
REPORT DOCUMENTATION PAGE
Form Approved

OM8 No. Q7Q4-0188

1 , . ' , . , J ■ ,..,.-;_. «+„y«i-«uiloft n estimated to •<*Kr*a* 1 hour oer r«pom*. irtdodiog «x time (or reviewing imvuctiom» searching exnting d»U wurcn,
'USÜ±<^r2^m,^r£?dVj£SSe2^^~^^^^^^^L^^TM5S^OO. Seod comment, r-.rdin, Si, burden «Tim,« or .ny other «pe« o« *„
oirherma «rwinumuiran^I*"™" ^^t'J^l^rZucirii thn burden to Wnhmcrton He»dqu»rwr» iervK«. Oirector.te for Information Operation, tod Aepora. U1S Jeftenon

1. AGENCY USE ONLY (Leave bUnk) 2. REPORT DATE

Oct95
3. REPORT TYPE ANO DATES COVERED TT

SBIR Final Report, Phi, Oct-Mar

4. TITLE AND SUBTITLE

Object-Oriented Visual Programming Language
SBIR Final Report, Phase 1

6. AUTHOR(S)

Douglas J. Davenport, PI

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

SNAP Technologies, Inc.
24 Upper Creek Road
POB 0247
Etna, NY]3062-0247

9. SPONSORING/MONITORING AGENCY NAME(S) AND AODRESS(ES)

U.S. Army Missile Command
AMSMI-RD-PC-GX, Bldg 5400, Rm B145
Redstone Arsenal, AL 35898

5. FUNDING NUMBERS

Contract Number
DAAH01-95-C-R101

8. PERFORMING ORGANIZATION
REPORT NUMBER

V00PEFR1

10. SPONSORING / MONITORING

11. SUPPLEMENTARY NOTES

OCT 2 0 1995 I I *ä ii

12a. DISTRIBUTION / AVAILA8IL1TY STATEMENT

—--N"ö~ iesLikLiuu»
DISTRIBUTION STATEMENT K

Approved toi piiDiic reisoMj
DutnbunoQ ünüautod

12b. DISTRIBUTION CODE

!3. ABSTRACT ;,V(jximum;C0worOJ)

A general
obj ec t-or i
of reusabl
faster ove
learning t
long-lived
visual pro
specific t
and design
programmin
general sp

purpose visual programming language, based on
ented methodology, offers substantial Benefits
e code, shorter creation and maintenance time,
rail understanding of the code, and reduced staff
ime. It should be an ideal fit for sites with
code or very large bodies of code. The value of

gramming languages is well understood~for very
asks; this report reviews the plan for research
of a general purpose visual object-oriented

g language through nine steps, which includes
ecifications for the preferred language and environment

14. SUBJECT TERMS

object-oriented programming
visual programming language

17. SECURITY CLASSIFICATION
OF REPORT

unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

unclass ified

19. SECURITY CLASSIFICATION
OF ABSTRACT

unclassif ied

15. NUMBER OF PAGES

169
16. PRICE cooe-

20. LIMITATION OF ABSTRACT
UL

unlimited

NSN 7540-01-280-5500

REF9

Standard Form 298 (Rev. 2-89)
»rrwioed By ANSI Std. Zll-'t

19951019 027

SBIR Phase I Final Report

by
SNAP Technologies, Inc.
24 Upper Creek Road
Etna, NY 13062-0247

"Object-Oriented Visual Programming Language"
Douglas J. Davenport, PI

in fulfillment of
Contract Number DAAH01-95-C-R101
14Mar95 - 160ct95

Issued by US Army Missile Command
AMSMI-RD-PC-GX
Redstone Arsenal, AL 35898-5280

Submitted 16 October, 1995

DTia QUALITY INSPECTED 3

Project Objectives

An Overview
Research Focus
Specific Objectives of Phase I

Accecic in For /
NTiS CRA&i rf
Df;c TAL; u
\j:w,r.r:cy.i:::c.::d r~!

a.'!C;i

By
Distribution /

Availability C cdäs

Dist
Avail anci

Special
or

A-f
1
!

i

"... There was also the fat that there were beginning to be more and more
people who wanted to solve problems, but who were unwilling to learn
octal code and manipulate bits. They wanted an easier way of getting
answers out of the computer. So the primary purposes were not to develop
a programming language, and we didn't give a hoot about commas and
colons. We were after getting correct programs written faster, and
getting answers for people faster. I am sorry that to some extent I feel
the programming language community has somewhat lost track of those two
purposes. We were trying to solve problems and get answers. And I think
we should go back somewhat to that stage...."

—Grace Murray Hopper [Wexelblat81]

An Overview

During Phase I SNAP Technologies, Inc. was to undertake research to
determine the criteria of a general purpose visual object oriented pro-
gramming language and to determine whether such a creation existed in
the commercial, academic, or development worlds. In its absence, SNAP
Tech was to put forth a design for a general purpose visual object ori-
ented programming language. As research progressed we recognized
the additional need to research non-object-oriented visual languages,
and did so. Several times we thought we had found the general purpose

Project Objectives 3
An Overview

visual object oriented programming language, but through extensive
research and testing each time found that the delivery fell short of the promise.

As a result, we offer in this Final Report the SNAP Tech alpha design for
both language and development environment, fulfilling and exceeding
the requirements of the Phase I R&D effort.

In our Phase I proposal we recognized the value of expediting the [entire
software development] process, making the solution methodology bet-
ter fit the task, and finding a balance between what machine should do,
what language should do, and what programmer should do. We refined
these ideas to a single point: productivity. Provide tools to the program-
mer that include a robust core set of features and objects that provide
extensibility, an environment that aids more experimentation, debug-
ging, code creation, and maintenance cycles, make it dynamic and make
it visual—and we have the basis for greater productivity.

During Phase I we researched answers and reasons for seven technical
objectives, and pursued them via an eight step work plan. Summarized,
we were to research and compile data on known visual programming
languages (VPLs) including commercial, academic, in-progress, etc.,
then systematically categorize them, determine criteria for evaluation,
analyze them based on these criteria, determine those components use-
ful and usable in a visual environment, document these, describe the
most important attributes of a general purpose (GP) VPL, then design an
environment to support those attributes. Finally, we were to write the
Phase I final report and if invited, a Phase II proposal.

The following pages describe in detail the specific objectives, the work
undertaken, where, how, results, and our belief of the conclusion's tech-
nical feasibility for producing a general purpose visual object oriented
programming language and environment (VOOPL/VOOPE).

No buzzwords! In this report we have intentionally refrained from using jargon. Because
the community has not yet determined clear, precise definition for many
of these terms, we choose to explain ourselves with standard English
phrases. We trust this lack of buzzwords will only clarify the results to
readers of this information.

Phase ISBIR Final Report from SNAP Technologies, Inc.

Project Objectives

Research Focus

Research Focus

Our research sought a completely general purpose visual object-ori-
ented language, existing in development or a more mature state in a
commercial, academic, or available private enterprise as of this writing.
The steps used for Phase I research were: 1) research and compile data
for features, ideas, methodologies, etc., 2) record and classify according
to the Burnett/Baker classification scheme [Burnett94], 3) create a basis
for evaluation of this information, 4) conduct a language analysis, 5)
determine specific elements of the environment appropriate for a visual
programming language, 6) analyze appropriateness of features from
existing languages, 7) determine the most important attributes for a gen-
eral purpose visual object-oriented programming language, and 8) then
design the environment for such a language.

This research included study of over 300 articles, books, papers and the-
ses, more than 100 languages (finished and unfinished), and conversa-
tions with an assortment of designers and authors. Not all items used
for research are included in the references. If the item's content was mar-
ginal to the topic, or did not meet our in-house standards of quality and
reliability, the item does not appear.

An bibliography with abstracts and annotations is included at the end of
this Final Report.

Specific Objectives of Phase I

Our Phase I technical objectives outlined a comprehensive, systematic
approach to find, identify and classify, using the Burnett/Baker Classifi-
cation Scheme [Burnett94], the existing and in-progress general purpose
visual programming languages composing today's state of the art. In
addition, we established criteria based on our professional experience
and expertise plus the writings of other experts in the fields of object-ori-
ented languages, visual programming languages, and interface design,
against which to evaluate each language/product. Each criterion identi-
fied serve the same purpose: to create a programming environment and
language that make the programmer and the resulting code more pro-
ductive and more efficient.

By following these steps we examined these languages and considered
the worth of each as a solution or contributor to the final design. In this
paper we document our results, offering languages/products of any

Phase ISBIR Final Report from SNAP Technologies, Inc.

Project Objectives 5
Specific Objectives of Phase I

significant interest shown in the Burnett/Baker Classification Scheme
plus rating these languages/products against our own criteria.

The specific technical objectives from Phase I were:

Technical Objectives • Do any general purpose visual programming languages exist today?
of Phase I . if not, what explanations exist for this lack?

• What execution paradigm is most suited for general purpose lan-
guages?

• What visual representation is best suited for a general purpose lan-
guage?

• Can VPL be integrated with existing code written in a non-visual for-
mat?

4Ä • Why, historically, have visual programming languages addressed
only specific tasks?

• What exists today that could be incorporated in some form for a gen-
eral purpose visual language?

These objectives were met and exceeded through intense research. The
answers to some of them—what visual representation is best suited for a
general purpose language—, for example, are still in their infancy. Many
experts agree, at least in this case, that only recently have computers
become commonly available that are sufficiently robust to support
graphics, and little proof yet exists that one representation is clearly bet-
ter than another. Contention is strong among this same group, however,
that the implementation of the interface is at least as important as is the
actual look of the interface.

<i| The lesson available here, based on years of related interface experience
(even text-based experience), extrapolates cleanly to the broad scope of
visual representation and beyond. The enduring, classic design guide-
lines are not dependent on each new hot idea; they are enduring because
they work nearly regardless of platform, buzzword or trend. Some of
these enduring guidelines are discussed as criteria for evaluation in the
next section.

To arrive at definitive conclusions to others of the objectives, we formed
a series of criteria based largely on the research findings and our lan-
guage design experience. For the first objective—do any general pur-
pose visual programming languages exist today—we obviously needed
to consider the merits based on an impartial scale against a designer's
conclusion. Thinking of LabView, for example, some feel it could be
used for general purpose programming even with its very specific prob-
lem domain emphasis.

Phase ISBIR Final Report from SNAP Technologies, Inc.

Project Objectives 6
Specific Objectives of Phase I

Another of the objectives—what execution paradigm is most suited for
general purpose languages—requires an in-depth understanding and
discussion, and that is provided in addition to our determination.

In all, the objectives from Phase I were thoroughly met. The detailed
results are contained in the third section, Results Obtained.

Phase ISBIR Final Report from SNAP Technologies, Inc.

Work Performed

Where and How
Research Conducted
Determining Criteria for the Language and the

Environment
Concepts Extrapolated from the Criteria

Where and How

All research had a homebase of the corporate headquarters in Etna,
New York, located in central New York. Through modem and network
connections we probed the libraries of other states and other countries.
Interesting research is taking place in New Zealand.

Logistically, we recognized four areas to target for research, each requir-
ing a different method. For history, perspective, and recently published
works, we sought published works. For academic papers we deter-
mined the pockets of greatest research interest and investigated the uni-
versities through telephone, on-line library searches, masters and
doctoral theses, and personal communication. To find the latest, not-yet-
published projects we investigated the moderated newsgroup
comp.lang.visual. We determined who among the well-published peo-
ple tended to co-publish and then sought out all authors' works. We
also spoke with professors about our research. To find the commercially
available products, both available and near-term, we used trade journals
and comp.lang.visual's Frequently Asked Questions list (FAQ).

Professionally Beginning with the professionally published works, we used keyword
published works searches to find topics and authors from the world-wide Books In Print

database. We also used every book recommended by the moderator of
the most appropriate newsgroup, and every known published work of
several key authors, Dr. Margaret M. Burnett primary among them,

Where and How

plus. After obtaining and reading these books, we widened our
approach by finding the works cited in their references. We did this until
most citations referenced works we had found. We continued to monitor
new publications through the end of the contract term, incorporating
even books published in late 1995. This wide sweep may not have
found every title categorically listed in the field, but it did find nearly
every book of significance for our topics.

Academic works The FAQ proved very useful for targeting where in the world pockets of
research effort in the field were most productive. Using Internet we
perused directories and information pages offered by these universities
to see who were pursuing topics of interest to the project, then retrieved
available working papers. We also sought information from the home
universities of various professionally published authors.

In-progress works

Commercially
available products

Here the FAQ again was useful, as it is a forum for discussion. We moni-
tored the newsgroup continually, noting updates and changes, and pur-
sued leads with phone calls and other appropriate means.

Another successful method of finding new and developing work was
personal networking, asking professors and other authors who was
doing something unusual or particularly interesting. In general they
were a helpful group, with Prof. Burnett even sending papers not other-
wise easily obtained.

We contacted some developers directly to discuss their work. Using this
approach we tracked even found designers who thought they were
working in obscurity and who didn't necessarily want their work dis-
cussed. After explaining our reason for contacting them, no one wished
to not be considered. One company required a Non Disclosure Agree-
ment, which will, of course, be honored. As this particular company did
not meet the criteria required to be considered "significant", no further
information about them is needed.

Demos, newsletters, downloads, white papers and manuals were all
requested of commercially available products, with varying degrees of
success. Some products of particular interest were purchased if no demo
was available, with the knowledge that these were a "for approval" pur-
chase. Of the commercially available items, those considered "signifi-
cant"' are categorized along with the books and papers in the
classification section.

Some commercial enterprises had no information to offer; phone calls to
other results in a recording stating that the number was no longer in ser-

Phase ISBIR Final Report from SNAP Technologies, Inc.

Research Conducted

vice. One product recently acquired by a large company seemed caught
in an administrative black hole on the product. Each phone call pro-
duced no product, but the assurance that "this" department had it. A
demo was never found.

All books, papers, demos, etc. were reviewed and catalogued according
to the Burnett/Baker classification system. This system was designed
specifically for classifying papers, so we have use a subset appropriate
to our work.

Research Conducted

The Research Process Our research sought a completely general purpose visual object-ori-
Of Phase I ented language, existing in development or a more mature state in a

commercial, academic, or available private enterprise as of this writing.
The steps used for Phase I research were: 1) research and compile data
for features, ideas, methodologies, etc., 2) record and classify according
to the Burnett and Baker classification scheme [Burnett94], 3) create a
basis for evaluation of this information, 4) conduct a language analysis,
5) determine specific elements of the environment appropriate for a
visual programming language, 6) analyze appropriateness of features
from existing languages, 7) determine the most important attributes for
a general purpose visual object-oriented programming language, and 8)
then design the environment for such a language.

The expectations of Phase I were that a visual object oriented language
could result in: 1) reusable code, 2) an improved ability for programmers
to comprehend large or complex bodies of code, and 3) shorter software
development and maintenance cycles. The criteria resulting from Phase I
all focus on designing a programming language and environment that
makes the programmer more productive. Both object-oriented method-
ology and the visual componentare key to this goal.

First stated in our Phase I proposal and strengthened with every day's
research is the belief that to create a general purpose visual program-
ming language, one must begin with that as a goal. Each design innova-
tion, every concept, every feature must be interwoven and synchronized
with the others to provide a robust, flexible design.

Over the years, one method of extending a mature language was to add
(or attempt to add) object-oriented methodology. With a few notable
exceptions, what we found were examples of text-based languages
given a graphical user interface and of procedural languages with

Phase ISBIR Final Report from SNAP Technologies, Inc.

10

Research Conducted

object-oriented methodology glued to one side In cases where object ori-
ented features were added to mature languages, such as OO-COBOL,
OO-Ada, OO-LISP, OO-Pascal, etc., whether procedural or functional
languages, the result was to increase that language's complexity. .Man-
aging that complexity then becomes the responsibility of the program-
mer, tasked now with learning complex idiosyncracies of a system
trying to do something other than its original purpose. Since easy main-
tenance and creation are explicit goals, this is clearly unacceptable.

Recognizing that adding object oriented (OO) functionality to a mature
language was a fundamental design weakness, we were especially inter-
ested in designs integrating all components from inception.

Some Pertinent History Clearly, these add-on methods of building a new language do not offer
good examples of software engineering or design. Yet this add-on
method follows the normal process for software advances over the past
fifty years.

An Evolutionary
Process

In the early years of electronic computing, people actually manipulated
bits—without the luxuries of a language or assembler. Grace Hopper, in
her keynote address to the ACM SIGPLAN History of Programming
Languages Conference in 1978, pointed out that early programmers
made a quantum leap in thinking when they built a natural language
front end to the machine level functions they had managed heretofore.
People then overlaid instructions on groups of bits, and Assembly was
born. This still required hand translation to bits, but it was progress.
Eventually programs evolved to do all this, and the early languages
were born. Time passed.

Then people wanted to work in equations...so came FORTRAN. Next,
people wanted to work with less mathematical objects, such as names
and addresses, and then came COBOL. Abstraction progresses, and peo-
ple begin adding libraries of complex mathematical equations. More
time passes. Along comes object oriented technology, a farther abstrac-
tion still, with even more abstract data.

Most, if not all, of the languages in use today are derived from FOR-
TRAN, COBOL, ALGOL and LISP. And the vast majority of these lan-
guages in use today were developed to "fix" some part of one of those
languages. Software development is the slowest aspect of technology.
Hardware changes drastically in short periods of time; radical design
changes result in radical levels of performance improvements. C, the
programmer's staple, has been around for 25 years! Changes are coming

Phase ISBIR Final Report from SNAP Technologies, Inc.

11

Determining Criteria for the Language and the Environment

more quickly in the last five years, and interesting moves are being
made in visual languages and in object oriented languages.

Understanding this evolutionary process sheds light on the lack of a
general purpose VOOPL. With very few exceptions, the existing envi-
ronment/language paradigms are not appropriate bases for its develop-
ment. This very different paradigm requires a leap of logic to a new
frontier of thinking and creation. Reasonably good languages exist for
specific purpose VPLs, but extrapolating from them to a general pur-
pose language is not a practical nor workable approach, although tried
frequently.

These extrapolation or add-on approaches will not accomplish an order
of magnitude improvement, and that's our goal. We propose to use
everything learned in the last fifty years—we intend to combine features
from several languages, chosen for their appropriateness in meeting the
productivity goals, re-cast them in light of a visual paradigm, then pro-
vide the features with a live environment to make the best use of each
advantage. This clean, tight design will result in application code that
will run on yesterday's microcontroller or tomorrow's workstation.

Determining Criteria for the Language and the
Environment

The Criteria The criteria were determined through research, through gaining insight
into existing language/environment paradigms and their inherent
strengths and weaknesses. The following paragraphs describe our pri-
mary and secondary levels of criteria. Each is labelled. The criteria even-
tually used to evaluate the research were:

Primary

Suitability for General Purpose
Consistency
Views
The Look of an Object is Part of that Object's Definition
Simple, Expressive Language

Secondary

• Object Support Design Designed in/Built into Language
• Allow for Special Cases within General Purpose

Phase ISBIR Final Report from SNAP Technologies, Inc.

12

Determining Criteria for the Language and the Environment

Suitability for General Purpose, (primary criteria)

When a language is specifically designed for certain functions, it tends
to do those functions well. When that specific-purpose language design
is exploded to general purpose functions, that may not enhance the
major design strengths of the language. Here's a case in point. From the
words of an abstract, "Although inteded for use in symbolic computa-
tion, this language should prove interesting as a general purpose lan-
guage." [Baumgartner90] Yet these strengths in one discipline may offer
strengths for another. When considering any specific purpose language,
we considered how well it could be used for other diverse pur-
poses... for word processing, for simulation, for example.

Consistency, (primary criteria)

Whether primitive or composite, objects should interact with the envi-
ronment in the same manner. This simple statement is actually incredi-
bly hard to enact, yet it remains a primary criterion. The goal, again, is to
produce a language which offers consistent use from bottom to top,
inside and out, with an end goal of greater productivity. Relearning
action/reaction, interaction, etc., directly negates that end goal.

Views, (primary criteria)

First, a word about people. People recognize and categorize objects and
concepts based on their own lives, their own personal paradigms. Sec-
ond, a word about views. A view is essentially a glimpse into the lan-
guage. Now, recognizing that people understand things differently as a
result of looking at the same picture, we sought ways to present infor-
mation so all who saw it would reach the same understanding through
their own paradigms.

We reviewed products that offered one view, a "take it or leave it"
approach. Others offer different angles of the same view. Some offer a
view of the operating system, some show the human interface, and
some show code or data structures. Since people comprehend informa-
tion differently, we believe that flexibility in views is essential.

We want to be able to restrict and expand views, for example closing the
visual of a loop and seeing it represented by a different, "closed" visual.
We have not determined the optimal number of visuals to make up any
one view; recognizing that fewer is at least simpler, determining the
minimal number workable for any given situation or application seems
a good start. That determination, optimally, would be made by each
individual user.

Phase ISBIR Final Report from SNAP Technologies, Inc.

13

Determining Criteria for the Language and the Environment

Overall, we want enough different views to understand changing per-
spectives and to focus efforts without visual noise. For example, some
people need to see data in a flow chart, others in a data flow diagram,
others in hierarchical form.

This concept of view is a critical element for both code creation and later
for code maintenance and the development of legacy systems. We
believe that views must be flexible enough to allow a programmer to see
what they need to see to understand the code.

Further, we determine that a programmer should have control over how
they want their view to appear. This simple-sounding statement is a
burst of freedom compared to anything we've found or experienced.

Finally, views of a dynamic environment are, by definition, animated.
Dozens of papers argue that animation is the logical growth for a visual
language, and we cannot imagine trying to represent dynamic interac-
tion without animation.

The Look of an Object As Part of that Object's Definition (primary cri-
teria)

In most object oriented languages objects are defined by data and the
action which it performs on itself (or on the data it contains). In a visual
language, an object can be identified in at least two ways: all objects
could look alike and each must be opened to understand its contents, or
the object may be represented graphically by its behavior. Less mental
effort is required to recognize the graphic. When the object designer also
defines a look for an object, that makes using the object easier for main-
tenance and reuse, and also for debugging.

We are interested in not only the look of an object, but also in letting the
user redefine that look. This reflects the need to let objects be viewed in a
method most meaningful to the use.

"A language that
doesn't have
everything is actually
easier to program in
than some that do."
- Dennis M. Ritchie

Simple, Expressive Language (primary criteria)

The language with fewer features can at the same time be a very expres-
sive language because it is easier to learn and to use. A simple structure,
unencumbered, relatively free of idiosyncracies, lends itself to more
rapid understanding, cleaner design, and more full user.

Object Support Design Designed in/Built in to Language (secondary
criteria)

Phase ISBIR Final Report from SNAP Technologies, Inc.

14

Concepts Extrapolated from the Criteria

Beginning with observations from experience, we note that most pro-
grammers with whom we interact tend not to use most or even half of
the features of an object oriented language because they do not believe
that managing the complexities reaps a value worth the effort.

We believe that object oriented designs integrated from conception will
be simpler, more elegant languages allowing programmers to be more
fluent, and to use the language to their fullest extent. Adding features
and add-ons creates levels of complexity and idiosyncracies which cre-
ate a need for more learning, resulting in greater difficulty for the pro-
grammer. The superior design results when a software designer need
not maintain non-object oriented objects or features of the base lan-
guage.

Allow for Special Cases within General Purpose, (secondary criteria)

We recognize that a truly robust general purpose design will include the
flexibility to accomodate special case needs. The primary special cases
known that have significant and unusual requirements are realtime and
embedded systems needs (garbage collection features, lengths of time
needed, ability to determine lengths of time needed, accessing add-on
hardware, etc.) As these are of interest to both commercial and govern-
ment sectors, they are recognized and considered.

Also considered. Less formal than a criterion but a factor watched for and considered was
whether or not a language/application required system resources not
commonly available. This is occasionally the case among the most inter-
esting languages, and was not considered a detriment; it was simply
noted. Hardware improvements come quickly.

Concepts Extrapolated from the Criteria

A Dynamic, Live
Environment

A visual language leaves behind many of the encumbrances of a text-
based language. In the text-based paradigm language was one world
and environment was another world. The programmer worked in a lan-
guage, character by character, creating code. The language world was
then closed, the environment world opened, the new code compiled,
errors reported and analyzed, and then the environment world was
closed in preparation for returning to the language world. The worlds
abutted; they did not overlap and they did not integrate. Enter new
world, Visual Paradigm.

Phase ISBIR Final Report from SNAP Technologies, Inc.

15

Concepts Extrapolated from the Criteria

Animation = visible
change to graphic
"code"

A paradigm shift is required to fully understand the vast ramifications
of the inter-functionality of the language and environment in a visual
setting. The language is now a door into an environment—an environ-
ment that one never leaves. The environment provides a picture of the
computational state of the world—a changing, dynamic, live view of the
world. As the programmer works, moving an object into a container
object, for example, the container object visually and actually changes to
reflect the change to "code". On-screen, without leaving Language and
entering Environment, the programmer sees change and effect.

Incremental
Construction

This live environment provides the programmer a means of "trying it
under construction"; the environment promotes experimentation of
technique, of learning and improving. This incremental construction is a
key concept; one doesn't leave the environment to execute a function—
the programmer sees the change dynamically and reacts accordingly.

This live environment is one of the rudiments of this visual paradigm. It
has significant value as an experimental tool. The programmer has a
ready aid for questioning, redesigning, rethinking, experimenting, pro-
totyping. In a text-based world, such endeavors required major con-
struction, major task control, even destruction before "renovation"
could begin.

Think of a large, complex set of code as being analogous to a house. The
code needs a widget updated; the living room needs new paint. In a
text-based world, start by destroying the house. Rebuild with new paint.
In a visual paradigm, a dynamic world, simply change the wall color—
no destruction is necessary to experiment with change and to view the
results. Experimentation (and learning) is fluid, implementation is
accomplished by the experimentation, and it's done before the program-
mer's eyes, literally.

How is this accomplished with any of the known execution paradigms?
This dynamic environment requires features of both procedural and
functional execution paradigms. It requires parts of both, yet mimics
neither. As is true in the features list, the execution paradigm begins
with complementary existing features from disparate sources. Creating
a revised execution paradigm requires prototyping, testing, evolution.
The first iteration will include features to support the known criteria and
features determined to be critical to this visual world. It is very likely
that the mature prototype will entail a far greater number of support
mechanisms than is now deemed necessary.

To summarize, in a live environment the program is always running.
Traditionally, source code is generated, the program is run, the source

Phase ISBIR Final Report from SNAP Technologies, Inc.

16

Concepts Extrapolated from the Criteria

code is "revived" for revisions, goes dormant again, etc.; this, in con-
trast, is a dynamic environment. This never goes dormant, never stops
being an interactive environment. The target is again simplicity and
improved productivity.

Strength = Inherent Many of the most successful visual programming languages of today,
Weakness Of a Limited such as LabView, share the limitation that for all their power, they oper-
Problem Domain ate in a limited problem domain. LabView, as an example, allows the

programming of data acquisition equipment.

Besides being visual languages, these programs are based on the reuse
of software modules. They provide the user with a library of compo-
nents with well defined inputs and outputs. The user constructs a pro-
gram by instantiating objects from the library and binding the objects
together by connecting inputs to outputs.

In addition, one finds similar applications that inhabit the borderline
between programming languages and games. An early example is Bill
Budge's Pinball Construction Set; a more recent example is SimCity by
Maxis. In both cases the user constructs an environment visually, and
then activates a dynamic mode in which to play.

Finally, one may consider programs such as Adobe Systems Incorpo-
rated's Illustrator which is a visual front end to the PostScript program-
ming language. Rather than writing textual code, the user draws screen
images, which are automatically translated by the program into the
underlying program text. This text file is later transmitted to a printer,
where an internal computer executes the program to generate the image.

It is no coincidence that the limitation of these programs is also the foun-
dation for their strengths. Because they operate in explicit domains, they
can define a reasonably complete set of high level tools or modules.

Reuse Visual programming languages are particularly suitable for metaphors
based on apparent direct manipulation of tools. The mouse acts as an
extension of the hand, and the screen presents the appearance of a work-
bench. Because our ability to recognize patterns is linked in some way to
our visual intelligence, a visual programming language offers the poten-
tial for high level representation of program structure. These factors
imply an approach based on representation and manipulation of high
level modules. Once the programmer has become accustomed to manip-
ulating modules, work moves to a higher level of abstraction. And once
this begins to happen, reusable code becomes a reasonable possibility.

Phase ISBIR Final Report from SNAP Technologies, Inc.

17

Concepts Extrapolated from the Criteria

Research suggests and experience confirms that simply providing the
opportunity for reuse is not enough. Modules and libraries succeed in
creating high level abstractions through information hiding. In spite of
this capability, reuse is less common than one might expect. We believe
that the failure of reuse is due to the absence of any standards for con-
structing the module interfaces. Because programmers and module pro-
viders share no common standards, the programmer may find that the
interface is too awkward or difficult, and in addition typically finds that
the module does not match his needs well enough, so concludes that the
procedure should be built from scratch.

It is instructive to consider a few domains in which libraries are widely
used. The ANSI standard C library provides widely used functions for
interfacing with file systems. In this domain, programmers share stan-
dard abstractions of suitable operations: one needs to determine if a file
exists, to open a file, to read from the file, and to close a file, just to name
a few. The library provides procedures to support those operations.
Although the programmer must learn the exact specification of a proce-
dure such as fopen, the abstraction that the procedure implements is
already known. That is part of the training.

Another example comes from mathematics. Whether we consider com-
mon functions such as sin, or more complex ones that might compute
the probability associated with some score or carry out some non-linear
curve fitting, we find functions that have well defined and commonly
shared abstractions. These functions are commonly reused not because
of information hiding or because of evidence of particular brilliance in
the specification of their formal parameter lists; they are reused because
they implement common, shared abstractions. These abstractions are
rarely, if ever, formally standardized.

It seems reasonable to conclude, then, that reuse is neglected not
because of any failure in the capabilities of current programming envi-
ronments; nor would consideration of this evidence lead one to expect
that a visual programming language would through some technical
magic increase the degree of software reuse, any more than object ori-
ented programming has accomplished this. Reuse will occur as a result
of sharing high level programming abstractions.

Phase ISBIR Final Report from SNAP Technologies, Inc.

