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Conversion Factors, 
Non-SI to SI Units 
of Measurement 

Non-SI units of measurement used in this report can be converted to SI units 
as follows: 

Multiply By To Obtain 

degrees Fahrenheit 5/9 degrees Celsius or kelvins1 

inches 25.4 millimeters 

inch per inch per °F 0.5556 centimeters per centimeter per °C 

pounds (mass) 0.4535924 kilograms 

pounds (force) per inch 175.1268 newtons per meter 

pounds (force) per square inch 0.006894757 megapascals 

square inches 15.00064516 square meters 

'To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use the following 
formula: C = (5/9)(F - 32). To obtain kelvin (K) readings, use K = (5/9)(F - 32) + 273.15. 
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1  Introduction 

Background 

The evaluation of massive concrete structures for the effects of temperature 
has been part of the design process of these structures for many years. In recent 
years the evaluation of mass concrete structures has become more sophisticated, 
accounting for more parameters that affect the behavior of the structure, such as 
creep and shrinkage. Early evaluations were performed using hand calculations, 
but computers and associated software now make more sophisticated analyses 
possible. 

In the late 1960's computer codes were developed for the Corps of Engineers 
by Dr. Edward Wilson of the University of California at Berkeley for the 
calculation of temperatures in a mass concrete structure and by R. S. Sandhu and 
others, also at Berkeley, for the calculation of stresses and strains resulting from 
gravity and thermal loads (Bombich, Norman, and Jones 1987). These finite 
element codes were used for the evaluation of Corps of Engineers projects until 
the middle 1980's. 

During the design of the main lock for Locks and Dam No. 26 (Replace- 
ment), subsequently renamed Melvin Price Locks and Dam, a decision was made 
by the St. Louis District to investigate a state-of-the-art method for computing 
the stresses and strains in a massive concrete structure. The objective of this 
investigation was to develop a state-of-the-art tool for evaluating the main and 
auxiliary locks at Melvin Price Locks and Dam and to then use that tool to 
evaluate the structures for possible changes in construction procedures as cost 
savings measures. 

In order to achieve the above objective, the St. Louis District contracted with 
the U.S. Army Engineer Waterways Experiment Station (WES) to perform a 
study to include the development of a state-of-the-art tool to be used to evaluate 
incrementally constructed mass concrete structures and to perform any analyses 
necessary on the Melvin Price Locks and Dam project. As part of this study, the 
general purpose finite element code ABAQUS (Hibbitt, Karlsson, and Sorensen 
1994) was selected as the primary tool for performing the analyses. Using 
ABAQUS as the analytical tool, researchers developed procedures for modeling 
incremental construction of mass concrete structures. The inclusion of a 
constitutive model developed under the Repair, Evaluation, Maintenance, and 
Rehabilitation (REMR) Research Program completed the overall analytical 
process. The constitutive model included the capability to model the aging 
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characteristics of creep, shrinkage, and the modulus of elasticity and to predict 
cracking in the structure. 

Once the procedures were established for performing the modeling, analyses 
were performed to evaluate several monoliths of the main and auxiliary locks at 
Melvin Price Locks and Dam. The results of the analyses performed were 
reported in four different reports: 

• 'Thermal Stress Analyses of Mississippi River Lock and Dam 26(R)" 
(Bombich, Norman, and Jones 1987), 

• "Evaluation of Thermal and Incremental Construction Effects for 
Monoliths AL-3 and AL-5 of the Melvin Price Locks and Dam" (Truman, 
Petruska, and Ferhi 1992), 

• "Refined Stress Analysis of Melvin Price Locks and Dam" (Jones 1992), 

• "Evaluation of Parameters Affecting Thermal Stresses in Mass Concrete" 
(Bombich, Garner, and Norman 1991). 

The culmination of these efforts was a study that evaluated the lift heights in 
some of the more massive lock monoliths. The results indicated that increased 
lift heights in these monoliths would not significantly increase the potential for 
cracking. Based on these results, the lift heights were increased in four 
monoliths—resulting in a construction cost savings of $1.2 million. 

Following the study on Melvin Price Locks and Dam, WES was contracted 
by the Vicksburg District to evaluate Lock and Dam Nos. 4 and 5 on the Red 
River. Using the tools and procedures developed in the Melvin Price Locks and 
Dam study, WES researchers analyzed Red River Lock and Dam Nos. 4 and 5 
and made recommendations on lift heights, placement temperatures, and 
insulation. The complete description of the analyses and results are presented in 
"Red River Thermal Studies, Report 2, Thermal Stress Analyses" (Garner, 
Hammons, and Bombich 1991). 

At about the same time the analyses of the Red River projects were being 
performed, Engineer Technical Letter (ETL) 1110-2-324 "Special Design 
Provisions for Massive Concrete Structures" was being developed (Headquarters, 
U.S. Army Corps of Engineers 1990). Development of ETL 1110-2-324 relied 
primarily on the studies performed for Melvin Price Locks and Dam. The ETL 
was written to provide official guidance for the performance of nonlinear, 
incremental structural analysis (NISA) of massive concrete structures and to 
ensure consistency in the evaluation of massive concrete structures. 

Subsequent to the analyses of the Red River projects and the publication of 
ETL 1110-2-324, a series of studies on the Olmsted Locks and Dam was 
undertaken by WES for the Louisville District. Using the guidelines provided by 
ETL 1110-2-324 and developing new guidelines (in coordination with 
Headquarters, U.S. Army Corps of Engineers) for portions of the NISA process 
not covered in the ETL, WES evaluated different concrete mixtures, concrete 
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placing schemes, placement temperatures, insulation requirements, and 
constructability of several lock monoliths from the Olmsted project. 

Due to the magnitude of the study for the Olmsted project, the NISA process 
was able to progress and improve during the course of the study. Prior to the 
Olmsted project, three-dimensional (3-D) analysis had been very limited. 
However, acquisition of a CRAY-YMP supercomputer significantly improved 
the capability for performing large 3-D analyses. The supercomputer allowed 
several 3-D analyses to be performed and was of great importance in 
understanding the structural behavior of several monoliths. In addition, the 
ability to graphically display the locations of cracking was included during the 
course of the study and the capability to create plots showing contours of the 
levels of stress and strain as percentages with respect to the failure criteria. 
During the course of the study the procedures for including reinforcement were 
developed and were implemented in some of the analyses. The preparatory work 
leading to modeling reinforcement in a NISA is presented in this report. 

The various studies performed for the Olmsted NISA are well documented in 
a set of reports. These reports are: 

• "Nonlinear, Incremental Structural Analysis of Olmsted Locks and Dam, 
Volume I, Main Text" (Garner et al. 1992), 

• "Nonlinear, Incremental Structural Analysis of Olmsted Locks: Phase III" 
(Merrill, Fehl, and Garner 1995), 

• 'Three-Dimensional, Nonlinear, Incremental Structural Analysis of a 
Culvert Valve Monolith Wall, Olmsted Locks" (Fehl and Merrill, in 
preparation), 

• "Nonlinear, Incremental Structural Analysis for the Lower Miter Gate 
Monolith at Olmsted Locks and Dam" (Fehl et al., in preparation). 

ETL 1110-2-324 was updated to include the lessons learned from the 
Olmsted study. ETL 1110-2-365, "Nonlinear, Incremental Structural Analysis of 
Massive Concrete Structures," published 31 August 1994, provides guidance for 
evaluating massive concrete structures and includes the advances made in studies 
that have been performed to date. 

Purpose 

The primary purpose of this report is to develop a basic understanding of how 
stresses and strains in reinforcing and concrete can be computed using 
conventional techniques and how well these values can be compared to results of 
a NISA-type analysis. The approach used begins by looking at simple problems 
and performing the computations both by hand and numerically. The hand 
calculations will show the process used when steel reinforcing is included in the 
analysis, and the numerical solution will be compared to the hand solution to 
produce confidence in the numerical solution. The development of procedures to 
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model reinforcement in a NISA will culminate with a demonstration of how to 
implement reinforcing into an ABAQUS finite element model of a lock 
monolith. 

Since a NISA provides a prediction of cracking which may occur, including 
reinforcing in the analysis can be very important. If cracking is not considered, 
then inclusion of steel reinforcing in a NISA would provide little benefit since 
the load carried by the reinforcement is small until a crack occurs. Once a crack 
does occur, stresses in the reinforcement at the crack location rise dramatically 
and can become quite high. 

Inclusion of reinforcement may not appear to be an important issue for 
massive concrete structures since these types of structures are stereotyped as 
having little if any reinforcement. There is at least some reinforcement in most 
Corps of Engineers mass concrete structures, with the exception of structures 
constructed using roller-compacted concrete. Since steel reinforcing is present in 
most massive concrete structures built by the Corps of Engineers, the fact that 
the reinforcement is present should be accounted for in analyses performed since 
the NISA process is an attempt to predict the actual behavior of the structure. 

Report Organization 

As mentioned previously, a progressive approach will be taken in presenting 
the use of reinforcement in a NISA. The initial problem will be of a simple 
beam with temperature and mechanical loads applied and with varying support 
conditions to show how stresses and displacements are computed in the concrete 
and the reinforcing. The second problem presented will be a simply supported 
beam loaded to show how the reinforcing behaves in bending. The final 
simplified problem will be a slab with two lifts and a temperature gradient 
applied through the thickness of the slab to demonstrate behavior in a slab from a 
thermally induced load which produces a bending mechanism. 

