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Abstract 
A rigorous formulation of rough earth parabolic equation (PE) is given. The formulation 
is based on casting the governing transform equations in terms of incident and reflected 
plane waves and using the rough-surface reduction factor directly in the spectral do- 
main. Solution is performed by the well known split-step algorithm. Inclusion of surface 
roughness into the PE in this manner requires a redefinition of the Fourier transform 
pair. Several examples are considered showing comparisons with waveguide and other 

methods. 



Objective 

Our research objective is to develop a rigorous method to incorporate sea-surface rough- 

ness into the parabolic equation modeling of radiowave propagation. 

Introduction 

The Parabolic Equation (PE) method has emerged as an extremely valuable method 

for assessing radiowave propagation in the lower atmosphere in the presence of ducts. 

Propagation loss can be easily estimated over very long ranges of the order of a few 

hundred kilometers for frequencies through Super High Frequency (SHF) band, and for 

antenna heights extending up to a few hundred meters. It is also possible to directly 

account for finite conductivity of the earth in the PE. Reference [1] discusses the basic 

idea and the various approximations involved in the development of the PE. Although 

there are many different ways of solving the PE [2], none seem to offer the computational 

advantages of the split-step algorithm, originally developed by Tappert [3], in terms of 

the large range steps allowable. One of the current unresolved issues is the incorporation 

of sea-surface roughness into the PE. Several attempts have been made in the past all 

of which rely on some kind of approximation or post-processing of data obtained by 

running the PE over smooth earth. Reference [4] discusses some of these methods in 

detail. In this report, we present a direct way of incorporating surface roughness into 

the PE. The idea behind our approach is to cast the governing transform equations in 

terms of incident and reflected plane waves, and then use the rough surface reduction 

factor available for plane waves [5] directly in the spectral domain. Of course this will 

nesseciate the modification of the Fourier transform pair, as we will show shortly. 



Theory 

1. Smooth Earth 

The starting point for our formulation is the standard parabolic equation, given, for 

example, in [1]. Assuming an e~'ut time dependence, we consider the parabolic equation 

in a medium with parameters (e, fio): 

p-(x, z) + 2ik0^(x, z) + 2k2
0M(x, z)u(x, z) = 0, (1) 

OZl ox 

where u(x, z) = y/rs'mOE^r, 9), for horizontal polarization and u(x, z) = ^J^y^(r, 9) 

for vertical polarization, (r, 0, <f>) being the usual spherical coordinates. The coordinate 

system is chosen such that the source is located at 9 = 0 and r = ae + zs, where ae is 

the radius of the earth and z, is the height of the source relative to the surface of the 

earth. Furthermore, k0 = Uy/eöjlü is the free-space wavenumber, x is the range axis, z is 

the height axis, and 

M(x,z)= (n-l + —} x 106 

is the modified refractive index under earth-flattened approximations [1]. The quantity 

Ej, (Hj) is the ^-component of the electric (magnetic) field. The complex dielectric 

constant, erc, of the earth is erc = eT + ia/ueo, where a is its conductivity. The parabolic 

equation given in (1) is to be solved subject to the approximate boundary condition 

^(x,0) + aou(x,0)=0, (2) 
dz 

where a0 = ik0\/eTC — 1 for horizontal polarization, a0 = ik0\/eTC — l/erc for vertical 

polarization. The above boundary condition is approximate because it is valid for highly 

conductive soil satisfying |erc| > 1. If this condition is not met, equation (2) must be 

imposed seperately for each constituent plane wave comprising u with a0 replaced by 

'l-r(erc;0t- 
a = ik0 cos 9 i 

l + T{eTC;9i 

where T is the reflection coefficient for a plane wave striking the earth at an angle 9, with 

the normal. The actual .field, u, does not satisfy the simple condition dictated by (2). 



