
NPS-OR-95-007 

NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

IB' 
{.:'';,  '"'*'   L>Liia %»*   I   £a  |\-j     .;::-| 

^OCi 1 6 1995 Jj y 

OPTIMIZATION MODELING FOR AIRLIFT MOBILITY 

David P. Morton 
Richard E. Rosen thai 

Lim Teo Weng 

September 1995 

K) 

Approved for public release; distribution is unlimited. 

Prepared for: 
U.S. Air Force Studies and Analyses Agency 
Washington, D.C. 

OTIS QUALITY ffiSFEOTED 8 



NAVAL POSTGRADUATE SCHOOL 
MONTEREY, CA  93943-5000 

Rear Admiral T. A. Mercer 
Superintendent 

Richard Elster 
Provost 

This report was prepared and funded by U.S. Air Force Studies and Analyses 
Agency, Washington, D.C. 

Reproduction of all or part of this report is authorized. 

This report was prepared by: 

^VijuiiULiU "7-^ 
RICHARD E. ROSENTHAL 
Professor of Operations Research 

DAVID P. MORTOI 
Assistant Professor of Operations Research 
University of Texas at Austin 

LIMTEOWENG 
Captain, Republic of Singapore Air Force 

Reviewed by: 

^^0-^.U 

Released by: 

o   -o&* 
FRANK PETHO 
Acting Chairman 
Department of Operations Research 

PAUL J. M[pTO 
Dean of Research 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated ID average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing Die collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway Suite 1204, Arlington, VA 22202-4302, and ID the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

September 1995 
3. REPORT TYPE AND DATES COVERED 

Technical 

4. TITLE AND SUBTITLE 

Optimization Modeling for Airlift Mobility 

6. AUTHOR(S) 

David P. Morton, Richard E. Rosenthal, and Lim Teo Weng 

5. FUNDING NUMBERS 

RWKRN 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Postgraduate School 
Monterey, CA 93943 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

NPS-OR-95-007 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

U.S. Air Force Studies and Analyses Agency 
Washington, D.C. 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT  (Maximum 200 words) 

We describe a multi-period optimization model, implemented in GAMS, to help the U.S. 
Air Force improve logistical efficiency. It determines the maximum on-time throughput of 
cargo and passengers that can be transported with a given aircraft fleet over a given network, 
subject to appropriate physical and policy constraints. The model can be used to help answer 
questions about selecting airlift assets and about investing or divesting in airfield 
infrastructure. 

14. SUBJECT TERMS 

airlift, mobility, optimization, logistics 
15. NUMBER OF PAGES 

 28 
16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20. LIMITATION OF ABSTRACT 

UL 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Std. 239-18 



OPTIMIZATION MODELING FOR AIRLIFT MOBILITY 

David P. Morton 
Graduate Program in Operations Research 

University of Texas 
Austin, TX 78712 

Richard E. Rosenthal 
Operations Research Department 

Naval Postgraduate School 
Monterey, California 93943 

Captain Lim Teo Weng 
Republic of Singapore Air Force 

MINDEF Building 
Gombak Drive, SE 2366 

Singapore 

Acceslon  For 

TAR 
NT!S 
DTIC 
Una fine 
Justific 

By _ _ 

Distribution/ 

Availability Codes 

Dist 

M 

wail ana/or 
Special 

Abstract: We describe a multi-period optimization model, implemented in GAMS, 
to help the U.S. Air Force improve logistical efficiency. It determines the 
maximum on-time throughput of cargo and passengers that can be transported 
with a given aircraft fleet over a given network, subject to appropriate physical 
and policy constraints. The model can be used to help answer questions about 
selecting airlift assets and about investing or divesting in airfield infrastructure. 

Research supported by the U.S. Air Force Studies and Analyses Agency. 

September 1995 



1.   INTRODUCTION 

In an Operation Desert Storm type scenario, massive amounts of equipment and large 
numbers of personnel must be transported over long distances in a short time. The magnitude 
of such a deployment imposes great strains on air, land and sea mobility systems. 

The U.S. military services are well aware of this problem and various optimization and 
simulation models have been developed to help improve the effectiveness of limited lift assets 
and alleviate the problem. Congress commissioned the Mobility Requirement Study (MRS) in 
1991, when post-operation analysis of Desert Storm revealed a shortfall in lift capability. 

Two linear programming (LP) optimization models that were developed as part of MRS 
and subsequent studies form the primary background of this research. They are: (i) the 
Mobility Optimization Model (MOM) developed for MRS by the Joint Staff's Force Structure 
Resource, and Assessment Directorate (J8) [Wing et al., 1991] and (ii) the THRUPUT Model 
developed by the USAF Studies and Analyses Agency (USAF/SAA) [Yost, 1994]. MOM 
considers both air and sea mobility, whereas THRUPUT and the model developed here cover 
only the air aspects of the problem. The model of this paper was first described in a Naval 
Postgraduate School master's thesis [Lim, 1994], which was sponsored by USAF/SAA. 

