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1    Introduction 

X-ray-mammography is the most sensitive technique for detecting breast cancer [1] with a reported 
sensitivity of 85-95% in detecting small lesions. Most non-invasive ductal carcinomas, or DCIS, 
are characterized by tiny non-palpable calcifications detected at screening mammography [2, 3, 
4]. Traditional mammography is essentially analog photography using X-ray in place of light and 
analog film for display. For a variety of reasons, digital technologies are likely to change and 
eventually replace most of the existing analog methods. The digital format is required for access to 
modern digital storage, transmission, and digital computer processing techniques. Hardcopy films 
use up valuable hospital space and are prone to loss and damage, which undermines the ability 
of radiologists to carry out future comparison studies. Images in analog format are not easily 
distributed to multiple sites either in-hospital or off-site, and there is the cost of personnel salary 
and benefits to store, archive, and retrieve the films. Currently only 30% of women get regular 
mammograms, and the storage problems will be compounded when this number increases with 
the advent of a National Health Care program. Digital image processing provides the possibilities 
for easy image retrieval, efficient storage, rapid image transmission for off-site diagnoses, and the 
maintenance of large image banks for purposes of teaching and research. 

Digital signal processing allows filtering, enhancement, classification, and combining images 
obtained from different modalities, all of which can assist screening, diagnosis, research, and treat- 
ment. Retrospective studies of interval cancers (carcinomas detected in the time intervals between 
mammographic screenings which were interpreted as normal) show that observer error can comprise 
up to 10% of such cancers. That is to say, carcinomas present on the screening mammograms were 
missed by the radiologist because of fatigue, misinterpretation, distraction, obscuration by a dense 
breast, or other reasons [5, 6, 7]. To this end, computer-aided diagnosis (CAD) schemes may assist 
the radiologist in the detection of clustered microcalcifications and masses [8, 9, 10, 11]. Current 
CAD schemes require images in digital format. 

To take advantage of digital technologies, analog signals such as X-rays must either be converted 
into a digital format or directly acquired in digital form. Digitization of an analog signal causes a 
loss of information and hence a possible deterioration of the signal. In addition, with the increasing 
accuracy and resolution of analog-to-digital converters, the quantities of digital information pro- 
duced can overwhelm available resources. A typical digitized mammogram with 4096 x 4096 picture 
elements (pixels) with 50 micron spot size and 12 bit per pixel depth can require over 25 megabytes 
of data. Complete studies can easily require unacceptably long transmission times through crowded 
digital networks and can cause serious data management problems in local disk storage. Advances 
in transmission and storage technology do not solve the problem. In recent years these improve- 
ments on the internet have been swamped by the growing volume of data. Even with an ISDN 
line, a single X-ray can take several minutes for transmission. Therefore compression techniques 
are desirable and often essential for cost and time efficiency of storage and communication. The 
overall goal is to represent an image with the smallest possible number of bits, or to achieve the 
best possible fidelity for an available communication or storage bit rate capacity. 

Industry alone is not likely to generate solutions to these problems because the specific needs, 
constraints, and performance of medical imaging are distinct from those of consumer products, which 
economically dwarf the medical image processing industry. For example, image quality in HDTV is 
evaluated typically by subjective opinions of untrained viewers, while the quality of medical images 
can only be determined by experts (e.g., radiologists) simulating actual clinical tasks. The tasks 
of medical image processing are more closely akin to those of scientific imaging (e.g., from remote 
sensors) because of the critical importance of subtle detail. 



A compression system typically consists of one or more of the following operations, which may 
be combined with each other or with additional signal processing: Sampling: the intensity of 
an analog image is measured on a regular grid of points called picture elements or pixels. Signal 
decomposition: the image is decomposed into a collection of images or "bands" for separate pro- 
cessing, typically by linear transformation by a Fourier or discrete cosine transform or by subband 
filtering, possibly using wavelet filters. Quantization: analog or high rate digital pixels are con- 
verted into a relatively small number of bits. This operation is "lossy" as it is noninvertible, so 
information is lost. This loss is unavoidable if the original image is analog, as is ordinary film X-ray. 
The conversion can operate on individual pixels (scalar quantization) or groups of pixels (vector 
quantization). Quantization can arise in high resolution analog-to-digital conversion, in the zeroing 
of signal decomposition coefficients, or in the lossy digital compression of preserved decomposition 
coefficients. Lossless compression: further compression is achieved by a lossless code such as 

run-length, Huffman, Lempel-Ziv, or arithmetic code. 
Decompression reverses the above process, although if the quantization is operative, the system 

will be lossy because the quantization is only approximately reversible. Theory and experience 
argue that good compression can be designed by focusing separately on each individual operation, 
although simpler implementations may be obtained by combining some operations. Lossless coding 
is well understood, readily available [12], and typically yields compression ratios of 2:1 to 3:1 on 
still frame greyscale medical images. This modest compression is often inadequate. Lossy coding 
does not permit perfect reconstruction of the original image, but can provide excellent quality at 
a fraction of the bit rate [13, 14, 15, 16, 17]. The bit rate of a compression system is the average 
number of bits produced by the encoder for each image pixel. If the original image has 12 bits per 
pixel (bpp) and the compression algorithm has rate R bpp, then the compression ratio is 12 : R. 
Compression ratios must be interpreted with care as they depend crucially on the image type, 
original bit rate, sampling density, and how much coding of background goes into the calculation. 

Early studies of lossy compressed medical images performed compression using variations on 
the standard discrete cosine transform (DCT) coding algorithm combined with scalar quantization 
and lossless (typically Huffman and run-length) coding. These are variations of the international 
standard ISO/CCITT Joint Photographic Experts Group (JPEG) compression algorithm [18, 19]. 
The American College of Radiology-National Electrical Manufacturers Association (ACR-NEMA) 
standard [20] has not yet recommended a specific compression scheme, but transform coding meth- 
ods are suggested. These algorithms are well understood and have been tuned to provide good 
performance in many applications. More recent studies have used subband or wavelet decomposi- 
tions combined with scalar or vector quantization [21, 22, 23, 24, 25] These signal decompositions 
provide several potential advantages over traditional Fourier-type decompositions, including better 
concentration of energy, better decorrelation for a wider class of signals, better basis functions for 
images than the smoothly oscillating sinusoids of Fourier analysis because of diminished Gibbs and 
edge effects, and better localization in both time and frequency. Because of their sliding-block 
operation using 2-dimensional linear filters, they do not produce blocking artifacts (although other 
artifacts arise at low rates). Vector quantization can provide advantages in some applications in 
terms of simplicity, speed, performance, natural progressive reconstruction, and amenability to 
combination with additional signal processing such as enhancement and classification for computer 

assisted diagnosis. 
Since lossy coding can degrade image quality, making precise the notion of "excellent quality" 

of a compressed or processed image is a serious issue that is at the heart of this proposal. Analog 
mammography remains the gold standard against which all other imaging modalities can be judged, 
including both direct digital mammography and digitized analog mammograms.    In a medical 