To solve (1) subject the boundary condition (2), the following mixed Fourier transform 

pair is defined [1]: 

oo 

ü(x,p) = F(u) =  / u(x, z)[a0 sin pz -pcospz}dz (3a) 
o 

oo 
1,  s      2   f   ,      , a0 sin pz — pcos pz _nn, ,  ,. 

u(x,2   =^-x Ü) = -    Ü{x,p)-Z ^-—^- Z-dp + S(x)e aaz, (36) 

where the latter term in (3b) decays with height and range and is due to the surface 

wave propagating on a non-perfectly conducting earth. This term is usually ignored 

in the solution for frequencies > 10 MHz. In the visible range -k0 < p < kQl one may 

identify p with the vertical wavenumber k0 sin ip, where tp is the grazing angle with respect 

to horizontal taken positive for waves approaching the interface z = 0. 

Using the above Fourier transform pair, the solution to (1) in the presence of a slowly 

varying duct can be written as 

u(x,z) = e'-M*-*o)io-xMjr-x |e-.y(r-xo)/2^o^[u(x0)z)]} (4) 

To appreciate the development of the rough earth case, we will first rewrite the above 

Fourier transform pair (ignoring the surface wave) in the following equivalent form: 

CO oo 

u(x, p) = Fs{u) = j u(x, z)e'pz dz + —-1 u(x, z)e~tpz dz (5a) 

oo 

u(z,z) = ^(fi) = ±- fü(x,p) [e-*» + r.(j,)e*"] dp, (56) 
IT: J L 

w here 

p - ta0 

is the plane-wave reflection coefficient for smooth earth, and subscripts s denote smooth 

earth case. In this form, it is clear from looking at (5b) that the total field is comprised 

of an incident plane wave of spectral amplitude u{x,p) traveling towards the interface 

z = 0 and a corresponding reflected plane wave of amplitude T3(p)ü(x,p) traveling away 



from the interface. Furthermore, the field u satisfies the required smooth earth boundary 

condition of (2). Although the expression given above for T3(p) makes physical sense 

only for p > 0, we may analytically continue it for p < 0 and use the same expression to 

define it for negative p. With this continuation, we see that Ts(-p) = l/Ts(p). A second 

equivalent form which is symmetric with respect to the reflection coefficient and which 

makes use of the extended definition of Ts(p) can be written down as: 

oo 1 CO 

ü(x, p) = Ts(u) = /Up) I u(x, z)j*' dz - -== I u(x, z)e-p2 dz (6a) 
0 

CO 

^JUP) 

U{x,z) = T.   (u) = -_l -^z       dp 
1     f ü(x,p)_ipzj^ (6ft) 

Note that there are no approximations involved, and all the three forms of the Fourier 

transform pair are equivalent. Also note that the form in (6) is particularly useful in 

extending the PE methodology to rough surfaces. The transform ü is seen to be an odd 

function of the transform variable p. 

2. Rough Earth 

In the rough earth case, we simply replace the smooth earth spectral reflection coefficient 

T3(p) with the corresponding rough earth one in the inversion formula (6b). A forward 

transform formula consistent with this must be defined seperately. The rough surface 

reflection coefficient, Tr(p), is taken as 

rT(p) = po(jr,<Th)T,{p), (7) 

where po(p',ah) is the rough surface reduction factor defined by [5] 

Po(P;<yh) = e-^Uo(2p24), (8) 

and ah (m) is the r.m.s. height deviation determined from wind speed, p (m/s), by 

<rh = 0.0051/z2. (9) 



In equation (8), IQ(.) is the modified Bessel function of the first kind of order zero. A 

simpler form in terms of elementary functions has been recommended in CCIR Report 

1008-1 [6]: 