Results Obtained

Findings: Answers to Technical Objectives,
Phase I

Findings: Items of Significance
Results: The Burnett/Baker Classification
Results: The Evaluation
Design Features for a Visual World

Findings:
Technical Objectives, Phase I

Do any general Our Phase I research found a few general purpose visual object oriented
purpose VOOPLs exist language/products. None met all criteria established for the project. Of
today? these, one is commercially available and another is an academic project.

The commercial product is Prograph, available through Pictorius, Inc.
and widely considered "the" commercial GP VOOPL. Prograph covers
many of the bases for general purpose needs, but its implementation
does not seem to have had productivity as a goal. It is included in the list
of significant findings and discussed there.

The academically developed language is Forms/3 by Margaret Burnett,
now at Oregon State University. [Burnett91] This is a language of many
significant developments; in light of this project and its criteria, Forms/3
focuses more on instruction in computer science than it does on becom-
ing a commercially viable product. It certainly provides significant con-
tributions to the state of the art.

Many other languages and products and development projects were
considered; these are the only two that were visual, general purpose,
and object oriented. SELF is a very significant language originally from
Stanford University [Ungar91]; it met many of the criteria but was text-
based. SELF is worth watching in the coming years.

18

19

Findings: Technical Objectives, Phase I

Why not more GP
VOOPLs?

The Phase I Final Report includes a section classifying the projects
reviewed according to the Burnett/Baker classification system. It also
includes more descriptions than appear here about where other projects
fell short of the goals.

The answer includes many good reasons. We believe the single most
important reason that no truly general purpose VOOPL exists is that few
commercial entities would undertake its development in a way that
would ensure success, success being defined as a robust language that
could survive the tests of users and time. Further, few commercial enti-
ties could afford the R&D of a general purpose VOOPL because the
world isn't demanding its existence. Eventually the world may recog-
nize the value of a truly general purpose language, with which they can
build any tool required and have the solid support of a commercial
enterprise behind the product—but Pictorius is living proof that a better
mousetrap doesn't guarantee success. Pictorius is the maker of
Prograph, a reasonably general purpose language and one of the items
listed "of significance". The company has suffered severe financial diffi-
culties, folded, re-emerged, and continues on. It has a loyal following,
but the costs of staying in business are a continuing strain.

We do not expect to see a general purpose VOOPL emerge from aca-
demia simply because most languages in that setting are developed as a
research tool or interest. Burnett leads the group interested in develop-
ing a general purpose VOOPL, and speaks clearly of the problems still to
be overcome. Her interest in the general purpose version is still in the
minority, despite Burnett's long list of publications and her professional
stature.

Also, until the last five years or so hardware was not really sufficient to
perform the realtime calculations and display required by this environ-
ment. Working in a visual environment that requires minutes to display
an update isn't conducive to software development.

And as mentioned earlier, the nature of software development leads in
the direction of tweaks and updates and fixes. A fundamental paradigm
leap is required to conceptualize and begin to design a general purpose
visual object oriented environment.

Execution paradigms An interesting question, and again a complex answer is required. With-
out making any assumptions, each paradigm was considered from
many perspectives. Each was viewed in light of what it could offer, what
strengths and weaknesses it would present, and the overall suitability.
In short, nothing fit perfectly. The paradigm proposed in the following

Phase ISBIR Final Report from SNAP Technologies, Inc.

Visual representation

20

Findings: Technical Objectives, Phase I

pages is a mix of known paradigms, with the exact proportions from
functional and procedural still under consideration.

A comment attributed to Michelangelo comes to mind here. When asked
how he brought forth such spectacular sculpture, he replied that he
merely saw the shape within the stone and carved away everything
around it. Carving away at the edges of the unnecessary clutter is
indeed an essential task in visual representation.

We know that even the best of graphic images are perceived differently
by different people. Society, culture, age, gender, occupation all influ-
ence the paradigm through which each of us views and defines the
world. Recognizing this unavoidable variation, we present multiple
ways of viewing this language/environment. Custom views, dynamic
views, and more are discussed in detail in following chapters.

We know that color is useful in many graphics. We also recognize that
the misuse of color, as well as pattern and shape and size can be confus-
ing and troublesome. Each component of the visual interface will be
introduced only as it aids in recognition, aids in consistency, aids in pro-
duction.

The overall outcome of this Phase II project is a VOOPL whose gains in
productivity over other existing language/environments should be dra-
matic and significant. The in-house goal for this improvement is an
order of magnitude. This requires creative, innovative use of the most
appropriate features and superb core design. That leaves little room for
pasting on an interface that falls short of implementing similar leaps of
design.

Integrating with non-
visual code?

From the beginning of designing the SNAP Tech version of this system,
a unanimous decision among the design team was the agreement that
older generation code must be recognized, addressed and its inclusion/
incorporation accounted for. We do not suggest that non-visual code
brought unchanged into this new paradigm will perform at the same
level of speed and efficiency as code created in the system, but we prom-
ise that at least at some levels existing non-visual code can be brought
into this model.

Why only specific
tasks vpls?

Two reasons exist for this situation. One references the historical evolu-
tion of software development—with a few changes, an existing lan-
guage could now address a specific additional need. Hence a specific
task VOOPL. Those languages designed specifically as a vertical market

Phase ISBIR Final Report from SNAP Technologies, Inc.

21

Findings: Items of Significance

fit, such as LabView, draw strength from their designs which are all
attuned to performing market-specific tasks extremely well.

Another reason for the existence of specific task VOOPLs, gleaned from
research, is that these have been developed by academicians to explore
or teach specific computer science situations. As these are developed
with a very particular focus, they tend not to be good bases from which
to extrapolate to a general purpose paradigm.

Available now to use In Good ideas abound. The critical skill in researching the ideas is to under-
a GP VPL? stand what will work in another paradigm, and what strengthens

another concept. Some languages use a fairly large (300+) set of core
objects; others use as few as a dozen. Both ideas have inherent strengths.
Some languages use a dynamic environment but without a visual inter-
face. Can a visual dynamic environment be made to work at all? On
today's computers? On yesterday's computers? On any CPU conceived
at all? Some languages offer features that are fluent, elegant in their own
paradigm that are not at all transportable to another paradigm.

The innovation, the genius, is in extrapolating to create a new and clean
design, robust, integrated, spare. The genius is in building a new unit,
composed of new and existing units, with the new an order of magni-
tude stronger together than any unit separately.

Findings: Items of Significance

Items in this list may be a language, a product, or an environment. The
list is in descending order of importance, with the most significant being
first.

By inclusion in this list, the item has met a substantial part of some or all
criteria established to be deemed "significant". In some cases the overall
item is of little interest but some concept within is a contribution of such
importance that the exclusion would be unreasonable.

SELF. This is the single most significant and interesting language (or
product) found in the course of Phase I research.

text based with a visual front end. fully object oriented, uses dynamic
inheritance.

Phase ISBIR Final Report from SNAP Technologies, Inc.

22

Findings: Items of Significance

This is a language, like Smalltalk in this sense, specifically designed not
to write programs, but to study the process of writing programs. It is a
fully object-oriented language (meaning that the object-oriented features
were designed in from the beginning), and uses the prototype object
model instead of the class-inheritance model found in Smalltalk and
others.

Self is a simple, reasonably consistent language. The only other lan-
guage comparable for simplicity is Lisp, but Lisp is not a pure object-ori-
ented language.

Self appears to have originated at Stanford University and now has alli-
ance with (or is the property of) Sun Microsystems Ltd. and Stanford
University. Look for references [Ungar91] [Agesen95] [Wolczko95]
[Ungar95] [Self95] [Madsen95].

Drawback:

• the reduced performance resulting from features such as dynamic
binding, automatic memory management, etc.

• text-based, reducing the expressiveness of code.

Noted, but not particularly a drawback:

• requires extreme system resources; Self requires a very major work-
station to run.

Significance:

• simplicity
• visual interface is fairly clean and consistent.
• This language comes the closest to meeting all criteria of any found

through Phase I research.

Vista, visual, object-oriented.

Implemented in Smalltalk. Vista visually manages to incorporate and
integrate data flow and control flow (transformational systems) success-
fully, superbly. This is a great advantage for a language because it better
fits a much wider variety of problems.

One flaw in the visual environment from a productivity viewpoint is
that there is currently no visual environment for creating objects—the
programmer must leave Vista and return to Smalltalk for creation. This

Phase ISBIR Final Report from SNAP Technologies, Inc.

23

Findings: Items of Significance

imposes all the restrictions and constraints of using a text-based envi-
ronment.

Drawback:

• poor performance
• no visual environment for creating objects
• dependent on Smalltalk base

Significance:

• elegant visual interface
• superb incorporation of two paradigms

Forms/3, object-oriented, visual, based on forms. Developed by Marga-
ret M. Burnett, currently at Oregon State University.

Forms/3 is a declarative language where objects are created by design-
ing a form. The author chooses language features specifically designed
to avoid some fundamental computer science concepts, which leads to
the belief that the emphasis is on making the inexperienced user more
productive.

Drawback:

• the environment is not ideal for production use
• while not a focus the development effort, Forms/3 requires extensive

system resources
• while in a sense this is a general purpose language, it is more general

purpose in an academic setting than in a production setting

Significance:

• dynamic environment
• objectness is prototype-based

Prograph. only commercial general purpose visual object oriented pro-
gramming language on the market.

Prograph is a dataflow language, as is Lab View, and both are commer-
cial languages. There the similarity ends. The interface is a significant
problem with Prograph, although the problem may have been deeper
and also reflected implementation problems with the language. The
interface was so bad that it was difficult to probe deeper. At the same

Phase ISBIR Final Report from SNAP Technologies, Inc.

Findings: Items of Significance
24

time, offering a good interface for anything more general than a limited
problem domain is a challenge in the field.

Drawback:

• very difficult to use, even with a significant investment of time
• currently single platform implementation

Significance:

• commercial

Lab View, visual, object-oriented, limited domain environment, com-
mercial

Lab View offers tools for virtual instrumentation, data acquisition, and
minimal data manipulation. While it has some general purpose features,
they are not its strength and building a large or complex program would'
not be particularly pleasant.

It is a dataflow language with sufficient speed for the tasks of the envi-
ronment. The developers have focused heavily on improving the speed
of the language, and continue in this effort. Clearly, that is something of
importance to the National Instruments, owner of LabView

Its visual interface works smoothly, easily. Unlike Prograph, Lab View's
interface was an aid and was well implemented.

Drawback:

• very limited problem domain

Significance:

• extremely good in its problem domain
• commercial

• easy to use, even by people with only vague understanding of the
problem domain

Phase ISBIR Final Report from SNAP Technologies, Inc.

25

Findings: Items of Significance

C++, non-visual, general purpose.

Currently very popular, C++ is probably at this time the most heavily-
used (and under-used) language in the world. Developed by Bjarne
Stroustrup, C++ is an extension of C.

This popularity offers interesting possibilities: one is an inclination to
develop a visual interface for C++ simply because of the large program-
ming community attracted to the language. The inherent complexity of
the language, discussed below, offers an unsuitable foundation for this.
Remember that this language is already an add-on version of the foun-
dation language.

The other would be to create a visual language using C++'s execution
paradigm. This is analogous, for example, to labelling musical notes A,
B, C, etc., not because those notes represent an A, a B, or a C, but because
many of us recognize those entities and can more readily then under-
stand something with that same interface. The result of creating a visual
language using C++'s execution paradigm would not be a better lan-
guage; it would be a language with the complexities of C++ with addi-
tional idiosyncracies required to offer in a visual paradigm every
function of C++. This is not a pleasant prospect.

As stated, one of C++'s most notable features is it s complexity, which is
due directly to its evolutionary history. As a result of this complexity,
C++ is also a greatly under-used language. In an attempt to maintain
compatibility with C or to prevent adding additional keywords to the
language, C++ has idiosyncracies that create significant complexity for
the programmer.

Drawback:

• not visual
• complexity

Significance:

• overwhelming popularity.

Lingua Graphica. visual, object oriented, 3D

This is a visual language built on C++. The language was designed for
virtual reality users who needed to work on code while in the VR world.
This language illustrates the case mentioned in C++; the visual front end

Phase ISBIR Final Report from SNAP Technologies, Inc.

26

Findings: Items of Significance

is unlikely to make C++ users more productive, but in this specific para-
digm the language is a good fit and meets specific needs.

Drawback:

• inherent performance problems of adding a visual interface to C++
• inherent increased complexity for the user

Significance:

• a good fit for the need.

Ada. text based, in a manner similar to C++.

Although never sharing C++'s popularity, Ada is in some aspects a tech-
nically superior language. Like C++, it has problems with complexity
issues although from different sources.

Adding a visual interface to Ada would result in many of the same prob-
lems faces in adding a visual interface to C++. We believe that program-
mer's productivity would not be significantly improved, perhaps as
little as a 20-50% improvement. We also predict a high learning curve,
again partially based on the complexities.

Drawback:

• not visual
• complexity

Significance:

• technically superior to C++.

Smalltalk, text-based, pure object-oriented language

Developed by the Xerox Palo Alto Research Center, Smalltalk has the
distinction of being one of the few languages with object-oriented fea-
tures designed in from the beginning. This purity results in a language
more greater consistency in use than others. The language also employs
features such as dynamic binding that result in a somewhat poor perfor-
mance. This makes the language unsuitable for many real-world uses.
The performance problems are, in fact, significant enough to contribute
to Smalltalk not being commercially viable.

Phase ISBIR Final Report from SNAP Technologies, Inc.

27

Findings: Items of Significance

Drawback:

• poor performance
• text based

Significance:

• pure object-oriented
• referenced commonly by academicians.

Lisp, text based, dynamic environment available, symbolic computa-
tion, artificial intelligence.

Lisp has been around for decades; it is the foundation language for liter-
ally dozens of other languages. It has very simple syntactic require-
ments. In its own evolution it has seen the addition of object-oriented
features, while maintaining the consistency. It has evolved into a very
rich, powerful language. Like Smalltalk it suffers from the performance
degradations caused by features such as dynamic binding and auto-
matic memory management.

While this is inaccurate, Lisp has long been considered a tool primarily
for artificial intelligence. In fact it is reasonably suited to general pur-
pose work; the public relations has much to overcome.

Drawback:

• never seen commercial success, partly because of its perception as an
artificial intelligence language

Significance:

• overall contribution to computer science
• dynamic environment available
• simplicity and consistency of interface

^nd of list—

Phase ISBIR Final Report from SNAP Technologies, Inc.

28

Results: The Evaluation

Results: The Evaluation

Among the items of significance discussed none exhibits the degree of
integrity to the full criteria that a truly general purpose VOOPL can do
and will do. The value offered by each of these offerings is not in each as
an entity; it is in the new execution of concepts when combined with
other significant concepts to make a new whole.

The criteria, again, for a general purpose visual object-oriented pro-
gramming language as determined by SNAP Tech are these:

Suitability for General Purpose
Consistency
Views
The Look of an Object is Part of that Object's Definition
Simple, Expressive Language
Object Support Design Designed in/Built into Language
Allow for Special Cases within General Purpose

The key concepts understood early in the project, refined throughout the
project, and echoed in the research, are the result of the entire history of
programming language development. The embodiment of the ideal
doesn't yet exist, in part because only so recently has the development
community come to have an understanding of what the ideal may be.

The concepts underlying the development of the SNAP Tech model are
these:

1. Focus on the ultimate goals and never lose integrity with them.
2. Provide a complete language, providing solidly for creation and

maintenance.
3. Provide and demand consistency in every phase of design, in every

form of implementation.
4. Lay the groundwork for elegant simplicity. Avoid anything extrane-

ous.

The criteria used as a basis for the SNAP Tech design built on those first
criteria and added a critical element: every design component had to
support and strengthen every other component. Not sufficient was the
idea that components could co-exist; they had to meld, producing a
stronger result than any could offer individually.

Phase ISBIR Final Report from SNAP Technologies, Inc.

29

Design Features for a Visual World

Design Features for a Visual World

The objects in this world, beyond the primitives and core objects, have
potential to become extremely complex. The add-on objects and even-
tual applications resulting from them will be an order of magnitude
more complex...and these must be represented visually...in a dynamic
environment. An interesting task. To accomplish this, the software
design team provides these solutions: multiple, dynamic, and custom
views of objects; ultimately consistent use and interaction at every level
of use; and annotation capabilities appropriate to a visual paradigm,
each directed specifically toward providing the programmer with tools
for efficient creation and maintenance of code in a visual paradigm.

A feature frequently discussed in the literature and used by other devel-
opers as a criterion is specifically not part of our design: the intuitive
look. The SNAP Tech design team has determined that no one look is
intuitive for a broad scope of people, and that this fact negates any prac-
tical implementation of the idea. Instead the team focuses on providing
enough views, enough customizable, flexible views, for each program-
mer to create the view that shows what the programmer wants to see.
Just as a programmer will see the cause and effect of actions (changes of
state and behavior), the programmer can determine how those changes
will be displayed visually.

The criteria determined to be influencing factors of the design are:
dynamic views, multiple views, custom views, consistent use/interac-
tion, and annotations.

Dynamic Views. In this live environment, changes are visible as they
occur through the medium of a dynamic view. In this visual paradigm,
this makes perfect sense. Imagine pouring milk into a glass. The visual
result influences the next behavior... when the glass is full one stops
pouring milk. This simplistic analogy fits well in a debugging mode:
when an action is interrupted because of a particular change in behavior,
the programmer sees the interruption as it occurs and is likely to see the
cause as well as the effect. The immediacy of the live environment—an
action causes a change, and the change is visible—is brought to full use
when the programmer watches the code perform.

In more precise language, a visual representation of an object shows that
object's current state. For example, an empty generic container object
displays as an empty rectangle. When an object is added to the container
object, the empty rectangle may appear with a small circle inside it. As
the programmer drags the circle into the container, this is displayed,
live, real-time.

Phase ISBIR Final Report from SNAP Technologies, Inc.

30

Design Features for a Visual World

Programmers working in a text-based system have the option to write a
line or two of code, then compile and debug. This is seldom the working
methodology. Programmers usually write a significant amount of code,
likely a fairly complex set of code, before compiling and debugging. The
likelihood of complex error is much greater this way, but seems to be a
preferred method for many programmers. This visual example works
well in a simple situation, and its value is even more profound in a com-
plex application.

Multiple views. This is the SNAP Tech answer to an intuitive look.
What's intuitive to one programmer is likely not to be indicative to
another. After reviewing papers describing at great length the intuitive
nature of the interface, our team is in agreement that There's No Such
Thing as an intuitive look for something as complex as programming
code. Multiple views, however, addresses the same issue and works.

Filters are a function of multiple views. Filters are a set of collection cri-
teria that selectively show or hide a given set of objects. This allows the
programmer the ability to focus into a specific place or into specific
actions. A filter applied to the same code through any view should yield
the same results.

An example will help. Programmer A understands problems and con-
cepts in light of Paradigm 1. This person interprets existing code and
new needs within that framework—that's how they think and what
makes the most sense. Programmer B has a different paradigm, and rec-
ognizes solutions best in terms of the personal paradigm. Either could
adapt over time, but both are most effective when allowed to work
within the paradigm of their choice. Multiple views of the same code
allow this flexibility. Multiple views allows each programmer to view
the state and process from their own base of experience, making each
the most immediately productive.

Custom views. Part of an object's identity is the definition of its view,
the graphical physical representation. In addition to a generic view, each
object may have multiple custom views.

This is best explained through an example. To begin, a rectangular con-
tainer object is empty. A common view of this object is likely to be an
empty rectangle, color and size as yet unspecified. Into this container
object are added one triangle and one very complex object, circular over-
all. The programmer will use this filled container object many times in
construction of an application, wants the new complex object repre-
sented simply, so chooses a particular view that expresses the new func-
tionality. This view is assigned as the "default" view, actually that

Phase ISBIR Final Report from SNAP Technologies, Inc.

31

Design Features for a Visual World

programmer's personal custom view, for this new object unless a differ-
ent default is selected.

Orthogonal design, Consistent use/interaction. Consistency is a rare
thing, perhaps because it is so difficult to achieve. Software designers
operating in a visual paradigm recognize the need for consistency, for
simple, stable rules. Bruce Tognazzini [Tognazzini92] writes, "The same
class of object should generate the same type of feedback and resulting
behavior, no matter in what part of the program ... they appear". In
other words, using the house analogy again, an "open" function must be
consistent in its use. Whether opening a door, opening the refrigerator,
or opening a window, the operative word is open.

Consistent action requires less memorization, which in turn aids pro-
ductivity. To make an action easier to remember, simplify it.

Orthogonal design refers to the clean, linear relationship of all parts. The
whole could not function effectively if any piece were missing. This level
of design elegance never occurs by accident, and is nearly as rare as con-
sistency. It is an appropriate goal for a language and environment
expected to be the source of a new development paradigm.

Annotations. In a visual language, text-only comments are not sufficient
for clear or complete comments. The software will support graphics,
fonts, etc., thus providing a means for meaningful, accurate comments
and literate programming.

Phase ISBIR Final Report from SNAP Technologies, Inc.

Estimate of Technical
Feasibility

The Outlook
Why This is Attainable
Hoiv This is Attainable

The Outlook

Producing a general purpose visual object-oriented programming lan-
guage is 100% achievable at this point in time.

We project, however, that the development of this VOOPL in a timely
manner will only come about when commenced as a commercial effort,
based on solid software design engineering principles and mindful of
past effort, accomplishments, and pitfalls.

Why This is Attainable

As a concept grows from infancy through maturity it encounters many
difficulties. At first it's awkward, doesn't know how to express itself,
and may not be well understood or well received. Its environment may
not be suitable.

As it moves to young adulthood more of us recognize its value, even in
an unpolished state. We think about it, we brainstorm, and we tinker.
We share our research, we finetune the ideas, and the concept begins to
be more readily understood, its value more obvious. The environment
matures around it.

32

Estimate of Technical Feasibility 33
HOW This is Attainable

The documented roots of visual programming languages is thirty-some
years old. Thirty-some years ago the hardware was insufficient to the
task. That's changed.

Over these thirty-some years the topic has reached a certain stage of
maturity—the development community understands the concept, and
significant research has investigated many issues. We understand more,
and we now understand more of what must be overcome. Some of us
feel that no single existing paradigm is sufficient to this new task; just as
the language and environment will evolve together, so will the para-
digm. As will the eventual mature language, the paradigm will incorpo-
rate some of the best of the existing knowledge with some particularly
creative new thoughts.

The development community seems to be moving toward agreement on
a broad conceptual base of goals. That's progress. We have a plethora of
specific purpose visual programming languages from which to learn.
We have a wide variety of very solid programming langauges with
dynamic environments, object-oriented technology, etc., from which to
learn. And we have opportunity.

So we come to a point in time when skilled developers with a wealth of
language experience, language design skills and interest, and a recog-
nized need meet. That's progress. And that's attainable product.

It is our strong belief that the timely development of a general purpose
VOOPL will come from a commercial enterprise, familiar with the rigors
of budgets, milestones, deadlines, R&D, deliverables, and the long-term
commitment of bringing a product to market and its lifetime support.

HOW This is Attainable

Several components must be working in near-perfect collaboration for
this project to come to fruition technically. Designers must comprehend
at an intuitive level the goals of the project. They must understand the
areas and scope of technical difficulties involved. The depth and scope
of experience and expertise with software engineering principles must
be exceptional. Similarly, they must be adept at finding or creating solu-
tions to those difficulties. For this, a broad and solid understanding of
existing research is invaluable. And at a basic level, the design team
should have a very wide base of programming language experience and
knowledge.

Phase ISBIR Final Report from SNAP Technologies, Inc.

Estimate of Technical Feasibility 34
HOW This is Attainable

We believe the development should not occur in a vacuum. While intel-
lectual property rights must always be protected in a commercial ven-
ture, as soon as possible an early view or the product should be available
to interested parties. The comments and suggestions are useful to
designers. While not deterring from the original goals, these ideas
should serve reinforce the general perspective and provoke additional
brainstorming.

The skills to develop this language are likely to exist somewhere in aca-
demia right now...amid teaching responbilities, publication require-
ments and departmental meetings. The urgency does not exist, overall,
in the academic world to produce a finished general purpose VOOPL.
The commercial perspective is critical to this project's timely develop-
ment. From the commercial sector comes an emphasis on producing a
useable, quantifiable, justifiable product through significant attention to
original design, revision needs, prototyping, milestones, deadlines, and
budgets. While this is in a state of change, the academic environment
overall has investigated points of object-oriented technology, visual pro-
gramming languages, animated icons, human interface issues, etc., as
research topics nearly sufficient unto themselves. A wealth of valuable
research is accumulated this way; bringing this research into the com-
mercial sector, assimilating the information, recognizing its value in the
original and in new settings, and producing a distributable product—
these are the strengths of the commercial sector.

The R&D must include continually monitoring world-wide progress in
appropriate fields. Established personal conversation and information
exchange established with the research community should continue.

Then with the technical issues recognized, a solid commercial support
structure must be established to support the continuing efforts. Briefly,
to supplement the technical issues, the developer should:

• determine a workplan culminating in mature, working prototype
with sample application

• establish milestones, deadlines, timetables
• establish structure to develop interest in project (via WWW, news-

groups, etc.)
• support the business structure throughout the development phase of

the project, including investing in staff, equipment, etc.
• establish structure to support launched product (email, WWW, tele-

phone) w/staff, info db, etc.

Phase ISBIR Final Report from SNAP Technologies, Inc.

Estimate of Technical Feasibility 35
HOW This is Attainable

• construct a business plan describing company subsidy available
through development, plans for distribution mechanisms, income
generation, follow-on product development, growth, sustainable
reinvestment and continued development

Further, from early stages onward, designers must consider the impor-
tance of eventual acceptance of their language by national and interna-
tional standards committees. Languages are written, Grace Hopper
would remind us, to allow people to converse with computers. If a lan-
guage proves its worth over time, it is considered for acceptance as a
standard. It is our opinion that for a language to be considered a long-
term contender, an essential requirement for large and complex systems,
such acceptance is very important. Recognizing the elements of endur-
ance and incorporating them into the original design goals is a worth-
while task.

In summary, the project is completely technically achievable. It is a task
of some difficulty, but the essential elements to produce a mature, work-
ing prototype and eventual complete solution are in hand. The design
goals are well understood, the first-round design is well underway,
problem areas are understood, today's hardware is adequate (although
bigger and faster is always preferred), and creative, skilled minds are
available and sufficient to the task.

Phase ISBIR Final Report from SNAP Technologies, Inc.

36
Languages and Produäs Reviewed,

Languages and Products Reviewed,

Classified using the Burnett/Baker [Burnett94]
Classification Scheme

Ada — Object-oriented, Text based, Commercial.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

VPL-III. Language Features
A. Abstraction

1. Data abstraction
B. Control flow
C. Data types and structures
E. Event handling
F. Exception handling

VPL-V. Language Purpose
A. General-purpose languages

Anim3D — Visual, Text based.
VPL-I. Environments and tools for VPLs
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

VPL-III. Language Features
B. Control flow

VPL-V. Language Purpose
D. Scientific visualization languages

ARK—Visual.
VPL-I. Environments and tools for VPLs
VPL-V. Language Purpose

A. General-purpose languages

Artkit.
VPL-I. Environments and tools for VPLs
VPL-V. Language Purpose

E. User-interface generation languages

Authorware — Commercial.

AVS — Commercial.

Phase ISBIR Final Report from SNAP Technologies, Inc.

37
Languages and Products Reviewed,

C++ — Object-oriented, Text based, Commercial.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

VPL-III. Language Features
A. Abstraction

1. Data abstraction
B. Control flow
C. Data types and structures
E. Event handling
F. Exception handling

VPL-V. Language Purpose
A. General-purpose languages

CA2 — Visual, Text based.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

B. Visual representations
1. Diagrammatic languages

VPL-III. Language Features
B. Control flow
C. Data types and structures

VPL-V. Language Purpose
A. General-purpose languages

CAEL — Visual.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

B. Visual representations
1. Diagrammatic languages

VPL-III. Language Features
B. Control flow
C. Data types and structures

Cantata — Visual, Text based, Commercial.
VPL-II. Language Classifications

A. Paradigms
3. Data-flow languages

B. Visual representations
2. Iconic languages

VPL-V. Language Purpose
C. Image-processing languages

Phase ISBIR Final Report from SNAP Technologies, Inc.

38
Languages and Produds Reviewed,

Capsule — Commercial.

ChemTrains — Visual.
VPL-II. Language Classifications

A. Paradigms
11. Rule-based languages

B. Visual representations
1. Diagrammatic languages

Cube — Visual, Object-oriented.
VPL-II. Language Classifications

A. Paradigms
5. Functional languages

B. Visual representations
1. Diagrammatic languages

Cubicon — Visual, Object-oriented, Commercial.
VPL-II. Language Classifications

A. Paradigms
8. Multi-paradigm languages

B. Visual representations
1. Diagrammatic languages

VPL-III. Language Features
A. Abstraction

1. Data abstraction
B. Control flow
C. Data types and structures
E. Event handling

VPL-V. Language Purpose
A. General-purpose languages

Dataflo MP — Commercial.

Design/CPN — Visual, Object-oriented, Commercial.
VPL-II. Language Classifications

B. Visual representations
1. Diagrammatic languages

VPL-V. Language Purpose
D. Scientific visualization languages

Phase ISBIR Final Report from SNAP Technologies, Inc.

39

Languages and Products Reviewed,

DT-VEE — Visual, Commercial.
VPL-II. Language Classifications

A. Paradigms
3. Data-flow languages
9. Object oriented languages

B. Visual representations
1. Diagrammatic languages

Dylan — Object-oriented, Text based.
VPL-II. Language Classifications

A. Paradigms
5. Functional languages

VPL-III. Language Features
A. Abstraction

1. Data abstraction
2. Procedural abstraction

B. Control flow
E. Event handling
C. Data types and structures

VPL-V. Language Purpose
A. General-purpose languages

Escalante — Visual.
VPL-I. Environments and tools for VPLs
VPL-II. Language Classifications

B. Visual representations
1. Diagrammatic languages
2. Iconic languages

Fabrik — Visual, Object-oriented, Text based.
VPL-II. Language Classifications

A. Paradigms
3. Data-flow languages

B. Visual representations
1. Diagrammatic languages

Phase ISBIR Final Report from SNAP Technologies, Inc.

40
Languages and Products Reviewed,

Forms/3 — Visual, Object-oriented.
VPL-II. Language Classifications

A. Paradigms
4. Form-based and spreadsheet-based
4. Form-based and spreadsheet-based languages

B. Visual representations
1. Diagrammatic languages

VPL-III. Language Features
A. Abstraction

1. Data abstraction
E. Event handling
F. Exception handling

VPL-V. Language Purpose
A. General-purpose languages

ForShow — Commercial.