application it does not suffice for an image to simply "look good" or to have a high signal-to- 
noise ratio (SNR), nor should one necessarily require that original and processed images be visually 
indistinguishable. Rather it must be convincingly demonstrated that essential information has not 
been lost and that the processed image is at least of equal utility for diagnosis or screening as 
the original. Image quality is typically quantified objectively by average distortion or SNR, and 
subjectively by statistical analyses of viewers' scores on quality (e.g., analysis of variance (ANOVA) 
and receiver operating characteristic (ROC) curves). Examples of such approaches may be found 

in [26, 15, 27, 28, 14, 13, 29]. 
ROC analysis is the dominant technique for evaluating the suitability of radiologic techniques for 

real applications [30, 31, 32, 33]. Its origins are in the theory of signal detection: a filtered version 
of signal plus Gaussian noise is sampled and compared to a threshold. If the threshold is exceeded, 
then the signal is said to be there. As the threshold varies, the probability of erroneously declaring a 
signal absent and the probability of erroneously declaring a signal there when it is not vary too, and 
in opposite directions. The plotted curve is a summary of the tradeoff in these two quantities; more 
precisely, it is a plot of true positive rate or sensitivity against false positive rate, the complement of 
specificity. Summary statistics, such as the area under the curve, can be used to summarize overall 
quality. In typical implementations, radiologists or other users are asked to assign integer confidence 
ratings to their diagnoses, and thresholds in these ratings are used in computing the curves. This 
approach generally differs from clinical practice and requires special training. Further, image data 
are not well modeled as known signals in Gaussian noise and hence methods that rely on Gaussian 
assumptions are suspect. Modern computer-intensive statistical sample reuse techniques can help 
get around the failures of Gaussian assumptions, but in fact difficulties with ROC in this specific 
context are more fundamental. For clinical studies that involve other than binary tasks, specificity 
does not make sense because it has no natural or sensible denominator, as it is not possible to say 
how many abnormalities are absent. This can be done for a truly binary diagnostic task for if the 
image is normal then exactly one abnormality is absent. Previous studies were able to use ROC 
analysis by focusing on detection tasks which were either truly binary or could be rendered binary. 
Extensions of ROC to permit consideration of multiple abnormalities have been developed [34], but 
these still require the use of confidence ratings as well as Gaussian or Poisson assumptions on the 
data, and we believe that alternative methods are preferable. 

During the past seven years our group at Stanford University has developed an alternative ap- 
proach to evaluating the diagnostic accuracy of lossy compressed medical images (or any digitally 
processed medical images) that mimics ordinary clinical practice and does not involve special train- 
ing or artificial subjective evaluations, applies naturally to the detection of multiple abnormalities 
and to measurement tasks, and requires no assumptions of Gaussian behavior of crucial data. The 
methods are developed in detail for CT and MR images [35, 36, 37, 38, 39] and are sketched later. 

Our general goal is the development and validation in clinical situations of lossy image com- 
pression algorithms that permit efficient and fast storage, communication, display, and analysis of 
digital mammograms. The proposed algorithms incorporate recent advances from signal decompo- 
sition, vector quantization, and classification tree design and combine aspects of compression with 
low-level classification so as to permit the best (or fastest) reproduction in areas of an image of 
most interest to the user. Stated formally: 

Hypothesis: Digitized mammograms and lossy compressed digitized mammograms are at least 
as good as traditional film/screen mammography for the indication of screening asymptomatic 
women provided that the bit rate is sufficient. (The particular value will be estimated conservatively 
as a result of the experiment, but we believe it will be below 0.5 bits per pixel.) 

By incorporating classification and associated highlighting into the compression, the compressed 



images will be able to provide improved screening and diagnosis capabilities. 

2 Technical Objectives 

The specific aims of the research are: 
1) To evaluate clinically the quality of of digital and lossy compressed images. The emphasis will 
be on digital mammograms, although the same ideas can be applied to any competing modality. 
Experiments have been and will be designed in conjunction with biostatisticians and radiologists 
to simulate as closely as possible ordinary screening and diagnostic reading of mammograms by 
radiologists. Emphasis is placed on experimental and statistical methods that do not involve the 
implicit assumptions of traditional ROC methods, but the data will also be amenable to suitable 
extensions of ROC-style analysis, especially when judging accuracy of patient management decisions. 
The goal is to judge the coded images quantitatively and qualitatively both for the detection of 
important features and for the preservation of selected measurements. 
2) The long range goal is to compress original 12 bit images to less than 1 bpp with no loss of di- 
agnostic accuracy using compression and decompression that are implementable in real time using 
currently available technology. We will consider both fully optimized algorithms, which in general 
will be computationally complex if implemented in software, and fast, software-based approxima- 
tions. It is also desirable that the algorithms be progressive, so that image quality is improved 
as additional bits arrive, and scalable, so that users with a wide diversity of decompression and 
display platforms can extract from the bit stream the best possible reproduction for their particular 

platforms. 
3) To combine compression with enhancement, local classification, and highlighting of features 
deemed important by radiologists. The goal is to incorporate such diagnostic aids into the com- 
pression/decompression algorithm with little or no increase in on-line computer processing. Clinical 
simulations will be conducted to quantify any gain or loss in diagnostic accuracy due to such image 
processing using the same basic methods as in the compression studies. Our goal is compression, 
but ensuring the best possible compression requires optimizing the compression for the specific 

application of mammography. 
This third goal was primarily the topic of the third year of our original proposal, but the 

proposal was only funded for two years. Work continues on the basic algorithms but there will not 
be sufficient time to perform formal clinical experiments. 

3 Methods 

3.1    Study Design 
The general methods to be used are extensions to digital mammography and elaborations of tech- 
niques developed for CT and MR images by our group and reported in [35, 36, 38, 40, 39, 41, 42], 
where all details regarding the data, compression code design, clinical simulation protocols, and 
statistical analyses may be found. We here describe extensions developed during the first year of 
this project of these methods to digital mammography. The design of the proposed mammogram 
evaluation study incorporates elements from both the CT and MR studies, as well as many new 
aspects. We propose to compare the detection of microcalcifications, masses, and other findings on 
analog and digital mammograms on film and compressed digital mammograms with digital originals 

on high resolution monitors. 



