

AR-009-298 DSTO-TN-0012

Flight Flutter Test of a Nomad N24A Aircraft Fitted with One Modified Aileron

P.A. Farrell and S.A. Dunn

APPROVED

FOR PUBLIC RELEAST

 $\frac{D \ E \ P \ A \ R \ T \ M \ E \ N \ T}{DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION} \bigoplus \frac{O \ F \ D \ E \ F \ E \ N \ C \ E}{DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION}$

THE UNITED STATES NATIONAL TECHNICAL INFORMATION SERVICE IS ANTHORNED TO REPRODUCT AND SEL THIS PERONT

Flight Flutter Test of a Nomad N24A Aircraft Fitted with One Modified Aileron

P.A. Farrell and S.A. Dunn

Airframes and Engines Division Aeronautical and Maritime Research Laboratory

DSTO-TN-0012

ABSTRACT

A Nomad aileron was modified by the addition of strain gauges and associated wiring, to permit its use in loads-measurement trials. This modification rendered the aileron non-standard, so a flight flutter trial was conducted to verify the aeroelastic stability of the loads aircraft when fitted with this aileron. This report describes the flight flutter trial and presents the results.

Approved for public release

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DTIC QUALITY INSPECTED 5

Published by

DSTO Aeronautical and Maritime Research Laboratory PO Box 4331 Melbourne Victoria 3001 Australia

Telephone: (03) 9626 7000 Fax: (03) 9626 7999 © Commonwealth of Australia 1995 AR No. 009-298 June 1995

APPROVED FOR PUBLIC RELEASE

Flight Flutter Test of a Nomad N24A Aircraft Fitted with One Modified Aileron

EXECUTIVE SUMMARY

Following an accident to Nomad A18-403 at RAAF Base Tindal on 17 September 1991, doubts were raised as to the adequacy of the Nomad ailerons to cope with the loads experienced in flight. Subsequent structural tests at AMRL showed that the ailerons were more than adequate for the theoretically-determined loads used by the manufacturer, Government Aircraft Factory (GAF), in the design of the aileron. However the aileron had failed at Tindal, so one possible explanation was that the flight loads experienced by the aileron were much higher than the design loads. Consequently the decision was made to initiate a flight test program to measure the flight loads acting on the aileron.

To this end an aileron was instrumented with strain gauges and associated wire looming to measure flight loads. The ailerons on the Nomad aircraft are mass balanced, and doubt was raised that the instrumentation added to the aileron may have modified its mass distribution sufficiently to render the mass balance inadequate. Incidents involving aileron deformation on civil Nomad aircraft overseas had increased concern about possible aileron flutter, even with standard ailerons. Consequently a flight flutter test program was initiated to demonstrate that the ARDU test aircraft A18-407, when fitted with the instrumented aileron, would not experience flutter within the envelope to be flown for the loads measurement trial.

This report describes the flight flutter trial which was conducted at RAAF Base Edinburgh over the period 5-21 April 1995, and presents the results. This trial demonstrated that the instrumented aircraft was aeroelastically stable within the desired envelope, permitting the loads measurement trial to commence.

Accest	sion For	গ ্ য
NTIS	GRA&I	C
DIIC :	TAB	
Unann	oumcođ	
Justi	fleation	
 By		
Distr	ibution/	ф. 1
Ave1	lability C	odes
	Avail and,	/9.T
Dist	Special	
R-1		

Contents

1. INTRODUCTION	1
2. INSTRUMENTATION	1
3. FLIGHT TEST MATRIX	2
4. TEST METHODOLOGY	3
5. RESULTS	3
6. DISCUSSION 6.1 0° flap 6.2 10° flap 6.3 38° flap	5 5 6
7. CONCLUSIONS AND RECOMMENDATIONS	6
8. REFERENCES	7