In this research, the strategic airlift assets optimization problem is formulated as a multi- 
period, multi-commodity network-based linear programming model, with a large number of side 
constraints. It is implemented in the General Algebraic Modelling System (GAMS) [Brooke et 
al., 1992], and its purpose is to minimize late deliveries subject to physical and policy 
constraints, such as aircraft utilization limits and airfield handling capacities. For a given fleet 
and a given network, the model can help provide insight for answering many mobility questions, 
such as: 1) Are the aircraft and airfield assets adequate for the deployment scenario? 2) What 
are the impacts of shortfalls in airlift capability? 3) Where are the system bottlenecks and when 
will they become noticeable? This type of analysis can be used to help answer questions about 
selecting airlift assets and about investing or divesting in airfield infrastructure. 

2.  OVERVIEW OF MODEL 

The analyses described above are accomplished through repeated runs of the model. 
Each run assumes a particular scenario as defined by a given set of time-phased movement 
requirements and a given set of available aircraft and airfield assets. It is then solved for 
optimal values for the number of missions flown, and the amounts of cargo and passengers 
carried, for each unit, by each aircraft type, via each route, in each time period. 

2.1 Model Features 

The model has been designed to handle many of the airlift system's particular features 
and modes of operation. For example, the payload an aircraft can carry depends on range (the 
shorter the range, the heavier the load), and aircraft with heavy loads may be required to make 



one or more enroute stops. Also, there is a need to ensure cargo-to-carrier compatibility since 
some military hardware is too bulky to fit into certain aircraft. These features have been 
incorporated in the model to make it as realistic as possible. Others, such as the use of tanker 
aircraft for aerial refueling of airlift aircraft are recommended as follow-on work. (See CONOP 
by RAND [Killingsworth and Melody, 1994] for extensive treatment of aerial refueling in 
another GAMS-based optimization model.) The major features of the airlift system currently 
captured by the model include: 

• Multiple origins and destinations: In contrast to MOM, the current model allows the 
airlift to use multiple origin, enroute and destination airfields. 

• Flexible routing structure: The air route structure supported by the model includes 
delivery and recovery routes with a variable number of enroute stops (usually between 
zero and three). This provision allows for a mixture of short-range and long-range 
aircraft. The model can thus analyze trade-offs between higher-payload, shorter-range 
flights and lower-payload, longer-range flights. For further routing flexibility, the 
model also allows the same aircraft to fly different delivery and recovery routes on 
opposite ends of the same mission. 

• Aircraft-to-route restrictions: The user may impose aircraft-to-route restrictions; e.g., 
only military aircraft may use military airfields for enroute stops. This particular 
provision arises because the USAF Air Mobility Command (AMC) may call upon civilian 
commercial airliners to augment USAF aircraft in a deployment, under the Civil Reserve 
Airfleet (CRAF) program. The model distinguishes between USAF and CRAF aircraft. 

• Aircraft assets can be added over time. This adds realism to the model, because CRAF 
and other aircraft may take time to mobilize and are typically unavailable at the start of 
a deployment. 

• Delivery time windows: In a deployment, a unit is ready to move on its available-to- 
load date (ALD) and has to arrive at the theater by its required-delivery-date (RDD). 
This aspect of the problem has been incorporated in the model through user-specified 
time windows for each unit. The model treats the time windows as "elastic" in that 
cargo may be delivered late, subject to a penalty. 

2.2 Conceptual Model Formulation 

This section gives a verbal description of the key components of the airlift optimization 
model.   The mathematical formulation is covered in detail in Section 3. 

The primary decision variables are the number of missions flown, and the amounts of 
cargo and passengers carried, for each unit, by each aircraft type, via each available route, in 
each time period. Additional variables are defined for the recovery flights, for aircraft 
inventoried at airfields, and for the possibility (at high penalty cost) of not delivering required 
cargos or passengers. 
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2.2.1 Objective Function 

The purpose of the optimization model is to maximize the effectiveness of the given 
airlift assets, subject to appropriate physical and policy constraints. The measure of 
effectiveness is the minimization of total weighted penalties incurred for late deliveries and non- 
deliveries. The penalties are weighted according to two factors: the priority of the unit whose 
movement requirement is not delivered on time, and the degree of lateness. The penalty 
increases with the amount of time late, and non-delivery has the most austere penalty. 

The anticipated use of the model is for situations when the given airlift resources are 
insufficient for making all the required deliveries on time. On the other hand, if there are 
enough resources for complete on-time delivery, then the model's secondary objective function 
is to choose a feasible solution that maximizes unused aircraft. The motivation of the secondary 
objective is that if the available aircraft are used as frugally as possible, while still meeting the 
known demands and observing the known constraints, then the mobility system will be as well 
prepared as it can be for unplanned breakdowns and unforeseen requirements, such as an 
additional nearly simultaneous regional contingency. 

2.2.2 Constraints 

The model's constraints can be grouped into the five categories: demand satisfaction, 
aircraft balance, aircraft capacity, aircraft utilization, and airfield handling capacity. 

• Demand Satisfaction Constraints: The cargo demand constraints attempt to ensure for 
each unit that the correct amounts of cargo move to the required destination within the 
specified time window. The passenger demand constraints do the same for each unit's 
personnel. The demand constraints have elastic variables for late delivery and non- 
delivery. The optimization will seek to avoid lateness and non-deliveries if it is possible 
with the available assets, or to minimize them if not. 

• Aircraft Balance Constraints: These constraints keep physical count of aircraft by type 
(e.g., C17, C5, C141, etc.) in each time period. They ensure that the aircraft assets are 
used only when they are available. 

• Aircraft Capacity Constraints: There are three different kinds of constraints on the 
physical limitations of aircraft — troop carriage capacity, maximum pay load, and cabin 
floor space — which must be observed at all times. 