On(y\(Th) ~      , (10) 
3.2x-2 + ^/(3.2x)2-7x + 9 

where x = ^P2(Tl- Figure 1 shows the comparison between the exact and the approximate 

p0 as a function of \. Excellent agreement seen between the two permits the use of the 

much simpler approximate form in actual numerical computations. The formula for p0 

makes physical sense only for p > 0. As in the smooth earth case, we will extend the 

domain of definition of p0 to include p < 0. We define p0 for negative p as 

pQ(-p; ah) = —, r,     p > 0 (11) 

We will present the development below for the important practical case of horizontal 

polarization. Vertical polarization can be handled in a similar fashion. In the subsequent 

discussion, we will drop the term ah from the argument of p0(p; ah) and its presence will 

be implied. For ranges far exceeding the heights, the plane waves arrive at very shallow 

grazing angles and it is adequate to take Ts(p) « -1 for horizontal polarization. With 

this approximation, we use (6) to write the transform pair as 

oo oo 

ü{x,p) = JM fu(x1z)eipzdz--7^= fu{x,z)e-tp*dz + ü(x,p)        (12a) 

*-*>-^<4>-s/:£&-*■* (126) 

The additional function w(x,p) must be included to make the pair defined in (12) consis- 

tent. Of course, it is not needed for smooth earth. Alternately, one may add a function 

w{x, z) to (12b) and use (12a) without w. However, we prefer not to do this, because, in 

this case, the solution cannot be expressed in the convenient form of (4). The quantity 

w(x,p) is determined by the requirement that F{F~lü\ = ü. It can be obtained as 

w{x,p) = —- I ü(x,q)K(p,q)dq, (13) 
Z7T J 



where the kernel K(p,q) = K(q,p) is 

K(p,q) = 

For p = q, the kernel is 

Po{p)po{q) 

Po(p) ~ Po{q) ,  i - po{p)po{q) + 
p + q 

(14) 

K(p,p) = 
Po{p) 

PoiP) + 
i - PKP) 

2p 

Note that (12a) and (13) constitute a Fredholm integral equation of the second kind for 

the unknown ü in terms of the known function u. It can be solved by any one of the several 

techniques available. A simple technique to use is the method of successive approximation 

or the so called Neumann series approach. In this work, we only concentrate on some 

simple techniques which are not necessarily efficient computationally. Note that the field, 

u, does not satisfy the boundary condition u(x,0) = 0 as it will for the smooth earth 

case. However, this does not pose any conceptual or numerical problems. For smooth 

earth, p0 = 1 and, consequently, K = 0. Also, observe that both u(x,p) and w{x,p) are 

odd functions of p. We may rewrite w(x,p) in (13) in an operator form as '    • 

w(x,p) = —zW(ü). 

Denoting the identity operator by I and substituting in (12a), we arrive at the desired 

forward transform as 

ü{x,p)=fr{u)  =  {l+iW)-1 

Defining the function u+(x,z) by 

'       oo 1 oo 

s/p^ip) f u{x, z)etpz dz - -j== I u(i, 
i \Jpo(p)i 

z)e -ipz dz 

u  (x z)-i <
x'z)    z>0 

u+{x,z)-<       0        2<0 

and denoting its ordinary complex Fourier transform as ü+, 

oo 

ü+(x,p) = ^„(tx)= J u+(x,zyp*dz, 



we write the complete Fourier transform pair for rough surface and horizontal polarization 

as 

u\x ,p) = Tr(u) = (1 + iW)  l   ^po(p)ü+(x,p) - yfpo(-p)ü+(x, -p) 

ü(x,p) 

Po(p). 