The following general principles for protocol design have evolved from our earlier work on quality 
and utility evaluation for CT and MR images and our preliminary work with digital mammograms. 
• The protocol should simulate ordinary clinical practice as closely as possible. Participating radi- 
ologists (judges, observers) should perform in a manner that mimics their ordinary practice. The 
studies should require little or no special training of their clinical participants. 
• The clinical studies should include examples of images containing the full range of possible findings, 
all but extremely rare conditions. 
• The findings should be reportable using the American College of Radiology (ACR) Standardized 

Lexicon. 
• Statistical analyses of the trial outcomes should be based on assumptions as to the outcomes and 
sources of error that are faithful to the clinical scenario and tasks. 
• "Gold standards" for evaluation of equivalence or superiority of algorithms must be clearly defined 
and consistent with experimental hypotheses. 
• Careful experimental design should eliminate or minimize any sources of bias in the data that are 
due to differences between the experimental situation and ordinary clinical practice, e.g., learning 
effects that might accrue if a similar image is seen using separate imaging modalities. 
• The number of patients should be sufficient to ensure satisfactory size and power for the principal 

statistical tests of interest. 
We have already argued that traditional ROC analysis violates the first goal because of the 

requirement for confidence levels and the statistical assumptions of Gaussian or Poisson behavior. 
In addition, it is not well suited to the study of detection and location accuracy when a variety of 
abnormalities are possible. Traditional ROC analysis also does not come equipped to distinguish 
among the various possible notions of "ground truth" or "gold standard" in clinical experiments. 
We focus on three definitions of diagnostic truth as a basis of comparison for the diagnoses on all 
lossy reproductions of that image. These are: 
Personal: Each judge's readings on an original analog image are used as the gold standard for the 
readings of that same judge on the digitized version of that same image, 
Independent: formed by the agreement of the members of an independent expert panel, and 
Separate:   produced by the results of further imaging studies (including ultrasound, spot and 
magnification mammogram studies), surgical biopsy, and autopsy. 

The first two gold standards are usually established using the analog original films. As a result, 
they are extremely biased in favor of the established modality, i.e., the original analog film. Thus 
statistical analysis arguing that a new modality is equal to or better than the established modality 
will be conservative since the original modality is used to establish "ground truth." The personal 
gold standard is in fact "hopelessly" biased in favor of the analog films. It is impossible for the 
personal gold standard to be used to show that digital images are better than analog ones. If there 
is any component of noise in the diagnostic decision, the digital images cannot even be found equal 
to analog. The personal gold standard is often useful, however, for giving some indication of the 
diagnostic consistency of an individual judge. The independent gold standard is also biased in 
favor of the analog images, but not "hopelessly" so, as it is at least possible for the readings of 
an individual judge on either the digital or analog images to differ from the analog gold standard 
provided by the independent panel. If the independent panel cannot agree on a film, the film 
could be removed from the study, but this wouls forfeit potentially valuable information regarding 
difficult images. By suitable gathering of data, one can instead define several possible independent 
gold standards and report the statistics with respect to each. In particular, a cautious gold standard 
declares a finding if any of the panel do so. An alternative is that the panel designates a chair to 
make a final decision when there is disagreement. 



Whenever a separate gold standard is available, it provides a more fair gold standard against 
which both old (analog) and new (digital, compressed digital) images can be compared. When 
histologic data are available, they can be used to establish a separate gold standard against which 
results based on both analog and digital images can be compared. 

As part of the first Task in our current USAMRMC project, we have acquired a database of 
training and test images from the Radiology Department at the University of Virginia. We have 
also acquired from the University of Virginia a Training Set (learning sample) for use in the vector 
quantization and combined compression and classification work. This data set consists of 40 images 
described in Table 2. We have corroborative biopsy information on at least 31 of the test and 24 of 
the training subjects, which can be used for a separate gold standard. 

This initial data set has two shortcomings: It is too small to have good size and power for the 
tests proposed and the prevalence of abnormalities in this data set does not accurately reflect that 
of a normal screening population and hence violates the literal goals of accurate simulation and rep- 
resentative statistics for a screening application. The first shortcoming can be resolved by a larger 
study, although it is a serious and controversial issue as to how large the study must be. We shall 
return to this issue. The second problem, however, is unavoidable with any study of reasonable size. 
We will argue, however, that relevant conclusions can be drawn for the true prevalence based on a 
carefully constructed study using different proportions. In order to well simulate the proportion of 
normal images to ones containing pathology that actually would be found in a screening situation, 
we would require thousands of studies as there are only 6-8 cancers/1000 asymptomatic women 
screened. In our approach we do not directly estimate overall statistics for detection (sensitivity, 
PVP) and management (sensitivity, specificity). This would result in poor size and power for some 
of the statistics without unreasonably large patient numbers. It would also involve incorporat- 
ing somewhat arbitrarily abnormality prevelance values reflecting the "general population." Such 
prevalence can vary widely depending on specific sectors of the population and a purely prospective 
screening study using commonly assumed prevelance values can result in requirements for more 
than 10,000 patients, as reported by NCI statistician Dr. L.G. Kessler at a March 6 meeting of 
the Radiological Devices Panel Meeting (chaired by Francine Halberg, M.D., and held at the FDA) 
to consider protocols for demonstrating substantial equivalence of film/screen mammography and 
full field digital mammography. Such an enormous study would be prohibitive in terms of cost 
and time and is, in our view, unnecessary. Our "retrospective/prospective" approach, reported as 
an alternative protocol at the 6 March Panel meeting [43] and described in a 24 February 1995 
presentation to the Center for Devices and Radiological Health at the FDA by the PI, allows us to 
compute estimates of our statistics conditional on the presence or absense of abnormalities and to 
separately estimate size and power for both conditional populations. This then yields by straight- 
forward algebra overall statistics by suitably weighting the conditional statistics to reflect estimated 
prevalence. The specific numbers of patients needed for good size and power will be estimated in 
a cumulatively improving manner as the data are gathered and the experiments performed, but 
preliminary analysis based on standard approximations suggests that this will be far fewer than 
many thousands. Our preliminary analysis based on standard approximations suggests that the 
following data set will suffice, as we reported in our March 1995 "strawman" proposed protocol to 
the FDA [43]: 400 patients of which at least 200 are normal, 110 have mammographically detected 
breast cancers, 75 have benign findings, and 15 have breast edemas. (See the subsection Statistical 

Analysis below.) 
Because directly acquired full field digital images are not yet available, the current study uses 

digitized analog images. The digitized images will be compressed to three bit rates using two com- 
pression algorithms.   The bit rates are aimed at providing transparent or superior quality to the 



original, very good quality, and quality with distinct artifacts present. These are tentatively ap- 
proximately 1.5 bpp, .45 bpp, and .15 bpp, for compression ratios of 8:1, 27:1, and 80:1, respectively. 
The goal of this original study is to prove the stated hypothesis for the given compression algorithms 
and to answer the following questions: 1) Do digital mammograms and lossy compressed digital 
mammograms provide equal or superior values for important statistical parameters in comparison 
with film screen mammography? Particular parameters of interest are sensitivity, predicted value 
positive (PVP or PPV), and, when it makes sense, specificity. 2) Are there any significant statistical 
differences between the assessment and resulting management recommendations made in clinical 
studies based on analog, digital, and lossy compressed digital mammograms? 

In the current study images will be viewed on hardcopy film on an alternator by four judges 
in a manner simulating ordinary screening practice as closely as possible. The added diagnostic 
component is to supplement the screening simulation with additional information on diagnostic 
accuracy while maintaining the focus on the information in these images alone since patient histories 
and other image modalities will not be available. It also provides a quantitative and non-artificial 
rating against which ROC curves can be produced. 