The final sections of the report will present results from an analysis 
performed during the Olmsted Locks NISA study which included reinforcement. 
Also, a presentation will be made which shows how to implement reinforcing 
into a finite element model using the ABAQUS code. Finally, conclusions and 
recommendations from work reported herein as well as from other sources will 
be provided along with helpful suggestions for avoiding problems when using 
reinforcement in a model. 
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2 Simple Beam Analyses 

Introduction 

For most designs performed by a structural engineer the effects of 
temperature are neglected. While almost every structure will undergo changes 
due to temperature loads, for most structures the loads produced by temperature 
changes are small compared to the service loads applied. This is not necessarily 
the case for massive concrete structures where the loads due to changes in 
temperature can be the most severe loads applied. Because many structural 
engineers do not have a significant amount of experience in dealing with 
temperature loadings, part of the objective of the simple examples presented in 
this chapter is to explain how temperature changes affect a structure. 

When a solid body undergoes a temperature change, the result is a change in 
the volume of that body. For most solids, if the temperature in the body drops, 
the volume will decrease; and if the temperature rises, the volume will increase. 
Depending on the restraint conditions on a body undergoing a temperature 
change, there may or may not be stresses associated with the volume change 
which occur as a result of this temperature change. If the body is completely 
unrestrained, then no stresses will result due to changes in temperature. The 
maximum stresses possible will occur due to changes in temperature if the body 
is being fully restrained. Therefore, the level of stress a body will experience is s 
function of the change in temperature and the amount of restraint present. 

Problem Formulation 

Unreinforced problem 

For the case of an unrestrained body, the change in volume due to a 
temperature change is a function of the geometry of the body, the magnitude of 
the temperature change, and the coefficient of thermal expansion. The 
coefficient of thermal expansion is a material property. For concrete, the value 
can vary from one mixture to another, but is usually between 4 x 106 inVin/F 
and 6 x 10'6 in./in./T.1 For the purpose of demonstrating changes due to 
temperature, consider the one-dimensional (1-D) case of a cantilever beam as 

A table of factors for converting non-SI units of measurement to SI units is presented on page viii. 
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shown in Figure la. If this beam is subjected to a uniform temperature change, 
the change in length due to the change in temperature is computed by 

AL - al(Ar) 

where 

AL = change in length 
a = coefficient of thermal expansion 
L = length of member 

A T = change in temperature 

The resulting change in length due to a change in temperature can be obtained 
through the application of an equivalent mechanical load as well. To 
demonstrate how this equivalent load can be computed, the 1-D case is again 
used. For the 1-D case, an axial load must be applied at the free end of the 
cantilever beam shown in Figure lb. The equation for a change in length due to 
an applied axial load is: 

Ai. a. ® 
AE 

where 

P = equivalent mechanical load 
A - cross-sectional area of member 
E = modulus of elasticity of material 

Using the expression in Equation 1 for AL and substituting this expression for 
AL into Equation 2 and solving for P results in: 

r     AEaL(LT) 

If the length term is cancelled, the expression for the equivalent mechanical 
load P which would produce the same displacement as was produced by the 
change in temperature may be obtained. 

(3) P -AEa(LT) 

Now consider the same beam but with a fixed support added at the free end of 
the beam as shown in Figure lc. Again, assume it is subjected to a uniform 
change in temperature of Ar. Since it can no longer displace due to it being 
fixed at both ends, then a stress within the beam will be introduced instead of a 
change of length. 

The equivalent mechanical load can be used to help explain the stresses which 
occur in the beam due to the temperature change. As shown in Figure 2a, the 
beam when it undergoes the decrease in temperature wants to reduce in length by 
a distance AL as determined by Equation 1. Now, if the equivalent mechanical 
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L 

2 
a. Cantilever beam 

b. Cantilever beam with an axial load 

\ 

c. Fixed-fixed beam 

—  P 

i 
Figure 1.     Simple beam arrangements 
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/ 

-AT AL 

a. Change in length due to decreased temperature 

3 •~i 

P  =  AEa(AT) 

AL 

b. Equivalent change in length due to an applied axial load 

Figure 2.     Cantilever beam 

load, as computed using Equation 3, is applied such that the change in length it 
will produce is opposite to the change in length created by the temperature 
decrease, then the load will produce the same stress in the beam as would be seen 
in a fixed-fixed beam undergoing the temperature decrease. For the case of a 
decrease in temperature, the equivalent mechanical load can be applied as shown 
in Figure 2b to produce the tension in the beam that would occur due to the 
temperature change. 

The stress in the fixed-fixed beam due to a change in temperature could also be 
calculated directly. Since it is known that for an axially loaded beam that 

P 
A 

then substituting the expression for P as given Equation 3 results in 

o = -[£a(AJ)] 

(4) 

(5) 
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Reinforced problem subjected to temperature loading 

Reinforcement is present in most concrete structures including massive 
concrete structures. Since reinforcement is included to provide tensile strength 
to a structure and to limit cracking, excluding reinforcing which is present in a 
structure from a numerical model used to analyze that structure is conservative. 
While in some cases not including reinforcing in the model used to perform a 
NISA may be acceptable, in many cases neglecting the presence of the 
reinforcing could lead to a design that is not economical or to a conclusion that 
the structure has severe cracking problems when in fact the presence of 
reinforcing will reduce the extent of cracking which occurs. This portion of the 
chapter describes how reinforcing affects a simple concrete member. 

First consider the cantilever beam as shown before in Figure la but now 
assume that there is a reinforcing bar in the concrete. If the beam is subjected to 
a uniform temperature change, the concrete and steel will have a change in 
length due to this temperature change. If this temperature change was applied to 
each material independently, the change in length for each material would be 

LLc-acLLT (6) 

where the subscript "C" refers to concrete and the subscript "S" refers to steel. 
For the case where the coefficient of thermal expansion for concrete is different 
from the coefficient of thermal expansion of the steel, a force will build between 
the concrete and the steel as the temperature changes since the rate of change in 
length is different for the two materials. The method used to model reinforcing 
in a NISA assumes no bond slippage, so the force building at the steel/concrete 
interface can be described by the free body diagram in Figure 3. Summing the 
forces in the horizontal direction results in 

Pc + Ps-0   -   Ps--Pc 
(8) 

Since an internal force is induced on the beam, then the total changes in length 
are a function of both the temperature as described in Equations 6 and 7 above 
and the internal force as based on Equation 2. Therefore, the total change in 
length for the concrete (ALc) and the steel (ALS) can be computed by adding the 
components of change in length due to temperature and the internal force (Pc and 
Ps) as follows: 

(9) 

(10) 

A T aciAr< 
PCL 

a.Lc - 
AcEc 

AIS = asLAT ♦ PsL 
ASES 
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Figure 3.     Free body diagram of steel and concrete interaction for temperature 
change where dis the height of the member 

Now, since full bond between the concrete and the steel is assumed, then there 
must be compatibility between the changes in length. This compatibility is 
defined by 

AL . ALC - LLS (11) 

' Substituting Equations 9 and 10 into Equation 11 and using Equation 8 for Ps 

results in 

arLAT ♦ —£_ . ocIAr -     c 

AcEc AsEs 

Solving for Pc gives 

ArK - gc) 

V AcEc     AsEs) 

(12) 

So the force acting on the concrete due to the change in temperature is Pc and 
from Equation 8, Ps is equal to Pc but acting in the opposite direction as seen in 
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Figure 4. These are the equivalent mechanical loads developed in the concrete 
and reinforcing and can be used to compute the stresses using Equation 4. 

Reinforced problem subjected to axial load 

The final problem that will be examined in this chapter is a reinforced 
cantilevered beam subjected to an axial force applied at the free end of the beam. 
Unlike the previous reinforced beam example, the total force in the concrete is 
summed with the total force in the steel to obtain the total force P acting on the 
beam. So 

P-Pc + Ps 
(13) 

Using Equation 2 and rearranging terms, the forces for the concrete and the steel 
can be calculated by 

(AIcK^c (14) 

Figure 4.     Free body diagram of steel and concrete interaction for mechanically 
applied load (P) 
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(ALS)ASES (15) 
s L 

Substituting these two expressions into Equation 13, the following expression for 
the total force P can be obtained. 

i.-^(AIc) + ^(AIs) (16) 

As in the previous reinforced beam problem though, compatibility between the 
concrete and the steel reinforcing must be maintained as shown in Equation 11. 
Therefore, AL can replace ALC and ALS. Making this substitution and solving 
for AL results in 

Al . *k  (17) 
[ACEC + ASES) 

which is the change in length of the beam due to the applied force P. Now, since 

P a - — 
A 

and substituting Equations 14 and 15 into this equation for stress, the stress can 
be computed as follows: 

a       A£(£c) (18) 
c I 

*LiEs) (19) 
s L 

These equations give the capability of computing the stress in the concrete and 
the steel due to an axial load P. 