(15a) 

(156) u(x,z) = TT 
1(ü) = T0 

x 

where T~x is the ordinary complex Fourier inverse 

1     °° 

It remains to define the inverse operator V - (1 + iW)~x. In computing the ordi- 

nary Fourier transform pair, one would normally use an iV-point FFT. Let us assume 

that the various quantities are bandlimited over -pmax < p < Pmax, and that the trans- 

form is evaluated at p = Q,Ap,2Ap,...,(N - l)Ap. Positive wavenumbers occur at 

p = Ap,2Ap, ...,(y - l)Ap, while negative wavenumbers occur at (y + l)Ap, (y + 

2)Ap,..., (N - l)Ap. The value yAp corresponds to both +pmax and -pmax. Let us as- 

sume that ü(x, ±pmax) = 0. This can always be achieved in practice by a suitable window 

in the transform domain. Since ü is an odd function of p, we also have u(x,0) = 0. The 

same is true of w. Consider the vectors u = [ü(x, Ap), u(x, 2Ap),..., ü(x, N/2 - 1 Ap)]* 

and w = [w(x, Ap), w(x, 2Ap),..., w(x, N/2 - lAp)]4. One may use trapezoidal rule to 

discretize the integral in (13) as 

-iApNl2'1 

w(x,mAp)&    0_      J2   ü(x,nAp)K(mAp,nAp). 
2TT n=l 

This can be written in a matrix form as 

w = -iW 

where W of order (N/2 - 1 x N/2 - 1) is the discrete version of the continuous operator 

W with elements 

Wmn = ^K(mAp,nAp),    m,n=l,...,N/2-l. 
ITT 



The discrete form of the continuous operator, V, is then P = (I + W)~l, which is a 

matrix of order N/2 - 1 x N/2 - 1. Note that W is a full matrix and / is an identity 

matrix of size {N/2 - 1 x N/2 - 1). In actual computations, we use (15a) to compute ü 

for positive p and extend the function over all p using odd symmetry. The operator P 

then acts on the positive wavenumber part of the spectrum occuring within the square 

brackets of (15a). We give below approximations to P of increasing orders of complexity 

and accuracy: 

P = {I + iW)~1    (exact, 0{N3)) (16a) 

« /    (zeroth order, no additional operations) (16&) 

tal-iW    (first order, 0{N)) (16c) 

~ / _ lW - W2    (second order, 0{N3)) (16(f) 

« / - z0.6438055Vf - 0.5936575W2    (least-square, second order, 0{N3)) (16c) 

Note that the P operator need be computed only once using any one of the above ap- 

proximations for a given value of wind speed. In subsequent range stepping (equation 

(15a)), except for the zeroth order approximation, inclusion of w involves one additional 

multiplication of the matrix P with the vector u and is of order 0{N2). Since an FFT 

is of order N\n(N), the final algorithm time for range stepping will be of order 0{N2). 

Diagonalyzing ~P has the potential of reducing the matrix multiplication time to 0{N) 

and the overall algorithm time to 0{N\n{N)). This will be explored in the future. 

3. Numerical Results 

We validate our PE formulation first by running a few sample cases and comparing with 

results from literature. A Hanning window with sequence 

.,   *      J        1 0<n<f /lH = |sin2^L    f <n<f 

is used both in the spatial and wavenumber domains. A mirror image of h{n) about 

n = 0 is used for negative wavenumbers. Note that the Hanning window forces a gradual 



rolloff to zero over the last quarter of the positive wavenumber spectrum. We label the 

present method as PEERS, which stands for Parabolic Equation Exact Rough Surface. 

The first example we try is that of propagation in standard atmosphere with M = 

340 + 0.118z, where the height z is in meters. The transmitter is at a height of zs = 30 

m, the frequency of operation = 3 GHz, the maximum angle 6>max that determines pmax is 

1.43° (= 25 mrad), maximum height including rolloff is zmax = 512 m. The size of FFT 

is determined from zmax and #max by 

» , -    ,, "max Sill "max 
iv  ^ A - , 

where A0 is the free-space wavelength. The height and wavenumber increments are cal- 

culated from Nyquist criterion as 

Az = —rr—,      and Ap 
JV   ' *      NAz 

We choose the vertical increment Az = 2 m and N = 512. The range step was chosen 

to be 200 m. Figure 2 shows propagation factor (excess signal over the free-space case) 

versus receiver height for at the horizontal range of 40 km. Propagation factor, PF in 

dB, is defined as 

PF = 101og(|u|2xA0), 

where x is the horizontal distance from transmitter. A positive (negative) value of prop- 

agation factor implies gain (loss) with respect to propagation in free-space. Although a 

direct comparison is not shown here, the lobing pattern compares very well with that 

given in [1]. 