• Aircraft Utilization Constraints: These constraints ensure that the average flying hours 
consumed per aircraft per day are within AMC's established utilization rates for each 
aircraft type. 

• Aircraft Handling Capacity at Airfields: These constraints ensure that the number of 
aircraft routed through each airfield each day is within the airfield's handling capacity. 



2.3 Assumptions 

Some major assumptions of the model are listed below. These are known to be sacrifices 
of realism, but such assumptions are needed in modeling most real-world problems due to the 
limitations of data availability or the need to avoid computational intractability. 

• Airfield capacity is represented by Air Force planners by a measure called Maximum-on- 
Ground (MOG). The literal translation of MOG as the maximum number of planes that 
can be simultaneously on the ground at an airfield is somewhat misleading, because the 
term MOG means more than just the number of parking spaces at an airfield. In 
actuality, airfield capacity depends on many dimensions in addition to parking, including 
material handling equipment, ground services capacity and fuel availability. Some Air 
Force planners use the terms parking MOG and working MOG to distinguish between 
parking space limits and servicing capability. Working MOG is always smaller than 
parking MOG, and is the only MOG for which we have data. Working MOG is an 
approximate measure because it attempts to aggregate the capacities of several kinds of 
services into a single, unidimensional figure. Disaggregation of airfield capacity into 
separate capacities for parking spaces and for each of the specific services available 
would yield a more accurate model. Unfortunately, data are not currently available to 
support this modeling enhancement. 

• Inventoried aircraft at origin and destination airfields are considered not to affect the 
aircraft handling capacity of the airfield. This assumption is not strictly valid since an 
inventoried aircraft takes up parking space, but, as noted, working MOG dominates 
parking MOG. 

• Deterministic ground time: Aircraft turnaround times for unloading and offloading cargo 
and enroute refueling are assumed to be known constants, although they are naturally 
stochastic. This ignores the fact that deviations from the given service time can cause 
congestion on the ground. To offset the optimism of this assumption, an efficiency factor 
is used in the formulation of aircraft handling capacity constraints to cushion the impact 
of randomness. Better handling of stochastic ground times is a subject of ongoing 
research. 

Other approximations of reality employed in the model for computational tractability are 
aggregation of airfields, discretiztion of time, and continuous decision variables. A limitation 
on the scope of the model is that it considers only inter-theater, not mtaz-theater deliveries. 

3.   OPTIMIZATION MODEL 

This section gives a mathematical formulation of the conceptual optimization model 
discussed previously in Section 2.2. 

The airlift optimization problem is formulated as a multi-period, multi-commodity 
network-based linear program with a large number of side constraints.   Two key concepts are 



employed in the model. The first is the use of a time index to track the locations of aircraft for 
each time period. The modeling advantages of knowing when an aircraft will arrive at a 
particular airfield are that it enables us to model aircraft handling capacity at airfields and to 
determine unit closures (i.e., the time when all of a unit's deliveries are completed). This 
approach is in contrast to the THRUPUT model of Yost [1994], which takes a static-equilibrium 
or steady-state approach. 

The second key concept is model reduction through data aggregation and the removal of 
unnecessary decision variables and constraints prior to optimization. This is necessary as the 
airlift problem is potentially very large. Without this model reduction step, the number of 
decision variables would run into the millions eeven for a nominal deployment. The unnecessary 
decision variables and constraints are removed by extensive checking of logical conditions, 
performed by GAMS during model generation.  (See Lim [1994] for details.) 

3.1.  Indices 

u indexes units, e.g., 82nd Airborne 
a indexes aircraft types, e.g., C5, C141 
t,t' index time periods 
b indexes all airfields (origins, enroutes and destinations) 
/ indexes origin airfields 
k indexes destination airfields 
r indexes routes 

3.2 Index Sets 

Airfield Index Sets 

B        set of available airfields 
I^B   origin airfields 
K^B  destination airfields 

Aircraft Index Sets 

A set of available aircraft types 
AbulkQA aircraft capable of hauling bulk-sized cargo 
AoverQAbulk aircraft capable of hauling over-sized cargo 
A0UtQAover aircraft capable of hauling out-sized cargo 

Bulk cargo is palletized on 88 x 108 inch platforms and can fit on any milatary aircraft 
(as well as the cargo-configured 747). Over-sized cargo is non-palletized rolling stock: it is 
larger than bulk cargo and can fit on a C141, C5 or C17. Out-sized cargo is very large non- 
palletized cargo that can fit into a C5 or C17 but not a C141. 



Route Index Sets 

R set of available routes 
Ra^R permissible routes for aircraft type a 
Rab-Ra permissible routes for aircraft type a that use airfield b 
Kik^Ra permissible routes for aircraft type a that have origin / and destination k 
DR^R delivery routes that originate from origin i 
RRk<=:R recovery routes that originate from destination k 

A delivery route is a route flown from a specific unit's origin to its destination for the 
purpose of delivering cargo and/or passengers. A recovery route is a route flown from a unit's 
destination to that unit's or some other unit's origin, for the purpose of making another delivery. 
Since recovery flights carry much less weight than deliveries, the recovery routes from k to i 
may have fewer enroute stops than the delivery routes from i to k. 