The ongoing study is too small to provide definitive results as it does not provide sufficient 
size and power for the hypotheses being tested. It is intended to demonstrate the protocol (and 
thereby the potential for compression in screening and diagnostic applications) and to provide 
data to improve our estimates of the number of patients required for an experiment with good 
statistical size and power. We are submitting a proposal for future studies based on larger numbers 
of patients (200 normal, 200 abnormal) and radiologist judges (minimum 6) to compare film screen 
X-ray to directly acquired digital X-ray on film as in our FDA proposed protocol, to compare digital 
"original" images to compressed images on high resolution monitors, and to quantify the possible 
benefits of optional image processing enhancements built into the compression methods. 

Two views will be provided of each breast (CC and MLO), so four views will be seen simul- 
taneously for each patient. Each of the four judges will view all the images in an appropriately 
randomized order over the course of nine sesssions. Two sessions will be held every other week, with 
a week off in between. A clear overlay will be provided for the judge to mark on the image without 
leaving visible trace. For each image, the judge either will indicate that the image is normal, or, 
if something is detected, will fill out the Observer Form in Figure 1 using the American College of 
Radiology (ACR) Standardized Lexicon by circling the appropriate answers or filling in blanks. The 
instructions for the form are given in 2. The form is intended to capture the essential information of 
screening with supporting detail regarding detection and assessment in a form useful for statistical 
analysis. The form will be filled out by a student assistant querying the radiologist for each item 
detected, so there may be several filled out for one patient. It attempts to preserve the information 
noted and considered by radiologists in drawing their conclusions. The judges will be asked to 
use a grease pencil to circle the detected item. The instructions to the judges specify that ellipses 
drawn around clusters should include all microcalcifications seen, as if making a recommendation 
for surgery. The masses should be outlined carefully to include the main tumor as if grading for 
clinical staging, without including the spicules (if any) that extend outward from the mass. This 
corresponds to what is done in clinical practice except for the requirement that the markings be 
made on copies. The judges will be allowed to use a magnifying glass to examine the films. 

Although the judging form is not standard, the ACR Lexicon is used to report findings, and 
hence the judging requires no special training. The reported findings permit subsequent analysis of 
the quality of an image in the context of its true use, finding and describing anomalies and using 
them to assess and manage patients. 

To confirm that each radiologist identifies and judges a specific finding, the location of each 



lesion is confirmed both on the clear overlay and the judging form. Many of these lesions will 
be judged as 'A' (assessment incomplete), since it is often the practice of radiologists to obtain 
addtional views in two distinct scenarios: (1) to confirm or exclude the presence of a finding, that 
is, a finding which may or may not represent a true lesion, or (2) to further characterize a true lesion, 
that is, to say a lesion clearly exists but is incompletely evaluated. It is important to distinguish 
these two separate uses of the 'A' code since the first scenario hints at the presence of a lesion, and 
can be a source of false-positives if identified too often, leading to unnecessary studies or a source 
of false-negatives if subtle abnormalities which hint at the presence of a true cancer are missed. 
Similarly, it is important that true lesions identified by the radiologist should be identified in all 
cases, and that the use of the 'A' code is not mistaken for a possible lesion instead of a real lesion 

for purposes of the study. 
In order to accomplish the task of separating the true meaning of the 'A' code, the judging form 

separates the two meaningsof the 'A' code into possible lesion or definite lesion. Furthermore, if 
the lesion is definite, the judges are asked to determine their suspicion of all true findings based on 
the standard two-view mammogram. In this way we will be able to identify possible false-positives 

in our data versus true findings. 
The initial question requesting a rating of diagnostic utility on a scale of 1-5 is not itself used 

to quantify actual diagnostic utility. Rather, it is intended for a separate evaluation of the general 
subjective opinion of the radiologists of the images. The degree of suspicion registered in the 
Management portion also provides a subjective rating, but this one is geared towards the strength 
of the opinion of the reader regarding the cause of the management decision. It is desirable that 
obviously malignant lesions in a gold standard should also be obviously malignant in the alternative 

method. 

3.2    Statistical Analysis 
Detection accuracy: Once a gold standard is established, a value can be assigned to the sen- 
sitivity, the probability that something is detected given that it is present in the gold standard. 
Sensitivity makes sense for non-binary detection tasks, and is a crucial statistic that quantifies 
results. Predictive value positive (PVP, also called PPV), the chance an abnormality is actually 
present given that it is marked, fills the role of specificity in penalizing false positive reporting. 
Sensitivity and PVP can be measured separately for each specific lesion type. They can also be 
measured for the collection of all anomalies, i.e., for the identification of any of the listed lesions as 
opposed to none. For this case specificity also makes sense as a statistic. 

Mean values for both quantities for both analog and digital images will be determined together 
with the two-sided 95% confidence regions. Because such data are neither Gaussian nor binary, 
some care is required in summarizing them and forming confidence intervals for their "true values." 
We will adapt computer-intensive schemes such as permutation statistics and bootstrapping [44, 42] 
as we have in the past to form valid confidence intervals for these two fundamental parameters. 

Relative to the independent gold standard, sensitivity and PVP for the findings of the judging 
radiologists will be determined by whether their outlined sites largely contain the smaller circles 
of the independent panel (taking into account possible positioning differences on the digital mam- 
mograms). Differences in sensitivity or PVP between analog and digitized images will be analyzed 
using the permutation distribution of the Behrens-Fisher (Welch) statistic. The test is a variation 
of the two-sample t-test that takes account of differences in sample variances. As we implement 
the test with its permutation distribution, the test is exact in a certain sense, and does not rely 
on Gaussian assumptions that would be patently false for this data set.   These comparisons will 



be conducted for both personal and independent gold standards to demonstrate both consistency 
and accuracy. Sensitivity and PVP for the masses, calcifications, and other abnormalities can be 
evaluated both separately and combined. 
Management: Management is a key issue in digital mammography. There is concern that artifacts 
could be introduced leading to an increase in false positives and hence in unnecessary biopsies. 
Statistical analysis should quantify the degree, if any, to which any such differences exist. One way 
to analyze the management portion of the task is to record the management decisions of (ordinary 
followup, further study [spot mammo, magnification mammo, other imaging]) for the two modalities 
in a two dimensional array of all possible pairs of the two essential decisions as in Figure 3. The 
counts can be used to estimate sensitivity, PVP, and specificity with respect to the personal and 
independent gold standards. Standard statistical methods (including simple x2 tests) can be used to 
quantify any significant differences between the management judgements of each type and as a whole. 
An additional statistic measuring the degree of agreement of two methods (along with confidence 
intervals) can be developed as follows [45, 46]: If you have several categories into which you can 
classify, and two ways of acquiring information, as in digital and analog, then the two methods will 
agree to the extent that the diagonal entries have all the probability. One can look quantitatively 
for the increase in agreement beyond what it would be by chance if the ratings were independent. 
That amounts to looking at a diagonal entry (viewed as a probability) and subtracting off the 
product of its row and column estimated probabilities. Summing differences over the diagonals 
gives a statistic for the "excess agreement." Then approximate confidence intervals follow from 
an asymptotic analysis. A McNemar test then can be applied to test for significant differences in 
management decisions as is done in [38] when there were only two categories. 

