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INTRODUCTION 

Metastasis, the seeding of distant sites by a malignant tumor, is a major cause of 

morbidity and mortality in cancer patients (1-3).   The process, however, is complex, and 

dependent upon successful completion of a number of sequential events (4-9). As outlined 

in the 3-step hypothesis of invasion, tumor cells must form attachments to extracellular 

matrix, degrade the matrix, and migrate (10). Following a series of these occurrences, 

cells may enter lymphatic or vascular channels, and repetition of the same process of 

attachment, degradation, and migration at a distant site will lead to establishment of a 

metastasis. A key feature, then, of metastasis is migration - i.e., cell motility and 

chemotaxis. 

The motility and chemotaxis of amoeboid cells has been most extensively 

characterized in nonmetastatic cells such as Dictyostelium and neutrophils (for reviews, 

see (11-13)). One of the consequences of chemoattractant exposure is the stimulation of 

actin polymerization and pseudopod formation. In a spatial gradient, the cells move 

towards higher concentrations of chemoattractant. A number of methods have been 

developed for the analysis of cell behavior, including the Boyden chamber (and 

modifications thereof) and video analysis of cell shape changes in response to rapid 

upshifts in chemoattractant concentration. The results from such studies have indicated 

that one of the responses to chemoattractants is the extension of actin-filled pseudopods. 

Numerous biochemical and genetic studies have identified proteins that are important for 

cell motility and chemotaxis in these cells. Do these proteins play homologous roles in 

metastatic cell motility? Are they critical for the ability of tumor cells to metastasize? 

To answer these questions, it is first necessary to determine if the motility and 

chemotaxis responses of metastatic cells are similar to those of amoeboid phagocytes. A 

number of motility factors for tumor cells have been identified. Autocrine motility factors 

(14,15) are thought to act through G-protein coupled receptors, as do many of the 



chemoattractants for phagocytes. However, in mesenchymal and epidermally derived 

cells, growth factors acting through receptor tyrosine kinases (such as EGF (16-21), 

PDGF (22), insulin (23), and HGF/SF (24,25)) can also act as chemoattractants. Such 

responses may be clinically relevant. For example, overexpression of the EGF receptor 

has been found to correlate with a poorer prognosis for certain cancer patients (26-31). 

Analysis of EGF-stimulated signal transduction has benefitted from studies 

utilizing the A431 carcinoma cell line (32-35). Although extremely useful for studies of 

signal transduction, A431 cells are not highly metastatic (36). MTLn3 cells are clonally 

derived from a lung metastasis from the 13762NF rat mammary adenocarcinoma (37). 

Upon injection of MTLn3 cells into the rat mammary fat pad (a spontaneous metastasis 

assay), a primary tumor forms followed by widespread lung and lymph node metastases at 

high frequency (38). This metastatic potential remains for a large number of passages 

(39). The cell surface receptors for EGF have been characterized for these cells (40,41). 

Thus the MTLn3 cell line provides a convenient model system for the study of breast 

cancer cells and metastasis. 

The research funded by Grant DAMD17-94-J-4314 is focussed on identifying key 

proteins involved in regulation of cell motility and chemotaxis. The work as outlined in 

the Technical Objectives is divided into first characterizing the responses of MTLn3 cells, 

followed by identifying potential regulatory molecules, and then testing their role in cell 

motility and chemotaxis. The work during the first year of this grant has focussed on 

performing the studies summarized by Technical Objective 1. 

Technical Objective 1: Determine the time course and dose response range of 
changes in cell motility and morphology after stimulation with EGF using time- 
lapse video microscopy. This determines the appropriate time scale and stimulus 
concentrations for performing the experiments described in Technical Objectives 2 
-3. 



Thus the purpose of the work reported here was to examine in detail the chemotactic and 

motile responses of MTLn3 cells to EGF. By analyzing the relationship between actin 

polymerization and rapid changes in cell shape and chemotactic responses, we conclude 

that actin polymerization at the leading edge of the lamellipodium plays an important role 

in stimulation of lamellipod extension and chemotaxis of MTLn3 cells. 

