
PROCEEDINGS 

IFIP WG 11.3 

Sixth Working Conference 

on 

DATABASE   SECURITY 

DT1C 
ELECT E' 

6EP 2 7-w95'i 

19950922 069 
DTI® QUALITY INSPECTED 5 

19-21 August 1992 

Simon Fräser University 
Burnaby, Vancouver, British Columbia 

"l5lSTRgUT10N STATtilVLtjm_A 

approved, for public i$*ase; 
'*   Dfetfibution Unlimited 

f\. c% 
o \l •' 



OFFICE OF THE UNDER SECRETARY OF DEFENSE (ACQUISITION) 
DEFENSE TECHNICAL INFORMATION CENTER 

CAMERON STATION 
ALEXANDRIA, VIRGINIA 22304-6145 

July 13,  1994 

IN REPLY 
REFER TO DTIC-OCC 

SUBJECT: Distribution Statements on Technical Documents 

Office of the Chief of Naval Research 
TO: goo north Quincy Street 

Arlington, VA 22217-5000 
Code 22 

1. Reference: DoD Directive 5230.24, Distribution Statements on Technical Documents, 
18 Mar 87. 

2. The Defense Technical Information Center received the enclosed report (referenced 
below) which is not marked in accordance with the above reference. 

Final Technical Report 
N00014-92-J-1952 ^ 
19 - 21 August 1992     ^ 

3. We request the appropriate distribution statement be assigned and the report returned 
to DTIC within 5 working days. 

4. Approved distribution statements are listed on the reverse sf-tnis letter. If you have any 
questions regarding these statements, call DTIC's Cataloging Branch, (703) 274-6837. 

FOR THE ADMINISTRATOR: 

1 End OPALAKRISHNAN NAIR 
Chief, Cataloging Branch 

FL-171 
Jul93 



DISTRIBUTION STATEMENT A: 

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED 

DISTRIBUTION STATEMENT B: 

DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES ONLY; 
(Indicate Reason and Date Below). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED 
TO (Indicate Controlling DoD Office Below). 

DISTRIBUTION STATEMENT C: 

DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND THEIR CONTRACTORS; 
(Indicate Reason and Date Below). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED 
TO (Indicate Controlling DoD Office Below). 

DISTRIBUTION STATEMENT D: 

DISTRIBUTION AUTHORIZED TO DOD AND U.S. DOD CONTRACTORS ONLY; (Indicate Reason 
atvj Date Below). OTHER REQUESTS SHALL BE REFERRED TO (Indicate Controlling DoD Office Below). 

DISTRIBUTION STATEMENT E: 

DISrRiBUTION AUTHORIZED TO DOD COMPONENTS ONLY; (Indicate Reason and Date Below). 
OTHER REQUESTS SHALL BE REFERRED TO (Indicate Controlling DoD Office Below). 

DISTRIBUTION STATEMENT F: 

FURTHER DISSEMINATION ONLY AS DIRECTED BY (Indicate Controlling DoD Office and Date 
Below) or HIGHER bOD AUTHORITY. 

DISTRIBUTION STATEMENT X: 

DISTRIBUTION AUTHORIZED TO U.S. GOVERNMENT AGENCIES AND PRIVATE INDIVIDUALS 
OR ENTERPRISES ELIGIBLE TO OBTAIN EXPORT-CONTROLLED TECHNICAL DATA IN ACCORDANCE 
WITH DOD DIRECTIVE 5230.25, WITHHOLDING OF UNCLASSIFIED TECHNICAL DATA FROM PUBLIC 
DISCLOSURE; 6 Nov 19C4 (indicate date of determination). CONTROLLING DOD OFFICE IS (Indicate 
Controlling DoD Office). 

The cited documents has been reviewed by competent authority and the following distribution statement is 
hereby authorized. 

'(Statement) 

OFFICE OF NAVAL RESEARCH 

™'°;^lE FR°G'^MS DIVISION 

~B00 NORTH QUINCY STREET 
ARLINGTON, yA    22217-5660 

(Controlling DoD Office Name) 

(Reason) "T1ÜBRA T. HU3HES 
DEPUTY DIRECTOR 
CQRBWTE PROGRAMS OFFICE 

(Assigning Office) 

(Controlling DoD Office Address, 
City, State, Zip) 

!-* SBP 1995 

(Date Statement Assigned) 



PROCEEDINGS 

IFIP WG 11.3 

Sixth Working Conference 

on 

DATABASE   SECURITY 

Accesion For 

NTIS    CRA&l 
DTIC    TAB 
Unannounced           D 
Justification .,  

By  
Distribution/ 

Availability Codes 

Dist 

\kl 

Avail and/or 
Special 

19-21 August 1992 

Simon Fräser University 
Burnaby, Vancouver, British Columbia 

piSTRreUTION STA 'fENmTT 

Approved for public release; 
Distribution Unlimited 



11 



ACKNOWLEDGMENT 

I thank the following people for making the Sixth MP 11.3 Working Conference in Database 
Security a great success: 

The authors of the papers submitted to the conference, 

The reviewers of the papers, 

Carl Landwehr, the chairman of the IFIP 11.3 Working Group, for his encouragement 
throughout the organization of the conference and for his support in putting the final 
program together, 

David Bonyun, for his activities as the general chair of the conference, 

Sushil Jajodia, for publishing these proceedings, 

Teresa Lunt, for taking notes of the discussions, 

The participants of the conference, 

The sponsors of the conference, and 

Matthew Morgenstern, for organizing a panel in database security at the 18th 
International Conference on Very Large Databases. 

Bhavani Thuraisingham 
Program Chair 

SIXTH IFIP 11.3 WORKING CONFERENCE COMMITTEE 

PROGRAM CHAIR       GENERAL CHAIR 

Bhavani Thuraisingham 
The MITRE Corporation 
K306 
Burlington Road 
Bedford, MA 01730 
U.S.A. 

David Bonyun 
Bunberry, Filbert, and Stokes 
Enterprises Ltd. 
7 Keppler Crescent 

Nepean, Ontario K2H 5Y1 
CANADA 

IFIP WG11.3 CHAIR 

Carl Landwehr 
Naval Research Laboratory 
Code 5542 
4555 Overlook Ave., SW 
Washington, DC 20375-5000 
U.S.A. 

in 



IV 



PREFACE 

These Proceedings consist of the papers presented at the Sixth MP Working Conference 
in Database Security held in Vancouver, British Columbia, from 19 to 22 August 1992. The 
papers cover a variety of topics in database security including multilevel semantic data models, 
inference problem, policies and models, multilevel database concurrency control, and 
multilevel relational data models. 
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PROTECTING SENSITIVE MEDICAL INFORMATION 
Jeffrey Gene Kaplan, M.D., M.P.S. 

148 Sunny Reach Dr. 
Hartford, CT 06117 

ABSTRACT 

Managed Care combines medical utilization and its cost with control of legal risk. Review of 
these three factors leads to salient information as well as understanding of the health care 
delivery processes.  A point-of-contact system must operate as a relational database for data 
access, management, analysis and reporting. 

Protection of sensitive information in the medical record is a patient's right. It is also the 
responsibility of the care-giver. Such medical information must not be revealed to anyone 
who is not entitled nor authorized. The use of encryption and masks within the structure of 
the database and user-defined access will provide the necessary security. 

The new approach to quality health service and cost effectiveness is to recognize the 
intelligence of patients and their desire to be active participants in their care. When presented 
with a choice of procedures and the probable outcome of each, patients are empowered to 
make informed decisions. 



DEVELOPING INFORMATION FOR MANAGING  COST AND QUALITY OF HEALTH CARE 
In developing a health information technology/there are four cardinal questions: 1) how do you getlQ 
data, 2) how do you translated these data into information, 3) how do you deliver it effectively 
without betraying a person's confidentiality, and finally, 4) how do you know you are capturing the 
right data in the first place? 

A basic lesson learned from analyzing computer applications for health information is the importance 
of confidentiality. It is most efficient, therefore, to design both the information'and security systems 
together1. 

THE SENSmVITY OF MEDICAL INFORMATION 
The exchange of information is an ethical issue. The focus must be on the interests and rights of 
those connected to the information and on the monitors of the organizations where data are stored or 
processed. Rather than simply protecting sensitive information, control of access to these data should 
be based upon one's legitimate role. Unfortunately, security of medical data is not common-place in 
the research and development community. This may be due to the antiquated view that the essential 
business of health care is the administration of benefits, insurance and coverage. This leads to 
assigning blame for the health care crisis to the physicians who order the covered tests and 
treatments. 

/ use the analogy of car manufacture and Japanese quality control  When the painting of the 
car is imperfect, the Japanese, instead of repainting it, will change the painting procedure. 
This is how one improves quality. 

This idea applied to medical care is too simplistic, however. What medical management needs and 
deserves is better information about what works best in health care.   From data to information, we 
must strive for superior quality of medical care by concentrating on both process and outcome. 
While we need to weed out those individuals who are of poor quality, variance analysis that only 
focuses on "who," rather than "what" does little for the overall improvement in the distribution1 of 
the quality of medical care. 

With little information about clinical effectiveness, efficiency and value,2 health care managers, 
patients and employers have data, but little information. Therefore, the important question is what 
data are required to manage care effectively.   We need specifics about the health care delivery 
system (structure), its clinical assessments and medical treatments (process), plus the results of all 
medical activity (outcome). Unfortunately, there is a dearth of vital clinical information available to 
the health analyst, and, in turn, our medical leadership. Nevertheless, the prospect of reconstructing 
a medical database from the claims trail, especially given recent developments in electronic data 
interchange3 (EDI) is encouraging.   At the point-of-contact with the patient, medical informatics 
technology will provide immediate knowledge of who the patients are, their medical history and 
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financing mechanism (i.e., insurance eligibility4), the tests that have been performed and the 
physician(s) involved. 

A NEW COMPREHENSION: A NEW DATABASE AND KNOWLEDGE-BASED SYSTEM 
The health insurance and managed care industry have relied on cost data to manage care. 
However, these data are often unreliable and incomplete. For one thing, there is insufficient 
clinical context for us to account for the care. The health care crisis and our inability to rectify 
the situation from within suggest the need for a new, more progressive approach. A shift in 
paradigms2 is required. I would call the new approach - informed decision making (IDM3). 
This means giving people information about their condition, choice of procedures, and expected 
results of each.   Patients can then make informed decisions about what will be done to their 
bodies. This is far better than merely enforcing a contract, fixing a fee, and regulating the 
volume of services without regard to the nature of the illness. 

In the pursuit of value and IDM, the managed care industry is becoming positioned5 to collect, 
manage, analyze and present information about the quality of health care and its cost. The 
tools for managing clinical process must involve a clinical data base6. To this should be added 
clinical profiling, statistical analyses and quality improvement4 methods. These are the tools for 
managed care.  We use them as we work with providers fighting the unexplainable variation of 
medical practice and the spiraling cost of health care5. 

THE MECHANICS OF INFORMED DECISION MAKING 
The mechanics of informed decision making must be explained. Five information-generating, data- 
transformation tools are essential: 

1) DATA COLLECTION 
2) DATA ACCESS:  Comprehensive data reflect the totality of care: Who did what, 

where, when, to whom, and especially why 
3) DATA MANAGEMENT: Editing the data reduces inaccuracies and the effects of 

creative billing practices; e.g., upcoding, exploding and unbundling.  Other data- 
management techniques that can work within the constraints of the existing claims trail 
include: recognizing the severity of illness, sorting by diagnosis and diagnostic cluster, 
re-sorting or re-configuring existing data to enable us to understand the performance of 
the provider, the specialty, the facility, etc. in an episode-of-care 

4) DATA ANALYSIS: of trends and statistics 
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5)      DATA PRESENTATION: i.e., medical management needs both standardized and ad- 
hoc report capability 

DATA ACQUISITION. ENHANCEMENT AND AVAILABILITY 
Why is the recent progress in data acquisition so important? It is because the two-way, electronic 
communication about eligibility for coverage of health care and review of procedures (utilization 
review) is now a reality at the point-of-service. It will not be long before efficient claims 
adjudication and payment, as well as appropriateness-testing are possible during episodes of health 
care6. Knowledge of the process of health care delivery is a prerequisite. This may be derived from 
the diagnoses and procedures on claims and clinical encounter forms or from the medical chart7.   In 
the middle of the night these data can help the doctor or nurse care for a patient in sudden difficulty. 
They can also improve our comprehension and help avoid wasteful duplication8. 

DATA MANAGEMENT. ANALYSIS AND FEEDBACK 
We can begin testing clinical effectiveness9, even to the point of monitoring efficacy when our under- 
standing is based on standards and tests of appropriateness. 

We can close the feedback loop with this information. Providers will learn, confidentially, how they 
compare with their peers and if they are meeting nationally-based standards on practice guidelines. 
Enrolled or participating subscribers and employers need similar information so that they will know 
what is acceptable standard, when quality is compromised by parsimony, how one judges the quality 
of a provider10, and the necessity of a procedure measured against the risk. 

The managed care industry and insurers should begin to see themselves as gatherer and protector of 
information. We are the advocates for patients, helping them make enlightened choices for their 
medical care. We can help the employer by providing prompt, effective care to their employees. 
Outcome studies are essential to this process, but do not have to be onerous. Indeed, a lot can be 
gleaned just from the claims trail, especially when case-mix is considered7.   Providing comparisons 
of results of one network provider with those of other groups is educational. Finally, we can give 
physicians, hospitals, other providers and regulators appropriate access to our own developing 
standards, literature and experience. 

We have to be cognizant of the sensitivity of these data and respect the secrets. We must be 
especially careful to avoid making value-judgments. Our aim is to assist, not threaten the doctor- 
patient relationship. 

TOTAL QUALITY MANAGEMENT 
Managed care and those in charge of employee benefits have begun to apply the principles of 
Continuous Quality Improvement.11,12 Total quality management, another name for the same process, 
depends upon confidence in the physician as provider. It analyzes change in performance and its 
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continuity in the delivery process of health care.   It provides feedback on the quality of performance 
and cost of diagnosis and treatment. As in many other industries, health care can use strategies that 
empower us to make appropriate choices. 

This point of view becomes a palpable hope as we examine the critical needs, goals and objectives of 
feedback systems in managed health care: 

to approach data needs , systematically 
to manage data and information 
to build dynamic data bases 
to sample statistically 
to analyze & communicate 
to network 
to understand and improve health care management 
to reduce cost while maintaining or improving quality 
to establish standards 
to define and possibly exceed customer expectations 
to make information available from patients for providers, carriers, payers and policy holders, 
to move from retrospective review to current monitoring as we seek better medical treatment 

INFORMATION SECURITY SYSTEMS 
Information security systems should be able to restrict access to select individuals to read, store, 
retrieve, transmit, and share information. Individuals are privileged according to their legitimate need 
to know.  "The system is expected to be able to trace all data access activities and to know where the 
data came from, who generated and who accesses the data, and when. It permits certain access 
activities only when specified pre-conditions are met. Inference and aggregation activities must be 
managed by the system to eliminate potentially illegal or damaging deductions and inferences."13 

The Hippocratic oath holds the relationship between patient and physician, sacrosanct.   To build 
trust, both parties must have confidence that their privacy will be protected. Patient records often 
contain sensitive data which must be held private. Their health problems are particularly vulnerable 
to unwarranted disclosure in a loosely protected data-management environment.   Consequently, the 
basic protocol for handling patient records is rigid.   And, in many states and organizations, it is 
compulsory to have standards and enforcement procedures which protect confidentiality. 

WHO IS THE KEEPER OF THE INFORMATION? 
Some organizations and individuals are legitimately involved in the health care delivery process or its 
documentation. Disclosure laws and policies in these instances allow privileged individuals access to 
the patient-record so that they may perform their duties. The discrete, but ever expanding list of 
authorized individuals include medical support personnel and others: nurses, aides, mental 
health/substance abuse personnel, social workers, administrative staff, pharmacists, claims 
adjudicators, quality assurance staff, legal guardians, researchers. While the physician has the 
responsibility to manage the patient's care and document his history and innermost concerns, 
sometimes there is also a requirement to disclose pertinent medical or behavioral situations. 



All these people have access, but there must be some way to protect sensitive information. We can 
see an example of modern approaches to this problem with Lotus Notes14.    Notes uses two forms of 
encryption to secure confidential or sensitive data. Both use long strings of numbers (digital keys) 
that work with Notes' software to encipher and decipher information. 

• "The dual-key system, with a public key and a private key for each user, is used for 
electronic mail. Each user has a private key, included in the user's ID, and a public key is 
included in her entry in the Name & Address Book. When the user seals an E-mail message, 
it is encrypted with her private key. When the recipient opens the message, Notes retrieves 
the sender's public key from the Name & Address Book to decrypt it. Successful decryption 
demonstrates that the message is authentic." 

• "The single-key system is used to encrypt documents and fields in documents that stay in the 
database where they were created. As a result, the complexities of a two-key system aren't 
necessary. A key can be created by one user and shared via E-mail with others. When a 
secret key is received, Notes includes it in the recipient's user ID file. The name of a secret 
key itself is not a secret, but any user who needs it to decrypt a document must have it in his 
user ID. These keys are for groups who want to share confidential information." 

Notes also relies on masking to protect parts of documents. 
• "Masking forms can be created to reveal some fields in a document while hiding others. 

Masks are invoked by form formulas written into the views. This ability to control display of 
a document in forms other than the one it was created in is a powerful capability, and makes 
possible a couple of very different approaches to structuring a Notes application [i.e., ]  'One 
Document, Many Forms.' " 

AN APPROACH TO INFORMATION SECURITY15 

T. C. Ting, a major contributor to our understanding information security, emphasizes the role of the 
user as the major control point in authorized access to confidential data. In other words, those of us 
managing systems and. those of us managing patient care would have an obligation to define 
access rights based upon the defined user's role. In accordance with this policy, all authorized 
actions must be traceable to their source and to their end. Since data access rights are often 
context-dependent and content-specific, the development of appropriate techniques for handling 
requests for protected information may be a complex task. Tracing data-access activities means 
being able to identify who generated and accessed which information, where, when and how 
within the context of the restrictive definition of the user's privilege. An audit trau is employed 
to monitor the transmission of data both in and out of the system. Finally, it is important that 
the tracking process be circumspect and not allow the process of privileging itself to invade the 
privacy. 

Personal medical information can be damaging to the individual if it is used irresponsibly. A breach 
of confidentiality may arise when the data generate fear of the unknown (e.g., the implications of 
HTV testing for AIDS). Indeed, the responsibility for clearance depends upon the sensitivity of the 
data. Also, the degree of complexity of the information may have to be a consideration. When we 
examine the flow of clinical information, we can see the difficulties in protecting it: 



In patient care, there is a chain of events which begins at the point of contact (see reference 7) and 
ends in some clinical outcome. At each stage in the management of a patient, the system must be 
able to identify which data are requested, how and by whom they are used and which are to be 
protected. Permission may even be granted by the patient with implied or explicit consent. 
Nevertheless, this procedure may not be adequate to protect the patient's privacy because of 
unanticipated factors in the medical interaction. There are no rules to verify who the responsible 
party is, where and how the data will be stored, or even how able the patient is to make informed 
decisions under duress. 

SECURITY SYSTEMS DESIGN IN TODAY'S CONICAL ENVIRONMENT 
The security and confidentiality of vital clinical information concern us today. 

"Not all systems have passwords, and they are often bypassed; only some have tables that define 
what any particular individual should be able to do; and only a few have audit trails of what has 
been done. Most platforms are weak. In no present system is security strictly compartmentalized, 
as at the Bl level8. Moreover, the majority of the applications are written in special languages, 
some of which require their own operating system. Some applications still stem from the 1960's 
and are written in assembler.  Some are written in BASIC, others in MUMPS - the Massachusetts 
(General Hospital) Utility Multi-Processing System » a 1960s system optimized on the variability 
of medical data, still others in PICK. Independent data base structures have only recently come 
under consideration. UNK designs have just begun to appear. There have been reasons for this 
developmental pathway, and there are reasons, today, for overcoming the deficiencies that have 
resulted."16 

Physicians are trained to think tentatively and to assign a label to symptoms even before they can 
make a firm diagnosis.   Also, creative billing practices tend to increase both the severity of illness 
and its reimbursement. This practice can have far-reaching consequences to the individual as can be 
seen in the following example: 

"Pin children, the diagnosis of asthma can deny insurability or increase insurance rates, sometimes 
for life. In young children, there are many borderline cases of wheezy bronchitis that can provoke 
an asthma-like attack that should be treated as if it were asthma." All personnel involved should 
be alerted to the possibility of a life threatening, asthma attack. Avoiding a word like asthma and 
talking around the issue can lead to misunderstanding.  Also, "such fine distinctions may be lost on 
those who review or abstract a record after the fact. To label a patient as asthmatic may be 
equivalent to a pronouncement of guilty without a trial."17 

Confidentiality would be easier to understand and manage if the user list (or table of terminals) were 
not explicit in terms of privileges. It would be preferable if each user could be profiled at the 
time of request in relation to the quality and sensitivity of the data.   In an object oriented sense, 
the model would permit categorization by virtue of object type9.   This method varies category by 
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category, or even item by item. Administratively, one must maintain a file about which user has 
which rights, when, where, and to what extent. Furthermore, stipulations to override must be 
precise, and enforced when the requirements are not met. 

Needless to say, the documentation (input) procedures that allow user profiling and monitoring, must 
not be onerous. The exigencies of the care of a sick patient and the resistance of doctors to 
bureaucratic interference (the "hassle" factor) suggest a user-friendly, yet structured format. We have 
found that front-end management information systems (MIS) can help. 

In our system of managed health care we are learning that different groups have special needs. We 
have, therefore, decentralized much of our management activity including cost-analysis, quality 
assessment and security systems. Distributed processing encourages the detail we need for 
categorization and observation on a local level while it also helps us attain an orderly flow of data 
(through-put) and relevant information. A relational database of my own design, Medicine Optimally 
Managed18, built on a multi-valued software tool, Advanced Revelation, is being explored to facilitate 
this complex and interactive process. 

THE REAL (MFDTCAU  WORLD AND PE-COMMENDATIONS 
The aforementioned are mostly concerns of the computer system.  What is privileged and who is 
authorized must be defined by the medical parties responsible for the confidentiality of the 
patient encounter and record. 

A complete description of the process of securing medical information cannot be given here. The 
key to the methodology of accessing while also protecting vital data and information is first, to 
identify the users.   Then, we must define their rights and establish their responsibilities. 
Propriety must be the rule, and exception unacceptable.   These are critical everyday operational 
issues. Medical security systems must not only be reactive, but proactive and interactive as well19. 
These systems and the methodological development are a continuous professional challenge, best 
handled by a scrupulous, systematic team in charge of quality-control. 



ADDENDUM (FROM LOTUS NOTES20) 
Security is part of the design of any Notes application, and control of access to the application is just 
as important as the security of other corporate data and computing resources. Notes' tools for 
tailoring the database include: 

• The Access list. While everyone in a work-group may have access to a database, that access 
probably will not extend company wide. The most basic form of security for a Notes 
application is a list of its users. Each application has its own user access list, created under 
the File menu in Database User Access Control. The list can name groups or individuals, 
and assigns each entry one of seven access levels, ranging from no access to Manager access, 
which grants the authority to delete the entire application and all its contents . 

• User Privileges. Assigning user privileges makes it possible to control access not only to the 
database as a whole, but also to particular views and forms within it. This restriction is 
accomplished by assigning privileges to users and groups named in the Access List, and 
setting the corresponding privilege for the views and forms they will be allowed to use. 

• Encryption. Encryption provides a system of access control that works in parallel with user 
privileges. Data is encrypted on a field-by-field basis in documents, and the decrypting key 
distributed to a selected group of users. The result is that especially sensitive data can be 
hidden even from legitimate users of the application. Encryption protects the data in sensitive 
applications even if the physical security of the server has been breached. 

Advanced application development tools and techniques can help Notes developers and administrators 
deal with the most nontraditional aspect of Notes — setting up applications for use by groups. These 
capabilities include using filters, assigning access controls and user privileges, creating encryption 
keys and encrypted fields and documents, and using masks in a database structure that departs from 
the simple many-documents-many-forms relationship of previous examples. 

An example of a more complex application structure [is] a personnel database that gives different 
groups access to different information contained in one set of documents. The designer uses 
database-level security features, such as access controls and encryption keys, to provide each group of 
users with ready access to what they need to know while protecting sensitive information. 
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Abstract 
We propose a new architectural framework and implementation scheme, for the message 
filter multilevel security model for object-oriented databases. Major complications in im- 
plementing the model arise from timing (downward signaling) channels that are intrinsic 
to the nature of object-oriented computations. This is because object-oriented operations 
are abstract, and often involve arbitrarily complex write-up actions. The solution to close 
such channels is best approached at the abstraction level of the computational model 
(rather than fine-tuning individual systems and their implementation characteristics). A 
fundamental insight, gained in the course of our research, has been to close these channels 
by allowing concurrent computations in what is otherwise a logically sequential compu- 
tation. Our earlier work investigated a kernelized architecture that called for a trusted 
subject (session manager) to manage a tree of concurrent multilevel computations gener- 
ated by a user session. In this paper we provide an alternate achitecture that eliminates 
the need for trusted subjects and the associated central coordination and management of 
concurrent computations. 

1    INTRODUCTION 

A message filter approach to integrating mandatory security in multilevel object-oriented 
databases was originally proposed in [3]. The main elements of the model are objects and 
messages. Security is enforced by a message filter component that controls information 
flow by mediating message exchanges. The original message filter specification is a step 
in the right direction in modeling and integrating security in a way natural to the object- 
oriented paradigm. However, it gives no clue as to how such a specification model can 
be implemented. This has led the authors to investigate implementation aspects of the 

message filter model [8, 9]. 

!The work of both authors was partially supported by the National Security Agency through contract 
MDA904-92-92-C-5140. We are indebted to Howard Stainer and Mike Ware for making this work possible. 

13 



Although the message filtering actions ensure that mandatory access controls cannot 
be bypassed, they open up the potential for timing channels. In fact, these channels arise 
due to the abstract nature of computations in the object-oriented model. A fundamental 
insight, gained in the course of investigating implementation issues for.the message filter 
model, has been to close such channels by executing an otherwise logically sequential 
computation, concurrently. 

In our further discussions, we deliberately use the term (downward) signaling channel 
rather than covert channel. A downward signaling channel is a means of downward 
information flow which is inherent in the data model and will therefore occur in every 
implementation of the model. A covert channel on the other hand is a property of a 
specific implementation and not a property of the data model. In other words, even if the 
data model is free of downward signaling channels, a specific implementation may well 
contain covert channels due to implementation quirks. 

As mentioned before, signaling channels arise in our implementation due to the intrin- 
sic nature of computations in the object-oriented data model. Thus any effort to solve this 
problem would be futile, unless approached at the abstraction level of the computational 
model. The solutions we have presented in [8, 9] do not take into account covert chan- 
nels that are specific to individual implementation and hardware platforms. Rather, the 
validity and applicability of our solutions rests on the assumption that an ideal trusted 
computing base (free of covert channels) is available. 

A kernelized architecture that was investigated earlier in [8] called for a trusted sub- 
ject (session manager) to manage and coordinate the concurrent computations initiated 
by a user session. The session manager has to be trusted so that it can deal with multi- 
level computations. In this paper we give an alternate architectural and implementation 
framework that eliminates the need for such trusted subjects. The management and co- 
ordination of concurrent computations is no longer centralized, but rather achieved in a 
distributed (and secure) fashion. The new framework offers obvious advantages. First, it 
eliminates the need for operating system support for trusted subjects. Secondly, it makes 
security arguments for our implementation easier. 

The rest of this paper is organized as follows: Section 2 gives some background to the 
message filter model and its evolution. Section 3 presents a reworked architecture without 
trusted subjects, and further describes how concurrent computations can be coordinated 
in a distributed fashion. Section 4 discusses some informal proofs and section 5 concludes 
the paper. 

2    BACKGROUND TO THE MESSAGE FILTER 
MODEL 

In this section we give some background to the message filter model and the original 
implementation of the model with trusted subjects. Our presentation is limited to those 
aspects relevant to the understanding of the results in this paper. For more comprehensive 
details on the motivation and evolution of the model the reader should see [3, 8, 9]. 
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m(p) 

(1)L(01)-L(02) 

(2)L(01)-L(02) 

(3)L(01)<L(02) 

message and reply 
are allowed to pass 

message is blocked 
and NIL reply injected 

actual reply is discarded 

(4)L(01)>L(02) 
Status(t2) = restricted 

Figure 1: Illustrating message filtering 

2.1    The Message Filter Specification 

Objects and messages constitute the main entities in the message filter model. Messages 
are assumed, and required to be, the only means by which objects can communicate and 
exchange information. Thus the core idea is that information flow can be controlled by 
mediating the flow of messages. Consequently, even basic object activity such as access to 
internal attributes, object creation, and invocation of local methods are to be implemented 
by having an object send messages to itself (we consider such messages to be primitive 
messages). The message filter takes appropriate action upon intercepting a message and 
examining the classifications of the sender and receiver of the message. It may let the 
message pass unaltered or interpose a NIL reply in place of the actual reply; or set the 
status of method invocations (as restricted or unrestricted). We emphasize that a reply 
(NIL or other) must always be returned to prevent the sender of a message from blocking 
indefinitely. 

Figure 1 illustrates the message filtering graphically. The full algorithmic specification 
is given in figure 2.2 In case (1), the sender and receiver are at the same security level and 
the message g\ and the reply are allowed to pass. In case (2) the levels are incomparable 
and thus the filter blocks the message from getting to the receiver object and further 
injects a NIL reply. Case (3) involves a receiver at a higher level than the sender. The 
message is allowed to pass but the filter discards the actual reply and substitutes a NIL 
instead. In case (4) the receiver object is at a lower level than the sender and the filter 
allows both the message and the reply to pass unaltered. 

In cases {1), (3), and (4) the method in the receiver object is invoked at a security 

2In this and other algorithms, % is a delimeter for comments. 
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% let 5i = (hi, (pi,.. • ,pjt), r) be the message sent from oi to o2 

% let hi be the message name, pi,.. .,pk be the parameters in the message, r the return value 

if oi # o2 V hx i {READ, WRITE, CREATE} then case 
% i.e., gi is a non-primitive message 

(1) L{oi) = L(o2) :       % let gx pass, let reply pass 
invoke t2 with rlevel(t2) <- rlevel(ti); 
r *- reply from t2; return r to t\; 

(2) L(ox) <> L(o2) :    % block gx, inject NIL reply 
r <— NIL; return r to t\] 

(3) I(oj) < X(o2) :       % fe< flfi paw, inject NIL reply, ignore actual reply 
r <— NIL; return r to *i; 
invoke *2 with rlevel(t2) <- lub[I(o2),r/et;e/(/i)]; 
% uj/iere /u6 denotes least upper bound 
discard reply from t2; 

(4) L(oi) > L(o2) :       % let gx pass, let reply pass 
invoke t2 with rlevel(t2) <- rlevel{tx); 
r <— reply from t2; return r to t\; 

end case; 

if oi = o2 A Ax € {READ, WRITE, CREATE} then case 
% i.e., Oi t5 a primitive message 

% let Vi be the value that is to be bound to attribute a,- 

(5) gi = (READ, (aj),r) : % allow unconditionally 
r <— value of a,; return r to t\; 

(6) 5i = (WRITE, (aj,Vj),r) : % allow if status ofh is unrestricted 
if rlevel(ti) = L(oi) 

then [aj «- «_,•; r *- SUCCESS] 
else r «- FAILURE; 

return r to 11; 

(7) gi = (CREATE, (vi,..., vk, Sj), r) : % a//ou?:/ status of tx is unrestricted relative to Sj 
if rlevel(ti) < Sj 

then [CREATE i with values t^,..., vk and L(i) *- Sj-, r *-i] 
else r «- FAILURE; 

return r to tx; 
end case; 

Figure 2: Message filtering algorithm 
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level given by the variable rlevel. The rlevel needs to be computed for each receiver 
method invocation and it is in turn derived from the rlevel of the method invocation in 
the corresponding sender object. The intuitive significance of rlevel is that it keeps track 
of the least upper bound of all objects encountered in a chain of method invocations, 
going back to the root of the chain. This is required to implement the notion of restricted 
method invocations so as to prevent write-dowm violations. To be more precise, we say 
that a method invocation ti has a restricted status if rlevel(ti) > L(o,). The application 
of restricted invocations is explained below. 

The cases (1) through (4) that we have seen so far deal with abstract messages. 
However abstract messages will eventually result in the invocation of primitive messages. 
These include READ, WRITE and CREATE 3. READ operations always succeed while 
WRITE and CREATE succeed only if the status of the method invoking the operation is 
unrestricted. Thus if a message is sent to a receiver object at a lower level (as in case (4)), 
the resulting method invocation will always be restricted and the corresponding primitive 
WRITE operation will not succeed. This will ensure that a write-down violation will not 
occur. Finally, the CREATE operation allows the creation of a new object at or above 
the rlevel of the method invoking the CREATE. The creation of objects lower than rlevel 
is again prevented by restricted invocations. 

2.2    Implementation with Trusted Subjects 

In our earlier work, we have presented the complications that arise due to downward 
signaling channels in object-oriented computations [8, 9]. Let us review these briefly. 
Whenever messages are sent to objects at higher levels, the receiver method should not 
be able to modulate the timing of the NIL reply. Hence we have no choice but to return 
the NIL reply immediately, resume execution of the suspended sender, and further execute 
the receiver object's method concurrently. 

Thus the message filter specification calls for an underlying asynchronous implementa- 
tion/execution model. This could lead to a tree of concurrent computations (methods) as 
shown in figure 3. Each computation is executed by a separate message manager process 
that implements the message filtering function (in our discussions we often use the terms 
computations, methods, and message managers interchangeably). Such a tree represents 
computations forked by a single user (at a single security level) within a single user ses- 
sion. However, each message manager may be executing at a different security level and 
we thus have a single user but a multilevel tree of computations. 

A key feature of an architecture investigated earlier (see figure 5) was the use of a 
session manager process to act as a trusted subject in order to manage and coordinate such 
a tree. A session manager has to be a trusted subject as it is dealing with computations 
at different security levels and thus needs to bypass the usual mandatory access controls 
(particularly the • property) in a Bell-LaPadula framework. A session manager always 
maintains a global snapshot of the entire tree of computations as it progresses. 

Although conceptually a message sent to a higher level object results in the immediate 
3The DELETE operation has not been directly incorporated into the model. It can be viewed as a 

particularly drastic form of WRITE. 

17 



Figure 3: A tree of concurrent message managers 
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Figure 5: A kernelized architecture with trusted subjects 

fork of a new concurrent message manager, the session manager limits the actual degree 
of concurrency by scheduling computations in a secure and correct manner. Figure 4 
illustrates the overall strategy used by the session manager in scheduling these concurrent 
computations. It utilizes the following invariant in managing a tree of computations: 

• Invariant: A computation is started if and only if all the current as well as 
future computations to the left of it are guaranteed to execute at a higher level or 
incomparable level. 

Note that this invariant guarantees the following property: for every security level there 
can exist at most one executing (active) computation at that level at any given time. In 
other words, some forked computations may be temporarily queued for execution. 

The derivation of this invariant is actually motivated by the dual requirements of 
correctness and security. To see this, we observe that if security were our only objective, we 
could allow maximum concurrency by enabling computations to unconditionally proceed. 
However, ensuring correctness (equivalence to the intended logically sequential execution) 
would then be difficult, if not impossible. Thus the "only if part of the above invariant is 
required for correctness. To do this we have to ensure that all writes performed by earlier 
forked computations at or below the level of a computation say n, are made visible to n 
(in accordance with sequential precedence). Thus by the time n starts, all these earlier 
forked computations should have terminated. 

The "if" part of the invariant is an artifact of our algorithm and intuitively maximizes 
the degree of concurrency (as computations are not unnecessarily help up). In fact, we 
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Figure 6: Level by level scheduling in a simple lattice 

conjecture that there are many algorithms allowing varying degrees of concurrency. 

We illustrate one such algorithm that allows the least concurrency (but guarantees 
correctness). The basic idea is to follow a level by level scheduling strategy. Thus given 
a finite set of actions at multiple levels, we first schedule and execute (to completion) all 
the lowest level actions in the security lattice (one at a time, of course). This is followed 
by actions at the next higher levels and we continue in this fashion until those at the 
highest level in the lattice are scheduled last. It follows that whenever there are actions 
at incomparable levels, they will be executed concurrently (to avoid a sideways signaling 
channel). For example, given the security lattice in figure 6 we would first schedule 
and execute all the actions of message managers running at the lowest level unclassified. 
Upon completion, we would then execute concurrently the actions at the incomparable 
levels (S{A}) and (S{B}). Finally when all actions at both these levels have completed, 
those at the highest level (TS{A,B}) are scheduled. Our focus in this paper will be on 
implementing this simpler level by level scheduling strategy without the use of session 
managers as trusted subjects. 

Now back to our original invariant. The progressive execution of the tree in figure 
3 as governed by this "if and only if" invariant is shown in figure 4. The terminated 
message manager (node) which advances the computations to the next stage is highlighted. 
Message manager 2 being the first to be forked is allowed to execute immediately. However 
message manager 3 is queued up. Our invariant guarantees that message manager 3 
remains queued (suspended) at least till such time as message manager 2 (and any future 
children at level top secret) terminate. This action is necessary so that the writes by 
message manager 2 and its children are made visible to the top secret message manager 3, 
due to sequential precedence. Message manager 4 at level confidential is allowed to execute 
immediately on being forked, since all active as well as future message managers to the 
left of it will be at levels higher than confidential. We also notice that the termination of 
message manager 2 results in the execution of message managers 3 and 6. In essence, our 
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invariant guarantees that the execution of a lower level message manager is never delayed 
due to an earlier forked and executing message manager at a higher level. 

2.3    Serial Correctness 

As mentioned before, one of the key issues to be tackled with these concurrent computa- 
tions is related to providing synchronization and ensuring serial correctness. We have to 
ensure that the concurrent execution guarantees the same result (object states) as in the 
original logically executed sequential (single) computation. A multiversioning scheme for 
this purpose was presented in [9]. The scheme guarantees that high level methods would 
read down object states at lower levels that were equivalent to the one in the sequential 
execution. To enable this, versions identifying lower object states that existed at the time 
a (higher) message manager was forked are maintained. When the forked high level mes- 
sage manager becomes active, it has the necessary timestamps (in a local-stamp table) 
identifying all versions of objects at lower levels that it will need to process read-down 
requests. These entries are never modified after a message manager starts. A write stamp 
(WStamp) at the level of the message manager identifies the next version that will be 
written at its level. On start, a message manager increments this timestamp entry un- 
conditionally before the first write/update operation and subsequently increments it after 
every fork request made to the session manager. 

3    IMPLEMENTATION WITHOUT TRUSTED 
SUBJECTS 

Having given a background to the trusted subject architecture and implementation frame- 
work, we now address the issue of implementing the message filter model without trusted 
subjects. Thus we can no longer rely on the central control and coordination (of the con- 
current computations generated by a user session) that was provided by a session manager. 
Rather, these computations would have to be managed in a distributed fashion. This also 
follows from the fact that no system component would at any time ever have a global 
snapshot of the set of computations in progress. In light of this, is distributed manage- 
ment in a secure manner possible? We assert (and later demonstrate) the feasibility of 
this based on the following observations: 

• The decision to start or queue a computation can only be affected by other compu- 
tations at a lower level. In other words, one only needs to look down to determine 
this and thus will not violate mandatory security. 

• The termination of a computation (message manager) can result in the subsequent 
start-up of other computations only at higher levels. This can be accomplished by 
sending messages upwards and without violating mandatory security or introducing 
downward signaling channels. 
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Figure 7: A kernelized architecture without trusted subjects 

Figure 7 illustrates the reworked architecture without session managers acting as trusted 
multilevel subjects. In comparison to the trusted subject architecture in figure 5, a mul- 
tilevel session manager is now replaced by single-level level managers. A level manager is 
responsible for scheduling and coordinating all computations forked at its level. Message 
managers are short-lived as they are created and terminated dynamically as the need 
arises with fork requests. On the other hand, this architecture calls for the existence of a 
long-lived level manager at every security level for which a computation can be potentially 
forked. 

As can be seen in figure 7, this architecture is a layered one and consists of a storage and 
an object layer. The security perimeter of the object layer consists of the following prim- 
itive operations: SEND, QUIT, READ, WRITE, and CREATE. The READ, WRITE, 
and CREATE are related to to the primitive messages discussed earlier. The SEND and 
QUIT are system primitives used by message managers (methods) to send (non-primitive) 
messages and replies. The message manager algorithms for these are shown in figure 8. In 
our original architecture with trusted subjects, the interface between a message manager 
and its session manager consisted of two calls: (1) FORK issued by a message manager 
to its session manager to request the creation of a new message manager and (2) TER- 
MINATE issued by a message manager to its session manager to terminate itself. In our 
revised architecture without trusted subjects, these calls form the interface between a 
message manager and its local level manager. 
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3.2    Achieving Distributed Coordination 

We now address the issue of coordinating a tree of concurrent computations to enable 
overall progress. We begin by describing a few data structures. 

Every message manager maintains the following information: 

Local-stamp: a vector of timestamps to process read down requests; 
Fork-stamp: a stamp identifying the message manager's fork order; 
WStamp: the write stamp for versions written by the message manager; 

Every level manager maintains the following data structure: 

Current-WStamp:    the current timestamp given to objects written; 
Queue: a queue of message managers waiting to be activated; 
Fork-history: a list of ordered pairs (fork-stamp, WStamp); 

Our focus in the remaining sections of the paper will be on algorithms to achieve 
the simpler level-by-level scheduling strategy. Although this scheduling approach is not 
optimal in terms of the degree of concurrency allowed, it gives valuable insights into how 
a centralized coordination task can be carried out in a distributed, correct, and secure 
manner in the multilevel context. 

3.2.1    Maintaining Global Fork Order 

As mentioned earlier, one of the difficulties in achieving distributed coordination can 
be attributed to the lack of a global view of the computations as they progress. In 
particular, without a global data structure such as a tree we would not know the relative 
order in which message managers are forked (in a sequential execution) by a user session. 
Knowledge of such ordering is crucial in maintaining serial correctness. 

To elaborate on the above, consider the tree in figure 9. With a level-by level scheduling 
strategy, the fork of message manager 10(TS) by 1(U) will be queued up at the top secret 
level manager before the fork of 6(TS) by 2(C) (as 2(C) will not be started until 1(U) 
terminates). However 10(TS) should be dequeued and executed only after the termination 
of 8(TS) and message manager 8(TS) in turn should be executed only after the termination 
of 6(TS). This is required to guarantee correctness as the updates of 10(TS) at level top 
secret should not be visible to either 6(TS) or 8(TS) as they are both to the left of it. On 
the other hand, we want to make the updates of 6(TS) visible to 8(TS) and the updates of 
both message managers 6(TS) and 8(TS) in turn visible to 10(TS). Thus there is a need 
to capture the information that 10(TS) is to the right of 8(TS) and 8(TS) is itself to the 
right of 6(TS). One could be tempted to obtain the above ordering information by reading 
off a system low real-time clock, every time a message manager is forked. However, as 
shown above, forks are not always generated (in real time) in the order consistent with a 
sequential execution and thus a solution with real-time clocks will not work. 

Our proposal here is to derive such an ordering from a hierarchical scheme to generate 
fork-stamps. Every message manager on being forked is assigned a unique fork-stamp by 
the parent issuing the fork. The actual fork-stamps generated for the tree in the above 
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procedure SEND(m, p, 01, 02) 
if 01 7* 02 V m £ {READ, WRITE, CREATE} then case % i.e., m is a non-primitive message 

(1) L(01) = L(02) 

(2) L(01) ~ L(02) 

(3) L(01) < L(02) 

PUSH-STACK(p); t2 «- select method for 02 based on m; start t2; 

WRITE-STACK(NIL); RESUME; 

FORK(lmsgmgr, 02, m, p); WStamp «- WStamp + 1; 
WRITE-STACK(NIL); RESUME; 

(4) L(01) > L(02) :   PUSH-STACK(p); t2 «- select method for 02 based on m; start t2; 

end case; 
if 01 = 02 A m € {READ, WRITE, CREATE} then case % i.e., m is a primitive message 

(5) m is a READ :      if L(01)= Imsgmgr then v ♦- WSTAMP else v «- RSTAMP(L(01)); 
read 01 with max{version: version < v}; 

(6) m is a WRITE :    write 01 with version <- WStamp; 

(7) m is a CREATE : create 0 with L(0) *- L(01) and version «- WStamp; 

end case; 

end procedure SEND; 

procedure QUIT(r) 

POP-STACK; 
if EMPTY-STACK 
then TERMINATE(lmsgmgr,WStamp) 
else [WRITE-STACK(r); RESUME;] 

end procedure QUIT; 

Figure 8: Message manager algorithms for SEND and QUIT 

example is also shown in figure 9. A set of four digits are used for this example with 
fork requests at levels U, C, S, TS, and TTS. The root message manager 1(U) at level 
unclassified (U) is given an initial fork-stamp of 0000. It is then required to increment 
the most significant (leftmost) digit for every fork request issued. Thus 1(U) assigns the 
fork-stamps 1000, 2000, and 3000 to its children 2(C), 7(S), and 10(TS) respectively. Now 
a message manager at confidential such as 2(C) is required to increment the second most 
significant digit of its fork-stamp for every subsequent child it forks. In other words, with 
increasing levels, a less significant digit is incremented. Hence the top secret message 
manager in our example will be required to increment the least significant (rightmost) 
digit (as shown by the fork-stamps assigned to the children of 10(TS)). Thus a message 
manager in the subtree rooted at 2(C) will always have smaller fork-stamp than one in 

the subtree rooted at either 7(S) or 10(TS). 

In light of our earlier discussion of this example, we now see that 6(TS) will indeed 
have a lower fork-stamp than 8(TS), and 8(TS) in turn will have one lower than 10(TS). 
We are thus able to implicitly capture thefork order m these fork-stamps. Finally, we 
note that an appropriate number of digits can be allocated for generating fork-stamps so 
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Figure 9: Hierachical generation of fork-stamps 

as to account for the maximum degree of a node as well as the maximum depth of a tree 
of computations. 

3.2.2    The Processing of FORK and TERMINATE requests 

A tree of message managers (computations) advances to completion through the genera- 
tion of FORK and TERMINATE events. Every FORK results in the creation of a new 
message manager and every TERMINATE could release one or more message managers 
for execution and subsequent completion. We now discuss the algorithms to coordinate 
FORK AND TERMINATE events. In our exposition, we will highlight how schemes 
to guarantee serial correctness are incorporated in these algorithms through the use of 
multi-versioning techniques. 

The algorithm to process FORK requests is shown in figure 10. On receiving a FORK 
request from a lower level, a level manager creates a new message manager process (com- 
putation) and records the fork-stamp (passed on by the parent issuing the FORK) in the 
message manager's data structure. Now comes the task of initializing the message man- 
ager's local-stamp table entries. The timestamps for these entries are actually acquired 
in two phases. The first phase is at FORK time and the second phase is deferred until 
the message manager starts. 

Consider for the moment the first phase. During this phase, a message manager's 
local-stamp entries are initialized for all the levels of its ancestors on the path from the 
root to itself. The timestamps for these entries are obtained from a vector of timestamps 
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Procedure FORK(02, m, p) 

{ 

Create a new message manager mm; 

%Record the fork-stamp passed on by the parent 
mm.fork-stamp *— p.fork-stamp 

%Begin phase 1 of acquiring local-stamp entries 
For (every level / < level of the parent of mm) 
do 

initialize mm.local-stamp table entries from p.rstamps; 
End-For 

ENQUEUE(mm); 

} 
end procedure FORK;   

Figure 10: Level manager algorithm for FORK 

passed on by the parent issuing the FORK request. In fact, every message manager is 
required to save the timestamps in the vector (rstamps) it receives from its parent and on 
issuing a FORK, to reconstruct a new vector to give to its child. This newly constructed 
vector will contain the timestamps from the old vector appended with the write stamp 
(WStamp) at the level of the issuing message manager (which identifies the latest versions 
written before the FORK was issued). Obviously, the number of entries in such a vector 
that is incrementally constructed increases with the number of direct ancestors and the 
number of security levels (i.e., with the depth of the computation tree). 

