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Abstract 

A particle-in-cell ansatz for solving the Euler equations for geophysical fluid dynam- 
ics is described. The approach is ideally suited for "layered" models in which density 
and velocity are independent of the vertical coordinate in fluid layers but generally 
vary with layer specification. The material acceleration terms in the Euler equations 
are solved at each particle while the gradient terms are evaluated on a grid and inter- 
polated at each time step to the particles. Particles are given a specified tetrahedral 
shape whose base area is equal to four computational ceUs; however, there are many 
particles in each ceU. The height of each particle is fixed and may be constant for 
all particles or may vary from particle to particle. In either case criteria are estab- 
lished for the number of particles required for each layer. The efficacy of the model 
is iUustrated by comparing solutions with those from an exact solution of a nonlinear 
reduced gravity model of a parabolic lens. The particle-in-cell model reproduces the 
essential characteristics of the reduced gravity model including exceptional resolution 

of the time varying surface front of the lens. 



1    INTRODUCTION 

Most simulations of classical fields (electricity and magnetism, elasticity, fluid dynamics) 

have utilized Eulerian or fixed grid/element techniques. But as noted by Olim [1], time steps 

utilized by these schemes may be restricted by stability or damping so as to be considerably 

smaller than the time interval appropriate for the system evolutionary time scale. As a 

consequence, Lagrangian or particle techniques have become fashionable for problems with 

large velocities. 

With pure Lagrangian techniques, the particles comprise the grid. These methods have 

long been popular with vortex models since the early work of Christiansen [2] and Chris- 

tiansen and Zabusky [3]. Some recent examples are Dukowicz and Meltz [4], Winckelmans 

and Leonard [5] and Russo [6]. However, as pointed out in [1], a potential problem with these 

methods is the deterioration of spatial resolution in those parts of the calculation domain 

with low vortex density. Also, with this method it is necessary to calculate a nontrivial 

interaction of each particle with all other particles at each time step using the Biot-Savart 

law. Such calculations increase greater than linearly with the number of particles and are 

particularly susceptible to round-off errors. 

Semi-Lagrangian or particle-in-cell (PIC) schemes can overcome some of these prob- 

lems. With this method all gradient-type terms in the conservation of mass and momentum 

equations are computed at fixed grid points while the material derivatives are computed at 

particles. Much of the calculation is devoted to interpolating particle properties to the fixed 

grid, calculating gradients, and then interpolating gradient values from the grid back to the 

particles. As with vortex methods there is a trade-off between resolution and number of 

particles. The computational load for large particle numbers, however, does not appear to 

be as severe with PIC schemes as it does with vortex models since it increases only linearly 

with the number of particles. This method was first developed by Harlow [7] for fluids. Since 



then there have been extensive applications by Brunei et al.   [8], Brackbill and Ruppel [9] 

and O'Rourke et al. [10] to name but a few. 

The concern here is with geophysical fluid dynamics. This discipline poses two difficult 

problems for modelers. One is the enormous range of scales and consequent phenomenology 

for which the model must account. With basin scale primitive equation Eulerian models the 

grid spacing generally is much too coarse to resolve all the energetic motions. The other 

problem is fronts or interfaces. The formation and evolution of many types of atmospheric 

or oceanographic fronts have no analog in fluid mechanics other than multi-fluid systems. As 

noted in [10], PIC methods which allow for conservation of a material property at particles 

can be very effective for tracking material interfaces. Despite their advantages vis-ä-vis Eu- 

lerian methods there have been very few applications of Lagrangian methods in geophysical 

fluid dynamics. Notable exceptions are Zabusky and McWilliams [11] and Hooker [12], who 

used point-vortex models to study geostrophic vortices, and Pavia and Cushman-Roisin [13, 

14], Pavia [15] and Mathias [16], who used PIC methods to study ocean fronts and merging 

of ocean eddies. 

The PIC applications in geophysical fluid dynamics have been used in layer models. The 

model equations result from a vertical integration of the hydrodynamic equations along with 

an appeal to quasi-hydrostatic equilibrium. If the height of individual particles is specified 

either a priori or by some pseudo-equation of state then there is no need to calculate the 

horizontal divergence and solve the conservation of mass equation at each particle. This is 

considerably simpler than the standard Eulerian approach of solving a Poisson problem for 

the pressure at each time step. However, there is still the problem of interpolating particle 

heights to the grid and the gradients back to the particles in a self-consistent manner. A 

second issue is the number of particles to use. To date, this has been empirically set as an 

ad hoc balance between accuracy and computational feasibility. 

There are several unusual features about our approach.   First, we use the full shallow 



water hydrodynamic equations. Second, we use an interpolation routine that exactly kills 

particle self-motion caused by fictitious pressure gradients associated with the distribution 

of the particle heights on the grid. Moreover, our approach does not require smoothing or 

damping other than that resulting from the interpolation routines. Finally, we are able to 

relate the number of particles to a desired spatial resolution. This is achieved by requiring 

the total volume of particles to be the same as the fluid volume. Since the particle volume 

is fixed our method guarantees conservation of volume. 