Example Problems 

In order to better understand how to apply the above equations, examples are 
presented below to show how the equations are used when real values are 
assigned to the various parameters. Besides showing the process of the 
calculations, the examples will show the magnitude of the equivalent mechanical 
load when compared to its corresponding temperature change and the extent that 
including reinforcing affects the results. In addition, the hand solutions will be 
compared to numerical solutions. 
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Simple beam - no reinforcing included 

Consider the cantilever beam shown in Figure la. Now, if the beam is 
assumed to be 72 in. long and to have a unit thickness with a <^ff**<* 
thermal expansion of 4.0 x 106 in WF, a modulus of elas ^y °f ^0446 x 
106 psi and is subjected to a uniform drop in temperature of 20 F, then the 
change in length of beam due to the temperature drop can be computed using 

Equation 1: 

AI - (4.0 x 10-« in/iny°F)(72 in.) (-20 °F) 

AI - -0.00576 in. 

Similarly, using Equation 3, the equivalent mechanical load can be computed: 

P . (12 in.2)(4.0446 x 10« psi)(4.0 x l(r« infmJ°v){-20 °F) 

P = -3882.8 lb 

So if a temperature decrease of 20 °F is uniformly applied to the beam shown in 
Figure la or a compressive force equivalent to 3882.8 lb is applied to the end of 
the beam, the resulting decrease in length will be 0.00576 in. This should agree 
with numerical results as well. Using the finite element mesh shown in Figure 5 
and the finite element code, ABAQUS, a numerical analyses will be performed 
on the beam shown in Figure 1 for both the case of the drop in temperature and 
the applied mechanical load. The results from the finite element analyses are 
shown in Table 1, and, as can be seen, the results are exactly the same as the 
hand calculations shown above. 

Now apply the 20 °F temperature drop to the fixed-fixed beam case and the 
resulting stress can be computed directly using Equation 5: 

o - -[(4.0446 x 10« psi) (4.0 x lO^6 in/in.TF)(-20 '¥)] 

a - 323.6 psi 

Figure 5.     Finite element mesh used with cantilever beam and fixed-fixed beam 
problems 
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Table 1 
Length Change for Simple Beam Problem 

Type of Load 

Change in Beam Length, in. 

Hand Solution ABAQUS Solution 

20 °F temp, drop -0.00576 -0.00576 

3882.8-lb force -0.00576 -0.00576 

Alternately, the stress in the beam can be computed by using the equivalent 
mechanical load computed above and Equation 4: 

o = 
3882.8 lb 

12 in.2 

o - 323.6 psi 

Again the solution of this problem can be checked numerically using ABAQUS. 
An analysis was performed for the fixed-fixed beam subjected to a 20° F 
temperature drop and a cantilever beam subjected to an axial tension load of 
3882.8 lb. The results of those analyses as compared to the hand solutions are 
shown in Table 2 and, as before, the numerical and hand solutions are exactly the 
same. 

Table 2 
Stresses for Simple Beam Problem (Fixed at Both Ends) 

Type of Load 

Stress in Beam, psi 

Hand Solution ABAQUS Solution 

20 °F temp, drop 323.6 323.6 

3882.8-lb force 323.6 323.6 

Simple beam—reinforcement included 

The equations for the beam with a reinforcing bar included can now be 
implemented for the cantilevered beam case shown in Figure la. As for the 
unreinforced case, the temperature change is a 20° F drop, and the area, the 
modulus of elasticity, and the coefficient of thermal expansion for the concrete 
are as were defined previously. The beam under consideration is assumed to be 
12 in. wide with a single #9 reinforcing bar (Ag = 1.0 in.2) in the center. Since a 
unit thickness is used in the analytical solution the area of the reinforcing is 
0.083 in.2 (As/12 in.2). The modulus of elasticity for steel of 29.0 x 106 psi will 
be used and a coefficient of thermal expansion of 6.5 x 106 inVin/F. The force 
in the concrete Pc can then be computed as follows from Equation 12: 
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(-20 °F)(6.5 x 10^ in7in7°F - 4.0 * KT6 in7in./°F) 

(12 in.2)(4.0446 x 10* psi) + (0.083 in.2)(29.0 x 106 psi) 

Pc = -114.7 lb 

and from Equation 8, the force Ps in the steel can be obtained, 

Ps - -Pc ■ 114.7 lb 

Using the equation from mechanics for stress in a pure tension member, the 
stress in the concrete and the reinforcing can be computed as follows: 

Pc m -114.7 lb 
J° ' Ar '    12 in.2 

ac - -9.56 psi 

Ps       114.7 lb 
*     As     0.083 in.2 

as - 1382 psi 

So the stress in the steel is much higher than the stress in the concrete but it is 
still well below the yield strength of 60,000 psi of typical reinforcing bars. 

As before, the hand calculations can be compared to calculations from a 
numerical analysis.  For the case with reinforcing, two separate finite element 
analyses were performed. The first finite element analysis used a capability 
contained in ABAQUS which allows the user to define the size and location of a 
reinforcing bar in an element and then the stiffness of the reinforcing bar is 
incorporated into the overall stiffness of the model. The second finite element 
analysis will employ the use of truss elements connected to the midside nodes of 
the beam to model the reinforcing bars. The results are compared in Table 3. As 
can be seen, the steel stresses are in exact agreement while for the concrete 
stresses the two numerical solutions agree well but are slightly different from the 

stress computed by hand. 

Table 3 
Stress in Concrete and Reinforcing for Cantilevered Beam Due 
to Temperature Change  

Type of Solution 

Hand calculation 

ABAQUS - REBAR elem. 

ABAQUS - Truss elem. 

oc, psi 

-9.56 

-9.60 

-9.60 

Os.psi 

1,382 

1,382 

1,382 
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The two different methods of modeling reinforcement are used to show that 
the method of reinforcement modeling will not affect the results. The truss 
element is included because it is the method that was used prior to acquiring the 
ability to model reinforcing as part of the continuum element. In addition, there 
are still finite element programs which do not have the reinforcement modeling 
capability of ABAQUS. Since the ABAQUS method of modeling reinforcing is 
the technique used in NISA, it is important to understand that it will produce the 
same results as if the reinforcement is modeled discretely with a truss element. 
The ABAQUS reinforcement modeling capabilities will be discussed further in 
Appendix A. 

Finally, the use of Equations 17-19 can be demonstrated by using the 
equivalent mechanical load applied previously to the unreinforced beam. This 
load was 3882.8 lb. First, using Equation 17, the change in length due to the 
load is computed. 

AI = (3882.8 lb) (72 in.) 
(12 in.2) (4.0446 x 106 psi) ♦ (0.083 in.2) (29.0 x 106 psi) 

AL - 0.00549 in. 

This change in length can now be used to compute the stresses in the concrete 
and the reinforcing. 

(0.00549 in.) (4.0446 x IQ« psj) 
72 in. 

oc ■= 308.4 psi 

(0.00549 in.) (29.0 x 10* psj) 
72 in. 

as - 2211.3 psi 

Table 4 compares these stresses to those computed using ABAQUS. The results 
from the three separate calculations are all very close, but as with the previous 
example which included reinforcing, there are small differences between the 
hand solutions and the ABAQUS solutions. 

Table 4 
Stress in Concrete and Reinforcing for Cantilevered Beam Due 
to Axially Applied Load 

Type of Solution oc, psi Os, psi 

Hand calculation 308.4 2,211 

ABAQUS - REBAR elem. 308.2 2,212 

ABAQUS - Truss elem. 308.2 2,212 
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Summary 

The above discussion has shown how temperature can affect a structure such 
as a beam with basic support conditions. Simple examples are convenient to 
demonstrate how computation of stresses and displacements are accomplished 
for cases of temperature loading. In addition, the magnitude of temperature 
loadings can be gauged through the use of equivalent mechanical loads which 
allows comparison of a temperature loading to a physical load with which the 
reader may be more familiar. 

The discussion in this chapter also showed that methods used for computing 
stresses in the finite element code ABAQUS can be checked and verified against 
hand solutions for cases with and without reinforcing. The purpose of such 
comparisons for simple problems is to provide confidence in the code and 
modeling techniques which can be applied to more complicated problems where 
hand solutions are not possible. 
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3 Analyses of a Beam 
in Bending 

Introduction 

Now that demonstrations of how a finite element analysis can predict stresses 
in unreinforced and reinforced beams for both a temperature load and an axial 
load have been shown, the next step is to look at another type of mechanical 
loading. A simply supported beam will be used to show how stresses are 
computed for a bending mechanism for both a reinforced and an unreinforced 
case. The approach in showing these calculations will be similar to that used in 
Chapter 2 for the temperature and axial loadings. 

Problem Formulation 

The beam that will be used for the calculations will be loaded as shown in 
Figure 6. This type of loading is used so that a region of constant moment and 
zero shear can be achieved. The geometry and loading were selected to match 
classic beam theory assumptions used to derive the hand calculation techniques. 

Before calculations of stress can be performed, the moment which creates the 
stresses in the beam must be determined. The moment used for the problems in 
this report will be derived but solutions can be found in various other references. 
The problems evaluated will investigate the stresses in the region of constant 
moment. To calculate the moment in the center portion of the beam, use the free 
body diagram of the left portion of the beam as shown in Figure 7. From statics 
it is known that summing the moments about any point will be equal to zero, so 
if the moments are summed about point B in Figure 7, the resulting equation is: 

Px - pa(x - all) - M - 0 

Substituting pa for the reaction P and solving for M gives: 
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Figure 6.    Simply supported beam with loading to provide an area of constant 
moment 
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Figure 7.    Free body diagram of half of the beam shown in Figure 6. 
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M = Px- pa(x - a/2) 

pax - pax * (pa1) 
 2 (2D 

2 

which provides the moment which can be used to calculate the stresses in the 
subsequent problems. 