MATERIALS AND METHODS 

Cell lines and culture conditions 

The cell lines used in this study are the MTLn3 and MTC lines.   The MTLn3 line 

was derived as a single cell clone from a lung metastasis of the 13762NF rat mammary 

adenocarcinoma, while the nonmetastatic MTC line was derived as a single cell clone from 

the parental tumor (37) (both kindly provided by Dr. G. Nicolson, MD Anderson Cancer 

Center, Houston, Texas). Cells were frozen in liquid nitrogen at passages 15 - 17, and 

used until passage 25. They were grown in alpha-modified MEM containing L-glutamine 

(Gibco 12561-031) supplemented with 5% FCS (Sigma 4884) and antibiotics (Sigma 

P0906). At 60 - 80% confluence, cells were harvested for passaging and for experiments 

by removing medium, rinsing with trypsin/EDTA (Gibco 25300-062), incubating at 37 

degrees for 2-4 minutes, then stopping with whole medium, and diluting in whole medium 

to the desired density. 

Lamellipod Extension Assay 

Tissue culture dishes, Nucleopore filters, or glass coverslips were coated with 27 

ug/ml rat tail collagen I (Collaborative Biochemicals #40236) in DPBS without calcium or 

magnesium (JRH Biosciences) for 2 hours. The collagen solution was aspirated and 

replaced with complete growth medium containing 12 mM Hepes pH 7.4 (termed 

MEMH). Cells were harvested and plated at a density of 6,250 cells/sq. cm. The dishes 

were incubated 20 -24 hours in a tissue culture incubator and were then covered with 



mineral oil (Sigma 400-5) to block evaporative cooling during the experiment (42). 

(Mineral oil had no observable effects upon the responses studied here.) The dishes were 

viewed with a Nikon Diaphot microscope in a Nikon temperature chamber at 37°C. 

Additions to the medium were made with a pump using prewarmed tubing such that 

additions took about 30 seconds. Efficient mixing was ensured by adding a volume equal 

to the volume already in the dish. Trial experiments using dyes indicated mixing was 

complete within 1 minute. 

For most experiments, the cells were viewed with a 10X phase objective, and the 

images were recorded both on videotape and directly on a Macintosh Quadra. Typically, 

an image was stored on the computer every minute, forming a movie using the program 

NIH Image. For analysis, the movies were analyzed using 2-D DIAS (Solltech, Iowa City, 

Iowa (43)), to provide measurements of area for each cell. The area for each cell was then 

divided by its area before stimulation to give a normalized area at each time point. Then 

the normalized areas for each time point were averaged. 

For treatments with cytochalasin D or nocodazole (Sigma), the drugs were 

dissolved in DMSO, and then diluted into MEMH to the appropriate concentration. The 

final concentration of DMSO ranged from .1 - .4%, and control stimulation with MEMH 

alone always contained the same concentration of DMSO as that used in the drug 

treatment. The cells were first exposed to medium containing drug or DMSO at the 

indicated concentration for 1 minute. This was followed by addition of medium containing 

drug and EGF or DMSO and EGF, and lamellipod extension quantified at 4 minutes after 

addition of EGF. Exposure to drug alone during this time had no effect on cell area. 

Studies with nocodazole showed that longer exposure to drug before stimulation with 

EGF produced similar results. 

Microchemotaxis chamber studies 

For the analysis of chemotactic responses, a 48-well microchemotaxis chamber 

(Neuroprobe, Cabin John, MD) was utilized, essentially following the manufacturer's 



instructions. A Nucleopore filter with 8 um pores was coated with collagen I for 2 hours 

as described above. The lower wells of the chamber were filled with MEMH containing 

the appropriate compounds; then the chamber was assembled. The upper wells were then 

filled with MEMH containing 15,000 cells. The wells were incubated at 37°C for 3 hours, 

then disassembled, and the upper side of the filter scraped to remove cells that had not 

travelled through the filter. The filters were then fixed in 3.7% formaldehyde in PBS, 

washed 2X in water, and then stained for 12 - 18 hours in hematoxylin. The filters were 

then rinsed in water and mounted for viewing. All the nuclei of the cells in each well that 

crossed the filter were counted. 