An ROC-style curve can be produced by plotting the (sensitivity, specificity) pairs for the 
management decision for the levels of suspicion. Sample reuse methods (rather than common 
Gaussian assumptions) could be applied to provide confidence regions around the sample points. 
(Sample reuse ROC methods are considered, e.g., in [47].) 
Statistical Power: We have no experimental data upon which to base precise computations of size 
and power in the present mammographic context. Hence we can provide only coarse approximations 
without resorting to additional and possibly unwarranted assumptions on the data. 

It should be emphasized that "power" alone is not the issue. It makes sense only in the context 
of a specific size, test statistic, null hypothesis, and alternative. Once some preliminary data are 
available, the power and size can be computed for each test statistic described above to test the 
hypothesis that digital mammography of a specified bit rate is equal or superior to film/screen 
mammography with the given statistic and alternative hypothesis to be suggested by the data. In 
the absence of data, we can only guess the behavior of the collected data to approximate the power 
and size. We consider a one-sided test with the "null hypothesis" that, whatever the criterion 
(sensitivity, specificity, or predictive value positive), the digitally acquired mammograms are worse 
than analog. The "alternative" is that they are better. In accordance with standard practice, we 
take our tests to have size .05. 

Approximate computations of power devolve from Figure 3. Similar methods can be applied 
to a table listing the detection possibilities. The key idea is twofold. In the absence of data, a 
guess as to power can be computed using standard approximations. Once preliminary data are 
obtained, however, more accurate estimates can be obtained by sample reuse techniques taking 
advantage of the estimates inherent in the data. One approach is to modify Figure 3 to reflect 
the gold standard (of whatever kind) and whatever the nonstandard decisions produce. This can 
test against personal and independent gold standards and, where available, against the separate 
standard.  We abbreviate the gold standard to "Right" and the alternative to "Wrong."   Figure 4 



shows the possibilities and their corresponding probabilities. If the parameter 7 can be estimated, 
then the size and power of the test for various values of the other parameters and critical values 
can be estimated. We do our computations of critical value for tests with size .05 in the case 
h - 0; in that case the conditional distribution of the number observed in the lower left square 
of the 2 x 2 table, given that the two off-diagonal squares have, say, N observations in total, has 
a binomial distribution with parameters N and .5 . If the method summarized by the columns is 
better (h>0), then we expect the lower left square to have more observations than the upper right 
one. The probabilities are in terms of parameters that have not yet been estimated; they can only 
be guessed at conservatively. The results that follow immediately are of most interest in considering 
sensitivity; we will turn subsequently to computations that bear upon specificity. In this analysis 
we consider the experiment being proposed for a future larger study, an analysis that forms part 
of the current study. Suppose that ip were .8, h .05, and 7 .05 (so that the method summarized 
by the columns is 5% "better" than that summarized by the rows). Then for a test of size .05 
(5%), the power is approximately .76 for detecting the difference by our test based on the binomial 
computation for our 400 overall subjects, of which, 200 are normal. Changing the parameters a 
bit does not alter the basic conclusion that we have reasonable power for detecting differences in 
sensitivity. The current study will provide data to improve the patient number estimates. 

The results for size and power as they concern sensitivity are conservative in that they hold 
individually for each judge. If we can defend the assumption that two judges are equal in behavior, 
then the power increases to .95 for the combined data of those two judges. And if the data from 
four judges can be combined, then power increases to .999+ (for our size .05 test). If the six judges 
could be combined, then we could lower size to nearly 0 and have power nearly 1. 

We turn now to the more delicate issue of comparing specificities. And here our approach is 
rather different from the approach that we have taken regarding sensitivity. Sensitivity is a "breast 
by breast" issue in that one commits an egregious mistake by missing disease in a single breast. Each 
woman was assumed in the computations thus far to contribute two breasts to the computation 
of sensitivity except regarding diagnoses in which asymmetry is the defining parameter. With 
specificity, the egregious mistake is to take a woman to biopsy of either breast when she does not 
require it. Here, the units for computation are individuals, and the effective sample sizes therefore 
are much smaller than before. The values of the parameters are quite different as well. Thus, 
supppose that ip is .5, 7 .25, and h .05. Then for an individual judge, the power of a test of our 
null hypothesis for which the size is .05 is only .27. If, however, we can combine the results of 
four judges, then the power of the size .05 test rises to .71, while if we can combine the results 
of all six judges, then the power increases to .83. The parameters we have chosen present a stern 
challenge to the digital technology; we could change them somewhat and change the power for 
various numbers of judges for our size .05 tests. We can draw a clear conclusion without presenting 
tables of results. That is, for a careful, powerful study of specificity, it will not be possible to make 
suitable conclusions without being able to combine the results of several judges - at least three and 

better six. 
It should be emphasized that these are approximate computations in the absence of data, but 

that we believe the totals to be reasonable. Based on the data, size and power can be recomputed 
using resampling methods as a check and, if found inadequate, additional patients acquired to 

improve the size and power. 

10 



3.3    Compression Algorithms 

This project focuses on a family of compression algorithms based on combining signal decompo- 
sitions, especially subband and wavelet, with vector quantization (VQ), the conversion of vectors 
(typically a block of pixel intensity values in the original image such as a 2 x 2 square) into binary 
vectors which tell the decompressor which reproduction template (or codeword) from a limited set 
called a codebook should be used to best approximate the original vector. The general approach of 
subband/wavelet vector quantization is surveyed in Cosman, Gray, and Vetterli [48] and the basics 
of subband coding and vector quantization are developed, for example, in Gersho and Gray [49]. 
Our research specifically focuses on the quantization aspect, although we will continue to look at 
various choices of wavelet and of wavelet packets [50, 51]. We defer to other groups to look at the 
relative merits of differing decompositions [52, 53]. 

Basic VQ decompression is simply table lookup, yielding extremely fast image reconstruction. 
Recent developments provides a means of doing combined transform or subband/wavelet decoding 
entirely by table lookup [54, 55]. The VQ codebooks are usually either constrained to a lattice 
structure or designed using statistical clustering techniques that attempt to find a small number 
of representatives for a large data set that do a good job of representing the entire set in the 
sense of minimizing the average distortion between the original and the representative. A common 
example is the generalized Lloyd (or k-means) algorithm which has a variety of forms and successful 
applications [49, 56]. To lower the codebook search complexity, techniques from the design of 
statistical classification trees can be extended to design codebooks with a tree structure, that is, 
codebooks that can be searched by a sequence of simple comparisons (hyperplane or correlation) 
instead of a large number of distortion computations. The complexity of tree-structured VQs 
(TSVQs) grows linearly in bit rate instead of exponentially, as is the case with unstructured codes. 
This approach combines clustering with ideas from the classification and regression tree (CART) 
design technique of Breiman, Friedman, Olshen, and Stone [57]. TSVQ yields lower distortion than 
fixed rate full search VQ for a given average bit rate, has a simple encoder, and is well matched to 
variable-rate environments. TSVQ has a natural successive approximation (progressive) property, 
which means that instead of waiting for all the bits describing an image to arrive before displaying 
it, a TSVQ decoder can construct increasingly better quality images as bits arrive. A tree can be 
tailored by using weighted distortion measures, an attribute that plays a key role in one of the 
aims of this project: the optional incorporation of enhancement or highlighting into compression by 
using distortion measures that assign increased importance to specified features, where the features 
can be automatically classified or marked by a human expert in a learning data set. 