Unreinforced problem 

For the case of the unreinforced beam, the calculation of stress at any point 
through the depth of the beam is given by: 

o . zMl (22) 

where 

M = moment in the beam 
y - distance from the neutral axis of the beam to the point where the 

stress is to be determined 
/ = moment of inertia of the beam cross section 

Reinforced problem 

Inclusion of reinforcing into the problem requires the method of transformed 
sections to be used to obtain the stresses in both the concrete and the reinforcing. 
Using a ratio of the steel modulus to the concrete modulus n, the area of the steel 
reinforcing can be converted into an equivalent area of concrete so that the 
problem can be analyzed as a single material. This transformation of areas is 
graphically demonstrated in Figure 8. 

Once the transformed section has been determined, the neutral axis and the 
moment of the inertia of the transformed section must be computed since the 
neutral axis is no longer at the midheight of the beam. Once these parameters 
have been computed, the stress in the concrete at any location through the depth 
of the beam can be computed using Equation 21. To compute the stress in the 
steel requires first that the stress in concrete be computed at the location of the 
steel and then multiplying this stress by the ratio of the steel modulus to the 
concrete modulus. In equation form, the steel stress is: 

(23) 

where 

GS = stress in reinforcing 
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Figure 8.     Graphic representation of a transformed section where / is the 
centroid of the transformed section 

n = ratio of steel modulus to concrete modulus 
oc = stress in concrete 

Now that all the equations necessary for computing stresses to compare to the 
finite element solutions have been presented, problems with numerical values 
can be performed. 

Example Problems 

As in Chapter 2, examples for a beam in bending will be presented to show 
how solutions can be obtained through hand calculations and how these results 
compare to the solutions obtained numerically from ABAQUS. 

Unreinforced beam 

A simply supported beam is shown in Figure 9. For discussions presented in 
this section it will be assumed that the beam does not contain any reinforcing. 
Dimensions of the beam and the applied load are provided in the figure. The 
arrangement of this beam is identical to the beam shown in Figure 6 from which 
the equations for stress were developed. Therefore, the equations developed 
from Figure 6 will apply to calculations done for the beam shown in Figure 9. It 
should also be noted that the width shown in Figure 9 is for a strip of unit width. 

The moment in the center of the beam due to the applied loading must first be 
calculated using Equation 21, 

M pa 
2 

2_     (12 lWin.)(42 in.)2 

2 
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Figure 9.     Simply supported beam geometry and loading 

M = 10,584 in.-lb. 

The moment of inertia must also be calculated and is given by 

\3 j     bh^_     (1 in.) (12 in.)3 

12 12 

/ - 144 in.4 

where 

b = width of the member cross section 
h = height of the member cross section 

This moment may then be used to compute the stress at the extreme fiber of the 
beam, so for tension at the bottom of the beam, the stress as computed by 
Equation 22 is 

My     - (10,584 lb.-in.)(-6 in.) 
144 in.4 

o = 441.0 psi 

Since the default for ABAQUS stress output is at the integration points and not at 
the nodes, the location of the integration points must be determined and used in 
the hand solution for a valid comparison with numerical results. The finite 
element mesh used to model the beam is shown in Figure 10. Eight noded, 
reduced integration, plane stress elements are used to perform the analysis. A 
reduced integration element has four integration points which will be located at 
distance of 0.2113 times the total element length from the edge of the element. 
Therefore, for the 6-in. elements used, the integration points will be located 
1.268 in. from the edges of the elements and the distance y used in Equation 22 
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Figure 10.   Finite element mesh for simply supported beam 

will be 4.732 in. (6.0 in. - 1.268 in.). The stress at the integration point nearest 
the bottom of the beam will be 

. . -(10.584 lb-m.)(-4.732 in.) . 347.81 psi 
144 in.4 

This matches exactly with the stress calculated by ABAQUS of 347.8 psi. 

Reinforced beam 

The beam shown in Figure 9 will be used again for demonstrating 
calculations for a reinforced beam. It will be assumed that unit strip shown in 
Figure 9 is taken from a beam 12 in. in width and that the beam contains a single 
#9 reinforcing bar with the center of the bar located 3 in. from the bottom of the 
beam. Since the beam is 12 in. wide, the area of steel per unit width is 
0.0833 in.2 The reinforcing steel has a modulus of 29,000,000 psi, while the 
concrete has a modulus of 4,045,000 psi. Therefore, the ratio of the steel 
modulus to the concrete modulus is 

29,000,000 psi 
4,045,000 psi 

n . 7.17 

This value of n can now be used to transform the area of steel into an equivalent 
area of concrete Ac'. 

Ac' - nAs - 7.17(0.0833) - 0.5975 in.2 

Since the area of the concrete has changed due to the transformed section, the 
centroid and moment of inertia of the transformed section must be calculated 
before the stress in the beam can be computed. The transformed centroid y' from 
the bottom of the beam is 
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y 
,     (1 in.)(12 in.)(6 in.) * (0.5975 in.2)(3 in.) 

(1 in.) (12 in.) ♦ (0.5975 in.2) 

y' - 5.858 in. 

The moment of inertia can also be calculated using the following equation, 

I - (Z>A3)/12 + Acdc * (n - l)Asds
2 

where 

b = width of beam (1 in.) 
h = depth of beam (12 in.) 

Ac = area of concrete 
dc = distance from centroid of section to centroid of concrete 
As = area of steel 
ds = distance from centroid of section to centroid of steel 

Substituting the appropriate values, the moment of inertia for the beam is 

/ . (1 in.)(12 in.)3 + (1 ^^ ^^ -m     5 g5g ^ 
12 

+ (0.5975 in.2)(5.858 in. - 3 in.)2 

/ - 149.12 in.4 

The maximum tensile stress at the base of the beam can also be calculated using 
Equation 22. The moment will be the same as was calculated previously for the 
unreinforced beam since the moment is only dependent on the loading and the 
geometry of the beam. Therefore, the maximum tensile stress is 

o   . -(10,584 lb.-in.)(-5.858 in.) . 415.8 psi 

149.12 in.4 

The maximum tensile stress for the unreinforced beam was 441.0 psi. For an 
uncracked section it can be seen that adding reinforcing in a beam does provide 
some reduction in stress to the concrete, but that this reduction is minimal. The 
primary benefit of including reinforcing in concrete is that after cracking the 
reinforcement will carry the load which had previously been carried by the 
concrete. This will be demonstrated later in this chapter as well as in Chapters 4 
and 5. 

As for the unreinforced problem, the stress in the beam must be calculated at 
the same location as an integration point in order to obtain a direct comparison of 
the concrete stress. The distance from centroid of the section to integration point 
was computed previously to be 4.732 in. This distance must be modified since 
the centroid of the transformed section has changed. The new value is 

y - -4.732 in. + (6.0 in. - 5.858 in.) - -4.590 in. 
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So, the stress at the location of the integration point is 

-(10,584 in-lb.)(-4.590 in.) _ 325 g psi 

149.12 in.4 

Results of the numerical analysis using AB AQUS gives a stress of 325JS psi, 
matching exactly the hand calculation. In addition, an analysis was performed 
using the UMAT subroutine which includes the aging characteristics 01 the 
concrete. For comparison purposes, the effects of creep and shrinkage were 
removed  Since the UMAT subroutine is contained in the ANACAP-U software 
(ANATECH Research Corp. 1992), the removal of creep and shrinkage was 
done numerically and not by altering the UMAT subroutine. The maximum 
stress from this analysis was 325.6 psi, which is almost identical to the hand 
calculation and the elastic analysis using ABAQUS. 

To obtain the stress in the steel, the stress in the concrete at the location of the 
steel in the beam must first be computed. The reinforcing is centered 3 in. above 
the bottom of the beam, so the distance from the centroid of the section to the 

location of the steel ys is 

ys - -(5.858 in. - 3.0 in.) - -2.858 in. 

Using this value of ys in Equation 22 gives 

0   _ -(10,584 lb-in.)(-2.858 in.) _ 2Q2 g ^ 
149.12 in.4 

The stress in the steel can be calculated by simply multiplying the above 
computed concrete stress by the previously calculated ratio of steel modulus to 

concrete modulus. 

at - nae - 7.170(202.8 psi) 

o, - 14543 psi 

As with the preceding calculations, the results between the hand computations 
and ABAQUS output from the elastic case match exactly. The stress output by 
ABAQUS for the reinforcing was 1,454 psi using purely elastic parameters. The 
stress reported by ABAQUS for the case using the aging modulus was 1,469 psi, 
which is still within 1 percent of the other computed values. 

Finally an analysis was performed with an increased load which will cause a 
crack to form in the beam. The distributed load on each end of the beam was 
increased to 15 0 lb./in. This load was sufficient to increase the stresses in the 
concrete to the point where cracking will occur in the ABAQUS analysis. The 
results from ABAQUS analysis will then be compared to hand calculations 
which take into account the fact that a portion of the concrete beam is cracked. 

To improve the comparison, the model used to perform the analysis was 
revised from a mesh of 2 by 20 to 4 by 40. Since cracking in the analysis causes 
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the problem to become nonlinear, increasing the density of the mesh will be 
beneficial in increasing the accuracy of the finite element solution. 