Goofy — Visual.
VPL-I. Environments and tools for VPLs

Graqula — Visual.
VPL-II. Language Classifications

A. Paradigms
3. Data-flow languages

VPL-V. Language Purpose
B. Db languages
C. Image-processing languages

GROOVE — Visual, Object-oriented.
VPL-I. Environments and tools for VPLs
VPL-V. Language Purpose

D. Scientific visualization languages

HI Graphs — Visual, Object-oriented.
VPL-I. Environments and tools for VPLs

HI-VISUAL — Visual, Object-oriented.
VPL-II. Language Classifications

A. Paradigms
3. Data-flow languages

B. Visual representations
2. Iconic languages

VPL-V. Language Purpose
C. Image-processing languages

Phase ISBIR Final Report from SNAP Technologies, Inc.

41
Languages and Products Reviewed,

HSC InterActive — Commercial.

Hyperpascal — Object-oriented, Text based.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

VPL-III. Language Features
A. Abstraction

1. Data abstraction
B. Control flow
C. Data types and structures

HyperTalk — Visual, Object-oriented, Text based, Commercial.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages
9. Object oriented languages

VPL-III. Language Features
B. Control flow
E. Event handling

VPL-V. Language Purpose
A. General-purpose languages
B. Db languages
E. User-interface generation languages

Iconauthor — Visual, Commercial.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

B. Visual representations
2. Iconic languages

VPL-III. Language Features
B. Control flow
E. Event handling

VPL-V. Language Purpose
A. General-purpose languages

Iconicode — Visual, Commercial.

Phase ISBIR Final Report from SNAP Technologies, Inc.

42

Languages and Products Reviewed,

LabView — Visual, Object-oriented, Commercial.
VPL-II. Language Classifications

A. Paradigms
3. Data-flow languages
9. Object oriented languages

B. Visual representations
1. Diagrammatic languages

VPL-III. Language Features
A. Abstraction

1. Data abstraction
2. Procedural abstraction

B. Control flow
VPL-V. Language Purpose

A. General-purpose languages

Layout — Visual, Object-oriented, Commercial.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

B. Visual representations
2. Iconic languages

VPL-III. Language Features
B. Control flow
E. Event handling

VPL-V. Language Purpose
A. General-purpose languages

LISP — Object-oriented, Text based, Commercial.
VPL-II. Language Classifications

A. Paradigms
5. Functional languages

VPL-III. Language Features
A. Abstraction

1. Data abstraction
2. Procedural abstraction

C. Data types and structures
VPL-V. Language Purpose

A. General-purpose languages

MFL — Visual, Object-oriented.
VPL-II. Language Classifications

A. Paradigms
3. Data-flow languages

B. Visual representations
1. Diagrammatic languages

Phase ISBIR Final Report from SNAP Technologies, Inc.

43

Languages and Products Reviewed,

Miro — Visual.
VPL-II. Language Classifications

A. Paradigms
11. Rule-based languages

B. Visual representations
1. Diagrammatic languages

Modula-3 — Object-oriented, Text based.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

VPL-III. Language Features
A. Abstraction

1. Data abstraction
B. Control flow
C. Data types and structures
E. Event handling

VPL-V. Language Purpose
A. General-purpose languages

Mondrian — Visual.
VPL-II. Language Classifications

A. Paradigms
10. Programming-by-demonstration languages

B. Visual representations
3. Languages based on static pictorial sequences

MViews — Visual, Object-oriented, Text based.
VPL-I. Environments and tools for VPLs
VPL-II. Language Classifications

A. Paradigms
5. Functional languages

B. Visual representations
1. Diagrammatic languages

Newspeak — Visual.
VPL-II. Language Classifications

A. Paradigms
3. Data-flow languages
9. Object oriented languages

B. Visual representations
1. Diagrammatic languages

VPL-V. Language Purpose
A. General-purpose languages

Phase ISBIR Final Report from SNAP Technologies, Inc.

44

Languages and Products Reviewed,

NoPumpG — Visual.
VPL-II. Language Classifications

A. Paradigms
4. Form-based and spreadsheet-based languages

O'Small — Object-oriented, Text based.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

VPL-III. Language Features
A. Abstraction

1. Data abstraction
B. Control flow
C. Data types and structures

Obliq — Object-oriented, Text based.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

VPL-III. Language Features
A. Abstraction

1. Data abstraction
B. Control flow
C. Data types and structures
E. Event handling

VPL-V. Language Purpose
A. General-purpose languages

PC-TILES — Visual, Text based.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

B. Visual representations
1. Diagrammatic languages

VPL-III. Language Features
B. Control flow

VPL-V. Language Purpose
A. General-purpose languages

PhoneOne — Visual, Commercial.
VPL-II. Language Classifications

A. Paradigms
3. Data-flow languages

B. Visual representations
2. Iconic languages

Phase ISBIR Final Report from SNAP Technologies, Inc.

45
Languages and Produäs Reviewed,

PhonePro — Visual, Commercial.
VPL-II. Language Classifications

A. Paradigms
3. Data-flow languages

B. Visual representations
2. Iconic languages

Pict — Visual.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

B. Visual representations
2. Iconic languages

VPL-III. Language Features
B. Control flow

POLKA — Text based.
VPL-I. Environments and tools for VPLs
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

VPL-III. Language Features
B. Control flow
E. Event handling

VPL-V. Language Purpose
D. Scientific visualization languages

PostScript — Object-oriented, Text based, Commercial.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

VPL-III. Language Features
B. Control flow

VPL-V. Language Purpose
C. Image-processing languages
E. User-interface generation languages

Programming by Rehearsal — Visual.
VPL-II. Language Classifications

A. Paradigms
10. Programming-by-demonstration languages

B. Visual representations
1. Diagrammatic languages

Phase ISBIR Final Report from SNAP Technologies, Inc.

46

Languages and Products Reviewed,

Prograph — Visual, Object-oriented, Commercial.
VPL-II. Language Classifications

A. Paradigms
3. Data-flow languages

B. Visual representations
2. Iconic languages

VPL-III. Language Features
A. Abstraction

1. Data abstraction
B. Control flow
C. Data types and structures
E. Event handling

VPL-V. Language Purpose
A. General-purpose languages

Pygmailion — Visual.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

B. Visual representations
1. Diagrammatic languages

VPL-III. Language Features
B. Control flow

VPL-V. Language Purpose
A. General-purpose languages

Q — Object-oriented, Text based.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

VPL-III. Language Features
B. Control flow
C. Data types and structures

VPL-V. Language Purpose
A. General-purpose languages

RAPIDE — Object-oriented, Text based.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

VPL-III. Language Features
A. Abstraction

1. Data abstraction
B. Control flow
C. Data types and structures

Phase ISBIR Final Report from SNAP Technologies, Inc.

47

Languages and Products Reviewed,

SCHEME — Object-oriented, Text based.
VPL-II. Language Classifications

A. Paradigms
5. Functional languages

VPL-III. Language Features
A. Abstraction

1. Data abstraction
B. Control flow
C. Data types and structures

SELF — Visual, Object-oriented, Text based.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages
9. Object oriented languages

B. Visual representations
1. Diagrammatic languages

VPL-III. Language Features
A. Abstraction

1. Data abstraction
2. Procedural abstraction

B. Control flow
C. Data types and structures
E. Event handling
F. Exception handling

VPL-V. Language Purpose
A. General-purpose languages

Show & Tell — Visual.
VPL-II. Language Classifications

A. Paradigms
3. Data-flow languages

B. Visual representations
2. Iconic languages

Phase ISBIR Final Report from SNAP Technologies, Inc.

48

Languages and Products Reviewed,

Smalltalk — Object-oriented, Text based.
VPL-II. Language Classifications

A. Paradigms
5. Functional languages

VPL-III. Language Features
A. Abstraction

1. Data abstraction
B. Control flow
C. Data types and structures
E. Event handling
F. Exception handling

VPL-V. Language Purpose
A. General-purpose languages

Snart — Object-oriented, Text based.
VPL-II. Language Classifications

A. Paradigms
11. Rule-based languages
9. Object oriented languages

VPL-III. Language Features
A. Abstraction

1. Data abstraction

SPE — Visual, Object-oriented, Text based.
VPL-I. Environments and tools for VPLs

SunPICT — Visual, Text based.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

B. Visual representations
1. Diagrammatic languages

VPL-III. Language Features
B. Control flow

VPL-V. Language Purpose
A. General-purpose languages

Phase ISBIR Final Report from SNAP Technologies, Inc.

49

Languages and Produäs Reviewed,

SysRPL — Object-oriented, Text based, Commercial.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages
9. Object oriented languages

VPL-III. Language Features
A. Abstraction

1. Data abstraction
2. Procedural abstraction

B. Control flow
C. Data types and structures
E. Event handling

VPL-V. Language Purpose
A. General-purpose languages

tcl/tk — Object-oriented, Text based, Commercial.
VPL-I. Environments and tools for VPLs
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

VPL-III. Language Features
A. Abstraction

1. Data abstraction
B. Control flow
C. Data types and structures
E. Event handling
F. Exception handling

VPL-V. Language Purpose
E. User-interface generation languages
A. General-purpose languages

ThingLab — Visual, Object-oriented.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

B. Visual representations
2. Iconic languages

VPL-III. Language Features
A. Abstraction

1. Data abstraction
B. Control flow
C. Data types and structures

Phase ISBIR Final Report from SNAP Technologies, Inc.

50

Languages and Products Reviewed,

Tinkertoy — Visual, Text based.
VPL-II. Language Classifications

A. Paradigms
5. Functional languages

B. Visual representations
2. Iconic languages

VPL-V. Language Purpose
A. General-purpose languages

Views — Visual, Text based.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

11. Rule-based languages
VPL-III. Language Features

B. Control flow
VPL-V. Language Purpose

A. General-purpose languages

VIPR — Visual, Object-oriented.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages
9. Object oriented languages

B. Visual representations
1. Diagrammatic languages

VPL-III. Language Features
B. Control flow
C. Data types and structures

VisaVis — Visual.
VPL-II. Language Classifications

A. Paradigms
5. Functional languages

VPL-V. Language Purpose
A. General-purpose languages

Phase ISBIR Final Report from SNAP Technologies, Inc.

51

Languages and Produäs Reviewed,

Vista — Visual, Object-oriented, Text based.
VPL-II. Language Classifications

A. Paradigms
3. Data-flow languages
6. Imperative languages
8. Multi-paradigm languages
9. Object oriented languages

B. Visual representations
1. Diagrammatic languages

VPL-III. Language Features
A. Abstraction

1. Data abstraction
B. Control flow
C. Data types and structures
E. Event handling
F. Exception handling

VPL-V. Language Purpose
A. General-purpose languages

Visual Age — Commercial.

Visual AppBuilder — Visual, Object-oriented, Commercial.
VPL-I. Environments and tools for VPLs
VPL-V. Language Purpose

E. User-interface generation languages

Visual Smalltalk — Object-oriented, Text based, Commercial.
VPL-I. Environments and tools for VPLs
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

VPL-V. Language Purpose
A. General-purpose languages

VS Enterprise — Commercial.
VPL-I. Environments and tools for VPLs

Phase ISBIR Final Report from SNAP Technologies, Inc.

52

Languages and Products Reviewed,

ZZ — Object-oriented, Text based.
VPL-II. Language Classifications

A. Paradigms
6. Imperative languages

VPL-III. Language Features
A. Abstraction

1. Data abstraction
B. Control flow
C. Data types and structures

VPL-V. Language Purpose
A. General-purpose languages

Phase ISBIR Final Report from SNAP Technologies, Inc.

References

A Bibliography with Abstracts and Annotations

The following list contains references to a wide variety of printed
resource information. Some of it describes the newest and the brightest
of the development efforts; much of it is invaluable for the historic per-
spective and understanding it offers.

Where possible we have used authors' descriptions in their own words;
note that not all of the authors are native English speakers. When no
abstract was available, the authors of this Final Report have included a
summary of the information available. Annotations are spread through-
out the document.

This is a list to be used, annotated by the reader, and considered a solid
coverage of the available information. The work of many talented
authors is contained within.

53

References 54

[Abadi89] Martin Abadi, Luca Cardelli, Benjamin Pierce, and Gor-
don Plotkin, Dynamic Typing in a Statically Typed Language, 1989.

Statically typed programming languages allow earlier
error checking, better enforcement of disciplined pro-
gramming styles, and generation of more efficient object
code than languages where all type consistency checks
are performed at run time. However, even in statically
typed languages, there is often the need to deal with data
whose type cannot be determined at compile time. To
handle such situations safely, we propose to add a type
Dynamic whose values are pairs of a value v and a type
tag T where v has the type denoted by T. Instances of
Dynamic are built with an explicit tagging construct and
inspected with a type safe typecase construct.

This paper explores the syntax, operational semantics,
and denotational semantics of a simple language includ-
ing the type Dynamic. We give examples of how dynami-
cally typed values can be used in programming. Then we
discuss an operational semantics for our language and
obtain a soundness theorem. We present two formula-
tions of the denotational semantics of this language and
relate them to the operational semantics. Finally, we con-
sider the implications of polymorphism and some imple-
mentation issues.

[Adobe90] Adobe Systems Incorporated, PostScript Language Ref-
erence Manual, 2nd edition, 1990.

This book is the official reference to the PostScript lan-
guage. It offers comprehensive coverage of the entire lan-
guage, including the recent advancements of PostScript
Level 2.

[Ae86] Tadashi Ae, Masafumi Yamashite, Wagner Chiepa Cunha,
and Hiroshi Matsumoto , "Visual User-Interface of a Program-

ming System MOPS2", in IEEE 1986 Workshop on Visual Lan-
guages, 1986, pgs 44-53.

This paper describes the visual aspects of a software
development system MOPS2, which provides an
advanced environment for developing and testing of an
embedded computer software. The software develop-
ment on MOPS2 is supported by modular programming
and visual testing. Especially, the colored Petri net plays
an important role for compact display on a conventional
color graphics terminal.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 55

[Agesen95] Ole Agesen, Lars Bak,Craig Chambers, Bay-Wei
Chang, Urs Hölzle, John Maloney, Randall B. Smith, David
Ungar and Mario Wolczkox, The SELF 4.0 Programmer's Refer-
ence Manual, 1995, pgs 1-104.

Manual, covering language reference, Self world, guide
to programming style, virtual machine reference

[Agha93] Gul Agha, Paul Wegner, and Akinori Yonezawa,
Research Directions in Concurrent Object Oriented Programming,
1993.

[Agui84] T. Agui, Y. Arai, and M. Nakajima, "A Color Compres-
sion Algorithm for Natural Scenes and Animation Pictures", in
IEEE 1984 Workshop on Visual Languages, 1984, pg 2.

In this paper, we propose a new color compression algo-
rithm making use of linear division of color spaces; the
division is in accordance with the value distribution in
the color space.

The algorithm consists of four proessing steps and deals
with raster scanned (r,g,b) values which are accessible
sequentially.

This method makes the effectieness and efficiency of
color look-up table higher when natural scene images or
computer animation eel images are displayed.

Some results and evaluation of applying the algorithm
are also described.

[Aho86] Alfred V. Aho,Ravi Sethi, and Jeffrey D. Ullman, Compil-
ers. Principles, Techniques, and Tools, 1986.

This book is a descendant of Principles of Compiler
Design by Alfred V. Aho and Jeffrey D. Ullman. Like its
ancestor, it is intended as a text for a first course in com-
piler design. The emphasis is on solving problems uni-
versally encountered in designing a language translator,
regardless of the source or target machine.

It also has a great cover.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 56

[Alexandrov91] V.V. Alexandrov and N.D. Gorsky, From Humans
to Computers—Cognition Through Visual Perception, 1991.

[Apple92] Apple Computer Eastern Research & Technology,
Dylan. An object-oriented dynamic language, 1992.

Dylan is a new Object Oriented Dynamic Language
(OODL) developed by the Eastern Research and Technol-
ogy Lab of Apple Computer. Dylan was designed to
make the advantages of OODLs available for commercial
programming on a variety of computing devices. Dylan
most closely resembles CLOS and Scheme. Other lan-
guages which influences the design of Dylan include
Smalltalk, Self, and OakLisp.

[Apte93] Ajay Apte and Takayuki Dan Kimura, "A Comparison
Study of the Pen and the Mouse in Editing Graphic Diagrams",
in 1993 IEEE Symposium on Visual Languages, 1993, pgs 352-357.

We report the results of an experiment comparing the
merits of the pen and the mouse as drawing devices. For
this study a pen-based graphic diagram editor equipped
with a shape recognition algorithm was developed on
GO's PenPoint operating system. A commercially avail-
able drawing program on NeXT was used for mouse-
based editing. Twelve CS students were chosen as sub-
jects and asked to draw four different diagrams of similar
complexity: two with a pen and the other two with a
mouse. The diagrams were chosen from the categories of
dataflow visual language, Petri nets, flowcharts, and state
diagrams. The results indicate that drawing by pen is
twice as fast as drawing by mouse.

[Archibald92] Jerry L. Archibald, "The Economics of Software
Reuse", in Addendum to the Proceedings OOPSLA 91,1992.

In this note, we provide additional material to summarize
and complement the discussion of the position papers
presented at OOPSLA '91 in Phoenix.

Topic: The economics of Software Reuse. ...There was
almost uniform concensus from the various speakers: the
key issues we face in introducing effective reuse were
economic, managerial, and social, and not only (or even
predominantly) technical.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 57

[Baecker90] Ronald M. Baecker and Aaron Marcus, Human Factors
and Typography for More Readable Programs, 1990.

Program appearance has changed little since the first
high-level languages were developed. While millions of
people are writing programs, many of them are also read-
ing programs, and this need to read the programs has
received far less consideration than the need to write
them. Attention has been focused on the logic of pro-
gramming languages but not sufficiently on their visual
presentation; tools have been built to facilitate program
composition and editing, but not program perusal or
understanding. Reading this book could change some of
that. Productivity is enhanced when the program is easier
to read. The authors provide an introduction to the
issues, methods and results of effective program presen-
tation. A good book.

[Baecker91] Ronald M. Baecker, Ian Small, and Richard Mander,
"Bringing Icons to Life", in Reaching Through Technology, (CHI
'91 Conference Proceedings) Human Factors in Computing Systems,
1991, pgs 1-6.

Icons are used increasingly in interfaces because they are
compact "universal" pictographic representations of
computer functionality and processing. Animated icons
can bring to life symbols representing complete applica-
tions or functions within an application, thereby clarify-
ing their meaning, demonstrating their capabilities, and
even explaining their method of use. To test this hypothe-
sis, we carried out an iterative design of a set of animated
painting icons that appear in e HyperCard tool palette.
The design discipline restricted the animations to 10 to 20
second sequences of 22x20 pixel bit maps. User testing
was carried out on two interfaces—one with the static
icons, one with the animated icons. The results showed
significant benefit from the animations in clarifying the
purpose and functionality of the icons.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 58

[Barfield91] Lon Barfield, Eddy Boeve, and Steven Pemberton,
"The Views User-Interface System", in Reaching Through Tech-
nology, (CHI '91 Conference Proceedings) Human Factors in Com-
puting Systems, 1991, pg 415.

Views is a user-interface system where the user interface
is a layer above applications, guaranteeing consistency of
interface, and with a data-layer implementing external
object representation, allowing exchange of objects
between applications without loss of structure. The
user's model is that all actions are achieved by editing
documents that describe the world; an invariant or con-
straint-like system assures that the world is brought up-
to-date with the description. Among the innovative
aspects, object presentation is independent of the content
of objects, so that objects can be viewed in different ways
simultaneously, and presentations can be easily changed,
even on-the-fly.

[Barnes94] J.G.P. Barnes, Prograinrning in Ada (Plus an Overview of
Ada 9X), 4th edition, 1994.

Written by a key member of the original Ada design
team, this book is acknowledged as the definitive text
and reference for Ada programmers and students. This
fourth edition, remaining focused on the current ANSI 83
standard, reflects the imminent Ada 9x standard. All fea-
tures of Ada that will be affected by the new version are
highlighted and design rationale described in detail;
details of the syntax changes; and a n Ada 9x tutorial.

[Bauersfeld91] Penny F. Bauersfeld and Jodi L. Slater, "User-Ori-
ented Color Interface Design: Direct Manipulation of Color in
Context", in Reaching Through Technology, (CHI '91 Conference
Proceedings) Human Factors in Computing Systems, 1991, pg 417.

Color functionality for personal computers is currently
limited and does not adequately address user needs. By
introducing principles of color theory and design to inter-
face tools we can provide users with innovative ways to
manipulate color. This paper describes color tools based
on a uniform perceptual color space that account for the
relativity of color. Color interface ideas based on such
user-oriented color models and approaches are sug-
gested.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 59

[Baumgartner90] Gerald Baumgartner and Ryan Stansifer, "A Pro-
posal to Study Type Systems for Computer Algebra", in RISC
[Research Institute for Symbolic Computation] UNZ Series no. 90-
07.0,1990.

It is widely recognized that programming languages
should offer features to help structure programs. To
achieve this goal, languages like Ada, Modula-2, object-
oriented languages, and functional languages have been
developed. The structuring techniques available so far
(like modules, classes, parametric polymorphism) are still
not enough or not appropriate for some application areas.
In symbolic computation, in particular computer algebra,
several problems occur that are difficult to handle with
any existing programming language. Indeed, nearly all
available computer algebra systems suffer from the fact
that the underlying programming language imposes too
many restrictions.

We propose to develop a language that combines the
essential features from functional languages, object-ori-
ented languages, and computer algebra system in a
semantically clean manner. Although intended for use in
symbolic computation, this language should prove inter-
esting as a general purpose programming language. The
main innovation will be the application of sophisticated
type systems to the needs of computer algebra systems.
We will demonstrate the capabilities of the language by
using it to implement a small computer algebra library.
This implementation will be compared against a straight-
forward Lisp implementation and against existing com-
puter algebra systems. Our development should have an
impact both on the programming languages world and
on the computer algebra world.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 60

[6aumgartner94] Gerald Baumgartner and Vincent E Russo, Sig-
natures: A C++ Extension for Type Abstraction and Subtype Poly-
morphism, 1994.

C++ uses inheritance as a substitute for subtype polymor-
phism. We give examples where this makes the type sys-
tem too inflexible. We then describe a conservative
language extension that allows us to define an abstract
type hierarchy independent of any implementation hier-
archies, to retroactively abstract over an implementation,
and to decouple subtyping from inheritance.This exten-
sion gives the user more of the flexibility of dynamic typ-
ing while retaining the efficiency and security of static
typing. With default implementations and views we pro-
vide flexible mechanisms for implementing an abstract
type by different concrete class types. We first show how
our language extension can be implemented in a prepro-
cessor to a C++ compiler, and then detail and analyze the
efficiency of an implementation we directly incorporated
in the GNU C++ compiler.

[BaumgartnerXX] Gerald Baumgartner and Vincent E Russo,
Implementing Signatures for C++, XX.

In this paper we overview the design and implementa-
tion of a language extension to C++ for abstracting types
and for decoupling subtyping and inheritance. This
extension gives the user more of the flexibility of dynamic
typing while retaining the efficiency and security of static
typing. We discuss the syntax and semantics of this lan-
guage extension, show examples of its use, and present
and analyze the cost of three different implementation
techniques: a preprocessor to a C++ compiler, an imple-
mentation in the front end of a C++ compiler, and a low-
level back-end based implementation.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 61

[Beguelin92] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, et al.,
"HeNCE: graphical developement tools for network-based con-
current computing", in Proceedings. Scalable High Performance
Computing Comference SHPCC - 92,1992, pgs 129 -136.

[Bell91] Brigham Bell, John Rieman,and Clayton Lewis, "Usability
Testing of a Graphical Programming System: Things We Missed
in a Programming Walkthrough", in Reaching Through Technol-
ogy, (CHI '91 Conference Proceedings) Human Factors in Computing
Systems, 1991, pgs 7-12.

Traditional programming language design has focussed
on efficiency and expressiveness, with minimal attention
to the ease with which a programmer can translate task
requirements into statements in the language, a charac-
teristic we call "facility". The programming walkthrough
is a method for assessing the facility of a language design
before implementation. We describe the method and its
predictions for a graphical programming language,
ChemTrains. These predictions are contrasted with proto-
cols of subjects attempting to write their first ChemTrains
program. We conclude that the walkthrough is a valuable
aid at the design stage, but it is not infallible. Our results
also suggest that it may not be enough for programmers
to know how to solve a problem; they must also under-
stand why the solution will succeed.

[Bell92] Brigham Bell and Wayne Citrin, "Simulation of Commu-
nications Protocols through Graphical Transformation Rules",
in Proceedings of the International Workshop AVI '92,1992, pg 208.

We present a novel approach to the specification and sim-
ulation of communications protocols, through graphical
transformation rules. These rules are expressed using
ChemTrains, a graphical transformation system. For the
protocols tested, the sets of rules are concise and easily
constructed. Such a system should be suitable for rapid
prototyping, performance analysis, and instruction.
Whether executable protocol code can also be generated
from the graphical transformation rules remains an open
question.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 62

[Bell93] Brigham Bell and Clayton Lewis, "ChemTrains: A LAN-
GUAGE FOR CREATING BEHAVING PICTURES", in 1993
IEEE Symposium on Visual Languages, 1993, pgs 188-195.

ChemTrains is a rule-based language in which both the
condition and action of each rule are specified by pic-
tures. A ChemTrains rule will execute when the topology
rather than the geometry of a pattern matches a portion
of the simulation picture, enabling rules to be drawn at a
high level of abstraction. The language is independent of
any specific application domain and is accessible to peo-
ple with limited programming knowledge.

[Bell94] B. Bell, W. Citrin, C Lewis, J. Rieman, R. Weaver, N.
Wilde and B. Zorn, "Using the Programming Walkthrough to
Aid in Programming Language Design", in Software - Practice
and Experience, 1994, pgs 1 - 25.

The programming walkthrough is a method for assessing
how easy or hard it will be for users to write programs in
a programming language. It is intended to enable lan-
guage designers to identify problems early in design and
to help them choose among alternative designs. We
describe the method and present experience in applying
it in four language designs. We describe the method and
present experience in applying it in four language design
projects. Results indicate that the method is a useful sup-
plement to existing design approaches.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 63

[Bianchi93] N. Bianchi, P. Bottoni, P. Mussio, and M. Protti,
"Cooperative Visual Environments for the Design of Effective
Visual Systems", in Journal of Visual Languages and Computing,
1993, pgs 357-381.

This paper describes the architecture of cooperative
visual enviroments (CVE). This proposal stems from the
findings of several experiments which suggested over-
coming the limitations of first-generation user-interface
management systems (UIMS) by allowing the users to
determine their own computational environment. To
avoid user disorientation, as well as the possibility of cre-
ating ambiguous or contradictory systems, a novel disci-
pline for the specification and use of the tools is adopted.
A systemic approach has been proposed to identify the
variables needed to use, observe and adapt a CVE. The
design and implementation of tools satisfying this disci-
pline led to the definition of network objects, generalizing
composite objects, and to the introduction of typed links
allowing a new technique for message passing. The paper
illustrates the above points by discussing the rationale
behind the design of CVEs, deriving the requirements
which CVEs have to satisfy and outlining the architecture
with the fundamental mechanisms which allow their use
and evolution. The nature of the proposal is also clarified
through an example drawn from a real case.

[Bier91] Eric A. Bier and Ken Pier, "Documents as User Inter-
faces", in Reaching Through Technology, (CHI '91 Conference Pro-
ceedings) Human Factors in Computing Systems, 1991, pg 443.

Introduction: Each year the electronic documents com-
munity produces better tools for creating and changing
document elements, including text, illustrations, video,
and animation. At the same time, the user interface com-
munity works to build interfaces that improve the quality
of interaction by effectively presenting information to the
user and making it easy to act on and manipulate that
information. These efforts can be combined by using doc-
uments as user interfaces. We have implemented an
architecture, EmbeddedButtons, that allows arbitrary
document elements, managed by arbitrary editors, to
behave as buttons.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 64

[Birrell94] Andrew Birrell, Greg Nelson, Susan Owicki, and
Edward Wobber, Network Objects, 1994.

A network object is an object whose methods can be
invoked over a network. This report describes the design
and implementation of a network objects system for
Modula-3. The system is novel for its overall simplicity.
The report includes a thorough description of realistic
marshaling algorithms for network objects, precise infor-
mal specifications of the major internal interfaces, prelim-
inary experience, and performance results.

[Borges90] Jose A. Borges and Ralph E. Johnson, "Multiparadigm
Visual Programming Language", in 1990 IEEE Workshop on
Visual Languages, 1990, pgs 233-240.

Visual programming languages have not been successful
for general purpose programming. This paper argues that
multiparadigm visual programming languages will be
better suited for general purpose programming than lan-
guages based on a single paradigm. It illustrates these
points with the Visual ToolSet, a multiparadigm visual
programming language.

[Borschen94] Christoph Boschen, Christian Fecht, Andreas V.
Hense, and Reinhard Wilhelm, An Abstract Machine for an
Object-Oriented Language with Top-Level Classes, 1994.

Object-oriented programming languages where classes
are top-level, ie, not first-class citizens, are better suited
for compilation than completely dynamic languages like
Smalltalk or Self. In O'small, a language with top-level
classes, the compiler can statically determine the inherit-
ance hierarchy. Due to late binding, the class of the
receiver of a message must be determined at run time.
After that a direct jump to the corresponding method is
possible. Method lookup can thus be done in constant
time.

We present an abstract machine for O'small based on
these principles. It is a concise description of a portable
O'small implementation.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 65

[BothnerXXa] Per Bothner, Q, The Q Language, XX.
no abstract provided. Table of Contents includes 1) invok-
ing q, 2) syntax, 3) control structures, 4) numbers, 5) sym-
bols, 6) mappings, 7) sequences, 8) atoms, 9) union
objects, 10) declarations, 11) functions, 12) operators, 13)
streams, 14) records, 15) assignment, 16) system interface,
17) lisp support.

[BothnerXXb] Per Bothner, Q Shell A Programming-Language Shell,
XX.

Modern high-level programming languages provide
multiple data types (such as numbers, strings, and lists),
as well as first-class function values. Most utility lan-
guages (awk, perl, tcl) and most shells only have one (or a
few) data types (strings), but they are very convenient for
manipulating text or invoking programs. This paper dis-
cusses the issues involved in getting the best of both
worlds, in the context of the Q programming language.