List of Tables

List of Figures

Figure 1a. PSD curves - 0° flap angle - wing leading edge accelerometer	9
Figure 1b. PSD curves - 0° flap angle - wing trailing edge accelerometer	10
Figure 1c. PSD curves - 0° flap angle - strain gauge 17.111	11
Figure 2a. PSD curves - 10° flap angle - wing leading edge accelerometer	12
Figure 2b. PSD curves - 10° flap angle - wing trailing edge accelerometer	13
Figure 2c. PSD curves - 10° flap angle - strain gauge 17.111	14
Figure 3a. PSD curves - 38° flap angle - wing leading edge accelerometer	15
Figure 3b. PSD curves - 38° flap angle - wing trailing edge accelerometer	16
Figure 3c. PSD curves - 38° flap angle - strain gauge 17.111	17
Figure 4a. PSD curves for light, medium, heavy weights at 0° flap - wing leading	
edge accelerometer at 166 KIAS	18
Figure 4b. PSD curves for light, medium, heavy weights at 0° flap - wing trailing	
edge accelerometer at 166 KIAS	18
Figure 4c. PSD curves for light, medium, heavy weights at 0° flap - strain gauge	
17.111 at 166 KIAS	19
Figure 5a. PSD curves for light, medium, heavy weights at 10° flap - wing leading	
edge accelerometer at 132 KIAS	20
Figure 5b. PSD curves for light, medium, heavy weights at 10° flap - wing trailing	
edge accelerometer at 132 KIAS	20
Figure 5c. PSD curves for light, medium, heavy weights at 10° flap - strain gauge	
17.111 at 132 KIAS	21
Figure 6a. PSD curves for light, medium, heavy weights at 38° flap - wing leading	
edge accelerometer at 124 KIAS	22
Figure 6b. PSD curves for light, medium, heavy weights at 38° flap - wing trailing	
eage accelerometer at 124 KIAS	22
Figure 6c. PSD curves for light, medium, heavy weights at 38° flap - strain gauge	
17.111 at 124 KIAS	23
Figure 7. Natural frequency and damping ratio estimates, medium weight - 0° flap	24
Figure 8. Natural frequency and damping ratio estimates, medium weight - 10° flap	25
Figure 9. Natural frequency and damping ratio estimates, medium weight - 38° flap	26

1. Introduction

The Aircraft Research and Development Unit (ARDU) of the RAAF has been tasked (TASK 0154) with measuring the loads acting on a Nomad aileron and flap whilst the aircraft is flying with specified flap setting during various manoeuvres. Initially the task concentrated on the aileron loads and to this end a single aileron was instrumented with 15 strain gauges to give the bending, shear and torque at five locations on the aileron, together with another gauge to measure the aileron control rod loads. This aileron was then fitted to the starboard wing of Nomad aircraft N24A-142, designated A18-407 by the RAAF. The aircraft was equipped with a data acquisition system permitting both onboard recording of the measured data and telemetry of the data to a ground station.

Since the fitting of this instrumentation, especially of the associated wiring looms, rendered the aileron non-standard, it was deemed prudent to verify that the aircraft was still aeroelastically stable within the envelope to be flown. It was decided that this would best be accomplished by conducting a flight flutter trial prior to the loads trials. This flight flutter trial was not intended to test the aeroelastic stability of the Nomad fleet in general but rather to verify that A18-407 when fitted with the instrumented aileron would not flutter within the envelope to be flown during the aileron-loads trial. Due to time constraints, the minimum of additional instrumentation commensurate with the limited aims of the trial (whilst still ensuring aircraft safety), could be fitted. Furthermore to ensure that the testing was valid, no further alteration was to be made to the aileron (i.e. no additional instrumentation was to be added to the aileron).

Prior to the flight test, a Ground Vibration Test (GVT) was carried out on the instrumented aircraft to provide data which would assist with analysis of the data from the flight flutter trial (Reference 1).