To see why the timestamps acquired in the first phase preserve serial correctness, 
consider the path from 1(U) to 5(TS) in the tree in figure 4 (a). In a sequential execution, 
when 5(TS) is forked the ancestor message managers 4(C) and 1(U) will be blocked 
(waiting to resume execution). To be more precise, when 4(C) was forked its parent 1(U) 
was blocked and when 5(TS) was forked 4(C) in turn was blocked. Hence the versions 
that will be read by 4(C) at the lower level unclassified will be the ones that existed 
at the time 1(U) was blocked. In a similar fashion, the versions read by 5(TS) will be 
those that existed at the time 4(C) was blocked. Also, the versions read by 5(TS) at 
level unclassified will be the same as those read by 4(C) since 1(U) remains blocked until 
both 5(TS) and 4(C) terminate. Now the timestamps identifying these versions at levels 
unclassified and confidential are precisely those passed along to 5(TS) when it was forked. 
Thus equivalence (in read down operations) to a logically sequential execution is achieved. 
Now for an intermediate level such as secret which is not the level of any of the direct 
ancestors of 5(TS), the initialization of the secret local-stamp entry would have to be 
delayed until 5(TS) is actually started (for execution). This is thus accomplished only in 
phase 2. The timestamp for such an entry will identify the latest version written by the 
last forked message manager at level secret (if any), that is to the left of 5(TS) in the 
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Procedure TERMINATE(lmsgmgr, WStamp) 

{ 
%Let tt be the message manager that just terminated at level Imsgmgr 
%Let Im be the level manager at level Imsgmgr 

% Update local current write stamp from tt 
lm.Current-Wstamp <— Wstamp 

% Update local Terminate-history with the fork-stamp and Wstamp of tt 
Append-terminate-history(fork-stamp, WStamp); 

If queue is not empty 
then 

DEQUEUE(queue, mm); 
START(mm); 

Else 
Send a WAKE-UP message to all immediate higher level managers; 

End-If 

} 
end procedure TERMINATE; 

Figure 11: Level manager algorithm for TERMINATE 

computation tree. If no message manager was ever forked for the user session at secret, 
the timestamp for the initial version that existed at the start of the session is used. 

Upon completing the first phase of initializing the local-stamp entries, the level 
manager proceeds to queue up the newly created message manager in its local queue. It 
is important to note that with our level-by-level scheduling strategy, we unconditionally 
queue up fork requests. This differs from the strategy governed by the "if and only if" 
invariant presented earlier, where a forked message manager may be immediately started 
under certain circumstances (thus allowing more concurrency). 

The processing of TERMINATE requests is shown in figure 11. When a message 
manager terminates, the write stamp (WStamp) identifying the latest versions written at 
its level is recorded by the local level manager. Next the level manager's fork-history 
data structure is appended with the ordered pair (fork-stamp, WStamp). This captures 
the fact that a certain message manager was forked in the order given by fork-stamp, 
and terminated writing versions with timestamp WStamp. Such a history is needed to 
implement the multiversioning scheme and to guarantee serial correctness. Finally, a level 
manager dequeues and starts the next message manager (if any) from the local queue. If 
the queue is found to be empty, a WAKE-UP message is sent to all immediately higher 
level managers in the security lattice. The receipt of this WAKE-UP message could 
potentially initiate the execution of queued up message managers at these levels. The 
processing of these WAKE-UP messages is described in the next subsection. 
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Procedure WAKE-UP 

%Proceed if the necessary condition has been met 
If a WAKE-UP message has been received from all lower levels 

then 
If the queue is not empty 
then 

Sort the queue by ascending fork stamps; 
DEQUEUE(queue, nn); 
START(nn); 

else 
Send a WAKE-UP message to all immediate higher levels; 

End-If 
End-If 

} 
end procedure WAKE-UP; 

Figure 12: Level manager algorithm for processing WAKE-UP messages 

Procedure START(nn) 

%Let nn represent the message manager to be started 
%Let Im represent the level manager managing nn 

% Complete phase 2 of acquiring local-stamp entries 
For (every level / lower than the level of nn for which no timestamp has been obtained 

so far) 
do 

nn.local-stamp[l] *- mm.fork-stamp; 
%where mm is the message manager entry in the fork-history at level I 
with max{fork-stamp: fork-stamp < nn.fork-stamp) 

End-For 

% Update the write stamp (WStamp) from the level manager 
WStamp «— lm.Current-WStamp + 1; 

%Begin execution of the message manager nn 
execute(nn); 

} 
end procedure START; 

Figure 13: Level manager algorithm for START 
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O     An empty level 

©    A non-empty level 
- - •► Wake-up message 

Figure 14: A lattice with WAKE-UP forwarding through empty levels 

3.2.3    WAKE-UP Messages and Level by Level Activation 

We now describe the semantics of processing WAKE-UP messages and how this achieves 
the level-by-level activation of computations (see figure 12). When a WAKE-UP message 
is received, a level manager has to determine if it can release for execution, computations 
queued up at its level. It can do this only if all activity at all lower levels in the security 
lattice have ceased. A message manager can be certain of this only when it has received 
a WAKE-UP message from all immediate lower levels in the security lattice. In other 
words, this is a necessary (and sufficient) condition for releasing computations at any 
level. Once this condition is met, a level manager sorts its queue of pending message 
managers by ascending order of fork-stamps. This is necessary to ensure that message 
managers are activated in the same order as in a logically sequential execution. After the 
sort is finished, the message manager at the head of the queue is dequeued and started. 
Subsequent termination of this and other message managers will cause the queue to be 
emptied in due time. 

If on receiving a WAKE-UP message from all immediate lower levels, a level manager 
finds its queue to be empty, it simply propagates (or feeds forward) a WAKE-UP message 
to all immediate higher levels in the lattice (see figure 14 for an illustration). It can do 
this because it is certain that the queue will remain empty for the rest of the duration of 
the user session as no more FORK requests will be forthcoming from lower levels. 

As illustrated so far, TERMINATE and WAKE-UP requests potentially result in the 
release and start of queued up message managers (computations). Once dequeued, a 
common START procedure (see figure 13) is used to complete the second-phase (alluded 
to earlier) of the task of initializing the local-stamp entries. Now for all lower levels 
for which no entries were obtained at fork time, the level manager examines the fork 
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histories. The level manager does this to determine the versions written by the last 
forked computations that terminated before the fork of the message manager that is to 
be started. This can be accomplished by comparing the fork-stamps at lower levels to 
the fork-stamp of the message manager to be started. At each level, the largest such 
stamp that is less than the stamp of the message manager to be started is picked, and 
the associated version/timestamp is read. Once the second phase is completed, the level 
manager provides the Current-WStamp value at its level incremented by one, to the 
message manager. This will enable the just started message manager to write the correct 
versions of objects at its level. It is important to note the need for incrementing this value 
by one, for otherwise older versions will initially be overwritten (and this would violate 
serial correctness). 

4    DISCUSSION 

Having discussed a level-by-level scheduling strategy, we now briefly and informally argue 
proofs of correctness, termination, and security. Introducing formal machinery to do 
this is beyond the scope of this paper and unnecessary as the arguments are simple and 
straightforward. 

• Correctness. As in the proof sketches given in [9] we argue serial correctness 
by showing that the versions read (down) by a message manager are the same as 
in a sequential execution, and that write operations at its level occur in the same 
relative order. In phase 1 of the protocol to obtain these timestamps, we have seen 
how these timestamps identify versions written by blocked ancestors. Since in a 
sequential execution the ancestors are always blocked due to a running child message 
manager, the equivalence of these versions follow. In phase 2, forkstamps are used to 
identify the latest versions written by earlier forked terminated message managers 
(that are not direct ancestors) at lower levels. Again equivalence follows from the 
fact that in a sequential execution all lower level message managers that are not 
direct ancestors of a starting message manager would have terminated. Finally, at 
every level the message managers are executed in ascending fork-stamp order. Thus 
the relative order of write operations would be the same in a history generated by 
our level-by-level scheduling strategy when compared to a second history generated 
by the logically equivalent sequential execution. 

• Termination. The proof that with a level-by-level scheduling and execution strat- 
egy the entire set of computations will eventually terminate, can be argued from the 
following: (1) Once a message manager starts, it runs uninterrupted to completion 
(although the forks it issues may be accumulated for later scheduling). Thus the 
time needed to empty the queue at any level is bounded; (2) A WAKE-UP message 
is sent only when the local queue at a level is empty and hence the receipt of a 
WAKE-UP message is a guarantee that all the computations at the lower sender's 
level have terminated; (3) There exists no cyclical wait-far relations for WAKE-UP 
messages among level managers in a security lattice. 
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• Security. This follows from the fact that all subjects are indeed single-level and 
mandatory access control is never bypassed. The potential for a multi-level trusted 
subject to leak information no longer exists. Also, we have addressed the issue of 
signaling channels that are intrinsic to the nature of object-oriented computations. 

As mentioned before, we have opted to present the simpler level-by-level scheduling 
strategy in this paper. But, what does it take to implement the more optimal scheduling 
strategy governed by the "if and only if" invariant? A FORK request may now im- 
mediately result in the start of a new computation. The major complication arises in 
determining when to release computations at a higher level. When a computation termi- 
nates at a level, say 1, we may have to send WAKE-UP messages to higher levels even 
when there are pending forked computations at 1 (to allow maximum concurrency). We 
are currently developing the algorithms formally to achieve this within the architectural 
framework of single level message managers coordinated by singler-level level managers. 
These algorithms and associated rigorous formal proofs will be reported in the future. 

5    CONCLUSION 

In this paper we have reworked a kernelized architecture for implementing the message 
filter model so as to eliminate the need for trusted subjects. The centralized management 
of computations now had to be done in a distributed fashion. The new architecture 
is in line with the true spirit of kernelized approaches to providing security, and would 
make the message filter model more acceptable to commercial implementation efforts. 
Having laid the above groundwork, we will be looking into issues involved in supporting 
multiple user sessions. In particular, we will be investigating the impact of concurrent 
computations from multiple users on concurrency control and transaction management 
schemes. Addressing and solving these issues would be critical to the evolution of the 
message filter model as a full fledged solution for multilevel security needs for object- 
oriented databases. 
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Abstract. 

Traditional database security is made more complex by the addition of rules to the data model. 

The security policy must control access privileges and accessibility for rule descriptions, executing 

rules, and database transitions (events). In this paper we extend the multilevel secure relational 

model to capture the functionality required of an active database, i. e. a database with production 

rules, able to respond to events. Database rules and events are given explicit security classifications 

by introducing multilevel secure relations for each. Database rule descriptions are treated as MLS 

objects. All new user-definable active components (rule actions, trigger detection daemons) conform to 

mandatory security constraints for subjects. An execution algorithm is given which employs cascading 

transactions to hide secure rule processing. Implications for implementing the new active functionality 

in an MLS relational database are also discussed. 
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1    Introduction 

Production rule systems are rapidly being incorporated into database systems, producing active 

databases [16] [5] [9] [11] [12]. Rules extend traditional passive databases with a responsive capa- 

bility, enabling enforcement of user-defined constraints, propagation of the effects of updates, and 

notification of concerned users about changes deemed relevant. Active database rules both read and 

alter data, without user intervention, in response to database state transitions (events) and predicates 

about the database state. Rules can be set-oriented, as in [18], and are thereby able to affect large 

subsets of the database in one execution. Rules can trigger other rules, initiating long chains of rule 

executions. 

Incorporating rules into the database greatly increases the power of users to act upon the database. 

Since rules act as a proxy for the user, they can automatically enforce policies and higher level con- 

straints. By contrast, secure databases restrict access to the data objects they manage. The users and 

processes allowed to retrieve and alter a data item are carefully controlled by the security policy. 

The effect of incorporating active rules on database security is just beginning to be explored. Many 

aspects of rules and their execution have security implications: 

• Rule descriptions. Rule descriptions are a form of data, and the database must make it possible 

to restrict access to them. For example, corporate knowledge bases can encapsulate expertise 

acquired at a large cost. The descriptions of rules in the knowledge base may contain equations 

and protocols which are classified. 

• Rule triggers. Rules are triggered by events, transitions in the state of the database. No unclas- 

sified rule should be able to see, and trigger on, an event performed by a classified subject. The 

database must make it possible to classify and protect events as secure objects. 

• Rule actions. Rules can read and update the database. The database must make it possible to 

restrict the access privileges of rule actions, as otherwise an unclassified user could use a rule to 

read classified information, such as a flight destination, or to falsely update it. 

Each of these requirements must be met and integrated into a single and comprehensible security 

framework. 

In this paper, we use the multilevel secure relational database model developed in a previous paper 

[15] as a framework for active database rules. We extend this model with active rules, which we call 

multilevel secure database rules, or simply MLS rules, achieving active database functionality without 

violating mandatory security. 

MLS rules follow the general event-condition-action (ECA) rule model [9]. Rules are triggered by 

an event, a condition predicate then is evaluated, and, if tke condition evaluates to true, an action 

is performed.  As described in Section 2.1, MLS rules are both set-oriented and SQL-based, as are 
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the rules of the Starburst DBMS [18], in contrast to general production rule systems found in expert 

systems. 

MLS rules are adapted to suit the MLS environment in several ways. 

• Rule descriptions and triggering events are represented in security-labeled tuples, protected MLS 

objects in the DBMS. 

• All user-definable active components (rule actions, trigger detection daemons) are made to con- 

form to mandatory security constraints for MLS subjects. 

• A rule implementation strategy to mitigate covert storage channels is described. 

• An execution algorithm, called cascading transactions, to mitigate covert timing channels is 

described. 

' Although many other database functionalities are affected by the incorporation of rules (concur- 

rency, recovery, efficient access, etc.), we focus on the interactions of rules with MLS security in this 

paper, and discuss the other functionalities (efficiency and transactions) only as they relate to security 

issues. 

A few previous works have discussed security in systems incorporating various types of rules. 

Matthew Morgenstern [10] considers the problem of covert inference channels in deductive (expert 

and database) systems subject to mandatory security. Thomas Berson and Teresa Lunt [1] discuss 

some research problems to be solved in bringing production rule systems under mandatory security 

requirements. In [8] Teresa Lunt describes an MLS object-oriented database model with constraints, 

including a brief description of backward chaining rules. Thomas Garvey and Teresa Lunt [4] extend 

this work by defining a mandatory security policy for a production rule (or knowledge based) system 

based on an MLS object-oriented database. 

Our work differs from that of [4] because we are concerned with active database rules instead of 

expert system (artificial intelligence) rules. Specifically, our rules execute in the context of atomic 

transactions (although they can apply globally). Our rules also incorporate a triggering event which 

makes them efficient in a database environment and limits them to forward chaining execution (which is 

suited to active applications). Efficiency of rule execution is vital not only to retain ordinary database 

functionality, but also to minimize opportunity for new covert timing channels. Set orientation (as 

described in [18]) makes our rules compatible with the database environment, and also improves 

efficiency. Additionally, our work differs from that of [4] because we base our view of an MLS database 

on the semantics described in [15]. 

In Section 2 we extend the security model of [15] to incorporate rules. Specifically, we describe 

rule descriptions and their representation as MLS data objects in an MLS rules relation. We also 

describe how rules are activated, deactivated, and represented to the user. In Section 3, we discuss the 

relationship of our work to two systems which also address both rules and security issues: the Starburst 
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active rules system, and the proposal for an MLS knowledge-based system by Thomas Garvey and 

Teresa Lunt. In Section 4 we describe the execution of rules in database transactions; both the simple 

case of rules which execute at the same level of the transaction which triggered them, and the more 

difficult case of those which execute at higher levels. In Section 5, we discuss how rules can be used 

to augment the MLS model itself through examples. In the final section we summarize and describe 

our future work. 

2    Extending the MLS model to Incorporate Rules 

In this section we show how the MLS relational model presented in [15] is extended to permit the 

definition and representation of MLS rules. We define MLS rules sufficiently to give an example 

illustrating their use, and to introduce our representation for MLS rules, the rules relation. 

2.1    A Syntax for MLS Rules 

Our MLS rule model borrows heavily from the database rules of Starburst [18] [17]. The following 

MLS rule syntax is nearly identical to that for Starburst active database rules, except as noted. 

An SQL-like syntax is used in MLS rules because it is set-oriented, and is compatible with many 

database systems. The events, conditions and actions of rules pertain to sets of items described by 

MLS-SQL constructs which are used to express rules. Set-oriented rules are vital (for efficiency) in 

databases which deal with large amounts of data via set structures such as tables in the relational 

model and collections in the object-oriented model. For example, a cost of living raise to an entire 

division can be regarded as a single event. Similarly, a condition may refer to the set of employees 

receiving raises, and an action may perform a set of corresponding updates to another relation. Set 

orientation also distinguishes database rules from general expert system rules, which usually are not 

set-oriented in a manner appropriate for use in databases. 

The syntax of an MLS rule is: 

WHEN transition predicate (the 'event') 

[LF condition predicate]        (the 'condition') 

THEN operation block (the 'action') 

Transition Predicate. A transition is a group of operations within a transaction. The user-defined 

actions of a transaction can form a transition, as can the actions of an operation block of a rule 

executed within a transaction. Rules may execute at the end of each transition. 

A transition predicate is one of UPDATED, INSERTED, and DELETED, Mowed by the name 

of a relational table of the database. The transition predicate is true if any of the operations (events) 

specified occurred to the table during a transition. For example, UPDATED EMPLOYEE refers to an 
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update to the EMPLOYEE relation. The transition predicate must be true for a rule to be triggered 

by a transition. If a rule has already been triggered by a transition, but has not yet been considered 

for execution, it is not triggered a second time. 

For MLS rules, the events which satisfy the transition predicate must be visible to the executing 

rule. We elaborate on this in Section 4. 

Condition Predicate. A condition predicate is an arbitrary MLS-SQL SELECT statement. If the 

result is non-empty, the predicate is satisfied. The entire IF clause can be omitted, in which case the 

predicate is considered always satisfied. 

The SELECT statement may refer to any of four transition tables, temporary relations containing 

the values of the set of tuples affected by the current transition. These four tables are INSERTED, 

DELETED, NEW UPDATED, and OLD UPDATED, containing tuples affected in the named manner. 

These tables are modeled as main memory MLS relations, which exist from the beginning of a transition 

until all rules triggered during that transition have executed, and are discussed in Section 3.1. 

The MLS-SQL SELECT statement is defined in [15]. Specifically, the SELECT may contain a 

BELIEVED BY clause if needed, and is evaluated over the part of the database visible to the rule 

executing it under mandatory security restrictions. 

Operation Block. The operation block is a non-empty sequence of MLS-SQL commands1, com- 

prising a transition. Arbitrary actions are used in some active models [9], and are permissible in ours 

as long as mandatory security can be ensured. For example, notifying other users can be modeled 

as insertion to the user's Mail relation, which ensures mandatory security. Transition tables may be 

referenced by actions. Limited by mandatory security, rule actions can only affect data at the security 

level of the executing rule. 

2.2    An MLS Rule Example 

Throughout this paper, we will refer to the following example. Figure 1 shows an MLS starship 

tracking relation ST, under a security lattice with three security levels: U < C < S. The U level 

collects, condenses, and updates sensor data about the location of local starships, and uses it for 

purposes such as scheduling room at ports and maintenance facilities. The C and S levels make use 

of the U sensor information in a more secure manner. 

The first two tuples of ST both belong to the MLS entity with eid Enterprise U. The third tuple 

belong to a second MLS entity with eid Falcon U. The first tuple contains the beliefs of level U about 

the Enterprise U. This tuple is the base tuple for the Enterprise U, and the S tuple is a non-base 

tuple (overriding the default beliefs from the first tuple). Level S agrees that Enterprise U (the 

Enterprise believed by level U) exists, and agrees with level U regarding all data except its mission, 

which is believed at the higher level to be security rather than exploration. 

Commands introduced in this paper, such as rule manipulation commands, can be used under some circumstances 

as well. 
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Starship KC Nationality Mission Destination Speed Sector TC 

Enterprise 

Enterprise 

Falcon 

U 

U 

U 

Federation 

Federation 

Eomulan 

Exploration 

Security 

Mining 

Earth 

Earth 

Jupiter 

3.0 

3.0 

2.0 

Venus 

Venus 

Pluto 

U 

S 

U 

Figure 1: Starship Tracking Relation ST 

Under ongoing hostilities, intelligence (at the S security level) has detected the Romulan fighting 

vessel Nighthawk on a moon of Neptune. Any ordinary Romulan ship slowing near Neptune is moni- 

tored. The S belief is that any slowing ship will be joined by the Nighthawk on a military mission. We 

define an S rule Watch-Neptune containing the S mission interpretation knowledge and appropriate 

responses. Watch-Neptune monitors slowing Romulan starships near Neptune. If a slowing ship is 

detected, a tuple for the Nighthawk S is inserted, the mission and destination of the slowing vessel 

can be updated, and a notification of the event is sent to the central office2. 

WHEN UPDATED ST 

IF    (SELECT * FROM NEW UPDATED ST 

WHERE Nationality = 'Romulan', Sector = 'Neptune', Speed < 1.0 

BELIEVED BY U) 

THEN 

INSERT INTO ST 

VALUES 'Nighthawk/5/Romulan/Combat/null/null/Neptune' 

UPDATE ST 

SET (Mission = 'Combat', Nationality = 'Romulan', 

Sector = 'Neptune', Speed = Speed) 

WHERE Starship in (SELECT STARSHIP FROM NEW UPDATED ST 

WHERE Nationality = 'Romulan' and Sector = 'Neptune' 

and Speed < 1.0 

BELIEVED BY U) 

INSERT INTO Central Office Mail Relation 

VALUES 'slowing Romulan ship detected near Neptune'; 

For rule Watch-Neptune to execute with security classification 5, the following must occur: First, 

Watch-Neptune must have been triggered in some transition occurring since its last execution. An 

update to the MLS relation ST, at any level visible to S, triggers Watch-Neptune for the transition 

2In our examples, we use a shorthand for SQL syntax. 
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in which the update occurs. Second, the rule's condition predicate is evaluated by a selection on the 

NEW UPDATED transition table to determine if any Romulan ships have slowed near Neptune. Only 

beliefs at level U, the level of sensor reports, are tested in the condition due to the 'BELLEVED BY 

U' clause. Third, if the predicate is true, the three actions of this rule are carried out. 

The actions of Watch-Neptune only affect data and subjects at level 5. For example, the Falcon 

U updated by the rule (the Romulan ship which slowed near Neptune) is now a two tuple MLS entity, 

with the updated beliefs contained in a new Falcon U tuple at the S level (the U level Falcon U 

tuple cannot be changed by an S rule). 

The state of ST after Watch-Neptune executes at level S is shown in Figure 2, reflecting both the 

triggering sensor update at level U and the result of Watch-Neptune's execution at level 5. 

Starship KC Nationality Mission Destination Speed Sector TC 

Enterprise U Federation Exploration Earth 3.0 Venus U 

Enterprise U Federation Security Earth 3.0 Venus S 

Falcon U Romulan Mining Jupiter 0.5 Neptune U 

Falcon U Romulan Combat null 0.5 Neptune s 
Nighthawk s Romulan Combat null null Neptune s 

Figure 2: ST After Watch-Neptune Executes 

2.3    Polyinstantiated Rules 

MLS rules are MLS entities, as defined in [15], As an MLS entity, an MLS rule can exist in multiple 

security levels simultaneously (be polyinstantiated and share the same eid). Consider the example 

of another rule pertaining to ST, Tracked-Fast-Ships, which helps maintain a running total of the 

starships being monitored which are travelling at a speed of 2.0 or greater. Tracked-Fast-Ships is 

triggered by insertions to ST (any visible insertion event). Its predicate is true if any ship has been 

inserted during the past transition with a speed field greater than 2.0. The action increments a 

persistent counter variable3 by the number of fast ships inserted during that transition. Note that 

rules to monitor deletions and updates would be needed to properly maintain the fast ship count as 

well; these rules are not included here. 

WHEN   INSERTED ST 

IF (SELECT * from INSERTED ST WHERE SPEED > 2.0) 

THEN    UPDATE FASTSHIPS 

•SET (TOTAL = TOTAL + 

3The counter variable is modeled by the single attribute relation FASTSHIPS. 
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(SELECT count(*) from INSERTED ST WHERE SPEED > 2.0)); 

Tracked-Fast-Ships shows the need for a nde to exist (and execute) at multiple levels simultaneously 

in an MLS environment. At each level, the number of ships seen may be different. For example, if the 

Nighthawk were found to be a fast ship, the 5 level would see two fast ships (the Nighthawk and the 

Enterprise) and the C and U levels would see only one fast ship (the Enterprise). Although a single 

rule running at the S level would have sufficient information to calculate the total fast ships visible to 

each level, an S level rule could not communicate this information down to the lower levels, because 

user-written rules must obey mandatory security. Therefore, Tracked-Fast-Ships must execute at each 

level to maintain this total. Tracked-Fast-Ships can execute at multiple levels simultaneously if it is a 

polyinstantiated MLS rule entity, in the Rules relation described in the following section. 

All executing rules pertaining to the ST relation (three instances of Tracked-Fast-Ships and one 

instance of Watch-Neptune) are shown in Figure 3. 

Level S 
Watch-Neptune 

Level C 

Level U 
Tracked-Fast-Ships 

Figure 3: Active Rules for Relation ST 

2.4    The Rules Relation 

MLS rules are represented in the Rules relation, which has eight fields: 

• Name. User-assigned name of the rule. 
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• Transition. The event triggering the rule. 

• Table. The table the transition pertains to. 

• KC. Key class. 

• Condition. The predicate. 

• Action. The operation block. 

• State. The current rule state: descriptive or active ('D' or 'A'). 

• TC. Tuple class. 

Name is the name given by the user to the rule. Transition and Table specify the event which will 

trigger the rule described. Transition is one of {deleted, inserted, updated}; Table can be any table in 

the user's schema, or the Rules relation itself. The four transition tables, described later, axe not in the 

domain of Table. KC is the level at which this rule was inserted. Name \ Transition \ Table \ KC 

serves "as the entity identifier for rules, distinguishing distinct MLS entities in the Rules relation. 

Condition and Action are strings containing appropriate text. 

The State of a rule is either descriptive or active. A rule is in the descriptive state until it is 

activated by the ACTIVATE command described in Section 2.5, and after it has been deactivated 

by the DEACTIVATE command of the same section. The rule is only able to trigger and execute 

while in the active state. The descriptive state permits the representation of nonexecuting rules. The 

descriptive state of rules is useful because it permits an intermediate stage of rule development, similar 

to the stage of uncompiled source code in software development. 

All operations on the Rules relation follow those described in [15], with the following constraints. 

Insertion is mediated by a rule parser interface, to translate textual rules into proper Rules relation 

tuples, and to ensure the values for each field are within their domains. All rules are automatically 

assigned the descriptive state after being inserted, and can only be deleted in the descriptive state. 

The beliefs of a level about the predicate and action of a rule can only be updated if those beliefs are 

not currently activated. Updates to beliefs about rule predicates and actions must also conform to 

their domains. The State field cannot be set in the operations UPDATE, INSERT, DELETE. 

Discretionary security, though not explicitly treated in this paper, limits insertions, updates, and 

deletions to the Rules relation. Only the trusted DBA may perform these actions. However, they may 

occur at any time during a transaction. Limits are placed on when rules can be activated, however, 

as defined below. 

An example Rules relation is shown in Figure 4, containing MLS rule entities Tracked-Fast-Ships 

and Watch-Neptune. The predicates and actions of the rules are as defined previously. 

41 



Name Transition Table KC Condition Action State TC 

Tracked-Fast-Ships 

Watch-Neptune 

inserted 

inserted 

ST 

ST 

U 

s 
-predicatel- 

-predicate2- 

-actionl- 

-action2- 

D 

D 

U 

s 

Figure 4: Example Rules Relation 

2.5    Rule Activation and Deactivation 

When a rule is active (in the active state), the rule is installed in the runtime system of the DBMS. 

It operates as an MLS subject with a security level equal to TC. We follow the Starburst rule 

implementation model [17], in that installing a rule in the database runtime system involves setting 

up or modifying a daemon called an attachment procedure to watch for events of interest to the rule, 

and to trigger it at the appropriate times. 

To place rules in the active state a subject issues the ACTIVATE command. The form of ACTI- 

VATE is as follows. 

ACTIVATE 

WHERE P 

[BELIEVED BY     L]; 

The ACTIVATE command has the effect of the following MLS-SQL UPDATE command on the 

Rules relation. 

UPDATE Rules 

SET (Predicate = Predicate and Action = Action and State = 'A') 

WHERE P 

BELIEVED BY L 

P is an MLS-SQL predicate and L a list of security levels. In addition to having the effect of this 

UPDATE, ACTIVATE also installs the activated rule in the DBMS runtime system. 

To activate Tracked-Fast-Ships in Figure 4 at level S, the following command would be issued by 

an S subject: 

ACTIVATE 

WHERE 

BELIEVED BY 

Name = Tracked-Fast-Ships 
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Name Transition Table KC Condition Action State TC 

Tracked-Fast-Ships 

Tracked-Fast-Ships 

Watch-Neptune 

insert 

insert 

insert 

ST 

ST 

ST 

U 

U 

s 

-predicatel- 

-predicatel- 

-predicate2- 

-actionl- 

-actionl- 

-action2- 

'A' 

'D' 

'D' 

S 

U 

s 

Figure 5: Rules Relation After Activate 

The resulting Rules relation is shown in Figure 5. 

The corresponding DEACTIVATE command is similar. 

DEACTIVATE 

WHERE P\ 

DEACTIVATE selects a set of active rules at the level of the issuer, removes them from the DBMS 

runtime system, and sets their State field to 'D'. 

ACTIVATE and DEACTIVATE are MLS-SQL commands, subject to two integrity conditions 

(foUowing [17]): 

• If a transaction enacts an event (update, delete, insert) on a table, it cannot subsequently activate 

or deactivate rules triggering on that table. 

• If transaction Tl precedes T2 in commit order, rule activations and deactivations by Tl must 

be visible in T2, and those performed by T2 must not be visible to Tl. 

The Rules relation also provides a succinct description of the active nature of the database. Such 

a description is valuable for human and automated reasoning about the characteristics of particular 

database rule sets [18] [13]. For example, the Rules relation has sufficient information to support a 

algorithm to detect rule cycles. 

3    Related Systems 

Examples of rule systems with a security facility are currently quite sparse. In this section, we 

describe two systems which have also set out to tie rules and security together. We first consider the 

Starburst DBMS, developed at IBM Almaden [17]. We model our rules and their implementation on 

Starburst. We describe Starburst in more detail, particularly how rules are processed in transactions, 

their implementation approach, and Starburst security. We then consider the recent proposal for an 

MLS knowledge-based system by Thomas Garvey and Teresa Lunt [4]. 
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3.1    Starburst 

Starburst is an extensible DBMS which has recently been extended with an integrated production rule 

system. The rules system has a clearly defined semantics [18], and has been Implemented [17] and 

used in applications such as constraint maintenance [2]. The syntax of Starburst rules is described in 

Section 2.1. 

Rule Execution. Starburst rules execute within the context of traditional database transactions. 

Starburst rules are triggered throughout a transaction, but execution is deferred until the transaction 

is ready to commit4. As a transaction progresses, therefore, events occur which trigger rules. Triggered 

rules are placed in a set of pending rules until the commit point of the transaction, at which time the 

rule processing phase is entered. 

At the onset of the rule processing phase, a rule is picked from the pending rules using a conflict 

resolution strategy, such as a user-defined rule priority. The rule predicate is then evaluated against 

transition tables (described below) and the state of the database. 

When the second and subsequent rules execute, prior rule executions in the transaction may have 

already updated the state of the database and, importantly, generated new events and transitions. 

To ensure predicates are evaluated against the current state of the database, transitions generated by 

prior rule executions are incrementally incorporated into the transition tables prior to the execution 

of each new rule in the rule processing phase. 

If the predicate of the selected rule activation is true, the action of the rule is then performed. 

Since rule actions can generate further database transitions, the execution of rules may trigger other 

rules, causing forward rule chaining and augmenting the set of pending rules. These are also executed 

until no more rules are triggered, at which time the transaction finally commits. 

Implementation. Every Starburst rule is triggered by a particular event on a particular table, 

such as UPDATED ST. (We will call this table-event combination simply an 'event'). Conversely, 

for every event, there is a set of zero or more rules which have an interest in (may be triggered by) 

that event. During rule definition time, the interest of a rule in its event is recorded in a persistent 

information code associated with that event. During execution, the information code is consulted 

to determine which, if any, rules need to be notified about the occurence of an event. When rule 

definitions are updated, the information codes are updated as well. 

Starburst permits the definition of attachment procedures, which can be automatically called af- 

ter each tuple level operation; transactions gain access to information about events at runtime via 

attachment procedures. An attachment procedure is associated with a particular event. During a 

transaction, when an event occurs (for which at least one rule has an interest) the attachment proce- 

dure for that event is called. The procedure consults the corresponding information code, and records 

4 Database rules may also be executed the instant an event occurs, or asynchronously. These approaches are not taken 

by Starburst (or us), but have situations in which they are appropriate [9]. 
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the information needed for triggering and for rule execution in data structures local to the transaction. 

Rules triggered by events thus far (pending rules) are recorded in the rule processing information data 

structure, and a record of the tuples affected by each event is kept in the transition log data structure. 

At the onset of rule execution, a rule is selected from the set of pending rules for execution, as 

mentioned above. Starburst permits users to specify that certain rules should be executed before 

or after other rules. This is vital to give control over apparent non-determinism in rule execution. 

Rule precedence information is represented in a global rule information data structure containing the 

transitive closure of all rule precedences. 

The predicate of the chosen rule may contain a reference to tuples affected by the event which 

triggered the rule. For example, if the rule triggers on a deletion to table t, then the rule can reference 

the set of tuples deleted from t during the current transition. The reference is made to a transition table 

for t. Four different transition tables can be formed from the events of a transition on t: INSERTED, 

DELETED, NEW UPDATED, and OLD UPDATED, containing tuples affected in the named manner. 

Transition tables are treated in the rule as if they were actual relational tables, with a scheme exactly 

the same as t. However, they are implemented by producing them on demand (when referenced in a 

rule predicate) by searching the transition log data structure of the transaction. The tuples relevant 

to the table, triggering operation, and transition during which the rule was triggered are selected to 

produce the table. Note that the information code is specific to the predicates of the rules interested 

in its event. Only the tuples relevant to interested rules are passed to the transition log during a 

transition. 

If the predicate is satisfied, the rule action block is executed in the normal manner. At the end 

of the transaction, all local data structures (transition log and rule processing information) cease to 

exist. 

Rollback. Starburst permits both total and partial rollback of transactions. Partial rollback 

resets the state of the transaction to a user-defined checkpoint, and total rollback removes all effects 

of the transaction. 

Rollback is handled by Starburst for all disk-based data structures. However, the Starburst rule 

manager employs three memory resident data structures which must be rolled back by the rules system 

when necessary. These three are the transition log, the global rule information, and the rule processing 

information. 

A transition log is maintained in the address space of each transaction, and exists for the entire 

duration of the transaction. As mentioned, it contains a record of the events which have occurred in 

the transaction. In the case of a total rollback, the transition log is simply set to empty. In the case 

of a partial rollback, the events which have occurred since the last checkpoint are removed. This is 

accomplished by comparing the timestamp of the last checkpoint with the timestamp of each event, 

and removing later events. 

The rule processing information exists in the address space of each transaction during the rule 
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execution phase. It contains information about currently pending rules. In the case of a total rollback, 

the rule processing information is set to empty, since no rules are pending. In the rule execution phase 

of a transaction, partial rollbacks are only permitted within the action portion of a single rule. That 

is, partial rollbacks may undo at most a subset of the action of one rule. However, the rule processing 

information is only updated after the execution of a rule action, so partial rollbacks never affect the 

rule processing information. 

The global rule information exists in memory at all times, but separate from the address space of 

any single transaction. It contains (mostly static) rule definition information brought into memory 

from the rule catalog on disk, to speed access to this information. Global rule information is only 

changed when rules are redefined, so the only rollbacks which pertain to the global rule information 

are rollbacks of transactions which modify rules. To undo rule modifications in the event of a rollback, 

each time a rule is modified, a procedure is queued in the commit queue (a queue of procedures which 

are executed at commit or rollback). This procedure can undo the rule modification action if the 

rollback flag is set when it is executed. 

Security. Security in the Starburst rules system is discretionary. Individual users are assigned 

privileges for the different objects in Starburst (including, perhaps, none at all). Possessors of privileges 

may grant privileges to other users. Starburst provides privilege types specific to object types. For 

example, three types of privileges may be assigned to rules: control, alter, and activate/deactivate; 

each subsumes its successors. 

To attach a rule to a table, a user must have both attach and read privileges for that table. 

Additionally, the condition and actions of the rule must not conflict with the current privileges of 

the user adding the rule. To drop a rule from a table, the user must have either control privilege 

on the table or attach privilege on the table and control privilege on the rule. To alter a rule, alter 

privilege is required. To activate/deactivate a rule5, activate/deactivate privilege is required. No 

special protection for reading a rule's definition has been implemented. 

Under discretionary security, users acquire and transfer privileges, whereas in MLS, all users and 

objects are assigned a security label which automatically limits their privileges. MLS currently offers 

less power to define special types of privileges than discretionary security does, since only two types of 

MLS access (update and read) have been defined so far, whereas many may be defined in discretionary 

security. However, MLS is more comprehensive in that every user and object must be consciously 

assigned to a security class, and in that security extends beyond the standard database access types to 

covert channels as well, such as denial-of-service leaks, which discretionary security does not consider. 

Additionally, MLS has a well-defined semantics, as defined in [15], which enables semantic security 

concepts such as MLS entities to be incorporated into the data model and its operations. 

In practice, the two approaches can be used together.  MLS systems often utilize discretionary 

Reactivation is used in Starburst with a slightly different meaning than we do in Section 2.5; deactivation leaves a 

rule installed in the runtime system without permitting it to trigger. 
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security within each access class [3]. This provides label-based security boundaries for larger groupings 

through MLS, and the ability to define more finely tuned access policies (such as need-to-know) within 

each MLS access class. The Starburst discretionary security system can, with some modifications, be 

used within the MLS framework. 

3.2    An MLS KBMS 

In [4] Thomas Garvey and Teresa Lunt present a proposal for an MLS knowledge based system, which 

includes a discussion of a rule system. This work is an extension of prior work in MLS object-oriented 

database systems [8] to address the requirements of knowledge based systems. 

The rules described are from an expert-systems model, in which each rule has an 'antecedent' and 

a 'hypothesis'. Rules can chain in a forward or backward direction. The 'rule object' has slots for 

its antecedent and hypothesis. An example of inference is given in which users at higher levels make 

better inferences due to the presence of more information and (presumably better) rules. Conflict 

resolution strategies are presented when two logically contradictory statements are encountered. 

Rule descriptions can be tailored at higher levels, similar to what can be done by updating rules 

in the rules relation, although the concept of a descriptive (non-active) rule state is not described. 

Database-oriented rule features such as a set-oriented rule syntax and semantics, database-specific 

optimizations such as efficient triggering, and execution in terms of atomic transactions are not de- 

scribed in [4]. For these reasons, the rule model in this paper follows the Starburst approach much 

more closely than the Garvey-Lunt proposal; our goal is a database-integrated rule model. 

4    MLS Rule Execution 

In this section we present further extensions to the MLS relational model which enable the activated 

rules to execute. Our rule execution model is based on the Starburst execution model. We present 

our model by discussing adjustments to the Starburst model from three perspectives: MLS read and 

update access restrictions, preventing covert storage channels, and preventing covert timing channels. 

4.1    Rule Execution Under MLS Constraints 

MLS rule activations execute within the context of traditional database transactions, as do the Star- 

burst rules described in Section 3.1. However, each phase of MLS rule execution must respect the 

constraints of MLS standard read and update access restrictions. 

Events are labeled with the classification of the MLS subject initiating them, and are treated as 

secure data objects in the DBMS. A rule activation only triggers if it can 'see' the event under MLS 

constraints. For example, if an S level user performs an update to table ST, the event UPDATE ST 

is treated (by the user, and internal to the DBMS) as an MLS object with security level S.  A U 
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activation triggering on the event UPDATE ST would not see (and be triggered by) this event, but 

an S activation of the same rule would see and be triggered by this event. 

The predicates of MLS rule activations likewise respect MLS constraints. Since the SELECT clause 

used to express the predicate is an MLS-SQL statement, it only selects tuples with an access class 

dominated by the rule activation executing it. Within the SELECT statement, transition tables may 

be referenced. We assume transition tables are modeled as (main memory) MLS relations for use in 

the SELECT statement. Since the table to which the rule is attached (triggers on) is an MLS relation, 

the Starburst principle that transition tables share a scheme with the attached table remains true for 

MLS rules. 

Execution of the operation block also adheres to MLS access restrictions. Each operation in the 

block is an MLS-SQL statement, therefore operations only make changes at the classification level of 

the activation, and data is only read from dominated levels. 

4.2    Covert Storage Channels in Rule Execution 

The above adjustments to the Starburst execution algorithm prevent reads and updates to MLS 

relations by rule activations which would violate MLS constraints. However, other (internal) data 

structures of the DBMS can contain secure data as well; especially of concern are the structures which 

support the definition and execution of rules. If these data structures are accessible to users in a 

manner violating MLS access restrictions, covert storage channels are introduced. In what follows, we 

illustrate some of the issues in a plausible MLS architecture, without doing an exhaustive analysis. 

Our model does not specify a particular implementation or internal data structures; at the current 

stage of the development of active database technology, not specifying internal data structures permits 

a useful degree of flexibility. However, for the purposes of analyzing and addressing the risk of covert 

storage channels, we assume a Starburst-like architecture supports our MLS rules system. For the 

purposes of this discussion, we only discuss the covert storage channel issues specific to an active 

DBMS. Others have set out to implement MLS relational databases [19] [7]; we assume general database 

issues, such as disk buffer access and transaction management, are being or will be addressed in those 

systems. 

Two major options have been taken in MLS aspects of database implemention, depending on the 

approach to trusted subjects. A trusted subject is a process operating within the database that is 

permitted to communicate with subjects having a lower security level than its own. These subjects 

are trusted to not violate MLS restrictions by passing high level information (to which they have 

access) to lower level subjects. 

The TRW [19] architecture permits trusted subjects, while the SeaView [7] architecture does not. 

We discuss covert storage channels from the former perspective, since the mapping to the Starburst 

architecture is quite direct.   Prohibition of trusted subjects is usually associated with a distributed 
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architecture (with one DBMS running per security level). A discussion from the latter perspective 

would involve redesign of active features of the runtime system to be distributed. For instance, 

activation procedures would need to span DBMS's. Since the Starburst rules system is not currently 

implemented in a distributed manner, our redesign and analysis would be much more speculative in 

this case. 

In the straightforward approach to implementing a Starburst-like active architecture, the rule 

catalog, information codes, transition logs, rule processing information, and the global rule information 

data structures could all contain data from any security level. Covert storage channels could therefore 

be set up through any of these data structures by procedures that read and write them. Where other 

means cannot be used, trusted subjects must mediate access to these data structures within the DBMS 

runtime system to ensure storage channels are not set up. 

Rule Catalog. The rule catalog is easily brought within the sphere of MLS access restrictions. 

Its functionality is captured by the rules relation in our model. Since the rules relation is an MLS 

relation, all access restrictions automatically apply. 

Information Codes. Each information code contains a persistent list of all rules interested in 

an event. Only trusted subjects (no user transactions, rule activations, or other untrusted processes) 

should be able to communicate information about the information codes within the DBMS. Specifically, 

this includes the attachment procedures which read the information codes, and the procedure updating 

information codes. 

Global Rule Information. The global rule information keeps information from the information 

codes and rule catalog in memory, to ensure quick execution of rules. Since it is designed to be widely 

accessible, and contains information about all rules (potentially from all security levels), it has a high 

potential for covert storage channels. 

One possible solution is to store the global rule information in the address space of a trusted 

subject which acts as a server to transactions requesting rule information. Another possibility is to 

divide the global rule information by security level, storing the information for rules at a transaction's 

security level within that transaction's own address space. 

Rule Processing Information. The rule processing information data structure contains a list 

of pending rules, and a local copy of global rule information relevant to these rules in the address 

space of the transaction. As illustrated in Section 4.3, a transaction can trigger rules which cannot 

execute within that transaction, because they execute at a level which dominates the transaction. 

The pending rules list must only contain rules which can execute within this transaction. Information 

about triggered rules is passed to the rule processing information by the rule execution module, which 

must therefore be a trusted subject. 

Transition Log. The transition log is implemented in Starburst as a double hash table within 

the address space of the transaction. It serves to produce the transition tables, and receives input 

from the attachment procedures. Attachment procedures must therefore be trusted subjects. 
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Note that transition logs only contains the events which are relevant to rules interested in that 

transaction. For a U transaction, the transition log cannot contain U events of the transaction which 

are only of interest to a C transaction (but not to the U transaction), even though the events have a 

security level U. 

4.3    Covert Timing Channels in Rule Execution 

During the rule execution phase, rule chaining can occur. That is, a rule's action may generate events 

which trigger more rules. Rule chaining may continue through many rules before it ends. In an MLS 

database, rule chaining is limited by the *-property, preventing it from propagating downward through 

levels. For example, it is impossible for a rule executing at level C to cause a rule in any level below 

C to trigger, since the C level events caused by the C rule are invisible to rules at lower levels. 

We require chaining to progress in a monotonically increasing direction through security levels, 

cascading upward as shown in Figure 6.   Thus, all pending rules at level U finish before any rules at 

Level S 

Level C 

Level U 

p*. 

■Bill 
£v>:vX::V., •    •■'<:<■.■■:•';. Illililil^S^ U pause until commit 

TIME 

onset of rule processing conclusion of rule processing 

Figure 6: Cascading Rule Chaining 

level C are permitted to execute. Any C rules triggered by the execution of U rules become pending 

rules until execution begins at the C level. 
In general, the execution of a level's rules is never affected by deferring the execution of higher 

rules. Low-to-high execution ordering is desirable from a timing channel perspective, since no pause 

will be experienced while high level rules (like Watch-Neptune in our example) execute between low 

level rules. Also, if a rollback occurs, no actions at a level higher than the rule performing the rollback 

have occurred. 
It is possible that a timing channel can be introduced by cascading chaining within a single trans- 

action, as shown in Figure 6. While C and S rules execute, the U subject pauses until the transaction 

50 



commit message is received; this pause could open a covert timing channel. A second problem exists 

with implementing cascading chaining within a single transaction as well; the list of pending rules 

in the rule processing information data structure of that transaction must contain rules from levels 

higher than the original transaction. Since these rules would exist within the address space of the 

original transaction, this would open a potential storage channel. 

For the above reasons, cascading rule chaining is accomplished in separate, but related, cascading 

transactions. A set of cascading transactions consists of an initial transaction and a set of rule 

processing transactions at higher levels which perform cascading rule chaining begun by the initial 

transaction. We illustrate cascading transactions with the following example in Figure 7.     During 

Level S 

Level C 

Level U 

1 

Hill 
*;x:v:y:v>::: 

WS0? :&$&:•:■$&:::::::: 

Wi 

1 Hill 
1 

lllllti Iff: 1 llllll 111 

:?:•:■£!$ w 

t      I     ! 
initial event 
relevant to 
an S rule 

initial event 
relevant to 
a C rule 

commit of U 
transaction 

commit of C 
transaction 

TIME 

commit of S 
transaction 

Figure 7: Cascading Transactions 

execution in a U transaction, an event occurs to a table to which an interested C rule is attached. 

The attachment procedure for the C rule normally responds by writing the relevant information to the 

tranaction's transition log. Instead, a new C transaction with a separate address space is spawned and 

receives this information6. If the information is relevant to the original U transaction, it is also written 

there (independently). The unshaded region of the C and S transactions in Figure 7 represents the 

period during which the transition log and rule processing information of each transaction are being 

filled. No locks are held and no events occur during the unshaded period. The shaded regions of the 

C and S transactions correspond to rule processing. 

At the end of rule processing in the U transaction, U commits7 and C rule processing begins in the 

Additionally, when the C rule is triggered, this information is passed to the rule processing information of the new 

transaction. 
TAt commit, we assume all locks are relenquished and the address space (and data structures contained in it) is 

reclaimed in a secure manner. 
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cascaded C transaction. In general, cascaded transactions execute in ascending lattice order. Trans- 

actions for parallel security classes may execute in parallel. Any sucessor of transactions executing in 

parallel waits until all transactions it dominates are finished before beginning execution. We assume 

a (trusted) transaction scheduler schedules cascaded transactions. 

At the conclusion of rule processing, each cascading transaction drops all its read and write locks8. 