The next example we consider is that of propagation in a tri-linear duct specified by 

M{z) = 
340 + 0.1182        0 < z < 135 

499.03 - 1.06«    135 < z < 150 
^ 322.33 + 0.1182        z > 150. 

where z is in meters. The frequency of operation is 3 GHz, transmitter height is 30 m, 

#max = 1-43°, and *max = 512 m.  We choose N = 512, A« = 2 m, and Ax = 200 m. 



Figure 3 shows propagation versus receiver height at a range of 40 km.   Once again a 

favorable agreement with [1] was obtained. 

The final example we consider for smooth earth is propagation over a strong evap- 

oration duct. The frequency is 10 GHz and the transmitter height is at 25 m. Re- 

fractivity profile for the evaporation duct is given in Table 1. We use zmax = 150 m, 

0max = 1-43°, Az = 0.293 m, N = 1024, and Ax = 200 m. Figure 4 shows a comparison 

of the numerical results with those obtained by the waveguide model (MLAYER) [7] for a 

receiver height of 25 m. An excellent agreement is seen between the two, thus validating 

our PE algorithm. 

We now consider a wind-roughened sea surface for the evaporation duct shown in 

Table 1. The wind speed is 10 m/s, which corresponds to an r.m.s. sea height of 0.51 m 

according to (9). All other parameters remain the same as before. Figure 5 comparses 

the propagation factor versus range for smooth and rough seas. Clearly, roughness has 

resulted in the reduction of the specular component as evidenced by the decreased ex- 

cursions of the signal in the interference region. Furthermore, the loss increases at larger 

ranges. Figure 6 shows the comparison of the present numerical results with those pre- 

dicted by MLAYER. Figure 7 shows comparison with TEMPER developed by the authors 

of [1] to also include surface roughness. It is based on first running the PE on the smooth 

earth case and then estimating the grazing angles using one of the spectral estimation 

procedures. This grazing angles is reused back into the PE to modify the results for the 

rough-earth case. The comparison is fair with all the results being within 1.5-2 dB of 

one another. 

The results shown in Figure 6 were computed using the exact operator P given in 

(16a). We will now show the effects of using other approximations for P. In each 

case we will compare the numerical results generated by the approximate operator with 

those generated by the exact operator. Figure 8 shows the results with the zeroth order 

approximation, which is the crudest. Note the shift in far-out minimum relative to the 

exact solution and the overall disagreement between the two results. The accuracy can 

10 



be dramatically improved by using the first order approximation. In this case no matrix 

inversion is required. Figure 9 shows the results with the first order approximation. 

There is some disagreement for very long ranges. Overall, solution by the first order 

operator compares favorable with the solution generated by the exact operator. Figure 

10 shows the results with the second order operator. It is seen that the results are almost 

coincident with the exact results. Although the computation of the exact and the second 

order operators are both of the same complexity (of order 0(N3)), the second order 

operator can be used when inversion of a full matrix is not desired. 

The last example we consider is that of a 45.7 m surface duct with refractivity profile 

given by 

M(z) = 
350 - 0.335z      0 < z < 45.7 

s 329.36 +0.1164z z > 45.7, 

where z is one again in meters. This example was considered in [4]. The transmitter is at 

height of 25 m, the frequency of operation = 10 GHz, and the antenna is omnidirectional. 

Propagation factor is calculated at a range of 200 km for various receiver heights. Figure 

11 shows the results for a wind speeds of 10 m/s and 20 m/s. In both cases the results 

are compared with MLAYER results. It is seen that the agreement with the latter is 

very good, thereby validating our approach. 