F-actin staining 

Ethanol-rinsed coverslips were sterilized with UV light and coated with collagen I 

as described above. Cells were plated onto the coverslips in MEMH and incubated 20 - 

24 hours in a petri dish. Stimulation was followed at selected time points by aspiration of 

medium, and fixation for 5 min in 3.7% formaldehyde in PBS (137 mM NaCl, 5 mM KC1, 

l.lmM Na2HP04, 0.4mM KH2P04, 4 mM HaHC03, 5.5 mM glucose, 2mM MgCl2, 

2mM EGTA, 5mM Pipes, pH 7.2), at 37°C. Further steps were done at room 

temperature. The fix solution was aspirated and 0.5% Triton X-100 in PBS applied for 20 

min. This was then washed once and replaced with . IM glycine in PBS for 10 min. The 

cells were then washed 5X with PBS. The solution was aspirated and then the cells were 

stained with 1 uM rhodamine phalloidin for 20 minutes in a humidified chamber. After 5 

washes with PBS, the coverslips were mounted in 0. IM N-propyl gallate, .02% NaN3, in 

50% glycerol in PBS, pH 7.0. 

Rhodamine-phalloidin localization was performed using a N.A. 1.4 60X objective 

on either a BioRad MRC-600 confocal microscope or a Nikon Diaphot with fluorescence 

optics. Data collected on the confocal microscope were accumulated as a z-series with a 

.39 urn pixel dimension. For quantitation of total fluorescence and fluorescence as a 

function of distance from the edge of the lamellipod, data were collected using a SIT 
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camera (Hamamatsu) on the Diaphot. For each data collection session, the gain and offset 

of the camera were adjusted so that <01% of the pixels were saturated. The same 

settings were then used to collect data from cells at each of the experimental conditions 

being tested. At each collection session, data for equal numbers of cells from each 

experimental condition were collected. The output of the SIT camera was collected on a 

Macintosh computer using NIH Image. Each image was averaged, then stored, together 

with a phase contrast image of the cell. For analysis, hyaline lamellipods of the cell 

periphery lacking ruffles were identified. A line was drawn along the cell border in that 

region, and a macro utilized to calculate the mean fluorescence intensity along the border, 

and then the mean value for successive lines moving into the cell in 1 pixel steps. The 

result was a curve of the mean fluorescence in hyaline lamellipods as a function of the 

distance from the border of the lamellipod. Curves for all cells under a particular stimulus 

condition were averaged to produce the mean fluorescence profile in lamellipods for that 

condition. To measure average whole cell fluorescence, the average pixel intensity of all 

the values of all the pixels within the cell were averaged. This was then multiplied by the 

total cell area to give total cell fluorescence. 

Quantitation of F-actin content was done with the NBD-phallicidin assay as 

described previously (44) with the following modifications. 2xl05 cells were plated in 

each 35mm petri dish. Cells were stimulated with EGF or with buffer controls and fixed 

as described above. Cells were washed with multiple changes of PBS for 45 minutes and 

stained with 0.5ml of 0.2uM NBD-phallicidin (Molecular Probes) for 1 hour. Cells were 

washed twice in PBS and extracted with 0.5ml of 100% methanol for 90 minutes. 

Fluorescence of the extraction solution was recorded at 465nm excitation and 535nm 

emission. 



11 

RESULTS 

Preliminary studies indicated that in the absence of serum, MTLn3 cells were 

unable to attach and spread on laminin, fibronectin, collagen I or collagen IV. In the 

presence of at least .5% serum, some attachment and spreading was observed. At low 

serum concentrations, collagen I appeared to provide the best substratum for attachment 

and spreading. This is consistent with other studies indicating that MTLn3 cells are more 

adherent to collagen than fibronectin (40). Therefore, all further experiments utilized 

surfaces coated with collagen I. 

Cells plated on collagen and then stimulated with EGF showed a biphasic 

response. Initially, ruffling ceased and a flat, thin lamellipodium spread out along the 

substratum (Figure 1). Extension of the lamellipod resulted in an increase in the surface 

area covered by each cell. After 3 - 4 minutes, ruffling began and the lamellipodium 

slowly retracted. Comparison of the responses of MTLn3 cells stimulated with EGF, 

bFGF, PDGF, insulin, IGF-1, or MSH indicated that the strongest response was induced 

by EGF (data not shown). More detailed analysis of the kinetics of the response to EGF 

(Figure 2) was performed using 2-D DIAS software, quantitating lamellipod extension as 

increases in cell area. The area began to increase within 1 minute after addition of EGF. 

For 5 nM EGF (Figure 2B), the area was maximal about 4 minutes after stimulation, 

increasing by about 27% over prestimulus values. It then decreased over the next 5 - 6 

minutes, but did not return to baseline, remaining about 8 % above prestimulus values. 

Similar responses were observed using TGFolas stimulus (data not shown). 