For example, executing a program has the same syntax as
a function call, a pipe is function composition, and a disk
file just a persistent string. Similarly, a disk file just a per-
sistent string. These goals have implications for the syn-
tax and the control structure of the programming
language.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 66

[Brade92] Kathleen Brade, Mark Guzdial, Mark Steckel, and Elliot
Soloway, "Whorf: A Visualization Tool for Software Mainte-
nance", in 1992 IEEE Workshop on Visual Languages, 1992, pg 148.

Software maintenance programmers face the daunting
task of understanding and modifying complex, unfamil-
iar programs that contain delocalized plans (conceptually
related code that isn't located contiguously in a program).
Our research shows that programmers use an as-needed
strategy when searching for the delocalized components
which they need to understand. We have developed a
maintenance tool, Whorf, that provides explicit support
for visualizing and understanding delocalized plans
using as as-needed strategy. Whorf supports this strategy
through multiple, concurrent views of the software with
instant, easy access to additional views. It supports
understanding of delocalized plans by providing hyper-
text links between views to highlight interactions
between physically disparate components. A study com-
paring the usage of Whorf and paper documentation
shows that the dynamic views and structure supported
by Whorf provide information more quickly and easily
than the static structure of paper documentation.

[Brown93] Marc H. Brown, The 1992 SRC Algorithm Animation Fes-
tival, 1993.

During the last two weeks of July 1992, twenty research-
ers at Digital Equipment Corporation's Systems Research
Center participated in the 1st Annual SRC Algorithm
Animation Festival. Only two of the researchers had pre-
viously animated an algorithm, and not too many more
had ever written an application that involved graphics. In
this paper, we report on the Animation Festival, describ-
ing why we did it and what we did, and commenting on
what we learned.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 67

[Brown94] Marc H. Brown, The 1993 SRC Algorithm Animation Fes-
tival, 1994.

This report describes the 1993 SRC Algorithm Animation
Festival. The festival continues an experiment in develop-
ing algorithm animations by non-experts, started the pre-
vious year, and described in SRC Research Report #98.
This year nineteen researchers at Digital Equipment Cor-
poration's systems Research Center worked for two
weeks on animating algorithms. Most of the participants
had little (if any) experience writing programs that
involved graphics. This report explains why we orga-
nized the festival, and describes the logistics of the festi-
val and the advances in our algorithm animation system.
This report presents the complete code for a simple, but
non-trivial, animation of first-fit binpacking. Finally, this
report contains snapshotsfrom the animations produced
during the festival.

[Bryson93] Steve Bryson and Steve Feiner, IEEE Symposium on
Research Frontiers in Virtual Reality, 1993.

[Burdea93] Grigore Burdea and Philippe Coiffet, Virtual Reality
Technology, 1993.

[Burnett90] Margaret M. Burnett and Allen L. Ambler, "Efficiency
Issues in a Class of Visual Language", in 1990 IEEE Workshop on
Visual Languages, 1990, pgs 209-214.

This paper identifies a class of visual programming lan-
guages whose members share a common group of under-
lying principles. In this class, the demand-driven
temporal-assignment visual language model, the elimi-
nation of certain duplicate computations is a natural by-
product of the model. The potential time and space com-
plexity characteristics for visual languages based upon
this model are discussed, and a method that makes use of
these characteristics is presented.

[Burnett91] Margaret M. Burnett, Abstraction in the Demand-
Driven Temporal-Assignment, Visual Language Model, 1991.

Ph.D. thesis. Includes a very extensive annotated bibliog-
raphy.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 68

[Burnett92a] Margaret M. Burnett and Allen L. Ambler, "General-
izing Event Detection and Response in Visual Programming
Languages", in Proceedings of the International Workshop AVI '92,
1992, pg 334.

Although direct interaction plays an important role in
visual programming languages (VPLs), most approaches
to events in VPLs treat event-handling as a side issue,
often via special-purpose libraries or tools. This paper
presents a general approach to events in VPLs which dis-
tinguishes between event-detection and event-response.
Event-detection is treated as an abstraction, resulting in
data compatible and composable with other calculations
and data. This approach is extremely flexible, allowing
the user to define event responses to virtually any event
sequence.

[Burnett92b] Margaret M. Burnett and Allen L. Ambler, "A
Declarative Approach to Event-Handling in Visual Program-
ming Languages", in 2992 IEEE Workshop on Visual Languages,
1992, pgs 34-40.

In this paper, we address the question of event-handling
for declarative visual languages. In the approach pre-
sented, system-level, interactive, and user-defined events
are fully supported, while still maintaining the property
of referential transparency. An approach to time termed
temporal assignment provides a unifying mechanism for
events to be defined as ordinary sequences of values, and
conversely for ordinary sequences of values to be defined
as events. This allows event-handling without additional
concepts, and in particular provides a natural means for
the user to define higher-level events of any kind.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 69

[Burnett92c] Margaret M. Burnett and Allen L. Ambler, "Declara-
tive Approach to Event-Handling in Visual Programming Lan-
guages", in 1992 IEEE Workshop on Visual Languages, 1992, pgs
34-40.

In this paper we address the question of event-handling
for declarative visual languages. In the approach pre-
sented, system-level, interactive, and user-defined events
are fully-supported, while still maintaining the property
of referential transparency. An approach to time termed
temporal assignment provides a unifying mechanism for
events to be defined as ordinary sequences of values, and
conversely for ordinary sequences of values to be defined
as events. This allows event-handling without additional
concepts, and in particular provides a natural means for
the user to define higher-level events of any kind.

[Burnett93] Margaret M. Burnett, "Types and Type Inference in a
Visual Programming Language", in 2993 IEEE Symposium on
Visual Languages, 1993, pgs 238-243.

In this paper, the uses of types and type inference in
visual languages are explored. First, we discuss how the
goals of a type system must differ for visual languages
from those of a type system for textual languages. We
then present a type system developed under these goals
for the visual language Forms/3. Within the context of
this system, issues of particular importance in visual lan-
guages are examined, including maintaining the user"s
conceptual model, the avoidance of language restrictions
solely to support a type system, and how the visual pro-
cess of programming can provide additional information
to the type system.

[Burnett94a] Margaret Burnett and Benjamin Summers , Some
Real-World Uses of Visual Programming Systems, 1994.

What kinds of practical uses are people making of visual
programming today in the real world? To find this out,
we gathered information about users of visual program-
ming systems. The information came in response to a
newsgroup posting asking people to report their uses of
visual programming.... Table 1 contains information
about these users, which systems they use, and whether
they use it for general purpose programming or for a
domain-specific purpose intended by the system they are
using.... Table 2 presents the specific uses being made of
these visual programming systems.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 70

[Burnett94b] Margaret M. Burnett and Maria J. Baker, A Classifica-
tion System for Visual Programming Languages, 1994.

We have developed a classification scheme for classifying
visual programming language research papers. This
paper presents the scheme, the motivations for develop-
ing it, and examples of its use.

[Burnett94c] Margaret M. Burnett and Allen L. Ambler, "Declara-
tive Visual Languages", in Journal of Visual Languages and Com-
puting, 1994, pgs 1-3.

A commentary and overview by Burnett and Ambler as
Guest Editors of JVLC on the topic of declarative visual
languages.

[Burnett94d] Margaret M. Burnett and Allen L. Ambler, "Interac-
tive Visual Data Abstraction in a Declarative Visual Program-
ming Language", in Journal of Visual Languages and Computing,
1994, pgs 29-60.

Visual data abstraction is the concept of data abstraction
for visual languages. In this paper, first we discuss how
the requirements of data abstraction for visual languages
differ from the requirements for traditional textual lan-
guages. We then present a declarative approach to visual
data abstraction in the language Forms/3. Within the
context of this system, issues of particular importance to
declarative visual languages are examined. These issues
include enforcing information hiding through visual
techniques, supporting abstraction while preserving con-
creteness, conceptual simplicity, and specification of a
type's appearance and interactive behavior as part of its
definition. Interactive behavior is seen to be part of the
larger problem of event-handling in a declarative lan-
guage. A significant feature is that all programming and
execution are done in a fully-integrated visual manner,
without requiring other languages ortools for any part of
the programming process.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 71

[Burnett94d] Margaret M. Burnett and Allen L. Ambler, "Interac-
tive Visual Data Abstraction in a Declarative Visual Program-
ming Language", in Journal of Visual Languages and Computing,
1994,pgs29-60.

Visual data abstraction is the concept of data abstraction
for visual languages. In this paper, first we discuss how
the requirements of data abstraction for visual languages
differ from the requirements for traditional textual lan-
guages. We then present a declarative approach to visual
data abstraction in the language Forms/3. Within the
context of this system, issues of particular importance to
declarative visual languages are examined. These issues
include enforcing information hiding through visual
techniques, supporting abstraction while preserving con-
creteness, conceptual simplicity, and specification of a
type's appearance and interactive behavior as part of its
definition. Interactive behavior is seen to be part of the
larger problem of event-handling in a declarative lan-
guage. A significant feature is that all programming and
execution are done in a fully-integrated visual manner,
without requiring other languages or tools for any part of
the programming process.

[Burnett95] Margaret M. Burnett, Adele Goldberg, and Ted G.
Lewis, Visual Object Oriented Progranuning, 1995.

This first book on the union of two rapidly growing
approaches to programming —visual programming and
object technology—provides a window on a subject of
increasing commercial importance, (t is an introduction
and reference for cutting-edge developers, and for
researchers, students, and enthusiasts interested in the
design of visual OOP languages and environments.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 72

[Card91] Stuart K. Card, George G. Robertson, and Jock D. Mack-
inlay, "The Information Visualizer, an Information Workspace",
in Reaching Through Technology, (CHI '91 Conference Proceedings)
Human Factors in Computing Systems, 1991, pg 181.

This paper proposes a concept for the user interface of
information retrieval systems callled an information
workspace. The concept goes beyond the usual notion of
an information retrieval system to encompass the cost
structure of information from secondary storage to imme-
diate use. As an implementation of the concept, the
paper describes an experimental system, called the Infor-
mation Visualizer, and its rationale. The system is based
on (1) the use of 3D/Rooms for increasing the capacity of
immediate storage available to the user (2) the Cognitive
Co-processor scheduler-based user interface interaction
architecture for coupling the user in information agents,
and (3) the use of information visualization for interact-
ing with information structure.

[Cardelli94] Luca Cardelli, A Language with Distributed Scope, 1994,
pgs 1-15.

Obliq is a lexically-scoped, untyped, interpreted lan-
guage that supports distributed object-oriented computa-
tion. Obliq objects have state and are local to a site. Obliq
computations can roam over the network, while main-
taining network connections. Distributed lexical scoping
is the key mechanism for managing distributed computa-
tions.

[Cardelli95] Luca Cardelli, Obliq. A Language with Distributed
Scope, 1995.

Obliq is lexically-scoped, untyped, interpreted language
that supports distributed object-oriented computation.
Obliq objects have state and are local to a site. Obliq com-
putations can roam over the network, while maintaining
network connections. Distributed lexical scoping is the
key mechanism for managing distributed computations.

[Catarci92c] Tiziana Catarci, Marie Francesca Costabile, and Ste-
fano Levialdi, Advanced Visual Interfaces, 1992.

Proceedings of the International Workshop AVI '92,
Rome, Italy, May 27-29,1992

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 73

[Catteneo86] G. Cattaneo, A. Guercioi, S. Levialdi, and G. Tortora,
"IconLisp: An Example of a Visual Programming Language", in
IEEE 1986 Workshop on Visual Languages, 1986, pgs 22-25.

This paper presents a visual extension of an existing fun-
citonal programming language (LISP) so as to implement
visual programming. Two advantages may be gained: the
first one leading to an interactive teaching of LISP prop-
erties and behavior and to the possibility of writing cor-
rect programs using icons by means of visual feedback.

A scenario is also included.

[Chambers91] Craig Chambers and David Ungar, Making Pure
Object-Oriented Languages Practical, 1991.

In the past, object-oriented language designers and pro-
grammers have been forced to choose between pure mes-
sage passing and performance. Last year, our SELF
system achieved close to half the speed of optimized C
but suffered from unpractically long compile times. Two
new optimization techniques, deferred compilation of
uncommon cases and non-backtracking splitting using
path objects, have improved compilation speed by more
than an order of magnitude. SELF now compiles about
half as fast as an optimizing C compiler and runs at over
half the speed of optimized C. This new level of perfor-
mance may make pure object-oriented languages practi-
cal.

[Chang86] S.-K. Chang, T. Ichikawa, and P.A. Ligomenides, Visual
Languages, 1986.

Edited by some of the most preeminent names in the
field, this collection of papers on visual languages offers a
wide perspective of the topic.

[Chang90] Shi-Kuo Chang, 1990 IEEE Workshop on Visual Lan-
guages, 1990.

1990 IEEE Workshop on Visual Languages, October 4-6,
1990, Skokie, IL, USA

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 74

[Citrin] Wayne Citrin, Michael Doherty, and Benjamin Zorn, A
Formal Definition of Control Semantics in a Completely Visual Lan-
guage.

Visual representations of programs can facilitate program
understanding by presenting aspects of programs using
explicit and intuitive representations. To explore this
idea, we have designed a completely visual static and
dynamic presentation of an imperative programming
language. Because our representation of control is com-
pletely visual, programmers using this language can
understand the static and dynamic semantics of pro-
grams using the same framework. In this paper, we
describe the semantics of our language, both informally
and formally, focusing on support for control constructs.
We also prove that using our language to model common
high-level constructs is semantically sound. This paper is
an expanded version of [5]; we present a revised and
more complete treatment of the language's graphical
semantics, introduce the concept of canonical configura-
tions, and discuss the representation of function return
values.

[Citrin93] Wayne V. Citrin, "Requirements for Graphical Front
Ends for Visual Languages", in 1993 IEEE Symposium on Visual
Languages, 1993, pgs 142-150.

Although great progress has been made in the develop-
ment of visual languages, little attention has been paid to
how diagrams in such languages should be entered into
computers. This issue will have a great impact, however,
on users' acceptance of visual languages. We present an
analysis of the features of visual languages influencing
diagram entry, and also the results of an experiment com-
paring users' performance on different types of diagram
editors. This data is then used to suggest design guide-
lines for usable visual language front ends.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 75

[Citrin93] Wayne Citrin, Michael Doherty, and Benjamin Zorn,
Control Constructs in a Completely Visual Imperative Programming
Language, 93.

Visual representations of programs can facilitate program
understanding by presenting aspects of programs using
explicit and intuitive representations. We have designed a
completely visual static and dynamic representation of an
imperative programming language. Because our repre-
sentation of control is completely visual, programmers of
this language can understand the static and dynamic
semantics of programs using the same framework. In this
paper, we describe the semantics of our language, both
informally and formally, focusing on support for control
constructs. We also illustrated how simple programs
written in this language will look both statically and
dynamically. Our representation makes explicit some
parts of program execution that are implicit in textual
representations, thus our programs may be easier to
understand.

[Coad93] Peter Coad and Jill Nicola, Object-Oriented Program-
ming, 1993.

A good book on object oriented programming. A very
thorough, well presented discussion.

[Collins95] Dave Collins, Designing Object-Oriented User Inter-
faces, 1995.

An interesting, useful book on human interface design
for object oriented systems. A hands-on kind of book.

[Costagliola90] Gennaro Costagliola and Shi-Kuo Chang, "DR
PAPxSERS: a generalization of LR parsers", in 1990 IEEE Work-
shop on Visual Languages, 1990, pgs 174-180.

In this paper we will present a way to construct a parser
for a visual language whose specification can be done by
acontext-free grammar. The main idea is to allow a tradi-
tional LR parser to choose the next symbol to parse from
a two-dimensional space. For this purpose an intermedi-
ate representation of the picture is needed. We will then
make use of iconic indices. Cases of ambiguity are ana-
lyzed and some ways to avoid them are presented. More-
over the results of a practical implementation using the
Yacc tool have been given.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 76

[Cota90a] Bruce A. Cota and Robert G. Sargent, Simulation Algo-
rithms for Control Flow Graph Models, 1990.

We discuss algorithms for simulation based on control
flow graph models, which were introduced in an earlier
paper. We first review control flow graphs and the "basic
algorithm" for simulation based on them. We then review
the fact that the basic algorithm automatically computes a
form of lookahead without any null message passing or
optimistic assumptions, but that some additional mecha-
nism is required to avoid deadlock. We discuss five dif-
ferent versions of this algorithm, each of which uses a
different means of avoiding deadlock — null message
passing, deadlock detection and resolution, optimistic
computation, a mixed conservative/optimistic algorithm,
and an asynchronous sequential algorithm. In the null
message passing algorithm, the lookahead automatically
computed by the basic algorithm is used to reduce the
number of null messages sent. In the optimistic algo-
rithm, this same lookahead is used to avoid unnecessary
roll backs. In the mixed conservative/optimistic
approach, the lookahead is used as the basis for a conser-
vative computation "underlying" an optimistic computa-
tion. The optimistic computation is then used only when
conservative computation alone is not sufficient to keep
all available processors busy. In the asynchronous
sequential approach, the lookahead is used to avoid some
event list operations. All of these algorithms use only the
model representation and do not require any additional
information about the model from the modeler.

[Cota90b] Bruce A. Cota and Robert G. Sargent, Control Flow
Graphs: A Method of Model Representation for Parallel Discrete
Event Simulation, 1990.

"A model representation called "control flow graphs" is
developed that makes useful information for parallel dis-
crete event simulation explicit. An algorithm for parallel
discrete event simulation that makes use of these proper-
ties is given and an algorithm for automatically comput-
ing null messages for a conservative parallel simulation is
given The idea is that a user could use some language
based on this representation to describe a model, and an
efficient parallel simulation could be carried out based on
that model description, without requiring the user to
explicitly program additional knowledge about the
model into the simulation."

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 77

[Coulmann93] Ludwig Coulmann, "General Requirements for a
Program Visualization Tool to be used in engineering of 4GL
programs", in 1993 IEEE Symposium on Visual Languages, 1993,
pgs 37-41.

Program visualization can be used profitably to help a
programmer gain an understanding of the program's
meaning. In our context this process is called program
analysis. The paper first points out that program analysis
is highly individual and is influenced by the person
involved and by the aim of the process. Secondly, it
describes what consequences evolve out of the program
analysis characteristics for a supporting tool. Four dis-
tinct, general properties of a visualization tool are pre-
sented, emphasizing the user and his changing interests.
Thirdly, concepts are given for the visualization of 4GL-
programs and a specific tool is decribed as an example of
how the outlined requirements translate to a real applica-
tion. A tree is used to represent different structural rela-
tions in the program and icons at the nodes facilitate the
tree's perception.

[Coutaz91] Joelle Coutaz and Sandrine Balbo, "Applications: A
Dimension Space for User Interface Management Systems", in
Reaching Through Technology, (CHI '91 Conference Proceedings)
Human Factors in Computing Systems, 1991, pg 27.

This article presents an abstract space of dimensions
which characterize the behavior of applications (i.e.,
functional cores) with regard to UIMS components. These
dimensions such as responsiveness, accessibility, and
instantiability, constitute a conceptual framework which
captures the notion of functional core in terms adequate
for UIMS designers. The dimension space may also be
viewed as a requirements list for designing new UIMSs
as well as set of criteria for evaluating UIMSs.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 78

[Cox92] P.T. Cox and T. Pietrzykowski, "Visual Message Flow Lan-
guage MFL and Its Interface", in Proceedings of the International
Workshop AVI '92,1992, pg 348.

The visual language MFL (Message Flow Language) is
presented. MFL reverses the usual view of dataflow mak-
ing the objects of a computation the most significant
items, and giving them concrete representations related
to their visualisations where appropriate. The interac-
tions of these objects are described in terms of message
flows routed by controls external to the objects. The
visual syntax and the semantics of MFL are presented,
based on an extensive example. Although MFL is a gen-
eral purpose language for describing computations by
connected devices, one of its prime application is the pro-
gramming of visual interfaces, where the objects are
interface items. Since the language depends very heavily
on multiple visualisations of program elements, depend-
ing on context, the interface to the editor and debugger is
most important. An overview of interface philosophy is
presented.

[Cox92] Kenneth C. Cox and Gruia-Catalin Roman, "Abstraction
in Algorithm Animation", in 1992 IEEE Workshop on Visual Lan-
guages, 1992 , pg 18.

Abstraction of information into visual form plays a key
role in the development of algorithm animations. We
present a classification for abstraction as applied to algo-
rithm animation. The classification emphasizes the
expressive power of the abstraction, ranging from direct
presentation of the program's state to complex anima-
tions intended to explain the behavior of the program. We
illustrate our classification by presenting several visual-
izations of a shortest path algorithm.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 79

[Cox94] Kenneth C. Cox and Grui-Catalin Roman, "A Character-
ization of the Computational Power of Rule-based Visualiza-
tion", in Journal of Visual Languages and Computing, 1994, pgs 5 -
27.

Declarative visualization is a paradigm in which the pro-
cess of visualization is treated as a mapping from some
domain (typically a program) to an image. One means of
declaring such mappings is through the use of rules
which specify the relationship between the domain and
the image. This paper examines the computational power
of such rule-based mappings, focusing on their ability to
construct the types of images typically desired in pro-
gram visualization specifications.

[Daum94] Thorsten Daum, Douglas G. Fritz, and Robert G. Sar-
gent, A Graphical User Interface for Hierarchical Interconnection
Graph Specification, 1994.

A GUI is presented for the specification of Hierarchical
Interconnection Graphs. Brief overviews of HI Graphs,
how to specify the coupled component specifications of
HI graphs, and how the GUI is designed and imple-
mented are presented. A queuing model of a production
system is used as an example in the overviews. The GUI
was developed on a Unix workstation using the C++ pro-
gramming language and the Interviews C++ graphical
interface toolkit.

[deBakker90] J.W. de Bakker, W.R de Roever, and G. Rozenberg,
"Foundations of Object-Oriented Languages", in Lecture Notes
in Computer Science, 1990.

Proceedings of the REX School/Workshop, Noordwijker-
hout, The Netherlands, Mayjune 1990.

[Del Bimbo93] Alberto Del Bimbo, Enrico Vicario, and Daniele
Zingoni, "Visual Specifications of Virtual Worlds", in 1993 IEEE
Symposium on Visual Languages, 1993, pgs 376-378.

Verisimilitude to real world phenomena is the most
appealing feature of Virtual Reality environments. A high
degree of realism can be attained through a fine represen-
tation of the visual appearance of the actors playing in
the virtual world, but a verisimilar replication of their
behavior is necessary too. Preliminary results on a project
aiming at the construction of a tool for the visual specifi-
cation of the behavior pattern of virtual world actors are
presented.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 80

[DeTreville93] John DeTreville, "The GraphVBT Interface for Pro-
gramming Algorithm Animations", in 1993 IEEE Symposium on
Visual Languages, 1993, pgs 26-31.

The GraphVBT interface is used for programming algo-
rithm animations within the Zeus system. GraphVBT
provides a small number of primitive object types—verti-
ces, edges, vertex highlights, and polygons—and meth-
ods on them that are flexible enough to apply to
animations of many classes of algorithms. The interface is
presented and examples of its use are shown.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 81

[Di Battista92] G. Di Battista, G. Liotta, M. Strani, and F. Vargiu,
"Diagram Server", in Proceedings of the International Workshop
AVI'92,1992, pg 415.

A diagram is a drawing on the plane consisting of a set of
symbols (nodes) and a set of connections (edges) between
nodes.

Diagrams are widely used as an interaction language
with users in a large set of applications like information
system analysis and design (Entity-Relationship dia-
grams, Flow diagrams, Jackson diagrams), software engi-
neering (Petri Nets, Subroutine call graphs, State
transition diagrams), CAD/CAM applications and VLSI
circuit layout.

As the number of objects (nodes and edges) involved in a
diagram grows, the effort required to solve the conflicts
of physical layout with the desired appearance becomes
greater.

Having a tool that automatically manage graphs allows
the user not to be involved with problems regarding
graph drawing but to focus attention on the meaning of
what the graph represents.

The problem of designing tools for automatically draw-
ing diagrams has been intensively studied in the last
years [offers references]; however, existing tools are not
enough parametric and user-friendly both to generate a
wide variety of diagrams and to be easily used by a not
expert final user.

Diagram Server (DS in what follows) (offers references) is
a network server designed to solve the above problems; it
offers to its clients an effective set of facilities to easily
represent and manipulate diagrams through a multiwin-
dowing environment; moreover DS can be customized
according to different application contexts and graphic
environments.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 82

[Di Gesu92] Vito DiGesu and Domenico Tegolo, "The Iconic
Interface for the Pictorial C Language", in 1992 IEEE Workshop
on Visual Languages, 1992, pg 119.

Iconic environments intend to provide expressive tools to
implement, to debug and to execute programs. Moreover
its pictorial constructs guide the user to design algo-
rithms in an interactive fashion. Visual interfaces are
especially required whenever programs run on an hetero-
geneous and reconfigurable multi-processor system ori-
ented to image analysis. Pictorial tools help the user to
control the scope of variables, and the distribution of the
tasks into the processors. In this paper, the general
design, the visual-syntax, and the implementation of the
first prototype of an iconic user interface for the Pictorial
C Language (PICL) are described.

[Dillon92] L.K. Dillon, G. Kutty, L.E. Moser, P.M. Melliar-Smith,
and Y.S. Ramakrishna, A Graphical Interval Logic for Specifying
Concurrent Systems, 1992.

The paper describes a graphical interval logic that is the
foundation of a toolset supporting formal specifications
and verification of concurrent software systems. Experi-
ence has shown that most software engineers find stan-
dard temporal logic difficult to understand and to use.
The objective of this work is to enable software engineers
to specify and reason about temporal properties of con-
current systems more easily by providing them with a
logic that has an intuitive graphical representation and
with tools that support its use. To illustrate the use of the
graph,ical logic, the paper provides some specifications
for an elevator system and proves several properties of
the specification. The paper also describes the toolset and
the implementation.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 83

[Dillon94] L.K. Dillon, G. Kutty, P.M. Melliar-Smith, L.E. Moser,
and Y. S. Ramakrishna, "Visual Specifications for Temporal Rea-
soning", in Journal of Visual Languages and Computing, 1994, pgs
61-81.

Graphical Interval Logic (GIL) is a visual temporal logic
in which formulas resemble the informal timing dia-
grams familiar to systems designers and software engi-
neers. It provides an intuititve and natural visual
notation in which to express specifications for concurrent
system and retians the benefits of a formal notation. A
visual editor permits GIL specifications to be easily con-
structed, and to be stored in and retrieved from files. The
editor interfaces with a proof checker and model genera-
tor, which permit verification of temporal inferences. The
paper shows how graphical specifications are created and
used to reason about temporal properties of systems. It
shows how pictures that formalize temporal arguments
enhance understanding and help motivate successful
proof strategies.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 84

[Dony92] Christophe Dony, Jan Purchase, and Rüssel Winder,
"Exception Handling in Object-Oriented Systems, Report on
ECOOP '91 Workshop W4", in OOPS Messenger, 1992, pgs 17-
30.

Introduction...

Today, object-oriented language designers and users are
showing a renewed interest in exception handling.
Exception handling systems have recently been, or are
being, integrated into many object-oriented languages
(C+ (Koenig & Stroustrup 1990), CommonLisp (+CLOS)
(Pitman, 1988), Eiffel (Meyer, 1988) Smalltalk (ParcPlace
Systems, 1989) etc.). There are two main reasons for this
interest. Firstly, as object-oriented languages become
more sophisticated, the problem of coping with excep-
tional situations occurring at run-time becomes more
complex and the need for appropriate tools and language
mechanisms to detect, handle and correct errors more
crucial (Purchase & Winder, 1991). Secondly, the infeasi-
bility of achieving information hiding and modularity at
a large scale without exception handling system.

The goal of the workshop, organized by the authors, was
to compare existing systems developed for object-ori-
ented languages and to address various issues connected
with the semantics and the implementation of these sys-
tems. The call for participation for the workshop stated
many of these issues, the main ones being:

• the relationship between exception handling, software
quality, modularity, and reusability.

• the problem of object consistency in the presence of
exceptional events.

• the level of modularity used to associate handlers with
code.

• the role of formal specifications.

• the use of reflection.

• the problems raised by concurrency.

Some other issues were raised during the workshop (con-
tinues on into document)

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 85

[Dow92] Chyi-Ren Dow, Mary Lou Soff a, and Shi-Kuo Chang, "A
Visual Optimization Specification Language", in Proceedings of
the International Workshop AVI '92,1992, pg 289.

In order to fully exploit the parallelism of parallel proces-
sors, code transformations must be performed. These
transformations have traditionally been shown in text
code. We present a visual optimization specification lan-
guage, VOSpeL, which provides the user with a uniform
model to visually specify and perform code transforma-
tions. The wide range of applicability of VOSpeL is seen
through several examples of the specification of tradi-
tional and parallelizing optimizations. VOSpeL can be
used as part of a visualization system for transformed
parallelized programs. A multi-level browser, which has
been implemented, can be used to browse any block of
statements in one program view and the corresponding
code of another program view will be highlighted.
VOSpeL is a graphical form of a General Optimization
specification Language (GOSpeL) and is based primarily
on the Program Dependence Graph (PDG) model GOS-
peL, used to implement an automatic optimizer genera-
tor, permits the uniform specification both traditional and
parallelizing optimizations by using common constructs.
The VOSpeL specification takes advantage of the PDG
representation to provide the user with a visual model
that is clear, allows different level program representa-
tions and enables the user to actually see what statements
can be executed in parallel.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 86

[Duisberg87] Robert Adamy Duisberg, "Visual Programming of
Program Visualizations", in 1987 Workshop on Visual Languages,
1987, pgs 55-66.

Algorithm animation promises to be useful in software
engineering environments. But fulfillment of the promise
will require facilities for the easy construction of anima-
tions, for example to be created on the fly in the course of
debugging. This paper describes exploratory work
toward a system allowing "animation by demonstra-
tion", that is capturing the user's gestures involved in
direct mouse manipulation of a picture in the environ-
ment of a drafting program. Such gestures may be related
to specific events in the text of a program, again by ges-
tural indication. Execution of the program being ani-
mated then involves a recompilation of the
"instrumental" source code into a version which include
the graphics procedure calls expanded in-line. The user is
thus spared the writing of any textual graphics code.

[Earnshaw93] R.A. Earnshaw, M.A. Gigante, and H. Jones, Virtual
Reality Systems, 1993.