2    THEORY 

2.1    Two-layer Model 

The dynamical basis for the applications considered here are the hydrodynamic equations for 

a two-layer fluid in a steadily rotating coordinate system. Following the notation of Hurlburt 

and Thompson [17] these are 

±Vl + k x /Vl = -gV(h + h2 + D) + T-^~- + AV2va, (1) 
dt Pirn 

dh\ 
~dT 

+ h{V • Vi = 0, (2) 

AV2 + k x /v2 = -gV(h + h2 + D)+ grfht + Tj-~^- + AV2v2, (3) 

Shi 12 

dt 
+ h2V • v2 = 0, (4) 

In these equations, V; is the horizontal velocity vector for layer t; k is the unit vertical 

vector; / is Coriolis; g is the gravity constant; hi are the instantaneous layer thicknesses 
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relative to a common datum; D is the bottom topography; r,- are the stresses at the surfaces 

j = S (upper surface), / (interface between the layers), and B (bottom surface); Pi are the 

constant densities of each layer; A is the horizontal turbulent viscosity; and g* = g(p2-pi)/P2 

is "reduced" gravity. These equations are obtained by vertically integrating the instantaneous 

three-dimensional hydrodynamic equations. Figure 1 is a cartoon of the geometry for the 

problem considered below. 

As the primary purpose here is to test the efficacy of the PIC method with special cases 

it will not be necessary to consider either the surface stresses n or turbulent viscosity A. 

Consequently, these terms will be neglected below. Furthermore, since the test problems 

studied here are for the "reduced" gravity special case of (l)-(4) it is sufficient to set D = 0. 

The physical basis for the reduced gravity case is that, to a first approximation, the 

lower layer only adjusts hydrostatically to accelerations. Hence, there is negligible flow in 

the lower layer and its thickness gradient VA2 can be eliminated in favor of VAi from (3) 

and substituted into (1). The result of this manipulation is 

^ + kx/v = -g*Vh, (6) 
at 

f + W-v = 0. (7) 
dt 

As there is flow in only the upper layer, the subscripts denoting layers are superfluous; 

consequently, they were dropped in (6) and (7) and below. 

At this point it is appropriate to nondimensionalize (6) and (7). The scheme used by 

Cushman-Roisin et al. [18] is appropriate. This scales h by H (representative layer thickness), 

V by //vOT time by f~\ and v by y/jjJT. This scaling removes all explicit parameter 

dependence. The resulting equations are 



^ + kxv + V/i = 0, (8) 
dt 

^ + hV-y = 0. (9) 
dt 

Since we use a paxticle method these last three equations must be augmented by two path 

equations: 

^-v = 0. (10) 
dt 

Equations (8)-(10) constitute five nonlinear coupled equations governing the flow in the 

upper layer. We solve these as an initial value problem using the PIC technique described 

below. 

2.2     PIC Paradigm 

The basis of PIC methods is to solve the d/dt terms of (8)-(10) at the particles and the 

gradient and divergence terms on a discrete grid. Interpolation between the particles and 

field occurs at each time step. The central assumption of the PIC method as applied to 

these geophysical fluid dynamics problems is that the heights and volumes of each individual 

particle are invariant with position and time. Thus there is no need to solve (9) at individual 

particles. As suggested in [10], keeping each particle height fixed provides a means for 

accurate tracking of the interface between the active and inert layers. 

The height gradient appearing in (8) is found by computing (interpolating) the "h" field 

to the grid using the positions and heights of the particles, computing VA on the grid, and 

finally computing (interpolating) Vh back to each particle. In order to clarify these ideas 

we outline the algorithm. Assume that the position, velocity and height of each particle is 

known at time t. The steps in the algorithm to advance these data to time t + St are 
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1. interpolate the heights of the particles to the grid, 

2. calculate the finite difference approximation to V/i on the grid, 

3. interpolate V/i from the grid to the particles, 

4. using an appropriate time integrator, simultaneously integrate (8) and (10) from t to 

t + St. This yields the position and velocity of each particle at the new time. 

For geophysical fluid dynamics problems, the critical issue is the calculation of the height 

or pressure gradients. In the standard approach used in [13 - 16], the height field is specified 

as the sum of heights over all particles. Individual particle heights are usually fixed and their 

base areas are no larger than a computation cell. 

An alternate approach is employed here. There are some unique aspects about our 

method so some explanation is offered. As in prior approaches, each particle is assigned a 

finite volume where the total volume of the particles is the same as the initial volume of the 

active layer. We differ from other investigations in that we require the base of each particle 

to be a square with sides of length 2A, where A is the fixed distance between cell centers. 

Thus, a typical particle base has the area of four cells and generally will overlap into nine 

cells. 

The height equation for a particle is 

^ = ^(i-i^i/A)(i-ievi/A), (ii) 

where (£*, &) are the component distances of the apex from the nearest cell center. Note that 

l&l, |fy| < A. The centerline height of a particle is hp, which may vary from particle to par- 

ticle. As can be seen from (11), the height decays linearly to zero at the particle boundaries. 

This shape was utilized by Hockney and Eastwood [19] who termed it a "triangular-shaped 



cloud." Figure 2 is a three-dimensional perspective of this shape. Within any one grid cell 

there will be considerable overlap of particle bases. 

It must be understood that the particles are not to be thought of as solid particles that 

cannot be interpenetrated but as a computational representation of fluid particles. If several 

particles were to be located at exactly the same (x, y) location we interpret this as meaning 

that the height, h, at that location is the sum of the height of the individual particles. These 

particles do not lose their identity as they interpenetrate and pass through each other and 

so the number of particles is invariant. There are no particle-particle interactions other than 

what arise through the gradient of the height field. 