Lamellipod extension was measured as a function of EGF concentration (Figure 

3).   Buffer alone produced a slight retraction of cell extensions. Area increases were clear 

at .2 nM and had saturated by 25 nM. The maximal change in area showed a sigmoidal 

dependence on EGF concentration, with an estimated K50 of about 0.5 nM. Binding of 
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EGF to MTLn3 cells has revealed 2 receptors, with Kd's of. 17 and 1.2 nM (40,41). Thus 

lamellipod extension could reflect binding to either or both of these receptor classes. 

We also tested the responses of a nonmetastatic cell line derived from the same 

original tumor. The MTC cells can form a primary tumor when injected into the 

mammary fat pad, but do not metastasize to lymph nodes or lungs (38). They show 

markedly reduced levels of EGF binding (40).   These cells show little response to EGF 

(data not shown) or TGFai (Figure 4).   This supports the interpretation that the responses 

reported here are mediated by the EGF receptor. 

Rapid, transient expansions of lamellipods or pseudopods in response to a specific 

compound could reflect chemotactic responses. For example, stimulation of 

Dictyostelium cells or neutrophils with the chemoattractants cAMP or F-MetLeuPhe, 

respectively, leads to such responses. Therefore, a 48-well microchemotaxis chamber 

was used to determine if EGF was a chemoattractant for MTLn3 cells. With a gradient of 

EGF, there was a significant increase in the number of cells crossing the filter, with the 

maximal response at about 5 nM (Figure 5, filled symbols).   Chemotactic responses 

should require a gradient in concentration of the chemoattractant. By placing equal 

concentrations of EGF on both sides of the filter, the degree of random motility stimulated 

by EGF (chemokinesis) can be estimated (Figure 5, open symbols). By this criterion, the 

chemokinetic response to EGF is roughly 1/2 the response produced by a gradient, 

indicating that the remaining response must reflect the response to the gradient, or 

chemotaxis. Thus, EGF stimulates both chemotactic and chemokinetic responses in 

MTLn3 cells. 

A number of studies have indicated that actin polymerization accompanies 

extension of lamellipods and pseudopods. The total amount of F-actin, measured as total 

binding of phalloidin to permeabilized cells, did not show any significant change in 

response to stimulation by EGF. Resting levels of F actin were 167.8 +/- 7.3 compared to 

181.2 +/-10.6 or 182.3 +/- 8.2 for cells stimulated with medium alone or medium 



13 

containing EGF, respectively (mean and s.e.m. of 19 experiments in arbitrary units, with t- 

tests showing no significant differences). However, localization studies using rhodamine- 

phalloidin revealed a clear difference between EGF-stimulated and buffer-stimulated cells 

(Figure 6).   At the leading edges of newly formed lamellipods (the sites of cell spreading), 

there is an increase in rhodamine-phalloidin labelling, indicating an increase in the amount 

of F-actin in areas of cell expansion. When quantified as a function of distance from the 

edge of the cell, hyaline regions of the cell periphery showed more staining near the edge 

of the cell in EGF-stimulated cells (Figure 7, filled circles), as compared to cells stimulated 

with medium alone (filled squares). 

Does the increased F-actin at the edge of growing lamellipods play a function in 

the growth of the lamellipods or occur in response to the sudden expansion of 

lamellipods? To determine if actin polymerization is necessary for pseudopod expansion, 

we measured the responses of cells in the presence of cytochalasin D, a compound that 

blocks actin polymerization by binding to the growing ends of actin filaments (45). 

Preliminary experiments indicated that MTLn3 cells are extremely sensitive to the 

presence of cytochalasin D. Application of 100 nM cytochalasin D leads to the arrest of 

lamellipod formation and cell rounding, even in the absence of EGF. By using lower 

concentrations of cytochalasin and brief exposure times (1-5 minutes), it was possible to 

stimulate cells with EGF before there was significant rounding up. 50 nM cytochalasin D 

inhibited increases in area and lamellipod extension due to EGF by about 60% (Figure 8). 