Time Index Sets 

T set of time periods 
Tuar — T possible launch times of missions for unit u using aircraft type a and route 

The set Tmr covers the allowed time window for unit u, which starts on the unit's 
available-to-load date and ends on the unit's required delivery date, plus some extra time up to 
the maximum allowed lateness for the unit. 

3.3  Given Data 

Movement Requirements Data 

MovePAXuik Troop  movement  requirement  for  unit  u  from  origin  /  to 
destination k 

MoveUEuik Equipment movement requirement in short tons (stons) for unit u 
from origin i to destination k 

ProBulku Proportion of unit u cargo that is bulk-sized 

ProOveru Proportion of unit u cargo that is over-sized 

ProOutu Proportion of unit u cargo that is out-sized 

Penalty Data 

LatePenUEu Lateness penalty (per ston per day) for unit u equipment 



LatePenPAXu 

NoGoPenUEu 

NoGoPenPAXu 

MaxLate 

Preserve^ 

Cargo Data 

UESqFtu 

PAXWtu 

Aircraft Data 

Supply* 

MaxPAXa 

PAXSqFt^ 

ACSqFta 

LoadEffa 

URatea 

Airfield Data 

MOGCapbt 

MOGReqab 

Lateness penalty (per soldier per day) for unit u troops 

Non-delivery penalty (per ston) for unit u equipment 

Non-delivery penalty (per soldier) for unit u troops 

Maximum allowed lateness (in days) for delivery 

Penalty (small artificial cost) for keeping aircraft type a in mobility 
system at time t 

Average cargo floor space (in sq. ft.) per ston of unit «equipment 

Average weight of a unit u soldier inclusive of personal equipment 

Number of aircraft of type a that become available at time t 

Maximum troop carriage capacity of aircraft type a 

Average cargo space (in sq. ft.) consumed by a unit u soldier for 
aircraft type a 

Cargo floor space (in sq. ft.) of aircraft type a 

Cargo space loading efficiency (<1) for aircraft type a. This 
accounts for the fact that it is not possible in practice to fully 
utilize the cargo space. 

Established utilization rate (flying hours per aircraft per day) for 
aircraft type a 

Aircraft capacity (in narrow-body equivalents) at airfield b in time 

Conversion factor to narrow-body equivalents for one aircraft of 
type a at airfield b 



MOGEffbt MOG efficiency factor (<1), to account for the fact that it is 
impossible  to   fully  utilize  available  MOG  capacity  due   to 
randomness of ground times 

Aircraft Route Performance Data 

MaxLoadar Maximum payload (in stons) for aircraft type a flying route r. 

GTime^ Aircraft ground time (due to onload or offload of cargo, refueling, 
maintenance, etc.) needed for aircraft type a at airfield b on route 
r 

DTime^ Cumulative time (flight time plus ground time) taken by aircraft 
type a to reach airfield b along route r 

FltTimear Total flying hours consumed by aircraft type a on route r 

CTimear Cumulative time (flight time plus ground time) taken by aircraft 
type a on route r 

DaysLatemrt Number of days late unit «'s requirement would be if delivered by 
aircraft type a via route r with mission start time t 

3.4 Decision Variables 

Mission Variables 

Y 
■^-uart Number of aircraft of type a that airlift unit u via route r with mission 

start time during period t 

Y x art Number of aircraft of type a that recover from a destination airfield via 
route r with start time during period t 

Aircraft Allocation and De-allocation Variables 

Allotait Number of aircraft of type a that are allocated to origin i at time t 

Releaseait Number of aircraft of type a that were allocated to origin i prior to time 
t but are not scheduled for any missions from time t on 

Aircraft Inventory Variables 

Hait Number of aircraft of type a inventoried at origin i at time t 

HPa/a Number of aircraft of type a inventoried at destination k at time t 
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NPlanesat       Number of aircraft of type a in the air mobility system at time t 

Airlift Quantity Variables 

TonsUEmrt      Total stons of unit u equipment airlifted by aircraft of type a via route r 
with mission start time during period t 

TPAXmrt Total number of unit u troops airlifted by aircraft of type a via route r 
with mission start time during period t 

Elastic (Nondelivery) Variables 

UENoGo^     Total stons of unit u equipment with origin / and destination k that is not 
delivered in the prescribed time frame 

PAXNoGouik   Number of unit u troops with origin i and destination k who are not 
delivered in the prescribed time frame 

3.5 Formulation of the Objective Function 

Minimize 

uart EEE   E    LatePenUE^DaysLate^ * TonsUE^ 
u      a    reRa teT^ 

+   EE E   E    LatePenPAX^DaysLate^ * TPAX^ 
u     a   reRa teT^r 

+   EEE  (NoGoPenUEu*UENoGouik + NoGoPenPAXu*PAXNoGouik) 
u       i      k 

+   E^ E   Preserve
at * NPlanesat 

a       t 

The DaysLatemrt penalty parameter has value zero if t+CTimear is within the prescribed 
time window for unit u. Thus, the first two terms of the objective function take effect only 
when a delivery is late. The third term in the objective function corresponds to cargo and 
passengers that cannot be delivered even within the permitted lateness. Late delivery and non- 
delivery occur only when airlift assets are insufficient for on-time delivery. 

The reason for including elastic variables that allow late delivery and non-delivery is to 
ensure that the model produces useful information even when the given assets are inadequate for 
the given movement requirements. The alternative of using an inelastic model (i.e., a model 
with hard constraints that insist upon complete on-time delivery) is inferior because it would 
report infeasibility without giving any insight about what can be done with the assets available. 



