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This AASERT award supported a graduated student, Sean McNamara, for two years. 
McNamara graduated in the early fall of 1994 and is now a post-doctoral fellow in the 
condensed matter group at the Universite de Rennes. 

McNamara's thesis was directed at understanding a fundamental problem in the con- 
tinuum theory of granular flows. This is the problem of "granular cooling". Imagine 
starting a collection of identical, inelastic, hard, spherical particles in a thermalized state 
and letting the ensemble evolve freely. The dissipation of energy that accompanies the 
collision of macroscopic particles is modelled using a "coefficient of restitution" denoted 
by r. The classical hard core gas is the special case r = 1. Collisions conserve momentum, 
but the relative velocity of collision is reduced by a factor 0 < r < 1. This means that each 
collision results in a loss of energy 8E ~ (1 - r2)(6U)2 where SU is the relative velocity of 

collision. 
If there is no addition of energy to the system then the ensemble of particles is losing 

energy at each collision so that the medium is "cooling down". Simple kinetic arguments4 

suggest that the total energy of the medium should decay like t~2. If the medium sinply 
slowed down then granular cooling would be boring. However, the problem is interesting 
because the particles spontaneously bunch up so that clusters and voids appear in the 
medium2'3,5. That is, the homogeneously cooling state is unstable. We illustrate this 
instability in figure 1 by showing two simulations of the one dimensional granular medium 
(point particles) with r = 0.8. The particles are confined by reflective boundaries (also 
with r = 0.8)atx = 0 and x = 1. In the top panel there are iV = 10 particles in the 
domain and they remain dispersed. In this case the t~2 cooling law is satisfied. In the 
lower panel there are N = 20 particles and 16 of these particles are bunching up near the 
wall at x = 1. The formation of this cluster invalidates the assumption that £ is constant 

as the medium cools. 
The dynamics of the particles within the cluster is amusing: this bunch of particles 

collides infinitely often in a finite time1,5. Thus the particle spacing becomes zero and all 
of the energy of the cluster is dissipated in a finite time. This singularity, called inelastic 
collapse, requires a certain minimum number of particles, iVmin(r), so that in figure 1 (a), 
10 < iVmin(0.8) and the singularity never occurs. The elastic limit is singular because 

Nm-m{f) —> oo as r —> 1. 
Cluster formation and inelastic collapse.also occur in the two dimensional granular 

cooling problem2'3,7. In figure 2 shows a simulation of a two dimensional granular medium 
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in a doubly periodic domain. The snapshot in figure 2 is after about 68 inelastic collisions 
per disk. The 14 black disks, which lie in a roughly linear string, participated in all of 
the two hundred collisions which occured immediately before the snapshot in figure 2. 
Further diagnosis of the simulation reveals that the time between collisions is approaching 
zero geometrically with the collision count. Thus the black disks in figure 2 are collapsing 
inelastically and the one dimensional phenomenology is recapitulated in two dimensions. 
Indeed the number of particles in the string (13 or 14 in this case) agrees with analytic 
estimates1,5 which have been mode for the one dimensional problem. 

The discovery of these particle strings provides an additional impetus to study one- 
dimensional granular hydrodynamics: the time scales for the evolution of the string are 
much shorter than those in the rest of the system so that one-dimensional theories have 
local utility. Hydrodynamic descriptions of one-dimensional granular systems have empha- 
sized that the usual master variables, density, velocity and temperature are inadequate. A 
minimal description requires a fourth variable which is the third moment or "skewness" 
of the single particle velocity distribution function6-8. These supplemented hydrodynamic 
systems have been used to study the linear stability of the spatially homogeneous state 
and good agreement with numerical simulation has been claimed. The linear stability 
analysis also shows that the hydrodynamic equations are ill-posed because the instability 
has no high wavenumber cut-off. That is, arbitrarily small scale disturbances are linearly 
unstable. This problem with the hydrodynamic description is physically justified because 
inelastic collapse is a particle scale mechanism through which hydrodynamics fails. 
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Figure 1: From reference 5. (a) World 

lines of N = 10 particles with r = 0.8. 

The particles are confined in the interval 

0 < x < 1 by inelastic walls (also with r = 

0.8). In this example the particles remain 

dispersed, (b) The same as part (a) ex- 

cept that there are now N = 20 particles. 

In this case a cluster forms near x = 1. 

Subsequently this cluster collapses: six- 

teen particles come into mutual contact 

via an infinite number of collisions in a 

finite time. 

(a) 

Figure 2: From reference 7. A snapshot of 

a two dimensional simulation with N = 

1024 disks and coefficient of restitution 

r - 0.6. The disks occupy 1/4 of the area 

and the doubly periodic computation do- 

main is the dashed square. The system 

started in a kinetic state which was es- 

tablished by running with r = 1 for sev- 

eral hundred collisions per disk. Then r 

was reduced to 0.6 and the snapshot at 

right was taken after about 68 inelastic 

collisions per disk. At this time a sys- 

tem spanning cluster has formed. All of 

the disks which participated in the two 

hundred collisions that immediately pre- 

ceeded this snapshot are shaded in black. 
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