The transaction scheduler, however, passes these locks to the next cascading transaction(s). In this 

process, all write locks are downgraded to shared read locks. When the final cascading transaction 

commits, all locks are dropped. 

The effect of a set of cascading transactions, considered as a whole, is serializable. When the 

cascading transactions are considered as a single transaction, the above locking protocol does not 

adhere to two phase locking since write locks are relequished before all locks are acquired. However, 

an early dropping of write locks is equivalent to holding them to the very end, as in two phase locking. 

Each cascading transaction updates a disjoint portion of the database (due to the *-property), so it 

would not matter whether a write lock is held beyond the transaction which used it, or not. For 

example, a write lock on a U item need not be held until the end of the cascaded S transaction, 

because level U data cannot be written to by any other cascaded transaction. 

The continuing execution of the cascading transactions spawned by a transaction * will be un- 

detectable from tfs perspective, preventing timing channels, with the exception of conflicts with the 

read locks retained by cascading transactions. A high transaction could attempt to introduce a timing 

channel by delaying a long time while a low transaction begins a new transaction and attempts to 

write to an item it wrote to in the earlier transaction. The write lock will be denied9 until the cascaded 

transactions finish. 

Usually, it is not possible to tell from the lock manager with whom a lock conflict has occurred, 

or how long an action was delayed before a lock was granted. Even if it were possible to infer the 

object of a conflict or a delay length, we believe that the resulting covert channel would have very low 

bandwidth. To help with this problem, the transaction scheduler can halt a cascaded transaction after 

a reasonable time-out period. Such transactions could be restarted later, assuming the transition log 

and rule processing information is saved (higher cascaded transactions which have not executed yet 

would also have to be saved). Such restarted transactions could suffer from a transition log which is 

outdated with respect to the database state. To help retain consistency, rules can be written so they 

rely heavily on transition tables (not on the database state which may be outdated). 

8We assume individual transactions adhere to the two phase locking protocol. 

'Unless a form of preemptive locking is used, and the write lock is granted forcing the high transaction to starve. 
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5    Utilizing Rules in Policies 

In this section, we illustrate the usefulness of MLS rules for enacting policies. A policy prescribes 

user-defined responses to specific circumstances which may occur in the course of database processing. 

The need to know constraints of discretionary security and the archival procedures for old data can 

be expressed as case by case responsive policies. We give an example of a policy concerning the MLS 

relational model described in [15]. In our example, we consider the need to automatically coalesce two 

MLS entities due to attribute polyinstantiation [6]. 

Under some circumstances, a user will decide two MLS entities in fact represent the same real 

world entity, and wish to coalesce them into a single MLS entity. The circumstances under which this 

decision is made may vary by the application and by the specific user, and the policy should not be 

written into the code of the DBMS. However, it is excessive to require a user to perpetually monitor 

the database in order to make policy descisions, and to manually perform the coalesce. An external 

application program could be run periodically to merge entities, but during the gaps between its runs, 

the user's policy on coalescing will not be enforced. 

The flexible and proactive nature of rules enables users to make decisions about how to handle 

situations which are application-specific or are not fully specified by the data model. These policy 

decisions are then enacted on the user's behalf by active rules when the situations occur, without 

the user's presence. MLS rules respond immediately, and adhere to MLS constraints, as described in 

Section 4. 

5.1    An Example of the Need to Coalesce 

Relation SODL of Figure 8 contains two starship entities, each containing one tuple. After SODL is 

Starship KC Objective Destination Last-Maintenance TC 

Enterprise 

Zardor 

5 

S 

Diplomacy 

Warfare 

Romulus 

Romulus 

4-12-2003 

5-2-2003 

S 

s 
Figure 8: SODL 

updated with the insertion of the Enterprise U, it appears as in Figure 9. 

Semantical^, SODL now contains two MLS entities, the Enterprise U and the Enterprise S, 

which are polyinstantiations of each other. This semantic state may have been reached in one of (at 

least) two ways: 

1. The U level inserted the Enterprise U because it now believes a starship named Enterprise exists 

which, in reality, is not the same starship as the Enterprise S. For example, a new starship may 
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Starship KC Objective Destination Last-Maintenance TC 

Enterprise 

Enterprise 

Zardor 

U 

S 

S 

Exploration 

Diplomacy 

Warfare 

null 

Romulus 

Romulus 

4-12-2003 

4-12-2003 

5-2-2003 

U 

S 

s 

Figure 9: SODL After Insertion 

have been manufactured and inadvertently given the same name as the Enterprise S because 

the existence of the Enterprise S is unknown to the commissioner10. 

2. The U level inserted the Enterprise U because information about the Enterprise S became 

available via a channel external to the database. For example, some information about the 

existence of a starship named Enterprise (the Enterprise S) was released to a newspaper and 

read by a U subject. In this case, both the U and S levels contain beliefs about the same 

starship, although they are not the same MLS entity in the database11. 

The S level must decide between these two alternatives. If S decides to believe the former case 

is actually true, nothing need be done to the database, since it accurately distinguishes between two 

distinct MLS entities, with distinct eids. If 5 decides to believe the latter case is true, the database 

should be altered to better reflect these beliefs. S must coalesce its beliefs with the U level beliefs, 

forming a single MLS entity. 

5.2    COALESCE 

In order to coalesce the Enterprise S with the Enterprise U, the KC attribute of the Enterprise S 

must be changed from 5 to U. Since the MLS-SQL UPDATE command does not permit changing an 

eid, we define the MLS-SQL COALESCE command as follows: 

COALESCE        R 

WHERE P 

BELIEVED BY  X; 

Let COALESCE be issued by level /. The COALESCE statement is a variation of the UPDATE 

statement; WHERE and BELIEVED BY select a set of visible MLS entities, just as in UPDATE. For 

each selected entity, KC < I. 

10 Called entity polyinstarttiation in [6]. 

"Called attribute polyinstarttiation in [6]. 
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COALESCE has the following effect on the interpretation at level /. Consider an /-tuple t in the 

interpretation, bearing eid K KCi. For each selected MLS entity with eid K KCj (where KCj < KCi), 

a new /-tuple t' is generated that is identical to t, except that KCi is replaced with KCj. The tuple t' 

is a coalesced tuple. This is performed for each /-tuple, until a set of newly generated coalesced tuples 

has been formed. 

Property 1 could be violated by the addition of a tuple t' to the / interpretation if there already 

exists an / tuple t" having eid K KCj. If Property 1 would be violated, the coalesce is not performed 

and the newly generated tuples are discarded. Otherwise, the new tuples are added to the / interpreta- 

tion, and each tuple in / from which coalesced tuples were generated is deleted12. If no I tuple t exists 

with eid K KQ, where a selected MLS entity has eid K KCj (where KCj < Kd), COALESCE has 

no effect on the / interpretation. 

5.3    Using An MLS Rule To Coalesce 

A number of factors may influence the decision to coalesce. For example, if S and U level subjects 

read the same newspaper stories, then the S subjects may infer that Enterprise U and Enterprise 

S are in fact the same entity. Inferences can also be made from the state of the database itself. For 

example, values in the Enterprise U tuple can lead to a decision: if the date of service is known to 

be fairly random, the identical last service date of the Enterprise U and Enterprise S can lead to 

the inference they are the same ship, and should be coalesced. This knowledge by the S level can be 

encoded in the following rule Same-Starship: 

WHEN INSERTED SODL 

IF (SELECT * FROM SODL 

WHERE (Starship, Last-Maintenance) in 

(SELECT Starship, Last-Maintenance FROM INSERTED SODL ISODL 

WHERE ISODL.KC < SODL.KC 

BELIEVED BY ANYONE) 

THEN   COALESCE SODL 

WHERE (Starship, Last-Maintenance) in 

(SELECT Starship, Last-Maintenance FROM INSERTED SODL ISODL 

WHERE ISODL.KC < SODL.KC 

BELIEVED BY ANYONE) 

BELIEVED BY ANYONE; 

12 In practice, to maintain referential integrity, when entities are coalesced then the relationships these entities partic- 

ipate in also need updating. 
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Same-Starship monitors insertions (new MLS entities) in SODL. Whenever starships are inserted 

at a lower level than the rule activation, and their (apparent) key and Last-Maintenance date match a 

tuple at the rule's level, starships at the level of the rule are coalesced with those at the lower level13. 

After the COALESCE of Enterprise U and Enterprise S, SODL appears as in Figure 10. The 

Starship KC Objective Destination Last-Maintenance TC 

Enterprise 

Enterprise 

Zardor 

U 

U 

S 

Exploration 

Diplomacy 

Warfare 

null 

Romulus 

Romulus 

4-12-2003 

4-12-2003 

5-2-2003 

U 

S 

S 

Figure 10: SODL After Coalesce 

first two tuples of this relation now form a single MLS entity for the Enterprise U. 

Same-Starship at level / only coalesces the / level tuple of the Enterprise S with the Enterprise 

U. If Enterprise S were a multi-tuple MLS entity, Same-Starship would have to be activated at each 

level having an Enterprise S tuple to coalesce all tuples of the Enterprise S when Last-Maintenance 

dates match. However, each level decides for itself whether the Same-Starship policy is appropriate. 

If desired by another level, a rule performing a COALESCE using different criteria could be used, or 

no rule at all. 

6    Conclusions 

In this paper we have presented a model for multilevel secure rules modeled as MLS entities, in a single 

coherent security framework. We have shown how to extend an MLS relational database to incorporate 

active rules by introducing the special MLS Rules relation. Rules can be in the active or descriptive 

state, the latter permitting an exploratory (software engineering) approach to rule development. MLS 

rules respect the access restrictions of MLS security, and are designed to prevent covert storage and 

timing channels. 

Despite restrictions imposed by multilevel security, a great deal of modeling power is available when 

rules are embedded in the MLS framework in the manner we have described. We have demonstrated, 

through rules like Tracked-Ships and Watch-Neptune of Section 2.4, and the rule Same-Starship used 

to illustrate a coalescing policy in Section 5.3, the use of multilevel secure rules in several different and 

useful situations. Rules can enhance the power and flexibility of a database without compromising 

the requirements of mandatory security. 
13 Same-Starship employs a join between data at different levels of the database interpretation. Cross-level joins have 

been defined in [14]. 
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The SPEAR Data Design Method 

Peter J. Sell 
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Abstract 
This paper presents the SPEAR Data Design Method of specifying multilevel database 

applications based on the SPEAR Data Model. This data design method allows a database 
designer to decompose an application into entities and relationships and graphically represent 
the application using a SPEAR Data Diagram. An example multilevel database application is 
given to illustrate the method. In addition, the SPEAR Data Design Method is compared to 
the Semantic Data Model for Security (SDMS), another multilevel specification notation. 

1.0 INTRODUCTION 

Designing a database application is a complex process that becomes more difficult 
when the application is being designed for a multilevel secure database management system 
(DBMS). In order to simplify this difficult task, it is necessary to look at the application at an 
abstract level. By doing so, the database application designer gains a greater understanding of 
the application and, therefore, lessens the chance of an insecure design or implementation of 
the application. 

Most existing data modelling methods [Chen76] are not designed to handle multilevel 
data. The result of using an inappropriate method to design multilevel applications can lead to 
mistakes. Past attempts to create new data design methods to capture security features 
[Smith90] have not been adequate to specify all applications. 

The SPEAR Abstract Data Model [Wisem91] provides a model capable of describing 
applications at an abstract level. The SPEAR model does not provide a notation for the 
specification of applications. The SPEAR Data Design Method, therefore, attempts to provide 
such a notation for specifying database application based on the SPEAR Abstract Data Model 
as well as, the Semantic Data Model for Security (SDMS), a previous data modeling 
approach [Smith90]. 

The SPEAR Data Design Method allows a designer to model an application in terms 
of its entities and relationships and produce a SPEAR data diagram, a graphical specification 
of the application. This diagram includes classification information, entity relationships, and 
attribute constraints. 

This paper provides an overview of the SPEAR Abstract Data Model, describes the 
SPEAR Data Design Method, compares the SPEAR DataDesign Method with SDMS, and 
finally provides an example of an application specified using the SPEAR Data Design 
Method. 
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2.0 THE SPEAR ABSTRACT DATA MODEL 

Simon Wiseman of the Defence Research Agency (DRA) in Malvern, England 
developed a data model that allows database applications to be specified in terms of entities, 
classes, relationships, families and parties. This model is known as the SPEAR Abstract Data 
Model and is based on the E-R model developed by Peter Pin-Shan Chen [Chen76]. 

2.1 Entities and relationships 
The SPEAR data model uses abstraction to decompose the application into entities and 

relationships. An entity is a "real world" object that can be described in terms of its attributes. 
For example an entity may be a "car" or a "person". Some of the attributes of a car include a 
vehicle identification number, a model, and color. The attributes of a person may include a 
name, a birthdate, and shoe size. 

The value of an attribute for an entity is a set of values and is referred to as the 
attribute's value set. This feature allows the values for an attribute to be handled as a single 
object. For example, a car may have multiple colors such as a two-tone paint combination. 
The number of members in an attribute's value set can be limited to one. This corresponds to 
the standard E-R model [Chen76]. 

A relationship is between two or more entities. For example, a relationship between a 
"person" and a "car" may be "drives". In this case, the "drives" relationship is capable of 
identifying the person driving a car and the car driven by a person. 

2.2 Classes and families . . 
Database applications are typically concerned with groups of related entities. The 

SPEAR model, therefore, groups entities together into classes of entities. The entities in a 
class are described by assigning values to their attributes. An example of a class of entities 
may be "People". Each person in the class will have the same attributes (i.e. name, birthdate, 
and shoe_size), but the values for these attributes may be different. In some cases two entities 
may have the same values assigned to their attributes, e.g.two Joan Smith's, born on 1 January 
1960 and have a size 7 shoe may exist in the same class of people. 

A relationship is formed within two or more entities. This method, therefore, groups 
relationships together into families of relationships. In this case, a family will include all of 
the individual relationships between two or more classes. An example may be a family named 
"drives" that relates the class of "cars" and the class of "people". The "drives" family is able 
to identify the individuals that drive cars and the cars that are driven by people. 

23 Levels of classification 
The SPEAR Data Model allows the designer to specify classification constraints at the 

following levels: 

1) The existence of a class of entities or family of relationships. 
2) The name of a class or family. 
3) The number of individual entities in a class, (for example, knowing that 10 cars 

are included in the entity named "cars") or individual relationships in a family (knowing that 5 
people are driving cars). 

4) The name and existence of an attribute and the name of the domain of the 
attribute. 

5) The existence of a value for a particular attribute. 
6) The actual value of a particular attribute. 

Each of these six levels of classification has a corresponding classification in the 
SPEAR Data Design Method. This mapping is discussed in the next section. 
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Type of Class Graphical Notation 

Dynamic Class r    N\ 

v J 

Static Class ^V 

<^=^ 

Figure 1. Graphical Notation for Classes. 

3.0 THE SPEAR DATA DESIGN METHOD 

The SPEAR Data Design Method uses abstraction to simplify the application by 
ignoring unnecessary details while focusing on the structure of the data and its classification. 
Specifying the application using this design method consists of four steps: 

1) Identify the classes, families, and attributes of the application, 
2) Assign classification levels to the classes, families, and attributes, 
3) Identify the constraints on the attributes, and 
4) Construct a SPEAR diagram to graphically represent the application. 

This notation allows the database designer to graphically display the application, 
including all classification and attribute constraints. The graphical representation of an 
application is known as a SPEAR Data Diagram and such diagrams contains four major 
graphical notations: classes, families, inheritance, and connections. 

3.1 Class and family graphical notation 
Figure 1 shows the two graphical symbols used to denote the types of classes. The 

single outline of the box denotes that it is a dynamic class (i.e. the values of the attributes may 
change and entities may be added and deleted). An example of a dynamic class may be the 
cars built in 1982. In this example, values for the attributes of the car may change (i.e. the car 
may be repainted in a different color) or cars may be deleted from the class as they are sent to 
the junk yard. A static class (i.e. the values of its attributes do not change and entities cannot 
be added or deleted) is represented by a double outline. An example of a static class may be 
the models of cars manufactured in 1982. In this case, the values of the models of cars do not 
change, since this is historical information. 

Figure 2 shows the graphical notations for family diagrams. The single outline of the 
box denotes that its a dynamic family (i.e. the values of the attributes are allowed to change 
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Type of Family 

Dynamic Family 

Graphical Notation 

Static Family 

Figure 2. Graphical Notation for Families. 

and relationships can be added or deleted). A static family (i.e. the values of its attributes do 
not change and relationships cannot be added or deleted) is represented by a double outline. 

Both the class diagram and family diagram have three distinct parts (see Figure 3): the 
header section, the attribute section, and the constraint section. 

3.1.1 The header section 
The elements associated with the header section of the class or family are defined as 

follows: 
Class name is the name of the class and Familyjiame is the name of the family. The 

names of clasles and families must be unique within the application. 

Header Section 

Attribute Section -< 

Constraint Section. 

/"         s 

' CIass_Name (N) <M> 

attributel: doml (DO 

H   1   ——II! .» 
attribute2: dom2 (D2) 

e = <e2>,u =<t>2> 
Ha2  ,««.,*«_ «iiHiimimHwiitiiiimiHiimHi 

attribute3: dom3 (D3) 
e = <e3>,u =<\>3> 

Constraint! 
Constrain t2 

^E      
Family_Name (N) <M> 
attributel: doml (DO 

e = <£!>, X) =<\)i> 

Hal  wHUHmnHHHiHHmmmimmutiiiiii 

attribute2: dom2 (D2) 
e = <E2>,D =<U2> 

Ha2      HHiHIIIIHIIHIIUIIHHIIItlHHIIimtHWI 

attribute3: dom3 (D3) 
e = <e3>,u =<\>3> 

Constraintl 
Constraint2 

Figure 3. Class and Family Diagrams. 
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E is the classification of the existence of the class or family. 
N is the classification of the name of the class or family. It also is the default 

classification of the existence of the attributes of the class or family. In this case only, the 
classification of Attribute 1 's existence is N. (See below for classifying the existence of other 
attributes.) Note that the classification of the existence of the class or family (E) must be 
dominated by (<=) the classification of the name (N), i.e. N >= E. If N is not specified, the 
value of N defaults to the classification of the existence of the class or family (E). 

M is the set of classifications that classify the existence of an individual member of the 
class or family. It follows that to know the existence of an individual entity or relationship, it 
is necessary to know the existence of the class or family, therefore, M >= E. If M is not 
specified, the value of M defaults to the classification of the name of the class or family (N) 

3.1.2 The attribute section 
The elements associated with the attribute section of the class or family are defined as 

follows: 
attributel is the name of the first attribute that describes the entities of Classjiame 

and the relationships of Family_name. The underlined attribute name indicates that a single 
uniqueness constraint exists on the value sets ofthat attribute, i.e. this is the primary key for 
the class and family. That is, no two entities can have the same set of values for attributel. A 
composite uniqueness constraint is declared by underlining multiple attribute names. 
Uniqueness constraints may also be declared by placing the attribute name in the constraint 
portion of the box. Uniqueness constraints are optional. 

attribute2 and attribute are names of additional attributes that describe the class and 
family. The names of attributes must be unique within a class or family, but need not be 
unique within the application. In this example, the value sets of attribute2 and attribute3 are 
not unique. 

doml, dom2, and dom3 are the names of the domains for the corresponding attribute 
sets. 

Haj is the classification for the existence of the hidden attributes beneath the first 
dashed line. In this case, a user with a clearance that is not dominated by Haj is not able to 
know that"attribute2" exists. 

Ha2 is the classification for the existence of the attributes beneath the next dashed line. 
In this case, a user with a clearance that is not dominated by Ha2 is not able to detect that 
"attribute3" exists. 

There is no limit to the number of dashed lines that may be placed inside a class or 
family or the number of attributes below the line. 

Dj is the classification of knowing both that attributel is the name of an attribute 
which has a domain of "doml" and that it is the primary key attribute of the class 
"Class_name" and the primary key attribute for the family "Family_name". If Dx is not 
specified, the value of Dj defaults to the classification of the name of the class or family (N) 

D2 and D3 is the classifications of knowing the attribute and domain names for the 
second and third attributes of "Class_name" and "Family_name". If D? or D3 is not specified, 
the value of N defaults to the classification of the existence of that hidden attribute (Hai for 
D2 and Ha2 for D3) 

£„ is the set of classifications permissible for the existence of a particular value of an 
attribute. If e„ is not specified, the value of e„ defaults to the classification of the 
corresponding attribute's name (Dn) 

1)- is the set of classifications that a value of an attribute is allowed to have. If x^ is 
not specified, the value of i)n defaults to the classification of the existence of values for that 
attribute (e^) 
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Information associated with each attribute can be labelled to permit the following user 
accesses: 

a) The user does not know that an attribute exists, i.e. inspection of an entity 
may reveal one or more attributes, but the user is unaware of the existence of further 
attributes. 

b) The user may know that an attribute exists, but have no knowledge about its 
name or domain. 

c) The user knows of the existence, name, and domain of the attribute. 
d) The user knows of the existence, name, and domain of an attribute and is 

able to detect the existence of some of the values for the attribute. 
e) The user knows of the existence, name, and domain of an attribute and is 

able to see some of the values for the attribute. 

From a-e it follows that: 
Classification of a value in an attribute's value set >= 

Gassification of the existence of a value in an attribute's value set >= 
Classification of an attribute's name and domain name >= 

Classification of an attributes's existence >= 
Classification of the existence of the class or family 

Each of the above cases can be achieved by appropriately setting Dj.. D„, E, Haj.. 
Ha„, Ei ..£„, and Uj .. i)n. 

Knowledge of information protected by Dj includes information protected by N. 
Therefore, the user must be permitted to know about "Class_name" or "Family_name" before 
being given access to the information protected by D^ i.e. Dj >= N. 

Consequently, D2 >= Haj. 
Since E is protecting the existence of some of the attributes, it therefore follows that Dj 

must dominate E, i.e. Dj >= E. 
Haj protects the existence of an attribute below the dashed line. Therefore D2 >= 

Haj, since knowing the information protected by D2 includes knowledge of the existence of 
the attribute. As the existence of "attribute2" is to be hidden from users able to see the 
proceeding attributes, it follows that Haj >= E. 

Ha2 protects the existence of an attribute below the second dashed line. Therefore D3 
>= Ha2, since knowing the information protected by D3 includes knowledge of the existence 
of the attribute. As the existence of "attribute3" is to be hidden from users able to see the 
preceding attributes, it follows that either Ha2 >= Haj or Ha! and Ha2 are not comparable. If 
they are not comparable, problems may appear during implementation. 

£„ protects the existence of a particular value of an attribute. Therefore, it follows that 
for an individual element of an entity's or relationship's attribute value set e >= Dn. 

•Up protects the values of an attribute. Since it is necessary to know the existence of a 
value before knowing the actual value, it follows that for an individual element of an entity's 
or relationship's attribute value set, x> >= e„ for a particular n. 

The following table summarizes the classification constraints: 
D„ >= Ham >= E, where Han,is *e classification of the dashed line corresponding to 

D!>=N>=E 
x> >= e >= DB, for an individual element of an entity's or relationship's value set. 
HaB >= HaB.! 

3.1.3 The constraint section 
Below the solid line, constraints on the attributes are stated. Constraints can be one of 

four forms: 
1) attributejiame > value indicates the value of attribute_name must be greater than 

value. 
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2) low < attribute_name < high indicates the value of attribute_name is between low 
and high. 

3) #attribute_name >= 1, indicates that the attribute is allowed to have 1 or more 
values in its attribute "set. By default, the number of individual elements in an attribute's value 
set is one. 

4) attribute name, indicates that the values in the attribute's value set must be 
unique. Several attribute names may be underlined to indicate a multiple uniqueness 
constraint. 

In order to reference an attribute of another class or family, it is necessary to include its 
unique class or family name, since attribute names are not unique within the entire 
application. This is accomplished by preceding the attribute name with the name of its class 
or family. 

In the constraints section, a long reference to an attribute can be shortened by using a 
macro definition. A macro definition contains the attribute name, enclosed in quotes (") 
followed by s and the macro name. A reference to a person's age in a class named people can 
be shortened by the following macro definition: 

"People. shoe_size" = size 

3.2 Examples of classes 
Figure 4 shows two classes, "Cars" and "People". Default classification have not been 

used in this diagram. Figure 5 illustrates the use of default classifications Each car in the 
class of "Cars" can be described using three attributes, "VehicleJD", "Model", and "Color". 
In this class, all of the vehicle identifiers must belong to the domain of integers, the model is a 
character string, and the color is in the domain of colors. In addition, the values of 
"Vehicle_ID" must be unique. All the information is unclassified. The "Color" attribute has an 
integrity constraint that the number of individual colors in a value set must be at least one. 
This allows a car to have multiple colors, e.g. a two-tone paint combination. 

Persons in the "People" class are described using three attributes: "Name", 
"Birthday", and "Shoe_size". All of this information is unclassified, except the actual values 
of "Shoe_size" are confidential. In the "People" class the "Shoe_size" attribute's value must 
be greater than zero. 

r. u 
Cars (U) <U> 
Vehicle ID: Integer (U) 

e = <U>,u =<U> 
Model: dom_of_models (U) 

e = <U>, 1) « <U> 
Color: dom_of_Colors (U) 

e = <U>, v = <U> 

«Color >=1 

/: 
u 

People (U) <U> 
Name: String (U) 

e = <U>,'U =<U> 
Birthday: String (U) 

e = <U>,v =<U> 
Shoe_size: dom_of_size (U) 

e = <U>,\) =<0 

Shoerize > 0 

Figure 4. Examples of a Class of Cars and a Class of People 
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r. u 
Cars 

Vehicle ID: Integer 
Model: dom_of_models 
Color: dom_of_Colors 

#CoJor>=l 

People \ 

Name: String 
Birthday: String 

Shoe_aze: dom_of_ 
v =<C> 

size 

\sShoe_ri2e > 0 
) 

Figure 5. Examples of a Class of Cars and a Class of People 
Using Default Classifications. 

33 Example of a family 
Figure 6 Shows an example of a "Drives" family. This family does not contain any 

attributes or constraints. All information about the family is unclassified. 

3.4 Inheritance 
Two or more classes can be associated with an inheritance. Inheritance indicates that 

the classes are involved in a hierarchy, with the child class inheriting all the attributes and 
constraints of the parent class. If an entity is inherited by a subclass, that entity must have all 
of the attributes and constraints of the parent class. This type of inheritance is represented as 
a hollow arrow pointing from a subclass to its parent class. Figure 7 shows the graphical 
notation for types of inheritance. For example, a parent class contains cars. A sub class may 
be either four wheeled cars or three wheeled cars. An entity in the four wheeled car class will 
inherit all of the attributes of the car class, such as engine, steering wheel, brakes, and seats. 

The arrow may have a dashed or solid outline. The dashed outline indicates that an 
entity in the parent class does not have to be a member of the subclass. A solid outline 
indicates that each of the entities in the parent class must be an entity in the subclass. 

The arrow may have an arrow head on both ends. This indicates that the inheritance is 
two way. The parent class inherits all of the attributes and constraints of the sub class and the 
subclass inherits all of the attributes and constraints of the parent class, i.e. both classes have 
the same attributes and constraints. 

An arc may intersect the inheritance arrows, this indicates that an individual entity 
from the parent class may belong to at most one subclass associated with the arc. An 
association with out an arc indicates that an individual entity from the parent class may belong 
to more than one sub class. 

3 S Connections 
A class is connected to a family by a dashed or solid line. A solid line indicates that 

the entire set of entities of the class must be a party to some relationship in the family. A 

rU      
Drives (U) <U> 

Figure 6. The Drives Family 
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Type of Inheritance Graphical Notation 

Mandatory One-Way n 
Optional One-Way tC» 

1 
t « • 
1 
t 

Mandatory Two-Way 

7 

Optional Two-Way 1 
1 
1 
1 
1 

Figure 7. Inheritance Notation. 

dashed line denotes that only a partial set of entities of the connected class participates in the 
family. Figure 8 shows the graphical notation for the types of family participation. 

Attached to this line is the name of the party involved in the relationships. The name 
of the party may be underlined indicating that all the sets of values from the participating class 
are unique. 

Following the name of the party can be a number or a set of numbers in parentheses. 
These numbers indicate the number of individual elements in the party set allowed to 
participate in the family. A name without a number following it indicates that only one 
element may participate. It is also possible to require that the number of elements be within 
some range. The notation for this is the low number followed by '..' followed by the high 
number (e.g. 1..10). 

An arc through one or more lines indicates that the individual objects participating in 
the family are mutually exclusive. In other words, all the individual elements of all sets of 

Type of Participation Graphical Notation 

Mandatory Participation 

Optional Participation 
  

Figure 8. Connections Between Entities and Families 
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r. u 
Cars 
VehicleJD: Integer 
Model: dom_of_models 

Color: dom_of_Colors 

#Cok>r>=l 

/: 
u 

Car/D rU    - 
Drives 

ESEQüO) 

People 

Name: String 

Birthday: String 
Shoe_size: dom_of_size 

Weight > 0 

Figure 9. SPEAR Diagram Example 

parties are unique. For example, an individual car cannot be driven by more than one person 
at time. Similarly, a person can not drive more than one car at a time. 

Figure 9 shows an example of a possible connection between the "People" class and 
the "Drives" family and the "Cars" class. The solid line between the "Cars" class and the 
"Drives" family indicates that every car must participate in the family. The party from the 
"Cars" class is a "Car" and the party from the "People" class is a "person". The family relates 
all of the cars to some of the people. An individual relationship relates a single car and a 
single person. The dashed line between the "Drives" family and the "People" class indicates 
that not all people must drive a car. , .   .    • 

Figure 10 shows an abbreviated SPEAR diagram. This notation consists of the basic 
class and family boxes and the connections between them. All classifications and attribute 
information is deleted. This notation is necessary when showing the overall application where 
details may be omitted for clarity. 

4.0 SEMANTIC DATA MODEL FOR SECURITY (SDMS) COMPARISON 

Gary Smith of the National Defense University developed the Semantic Data Model 
for Security (SDMS) [Smith90]. 

The following areas of SDMS have been enhanced in the SPEAR notation: 
1) Arrowheads 
2) Attributes inside the entity notation 
3) Thickness of lines 
4) Expanded classification levels 

Figure lOldescribes the "People" and "Cars" classes described in Figure 8 using the 
SDMS notation. This example is used as a comparison between the SPEAR notation and the 
SDMS notation. 

(Cars   y Drives  ( People) 

Figure 10. Example of an Abbreviated SPEAR Diagram 
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drives —> 
<— is-driven-by 

Figure 11. Example of the SDMS Notation 
41 Arrowheads 

The SDMS model uses five different types of arrowheads to graphically represent 
integrity property constraints on the relationships. Figure 11 shows four of these types. As 
can be seen in Figure 8, the SPEAR notation does not rely on arrowheads to provide 
information. This has the benefit of simplifying the SPEAR diagram. 

4.2 Placement of attributes 
The SDMS notation physically separates the attributes from the entity. The SPEAR 

notation has included the attributes within the class construct. 

43 Line boldness 
The SDMS notation has added classification information to the thickness of an 

association line. In this notation classified associations are indicated with a bold line. An 
example of this can be found in Figure 11. The arrow that associates "Person" with 
"Shoe_size" is bold and has a confidential classification attached to this line. 

In the SPEAR notation, classification information is always included within the family 
or class notation. The thickness of lines in the SPEAR notation are irrelevant. One reason for 
this decision is that when photocopying the diagram the thickness of lines become less 
distinct, and therefore, classification information may be lost. 

4.4 Classification levels 
The SDMS model does not allow the separation of the existence of a value for an 

attribute and the actual value of the attribute. This requirement is part of the SPEAR model 
and SPEAR notation. 

5.0 Sample application 

The use of the SPEAR Data Design Method can be illustrated through a sample 
application involving the movement of cargo and personnel by ship. 

5.1 Description of application 
This application is a simplified version of the application described in "Crisis 

Management Sample Application for SWORD" [SellLewis91a]. This shortened version of 
the crisis management application involves the movement c£ cargo and personnel by ship. 
Orders are placed on ships and ships move between ports. An order can be one of four types: 
1) manoeuver order, 2) repair order, 3) load or unload order, or 4) wait order. 
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The manoeuver order requests that the ship report to a specific port. The repair order 
specifies that the ship report to a specific port for the specified repairs. The load or unload 
order requests that the ship either load personnel or cargo indicated by a positive number or 
unload personnel or cargo indicated by a negative number. The wait order requires the ship to 
remain idle at its current port until that ship is notified of the completion of an event For 
example, five ships may be assigned to leave port together, but one ship is in the process of 
unloading cargo. All five ships will be issued a wait order. Four of these ships will be 
waiting, while the fifth ship is completing its current order. After the ship completes its 
current unload order and executes its next order, the wait order, all five ships will now be able 
to execute their next order, in this case a maneuver order. A ship may be either in a port, being 
repaired at a port or sailing to a port at any one time. A ship may be idle, not executing an 
order, or have many orders waiting to be executed. 

Four different types of users will have access to this application: captains of ships, 
naval chiefs, maintenance coordinators, and journalists. 

5.1.1 Details of orders 
All orders contain a unique order number, the name of the ship the order is assigned to, 

and a priority number (the higher the number, the lower the priority). A manoeuver order also 
contains a destination. A repair order also contains a destination, a description of repairs, a 
time interval, and an actual description of the repairs. A load or unload order also contains 
change in equipment, change in personnel, and a time interval. A wait order also contains the 
name of the event. 

The following are examples of orders: 
Ship_A report to Port_2, Priority=l 
Ship_C load 20 personnel and 30 tons of equipment, time interval = 7 hours, 

Priority = 2 
Ship_D load -30 personnel and -10 tons of equipment, time interval = 3 hours, 

Priority = 3 
Ship_B report to Port_3 for repairs (Engine Repairs), time interval = 5 hours, 

Priority = 4 
Ship_E wait for Event_2, Priority = 1 
The knowledge that the orders exist and that they are orders on the fleet are 

unclassified. In addition, the knowledge of the total number of orders in the application is also 
unclassified. The name and existence of values for the order number, the assigned ship, and 
the priority number are all unclassified. The actual values for the order number and assigned 
ship are unclassified. The actual values for the priority number is confidential. 

The existence of manoeuver orders, repair orders and load or unload orders are 
unclassified. The existence of a wait order is considered confidential. 

For a manoeuver order the name, ability to count the manoeuver orders, knowing that 
a destination is an attribute and the existence of a destination value are all unclassified 
information. The actual value for a destination is secret 

For a repair order the name and ability to count the total number of repair orders are 
unclassified. Knowing that a repair order contains a destination, description or repairs and a 
time interval is unclassified, but the knowledge of the existence of an actual description is 
confidential information, the existence of values for the destination, description, and time 
interval are all unclassified. The actual values for the destination and description are both 
unclassified. The values of the time interval are confidential. The name of die actual 
description attribute and existence of values are confidential. Actual values for the actual 
description can be either confidential or secret. The description in this case is actually a cover 
story [Nelso91] [Wisem91a] for the actual repair description. 

For a load or unload order the name, ability to count the load or unload orders, 
knowing mat change in equipment, change in personnel, and time interval are attributes and 
the existence of values for the three attributes are all unclassified information. The actual 
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values for change in equipment and change in personnel are unclassified. The actual values 
for time interval are confidential. 

For a wait order, the name and ability to count the total number of wait orders are 
confidential. Knowing that a wait order contains an event name and the existence of a value 
for the event name is confidential. The actual event names may be either confidential or 
secret. 

5.1.2 Details of ship types 
All ships belong to a category of ship (i.e. destroyer, aircraft carrier,...). Knowing that 

types of ships exists is unclassified. Each type of ship includes a name, a maximum capacity 
for equipment and personnel and a maximum speed. The knowledge of the name "ship_type" 
is unclassified as is the ability to determine the total number of types of ships. Knowing that a 
type of ships has a name, maximum equipment capacity, maximum personnel capacity, and a 
maximum speed are all unclassified. The existence of values for all four of these attributes is 
also unclassified. The actual values for name, maximum equipment, and maximum personnel 
are unclassified. The value for maximum speed is confidential. 

5.1.3 Details of ships 
Each ship has a unique name and a cargo of equipment and personnel. The name 

"ship" and the ability to count the number of ships are unclassified. Knowing that a ship has a 
name, equipment, and personnel is unclassified, the existence of values for the name, 
equipment, and personnel are all unclassified. Actual names of ships are unclassified and 
actual values for equipment and personnel are confidential. 

A ship can be either in port, underway at sea, or being repaired. Knowing that a ship 
can be in one of these locations is unclassified. For a ship in port, the name and ability to 
count the number of ships in port is unclassified. A ship in port has two unclassified 
attributes, expected completion time and current port. The existence of values for these 
attributes are unclassified. The actual value for the expected completion time is either 
unclassified or confidential. The actual value for the current port is confidential. 

For a ship underway, the name and ability to count the ships underway is unclassified. 
A ship underway has an unclassified attribute for it, estimated time of arrival (eta). The 
existence of an eta value is unclassified and its actual value is confidential. 

Knowing that ships can be repaired and knowing the number of ships being repaired is 
unclassified. Ships being repaired have two unclassified attributes, port they are currently at 
and expected completion time. The existence of values for the two attributes is unclassified 
and the actual values are confidential. 

5.1.4 Port details 
Knowing that ports exist is unclassified. Knowing the number of ports is also 

unclassified. Each port has a name which is unclassified. 

5.2 The SPEAR diagram 
The first step in producing a SPEAR diagram is to identify the classes of entities and 

the families of relationships. The class of entities and their attributes are: 
1) Orders, 

a) Order number 
b) To ship 
c) Priority 

2) Manoeuver Orders (sub-class of Orders) 
a) Destination 

3) Repair Orders (sub-class of Orders) s 
a) Destination 
b) Description 
c) Time interval 
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d) Actual description (Hidden Attribute) 
4) Load and Unload Orders (sub-class of Orders) 

a) Change in equipment 
b) Change in personnel 
c) Time interval 

5) Wait Orders (sub-class of Orders) 
a) Event name 

6) Ships 
a) Name 
b) Current equipment 
c) Current Personnel 

7) Ships in Port (sub-class of Ships) 
a) Expected completion 
b) Current port 

8) Ships Underway (sub-class of Ships) 
a) Eta 

9) Ships Being Repaired (sub-class of Ships) 
a) Port 
b) Expected completion 

10) Ports 
a) Port name 

11) Ship Types (Static class) 
a) Type name 
b) Maximum equipment 
c) Maximum personnel 
d) Maximum speed 

12) Order Status 
13) Executing Orders 
14) Queued Orders 

The families in this application are: 
1) Executes (between Executing Orders and Ships) 
2) Order queue (between Queued Orders and Ships) 
3) Is_a (between Ships and Ship Types 

Figure 12. shows the overall SPEAR Data Diagram for the application. 
Steps two, three and four have been combined to produce the SPEAR Diagram in 

Figures 13 and 14. Although the diagram has been separated over two pages, the overall 
diagram of the application found in Figure 12 can be used to connect the two diagrams. In this 
case, the diagram are connected using the Order_Status class in Figure 13 and the Order class 
in Figure 14. 

6.0 Summary 

The purpose of the SPEAR Data Design Method is to provide a means of specifying 
multilevel database applications using the SPEAR Data Model. The SPEAR model allows six 
levels of classifications, that allows a database designer the flexibility to fine tune the 
classification-levels of the data to fit operational requirements. 

The SPEAR Data Design Method allows the database designer to analyze the 
application in abstract terms. The application is first decomposed into classes of entities and 
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Figure 12. Abbreviated SPEAR Diagram for Sample Application 
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Figure 13. Order Section Of Diagram 
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Figure 14. SPEAR Diagram of Crisis Management Sample Application 
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families of relationships. The attributes of the entities and constraints on those attributes are 
then determined. Once the constraints on the attributes have been specified, a SPEAR 
Diagram graphically specifying the application is produced. 

The SPEAR Data Design Method provides several enhancements to the SDMS 
notation. Among these enhancements are the reduction in the number of types of arrowheads, 
elimination of difference in line thicknesses, including an entity's attributes within the class 
notation, and expanded levels of classifications. 
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Abstract • 

It is widely thought that secure applications requiring cover stories must 
use a DBMS that forces the application to polyinstantiate. An example of the 
use of cover stories is given and it is shown that this can be implemented 
satisfactorily, without resorting to polyinstantiation, by using the SWORD 
secure DBMS. The example application is modelled abstractly, using a form of 
the Entity-Relationship model extended to cover security issues. The SWORD 
implementation is described and includes view definitions that ease its use by 
applications, and trigger definitions which add general purpose integrity 
constraints. 

1. INTRODUCTION 

* 
In this paper the Military Airlift Command Example (MACE) is described 

and it is shown how the requirements can be met using the SWORD secure 
relational DBMS [Wood92]. The requirement for cover stories is a particular 
feature of MACE and the goal of this paper is to show how cover stories can be 
provided using a secure DBMS that does not require applications to 
polyinstantiate [Wiseman91b]. 

MACE is a simple system for maintaining logistics information about 
aircraft. It is based on the requirements of the United States Transportation 
Command / Military Airlift Command (USTRANSCOM/MAC), as described in 
[Nelson91]. The reason for using a fictional example, rather than the real 
thing, is that the USTRANSCOM/MAC requirements are not publicly 
available. 

A prototype implementation of USTRANSCOM/MAC's requirements has 
been implemented using the Sybase Secure DBMS hosted on VAX/SE-VMS 
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[Nelson91]. This prototyping work was deliberately based on a DBMS that 
requires the application to polyinstantiate. This decision may well have been 
prompted by the wish to use a commercial, off-the-shelf secure DBMS. Since 
the majority of these are incapable of supporting general uniqueness 
constraints1, the application will be forced to polyinstantiate. In addition, the 
requirements for the system include the need to provide cover stores, and it is 
widely believed throughout the research community that polyinstantiation is a 
technique that has been designed to support cover stories [Smith89§2.1] 
[Jajodia90§4.2], and even that it is essential for supporting them. 

The SWORD secure DBMS, which currently exists only as a research 
prototype [Lewis91], does support general uniqueness constraints and so an 
application does not have to resort to polyinstantiation. However, SWORD 
appears perfectly capable of supporting the USTRANSCOM/MAC 
requirements, including those for cover stories. Indeed, it is argued m 
[Wiseman91a] that polyinstantiation is a poor technique for cover stories, since 
it is difficult to prevent them arising spuriously. 

This paper describes the MACE application in section 2, gives an informal 
specification in section 3 and shows how it can be implemented using SWORD 
in section 4. Conclusions are drawn in section 5. 

2. THE MILITARY AIRLIFT COMMAND EXAMPLE 

The MACE system is used to record details about missions, whose various 
aspects may be classified differently. An added complication is that sometimes 
the simple fact that an aspect of a mission is highly classified, is itself 
classified. Those people with low clearances obviously cannot be allowed to see 
details about a highly classified aspect of a mission. However, being denied 
such knowledge informs the person that the aspect is highly classified, which 
is in itself classified information. Thus the person cannot be denied access, 
otherwise they learn something they are not cleared to know. A system which 
does not allow people to access something, at the same time as insisting that 
they are allowed access, is inconsistent and so cannot be built. 

The method for overcoming the potential inconsistency, that has been 
adopted by MACE, is to employ cover stories. A cover story is false, or less 
accurate, information that is shown to people with low clearances in place of 
some highly classified information, where that classification is itself classified 
high. 

For example, suppose the plans for a Troop Carrier are Secret. However, 
the fact that the plans are classified Secret is in itself Secret information. That 
is, a person with a clearance of Secret is able to determine that the plans are 

i Those secure DBMS products based on classified views, eg. TRUDATA 
[Knode88], can be used without having to polyinstantiate [Wilson88]. 
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classified Secret, and can observe their contents. However, a person with a 
clearance lower than Secret is not even able to know that the plans are Secret, 
let alone see what they contain. 

The problem arises when a person with a low clearance asks to see the 
plans. If they are told that they cannot see them, they might then be able to 
deduce that this is because the plans are classified Secret. This, however, 
constitutes the discovery of information classified higher than their clearance. 
The problem can be avoided by adopting a cover story. In this case, a suitable 
cover story for the Troop Carrier might be that the plans are for an enormous 
ornamental Wooden Horse. This "plan" would be Unclassified and shown to 
anyone, with a clearance less than Secret, who asks to see the plans. 

MACE has further requirements regarding the system's integrity, in 
particular the specification identifies various states that the system should 
never enter. Many of these constraints are based on the classification of 
information held within the DBMS. For example, in MACE, the fact that a 
particular aircraft is assigned to some mission must always be unclassified, 
even though details about the mission or the assignment may be classified 
higher. 

•From the detailed requirements for USTRANSCOM/MAC, it is concluded 
[Nelson91] that the DBMS must: 

• Support cover stories, 
• Provide data element labels at the human and program interfaces, 
• Define and enforce classification constraints, 
• Provide a single composite view of data to cleared personnel. 

Similarly, for MACE we require: 
• support for cover stories, to prevent the fact that certain information is 

highly classified from being revealed to clients with low clearances, 
• a relational database with fields individually classified, 
• the ability to define constraints based on the classification and value of 

fields, 
• the DBMS to have consistent and well defined semantics for all clients, 

regardless of clearance. 

3. THE MACE SPECIFICATION 

In this section, an informal specification of MACE is given. The notation 
used is that of [Sell92], which is a graphical representation of SPEAR 
[Wiseman91c], an extended entity-relationship model that can be used to 
describe confidentiality controls. A summary of the notation is given in 
Appendix A. 
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3.1 Hie basic data structures for MACE 
The MACE system requires information to be held about Aircraft, Missions 

and the Assignment of Aircraft to Missions. This high level requirement is 
illustrated in Figure 3.1a. 

aircraft 
Aircraft 

Assignment 

authority : String 
v = <U.J3> 

mission 
Mission 

Figure 3.1a: The Basic MACE Requirement 

Each assignment relates one aircraft and one mission, but no aircraft may 
be assigned to more than one mission and no mission may be assigned more 
than one aircraft. Note that not all aircraft need be assigned to a mission and 
not all missions need have an aircraft assigned to them. The authority under 
which an assignment is made is recorded with each assignment. This is a 
single value of type String. 

The authority of an assignment is given a classification in the range 
Unclassified to Secret. However the fact that an assignment has an authority 
is always Unclassified. All other aspects of an assignment are also 
Unclassified. 

Figure 3.1b shows that each aircraft has an identity and a type, but no two 
aircraft can ever have the same identity. Each aircraft is either stationed on 
the ground at some location or is airborne. 

Aircraft 

identity : String 
type: String 

v = <U..S> 

StationedAircraft 

location : String 
v = <U„S> 

AirborneAircraft 

Figure 3.1b: Aircraft Information. 

The type of an aircraft is classified in the range Unclassified to Secret, 
while all other aspects remain Unclassified. Similarly, the location of a 
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stationed aircraft is classified between Unclassified and Secret. A subtle point 
which is of particular note, is that, in MACE, the existence of a stationed 
aircraft or of an airborne aircraft is always Unclassified. This means it will 
always be possible to discover whether an aircraft is stationed or airborne. 
That is, the 'state' of an aircraft is always Unclassified. 

Missions, as Figure 3.1c shows, are similar to Aircraft in that they have an 
identity and a destination, but no two missions have the same identity. The 
destination is where the aircraft flying the mission will ultimately end up 
(assuming all goes well). Missions are either attack missions or convoy 
missions, but not both. An attack mission has a target and a time-over-target 
(tot). A convoy mission is when an aircraft is simply flying from one place to 
another and so has no extra attributes. 

( Attack 

Mission 
identity : String 
destination : String 

v=<U-S> 

target: String    v = <U..S> 
tot-.Time v = <U..S> 

dass of target = class of tot 

Figure 3.1c: Mission Information. 

The attack class is an example of a class constrained by an additional 
predicate. Beneath the line is a condition which insists that the target and 
time-over-target of all attacks are classified the same. This is called a Uniform 
Classification Constraint and is introduced here as an example of the kind of 
extra constraint that could be included in a real application. 

Figure 3.Id provides more details about assignments. It shows that an 
assignment is either active, in that the assigned aircraft is in the air, or is 
pending, because the aircraft has not yet taken off. An active assignment has 
an estimated time of arrival (eta), which is the time the assignment is expected 
to be complete. A pending assignment has a departure time and a flight time, 
which are estimates of the time it will become active and of its duration. 
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aircraft 
Aircraft 

Assignment 
authority : String 

v = <UJ3> 

mission 
Mission 

ActiveAssignment 
eta : Time 

v = <U..S> 

PendingAssignment 
departTime: Time 
flightTime : Time 

v = <U..S> 
v = <U..S> 

class of departTime = class of flightTime 

Figure 3. Id: Assignment Information. 