A useful modeling excursion that is made possible by the elastic variables is to vary the 
number of time periods. As the horizon is shortened, it is interesting to observe the increase 
in lateness and non-delivery. 

As noted, the model's anticipated use is in cases when the airlift assets are insufficient 
for full on-time delivery. In the opposite case, the model will be governed by the fourth term 
of the objective function, which rewards asset preservation for the reasons given in Section 
2.2.1. 

Some care must be taken in selecting the lateness and non-delivery penalties and the 
aircraft preservation rewards to ensure consistency. Late delivery should be preferred to non- 
delivery. The weights will be consistent with this preference provided the late penalty (per ston 
per day) is less than the corresponding non-delivery penalty (per ston) divided by the maximum 
allowed lateness (in days). 

3.6 Formulation of the Constraints 

As noted in the conceptual model, there are five categories of constraints. Their 
mathematical formulations are as follows. 

3.6.1  Demand Satisfaction Constraints 

There are four different kinds of demand constraints, corresponding to troops and the 
three classes of cargo (bulk, over-sized and out-sized). Separate constraints are required for the 
different cargo types to ensure cargo-carrier compatibility. For example, a carrier of over-sized 
cargo cannot be used to carry the larger out-sized cargo. On the other hand, it is possible to 
use a carrier of out-sized cargo to carry over-sized cargo. The model accounts for this 
asymmetry. 

The demand constraints also account for the desired delivery time-windows by use of the 
index sets TmT and the lateness parameters DaysLateuan. 

Demand Satisfaction Constraints for All Classes of Car so: 

E    E    E    TonsUEuan + UENoG°uik = MoveUEuik    v "»#: MoveUEuik>0 
aeA^ reR^ teT^ 

Demand Satisfaction Constraints for Out-Sized Car so: 

E    E    E    TonsUEuan + UEN°Gouik > ProOutu * MoveUEuik 

V u,i,k: MoveUEuik>0 
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Demand Satisfaction Constraints for Over-Sized Cargo: 

E    E    E    TonsUEuan + UENoGouik > (ProOveru+ProOutu) * MoveUEuik 
aeAovr reR^ teT^ 

V u,i,k: MoveUEuik>0 

Demand Satisfaction Constraints for Troops: 

£  £    £    HMX^ + PAXNoGo* = MovePAXuik    V «Ä*: MoveÄiX,^ 0 
a     re-R<Ä teTwr 

3.6.2 Aircraft Balance Constraints 

There are five kinds of aircraft balance constraints enforced for each aircraft type in each 
time period. At origin airfields, they ensure that the number of aircraft assigned for delivery 
missions plus those inventoried for later use plus those put in the released status equal the 
number inventoried from the previous period plus recoveries from earlier missions and the new 
supply of aircraft that is allocated to the origin. 

The meaning of releasing, or de-allocating, an airplane in period t is that it is not flown 
on any missions from period t through the end of the horizon. In practice, the analyst can 
interpret a release in the model's solution in a variety of ways. It can mean, as in the case of 
the civilian CRAF aircraft, that the plane is literally sent back to its owner, but not necessarily. 
The aircraft can also be kept in the mobility system, available as a replacement in case of 
breakdowns or for unforeseen demands. 

The second kind of aircraft balance constraints concerns destinations. They are similar 
to the first kind except releases are not allowed and the roles of delivery and recovery missions 
are reversed. The third kind of aircraft balance constraint ensures that if any new planes become 
available in period t, they are allotted appropriately among the origins. There is a potential gain 
in efficiency to allow the optimizer to make these allocation decisions, rather than relying on the 
user to preassign them to origin airfields. The fourth type of aircraft balance constraints is a 
set of accounting equations for defining the NPlanes^ variables based on cumulative allocations 
and releases. 

Aircraft Balance Constraints at Origin Airfields: 

£    £   *uan   +   H*U   +   RdeaSea*   =   Hai,t-X   +  AllotaU 
u    reDRi 

+    E E Ya«> Vfl>^ 
rsRm t' + lCTimeJ=t 

where [CTimear] is CTimear rounded to the nearest integer. 
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Aircraft Balance Constraints at Destination Airfields- 

E    Yan + HPah = EPaKt_x  + £ £ £ Xuan,    V a,k,t 
uart 

t'eT 

t'+[CTimeJ=t 

Aircraft Balance Constraints for Allocations to Origins- 

t t 

EE Allotait   *     HSupplyat     Va,t 
*'=i   «' t'=i 

This constraint is in the cumulative form, rather than in the simpler form T.jAllotait < 
SuPPfyan to allow aircraft that become available in period t to be put into service at a Tater 
period. 

Aircraft Balance Constraints Accounting for Allocations and Releases: 

t t 

NPlanesat   =     ££ä.(/ - ^^M^,,,     V a,t 
f'=l    i r'=l    i 

The fifth and final set of aircraft balance constraints helps to correct the discretization 
error that can result from rounding CTimear to [CTimeJ, the nearest integer, in the other balance 
constraints. For example, suppose CTimear is less than half a day for some aircraft a and route 
r. When this time is rounded to zero in the balance constraints of the route's origin and 
destination, these constraints unrealistically permit an unlimited number of missions per day on 
that route.   Solving the model with this deficiency would yield overly optimistic results. 