The key to our approach is the method by which the height of the particles is apportioned 

to the centers of cells which they overlie, the method used to calculate height gradients on 

the fixed grid composed of cell centers, and then the interpolation routine used to move these 

back to the particles. Our experience has been that these operations are not independent but 

must be done in an internally consistent fashion. The principle used here is to require that 

gradients interpolated to a particular particle be independent of the height of that particle. 

This insures no self-generated motion. 

Figure 3 illustrates a typical cross section along the x axis. From (11), the normalized 

cross-sectional areas of the particle in each of the enveloped cells along this axis are 

u.i-1 = (1/2 - 6/A)2/2, 

U;i = {l-(l/2)[l/2 + 2(k/A)2]}, 

wj+l = (1/2 + ^/A)2/2, (12) 

where the normalization factor is the cross-sectional area of the particle. The interpolation 

of the height of this particle to the overlapped cell centers is then given by hpWj.u hpWj, 

hpwj+i for the j - 1, j, and ;' + 1 cells, respectively. The hatched, open, and cross-hatched 

10 



areas 

case 

in figure 3 show how the height is partitioned at the three grid points. 

The above results apply to a typical cross section for a single particle. The two-dimensional 

for a generic particle p is achieved by prescribing the weights as 

To summarize, the height at the tth, jth. cell center is the weighted average of all particles 

enveloping the cell. This is given by 

P=I 

where p is the particle number in the cell and Nij is the number of particles that overlap 

into the cell i,j. After the heights are accumulated at all grid points, second order accurate 

gradients are calculated and then interpolated back to the particles using the same weights. 

From (14), the values of the gradients at the nine relevant cell centers are readily expressed 

as 

Di+aj+ß = [hi+a+llj+ß - &i+e_i,,-+/?]/2A, (15A) 

for the x component of the gradient and 

= [hi+aJ+ß+1 - hi+aj+ß-iWA,    atß = -1, 0, 1, (155) 

for the y component. 

Interpolation of these gradients back to a particular particle P in cell i, j is independent 

of hP. To see this, focus on the x component, (15A). The interpolation of this component 

back to P is 
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or=-l 

1 

2 iop(,-+«j)A+«,i+ E wP(i+«,i-i)-D<+«.J'-i- (16) 
a=-l a=-l 

Using (14) and (15A) the first sum in (16) is 

l 

I 
or=-l 

2 A    J2   Wp(t+«,j)A+«,j+l  = 

wp(i-i,;+i)[ £ «A-    E   V^l+ "*(*. i+i)[   E   V^-    E   "Al 
P=I p=i p=i . P=1 

+wp(i+i„j+i)[ E «>A- E ^Al- 
P=I p=i 

Now, /iP does not appear in the iVi_2,;+i and Ni+2,j+i sums since P is not in either cell. It 

also appears once in each of the other four sums; however, the terms exactly cancel. It is 

readily seen that this is true for each of the other sums in (16) as well as the y component 

of the gradient. 

The cancelation of particle height in the interpolated gradient to a particle is analogous 

to the condition that second order accurate finite differences at grid points do not depend 

on the value of the function at those grid points. The importance of this to the present 

application is that there is no self-induced motion of a particle. This result arises for two 

reasons. First, the same weights are used for the interpolation from particles to the grid 

and then back to the particles and not because of a specific form such as (12). Second, the 

order of accuracy of the derivative (second order in our case) is not higher than that of the 

interpolation routine. Fourth order accurate derivatives used in conjunction with a lower 

order interpolation scheme may produce self motion and thus would not be as accurate as 

the second order schemes. 
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This method has several other attributes. First, the weights are computationally efficient 

since they are not difficult to calculate and are used both for interpolation from particles to 

grid points and back to the particles. Second, (9) is automatically satisfied since the heights 

and volumes of the particles are assigned initially and are fixed. Moreover, it is not necessary 

to interpolate particle velocities as long as there is no viscosity in the problem. Finally, any 

stable time integrator can be used to advance the position each particle. 

The major tradeoff in choosing the integrator is that between accuracy and computational 

work. For example, a two step integrator, such as a second order Runge-Kutta scheme, has an 

accuracy of 0((St)2) but requires two evaluations of V/i at each particle. Thus this integrator 

would require two interpolations of the particle heights to the grid, two applications of the 

finite difference form of V to h on the grid and two interpolations of V/i to the particles for 

each position advancement. On the other hand a first order accurate integrator with a much 

smaller time step could provide the same degree of accuracy with less computation per time 

step. 

2.3    Initialization of Height Field 

We shall illustrate this method in the next section by an application to an initially circular 

lens. For initial conditions we choose a parabolic lens that has been the subject of consid- 

erable study [18, 20 - 35].   In these studies the lens velocity and thickness were specified 

as 

h = h0(t) + BijftxiXj,   for h > 0 

Vi = Gijfäxj,   for h > 0 

Vi = 0,   elsewhere (1') 

Here the summation convention is used for repeated indices and the spatial coordinate Xi is 

measured from the center of mass of the lens. Note that the velocity field is discontinuous 
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at h = 0 as is Vh. Moreover, the discontinuous frontal boundary, h = 0 must be calculated 

as part of the solution.  Conventional gridded methods are not well suited for problems of 

this sort. 