In Figure 3 le, missions are split three ways, into active missions, pending 
missions and, by virtue of the dashed arrows, others. The intent is that active 
missions are those assigned to active assignments and pending missions are 
those assigned to pending assignments. Since not all missions are assigned 
some missions will be neither active nor pending. This intent, however, is not 
expressed in Figure 3.1e but in Figure 3.1f. 

Figure 3.1e: Missions may be active, pending or neither. 

In Figure 3 If details of the constraints on assignments are shown in 
terms of the new classes of mission introduced in Figure 3.1d. An active 
assignment relates an airborne aircraft and an active mission, moreover all 
airborne aircraft and active missions are related by an active assignment. 
Also, if a stationed aircraft is assigned to a mission, that mission must be 
pending. 
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Aircraft 
AirborneAircraft  ' ActiveAssignment 

mission 
  ActiveMission 

aircraft 
StationedAircrart — — — PendingAssignment 

mission 
— — PendingMission 

Figure 3.If: Assignment Constraint Details. 

This concludes the basic description of the MACE requirement. Although 
section 4.1 shows how this can be implemented using SWORD, a more 
interesting question is how does the abstract description change in order to 
accommodate the requirement for cover stories? This is shown in the next 
section. 

3.2 The requirement for cover stories in MACE 
In many cases, the fact that the destination of a mission is Secret can be 

revealed to clients with low clearances. That is, although a client with a low 
clearance is unable to determine what the destination is, they can be told that 
access is denied because the details are Secret. 

However, in some cases, the very fact that the destination is Secret may 
itself be Secret information. For example, suppose that an uncleared client 
knows that a destination is invariably made Secret only if it is Ar Riyad. Then, 
being told the classification of a destination is Secret suggests that it is very 
likely to be Ar Riyad. For this reason it is necessary to prevent the uncleared 
client knowing that the destination is Secret. The only way this can be done is 
to offer the uncleared client an alternative answer, which is either false or a 
half truth. That is, the application must provide a plausible cover story to hide 
the truth. 

The cover story for the destination of a mission is effectively more 
information about a mission. It is false information, in that it is not where the 
mission is heading. However, it is also true information, in that it is what 
uncleared clients are told about the mission. Thus the cover story is just as 
much an observable property of a mission as the true story, so it must be 
modelled in the same way. In effect, the cover story is Virtual reality'. 

Figure 3.2a shows how Missions must be altered to accommodate a cover 
story for the destination. A mission still requires a unique identity, but instead 
of destination there is now an apparent destination (appDest). Some missions 
have a cover story for their destination, in which case an actual mission 
records the actual destination (actDest) of the mission. 
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Mission 
identity : String 

v=<U> 
appDest: String 

v = <U..S> 

^ 

n 
ActualMission <S> 

actDest: String 

Figure 3.2a: Providing a Cover Story for a Mission's Destination. 

When a mission has no cover story for its destination, the destination is 
held as the apparent destination and the mission has no corresponding actual 
mission. When a cover story is required, the actual destination of the actual 
mission gives the true destination and the cover story is in the apparent 
destination of the corresponding mission. 

The existence of an actual mission is always classified Secret, thus clients 
with lower clearances can never distinguish between a mission with a cover 
story and one without, since they are unable to tie up a mission with an actual 
mission. 

The requirement for providing cover stories for the destination of a mission 
is an example of providing a cover story for an attribute. This is relatively 
straightforward to describe. However, it is sometimes also necessary to provide 
a cover story to hide the true nature of a mission. This is more difficult to 
describe since a mission's nature is not seen as an attribute of a mission. 
Instead, a mission's nature is determined by whether it is also in class Attack 
or Convoy. • 

Mission 

ApparentAttack 
appTarget: String   v = <U..S> 
appTot: Time v = <U..S> 

ApparentConvoy 

class of appTarget = class of appTot 

Figure 3.2b: Missions have an apparent nature. 

84 



To provide cover stories it is necessary to have an apparent nature for the 
mission as well as an actual nature if there is indeed a cover story. Figure 3.2b 
shows that a mission is either apparently an attack or apparently a convoy. 
This is essentially the same diagram as Figure 3.1c, except the names have 
changed. Note that, the apparent nature of a mission is always Unclassified, 
because the existence of apparent attacks and convoys is always Unclassified, 
and so a mission can always be identified with its corresponding apparent 
attack or apparent convoy. 

Figure 3.2c shows that a mission may also actually be an attack or a convoy, 
though it could be neither in cases where the actual mission is the same as the 
apparent mission. While for the apparent nature of a mission it was acceptable 
for the mission's nature to be Unclassified, this is not the case for the actual 
nature of a mission. Here it is necessary to make the nature Secret, otherwise 
clients with lower clearances will know when the apparent information they 
can see is false. 

c Mission 

ActualAttack <S> 
act/Target: String    <S> 
actTot: Time <S> 

class of actTarget = class of actTot 

ActualConvoy <S> 

Figure 3.2c: Missions may have an actual nature different to the 
apparent one. 

Thus, as Figure 3.2c shows, the existence of actual attacks and actual 
convoys is Classified Secret. This prevents clients with low clearances from 
deducing a mission's true nature. 

The broad requirement laid down by the owners of the MACE system was to 
have cover stories for the destination and nature of a mission. However, as all 
good children know "lies are easily recognised" and so a little lie keeps on 
growing [Collodi83]. In this case, telling lies about the nature of a mission 
makes it necessary to tell lies about the flight time of an assignment, because 
flight time will be dependent on the mission's destination and target. 

Thus it is necessary to provide a cover story for the estimated flight time of a 
pending assignment. This requirement is shown in Figure 3.2d, and is 
structured in a similar fashion to missions in Figure 3.2a. 
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PendingAssignment 
departTime : Time v = <U..S> 
appFlightTime : Time v = <U..S> 

class of departTime = class of appFlightTime 

"1 

J_J- 

ActualPendingAssignment 
actFlightTime : Time 

<S> 

Figure 3.2d: The Flight Time of Pending Assignments must also have a 
Cover Story. 

A person can only sensibly assign an aircraft to a mission if they are fully 
aware of the mission's details. This means the person must have a clearance 
of at least Secret. However, it would be desirable to ensure that the person does 
not. make obvious mistakes. To this end a constraint is added which ensures 
that an assignment has a cover story for the flight time if, and only if, the 
mission has a cover story for its destination or nature. 

To express this constraint it is first necessary to define a covert mission as 
being one which has one or more cover stories for its various aspects. This is 
expressed in Figure 3.2e. 

ActualConvoy J 
Figure 3.2e: Covert Missions are those with Cover Stories. 

Then, covert missions are divided into those that are pending, those that 
are active and those which are neither. This is shown in Figure 3.2f. 

86 



I       CovertMission     j 

// w 
PendingCovertMission ActiveCovertMission 

l                                        J 

Figure 3.2f: Covert Missions may be Pending or Active. 

The diagram in Figure 3.2g then specifies the constraint that is required. 
That is, all pending covert missions must 'belong' to a pending assignment 
that has a cover story for its flight time (ie. an assignment that is pending and 
which has an actual value for its flight time). 

PendingAssignment 
mission 

PendingMission 

^i- 

! I 

ActualPendingAssignment 
mission 

PendingCovertMission 

Figure 3.2g: Constraints on Cover Stories. 

This completes the modification of the MACE specification to accommodate 
cover stories about missions. The changes to the diagrams are 'not 
inconsequential but, at least in this simple example, are tolerable. While it is 
accepted that 'syntactic sugar' in the diagrams could be added to make cover 
stories more palatable, it is felt that the complexity of the specification reflects 
the true complexity of the requirement. 

4. THE SWORD IMPLEMENTATION OF MACE 

Having described MACE's requirements at an abstract level using an E-R 
notation, in this section a more concrete representation, in the form of 
Schemas for SWORD tables, is given. 

4.1 The SWORD TaHes-without cover stories 
Each aircraft has two attributes, identity and type. Exactly one value, of type 

String, is associated with each of these attributes. Also, the identity of an 
aircraft is unique, in that no two aircraft can have the same identity. Thus we 
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could represent aircraft as a table with two columns of type String, with a 
uniqueness constraint on the identity column. The schema for such a table is 
shown in Figure 4.1a. The schema shows the name and type of each column, 
plus a range which restricts the classifications of any fields in the column. A 
column name is underlined to indicate that its values are unique. 

Figure 4.1a: First Attempt at a SWORD Schema for Aircraft. 

Each aircraft is either stationed or airborne. If the aircraft is stationed it 
has a location attribute, with which is associated exactly one value of type 
String. This could be represented by two further tables, as shown in Figure 
4.1b. These tables both include an identity column. This is used to equate 
stationed / airborne aircraft with the 'standard' aircraft details. Referential 
integrity constraints, given by the -» symbol, are included to ensure that this 
standard aircraft always exists. 

StationedAircraft 
identity 
location 

String 
String 

[U..U] 
[U..S] 

Aircraft.identity 

AirborneAircraft 
identity. String [U..U] -»Aircraft.identity 

Figure 4.1b: First Attempt at SWORD Schemas for Stationed and 
Airborne Aircraft. 

Note, however, that the referential integrity constraints shown in Figure 
4.1b are not actually strong enough to enforce all the constraints expressed by 
the E-R diagram. The proper constraint is that the values in the identity 
column of StationedAircraft and those in the identity column of 
AirborneAircraft should partition the values in the identity column of 
Aircraft. That is: 

StationedAircraft.identity union AirborneAircraftidentity = Aircraft.identity 
StationedAircraft.identity intersect AirborneAircraftidentity = empty 

It does not seem appropriate to use three tables, with an inadequate 
referential integrity constraint to bind them together, since applications are 
not then prevented from making an aircraft be both stationed and airborne at 
the same time. It would be possible to specify the constraint properly, using 
trigger-based application specific integrity checks, but in this case it is simpler 
to use just one table. 

The problem is that not all aircraft are stationed aircraft, in which case 
they do not have a location. This is solved by allowing the location column to 
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contain null values. A null location is then taken to mean that the aircraft is 
not stationed, ie. it is airborne. The resulting table is shown in Figure 4.1c. 

Aircraft 
identity String [U..U1 
type String [U..S] 
location String / null [U..S] 

Figure 4.1c: The Final Schema for Aircraft, Airborne Aircraft and 
Stationed Aircraft. 

A table for missions can be constructed in a similar fashion. The attributes 
for attack missions are represented in the table by two columns Fields in these 
columns contain null when the mission is a convoy mission. Note that extra 
constraints are required to ensure that target and time over target are both 
null or both non-null. The schema is shown in Figure 4.1d. 

Missions 
identity String 
destination String 
target String / null 
tot Time / null 

target is null <=> tot is null 

uniform target, tot 

[U..U] 
[U..S] 
[U..S] 
[U..S] 

Figure 4.1d: The Schema for Missions, Attack Missions and Convoy 
Missions. 

Assignments are also mapped to a single table, as described in Figure 4.1e, 
in a similar way. Here, however, columns are also required to record which 
aircraft and which mission are party to each assignment. Since exactly one 
aircraft and exactly one mission must be party to each assignment, this is 
easily achieved using an extra column for each. These columns record the 
unique identity of the aircraft / mission. 

Since no aircraft may be assigned to more than one mission, the 
corresponding aircraft identity column is made unique. Similarly, a mission 
may only be assigned one aircraft. Thus the columns representing the 
identities of the aircraft and mission are both made unique. Note that these 
columns are unique individually, not as a pair (ie. they are not a composite 
key") This is shown in the schema by underlimng the column names 
separately. Also, only existing aircraft and missions may be assigned, so 
referential integrity constraints are applied from aircraftldentity to 
Aircraft.identity and from missionldentity to Missions.identity. 
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Assignment 
aircraftldentity String [U..U] -Aircraft.identity 
missionldentity String [U..U] -»Missions.identity 
authority String [U..S] 
eta Time / null [U..S] 
departTime Time / null [U..S] 
flightTime Time / null [U..S] 

flircraftldentitv 
missinnTHentitv 

departTime is null <=> flightTime is null 
eta is null <=* departTime is not null 

uniform departTime, flightTime _^^ 

Figure 4.1e: The Schema for Assignments, including Active and 
Pending. 

Each assignment is either an active assignment or a pending assignment, 
so either one set of attributes or the other are required, but not both. Thus 
constraints are applied to ensure that one set of columns or the other, but not 
both, contain null values. 

42 The SWORD tables with cover stories 
With the introduction of cover stories, the Schemas must account for the 

extra attributes that are used to represent the apparent and actual attributes of 
a mission. First, consider the changes necessary to the Missions schema. The 
new schema is shown in Figure 4.2a. This describes the implementation of 
missions, attack missions, convoy missions and any associated cover stories. 

Each mission has an apparent destination, which has exactly one value of 
type String associated with it. The actual destination of a mission is also a 
String, but it is necessary to record when there is no cover story for the 
destination. This is achieved by allowing null values in the actDest column. 

The way the apparent nature of a mission is represented is not changed by 
the introduction of cover stories. A mission is either apparently an attack, in 
which case the appTarget and appTot fields are non-null, or it is apparently a 
convoy, in which case the two columns are null. 

The representation of the actual nature of a mission is more complicated, 
since it is possible that a mission is neither an actual attack or an actual 
convoy (this is when there is no cover story for the nature of a mission). The 
problem arises because no attributes are associated with actual convoys and 
hence 'null' cannot be used to represent their absence. This is overcome by 
introducing a column to represent the existence of an actual convoy, even 
though it has no attributes that need representing.   • 

Thus the existence of a cover story in the form of a convoy is recorded by a 
column of data type Monolean. The type Monolean, which is unique to 
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SWORD, is strange in that only one value, called Void, has this type. The fields 
in the column actConvoy therefore contain either the value Void or a null. Note 
that, although this is equivalent to storing a Boolean without nulls, the use of a 
Monolean and a null is preferred as it is more symmetric 

Missions 
identity String [U..U] 
appDest  String [U..S] 
actDest   String / null [S..S] 
appTarget String / null [U..S] 
appTot    Time / null [U..S] 
actTarget String / null [S..S] 
actTot Time / null [S..S] 
actConvoy Monolean / null [S..S] 

appTarget is null o appTot is null 
actTarget is null o actTot is null 
actConvoy is not null <=> actTarget is > null 

uniform appTarget, appTot 

Figure 4.2a: The Schema for Missions with Cover Stories. 

One requirement expressed by Figure 3.2c is that the actual nature of a 
mission is classified Secret. One possible way of meeting this requirement 
would be to classify at Secret the existence of the columns relating to a 
mission's actual details. While this is possible in SWORD, in this simple case 
it is not necessary. This is because MACE is admitting to one and all, that 
clients with clearances lower than Secret may be given a cover story instead of 
the truth. More demanding applications may wish to keep even this 
information Secret1, in which case the existence of the columns would need to 
be classified Secret and more care would need to be taken in choosing the 
names of those columns visible to all. 

By arranging that the fields containing the actual details are always 
classified Secret, whether or not they contain null data, clients with low 
clearances are unable to determine the true nature of a mission. Thus the 
schema described in Figure 4.2a applies field classification constraints to the 
columns actTarget and actTot which ensure that all fields within them are 
classified Secret. 

Now consider how the schema for Assignments must be changed. A first 
attempt at a new schema is shown in Figure 4.2b. Instead of a single flight 
time column, there are now two columns, one for the apparent flight time and 
one for the actual flight time if there is a cover story. The constraints 
governing the use of nulls ensure that there can only be a cover story for the 

lit may be that USTRANSCOM/MAC actually does have a requirement for 
hiding the fact that certain kinds of cover stories might be employed. 
However, if this is the case, then by its very nature such information will 
not be revealed in an open conference. 
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flight time if the assignment is pending (ie. it has an apparent flight time). 
The check constraint ensures that, if the assignment is pending, the estimated 
flight time and the corresponding mission details either both have cover stories 
or both do not have cover stories. 

Assignment 
aircraftldentity String [U..U] -Aircraft.identity 
missionldentity String [U..U] -Missions.identity 
authority String [U..S] 
eta Time / null [U..S] 
departTime Time / null [U..S] 
appFlightTime Time / null [U..S] 
actFlightTime Time / null [S..S] 

flirrraft.Tdentitv 
Tnissionldentitv 

departTime is null <=> appFlightTime is null 
eta is not null <=> departTime is null 
actFlightTime is not null => appFlightTime is not null 

uniform departTime, appFlightTime 

CHECK appFlightTime is not null => 
actFlightTime is not null 

<=>        actDest is not null 
or actTarget is not null 
or actConvoy is not null 

FROM Missions WHERE identity = missionldentity 

Figure 4.2b: A First Attempt at a Schema for Assignments with Cover 
Stories. 

The schema shown in Figure 4.2b adequately describes the structure of the 
data and the constraints that must be imposed. However, the constraints are 
such that a client with a low clearance is unable to create a new pending 
assignment. This is because, with the apparent flight time containing a non- 
null value, the state of the cover stories must be checked to establish their 
consistency. Unfortunately these details are all classified Secret. A Secret 
client would be able to check the constraint, but is unable to create a new 
assignment because the existence of an assignment is constrained to be 
Unclassified. Thus it would not be possible to create new pending 
assignments. 

Clearly, in the MACE system, an assignment can only be made by a person 
with a Secret clearance. This is because the person must be able to take into 
account any cover stories about the mission. So the problem is solved by having 
the person log-in as an Unclassified client to create the assignment and as a 
Secret client to update the assignment's cover story information, and allowing 
the constraint to be violated in between. 
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To indicate that the constraint may be 'temporarily' violated, a special value 
is used for the actual flight time, which is neither a Time nor a null. SWORD 
supports such requirements by having two kinds of data, Dinary and Sterling. 
Dinary data is used to indicate that the Data Is Not Available or Ready Yet, 
while Sterling data is of "thoroughly good character". Thus generally, a value 
in a field is either a null, a Dinary value of some type or a Sterling value of 
some type. 

The data in a column of a table is constrained to be of one type if it is 
Sterling and of another type (or the same) if it is Dinary. This is shown in the 
schema diagrams by having two types alongside a column name, in the format 
'sterling / dinary'. It is also possible to exclude Dinary values altogether, 
which is the norm, by just giving the sterling type- 

ime In Figure 4.2c, it is stated that any Sterling values in the actFlightTime 
column must be of type Time and any Dinary values must be of type Monolean 
that is they must be the value Void. The actFlightTime column may also 
contain nulls. 

Assignment 
aircraftldentity 
missionldentity 
authority 
eta 
departTime 
appFlightTime 
actFlightTime 

fiiTftTflfUriBntitv 
missionldentity 

String [U..U] -»Aircraft.identity 
String [U..U] -»Missions.identity 
String [U..S] 
Time / null     [U..S] 
Time / null     [U..S] 
Time / null     [U..S] 
Time / Monolean / null [S..S] 

departTime is null <=* appFlightTime is null 
eta is not null <=> departTime is null 
actFlightTime is not null => appFlightTime is not null 

uniform departTime, appFlightTime 

CHECK appFlightTime is not null => 
actFlightTime is not null 

and actFlightTime <> void 
=*        actDest is not null 

or actTarget is not null 
or actConvoy is not null 

actFlightTime is not null 
or actFlightTime = void 

<=        actDest is not null 
or actTarget is not null 
or actConvoy is not null 

'" FROM Missions WHERE identity = missionldentity 

Figure 4.2c: The Schema for Assignments with Cover Stories. 
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Compared to the first attempt in Figure 4.2b, the final schema for 
assignments contains a weaker check constraint. This effectively allows a 
Dinary void in the actual flight time to represent "don't know if there is a cover 
story" Now the person can log-in as an Unclassified client and create a new 
pending assignment using void for the actual flight time. The check constraint 
is trivially true, so there is no need for the Unclassified client to observe the 
contents of Secret fields. 

Once the assignment has been created, the person can log-in as a Secret 
client and update the actual flight time to be a null if the mission has no cover 
story or to an actual time if it has. Note, however, that the constraints do not 
force the person to complete this second part of the task. 

4.3Examples .   . ,     ..,   -,.«. 
The table in Figure 4.3a shows five example missions, each with dinerent 

"cover story" characteristics. 

identity appDest actDest appTarget appTot actTarget actTot actConvoy 

[U] RJ..S1 rsi ru.-si IU..S1 [SI [S] [S] 

"M42" "Riyad" fUl Null Null [U] Null   [U] Null Null Null 

"M101" "Dhahran" \Q Null "Basrah" [S] 23:40 [S] Null Null Null 

"M7x5" "Dhahran" rui Null "Iraq" [U] 07:30 [U] "Basrah" 07:20 Null 

"M17b" "Dharhan" fUl "Riyad" Null [U] Null   [U] •Baghdad" 14:40 Null 

"M6z7" "Riyad" [U] "895269" •Iraq" rq 22:30 rCl Null Null Void 

Figure 4.3a: Some Example Missions. 

M42 is a simple convoy mission to Riyad and there is no cover story for 
either its destination or nature. Of course, those clients with Unclassified or 
Confidential clearances do not know this. 

M101 is another mission which does not involve a cover story. However/this 
mission is sensitive in that the destination and target are classified. A client 
with a clearance of Unclassified is able to determine that there is a mission 
called M101, but is unable to ascertain any details. 

The actual mission details of M7x5 are quite sensitive, but it is necessary to 
reveal something of its nature to clients with clearances lower than Secret. 
Thus a cover story is provided to give these clients a "sanitised" version of the 
details. The mission is actually an attack on Basrah at 07:20. However, to those 
with a low clearance the information is much less specific, stating that the 
mission is to attack Iraq at around 07:30. 

A full scale lie is being perpetrated for M17b. Here the mission is actually 
an attack on Baghdad at 14:40, with the aircraft returning to Riyad. However, 
those with low clearances see a convoy mission which takes the aircraft to 
Dharhan. 

Mission M6z7 is interesting since it involves a he to the Confidential clients 
which is being hidden from Unclassified clients. The mission is actually a 
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convoy mission to map reference 895269, but this is a particularly sensitive 
location. To hide this the cover story is that it is on a sensitive mission to attack 
Iraq and will then return to Riyad. Note here the use of Void to indicate that, 
while the mission is actually a convoy, a cover story is provided to hide this. 

Figures 4.3b and 4.3c show the result of the query  

SELECT * FROM Missions 

 when   issued  by   clients   with   clearances   of Unclassified   and 
Confidential respectively. Note that, as Figure 4.3b shows, clients with a 
clearance of Unclassified are able to determine the classifications of all the 
fields. This functionality does not prevent SWORD exhibiting Information Flow 
Security, because the Insert Low approach is adopted [Wiseman90]. There is, 
of course, nothing to stop the application from further restricting what a client 
can observe by applying other security controls, as illustrated in section 4.4. 

identity appDest actDest        appTarget appTot        actTarget     actTot    actConvoy 
rui ru..si rsi ru..si ru..si rsi       rsi        rsi 

"M42" "Riyad" [U] 
"M101" —•—— [C] 
"M7x5" "Dhahran" [U] 
"M17b" "Dharhan" [U] 
"M6z7" "Riyad" [U] 

Null 
—■■■■»»•—    ■■■■■■■< 

*••«••••••«    "Iraq" 
—~-~—    Null 

[U] 
CS] 
[U] 
[U] 
[C] 

Null [U] 
  [S] 
07:30 [U] 
Null [U] 
  [q 

■■—■>«■«■■■■•      »■■■■■■■■•« 

■■■■ — ——• »IWIMUM 

Figure 4.3b: Missions as Seen by Clients Cleared to Unclassified. 

As Figure 4.3c shows, a client with a clearance of Confidential is not able to 
see much more than a client with a clearance of Unclassified. It does, 
however, serve to show that the solution works for a general hierarchy of 
classifications, not just for two. 

identity appDest actDest        appTarget appTot        actTarget    actTot    actConvoy 
rui [U..S1 rsi ru..si ru..si rsi        rsi        rsr 

"M42" 
"Mior 
"M7x5" 
"M17b" 
"M6z7" 

"Riyad" [U] 
"Dhahran" [Q 
"Dhahran" [U] 
"Dharhan" [U] 
"Riyad" [U] 

Null 

"Iraq" 
Null 
"Iraq" 

[U] 
[S] 
[U] 
[U] 
[C] 

Null [U] 
  [S] 
07:30 [U] 
Null [U] 
22:30 FC] 

Figure 4.3c: Missions as Seen by Clients Cleared to Confidential. 

4.4 Dynamic checks 
The specification of MACE given in section 3.2 only gives the requirements 

for the static structure of the application. Dynamic aspects, such as the 
circumstances under which a person may create a new mission, are missing 
and this is a shortcoming of modelling at the E-R level. 

One dynamic requirement which is of particular concern in MACE, is that 
only users with high clearances may add a cover story to a mission. 
Unfortunately, the Schemas described in section 4.2 do nothing to prevent a low 
user creating a new mission with a cover story, or updating an existing 
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mission's cover story. This is because SWORD allows clients to create and alter 
fields whose classification dominates the client's clearance (ie. SWORD 
supports the general case). 

The required checks can, however, be added to the database schema by 
using SWORD's trigger mechanism. The required trigger definitions are 
shown in Figure 4.4a. 

The trigger module changeCover, which is attached to the Missions table, 
defines two triggers. One fires whenever a new row is inserted into Missions 
and the other fires whenever Missions is updated. 

When a new row is inserted, which is something that can only be done by a 
client whose clearance is Unclassified, the actDest field is checked. If it is not 
null, an exception is raised which abandons the query. Thus, when a mission 
is created, there must be no cover story for the destination. 

MODULE changeCover 
ON INSERT INTO Missions 
TRIGGER 

IF POSSIBLY null <> ( ALL SELECT actDest FROM new) 
THEN 

RAISE "Cannot add cover story" 
FI 

END 

ON UPDATE Missions 
TRIGGER 

IF clearance <> [Secret] 
AND MODIFIED actDest 
THEN 

RAISE "Cannot update cover story" 
FI 

END   

•Figure 4.4a: Extra Constraints on Modifying Missions. 

When a row is updated, the clearance of the client is checked. If the client's 
clearance is not Secret and the update is setting the value in the actDest 
column, an exception is raised which aborts the update query. Thus only 
clients with a clearance of Secret can update the cover story of a mission's 
destination. 

Note that no trigger is defined for a delete operation. This is because a client 
with a clearance of Unclassified is deemed free to delete a mission, including 
any attached cover story information. However, further triggers could be 
provided to cater for different requirements. 
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MODULE controlAssignments 
ON INSERT INTO Assignment 
TRIGGER 

IF POSSIBLY user <> ( SOME SELECT authority FROM new) 
THEN 

RAISE "Imposter!" 
FI 

END 

ON UPDATE Assignment 
TRIGGER 

IF MODIFIED authority 
THEN 

RAISE ~'Cannot change authority" 
FI 

END 

ON DELETE FROM Assignment 
TRIGGER 

IF POSSIBLY user <> (SOME SELECT authority FROM chosen) 
THEN 

RAISE "Not your Assignment" 
FI 

END   

Figure 4.4b: Constraints on Modifying Assignments. 

Another example of the use of triggers to add further application specific 
controls to the database is shown in Figure 4.4b. This is intended to ensure that 
only the user who made an assignment is able to delete the assignment. 

A row may only be inserted if the authority gives the name of the user on 
whose behalf the query is made. Subsequently, the authority of an assignment 
may not be updated. Thus when an attempt is made to delete a row, the 
authority field gives the name of the user who made assignment. The trigger 
raises an exception if the client is not running on behalf of the user that made 
the assignment in the first place, or it is not possible to observe the 
assignment's authority. This latter point poses a particularly awkward 
problem. 

If the authority of an assignment is classified above Unclassified, a client 
capable of deleting the assignment will be incapable of determining whether 
they are allowed to delete it. Such a situation would be avoided by allowing the 
authority to be sanitised under certain circumstances, such as the example 
shown in Figure 4.4c. 
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MODULE controlAssignments 

ON UPDATE Assignment 
TRIGGER 

IF MODIFIED authority 
AND clearance NOT DOM (SOME SELECT CLASS OF authority 

FROM chosen) 
AND NOT EXISTSC SELECT * FROM permissions 

WHERE name = user AND priv = "ChangeAuthority" ) 
THEN 

RAISE "Cannot change authority" 
FI 

END 

Figure 4.4c: Allowing Privilege Users to Change Authority. 

This trigger assumes the existence of another table called permissions, 
which has two columns; user and priv. The gives the list of permissions 
granted to each user. This table is examined using a select query, to discover 
whether the user has the privilege to change the authority of a mission that 
may not belong to them. If not, an exception is raised and the update query is 
abandoned. 

The triggers given here are just examples of what may be achieved. In 
general the central part of the SWORD DBMS imposes no more than the bare 
minimum of constraints on the application to ensure that information flow 
security is upheld. Elementary constraints, such as typing and uniqueness, 
may be applied as required. Further constraints are then added using the 
trigger mechanism. This approach avoids the problem of providing 
constraints in the DBMS which are suitable for one application, but which 
cause others severe problems and result in costly work-arounds. 

4.5 Views 
The inclusion of the extra columns to hold the cover story information is 

somewhat inconvenient, since the absence or presence of a cover story is given 
by whether one field or another is null. This gives particular problems to 
application software which is intended to be run by clients with different 
clearances. It would be more convenient if the software could just ask for "the 
destination", and receive the apparent destination if the clients clearance is 
low or there is no cover story, and receive the actual destination otherwise. 

This ability to "disguise" the columns of the table is provided by views, 
which in SWORD are implemented using the general purpose trigger 
mechanism. When a view is observed, each row of the base table is taken and a 
new row is computed based on some given functions. This new row is 
discarded if it does not meet the integrity constraints of the view. When a view 
is updated, or a new row inserted, the value in each modified field is directed 
towards one of the columns of the base table. This is given by an expression 
which is conditional on the values of the inserted or modified row. Note that, if 
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the client is not cleared to observe the value of a conditional expression, the 
value acts like false. 

Figure 4.5a shows the definition of a view which can be used to ease access 
to the information about missions. The view has six columns, the first four of 
which are straightforward and give the mission's identity, destination, target 
and time over target. The last two columns, which are of type Boolean, indicate 
whether the mission has a cover story in place for its destination or nature. 

AirMissions based on Missions 
identity String 

destination 

[U..U] 
«-     identity 
-»     identity 

String     [U..S] 
«-     CASE WHEN actDest is not null 

THEN actDest ELSE appDest END 
-»     CASE WHEN coverDest 

THEN actDest ELSE appDest END 
target String / null       [U..S] 

<-      CASE WHEN actTarget is not null 
THEN actTarget ELSE appTarget END 

->     CASE WHEN coverNature 
THEN actTarget ELSE appTarget END 

tot Time / null        [U..S] 
<-      CASE WHEN actTot is not null 

THEN actTot ELSE appTot END 
->      CASE WHEN coverNature 

THEN actTot ELSE appTot END 
coverDest      Boolean [S..S] 

<-     actDest is not null 
-» 

coverNature  Boolean [S..S] 
«-     actTarget is not null or actTot is not null 

or actConvoy is not null 

tot is null <=* target is null 

uniform target, tot  

Figure 4.5a: Providing a View on Missions. 

The Boolean type is an unusual one to find in a Relational DBMS, but is 
provided by SWORD so that the standard relational database normalisation 
process can be halted early. This is essential because normalisation can 
introduce integrity checks which often cannot be evaluated in the face of the 
confidentiality controls in a secure database. 

Of course, clients with clearances lower than Secret are unable to 
determine whether some aspect of a mission has a cover story. This is because 
the fields containing the cover stories are always classified Secret, and thus 
fields in the two Boolean columns will always be labelled Secret. 
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Figure 4.5b shows the result of a client with a clearance of Unclassified 
selecting all data from the view, given the underlying table is as shown in 
Figure 4.3a. Note that none of the Boolean values are visible, so the client is 
unable to determine which missions have cover stories. 

identity         destination target                    tot coverDest    coverNature 
[U] [U~S] [U~S] [UJ3] [SI [S] 

«M42" "Riyad"         SÄ Null         EU] Null ÜJ]           
"M101"        [C] •••••     [S] ••••• [g] ••••  
"M7x5" "Dhahran"    [U] "Iraq"      [U] 07:30 [U]   
BM17b" "Dhahran"    [U] Null        [U] Null [U]   
BM6z7" "Riyad" [U]           id   td           

Figure 4.5b: AirMissions as Seen by Clients with Unclassified 
Clearance. 

Figure 4.5c shows the result for clients with Secret clearances. Here it is 
possible to see clearly which missions have cover stories for their destination 
or their nature. The destination and target information presented reflects 
whether there is a cover story, in that these clients always see the 'true' 
information. 

identity          destination                 target tot coverDest coverNature 
[U] [l^S] lU^S] [U~S] [S] rs] 

«M42" "Riyad"         ÜÜ Null ElÜ NÜÜ ÜJ] False False 
"M10r "Dhahran"    [C] "Basrah" [S] 23:40 [S] False False 
aM7x5'' "Dhahran"    [U] "Basrah" [S] 07:20 [S] False True 
"M17b" "Riyad"         [S] "Baghdad" [S] 14:40 [S] True True 
"M6z7" "895269"          [S] Null [S] Null [S] True True 

Figure 4.5c: AirMissions as Seen by Clients with Secret Clearance. 

The purpose of the two Boolean columns is to indicate to clients with Secret 
clearances when clients of lower clearance are being misled about mission 
details. Numerous other views are possible, and which is appropriate would 
depend on exactly how the people would use the MACE system. One potentially 
useful variant would be to include the actual cover story information rather 
than just a Boolean flag. 

The Boolean flags also play an important role in maintaining the database, 
in that they provide a means by which a client cleared to Secret can add a cover 
story without having to resort to the underlying table. 

For example, suppose a Secret client wanted to make the fact that M42 was 
on a convoy mission to Riyad a cover story, by making its actual mission an 
attack on Baghdad at 10:15. The following query would not achieve this  

UPDATE AirMissions SET target = "Riyad", tot =10:15 WHERE identity = "M42" 
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 because this would be an attempt to update the unclassified nulls in 
the apparent target and tot fields, which would constitute a flow down. 
Instead, the following query must be used  

UPDATE AirMissions SET target = "Riyad", tot =10:15 , coverNature = True 
WHERE identity = "M42" 

 which indicates the fact that the actual target and tot is to be 
updated by also updating coverNature to True. Note that this query would also 
work if it were executed by a client cleared to Unclassified, but this does not 
constitute a failure of Information Flow Security, because information is 
'flowing up'. A trigger similar to that in Figure 4.4a could be defined to prevent 
such action if required. 

If a person wishes to create a new mission and this is to have a cover story, 
the person must first create the mission by logging in as an Unclassified 
client. At this point the person would supply all the unclassified information 
about the mission, including the cover story details. Then, after logging in at 
Secret, the person would issue a suitable update to enter the true details about 
the mission. 

5. CONCLUSIONS 

In this paper it has been shown, by example, how to model a requirement 
for 'cover stories' using the SPEAR notation and implement it using the 
SWORD secure DBMS. The example used, MACE, is based on the 
requirements of the Military Airlift Command project [Nelson91]. 

A feature common to most application requirements is for a class of entities 
where no two entities have the same identity. An example of this in MACE is 
that aircraft have unique names. Another common feature is where an entity 
has only one value for a particular attribute. For example, in MACE an 
aircraft has only one type. When implemented in a relational DBMS, these 
common features equate to uniqueness constraints which prevent a table 
having two rows with the same values in a 'key' column. 

Such constraints are so common in database applications that they are 
taken for granted by application designers. However, it is unfortunate that 
most attempts to add security to a DBMS have removed their ability to enforce 
such constraints. SWORD is a notable exception to this, because it adopts the 
Insert Low approach [Wiseman90] and so is able to enforce uniqueness 
constraints without compromising on information flow security. 

If the secure DBMS is unable to help the application designer enforce the 
elementary integrity constraints required by the structure of the application, it 
is necessary to build extra application specific code to enforce the constraints. 
This is the approach adopted by the Military Airlift Command project 
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[Nelson91]. The obvious disadvantage of this approach is the non-recoverable 
cost of producing and validating the extra software. Another, less obvious, 
disadvantage is that it is actually quite difficult to provide the integrity checks, 
especially when consideration is given to the deletion, sanitisation and 
downgrading of data. 

Using a DBMS like SWORD, on the other hand, requires ho extra 
application software to be written and evaluated in order to enforce the basic 
integrity constraints which are taken for granted by the designers of non- 
secure applications. This is because all the required integrity enforcement is 
provided, as it should be, by the DBMS. Thus the use of SWORD would result in 
cheaper implementations, since a low assurance, 'trusted subject' SWORD 
DBMS should cost around the same to produce as a DBMS that forces the 
application to polyinstantiate. 

It has been suggested that SWORD is inferior to 'polyinstantiating' DBMSs 
because it cannot satisfy the requirement for cover stories. Fortunately, as this 
paper has shown, this is not true. In fact the use of cover stories requires the 
introduction of severe integrity constraints in order to prevent the 'high' users 
becoming confused about the true state of the system [Wiseman91a]. The 
inability of a polyinstantiating DBMS to help enforce such constraints actually 
makes SWORD more appropriate in such circumstances. 

The conclusion is that SWORD is able to support the complex integrity and 
information flow security requirements of secure database applications, 
including the need for cover stories. The main reason this is possible is 
because SWORD does not force the application to polyinstantiate and then 
provide its own integrity checking software. 
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APPENDIX A-A SUMMARY OF THE SPEAR NOTATION 

In SPEAR, entities are gathered together into classes. If an entity belongs to 
a class the entity must have some values for certain observable attributes. 
Unless otherwise stated, there must be exactly one value for each attribute In 
Figure Al the class called Ship is shown to require two attributes, called 
name and tonnage. Entities of class Ship must have exactly one string 
associated with their name attribute and exactly one integer with their 
tonnage attribute. 

A uniqueness constraint is applied to the name attribute of the class ship. 
This is shown by underlining the attribute name and means that no two 
entities in the class Ship may have the same name. By default, the name of a 
ship must be Unclassified, but the tonnage must be classified in the range 
given after the v, that is Unclassified to Secret. The existence of each ship is 
classified between Unclassified and Secret, by virtue of the classification range 
given to the side of the class's name. If this were omitted, the existence 
classifications would default to Unclassified. 

name of attribute ,   ,     ._     . 
permitted classifications 

of entities' existence 

name of class- 

uniqueness constraint 

-/ 
Ship <U..S> 

name : String 
tonnage : Integer 

v = <U.J3> 

t 
■ type of attribute 

permitted classifications 
of values 

Figure Al. Example SPEAR Diagram for Classes 

Relationships in SPEAR have attributes, in the same way that entities have, 
and parties, which are collections of entities that are party to the relationship. 
They can be gathered together into families, but in order to belong to a family, a 
relationship must have certain attributes and certain parties. Figure A2 
shows an example of a family, called Commands. Membership of Commands 
requires that a relationship has an attribute called effective and two parties 
called craft and captain. Those entities of the craft party must be in the class 
Ship and those of the captain party must be of class Person. 

No two relationships in the Commands family may have the same Ship as 
their craft party, because the party name is underlined. Similarly, no two 
relationships in Commands may have the same captain. The solid line for the 
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craft party indicates that each entity in the Ship class must be the craft party of 
at least one relationship in Commands. However, the dashed line for the 
captain party means that not all entities in the Person class need be captains of 
a ship. 

name of party name of family 

Stop- 

\ 
craft / 

Commands 

effective : Date 
v = <U.5> 

— — ♦ — —   Person 

party covers class 
uniqueness of party 

party may not cover class 

Figure A2. Example SPEAR Diagram for Families. 

In Figure A3, the wide arrow states that for an entity to be a member of the 
class RoyalNavyShip, it must also belong to the class ship. However, because 
the arrow is dashed, not all ships need be in the Royal Navy. 

all Royal Navy Ships 
are also Ships 

some Ships are Royal 
Navy Ships 

Figure A3. Example SPEAR Diagram for Class Hierarchies. 

By making the wide arrow solid, as in Figure A4, entities in the class Ship 
are required to be in at least one of the classes of ships underway and ships 
docked. The addition of an arc specifies that no ship can be both underway and 
docked. 
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ships underway are ships C Sop 
docked ships are ships 

ships are either underway or docked 
but not both 

Figure A^ Example SPEAK Diagram for Disjoint Class Hierarchies. 
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Abstract 

Modelling the access behaviour of users is, like database modelling in general, one of the 
most cumbersome issues in the process of designing and managing a database. So it is worth 
to develop mechanisms, which are more closely to the part of the real world to be modelled. 

Roles describing the functional or organizational position of users in a company are one of 
these more "semantic" ideas. Roles, however, cannot be an independent concept. While users 
playing a special role acquire a set of rights to do something, usually they also acquire a respon- 
sibility domain, i.e. a set of tasks, which they have to fulfil. The latter can be regarded as a 
kind of duties (or obligations), typical of this role and obviously different from permissions to 
do something, since they carry a normative aspect 

So it would be useful to have a method to describe this difference concerning the access be- 
haviour and therefore the security policy. This paper deals with such an idea, called duties, and 
shows how it can be implemented by virtue of a somewhat new database technology: active 
mechanisms (also denoted as triggers or imperative rules). '• 

1.   Introduction 

New directions in database technology force the security community to develop new. securi- 
ty policies and access control mechanisms, which must be appropriate to the corresponding data 
models and should be as "semantic" as the mechanisms of the database system they have to deal 
with. On the other hand, however, these new technologies also offer new opportunities for ac- 
cess control policies, more closely to the part of the real world to be modelled (in the following 
referred to as the Universe of Discourse - UoD). One of these promising concepts are active 
mechanisms (cf. /Chak 89/; also denoted as triggers - /Eswa 76/, /KoDM 88/ and /Kotz 89/ - or 
(imperative) rules - /Ston 90/ and /GaGD 91/). Because of their foundation on situation moni- 
toring, they are very useful for access control, too. 

Besides their obvious application of establishing an additional shield around highly sensi- 
tive data and checking each access to that data by an "independent" trigger attached to it (i.e. in- 
dependent of the ordinary access control mechanisms; cf. /Kotz 89/), they are also able to sup- 
port a new concept of access control, so-called duties. Duties describe a responsibility domain 
of a user, i.e. a set of tasks (as a bundle of actions), which have to be fulfilled under certain cir- 
cumstances. Some tasks are critical for the smooth operation of a company and their fulfillment 
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should be monitored by the system. This is especially useful to perform a contingency action if 
users unfortunately do not obey their duties. Similar to the dualism of permissions and prohibi- 
tions, duties have a counterpart as well: so-called liberties, which describe actions a user is free 
to do. Referring to modal or normative logic operators, there are four different circumstances: 
In certain situations a user is obliged to do something (1.), is obliged not to do something (2.), 
is free to do something (3.), or is free not to do something (4.). 

In terms of modal logic, the first two concepts refer to a kind of necessity (1. positive duty; 
2. negative duty), whereas the latter two refer to a kind of possibility (3. positive liberty; 4. 
negative liberty). Obviously, 1. and 4. as well as 2. and 3. may be in conflict with each other if 
they concern the same task. Thus, a conflict resolution policy is required. Duties and liberties 
are denoted as normative rights and hence, they are a subset of rights, just like permissions and 
prohibitions, which are denoted as access rights (see Figure 1). 

permissions prohibitions duties 

/ 

/ 
/   V 

\ 

\ 

positive 
duties 

negative 
duties 

liberties 

/ 
/ 

/   N 

\ 
^ 

positive 
liberties 

negative 
liberties 

Figure 1.   Categories of rights. 

Obviously, there is a relationship between access rights and normative rights to be defined 
by the security policy. There are two different approaches possible, which are based on the fol- 
lowing main principles: 1. A duty to do something implies the permission to do it, and 2. Duties 
and permissions are independent of each other, i.e. granting a duty requires a further grant of 
the corresponding permission, which is necessary to allow the fulfillment of that duty. This pa- 
per deals with both possibilities and shows the consequences of either choice. 

In the following it is assumed that tasks are modelled as transactions. A task, of course, 
may sometimes require the execution of a set of different transactions, but from the access con- 
trol point of view, it seems to be possible to consider this simplified as one nested transaction 
(cf. /Moss 81/). Nevertheless, it is clear, however, that a nested transaction is very different 
from simply a set of (sub)transactions. Concerning the access control policy, only transactions 
are considered as a unit of authorisation. This simplificatiorLwas made to concentrate on the re- 
lationships between access rights and normative rights. The ordinary authorization dealing with 
accesses to certain protection objects may exist as well. Thus, the starting point is similar to 
that one chosen for the Clark & Wilson model (/CIWi 87/), but note that the duties of their sepa- 
ration of duties - principle carry slightly different semantics. 
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The data model underlying the database is not important here, but with respect to the entire 
conception where these ideas are a part of, in future an object-oriented data model will be as- 
sumed. The active mechanisms are kept from HiPAC1 (/Chak 89/, /Daya 88/ and /DaBC 88/) 
and SAMOS2 (/GaGD 91/) and slightly modified to meet the requirements of this particular ap- 
plication. 

The remainder of this paper is organized as follows. In Section 2 the model requirements 
are given, i.e. a very simple transaction model and the required active mechanisms are defined. 
This section is kept very short, because most of these ideas are already published. Then, the 
main ideas concerning the modelling process of the access behaviour of users are introduced: 
roles and tasks. In Section 4 the formal definition of rights is given (always with respect to 
transactions), followed by a comprehensive description of the relationships between access 
rights and normative rights (i.e. the mapping of normative rights onto access rights and triggers; 
Section 5) and a proposal of conflict resolution principles (Section 6). Section 7 deals with 
some ideas for decentralized authorization of normative rights and in Section 8 a database archi- 
tecture to implement this concept is suggested. Finally, some related work is discussed. 

2.    Model requirements 

Subsequently, no special data model is assumed. It is sufficient to have (nested) transac- 
tions and it is not important, whether these transactions are a sequence of data manipulation 
statements or a sequence of messages, activating certain methods assigned to objects, etc. 

Let T be the set of transactions. A transaction is described as follows: 
V tk e T: tk - tk (pi: dom(pi),..., pn : dom(pn)), 

i.e. transactions have a name (tk stands for both the transaction and its name; hence the unique- 
ness of names is assumed) and a set of formal parameters pi (either input or output) to be re- 
placed by actual parameters, belonging to the corresponding domain, if this transaction is in- 
voked. 

Their internal structure is not important, because the nesting feature is only required to 
"bundle" complex tasks into a single authorization unit, nor are operational issues a point of 
consideration here (cf. /Moss 81/). 

As mentioned in the introduction, the active mechanisms are taken from HiPAC and SA- 
MOS. HiPAC uses the term ECA-rule for a trigger, giving a hint to the 3 main parts of/them 
(Event, Condition, Action). An ECA-rule has the following structure: 

Identifier (an object-oriented environment was assumed) 
Event . 
Condition 
Action 
Timing constraint 
Contingency plan 
Attributes 

Events are divided into data manipulation events (either begin or end of operations for data 
manipulation), time events (absolute or relative time), external events (to be raised explicitly by 
an application) and transaction events (begin or end of transaction, abort, commit). Events may 
have formal parameters to specify a particular event from a class (or type) of events. 

In HiPAC a condition is defined by a set of database queries, which is evaluated to be true, 
if all queries return a non-empty answer. Subsequently, it is assumed (similar to SAMOS) that 
a condition is any formula composed of predicates over the database state, which may include 
comparisons of parameters (of transactions and events) as well as query language expressions. 

* High Performance ACtive Database Management System 
2 Swiss Active Mechanism-Based Object-Oriented Database System 
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An action is any executable module, written in any language, and it may contain database 
operations. 

The remaining parts of such a rule (except the identifier) are optional. A timing constraint 
determines a kind of deadline. The contingency plan is executed instead of the specified action 
if an event was raised, the corresponding condition was evaluated to be true and the scheduler 
cannot complete the triggered action in accordance with the timing constraint Like other objects 
in object-oriented systems, rules may have additional attributes. 

