chick visual system <u>Dev. Brain Res.</u>

16) Reppert, S.M., D.R. Weaver, V.M. Cassone, C. Godson, A Roca and L.F. Kolakowski Jr. (in press) Melatonin receptors are for the birds: Molecular analysis of two receptor subtypes differentially expressed in chick brain. <u>Neuron</u>

17) Lu, J., H. Wu, and V.M. Cassone (in preparation) A mathematical model of the biological clock of birds <u>J. Biol. Rhythms</u>

18) Brooks, D.S., and V.M. Cassone (in preparation) Role of the pineal gland and visual suprachiasmatic nucleus in the circadian regulation of 2-[¹²⁵I]iodomelatonin binding in the chick brain.

In addition, with Air Force funding, we have directly funded three graduate students through their Ph. D. degrees. These students are listed below:

1) Dr. David S. Brooks is an Assistant Professor of Biology at LeTourneau University in Longview, TX.

2) Dr. Jun Lu is a post-doctoral fellow with Dr. Michael Menaker at the NSF Center for Biological Timing at the University of Virginia.

3) Dr. Wade S. Warren is just starting a post-doctoral fellowship with Dr. Timothy Bartness at Georgia State University.

We have also supervised 6 Master's level graduate students who have gone on to do great things:

1) Mrs. Alaana Tynes is an instructor of human physiology at Blinn Junior College.

2) Mrs. Teresa Kelm is a high school teacher at Waco High School.

3) Miss Dawn Parker is studying for a Ph.D. degree in Scientific Education at Texas A&M University.

4) Mr. Donald B. Hodges is a research assistant with Pfizer Pharmaceuticals.

5) Ms. Haydee Vercesi is a research assistant at SUNY at Stony Brook.

6) Mrs. Melissa G. Rucker is a research assistant in my laboratory here at Texas A&M.

Finally, we are currently supervising 2 Ph.D. level graduate students, who are doing great things.

1) Mr. Arjun Natesan is in his second year.

2) Mr. Hong Tao Min is in his first year.

Research on the original proposal continues. We are still working on the in vivo microdialysis research and should have a manuscript ready by the end of the year. We are also making great strides on the molecular biology of the melatonin receptor. As you can see from the list of publications, we have, in collaboration with Steve Reppert and others, cloned two melatonin receptors in chicks. One of the receptors is specific for glia and is expressed rhythmically in the pineal gland (but is not translated there!!). In addition, in collaboration with Dave Klein, we are working on the chick NAT molecule.

We have not forsaken the systems level physiology research you and I love so well. We are still working on the in vivo microdialysis, and Wade Warren has just finished a study of norepinephrine turnover in peripheral tissues of the rat. Rhythms of turnover are pervasive in the body, but have different phases. SCN lesion abolishes them!

Anyway, thank you for your continuing support. I hope and trust we can continue our productive relationship.

Sincerely Yours, Vincent M. Gassone, PhD