In order to calculate the stresses in the concrete and reinforcing for the case 
where the beam has cracked, the value of tensile strain at which cracking occurs 
must be assumed. For the loading used in this problem, the uniaxial strain at 
cracking of 0.0001 inVin. may be used. Based on this assumption, the 
equilibrium diagram may be established as shown in Figure 11. Based on the 
diagram, equilibrium is satisfied by summing the moments about the neutral axis 
which gives 

&C.- 
'** Tc.(9-c)T.-M.O (24) 

where 

c = distance from extreme compression fiber to the neutral axis 
Cc = compression force in the concrete 
Tc = tension force in the concrete 
Ts = tension force in the reinforcing steel 
M = moment applied to the beam (13,230 in.-lb.) 

Each of the above forces can be computed as follows: 

cc ' -fecb - -eEcb c     2 c 2  c c 

Tc . lfte'b - |(0.0001)£ec'Ä 

(25) 

(26) 

T, - E.A,e, (27) 

Figure 11.   Stress distribution through depth of beam for cracked and uncracked 
sections 
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where 

fc = compressive stress at extreme fiber 
Ec = compressive strain at extreme fiber 
/, = tensile stress capacity 
c' = distance from neutral axis to stress equivalent to tensile stress capacity 
Es = strain in reinforcing steel 

Using the diagrams in Figure 11 and similar triangles, the following two 
equations may be derived: 

0.0001 
\£cj 

9 - c 

(28) 

(29) 

Inserting Equations 28 and 29 into Equations 26 and 27 and then substituting 
Equations 25-27 into Equation 24, the resulting equation is 

3 
c^\c2 - 

(0.0001)£c (O.OOOl)c 
1 *AC (9 - c)2 - U - 0 

Multiplying this equation by c and regrouping terms results in 

eE       (1 x 10")£e 

3e_ 
c3 ♦ (E,Atee)c

: 

(30) 

(}&EtAtec * M)c * MEtAtee - 0 

Both c and ec are unknowns and therefore the equation must be solved 
iteratively. Performing the iterative calculations results in a value of 2.864 in. 
for the value of c and 0.0003063 for ec. 

It is known that the stress in the reinforcing can be computed by 

O    - E € x XI 

Substituting for es using Equation 29 will give 

9 - cy 

a  • E e "x i   e 
(31) 

Likewise, the stress at the extreme fiber of the concrete at the top of the beam 
may be computed by 

o   - E € e c   e 
(32) 
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Stresses at any location in the uncracked portion of the beam may be obtained by 
linear interpolation once the extreme fiber stress is known by using simple linear 
interpolation. 

Using the values for c and ec computed from Equation 30, the stress in the 
reinforcing can be computed using Equation 31: 

/ 9 in. - 2.864 in. 
2.864 in. 

o, = (29.0 x 106 psi) (0.0003063 in/in.) 

at = 19,026 psi 

This can be compared to 18,272 psi stress in the reinforcing as calculated by 
ABAQUS. This is less than a 4 percent difference between the two methods, 
which is excellent agreement for comparison to a nonlinear type problem. As 
mentioned previously, adjustments to eliminate creep and shrinkage had to be 
accounted for numerically, which is not an exact method for eliminating these 
effects; therefore, some of the difference may be attributed to the adjustment to 
the creep and shrinkage. 

Using Equation 32 now to compute the stress at the extreme fiber of the 
concrete: 

ac - (4.045 x io6 psi)(0.0003063 in/in.) - 1,239 psi 

Since output of stresses at the nodes was not requested, a stress must be 
calculated at the location of an element integration point as has been done in the 
past. Since the elements are 3 in. high, then the first integration point from the 
top of the beam will be located 0.634 in. down. It is known that the stress in the 
concrete is zero at the neutral axis, which is 2.864 in. from the top of the beam. 
The stress at 0.634 in. from the top of the beam can be calculated using a ratio of 
these distances times the extreme fiber concrete stress as follows: 

„'     n no ~,;\( 2-864 n»- - °-634 "»•!     o« °< " (U39 ^H SäTta! J  " 965 PS1 

This can be compared to the ABAQUS result of 1,010 psi which is 
approximately 4.5 percent higher than the hand solution and some of the 
difference may once again be attributed to the fact that the effect of creep and 
shrinkage could not entirely be eliminated from the model. 

Summary 

As has been described, agreement between hand calculations and ABAQUS 
results were exact for the cases where the ABAQUS solutions were based on a 
linear elastic assumption, and for cases where the UMAT model was used the 
comparisons were still very good. Even for the highly nonlinear case where 
cracking occurred, hand calculations provided respectable agreement with the 
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numerical results. These calculations further demonstrate how the use of 
reinforcing will provide reliable results. 
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4 Analyses of a Slab 

Introduction 

The final example to be demonstrated will be of a slab ^«^°^ °f 

concrete. This example was chosen so that incremental construe ion. codd be 
demonstrated  The slab will be fully supported along its base and wiU be 
Sectedt a uniform temperature gradient through the depth with me coldest 
emperature at the top of the slab. Tins loading will create a tension condition at 

tnTto> £ tne slab. This type of loading is similar to the loading which occurs in 
the base slab of a u-frame lock monolith supported on piles. As with the 
nrevious examples, the general formulation for calculating stresses will be 
prel'dSowed by ring actual values to illustrate how the equations are 

applied. 

Problem Formulation 

Unreinforced problem 

The initial set of computations performed on the slab will assume that the two 
lifts are made of the same material. This in essence eliminates the; lift 
consÜ^ction, but evaluating the problem as a single material will be beneficial in 

the development of equations. 

As described in Chapter 2, the stress observed in a structure is a function of 
both the changes in temperature which occur and the structure s restraining 
boundary conditions. Essentially, thermal stresses result from restramed 
Sac^rnents i e., displacement, that would normally occur due to induced 
tSZzLn&s i/restraining boundary conditions were not present In the 
caTof the slab, as shown in Figure 12a, a temperature gradient with cold 
ternr^ amres at the top of the slab and hot temperatures at the base causes the 
s^bTo wTt to bend L deflect as shown in Figure 12b, but due to the support 
cond tioThTs being prevented from doing so. Since the deflection that is being 
estrle^ fc^a bending mechanism, then the resulting strain state will be a linear 
SU from the bottom of the slab to the top of the slab as shown m 
F?re12c  Since the change in temperature is linear and the material is 

mfo^ 
the temperature change using linear interpolation and applying the following 

equation: 
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c. Strain distribution for thermal loading shown in b 

Figure 12.  Two-lift slab 
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e - acAT (33) 

where 

e = strain in concrete 
ac = coefficient of thermal expansion of the concrete 

AT= change in temperature 

The strain computed may then be used to compute the associated stress by: 

°c ' Ece (34) 

where 

oc = stress in concrete 
Ec = modulus of elasticity of the concrete 

If the problem is evaluated using two different materials corresponding to the 
two lifts, then Equations 33 and 34 still apply, but the hand calculations must be 
revised based on a transformed section. The method for obtaining a transformed 
section is the same as was described in Chapter 3, but instead of transforming a 
steel bar to an equivalent modulus of the concrete, one lift of concrete will need 
to be transformed to be equivalent to the modulus of the other lift. This will 
require the neutral axis to be computed for the transformed section. 

As in Chapter 3, the ratio of the moduli of elasticity for two different 
materials is used for computing equivalent transformed sections. This ratio n is 
given by: 

Ec2 
» - ~- (35) 

where 

ECI = modulus of elasticity for concrete lift 1 
EC2 = modulus of elasticity for concrete lift 2 

This ratio can then be used in the computation of the neutral axis as follows: 

d - A* * nA* (36) 
A^ * nA2 

where 

d= distance from base to neutral axis of the transformed section 
A, = cross-sectional area of lift 1 
y} = distance from base to centroidal axis of lift 1 
A2 = cross-sectional area of lift 2 
y2 = distance from base to centroidal axis of lift 2 
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The resulting strain due to the temperature gradient will be as shown in 
Figure 13, where zero strain is located at the neutral axis. The total strain can be 
defined as shown in Figure 13 by a linearly varying strain component and a 
uniform strain component. The strain as shown in Figure 13 can be defined in 
equation form by 

€LV * £NA 
(37) 

where 

e = total strain in the concrete at a specified height 
eLV= linearly varying strain component at a specified height, symmetrical 

about midheight of the slab 
e^A = uniform strain component 

eLV may be computed using Equation 33 to compute the strain at the extreme 
fiber and then using similar triangles to compute the strain at the desired 
location, e^i can be computed using the following equation 

*]U 

*-3 («cAr) 
(38) 

h 
2 

where h = height of the slab. Once the total strain has been computed using 
Equation 37, then the stress at the specified height may also be computed using 
Equation 34. 