2. Instrumentation

As stated above, the starboard aileron had been fitted with strain gauges for the loads trial. The GVT (Reference 1) was used to determine which of these gauges would be suitable for monitoring aileron motion in flight. In addition two accelerometers were fitted to the aircraft's starboard wing tip - one on the front spar, one on the rear. Although a third accelerometer on the port wing tip would have been highly desirable, it was not considered absolutely necessary and so was not installed due to time constraints. This meant that symmetric modes could not be easily separated from the antisymmetric.

The aircraft was not fitted with any flutter excitation system, so excitation consisted of pilot inputs (aileron reversals, aileron strikes, rudder kicks, elevator impulses) and natural buffet/turbulence. (No pilot inputs were used at the flap overspeed test points i.e. at speeds greater than those authorised in the flight manual.)

3. Flight Test Matrix

The N24A aircraft has three selectable flap extension angles, namely 0°, 10° and 38°. Of these, 38° flap was considered the most critical from both a loads and a flutter point of view. Consequently the test plan called for the 0° and 10° flap cases to be completed before testing of the 38° flap case progressed beyond 75 KIAS. The flight test matrix was formulated to include test points at the following key speeds:

0° flap	
$V_{\rm H}$	(143 KIAS)
V _{NE}	(166 KIAS)
10° flap	
V_{F10}	(120 KIAS)
V _{F10} /0.9	(132 KIAS)
38° flap	
V _{F38}	(107 KIAS)
V _{F38} /0.9	(118 KIAS)

All testing was carried out at 5000 feet AGL.

For the loads test the aircraft is to be flown in three weight conditions, namely:

light	6000 to 7500 lb
medium	7500 to 8500 lb
heavy	8500 to 9400 lb.

For the flutter test the philosophy adopted was to progressively expand the cleared envelope for the medium weight condition, followed by flights to the envelope extremes at the other weight conditions; however for the more critical 38° flap case, additional test points were flown near the end of the envelope for the light and heavy weight conditions.

The matrix of test points flown is shown in Table 1. Where testing of a flap/weight configuration extended over more than one flight, the last point flown was repeated to verify consistency between flights.

4. Test Methodology

The test aircraft was equipped with a telemetry system permitting the analysis of data whilst the aircraft was in flight, thus allowing the testing to proceed over a number of test points within any one flight. For each test point, the aircraft was smoothly accelerated in level flight from the previously cleared speed, during which the response of the aircraft vibration sensors was monitored on two eight-pen strip recorders for indications of low damping in any modes. Upon attaining the required speed the aircraft was stabilised for about 90 seconds during which the response of the aircraft to natural turbulence/buffet was obtained, and one channel (the wing leading edge accelerometer) was analysed by PSD methods whilst another channel (the wing trailing edge accelerometer) was analysed by Random Decrement methods (Reference 2). The aircraft was then subjected to a number of pilot inputs - aileron reversals, aileron strikes, rudder stamps and elevator strikes. After the first flight the rudder and elevator inputs were discontinued as they produced negligible response at the vibration sensor locations. Although the frequency content of the aileron inputs was severely limited, they did excite the low order aircraft modes and gave additional confirmation of aeroelastic stability as well as some loads information. Provided the analyses indicated no mode was likely to become unstable before the next test point, the aircraft was cleared to commence accelerating, and the whole process repeated.

Between flights the data from all the vibration transducers, as recorded on the onboard recorder (to eliminate any noise introduced by the telemetry process) were analysed by the Eigensystem Realisation Algorithm/Data Correlation (ERA/DC) method. This time-domain analysis procedure, described in Reference 3, was developed at NASA and is used within the aerospace community for system identification. It is more accurate than the curve fitting used with the Random Decrement, but its computational time precludes its use in the near real-time environment required whilst the aircraft is in flight. The numerical estimates of natural frequency and damping ratio presented in this report are all derived from ERA/DC analyses.

5. **Results**

Results from the trial are presented in two main forms, namely PSD "cascade" plots, and figures showing estimates of the natural frequencies and damping ratios. It was found both from the GVT (Reference 1) and also as the flutter trial progressed that the best channels for analysis were the two accelerometers on the wing and strain gauge 17.111 on the aileron. This is a torsion gauge at a location adjacent to the outboard face of the outboard hinge plate.