Future Work 

Our future work will try to remove any computational inefficiencies in our algorithm. One 

might formulate the problem in terms of one-sided sine and cosine transforms instead of 

the full complex transforms defined in this work. More efficient schemes for computing 

the inverse operator ~P are certainly worth pursuing. Diagonalizing the operator P is 

another are of further investigation. Extention to vertical polarization is straightforward 

and will be looked at in the future. 

11 



TABLE 1.   REFRACTIVITY DATA FOR EVAPORATION DUCT 

Height (m) Refractivity (M units) 

0.000 340.00 

0.135 323.00 

0.223 321.76 

0.368 320.53 

0.607 319.31 

1.000 318.11 

1.649 316.94 

2.718 315.83 

4.482 314.80 

7.389 313.91 

12.182 313.26 

20.000 312.99 

20.086 313.00 

33.115 313.38 

54.598 314.81 

90.017 317.99 

148.413 324.04 

165.000 325.76 

300.000 339.745 

12 
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Figure 1. Exact and CCIR recommended formula for rough surface reduction factor 
PQ. The argument is x = 2p2<r£. 
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Figure 2. Propagation Factor versus receiver height at a range of 40 km in a standard 
atmosphere. Smooth earth, z8 = 30 m, / = 3 GHz, horizontal polarization and 
omnidirectional antenna. 
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Figure 3. Propagation factor versus receiver height at a range of 40 km in a tri- 
linear duct. Smooth earth, z„ = 30 m, / = 3 GHz, horizontal polarization and 
omnidirectional antenna. 
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Figure 4. Propagation factor versus range at receiver height = 25 m in a 20 m 
evaporation duct. Smooth earth, ze = 25 m, / = 10 GHz, horizontal polarization 
and omnidirectional antenna. 
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Figure 5. Propagation factor versus range at receiver height = 25 m in a 20 m 
evaporation duct. Smooth and rough sea (fi = 10 m/s), za = 25 m, / = 10 GHz, 
horizontal polarization and omnidirectional antenna. 
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Figure 6. Comparison of propagation factor versus range at receiver height = 25 
m in a 20 m evaporation duct. PEERS versus MLAYER, zs = 25 m, \i = 10 m/s, 
/ = 10 GHz, horizontal polarization and omnidirectional antenna. 
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Figure 7. Comparison of propagation factor versus range at receiver height = 25 
m in a 20 m evaporation duct. PEERS versus TEMPER, zs = 25 m, y. = 10 m/s, 
/ = 10 GHz, horizontal polarization and omnidirectional antenna. 
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Figure 8. Comparison of propagation factor versus range at receiver height = 25 m 
in a 20 m evaporation duct by exact and zeroth order operators. ze = 25 m, \i = 10 
m/s, / = 10 GHz, horizontal polarization and omnidirectional antenna. 
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Figure 9. Comparison of propagation factor versus range at receiver height = 25 m 
in a 20 m evaporation duct by exact and first order operators, z, = 25 m, p = 10 

/s, / = 10 GHz, horizontal polarization and omnidirectional antenna. m 
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Figure 10. Comparison of propagation factor versus range at receiver height - 25 
m in a 20 m evaporation duct by exact and secind order operators. zB - 25 m, 
ix = 10 m/s, / = 10 GHz, horizontal polarization and omnidirectional antenna. 

23 



300 

250 

-200 

g> 
0) 
^150 

> 
'<x> 
o 
0) 

°M00 

50 

-12Ö 

MLAYER (dots) 

PEERS (Solid) 

10 m/s 

-100 -80 -60 -40 
Propagation Factor (dB) 

Figure 11. Propagation factor versus receiver height at range of 200 km in a 45.7 m 
surface duct. PEERS vs MLAYER, z, = 25 m, / = 10 GHz, horizontal polarization 
and omnidirectional antenna. 
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