After experimenting with a variety of compression algorithms, our current USAMRMC project 
chose two of the best current compression algorithms for evaluation: A variation of Shapiro's em- 
bedded zero tree algorithm [58] and a perceptually optimized JPEG. These schemes both use scalar 
quantization following the signal decomposition, but they provide good quality with reasonable 
complexity, demonstrate distinct low bit rate artifacts, and permit us to emphasize the validation 
protocol by using popular algorithms. Shapiro's embedded zerotree wavelet (EZW) algorithm [59] 
uses the discrete wavelet transform to generate wavelet coefficients. The algorithm then uses the 
idea of "zerotree" coding, in which certain coefficients are deemed "insignificant" and not coded. 
The insignificance of coefficients across scales are predicted by exploiting the self-similarity inherent 
in images. Adaptive arithmetic coding is performed on the output bit stream. An embedded code 
is produced since the bits in the bit stream are generated in order of importance. 

Perceptually-optimized algorithms are intended to minimize distortion in a manner matched to 
the human psycho-visual system. The JPEG compression algorithm allows the user to customize 
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performance on a per image basis by modification of various parameters. One such set of parameters 
is the DCT quantization coefficients. Watson [60] developed an algorithm for modifying these 
coefficients in a perceptually optimal fashion. The work expands on the idea of threshold amplitudes 
for DCT basis functions presented by Peterson et al. [61]. Watson's algorithm addresses problems of 
luminance masking, contrast masking, error pooling and selectable quality. The algorithm produces 
a set of 64 numbers which can then be used by the JPEG algorithm to achieve perceptually- 

optimized compression. 
Future compression algorithms of primary interest will be tree-structured VQ, including memo- 

ryless, predictive, and finite-state, all used in conjunction with subband/wavelet signal decomposi- 
tions. We will also consider extensions and improvements of wavelet coding methods based on low 
complexity scalar quantization, e.g., [58]. We are actively pursuing research on these algorithms as 
part of our NSF and USAMRMC projects. 

The general procedure with both novel and benchmark systems continus to be to simulate 
and test the various systems for varying parameters including different predictors, classifiers, block 
sizes, bit allocations, and other choices. Initial comparisons will be made on the basis of SNR vs. 
bit rate tradeoffs, computational complexity, and informal evaluations by radiologists. Only the 
most promising code structures will be selected for careful validation by clinical simulation. 

In work with Professor Pamela Cosman of the University of California at San Diego (formerly a 
Post Doc with this project) we have developed an algorithm that combines tree-structured vector 
quantization with wavelet image coding [62]. This technique also uses the idea of zerotree coding. 
In this method, however, we explicitly use distortion/rate tradeoffs to determine the significance 
of the coefficients in the higher subbands. Preliminary results have shown improvements over the 
more common technique of using constant pre-determined thresholds to determine significance. We 
plan to extend the algorithm by using different VQ structures, such as lattice VQs. In addition, 
we plan to combine the zerotree algorithm with ideas from weighted universal VQ and classified 
VQ to allow the code to better match distinct local behavior [63, 64]. We have also explored a low 
complexity multiresolution approach that uses pruned nested TSVQs. This technique has produced 
several dB improvement over basic VQ schemes. Furthermore, the algorithm produces images that 
can be transmitted progressively in both a spatial and frequency multiresolution manner. The low 
complexity nature of the algorithm makes it useful for applications that require fast decoding with 
low complexity in software [62, 65]. 

Two additional methods are of particular interest because of their intimate connection with 
combined compression and classification for computer assisted diagnosis of mammograms to be 
discussed later and because of their potential for improving compression alone: classified VQ and 
finite-state VQ [49]. Both of these methods have a collection of small codebooks (which can be 
thought of as custom compression algorithms) available to the encoder for the current pixel block, 
where each codebook corresponds to a distinct mode or type of behavior. For example, images will 
have different local dynamic ranges or different textures such as fatty vs. dense tissue. If one is able 
to distinguish a small collection of classes or types for the local behavior, then a smart compression 
system might have a separate code available for each. The encoder picks the best codebook for the 
class to which the current block belongs and then code the block using that codebook. Classified 
VQ and finite-state VQ differ in how the class is chosen and communicated to the decoder, but the 
design techniques for the two systems are quite similar [49]. Both schemes provide useful byproducts 
in the identification of classes of possible use to the physician. The design is complicated, but the 
actual compression/decompression once the codebook is fixed is simple. These codes have not yet 
been applied to wavelet coding systems, but they appear to be naturally suited for the application 
in that the classification for quantizing the output of each level can be computed from the higher 
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resolution previous level. In a way Shapiro's embedded zero tree algorithm does this, effectively 
coding all descendent coefficients from a low energy high resolution coefficient as a zero rate "zero 
tree." More generally, each high resolution pixel or pixel block could be classified to determine 
which codes would be used on descendent pixel blocks in the decomposition, with bit rate being 
traded off for average distortion. Lastly, finite-state VQ appears a good match to the sliding-block 
nature of wavelet coders, which are also a form of finite-state machine when run on discrete data. 
We propose to investigate a variety of finite-state VQ design algorithms, including bit allocation 
techniques, variable rate state codebooks, and differing classifiers such as CART, VQs, and the 
Bayes classifiers for abnormalities considered next. 

3.4    Combined Compression and Classification for Highlighting 

A variety of techniques for automatically locating abnormalities such as lung nodules, microcalci- 
fications, and masses have been reported in the literature (e.g., [10, 11, 66, 67, 68, 69, 70, 71, 72, 
73, 74, 75, 76]). The techniques typically involve full frame sophisticated signal decompositions and 
segmentation for enhancing the image, extraction of important features, and application of pattern 
recognition algorithms to classify regions based on the observed features. Many of the algorithms 
apply morphological methods to thresholded images, effectively eliminating relative pixel intensity 
information that clustering tree-structured methods can use to advantage. Most published algo- 
rithms are computationally complex, often requiring long times to perform the image analysis. A 
notable exception is the approach of Kegelmeyer [8] who uses the CART algorithm, developed in 
part by R.A. Olshen and intimately connected with the techniques proposed here. Since such al- 
gorithms are performed digitally, quantization is necessary if the original image is an analog X-ray. 
Quantization may be desirable even for digital images, however, as reducing the bit rate can speed 
the subsequent processing. With the exception of our recent work to be described, all published 
techniques of which we are aware make no attempt to match the quantizer design to the subsequent 
classification step, but rather separately and independently design the compressor and classifier or 
design the two in simple cascade using separate criteria. For example, a VQ could be designed to 
minimize average squared error and then a Bayes classifier could be designed for the VQ output. 
This approach is common and intuitive—if the quantization has enough bits, the digitized signal 
should well approximate the original and hence a classifier designed for the original should still 
work well. The intuition is not necessarily appropriate, however, when high compression is required 
and there is no guarantee that high SNR will translate into preservation of essential classification 
information. A potential solution is to incorporate the classifier's goal into the quantizer design. 
This can provide a simple, fast, and useful quantizer that provides some classification and preserves 
essential information for a subsequent more sophisticated classifier. The idea of combining VQ 
with classification is based on the simple observation that both techniques are optimized by best 
balancing a tradeoff between distortion or cost and complexity and hence one can incorporate both 
notions of distortion-error energy and Bayes risk-to a single general distortion measure which can 
be used to design the code. By combining these ideas with pyramid or other multiresolution coding 
schemes, increasingly larger features can be included in the optimization algorithm used to design 
the codes. For example, small pixel blocks can attempt to identify individual microcalcifications; 
larger blocks can look for clusters and masses. 