This concentration of cytochalasin D also inhibited the increase in F actin that occurs in 

lamellipods in response to EGF (Figure 7, open symbols). Indeed, cytochalasin D caused 

a significant decrease in the F-actin content of both lamellipods and whole cells after EGF 

stimulation (Figure 7 and Table 1). This indicates that EGF addition stimulates both 

polymerization and depolymerization of F-actin in cells. Cytochalasin D then blocks the 

stimulated polymerization by binding to the barbed end of growing actin filaments, but 

does not block depolymerization occurring presumably from pointed filament ends. 
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The high sensitivity of both the EGF-induced lamellipodial growth and local 

increases in F-actin to cytochalasin D suggests that actin polymerization at the growing 

lamellipod is important for lamellipod expansion and chemotaxis. This was supported by 

studies using the microchemotaxis chamber. The number of cells crossing the filter in 

response to a gradient of EGF was reduced by 50 percent in 1 -10 nM cytochalasin D 

(Figure 9). The greater sensitivity to cytochalasin D in the microchemotaxis assay may 

reflect the increased time required for the assay compared to the area change: the 

microchemotaxis assay requires 3 hours exposure to cytochalasin, while the area change 

assay was finished within 5 minutes of exposure to cytochalasin. 

Microtubules might also play a role in responses to EGF. It has been reported that 

EGF stimulation of MTLn3 cells produces a significant increase in the amount of tubulin 

present in the cytoskeleton (46). To test the function of microtubules in chemotaxis and 

lamellipod extension in response to EGF, we used nocodazole to inhibit microtubule 

dynamics.  100 nM nocodazole was effective in blocking cell division of MTLn3 cells, 

indicating that the microtubules in MTLn3 cells showed normal sensitivity to nocodazole 

(47). However, 100 nM nocodazole had very little effect on chemotaxis to EGF. Higher 

doses of nocodazole (1 uM), sufficient to depolymerize the microtubule cytoskeleton, did 

strongly inhibit chemotaxis (Figure 10). Exposure of cells to 100 nM nocodazole led to a 

slow reduction in area over 30 minutes which at least partially recovered after 1 hour, 

while exposure to 1 uM nocodazole led to a rapid reduction in cell area. However, neither 

100 nM nor 1 uM nocodazole had any effect on EGF-stimulated lamellipod extension 

(Figure 8). 
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DISCUSSION 

MTLn3 Cells Demonstrate Stimulated Lamellipod Extensions 

There are a number of studies describing the stimulation of tumor cell surface 

ruffling by EGF. A431 cells (32,35,46,48,49), KB cells (50), and MCF-7 cells (51) show 

dramatic increases in cell ruffling and rounding. Application of EGF to NR6 cells 

expressing EGF receptors results in lamellipodial retraction (52). Both types of responses 

are quite distinct from the morphological changes seen with MTLn3 cells. Upon 

stimulation with EGF, MTLn3 cells flatten and show growth of hyaline lamellipods in 

parallel with a reduction in ruffling (this report and (46)). Ruffling resumes after the 

lamellipods begin to retract. There are several possible reasons why different cell types 

show different motility responses to stimulation of EGF receptors. A431 and KB cells 

have roughly 10 times more EGF receptors than MTLn3 cells(53-55). It is possible that 

the inhibition of growth of A431 and KB cells by EGF is due to the excessive number of 

EGF receptors (46,56-58).   Similarly, large numbers of stimulated receptors may lead to 

multiple cycles of actin polymerization and ruffling.   Another possibility is that 

interactions with the extracellular matrix are important. Stimulation with EGF leads to 

increased adhesivity of MTLn3 cells (46), and reduced adhesivity of A431 cells (40,59). 

This interaction with the extracellular matrix may be important in modulating the response. 

The lamellipods produced by MTLn3 cells are extremely thin and near the substratum, and 

could rely upon an interaction between extracellular matrix receptors and the substratum. 

Finally, these differences in response to EGF could correlate with metastatic capability. 

MTLn3 cells are motile and highly metastatic in spontaneous metastasis assays(38,60), 

while KB and A431 cells are not used for studying spontaneous metastasis (36,61,62). 

EGF-Stimulated Lamellipod Extension is Mediated by the EGF Receptor 
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The concentration of EGF that produces a half maximal increase in area, 0.5 nM, 

lies between the values reported for EGF binding sites on the surface of MTLn3 cells (41). 

MTC cells, which show little specific binding of EGF (40), do not respond to the addition 

of EGF or TGFf^with lamellipod extension. This indicates that the responses reported 

here are mediated by the EGF receptor. There are 10,400 high affinity sites (Kd 0.17 

nM), and 46,000 low affinity sites (Kd 1.2 nM) on MTLn3 cells. Since stimulation with .2 

nM EGF produced only about 25% of the maximal response, and stimulation with 5 nM 

produced a maximal response, it is possible that the low affinity sites mediate the 

lamellipod extension. 