Figures 1a to 1c show the PSD curves for the medium weight condition at 0° flap for each of the relevant speeds in the test matrix. The PSD curves in each figure are drawn to the same scale, permitting a ready comparison of variations with airspeed. The sharp peak at 34.4 Hz in each PSD curve in Figure 1a corresponds to the propeller shaft rotation frequency; in the 80 KIAS curves of Figures 1b and 1c (measured at Test Point 1 in Table 1) this engine frequency has been filtered out. The filters were removed after this first Test Point and all subsequent PSD curves are for unfiltered data. Figures 2 and 3 show the PSD comparisons for the 10° and 38° flap cases.

Figure 4a to 4c show the variation with aircraft weight of the PSD measured at the highest speed flown at 0° flap (166 KIAS). Similarly Figures 5 and 6 show the PSD variation with weight for the 10° and 38° flap cases respectively.

The frequency parameter (or non-dimensional frequency), v, is defined as:

 $v = (\omega b)/V$

where ω is circular frequency *b* is a reference length V is airspeed.

At 166 KTAS, 30 Hz corresponds to a frequency parameter of 4 based on the wing chord, while at higher frequencies or lower speeds the frequency parameter is even higher. Experience shows that classical flutter is most unlikely to occur at higher frequency parameters, so the analysis concentrated on modes below 30 Hz. For those modes less than 30 Hz for which the level of response is sufficiently large to make analysis reliable, estimates of natural frequency and damping ratio are shown in Figure 7. The results plotted for frequency and damping are a combination of the results derived from the three transducers. The damping ratio (usually designated by ζ in American literature or by γ in British literature) is the ratio of damping to critical and is numerically half the damping coefficient, *g*, which is used in most regulatory literature of American origin. The logarithmic decrement, δ , is another measure of damping, and the three are related (for small damping) by:

$$g \approx \delta/\pi$$

$$\gamma \approx \delta/(2\pi)$$

$$g = 2\gamma$$

Figures 8 and 9 present the same information for the 10° and 38° flap cases respectively.

6. Discussion

6.1 0° flap

The PSD curves presented in Figures 1a to 1c show that there is a general increase in the response of the wing/aileron as the airspeed is increased from 80 KIAS to 166 KIAS (V_{NE}); however this is mainly due to an increase in the level of excitation (natural turbulence/buffet) although there are changes in the damping (and hence dynamic magnification) of some of the modes.

The first clearly defined peak in the PSD curves (especially in Figure 1c) is at 6.4 Hz. Neither the frequency nor the damping of this response (plotted as mode 1 in Figure 7) varies with airspeed (allowing for the experimental scatter associated with estimating these quantities), and so may not correspond to a structural mode. Since the excitation is not measured, such a peak in the response may result not from the dynamic magnification associated with a structural mode but rather be caused by a concentrated excitation at that frequency. The very limited spatial distribution of transducers does not allow an estimation of the displacement pattern (i.e. mode shape), not even of its symmetry/antisymmetry. However since the apparent frequency and damping of this response do not alter with airspeed throughout the flight envelope, it does not represent an aeroelastic problem.

The other modes whose frequencies and damping ratios are shown in Figure 7 display more interaction with the aerodynamic forces. In particular mode 2, at about 7 Hz, displays a pronounced decrease in damping as speed is increased, reaching a level of about 1.4% near 135 KIAS, before increasing again as V_{NE} is approached. The level of damping at curve's minimum is sufficient to confirm aeroelastic stability at that speed. The other modes are all well damped throughout the envelope.

Figures 4a to 4c show a comparison of the PSD curves calculated at 166 KIAS for the three weight conditions. These show that the aeroelastic behaviour of the aircraft at the light and heavy weight conditions is essentially the same as at the medium weight condition.