The basic idea is to consider coding not just a pixel intensity block X, but the pair (X, Y), 
where Y is a "class label" which takes values in a finite set % = {0, • • •, M - 1}; we wish to accu- 
rately guess the class Y when only the observable X or, in our approach, a quantized pixel block, is 
known. In otherwords, the information necessary to segment the image into classes is contained in 
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bits describing the image. For mammography there could be two class labels corresponding to "mi- 
crocalcification present" and its complement, or three labels corresponding to "microcalcification," 
"mass," and "neither microcalcification nor mass." Composite classes could assign elementary 
classes to each pixel within a vector, e.g., separately identifying microcalcifications, mass, and other 

classes. 
Typically classifier performance is measured by Bayes risk, a weighted combination of error 

probabilities where different error types can be assigned different costs. For example, in the two 
class problem (microcalcification present or not), the Bayes risk is a weighted combination of the 
probabilities of missing a microcalcification that is there and declaring a microcalcification that is 
not there; our weighting makes the first error type far more important. Here the decision is made on 
the same size pixel group as is used for the VQ and hence this decision problem can be considered 
to be binary: either the small pixel square is part of a microcalcification or it is not. Much of the 
theory and practice of classification is aimed at finding a classifier that minimizes Bayes risk. Our 
approach is a variation on empirical Bayes detection where the necessary probabilities are learned 
from a labeled set of training data, e.g., radiographs marked to indicate important features such as 

calcifications. 
Our method [77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87] uses a modified distortion measure in 

the design and application of the code and allows simultaneous optimization for both compression 
(using squared error or other objective distortion measure for general appearance) and Bayes risk 
(for classification accuracy) by combining the two terms with a Lagrangian importance weighting. 
The Lagrange multiplier determines the relative importance of squared error and classification, but 
preliminary results show that the classification accuracy can be weighted quite heavily while still 
producing excellent compression. A simple variation of the Lloyd algorithm can then be used to 
design the code. The intensive computation occurs during code design, not during compression 
or decompression. For our current set of training images, the masses and clusters of calcifications 
were marked on the mammograms with a grease pencil by a radiologist, and the transference of 
those class assignments to the digitized data has been done using a mouse to perform an extremely 
time-consuming labeling of those abnormalities on the monitor. The labeling on the monitor is then 
reviewed and verified by the radiologist. Work will begin this fall to perform a similar labeling of 
our dataset from the University of Virginia. Labeling can also incorporate other information such 
as biopsy results, as we propose to do. It is conceivable that as the biopsy data base grows, the 
design algorithms could succeed in producing codes that can distinguish between features such as 
microcalcification clusters that are visually identical, but which might be benign or malignant. 

Our studies using pixel intensities as features (no signal decomposition) have shown the approach 
to to provide superior performance in terms of classification and compression to Kohonen's LVQ 
in the detection of lung nodules in CT scans, where a Bayes tree-searched VQ with posterior 
estimation produced a pixel block sensitivity and specificity of .856 and .970, respectively [85]. 
Preliminary results for digitized mammograms were reported by us in [82, 83], where the sensitivity 
and specificity were 41.2 and 92.6, respectively. The results are depicted in Figure 5. Although 
this is not good performance considered only as a classifier, it is promising for several reasons: 
1) the performance is much better than that of the independent cascade design of quantizer and 
classifier, as seen by comparing (B) and (D) in Figure 5 with the gold standard (C); 2) the decision 
is based only on 2x2 pixel blocks and performance will improve with context or suitable signal 
decomposition; and (3) the point of the algorithm is only to highlight suspicious regions as an aid 
to radiologist viewing and screening for more sophisticated algorithms. Local probability of error 
or sensitivity and specificity or PVP can be improved by combining the implicit classification with 
hierarchical algorithms that take more context into account.  An attractive facet of this approach 
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is that it automatically incorporates the true purpose of the image, detecting microcalcifications 
and masses, into the optimization algorithms used to design the codes. This overall optimization of 
compression including the application is capable of better performance than is separately cascading 
compression and classification algorithms for detecting pathology. 

The algorithmic and theoretical development of the algorithm is proceeding with the support of 

the NSF Grant MIP-9311190. 

4    Conclusions 

We have modified the our basic validation protocol to the comparison of analog with digital and lossy 
compressed digital mammograms [43]. The protocol was described in the Methods section and was 
presented by PI Gray and Co-PI Olshen to the Digital Mammography Panel meeting at the FDA 
on 6 March 1995 for consideration for use in demonstrating substantial equivalence of film/screen 
mammography and full field digital mammography. We have acquired the image data base for the 
current experiment, we have made small pilot experiments with the protocol, and we are currently 
coding the image data base for the full clinical experiment. The clinical experiments will begin in 
early September 1995, as originally planned in the Statement of Work. Looking toward a future 
studies comparing analog and digital, both compressed and uncompressed, we have used traditional 
approximations to estimate the number of patient studies that will be required for definitive size 
and power, and the current experiments will provide initial data which will allow us to refine these 

estimates. 
During the past year we have continued to explore alternative compression algorithms of possible 

use in digital radiography. These include multiresolution, combined wavelet and vector quantization, 

and finite state codes [62, 81, 88, 89, 90, 65]. 
During the second and final year of this grant we will complete the clinical experiment described 

in this report and the accompanying statistical analyses. We will perform an additional experiment 
in the spring and summer using high resolution monitors instead of film on the same database. 
Work will continue on compression and classification algorithm development and on refining our 
estimates of size and power and the number of patients required for future, definitive, studies. 
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5    Figures and Tables 

6 benign mass 
6 benign calcifications 

6 malignant mass 
6 malignant calcifications 
3 malignant combination of mass & calcifications 
3 benign combination of mass & calcifications 

4 breast edema 
4 malignant architectural distortion 
3 malignant focal asymmetry 

3 benign asymmetric density 

15 normals 

59 studies, with 4 views per study. 
The data were scanned by a a Lumisys Lumiscan 150 with 

12 bits per pixel and 50 micron spot size. 

Films printed using a Kodak2180 X-ray film printer, 
a 79 micron 12 bit greyscale printer which 
writes with a laser diode of 680 nm bandwidth. (Film and technician 

time donated by Kodak. 