The dose response curve for chemotaxis in the microchemotaxis chamber is 

consistent with results observed with other cell types, with peak responses occurring in the 

range of .2 - 2 nM and then decreasing (19-21) Given that lamellipod extension is a 

necessary component of cell movement, one might expect that the maximal chemotaxis 

response should occur near the concentration at which the lamellipod extension (area 

change) is maximal (5 nM for MTLn3 cells). For most well-characterized 

chemoattractants, measurements of chemotactic responses using the microchemotaxis 

chamber show reduced responses occurring at higher concentrations (19-21,63). The 

reduction in chemotactic response observed at 25nM for MTLn3 cells is consistent with 

this interpretation. 

Microtubules are not Required for EGF-stimulated Lamellipod Extension 

In contrast to cytochalasin D, nocodazole had relatively little effect on lamellipod 

expansion.   Although 100 nM nocodazole was sufficient to block cell division (47), it was 

not sufficient to block EGF-induced lamellipod extension or chemotaxis in the 

microchemotaxis chamber.  1 uM nocodazole did block chemotaxis but did not inhibit 

EGF-induced lamellipod extension. Chemotactic movement involves a number of 

additional steps besides extension of a lamellipod. It is possible that microtubule stability 
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is necessary for oriented cell movement while not being necessary for the initial extension 

of a lamellipod in the direction of higher chemoattractant concentrations. 

Actin Polymerization is Required for EGF-Stimulated Lamellipod Extension 

The distribution of F-actin in EGF-induced lamellipods is compatible with actin 

polymerization playing a key role in their formation. The concentration of F-actin was 

found to be increased adjacent to the plasma membrane at the leading edge of EGF- 

induced lamellipods while there was no net change in actin polymer content of cells. 

Cytochalasin D, a potent inhibitor of barbed end assembly (45), inhibited the accumulation 

of F-actin at the leading edge, lamellipod extension, and chemotaxis in response to EGF. 

In addition, cytochalasin D also caused a significant decrease in F-actin content in 

response to EGF stimulation as compared to its effect on unstimulated cells. These results 

indicate that EGF stimulates both polymerization at barbed filament ends and 

depolymerization at pointed filament ends (an event not inhibited by cytochalasin D). As a 

result, in response to EGF, the content of cellular F-actin in MTLn3 cells remains constant 

as F-actin polymerizes at the leading edge. Although A431 cells show a net increase in 

total F-actin (32,35,64,65) in response to EGF, they also show stimulation of both 

depolymerization and polymerization of actin. Depolymerization of stress fibers is 

mediated by cyclooxygenase metabolites, while cortical actin polymerization is produced 

by lipoxygenase metabolism (32). These effects may be regulated by the small G proteins 

rho and rac, as has been shown for fibroblasts (66). 

Lamellipod extension could be due to 1) pressure generated by contraction 

at the rear of the cell, 2) actin-myosin interactions at the leading edge, 3) polymerization 

of actin at leading edge, or 4) formation of an actin meshwork followed by osmotic 

swelling ( for reviews see (12,67,68)). The results presented in this paper support models 

in which actin polymerization generates the force to extend the plasma membrane to 

produce a lamellipod as in 3) or 4). These models are consistent with cycles of actin 
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polymerization and depolymerization that accompany the extension of pseudopods in 

chemotactic amoeboid cells after stimulation with chemoattractants (69) and with the 

behavior of fluorescently-labelled actin filaments in the leading lamella of locomoting 

keratocytes (70). A mechanism for polarization of cells in spatial gradients of 

chemoattractant could include spatial separation of the polymerization and 

depolymerization processes. If actin polymerization is increased in regions of the cell 

exposed to higher concentrations of EGF, and actin depolymerization increased in the rest 

of the cells, the net result would be reorientation of the cell cytoskeleton in the direction of 

the chemoattractant gradient. This would provide a means for extension of lamellipods 

towards increased chemoattractant concentrations. 