Reinforced problem 

Performing the calculations for a reinforced slab will be nearly identical to 
the calculations performed for the slab with two lifts of two different moduli 
outlined above except there will be an additional ratio «j which will be the ratio 

Figure 13.   Strain distribution for a thermal loading of a two-lift slab 
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of the steel modulus to the modulus of lift 1. Therefore, the transformed section 
will be a section which consists of the modulus from lift 1 with areas for lift 2 
and the reinforcing adjusted accordingly. The ratio % is given by 

where Es = modulus of reinforcing steel. A similar calculation to Equation 36 
may then be performed to obtain the neutral axis of the transformed section as 
follows 

2    A*yi * nAiyi * "t^^sr * "^ysB (39) 
A1 * nA2 * rigAgj. * n^^ 

where 

An = area of reinforcing in the top of slab 
y^j- = distance from base to center of reinforcing in the top of slab 
ASB — area of reinforcing in the bottom of slab 
ySB = distance from base to center of reinforcing in the bottom of slab 

Once the neutral axis has been established, then the equations used previously 
for the two unreinforced lifts with different moduli can be used to compute the 
stress and strain in the concrete. Equation 34 can be used to compute the stress 
in the concrete, but the stress in the reinforcing must be computed by 

°, . E e (40) 

Example Problems 

As in Chapters 2 and 3, examples for a slab with a temperature gradient 
applied through its thickness are presented to show how solutions can be 
obtained through hand calculations and how these results compare to the 
solutions obtained numerically from ABAQUS. 

Unreinforced slab 

The dimensions of the slab to be evaluated are shown in Figure 12a. The 
finite element mesh used to analyze the slab is shown in Figure 14. The first 
analysis was performed using the same modulus of elasticity (4.042 x 106 psi) 
for both lifts. The gradient applied was 24 °F through the thickness of the slab, 
with a temperature at the base of 46 °F and a temperature at the top of 70 °F. The 
initial temperature prior to application of the gradient was 58 °F and was uniform 
through the slab thickness. The coefficient of thermal expansion of the concrete 
is 4.0 x 10"6 in./in./°F. Using Equation 33, the strain at the top of the slab is 
given by 
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Figure 14.   Finite element mesh of slab 

e , (4.0 x 10"« in/iny°F)(12 °F) 

6 - 48.0 x 10"6 in/in. 

Since comparison to the numerical results is desired, the strain at the location of 
the integration points must be computed. As an example, perform the calculation 
at the top integration point of the slab which is located 90.928 in. from the 
bottom of the base. Since the temperature varies linearly (as does the strain), the 
strain calculation can be done using Equation 33 and by interpolating to the point 
desired since the neutral axis is intuitively known to be located 48 in. from the 

base. 

_ 90.928 in. - 48.0 in. (]? OF)(40 x 10-6 ^/aJ'F) 
48 in. 

e - 42.93 x 10"* in/in. 

Now, knowing the strain at the location of the integration point, the stress at this 
location may be computed using Equation 34. 

oc - (4.042 x 10« psi)(42.93 x 10"* in/in) 

oc - 173.5 psi 

This result matches exactly with the results from ABAQUS. Table 5 shows 
resulting stresses from hand calculations and ABAQUS results at all of the 
integration points through the slab thickness. As can be seen in the table the two 

sets of results compare exactly. 
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Table 5 
Stresses in Slab (Same Material in Both Lifts) 

Distance from Base to 
Integration Point, in. 

Resulting Stresses, psi 

Hand Calculation ABAQUS 

90.9282 173.5 173.5 

77.0718 117.5 117.5 

66.9282 76.5 76.5 

53.0718 20.5 20.5 

42.9282 -20.5 -20.5 

29.0718 -76.5 -76.5 

18.9282 -117.5 -117.5 

5.0718 -173.5 -173.5 

Using the same geometry and the same finite element mesh, the calculations 
will be performed using different modulus of elasticity values for the two lifts. 
The values of modulus for each lift will be: 

Lift 1 - EC1 = 4.042 x 105 psi 

Lift 2 - EC2 = 3.684 x 106 psi 

So if the calculations are performed using the modulus of lift 1, then the ratio of 
modulus n can be computed using Equation 35 and results in 

n _Eci _ 3.684 x 10« psi _ 09U4 

Ea     4.042 * 106 psi 

Lift 2 must be transformed into an equivalent section for a modulus of E; and 
therefore the neutral axis will no longer be at the midheight of the slab. The 
neutral axis of the transformed section may be computed using Equation 36 as 
follows 

d . (0-9114 in.)(48 in.)(72 in.) ♦ (1 in.)(48 in.)(24 in.) 
(0.9114 in.)(48 in.) * (1 in.)(48 in.) 

d - 46.888 in. 

To compute the strain for this case, Equation 37 may be used. For the top of the 
slab, the linearly varying strain component eLV will be identical to strain 
computed previously for the case of uniform material. The uniform strain 
component %, can be computed using Equation 38 as follows 
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96 in. _ 46 8g8 jj (4.0 x 10"* mJmJ'V)(l2 °F) 

96 in. 

e„, - 1.11 * 10-* in/in. CM4 

Therefore, using Equation 37, the total strain will be 

e = 48.0 x 10"* in./in. + 1.11 x 10* in./in 

e = 49.11xlO*in./in. 

As for the previous case, the calculations must be performed at the integration 
points to be able to compare to the AB AQUS results. The calculation for the top 
integration point in the slab will be presented. The strain computed previously 
for the uniform slab will be the component for the linearly varying strain e,v 

Since the uniform strain component is constant throughout the height of the slab, 
it will be the same as was computed above; the total strain will be 

e = 42.93 x 10* in./in. + 1.11 x 10"6 in./in. 

e = 44.04 x 10* in./in. 

Now, compute the stress using Equation 34 but use the modulus of elasticity for 
lift 2 since the integration point is located in lift 2 

oc = (3.684 x 106 psi)(44.04 x 10* inVin.) 

oc= 162.2 psi 

This value matches the ABAQUS result exactly. Results of hand calculations 
and numerical results are shown in Table 6. The ABAQUS analysiswas 
performed both with and without the user material subroutine UMAT. As can 
be seen in the table, the ABAQUS results which do not include the UMAT 
subroutine match exactly with the hand calculations. Some variation does exist 
when comparing to the ABAQUS results using the UMAT subroutine. As 
discussed in Chapter 3, removal of creep and shrinkage was done numerically, 
which is not an exact method of removal; and, therefore, some creep and 

shrinkage may still be included. 

Reinforced slab 

The example for the reinforced slab will be identical to the unreinforced slab 
except that the slab will include reinforcing in both the top and the bottom of the 
slab  The size of the reinforcement used was #18 bars, spaced at 12i in^iri the 
out-of-plane direction. Assuming that 4 in. of clear cover exists at both the top 
and the bottom of the slab, the center of the reinforcing was located 5.125 in. 

from the horizontal surfaces of the slab. 
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Table 6 
Stresses in Slab (Different Materials in Lifts) 

Distance from 
Base to Integration 
Point, in. 

Resulting Stresses, psi 

Hand Calculation ABAQUS w/o UMAT ABAQUS with UMAT 

90.9282 162.2 162.2 162.9 

77.0718 111.2 111.2 111.6 

66.9282 73.8 73.8 74.0 

53.0718 22.8 22.8 22.7 

42.9282 -16.0 -16.0 -16.3 

29.0718 -72.0 -72.0 -72.3 

18.9282 -113.0 -113.0 -113.3 

5.0718 -169.0 -169.0 -169.3 

The coefficient of thermal expansion values are the same as used in 
-Chapter 2. The modulus of elasticity values for lifts 1 and 2 will be the same as 
those used for the unreinforced slab and the modulus for the steel will be 
29,000,000 psi. The ratio of lift 2 modulus to lift 1 modulus n will again be 
0.9114, and the ratio of steel modulus to the lift 1 modulus will be: 

n-A.   290 * 10< Psi   . 7.175 
'     EC1     4.042 x 106 psi 

Since the reinforcing has been added, the neutral axis will need to be computed 
again based on Equation 39 and the areas of the transformed sections as shown in 
Figure 15. Substituting the appropriate values into Equation 39 results in 

d - 46.943 in. 

As for the unreinforced case, the strain may now be computed using 
Equation 37. If the strain at the top of the slab is being computed, then e^, will 
be 48.0 x 10"* in./in. as previously computed, and the uniform strain component 
can be computed using Equation 38. 

UM4 

96^ _ 46943 .\ (40 x 10.« jnj^opj^ oF) 

96 in. 

e^ - 1.057 x 10"« in/in. 
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Figure 15.  Transformed section of reinforced slab 

Using Equation 37 gives the total strain 

e = 48.0 x 10-6 in./in. + 1.06 x 10* in./in. 

e = 49.06 x 10* in./in. 

These calculations must now be repeated at the integration points. For the 
integration point near the top of the slab, the value of 42.93 x 106 in./in. may be 
used for eLV and 1.06 x 106 in./in. may be used for eNA. So, using Equation 37 
results in: 

e = 42.93 x 10* in./in. + 1.06 x 10* in./in. 

e = 43.99 x 10* in./in. 

As before, the stress in the concrete can be found using Equation 34: 

ac = (3.684 x 106 psi)(43.99 x 106 in./in.) 

oc= 162.1 psi 

Similar calculations can be done at other integration points and result in the 
values shown in Table 7. Some very small differences occur at the top and 
bottom of the slab for the ABAQUS results without the UMAT subroutine, but 
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in general the results match exactly. As before, the values for the ABAQUS 
analysis which used UMAT varied slightly from the hand calculations. 

Table 7 
Stresses in Slab with Reinforcing (Different Materials in Lifts) 

Distance from 
Base to Integration 
Point, in. 

Resulting Stresses, psi 

Hand Calculation ABAQUS w/o UMAT ABAQUS with UMAT 

90.9282 162.0 162.1 162.8 

77.0718 111.0 111.0 111.4 

66.9282 73.6 73.6 73.8 

53.0718 22.6 22.6 22.5 

42.9282 -16.2 -16.2 -16.5 

29.0718 -72.2 -72.2 -72.5 

18.9282 -113.2 -113.2 -113.5 

5.0718 -169.2 -169.3 -169.6 

90.875 (top reinf.) 2051.2 2051. 2049. 