The semantics is as follows: If an event is raised and the corresponding condition is evalu- 
ated to be true, the action is executed. Nested transactions serve as the execution model. Fur- 
thermore, different coupling modes exist between an occurrence of an event, the evaluation of 
the condition and the execution of the action, with respect to the triggering transaction: immedi- 
ately, deferred (until the end of the triggering transaction), decoupled and causal dependent as 
well as decoupled and causal independent. A triggered transaction which is decoupled and 
causal dependent only commits if the triggering transaction commits, i.e. the scheduler must en- 
sure this dependency (cf. /Chak 89/). This case is useful to deal with abstract events, for exam- 
ple. If a request is aborted, the triggered action also should become aborted. The other mode, 
however, is useful too. E.g. if a trigger monitors the intrusion into a security domain, a detect- 
ed attempt requires a counteraction, even if the transaction causing that attempt was later abort- 
ed. 

For this paper it is sufficient to assume that each imperative rule only consists of an event, a 
condition and an action (like "classical" triggers). Concerning the execution model, it is as- 
sumed that a transaction raising an event becomes interrupted, the conditions of associated rules 
are evaluated (within a set of parallel subtransactions; what corresponds to HiPAC's coupling 
mode immediately) and all triggered actions are executed within top-level transactions of their 
own, but dependent on the triggering transaction (what corresponds to HiPACs coupling mode 
decoupled and causal dependent). Hence, the triggering transaction resumes if the evaluation of 
all conditions is finished. (Because of the "parallel" execution of the set of subtransactions 
evaluating the conditions, it would also be possible not to interrupt the triggering transaction.) 

Furthermore, complex events are required. The following constructors were suggested: 
• Disjunction of events: (ex I e2) (HiPAC, SAMOS) 

(This allows for combining identical actions to be triggered from different events.) 
• Sequence of events: (ei; ti) (HiPAC, SAMOS) 

(The rule is triggered if the second event follows the first one during the same transaction.) 
• Closure of events: (e*;^) (HiPAC) 

(A discretionary repetition of the first event followed by the second event during the same 
transaction triggers the rule.) 

• Conjunction of events: (ej^) (SAMOS) 
(This operator is equivalent to a sequence, which is independent of the order.) 

• Negation of events: -«(e) (SAMOS) 
(A rule is triggered if an event did not occur during a specified transaction or in a prede- 
fined time interval. Negative events must not occur at the beginning of a sequence of 
events to avoid problems of semantics.) 

In the following, the constructors conjunction, disjunction, sequence and negation are used 
to build complex events. Similar to SAMOS, it is necessary to decouple complex events from 
the execution of a single transaction. SAMOS allows a specification of a time interval (a mini- 
mal as well as a maximal duration between the occurrence of atomic events) for a sequence and 
a conjunction of two events, which may be raised by different transactions. The default, how- 
ever, remains to be a validity within the same transaction. For duties the opposite point of view 
is more appropriate, i.e. the default is that atomic events, which are part of a complex event, are 
raised by different transactions. Nevertheless, time boundaries for sequences or conjunctions 
of events remain to be useful too. Another enhancement is required for duties: Each atomic 
event within a complex event needs its own condition (in the simplest case "true") instead of the 
existence of only one condition for the entire complex event. In HiPAC and SAMOS the condi- 
tion is evaluated if the entire complex event is raised, i.e. it is rather associated with the last 
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atomic event, which was raised Unfortunately, it turns out that this simplification is inadequate 
for duties. Similar to the motivation in /Chak 89/ to separate events from conditions, it seems to 
be quite natural to associate each atomic event within a complex event with a separate (sub)con- 
dition. 

A situation is a combination of an event and a condition. It is simply an expression "e:c" if 
e is an atomic event (either negated or not). Hence, "e:c" is an atomic situation. Complex situa- 
tions are defined inductively. Let si, S2... be situations. Then, 

• ( sx I S2 ) 
• (sr,s2[>tmax]) 
• (si,s2[>tmax]) ........ 

are situations, where in case of a sequence or a conjunction tm« (optional) determines the 
maximum duration between the occurrence of the first and the occurrence of the last situation to 
keep the entire situation valid. The following statement is used to describe a trigger. 

ON <situation> DO <action>3 

3.   Definition of roles and tasks 

The modelling process of the access behaviour of users of a company (or any organization) 
can be based on the following two notions: roles and tasks. 

In accordance with /JoGe 91/, a role describes the organizational, functional or social posi- 
tion'of users within the UoD. Thus, roles are a kind of abstract users, within which concrete 
users can act, i.e. users can play a role. Typically, a user can play different roles. In most cases 
he will be associated with one organizational role (personal manager, book-keeper a.s.o.) and 
he can play different functional roles (e.g. security administrator, head of a project group, trade- 
union official, etc.). Organizational roles are similar to the more traditional notion of groups 
and they are appropriate to model the organizational structure of a company. In the following it 
is assumed that each user can play a set of predefined roles (either organizational or functional 
or social) and he must specify during the login procedure, which role(s) he actually wants to act 
in. During a session roles may become activated or deactivated by special commands (for ex- 

: ample: "activate role <role_name>" and "deactivate role <role_name>"). 
Roles are also a unit of authorization, i.e. it is possible to grant and revoke rights to roles. 

Subsequently, permissions and prohibitions (access rights) are defined as usual for discre- 
tionary access control policies (cf. Section 4.). Users, playing a role, inherit the corresponding 
rights. Besides that, rights can be granted and revoked to concrete users too, especially to deal 
with exceptions, i.e. to enhance or to override the rights inherited from certain roles. (The term 
subject refers to both roles and users.) If a user can act in more than one role at the same time, 
the corresponding rights are combined. (See Section 6 for conflict resolution.) Although some 
role combinations are not critical with respect to the pile up of rights (e.g. operator and head of 
a project), others would give the opportunity to collect rights, which should never become ap- 
plicable at the same time (e.g. doctor and patient). 

It must also be taken into consideration that a user, acting in at least two roles at the same 
time, can establish an unintended information flow from one role to the other. Whereas a user 
may be allowed to read a protection object A (inheriting the necessary permission from role X) 
and to read as well as to write into a protection object B (inheriting the corresponding permis- 
sion from role 7), it could be possible that other users who can only act in role B, must not 
know the content of protection object A. If the former user can act in both roles at the same 
time, it is very easy to write the content of A into B (if the corresponding domains match each 
other), thereby establishing an unintended information flow. Preventing an activation of both 
roles (X and Y) at the same time would "thwart" this possibility. (Of course, that user may acti- 
vate role X, read A, remember its content or write it down, deactivate A, activate B and reenter 

3 Possibly, it is useful to retain a global condition, i.e. to define a trigger in,the following manner. 
ON <situation> IF <condiiion> DO <action> 
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the content of A into B. But this is a very cumbersome way, which is almost never to prevent if 
discretionary policies are applied.) A similar situation can happen because of an execution of 
several transactions. 

So, the security administrator has to establish an activation conflict relation to deter- 
mine which roles must not be activated at the same time. The access control system must en- 
force these constraints. The specification could be done by a table with boolean entries, the 
rows and columns being labelled by all defined roles. If the entry of row X and column Y is 
"false", the system refuses an activation of these roles at the same time. Otherwise, a concur- 
rent activation is possible if the user is a member of both roles. Obviously, this relation is irre- 
fiexive and symmetric. 

Note that this is different from the separation of duties-principle of the Clark&Wilson- 
policy (CIWi 87/). To have a means of ensuring that principle another declaration is necessary: 
an association conflict relation. The assignment of users to roles may change in time and 
the security administrator may forget which roles a user can already play. So he can uninten- 
tionally make a dangerous mistake (e.g. assign a user to the role auditor who is already as- 
signed to the role book-keeper). Hence, it is better to offer system support The association 
conflict relation prescribes which roles have to be strictly separated, i.e. for which it is impossi- 
ble to associate the same user with both roles at the same time. 

Roles may be in a relationship of sub- and superordination. This is especially useful for or- 
ganizational roles to model the structure of a company. The binary relationship "<" between 
roles describes that situation. Let R be the set of roles (either functional, organizational or so- 
cial). Then, (R,<) forms a poset (partial ordered set, i.e. the relation is reflexive, antisymmet- 
ric and transitive). A role r,- is subordinated to r* if "rj £ r*" holds. Neither is required that 
each role (except a "super-role") has at least one superior role, nor is required that a role may 
have at most one superior role. These relationships are used to inherit rights. 

Tasks are associated with subjects (mainly with roles) and describe their responsibility do- 
main. Tasks are bundled to (nested) transactions during the modelling process, by uniquely 
mapping each task (as a logically related unit of actions) to one transaction. Furthermore, tasks 
are the source of deriving the rights necessary for a role to fulfil its tasks, i.e. they are the con- 
ceptual basis for the authorization process to assign the appropriate rights to subjects. 

4.   Definition of rights 

Subjects (either roles or users) are the unit of authorization. An authorization of users al- 
lows for exception handling. (Sometimes it is required that certain users, who are assigned to a 
role, have more or even fewer rights than other users of that role.) 

The relationship between a user of a computer system and the process acting on his behalf 
is established by an identification and authentication procedure. Note that always only one pro- 
cess is associated with a user, but the effective rights of that process may change, depending on 
activated roles and on decentralized and dynamic authorizations. Let S be the set of subjects 
and U the set of users. It obviously holds: S = RuU and RnU = 0 

Furthermore, a discretionary policy with the closed world assumption is assumed. Note 
that a prohibition is stronger than a non-existing permission. 

Definition of permissions: 

A permission is a five-tuple:    ( s\, ta, p , f, S2) 
sj and S2 are subjects, ta is a transaction, p is a predicate defined by die formal parameters of ta 
(either input or output) and/is a grant flag. The predicate allows to restrict the execution of ta, 
e.g. depending on the protection objects to be accessed. 

The semantics is mat subject Sj is permitted to execute transaction ta with actual parameters 
fulfilling p. Furthermore, this permission was granted by S2. (The grantor is always a user and 
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not a role!) The subject is allowed to grant this permission again to another subject if and only 
0 "1^KlS?rdkdonship of discretionary policies established between a subject, a protec- 
tion^ Sn tSÄewha. Mdden?t£ause tile protection objeos axe only accessed 

* ÄSSiSrÄSS couSTSed by means of tine following commands 
<ClT^OSt^USe,^TTPOrtWITH GRANT OPTION] 

S S£J « gSfLntTell'sions» the same subject regarding the same 

S appropriate, e.g. the association of explicit idenüfiers to perrmssions. 

Definition nf prohibitions: 

*" Sfl^^talSSSÄ**« t° «*»» transaction «a with actual parameters 

GRANT    PROH ta   WTTH p   TO si 
REVOKE PROH ta   WITH p   FROM si 

Definition of duties: 

automatically (with an appropriatereplacement or "»'» F, transaction is a little bit sim- 
and the subject has no. ye, «^ "£™£ '£ •*&£££* SSSis very different 
S5SaS «ÄSSE&Ä!.» -.her subject <f=*rue) or not (f= 

consistencyconstratatholds(UtDdenotethesetofduues.. -CTAf-fa]s. 
Vd«D(d=(s1,si1,k,ta1,p,si2,ta2,f,s2)):lc=0=*  <a2 - 0 A f - false 
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Duties can be written in the following manner, which is easier to understand: 
• positive duties:     ( Si, sii, 1 , tai , p , si2, ta2 , true , S2) 

Sl:    ON sii DO tai WITH p UNTIL si2 
ELSE ta2 

WITH GRANT OPTION 
(If/is false, the last clause is dropped.) 

• negative duties:     ( Si, sii, 0 , tai , p , si2 ,0 , fake » s2) 
Sl:    ON sii DO NOT tai WITH p  UNTIL si2 

With respect to /JoGe 91/, the following changes were made: 
a*   Situations combine events and conditions allowing a more consistent treatment of complex 

events. 
v&  The second event was completed by a condition and becomes a situation too. 
»a"  A delegation flag was introduced (cf. Section 7). 

The authorization of duties could be done by means of the following commands: 
GRANT    DUTY   ON sii DO [NOT] tai WITH p UNTIL si2 

[ELSE ta2]  TO si [WITH GRANT OPTION] 
REVOKE DUTY    ON sii DO [NOT] tai  WITH p UNTIL si2 

[ELSE ta2]   FROM si 

Definition of liberties: 

A liberty is a seven-tuple: (Si , sii , k , ta, p , si2 , s2) 
S] and S2 are subjects, sij and SJ2 are situations, k is a flag determining the kind of liberty ("1" - 
positive liberty; "0" - negative liberty), ta is a transaction and p is a predicate defined by the for- 
mal parameters of ta. 

The semantics is as follows. Positive liberty (k=l): If situation sii occurs, subject sj is free 
to execute transaction ta with parameter fulfilling p. The intention is that liberties are used to re- 
strict the validity of duties (either to shelter a user from an arbitrary suffering of duties granted 
by another user, e.g. his boss, or to have a means of overriding certain duties in case of a paral- 
lel activation of duties which are in conflict with each other.) Hence, liberties are the counter- 
part of duties. Analogously to duties, liberties are only valid for a specified time, which is 
bounded to the triggering situation sij and a second situation «2 (in the simplest case also a rela- 
tive time event with respect to the triggering situation and a "true" condition.) A grant flag 
seems not to be meaningful, but this may depend on the security policy chosen by the customer. 
Furthermore, this liberty was granted by user J2. 

Negative liberties (k=0) are similar: If situation sij occurs, subject sj is free not to execute 
transaction ta with parameters fulfilling p until situation JI2 occurs. Let L denote the set of liber- 
ties. 

Liberties can be written in the following manner, which is easier to understand: 
• positive liberties:       ( si, sii, 1 , ta , p, si2 , s2) 

si:  ON sii BE FREE TO DO ta WITH p UNTIL si2 
• negative liberties:       ( Si, sii, 0 , ta, p, si2 , s2) 

si:  ON sii BE FREE NOT TO DO ta WITH p UNTIL si2 

With respect to /JoGe 91/, liberties are used in a completely different way. In this older 
publication, liberties are not used as a counterpart of duties, but as a special kind of permissions 
to describe communication relationships between subjects. But it seems to be more convincing 
to use liberties in the way described in this paper.4 

4 The idea to do so stems from Dr. Brüggemann from Hildesheim University.,. 
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The authorization of liberties could be done by means of the following commands: 
GRANT   LIB ON si! BE FREE [NOT] TO DO tai WITH p UNTIL si2 TO si 
REVOKE LIB ON sii BE FREE [NOT] TO DO tai WITH p UNTIL si2 FROM si 

Example: 
The example is taken from a (simplified) bank application. Subsequently, some normative 

rights are described which may concern a bank-teller, who pays out money (surprisingly) and 
may decide about overdraft provisions, if the borrowed amount does not exceed a specified lim- 
it. Assume, a customer is admitted to overdraw his account at most by 10.000 DM and in case 
of an overdraft between 5.000 and 10.000 DM it is free to the bank-teller to accept this or not 
(Hence, he is also responsible for his decision!) 

Let "request(c,ac,am)" be the event that a customer c wants to debit an amount am from ac- 
count ac. The corresponding transaction is "debit(c,ac,am)", to be executed by the bank-teller 
to serve this request. The operation "balance(ac)" determines the current balance of an account 
ac and the operation "time(e)" returns the time when event e was raised. 

Now, a bank-teller has the positive duty to pay out the requested money if the new balance 
of the account does not fall below the limit of-5.000 DM (assuming that a bank-teller always 
has the permission to do so): 

bank-teller:  ON (request(c,ac,am): (balance(ac) - am >= -5 000)) 
DO debit(cl,acl,aml) WITH ((cl=c) A (acl=ac) A (aml=am)) 
UNTIL (time(request(c,ac,am)) + 5 min: true) 

ELSE "order a coffee for the customer" 

The ELSE-clause (which is obviously not formalized here) may be changed corresponding 
to the style of the bank. If a duty is granted to a role (e.g. bank-teller), it is sufficient that one 
user who currently plays that role obeys it 

He has the negative duty not to pay out money if the new balance would fall below the limit 
. of-10.000 DM. This overwrites the "global" pay-out permission of a bank-teller, because neg- 
ative duties imply temporal prohibitions (cf. Section 5), which take priority over permissions: 

bank-teller. ON (request(c,ac,am): (balance(ac) - am < -10 000)) 
DO NOT debit(cl,acl,aml) WITH ((cl=c) A (acl=ac) A (aml=am)) 
UNTIL (credit(c2,ac2,am2): 

(ac=ac2) A (balance(ac) - am + am2 >= -10 000) I 
request(c3,ac3,am3): (c=c3) A (ac=ac3)) 

Hence, it is impossible for the bank-teller to debit this account until somebody credits a suf- 
ficient amount to this account or the customer changes his request In the latter case it is not 
necessary to check the overdraft-condition. Of course, this new request invalidates the activated 
negative duty, but a new one is triggered if the new request does not fulfil the condition! 

A bank-teller has the positive liberty to pay out money if the new balance of an account is 
between -5.000 and -10.000 DM, which invalidates any negative duty not to do so. On the 
other hand, he is also responsible for the consequences! 

bank-teller: ON (request(c,ac,am): (balance(ac) - am >= -10 000)) 
BE FREE TO DO debit(cl,acl,aml) 
WITH ((cl=c) A (acl=ac) A (aml=am)) 
UNTIL request(c2,ac2,am2): (ac=ac2)) 
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The condition of the triggering situation needs not to contain the other bound, because a 
bank-teller has even the duty to pay out the requested money if the new balance does not fall be- 
low the limit of-5.000 DM. The liberty is deactivated by any further request concerning this 
account, because it is necessary to check the overdraft-condition again. 

Since bank-tellers are responsible for their decisions in case of an overdraft between -5.000 
and -10.000 DM, it is also necessary that nobody can force them to pay out money in such a 
situation (exception: the customer has a gun), i.e. it must be impossible to give them a (valid) 
positive duty to do so. If somebody is interested in such a deal, he must do it by himself: 

bank-teller: ON (request(c,ac,am): (balance(ac) - am <-5 000) A 
(balance(ac) - am >= -10 000)) 

BE FREE NOT TO DO debit(cl,acl,aml) 
WITH ((cl=c) A (acl=ac) A (am=aml)) 
UNTIL request(c2,ac2,am2): (ac=ac2)) 

5.   Relationships between normative rights and access rights 

To obey a positive duty, it is necessary to possess a permission to execute the transaction, 
and similar to that, a prohibition can enforce a negative duty. Two basic assumptions are possi- 
ble concerning the security policy: 
(1) "What ought to be, must be possible", i.e. a positive duty implies the required permission 

for that subject Analogously, a negative duty implies the corresponding prohibition. 
(2) Normative rights and access rights are always decoupled, i.e. a user granting a normative 

right to a subject must ensure that the corresponding grantee receives the required access 
right too (by means of an "ordinary" authorization). 

In principle, it is possible to specify this relationship for every duty separately. For the sake of 
simplicity, however, in the following it is assumed that a global decision was made by the secu- 
rity administrator during the system set-up. 

Note that normative rights and access rights concern different conceptual levels. Although 
it is possible to grant and revoke both types of rights on the authorization level, on the imple- 
mentation level, however, the access control system uses only access rights to decide on the ad- 
missibility of an execution request. At that level, the "normative" nature of duties is hidden in 
triggers. 

Let "EOT(s,ta,<par_list>)" denote the event that transaction ta has committed, which was 
initiated by subject s with parameters <parjist>. This event must be signalled by die transac- 
tion manager (cf. Section 8). Then, the following mappings have to be taken into consideration: 
• positive duties: 

(si,sii,l,tai,p,si2,ta2,f,s2)eD       ►  (sx ,ta! ,p,f ,s2)ePE   + 
ON (sii; -i EOT(si,tai,<parJist>): p(<par_list>); si2) DO ta2 

• negative duties: 
( si, sii, 0 , tai, p , si2,0 , false , s2) € D   ►  ( si, tai, p, S2 ) e PR 

• positive liberties: 
(si,sii,l,ta,p,si2,s2)sL  ►  (si ,ta,p,false,S2)«PE 

The question to be answered by the chosen security policy is which of these mappings 
should take place automatically and which of them have to be done explicitly. Either decision 
depends on the requirements of a customer and hence, the access control system must be pre- 
pared for both, waiting for an initialization during the system set-up. 
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Three different decisions concerning positive duties axe imaginable: 
«s" Granting a positive duty always implies granting the corresponding permission too, wheth- 

er the grantor is allowed to grant this permission explicitly or not (cf. Section 7). This co- 
incides with policy (1). 

«3* Granting a positive duty never implies granting the corresponding permission. This coin- 
cides with policy (2). Therefore, two subjects must collaborate to make a user suffering a 
duty if the grantor of a duty is not able to grant the required permission too. This situation 
can occur in case of certain separation of duties requirements in accordance with the chosen 
security policy (duty in the Clark&Wilson-sense). 

«3"  Granting a positive duty implies granting the corresponding permission if and only if the 
grantor is allowed to grant this permission too"(cf. Section 7). 

Independent of this choice, the authorization system always generates the corresponding trigger 
monitoring the fulfillment of a duty. Hence, at least the "contingency plan" is scheduled if the 
subject suffering a duty has not the required permission to obey it. 

By the way, the condition of the second situation within the sequence of events of this trig- 
ger is necessary because it is not sufficient that subject si simply executes the transaction. The 
parameters of the execution must fulfil the required predicate to ensure that really the associated 
task was done and not something else. 

Analogously, the same choices are possible for negative duties. However, negative duties 
may become a redundant concept, depending on the security policy chosen. They are meaning- 
less if negative duties do not imply a prohibition and liberties always take priority over duties 
(as well as prohibitions over permissions). The access control system can always ignore them 
in such a case. 

If positive liberties are mapped onto permissions, they get another semantics than intro- 
duced in Section 4. However, it is not contradictory to the assumptions made up by now to use 
liberties to override duties and to deduce a corresponding permission. Then, however, the au- 
thorization system must ensure that these implied permissions cannot be overridden by prohibi- 
tions. This causes some problems, because, in general, prohibitions take priority over permis- 
sions (cf. Section 6). This problem is solvable if explicit priorities are assigned to rights (cf. 
/Briig 91/) and the system ensures that each permission implied by a positive liberty always gets 
a higher priority than any prohibition. A negative liberty is only meaningful to override a posi- 
tive duty. 

Furthermore, the implied access rights have to be valid only within the time interval bound- 
ed by the specified situations, whether these access rights are implied or not Such a temporal 
authorization can be based on active mechanisms too. Subsequently, this is exemplified for 
positive duties: Two triggers are required. The first grants the permission if the triggering situ- 
ation of the corresponding duty occurs, and the second revokes that permission if the duty was 
obeyed or if the second situation occurs. Depending on the chosen policy, the authorization 
system can generate these triggers automatically. (Then, the grantor of the duty becomes the 
grantor of the permission too.) 

♦ ON sii DO GRANT PERM tai    WITH p  TO si 
• ON (sii; (EOT(si,tai,<par_list>): p(<par_list>) I si2)) 

DO REVOKE PERM taL WITH p FROM si 
Unfortunately, this is a little bit cheated if an explicit authorization of the access rights cor- 

responding to normative rights is required, because an authorization for defining triggers is not 
a topic of this paper. (For the sake of simplicity it was assumed that triggers are only definable 
by the security administrator or implicitly generated by the access control system.) But the 
reader may imagine that this problem is solvable. 
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6.    Conflict resolution 
In this section, a particular security policy was chosen to exemplify the resolution of con- 

flicts. There are many other possibilities imaginable (some of them are briefly mentioned at the 
end of this section), but it should be easy to conclude the required modifications. The follow- 
ing rules are taken into consideration (for this example!): 
• Users possess rights, which are either explicitly granted to them or inherited from activated 

roles (in accordance with the activation conflict relation). 
• Roles inherit permissions from their subordinated roles. 
• Roles inherit prohibitions from their superior roles. 
• Duties and liberties are not inherited. (At least-duties should never be inherited, since they 

are typical of a subject, whereas the inheritance of liberties may be a matter of taste.) 
• Positive duties do not imply any permission. The required permissions have to be granted 

explicitly by temporal authorizations. 
• Negative duties imply the corresponding temporal prohibitions. 

Hence, there are two basic conflicts to be considered, concerning rights defined for the 
same subject and the same transaction: 
«"  contradictions between permissions and prohibitions and 
«•   contradictions between duties and liberties 

(more precisely, between positive duties and negative liberties and between negative duties 
and positive liberties) 

With respect to the relationship between permissions and prohibitions, it is assumed that prohi- 
bitions always take priority over permissions. Nothing else is required to check the validity of 
an execution request of a transaction, since positive duties do not imply permissions and nega- 
tive duties imply prohibitions. Let u be a user who wants to execute transaction ta with pa- 
rameters <par_list>. Furthermore, let R' be the set of roles activated by u. Hence, the access 
is allowed if the parameters fulfil a predicate of any applicable permission and if they do not ful- 
fil a predicate of any applicable prohibition: 

u is allowed to execute ta with <parjist>  4=# 
3(si,ta,p,f,s2)ePE:   p(<par_list>) A 

( si = u V (si = r A (r € R-v (3 r1 e R': r ^r*)))) 

A $ (si, ta, p , s2) * PR:  p(<par_list>) A 
( si - u V ( si = r A (r * R' V (3 f € R': r£ r*)))) 

Note that this is a very restrictive policy. If a user has activated two roles, prohibirions valid 
for one role may override permissions valid for the other. Thus, the strange situation is imagin- 
able, where a user, who activates an additional role, only suffers a loss. However, even such a 
situation could be intended. Furthermore, this policy prevents undesirable information flows as 
described in Section 3. There are other possibilities to solve such conflicts (cf. /JoGe 91/). A 
promising one is to assign explicit priorities to rights, e.g. by means of integers and choose the 
right with the highest priority to check a request Conflicts arising at the highest level, may ei- 
ther be rejected by the authorization system (/Briig 91/) or be resolved by the scheme described 
above. 

The relationship between duties and liberties is the more interesting case for this paper. In 
order to meet the intention of liberties, i.e. to give users a shelter from an arbitrary suffering of 
duties or to override contradictory duties, liberties take priority over duties. Due to the mighty 
specification facilities for situations, it is not possible to check for conflicts at authorization 
time. Normative rights are valid for a period bounded by two situations. ~ If tjnly (absolute) time 
events trigger normative rights and the validity scope is given by another absolute time event or 
a relative time event (relative to the triggering time event), conflicts could be detected in ad- 
vance. Generally, however, this is impossible. Therefore, a monitor is required which reacts 
on the particular situation and controls the temporal authorization. .(Subsequently, it is assumed 
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that always the same transaction and the same subject are concerned. Otherwise, there would 
not be any conflict.) 

(1) A positive duty is triggered: 
In accordance with the chosen policy, the monitor has to check if a negative liberty is 

valid (or even more than one liberty). (Valid means that this liberty was triggered and still 
not annulled by the second situation.) If not, there is no problem. 

However, if a liberty is currendy valid, nevertheless, the duty is also activated, because 
it is free to the user to obey his duty or not. Hence, if the user agrees to do the job, he 
needs the corresponding permission (explicidy granted) and so, the temporal authorization 
must take place and the trigger is activated too .(with a high probability to be fired). 

Hence, the question may arise why to make use of negative liberties? Are they redun- 
dant in case that such a policy was chosen? The answer depends on the respective applica- 
tion. Generally, however, it is useful that the system gives a hint to the grantor of this duty 
(e.g. by mail) that the grantee is free not to obey the duty (until the second situation of the 
liberty occurs). So, the grantor has a chance to react to this circumstance, e.g. to ask the 
grantee if he agrees to do this job, or to do it by himself. This seems to be better for the op- 
eration of a company than the later (possibly too late) recognition that the grantee has not 
done the job, due to a valid negative liberty. 

(2) A negative duty is triggered: 
This case is more complicated than (1). If no positive liberty is valid, there is no prob- 

lem and the corresponding prohibition is temporally granted. 
However, if such a liberty is valid, it is free to the user to execute the transaction. 

Hence, it is impossible simply to grant the corresponding prohibition. Since positive liber- 
ties override negative duties, it is necessary to conjoint the predicate of the negative duty 
with the negation of the predicate of the liberty (if more than one liberty is activated, the 
corresponding predicates must be disjoint first). Hence, the temporal prohibition has to be 
granted with the predicate: "Pnegative duty A -i (positive liberty)" 

Similar to (1), a message to the grantor of the (partially or completely) overridden duty 
is recommendable. 

(3) A positive liberty is triggered: 
If no negative duty is valid, no reaction of the monitor is required. Otherwise, the tem- 

porally granted prohibition corresponding to that duty, must be modified in accordance with 
(2), i.e. the implied prohibition has to be partially revoked. 

(4) A positive liberty is annulled: 
If a negative duty is valid, a modified temporally granted prohibition exists (in accor- 

dance with (2)). This modification must be undone, i.e. the predicate of the corresponding 
prohibition must be restored. (If there remain some other valid positive liberties, only the 
clause of the deactivated liberty within the disjunction "positive liberty" has to be re- 
moved.) 

(5) A negative liberty is triggered: 
If there is a valid positive duty, i.e. a duty which was not yet obeyed by the corre- 

sponding subject (otherwise it would be annulled in the meantime), analogously to (1), a 
message to the grantor is recommendable that from now (until the terminating situation oc- 
curs) it is free to the grantee not to obey this duty, (bad luck for the grantor) 

(6) A negative liberty is annulled: 
If there is a valid positive duty, a message to the grantor is recommendable too, to indi- 

cate that the time is expired, where it was free for the grantee not to obey this duty. Hence, 
it can be expected that the job will be done, (bad luck for the grantee) 
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There are other policies imaginable for the relationship between duties and liberties. It is 
also possible to override the duty in case of a conflict between a positive duty and a negative lib- 
erty in such a way that only the temporal permission is granted, but the monitoring trigger is not 
activated. The problem is that the predicates of the liberty and the duty may be different. Espe- 
cially, they may overlap with respect to the sets of actual parameters fulfilling them. In such a 
case, the duty could be activated with the predicate of the duty conjoined with the negation of 
the predicate of the liberty (whereas the corresponding permission remains to be the same). 
Unfortunately, in general it is not decidable whether the resulting predicate is a contradiction 
(and therefore, it is meaningless to activate this duty) or not So, this simplified policy was 
chosen. Further investigations are required to examine whether the predicates are usually sim- 
ple comparisons of formal and actual parameters, i.e. whether only "simple predicates" occur 
(cf. the examples given in Section 4!). Then, this problem would be solvable! 

The association of explicit priorities to normative rights is another possibility (analogously 
to access rights). In case of a conflict, the right with the highest priority overrides the others 
(whether duty or liberty). Remaining conflicts at the highest level can be treated in the way de- 
scribed above. 

7.   Decentralized authorization of normative rights 

Although decentralized authorization of access rights does not concern the main subject of 
this paper, some remarks about it seem to be reasonable. 

Every new or changed transaction, to be executed within the system, must be evaluated first 
(/CIWi 87/). This is done by users belonging to a role evaluator. (For simplicity, it is assumed 
that there exists only one such role. However, it is no problem to designate several evaluator 
roles, corresponding to different sets of subjects who are developing transactions. It is also 
possible that each role receives an evaluate-privilege with respect to its subordinated roles, or 
that, corresponding to an ownership-paradigm, the user who has written a transaction, may 
evaluate it too.) 

An authorization is only possible if the transaction has already been evaluated. Every user 
who has evaluated a transaction, receives automatically a prohibition to execute this transaction 
(with the predicate "true"), to ensure the separation o/durf&s-principle of the Clark&Wilson- 
policy. (How depressing is die live of a censor!) This decision is not meaningful, however, if 
another policy was chosen, e.g. if the evaluation is done by the owner or by a superior role! 

Furthermore, an authorizer role is responsible to grant and revoke appropriate access rights. 
(Similar to evaluators, it is possible to designate several authorizer roles or to give an au- 
thorization-privilege to the owner.) If a permission was granted with grant option, the grantee 
is free to grant this permission again, either with grant option or not Then, the restriction pred- 
icate of the grantor is inherited to the grantee and if the grantor requires a further restriction, it is 
conjoined with his own predicate. Authorizers may restrict the possible broadcasting of permis- 
sions, either by omitting the grant option or by virtue of preventive prohibitions. Hence, if 
such an unlucky subject (who "owns" a preventive prohibition) receives a decentralized granted 
permission, it is overridden by the prohibition existing already. 

Each user can revoke rights, which he has granted by himself. (This is the main reason to 
introduce a grantor attribute for rights.) Authorizers can revoke every existing access right In 
case of revoking a permission, which was transitively granted to other subjects, these permis- 
sions are revoked too. (See/JoGe 91/for a restricted revoke.) 

Furthermore, it is possible to relax the separation of dunes-principle stated above, by in- 
cluding evaluator and authorizer into the association conflict relation (instead of granting a pro- 
hibition automatically). Hence, nobody can evaluate a transaction and grant a permission to ex- 
ecute it to himself. However, similar to a "four-eyes-principle" it is possible that an evaluator 
receives a permission from another user. 
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Of course, this is only a very simple scheme, but normative rights are emphasized in this 
paper. 

A user may grant duties (either positive or negative) to himself and to roles which are sub- 
ordinated to at least one of those roles, the user has currently activated. Furthermore, he is al- 
lowed to grant duties to particular users if they belong to at least one role for which a superior 
role exists which is currently activated by the grantor. Let Rj be the set of roles activated by a 
user u and /?2 the set of roles subordinated to any role of Ri. Hence: 

V ri e R2 3 rt e R!: r, < rk 

u is allowed to grant a duty to a subject s 4=f=^ s = u V s e R2 V 3 r* e R2: s e r* 
If a user receives a duty with grant option (in case of a positive duty), he is allowed to delegate 
this duty to subordinated roles or to users belonging to a subordinated role. In case of such a 
delegation, the grantor gets rid of his duty, i.e. from now on, only the grantee is obliged to 
obey this duty. Although the user is also able to perform this grant to subordinates if he has not 
the grant option, this makes a difference, because in the latter case, he retains the duty and has 
not gained any advantage. 

No user can grant a liberty to himself. Similar to duties, a user is allowed to grant liberties 
to subordinates. However, liberties were mainly introduced to shelter users from suffering ar- 
bitrary duties (i.e. to shelter them from moods of their bosses). For this purpose, a particular 
role liberator is introduced (similar to evaluator and authorizer, it is possible to define several 
liberators for different sets of subjects). With the notation introduced above holds: 

u is allowed to grant a liberty to a subject s   4=^   s e R2 V (3 r^ e R2: s e r*) V 
u e liberator 

There are situations possible, where a user grants a duty to one of his subordinates who al- 
ready possesses a conflicting liberty (or vice versa) which was granted by another user. It is 
hard to give a meaningful criterion to solve this kind of contradictions, because it is even possi- 
ble that both competing grantors are not in a relationship of sub- and superordination to each 
other. So it seems to be more appropriate to solve this problem "outside the computer system". 
(In the Middle Ages the grantor of the duty would have had the choice of weapons, because his 
right was overridden.) Such an "outside solution" is supported, because the grantor of an over- 
ridden duty receives a message from the monitor that this duty is possibly not obeyed. Until an 
agreement, the system decides in favour of the concerned user, i.e. the liberty takes priority. 

8.   Enhancing HiPAC-architecture to treat duties 

An architecture for an active database system (HiPAC) was proposed in /Chak 89/. Subse- 
quently, this architecture is taken (slightly changed) and enhanced by the functionality required 
to deal with duties (cf. Figure 2). Certainly, there are other possibilities. 

The original HiPAC-architecture was enhanced by the access control system, the monitor 
for normative rights (as part of the rule manager) and an authorization interface. The object 
manager was renamed to data manager, because no particular data model was assumed here. 

First, the "pure" active components are briefly described in accordance with /Chak 89/. 
The rule manager is the heart of the system, which controls the firing of imperative rules. In 
case that an event was signalled, it selects the corresponding triggers, initiates the required con- 
dition evaluations, monitors complex events and calls the transaction manager (either to execute 
triggered actions or to serve requests for "ordinary" transactions). The management of rules is 
done by the data manager. According to rule definition and manipulation operations, the rule 
manager changes the affected rules and programs the event detectors as well as the condition 
evaluator. Furthermore, it keeps track of older database states required to evaluate conditions. 
The latter is necessary if the coupling mode between an event and the condition is not immedi- 
ately. Therefore, this functionality is not required for duties. Apart from this, another coupling 
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mode would cause some problems with respect to complex situations which were introduced in 
this paper. 
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Figure 2.     Enhanced HiPAC* architecture. 

Event detectors are multiple instances of the same generic component, corresponding to the 
type of events to be detected. The condition evaluator checks whether a particular condition is 
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true or not The transaction manager as well as the data manager offer the same functionality as 
usual for database systems, enhanced by an event detector for transaction or database events, 
respectively. In addition, the transaction manager supports the cause aund effect relationship 
between transactions. (See, DaBC 88/, /Daya 88/ and /Chak 89/ for a more comprehensive de- 
scription.) 

The access control system has to check any request to execute a transaction. The defined 
rights and the conflict relations are stored as a part of the database (more precisely, as a part of 
the data dictionary). Descriptive rules to deduce implicit rights (remember that roles inherit 
permissions from subordin&ied roles and prohibitions from superior roles) and to solve con- 
flicts between permissions 2nd prohibitions are used by the deductive component to determine 
the valid access rights, i.e. the rights that are not overridden by another right, depending on the 
chosen policy for conflict resolution. Note that the functionality of a first order calculus is not 
required, but both sets of rujes must be separated. The process to deduce valid access rights is 
subdivided into two phases:       1. Inheritance of access rights 

2. Conflict resolution 
Each phase makes use of its own rule base. (A one-phase process would be more complicated.) 

If a request was made, the access control system checks whether an applicable permission 
is deducible, i.e. whether a permission and no prohibition is valid with respect to the actual pa- 
rameters of that request In doing so, all currently activated roles have to be taken into consid- 
eration. If the request is allowed, it is passed to the rule manager who calls the transaction man- 
ager. (Possibly a direct call from the access control system to the transaction manager is more 
appropriate, but this depends on the "basic" architecture of an active database system to be 
enhanced with duties.) If the predicates of the corresponding access rights are also defined by 
output parameters, the transaction is executed and afterwards the access control system checks 
whether the execution was allowed and the output can be given to the user or whether the re- 
quest must be rejected. In the latter case, the execution is undone and an error message is re- 
turned to the user. (This was not included in Figure 2, which is probably, even with this sim- 
plification, hard enough to understand.) Hence, the access control system acts like a reference 
monitor. 

In case of a dynamic authorization, the access control system checks whether this authoriza- 
tion is allowed and changes the set of rights which are stored in the database by an appropriate 
call to the data manager. If a positive duty was granted, the access control system creates the 
corresponding trigger by virtue of the define rule operation, which is provided by the interface 
of the rule manager. Similar to this, if a duty was revoked, the corresponding trigger is deleted 
too. 

The monitor for normative rights becomes a part of the rule manager. This is quite natural, 
because it has.to supervise situations in the same way as the rule manager does. If a normative 
right is triggered, the monitor makes use of the authorization interface to (temporally) grant and 
revoke the appropriate access rights, i.e. to change the authorization state in accordance with the 
policy chosen for conflict resolution (cf. Section 7). Hence, the monitor must know which pol- 
icy was chosen for the relationship between access rights and normative rights (i.e. if there are 
some rules to imply access rights by normative rights, they are a part of the monitor) as well as 
to solve conflicts arising between normative rights. Thus, the monitor comprises a simple de- 
ductive component too. 

9.   Related work 

A transaction-based authorization scheme was also proposed by Gark and Wilson in /ClWi 
87/. Their approach was mainly driven by the aim to insure integrity of data by means of well- 
formed transactions. These transactions are the one and only way to manipulate data. The as- 
signment of transactions to protection objects (Clark and Wilson have denoted them constrained 
data items) as well as to users being allowed to execute them was monitored to ensure integrity 
and secrecy. Of course, the evaluation of transactions to be •well-formed by the security admin- 
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istrator is rather discretionary. One of the main principles of their policy was that someone who 
evaluates a transaction must not be allowed to execute it (separation of duties). This principle 
can be implemented with the approach proposed in this paper by virtue of a clean association of 
tasks with roles and an integration of conflicting roles (e.g. evaluator and "executor") into the 
association conflict relation. Furthermore, Clark and Wilson divide the procedures to manipu- 
late data into two classes: integrity verification procedures and transformation procedures. Pro- 
tection objects may only be manipulated by transformation procedures. The policy is described 
by a set of enforcement rules and a set of certification rules. The most important ones are that 
all transformation procedures must be certified (evaluated) and that a list describes which users 
may manipulate which protection objects by which transformation procedures (this list is en- 
forced by the access control system and must be certified too). 

However, the Clark and Wilson model concerns a different problem domain. The approach 
taken in this paper may enhance a Clark&Wilson-policy by the also transaction-oriented concept 
of duties. On the other hand, it is not restricted to "transaction-only" systems, because it may 
enhance an "ordinary" discretionary access control policy too. It is not inconsistent to have an 
authorization scheme for read and write accesses (in the simplest case) to protection objects, be- 
sides the transaction-based concept of duties. The precondition is that also an authorization 
scheme for the execution of transactions exists. 

Recently, some other authors have proposed an application of normative rights (/MoMc 
91/) or obligations (/WiMW 89/ and /WWMD 91/), but neither of them has proposed to imple- 
ment them by active mechanisms, but, of course, there may exist other ways to cope with them. 

Morris and McDermid give a very elaborated distinction of the semantics of access relation- 
ships at the normative level in /MoMc 91/. They divide the process of determining the security 
requirements into 3 stages: an ontologic stage (determining the actors, possible actions, events, 
states of affairs or conditions, etc.), a normative stage (considering the type of security relation- 
ships between agents and events) and a stage of specifications for normative conditions (con- 
cerning the ways in which something is allowed or obliged). Their paper concentrates on the 
normative stage, and the duties and liberties of this paper are similar to a part of their considera- 
tions. Morris and McDermid consider 4 families (X) of rights: the freedom to do something, 
the power to do s.th., the claim to do s.th. and the immunity to do s.th. Each family X is fur- 
ther divided into 4 subclasses (simplified): X, counter X, no X and no counter X. It is impos- 
sible to give a comprehensive description here, but it is worth mentioning that the normative 
rights introduced in this paper are slightly similar to some of Morris and McDermid's rights. 
The main difference is that Morris and McDermid consider relationships between two actors 
(e.g. rights of a doctor concerning his patients and vice versa) rather than relationships between 
actors and data. So, both considerations concern not the same level, but it seems to be promis- 
ing to investigate if a combination of both approaches is possible (e.g. a mapping between the 
concepts). However, it is obvious that 6 concepts (cf. Figure 1) cannot have the same 
expressiveness as 16. (Effectively, there are only 8 different concepts, because claims and 
freedoms, on the one hand, as well as immunities and powers, on the other hand, are equivalent 
to each other if the actors are swapped.) The following (simplified) correspondences should be 
taken into consideration: 

permissions <-*   power and not counter immunity 
prohibitions <-»    rar power (implicit prohibition) and counter immunity, 
positive duties        <-»    not counter power, not counter freedom, claim and immunity 
negative duties        <-»    not freedom and counter claim 
positive liberties «-> freedom, counter freedom, not claim and not counter claim 
negative liberties «-» counter powerand not immunity 

Wieringa, Meyer, Weigand and Dignum follow in /WiMW 89/ and /WWMD 91/ another 
approach based on deontic logic. They have-introduced another kind of integrity constraints, 
deontic constraints, which could be violated by the pan of the real world to be modelled (e.g. 
normative conditions). This leads to deontic concepts like obligations, permissions, discretions 
and prohibitions, which are all reduced to prohibitions and later on to actions resulting in the 
fulfillment of a violation condition. Their obligations are similar to (positive) duties of this pa- 
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per, especially with respect to the possibility that users do not obey them. Interesting is the ex- 
pressiveness of their logical calculus (a combination of deontic and dynamic logic), which was 
proven to be sound and complete in /Wier 91/. 

However, both approaches only deal with a specification of duties and not with a possible 
implementation. 
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ABSTRACT 

In this paper we look at some complex security requirements and the 

difficulties which pertain to deriving a (formal) specification for them. We 

consider one possible approach derived from the semantic theory of the 

logician Rudolf Carnap. It is shown how this offers an easy solution to the 

problem of deriving a specification. We then consider problems of valida- 

tion and whether this approach makes validation a more tractable activity. 

Finally we conclude by considering what further advantages this approach 

has. 

1. Introduction 

We are concerned in this paper with the process of formalising and validating security 

requirements. We assume the existence of an informal requirements statement written in 

natural language, and we investigate the issues of producing and validating a formal 

specification based on these requirements. 

In the military security domain, many requirements are expressed in terms of information 

flow. We are concerned here with more general security requirements which are often 

couched in terms of access to resources held on computers, or access to knowledge. We 

are particularly concerned with complex requirements including conditional constraints on 

access to information or knowledge as these are difficult to formalise correctly. 

Security specifications are predicates relating individuals (agents) with knowledge, or 

knowledge states. Thus for example, 'X knows the contents of file_one.' is an example of 

a knowledge state. It would be possible to introduce a logic of knowledge to represent the 

inferences that an individual may make having gained some particular item of knowledge. 

For the purpose of this paper we do not include such capabilities, but assume that 

knowledge of some itemof information, and permission to know some item of information 

can satisfactorily be treated as atomic predicates. In future, it might be valuable to expand 

our approach by taking into account the properties of knowledge, perhaps by the use of 

some epistemic logic. 

Security requirements can be expressed in a number of different ways. In general it is 
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possible to express security requirements as constraints on allowable states, and as con- 

straints on allowable transitions. We exploit this duality in validating specifications. Our 

approach formalises the security specifications in terms of predicates defining allowable 

transitions between knowledge states, then formalising mandated and forbidden knowledge 

states as validation conditions. If the transitions which we have specified are consistent 

with the validation conditions, then we have a valid specification. This approach does not 

completely eliminate the 'formality gap' between requirements and specifications, but it 

eliminates some classes of problems. 

We begin by looking at what we shall call atomic requirements. It will be said that a 

requirement is an atomic requirement just in case it specifies one normative relationship 

for just one agent. Otherwise the requirement will be a complex requirement. This has the 

effect of making "Nurses are permitted to know the contents of patient's medical files." an 

atomic requirement and "Nurses and Doctors are permitted to know the contents of 

patients medical records." a complex requirement. 

Our work is motivated by this recognition that some security requirements are complex. If 

we try to formalise complex requirements in a 'natural' way then we can get into consider- 

able difficulty as we find that we end up with invalid specifications. The sort of example 

which is motivating our work is the Chinese Wall Security Policy (hereafter CWSP). 

[Brewer89] We define what we consider the pertinent parts of the CWSP as follows. 

Initially a user of a system is permitted to read file_one, filejwo and file jhree. If, 

however he reads file _one, then he is not permitted to go on to read filejwo. If he 

reads file two first, he is not then permitted to read file j>ne. He is permitted to read 

file jhree regardless of whether he has readfile_one or filejwo. 

As we shall show later a 'natural' formalisation of this problem leads to something very 

different from the natural language requirements. We propose a technique and a method 

for deriving requirements which over come this sort of problem. 

Work has been undertaken by ourselves and others [Cuppens91, Brewer89, Morris92a, 

Morris92b, Glasgow90] on the use of non standard logic for representing security require- 

ments. Whilst these are appealing they also have difficulties as they are beyond the experi- 

ence of many trained computer scientists. The approach we propose here shows a way of 

using standard first order logic to formalise security requirements without falling into logi- 

cal problems. We return to this below. 

(1)        Although the example we have chosen is small, there is no reason why,.thc method advo- 
cated should not be applied to larger examples, such as Ting's Medical example.' [Ting90] 
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2. Complex Requirements 

While defining the specification for a requirement, it is important that we define the rela- 

tionships which exist between the various requirements so that the conditions under which 

the requirements obtain are made clear. It is easy to show why. 

Suppose we have two requirements "Doctors are permitted to know the contents of 

patient's medical files." and "If doctors are permitted to know the contents of patient's 

medical files then nurses may be given permission by doctors to read patient's medical 

files.". If we ignore the distinction between complex and atomic requirements and do not 

heed the logical structure, i.e., the relations between atomic requirements, then our 

specification will not sanction the sorts of inferences we require, as we shall now illustate. 

Let 'p' stand for "Doctors are permitted to know the contents of patient's medical files.", 

'q' stand for "If doctors are permitted to know the contents of patient's medical files then 

nurses may be given permission by doctors to read patient's medical files." and 'r' for 

"Nurses may be given permission by doctors to read patient's medical files." The formali- 

sation for the requirement would be 'p & q'. And from this we would not, by the rules of 

inference for prepositional logic, be able to infer 'r', i.e., we would not be able to infer, 

from the formalisation that nurses may be given permission to read patient's medical files. 