In summary, we have identified a chemoattractant-stimulated extension of 

lamellipods in a metastatic cell line. Consistent with results obtained with G protein-based 

signal transduction systems in amoeboid phagocytes such as neutrophils and 

Dictyostelium, our studies indicate that receptor tyrosine kinases also stimulate the 

production of actin-filled cell extensions. Such extensions occur rapidly after stimulation, 

and could represent the initial cell response to a chemotactic stimulus. TGFc4and the EGF 

receptor are expressed in normal mammary tissue (71-73) and could mediate normal 

physiological stimulation of cell motility and proliferation. Such responses might be used 

by tumor cells during the process of metastasis (40), since the nonmetastatic cell line MTC 

showed little lamellipod extension in response to EGF or TGF<* Alternatively, other 

chemoattractants, either tissue or tumor derived (74) might utilize lamellipod extension to 

stimulate cell movement. The proteins that control actin polymerization within these 

extensions could play key roles in the regulation of the motility of these metastatic cells 

(75). Further work will focus on identifying these proteins, as potentially important 

regulators of cell motility and metastasis. 
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CONCLUSIONS 

As outlined in Technical Objective 1, we have determined the time course and dose 

response range of changes in cell motility and morphology after stimulation with EGF 

using time-lapse video microscopy. This report presents an integrated analysis of actin 

polymerization, lamellipod extension, and chemotactic responses in a metastatic mammary 

adenocarcinoma cell line. Addition of EGF produces a cessation of ruffling, and extension 

of lamellipods containing polymerized F-actin at the periphery. The extension of 

lamellipods occurs rapidly, reaching a maximum within 5 minutes of stimulation. 

However, the lamellipods then retract, returning the cell area to near prestimulus values. 

Maximum lamellipod extension occurs in response to 5 nM EGF. The cells show both 

chemotactic and chemokinetic responses to EGF, with maximal responses between .5 and 

5 nM. Correlated with the extension of lamellipods is an increase in F-actin at the edge of 

expanding lamellipods. Cytochalasin D is a potent inhibitor of the actin localization, 

chemotaxis, and lamellipod extension. Although stimulation with EGF shows no 

significant increase in total F-actin content, stimulation in the presence of cytochalasin D 

leads to a dramatic decrease in total F-actin. Nocodazole, on the other hand, has little 

effect on the lamellipod extension, and affects chemotaxis only at high concentrations. 

Exposure to EGF or TGFÄ of nonmetastatic cells which lack EGF receptors produces no 

lamellipod expansion. 

We have determined that the appropriate time scale for the experiments to be 

performed for Technical Objectives 2 and 3 will be in the 1 - 5 minute range, using 

typically 5 nM EGF (or TGFalpha). We will continue to focus on proteins involved with 

actin cytoskeleton regulation and interaction, with the goal of identifying proteins of 

importance to cell motility during metastasis. 
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APPENDIX 

FIGURE LEGENDS 

Figure 1. Lamellipod extension occurs in response to EGF. Cells were viewed with a 

40X objective before and after stimulation with 5 nM EGF. (A) Before, (B) 3 minutes 

after, and (C) 5.5 minutes after addition of EGF. Ruffles are indicated by arrows in (A) 

and (C), and areas of lamellipod extension are indicated by arrowheads in (B). Scale bar: 

20 urn. 

Figure 2. Kinetics of lamellipod extension in response to EGF. Lamellipod extension was 

quantitated as increases in cell area. (A) Cells were followed for 7 minutes before 

stimulation and then EGF was added between minutes 7 and 8 at the dose indicated. (B) 

Kinetics of the area increase at the optimum dose of 5 nM.   The area at each data point 

for each cell is normalized to the mean area of the cell before stimulation. Then the 

normalized values at each time point were averaged and a standard error of the mean 

calculated. 

Data from 26 cells from 3 separate experiments were averaged. 

Figure 3. Sensitivity of lamellipod extension to EGF. The areas of cells relative to the 

prestimulus areas was determined at 3 minutes after stimulation with EGF. The 

normalized value for each cell was then averaged with other cells exposed to the same 

EGF concentration to produce a mean and standard error of the mean. Each data point 

represents the average of 18 - 30 cells from 3 separate experiments. The data were fitted 

to a curve of the form C/(C+K<j), with a best fit K^ of 0.5 nM. 

Figure 4. Comparison of responses of MTC and MTLn3 cells to TGF&. MTC cells 

(open bars) or MTLn3 cells (filled bars) were stimulated with the concentrations of TGFe< 



29 

shown, and the area change 4 minutes after stimulation was measured. Results are the 

mean and standard errors of the mean of 20 cells from 2 separate experiments. 