Substitution of (17) into (8) and (9) yields 8 coupled nonlinear ordinary differential 

equations for Gy(i), h0{t) and By(t). As shown in [24] and [34] the resulting solutions 

can be represented as a nonlinear superposition of rotational, deformational and horizontal 

divergence modes. The lens frontal boundary generally may oscillate between a circle and an 

ellipse which tends to rotate anticyclonically. Particle motion can be quite complicated; see 

for example sample trajectories in [31]. Solutions based on (17) will be called lens solutions. 

The nondimensional equation for the initial lens thickness is 

h = Mi - (r/&)']> (18) 

where h0 is the centerline thickness, r is the radial coordinate from the lens center and 

R = [\Bn + .B22I/2]"1 is the radius of the lens. The volume occupied by the lens is 

VL = 2TT frhdr = {w/2)h0R
2. (19) 

Jo 

Integration of (11) shows the volume of a particular particle to be Vp = A2hp so the total 

volume occupied by the particles is 

Vr = A2EM (2°) 

where N is the total number of particles. Clearly, VT = VL must be required. 

Consider first the case where hp is the same for all particles. Then, 

TV = VT/VP = (K/2)(h0/hp)(R/A)2. (21) 

To estimate N, divide the lens into concentric circular annuli surrounding an axial cylin- 

der centered at the lens center. The radial width of an annulus is 2A/d with d > 2, and the 
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height of the lens along the axis of an annulus is given by (18). In the limiting case, d = 2, 

the annulus width is the same as the computational cell discussed in the previous section. 

Since the annuli are used for the initial distribution of particles in the lens it is appropriate 

to have the annuli spacing finer than that of the computational cells. 

The axis of the outermost annulus is at radius r = R- A/d. Then the height along this 

axis is 

hL = h0{A/Rd)(2-A/Rd). (22) 

Obviously, hp < hL with the equality holding for just one particle in each cell on the lens 

boundary. Using this limiting case for hp in (21) gives 

TV = (Tt/2)(R/A)3d/(2 - A/Rd). (23) 

All having the same height, these particles must be distributed nonuniformly in the lens. 

We shall use R = 10"1, A = 4 X 10"3 and d = 16 so (23) suggests N ~ 0(2.5 X 105) for 

hp~hL. However, requiring ten particles in each cell in the outer boundary increases N by 

an order of magnitude. 

The number of particles can be reduced by decreasing the horizontal resolution; i.e., 

increasing A/R. From (23) it is seen that changes in resolution can cause dramatic changes 

in the particle count. An order of magnitude change in resolution produces three orders of 

magnitude change in the number of particles. 

One of the problems that arises with a constant hp is that the number of particles in each 

cell will vary with radius with fewer particles in the outermost cells. This can be overcome 

by allowing hp to vary with radius as well. The volume of an annulus centered at r is 

VA = 2TT fr+A/drhdr = Airh0r(A/d)[l - (r/R)2 - (A/Rd)2). 
Jr-A/d 
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The number of particles required to fill this volume is 

NA = VA/VP = 4*[Ä,Ap(r)](r/A«Q[l " irlR? ~ (A/^)2]- (24) 

The number of cells in this annulus is the ratio of the annulus area to cell area. A simple 

calculation gives this number as Nc = ivr/Ad. If the number of particles in each cell, 

N# = NA/NC, is to be constant the particles heights must be distributed as 

hp(r) = (h0/N#)[l - (r/R)2 - {A/Rdf]. (25) 

Adjusting the height of the particles to keep the number of particles in a cell constant 

also changes the requirements on the total number of particles. The cross-sectional area 

of the lens annulus is ir[R2 - (A/d)2}. Thus, the number of cells needed to cover the lens 

annulus is 

7Vcell = TT[R
2
 - (A/d)2]/A2, (26) 

and the total number of particles in the lens annulus is 

NTA = N#-Ncen. (27)- 

To complete this analysis it is necessary to fill the inner cylindrical core. Its volume is 

rA/d 
Vj = 2TT /      rhdr = nh0(A/d)2{l - (l/2)(A/Rd)2}. 

Jo 

The number of particles required to fill this void is 

(28) 

Nr = Aholhp{I)d
2][l - (1/2)(A/Rd)2}. (29) 

This is determined by an arbitrary choice of /ip(j). Here we use Nj ~ 103. 
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A critical issue with this approach is an appropriate number of particles for each cell 

JV#. Using different particle geometry than we do, other investigators [13 - 15] used about 

15 particles per cell. It should be noted that these investigators used smoothing at every 

timestep. With our geometry and elimination of smoothing it appears that iV#~5x 102 is 

required for reasonable resolution and accuracy. 

With 7V# ~ 5 • 102 the total number of particles is 

NT = NTA + NI~10
6
. (30) 

Finally, it should be noted that we use a polar coordinate system here only to initialize 

the distribution of particles. The calculations presented in the next section are done with a 

rectangular grid even for those problems which exhibit radial symmetry. 

3    APPLICATION TO AN ISOLATED LENS 

The first simulation discussed here was designed to test the ability of the PIC ansatz to 

reproduce, with small phase error and amplitude distortion, a single frequency in a nonlinear 

flow and to provide high resolution of the associated oscillating front. Here and in the next 

problem we shall use the variable height formulation. It is stressed that there is no smoothing 

in the results presented below other than what occurs with the interpolation. 