5.125 (btm. reinf.) -1989.9 -1990. -1992. 

The stresses in the steel reinforcing may also be computed and compared to 
the numerical results. The total strain must be calculated at the elevations of the 
reinforcing bars. Taking the top bar as an example, the linearly varying strain is 
calculated as before except the coefficient of thermal expansion of the steel a5 
must be used instead of ar: 

CIF 
90.875 in. - 48.0 in. 

48 in. 
(12 °F)(6.5 x 10-6 inyinVT) 

eLr - 69.67 x 10"* inVin. 

So the total strain at the elevation of the top reinforcing bar will be: 

e - 69.67 x 10"* in/in. ♦ 1.06 x 10"* in/in. 

e - 70.73 x 10"6 in/in. 

The stress in the reinforcement can now be found using Equation 40: 

as . (29 x 10« psi)(70.73 x 10"6 inVin.) 

os = 20512 psi 
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This compares very well with the ABAQUS results as do the results for the 
reinforcement located at the bottom of the slab. 

Summary 

As in the previous two chapters, comparisons between analytical and 
numerical solutions were very good. The slab problem presented in this chapter 
demonstrates that even for complicated conditions, the resulting stresses can be 
predicted and verified. Being able to predict the stresses in an incremental 
construction problem such as the problem analyzed in this chapter should 
provide the confidence in the numerical methods used when reinforcing is 
included in an analysis of a full-scale massive concrete structure. 
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5 Analyses of a Lock Chamber 
Monolith 

Introduction 

Chapters 2, 3, and 4 provided valuable insight into how stresses in reinforcing 
can be calculated and then compared to numerical solutions for some simple, 
straightforward problems. These problems were presented to gain an 
understanding of the mechanics involved in doing these computations and to 
provide confidence that the analysis tools will provide reliable results. In order 
to expand that understanding, analyses of a full-scale massive concrete structure 
should be evaluated with reinforcing included and with cracking occurring. 

Results of analyses performed on a typical chamber monolith for the Olmsted 
Locks will be presented to show the effects of reinforcing for an uncracked 
condition and for a case when cracking does occur. Results of the analyses 
presented herein are further documented in Merrill, Fehl, and Garner (1995). 
The first set of results presented will compare the results of an analysis of the 
monolith with no reinforcing to an analysis of the monolith including reinforcing 
according to the reinforcing layout shown in Figure 16. The second set of results 
will present results of an analysis which exhibited no cracking compared to an 
analysis with cracking. 

•9812  TYP 
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Figure 16.   Reinforcing layout for chamber monolith at Olmsted Locks 
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No Reinforcing Versus Reinforcing 

Early NISA studies (Melvin Price Locks and Dam and Red River Locks and 
Dam) did not account for the reinforcing in the structures. In addition, most of 
the analyses performed for the NISA study of the typical chamber monolith for 
the Olmsted Locks did not include reinforcing. It was during the course of the 
Olmsted study that inclusion of reinforcing in the model became necessary. As a 
prelude to including reinforcing into these two monoliths, reinforcing was added 
to the typical chamber monolith finite element model and the analysis was 
performed again. 

The plots shown in Figures 17-21 are comparisons between the analysis with 
no reinforcing included and the analysis with reinforcing incorporated. 
Figures 17-19 are comparisons of the horizontal stress at points within the slab of 
the monolith. As can be seen in the figures, inclusion of reinforcing does reduce 
the maximum stress for each of the three points shown. This is due to the fact 
that the change in ambient temperature creates a bending-type mechanism in the 
slab as described in Chapter 4, and since the reinforcing increases the moment of 
inertia of the slab, the result of adding reinforcing is a slight decrease in the 
stress. 

Figures 20 and 21 are plots of the maximum principal stress at points in the 
center wall of the monolith; as can be seen, the addition of reinforcing has only a 
slight effect on the resulting stresses. The primary reason that the analysis 
without reinforcing is so similar to the analysis with reinforcing is that the 
reinforcing in the walls uses only #9 bars at 12-in. spacing while in the slab two 
or three rows of #18 bars at 12-in. spacing are included. The multiple layers of 
#18 bars provide significantly more structural stiffness than the single layer of 
#9 bars. Even with the large reinforcing bars, differences between the analyses 
are relatively small and demonstrate that inclusion of reinforcing in uncracked 
sections does not provide substantial benefits. 

Uncracked Versus Cracked 

As noted in the previous discussion, no cracking occurred in the analyses of 
the chamber monolith; therefore, the full effects of the reinforcing could not be 
realized. In order to observe the effects of reinforcing when cracking does occur, 
the cracking criteria were reduced to artificially induce cracking in the monolith. 
To achieve the decreased cracking criteria, the cracking strain was reduced by a 
factor of two. 

Figures 22-26 are plots comparing an analysis without the crack criteria 
reduced and an analysis with the reduced crack criteria. The primary crack that 
formed in the slab began in element 756 as can be seen in Figure 27a which 
shows the integration points which cracked in the analysis with the reduced 
cracking criteria. This is very obvious when looking at the results for 
element 756 as shown in Figure 24 where the stress in the concrete drops to zero 
at approximately day 130 when the crack first formed. The effects of cracking 
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can also be observed in the concrete stresses for element 493 (Figure 22) and 
element 763 (Figure 23) where slight drops in stress occur at the time the crack 
forms (approximately day 140). While these two points indicate that cracking 
has occurred, they do not provide definitive information regarding the crack 
location. The reduction of stress at these points is a result of the crack allowing a 
reduction in the restraint occurring at the top of the slab, which is in tension. 
Since thermal stresses in the concrete develop due to restraint, the crack serves to 
relieve some of this restraint, which in turn reduces the stress. 

Figure 25 shows the stress in element 993 in the wall for uncracked and 
cracked analyses. Since only one integration point cracked, this would indicate 
that the cracking is small, and therefore the effect on the stresses in the concrete 
is small. Little difference between the two analyses is observed in Figure 26 
since no cracking has occurred in the vicinity of element 1196. 

Finally, Figures 28 and 29 show the stresses that result in the reinforcing. As 
noted previously, and shown in Figure 27, the primary crack in the slab occurred 
at element 756. The plot of reinforcing stresses in Figure 28 for this element 
shows how, for the analysis in which cracking occurs, the stresses in the 
reinforcing increase dramatically. This increase is not seen in areas where 
cracking does not occur; this fact is demonstrated in Figure 29 for element 763 
where the reinforcing stresses actually decrease when the cracking occurs in 
nearby elements. The reinforcing behaves in the same manner as the concrete in 
the locations in which there is no cracking. It should also be noted that even 
though the reinforcing stress in element 756 rises dramatically when cracking 
occurs, the stresses in the reinforcing are low and indicate that if this were not an 
induced condition, mitigating measures would not be necessary as a result of this 
cracking. 

Summary 

As can be seen in the results presented comparing the analyses with and 
without cracking, modeling reinforcing can be effective in its application to 
analyze massive concrete structures. The first two analyses showed that 
reinforcing will have only minor effects on the resulting behavior if cracking 
does not occur. 
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Figure 17.   Horizontal stress comparison of reinforced and unreinforced cases 
for element 493, integration point 1 
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Figure 18.   Horizontal stress comparison of reinforced and unreinforced cases 
for element 763, integration point 3 
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Figure 20.   Maximum principal stress comparison of reinforced and unreinforced 
cases for element 993, integration point 2 
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Figure 22.   Horizontal stress comparison of cracked and uncracked cases for 
element 493, integration point 1 
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Figure 23.   Horizontal stress comparison of cracked and uncracked cases for 
element 763, integration point 3 
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Figure 24.   Horizontal stress comparison of cracked and uncracked cases for 
element 756, integration point 3 
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Figure 27.   Crack location plots 
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Figure 28.   Reinforcing stress comparison of cracked and uncracked cases for 
element 756 

56 Chapter 5  Analyses of a Lock Chamber Monolith 



Stresses in Reinforcing 
Element 763 

4000- 

2000-- 

Q. 
0-- 

£-2000- 

cn 

-4000— 

-6000- 

Top Layer. Uncracked 
2nd Layer. Uncracked 
Top Layer, Cracked 
2nd Layer. Cracked 

50   100  150  200 

Time (Days) 

250      300 

Figure 29.   Reinforcing stress comparison of cracked and uncracked cases for 
element 763 
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Summary 

The primary objectives of this report were to provide understanding with 
respect to the calculation of stresses in reinforcing and to gain confidence in 
performing finite element analyses which include reinforcing steel. Chapters 2, 
3, and 4 provided detailed examinations of stress calculation in the concrete and 
steel to provide a background on how to compute stresses for various loadings, 
and once computed, how these calculated values compared to the values 
provided by a finite element analysis. In each case, agreement between the two 
methods of calculation was exact or nearly exact. 

Analyses of a typical chamber monolith were presented in Chapter 5 to 
demonstrate how the use of reinforcing in a finite element analysis can be 
achieved and to show its impact on the results. This example was included to 
further the understanding associated with modeling reinforcement and to provide 
confidence for using these techniques in association with massive concrete 
structures. 