6.2 10° flap

As with the 0° flap case above, the PSD curves in Figures 2a to 2c show a general increase in response levels as the airspeed is increased. In particular Figure 2a and 2b show an increase in the peak near 7 Hz but the damping estimated from this response does not alter greatly (mode 2 in Figure 8). As with the 0° flap case, there is a response at 6.4 Hz which is invariant with airspeed whilst the other modes show varying degrees of interaction with the aerodynamics; however all of these modes display adequate damping, even at the overspeed test point.

Figures 5a to 5c show the effect of aircraft weight variation at the highest speed point for this flap angle (132 KIAS). These show that the aeroelastic characteristics of the aircraft at the heavy and light weight conditions is not significantly different to that at the medium weight.

6.3 38° flap

Figures 3a to 3c show the variation in response of the aircraft to increasing airspeed. Again there is an increase in the response of the airframe as the airspeed is increased but the derived estimates of natural frequency and damping ratio (Figure 9) show that there is adequate damping in the relevant modes even at the overspeed test points. (The authorised V_{F38} is 108 KIAS whereas testing was carried out to 124 KIAS.) The response at 6.4 Hz (mode 1) is again present but, as with the other flap angle cases above, it does not appear to interact with the aerodynamics.

Figures 6a to 6c present the PSD curves which show that the light and heavy weight conditions have similar aeroelastic stability to the medium weight case.

7. Conclusions and Recommendations

Nomad aircraft A18-407, fitted with a non-standard aileron, has undergone flight flutter testing through a flight envelope more extensive than that to be used for loads measurements. Analysis of data derived from the flutter trial shows that the critical modes have sufficient damping throughout the test envelope.

From an aeroelastic perspective it is recommended that the loads test program for aircraft A18-407 fitted with the instrumented aileron on the starboard wing, proceed without modification.

7

8. References

- 1. Farrell PA, Dunn SA, Rider CD. Vibration test on a Nomad N24A aircraft fitted with one modified aileron. Technical Note DSTO-TN-0010, June 1995.
- 2. Farrell PA, Ryall TG. *Flight flutter test techniques at ARL*. ARL Structures Technical Memorandum 569, August 1990.
- 3. Juang, J-N, Cooper JE, Wright JR. An eigensystem realization algorithm using data correlations (ERA/DC) for modal parameter identification. Control Theory and Advanced Technology, Vol 4, No 1, pp 5-14, 1988.

Table 1. Test Points flown.

FLIGHT	DATE	TEST POINT	WEIGHT	FLAP	AIRSPEED
1	5/4/95	1	1 MEDIUM*		80 KIAS
		2	2 MEDIUM*		100 KIAS
2	11/4/95	3	MEDIUM	0	100 KIAS
		4	MEDIUM	0	120 KIAS
		5	MEDIUM	0	143 KIAS
		6	MEDIUM	10	75 KIAS
		7	MEDIUM	10	90 KIAS
		8	MEDIUM	10	100 KIAS
		9	MEDIUM	38	65 KIAS
		10	MEDIUM	38	75 KIAS
3	11/4/95	5R	MEDIUM	0	143 KIAS
		11	MEDIUM	0	155 KIAS
		12	MEDIUM	0	166 KIAS
		8R	MEDIUM	10	100 KIAS
		13	MEDIUM	10	110 KIAS
		14	MEDIUM	10	120 KIAS
		15	MEDIUM	10	132 KIAS
4	12/4/95	16	LIGHT	0	166 KIAS
		17	LIGHT	10	132 KIAS
5	12/4/95	18	HEAVY	0	166 KIAS
		19	HEAVY	10	132 KIAS
6	19/4/95	10R	MEDIUM	38	75 KIAS
		20	MEDIUM	38	85 KIAS
		21	MEDIUM	38	95 KIAS
7	21/4/95	21R	MEDIUM	38	95 KIAS
		22	MEDIUM	38	100 KIAS
		23	MEDIUM	38	107 KIAS
		24	MEDIUM	38	112 KIAS
		25	MEDIUM	38	124 KIAS
8	21/4/95	26	LIGHT	38	107 KIAS
		27	LIGHT	38	112 KIAS
		- 28	LIGHT	38	124 KIAS
9	21/4/95	29	HEAVY	38	107 KIAS
		30	HEAVY	38	112 KIAS
		31	HEAVY	38	118 KIAS
		32	HEAVY	38	124 KIAS