This would then be a severe limitation on our specification language, not least because it 

makes validation that much more difficult given that we do not know what some of the 

entailments from the specification are. It is therefore important that the formalisation 

uncovers the logical structure of the natural language requirements. 

There is an additional problem with writing specifications for complex requirements. This 

concerns not so much a failure to distinguish atomic from complex requirements, but', 

rather a failure to capture the types of logical relationships which exist between the 

requirements. Consider again the CWSP. This states that a user is initially permitted to 

read file_one, file_two and file_three. If he reads file_one, then he is not then permitted to 

read file_two, if he reads file_two, then he is not permitted to read file_one. Let 'p' stand 

for 'X is permitted to read file-one' ,'q' for 'X is permitted to read file-two' and V for 'X 

is permitted to read file-three'. (We shall use the letters to stand for these statements 

throughout the paper.) We can now specify the Chinese Wall Security Policy in the obvi- 

ous way, by formalising each natural language statement as 'p & q & r & (p -> -q) & (q 

-» -.p)' then from this we can infer (-.p & -.q). (For the proof of this see Appendix I.) The 

intuitive but incorrect formalisation leads us to the absurd position of denying access to 

both file_one and file_two. This is clearly undesirable. The source of the error, in this 

example, is obvious, but it may not always be so. 

This suggests that a procedure is required for unravelling the complex requirements in 

such a way that we ensure the correct formal specification. 

Validation is also an important aspect of requirement specifications and has implications 
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for what the requirements specification should look like. (A specification that cannot be 

validated will be of no use.) 

In this paper we concentrate on validation by considering the possible states which the sys- 

tem might be in, rather than considering the transitions which the state might go through. 

Although this is not argued for in this paper, it is not clear why a security requirement can- 

not be validated solely by considering states rather than by states and possible state transi- 

tion, if only because the authors believe the method that is being proposed allows us to 

infer which state transitions are permitted and which not. 

3. State Descriptions 

What a specification for a complex requirement should look like is not always obvious. 

The 'logic' which lies beneath natural language constructions is not always perspicuous. 

Some procedure is required which will ensure the specification is the most appropriate one 

for the requirements. 

In his book 'Meaning and Necessity' Camap [Carnap47] introduces the notion of a state 

description for a formal language (such as propositional logic) S^ 

"A class of sentences in S , which contains, for every atomic sentence either this sen- 

tence or its negation, but not both, and no other sentence, is called a state description 

in Sl..." 

And a state description is useful because 

" ... it obviously gives a complete description of a possible state of the universe of 

individuals with respect to all properties and relations expressed by the predicates of 

the system. Thus the state descriptions represent Leibniz' possible worlds of 

Wittgenstein's possible states of affairs." 

Now suppose we substitute "atomic requirement" for "atomic sentence". We can view our 

requirement as a class of atomic requirements. Thus the CWSP will have three basic 

requirements: {X is permitted to read file_one, X is permitted to read file_two, X is per- 

mitted to read file_three). 

We can form a state description of a system by conjoining every atomic requirement, or its 

negation, but not both. This will define one possible state description. Thus, in the CWSP, 

"X knows the content of file_one and X does not know the content of file_two and X 

knows the content of file_three." is one state description. 

We define all the possible state descriptions from the set of atomic requirements by taking 

the power set of that set. This will give us a set of partial and complete state descriptions. 

(1)        If, for example, (p & -<q & -*) and (p & ->q & r) are both permitted states, then the tran- 
sition from (p & ->q & -tf) to (p & -rfj & r) would be a permitted transition.      ." 
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We form all the possible state descriptions from the partial ones by supplying the negated 

requirement where it is absent from the set. 

Thus the power set of the set {A,B} would be {{},{A},{B},{A,B}}- We define all the 

state descriptions from the three partial ones by supplying the negation of the missing 

requirements/This will give us: {{-IA,-IB},{A,-TB},{-IB>A},{A3}} which would then 

give all the possible combinations. 

This is all the logically possible states. These are not going to correspond to the customer's 

requirements. The customer is only going to want some of these states to obtain. We need 

to determine which are consistent with the requirement. 

This is done by constructing a table. Let us call this a state description table. Each row on 

the table represents a possible state description. Each state description can be checked 

against the customer's requirement. 

We can work through the table row by row to build up a complete picture of all the possi- 

ble states. From the complete state description we can work out the requirement 

specification by considering which of those states is consistent with the customer's 

requirements. 

Consider again the CWSP. The complete state description for these atomic requirements 

are given as in the above table. (Where 'p\ 'q' and V are defined as above.) 

P q r State Descriptions 

(1) T T T F 

(2) T T F F 

(3) T F T T 

(4) T F F T 

(5) F T T T 

(6) F T F T 

(7) F F T T 

(8) F F F T 

To the right of the table, underneath the heading 'state description' we assign a value T or 

F in accordance with whether or not that state description is consistent with the require- 

ments. Thus in the first row the state description takes the value F since the description 'X 

knows the content of file_one and X knows the content of file_twö and X knows the con- 

tent of file_three' is not consistent with the requirements. 
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Note that (4), (6) and (8) can be true because it is consistent with the requirement that X 

does not know the content of file_one, two and three. (Although it is interesting to note that 

if we define the requirements in terms of preconditions, or actions, then (4), (6) and (8) 

will be false.) 

We can derive from this a complete description of all the possible states which the system 

could be in and which are therefore consistent with the requirements by conjoining the six 

true formulae. 

(p&-^q&r)v(p&^q& -^r) v (-p & q & r) v Hp & q &. -i/-j v (-p & -^ & r) v 

(-p & -nq & -r) 

where for example, the first disjunct represents row (3), the second row (4) and so on. We 

can use a Karnaugh Map to reduce these to: 

((p &^q)v -pj. 

which gives us the required specification (1). This therefore gives us a way of capturing 

and specifying complex requirements. We now need to see how this relates to the valida- 

tion conditions. 

4. Validation Conditions 

We begin by considering what is meant by, or what is involved in, the concept of valida- 

tion. We mentioned above the possibility of looking at each state that is consistent with the 

specification. It is obvious that validation cannot be done by checking the set of all possible 

states, or state transitions, which are consistent with this, since that could be an infinite 

number. 

Rather we consider two subsets of combination of requirements; those combinations which' 

ought to always occur, and those which ought never to occur. Call the former mandated 

states and the latter forbidden states. For more discussion on these see [Dobson90] 

Mandated and forbidden states are something we can enumerate and reason about, since 

they are finite. They will, for example, take such forms as: State A ought always to occur 

with state B, and state B should never occur with state C. 

Rather than trying to validate each state or state transition that is consistent with the 

specification against the requirements, it would be better to prove that every state that is 

consistent with the requirement always has the mandated properties, and never has the 

forbidden properties. 

(1) It may come as a surprise that r does not appear in ihe final specification. However, since r 
('X knows the content of file_three') and -. r ('X docs not know the content of filc_three.) are boih 
consistent with any permitted permutation of 'p' and 'q\ it follows that were r to be included the 
specification would in fact be *((P & -*Ö v -. p) & (r v -, r) which is, of course, logically 
equivalent to the above specification. Although we have not argued for this inihis paper we be- 
lieve that the consequence of this is that the requirement V is independent from "p' and 'q'. 
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We need first to be clear about what it is for a state to be consistent with a specification, 

what it is for a state to be mandated, and what it is for a state to be forbidden. 

4.1. Consistency 

A state c is said to be consistent with a specification S just in case it is not possible for c to 

occur without S occurring. This is a strong conception of consistency. But is has an 

important advantage over other weaker conceptions. It means, for example, that 

although 'X has knowledge of files_one and three and not file_two.' is consistent with the 
(2) specification, 'X has knowledge of file_three.' is not. 

The motivation behind this is that, for example, "X has knowledge of file_three." cannot be 

said to be consistent with the specification because we are unclear what the truth of 'X 

knows the contents of file_two.' and 'X knows the contents of three.' are. This strong con- 

ception has the advantage of refusing to acknowledge that an incomplete (state) description 

can be consistent with a specification. And this is correct, it should refuse to do this pre- 

cisely because we do not know the values of the omitted atomic requirements. 

More formally any state c is said to be consistent with S just in case 

hc->S 

4.2. Mandated States 

Although we refused to acknowledge that partial state (descriptions) can be consistent with 

a specification, mandated states can be partial. Thus, for example 'If X has knowledge of 

file_one then X does not have a knowledge of file_two.' can define a mandated state even 

though there is no mention of X's relation to file_three. 

State m will be said to be a mandated state of a specification S just in case every time S is 

true, m is also true. We express this more formally by saying: 

rS->m 

Given the above specification it can be shown that 'If X has knowledge of file_one then X 

does not have a knowledge of file_two.' is, by our definition, a mandated property since 

the following holds: 

I- (((p & -i q) v -i p)) -> (p -> -i q) 

(The proof of this.is to be found in Appendix II.) 

(1) A weaker definition would be c is consistent with S just in case -i t- S & -.c 
(2) Whereas it would be consistent under the above weaker definition of consistency 
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4.3. Forbidden States 

Just as some requirements have persistent properties so some will also have forbidden pro- 

perties. Forbidden properties, like mandated states, can be partial. An example of a forbid- 

den state (again from the CWSP) is "X has knowledge of file_one and X has knowledge of 

file_three." 

A state f is said to be a prohibited state for a specification S just in case f never occurs. We 

express this formally by saying: 

hS->-.f 

It is not difficult to see why this works. This states that whenever the specification is true, 

the state or partial state f will be false. 

4.4. Mandated States and Consistency 

If part of the validation consists in showing that the mandated states obtain for a 

specification, then we will need to prove that the mandated states will obtain for every state 

that is consistent with the specification, i.e., we need to prove the following: 

i- (((c -» S) & (S -> m)) -»(c -» m)) 

That is to say, for any state c which is consistent with the specification S and any state m 

which is a mandated state for the specification, will also be a mandated state for any state 

that is consistent with the specification. (The proof of the theorem is given in Appendix 

in.) 

4.5. Forbidden States and Consistency 

Similarly we need to prove that any state c which is consistent with specification S will not 

have any forbidden properties f. That is to say: 

I- (((c -> S) & (S -» -i f)) -> (c -» --0) 

The proof to this is given in appendix IV. 

This proof can be exemplified by considering another example from the CWSP. Let 'p\ 

'q' and V stand for the security requirements as above. It is clear that (p & -.q & r) is a 

state description which is consistent with the specification since I- ((p & -iq & r) -» ((p & 

-i q) v -. p). Furthermore (p & q) is a forbidden state since h ((p & -i q) v -. p) -> ->(p & 

q). (p & q) is also forbidden for the consistent state (p & -q & r) since r (p & -.q & r) -» 

-<P & q). 
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5. Validation 

An ideal aim of validation would be to show that each state s that is consistent with the 

specification is what the customer requires. We argued this was not always possible. But 

what could be done was to show that the specification only sanctioned states which 

preserved all mandated stated and precluded forbidden states. 

It was claimed that to do this we would need to prove that all states which were consistent 

with the specification preserved the mandated states and precluded the forbidden states. 

This we have done. Thus it follows that any state mandated or forbidden by the 

specification will also be mandated or forbidden by any state consistent with the 

specification. 

For validation of requirements, therefore, all that is required is to ensure that the mandated 

and forbidden states entailed by the specification are in accord with the customer's require- 

ments. 

6. Conclusion 

In this paper we have given an all too terse account of a method for formalising and vali- 

dating security requirements. As a conclusion we should like to make a few brief addi- 

tional points concerning the method we have been advocating. 

We have talked about complex (security) requirements, how we might derive a formal 

specification for them, and what would constitute a validation. Validation, it was said, con- 

sists in proving that all mandated and no forbidden states obtain. Yet this might not be 

enough to gain assurance. Are there any other properties of the state description tables we, 

might be used for considering validation. 

One useful concept might be that of independence. It is not difficult to envisage a situation 

where what is required is a proof that the truth (or falsity) of this state has no logical or 

causal bearing upon the truth (or falsity) of that state. (There is an example of an indepen- 

dent requirement in the CWSP. The truth (or falsity) of "X has knowledge of the contents 

of file_three." has no logical or causal bearing on the truth (or falsity) of either "X has 

knowledge of the contents of file_one." or "X has knowledge of the contents of file_two.".) 

The authors believe that the proposed method will give some grounding to this conception, 

and allow us to prove, for any specification, which requirements are independent from 

each other. Although we do not consider it in detail here it suffices to say that we consider 

two requirements to be independent from each other just in case there are state descriptions 

in which all four possible truth combinations can be found. 

One difficulty with this approach might be that the state description tables are too large. 

Although this does not constitute a logical objection, it does make the process of formalis- 

ing the requirement that much more difficult. The concept of independence will also have 
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some benefit here. It will considerably ease the process of securing a specification by 

reducing the size of the state description tables, in fact we will only need to construct 

tables for those requirements which stand in a conditional relationship to each other. The 

authors also believe, however, that they have uncovered a method which solves the prob- 

lem of scaleability and does not require working with large state description tables; indeed 

the tables need never have more than four lines. 

Just as there can be independence between requirements, so there can be logical relations. 

Again these prove useful in attempting to gain assurance that the specification does what is 

required. An important part of validation might, for example, consist in showing the condi- 

tions under which a state, or a partial state obtain. We might want to know whether, 

according to the specifications, having knowledge of file_one is a sufficient condition for 

not having knowledge of file_two, or whether there are any conditions under which a user 

cannot have knowledge of file_three. Again we do not intend, in this paper, to go into 

details here, but suffice it to say that the method advocated permits an automatic deriva- 

tion, for every atomic requirement, of all the necessary and sufficient conditions which are 

required for that state to obtain. 

In addition to plotting logical relations between various requirements, it would also be use- 

ful to derive possible causal relations between the requirements using the state description 

tables. We are, at the moment working on this and considering what, if any, additional 

information, is required which would enable us to do that. 

Finally, in the introduction to this paper it was stated that it might be valuable to extend the 

approach by taking into account the properties of knowledge, perhaps by the use of an 

epistemic logic. It is not too difficult to see how this might be achieved. Prepositional vari- 

ables in the state description tables, would be replaced by formulae, either from an 

epistemic logic [Cuppens91, Glasgow90] or a deontic specification which captures the 

types of access rights which are involved[Morris92a, Morris92b]. Which gives us a 

greatly enriched specification. 

There is still much to be done with the state description approach, but we believe that it 

offers an easy and promising way of deriving a formal specification from complex security 

requirements and which also enable us to validate the specification against the require- 

ments. 
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Appendix I 

(1) p&q&r&(p-»-iq)&(q-»-ip)   A 

(2) p 1 &E 

(3) q -* -.p 1 &E 

(4) -nq 2,3 MTT 

(5) q &E 

(6) p -» -q &E 

(7) -ip 5,6 MTT 

(8) -ip & -iq 4,7 &I 

(It should be noted that there are other horrors with this specification. From lines (4) and 

(5) we can of course infer (q & -q). Since this is a contradiction, anything follows from it. 

Appendix II 

I- (((p & -. q) v -ip) -» (p -> -iq)) 

(1) /(p&^q)v-np      A 

(2) p&^q A 

(3) p 2, &E 

(4) -q 2, &E 

(5) P -> ~q 3,4 CP 

(6) -np A 

(7) -ip -> ((p -» -q) I- —»p —> (p —> —iq) 

(8) p-^-nq 6,7 MPP 

(9) p-»-q 5,8 vE 

(To keep the proof simpler we have, at line (7) used a theorem from the propositional cal- 

culus.) 
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Appendix III 

Mandated Properties and Consistency 

h ((c -> S) & (S -> m)) -> (c -» m) 

(1) c-»S A 

(2) S-*m A 

(3) c A 

(4) S 1,3 MPP 

(5) m 2,4 MPP 

(6) c —> m 3,5 CP 

Appendix IV 

Forbidden Properties and Consistency 

1- ((c -» S) & (S -» -.f)) -»(c -»-if) 

(1) c->S A 

(2) .S-»-f A 

(3) c A 

(4) S 1,3 MPP 

(5) -if 2,4 MPP 

(6) C-»-if 4,5 CP. 
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Abstract 

We present a set of modeling constructs and reasoning tools that 
extend the use of computer-supported conceptual modeling for 
information systems to the study of security aspects. The modeling 
framework is the Group Security Model (GSM) which describes 
access rights through a teamwork-oriented organizational model. 
Reasoning about GSM application models is enabled by 
representing them in a deductive and object-oriented database 
language, Telos. A prototype implementation in the software 
information system ConceptBase is reported. 

1.   INTRODUCTION 

Conceptual modeling has been widely applied in information systems requirements 
engineering and design. While this was mostly a pencil-and-paper exercise for quite a 
while, a number of tools have recently become available through which conceptual models 
can be formally represented as knowledge bases and analyzed with knowledge base tools 
[Borgida et al. 87]. 

Initial conceptual models just specified the internal structure of systems. More recently, the 
emphasis has shifted to describing the relationship of the information system to its 
environment. According to a model proposed in [Jarke 90], this environment can be 
categorized into the usage, the subject, and the development world of the system. The 
usage world describes the organization in which the system is intended to function, the 
subject world describes the part of the world the system maintains information about, and 
the development world describes the version history of system components and 
development teams. Each of these subworlds, as well as their interactions, create certain 
nonfunctional requirements which have to be taken into account when making or evaluating 
design decisions about the system. Domain theories can be developed which provide 
conceptual frameworks and reasoning tools for representing and using such requirements. 
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This paper presents such a domain model for the goal of information systems security in an 
organizational setting. Security can be understood as a type of nonfunctional requirement 
which constrains the relationship "access rights" established by the information system 
between the usage world and the subject world. Our conceptual model, the Group Security 
Model (GSM), assumes that an information system is embedded in a teamwork-oriented 
usage environment where teams have to accomplish certain tasks and therefore need certain 
information. 

The GSM is a framework for discretionary security policies with some mandatory aspects. 
It is mandatory in the sense that certain organizational and access right structures are 
defined in a centralized fashion at information systems design time, and that users may 
transfer rights only within this framework. However, as in discretionary models, there is 
no central definition of classification levels for users but a concept of subsystem ownership 
and distributed control. As a further note to security specialists, we should say that we take 
a fairly naive view of access rights here: we assume a safe underlying encryption and 
communication system and ignore the dangers of hidden channels (but see [Steinke 91] for 
a discussion of one such channel, the handling of integrity constraints). 

There are several possible uses of such a model. First, if designers choose the GSM 
framework for information systems engineering and design, they can use the associated 
analysis toolkit to study security aspects of the proposed system interactively. Through 
query mechanisms, they can simulate the system behavior and find out who has access to 
what objects. Through limited theorem-proving capabilities from the domain of semantic 
query evaluation, they can study which task (and thus access right) combinations should be 
avoided from a security standpoint. Through tracing mechanisms, they can obtain 
explanations how users have obtained or could obtain implicit access to objects. 

Similarly, the impact of proposed organizational and design changes in existing systems 
can be analyzed, and security-oriented re-engineering of existing information systems can 
be supported when a reverse engineering study of them is made within the GSM 
framework. 

A toolkit for reasoning about GSM-based security is contributed by representing the GSM 
in a knowledge representation language, Telos [Mylopoulos et al. 90], that combines 
features of deductive and object-oriented database languages. The security modeling 
primitives (such as classes of access rights) are defined in this model as metalevel deduction 
rules and integrity constraints which are then compiled using optimization techniques from 
deductive databases offered by the software information system, ConceptBase [Jeusfeld 
and Jarke 91, Jeusfeld and Staudt 91]. 

The GSM was originally proposed for the context of security in arbitrary multi-user 
knowledge bases. However, due to the computational problems associated with theorem- 
proving in complex rule systems we expect our tools to be most practically relevant in the 
formally rather simple object-oriented knowledge bases used to describe information 
systems requirements and designs. We therefore focus on this aspect here. 

Section 2 gives an overview of previous work on reasoning about security. Section 3 
describes the GSM framework and section 4 the associated analysis toolkit. Section 5 
provides comments on the implementation as well as suggestions for further research. 
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BACKGROUND AND MOTIVATION 

Reasoning is the ability to draw conclusions and create information by applying rules and 
functions on prior knowledge, in addition to the capability to provide an explanation and 
justification of specific actions and conclusions. 

Reasoning about knowledge, based in the philosophical tradition, has become an active area 
of research in a wide variety of fields ranging from artificial intelligence and cryptography 
to linguistics and psychology. Reasoning about knowledge is also a basic feature and 
capability of knowledge base systems. Knowledge base systems create information based 
on the triggering and evaluation of rules by the control structure. A "characteristic of 
knowledge-based systems is that they are (ideally) able to reason about their own reasoning 
process" [Berson and Lunt 87, p.237]. The capability of this reasoning process should be 
made available to users in order to help them understand and improve the design, 
implementation and operation of the security component of a knowledge base system. 

U-Kuang is a rule-based tool which performs reasoning about the security of UNIX 
systems [Baldwin 87]. U-Kuang deduces the set of operations directly or indirectly 
accessible to each user, particularly those operations which can extend a user's privileges. 
In order to determine these operations, U-Kuang contains information about UNIX 
protection modes, files, privileged programs and files they access, etc. U-Kuang 
determines the potential operations accessible to users and compares the operations with the 
specified security policy which contains all users and their allowed user and group 
privilege. The operations which violate the security policy are reported. 

The application of reasoning about security is often considered to be only an optional or 
nice, rather than essential security component. Although reasoning about security does not 
provide security in itself, it enables the security of a system to be examined and evaluated. 
However, for information engineering in organizations, the possibilities for security 
strongly depend on the organizational design that implies the "need-to-know". 

[Glasgow et al. 91] pursue a somewhat similar point of view when they define reasoning 
about security in terms of the interacting notions of knowledge, obligation and permission. 
They create a structured framework for reasoning about security based on a modal logic 
formalism, as well as a language for expressing abstract security policy definitions. 
However, no practical reasoning tools are readily available for such special-purpose logics. 

One major issue in reasoning about security has been complexity. In the discretionary 
policies we are interested in here, the early results were either negative (undecidability of 
the access matrix model [Harrison et al. 1976]) or led to overly simplistic models. 
However, concepts from the database area, in particular the ideas of database schema and 
of transaction specification, have recently led to more realistic solutions. 

The one closest to our approach is the Schematic Protection Model (SPM) by Sandhu 
[1988]. Security policies can be defined by a meta database schema which defines 
permitted relationships between models of active components (subjects) with each other 
and with passive objects. The complexity of analysing whether - under a given initial 
database state — a given subject could potentially access a certain object then depends 
mostly on the way how transfer rights (copy flags) can be transfered among subjects. 
Specifically, Sandhu identifies two sufficient conditions for polynomial complexity of 
potential access analysis: 

143 



(1) Acyclicity: if subjects of type A create subjects of type BM directly or indirectly, 
then subjects of type B must not create, directly or indirectly, subjects of type A. 
Cycles within the same type are allowed. 

(2) Attenuation: when a subject a (of type A) creates another subject b (also of type A), 
then b must have equal or less rights than a. This implies that a can only transfer its 
own rights at creation time and that any new right b receives later, is also given to a. 

In related work, Sandhu demonstrates that most practically relevant protocols in the 
literature can be reformulated to satisfy these conditions. In particular, the coverage of 
hierarchically organized groups such as formal organizations is possible as well as the 
consideration of different user roles (such as leader and different levels of members). 

In summary, Sandhu's models provide a thorough study of how the relationships 
between subjects and objects should be constrained such that security analysis becomes 
practically feasible. The basic idea is shown in figure l.(a). 

Subject Object      Task Object     Subject Task Object 

(a) (b) (c) 

Fig. 1: Security modeling, information systems engineering, and a synthesis. 

Unfortunately, this is not exactly how standard methods for organizational information 
systems analysis and design proceed. Most of them (including, e.g., IBM's well-known 
Business Systems Planning) identify the required relationships of business processes or 
tasks to data objects and would ignore the people or groups involved. See figure l.(b). 

Yet, it is individuals (or small groups thereof) who pose the major threats to security, and 
often these threats stem from the combination of different tasks (and thus justified access 
rights) addressed by the same organizational unit The approach described below can be 
seen as attempting a synthesis between the two viewpoints as shown in fig. l.(c). From 
the viewpoint of security analysis, it provides an answer to the question: where do the 
subject groups mentioned in security models come from ? 

From the viewpoint of information systems analysis, it allows the inclusion of security 
aspects without much extra data collection work for the analyst More importantly, it also 
allows organizational design for security in the sense that proposed partitionings of task 
assignments to organizational units can be analyzed for their security implications. Finally, 
it should be mentioned that the same conceptual structure also rums out to be useful as a 
basis for computer-supported cooperative work [Rose et al. 92]. 

Obviously, to make this idea fully operational, such an organizational model must be 
mappable to a formal security model such as SPM. In particular, the acyclicity and 
attenuation properties of a system that contains multiple kinds of interwoven "active 
components" (subject organizations and task structures) need to be studied. In the 
following exposition, we do not yet solve this problem completely but offer the following 
two contributions: a domain analysis of what features and properties the proposed model 
needs to be useful both from a general information engineering and from a security 
perspective, and an implemented toolkit that employs deductive query processing facilities 
for static and partial dynamic security analysis. 
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THE GROUP SECURITY MODEL 

The goal of achieving a secure system is approached by restricting a user to a subset of the 
information in the system. The smaller the subset of the information which a user may 
access, the less information that can be disclosed or modified by the user, resulting in a 
more secure system. The smallest subset of information which must be made available to a 
user consists of that information which the user needs to know. In addition, one can also 
restrict the operations which a user may carry out w.r.L the information which he may 
access. These operations or access types would be defined according to what the user needs 
to do with the accessible information. 

Both the need-to-know and the need-to-do are not just determined by a user's membership 
in a formal organizational unit but much more precisely by the tasks he or she is involved 
in. The Group Security Model (GSM) [Steinke 92] restricts potential user access rights to 
task-related information while leaving actual access right granting at the discretion of the 
data or procedure owner. 

The GSM is formally defined as a structured semantic network in the deductive and object- 
oriented database language Telos [Mylopoulos et al. 90]. Telos supports the abstraction 
principles of classification/ instantiation, generalization/specialization, and aggregation/ 
attribution. Specifically, the instantiation hierarchy leads to the following layered 
representation of security-related knowledge (the same is, incidentally, true for other 
aspects of IS modeling): 

• The meta meta class level defines the generic GSM framework. 
• The meta level class specifies particular kinds of task-based security policies within the 

framework. 
• The simple class level describes the security model of a particular information system 

within a meta level policy. 
• The instance or token level is a record of actual user roles and accesses within an 

information system which could be used, e.g., as an audit trail. 

Each level can be seen as a type system that provides a sublanguage which constrains what 
can be defined at the level below. The security analysis toolkit currently focuses on the 
lowest two levels, making certain assumptions about the policies defined at the meta level. 

The two highest levels of the GSM is represented in fig. 2 as a semantic network, using 
graphical standards of Telos. The upper box describes the meta meta level of the model, the 
lower one a set of specific meta level constructs we have found useful for our prototype. In 
the figure, thin links with no labels stand for instantiation relationships, thick grey links for 
specialization relationships and the labeled links are attributes. Rectangles represent class 
objects and ovals represent pre-defined simple class objects which are needed in every 
GSM-based information systems model. 

At the metalevel the GSM consists of five basic components: user, role, task, access type 
and object. The entity user represents the individuals who have permission to access the 
information system. A task represents the activities and assignments which are to be 
carried out in an organization. The entity object represents information in the system. A 
role is a link between user and task which represents the relationship that a user has to a 
task, e.g., leader and member. An access type is a link between task and object 
which represents the operations that a user associated with the task may carry out w.r.L an 
object, e.g., read, write, and owner. 
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accessrestnction 

Fig. 2. Group Security Model. 

A user is assigned to a task by means of a role link. Information is assigned to a task by 
means of an access type link. Thereby a user is restricted to that information he needs to 
access and to those operations he needs to do in order to complete his assigned task. 

Besides the above-mentioned abstraction principles, Telos offers deductive rules and 
integrity constraints as in deductive databases as a basis for formally defining the semantics 
of concepts. Thus, the GSM and different kinds of policies within the GSM framework can 
be formally specified by a combination of pre-defined structure (as shown above) with 
rules and constraints. The following provides an informal overview of the characteristics 
and implications of the components of the GSM; the full formal definition can be found in 
[Steinke 92]. 

User. The object user in the GSM represents an individual or process which has 
permission to access the information system. Users may be assigned to more than one 
task, just as in the real world a user may be required to complete several assignments at the 
same time. The GSM specifies, though, that a user may only access information associated 
with a single task at a time, since all information required for a task is associated with that 
task. Accessing information from several tasks at the same time goes beyond the need to 
know principle. 
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The GSM enables supervisor-subordinate relationships between users to be represented by 
means of the supervises link. The leader of a task may only assign the users which he 
supervises to his task. 

Role. A role defines the relationship which a user has w.r.t. a task. Two types of roles are 
defined in the GSM, member and leader. 

The member role relationship between a user and a task permits a user to access all objects 
related to the task with the access type specified for that task, except for one restriction. 
The member role does not permit communication with other tasks, and therefore does not 
include the right to giant another task access permission to information owned by this task. 

The leader role provides a user with responsibilities and priviledges in addition to those 
granted to a user who is a member of the task. While every task must have a leader, it is 
possible for a task to have more than one leader, in which case each leader has the same 
rights and priviledges. Only the leader of a task may communicate with other tasks. A 
leader is able to grant and revoke access permission to objects owned by this task. A leader 
has the capability to define subtasks and assign users to his task or to his subtasks. 

Task. Task is the central component of the GSM. A task represents an activity or 
assignment which, in the process of being carried out, requires access to information in the 
system. There are two types or classes of tasks: first level tasks and subtasks. First level 
tasks are explicit instances of the class tasks representing tasks which are not subtasks of 
other tasks, i.e., have no parent task. Subtasks are instances of the subtasks class, created 
by the leader of a task, and have a partof link to the creating task, i.e., their parent task. 

A transfer link, from one task to another task, indicates that access to information which is 
owned by the former task may be granted to the latter task. 

A number of task classes are required by the GSM for administrative purposes. The public 
task is a task which has associated with it information which all tasks may access. The 
initiate tasks task allows a user associated with this task to create and terminate first level 
tasks. A user with a role in the user mgmt task may add and delete users and supervises 
links in the GSM. The archive task is the owner of all objects which have no owner, e.g., 
where the task which was the owner has been terminated. The current task is a subclass of 
tasks which contains only one instance, namely the task which is currently accessing the 
information system. A user associated with the security task may use the security analysis 
toolkit described in the next chapter. 

Access Types. The access type component of the GSM, represented by a link from a 
task to an object, describes the operations that a user associated with the task may perform 
on the object. There are several ways an access type is created. An owner access type link 
is granted to the task which creates the object Other access type links are generated by the 
owner of an object when granting access permission to his object to another task. In 
addition, access type links are created by leaders of tasks copying them from a parent task 
to a subtask. Access permissions may also be revoked by the owner of the object 

Access restriction respresents a constraint which may be associated with an access type. 
This constraint would describe a condition which must be satisfied before the access type is 
used to permit access to an object. The access restriction is created by the owner of the 
affected object 
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The number of access types is dependent on the security policy and the knowledge 
representation language. For Telos-based information system descriptions, the following 
access types have been defined [Steinke 92]: 

Null access type for an object means that no access to this object is permitted. 
While the absence of an access type link also indicates that access to an object is 
not permitted, null access type reinforces the denial of access, including the 
denial of indirect or implied access permission, and overrides all other access 
types. 

Use access permission for an object allows the object to be retrieved from the 
knowledge base for use within the system,-but prevents the object from being 
displayed on an output device. Use access of a rule or constraint permits the rule 
or constraint to be used for deductions and integrity checking, while the content 
of the rule or constraint remain hidden from the user. 

Read access for an object means that the object may be retrieved from the 
knowledge base. The GSM defines read access for a link object to imply read 
access to both the source and the destination objects. In Telos this applies to 
attribute links, instanceof links and isa links. 

Connect access for an object means that this object may be specified as the 
destination of a link. If read access was sufficient for an object to become the 

• destination of a link, then —due to referential integrity of the database — the 
owner of the destination object may not be able to delete his object, even though 
the only permission he granted was read access. 

Addinst access for an object provides permission to create an instance of that 
object. The task which creates the instance becomes the owner of the new object. 

Addattr access for an object means that one has permission to add attributes to 
the object. If the attribute is an instance of an attribute category then one requires 
addinst access to the attribute class object If the destination of the attribute is a 
specific object in the knowledge base (i.e., not integer or string), then connect 
access to that object is required as well. 

Addclass access type permits the creation of a subclass, and is therefore only 
appropriate for a class object. If a subclass is created, additional rights are 
granted to the owner of the subclass w.r.t the parent classes and their attributes, 
in order to allow inheritance from the parent classes. 

Execute access for an object provides permission to initiate a method or 
process. 

Owner access type indicates the task which is the owner of the object. As 
owner, a task has the capability to perform any operation on that object Owner 
access contains the privilege of granting or revoking access permission for the 
object, to or from other tasks. The owner may delete his objects. 

To enable inheritance, owner access of a class object includes additional rights. 
The owner of a class object has access permission to objects "below" the class 
object, e.g., all instances of the class object all attributes of die instances, as well 
as all subclasses of the class object (but not the attributes associated with the 
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subclasses). In addition, the owner of a class object may access objects "above" 
the class object. This allows the owner of a class to use the normally inherited 
attribute categories as well as recognize that instances of his class are also 
instances of the parent classes. 

Read Query access type from a task to a query object results in access 
permission to a group of objects, namely all objects which satisfy the 
specifications of the query, at the time that the access is checked. The read query 
access permission can only be created by the leader of the task which has owner 
access to all components of the query definition, since knowledge of the objects 
specified in the query may be provided to the recipient of the query access. Read 
access permission is required for the query object itself to be accessed, i.e., to 
see the makeup of the query. 

Objects. The object component of the GSM represents an entity or object in the 
information system, be it a link, an attribute, a rule, a constraint or any other type of 
object. Only if an access type link from a task to an object exists, may that object be 
accessed with the operation specified by the access type link. 

Deduced knowledge is derived from the triggering of rules. A rule can only be triggered, 
i.e., used to generate deduced information, if a user has access to the rule. A rule is 
triggered on that subset of the knowledge base which a user has permission to access. 
The deduced information can only be read. Access to deduced objects is possible by 
others, only as they are able to access and trigger a rule which creates the deduced object. 

The GSM requires that a rule only be created by a task with owner access to the objects 
which are components of the predicate that specifies the rule. The reason for this 
requirement is that when the owner of a rule grants access to the rule, others may possibly 
discover the components of the rule. If the owner of the rule is also the owner of the 
objects used in the specification of the rule, then, since he is the owner, he has the right to 
let others discover these components. 

Constraints are similar to rules since in their specification they may refer to various objects 
in the knowledge base. These components may become accessible to a task which 
receives access to the constraint. Therefore, only an owner of all components of a 
constraint can create a constraint in the first place. A constraint only applies to a user if 
the user has access to the constraint. 

4       A RULE-BASED SECURITY ANALYSIS TOOLKIT 

The relationship between the GSM and an implemented information system can be viewed 
as pictured in fig. 3. An access request to the information system goes to the GSM. If 
access permission for the current user and task is permitted, then data from the information 
system can be retrieved or modified according to the access type specified. However, since 
the GSM-based description of the relationships between users, tasks, and objects is a 
formal Telos knowledge base, the deductive querying and integrity checking facilities of a 
Telos implementation can be used for analyzing the information systems model in general at 
the class level, and the actual situation at die instance level of the model. In this section, we 
describe the rationale and implementation of such a toolkit we have developed for the Telos- 
based software information system, ConceptBase. As mentioned earlier, a more general 
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environment which covers the meta class level of basic policy specifications as well is still 
under development. We are working on this based along two threads: one is based on a 
mapping of GSM variants to SPM [Sandhu 88], the other on the use of model-generation 
algorithms such as SATCHMO [Bry et al. 88]. 

Access Request 

Fig. 3. Access request arrives via the GSM to the information system. 

The potential applications of such a toolkit are manifold. Reasoning about security can be 
used to assess the impact of specific sets of knowledge classifications to determine 
appropriate security criteria. "Because its knowledge is encoded for logical processing, a 
knowledge base system is potentially able to reason about the closure of subsets of its 
knowledge base with respect to inference" [Garvey and Lunt 91, p.34]. Thereby one can 
find risky situations where insufficient security criteria have been specified for information, 
or costly situations where information has been over-classified. 

Reasoning about security enables a user to look back and explain or justify prior actions in a 
system. Such a capability is particularly needed by an auditor who must be able to 
determine who was permitted to access information and why that permission existed. 

Reasoning about security enables a preview of the potential impact of a user or an 
operation. What information can the user already access? To whom may the user pass on 
information?' What new rights could a user possibly get by exercising the current rights? Is 
there a way a user can get access to a particular object? 

Security and access control is required when integrating data from several organizations. 
This situation arises at the United States Environmental Protection Agency (EPA). A law, 
"The Toxic Substances Control Act", requires chemical manufacturers to submit details of 
their products to the EPA. The EPA is required to prevent the disclosure of this data since 
the information could be used to discover details about corporate strategies, pricing policies, 
research efforts and development plans. At the same time, "The Freedom of Information 
Act" requires non-sensitive information to be made public. 

In the broader context of the four information systems engineering worlds mentioned in the 
introduction to this paper, the toolkit could also use reasoning about security to evaluate the 
privacy implications and requirements of the information in the knowledge base. What 
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permission must be granted from the subject of the information? How do the security 
criteria relate to the privacy requirements? 

In our study, we have used the example of a hospital information system which requires a 
significant security component to ensure privacy and correctness of its information. Rg. 4 
presents a subset of the information contained in a hospital system whereas fig. 5 shows a 
number of tasks in the hospital environment 

S forall p/In.patient forall c/OU-count 
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Fig. 4. Telos Hospital Example 
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Fig. 5. Tasks in a Hospital environment. 

4.1   Toolkit Overview 

The interface of the security analysis tool is shown in fig. 6. Users are able to use the 
security analysis tool according to the nature and requirements of their task. A user of the 
security task may specify any class level object. That means that the security task may 
know the structure of the information and who may access information at the class level. 
Specific instances of information are only available to the owners of the related classes 
and the owners of the information itself. 

Security Analysis Tool 

Current Access 
Potential Access 
Access as of  

Object(s) 

Accessible By: 
Task User Access Type: Explanation 

Fig. 6. Interface of Security Analysis Tool 
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Information can be requested according to the historical, current or future status of the 
knowledge base. Historical information requires the specification of a date and will check 
the access restrictions of the system as they existed at that date. Current status concerns 
the system as it exists now, while the future status provides information as the system 
may exist at a future point in time if all users and tasks receive access to all information 
they are potentially capable of receiving. 

The user indicates which object is to be examined. If more than one object is specified 
then the security analysis tool reports on those users and tasks who have access to all of 
the specified objects. For example, a security administrator may want to know which 
users and tasks may access both, a patient's insurance and a patient's diagnosis. 

The response of the security analysis tool is shown in the bottom half of the interface. A 
list of all tasks and users who may access the specified objects is returned along with the 
access types. Thereby the user knows who had, has, or is potentially able to have access 
to the specified objects. A user's response could be to revoke access permission or to 
specify the denial of access to particular users or tasks. 

Further information provided by the security tool enables a user to discover why access 
permission to an object is granted. The explanation component lists the objects in the 
knowledge base, including the rules, which result in a user and task receiving particular 
access permission. 

4.2   Access and Potential Access to an Object 

Determining who had access in the past, has access currently, or could have potential 
access to information in the future, is dependent on the security model which defines the 
capabilities of users in a system and the criteria necessary to access information. The 
GSM permits access to information if there is a link from the user's task to the object. 
These links may be specified explicitly or implicitly by application of the rules in the 
GSM. Potential access is determined by checking which users and task possess, or may 
be granted access to an object 

Explicit Access. Explicit access means that an access type link exists from a task to the 
object. The security analysis tool grants the leader of the task which owns an object 
permission to read the users, their roles, as well as the tasks and the access types which 
are associated with the owner's object. The owner of the object Bill may know all users 
and tasks who may access the object Bill. 

Ul leaderl 

Blood test 

BiUBloodAnalysis 

vestigation 

leader5 "— Provide Medication 

Fig. 7. Users and tasks with explicit access to an object. 
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Fig. 7 shows five users in four tasks with explicit access to the object BillBloodAnalysis. 
Since the Blood test task has owner access to the object, the leader of the Blood test task, 
Ul, may know which other tasks and users may access BillBloodAnalysis, namely the 
users, their roles, their tasks and the access types which are shown. 

In Telos these read access capabilities for the owner of an object are expressed as follows 
(notice that the information also requires that one is the leader of the task): 

forall  CU /  currentuser,   forall CT / currenttask, 
forall  X,   ID1,   ID2   /   Proposition,   forall T /  tasks, 
forall AT /  taskslaccesstypes,   forall R / usersIroles, 
forall  U  /  users, 

A   (CT,   owner,   X) 
and A   (CU,   leader,   CT) 
and  Prop   (ID1,   T,   AT,   X) 
and Prop   (ID2,   U,   R,   T) 

==>     A (CT, read, ID1  ) 
A (CT, read, T) 
A (CT, read, ID2  ) 
A (CT, read, U) 

The determination of who has access to deduced information is a more complex process. 
Deduced information is information that comes from the application of one or more rules. 
Deduced information does not have an owner. Even though deduced information is 
generated by an action of a user, it is not correct to speak of the user triggering a rule, as 
the owner of the information deduced from that rule. Ownership would include the 
capability of granting others access to the deduced object, as well as being able to delete 
the deduced object. These operations are not possible without modifying the rule from 
which the information was deduced. 

Furthermore, the information generated by a rule depends on the knowledge base within 
which the rule is triggered. Therefore to determine who has access to some particular 
deduced information would require being able to trigger the rules accessible to each user 
in the subset of the knowledge base which each user can access. It is therefore necessary 
to ask who has access to the rule which possibly leads to the deduced information, rather 
than to request who has access to some deduced information. 

Implicit Access. Implicit access comes from the application of rules defined in the 
GSM. There are three areas where implied access types are generated: implied read rule, 
owner of class object, readquery access type. 

The implied read access rule states that access to a link implies access to the source and 
destination of the link. For example, in fig. 7, if there was an attribute object Patient! test 
which has as destination the object BillBloodAnalysis, then all those who could read 
object Patientltest also have implicit read access to object BillBloodAnalysis. 

The GSM also provides implicit access to tasks which are the owners of a class object 
Owner access to a class object implies access permission to objects "above" and "below" 
the object with the owner access in order to enable full inheritance capabilities. The owner 
of the object BloodAnalysis of which BillBloodAnalysis is an instance, would have 
implicit access to the object BillBloodAnalysis. 
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A readquery provides a task with access to all objects which satisfy the query, with the 
query being evaluated when access is requested. To determine which users and tasks have 
access to an object, one must also determine if the object satisfies a query to which 
readquery access has been granted. If in fig. 7, the object BillBloodAnalysis satisfies a 
query object X, then all tasks with a readquery access type link to object X, have implicit 
access to object BillBloodAnalysis. 

Potential Access. Reasoning about security allows one to determine all potential tasks 
which may receive access to an object, as well as all users who are, or may be associated 
with these tasks. In the following we assume that the user component of the GSM is 
fixed, i.e., no more users or supervise links are added to the knowledge base. In addition 
we assume that no further transfer links are created. By these assumptions, an analysis of 
potential access becomes possible through deductive database technology. If these 
assumptions are too limiting then further rules must be set up to handle additional potential 
users and tasks (and a careful meta level study of policy definitions will be needed for 
acyclicity and attenuation). 

We first consider potential users for a task. Potential users are users who are, or may 
be, associated with a task. We use the term potential leaders since all potential users of a 
task, are potential leaders of that task. 

The leader of a task may assign to his task or to his subtasks, as members or leaders, 
those users with whom he has a supervises relationship. The supervises relationship is 
determined by a supervises link to another user or by the rule which states that the leader 
of a task supervises all users associated with the task. 

The role potleader indicates a user who is a potential leader of a task and is expressed by 
the following two rules: 

forall Ul, U2 / users, forall T / tasks, 

( A (Ul, leader, T) 
or A (Ul, potleader, T) ) 
and A (Ul, supervises, U2) 

==> A (U2, potleader, T) 

forall U / users, forall Tl, T2 / tasks, 

( A (U, leader, Tl) 
or A (U, potleader, Tl) ) 
and A (T2, partof, Tl) 

==> A (U, potleader, T2) 

Fig. 8 provides an example to show the range of potential users which can be assigned to 
a task. Currently only Userl and User2 have access objects associated with TaskA. As 
leader, Userl may assign additional users to TaskA, namely users whom he supervises, 
UserlO, Userl 1, UserlOO, User 101 and Userl 10. If Userl should assign User2 also as 
leader of TaskA, then User2 would also have the capability to assign users to TaskA, 
namely User20, User21, User200, User210 and Userill. Therefore all users shown are 
potential leaders of TaskA. All these users would also be potential leaders of a subtask of 
TaskA. 
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Fig. 8. Potential users who may be associated with a task. 

Potential tasks w.r.t. an object, are tasks which may receive permission to access that 
object. A task receives access to an object in two ways. The first method is to be granted 
access permission from a task which owns the object. The second way that a task may 
receive access permisison to an object is if it is copied from the parent task. 

A task with owner access type for an object may grant access permission to those tasks to 
which a transfer link exists. Therefore all tasks to which a transfer link exists are potential 
owners of the object. Each potential owner may in turn pass the object on to those tasks it 
has transfer links to. 

The following rule determines for an object X, all those tasks which are the destination of 
a transfer link from an owner, and therefore are potential owners of the object X. 

forall Tl, T2 / tasks, forall X / Proposition, 

( A (Tl, owner, X) 
or A (Tl, potowner, X) ) 
and A (Tl, transfer, T2) 

==>  A (T2, potowner, X) 

Fig. 9 shows a task Tl which is the owner of an object X. Task Tl has a transfer link to 
task T2, and task T2 has a transfer link to task T3. Since task Tl is the owner of object X 
, and has a transfer link to task T2, task Tl may grant owner access of object X to task 
T2. The dotted line marked potownerl indiates that task T2 is a potential owner of X. 
Should T2 receive owner access to object X, then it may grant owner access to task T3, 
since a transfer link exists from T2 to T3. T3 is thereby a potential owner of X. 

Tl. 

T2 

T3 

Fig. 9. Potential owners of an object 

156 



The second way a task may receive access permission to an object is from the parent task 
In the GSM a parent task may copy the same access permission it has for an object, to its 
subtasks. Each subtask in turn, may copy the access permission it has to its subtasks 
Therefore access permission to any task results in potentially all of its subtasks receiving 
the same access permission. 

The fact that access permission associated with a task can be copied to its subtasks is 
expressed by the following rule: 

forall Tl, T2 / tasks, forall X / Proposition, 
forall AT / accesstypes, 

A (Tl, AT, X) 
and A (T2, partof, Tl) 

==> 'A (T2, potaccess, X) 

We use potaccess to indicate any type of access. The actual potential access type is that 
possessed by the parent task. 

In order to determine potential users and tasks we have defined users who may be 
associated with a task by the potleader role, and tasks which may be associated with an 
object with the potowner and potaccess access types. The owner of an object is granted 
access permission to all potential users and tasks of his object 

4.3   Explanation Component 

The explanation component of the security analysis toolkit allows a user to determine how 
or why access to an object is granted. Access permission to an object may exist because 
of an explicit access type link between a task and the object Access permission to an 
object may also exist from the application of rules which provide an implicit access type 
link between a task and an object. The explanation component displays the access type 
links and rules which result in the access permission. 

The explanation component creates a query which searches the knowledge base for a 
particular task, access type and object. All rules and objects which contribute to the 
successsful discovery are provided in response to the query. The explanation component 
may also be used to explain how potential users and tasks may receive access to an object. 
This may be -used in order that such potential access can be prevented before it exists. 

5.    CONCLUSION 

Our goal in introducing task as a major concept in IS security modeling has been to make 
security impact analysis fit with the usual IS engineering process. A second potential 
benefit is a more fine-grained approach to the security analysis itself: there is an additional 
degree of freedom in defining user groups due to the assignment of task combinations to 
these groups. 