Inclusion of reinforcing in a NISA study can be extremely beneficial to the 
performance of a model. Subsequent to initiation of this study, NISA studies 
were performed on other massive concrete structures that included reinforcing in 
the model and which exhibited cracking (Fehl et al., in preparation, and Fehl, 
Riveros, and Garner, in preparation). In these studies, adjustment of construction 
parameters did not totally mitigate cracking. Stresses in the reinforcing were 
evaluated in order to make a determination as to whether the behavior of the 
structures was satisfactory. The results of these evaluations indicated that 
stresses in the reinforcement were low and were in areas which were not 
detrimental to the structural performance; therefore, the minor cracking that did 
occur was tolerable. 

Conclusions 

The examples shown in Chapters 2-5 have shown that modeling of 
reinforcing in a NISA study is reliable and indeed feasible. Studies in Chapter 2 
demonstrated that the REBAR option in ABAQUS may be used to perform this 
modeling. Results of analyses using the REBAR option were compared to 
results of analyses using linear truss elements and it was shown that the sets of 
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results were equivalent. It is recommended that the ABAQUS REBAR option be 
used in all future NISA studies based on these results. Examples of how to input 
reinforcing using this option are provided in Appendix A. 

The data from the simple problems evaluated in this report also showed how 
the results from a finite element analysis can be predicted using hand calculation 
methods. This was demonstrated in Chapters 2 and 3 for mechanical loads and 
in Chapters 2 and 4 for thermal loads. In addition, the calculations were 
accomplished for problems with and without reinforcing. Based on these results, 
it can be concluded that using reinforcing in a NISA study is an acceptable 
modeling technique and is suitable for use in service load conditions. 

Finally, it was also demonstrated that reinforcing is not fully utilized until 
cracking occurs in the concrete. Results in Chapters 2 and 5 clearly demonstrate 
that inclusion of reinforcing in the model has a very minor effect on the resulting 
concrete stresses if no cracking of the concrete occurs and that the stresses in the 
reinforcing are also very minimal. It was also shown that once cracking of the 
concrete occurred, there were dramatic increases in the reinforcing stress. 
Because a NISA is a nonlinear analysis attempting to model actual structural 
behavior in which cracking is anticipated, attempts should be made to include 
reinforcing in NISA studies whenever possible. Exclusion of reinforcing from 
the model of a NISA study will provide a conservative approach, but the full 
benefits of performing a NISA or the full structural capacity will not be realized. 
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Appendix A 
ABAQUS Modeling 

The discussion in this appendix is provided to assist the reader in modeling 
reinforcement in a finite element model using the ABAQUS finite element code 
(Hibbitt, Karlsson, and Sorensen 1994). The information is for the modeling of 
reinforcing using the *REBAR option provided by ABAQUS which incorporates 
the reinforcing into the element stiffness matrix for the element which contains 
the reinforcing. The methods outlined in this appendix were used in the models 
discussed in the main body of the report. 

It should be noted that the methods for using reinforcing as discussed in this 
report were developed for incorporation of NIS A studies, but these same 
modeling techniques may be used in other types of analyses should the designer 
find an area outside of NISA where modeling reinforcement may be beneficial. 
One possible application of using reinforcing in a finite element model is in a 
dynamic analysis. 

A discussion of the *REBAR option may be found in the ABAQUS user's 
manual (Hibbitt, Karlsson, and Sorensen 1994) in section 7.4.6. As discussed in 
the user's manual, two parameters must be included with the *REBAR option: 
ELEMENT and MATERIAL. For NISA studies, the ELEMENT parameter 
should be set equal to CONTINUUM for both two-dimensional (2-D) and 3-D 
studies. The MATERIAL parameter must be set equal to the name given on the 
material card where the properties of the reinforcing are provided. Examples 
will be shown further in this discussion. 

Other parameters which may be included with the *REBAR option are the 
GEOMETRY, NAME, and SINGLE parameters. If reinforcing is orthogonal 
and parallel to element sides, then the GEOMETRY parameter can be ignored 
since this is the default setting. If reinforcing is not parallel to element sides, 
then the GEOMETRY parameter should be set equal to SKEW. The NAME 
parameter does not have to be specified, but since this identifier can be used to 
define output for the reinforcing, it should generally be included. The SINGLE 
parameter is used only if one reinforcing bar is being defined as opposed to a 
layer of bars. This parameter will usually not be needed in NISA studies. 

The *REB AR option card may appear as follows in the input file of finite 
element model containing reinforcement: 
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*REBAR,ELEMENT=CONTINUUM,MATERIAL=STEEL,GEOMETRY 
=SKEW,NAME=REINF 

This definition would be for a 2-D or 3-D analysis using continuum-type 
elements, and the name of the material definition for the reinforcing is STEEL. 
The bars do not have to be parallel to element sides, and the name assigned to the 
reinforcing being defined is REINF. 

For the *REBAR option card shown above, since GEOMETRY=SKEW was 
defined, then two lines of data must follow. For 2-D analyses four items must be 
included in the first line of data. The first piece of data is the element number 
containing the reinforcing or the element set name of the elements containing the 
reinforcing. The second piece of data is the cross-sectional area of the 
reinforcing bar followed by the spacing of the bars. Finally, the orientation of 
the bars must be defined giving the angle in degrees between the local axis and 
the orientation of the bars. Figure Al shows the orientation angle. If a 3-D 
analysis is being performed, the user should input two commas after the bar 
orientation definition followed by the isoparametric direction. 

The second line of data contains the fractional distances along the edges of 
the element where the reinforcing bars intersect the side of the element as shown 

Reinforcing 
Bar - 

orientation 
angle 

Local   Coordinate 
System 

Figure A1.   Notations for identifying skewed reinforcement in an ABAQUS, 
eight-noded isoparametric element 
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in Figure Al. Descriptions of these fractional distances are given in the 
ABAQUS user's manual. 

The two lines of data following the *REBAR option card may look like the 

following: 

BARS,1.0,12.0,0.0„1 
0.0,0.5,0.0,0.5 

The lines define a set of elements called BARS which contain the reinforcing 
bars The bar size is 1.0 in.2 (#9 bar) spaced at 12 in. The orientation of the bars 
is 0 0 deg and if a 3-D analysis is being performed, the isoparametric direction is 
in the direction of the first axis (typically x). The second line defines the bar 
intersecting the sides of the elements in element set BARS at a point half way up 
on side 2 of the element and half way down on side 4 of the element as shown in 
Figure A2. 

Alternatively, if the GEOMETRY parameter is not included or is set equal to 
ISOPARAMETRIC, only one additional line is required to define the bars. The 
first four pieces of data are identical to the first four pieces of data defined in the 
first line of data given above. For the ISOPARAMETRIC definition, the 
fractional distance from the defined edge is given after the orientation followed 
by the defined edge. If the analysis is 3-D, then the isoparametric directions 
must be given after defining the edge. 

As an example, consider the cantilevered beam used in Chapter 2 as the 
illustration for the example problem. For one of the analyses performed in 
Chapter 2, a single reinforcing bar was placed at the center of the beam for the 
length of the beam. For this problem there were six elements contained in an 

Figure A2.  Location of a reinforcing bar at midheight of an element 
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element set called ALL, the reinforcing steel was assigned to a material called 
STEEL, and the material definition in the input file was given as follows: 

*MATERIAL,NAME=STEEL 
*DENSITY 
0.2836 
♦ELASTIC 
29.0E6,0.3 
♦EXPANSION 
6.5E-6 

The bar used in the problem was a #9 bar (As = 1.0 in.2) at 12-in. spacing. 
Given this information, the reinforcing bar was specified with the *REBAR 
option in ABAQUS. The default value of ISOPARAMETRIC was used for the 
GEOMETRY parameter and the input was given by: 

*REBAR,ELEMENT=CONTINUUM,MATERIAL=STEEL,NAME=REINF 
ALL, 1.0,12.0,0.0,0.5,1 

As can be seen, the reinforcing defined was assigned to the group REINF. If the 
GEOMETRY parameter is set equal to SKEW, then the same bar can be defined 
by: 

*REBAR,ELEMENT=CONTINUUM,MATERIAL=STEEL,GEOMETRY 
=SKEW,NAME=REINF 

ALL, 1.0,12.0,0.0 
0.0,0.5,0.0,0.5 

To obtain results for the reinforcing (e.g., stresses) for the example shown 
above, the user must include the following lines in the input file during the step 
definition: 

*EL FILE,ELSET=ALL,REBAR=REINF 
S 

This will provide results of the stresses in the reinforcing for the bars in element 
set ALL in a binary file. If the results are desired in an ASCII file, then the *EL 
FILE option should be changed to the *EL PRINT option. 

The above discussion and example demonstrate how the user can input 
reinforcing into a finite element model. Preprocessors also exist which can assist 
in the placement of the reinforcing. One of these preprocessors is part of the 
ANACAP-U software (ANATECH Research Corp. 1992). Contained within the 
ANACAP-U software is a preprocessor called ANAGEN. If ANAGEN is used 
to generate the finite element mesh, then the reinforcing can be included in the 
model by simply identifying the end coordinates of the reinforcing bars, and 
giving the area of steel and the spacing of the reinforcing. Given this 
information, ANAGEN will automatically generate the input associated with the 
*REBAR option. If reinforcing is not completely orthogonal, the user should 
consider using a preprocessor such as ANAGEN to avoid input errors. 
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