Figure 5. Migration of MTLn3 cells in response to EGF. For each experiment, the 

number of cells crossing the filter in three hours was normalized to the number crossing in 

the absence of EGF (average value 70). These normalized values were then averaged to 

produce ensemble means and standard errors of the mean for a total of 12 wells in 3 

separate experiments. Filled circles: EGF present only in the bottom well (generating a 

spatial gradient to measure chemotaxis). Open squares: EGF present in both the top and 

bottom wells (isotropic conditions to measure chemokinesis). 

Figure 6. Localization of F-actin. Cells were stimulated with 5 nM EGF (A) or MEMH 

(B), fixed 3 minutes after stimulation, and stained with rhodamine phalloidin as described 

in Materials and Methods. The cells were then viewed with a SIT camera. Two different 

cells from each stimulus condition are shown. All images were collected and displayed at 

identical settings to allow direct comparison. Arrowheads indicate areas of increased F 

actin at the leading edges of extending lamellipods in EGF-stimulated cells. Scale bar: 10 

urn. 

Figure 7. Distribution of rhodamine phalloidin staining in hyaline lamellipods 3 minutes 

after EGF stimulation. The rhodamine-phalloidin fluorescence was quantitated as a 

function of distance from the edge of the lamellipod, as described in Materials and 

Methods.   Filled circles: cells stimulated with 5 nM EGF, filled squares: cells stimulated 

with MEMH, open circles: cells exposed to 50 nM cytochalasin D for 1 minute before 

stimulation with 5 nM EGF, open squares: cells exposed to 50 nM cytochalasin D for 1 

minute before stimulation with MEMH. Data are the means and standard errors of the 

mean for 12-15 cells. 
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Figure 8. Effects of cytoskeletal inhibitors on EGF-induced lamellipod extension. Cells 

were stimulated with EGF in the presence or absence of the indicated inhibitor 

concentrations. Areas at 4 minutes were normalized to prestimulus values and averaged 

to yield means and standard errors of the mean. 

Figure 9. Effects of cytochalasin D on migration in response to EGF. Cells were exposed 

to buffer or EGF in the bottom well (gradient condition) in the presence of varying 

amounts of cytochalasin D. After 3 hours, the filters were removed and cell migration 

quantitated as described in Materials and Methods.   Data are the means and standard 

errors of the mean for 12 wells from 3 separate experiments. 

Figure 10. Effects of nocodazole on migration in response to EGF.   Cells were exposed 

to buffer or EGF in the bottom well (gradient condition) in the presence of varying 

amounts of nocodazole. After 3 hours, the filters were removed and cell migration 

quantitated as described in Materials and Methods.   Data are the means and standard 

errors of the mean for 12 wells from 3 separate experiments. 



Table 1. Cytochalasin D effects on total cellular F-actin 

Condition Total Fluorescence/cell SEM 

(arbitrary units) 

medium 1.74 .12 

EGF (5nM) 1.92 .15 

medium + cyto D 1.89 .24 

EGF (5nM) + cyto D .77 .07 

Cells were preincubated with medium alone or 50 nM cytochalasin D, then stimulated with 

medium alone or 5 nM EGF for 3 minutes. They were then fixed and stained with 

rhodamine phalloidin and viewed with fluorescence microscopy as described in Materials 

and Methods. The total F-actin fluorescence/cell was calculated as the product of the 

mean fluorescence multiplied by the area in pixels. The data are the means and standard 

errors of the means (SEM) for a total of 15 cells per condition. The total fluorescence per 

cell for EGF (5nM) + cyto D stimulation is significantly different from the other conditions 

(t-test, p<10"6) . 
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Figure 5 
Segall et al. 
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Figure 6 
Segall et al. 

> < 

-v _ 



Lf) 

O o 
CO 

o 
CM 

-    CO 

E 

0> 
D) 

"O 
0) 

"a> 
o 

-     CM       »- 

0) 
Ü 
c 
(0 

(sijun -qje) 30uaos9Jon|-j 

Z, aingi j 



u 
o 

o 
o 

o o 

o 
IT) 

o 

q 
CNJ 

Lf> 
■ 

o 
o 
b 

9SB9J0U| B9JV P93"PU|-dD3 J° °\lBh 

8 amSij 



o o 
CO 

o 
If) 
CM 

O 
O 
CM 

O 
If) 

O 
O 

O 
ID 

||9M/S||9Q 

+ 

+ 

+ 

+ 

+ 

C 

LL 
O 
LU 

O 
IT) 

O 
O 

O 
ID 

G 
O 

o 

6 amSij 



Figure 10 
Segall et al. 
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