As a control for the PIC simulation, comparisons will be made with numerical solutions 

of the lens model. In the latter model the height field is parabolic and the velocity field 

linear with respect to the distance from the lens center for all time. These constraints are 

imposed only initially on the PIC model. In both cases a second order accurate Runge-Kutta 

integrator was used. 

The initial velocity field for the PIC model was taken as the same as the lens model; i.e., 
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t>!(0) = (G/2)x1 - (GR)x2, 

U3(0) = (GR)x1 - (G/2)x2, (31) 

where G = <?n(0) + £22(0) is the initial horizontal divergence and GR = [Cri2(0) - Gr
22(0)]/2 

is the initial spin. Numerical values for this experiment are given in the table. 

For the lens model [21] obtained an analytic solution for h0, By and Gy, which is called 

here the pulson solution. The nondiagonal components of By and the symmetric component 

of Gy are zero for all time while the remaining components as well as h0 oscillate at the 

Coriolis frequency /. Unlike most nonlinear problems the oscillation frequency of the pulson 

is independent of the initial conditions. Of particular interest here are the analytic expres- 

sions for the centerline height, h0, and [\Bn + Bi^ß]-1 since these two variables determine 

the height field and the evolution of the lens boundary. These are found to be 

he(t) = HT(t), 

^(i) = /lo(i)-(AB/4)r2(i), (32) 

where H is the layer thickness scale at t = 0, As is given by the initial conditions of Bn+B22 

and 

r(t) = [A + 7sin/*]-1,   A>hi 

Also, A and 7 are given by initial conditions of Gy. 

Figure 4 shows typical trajectories for the PIC (solid curve) and lens solutions (dashed 

curve). Both particles start at same initial position shown as a triangle and both exhibit the 

same cycloidal behavior characteristic of this solution. The boxes show the position at one 

day intervals. This motion is composed of general anticyclonic rotation about the lens center 

with small loops at the inertial frequency. As seen in panel a, the trajectories are virtually 
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identical for the first 1.5 days; however, by day 2 some offset is apparent. Although there is 

some growth in the offset it is mostly completed by day 5 as seen in the starting and ending 

offsets in panel b. The PIC solution exhibits some irregularity in the spacing of the inertial 

loops. The period, however, is very nearly inertial as expected. 

Figure 5 compares the PIC solution for the centerline height h0 (solid curves) with the 

analytic solution given by (32). This figure shows that the PIC solution accurately reproduces 

both the amplitude and phase of the analytic solution. Figure 6 compares the PIC height 

field after 10 days (solid curve) with the initial height field. Because the solution is periodic, 

these fields should be identical. Again, the comparison is excellent although there is some 

indication that near the lens center the PIC simulation is slightly thinner than the exact 

solution. This is also reflected in the slight increase in the simulation thickness at mid radii. 

The difference between the initialized field for PIC and the analytic solution could not be 

seen at normal plotting scales. 

The above flow field had vorticity and horizontal divergence but no deformation. To test 

the efficacy of the PIC model in the presence of a time dependent deformation component 

of the velocity field, the initial velocity (31) was replaced by 

ui(0) = (G/2 + GW)zi + {GN ~ GR)x2, 

W2(0) = (GN + GR)x! + (G/2 - GN)x2. (33) 

Here GN = [Gfn(0)-Gf22(0)]/2 is the initial normal deformation and Gs = [G12(.0) + G2i(0)]/2 

is the initial shear deformation. Numerical values are given in the table. 

The solution for the lens case was obtained by numerically integrating the eight equations 

for h0, Bij and Gij. See [31] and [33] for details regarding the solution procedure. This 

solution shows that the lens boundary starts as a circle, quickly deforms into an ellipse 
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which rotates anticyclonically for a brief period then abruptly deforms back to a circle. This 

cycle is repeated; however, each new repetition of the circular or ellipse phase does not have 

the same geometric characteristics as the previous phase. 

Figures 7 and 8 show the evolution of two example trajectories. Figure 7 is typical of 

trajectories for particles started near the lens center. This figure shows that the trajectory 

for the lens model particle tends to stay near the center although there is considerable 

irregularity in the trajectory. In contrast the PIC particle tends to wander away from the 

lens center. This is consistent with the results of the previous experiments. Other than 

exhibiting anticyclonic rotation the two trajectories appear uncorrelated at very early time. 

Figure 8 shows typical paths for particles started near the initial lens boundary. Here 

the trajectories from the PIC and lens model are in good agreement for the first two days. 

Thereafter the trajectories exhibit only crude similarities such as anticyclonic rotation and 

cycloidal looping. As with the previous experiment, the lens model trajectory shows greater 

excursions from the lens center than does the PIC model. 

Figure 9 compares the PIC centerline height (solid curve) with the numerical solution to 

the lens model. As seen in this figure, the solutions agree quite well through day 2. After 

this time the solutions agree well in phase but the amplitude of the PIC solution tends to 

be slightly smaller than the lens solution. This is consistent with the indication from Fig. 7 

that with the PIC solution the lens tends to flatten. 