The security toolkit, as implemented so far, has the advantage that no further software had 
to be written beyond the standard deductive database optimization techniques anyway 
present in our system. (There has been a substantial implementation effort, though, for 
providing an efficient way to store access rights, see [Steinke 92]). 
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On the other hand, we are quite aware that this paper is just a first step. In particular, we 
have mentioned the need for characterising GSM meta level policies in a way similar to 
those in SPM or related models. We do not see major problems as long as we follow 
simple policies such as providing each task leader full information about all the subtasks 
he creates (attenuation). However, it remains to be studied whether such a policy is 
compatible with the delegation and privacy principles in organizations, and what we can 
say should that not be the case. 
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Abstract 

We are developing a new tool, DISSECT, for detecting and removing specific types 
of inference problems in a multilevel database system. This tool could be used by a 
data designer to analyze a candidate database schema for potential inference problems. 
DISSECT will provide facilities for characterizing database Schemas in terms of their 
explicit and implicit relations, constraints, and rules; for recognizing paths from low 
data to high information through relations, constraints, or rules; for suggesting methods 
for eliminating inference paths; and for recognizing inference channels leading to partial 
inferences. The tool will allow the graphical represention of the structure of a multilevel 
database, the interactive detection of specific types of potential inference channels in 
the database, and the removal of those channels. In its initial form, DISSECT will 
facilitate experimentation with different methods for analyzing databases for inference 
problems. 

1    Introduction 

The inference problem in a multilevel database arises when a user with a low clearance, 
accessing information of low classification, is able to draw conclusions about information at 
higher classifications. There is often no immediate or obvious connection between the low 
data and the inferred high data; however, an inferential chain may link the low and high 
data through low relations, constraints, and rules, some of which may not be explicitedly 

•This research was supported at SRI by the U. S. Air Force, Rome Laboratory and the U. S. Department 
of Defense, Advanced Research Projects Agency, under contract F30602-91-C-0092. 
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stored in the database. An inferential link of this nature which may allow information to 
flow from a high security class to a low security class is termed an inference channel. 

The advent of operational multilevel database systems brings the capability for enforc- 
ing mandatory security policies that prohibit the unauthorized disclosure of information to 
uncleared or insufficiently cleared individuals. However, multilevel database systems do not 
provide effective mechanisms for preventing an unauthorized person from inferring high in- 
formation from low data. This problem is especially serious when information to which the 
unauthorized user might have legitimate access (or that might even be common knowledge) 
forms part of the inferential chain. The problem of characterizing, detecting, eliminating, 
and alleviating such inference channels is a different problem that has received relatively little 
formal attention and may ultimately be of much greater significance than the access-control 
problem. The inference problem is especially difficult when it often involves information that 
is not explicitly represented in the database and thus not easily considered by automated 
tools. In characterizing inference problems and in developing methods for their detection, 

this implicit aspect must be made explicit. 
Some of the difficulties with identifying inference channels arise from the following issues. 

• The channels may involve lengthy chains of inference. 

Certain knowledge about the database may exist as implicit rules or constraints embed- 
ded in programs, and may not be explicitly available as part of the database definition. 

Even though sensitive information may not be directly inferable, it may be partially 
inferable in that unclassified information may allow a user to reduce the set of possible 
values that can be assigned to a classified datum. 

A low user may have access to externally available information, which, when combined 
with the information to which he has legitimate access, may allow the inference of high 

information. 

The security manager may have improperly classified information that is generally 
known by unclassified users believing that other classified information is thereby pro- 

tected. 

Preventing all inference of sensitive information by uncleared individuals is a problem of 
overwhelming difficulty. Its solution requires, in principle, a complete model of all knowledge 
and information that might be used to infer the sensitive data, which is generally impractical, 
as well as the ability to recognize all sensitive implications of that information, which is 

generally impossible, 
In this paper we describe our ongoing work to improve the security of a multilevel 

database by providing tools for inference analysis and control. Our approach is to rep- 
resent explicitly much of the information that might normally be used to infer sensitive 
information. In particular, we intend to represent constraints and rules that often express 
implicit extensions to a database system. In many cases this information will be obtained by 

• 

• 

• 
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querying the data designer regarding general knowledge that might be used to infer sensitive 
data and might be available externally. Furthermore, we shall interactively elicit from the 
data designer specific information that might be used to infer particularly sensitive data, 
in order to ensure that it is adequately protected. When inadequately protected data is 
recognized, the tools will suggest modifications to the data design to provide the necessary 
protection. 

A particularly difficult and important problem involves the ability to draw partial conclu- 
sions about sensitive information, even when the information may not be directly inferable. 
This problem argues for a more quantitative model of inferability. We will address this 
problem with an uncertainty model of inference. 

2    A Tool for Inference Control 

Among the difficult challenges to be faced by the first designers of applications using multi- 
level database systems is that of labeling the data elements and tuples in such a way that 

• the labels accurately reflect the real-world classification of the information, and 

• the labels adequately protect the information from inference. 

The first of these two aims is often difficult, but in general it is expected that the task of 
assigning labels to data that accurately reflect the real-world classification of the information 
will be within the grasp of the data designer. However, the second of these two aims, that of 
ensuring that the assigned labels adequately protect the information from inference, will be 
much more difficult, if not impossible, for the human data designer to attain. An automated 
tool that can identify potential inference channels would contribute greatly to the overall 
assurance that the data was secure (as has been noted, for example, by Buczkowski [1] and 
Lin [7]). We describe here our method for developing such a tool, called DISSECT (Database 
Inference System Security Tool). 

It has been shown that many inference problems can be avoided by proper data design [8]. 
Thus it should be possible to design a tool to detect such problems at data design (or 
redesign) time. Such an approach will not detect the additional inference problems that 
may depend on the actual values of the data rather than depending simply on the design 
of the multilevel data structures (we discuss this issue further in Section 4). However, this 
approach is appropriate for three reasons. First, it promises to address a large portion of the 
inference problem. Second, it is a much simpler problem to address the problems that arise 
at data design time. Third, the analysis need only be performed at data design (or redesign) 
time, a relatively infrequent occurrence. To address the problems that depend on the values 
of the data, not only is the scope of the analysis much larger, but it must be redone each 
time the database changes. 
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2.1    Use of the Tool 

We envision that our tool will be used as follows. The data designer responsible for designing 
the multilevel relations that support an application, will develop a candidate design encoded 
in a set of structures called the database schema. The database schema contains a listing 
of the multilevel relations in the database and includes information such as the table names 
and classifications, the names, types, and classification ranges of the columns in the tables, 
the formulas for the integrity constraints that have been defined, primary and foreign key 
designations, and other such information. The data designer defines these data structures 
to the database system using the data definition language provided as part of the database 
system. For example, a multilevel relation FLIGHT can be defined as follows. 

create table flight 
(group(date-time-group char,  dest char)   [U]  primary-key, 
flightno number  [U]  foreign-key mission, 
aircraft char  [U:S]) 

We see that the table FLIGHT has attributes (column names) DATE-TIME-GROUP, DEST, 
FLIGHTNO, and AIRCRAFT, where the uniformly classified group (DATE-TIME-GROUP, DEST) 
is the primary key for the relation and FLIGHTNO is a foreign key to another multilevel 
relation MISSION. (We say that a group of attributes is uniformly classified if, within every 
tuple of the multilevel relation, they share a common label.) We also see that the values for 
the attributes DATE-TIME-GROUP, DEST, and FLIGHTNO must be UNCLASSIFIED, whereas 
values for the attribute AIRCRAFT may have access classes ranging from UNCLASSIFIED 
through SECRET. The access class of the table name (and of the schema information itself) 
is the same as that of the subject that created the table. In this case, the table must 
have been created by an UNCLASSIFIED subject, since we require that the subject class be 
dominated by the lower bound of all the attribute access class ranges. 

Once these table definitions (and related integrity constraints) have been declared, the 
data designer will use DISSECT to analyze the candidate design for potential inference 
problems. (Such analysis may also be done incrementally as the data designer first builds 
a subset of the tables and then adds to this collection.) DISSECT will take the database 
schema as input and will display the data design graphically on the screen in a manner 

similar to Figure 1. 
However, it is not sufficient merely to show that none of the high information that is 

to be stored in the database can be inferred from the low data that is to be stored in the 
database. This is because part of the information needed to make the inference will often 
not be stored in the database, but may be general knowledge about the application. For 
example, suppose we want to prevent users from inferring the sensitive relationship between 
a flight's departure time and destination and its mission. Suppose the data designer created 

the following set of relations. 

FLIGHT[U]((DATE-TIME-GROUP, DEST)[U], FLIGHTNO[U], AIRCRAFT[U:S]) 
MISSION[U](FLIGHTNO[U], TYPE[U]) 
CARGO[U](FLIGHTNO[U], CARGO[U]) 
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Figure 1: Graphical Data Design 

The sensitive relationship is easily computed by joining the two relations on flight number. 
Figure 2 shows the inference path as it would be highlighted on DISSECT's graphical display. 

One way to fix the problem is to upgrade a node or link in the graph. Suppose the data 
designer upgrades the MISSION table to SECRET, as follows. 

FLIGHT[U]((DATE-TIME-GROUP, DEST)[U], FLIGHTNO[U], AIRCRAFT[U:S]) 
MISSION[S](FLIGHTNO[S], TYPE[S]) 

CARGO[U](FLIGHTNO[U], CARGO[U]) 

This data design seems safe, since it prevents the deduction. However, if a smart user knows 
a plane's cargo, it may be possible to guess the flight's mission. That is, a flight's mission may 
be inferred (or partially inferred) from its cargo. This means that the sensitive relationship 
between a flight's mission and its departure time and destination may still be compromised. 
Such "near keys," or attributes that allow partial inference of identifying information, have 
been called identificates [15]. The fact that the cargo allows a partial inference of the mission 
is not explicitly stored in the database. Thus, in order to do an adequate inference analysis, 
additional information must be elicited from the data designer. This particular connection 
is one that the data designer, or someone familiar with the application, should know. Thus, 
once it receives the database schema as input, DISSECT will query the data designer for 
such relationships, and will add these to its inference graph. Figure 3 shows the augmented 
inference graph. 

This example illustrates an important fact: databases represent a fragment of reality, but 
connections between the database and other nonrepresented facts and relations are real and 
form the context for its interpretation. This context must be accounted for in evaluating a 
database for inference problems. In all of the other work to date on the inference problem, 
the researchers have confined themselves to simply uncovering which high stored information 
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Figure 4: Inference Path 

can be directly deduced from which low stored information (e.g., [17, 19, 6, 10]).  As this 
example illustrates, such an approach is insufficient to address the problem meaningfully. 

In the above example, once this additional information has been obtained from the data 
designer, DISSECT would highlight the inference path on the graph, as shown in Figure 4. 
DISSECT could suggest a number of redesigns to remove the problem. This example high- 
lights the need to know which attributes act as partial keys and to understand how these 
contribute to making inferences. 

When DISSECT discovers an inference chain, it may be possible to remove the problem 
through raising the classification of some critical node or arc (attribute or table) on the 
graph, or through splitting relations to remove or upgrade associations among attributes. 
Once the changes have been made, the data designer would re-run DISSECT to ensure that 
no new inference problems have been introduced by the restructuring. In some cases it may 
not be practical to upgrade some critical piece of information; in this case a cover story may 
be appropriate [4]. 

DISSECT can be used iteratively by the data designer as new relations or constraints 
are added to the database. DISSECT will check for new inference channels, query the user 
for new inference rules, and recommend steps to eliminate any that are uncovered. 

We do not expect to be able to recognize and eliminate all inference channels. However, 
DISSECT should assist in removing many of the most serious ones. 

The internal logic used by DISSECT is inspired by the Nonmonotonic Typed Multilevel 
Logic developed by Thuraisingham [18] and is discussed in Section 3.2. This section also 
discusses the mapping between the graphical representation and the multilevel logic. We have 
developed automated techniques for following inference chains through the semantic model in 
order to recognize inference channels from low data to high data. Our reasoning procedures 
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for detecting connections between low data and high data are discussed in Section 3.3. 
The mapping between the multilevel database schema and the graphical representation is 

discussed in Section 3.1. 
Although our work to date has emphasized the development of an interactive tool to 

be used for analyzing a database for potential inference channels and for assisting in the 
elimination of such channels, as a secondary goal, we seek to develop a quantified theory of 
security based on the probability that high information may be inferred from low informa- 
tion. Our approach synthesizes aspects of information-theoretic approaches and probability 

techniques and is discussed in Section 4.1. 

3    Formalizations 

DISSECT incorporates three major components for every multilevel relational database: 
a multilevel relational schema, a semantic net for the graphical representation of Schemas 
and inference channels, and a multilevel logic for reasoning with Schemas and inference 
channels. Since DISSECT detects potential inference channels with logical reasoning, and 
the data designer interacts with the semantic net to eliminate inference channels when they 
are detected, we provide algorithms to map the semantic net to and from the multilevel 

schema as well as the multilevel logic. 

3.1    The Semantic Net 

To address the inference problem, it is necessary to define explicit, security-relevant database 
semantics. A convenient representation for both data semantics and secrecy semantics [15] 
is the semantic net. With this approach we represent a multilevel database as a graph struc- 
ture explicitly describing the semantic relationships between nodes that represent concepts. 
This provides a clear and understandable overview of the connections among data and, in 
particulary, what aspects of the data and relationships are classified, as shown in Figures 1, 
2, 3, and 4. We are extending the semantic language to incorporate constraint relations, clas- 
sification rules and other relevant knowledge directly as graphical links between appropriate 

nodes in the semantic graph. 
Semantic nets are composed of nodes and arcs. Arcs represent binary relationships, and 

nodes represent concepts and n-ary relationships where n > 2. Each node or arc has an 
identifier and a value, which can be classified at various levels. As in [15] we use highlighting 
to represent classified nodes and arcs. For the example graph in Figure 1, AIRCRAFT 
represents a concept, MISSION represents a binary relationship between FLIGHT# and 
TYPE, and FLIGHT represents a ternary relationship. The identifier of AIRCRAFT is 
UNCLASSIFIED, while its value is classified ranging from UNCLASSIFIED to SECRET. 

Every relation R[X,K] has a name R, a set of attributes X, a primary key K C X, 
and zero or more foreign keys. Every attribute in turn has a name and a set of values. 
They can be classified at various levels. For relation R[X,K] with n attributes Ax, ...,An, 
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i2[Z](Ai[Li],..., An[Ln]) indicates that the relation and attribute names are classified at Z, 
and the attribute values are classified at L\,..., Ln respectively. 

Assignment of classification levels to constructs in the semantic net is consistent if values 
are classified at least as high as identifiers, and if relationships are classified at least as high 
as arguments. For example, the identifier of TYPE could be UNCLASSIFIED, while its value 
could be classified as TOP-SECRET, in which case the binary relationship MISSION must be 
classified at least as TOP-SECRET. 

Assignment of classification levels to components of multilevel relations is valid if attribute 
values are classified at least as high as relation and attribute names, and if entity integrity 
as well as referential integrity[9] are preserved. The three multilevel relations in the previous 
section are all valid. 

The mapping of valid multilevel relations to semantic nets guarantees the consistency of 
the resulting graphs. The mapping consists of two steps: a concept construction step and a 
relationship construction step. In the rest of the section, we illustrate the mapping with the 
following multilevel relations, where the first attribute is the primary key except for the last 
relation, whose primary key consists of two attributes. The result of the mapping is shown 
in Figure 5. 

FLIGHT[U](FLIGHTNO[U], (DATE-TIME-GROUP, DEST)[U], AIRCRAFT[U:S]) 

MISSION[U](FLIGHTNO[U], TYPE[S]) 

MISSION-TYPE[U] (TYPE[U] ) 
CARGO-TYPE[U](CARGO-NAME[U], UNIT-WEIGHT[U]) 

CARGO[U](FLIGHTNO[U], CARGO-NAME[C]) 

Every attribute A is mapped to a concept node NA. If there is a unary multilevel relation 
RA[L](A), then the identifier and value of NA are classified at L. Otherwise they are not 
classified. For example, attribute TYPE is mapped to a concept TYPE. Since there is a unary 
relation MISSI0N-TYPE[U](TYPE), the identifier and value of TYPE are UNCLASSIFIED. 

Multilevel relations with the same primary key are grouped together. If there is more 
than one primary key attribute, then an n-ary relationship node is created to represent the 
primary key. The identifier of the primary key node is classified at the greatest lower bound 
of levels of relation names in the group. The value of the primary key node is classified at 
the greatest lower bound of levels of the primary key of relations in the group. For example, 
since the primary key of relations FLIGHT and MISSION are FLIGHTNO, relations FLIGHT and 
MISSION are grouped together. Because the primary key consists of a single attribute, we 
don't need to create a primary key node. 

Attributes in the same group that are not primary key attributes are mapped to many- 
one binary relationships from the primary key node to the concept nodes that represent the 
attributes. The identifier and value of the binary relationships are classified at the levels of 
the relation name and attributes respectively. For example, attribute AIRCRAFT is mapped 
to a many-one binary relationship from FLIGHTNO to AIRCRAFT, whose identifier and 
value are UNCLASSIFIED and from UNCLASSIFIED to SECRET respectively. Likewise, attribute 
TYPE is mapped to a many-one binary relationship from FLIGHTNO to TYPE. 
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Figure 5: Multilevel Relations to Semantic Net 

If the attributes of a relation Ri consist of the primary key of another relation R2 plus 
an attribute A, then i?i is mapped to a many-many binary relationship between the concept 
nodes that represent A and R2. The identifier and value of the binary relationship are 
classified at the levels of Rx and A respectively. For example, relation CARGO is mapped to 
a many-many binary relationship between CARGO-NAME and FLIGHTNO. The identifier 
and value of the binary relationship are classified both at CONFIDENTIAL. 

If the attributes of a relation R consist of the primary keys of relations Rx and R2, then 
R is mapped to a many-many binary relationship between the nodes that represent Rt and 
R2. The identifier of the binary relationship is classified at the level of R, while its value 
is classified at the least upper bound of attributes in R. For example, relation CARGO is 
mapped to a many-many binary relationship between FLIGHTNO and CARGO-NAME, 
whose identifier and value are both classified at CONFIDENTIAL. 

3.2    A Multilevel Logic 

We use a first-order predicate calculus (FOPC) theory to represent the content and con- 
straints of a database—all are encoded as nonlogical axioms of the theory. The function-free 
subset of FOPC appears adequate (cf. Datalog). We include the equality relation so that it 
can be used to express integrity constraints. 

Consider the relation 

MISSION (FLIGHTNO,TYPE) 

with instance 

MISSION (2,WAR) 
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which we might represent logically by the axiom 

mission(2,war). 

Suppose "The mission of flight 2 is war" is SECRET. Protection of the secrecy of this fact 
can be achieved in the database in several ways. For example, if 

1. the mission relation is SECRET. 

2. WAR is a SECRET mission-type. 

3. the individual fact of flight 2's mission being WAR is SECRET. 

Our graphical notation can represent these distinctions between classifying the presence of 
missions in the database, classifying a mission-type, and classifying the association between 
a flight and its mission. 

These distinctions can also be mapped into a logical representation like Thuraisingham's 
Nonmonotonic Typed Multilevel Logic (NTML) [18] that attaches security levels to symbols 
as well as formulas. To every symbol is attached a security level called its inherent security 
level. The inherent security level of a formula is the least upper bound of the inherent 
security level of all the symbols appearing in it. The first two cases can be represented by 
making the inherent security level of certain symbols SECRET: 

1. mission(2,war), where the security level of mission is SECRET 

2. mission(2,war), where the security level of war is SECRET 

The third case is handled by explicitly attaching a security level (greater than or equal to 
its inherent security level) to a formula: 

3. mission(2,war):SECRET 

A multilevel database can be regarded logically as a collection of databases: the database 
as seen by the UNCLASSIFIED user, the one seen by the SECRET user, and so on. Rather than 
try to represent all these views within one logical representation as NTML does, we adopt the 
conceptually simpler approach of representing the database as seen by the UNCLASSIFIED user 
by one logical theory, the one seen by the SECRET user by another, and so on. Each of these 
logical theories has a vocabulary—the set of symbols from which formulas are constructed. 
A symbol whose inherent security level in NTML is SECRET would be a member of the 
vocabulary of the SECRET theory and theories with higher classification and not of theories 
with lower classification. 

The inherent security levels of symbols induce a hierarchy of first-order languages. The 
language—the set of legal strings of symbols—at the SECRET level contains the set at the 
UNCLASSIFIED level and is contained in the set at the TOP SECRET level. 

The secrecy of mission(2, war) is achieved in cases 1 and 2 by declaring certain sym- 
bols SECRET rendering the formula inexpressible in the UNCLASSIFIED theory. If the sym- 
bol mission is SECRET, then the UNCLASSIFIED theory can contain no occurrence of it— 
mission(2, war) could be a legal formula in the SECRET theory but a syntax error in the 
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UNCLASSIFIED theory. If, on the other hand, the symbol war is SECRET, then missions can 
be discussed in the UNCLASSIFIED theory, but the symbol war cannot be used. 

When, as in case 3, we want to classify an association between a flight and its mission 
instead of the mission relation or a mission-type, the SECRET and UNCLASSIFIED theories 
may have the same vocabularies but different nonlogical axioms: mission, 2, and war could 
all be legal symbols of the UNCLASSIFIED theory (and hence all theories) but the formula 
mission(2, war) could be an axiom of the SECRET theory but not the UNCLASSIFIED one. 

Note that although the vocabulary of a theory always contains the vocabulary of lower 
classified theories and is contained by the vocabulary of higher classified theories, such inclu- 
sion is not necessary for the nonlogical axioms of the theories. In particular, polyinstantiated 
multilevel databases require that higher classified theories not always include all the nonlogi- 
cal axioms of lower classified theories. For example, to represent a polyinstantiated database 
in which flight 2's mission is PEACE at the UNCLASSIFIED level and WAR at the SECRET level, 
the UNCLASSIFIED theory would include the axiom mission(2,peace) while the SECRET the- 
ory would include the axiom mission(2, war) instead. Thus, an axiom of the UNCLASSIFIED 
theory would be absent from the SECRET theory. 

There is considerable conceptual simplification in representing a multilevel database as 
a set of theories instead of a single multilevel theory as in NTML. The "nonmonotonic" 
aspect of NTML is invoked whenever some formula is true at some security level and false 
at a higher security level. The deduction rule in NTML needed to accomodate this is the 
Deduction Across Security Levels (DASL) rule. The DASL rule states that a formula is true 
at some security level if it is not contradicted at that level and is true at the next lower 
security level, i.e., the default is to inherit a formula's truth value across security levels. 

The DASL rule is complicated, potentially inefficient (determining whether a possibly 
inheritable fact is contradicted at the next level may even be undecidable), and not always 
coherent (If P and Q are facts at the UNCLASSIFIED level and -i(P A <3) a new fact at the 
SECRET level, which of P and Q is not inherited from UNCLASSIFIED level to SECRET level 
to avoid contradiction?). We avoid the complexity of nonmonotonic reasoning [5] by our 
decision to represent data at different security levels by different explicit sets of nonlogical 
axioms instead of using a rule of inference to propagate data from one level to the next. 
Consideration of which data to inherit from one level to the next is done when the set of 
theories is created instead of every time a proof is attempted in a single multilevel theory. 
It is preferable that our multilevel logic be the result of a nonmonotonic reasoning process 
instead of an input to one. Moreover, as we often regard the multilevel logical representation 
of a database as a theoretical construct that we reason about abstractly, we may never have 
to actually do any nonmonotonic reasoning, since we will not actually construct a set of 
theories from the specific data instances of a real database. 

Like NTML, our logical representation is typed or many-sorted. The domain is divided 
into many nonempty sorts such as flight-number, mission-type, etc. Constants and variables 
are declared to be of certain sorts: 2 is of sort flight-number, WAR and PEACE are of sort 
mission-type. Constants may be of more than one sort. For example, Acme might be of 
sort customer and supplier.   Acme's status as a customer can be kept SECRET while its 
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status as a supplier can be UNCLASSIFIED by declaring Acme to be of sort supplier in the 
UNCLASSIFIED theory and of sorts customer and supplier in the SECRET theory. Predicate 
arguments are required to be of specified sorts. For example, the mission predicate's first 
argument must be of sort flight-number and its second argument must be of sort mission-type 
to be syntactically valid. Besides the other notational and efficiency advantages of many- 
sorted logic, many-sortedness provides the vital feature of allowing symbols to be legally 
used in some parts of the database and not others. An important feature of many-sorted 
logic is that if the axioms are well-sorted (syntactically legal with respect to sorts) then their 
consequences will also be well-sorted. We will assume a multilevel database whose operations 
can be modeled by such well-sortedness preserving inference. 

3.3    Inference Analysis 
Most inferential security problems fall into one of three distinct classes, based on the degree 
to which high data may be inferred from low data. A deductive channel is the most restrictive 
type and occurs when a formal deductive proof of the high data can be derived from the 
low data that is directly available in the database. An abductive channel exists when a 
deductive proof from data explicitly in the database or implicitly derivable from data in the 
database may not be possible, but where a deductive proof could be completed by making 
assumptions about certain low data. In this case, an abductive proof is possible (abduction 
is a non-valid inference process where one reasons from an observation to a possible cause 
for the observation). The third type of channel is the probabilistic channel. It exists when it 
is possible to estimate the likelihood of the truth of a high data element based on likelihoods 
known or computable for low data. Probabilistic channels are discussed further in Section 4.1. 

Our multilevel logic provides a simple characterization of deductive inference channels. 
The database is modeled by a set of theories. A deductive inference channel exists if an 
axiom of a high theory that is not also an axiom of a lower theory is nevertheless deducible 
from the axioms of the lower theory. Note that although security rules stipulate that data 
derived from high data be classified high, such derived data may be deducible from low data 
as well without there being any security flaw. For example, that the company president's 
salary is $2,000,000 may be SECRET, but the derived data that it exceeds $50,000 (a logical 
consequence of its being $2,000,000) may also be reasonably concluded from UNCLASSIFIED 
information with no security violation. 

In general, many formulas in the deductive closure of the high classification theory are 
also in the deductive closure of the lower classification theory. When the axioms of the 
high theory include those of the lower one (e.g., no polyinstantiation), all formulas in the 
deductive closure of. the lower theory are contained in the deductive closure of the high one. 
To distinguish between safe and unsafe consequences of the low data, we declare a security 
violation only if an axiom of the high theory, i.e., explicitly protected information in the 
database, is derivable from the low data. 

Figure 2 shows an easily discovered deductive channel. By the database definition, the 
TYPE entity is accessible from both the low MISSION and high FLIGHT-MISSION relations. 
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Thus, we have the axiom 

flight(dest, dtg, fltno, ac)/\mission(fltno, type) D flight-mission(fltno, type). 

Assuming the database is populated, i.e., that 

(3dest, dtg, fltno, ac) flight(dest, dtg, fltno, ac) A rnission(fltno, type) 

an instance of flight-mission is easily shown to be deducible thus demonstrating a deductive- 

channel security flaw. 
As mentioned before, this flaw can be eliminated by upgrading the MISSION table to 

SECRET. The deductive channel is blocked. Nevertheless, a problem, in the form of what we 
call an abductive channel, remains. In general, we expect deductive channels to be relatively 
rare and easily discoverable security flaws; more common and hard to find are abductive and 

probabilistic channels. 
Abductive reasoning is a distinctly different form of reasoning from deductive reasoning 

and is not limited to demonstrating that a formula is a consequence of a theory. In abductive 
reasoning, the objective is to find assumptions that will allow an otherwise unprovable for- 
mula to be proved from a theory. Classical applications of abduction include attempting to 
find explanations for observations, e.g., to explain the observation that the grass is wet, we 
might hypothesize that it rained or that the sprinkler was on. Assuming either of these would 
allow us to conclude logically that the grass would be wet and thus are possible explanations 
for that observation. Operationally, abductive reasoning is handled similarly to deductive 
reasoning. While deductive reasoning may backward chain via implications from the conclu- 
sion to prove to subgoals to prove, grounding this process with facts, abductive reasoning 
may similarly backward chain via implications, but with the added provision that some of 
the subgoals may be assumed instead of proved to complete an abductive explanation. 

The vocabulary of possible assumptions and the reasoning by which they can be used to 
explain or prove something cannot be generated from thin air, but must be elicited from the 
data designer. In the example of Figure 4, the data designer indicates that a flight's cargo 
c^n sometimes be used to predict its mission. This might be encoded by the rule 

cargo-predicts-mission(x,y) A cargo(fltno,x) D mission(fltno,y), 

which states that in certain cases, formalized as those situations in which the formula 
cargo-predicts-mission(x,y) is true, knowing the cargo of a flight will lead to knowing 
its mission. 

An abductive inference channel can be shown to exist by finding an abductive proof 
that high facts of either the originally protected FLIGHT-MISSION table or the newly up- 
graded MISSION table can be concluded from the theory of database plus the instances of 
the assumption cargo-predicts-mission(x,y). 

3.4    Removing Discovered Problems 

Once an inference channel has been identified, it must be eliminated by somehow breaking 
the logical chain from low data to high data.   The choice of the best point to break the 
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chain may be determined by several factors. In principle, it is desirable to upgrade as little 
information as possible (each newly classified datum must itself be checked for new inference 

channels). 
DISSECT will use heuristics such as the following. 

1. Sensitive associations among entities of different types—that is, between tuples of one 
relation and the tuples of another (others have called these "context-dependent aggre- 
gation problems")—are best treated by representing the sensitive association separately 
and classifying the individual entities at a low level and the relationship at a high level. 

2. Sensitive associations among the various properties of an entity—that is, among the 
columns of a relation—are best treated by determining those properties that contribute 
most to the inference and by storing those separately at a higher classification. 

3. Properties that appear in a number of sensitive relations may be a better choice for 
upgrading in general. 

DISSECT will use a minimal upgrading principle to isolate the minimal set of data which, 
when upgraded, will remove the identified channels. To the extent possible, we will incorpo- 
rate expert knowledge and intuition into the channel-removal component of the tool. This is 
a focus of our current research. Where upgrading is impractical, cover stories can be used [4]. 

4    Future Work 

4.1    Approximate Reasoning for Partial Inference 

To address the problem of quantifying the risk of inference of sensitive information, we 
are using a formal theory of partial inference, called evidential reasoning, which is based 
on the Shafer-Dempster formalism. The theory defines the notion of partial inference as a 
probabilistic inference. 

Partial inference occurs when it is possible for a user to use low data to infer the truth 
of high data with some degree of probability. For example, flight destination airports may 
be sensitive data, while aircraft range, payloads, and departure fields may be stored at a 
low security level. By combining information about range, payloads, and departure fields, a 
user may be able to greatly narrow the set of possible destination airports, and in so doing 
increase the likelihood that an aircraft's destination is among the reduced set. 

Such probabilistic channels are related to abductive channels because the assumptions 
and logical rules used in an abductive proof may have degrees of belief associated with them 
which represent the likelihood that they may be known to or believed by a user. These 
degrees of belief can then be propagated through the abductive proof tree to determine the 
degree to which the user is likely to be able to infer the high data in question. 

Evidential reasoning explicitly separates background information defining the vocabulary, 
sorts, and the network of their interrelations from the actual data which describe a particular 
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situation. Beliefs about actual data values are propagated through the network defined by 
the relational structures. 

4.2 Detecting Data-Related Inferences 

Thus far, we have considered only inference channels that can be detected statically, offline, 
using only the database schema. Detecting additional types of inference channels may require 
analysis of the actual data stored in the database. 

For example, in the above example, the number of flights may be small enough that the 
association between flight and mission may be guessed or narrowed down. Moreover, if the 
user can assume a piece of information that is probably correct, such as that the heaviest 
cargo is probably weapons, and that the mission of a flight carrying weapons is probably 
war, then some of the sensitive associations will be revealed. In addition, there are well- 
known methods of statistical attack that can be employed to obtain sensitive information 
(See [2] for a good overview of these). The sensitive association will also be compromised if 
the flight and mission records are both sorted in the same order, from which the association 
can be determined (for example, by a user finding the location of a particular flight and the 
corresponding mission, and thus making the inference). 

In addition, inferences can be drawn from observing the system's changing response to 
the same query over time. In the example above, whenever a new flight is scheduled, new 
tuples will be added to both the flight and the mission relations, thus enabling one to infer 
the mission for the new flight. A simple solution to this problem may be to classify the data 
for new flights SECRET and then declassify it whenever their numbers had grown sufficiently 
large. Or, it may be more appropriate to classify the entire mission relation SECRET if the 
inference threat is deemed to be too high. 

4.3 Eliciting Background Knowledge 

As we illustrated earlier, it is not sufficient merely to show that none of the high information 
that is stored in the database can be inferred from the low data that is stored in the database, 
because much of the information needed to make the inference may be general knowledge 
about the application that is known to users. In our example in Section 2.1, the fact that a 
flight's cargo allows a partial inference of the mission is not explicitly stored in the database. 
This additional information must be elicited from the data designer. The amount of external 
information that could potentially be brought to bear may be enormous, and exhaustively 
querying the data designer for possible relationships between every pair of attributes would 
be time-consuming and burdensome. A part of our ongoing research is directed at developing 
approaches to enable a focused elicitation of background knowledge that would be of most 
use in the inference analysis. A learning component that enables the system to incrementally 
expand its background knowledge will be valuable to the longterm use of this approach. 
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5    Comparison with Other Research 

The LOCK Data Views (LDV) project proposed a history mechanism that would use a set of 
history files and classification rules to detect inference problems during query processing [3]. 
The mechanism can upgrade both the security level of the process handling the user query 
and the query result. In addition, the mechanism can block further queries if returning a 
result would add enough to what is already known to allow an inference to be made. This 
proposed mechanism restricts itself to what is stored in the database and does not consider 
inferences that may arise from the addition of external knowledge. This mechanism must 
also be invoked with each database query; in contrast, we propose a tool that need be used 
only during data design and not during query execution. It is probably the case that each 
approach has its advantages in terms of the types of inferences that can be detected. 

Thuraisingham has proposed representing data semantics and classifications by multilevel 
semantic nets [19]. Graph traversal in semantic nets corresponds to limited inference. The 
classification of implied links found by graph traversal is determined by the classifications 
of the traversed links. Auxiliary semantic nets can be used to express security constraints. 
Theoretically stronger representations based on Sowa's conceptual graphs [16] are also sug- 
gested. 

A method proposed by Hinke was used in TRW's prototype secure database system [6]. 
His method uses an inference detection tool to detect potential inference problems from the 
database schema. However, rather than modify the data structures to remove the problem, 
the method merely runs queries periodically to detect whether there are in fact tuples in 
the relations in question that can be joined to give a sensitive association. If any data are 
returned, an inference problem exists. In the TRW prototype, the results of such queries are 
recorded in an audit trail for subsequent analysis by a security officer, who can then take 
steps to reclassify some of the data in an attempt to remove the problem. 

Morgenstern [10, 11] took the approach of characterizing the inferential closure of a core 
of unclassified information, with the aim of determining whether any classified information 
fell within the closure. When this occurs, an inference channel exists. The inferential closure 
includes all statements for which the relative change from the prior knowledge (expressed as 
its entropy) for the statement, given statements in the core, is greater than some threshhold. 
The threshhold is a parameter that will determine the size of the closure. This work, while 
theoretically appealing, has proven impractical to implement for realistic problems. 

Buczkowski [1] proposed a probabilistic approach, based on Bayesian probability, as a 
more practical approach to estimating the security risk due to partial inferences. This 
approach is appealing from a practical perspective, except that a great deal of probabilistic 
information is necessary that is typically quite hard to estimate precisely [7, 12, 13, 14]. 
We are investigating evidential reasoning to alleviate these difficulties. Evidential reasoning 
permits beliefs to be attached to disjunctions of statements, rather than requiring they be 
assigned to singletons in the universe of discourse and, unlike Buczkowski, we do not require 
precise probabilities when they are not known. 

175 



6    Summary 

We have described DISSECT, a new tool being developed for detecting and removing specific 
types of inference problems in a multilevel database system. We intend for this tool to be 
used by a data designer to analyze a candidate database schema for potential inference 
problems. The tool will display a database schema graphically and highlight discovered 
inference paths, suggesting a minimal set of nodes and links that could be upgraded to 
remove the problems. Further work is aimed at enabling DISSECT to recognize inference 
channels leading to partial inferences. 
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Abstract: 

A common use for cover stories is to provide a plausible explanation for an 
otherwise sensitive event. For example, a plane might be said to carry food when 
its actual cargo is weapons. Without a cover story, the fact that the cargo is not 
identified may lead to increased interest from an uncleared user, something which 
may not be desirable if a mission is to be successful. 

Cover stories may also be used to release shades of information. Here, instead of 
lying they are releasing only sanitized information. At the confidential level a 
user may be told that a plane is carrying equipment, while a top secret user is told 
that the plane is carrying electronic equipment. 

Cover stories may not always have the ability to protect sensitive information. 
For example, an uncleared user may have enough world knowledge to discover 
that a given cover story is not plausible. There is a difference, however, between 
a cover story that cannot protect sensitive information, and a cover story which 
itself causes a breach of security. This paper examines cover stories that 
indirectly disclose the very information they are attempting to protect 
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Introduction 
Cover stories are plausible explanations which 
replace gaps of information that the low user 
would normally see. Gaps that might other- 
wise cause a curious user to attempt to piece 
together information for which they are 
unauthorized. A primary goal of the cover 
stories is to satisfy the curiosity of an unautho- 
rized user. 

In virtually every plausible cover story, how- 
ever, is some factual information. For exam- 
ple, if Smith is a radar technician and that 
information is secret, then a plausible cover 
for Smith would not be "Jones is an 
engineer." Generally speaking, the object for 
which a cover story is being developed must 
be correctly identified1. 

In addition to identifying the object, 
plausibility often requires other information 
about the object to be identified. Ensuring 
that the factual information released is 
unclassified2 is not sufficient, because an 
attacker can now use this factual information 
to derive new and possibly classified informa- 
tion on the object via inference. To be sure 
the cover story does not breach security, it 
must be shown that all factual information 
released in the cover story and all inferences 
possible from that factual information, are 
unclassified. 

This paper focuses on: 

• Cover stories 

•How an improper cover story can 
lead to a breach of security, and on 

• Recognizing   potential   inferences 
caused by cover stories 

Cover Stories That Can't 
Protect Information 
Cover stories are used to protect information. 
Typically, they give a plausible explanation for 
information that would not otherwise exist at a 
user's security level. However, a user may 
have enough data to piece together what the 
cover story is trying to protect When this 
happens the cover story cannot be relied on for 
protection, although it may be enough of a 
deterrent to mislead a portion of the 
unauthorized users. 

In the Mission table (M) shown below, the 
cover story for flight* C1A2946 is that it is a 
supply mission, running medical supplies to 
Europe. 

MISSION nvn   fU-TSl 

Flight«  Dest       Cargo Misskmjype 

| C1A2M« | Europe   | Medical Supplies     |   SUPPLY      gj U 

1 

1. Where the object is not correctly identified, as in someone going 
"under cover," tome aaribute(s) of nut object must be acknowl- 
edged (i.e. height, weight, etc.) 

2. or properly classified 

Figure 1 

This may appear sufficient to convince the 
novice user that flight* C1A2946 is a supply 
mission. Figure 2, however, shows that an 
unclassified user can piece together the fact 
that flight* C1A2946 is a reconnaissance 
mission. If this relationship is secret, then the 
cover story in figure 1 alone cannot protect 
that relationship. This is an example of a 
cover story that simply cannot protect infor- 
mation (because the information is available 
elsewhere). For this particular example, a 
second cover story3 in either FP, P, or OM is 
one alternative solution to protecting the secret 
relationship; a second alternative is to con- 
sider redesigning or reclassifying the schema 
to avoid this type of information flow. 

3. Tne original data would have to be removed or reclassified. 
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F1.TC;HT.PILOT(FP>   na 

Flight«     Pilot 

PILOT (?) OR 

Pilot Name Org 

ORC-MISSIONCQM)  OR 

Org Mbdontype 

1 C1A2944    | BARBTJ7W1 I— |BARBTJ72tl| CoL Barber, Thomas J.       |   XYZ 

i 
' 

-T1 XYZ T RECON 

Figure 2 

Cover Stories That Breach 
System Security 
In cover stories where some factual data is 
released, there exists the possibility that a low 
user could exploit this data to infer high 
information. The Organization (O) table 
shown in figure 3 contains the relationship 
between org "XYZ" and specialty "Russian 
Language" at the confidential level. At the 
unclassified level, XYZ's cover story is that its 
specialty is simply "Language." This cover 
story is consistent with the user's classification 
guideline listed in appendix A. In this case, 
the actual phone number for XYZ was 
released. Although this is not in direct viola- 
tion of the classification guideline, it is an 
indirect breach of security. In conjunction 
with the database schema shown in figure 4, a 
low user can use XYZ's phone number to infer 
its specialty by identifying potential employ- 
ees of XYZ and their specialty. 

This is an example of a cover story which 
itself causes a breach of security, by releasing 
information necessary to complete an infer- 
ence path. 

ORGANIZATION tt»   fltfl 

Org  Specialty Phone r 
MBC 

XYZ 

XYZ 

Maintenance 

Runlan Language 

Ljngujjj^ 

555-11U 

555-1234 

555-1234 

Figure 3 

Plausibility and Usability 
Why release factual information in a cover 
story? It is required in some circumstances to 
make the cover story plausible. An incorrect 
attribute may lead a user to question the valid- 
ity of other attributes in the record, thereby 
defeating the purpose of the cover story. 
Unsatisfied with the information, the user may 
try to retrieve a different answer using an 
alternative method (i.e. inference). Where the 
cover story is really a sanitized version of the 
truth (figure 3) factual information is some- 
times required to make the cover story usable. 

Although it is always possible to force the user 
to redesign the database to reduce or possibly 
eliminate poor schema design, it is our goal to 
allow these designs as long as their ineffi- 
ciency does not have an adverse effect on 
security. Forcing users to adhere to strict 
design principles can have the affect of driving 
them away from secure systems altogether. 
The goal here is to impact the user only when 
security is at risk, allowing them to work 
without restriction where possible. The user 
is responsible for proper classification of data 
within a record, while the database monitors 
classification consistency among collections of 
tables. 

As stated earlier, virtually every cover story 
contains factual information. What must be 
ensured is that this information cannot directly 
or indirectly disclose sensitive data to an 
unauthorized user. 
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OROANTZATTON (0\ ru-ci 

Org  Specialty Phone 
r  

1 ABC Maintenance 555-1111 

1 
|XYZ Ruulan Language 555-1234 

I "' 
1 xvz Language 555-1234 

PHONEBOOK m fUl 

Employee  Phone 
r 

1    Jon« 555-1111 

~~1         1 
'///A     \ 

Fa       l"          ' 
l^=* 1    Smith 555-1234 

L_- 

EDUCATIONS   Hü 

Employee    School Specialty 

Smith 

pathl: org (O) specialty [U-C] 
path2: org (O) phone (OxP) emp (PxE) specialty [U] 

Recognizing Inferences 
Caused By Cover Stories 
The design flaw whereby a cover story opens 
an inference channel was first introduced in 
[1]. The channel can be characterized by a 
relation whose attribute leads to an external 
attribute which co-exists (and is classified) in 
the original relation. The definition uses the 
notion of a path, and level of a path. These 
are discussed here, and are used in the formal 
definition that follows. 

A path identifies the set of attributes and 
relations used to substantiate a relationship 
between two attributes; it is a road map 
showing how the attributes are joined. The 
smallest path is between two attributes in the 
same relation, and by definition has a length of 
one. The Organization (O) table in figure 4 
shows the relationship between org and 
phone. It has a length of one and the path is 
written org (O) phone. More complex 
relationships use a recursive definition for 
path. Each join increases the length by one. 
The relationship between org and employee in 
figure 4 is substantiated by joining the 
Organization and Phonebook relations. The 
path has a length of two and is written 
org (O) phone (OxP) employee. Cyclical 
paths are not allowed; neither tables nor 
attributes can be revisited in a path. 

U of Toronto Ruffian Language 

Figure 4 

A path of length (n=n is defined as: 

P^^AR) = [&o (rj) aj | 
ao^e A 
Aao^aj 
AT[ € R 
A a^aj 6 TX 

A Cardinality(A) = 2 
ACardinaUty(R) = l] 

A path of length (n > 11 is defines as; 
PCao^nAR) = [P(a0,an.1,A-an,R-rn) (r^ x rn) a„ | 

«O^n-l^ii e A 

A ao * a,,.! * a,, 
A Tn-l^n e R 

Arn.!*rn 

A a,,.!,^ € rn 
A \-l e rn-l 
AP(a0,an.1,A-an,R-rn)] 

Where 
A is a set of n+1 attributes, and 
R is a set of n relations 

The level of a path is defined by the relations 
used in traversal; it is composed of the path's 
hierarchical and non-hierarchical security 
levels unioned together. The hierarchical 
level is the least upper bound of all the 
hierarchical levels encountered in the path. 
The non-hierarchical level is the union of all 
non-hierarchical levels encountered. 
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The level of a path p at time t is defined as: 

L(p,t)=[Lh(R,t)uLc(R,t)l 
3 ao.an.A [p = FXao.an.A.R) A t e time]] 

Where: 

Lh(nil,t)=U 
Lh(R,t)= [Level(r.t) I r e R A Level(r.t) £ Lh(R-r,t)] 

L^nil,^ nil 
Lc(R,t)= [Comp(r,t) u Lc(R-r,t) I r e R] 

Level(r,t) = Hierarchical security level 
associated with relation r at time t 

Comp(r,t) = Non-hierarchical compartment(s) 
associated with relation r at time t 

R = set of relations 

{U, C, S, TS} =Hierarchical security levels, 
and U < C < S < TS 

We say that a cover story is the cause of 
inference if it releases information that could be 
used to yield the true state of what the cover 
story is designed to protect. Formally stated, 
potential inference through the use of a cover 
story is defined : 

Ic(ai,aj) = [TRUE 13 p1,p2v^i-A2-Ri'R^ 
[P! = at (r) aj = P(ai,aj,A1,R1) 
A P2 = P(ai,aj,A2 £2) 
A aj # a; * a^ 
A aj (r) a^. e P2 
A-»(L(p1,t)<;L(p2,t))]] 

Looking back at our example in figure 4, we 
see that specialty (ap is the attribute that is 
both external and local to Organization. 
Phone (at) is the attribute or "hook" that can 
be used in a path leading to specialty outside of 
Organization. Using our definition, we see 
that a potential inference does exist The 
values used to substantiate this are shown 
below. 

1. In this context, € it used to denote a subpath. 
i.e. onj (0) phone e org (0) phone (OxE) emp (ExP) specialty 

aj = org,   aj = specialty,   ^ = phone 

Aj = {org, specialty} 

A2 = {org, phone, emp, specialty} 

r = 0 

Ri = {0} 

R2={0,E,P} 

pi = org (O) specialty 

p2 = org (O) phone (OxE) emp (ExP) specialty 

org (O) phone € P2 

^UPl=€) £L(P2=U)) 

/. Ic(org,specialty) = TRUE 

Notice that we assign path classifications to 
suit our needs. The only constraint is that the 
levels assigned are consistent with the range of 
possible values. For example, Organization 
can be assigned either unclassified (U) or 
confidential (C) security levels however 
Phonebook is strictly unclassified. The fact 
that there exists a potentially classified path pj 
and a potentially unclassified path P2 is a 
necessary ingredient to show die design is 
inherently flawed and could potentially breed 
inference. 

The actual tuple values shown in figure 4 are 
not used when determining the soundness of 
the design. They are used here to illustrate 
how a poor design could lead to an inference 
path, via specific database instance. 

A database is said to be free of potential 
inference through the abuse of a cover story if 
for all attributes a, and aj, Ic(aj,aj) is false. 

Where it is infeasible to eliminate potential 
inference paths, run-time analysis would 
monitor the contents of the database based on 
design-time analysis. Run-time analysis 
would substantiate when a potential inference 
path becomes an actual inference path. 
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Relationship to Other Classes 
of Inference 
A database where ^(a^ap is false for all aj and 
a; is by no means inference free; it only means 
that a cover story cannot be used against 
itself. The database is still subject to other 
classes of inference; there is no guarantee that 
the information released in a cover story could 
not be used to exploit some other type of infer- 
ence channel, hence the need for additional 
analysis. The inference definition presented 
here identifies a specific class of inference. It 
depends on a set of complimentary tools 
which detect other classes of inference, in 
order to form a comprehensive inference 
policy. Such a policy is required if we are to 
trust multilevel databases to truly protect the 
information it manages. 

Summary 
Cover stories, whose intention is to protect 
information, can fail in two ways. They can 
take either an active or passive role in the dis- 
closure of information to the unauthorized 
user. 