where * indicates forward CG and R indicates the repeat of a previous Test Point

Figure 1a. PSD curves - 0° flap angle - wing leading edge accelerometer

Figure 1b. PSD curves - 0° flap angle - wing trailing edge accelerometer

Figure 1c. PSD curves - 0° flap angle - strain gauge 17.111

 z^{p}

Figure 2c. PSD curves - 10° flap angle - strain gauge 17.111

PSDs for Wing Trailing Edge accelerometer for 38 degree flap

Figure 3b. PSD curves - 38° flap angle - wing trailing edge accelerometer

Figure 3c. PSD curves - 38° flap angle - strain gauge 17.111

Figure 4a. PSD curves for light, medium, heavy weights at 0° flap - wing leading edge accelerometer at 166 KIAS

Figure 4b. PSD curves for light, medium, heavy weights at 0° flap - wing trailing edge accelerometer at 166 KIAS

Figure 4c. PSD curves for light, medium, heavy weights at 0° flap - strain gauge 17.111 at 166 KIAS

Figure 5a.

PSD curves for light, medium, heavy weights at 10° flap - wing leading edge accelerometer at 132 KIAS

Figure 5b. PSD curves for light, medium, heavy weights at 10° flap - wing trailing edge accelerometer at 132 KIAS

Figure 5c. PSD curves for light, medium, heavy weights at 10° flap - strain gauge 17.111 at 132 KIAS

Figure 6a. PSD curves for light, medium, heavy weights at 38° flap - wing leading edge accelerometer at 124 KIAS

Figure 6b. PSD curves for light, medium, heavy weights at 38° flap - wing trailing edge accelerometer at 124 KIAS

Figure 6c. PSD curves for light, medium, heavy weights at 38° flap - strain gauge 17.111 at 124 KIAS

DSTO-TN-0012

Figure 7. Natural frequency and damping ratio estimates, medium weight - 0° flap

Figure 8.

Natural frequency and damping ratio estimates, medium weight - 10° flap

Figure 9. Natural frequency and damping ratio estimates, medium weight - 38° flap

Flight Flutter Test of a Nomad N24A Aircraft Fitted with One Modified Aireron

P.A. Farrell and S.A. Dunn

DSTO-TN-0012

DISTRIBUTION

AUSTRALIA

DEFENCE ORGANISATION

Defence Science and Technology Organisation

Chief Defence Scientist FAS Science Policy AS Science Corporate Management Counsellor Defence Science, London (Doc Data Sheet only) Counsellor Defence Science, Washington (Doc Data Sheet only) Senior Defence Scientific Adviser (Doc Data Sheet only) Scientific Advisor Policy and Command (Doc Data Sheet only) Navy Scientific Adviser (3 copies Doc Data Sheet only) Scientific Adviser - Army Air Force Scientific Adviser

Aeronautical and Maritime Research Laboratory Director Library Fishermens Bend Library Maribyrnong Chief Airframes and Engines Division P.D. Hayes Authors: P.A. Farrell S.A. Dunn

Electronics and Surveillance Research Laboratory Main Library - DSTO Salisbury

Defence Central

OIC TRS, Defence Central Library Document Exchange Centre, DSTIC (8 copies) Defence Intelligence Organisation Library, Defence Signals Directorate (Doc Data Sheet Only)

Army

Army Technology and Engineering Agency DESS-LC

<u>Air Force</u>

Aircraft Research and Development Unit Tech Reports,CO Engineering Squadron,ARDU OIC ATF, ATS, RAAFSTT, WAGGA (2 copies)

UNIVERSITIES AND COLLEGES

Australian Defence Force Academy Library Head of Aerospace and Mechanical Engineering