Figures 10 and 11 compare the evolution of the lens boundary determined by the PIC 

model with the lens solution. The detailed evolution for the first day is shown in figure 

10 while figure 11 shows snapshots of the boundary over a 10 day period. It is seen in 

these figures that up to day 2.5 the PIC and lens solutions are in close agreement. Both 

quickly evolve to an elongated ellipse which rotates anticyclonically. At day 2.5 the boundary 

has evolved to a more circular shape. Thereafter the PIC solution continues to display an 

elliptical mode; however it is not nearly as pronounced as that of the lens solution. By day 
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8 there is some indication of a Kelvin-Helmholtz type instability at the boundary of the PIC 

solution; however, the growth rate does not seem large. 

The discrepancies between the two model simulations begin around day 2. There is 

no indication of numerical instability in either case and no indication of a hydrodynamic 

instability in the PIC simulations other than a possible weak Kelvin-Helmholtz instability 

late in the simulation. Note that hydrodynamic instabilities are precluded by the formulation 

of the lens model since the height and velocity profiles are required for all time to be parabolic 

and linear respectively. Thus either solution could be representative of real oceanic lenses. 

Since the PIC model has fewer restrictions we prefer it. 

The PIC calculations described above used approximately 106 particles. In order to 

illustrate the deterioration in the solution when less particles are used the deformation case 

was repeated with only about 105 particles. Figure 12 shows the evolution of the centerline 

height for the two cases. It is seen that the peaks and troughs become ragged for the reduced 

particle case. Note that for plotting purposes the 106 particle case is shown as the dotted 

curve while the 105 particle case is shown as the solid curve. 

4    CONCLUSIONS 

The results presented in the previous section are very encouraging. The comparison of the 

simulations and the pulson analytic solution showed that the PIC method used here was able 

to reproduce both the amplitude and phase of the analytic pulson solution with negligible 

distortion. The case of the deforming vortex provided a good test of the method for handling 

typical evolutions of fronts in which local horizontal divergence, vorticity and deformation are 

all important. The time and space scales of the front oscillations would be computationally 

costly to treat by conventional gridded primitive equation models. The agreement between 

the PIC simulations and the numerical results from the lens model indicate that the former 

is capable of treating problems with dynamically evolving interfaces. 
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The formulation used here allows for the particles to interpenetrate so that a given spatial 

position generally will be contained within the volumes of many particles. This means that 

with this formulation it is not appropriate to consider material properties as characteristic 

of a single particle occupying a particular position at a particular time. Rather material 

properties should be viewed as a suitable weighted average of all the particles influencing 

the position at the particular time. 

It is noteworthy that the results achieved here did not require any smoothing other than 

that implicitly contained in the interpolation and differentiation operations. Perhaps this is 

due to our choice of the particle shape and weighting. This approach may be better suited 

to simulating a continuous fluid media than schemes which use simpler shapes and weighting 

functions. 

There are still unresolved issues regarding the utility of this approach, however. No 

one has yet introduced a fully dynamically interacting lower layer. By prescribing a quasi- 

geostrophic response in the lower layer [16] was able to use conventional gridded methods for 

obtaining the solution in that region while using PIC methods in the upper layer. Using PIC 

methods in both layers should be quite challenging. Another question is to determine how 

well the method treats streaming flows. In this case the particles are advected out of one 

part of the domain and must be replaced by inflow from another part. There is no experience 

with PIC methods in a geophysical fluid dynamics setting with problems of this sort. Finally, 

it will be important to consider surface stress-driven flow and flow over topography. In these 

cases it will be necessary to incorporate viscosity, which will require some modifications in 

the approach used here. 
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Table: Initial Conditions 

Pulson Case        Deformation Case 

h0 4.875 X 10 -4 4.875 x 10"4 

(ffn + B22)/2     -9.75 x 10- 

>12? 

R 

Bii-, B\ 
a 
Gs 

G 

21 0 
-0.25 

0 

0.6 

-9.75 x IP"2 

0 
-0.25 

0.2 
0.1 
0.6 
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Figure Captions 

Figure 1 Cartoon of the two layer model. 

Figure 2 Perspective picture of the shape of a particle. 

Figure 3 Cross section of a particle along the x axis. The hatched, open, and cross-hatched 

areas divided by A give the weights specified in (12). The two vertical dashed lines 

are the cell boundaries. 

Figure 4 Typical trajectories for the PIC (solid curve) and lens model (dashed curve) for the 

pulson case. The triangle is the starting point for both trajectories and the boxes give 

the positions at one day intervals. Panel a shows the first five days and panel b the last 

five days of the simulation. The dotted line in panel a gives the initial lens boundary. 

Figure 5 Comparison of the PIC centerline height with the analytic solution for the pulson case. 

The PIC result is the solid curve and the analytic solution is the dashed curve. 

Figure 6 Comparison of h at t = 10 days from the PIC model (solid contours) with the initial 

h (dashed contours) for the pulson case. 

Figure 7 Typical trajectories for the PIC (solid curve) and the lens model (dashed curve) for 

particles starting near the origin for the deformation case. Panel a is for the first five 

days and panel b is for the last five days of the simulation. The symbol convention is 

the same as in Figure 4. 

Figure 8 Typical trajectories for the PIC (solid curve) and the lens model (dashed curve) for 

particles starting near the initial lens boundary for the deformation case. Panel a is for 

the first five days and panel b is for the last five days of the simulation. The symbol 

convention is the same as in Figure 4. 
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Figure 9 Comparison of the PIC centerline height with the numerical solution to the lens model 

over 10 days for the deformation case. The PIC solution is the solid curve while the 

lens solution is the dashed curve. 