One way to fix this problem would be to insist that CTimear be rounded up to a higher 
integer. Then the model would be overly pessimistic, because it would rule out the possibility 
of an aircraft flying two or more missions in a day even when this is possible. This sort of 
problem is common in mathematical modeling whenever time is discretized. The approach taken 
here is to enforce the following additional constraints, based on the cumulative plane-days 
available. 

Cumulative Aircraft Balance Constraints: 
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t t t 

E E E Kartt> Xuart>   + EE Kartt'  Yart1 +   E E Haü' 
reRat'=l   u reRat'=i i   f'=i 

+ E E «*<*' *   E ^WV    V a,f 
*   r'=l r'=l 

where 

artt 

t-t'+l if t'<t<t/ + CTimear-l 

CTimear if  t>t' + CTimear-\ 

The right-hand-side indicates the cumulative number of plane-days available for type a 
aircraft up to day t. The left-hand-side accounts for all possible plane activities up to day t, 
whether flying or inventoried. The inventory terms are straightforward. The delivery and 
recovery terms work as follows: if a delivery initiated on day t' is completed by the end of day 
t, then the entire time CTimear (which may be integer or fractional) is included in the left-hand- 
side of the cumulative balance constraint for day t. On the other hand, if a delivery initiated on 
day t' is not completed by the end of day t, then only the time expended so far, t-t'+l, is 
counted in the day t constraint. 

An experiment attesting to the value of the cumulative aircraft balance constraints is 
described in Section 5.4. If the CTimear's were all integer, these constraints would be redundant 
and could be omitted. 

3.6.3 Aircraft Capacity Constraints 

Troop Carriage Capacity Constraints: 

TPAX^   z   MaxPAXa*Xmrt    V u,a,r,t: teTmr 

Maximum Pavload Constraints: 

TonsUE„M+   PAXWt * TPAX,inrt   <   MaxLoadnr* Ximn    V u,a,r,t: teT 
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Cargo Floor Space Constraints: 

PAXSqFta * TPAX^   +   UESqFtu * TonsUEuart  < ACSqFta * LoadEffa * Xi 
uart 

V u,a,r,t: teT 

3.6.4 Aircraft Utilization Constraints 

The aircraft utilization constraints ensure that the total flying hours consumed by the 
fleets of each aircraft type over the planning horizon are within AMC's established utilization 
rates [Wilson, 1985; Gearing et al., 1988]. These rates are meant to capture spares availability, 
aircraft reliability, crew availability, and other factors. The utilization constraints are formulated 
by comparing the flying hours consumed by an aircraft fleet in delivery and recovery flights to 
the maximum achievable flying hours for the fleet according to the utilization rate. 

EEE   FltTimear * Xmn    +    £   £ FltTimear * Ym 
u     rsRa   teTmr reRa      t 

<   J2 URaten * NPlanes ,     Va ^—' a at 
t 

As an illustration of the above equation, consider a fleet of 5 aircraft of the same type 
made available from day 11. If the utilization rate for this aircraft type is 10 flying hours per 
aircraft per day and the horizon is 30 days, then the maximum achievable flying is 1000 hours 
(10 hours/plane-day x 20 days x 5planes). This total may not be exceeded for the whole fleet 
over the entire planning horizon, however, it is not unusual for a subset of aircraft to exceed 
utilization rates over a subset of the horizon, particularly during the early (surge) stage of a 
deployment. 

3.6.5  Aircraft Handling Capacity of Airfields (MOG Constraint) 

The aircraft handling constraints at airfields, commonly called MOG constraints, are 
perhaps the most difficult to model. This is because of two complicating factors that necessitate 
approximations. First, there is no airfield capacity data available that provides separate 
accounting of parking spaces and all the various services (refueling, maintenance, etc.). The 
MOG data provided by the Air Force is an approximation, attempting to aggregate all these 
services. Thus, the units of MOGCapbl are an idealized notion of airfield parking spaces 
(normalized to narrow-body sized aircraft), not a precisely defined physical quantity. 

The second complicating factor in modeling airfield capacity is the congestion caused by 
the uncertainty of arrival times and ground times. A deterministic, time-discretized optimization 
model cannot accurately treat events occurring within a time period. For example, suppose the 
time period of the model is one day and an airfield has 20 landings per day.   How much 

-14- 



congestion occurs depends on when the landings occur during the day, a phenomenon not 
captured in the daily model. It is possible to attack these concerns with stochastic modeling 
techniques, however, the existing simulation and optimization models for air mobility have made 
very limited progress to date in this area [Morton and Rosenthal, 1994]. The MOG efficiency 
factor MOGEff is introduced to cushion the effect of not explicitly modeling uncertainty. The 
MOG constraints are formulated for each airfield and time period as follows: 

EEE E (MOGReqab * GTimeabr / 24) * X^, 
u       a     reRa t>' eTmr 

t'+[Drimeabr]=t 

+     E   E E WOGBeq* * GTimeabr / 24) * Yan, 

<   MOGEffbt * MOGCapbt    V b,t 

Dimensional analysis is useful for understanding these constraints. The right-hand-side 
is in the units of narrow-body parking spaces, because MOGCapbt is in those units and MOGEffbt 

is dimensionless. The first term on the left-hand-side accounts for airfield capacity consumed 
by all delivery missions that pass through airfield b during period t. The second term on the left 
does the same thing for recovery missions. The dimension of MOGReq^ is narrow-body parking 
spaces per plane, the dimension of GTIMEabrl24 is days, and the dimensions of Xmn. and F^. 
are planes per day; thus, the MOG constraints are dimensionally balanced. 