OTHER GOVERNMENT DEPARTMENTS AND AGENCIES

AGPS

OTHER ORGANISATIONS

NASA (Canberra) ASTA Engineering, Document Control Office

SPARES (6 COPIES)

TOTAL (36 COPIES)

AL 149 DEPARTMENT OF DEFENCE PAG UN			CLASSIFICATION CLASSIFIED		
DOCUM	ENT CONTROI	DATA	A -	PRT	VACY MARKING
1a. AR NUMBER AR-009-298	15. ESTABLISHMENT NUMBER DSTO-TN-0012	2. DOCUMENT DATE 3. TASK NU JUNE 1995 AIR 93/			3. TASK NUMBER AIR 93/169
4 TITLE FLIGHT FLUTTER TEST OF A NOMAD N24A AIRCRAFT FITTED WITH		5. SECURITY CLASSIFICATION (PLACE APPROPRIATE CLASSIFICATION IN BOX(5) IE. SECRET (5), CONF. (C) RESTRICTED (R), LIMITED (L),		6. NO. PAGES 32	
		U	U	U	7. NO. REFS. 3
		DOCUMENT	TTILE	ABSTRACT	NTC
P.A. FARRELL A	ND S.A. DUNN	Not applica	9. DOWNGRADING/DELIMITING INSTRUCTIONS Not applicable.		
10. CORPORATE AUTHOR A	AND ADDRESS	11. OFFICE/POSITION RESPONSIBLE FOR:			
AERONAUTICAL AN LABORATORY	ID MARITIME RESEARCH	DESS - LC			
AIRFRAMES AND EN PO BOX 4331	NGINES DIVISION	SPONSOR			
MELBOURNE VIC	3001 AUSTRALIA	SECURITY			
	CAED				
12. SECONDARY DISTRIBUT Approved for pub OVERSEAS ENQUIRIES OUT DEPT OF DEFENCE, CAMPB 13a. THIS DOCUMENT MAY NO limitations.	ION (OF THIS DOCUMENT) DIC release. ISIDE STATED LIMITATIONS SHOULD BE F ELL PARK OFFICES, CANBERRA ACT 2600. BE ANNOUNCED IN CATALOGUES AND A	REFERRED THROUG	SH DOCUMEN ES AVAILABLE	T EXCHANGE (CENTRE, DIS NEIWORK OFFICE,
14. DESCRIPTORS Nomad aircraft Flight flutter test			_15. DISCAT SUBJECT CATEGORIES		
16. ABSTRACT A Nomad ailero permit its use ir standard, so a f loads aircraft wh presents the resu	n was modified by the ad a loads-measurement tria light flutter trial was cor nen fitted with this aileron alts.	dition of str ls. This mo nducted to n. This repo	rain gaug odificatio verify th rt descril	ges and a n render e aeroela oes the fli	ssociated wiring, to ed the aileron non- stic stability of the ght flutter trial and

PAGE CLASSIFICATION
UNCLASSIFIED

PRIVACY MARKING

THIS PAGE IS TO BE USED TO RECORD INFORMATION WHICH IS REQUIRED BY THE ESTABLISHMENT FOR ITS OWN USE BUT WHICH WILL NOT BE ADDED TO THE DISTIS DATA UNLESS SPECIFICALLY REQUESTED.

16. ABSTRACT (CONT).		
17. IMPRINT		
	ΟΙΤΙΝΙΕ DECEADCU	LABODATORY MELDOLIDNIE
AERONAUTICAL AND MA	KITIME RESEARCH	LABORATORI, MELBOURNE
18. DOCUMENT SERIES AND NUMBER	19. WA NUMBER	20. TYPE OF REPORT AND PERIOD COVERED
DSTO Technical Note 0012	26257A	
21. COMPUTER PROGRAMS USED]
	10 11 BAR - 1	
22. ESTABLISHMENT FILE REF.(S)		
M1/9/88		
23. ADDITIONAL INFORMATION (AS REQUIRED)		
·		