Table 1: Test Data Set: Current Experiment 

4 benign mass 
4 benign calcifications 
4 malignant mass 
4 malignant calcifications 
2 malignant combination of mass & calcifications 
2 benign combination of mass & calcifications 

4 breast edema 
4 malignant architectural distortion 
4 malignant focal asymmetry 
4 benign asymmetric density 
4 normals 

Table 2: Training Data Set: Current Experiments 
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ID number Session number Case number 

Reader initials:   
Mammograms were of (Left, Right, Both) breast(s). 

Subjective rating for diagnostic quality (sharpness, contrast)? 

(bad) 1 - 5 (good): 
Left CC Left MLO Right CC Right MLO 

Breast Density : Left   12  3  4 Right   12  3  4 

1) almost entirely fat 2) scattered fibroglandular densities 3) heterogeneously dense 4) extremely dense 

Finding side: Neither, Left, Right, Both  

Findings (detection): 

Individual finding side: Left, Right 

Projection in which finding is seen: CC 

Finding # of 

MLO CC and MLO 

1) UOQ 5) 12:00 9) retroareolar 13) inner 
2) UIQ 6) 3:00 10) central 14) upper 
3) LOQ 7) 6:00 11) axillary tail 15) lower 
4) LIQ 8) 9:00 12) outer 16) whole breast 

Location: 

Finding type: (possible, definite) 
1) mass 
2) calcifications 
3) mass containing calcifications 
4) mass with surrounding calcs 

5) architectural distortion 
6) solitary dilated duct 
7) asymmetric breast tissue 
8) focal asymmetric density 

CC View 
cm long axis by  Size: 

Distance from the nipple: 
cm short axis 

MLO View 
Size:  cm long axis by  

9) breast edema 
10) other 

cm short axis 
Distance from the nipple: 

Associated findings include: (p= possible, d= definite) 
1) breast edema ( p , d )      5) lymphadenopathy ( p , d ) 
2) skin retraction ( p , d )      6) trabecular thickening ( p , d ) 
3) nipple retraction      ( p , d )      7) architectual distortion ( p , d ) 
4) skin thickening ( p , d )      8) calcs associated with mass ( p , d ) 

Assessment: The finding is 

9) multiple similar masses      ( p , d ) 
10) dilated veins ( p , d ) 
11) asymmetric density ( p , d ) 

(A)   indeterminate, additional assessment needed 
What? 1) spot mag                    2) extra views                    3) U/S 
What is your best guess as to the finding's 1-5 assessment?   

4) old films 
or are you uncertain if the finding exists? Y 

(1) (N) negative - return to screening 

(2) (B) benign (also negative but with benign findings) - return to screening 

(3) (P) probably benign finding requiring 6-month followup 

(4) (S) suspicion of malignancy (low), biopsy 

(4) (S) suspicion of malignancy (moderate), biopsy 

(4) (S) suspicion of malignancy (high), biopsy 

(5) radiographic malignancy, biopsy 

Comments: 

Figure 1: Observer Form 

17 



Instructions to mammogram readers 
You have been invited to participate in a reading of mammograms to detect breast abnormalities as seen 
on analog and digital studies. The study has been designed to simulate the clinical scenario as closely as 
possible. The films have been hung so that you will not be able to identify the patient names, and separate 
study numbers have been assigned to each patient for purposes of the study. A clear overlay has been 
taped to each film, but this should not interfere with your reading of the image. You may use a magnifying 
glass and you may use a bright light as you would ordinarily in clinical practice. The reading of the films 

is not timed. 
A student will be assigned to you to prompt you for specific answers to questions on breast density, 
location, and suspicion of breast findings as stated on a questionnaire.   You will also be asked to circle 
the abnormalities on the clear overlays with a grease or wax pencil and number them. You will also be 
asked to mark the location of the nipple on each film.  Please be as specific as possible and follow these 
guidelines: 
1. Please rate each mammogram for its sharpness and contrast as based on the technique of the year it 
was obtained. Rate each individual view for quality, e.g., "The right CC is good (5), and all the others are 
pretty good (4)." Note motion unsharpness in the comments. 
2. Rate the right and left breast densities separately, for example the left breast could be rated as 1 and 
the right breast could be rated as 2. 
Abnormalities: 
1. Tell the student how many abnormalities are present in each breast, then describe each abnormality 
individually, e.g., "There are two lesions in the left breast. Lesion 1 of 2 is " The student will fill out 
extra forms when there are lesions in both breasts, or multiple lesions in one breast. The student will not 
re-fill out the ratings for diagnostic quality or breast density for each abnormality. 
2. Circle all abnormalities, whether benign or malignant (i.e. circle fibroadenomas, fat necrosis, benign 
appearing clustered calcifications as well as malignant appearing calcifications). Please also note the 
location of the nipple by a grease or wax pencil mark on the clear overlay. 
3. For each abnormality, rate it as a definite or possible abnormality. Possible abnormalities are those 
in which you are not sure that a lesion exists, for example, possible architectural distortion for which 
you would get additional views to confirm or exclude a lesion. Definite abnormalities are ones that are 
conclusively present, such as a mass or focal asymmetric density. 
4. If you can only see an abnormality on one view, please circle it only on that view. 
5. Circle spiculated masses such that you include the body of the mass but not its tiny extensions. For 
architectural distortion that may not have a central mass, include the spiculations. 
6. Note and encircle architectural distortion, even when you think it is due to post-biopsy change and 
include the spiculations in your outline. 
7. If you are unsure whether an apparent lesion exists, encircle it and judge the assessment as 'A' (assess- 
ment incomplete), and note your uncertainty by circling the Y. Here extra views are needed to confirm or 
exclude the presence of the abnormality. 
8. If you are sure an apparent lesion exists and is a true mass, calcification, calcification cluster, or other 
finding, but the assmenent is 'A' because ultrasound or extra views are needed to evaluate mass borders 
or calcifications shapes, or to determine if the finding is a cyst, please mark down your BEST GUESS as 
to whether the lesion is benign or malignant using the ACR lexicon codes. 
9. If the lesion has a differential, such as post-biopsy change vs. cancer, or cyst, fibroadenoma or well- 
circumscribed cancer, and you would like to note it, please do so in the comments section. 
Thank you for your participation in this study. If you have questions or comments, please direct them to 
Debra M. Ikeda, M.D. at (415) 723-7672. 

Figure 2: Observer Form Instructions 
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routine f/u further study 
routine f/u 

further study 

Figure 3: Management Outcomes 

Right Wrong 
Right 2</> + h - 1 + 7 1 — ifi — h — 7 </> 

Wrong 1 — tp — 7 7 i-y> 
ij> + h 1-^-fc 

Figure 4: Management Outcome Probabilities 
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(A) (B) 

(C) (D) 

Figure 5: Compression and classification of digitized mammograms at 2 bpp for calcifications: 
(A) Portion of Compressed Mammogram using BTSVQ with posterior estimation (B) Com- 
pressed/Classified image using BTSVQ with posterior estimation (white highlighted areas denote 
pixel blocks classified as microcalcifications) (C) Original 12 bit image with microcalcifications 
highlighted in white (D) Compressed/Classified image using independent TSVQ design (white high- 
lighted pixel areas denote pixel blocks classified as microcalcification) 
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