[Edel88] M. Edel,, "The Tinkertoy Graphical Programming Envi-
ronment", in IEEE Transactions on Software Engineering, 1988,
pgs 1110 -1115.

Tinkertoy is a graphic interface to Lisp, where programs
are "built" rather than written, out of icons and flexible
interconnections. It is exciting because it represents a
computer/user interface that can easily exceed the inter-
action speed of the best text-based language editors and
command languages. It also provides a consistent frame-
work for interaction across both editing and command
execution. Moreover, because programs are represented
graphically, structures that do not naturally conform to
the text medium can be clearly described, and new kinds
of information can be incorporated into programs and
program elements.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 87

[ElKassas92] S. El-Kassas, "HIRG: A Model for Defining Hierar-
chical Visual Languages", in 1992 IEEE Workshop on Visual Lan-
guages, 1992, pg 237.

This paper addresses the issue of the formal definition of
hierarchical visual languages. It is motivated by interest
in formal system development and the use of visual lan-
guages as formal specification tools. The paper presents a
formal model of hierarchical visual languages. This
model is then extended to enable the integration of tex-
tual and visual notations.

[Ellis90] Margaret A. Ellis and Bjarne Stroustrup, The Annotated
C++ Reference Manual. (ANSI Base Document), 1990.

This is a complete reference for the C++ language. In
addition to the manual, approved as the base document
of ANSI standardization for the language, are annota-
tions and commentary. These discuss what is not
included, why certain features are defined as they are,
and how one might implement particular features. Com-
parisons with C and examples explain the more subtle
points of the language.

[Ellis93] John R. Ellis and David L. Detlefs, Safe, Efficient Garbage
Collection for C++, 1993.

We propose adding safe, efficient garbage collection to
C++, eliminating the possibility of storage-management
bugs and making the design of complex, object-oriented
systems much easier. This can be accomplished with
almost no change to the language itself and only small
changes to existing implementations, while retaining
compatibility with existing class libraries.

Our proposal is the first to take a holistic, system-level
approach, integrating four technologies. The language
interface specifies how programmers access garbage col-
lection through the language. An optional safe subset of
the language automatically enforces the safe-use rules of
garbage collections and precludes storage bugs. A variety
of collection algorithms are compatible with the language
interface, but some are easier to implement and more
compatible with existing C++ and C implementations.
Finally, code generator safety ensures that compilers gen-
erate correct code for use with collectors.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 88

[Finzer84] W. Finzer and L. Gould, "Programming by Rehearsal",
in BYTE magazine, 1984, pgs 187 - 210.

Rehearsal is a visual programming environment that
nonprogrammers can use to create educational software.
The emphasis in this graphical environment is on pro-
gramming visually; only things that can be seen can be
manipulated. The design and programming process con-
sists of moving "performers" around on "stages" and
teaching them how to interact by sending "cues" to one
another, (etc.)

[Fischer93] Alice E. Fischer and Frances S. Grodzinsky, The Anat-
omy of Progranuning Languages, 1993.

This is a comprehensive text which attempts to dissect
language and explain how a language is really built. The
first eleven chapters cover the core material: language
specification, objects, expressions, control, and types. The
more concrete aspects of each topic are presented first,
followed by a discussion of implementation strategies
and the related semantic issues. Later chapters cover cur-
rent topics, including modules, object-oriented program-
ming, functional languages, and concurrency constructs.

[Ford92] Lindsey Ford, Brian Lings, and Wendy Milne, Addressing
the Software Engineering Assessment Crisis, XX.

There is a need to be able to assess whether students have
acquired real software engineering knowledge and skills.
It is all very well pointing to a student succeeding in indi-
vidual courses on topics such as systems analysis, HCI,
and formal systems, but can the student use this dispar-
ate knowledge coherently on a large project? Further-
more a student may be able to work efficiently on an
individual project but can the same student work within
a team-based project environment with staged deadlines
to meet and perhaps difficult fellow team members? We
report on our attempt to impart and assess these skills
and knowledge. Early feedback suggests that some real
learning has taken place.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 89

[Ford93a] Lindsey Ford, Automatic Software Visualization Using
Visual Arts Technics, Research Report 279,1993.

The problems of reconciling spatial and temporal dimen-
sions of source code have been with us since the advent
of programming. Although the notion of visually repre-
senting the internal states and actions of a computer is
not new but for algorithm animation, at least, it involves
a heavy time penalty on designing and implementing the
animation. We have attempted to automate this process
by providing a general mechanism for parsing and trans-
forming source code in order to yield standard represen-
tations. General visualization mechanisms are then
applied to these representations. The problem of space
and time persist, however, and we have used techniques
from the visual arts, particularly theatre and film, to
address them. Our results encourage us to believe that
techniques such as these are relevant for completely auto-
mating the visualization of very large programs.

[Ford93b] Lindsey Ford, Separation of Concerns in Teaching Interac-
tive Systems Designs, 1993.

Position Statement

There are two tricks to teaching design of interactive sys-
tems:

• separate two concerns (Frontend and BackEnd) at the
right time,

• do not separate software engineering and HCI con-
cerns.

Paper goes to explain and describe.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 90

[Ford93c] Lindsey Ford, How Programmers Visualize Programs, 1993.
How does a programmer see a computer language? What
does a program look like? How would a programmer
express these visualizations given a set of graphic and
animation creation tools? We explore these questions
with learners of object-oriented programming. The learn-
ers were provided with the tools and wrote programs to
animate features of the language C++. We present the
results and conclude that: (1) learners use various
abstraction when visualization; (2) a study of program-
mers' visualizations provides a complementary view to
textual-based empirical studies of programmers; (3) pro-
grammers frequently represent the same textual pro-
gramming construct in different visual forms; (4)
visualization provides a framework for studying learn-
ers' misconceptions; and (5) visualization exercises for
learners appear to foster programming skills.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 91

[Ford93d] Lindsey Ford, Goofy Animation System, 1993.
The ideas of John T. Stasko and his software system,
POLKA, have been instrumental in the development of
the Goofy system. POLKA is a system that provides
smooth 21/2 dimensional colour animations on top of
the Xll Window System, and similar 3-dimensional
effects on workstations. POLKA provides functions that
can be called directly by the animator's code to produce
animations.

Goofy provides two interfaces to POLKA, one via a file,
the other a functional interface. These interfaces allow
animation providers to access POLKA indirectly through
a higher level interface. Also, during the development of
Goofy, we are adding some extra functinoality to POLK
software—for example, sound, various graphic transfor-
mations, and moving a "camera". POLKA and Goofy
together provide a comprehensive environment for very
sophiisticated animations.

The Goofy language provides the animation designer
with object definition constructs, object movement
descriptors, an object attribute change facility, a method
for choreographing events, and several windows for ani-
mation.

Goofy uses the "theatre" metaphor to facilitate its use by
the animation designer: the theatre has a number of
stages (windows), each stage has a background (colour),
a play (animation) is enacted through a number of scenes,
ascene may involve action on any of the stages by a cast
of characters (objects). Each scene is scripted with timed
events (actions), and actors (objects) perform the events.

[Ford93e] Lindsey Ford, Interactive Learning and Researching with
Visualization, 1993.

Can the use of visualization promote links between learn-
ers, teachers, and researchers? Could such links improve
learning, the quality of teaching, or stimulate new
research? We report on our tentative experiment in this
direction using animation software and conclude that it
does indeed promote links and stimulate research. We
present our plans for the future.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 92

[Ford93f] Lindsey Ford and Daniel Tallis, "Interacting Visual
Abstractions of Programs", in 1993 IEEE Symposium on Visual
Languages, 93, pgs 93-97.

What visual program abstractions support program-
ming? We explore this question for object-oriented pro-
gramming with reference to preogramming tasks such as
modification engineering and program development. We
present ten related abstractions (views) of a program
using visual constructs based on empirical and observa-
tional studies. We explain the dynamic and interactive
nature of the views and suggest how they would be used
in programming tasks.

[Ford93g] Lindsey Ford and Daniel Tallis, "Interacting Visual
Abstractions of Programs", in 1993 IEEE Symposium on Visual
Languages, 1993.

This is the published version of the paper referenced
[Ford93f]

What visual program abstractions support program-
ming? We explore this question for object-oriented pro-
gramming with reference to preogramming tasks such as
modification engineering and program development. We
present ten related abstractions (views) of a program
using visual constructs based on empirical and observa-
tional studies. We explain the dynamic and interactive
nature of the views and suggest how they would be used
in programming tasks.

[Frakes90] Bill Frakes, Proceedings of the Third Annual Workshop:
Methods and Tools for Reuse, 1990.

Table of contents:

Preface, Library Methods I, Reuse Environments, Design
& Adaptation I, Library Methods II, Library Methods HI,
Validation, Compilable Specs, Domain Specific Lan-
guage, Domain Analysis I, Domain Analysis II, Design
and Adaptation II, Attendees.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 93

[Furnas91] George W. Furnas, "New Graphical Reasoning Models
for Understanding Graphical Interfaces", in Reaching Through
Technology, (CHI '91 Conference Proceedings) Human Factors in
Computing Systems, 1991, pg 71.

This paper aspires to make three points: (1) that certain
graphical interfaces are especially easy to learn and use,
(2) that special graphical deduction/computation sys-
tems are possible, and (3) that perhaps points (1) and (2)
are intimately related, i.e., that graphical interfaces may
be especially useful because they engage special human
graphical reasoning processes.

[GACote94] R. GACote, Desktop Telephony, 1994, pgs 151 -152.
Describes PhonePro, a Macintosh program for creating
automated, programmable voice-mail systems. Offers a
graphical scripting language. PhonePro works with any
analog telephone system. Offered commercially by
Cypress Research.

[Glassman93] Steven C. Glassman, "A TURBO ENVIRONMENT
FOR PRODUCING ALGORITHM ANIMATIONS", in 1993
IEEE Symposium on Visual Languages, 1993, pgs 32-36.

We describe GEF, a fast turnaround environment for
developing algorithms animations. GEF is an interpreted
programming language with operations for defining
graphic objects and animations.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 94

[Glinert86] Ephraim P. Glinert, 'Towards "Second Generation"
Interative, Graphical Programming Environments", in IEEE
1986 Workshop on Visual Languages, 1986, pgs 61-69.

The study and design of interactive, graphical program-
ming environments (IPGEs) capable of providing a high
bandwidth for human-computer communication is still
in its infancy. For the vast majority of professional pro-
grammers, the supremacy of conventional, textual pro-
gramming remains essentially unchallenged at present.
We foresee that, in the near future, the seemingly diver-
gent avenues along which research related to program-
ming environments has progressed in recent years will
merge, and thus lead to a "new generation" of IGPEs
which will prove beneficial to a greater proportion of the
community of computer users including, in particular,
both novices and those who may be termed "computing
specialists". BLOX, our mixed textual-graphical program-
ming methodology currently under development, is pro-
posed as a possible way to resolve certain issues relating
to these new environments which many presently see as
problematical.

[Glinert89] E. P. Glinert, and D.W. Mclntyre, "The User\xd5 s
View of SunPict, an Extensible Visual Environment for Interme-
diate-Scale Procedural Programming", in Proceedings. Fourth
Israel Conference on Computer Systems and Software Engineering,
1989, pgs 49-58.

[Glinert90a] Ephraim P. Glinert, Visual Programming Environ-
ments, Applications and Issues, 1990.

Like its companion text, Visual Programming Environ-
ments, Paradigms and Systems, this collection of papers
is one of the most authoritative collections in the field.

[Glinert90b] Ephraim P. Glinert, Visual Programming Environ-
ments, Paradigms and Systems, 1990.

Like its companion text, Visual Programming Environ-
ments, Applications and Issues, this collection of papers
is one of the most authoritative collections in the field.
The editor is internationally recognized for his expertise
and insight in visual programming.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 95

[Gloor92] Peter A. Gloor, "AACE—Algorithm Animation for
Computer Science Education", in 2992 IEEE Workshop on Visual
Languages, 1992, pg 25.

This paper describes AACE, a methodology for education
algorithm animation that we developed while building
an integrated hypermedia algorithm animation environ-
ment extending a fundamental algorithms textbook.
After presenting the general structure of AACE, we dis-
cuss questions of the ideal user interface for algorithm
animations. We compare our approach for the develop-
ment of algorithm animations that we call "structure-
based" with the more conventional "unified view" -based
approach.

[Goldberg89] Adele Goldberg and David Robson, SMALLTALK-
80 The language., 1989.

The first part of this book introduces the Smalltalk-80
approach to information representation and manipula-
tion; it also provides an overview of the syntax of the lan-
guage. The second section contains specifications of the
kinds of objects already present in the Smalltalk-80 pro-
gramming environment. New kinds of objects can be
added by a programmer, but a wide variety objects come
with the standard system. An example of adding new
kinds of objects to the system is included in the third part;
this example describes the addition of an application to
model discrete, event-driven simulations such as car
washes, banks, or information systems.

[Golin93] Eric J. Golin and Tom Magliery, "A Compiler Genera-
tor for Visual Languages", in 1993 IEEE Symposium on Visual
Languages, 1993, pgs 314-321.

Building a compiler for a visual programming language
is a significant task, and is complicated by the difficulty in
handling visual syntax. Object-oriented picture layout
grammars are a grammar formalism for defining visual
syntax that users C++ to define graphical attributes and
constraints. SPARGEN is a compiler-compiler that auto-
matically generates a visual langauge compiler from an
OOPLG specification. This paper describes how SPAR-
GEN can be used to construct compilers for visual pro-
gramming languages.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 96

[Green95] Thomas Green, "Noddy's Guide to Visual Program-
ming", in The British Computer Society — Human-Computer Inter-
action Group "Interfaces", Autumn '95,1995.

Discusses what visual programming is and is not. Offers
a coherent overview on the topics, issues, style concerns,
with extensive references.

[Grover91] Mark D. Grover, Ph.D., 'The Pleasure and Pain of Per-
sistence", in Addendum to the Proceedings OOPSLA 91,1991, pgs
107-110.

SynchroWorks(TM) by Oberon Software; "Oberson Soft-
ware is constructing a product which creates and man-
ages complex databases of persistent objects. This
presentation describes useful experiences in the design
and development of this product.... The product pro-
vides a convenient software environment for configuring
and personalizing shared data and applications among
information management professionals."

[Grundy91] John C. Grundy and John G. Hosking, Integrated
Object-Oriented Software Development in SPE, XX.

SPE is a software development environment which sup-
ports multiple textual and graphical views of a program.
Views are kept consistent with one another using a mech-
anism of update records. SPE is useful throughout all
phases of the software development life-cycle. It provides
support for conceptual level object-oriented analysis and
design using diagrams, visual and textual programming,
hypertext-based browsing, and visual debugging,
together with a modification history. SPE is implemented
as a specialization of an object-oriented framework and
provides an environment for Snart, an object-oriented
programming language.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 97

[Grundy93a] John Collis Grundy, Multiple Textual and Graphical
Views for Interactive Software Development Environments, 1993.

Diagram construction can be used to visually analyse and
design a complex software system using natural, graphi-
cal representations describing high-level structure and
semantics. Textual programming can specify detailed
documentation and functionality not well expressed at a
visual level. Integrating multiple textual and graphical
views of software development allows programmers to
utilise both representations as appropriate. Consistency
management between these views must be automatically
maintained by the development environment.

MViews, a model for such software development envi-
ronments, has been developed. MViews supports inte-
grated textual and graphical views of software
development with consistency management. MViews
provides flexible program and view representation using
a novel object dependency graph approach. Multiple
views of a program may contain common information
and are stored as graphs with textual or graphical render-
ings and editing. Change propagation between program
components and views is supported using a novel update
record mechanism. Different editing tools are integrated
as views of a common program repository and new pro-
gram representations and editors can be integrated with-
out affecting existing views.

A specification language for program and view state and
manipulation semantics, and a visual specification lan-
guage for view appearance and editing semantics, have
been developed. An object-oriented architecture based on
MViews abstractions allows environment specifications
to be translated into a design for implementing environ-
ments. Environment designs are implemented by special-
ising a framework of object-oriented language classes
based on the MViews architecture. A new language is
described which provides object-oriented extensions to
Prolog. An integrated software development environ-
ment for this language is discussed and the specification,
design and implementation of this environment using
MViews are described. MViews has also been reused to
produce a graphical entity-relationship/textual relational
database scheme modeller, a dialogue painter with a
graphical editing view and textual constraints view, and
various program visualisation systems.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 98

[Grundy93b] J.C. Grundy and J.G. Hosking, "MViews: A Frame-
work for Developing Visual Programming Environments", in
Technolog}/ of Object-Oriented Languages and Syterns (TOOLS 12),
1993.

[Harmon91] Paul Harmon, and Brian Sawyer, ObjectCraft A
Graphical Programming Tool for Object-Oriented Applications,
1991.

This book is the manual for ObjectCraft, software provid-
ing "a tool for doing object-oriented programming visu-
ally", automatically converting code to C++ or Turbo
Pascal.

[Helm91] Richard Helm, Kim Marriott, and Martin Odersky,
"Building Visual Language Parsers", in Reaching Through Tech-
nology, (CHI '91 Conference Proceedings) Human Factors in Com-
puting Systems, 1991, pg 105.

Notepad computers promise a new input paradigm
where users communicate with ocmputers in visual lan-
guages composed of handwritten text and diagrams. A
key problem to e solved before such an interface can be
realized is the efficient and accurate recognition (or pars-
ing) of handwritten input. We present techniques for
building visual language parsers based on a new formal-
ism, constrained set grammars. Constrained set gram-
mars provide a high-level an d declarative specification
of visual languages and support the automatic generation
of efficient parsers. These techniques have been used to
build parsers for several representative visual languages.

[Heydon90] A. Heydon, M. Maimone, J. Tygar, J. Wing, and A.
Zaremski, "Miro: Visual Specification of Security", in IEEE
Transactions on Software Engineering, 1990, pgs 1185 -1197.

Miro is a set of language and tools that support visual
specification of file system security. We present two
visual languages; the instance language, which allows
specification of file system access, and the constraint lan-
guage, which allows specification of security policies. We
also describe tools we have implemented and give exam-
ples of how our languages can be applied to real security
specification problems.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 99

[Heydon94] Allan Heydon and Greg Nelson, The Juno-2 Con-
straint- Based Drawing Editor, 1994.

Constraints are an important enabling technology for
interactive graphics applications. However, today's con-
straint-based systems are plagued by several limitations,
and constraints have yet to live up to their potential.

Juno-2 is a constraint-based double-view drawing editor
that addresses some of these limitations. Constraints in
Juno-2 are declarative, and they can include non-linear
functions and ordered pairs. Moreover, the Juno-2 solver
is not limited to acyclic constraint systems. Juno-2 also
includes a powerful extension language that allows users
to define new constraints. The system demonstrates that
fast constraint solving is possible with a highly extensi-
ble, fully declarative constraint language.

The report describe what it is like to use Juno-2, outlines
the methods that juno-2 uses to solve constraints, and dis-
cusses its performance.

[Hilton90] Michael Lee Hilton, Implementation of Declarative Lan-
guages, 1990.

This dissertation is concerned with the design of comput-
ing architectures which support the implementation of
declarative programming languages. Declarative lan-
guages, which include the functional and logic program-
ming languages, are based on mathematical theories of
computation. These mathematical foundations endow
declarative languages with elegant semantics and expres-
siveness, but make efficient implementation on conven-
tional von-Neumann computers difficult.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 100

[Hirakawa87] M. Hirakawa, S. Iwata, I. Yoshimoto, M. Tanaka,
and T. Ichikawa, "HI-VISUAL Iconic Programming", in 1987
Workshop on Visual Languages, 1987.

We earlier proposed a visual programming language, HI-
VISUAL, which was designed to attain interactive iconic
programming. Programming in HI-VISUAL is carried
out simply by arranging icons on the display screen.

In this paper, we extend HI-VISUAL as an environment
for iconic programming by providing the following facili-
ties: (1) navigation for program development and system
operations, (2) interpretation mechanisms for icon pro-
grams and system operations, based on the object-ori-
ented concept, (3) design of user-defined interfaces, (4)
top-down development of programs, and (5) integration
of existing (sub)systems.

The architecture of HI-VISUAL for programming, execu-
tion, and management of icon programs will also be pre-
sented.

[Hirakawa88] M. Hirakawa, "A Framework for Construction of
Icon Systems", in 1988 IEEE Workshop on Visual Languages, 1988,
pgs 70-77.

Iconic programming is effective for attaining higher man-
machine interaction from the viewpoints of both univer-
sality and efficiency. In this paper, the authors propose a
framework for the construction of icon systems.

An icon system is composed of icons and rules. Icons rep-
resent real objects such as sales books, folders, calcula-
tors, etc. Functions associated with an object are specified
in the icon representing the object. Icons therefore have
both data and function properties. Icons in fact may have
several functions. The behavior of an icon is not fixed but
is determined at the time of programming by being com-
bined with another icon.

Rules are provided to make flexible interpretation of
icons feasible depending on the application, the status of
the system, and so on. The behavior of the system can be
changed by replac ing icons and/or rules with new ones.

Implementational issues of the system are also described.
A system prototype is now in an actual operation on a
workstation in our laboratory environment.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 101

[Hirakawa90a] Masahito Hirakawa, Makoto Yoshimi, and Tadao
Ichikawa, "A Universal Language System for Visual Program-
ming", in 1990 IEEE Workshop on Visual Languages, 1990, pgs
156-161.

Development of visual programming systems is usually
carried out by means of a conventional text-based pro-
gramming language such as C or Lisp. This imposes a
large burden on the system designer because of the differ-
ence in the two language models. To lighten the burden,
an environment which supports construction of visual
programming systems is desirable.

In this paper, the authors present a universal language
system for visual programming. Any specific visual pro-
gramming system can easily be constructed by using the
system. The system is based on our previous studies of
VPS/VPSM, and extended by providing (1) a unified,
object-oriented model of visual elements management
and (2) support tools which enable the system designer to
construct visual programming systems more easily.

[Hirakawa90b] M. Hirakawa, M. Tanaka, and T. Ichikawa, "An
Iconic Programming System, HI-VISUAL", in 7EEE Transactions
on Soßware Engineering, 1990, pgs 1178 -1184.

The use of icons is effective for attaining higher man-
machine interaction in programming, from the view-
points of both universality and efficiency. In this paper,
the authors propose a new framework for icon manage-
ment and an iconic programming based on it.

In the framework, icons represent real objects or the con-
cepts already established in a target application environ-
ment, whereas icons representing functions are not
provided. A function is represented by a combination of
two different icons. Each icon can take an active or a pas-
sive role against the other. The role sharing is determined
dynamically depending on the environment in which the
icons are activated.

The framework for icon management mentioned above,
which is quite object-oriented, if first proposed, and then
an iconic programming system named HI-VISUAL is pre-
sented on the basis of the framework. Programming in
HI-VISU AL and implementational issues of the system
prototype, now in actual operation in our laboratory
environment, are extensively discussed.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 102

[Holt90] CM. Holt, "Viz: A Visual Language Based on Func-
tions", in 1990 IEEE Workshop on Visual Languages, 1990, pgs
221-226.

A significant feature of visual languages is that one may
use geometric position to represent non-linear structure
directly, in contract to "algebraic" languages that are
restricted to totally ordered sequences of symbols.
Directed graphs are well-suited to the description of par-
tial orders of applications and events, as found in func-
tional and concurrent models; the use of visual
techniques therefore has the potential to eliminate a level
of encoding on the part of the programmer. This paper
introduces some conventions that are intended to allow a
straightforward representation of a functional semantics,
while being general enough to be extendable to more
general semantic models.

[Holzle93] Urs Holzle, Integrating Independently-Developed Compo-
nents in Object-Oriented Languages, 1993.

Object-oriented programming promises to increase pro-
grammer productivity through better reuse of existing
code. However, reuse is not yet pervasive in today's
object-oriented programs. Why is this so? We argue that
one reason is that current programming languages and
environments assume that components are perfectly
coordinated. Yet in a world where programs are mostly
composed out of reusable components, these components
are not likely to be completely integrated because the
sheer number of components would make global coordi-
nation impractical. Given that seemingly minor inconsis-
tencies between between individually designed
components would exist, we examine how they can lead
to integration problems with current programming lan-
guage mechanisms. We discuss several reuse mecha-
nisms that can adapt a component in place without
requiring access to the component's source code and
without need to re-typecheck it.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 103

[Horowitz95] Ellis Horowitz, Programming Languages: A Grand
Tour. 2nd edition, 1995, pg 1985.

This comprehensive anthology presents a twenty-year
overview of programming languages and contains an
organized collection of articles and language reference
materials for students of programming languages and
professional computer scientists. Beginning with a his-
tory of programming languages, the book chronicles the
appearance of each new language and its contributions,
and emphasizes the difficulty of successful language
design. It includes significant papers on the ALGOL fam-
ily of languages, applicative programming languages,
data abstraction languages, Ada (the new language
developed by the US Department of Defense), and lan-
guages with concurrency features. This new edition of
Programming Languages: A Grand Tour now includes
the new February 1983 edition of the Reference Manual
for the Ada Programming Language, as well as complete
language reference manuals for ALGOL60, ALGOL-3,
Lisp 1.5, Modula, and C.

[Horton94] William Horton, The Icon Book "Visual Symbols for
Computer Systems and Documentation, 1994.

User-interface icons are much more than on-screen deco-
rations. They plan an integral role in enhancing end-user
productivity and an application's overall success. Written
by a seasoned design professional, the book presents
clear, step-by-step guidelines for designing instantly rec-
ognizable, fully understandable, and reliably memorable
computer icons and icon sets for domestic and interna-
tional use. The book is heavily illustrated, with research-
based accounts on every aspect of the icon design pro-
cess.

[HP88] Hewlet-Packard, Corvallis, SysRPL Programming Guide,
1988.

Everything you ever wanted to know about the underly-
ing interface of the HP 48 series calculators.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 104

[Hsia88] Yenm-Teh Hsia, "Construction and Manipulation of
Dynamic Icons", in 1988 IEEE Workshop on Visual Languages,
1988, pgs 78-83.

A dynamic icon is an icon whose graphical representation
is computed and varies over time with changes in the
properties of the object it represents. Dynamic icons make
possible use of iconic representation of objects whose
dynamic behavior must be reflected in their representa-
tion. The visual langauge PT incorporates dynamic icons
to model dynamic object behavior in executing programs.
This use of dynamic icons provides a natural program
animation mechanism. This paper discusses dynamic
icons and their use in PT.

[Hudson] Scott E. Hudson and John T. Stasko, Animation Support
in a User Interface Toolkit: Flexible, Robust, and Reusable Abstrac-
tions.

Animation can be a very effective mechanism to convey
information in visualization and user interface settings.
However, integrating animated presentations into user
interfaces has typically been a difficult task since, to date,
there has been little or no explicit support for animation
in window systems or user interface toolkits. This paper
describes how the Artkit user interface toolkit has been
extended with new animation support abstractions
designed to overcome this problem. These abstractions
provide a powerful but convenient base for building a
range of animations, supporting techniques such as sim-
ple motion-blur, 'squash and stretch', use of arcing trajec-
tories, anticipation and follow through, and 'slow-in/
slow-out' transitions. Because these abstractions are pro-
vided by the toolkit they are reusable and may be freely
mixed with more conventional user interface techniques.
In addition, the Artkit implementation of these abstrac-
tions is robust in the face of systems (such as the X Win-
dow system and Unix) which can be ill-behaved with
respect to timing considerations.

[Humenn90b] Paul R. Humenn, User's Manual for the D Program-
ming Language, Version 3.2,1990.

This is definitely a user's manual.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 105

[Hyrskykari87] Aulikki Hyrskykari, and Kari-jouko Raiha, "Ani-
mation of Algorithms Without Programming*", in 2987 Work-
shop on Visual Languages, 1987.

Animation of data has been found to be a useful tool for
teaching and for developing new algorithms. However,
the use of animations has been limited because of the
large amount of programming needed. We are imple-
menting a system that generates the animation automati-
cally on the basis of a simple, declarative specification. In
this report we present a brief survey of current work on
animation of algorithms and introduce the specification
method used in our system.

[Ichikawa84] Tadao Ichikawa, and Shi-Kuo Chang, IEEE 1984
Workshop on Visual Languages, 1984.

EEE 1984 Workshop on Visual Languages, Dec. 6-8,1984,
Hiroshima, Japan

[Ichikawa86] Tadao Ichikawa, IEEE 1986 Workshop on Visual Lan-
guages, 86.

IEEE 1986 Workshop on Visual Languages, June 25-27,
1986, Dallas, TX, USA

[Ichikawa92] T. Ichikawa, and H. Tsubotani, Language Architec-
tures and Prograntming Environments, 1992.

This is a collection of papers which the editors consider
milestones in relation to past research; the newest work
isn't necessarily included, but it's the quality that counts.
The editors feel they offer a solid historical overview of
the growth of the technology and the philosophical
aspects involved. The collection offers interesting and
unusual insight into the approach past pioneers took in
solving problems we still work with today.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 106

[Ingalls88] D. Ingalls, S. Wallace, Yu-Ying Chow, F. Ludolph and
K. Doyle, "Fabrik A Visual Programming Environment", in
ACM SIGPLAN3rd Annual Conference on Object-Orientated Pro-
gramming Systems, Languages, and Applications (OOPSLA 88),
1988, pgs 176 -190.

Fabrik is a visual programming environment—a kit of
computational and user-interface components that can be
"wired" together to build new components and useful
applications. Fabrik diagrams utilize bidirectional data-
flow connections as a shorthand for multiple paths of
flow. Built on object-oriented foundations, Fabrik compo-
nents can compute arbitrary objects as outputs. Music
and animation can be programmed in this way and the
user interface can even be extended by generating graph-
ical structures that depend on other data. An interactive
type system guards against meaningless connections. As
with simple dataflow, each Fabrik component can be
compiled into an object with access methods correspond-
ing to each of the possible paths of data propagation.

[Inmon89] W.H. Inmon, Data Architecture: The Information Para-
digm, 1989.

In this book the author lays the foundation of an informa-
tion systems architecture, defines the information para-
digm and data architecture and then discusses the
evolution of the information paradigm.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 107

[Jamsek90] Damir A. Jamsek, The WINTER Architecture: Support for
a Purely Declarative Programming Language, 1990.