Figure 10 Comparison of the evolution of the lens boundary determined by the PIC model with 

that of the lens model over 1 day for the deformation case. The PIC solution is the 

solid curve while the lens solution is the dashed curve. 

Figure 11 Comparison of the evolution of the lens boundary determined by the PIC model with 

that of the lens model over 10 days for the deformation case. The PIC solution is the 

solid curve while the lens solution is the dashed curve. 

Figure 12 Comparison of the centerline height evolution for PIC simulations with approximately 

106 particles (dotted curve) and 105 particles (solid curve) for the deformation case. 

29 



r-. 





+ 

I ■■'- 



1 i   i   i   i   i   i   i   i   i   i   i —i 1 -   i      |      i      i      i      i      | 1 

0.10 

0.05 

- 

, - *          ^ 

//                 \ \Y 
//                   \,\ 
j i 

/1 
/1\ 

\                   1 

Y 

- 

_ ■  v \ \\ - 

>- 0.00 
'   \&     _ 

// 
1/ 

\    if 

/   '■ 

C     ~~~\      /   '  ■ 
- 

- \( □ - 

-0.05 
- *^X^^               rasK 

/ - 

-0.10 

i   i ■      i      i      i      1      i      i      i      t      1      i 1      1      1      1     1      1      1     1      1 1 

■0.10       -0.05 0.00 0.05 .        0.10 
X 



"1     I     I     I     I     I     I     1     I     I—1—I—I—I—I—I—,—I—I—I—r 

0.10 

0.05 

>-      0.00 

-0.05 

■0.10 

I i L -i—i—i—i—l i *    i    i -i—i—i—l i '''I' 

-0.10       -0.05 0.00 0.05 .        0.10 
X 



0.0012 - 

x 0.0010 
o 
Lü 
X 
LJ 

er 
0.0008 - 

y 0.0006 

0.0004 

0.0002 
0 4     6     8 

TIME (DAYS) 
10 



160 -''* i '■''''''' i '11111111 j 111111111111111111111111111111111111111 

LJ 
CG 

o 

150 r 

140 

130 

120 

110 

100 
"l I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I | | | | ! | | | | ,,,,,,,,, | ,,,,,, | 

100  110  120  130  140 . 150  160 
X GRID NUMBER 



1 1 r _] ! ! j . , j ! , 1 , , r 

0.05 - 

>-      0.00 

-0.05 

■    ' i_ I I ' T I I t I | | | 1 1_ 

-0.05 0.00 
X 

0.05 



~i        I        i        i        I        i        i        i        i        i        I        r ~i 1 r 

0.05 

>-      0.00 

-0.05 

■    '    ' i i i i '    '    ' i i i_ 

•0.05 0.00 
X 

j i i_ 

0.05 



i i     i     r -i 1—i 1—i—i 1 1 1 1 1—i—i 1 1—r 

0.10 

0.05 

>-      0.00 

-0.05 

0.10- """ '" 

I       i        I       t       i        i        i        I        i        i        i        i       I        i        r        i        i        I        i        i        i        i        I        i 

-0.10       -0.05 0.00 0.05 .        0.10 
X 



~i     I 1 1 1 r ~i      i      i 1 r ]     i 1 1 r n      i 1 1 r 

0.10 

0.05 

>-      0.00 

-0.05 

■0.10 

j—'—'—'—'—i—i—i—i—i—i—i—i i t   ■   i   i   ,   ,   ,   i   , 

-0.10       -0.05 0.00 0.05 .        0.10 
X 



o 
Lü 
I 

ÜJ 

Cd 
Lü 

0.0012 

0.0010 - 

0.0008 

y 0.0006 

0.0004 h 

0.0002 
0 4 6 

TIME (DAYS) 
8 10 



160 - 

140 

120 

100 

160 

140 

120 - 

100 - 

DAY 0.1 

160 

-i—i—|-         ,          i          i 

140 -(             >^ 

120 : I               J- 
100 

:                     : 
"..I,,,   _I ■ , , 1 1 , . 1 uJ 

100  120  140  160 

DAY 0.2 

100  120  140  160 

DAY 0.3 

160 - 

140 

120 

100 

100  120  140  160 100  120  140  160 



DAY 0.4 

160 

■■' ' i ■ ' ■ i • ■ ■ i ■ ■ ■ i 

140 
- (      \,  ; 

120 : \     \; 

100 

".  .  r  ,  .  ,  i  .  .  .  i    

160 

140 

120 

100 - 

-i—i—i—.—j- 

■ ... i 

DAY 0.5 

160 

II,I i . i . . . j 

140 \ 

120 - 

100 - 

-. , i . , , i , i . . . i 

100  120  140  160 

DAY 0.6 
100  120  140  160 

DAY 0.7 

160 

140 

120 

100 

-i—,—i—i—r -i—i i -i—>—■—'—r 

'    ■    ■ I I L. 