Aircraft inventoried at origin or destination airfields do not consume any MOG capacity 
in the above formulation. This is not a mathematical limitation, but rather a modeling choice 
taken because inventoried planes do not consume ground services. It can be easily modified if 
data for "parking space MOG" and various "ground service MOG's" become available. 

4. Performance 

The performance of the optimization model is relatively fast. On an IBM RS6000 model 
590 workstation with GAMS/OSL, it takes about 100 seconds to generate and an additional 100 
seconds to solve a sample problem with 20 units, 7 aircraft types, 17 airfields and 30 time 
periods. A 486/66 laptop computer running the same software on the same problem takes about 
28 minutes. After extensive variable and constraint reduction, the sample problem has 11,516 
decision variables, 6,970 constraints and 189,351 nonzero coefficients. The data entry time for 
the sample problem is about one and a half hours. Excursions from a base model run take 
considerably less time to prepare.   In short, turnaround time for the optimization model is 
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significantly faster than simulation models commonly used in the Air Force [Morton and 
Rosenthal, 1994].l 

5.  Analytic Insights 

We now describe some examples of modeling excursions and the resulting analytic 
insights. The base case scenario, developed by the U.S. Air Force Studies and Analyses 
Agency, notionally resembles a Desert Storm scenario. This is the same problem instance whose 
dimensions (after model reductions) are given in the Performance section. 

5.1  Diversion of Ramstein-Riyadh Demand to Dhahran 

In the base case scenario, there are twenty origin-to-destination demand pairs, but they 
are dominated by the demand for airlifting two Army mechanized units from Ramstein, Germany 
to Riyadh, Saudi Arabia. These two units combined account for 66,400 short tons (stons), or 
48%, of all unit equipment to be moved. When the base case is optimized, the given fleet 
delivers only 67% of the total unit equipment. The shortfall is due entirely to 45,000 
undelivered stons of Ramstein-Riyadh demand, and a critical constraint appears to be MOG 
limitations at Riyadh's airfield. 

In one modeling excursion, we examine the effects on the airlift system of changing the 
destination for one of the Ramstein-based mechanized units to Dhahran, Saudi Arabia, which 
is 250 miles northeast of Riyadh and closer to Kuwait and Iraq. Re-optimizing with this one 
change, the same fleet delivers 85% of all unit equipment, a dramatic improvement from 67%. 
However, the shortfall of 20,000 stons of unit equipment from Ramstein may still be a serious 
impediment to the Army's effectiveness, necessitating a re-evaluation of the scenario's war plans 
or augmentation of the mobility system. 

The graphs in Figure 1 show a summary of this modeling excursion over time. The unit 
equipment demand profile has jumps in it at the required delivery dates (RDD's). Cumulative 
delivery profiles are shown for the base case and the excursion. When the demand curve is 
higher than the delivery profile, shortfalls occur. All passenger demands, though not shown in 
the figure, are delivered on time in both cases. 

lNote added in final revision: More recent runs of the model have been with a larger 
data set corresponding to a two-MRC scenario. This instance of the model contains 151 
units, 7 aircraft types, 155 routes, and 47 time periods. The linear program has 95,111 
constraints, 106,707 variables and 1,758,221 nonzeroes. It took 24 minutes to generate and 
148 minutes to solve with GAMS/OSL on the RS6000/590. 
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5.2 Required-Delivery-Date Sensitivity 

As a second excursion, after shifting some of the Ramstein demand to Dhahran, we 
investigated the effect of changes in the required delivery date for the unit whose equipment 
could not be delivered. With the given RDD, the total unit equipment delivered is 85%, as 
noted.   If extra days are allowed, delivery increases as follows: 

Extra Days Percent Unit Objective 
Allowed       Equipment Delivered     Function Value 

0 85% 12.45 

2 88% 11.35 

4 93% 10.13 

6 99% 8.56 

The maximum allowed lateness is four days in all these runs. However, around 99% of 
all the deliveries made are on time. 

5.3 Identifying Critical Resources 

The overall performance of the air mobility system in our optimization runs can be 
characterized as having three phases. During the first third of the thirty days modeled, the 
system is airframe constrained. During the middle third (plus or minus a few days depending 
on location), the system is airfield-capacity constrained. During the final third, the system is 
in a sustainment phase with diminished demands. Neither airframes nor airfield capacities are 
critical resources, and it is too late to deliver cargos that were undelivered earlier. 

After looking at Figure 1, one might disagree with the assertion that the mobility system 
is airframe-bound in the first phase, because there are no significant shortfalls until Day 16. 
This would be a mistake, however. In fact, all available aircraft are used to the maximum from 
the earliest available-to-load date (Day 1) through Day 11 (when a large portion of the military 
aircraft first become available), and the dual multipliers indicate that additional airframe assets 
in the first phase would have high marginal value. This is because if more aircraft were 
available earlier, then the optimization model would have made more early deliveries to prevent 
the shortfalls that it foresees but cannot avoid later in the middle phase. 