Combining functional and logic programming para-
digms in a single environment leads to a powerful and
expressive programming language. The WINTER
abstract machine provides an execution environment that
efficiently realizes the goals of such a programming sys-
tem. The WINTER abstract machine draws much of its
inspiration from currently popular abstract machines
being developed for either functional or logic program-
ming. It is novel in its unification of architectures that ini-
tially seem to be addressing entirely different
programming paradigms. This unification leads to a com-
mon and consistent treatment of both functional and
logic programming.

The main technical results presented in this work include
several aspects in the development of the WINTER archi-
tecture. The primary result is the definition of the WIN-
TER architecture including the structure and operational
semantics of the machine designed. In addition, the
semantics of the programming language are presented
formally as an axiomatic term rewriting system, thus pro-
viding a basis for determining the correctness of the
WINTER design.

The WINTER machine is presented in a way which lends
itself to formal verification. That is, the syntax and
semantics of the language being supported are formally
presented, as well as the structure and operational
semantics of the WINTER machine. This is expressed in a
form suitable for mechanical verification by any one of a
number of currently available automated proof assis-
tants. This formal presentation provides a sound engi-
neering basis from which to address further topics of
machine design to be encountered in the subsequent
development of refined versions of the WINTER
machine.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 108

[Jeffries91] Robin Jeffries, James R. Miller, Cathleen Wharton, and
Kathy Uyeda, "User Interface Evaluation in the Real World: A
Comparison of Four Techniques", in Reaching Through Technol-
ogy, (CHI '91 Conference Proceedings) Human Factors in Computing
Systems, 1991, pg 119.

A user interface (UI) for a software product was evalu-
ated prior to its release by four groups, each applying a
different technique: heuristic evaluation, software guide-
lines, cognitive walkthroughs, and usability testing. Heu-
ristic evaluation by several UI specialists foudn the most
serious problems with the least amount of effort,
although they also reported a large number of low-prior-
ity problems. The relative advantages of all the tech-
niques are discussed, and suggestions for improvements
in the techniques are offered.

[Jerding94] Dean R Jerding, and John T. Stasko, Using Visualization
to Foster Object-Oriented Program Understanding, 1994, pgs 1-15.

Software development and maintenance tasks rely on
and can benefit from an increased level of program
understanding. Object-oriented programming languages
provide features which facilitate software maintenance,
yet the same features often make object-oriented pro-
grams more difficult to understand. We support the use
of program visualization techniques to foster object-ori-
ented program comprehension. This paper identifies
ways that visualization can increase program under-
standing, and presents a means for characterizing both
static and dynamic aspects of an object-oriented program.
We then describe the implementation of a prototypical
tool for visualizing the execution of C++ programs. Based
on this work, we define a framework for the visualization
of object-oriented sw which requires little or no program-
mer intervention and provides a mechanism which
allows users to focus quickly on particular aspects of the
program.

[Jungert88] E. Jungert, 1988 IEEE Workshop on Visual Languages,
1988.

1988 IEEE Workshop on Visual Languages, October 10-
12,1988, Pittsburgh, PA, USA

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 109

|Jungert93] Erland Jungert, "Graqula—A Visual Information-flow
Query Language for a Geographical Information System", in
Journal of Visual Languages and Computing, 1993, pgs 383-401.

The query language Graquala, described and discussed
here, is designed for a geographical information system.
The basic map data structure to which Graquala has been
adapted is a homogeneous raster-based structure of run-
length-code (RLC) type. Because of the homogeneity of
the map data structure, queries can be applied in a more
or less generic way; that is, queries can be applied to all
map data regardless of their type. For this reason it has
been possible to design a visual data-flow query lan-
guage that allows compound queries which can become
quite complex. In this work, Graqula and some elements
of its environment, including a brief overview of the basic
map data structure, will be discussed.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References HO

[Kado92] M. Kado, M. Hirakawa, and T. Ichikawa, "HI-VISUAL
for Hierarchical Development of Large Programs", in 1992 IEEE
Workshop on Visual Languages, 1992, pg 48.

In recent years, the demand for the development of pro-
gramming environments friendly non-experts has
increased. At Hiroshima University, we have been devel-
oping an iconic programming environment called, HI-
VISUAL, where program construction is carried out by
arranging icons on the screen. In this paper, an extension
of HI-VISUAL programming facilities for enabling users
to develop large programs is investigated. We first
present a model for supporting hierarchical development
of large programs. Program development is achieved in
the model by means of two primitive components, agent
and frame. An agent is a special icon which can manage
user-defined programs, while a frame is a container for
managing a set of icons (including agents) allowing the
user to construct programs hierarchically. Implementa-
tional issues of a system prototype are also discussed. In
the system, an office metaphor is applied for realization
of the hierarchical program development model, where
an agent and a frame correspond to an employee and an
office room, respectively. The user in the real world oper-
ates icons/agents in a virtual office room and specifies a
sequence of tasks, i.e. a program. Here, multiple users
can have individual office rooms (frames) which are con-
nected to each other through a computer network. This
means that members in a project are allowed to work
cooperatively for development of large programs.

[Katiyar94] Dinish Katiyar, David Luckham, and John Mitchell,
"A type system for prototyping languages", in Conf. Record of
POPL '94: list ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, 1994, pgs 138-150.

RAPIDE is a programming language framework
designed for the development of large, concurrent, real-
time systems by prototyping. The framework consists of
a type language and default executable, specification and
architecture languages, along with associated program-
ming tools. We describe the main feature of the type lan-
guage, its intended use in a prototyping environment,
and rationale for selected design decisions.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References Hl

[Keene88] Sonya E. Keene, Object-Oriented Programming in COM-
MON LISP, A Programmer's Guide to CLOS, 1988.

In the words of Daniel G. Bobrow, from Xerox Palo Alto
Research Center, "This book is a superb introduction to
programming with the Common Lisp Object System. It
presents clearly, through realistic programming exam-
ples, the important material in CLOS. It also indicates
how readers should think about constructing such pro-
grams themselves, and provides style hints and discusses
tradeoffs in the use of different features. Its discussion of
how to design and document an object-oriented program
will also be of interest of programmers who work in other
languages."

[Kent92] William Kent, "User Object Models", in OOPS Messenger,
1992, pgs 10-25.

Object users and developers have different needs, con-
tributing to the plethora of object models. This paper
focuses on user object models, differentiating them from
developer models, and outlines a spectrum of character-
istics which can provide a basis for comparing and recon-
ciling different user models.

[Khoral93] Khoral Research, Inc., Cantata The Khoral Visual Pro-
gramming Environment, 1993, pgs 1-87.

Visual Programming Manual. Use of the Khoros system.

[Khoros95] Khoral Research, Inc., Installing Khoros, an Installation
Guide. Appendix A: Cantata Operators, 1995.

Installation Guide

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 112

[Kimura92] Takayuki Dan Kimura, "Hyperflow: A Visual Pro-
gramming Language for Pen Computers", in 1992 IEEE Work-
shop on Visual Languages, 1992, pg 125.

The design philosophy of th Hyperflow visual program-
ming language and an overview of its semantic model are
presented. The concept of visually interactive process,
vip, is introduced as the fundamental element of the
semantics. Vips communicate with each other through
exchange of signals, either discrete or continuous. Each
vip communicates with the user through its own inter-
face box by displaying on the box information about the
vip and by receiving information pen-scribed on the box.
There are four different communication modes: mailing,
posting, channeling, and broadcasting. Mailing and post-
ing are for discrete signals and channeling and broadcast-
ing are for continuous signals. Simple Hyperflow
programs are given including a specification for the Line-
Clock device driver.

[Klausner91] Sanford B. Klausner, "The Cubicon Project", in
Addendum to the Proceedings OOPSLA 91,1991, pgs 105 -107.

[Koike93] Hideki Koike and Hirotaka Yoshihara, "Fractal
Approaches for Visualization Huge Hierarchies", in 2993 IEEE
Symposium on Visual Languages, 1993, pgs 55-60.

This paper describes fractal approaches to the problems
which associate with visualizing huge hierarchies. The
geometrical characteristic of a fractal, self-similarity,
allows users to visually interact with a huge tree in the
same manner at every level of the tree. The fractal dimen-
sion, a measure of complexity, makes it possible to con-
trol the total amount of displayed nodes. A prototype
visualization system for UNIX directoris is also shown.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References H3

[Kopache88] Mark E. Kopache and Ephraim P. Glinert, "CA2: A
Mixed Textual/ Graphical Environment for C", in 1988 IEEE
Workshop on Visual Languages, 1988, pgs 231-238.

A visual programming environment for a subset of the C
language is described. The CA2 environment, as it is
called, runs on a personal workstation with high resolu-
tion graphics display. Both conventional textual code
entry and editing, and program composition by means; of
an experimental hybrid textual/graphical method, are
supported and coexist side by side on the screen at all
times. The built-in text editor incorporates selected UNIX
vi commands in conjunction with a C syntax interpreter.
Hybrid textual/graphical program composition is facili-
tated by a BLOX-type environment in which graphical
icons represent program structures and text in the icons
represents user-supplied parameters attached to those
structures. The two representations are coupled, so that
modification entered using either one automatically gen-
erate the appropriate update in the other. Although not
all of the C language is yet supported, CA2 is not a toy
system. Textual files that contain C programs serve as
input and output. Graphical representations serve
merely as interally-generated aids to the programmer,
and are not stored between runs.

[Korfhage84] Robert R. Korfhage and Margaret A. Korfhage, "The
Nature of Visual Languages", in IEEE 1984 Workshop on Visual
Languages, 1984, pgs 177-183.

Most natural and programming languages available
today have a strongly linear structure. We consider the
implications that htis has for visual representation and
manipulation, and suggest some characteristics of a class
of languages better suited to these tasks.

[Korfhage87] Robert R. Korfhage, 1987 Workshop on Visual Lan-
guages, 1987.

1987 Workshop on Visual Languages, August 19-21,
Linkoping, Sweden

Phase ISBIR Final Report from SNAP Technologies, Inc.

References H4

[Kutty] G. Kutty, L.E. Moser, P.M. Melliar-Smith, and Y.S.
Ramakrishna, A Graphical Methodology for Concurrent System
Design, 93 or later.

Graphical Interval Logic is a visual formalism used to
specify and reason about concurrency in software and
hardware designs. In this paper we illustrate the use of
Graphical Interval Logic in the design of a concurrent
system, a simple communication protocol for reliable
sequenced communication over an unreliable medium.
We also describe a graphical toolkit that we have devel-
oped for Graphical Interval Logic.

[Lamport94] Leslie Lamport, Processes are in the Eye of the Beholder,
1994.

A two-process algorithm is shown to be equivalent to an
N-process one, illustrating the insubstantiality of pro-
cesses. A completely formal equivalence proof in TLA
(the Temporal Logic of Actions) is sketched.

[Larkin90] Timothy S. Larkin and Raymond I. Carruthers, HER-
MES, 1990.

SERV, a Simulation Environment for Research Biologists,
is a tool for constructing models representing continuous
processes. SERV has been programmed in Flavors, an CO
programmming language imbedded in LISP. Models are
themselves objects, consisting of modular components,
each representing a process or some aspect of a process.
Each component is a black box, with a functional defini-
tion which maps its inputs to one or more outputs. Each
input is connected to an appropriate output, from which
it receives a value. These concepts led to the creation of
an early version of SERV in which a text editor was uzed
to specify the series of components making up the model,
which was text based and linearly organized. Currently,
the advantages of Flavors are being further exploited in
two main directions.

[Leavens91] Gary T. Leavens, "Introduction to the Literature on
Object-Oriented Design, Programming, and Languages", in
OOPS Messenger, 1991, pgs 40-53.

This paper is an introduction to the literature on object-
oriented design, object-oriented programming, a few pro-
gramming languages (especially C++), and some related
topics in language design.

Phase ISBIR Final Report from SNAP Technologies, Inc.

•

References 115

[Levialdi90] Stefano Levialdi, "Congnition, Models & Meta-
phors", in 2990 IEEE Workshop on Visual Languages, 1990, pgs
69-79.

Man machine interfaces are proviing to be the most deli-
cate and important component for a fruitful and friendly
use of complex programs. In order to fully exploit the
intellectual power of man new studies in cognition engi-
neering and in the formation of mental models have
favoured the use of metaphors for raising the abstraction
level of communication and enlarging the community of
computer users outside the circle of experts; new studies
in metaphor evaluation and utilization in existing com-
mercial programs and in suggested graphical user inter-
faces are providing new insight in the rapidly growing
area of iconic systems and visual langauges which, hope-
fully, will establish aconstructive methodology for meta-
phor design.

[Lewis91] J. Bryan Lewis, Lawrence Koved, and Daniel T. Ling,
"Dialogue Structures for Virtual Worlds", in Reaching Through
Technology, (CHI '91 Conference Proceedings) Human Factors in
Computing Systems, 1991, pg 131.

We describe a software architecture for virtual worlds,
built on a base of multiple processes communicating
through a central event-driven user interface manage-
ment system. The virtual world's behavior is specified by
a dialogue composed of modular subdialogues or rule
sets. In order to achieve high flexibility, device remappa-
bility and reusability, the rule sets should be written as
independent modules, each encapsulating its own state.
Each should be designed according to its purpose in a
conceptual hierarchy: it can transform a specific device
into a generic device, or transform a generic device into
an interaction technique, or, at the top level, map interac-
tion techniques to actions.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References H6

[Lieberman92] Henry Lieberman, "Dominoes and Storyboard:
Beyond "Icons on Strings"", in 1992 IEEE Workshop on Visual
Languages, 1992, pg 65.

Practically since graphic displays were first hooked to
computers, the idea of representing computer programs
by pictures has attracted researchers. However, to date,
most proposals for visual programming languages have
adhered to a set pattern: fixed pictures symbolizing pro-
gram components, connected by lines or arrows symbol-
izing relationships between the program components.
This "icons and strings" approach, while it can be useful,
is not the only way of visualizing programs. In this
paper, I explore one alternative: representing a program
through visual examples of the state of its execution. I
present two related techniques: dominoes, which replace
the traditional icons as representations of operations; and
storyboards, which replace iconic circuitry as the repre-
sentation of program code. These have been imple-
mented in Mondrian, a graphic editor extensible through
programming by example.

[Ludolph88] Frank Ludolph and Yu-Ying Chow, "The Fabrik
Programming Environment", in 1988 IEEE Workshop on Visual
Languages, 1988, pgs 222-230.

Fabrik is an experimental interactive graphical program-
ming environment designed to simplify the program-
ming process by integrating the user interface, the
programming language and its representation, and the
envirnmental languages used to construct and debug
programs. The programming language uses a functinoal,
bidirectional data-flow model that trivializes syntax and
eliminates the need for some traditional programming
abstractions. Program synthesis si simplified by the use
of aggregate and application-specific operations, modifi-
able examples, and the direct construction of graphical
elements. The user interface includes several features
designed to ease the construction and editing of the pro-
gram graphs. Understanding of both individual functions
and program operation are aided by immediate execution
and feedback as the program is edited.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 117

[Lundell91] Jay Lundell and Mark Notess, "Human Factors in
Software Development: Models, Techniques, and Outcomes",
in Reaching Through Technology, (CHI '91 Conference Proceedings)
Human Factors in Computing Systems, 1991, pg 145.

We present the results of a survey designed to identify
ways that human factors engineers have been success-
fully involved in software projects. Surveys describing
successful and unsuccessful outcomes were returned by
14 human factors engineers and 21 software and docu-
mentation engineers at Hewlett Packard. In addition to
describing the type of involvement and techniques used,
respondents were also asked to define what they consid-
ered to be a successful outcome and give their views on
what factors contribute to success or failure. The results
of this study suggest ways in which the human factors/
R&D partnership can be more effective in current devel-
opment scenarios.

[Mackay91] Wendy E. Mackay, "Triggers and Barriers to Custom-
izing Software", in Reaching Through Technology, (CHI '91 Confer-
ence Proceedings) Human Factors in Computing Systems, 1991, pg
153.

One of the properties of a user interface is that it both
guides and constrains the patterns of interaction between
the user and the software application. Application soft-
ware is increasingly designed to be "customizable" by the
end user, providing specific mechanisms by which users
may specify individual preferences about the software
and how they will interact with it over multiple sessions.
Users may thus encode and preserve their preferred pat-
terns of use. These customizations, together with choices
about which applications to use, make up the unique
"software environment" for each individual.

While it is theoretically possible for each user to carefully
evaluate and optimize each possible customization
option, this study suggests that most people do not. I
studied the customization behavior of 51 users of a Unix
software environment, over a period of four months. This
paper describes the process by which users decide to cus-
tomize and examines the factors that influence when and
how users make those decisions. These findings have
implications for both the design of software and the inte-
gration of new software into an organization.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 118

[Mackinlay91] Jock D. Mackinlay, George G. Robertson, and Stu-
art K. Card, "The Perspective Wall: Detail and Context
Smoothly Integrated", in Reaching Through Technology, (CHI '91
Conference Proceedings) Human Factors in Computing Systems,
1991, pg 173.

Tasks that involve large information spaces overwhelm
workspaces that do not support efficient use of space and
time. For example, case studies indicate that information
often contains linear components, which can result in 2D
layouts with wide, inefficient aspect ratios. This paper
describes a technique called Perspective Wall for visualiz-
ing linear information by smoothly integrating detailed
and contextual views. It uses hardware support for 3D
interactive animation to fold wide 3D layouts into intui-
tive 3D visualizations that have a center panel for detail
and two perspective panels for context. The resulting
visualization supports efficient use of space and time.

[Mackinlay92] Jock D. Mackinlay, George G. Robertson, and Stu-
art K. Card, "The Information Visualizer: A 3D User Interface
for Information Retrieval", in Proceedings of the International
Workshop AVI '92,1992, pg 173.

Advances in computer technology have created new pos-
sibilities for information retrieval systems in which user
interfaces could play a more central role. Our analysis of
the problem suggests that what is needed from the user's
point of view is not so much information retrieval itself,
but, rather, the amplification of information-based work
processes. User interfaces enabled by this technology
may be able to amplify work by modifying the cost struc-
ture of information used in work. As a consequence, we
have attempted to go beyond the usual notion of an infor-
mation retrieval system to develop an "Information
Workspace" that encompasses the cost structure of infor-
mation from secondary storage to immediate use. As an
implementation of the concept, we describe the experi-
mental system, called the Information Visualizer, and its
rationale. The system is based on the use of (1) 3D/
Rooms for increasing the capacity of immediate storage
available to the user, (2) an animated scheduler based
user interface interaction architecture, called the Cogni-
tive Coprocessor, for coupling the user to information
agents, and (3) information visualization for interacting
with the information structure. The system and its ratio-
nale are described.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 119

[Madsen95] Ole Lehrmann Madsen, Abstract Syntax Structure Edit-
ing and Type Browing for Self, draft version 1.2,1995.

how to program in Self

[Magnusson94] Boris Magnusson, Bertrand Meyer, Jean-Marc
Nerson, and Jean-Francois Perrot, Technology of Object-Oriented
Languages and Systems TOOLS 13,1994.

TOOLS (Technology ofObjet-Oriented Languages and
Systems) 13. Proceedings of the thirteenth International
Conference, Versailles, 1994.

[Mak91] Ronald Mak, Writing Compilers & Interpreters. An
Applied Approach., 1991.

This book emphasizes practical skills rather than theory.
First it describes writing a set of useful working utility
programs, then builds upon these to develop an inter-
preter, an interactive debugger, and a compiler.

[Manuel95] Darrel Manuel, The Impossible Dream: Towards General
and Automatic Visualizations, 1995.

Visualization systems at present suffer from a number of
significant problem. Many of these are derived from the
lack of automatic and general systems which would
reduce the amount of work required by the systems'
users. In addition the lack of a set of general theories,
objects and activities between different systems increases
the difficulty in learning how to use them. This paper
attempts to describe the levels and forms of automation
and generalization inherent in visualization systems,
attempting to explain from the problems that exist cur-
rently and potentially in the future, with plausible solu-
tions.

[Marcus91] Bob Marcus, Addendum to the (OOPSLA) Proceedings,
AZ '91Birds of a Feather: "END USER", 1991, pgs 97-110.

This is additional proceedings from the OOPSLA 91 Con-
ference, October 6-11,1991, Phoenix, Arizona.

Phase 1SBIR Final Report from SNAP Technologies, Inc.

References 120

[Marcus92] Bob Marcus, "End Users (Birds of a Feather). OOPSLA
'91, Conference on Objected-Oriented Programming systems,
Languages, and Applications ", in Addendum to the Proceedings
OOPSLA 91,1992.

The main outcome of the end-users BOF at OOPSLA was
the formation of an ongoing group tentatively named
"Corporate Facilitators of Object-Oriented Technology"
(CFOOT). The purpose of the group is to communicate
corporate requirements to vendors and consortia. In
addition, the group will provide a mechanism for sharing
experiences and lessons learned in introducing object
technology into large corporations.... As part of the ini-
tial meeting, a list of end-user requirements for vendors
was gathered by brainstorming. These are: 1) consider
your products as components of larger and/or legacy
system. 2) focus on areas where your product can add
value. 3) avoid unnecessary proprietary features and
interfaces. 4) interoperate with other products and com-
ponents. 5) plan to interface with multiple legacy plat-
forms, systems, processes and organizations. 6) supply
tools for supporting total life cycle project management,
methodologies, and metrics. 7) provide robust class
libraries to encapsulate non-object-oriented systems. 8)
supply tools for reverse engineering and code generation.
9) provide object-oriented screen painters and robust
standardized classes for graphical user interfaces. 10)
supply source code for class libraries using a reasonable,
coherent pricing structure.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 121

[Marks90] Joe Marks , "A Syntax and Semantics for Network Dia-
grams", in 1990 IEEE Workshop on Visual Languages, 1990, pgs
104-110.

The ability to automatically design graphical displays of
data will be important for the next generation of interac-
tive computer systems. The research reported here con-
cerns the automated design of network diagrams, one of
hte three main classes of symbolic graphical display (the
other two being chart graphs and maps). Previous
notions of syntax and semantics for network diagrams
are not adequate for automating the design of this kind of
graphical display. I present here a new formulation of
syntax and semantics for network diagrams that is used
in the ANDD (Automated Network Diagram Designer)
system. The syntactic formulation differs from previous
work in two significant ways: perceptual-organization
phenomena are explicitly

[Martin86] George R. R. Martin, Tuf Voyaging, 1986.
This science fiction work was enjoyed by the project PI
and is the source of name inspirations, such as TUF, ARK,
and Cornucopia (from "The Cornucopia of Excellent
Goods at Low Prices") for this project.

[Masnavi90] Siamak Masnavi , "Automatic Visualization of the
Dynamic Behavior of Programs by Animation of the Language
Interpreter", in 1990 IEEE Workshop on Visual Languages, 1990,
pgs 17-21.

Understanding the dynamic behavior of programs with-
out good program animation tools can be difficult. Thisis
especially true for novie programmers. Unfortunately,
most existing tracing tools either only visualize one
aspect of execution, provide only textual views of execu-
tion, or both. The need for visualization becomes even
more urgent when we are dealing with languages which
have a complex execution model, e.g., hybrid or multi-
paradigm languages. In this paper, we present a system
called SeePS for visualization the dynamic behavior of
NeWS programs, and describe our experience with
design and implementation.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References *22

[Masui92] Toshiyuki Masui, "Graphic Object Layout with Interac-
tive Genetic Algorithms", in 1992 IEEE Workshop on Visual Lan-
guages, 1992, pg 74.

Automatic graphic object layout methods have long been
studied in many application areas in which graphic
objects should be laid out to satisfy the constraints spe-
cific to each application. In those areas, carefully
designed layout algorithms should be used to satisfy
each applications' constraints. However, those algo-
rithms tend to be complicated and not reasonable for
other applications. Moreover, it is difficult to add each
user's preferences to the layout scheme of the algorithm.
To overcome these difficulties, we developed a general-
purpose interactive graphic layout system GALAPAGOS
based on genetic algorithms. GALAPAGOS is general-
purpose because graphic objects are laid out not by speci-
fying how to lay them out, but just by specifying the pref-
erences for the layout. GALAPAGOS can not only lay out
complicated graphs automatically, but also allow users to
modify the constraints at run time so that user can tell the
system their own preferences.

[Matsumura86] Kazuo Matsumura and Shuichi Tayama, "Visual
Man-Machine Interface for Program Design and Production",
in IEEE 1986 Workshop on Visual Languages, 1986, pgs 71-79.

A visual interface for program design and production is
discussed with regard to three aspects: (1) program
design expression, (2) tool operation and (3) icon system.

As a visual interface basic scheme for (1) to (3), three fac-
tors (semantic, syntactic, and pragmatic) and policy of
seven visual elements (shape, size, etc.,) are first dis-
cussed. After that, clear reasons are given for each pro-
posal for (1) and (2). For aspect (3), an icon system is
proposed for uniformly using icons with a set of tools.
Practical experiments reveal that this icon system has
good semantics and syntactics, but that it also has some
problems.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 123

[McWhirter93] J.D. McWhirter, Z. K. F. Eckert, and G. J. Nutt,
Using Escalante to Build Visual Language Applications, 1993.

Constructing visual language applications is a difficult
task. The Escalante system facilitates the process of appli-
cation construction by supporting the high level specifi-
cation of a visual language and the generation of code
that realizes the language within a working application.
Using Escalante one an rapidly develop highly functional
applications for a wide variety of visual languages with a
minimal amount of manual coding. Escalante is written
in C++ and runs under X Windows. This paper presents
an overview of the Escalante system and a detailed set of
examples that can guide the development of visual lan-
guage applications using Escalante.

[Meyer88] Bertrand Meyer, Object-Oriented Software Construction,
1988.

This book provides an in-depth presentation of the meth-
ods and techniques of object-oriented design, based on a
careful assessment of the underlying software engineer-
ing issues.

The book review both the array of techniques needed to
obtain the full extend of the approach and the design of
object-oriented systems, with particular emphasis on the
design of effective module interfaces.

Numerous examples of reusable software components
are presented covering many of the important structure
of everyday programming. Several case studies and end-
of-chapter exercises support these examples.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 124

[Meyer92] Bernd Meyer, "Pictures Depicting Pictures On the Spec-
ification of Visual Languages by Visual Grammers", in 2992
IEEE Workshop on Visual Languages, 1992, pg 41.

Growing interest in visual languages has triggered new
extended research into the specification and parsing of
multi-dimensional structures. The paper discusses the
need for a visual specification formalism and introduces
such a technique by augmenting logic programming with
picture terms which can be considered as partially speci-
fied pictures. We define how to match picture terms and
how to integrate matching with the execution of logic
programs. Based upon this extension, picture clause
grammars (PCGs) are introduced. PCGs are formal
visual specifications of visual languages and can be used
for parsing and syntax directed translation of visual lan-
guages like DCGs are used in the case of textual lan-
guages. The executability of PCGs in demonstrated by
defining their translation to logic programs employing
picture terms.

[Milner78] Robin Milner, "A Theory of Type Polymorphism in
Programming", in Journal of Computer and System Sciences, 1978,
pgs 348-375.

The aim of this work is largely a practical one. A widely
employed style of programming, particularly in struc-
ture-processing languages which impose no discipline of
types, entails defining procedures which work well on
objects of a wide variety. We present a formal type disci-
pline for such polymorphic procedures in the context of a
simple programming language, and a compile time type-
checking algorithm W which enforces the discipline. A
Semantic Soundness Theorem (based on a formal seman-
tics for the language) states that well-type programs can-
not "go wrong" and a Syntactic Soundness Theorem
states that if W accepts a program then it is well typed.
We also discuss extending these results to richer lan-
guages: a type-checking algorithm based on W is in fact
already implemented and working, for the metalanguage
ML in the Edingburgh LCF system.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 125

[Minas93] M. Minas and G.Viehstaedt , "Specifications of Dia-
gram Editors Providing Layout Adjustments with Minimal
Change", in 1993 IEEE Symposium on Visual Languages, 1993, pgs
324-329.

Editing diagrams conveniently requires edit operations
and automatic layout tailored to the type of diagram.
This necessitates a syntax-directed editor for diagrams,
called diagram editor herein. We describe the basics of a
generator for interactive diagram editors that offers a
number of significant advantages over previous
approaches. The foundation is an ew incremental algo-
rithm for constraint evalutaion. Constraints can be speci-
fied not only by equations, as in earlier work, but also by
linear inequalities. This opens the door to integrating
automatic diagram layout with user-defined modifica-
tions. Furthermore, the algorithm ensures that layout
adjustments initiated by user action are confined to the
smallest possible part of the diagram around the point of
modification, thus realizing a principle of minimal
change.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 126

[Monden84] N. Monden, T. Yoshino, M. Hirakawa, M. Tanaka,
and T. Ichikawa, "HI-VISUAL: A Language Supporting Visual
Interaction in Programming", in IEEE 1984 Workshop on Visual
Languages, 1984, pgs 199-205.

Visual icons can represent the objects of a system and, at
the same time, the functions which they perform. Thus
the visual icon works as a tool for specifying system func-
tions, and makes it easier to develop the system itself.
Furthermore, the system thus developed can also be acti-
vated by the use of visual icons.

In order to offer an environment which makes feasible
the dvelopment of a system by the use of visual icons, it is
necessary to provide a software tool which supports gen-
eration and interpretation of visual icons, and organiza-
tion nad evaluation of icon-based system performance.
This can be regarded as a type of programming language.

This paper presents a languaged named HI-VISU AL
which supports visual interaction in programming. Fol-
lowing a brief description of the language concept, the
icon semantics and language primitives characterizing
HI-VISUAL are extensively discussed. HI-VISUAL also
shows a system extendability providing the possibility of
organizing a high level application system as an integra-
tion of several existing subsystems, and will serve to
developing systems in various fields of applications sup-
porting simple and efficient interactions between pro-
grammer and computer.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 127

[Myers88] Brad A. Myers , "Automatic Data Visualization for
Novice Pascal Programmers", in 1988 IEEE Workshop on Visual
Languages, 1988, pgs 192-198.

Previous work has demonstrated that presenting the data
structures from programs in a graphical manner can sig-
nificantly help programmers understand and debug their
programs. In most previous systems, however, the graph-
ical displays, called data visualizations, had to be labori-
ously hand created. The Amethyst system, which runs on
Apple Macintosh computers, provides attractive and
appropriate default displays for data structures. The
default displays include the appropriate forms for literals
of the simple types inside type-specific shapes, and
stacked boxes for records and arrays. In the near future,
we plan to developrules for layout of simply dynamic
data structures (like linked lists and binary trees) and
simple mechanisms for creating customized displays.
The visualizations are integrated into an advanced pro-
gramming environment which is used to teach program-
ming methodology at the introductory level.