100  120  140  160 100  120  140  160 



DAY 0.8 
->—i—<- T—i—i—i—i—<—i—'—r 

160 

140 

120 

100 

160 

140 - 

120 

100 

__i i i_ 

160 

140 

120 - 

100 

100  120  140  160 

DAY 1.0 

100  120  140  160 

-,—,—i—i—t—r—i—i—r 

100  120  140  160 



INITIAL 
-,—i—i—i—■—i—i—i—i—r 

160 - 

140 

120 

100 

■ ■ ■ i J_ 

DAY  1.0 

160 

i   ' i i i ... , 

140 / 

\ 

120 

100 
• 

i .  . i , . . i ... 

100  120  140  160 

DAY 2.5 
-i—i—i—i—i—i—i—i—i—i—'—>—'—r 

100  120  140  160 

DAY 4.0 

160 

140 

120 

100 - 

160 

100 - 

-i—|—i—i—i—i—i—i—■—r -i 1 r- 

140 -   ' 

120 

100  120  140  160 100  120  140  160 



160 - 

140 - 

120 

100 - 

DAY 5.0 
->—i—i—i—■—i—■—'—' i ,- 

I  . i . L 

i—i—■—■—r 

160 

140 

120 

100 

_i i—i—i- 

160 

140 - 

120 

100 

100  120  140  160 

DAY 8.0 

160 

140 

120 

100 

'  . i 1 L 

100  120  140  160 

DAY 10.0 
-i—i—i—>—i—■—i—•- 

100  120  140  160 100  120  140  160 



OFFICE OF THE UNDER SECRETARY OF DEFENSE (ACQUISITION) 
DEFENSE TECHNICAL INFORMATION CENTER 

CAMERON STATION 
ALEXANDRIA, VIRGINIA 22304-6145 

INREPIY ^—.^  ^•x-x 
REFER TO DTIC-OCC 

SUBJECT: Distribution Statements on Technical Documents 

OFFICE Of  NAVAL  RESEARCH 
CORPORATE PROiRA.viS DIVISION 

ONR  353 
T0: 800  NORTH  OUINCY STREF.T 

ARLINGTON, VA    22217-5660 

•0* : 

^ 1. Reference: DoD Directive 5230.24, Distribution Statements on Technical Documents, 

J^ 18 Mar 87. / 

^\ 2  The Defense Technical Information Center received the enclosed report (referenced 
\ below) which is not marked in accordance with the above reference. 

FINAL REPORT 
N00014-93-1-0567 

V (\ TITLE: A PARTICLE-IN-CELL MODEL 
3 ) „^n ^fnDuvsirAiFI.lITDFLOWS FOR GEOPHYSICAL FLUID FLOWS 

3.' We request the appropriate distribution statement be assigned and the report returned 

to DTIC within 5 working days. 

4. Approved distribution statements are listed on the reverse of this letter. If you have any 
questions regarding ihese statements, call DTIC's Cataloging Branch, (703) 274-6837. 

FOR THE ADMINISTRATOR: 

1 F   . GOPALAKRISHNAN NAIR 
Chief, Cataloging Branch 

FL-171 
Jul 93 



DISTRIBUTION STATEMENT A: 

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED 

DISTRIBUTION STATEMENT B: 

DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES ONLY; 
(Indicate Reason and Dale Below). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED 
TO (Indicale Controlling DoD Office Below). 

DISTRIBUTION STATEMENT C: 

DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND THEIR CONTRACTORS; 
(Indicale Reason and Dale Below). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED 
TO (Indicale Controlling DoD Office Below). 

DISTRIBUTION STATEMENT D: 
l'( 

DISTRIBUTION AUTHORIZED TO DOD AND U.S. DOD CONTRACTORS ONLY; (Indicale Reason 
and Date Below). OTHER REQUESTS SHALL BE REFERRED TO (Indicale Controlling DoD Office Below). 

DISTRIBUTION STATEMENT E: 

DISTRIBUTION AUTHORIZED TO DOD COMPONENTS ONLY; (Indicate Reason and Date Below). 
OTHER REQUESTS SHALL BE REFERRED TO (Indicate Controlling DoD Office Below). 

DISTRIBUTION STATEMENT F: 

FURTHER DISSEMINATION ONLY AS DIRECTED BY (Indicale Controlling DoD Office and Date 
Below) or HIGHER DOD AUTHORITY. 

DISTRIBUTION STATEMENT X: 

DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND PRIVATE INDIVIDUALS 
OR ENTERPRISES ELIGIBLE TO OBTAIN EXPORT-CONTROLLED TECHNICAL DATA IN ACCORDANCE 
WITH DOD DIRECTIVE 5230.25, WITHHOLDING OF UNCLASSIFIED TECHNICAL DATA FROM PUBLIC 
DISCLOSURE, 6 Nov 1984 (Indicate dale of determination). CONTROLLING DOD OFFICE IS (Indicate 
Controlling DoD Office).' . 

The cited documents has been reviewed by competent authority and the following distribution statement is 
hereby authorized. 

ßL OFFICE OF NAVAL RESEARCH 
(Statement) n^°RATE PR0Gf^MS DIVISION (Controlling DoD Office Name) 

800 NORTH  QUINCY STREET 
ARLINGTON,  VA    22217-5660 

(Reason) 

DEBRA T. HUGHES' *—■•"• 
n~"UTY DIRECTOR 

y-'-^ATE PROGRAMS OFFICE 

(Controlling DoD Office Address, 
City, Stale, Zip) 

[is SEP $05 

(Assigning Ollice) (Date Statement Assigned) 