The middle phase of the airlift has more overall flights than the first phase, because there 
are more aircraft in the system and demand is sufficient to keep them flying. The middle phase 
also has a higher percentage of the shorter Germany-to-Saudi flights, as compared to the longer 
CONUS-to-Saudi flights which predominate in the first phase. With more flights and with 
shorter flights (which consume MOG at a faster rate per plane), the mobility system becomes 
airfield-capacity constrained. 
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One might be tempted to conclude that adding more planes to the system during the 
middle phase would be unproductive. This would also be a mistake: the dual multipliers on 
aircraft consumption indicate that additional C17's and C5's would have high marginal value in 
the middle phase. Why does the optimization say that adding more planes would help the 
mobility system when airfield capacities are already hitting their limits? 

The answer is that the optimization advocates adding more efficient and versatile planes. 
The meaning of efficiency for planes in a MOG-constrained environment is a high ratio of cargo- 
delivered-per-plane to MOG-hours-consumed-per-plane. The more efficient a plane is in this 
sense, the more cargo it can deliver per day to a MOG-limited destination. According to the 
data furnished by USAF/SAA and the evaluation of MOG-hours consumed per plane at the most 
congested airfields in the model, the C17 is the most efficient airframe for a MOG-constrained 
environment. The meaning of versatility in the present context is having the ability to carry all 
three types of cargo (bulk, over-size and out-size), as only the C17 and C5 can. The 
optimization determines that the mobility system would perform better on the entire airlift if 
some more efficient and versatile airframes were made available during the middle phase. 

5.4 Sensitivity to Time Discretization 

The cumulative aircraft balance constraints were added to lessen the effects of time 
discretization, as discussed in Section 3.6.2. The kinds of problems they are intended to remedy 
arise, for example, if the cycle time of a route is less than half the length of a time period. 
Without these constraints, such a cycle time would be rounded to zero and cause unrealistic 
results. 

To test the effectiveness of the cumulative aircraft balance constraints, the model was run 
with time period lengths of 12, 24 and 48 hours. The resulting delivery profiles are displayed 
in Figure 2. The idea of the test is that in the absence of discretization error abatement 
measures, the error would increase as the time-step of the model gets larger. Figure 2, 
however, shows close agreement among the delivery profiles, regardless of time period length. 

6.   CONCLUSIONS AND FUTURE EXTENSIONS 

The preceding analytic insights are typical of what that can be obtained through 
optimization, but not from simulation. They represent but a small sample of the kinds of 
questions that can be addressed with the optimization model. The model can give relatively 
rapid response to questions relating to major mobility issues such as: 1) Are the given aircraft 
and airfield assets adequate for the deployment scenario? 2) What are the impacts of shortfalls 
in airlift capability? 3) Where are the system bottlenecks and when will they become noticeable? 
This type of analysis can be used to help answer questions about selecting airlift assets and about 
investing or divesting in airfield infrastructure. 

The optimization model has some limiting assumptions which must be taken into account 
when evaluating its results. As noted, they are: the approximation of airfield capacity by a uni- 
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dimensional MOG factor, deterministic ground times, the absence of aerial refueling, and the 
rounding problems that are inevitably caused by the discretization of time. The cumulative 
aircraft balance constraints help address the last difficulty, by preventing overly optimistic or 
pessimistic results. Nevertheless, the one-day time scale of the model that typically has been 
used to date cannot accurately represent what happens at airfields during smaller time intervals. 

In the Air Force analysis community, simulation has more acceptance than optimization. 
The advantage of simulation over optimization is that it can more readily accommodate 
uncertainty and it can handle a higher level of detail, such as tracking individual airplanes by 
tail number. The disadvantage is that it can only answer what-if questions, not what's-best 
questions. Simulations also usually take longer to run. Air mobility simulations used by the Air 
Force have had such long run times that the stochastic elements are sometimes left out in order 
to make them run faster. 

Ideally, optimization and simulation should be used in concert, with the optimization 
being used to suggest mobility system configurations and modes of operation that are then 
analyzed in detail by the simulation. Simulation runs, in turn, would suggest new scenarios to 
be investigated by the optimization. 

The optimization model described here is capable of being used in concert with other Air 
Force planning models, or it can stand alone to provide rapid and realistic responses in emerging 
conflict situations. Ongoing research is attempting to enhance the model in the following ways: 

• Currently the routes made available to the optimization model are entered 
manually, based on USAF/SAA analysts' judgement. An auxiliary model is 
under development for generating routes [Turker, 1995]. Turker's research is 
also addressing the issue of decreasing the effects of airfield aggregation (and 
associated unit aggregation). 

• Stochastic programming methods are under investigation for incorporating random 
ground times [Goggins, 1995]. 

• The Air Force is currently studying the formation and transportation of global 
reach lay down packages. The idea is to bring these packages to remote airfields 
to quickly create or augment airfield capacity. A related optimization model is 
addressing the optimal deployment of these mobile assets [Chapates, 1995]. 
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Figure 1. A modeling excursion: after changing a Ramstein-based unit's destination from Riyadh 
to Dhahran, the amount of undelivered cargo decreases from 45,000 stons to 20,000 stons. 
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Figure 2.  Agreement among delivery profiles when time periods have length 12, 24 or 48 
hours.  Larger time-steps in linear programming yield smaller, easier-to-solve models, but 
usually cause greater discretization errors.  In this model, however, the cumulative aircraft 
balance constraints effectively reduce discretization error. 
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