[Najork90] Marc. A. Najork and Eric Golin, "Enhancing Show-
and-Tell with a polymorphic type sysem and higher-order func-
tions", in 2990 IEEE Workshop on Visual Languages, 1990, pgs
215-220.

We describe enhancements to the visual dataflow lan-
guage Show-and-Tell (STL). These enhancements enrich
STL by a polymorphic type system similar to the one
used in ML, and they introduce user-definable higher-
order functions.

[Najork92] Marc. A. Najork and Simon M. Kaplan, "A prototype
Implementation of the cube Language", in 1992 IEEE Workshop
on Visual Languages, 1992, pg 270.

CUBE is a three-dimensional, visual, statically typed,
inherently concurrent, higher-order logic programming
language, aimed towards a virtual reality based program-
ming environment. This paper describes a prototype
implementation of CUBE.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 128

[Najork94a] Marc-Alexander Najork, Programming in Three
Dimensions, 1994.

This thesis describes Cube, the first visual language to
employ a three-dimensional syntax. The third dimension
provides for a richer syntax, makes the language more
expressive, and prepares the ground for novel, virtual-
reality-based programming environments. We use
dimensional extent to convey semantic meaning, or more
precisely, to distinguish between logical disjunctions and
conjunctions and between sum and product types.

Cube uses the data flow metaphor as an intuitive way to
describe logic programs. The semantics of the language is
based on a higher-order form of Horn logic. Predicates
are viewed as a special kind of terms, and are treated as
first-class values. In particular, they can be passed as
arguments to other predicates, which allows us to define
higher-order predicates.

Cube has a static polymorphic type system, and uses the
Hindley-Milner algorithm to preform type inference.
Well-typed programs are guaranteed to be type-safe.

We have implemented two Cube interpreters: An initial
feasibility study, and a prototype implementation with
improved interactive capabilities. Both of them exploit
the implicit parallelism of the language by simulated con-
currency, implemented via time-slicing.

[Najork94b] Marc. A. Najork and Marc H. Brown, A Library for
Visualizing Combinatorial Structures, 1994.

This paper describes Anim3D, a 3D animation library tar-
geted at visualizing combinatorial structures. In particu-
lar, we are interested in algorithm animation.
Constructing a new view for an algorithm typically takes
dozens of design iterations, and can be very time-con-
suming. Our library eases the programmer's burden by
providing high-level constructs for performing anima-
tions, and by offering an interpretive environment that
eliminates the need for recompilations. This paper also
illustrates Anim3Ds expressiveness by developing a 3D
animation of Dijkstra's shortest path algorithm in just 70
lines of code.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 129

[Nakato] Ikuo Nakata and Masami Hagiya, Software Science and
Engineering, Selected Papers from the Kyoto Symposia, 1991.

[Narayanan94] A. Narayanan, L. Ford, D. Manual, D. Talis, and M.
Yazdani, "Language Animation", in Proceedings ofAAAI '94,
Seattle, USA, 1994.

This paper describes an intergration strategy based on
designing and implementing dynamic visual primitives
for language primitives. This results in an animated rep-
resentation of sentences, where gaps between primitive-
based language representations are bridged by visual
processes. Also, language primitives which themselves
represent dynamic processes (eg entering a building) can
be dynamically visualized. The intergration strategy
therefore provides a more powerful way of filling in gaps
in primitive-based and object-centred representations
than would be possible with text alone.

[Noik93] Emanuel G. Noik, "Layout-independent Fisheye Views
of Nested Graphs", in 1993 IEEE Symposium on Visual Lan-
guages, 1993, pgs 336-341.

Although a graph can be a useful device for visualizing
complex relationships, drawings of large graphs can be
difficult to comprehened. As one remedy, we formulated
a novel generalized approach for generating fisheye
views of nested graphs with multiple variable focal
points, and devised an algorithm that creates fisheye
views int he absence of application specific distance met-
rics. Previous solutions produced fisheye views by filter-
ing or distorting drawings of graphs. Since these
approaches relied on geometric notions of distance, they
could only be applied effectively in limited cases. By con-
trast, our approach treats fisheye view generation as a
phase that precedes graph layout, rather than as a tech-
nique that alters an existing drawing, and does not suffer
these drawbacks.

[Nye88a] Adrian Nye, Xlib Programming Manual for Version 11,
1988.

This book is a complete programmer's guide to the X
library, which is the lowest level of programming inter-
face to X. It has a companion volume, Xlib Reference
Manual for Version 11.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 130

[Nye88b] Adrian Nye, Xlib Reference Manual for Version 11,1988.
This book is a complete programmer's guide to the X
library, which is the lowest level of programming inter-
face to X. It has a companion volume, Xlib Programming
Manual for Version 11.

[Orefice92] S. Orefice, G. Polese, M. Tucci, G. Tortora, G. Costagli-
ola and S. K. Chang, "A 2D Interactive Parser for Iconic Lan-
guages", in 1992 IEEE Workshop on Visual Languages, 1992, pg
207.

In this paper we give algorithms for the construction of a
ID interactive parser which helps a user to construct cor-
rect two-dimensional iconic sentences according to posi-
tional LALR grammars. At each step of the parsing
process the user is provided with a feasible set of icons.
Moreover, the areas on the screen where each icon in the
set may be placed are highlighted. In this way both syn-
tactic and structural errors are avoided.

[Osterhout94] John K.Osterhout, Td and the Tk Toolkit, 1994.
The Tel scripting language and the Tk toolkit—a pro-
gramming environment for creating graphical user inter-
faces under X Windows—together represent one of the
most exciting innovations in X Window System program-
ming. Because Tel and Tk are so easy to learn, extremely
powerful, and contain so many sophisticated features,
they have dramatically reduced development time for
thousands of X programmers.

[Pandey93] Rajeev K. Pandey and Margaret M. Burnett, "Is It Eas-
ier to Write Matrix Manipulation Programs Visually or Textu-
ally? An Empirical Study", in 1993 IEEE Symposium on Visual
Languages, 1993, pgs 344-351.

Empirical studies comparing the effectiveness of visual
languages versus textual languages have rarely been
attempted. Here we describe an experiment conducted
on programmers solving vector and matrix manipulation
tasks using the visual language Forms/3, the textual lan-
guage Pascal, and a textual matrix manipulation lan-
guage with the capabilities of APL. Presented here are
our motivation, experimental approach, some of the diffi-
culties experienced in attempting this type of empirical
study, and a summary of the experimental results and
insights gained.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 131

[Paulson91] L.C. Paulson, ML for the Working Programmer, 1991.
This teaches the methods of functional programming—in
particular, how to program in Standard ML, a functional
language recently developed at Edinburgh University.
The author shows how to use such concepts as lists, trees,
higher-order functions and infinite data structures and
includes a chapter on formal reasoning about functional
programming. The reader is assumed to have some expe-
rience in programming in conventional languages such as
C or Pascal.

[Pemberton] Steven Pemberton, "Programming Aspects of Views,
an Open-Architecture Application Environment", in Proceedings
of the International Workshop AVI '92,1992, pg 223.

Views is an open-architecture application environment
that offers a consistent user interface across applications,
interoperability between them, much less programming
to produce an application, and the ability to add and
modify applications on the fly. The system kernel con-
tains a user interface layer and a persistent data-storage
layer, so that applications only have to implement the
true functionality. Objects contain no information on how
they are to be displayed, so the presentation of docu-
ments can be changed easily, even on the fly. The main
implementation technique is two-way invariants
between objects. This document describes some aspects
of programming for Views.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 132

[Pfeiffer90] Joseph J. Pfeiffer, Jr., "Using Graph Grammers for
Data Structures Manipulation", in 2990 IEEE Workshop on
Visual Languages, 1990, pgs 42-47.

Programming language advances have generally come
from replacing abstractions based on the machine with
abstractions based on the algorithm. Examples include
FORTRAN expressions replacing explicit reference to
memory locations and registers; Algol language struc-
tures replacing explicit GOTO statements in branching;
and LISP generalized lists replacing pointers in data
structure manipulation. In this paper, we discuss the
replacement of pointers with graph grammar produc-
tions. Such a replacaement provides a substantial
improvement in the programming model used; makes
better use of current high-resolution screen technology
than a strictly text-based language; and provides
improved support for parallel processing due to charac-
teristics of the graph grammar formulation used.

[Pfeiffer92] Joseph J. Pfeiffer, Jr., "Parsing Graphs Representing
Two Dimensional Figures", in 1992 IEEE Workshop on Visual
Languages, 1992, pg 200.

Generalized Two Dimensional Context Free Grammars,
an extension of context free grammars to two dimensions,
is described. This extension is a generalization of Tom-
ita's Two Dimensional Context Free Grammars, and bet-
ter fits into the families of graph grammars described by
Crimi (Relation Grammars) and by Flasinski (edNLC
Grammars). Figure Grammars are particularly useful for
applications such as hand-written mathematical expres-
sions. A two dimensional extension of the Cocke-Kasami-
Younger parser for context-free languages is used to
parse figures using these grammars.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 133

[Pong86] Man-Chi Pong, "A GRAPHICAL LANGUAGE FOR
CONCURRENT PROGRAMMING", in IEEE 1986 Workshop on
Visual Languages, 1986, pgs 26-33.

This paper presents the rationale of employing interac-
tive graphics to support concurrent programming and
describes the graphical programming language Pigsty
designed for the purpose. Pigsty is based on Pascal and
CSP. It uses a graphical form to represent the structure of
a system of processes. I-PIGS is the programming envi-
ronment designed to support Pigsty. It can execute the
graphical representation of a concurrent program directly
via a simulated concurrent execution mechanism. It ani-
mates the data communication between the processes in
one of the windows of the modern workstation on which
it runs. Other windows are used to show the structured
chart form of control constructs of a process and tables of
variables used in a process. The animations of data com-
munication, logic flow and change of variable values
allow the programmer to understand the dynamic
behavior of a concurrent program more clearly and locate
errors more easily. I-PIGS also detects deadlock during
execution of a concurrent program. These capabilities of
I-PIGS can help the programmer to develop concurrent
programs.

[Poswig92] Jörg Poswig, Klaus Teves, Guido Vrankar, and Claudio
Moraga, "VisaVis - Contributions to Practice and Theory of
Highly Interactive Visual Languages", in 1992 IEEE Workshop on
Visual Languages, 1992, pg 155.

Higher-orderness, highly interactive ,a great amount of
flexibility, color, increasing the visual extent and parallel-
ism are all of them catchwords related to the develop-
ment of visual languages being in the focus of attention in
the recent years. The paper reports on the functional
visual language VisaVis coming up with a new user inter-
action strategy integrating higher order functions
smoothly. VisaVis uses colors and shadows to convey
information about the degree of interaction. A compari-
son with existing visual languages is presented to picture
reached results to the reader. The translation into a meta-
language which preserves inherent parallelism in a visual
program is outlined. Additionally the concept of an
implicit type system is introduced being sound and com-
plete which prepares for prevention of run-time errors
and increases the visual extent at the same time.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 134

[Poswig93a] Jörg Poswig and Claudio Moraga, "Incremental Type
Systems and Implicit Parametric Overloading in Visual Lan-
guages", in 1993 IEEE Symposium on Visual Languages, 1993, pgs
126-133.

A primary goal of much visual language research is ulti-
mately to further the ability of visual languages to be
used for realistic programming projects. As a step in this
direction one expects much of incremental type systems
in order to prevent run-time errors as early as possible
and to preserve the user's conceptual model of a visual
language at the same time. The paper reports on the inte-
gration of both an incremental type system and the sup-
port of user-definable overloaded functions in an implicit
manner for the higher order visual language Visa Vis. As a
consequence the idea of parametric polymorphism used
in many approaches for type systems is not sufficient in
our approach. The concept is based upon a generalization
of definite databases leading to a PROLOG interface
being a main part of the type checker. Beside this data
structures are discussed performing the required unifica-
tion process as well as the preparation of queries for the
database.

[Poswig93b] Jörg Poswig, Guido Vrankar, and Claudio Moraga,
"Interactive Animation of Visual Program Execution", in 1993
IEEE Symposium on Visual Languages, 1993, pgs 180-187.

Software visualization refers to graphical views on com-
puter programs in general. There are only few attempts
towards animation systems of visual program execution.
Since programming languages nowadays are more or less
complete software development environments such tools
are extremely desirable also in the area of visual lan-
guages. The paper reports on the integration of such an
animation tool into the visual language VisaVis taking
possible parallel evaluations into account. In order to
support abstractness the user can skip possibly less inter-
esting parts of a visual program during the animation.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 135

[Poswig94] Jörg Poswig, Guido Vrankar, and Claudio Morara,
"VisaVis: A Higher-Order Functional Visual Programming Lan-
guage", in Journal of Visual Languages and Computing, 1994, pgs
83-111.

The paper presents the functional visual language
VisaVis. We focus on the new, flexible interaction strategy
substitution, that brings ease of construction to visual
programs and integrates higher-order functions
smoothly. In order to illustrate the capabilities of the
implemented prototype, comparisons with visual lan-
guages are given throughout the text. The programming
environment is outlined as well as the compilation into
the meta-language FFP preserving (data-) parallelism
inherent in the visual programs. Improvements to the
programming environment are discussed.

[Preece94] Jenny Preece, Human-Computer Interaction, 1994.
Offering a highly comprehensive account of the multidis-
ciplinary field of HCI, this book illustrates the powerful
benefits of a user-oriented approach to the design of
modern computer systems. It discusses the technical and
cognitive issues required for understanding the subtle
interplay between people and computers, particularly in
emerging fields like multimedia, virtual environments
and computer supported cooperative work.

[Raeder85] Georg Raeder, "A Survey of Current Graphical Pro-
gramming Techniques", in IEEE Computer, 1985, pgs 11-25.

Representing programs in graphical images offers many
opportunities for improving programming techniques.
This article exmaines the use of pictures in programming
and compares various graphical programming systems.
Topics include: pictures vs. text, use of pictures in pro-
gramming, CAD/CAM, related fields.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 136

[Ramalingam94] G. Ramalingam and Thomas Reps, "An Incre-
mental Algorithm for Maintaining the Dominator Tree of a
Reducible Flowgraph", in Conf. Record of the Annual ACM Sym-
posium on Principles of Programming Languages 1995,1994, pgs
287-296.

We present a new incremental algorithm for the problem
of maintaining the dominator tree of a reducible flow-
graph as the flowgraph undergoes changes such as the
insertion and deletion of edges. Such an algorithm has
applications in incremental dataflow analysis and incre-
mental compilation.

[Reiss93] Steven R Reiss, "A Framework for Abstract 3D Visual-
ization", in 1993 IEEE Symposium on Visual Languages, 1993, pgs
108-115.

This paper describes a package, PLUM, we have devel-
oped for visualizing abstract data in three dimensions.
We are particularly interested in visualizing information
about programs, both static and dynamic, but the pack-
age should have a more general applicability. The pack-
age provides a framework to support a wide variety of
different 3D visualization techniques, many of which
have been implemented. The package also provides sup-
port for 3D graph layout using a variety of different lay-
out heuristics.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 137

[Roberts88] Jim Roberts, John Pane, and Mark Stehlik, "The
Design View: A Design Oriented, High-Level Visual Program-
ming Environment", in 1988 IEEE Workshop on Visual Languages,
1988, pgs 213-220.

Top-down design is an accepted technique for program
development and is an integral part of the Introductory
Computing courses at Carnegie Mellon University. This
planning process works well in the abstract, but novices
typically abandon this technique as soon as implementa-
tion begins, because traditional methods of program con-
struction tend to focus immediate attention on low-level
details. This paper proposes a concise graphical conven-
tion for representing a problem decomposition that can
be used on paper, in the classroom, and on the computer.
It then proposes an implementation of this convention, as
an extension to an existing structure-editor programming
environment, that allows high-level design to take place
online. As the user graphically edits this design, the sys-
tem silently tracks the set of low-level details that are nec-
essary to ultimately conform the program code with the
design.

The necessary changes are then presented sequentially to
the user after the design phase is complete. It is further
suggested that this convention is useful as a way to view
already-completed programs, adn as a tool for debug-
ging-

[Robertson91] Scott P. Robertson, Gary M. Olson, and Judith S.
Olson, Reaching Through Technology, (CHI '91 Conference Proceed-
ings) Human Factors in Computing Systems, 1991.

CHI '91 Conference Proceedings Human Factors in Com-
puting Systems, April 27-May 2,1991, New Orleans, Lou-
isiana, USA

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 138

[Robertson91] George G. Robertson, Jock D. Mackinlay, and Stuart
K. Card, "Cone Trees: Animated 3D Visualizations of Hierarchi-
cal Information", in Reaching Through Technolog}/, (CHI '91 Con-
ference Proceedings) Human Factors in Computing Systems, 1991,
pgl89.

The task of managing and accessing large information
spaces is a problem in large scale cognition. Emerging
technologies for 3D visualization and interactive anima-
tion offer potential solutions to this problem, especially
when the structure of the information can be visualized.
We describe one of these Information Visualization tech-
niques, called the Cone Tree, which is ued for visualizing
hierarchical information structures. The hierarchy is pre-
sented in 3D to maximize effective use of available screen
space and enable visualization of the whole structure.
Interactive animation is used to shift some of the user's
cognitive load to the human perceptual system.

[Rogers90] Greg Rogers, "The GRClass Visual Programming Sys-
tem*", in 1990 IEEE Workshop on Visual Languages, 1990, pgs 48-
53.

Visual programming techniques have proven successful
within limited domains. However, little progress has
been made in using graphics to support "real-world"
programming. The GRClass system attempts a solution
by combining Graphics, Relations, and Classes to provide
a visual interface for programming graph data structures
within an object-oriented framework. This is done by
extending the object-oriented model with inter-object
relations. These relations are then used to directly imple-
ment the conceptual model of the graph data structures.
Within the GRClass framework, data structures are
objects that maintain relation tables. These relations and
the objects participating in the relations constitute the
form of the data structure. A graphical notation is used to
specify the possible relations and to mainpulate the rela-
tion graph. GRClass is implemented within the Andrew
Toolkit programming environment.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 139

[Roseler91] Randy Roseler, "Position Paper", in Addendum to the
Proceedings OOPSLA 91,1991, pg 105.

[Rosson91a] Mary Beth Rosson, John M. Carroll, and Christine
Sweeney, "A View Matcher for Reusing SmallTalk Classes", in
Reaching Through Technology, (CHI '91 Conference Proceedings)
Human Factors in Computing Systems, 1991, pg 277.

A prime attraction of object-oriented programming lan-
guages is the possibility of revising code. We examine the
support provided by Smalltalk to programmers attempt-
ing to incorporate an existing class into a new design,
focussing on issues of usage examples, object-oriented
analysis, how-to-use-it information and object connec-
tions. We then describe a View Matcher for reuse, a tool
that documents reusable classes through a set of coordi-
nated views onto concrete usage examples; in three sce-
narios, we illustrate how the tool addresses the issues
raised in our analysis of reuse in Smalltalk.

[Rosson91b] Mary Beth Rosson, John M. Carroll, and Christine
Sweeney, "Demonstrating a View Matcher for Reusing Small-
Talk Classes", in Reaching Through Technology, (CHI '91 Confer-
ence Proceedings) Human Factors in Computing Systems, 1991, pg
431.

no abstract provided

Phase ISBIR Final Report from SNAP Technologies, Inc.

References *40

[Rush95] Gary Rush, Draft Document describing Newspeak, 1995.
Introduction:

Newspeak is an object-oriented visual programming lan-
guage that is inherently parallel and general purpose. As
an object-oriented language it contains the traditional
concept of objects containing a set of attributers and hav-
ing a defined interface. The object-oriented paradigm is
extended to include a concrete relationship between
library and class, virtual classes and objects, callbacks
and a powerful template mechanism.

The language is general-purpose in that it only represents
a mechanism for describing a system, and does not
include any domain-specific features. In all cases, the goal
of the language is to provide a means of systematic exten-
sion rather than building in features. This concept goes
beyond existing extendible language to the extent that
Newspeak is an abstract programming language. The
language is not bound to the machine-executable envi-
ronment but is also capable of representing shell scripts,
files, networks and any other system that can be
described in terms of class and function.

Newspeak is an inherently parallel language in that pro-
grams are written in the same way regardless of whether
the target machine has multiple processors or threads. A
program is written in terms of those portions that can be
executed in parallel and in sequence, and it is the respon-
sibility of the compiler to generate code appropriate to
the target platform. The language represents static paral-
lel relationships in terms of threads, and dynamic rela-
tionships with functions.

Finally there is the visual nature of the language. News-
peak has no textual form either a a user interface or as an
underlying representation. A development environment
for the language represents classes, objects and functions
as icons. In a function description, objects are passed to
functions called of other objects in a horizontal control
flow. Concurrent sections of code are shown as vertically
stacked lines, running in parallel with code.

[Sammet69] Jean E. Sammet, Programming Languages: History and
Fundamentals, 1969.

This is a good introduction to the early history of pro-
gramming languages (1969).

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 141

[Sargent93] Robert G. Sargent and Douglas G. Fritz, Hierarchical
Control Flow Graph Models, 1993.

A general paradigm using two complementary types of
hierarchical model specification structures is developed
for the specification of discrete event simulation models
based on encapsulated atomic model components that
communicate solely via message passing. One type of
structure specifies the hierarchical coupling of model
components and how the atomic components of the
model can interact. The other type of structure specifies
the internal behavior of each atomic component in a hier-
archical way. The model elements of both specifications
are encapsulated and reusable. Hierarchical Control Flow
Graph Models, a special case of this general paradigm, is
developed as a hierarchical extension of Cota and Sar-
gent's Control Flow Graph Model representation. Both a
coupling extension and a hierarchical behavior extension
are developed.The coupling extension adds support for
coupled model components and the behavior extension
introduces the concept of a Macro Control State which
encapsulates a partial behavior specification for an
atomic component. A systems theoretic representation for
the atomic components of Hierarchical Control Flow
Graph Models is given. Algorithms are presented for
transforming Hierarchical Control Flow Graph Models
into equivalent nonhierarchical Control Flow Graph
Models which can then be executed using existing algo-
rithms for Control Flow Graph Models. Lastly, two of the
sequential algorithms for the execution of Control Flow
Graph Models are presented.

[Self95] "The Self Group", Self 4.0 Read This First, 1995.
This is a description of the Self project, its history and
present state, notes on the 4.0 release, documentation
descriptions and installation instructions.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 142

[Selker88] Ted Selker and Larry Koved , "Elements of Visual Lan-
guages", in 1988 IEEE Workshop on Visual Languages, 1988, pgs
38^4.

Visual language is the systematic use of visual presenta-
tion (graphic) techniques to convey meaning. This paper
proposed a structural classification and vocabulary for
these languages. Visual languages, like verbal languages,
are denned by a grammar and semantics. This paper
defines the visual grammar, the elements of visual lan-
guage.

Visual elements are composed of:

visual alphabet a set of visual primitives used in visual
language

visual syntax composition of primitives to form visual
statements

interaction user to system communication

structure rules combining sublanguages into a
language

The classification of the visual elements can be viewed as
a linguistic description of visual language.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 1^3

[Shilling92] John J. Shilling and John T. Stasko, Using Animation to
Design, Document and Trace Object-Oriented Systems, 92.

Current diagraming techniques for the dev. and docu-
mentation of object-oriented designs largely emphasize
capturing relationships among classes. Such techniques
cannot capture full designs because the static nature of els
relationships makes them inadequate for describing the
dynamics of object collaboration. Other techniques
attempt to diagram dynamic behavior but are limited by
their media to producing essentially passive description
of dynamic operations. What is still needed is a technique
that models message ordering, changing visibility and
temporal object lifetimes in a manner that is concise and
immediate. We have developed an approach in which
developers use animation to develop and capture object-
oriented designs. This allows developers to design object-
oriented scenarios in the way that they visualize them: by
animating the actions of the objects in the scenario. The
same animation then acts as the documentation for the
design. Its playback makes immediately evident the tem-
poral relationship of object messages, object creation,
object destruction, and changing object visibility. Our
technique is supported as part of a suite of object-ori-
ented development tools we call GROOVE.

[Shu] Nan C. Shu, "FORMAL: A Forms-Oriented, Visual-Directed
Application Development System", in IEEE Computer, 1985, pgs
38-49.

What you sketch is what you get. A forms-oriented pro-
gramming language simplifies the process of represent-
ing both data objects and program structure.
Nonprogrammers can easily use such a language to cre-
ate and computerize their own application programs.
Paper addresses and describes FORMAL, Forms-Ori-
ented Manipulation Language. Includes diagrams.

Phase ISBIR Final Report from SNAP Technologies, Inc.

%

References 144

[Simmel91a] Sergiu S. Simmel, "Object-based Visual Program-
ming Languages", in Addendum to the Proceedings OOP SLA 91,
1991, pgs 99 -102.

The guiding questions posed for a Birds of a Feather Ses-
sion at OOPSLA91 on Object-based Visual Languages
were these (summarized):

• what do you expect the visual aspect of OBVPLs buy
you and your customers?

• are the benefits of an OBVPL actual results of a graphi-
cal visualization, or did the constraints of such a visual-
ization force the language designer to keep the concepts
simpler, higher level, and generally cleaner?

• what is the "proper" granularity of objects in OBVPLs?

• is a class-based model appropriate for a VL?

• assuming that OBVPL means that the PL is OB and not
just implemented that way, where are the objects?

• should OBVPLs be general purpose, or are the visual
means at their best in the context of a more specialized
language?

• should OBVPLs be designed with few but high combin-
able primitives or should they have larger number of low
and high level, convenient facilities?

• how complex should the visual syntax be?

• when is a dataflow model appropriate for an OBVPL? is
control flow more appropriate? is a communications
model more appropriate?

• what examples of lexical and syntactic elements in
OBVPLs have been found particularly useful and versa-
tile?

• which parts of the application development are easier/
harder with OBVPLs than with textual OBLs?

• how do various application domains influence or deter-
mine the answers to all of these?

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 145

[Simmel91b] Sergiu S. Simmel, "Two Observations on Visual
Languages", in Addendum to the Proceedings OOPSLA 91,1991,
pgs 103 -105.

[Singley91] Mark K. Singley, "Molehill: An Instructional System
for Smalltalk Programming", in Reaching Through Technology,
(CHI '91 Conference Proceedings) Human Factors in Computing
Systems, 1991, pg 439.

no abstract provided.

Summarizes Smalltalk as a good platform for rapid pro-
totyping and software reuse that is generally regarded as
difficult to learn. Molehill is an instructional system for
Smalltalk which combines elements of intelligent tutor-
ing technology with more tool-like elements like hyper-
text and keyword search. The intended audience for the
language is experienced procedural programmers. Spe-
cific instructional goals include:

• support of code comprehension and browsing as well
as code generation...

• manage the transfer from procedural programming to
object-oriented programming...

• guide students' actions and deliver help through the
reification of goals and plans.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 146

[Slack92] Jon Slack and Cristina Conati, "Encoding Information
through Spacial Relations", in Proceedings of the International
Workshop AVI '92,1992, pg 85.

Advanced visual interfaces need to exploit the advan-
tages of encoding information through spatial relations.
Spatially encoded information is highly accessible and
the spatial medium affords simple implementations of
cognitive operations that are expensive to compute sym-

• bolically. These advantages accrue from the rapid percep-
tual operations that identify and encode the spatial
relations implicit in the visual array. The paper outlines a
representation framework for the cognitive/perceptual
encoding of graphically presented information. The pro-
cesses that access the information by extracting and
decoding spatial relations can be specified within this
framework. The work also provides a basis for costing
the information extraction routines, enabling the notion
of "effective graphics" to be quantified. Such costings are
particularly useful in the context of planning multimedia
presentations of information. A detailed worked example
shows how these ideas can be applied to the generation
of optimal graphical formats for quantitative relational
data.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 147

[Smith86] Randall B. Smith, "THE ALTERNATE REALITY KIT
An Animated Environment for Creating Interactive Simula-
tions", in IEEE 1986 Workshop on Visual Languages, 1986, pgs 99-
106.

The Alternate Reality Kit (ARK) is an animated environ-
ment for creating interactive simulations. ARK simula-
tions are intended to enable the development of intuitive
understanding of fundamental simulation laws by mak-
ing these laws appear as accessible physical objects called
interactors*. Although general programming can be done
in ARK, this paper will concentrate on describing the
metaphor and basic functionality of the environment.
Several of the more important ARK objects are described,
including the mouse-operated hand icon which is the
user's means of interacting with the system. Examples of
a user playing in a planetary orbit simulation demon-
strate how buttons and message boxes are used to com-

, municate with ARK objects. An ARK environment may
consist of several windows, each containing its own dis-
tinct simulated world called an alternate reality. A simu-
lated three-dimensional domain called meta reality
surrounds these alternate realities. Meta reality is used
for representing actions "beyond" the two-dimensional
alternate realities. The ARK interface is built upon a phys-
ical metaphor in which every object has position and
velocity, and can experience forces. The intention is to
create an easily understood interface by exploiting the
user's existing expertise in dealing with everyday objects.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 148

[Smith88] R.B. Smith, "Experience with the Alternate Reality Kit -
an example of the tension between literalism and magic", in
Mini and Micro computers and their applications, 1988, pgs 1-8.

[Spratt93] Lindsey Spratt and Allan Ambler, "A VISUAL LOGIC
PROGRAMMING LANGUAGE BASED ON SETS aND PARTI-
TIONING CONSTRAINTS.", in 1993 IEEE Symposium on Visual
Languages, 1993, pgs 204-208.

This paper presents a new programming language
named SPARCL that has four major elements: it is a
visual language, it is a logic programming language, it
relies on sets to organize data, and it supports partition-
ing constraints on the contents of sets. It is a visual pro-
gramming language in that the representation of the
language depneds extensively on non-textual graphics
and the programming process relies on graphical manip-
ulation of this representation. It is a logic programming
language in that the underlying semantics of thel
anguage is the resolution of clauses of a Horn-like subset
of first order predicate logic. It uses sets as the only
method of combining terms to build complex terms.
Finally, one may constrain a sef's structure by specifying
a partitioning into pairwise disjoint subsets.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 149

[Stasko90] John T. Stasko, "Simplifying Algorithm Animation
with TANGO", in 1990 IEEE Workshop on Visual Languages,
1990, pgs 1-6.

Algorithm animation is the process of abstracting the
data, operations, and semantics of computer programs,
and then creating dynamic graphical views of those
abstractions. Dynamic visualizations of algorithms are
useful for understanding programs, evaluating pro-
grams, and developing new programs. Existing algo-
rithm animation systems lack formality, thus making the
algorithm animation process difficult, inconsistent, and
inflexible. We develop a conceptual framework for algo-
rithm animation to modularize and simplify the anima-
tion design process. The framework introduces the path-
transition paradigm, a model consisting of abstract data
types appropriate to create smooth, continuous image
movement.

Concurrently, we have developed an algorithm anima-
tion system called TANGO (Transition-based ANimation
Generation), implemented based on the framework.
TANGO provides animation designers with the capabili-
ties to produce sophisticated, real-time, two-dimensional
color views of programs without low-level graphics cod-
ing. TANGO supports a clean separation between pro-
grams and animations, resulting in a flexibility to map
one or several programs to more than one animation
view—a feature useful not only for experimenting with
many views of a simple program, but also for more
sophisticated animations such as parallel process visual-
ization.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 150

[Stasko91] John T. Stasko, "Using Direct Manipulation to Build
Algorithm Animations by Demonstration", in Reaching Through
Technology, (CHI '91 Conference Proceedings) Human Factors in
Computing Systems, 1991, pg 307.

Dance is a tool that facilitates direct manipulation, dem-
onstration development of animations for the Tango algo-
rithm animation system. Designers sketch out target
actions in a graphical-editing fashion, then Dance auto-
matically generates the code that will carry out those
actions. Dance automatically generates the code that will
carry out those actions. Dance promotes ease-of-design,
rapid prototyping, and increased experimentation. It also
introduces a methodology that could be used to incopo-
rate demonstrational animation design into areas such as
computer assisted instruction and user interface develop-
ment.

[Stasko92] John T. Stasko and Charles Patterson, "Understanding
and Characterizing Software Visualization Systems", in 1992
IEEE Workshop on Visual Languages, 1992, pg 3.

The general term software visualization refers to graphi-
cal views or illustrations of the entities and characteristics
of computer programs and algorithms. This term along
with many others including data structure display, pro-
gram animation, algorithm animation, etc., have been
used inconsistently in the literature, which has led to con-
fusion in describing systems providing these capabilities.
In this paper we present a scaled characterization of soft-
ware visualization terms along aspect, abstractness, ani-
mation, and automation dimensions. Rather than placing
existing systems into hard-and-fast categories, we focus
on unique and differentiating aspects across all systems.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 151

[Stasko93] John T. Stasko and Joseph R Wehrli, "Three Dimen-
sional Computation Visualization", in 1993 IEEE Symposium on
Visual Languages, 1993, pgs 100-107.

Systems supporting the visualization and animation of
algorithms, programs, and computations have focused
primarily on two-dimensional graphics to date. In this
paper we identify the benefits and the drawbacks of
using three-dimensional graphics in these types of sys-
tems, and we describe how 3D imagery can be used for
visualizing computations in interesting new ways. We
also present examples of 3D computation visualizations
created with a new toolkit that we have developed. The
toolkit has been extended to run in a virtual environment
and we describe our early interactions with it.

[Steele84] Guy L. Steele, Jr., Common LISP, 1984.
This describes the first version of Lisp designed to be
used as a common dialect by all workers in the field of
artificial intelligence. Common Lisp is the culmination of
three years of collaborative work by more than 60 con-
tributors from government, industry, and academia. The
book includes: language specifications, descriptions of all
standard language constructs, notes on key differences
between Common Lisp and other dialects, and notes on
ways to implement unique or ambiguous cases.

[Steele90] Guy L. Steele, Jr., Reference for Common Lisp, 1990.

[Stiles92] Randy Stiles and Michael Pontecorvo, "Lingua Graph-
ical A Visual Language for Virtual Environments", in 1992 IEEE
Workshop on Visual Languages, 1992, pg 225.

This paper describes work in progress on a visual pro-
gramming language for virtual environments, called Lin-
gua Graphica. Three-dimensional, solid language
constructs are used to visualize and compose programs
and higher-level scripts while inside of a virtual environ-
ment. This is a departure from the normal way that vir-
tual environments are developed and used. Using Lingua
Graphica to specify the behaviors directly associated with
virtual objects will decrease the time required to create
virtual environments for training, design, and the com-
munication of ideas.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References I52

[Stotts90] P. David Stotts, "Panel on Hypertext Systems", in 2990
IEEE Workshop on Visual Languages, 1990, pgs 66-68.

This panel on hypertext systems is convened to discuss
the aspects of current hypertext models and systems that
are germane to visual programming. The sections below
each present the position of a different research project or
gruop, addressing these questions:

• why is your work both "hypertext" and "visual pro-
gramming"?

• are there other overlaps you see that may not necessar-
ily be demonstrated by your work?

• what are the distinct and defining differences between
these two domains?

• what are the interesting topics for further research in
the combined domain?

The panel is intended to explore the relationship between
what are now thought of by most as two separate areas,
but are seen by the panel members to have clear similari-
ties. The applications of each domain to the other, and the
mutually beneficial lessons that can be learned from work
int he two areas, are outlined in the project descriptions
following.

[Stroustrup90] Bjarne Stroustrup, The C++ Programming Lan-
guage, 2nd edition, 1990.

Written by the designer of C++, this book is the definitive
guide to C++, its fundamental principles, and key tech-
niques for mastering it. The book provides coverage of all
C++ features, including exception handling, templates
(parameteried types), and the latest ANSI/ISO exten-
sions. This should be in every C++ programmer's library.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 153

[Sugihara93] Kazuo Sugihara, Koji Takeda, and Mitsuyuki Inaba,
"An Approach to Animation of Software Specifications", in
2993 IEEE Symposium on Visual Languages, 1993, pgs 374-375.

This paper addresses animation of software specifications
that can ease understanding of the properties of software
specification which are not easy to capture from the spec-
ifications alone. It is useful for program understanding,
testing, simulation, impact analysis, etc., in software
development and maintenance. We present basic con-
cepts of a visual language for specifying animation of
software specifications. In our approach, a scenario of
animation is specified by using a Petri net, which enables
us to describe concurrency and synchronization in ani-
mation, and audio-visual effects are associated with
objects in software specifications. This is a step toward
auto-visual specifications of a software system.

[Suleiman92] Khalid A. Suleiman and Wayne V. Citrin, An Interna-
tional Visual Language, 1992.

We present an experiment supporting the thesis that
visual languages are well suited for programmers whose
native language is not English. We first analyze the par-
ticular problems of our target group, Arabic speakers, in
comprehending Pascal program structures, and we
present a number of previously proposed solutions to
this problem. We then present our own solution, a visual
programming environment in which all syntactic and
nearly all semantic information is presented in a BLOX-
like notation. Only labels, variable names, expressions,
and comments are presented textually, in Arabic. Finally,
we present the results of an experiment in which the sys-
tem received a high degree of acceptance among Arab
speakers. The system we describe is easily retargetable to
other languages, and we believe that the advantages of
such a system for Arabic speakers are equally applicable
to the speakers of other languages.

[Sun Microsystems89 (formerly Sun89)] Sun Microsystems, Inc.,
Open Look. Graphical User Interface Functional Specification,
1989.

This book is a comprehensive guide to the Open Look
user interface. It is written for developers creating Open
Look toolkits and designing user interface applications. It
contains clear and consistent discussions of all features.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 154

[Swenson93] Keith D. Swenson, "A VISUAL LANGUAGE TO
DESCRIBE COLLABORATIVE WORK", in 2993 IEEE Sympo-
sium on Visual Languages, 1993, pgs 298-303.

In order to satisfy goals for developing collaboration soft-
ware, a powerful yet simple visual language has been
developed for use by end users in describing plans for
work activities. The approach presented is unique
because the model allows for collaboration during the
planning process; different people are responsible for dif-
ferent parts of the plan. Process plans may be modified
on the fly, to allow handling of exception and other
changes. Policies may be created that automatically create
a plan for a user in specific situations. Plans at different
levels represent the viewpoint of the people responsible
for those plans. These visual representations of plans are
then used directly to facilitate the coordination of those
activities.

[Tanimoto92] Steven L. Tanimoto, 2992 IEEE Workshop on Visual
Languages.

1992 IEEE Workshop on Visual Languages, Sept. 15-18,
Seattle, USA

[Tanimoto93] Steven L. Tanimoto, 2993 IEEE Symposium on Visual
Languages, 1993.

1993 IEEE Symposium on Visual Languages, Bergen,
Norway, Aug 24-27,1993

[Tatsukawa91] Kosuke Tatsukawa, "Graphical Toolkit Approach
to User Interaction Description", in Reaching Through Technol-
ogy, (CHI '91 Conference Proceedings) Human Factors in Computing
Systems, 1991, pg 323.

The paper proposes a new model which describes the
presentation and behaviour of user interfaces. The
behavior of the user interface is specified as an event flow
graph consisting of components as its nodes and the
paths through which events are sent as its edges. A meta-
level function is introduced to describe user interfaces
whose constituent components change through user
interaction. The reusibility of objects is augmented by
representing their presentation and behaviour as a con-
nected subgraph of the event flow graph. User interface
development systems based on this model can create the
user interface under a totally visual environment.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 155

[Tetzlaff91] Linda Tetzlaff and David R. Schwartz, "The Use of
Guidelines in Interface Design", in Reaching Through Technology,
(CHI '91 Conference Proceedings) Human Factors in Computing
Systems, 1991, pg 329.

We studied the use of an evolving interface style book to
evaluate the role of such guidelines in the development
of style-conforming interface designs. Although the
designs were judged to be generally conforming, study
participants had significant difficulty in interpreting the
guidelines. Our designers were manifestly task oriented
and impatient with extraneous material. They depended
heavily on the pictorial examples, often to the exclusion
of the accompanying test. We conclude that dependency
on guidelines should be minimized, and that guidelines
should be developed primarily to complement toolkits
and interactive examples, focussing on information
intrinsically unavailable through those vehicles.

[Tognazzini92] Bruce Tognazzini, TOG on Interface, 1992.
This internationally recognized interface designer, Apple
Employee #66, writes about the process of design, princi-
ples to design by, and offers his view of important guide-
lines. The book contains fact and insight, supported by
years of user feedback, organized research and common
sense.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 156

[Tonouchi92] Toshio Tonouchi, Ken Nakayama, Satoshi Mat-
suoka, and Satoru Kawai, "Creating Visual Objects by Direct
Manipulation", in 1992 IEEE Workshop on Visual Languages,
1992, pg 95.

Low-cost implementation of graphical user interfaces
(GUIs) have relied on the widget library framework.
Although conventional widgets are suitable for develop-
ing typical GUIs with predetermined interaction styles,
application-specific customization of interactions is
rather difficult, especially for a non-programmer.
Instead, we propose a new framework whereby the GUI
designers can arbitrarily compose new visual object
recursively from intrinsic primitive object. The behavior
of a compose object is governed by constraints extracted
from the trace of operations issued to the graphic editor.
A prototype system Oak base on the framework is suc-
cessfully implemented. Oak allows GUI designers to
compose visual objects by direct manipulation allowing
non-programmers to create customized widgets of high-
degree complexity.

[Traub86] Joseph F. Traub, Annual Review of Computer Science,
1986.

This is a collection of various works in computer science.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 157

[Tucci92] Maurizio Tucci, Guiliana Vitiello, Gennaro Costagliola,
Guiliano Pacini7 and Genoveffa Tortora, "Graphs and Visual
Languages for Visual Interfaces", in Proceedings of the Interna-
tional Workshop AVI '92,1992, pg 304.

Graphical layout facilities such as diagrams and graphs
are recognized as powerful tools for visual interaction.
An icon-oriented visual language is based upon a set of
icons which are used for pictorially representing concep-
tual entities and operations. For a wide applicability of
visual languages, it is then necessary to consider a gen-
eral syntactical model. The present paper is concerned
with the comprehension of the features that a grammati-
cal formalism for non-linear languages must have in
order to match any requirement for a satisfactory parsing
phase.

With the previous extension, we aim to build a visual
interactive system able to support the description, analy-
sis, modification, implementation, prototyping, testing,
of complex systems by means of graphical representa-
tions.

Often graphs have been used to represent non-linear
structures, and graphs play a central role in the develop-
ment of diagrammatic systems for user interaction. In
order for such interaction tools to be employed in diverse
environments, it can be very useful a grammatical for-
malism able to describe the syntax of graphs and dia-
grams.

The formalism of Relation Grammars provides a general
framework for specifying multi-dimensional structures.
It supports an easy implementation of a general parsing
technique for non-linear languages. The same technique
can be applied to several graph grammar formalisms that
can be transformed into the RG one. We show the effec-
tiveness of such a technique by transforming two well
known graph grammar formalisms, due to Ghezzi-Della
Vigna and Janssens-Rozenberg, into the RG formalism.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 158

[Ungar91] David Ungar and Randall B. Smith, SELF: The Power of
Simplicity, 1991.

SELF is an object-oriented language for exploratory pro-
gramming based on a small number of simple and con-
crete ideas: prototypes, slots, and behavior. Prototypes
combine inheritance and instantiation to provide a frame-
work that is simpler and more flexible than most object-
oriented languages. Slots unite variables and procedures
into a single construct. This permits the inheritance hier-
archy to take over the function of lexical scoping in con-
ventional languages. Finally, because SELF does not
distinguish state from behavior, it narrows the gaps
between ordinary objects, procedures, and closures.
SELF'S simplicity and expressiveness offer new insights
into object-oriented computation.

[Ungar95] David Ungar, How to Program Self 4.0,1995.
Introduction.

The Self programming environment provides facilities for
writing programs, and the transporter provides a way to
save them as source files. Of all the parts of Self, the pro-
gramming environment probably has the least research
ambition in it. We simply needed to concentrate the inno-
vation in other areas: language design ,compiler technol-
ogy, user interface. The Self programming environment
strives to meet the high standard set by Smalltalk's, but
with a more concrete feel. The transporter, on the other
hand, is somewhere in-between completely innovative
research and dull development. It attempts to pull off a
novel feat—programming live objects instead of text—
and partially succeeds. Its novelty lies in its view of pro-
grams as collections of slots, not objects or classes, and its
extraction of the programmer's intentions from a web of
live objects.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 159

[VeeReeth93] Frank VeeReeth and Eddy Flerackers , "Three-
Dimensional Graphical Programming in Cael", in 1993 IEEE
Symposium on Visual Languages, 1993, pgs 389-391.

In the visual programming community ,many interesting
graphical representations have been reported upon. Most
of them have a 2D or 2.5D appearance on the screen in
order to reflect the inherent multidimensionality of the
programming constructs being represented. By going
into a three-dimensional representation, this reflection
can go a step further. With todays computers, it moreover
becomes feasible to extend the dimensionality of the pro-
gram (and data structure) depiction. We follow this
approach by realizing 3D graphical programming tech-
niques within CAEL, our interactive Computer Anima-
tion Environment Language. The paper elucidates the
underlying concepts, architecture and 3D representations
we utilize in CAEL.

[Vick84] C.R. Vick, Ph.D., and C.V. Ramamoorthy, Ph.D., Hand-
book of Software Engineering, 1984.

This book offers the information to design, implement,
test, and maintain virtually any type ofsoftware. It is the
first single source of its kind to cover in detail such a wide
range of topics.

[Vose86] G. Vose and G. Williams, "LabView: Laboratory Virtual
Instrument Engineering Workbench", in BYTE magazine, 1986,
pgs 84 - 92.

From Byte magazine, September 1986. Editor's note: The
following is a BYTE product preview. It is NOT a review.
We provide an advance look at this product because we
feel that it is significant. A complete review will follow in
subsequent issue.

[Wall92] Larry Wall and Randal L. Schwartz, Prograrnrning perl,
1992.

This is the authoritative guide to the hottest new UNIX
utility in years, co-authored by the creator of that utility.

Perl is a language for easily manipulating text, files and
processes. Perl provides a more concise and readable way
to do many jobs that were formerly accomplished (with
more difficulty) by programming in the C language or
one of the shells. Even though Perl is not yet a standard
part of UNIX, it is likely to be available at any UNIX site.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 160

[Wang93] Dejuan Wang and John R. Lee, "Pictorial Concepts and a
Concept-Supporting Graphical System", in Journal of Visual Lan-
guages and Computing, 1993, pgs 179-199.

A pictorial concept specifies a class of pictures with cer-
tain common structures and properties. Pictorial concepts
(or picture specifications) are useful in various applica-
tions of graphical interfaces, and specification mecha-
nisms have been proposed to allow putting concepts
together to define new concepts with further logical con-
straints.

We present a new approach to construction of pictorial
concepts in a structured manner based on a type-theoretic
framework, which provides a richer specification lan-
guage with abstraction mechanisms by means of which
classes of pictures with more sophisticated structures can
be specified in a clear and natural way. In particular, the
approach allows us to study, define and use pictorial con-
cepts at a higher level of abstraction so that powerful and
useful operations over pictorial concepts can be defined
and systematically sued to form sophisticated pictorial
concepts.

A concept-supporting graphical system has been
designed on the basis of the theoretical framework and
an experimental implementation is described. The system
supports users' definition of pictorial concepts without
requiring programming expertise, and realizes concept-
checking. This provides valuable support to a flexible use
of pictorial concepts, which is important in effective and
systematic use of pictures as meaningful visual expres-
sions.

[Watson93] Mark Watson, Portable GUI Development with C++,
1993.

Cross-platform GUI development.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 161

[Wegner90] Peter Wegner, "Concepts and Paradigms of OOP", in
OOPS Messenger, 1990, pgs 7-87.

This paper examines goals, origins and paradigms of
object-oriented programming, explores language design
alternatives, considers models of concurrency, reviews
mathematical models to make them accessible to non-
mathematical readers, and speculates on what may come
after object-oriented programming, concluding that it is a
robust component-based modeling paradigm. This paper
expands on the OOPSLA 89 keynote talk.

[Weise94] Daniel Weise, Roger F. Crew, Michael Ernst, and Bjarne
Steensgaard, "Value Dependence Graphs: Representation
Without Taxation", in Conf. Record ofPOPL '94:21st ACM SIG-
PLAN-SIGACT Symposium on Principles of Programming Lan-
guages, 1994, pgs 297-310.

The value dependence graph (VDG) is a sparse dataflow-
like representation that simplifies program analysis and
transformation. It is a functional representation that rep-
resents control flow as data flow and makes explicit all
machine quantities, such as stores and I/O channels. We
are developing a compiler that builds a VDG represent-
ing a program, analyzes and transforms the VDG, then
produces a control flow graph (CFG) [ASU86] from the
optimized VDG. This framework simplifies transforma-
tions and improves upon several published results. For
example, it enables more powerful code motion than
[CLZ86, FOW87], eliminates as many redundancies as
[AWZ88, RWZ88] (except for redundant loops), and pro-
vides important information to the code scheduler
[BR91]. We exhibit a fast, one-pass method for elimina-
tion of partial redundancies that never performs redun-
dant code motion [KRS92, DS93] and is simpler than the
classical [MR79, Dha91] or SSA [RWZ88] methods. These
results accrue from eliminating the CFG from the analy-
sis/transformation phases and using demand depen-
dences in preference to control dependencies.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 162

[Welsh80] Jim Welsh and Michael McKeag, Structured System Pro-
gramming, 1980.

The purpose of this book is to demonstrate the applica-
tion of structured programming to the construction of
system programs—in particular compilers (which are
typical of many similar text-handling programs) and
operating systems (which are typical of many real-time
systems).

[Wexelblat81] Richard L. Wexelblat, History of Programming Lan-
guages, 1981.

This is another good book on the history of languages.
This is from the ACM SIGPLAN History of Programming
Languages Conference, June 1978. The keynote address is
by Grace Hopper, and it alone should be required reading
for all language students.

[Wiederhold87] Gio Wiederhold, File Organization for the Database
Design, 1987.

An excellent source for the gory details on the file man-
agement of complex data structures.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 163

[Williams90] Carla S. Williams and John R. Rasure , "A Visual
Language of Image Processing", in 2990 IEEE Workshop on
Visual Languages, 1990, pgs 86-91.

Cantata is a graphically expressed, data flow-oriented
language which provides a visual programming environ-
ment within the KHOROS system. Originally created as a
research tool for image processing, the KHOROS system
includes a high-level user interface specification com-
bined with code generators, interactive development
tools, and maintenance software. The system is easily tai-
lored to other application domains because the tools of
the system can modify themselves as well as the system.

The user builds a Cantata application by connecting pro-
cessing nodes to form a data flow graph. Nodes are
selected from an application specific library of routines
creating using the KHOROS tools, and may have arbi-
trary granularity, from fine to large grain. Control nodes
and a parser extend the functionality of the underlying
data flow methodology. Visual procedures, representing a
hierarchy of subgraphs, add structure to the visual lan-
guage and help to manage the complexity often associ-
ated with visual programming. A dynamic execution
scheduler allows the user to interactively execute the
entire flowgraph, as well as individual nodes or proce-
dures.

[Winston84] Patrick Henry Winston and Berthold Klaus Paul
Horn, LISP, 2nd edition, 1984.

This is a guide to symbol manipulation and basic Lisp
programming as well as an introduction to the use of Lisp
in practice. The use of Common Lisp is a key feature of
this second edition. Other new or completely revised
material treats procedure abstraction, data abstraction,
debugging tools, object-oriented programming, message
passing, symbolic pattern matching, rule-based expert
systems, and natural language interfaces.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 164

[Winterbottom] Phil Winterbottom, ALEF Language Reference Man-
ual, XX.

Alef is a concurrent programming language designed for
systems programming. Exception handling, process man-
agement and synchronisation primitives are imple-
mented by the language. Programs can be written using
both shared variable and message passing paradigms.
Expressions use the same syntax as C, but the type sys-
tem is substantially different. The language does not pro-
vide garbage collection, so programs are expected to
manage their own memory. This manual provides a bare
description of the syntax and semantics of the current
implementation.

[Wittenburg90] Kent Wittenburg and Louis Weitzman , "Visual
Grammars and Incremental Parsing for Interface Languages",
in 1990 IEEE Workshop on Visual Languages, 1990, pgs 111-118.

In this paper we present a grammar formalism and pars-
ing algorithm for the purposes of defining and processing
visually based languages. Our work is currently set in the
context of a wider effort to process input sketched on
interactive tablets and worksurfaces as well as to support
interface dialogues using these technologies. After outlin-
ing the particular demands that these overall goals place
on our visual language component, we present a gram-
mar formalism and an incremental parsing algorithm that
uses these grammars. We then compare our approach to
others in the field.

[Wittenburg92] Kent Wittenburg, "Earley-style Parsing for Rela-
tional Grammars", in 1992 IEEE Workshop on Visual Languages,
1992, pg 192.

Predictive, Earley-style parsing for unrestricted Rela-
tional Grammars faces a number of problems not present
in a context-free string grammar counterpart. Here a sub-
class of unrestricted Relational Grammars called Fringe
Relational Grammars is proposed along with an Earley-
style recognition algorithm. The grammar makes use of
fringe elements (the minimal and maximal elements of
partially ordered sets) in defining its productions. The
parsing algorithm uses indexing methods based on fringe
elements in order to take advantage of equivalence rela-
tions on parse table entries, thus avoiding redundant pro-
cessing.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 165

[Wolczko95] Mario Wolczko and Randall B. Smith, Prototype-Based
Application Construction Using SELF 4.0,1995.

This is a set of diagram/description pages, with bullet-
type points on the left half of the page and explanatory
text on the right. The text describes Self, its history, phi-
losophy, use of objects and slots, etc.

[xxx94] No author listed, An Introduction to GNU E, 1994?.
Introduction

E is an extension of C++ designed for writing software
systems to support persistent applications. GNU E is a
new variant based on the GNU C++ compiler. This paper
describes the main features of E and shows through
examples how E addresses many of the problems that
arise in building persistent systems. This document is an
overview of the E language as implemented by the GNU
E compiler. It is an abridged and modified version of
(Rich92), which should be referred to for background
information and design rational. All examples in this doc-
ument have been updated to reflect usage in GNU E.

The original design of E was an extension of C++ v.1.2
(Stro86), which extended C (Kern78) with classes, opera-
tor overloading, type-checked function calls, and several
other features. C++ v.2.0 has added multiple inheritance,
and E has been ported to this version. This paper
describes the use of the latest E variant, GNU E. GNU E is
based on version 2 of the CNU C++ compiler.

GNU E differs from previous implementations based on
the AT&T cfront compilation system. The only language
extensions directly supported are the db type system and
persistent data. Parametrized types in the form of class
generators are no longer supported. C++ class and func-
tion templates are available and may be used for parame-
trized type support. Iterators are no longer supported as
part of the language. Instead, a macro package is pro-
vided which supports most of the functionality of the
original E language construct, albeit in a somewhat clum-
sier form.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 166

[Yang94] Sherry Yang and Margaret M. Burnett, "From Concrete
Forms to Generalized Abstractions through Perspective-Ori-
ented Analysis Of Logical Relationships", in 1994 IEEE Sympo-
sium on Visual Languages, 1994.

We believe concreteness, direct manipulation and respon-
siveness in a visual programming language increase its
usefulness. However, these characteristics present a chal-
lenge in generalizing programs for reuse, especially when
concrete examples are used as one way of achieving con-
creteness. In this paper, we present a technique to solve
this problem by deriving generality automatically
through the analysis of logical relationships among con-
crete program entities from the perspective of a particular
computational goal. Use of this technique allows a fully
general form-based program with reusable abstractions
to be derived from one that was specified in terms of con-
crete examples and direct manipulation.

[Yeung88] Ricky Yeung , "MPL—A Graphical Programming Envi-
ronment for Matrix Processing Based on Logic and Con-
straints", in 1988 IEEE Workshop on Visual Languages, 1988, pgs
137-143.

The matrix is a commonly used two-dimensional data
structure. On a two-dimensional display, 2-D data struc-
tures are more suitable for visualization than other linear
structures such as lists. This paper describes a graphical
programming environment for processing matrices,
called MPL, in which matrices are integrated graphically
as parts of the program. The system demonstrates that
several ideas from programming language research—
constraints, logic programming, and functionals—can be
combined with visual programming techniques to form
an efficient mixed graphical-textual notation. It also pro-
vides a new framework for expressing and prototyping
matrix related algorithms.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 167

[Yishimoto86] I. Yoshimoto, N. Monden, M. Hirakawa, M.
Tanaka, and T. Ichihawa, "Interactive Iconic Programming
Facility in HI-VISUAL", in IEEE 1986 Workshop on Visual Lan-
guages, 1986, pgs 34-41.

Demand for the development of user-friendly interfaces
grows as computers continue to be utilized in an ever
wider variety of fields of application. Among the many
trials being carried out, those utilizing of visual informa-
tion, such as forms and icons, would appear to be essen-
tial, and the icon, especially, provides an effective means
of improving interaction between the user and the com-
puter.

We have already proposed a language, HI-VISU AL
which supports visual interaction in programming. Pro-
gramming is carried out simply by arranging icons on the
screen. HI-VISUAL also shows a system extendability
providing the possibility of organizing a high level appli-
cation system as an integration of several existing sub-
systems.

In this paper, we present design and implementational
issues of HI-VISU AL with the objective of attaining inter-
active iconic programming. The system features (1) icon-
based programming, (2) visualization of data flow, (3)
interactive programming capability, and (4) navigation
for program development. Icons are managed, manipu-
lated, and executed through seven icon descriptors:
DATA, DATA TYPE, PRIMITIVE, PANEL, PROGRAM,
CONTROL, and COMMAND icons.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 168

[Yourdon89] Edward Yourdon, Modern Structured Analysis, 1989.
The author feels that today's more powerful technology
has totally changed the focus and perspective of systems
analysis. In this book, the author describes the new tech-
nology and how it can be used in the environment of
structured analysis. Among others, the book discusses
these features:

• state transition diagrams as a major new tool for model-
ing real-time systems

• updates the classical approach of modeling a current
physical system

• explains a new approach for building an essential
model

^ • includes case studies that illustrate the tools and tech-
niques discussed throughout the book.

[Zhao92] Rui Zhao, "Gestural Interfaces for Diagram Editors", in
Proceedings of the International Workshop AVI '92,1992, pg 413.

Summarized, this paper comments on the visual aspect of
visual programming as an aid in comprehension. User
interfaces employed by visual programs tend to be menu
or command selection; an alternative are gestural inter-
faces. The author believes that a combination of gestural
with other interfaces offers the best means of interacting
with the program.

[Zloof84] Moshe M. Zloof, "Classification of Visual Programming
to* Language", in IEEE 1984 Workshop on Visual Languages, 1984,

pgs 232-235.
In this short paper we will discuss the domain of visual
programming, why it is presently popular, its classifica-
tions, and end with some examples stressing the differ-
ence between procedural and non-procedural visual
programming.

Phase ISBIR Final Report from SNAP Technologies, Inc.

References 169

[ZZ94] No author listed, Zz Language, v. 4.0,1994?.
This is a programming manual, from the Introduction,
"...Zz language is a general purpose incremental lan-
guage. It is able to easily handle operator overloading
and any kind of structured data.

According to us an incremental language is a langauge
able to easily grow according to the users needs, it is suit-
able to develop complex compilers as well as simple
comomand interpreters or desk calculator.

The user of AA starts using a simple interface that allows
him to introduce new statements.

The user can specify the semantic of his statements using
other Zz statements or routines written by the user itself
in a conventional programming languages, like C lan-
guage. We call these routines, usable from Aa, C-proce-
dures.

Zz is able to be instructed to recognize quite general
grammars; matching a grammar rule it can execute an
action as written above. Thus one of the aim of Zz is to
interface a set of C-procedures with a command lan-
guage.

To develop a Zz application is quite easy using its user
friendly environment, the user are encouraged to imprve
the interfaces of their applications. Today, within the APE
group, Zz is used in all the applications that require some
user interface or command language.

Zz is able to add new words to its syntax like FORTH
does, it is able to handle its code like Lisp does, it is able
to handle syntaxes like YACC does.

For the compiler writers Zz is quite helpful. It does the
job of a compiler compiler, but it handle the variable and
other objects declarations maintaining a pure syntactic
strong type checking. The compiler developed using Zz
could be general like Ada and C. In our intentions Zz will
be used to develop innovative Very High Level Language
(VHLL) compilers with dynamic syntax capability.

-end of references—

Phase ISBIR Final Report from SNAP Technologies, Inc.