Garvey[4] recognized that a cover story cannot 
protect information if the user has enough data 
to piece together via inference the information 
it is trying to protect. In this case, the cover 
story is taking a passive role in the disclosure 
of information to the unauthorized user. To 
counter this he indicates the need to identify 
such situations and provide additional cover 
stories to block the inference path(s) which 
jeopardize the initial cover story. 

Plausibility of a cover story may require some 
factual, non-critical information to be released. 
Where factual information is released, there is 
the possibility a hostile user could abuse the 
information to obtain critical (high) data by 
using it to complete an inference path.  Here, 

the cover story is taking an active role in the 
disclosure of information to an unauthorized 
user. This paper focuses on detecting whether 
a cover story can be used to disclose informa- 
tion itself is trying to protect. This paper does 
not address the impact a cover story has on 
other information in the database which the 
cover story does not directly protect; i.e. this 
paper does not address the impact a cover 
story has on other classes of inference. Such 
considerations are being addressed separately, 
with the long term goal of developing a policy 
that does address a range of inference classes. 

Finally, the definition of I^a^a,) would presum- 
ably check the entire database to determine if a 
cover story could exist and could potentially 
be used to divulge the relationship between a; 
and aj. Alternatively, one could modify the 
definition to use it as a specific tool in devel- 
oping cover stories. Passing r as an argument, 
rather than testing to see if there exists some r 
that would satisfy the equation, would provide 
a useful tool to someone creating a cover story 
in a specific relation. Additionally, instead of 
returning TRUE the definition would return 
the offending piece of information: 

Ic(ai,aj,r) = [% 13 p1,p2,A1,A2^i,R2.t 
[pj = &i (r) aj = P(ai,aj,A1,R1) 
Ap2 = P(ai,aj,A2,R2) 
A aj*aj *afc 
A aj (r) ak e P2 

A-KL(Pi,t)£L(p2.0)]] 

Applying this to the cover story we wish to 
pose for specialty in the Organization relation 
of figure 4: 

I(.(org,specialty,0)» phone 

This indicates that if the actual phone number 
is supplied in a cover story for Organization, it 
is possible a hostile user could complete an 
inference path between org and specialty using 
phone; to prevent this, a cover story for phone 
number must be provided. 
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Appendix A 
Mock Classification Guideline 

• An organization's name alone is not classified 

• An organization's specialty is not classified unless stated otherwise 

• The relationship between organization and specialty is confidential if its specialty is one 
of the following: 

• Russian Language 

• Metalinguistics 

• Optical Fiber Transmission 

• Civil Engineering 

If the specialty falls within these classified areas, the following unclassified specialties 
are to be used when referencing that organization to an unclassified user 

Classified Specialty Unclassified Specialty Description 

Russian Language Language 
Metalinguistics 

Optical Fiber Transmission Engineering 
Civil Engineering 

• To provide consistency for the unclassified user, any record which relates organization 
and specialty at the confidential level must be polyinstantiated at the unclassified level. 
The record at the unclassified level will reflect the organization's unclassified specialty. 
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Abstract 

This paper describes initial research to develop a new inference model and detection 
approach for addressing the database inference problem. The model provides a means of 
classifying various types of inferences, with each class having various inference detection 
methods. The paper then provides examples of each type of inference class. 

To address the problem of the extensive knowledge that may be brought to bear on an 
inference objective by an adversary, the model recognizes various classes of information and 
shows how this information can be integrated into an inference system The nature of the 
information required for a particular inference can be used to provide guidance to the database 
designer as to what data should be protected to prevent the inference. 
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1. INTRODUCTION 

With the publication of the Trusted Database Interpretation of DoD 5200.28-STD, a big 
step has been taken to provide protection for large amounts of data stored in databases. While 
the ability to provide discretionary and mandatory access control (at least at the higher evaluation 
levels) is a major step forward in providing protection for the database, it is not sufficient. An 
organization could properly use the protection facilities provided by a multilevel secure database 
management system and still be at risk, due to the ability of an adversary to access unclassified 
data and be able to deduce more highly classified data using inference techniques. 

This problem will become more acute as more data is placed under the control of databases 
and these databases are connected to networks, such that they can be accessed by large groups 
of users located all over the world. In addition, as network accessibility becomes the norm for 
database access, a particular user could potentially have access to a large number of databases. 
If the user was working on behalf of an adversary, this adversary could then have access to 
considerably more data than has been available to a single user in the past. This greatly 
multiplies the potential to infer unauthorized data, since there is a greater pool of available data 
with which to perform the inference. 

Previous inference research has been characterized by [Hinke90b] into the following 
categories: 

1. "Efforts to discover fundamental laws that determine whether the potential for 
undesirable inferences exists within a given database; 

2. Efforts to discover automatically inference rules from fundamental relationships 
among data that pertain to a domain, and 

3. Efforts to automate (via expert systems) the process of inferring sensitive data within 
a specific domain." 

This will be extended with a fourth category to reflect some recent work at SRI 
International. 

4. Efforts to jam the inference channel with "noise" provided by plausible cover 
stories. 

Research into the discovery of fundamental laws that determine whether the potential for 
undesirable inferences exists include work on statistical databases [Denning82, Cox88, 
Matloff88] and work exploring the inference issues with respect to functional and multivalued 
dependencies within relational databases [Su90]. Also included within the first category is the 
work of Morgenstern [Morgenstem87, Morgenstern88] to propose a theoretical foundation for 
inference, using such concepts as a sphere of influence that is the transitive closure of all that 
can be inferred by a particular fact 

Research in the second category is represented by the work of Hinke [Hinke88, Hinke90a], 
which sought to discover inference channels that would permit classified relationships between 
two entities to be discovered by finding second paths, consisting of relationships between other 
entities that could be used to make the sensitive linkage. One of the important results of this 
work was that the specific rules required to find the classified relationship did not have to be 
stated explicitly. While they could be stated upon viewing the second path discovered, all that 
was required to perform the inference discovery was to find this second path by traversing 
relationships between entities until the two target entities were joined, using a path that was less 
classified than that associated with the direct relationship between the two entities. Also included 

188 



in this area is the work of Thuraisingham [Thuraisingham91], which uses conceptual structures 
to represent multilevel applications. The conceptual structures can be used to describe a database 
and this description used to determine if an adversary has the ability to draw unauthorized 
inferences. The use of abductive and approximate reasoning for discovering inference channels 
has been investigated by [Garvey91b]. 

The third category of inference research seeks to capture rules that could be used by an 
expert to detect inference problems within existing databases. Research in this area includes the 
work by Ford Aerospace on their inference controller [Buczkowski90]. 

The fourth category of inference work is represented by the current research on inference 
underway at SRI International [Garvey91]. While the work addresses the general inference 
problem, one of the areas that they considered in their published paper was the use of cover 
stories to add noise to the inference channel. This is especially useful when the inference 
channel may be composed of widely known facts that cannot be easily classified. 

The research described in this paper builds on the work in the second and third categories, 
by proposing the use of a new inference model developed at the University of Alabama in 
Huntsville. This model, called the AERIE (Activities, Entities and Relationships' Inference 
Effects) Model, seeks to permit the discovery of inferences using inference targets (sensitive 
things that are to be protected from unauthorized disclosure through inference). It also proposes 
utilizing a knowledge-base, using conceptual graphs, that will permit an Inference Analysis 
Tool to reason about the existence of information not only within the database, but also other 
knowledge that would be assumed to be known by an adversary. 

Conceptual graphs are based on first-order logic, as denoted by Charles Peirce's existential 
graphs from the late 1800's. An extension of semantic networks, they provide a powerful, 
extensible means of capturing real-world knowledge, such as the difference between class types 
and instances of a class; multiple constraints on the same individual or class, and inheritance of 
type characteristics from a supertype. The advantage of using conceptual graphs in this research 
is that they allow modeling of information without being codified into rules; i.e., knowledge can 
be applied in flexible ways as needed. Conceptual graphs are being considered as a standard for 
knowledge interchange by the ANSI X3H4.6 task group on conceptual schema's IRDS 
committee (Information Resource Dictionary Systems). 

This current work builds on the work of [Hinke88, Hinke90a, Thuraisingham91]. The 
work of [Hinke88, Hinke90a] is believed to be the first proposal to use conceptual structures 
for addressing the inference problems. This initial work was extended considerably by 
[Thuraisingham91], who proposed a multilevel semantic net and associated rules of deduction 
that could then be used to prove whether or not a multilevel semantic net satisfies desired 
security constraints. In the same paper, she extends these ideas to multilevel conceptual graphs 
and discusses a reasoning strategy that can be used to determine if the security constraints are 
violated in a particular conceptual graph. The AERIE research is based on conceptual graph 
structures and will be able to use the inference techniques suggested by [Thuraisingham91]. 
However, it extends the work of [Thuraisingham91] by proposing a classification of inference 
targets and a two-phase inference approach. Each of these differences will be briefly discussed 
here so that the contribution of AERIE, vis-a-vis related work, can be put into perspective. 

An inference target class is a type of real-world inference based on the nature of the 
inference that an adversary may attempt to perform. These classes can be related to real-world 
entities, activities and relationships. AERIE has identified a number of such classes. The value 
of the class is that it provides a focus for identifying appropriate inference techniques. For 
example, one of the contributions of the AERIE research is its use of the part-of relationship as 
a means for performing inferences of the Entity target class. Since real world entities have a 
physical realization, and many physical things have parts, the identification of a unique part for 
a particular entity could provide a strong suggestion that the data concerns the entity of which 
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the assembly is a part. This type of inference would not, however, be appropriate for the 
Activity inference class. 

The two-phase inference approach, consisting of the materialization of things and then the 
determination of relationships between these materialized things, suggests that different types of 
methods may be appropriate to each phase. For example, statistical techniques may be used to 
assist in the materialization, and thus be combined with the purely logical approaches proposed 
by [Thuraisingham91] for reasoning about relationships among materialized things. 

The remainder of this paper is organized as follows: Section 2 describes the AERIE Model, 
while Section 3 describes our proposed architecture for an Inference Analysis Tool (IAT) that 
can implement the model. Section 4 provides the current status of the project and the 
conclusions to date. 

2. AERIE MODEL 

This section will describe the features of the model and provide some examples of each 
inference target class. 

2.1. INFERENCE TARGET CLASSES 

This research will investigate the database inference problem in the context of the AERIE 
Model, a new inference model that is under development at the University of Alabama in 
Huntsville. 

The AERIE Model views inference detection as a two-phase process. During the first 
phase, "things" of interest are materialized from the database. By materializing something, we 
mean "detecting" it, much as sonar is used to detect the presence of a submarine. In this 
research, we are using various techniques to detect the presence of various" things" in the 
database, such as a particular type of aircraft or a construction project at a sensitive location. The 
reason the word "materialization" is used is that, in effect, all inference is making visible 
something that is not clearly articulated in the database. If it had been - and it represented 
sensitive data - then presumably it would have been properly protected. However, since it is not 
clearly articulated, it may not be properly protected, and hence is available for an adversary to 
materialize the information and thus gain access to classified information. 

Those "things" that have a realization as a physical object are called entities. These are 
analogous to nouns in the English language. Those ."things" that describe some action or state 
of being in the sense of English verbs are called "activities". 

The second phase of inference detection is the determination of relationships between 
various materialized entities and/or activities. These relationships can be used to perform 
intermediate inferences that are required to determine if a desired inference can be made. Or, the 
relationships themselves may be sensitive and hence, the target for the inference. 
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One of the fundamental beliefs underlying this research is that the prevention of undesirable 
inferences is a counterpart to the problem of providing a means for someone to perform them. 
Thus in order to prevent undesirable inferences, we must be able to determine if they can be 
made The problem is that failure to determine if an inference can be made could be an indication 
that the inference cannot in fact to made, that more time is required for the tool to make the 
inference or that the tool is inadequate to make the inference, but a better tool could. At this 
time inference detection should be viewed as an imperfect method to assist a system security 
officer in increasing the security of the data under his or her control. If an undesirable inference 
is detected, then it can be removed. However, it may not be possible to discover all undesirable 
inferences. 

Since what constitutes an undesirable inference is highly dependent upon the nature of the 
data in a particular database and an assessment of the information available to one's adversaries, 
this research assumes that one begins with a set of inference targets that the system security 
office has determined to be undesirable. These targets may fall into one or more of the inference 
target classes that will be presented shortly. These targets represent potential undesirable 
inferences that we want to ensure cannot be obtained in the database under study using data of a 
lower classification than the target inferences. If such targets can be inferred using data of a 
lower classification, then the database contains an inference vulnerability that should be 
eliminated by classifying some data item in the inference chain so as to break the chain at the 
lower level of classification, or adding "noise" in the form of cover stories, as suggested in 
[Garvey91]. 

In the AERIE Model, the inferences are presented in terms of inference target classes, 
materialization method classes and materialization method instances. An inference target class 
represents the inference objective of an adversary, and thus the protection objective of a system 
security office (SSO). A materialization method class represents the class of methods that can be 
used to perform particular types of inferences. A materialization method instance represents a 
particular member of a materialization method class. 

To date, the research on the AERIE Model has identified seven inference target classes. In 
addition to assigning each target class a number for reference purposes, each class can be 
characterized in terms of the entities, indicated with an "E," and/or activities, indicated with an 
~A," that are involved in the inference. In one case, the inference target class is specified in 
terms of previously identified target classes, and these are indicated with a " C". Where 
unknown entities or activities are involved in the inference target class, these are indicated with 
the letters W, X, Y and Z. Using this notation, the seven inference target classes are as follows: 

• Class 1, E: The materialization of an entity; 

• Class 2, A: The materialization of an activity; 

• Class 3, (E,E): The materialization of a sensitive relationship between two or more 
materialized entities; 

• Class 4, (A A): The materialization of a sensitive relationship between two or more 
materialized activities; 

• Class 5, (E,A) or (A3) (we will assume that they are equivalent): The materialization 
of a sensitive relationship between one or more materialized entities and one or more 
materialized activities; 

• Class 6, ((W,X),(Y,Z)): The materialization of a sensitive relationship between 
sensitive relationships, and 

• Class 7, [Cl,C2,...,Cj] => C: The materialization of a sensitive rule from existing 
classes. 
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The Class 1 and 2 inferences are the simplest, since they deal with the inference of only a 
single entity or activity. The Class 3,4 and 5 inferences deal with relationships between entities 
and activities, and thus are of a more complex nature than the first and second classes. 
(However, Classes 3,4 and 5 are believed to be similar in complexity.) The Class 6 inference 
deals with relationships between relationships and is more complex than the other five classes, 
since it includes these more primitive classes as well as the additional requirement that the earlier 
relationships be related to each other. Finally, the Class 7 inference is somewhat distinct from 
the others, since it deals with the ability to infer rules from previously known classes or class 
instances. More will be said about the Class 7 inferences later. 

These inference target classes play a dual role. While they have been identified in the 
context of classes of inference targets, they can also represent data that has been materialized, 
either at some initial state (since it represents data stored in the database), or because it has been 
materialized in some previous inference processing stage. Thus we can talk of Class 1 data as 
data about entities, Class 2 data as data about activities, Class 3 data as data about relationships 
between entities, etc. These concepts of data classes and inference target classes merge, since 
from an inference processing perspective it makes little difference whether the specified class ot 
data was originally stored in the database or has been materialized through inference processing. 

2.2. EXAMPLES FOR EACH TARGET CLASS 

Having provided an overview of the AERIE Model, its various components, the inference 
target classes and their related data classes, we will now describe an example of each inference 
target class, along with the methods that are used in performing the inference. Following the 
presentation of these examples, we will show how these methods can be described in terms of 
materialization method classes. 

An example of a Class 1 inference target can be found within a logistics database. If a site 
orders a part that is unique to a particular type of equipment, such as a certain radar unit, then 
an adversary with access to this database could infer that the site has this particular type of radar 
unit. This inference is made using the following method: El AND (El£2) => {E2J, where El 
is some unique part and the (El ,E2) relationship is the part-of relationship that breaks down the 
parts that are contained in each piece of equipment. The set {E2} represents all of those end- 
products in which the part is used. If the part is used only for a single end-product, then the 
cardinality of the set {E2} is one, and we have an inference that results in the unique 
identification of a piece of equipment. 

While the previous entity materialization example has been described in terms of using a 
logical inference method, the entity materialization could also be accomplished using statistical 
inference methods, if statistics were provided by the database. The statistics could be probed to 
isolate a particular, identifiable member of the group covered by them The end result is the 
materialization of a particular entity; hence, statistical inference methods are included under the 
first inference target class, since they can be used to materialize a particular entity. 

An example of a Class 2 inference target is the ability to infer that a construction project is 
occurring based on the class of equipment that is being ordered. Thus, if an equipment 
requisition includes equipment that can be used collectively for digging, pushing (e.g., pushing 
dirt) and carrying, this could indicate the existence of a construction project On the other hand, 
if the equipment being ordered is used for mowing or harvesting (e.g., wheat), then this would 
not be an indication of a construction project To perform this inference requires that a 
construction project be modeled with a definition that characterizes it as including the activities 
of digging AND pushing AND carrying. Then, the various equipment parts must be 
characterized with Class 5 data that has the form (E,A), relating the parts to the activities that 
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they support. For example, a blade supports the activities of pushing, a bucket supports the 
activities of digging and a loader supports the activities of carrying an pushing. Finally, pieces 
of equipment must be characterized in terms of their component parts, with Class 3 (EJE) 
relationships that associate a part with an end-item. Thus, a backhoe contains a bucket and a 
loader, while a tractor contains a blade. 

The inference of a construction project activity can now be made by determining whether 
there exists a requisition that contains equipment that can be used collectively for digging AND 
pushing AMD carrying. To perform this inference analysis, the parts in an order can be used 
along with the (E.E) and (E,A) relationships to perform an inference using the following 
methods: 

• Definition, to determine the definition of a construction project, which would be listed 
as an instance of the inference target Class 2; 

• Method Al, (Al, El) => El to determine the equipment components that can be used 
for digging, pushing and carrying; 

• Method El AND (El32) => E2 to infer pieces of equipment and component parts 
that are associated with the components that can be used for digging AND pushing 
AND carrying. 

• These various E2's will be checked against the order and used with the previous rule 
to generate more component parts and end items that are related to the entities that 
perform the digging, pushing and carrying activities associated with a construction 
project. For this inference, we have used two methods and a definition. 

An example of a Class 3 inference target is the determination of a sensitive association 
between two entities. For example, assume that some organization was attempting to keep its 
area of operation secret. This would be an association between the entities of organization and 
location. Now assume that this organization ordered blades. If these blades were for 
bulldozers, then one could not make much of an inference. However, if these were snow 
blades, then one could make the inference that the organization operates in snow country. 
While this is admittedly not a precise location, it does narrow down the possible area of 
operation. 

A Class 4 inference represents a sensitive association between two or more activities. For 
example, a new type of tank could be under development Characteristics of this tank could be 
revealed if the designer of the tank ordered both blades and a bucket, indicating that this tank 
could participate in the associated activities of pushing and digging. The fact that these activities 
could be combined might be sensitive information. This inference was made by using the 
method: El, (E1,A1)=> Al. 

A Class 5 inference represents a sensitive association between one or more entities and one 
or more activities. For example, if an intelligence activity required that a certain fixture be placed 
in the space shuttle's payload bay to support a particular type of sensor, then the association of 
this fixture with the intelligence gathering activity would represent a sensitive relationship that 
should be protected. 

A Class 6 inference represents a sensitive relationship between sensitive relationships. An 
example of this class is a student grade inference. Assume that grades are posted by student 
numbers, to preserve the confidentiality of the grade that a particular student received. This 
represents a Class 3 relationship between the entity student and the entity grade (e.g., (EJE))- 
However, if these posted grades are sorted by the last name of the student, then this represents a 
sensitive relationship called "Sorted-by-name" between the (Student_number, Grade) 
relationship, which is public knowledge and the (Student_name, Grade) relationship, which is 
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sensitive. However, if this Sorted_grade relationship can be inferred, then the very sensitive 
(Student_name, Grade) relationship can also be inferred. 

A Class 7 inference represents the inference of a sensitive rule. An example of a sensitive 
rule might be one used by a credit card company that approval to all charges for food, using the 
reasoning that since the food is already consumed, there is no reason not to approve it. In 
general, this class of inference incorporates any inference that results in a rule, rather than an 
entity, attribute or relationship. This class of inference target represents a considerably different 
target than the previous ones that are shown, but it is included since it represents another type of 
information about which one could launch an inference attack. 

2.3. INFERENCE METHOD CLASSES 

For each inference target class, one or more methods will apply to performing the 
inference. These various methods can be clustered into classes, such that each member of the 
class has the same basic characteristics. It is also the case that method classes applicable to one 
inference target class may also be applicable to others. 

Consider, for example, Class 1, the entity target class. The method classes that are 
applicable to inferring an entity include the following: 

1. Statistical inference; 

2. E, (E,E), and 

3. A, (A,E). 

The inference method classes applicable to inferring an activity include the following: 

1. Statistical; 

2. E, (E,A), and 

3. Traffic flow analysis (analogous to the traffic flow analysis performed for networks, 
but for example concentrating here on a high volume of activity on data about Iraq. 

The inference target class (E,E) has the following method classes that are applicable: 

1. Second path analysis, as proposed in [Hinke88]; 

2. Those methods required to materialize an E that may exist on the path; hence, all of 
the methods applicable to Class 1 inference targets, and 

3. Perhaps some paths will utilize (E,A) target classes as a means of linking entities, but 
this currently remains an open issue for the research. 

These examples illustrate one of the areas of investigation being pursued by this research, 
with the goal of identifying a more complete set of method classes, and then showing target 
classes to which they are applicable. 
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3. INFERENCE ANALYSIS TOOL 

While the primary focus of this research to date has been on the model, some initial thought 
has also focused on the nature of the tool that can be used to detect inferences. This tool, called 
an inference analysis tool (IAT), will be used to provide guidance to a database designer or 
administrator with respect to inferring sensitive information from the database. Given a semantic 
description of the database, along with some amount of information specific to the database s 
domain the IAT should be able to determine whether certain items of classified information 
could be inferred from the database. Within the paper, we will develop a preliminary 
architecture, consisting of tool components, and a proposed sequence of steps to provide 
assistance to database designers and administrators. 

The next section will describe an inference analysis tool, and the following section will 
describe how that tool could be used to materialize an example inference - in this case a sensitive 
activity. 

3.1 INFERENCE ANALYSIS TOOL ARCHITECTURE 

One value of the tool consideration is that the clarity of our model can be enhanced if we 
question how it can be used in a practical tool. This will provide a solid algorithmic basis for 
methods we develop based on the model. Furthermore, by considering an automated tool along 
with the model, we can better identify what parts of our inference analysis can be automated, 
what the difficulties are and what fundamental ümitations exist regarding automated inference in 
general. 

An adversary might possess a large body of generally available knowledge that he may 
bring to bear in attempting to draw inferences from a given database. In order to predict these 
inferences, a tool must encode an amount of knowledge that is roughly equivalent to the 
adversary's. The tool makes use of information obtained from several sources. We presume that 
this information is in the form of conceptual graphs. The knowledge sources are: 

• Description of the database under analysis. There are two parts to this: 

- Database specification graphs (DBSG): describe the classes of information that are 
immediately available (i.e., directly inferable), and 

- Database instance graphs (DBIG): capture actual instances in the database (if known) 
that are facts in the inference analysis. 

• Domain-independent knowledge (DIK): General knowledge (i.e., information that is 
considered publicly available), either so-called "common sense" knowledge, or 
encyclopedic knowledge. (We discuss this further below.) 

• Domain specific knowledge (DSK): Information that a domain expert would know. 

The above will be called knowledge sources. In addition, the tool should have access to the 
following: 

• Sensitive targets (ST), which are instances of some inference target class. The 
database designer supplies facts and/or relationships that he wants to be protected 
against being inferred from the database. 
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• The AERIE Model, described above, that guides the IATs steps in seeking and 
identifying inferences between the source information and the database designer's 
sensitive targets. 

The overall goal of the inference analysis process is to determine whether or not sensitive 
targets can be inferred from the original database, and if so, what information enables the 
inference to be performed. Since the analysis tool will be based upon the conceptual graph 
representation, each sensitive target will be kept as a graph. The sequence of inference steps that 
derives a sensitive target graph from the database and other graphs will be called an inference 
path. An inference path therefore contains the originating information as well as any 
intermediate inferences (and their enabling graphs). 

The tool maintains a set of inference paths that it has currently derived. A stored inference 
path is a sequence of one or more inference steps. An inference step is composed of the 
following: 

• Enabling graphs. A set of graphs (identified as to their origin) that enables the 
inference to be performed; 

• Inferred graphs. A set of graphs representing the facts that were derived; 

• A list of the materialization methods used to perform the inference; 

• A characterization of the materialization method class(es), and 

• A characterization of the target class(es). 

Within an inference path, an inferred graph for one step may also serve as an enabling 
graph for a subsequent step. We define a path-enabling graph to be an enabling graph that is not 
also an inferred graph of some other step in the path. The inference path can therefore be 
envisioned as a function whose input consists of path-enabling graphs, and whose output is the 
inferred graphs of the last step in the sequence. 

The tool's basic operation is to construct inference paths. Once all the source information is 
accessible (see above), the tool starts out with an empty set of current inference paths, indicating 
that no inferences have yet been derived For each sensitive target, the tool seeks an inference 
path whose path-enabling graphs appear in one of the knowledge sources. If no such path- 
enabling graphs are found, then the tool postulates some intermediate graph(s), and seeks an 
inference path that can infer the intermediate graph(s), which can then be connected to a 
previous path. 

Once an inference path is established, different interpretations can be drawn and different 
advice to the database designer/administrator will result For example, if all path-enabling 
graphs for a piece of sensitive information appear in the general knowledge base, then the 
sensitive information is based entirely upon common knowledge. It will then be impossible to 
maintain the information's security, except through the possible use of cover stories. Likewise, 
if all path-enabling graphs are in either the general or domain-specific knowledge base, then the 
information can be inferred by a knowledgeable specialist, and will be difficult to keep secure. 
If at least one path-enabling graph appears in the database specification, it would show that mere 
knowledge of the database's structure allows the sensitive information to be inferred. 

The AERIE Model gives a taxonomy of target classes, where each class consists of one or 
more method classes, and each method class consists of one or more methods that lead to 
inference of the target The tool uses the AERIE Model to organize its search and storage of 
information. The tool starts by classifying each sensitive target into one or more target classes. 
For each of these, the model has one or more materialization method classes that are used to 
infer it. Each method class has one or more actual methods that can be applied one by one. The 
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order of search corresponds to the order in the model: The tool seeks graphs for which the 
materialization method will produce either the sensitive target or some intermediate target. 

The following discussion describes examples, to give the "flavor" of the IAT. These 
examples make use of a sample database that consists of an equipment manufacturer's inventory 
and shipping information. The hypothetical database contains records with information such as 
pan number, description, quantity on hand and destination. 

The domain-independent knowledge base (DIK) of general knowledge consists of the 
following: 

• There is type hierarchy representing a set of classes, where each type is a subtype 
(sub-class) to the class of its parent(s). The type T at the top represents the universal 
type. The existence of a type hierarchy implies the inference rule that if some 
instance X is of type A and type A is subtype to type B, then instance X is of type B 
also. 

• If some instance Y is a part of some instance X, and some instance Z is a part of the 
instance Y, then instance Z is a part of instance X. 

• A piece of equipment exists with the following typical associated information: 

- Cost (in money); 

- Operated by a person; 

- Located in some place; 

- Owned by either an organization or a person, and 

- Part of something else. 

• "Pushing" (which is an act) is typically caused by some animate instance Y and acts 
upon some instance X. 

• If some instance X exists, and some Y is a part of X, then an instance of Y exists. 

The domain-specific knowledge base (DSK) consists of the following: 

• A construction project (an activity) exists with the following typical associated 
information called a schema: 

- Cost in some financing; 

- Located in some place; 

- Employs one or more persons, and 

- Has as its parts digging, carrying or pushing. 

• A blade is used for pushing, a bucket is used for digging, a hitch is used for pulling 
and a loader is used for carrying or pushing. 

• A tractor has as its parts a hitch, a blade and a tire. 

• A backhoe has as its parts a loader, a bucket and a tire. A bucket has as its part a tooth. 

• A cotton harvester has as its parts a hitch and a tire. 

With this information as background, the next section will consider how the IAT could use 
this information to discover an inference problem in a database. 
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3.2 MATERIALIZATION OF A SENSITIVE ACTIVITY 

Suppose the database designer decides that a construction project is a sensitive activity -- 
that is the existence of any construction project is deemed sensitive. Assume that a heavy 
equipment manufacturer's database is to be analyzed. This database would include both end 
items (such as tractors) and parts shipped to dealers and customers. Assume further that the 
knowledge-bases describe previously are available to the inference analysis tool. The tool 
proceeds as follows to see if it can materialize a construction project. 

To perform the analysis, the tool must identify what (if any) knowledge might be used to 
infer the existence and/or location of a construction project First, the DIK is scanned for any 
appearance of CONSTR.PROJECT; there is none. Then the DSK is scanned. Since it contains 
a schema for CONSTR_PROJECT, the existence of a construction project can be inferred if 
some of its associated concepts are present (e.g., FINANCING, PLACE, PERSON, 
DIGGING CARRYING or PUSHING). Assume that one of these concepts, PLACE, is found 
in the specification graph for the database. If we were to decide that the existence of one 
concept in the specification graph is sufficient to infer the rest of the schema, then we would 
have just shown that the location of a construction project could be inferred from the database. 

The reader can quickly see that such an inference is not particularly useful. As an old 
saying goes, "Everybody's got to be somewhere," so that mere sharing the concept of location 
(as opposed'to sharing some particular location instance) is insufficient to infer that it is a 
construction project that exists at the place. To address this problem, some heuristic must be 
chosen that determines what components of the schema must be present before we can infer the 
central concept (in this case, CONSTR_PROJECT). 

If we adopt some general heuristic that at least half of a schema's components must exist 
before we are willing to infer the entire schema, we immediately encounter problems. For this 
schema, it is clear that many activities involve financing, are located in some particular place and 
employ persons (e.g., a sports event or a newspaper publisher). What makes a construction 
project distinguishable is that it involves all those relations, plus it is made up of digging, 
carrying and pushing activities. So to infer a construction project's existence, we must establish 
the existence of one of those construction-project-unique sub-activities. 

We must therefore search the DIK for any graphs containing the concepts DIGGING, 
CARRYING and PUSHING. We find a schema for PUSHING, so that PUSHING can be 
inferred if we'find some ANIMATE entity operating upon something. We see that the database 
does not contain any concepts that are sub-types of animate, so PUSHING cannot be inferred 
using the schema. 

As there are no other graphs in the DIK containing any of the sub-activities we seek, we 
could then look at the type hierarchy, which is not reproduced in this paper. While some of the 
activities (e.g. DIGGING, CARRYING, and PUSHING) are sub-types of ACT, this is of 
limited value since assertions about ACTs are not necessarily true for all of its sub-types. We 
assume that none of the activities has any sub-types of their own to spur further searches in the 
DIK, so there is no further DIK knowledge that can be used. 

We now scan the DSK for any appearance of the three activities. We see that all threeof 
them appear, associated with various concepts: a BLADE is used for PUSHING, a BUCKET 
for DIGGING and a LOADER for either CARRYING or PUSHING. None of these concepts 
appears in the specification graph. 
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Can any of the concepts BLADE, BUCKET or LOADER be inferred from the DBSG1 We 
scan the DIK for any occurrence of these concepts, and there are none. We scan the DSK for 
them, and find each of them included in a part relation. BLADE is part of a TRACTOR, 
BUCKET is part of a BACKHOE, and LOADER is part of a BACKHOE. By the general 
inference rule in the DIK, we can therefore infer the existence of a part if we can infer the 
existence of its whole. For any instance of BACKHOE and TRACTOR in the database, we can 
infer, by a direct path, the existence of a construction project If the database includes an order 
for a BACKHOE from Bridgeport, California, then we can infer that a construction project exist 
at Bridgeport. 

4. STATUS AND CONCLUSIONS 

This research is just getting under way at the University of Alabama in Huntsville. The 
research rests firmly on previous inference and conceptual graph work of the authors. The initial 
work performed on this research is the development of the AERIE model, associated examples 
and the initial work on designing the Inference Analysis Tool. We believe that this model is 
unique in its use of conceptual graphs to describe both the semantics of the database as well as 
the common and domain-specific knowledge that would be available to a potential adversary. 

While the AERIE Model is in an early development stage, it has proven itself useful in 
providing a means to classify various inference types within one model. It also has provided a 
means to show how various inference methods can be combined into a unified inference 
analysis model. 

Our ultimate objective is to build on this preliminary work by completing the AERIE model, 
and then developing a representative database that can be used to characterize examples of the 
various types of inference problems. Finally, we plan to use this model as the basis for the 
implementation of an automated Inference Analysis Tool. 
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Abstract: 

Inference, the ability to deduce classified information from unclassified 
information1, is a leading security issue in the field of Multilevel Secure Database 
Management Systems (MLS DBMSs). 

Trusted systems are designed to prevent an unauthorized flow of data. However, 
inference techniques gather unauthorized information in a seemingly proper 
manner. Standard models for controlling information flow (i.e.: Bell-LaPadula) 
cannot detect unauthorized access gained by utilizing inference techniques. 

This paper addresses a specific class of inference attack: inference through 
secondary path analysis. This method of inference attack is characterized as one 
which seeks out alternative paths between two attributes whose primary path is 
classified. Our goal is to formally define this type of attack as a preamble to its 
solution. 

1. Literally: "unauthorized information from authorized data" 
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Introduction 
Inference is not a monolithic problem, and cannot be 
treated as such. There are a variety of techniques 
which can be used to infer unauthorized information 
from a database system. Consequently, no single 
definition of inference is adequate. Although it may 
be possible to derive a formal definition which 
encompasses every variation of the inference prob- 
lem, such a broad definition is of little use. Since the 
general inference problem is unsolvable, any holistic 
solution based on such a general definition will not 
be practical. 

The ultimate goal of inference research is to develop 
a comprehensive inference policy capable of being 
implemented. To accomplish this, it is essential to 
recognize each class of inference individually, and 
propose solutions to each of these specific classes. 
Only then will it be possible to bring each of these 
individual solutions together within the structure of a 
single, comprehensive inference policy. 

This paper focuses on a specific class of inference 
referred to as inference through secondary path 
analysis. It is one of the classical techniques used to 
circumvent security where the primary means of que- 
rying the system denies access to the intended 
relationship. In this approach, a user attempts to find 
alternative ways of joining data to yield a relation- 
ship which would otherwise be denied. 

This paper will: 

• Formally define potential inference 
through secondary path analysis in a 
record level labeling environment; i.e. 
design time analysis 

• Apply this definition to an element level 
labeling environment 

• Consider run time analysis based on the 
results of design time analysis, and 

• Expand the inference definition to 
consider the likelihood that a user could 
substantiate a potential inference path 
beyond a given threshold 

Inference Through Secondary 
Path Analysis 
In designing any relational database system the user 
generally has some idea of how each table will be 
accessed, and how some of these tables will be joined 
to derive a more complex relationship between 
attributes. Figure 1 shows an Emp-Grade relation 
and a Grade-Salary relation. It is likely that the user 
who designed this schema intended the relationship 
between employee and salary be derived by joining 
these two tables. Consider this path a primary path 
between employee and salary. If this relationship is 
sensitive, the designer may choose to protect the rela- 
tionship by classifying an element of that path. 
Classifying the grade column, for example, prevents 
an unclassified user from completing the primary 
path. 

Given a large enough database it is not likely that the 
designer is aware of all possible interactions between 
tables. Alternative, hence secondary paths may exist 
which ultimately relate two attributes in a manner 
unforeseen by the designer. For example, figure 2 
introduces two more tables; Emp-Job lists an 
employee's job description, and JobGrade specifies 
the minimum grade required to fill a specific job. A 
hostile user could determine an employee's minimum 
salary based on his current job description. This is 
graphically illustrated in figure 3. If the classifica- 
tion of the secondary path is different than the pri- 
mary path then a classification inconsistency exists. 
The notion of which path is primary and which is 
secondary is not critical. Classification inconsis- 
tency is not acceptable regardless of which path is 
conceived to be "primary." 

The purpose of an inference tool is to detect classifi- 
cation inconsistencies which arise from poor data- 
base design, and suggest a proper course of action to 
remedy the problem 
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TL 

r.r«to.S.larv«^rM 

Grade     Salary 

I   13.» 

I 13 I 45,Mi 

employee (EG) grade (EGxGS) salary [C] 

Figure 1 
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Increased Knowledge Leads to 
Improved Security 
A common belief is that the more information you 
have to protect, the more vulnerable your system 
becomes. This is quite the opposite from an infer- 
ence engine's point of view. Removing all classified 
data from a system does not prevent the unauthorized 
user from inferring classified information, since by 
definition he is only using authorized data to begin 
with; what it does is prevent an inference tool from 
being aware of any security breach. Information 
exists, whether we represent it in our database or 
not. By failing to acknowledge it does not make it 
any less true. In this sense, a record exists whether 
or not it is actually in the table. The danger arises 
when information is acknowledged in the database at 
a classification lower than the actual classification. 
Misclassification has two general flavors, misclassifi- 
cation within a record (entity) and misclassification 
within an aggregation of records. It is assumed that 
users will properly classify individual records based 
on some classification guideline; the burden of 
detecting classification inconsistencies within aggre- 
gates falls to the database's inference engine. The 
more world knowledge an inference tool has, the 
greater it's potential to discover classification incon- 
sistencies. 
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Figure 3 

Defining Aggregates 
According to Linß]1, there is no inference between 
employee and salary in figures 1 and 2. By his defi- 
nition, since employee and salary are each unclassi- 
fied, and the relations (Emp-Job, Job-Grade, and 
Grade-Salary) are each unclassified, then taken 
together they remain unclassified. However, consid- 
ering the possible intent of classification the forth- 
coming definition indicates inference does exist. 

This is based on the assumption that if there exists a 
set of attributes A = {ao,... a,,... aj and a set of rela- 
tions R = [TQ, ... rn_i) which substantiates a path p 
between ao and a„ such that the level(aj) in p is classi- 
fied and leveKaj) in p is unclassified (i * j), then 
level(p) is classified. Furthermore, it is assumed that 
the reason a^ is classified is to protect the relationship 
between a^ and a„. If the relationship between two 
attributes is classified, then any information based on 
that relationship is classified. And so, the aggregate 
{ao, aj is stated to be classified even though ao and 
a„ are both unclassified. 

Relating this back to figure 1, the path defined by the 
attributes {emp, grade, salary} is [C], By consider- 
ing the possible intent of classification we define the 
aggregate (emp, salary} to be [C]. Given that, we 
must consider the path emp (EJ) job (JG) grade (GS) 
salary to be an inference path and a violation of 
intended security. 

Automatically defining the classification of aggre- 
gates has been addressed only informally here. This 
paper does not formally address the automatic classi- 
fication of aggregates; however, the formal definition 
of inference through secondary path analysis captures 
the spirit of what we have discussed here. 

1. Strictly speaking the schema described in figures 1 and 2 do not 
fit Lin's model, however it is essentially the same as the schema 
m Appendix A which does adhere to Lin's model. 
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Defining Inference Through 
Secondary Path Analysis 
The definition of inference through secondary path 
analysis uses the notion of a path, and level of a 
path. These are defined here, and used in the formal 
definition of inference that follows. 

A path identifies the set of attributes and relations 
used to substantiate a relationship between two 
attributes; it is a road map showing how the 
attributes are joined. The smallest path is between 
two attributes in the same relation, and by definition 
has a length of one. The Grade-Salary (GS) table in 
figure 1 shows the relationship between grade and 
salary. It has a length of one and the path is written 
grade (GS) salary. More complex relationships use 
a recursive definition for path. Each join increases 
the length by one. The relationship between 
employee and salary in figure 1 is substantiated by 
joining the Emp-Grade and Grade-Salary relations. 
The path has a length of two and is written 
employee (EG) grade (EGxGS) salary. Cyclical 
paths are not allowed; neither tables nor attributes 
can be revisited in a path. 

A path of length (n=D is defined as: 

Pdo4i>AA)-[ao(ri)ail 
ao,aj € A 
Aao* aj 
ATJ e R 
A ao,aj e rj 
A Cardinality(A) ~ 2 
ACardinality(R)=l] 

A path of length (n > 1 Hs defined as: 

P(aC),an,A,R) = [P(a0,an.i.A-a0.R-rI,) (r„-i x rB) a, | 
ao.Vi.*n 6 A 

A»0'taB-l*an 

Ar..i*r. 
A VlAl 6   rB 

Where 
A is a set of n+1 attributes, and 
R is a set of n relations 

The level of a path is defined by the relations used in 
traversal; it is composed of the path's hierarchical 
and non-hierarchical security levels unioned 
together. The hierarchical level is the least upper 
bound of all the hierarchical levels encountered in the 
path. The non-hierarchical level is the union of all 
non-hierarchical levels encountered. Although 
tables can be multilevel, for the purpose of inference 
analysis it is assumed that a table has a single secu- 
rity level at any point in time. For example, the 
Mission table in figure 4 contains unclassified and 
confidential missions; but no record or mission is 
both unclassified and confidential at the same 
time1. When accessing flight C1A2946 the Mission 
table is effectively confidential, and when accessing 
flight Cl A3743 it is effectively unclassified. 

The level of a path/? at time / is defined as: 

Up,t)=[Lh(R.t)uLt(R,t)l 
3 a^A [p » PCao.vA.R) * t e time]] 

Where: 

Lfcdnl.O-U 
Lb(R,t)= [Level(r,t) I r eR A Level(r.t) £ Lh(R-r,t)] 

Lc(nil,t)= nil 
L,.(R,t)= [Comp(r,t) u L^R-r.t) I r e R] 

Level(r,t)   = Hierarchical security level 
associated with relation r at time / 

Comp(r,t) = Non-hierarchical compartment(s) 
associated with relation r at time / 

R = set of relations 

{U, C, S, TS} = Hierarchical security levels, 
andU<C<S<TS 

MTSSTON (M)   OH! 

Flight*  Dest       Cargo Missk>n_type 

I C1A294« I Iraq        I Rtcon Scope 2—   I   RECON    ~Ü C 

I C1A3743 | Europe   | Medkjl Suppll«    |   SUPPLY 

Figure 4 

l.Thii tpplie! to record Vevel Ubeling 
tcheroes wfll be addreiied forthcoming. 

Element level labeling 
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MISSION m 
Flight«   Dcst Mtalontype[U-C] 

| C1A2M«    | trag | RECON [C) 

| C1A3743    | Europ«     | SUPPLY [U] 

Figure 5 

Potential inference through secondary path analysis 
exists if there are multiple paths between two 
attributes such that the levels are potentially 
inconsistent. This analysis does not examine actual 
tuple values; it is an analysis of the database design 
and should be done during the design or re-design of 
the database schema. 

The following is a formal definition of potential 
inference through secondary path analysis in a record 
level labeling environment. Potential inference 
exists between two attributes ao and a„ if the follow- 
ing condition holds: 

I(ao.a„) = [TRUE 13 Alt A2, R^ R2, Pi, P* t 
[Pi = P^a^A,^) 

Ap2 = P(a0,an)A2Jl2) 
ALCp„t)*L(p2.t) 
A V rj/2 0"iSi 6 (Ri n R2) A i\ = r2 

-» Level(ri,t) = Level(r2,t) 
A CompO^t) = Compö"2»0)]] 

This definition does not consider the polyinstantia- 
tion of tuples at different security levels; inference 
caused by polyinstantiated data is specifically 
addressed in [1]. 

The same relation can be used in both paths when 
proving inference, such as the GS relation in 
figure 3. However, if the same relation exists in both 
paths, it must be assigned the same security level in 
each for the purpose of determining inference; i.e. 
because a table is multilevel in and of itself cannot be 
cited as the cause of inference. This is consistent 
with the notion that although tables can be multilevel, 
they are effectively single level at any point in time. 

Applying Definition to an 
Element Level Environment 
The notion that a table has a single security level at 
any point in time, does not hold true for column or 
element level labeling environments. Consider the 
Mission table in figure 5, which has been modified 
from the previous example. The relationship 
between C1A2946 and Iraq is unclassified, while at 
the same time the relationship between C1A2946 
and RECON is classified. Effectively, this relation 
does have two different security levels at the same 
point in time. In this case, for each attribute having 
a potentially different classification than its peers, 
the relationship between the attribute and its peers 
must be treated as a logically different relation. 
This is reflected in the labeling of the graph's arcs in 
figure 6; in a record level environment, all arcs 
would be labeled the same, since they represent the 
same table. If this concept is adhered to, the infer- 
ence definition proposed for the record level label- 
ing environment can be applied to the column and 
element level labeling environments. 

In the Sea View approach where multilevel tables 
are decomposed into single level tables, this can be 
accomplished by treating each fragment of the 
decomposed table as a logically different table;1 

less those fragments whose only difference is their 
classification. 

In either environment (record, column, or element), 
breaking the inference path involves reclassifying at 
least one table in the offending path, or'redesigning 
the database schema. 

1. For the purpose of determining inference only 
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Run-Time Analysis 
Removing all potential inference paths is not always 
feasible. It may be that forcing strict policy on a 
user community wUl cause them to abandon security 
for usability; or the schema may be adequate pend- 
ing consistent classification of entities across various 
tables. In either case, we must consider run-time 
analysis based on the potential inference channels 
detected during design time. 

The definition of a path yields the attributes, rela- 
tions, and order of traversal used to substantiate the 
path. So the definition not only indicates whether a 
path exists between two attributes, but also indicates 
what that path is. Given the potentially offending 
inference path, run-time analysis would monitor its 
existence. Each time a relation in the primary or 
secondary path is modified, the run-time analysis 
would fire a trigger to detect if a classification incon- 
sistency exists. 

For example, consider the following two paths: 

P! » aj (r,) a2 [S] 
P2 = aj (r2) a3 (r2 x r3) a4 (r3 x r4) a2 [U-S] 

The query that would substantiate pj is: 

SELECT aj,a2 

FROMr^ 

The query that would substantiate p2 is: 

SELECT ai,a2 

FROM r2, r3, r4 

WHERE r2.a3 » r3.a3 and r3.a4 » r^; 

Finally, the query that would substantiate an infer- 
ence between ai and a2: 

SELECT ai,a2 

FROM r,,r2,r3,r4 

WHERE r2.a3 = r3.a3 and r3.84 = r4.a4 
ANDri.ai =r2.at 

AND NOT (LUB(LEVEL(ri)) - 
LUBCLEVEUr^, LEVEL(r3), LEVEL^); 

This is the flavor of a trigger that would execute each 
time either rj, r2, r3, or r4 were modified. If the 
result of the query is non-null, the inference path is 
substantiated.  Of course, this assumes the ability to 

use the level of a record within the query. The func- 
tionality of a least upper bound (LUB) operator is not 
critical; the query can be rewritten without its use. 

Triggers that monitor the existence of an inference 
path must run at the level of the primary path1, or as a 
trusted process. The run-time mechanism can flag 
the active inference channel to the high user, but can- 
not relay this information to the low user lest a covert 
channel be created. Therefore, the database admin- 
istrator or high daemon running on his behalf must 
continue to monitor the system for inference flags. 

Thuraisingham[7] has been working on constraint 
processing in multilevel database systems. She has 
proposed the concept of a constraint engine which 
enforces human specified constraints. Interfacing 
the constraint engine with an inference controller 
rather than the human would allow constraints to be 
generated automatically and more thoroughly. 
Based on the input from the inference controller, the 
constraint engine would allow the low user to access 
any (but not all) of the relations which make up an 
inference path. 

We have given only a hint of how to map potential 
inference to run-time analysis. Although we have 
shown by example only, we intend to revisit this 
topic more thoroughly at a later date. 

Quantifying the Potential of 
Inference 
The likelihood that a potential inference path can be 
exploited can be described as the probability of tra- 
versing the database Schemas from beginning to end 
of the inference path, together with the probability 
that the high path actually exists. 

A path of length one between two attributes is recog- 
nized if the probability that the first attribute uniquely 
identifies the second attribute meets or exceeds the 
given threshold p (0 £ p £ 1). Longer paths are 
defined recursively so that the path is recognized if 
the probability of completing the entire path meets or 
exceeds the given threshold p; the probability of 

1. Considering tint die level of die primary and secondary pad» 
may be incomparable (due to compartment«), it u more 
accurate to lay that die trigger raust run at a level which domi- 
nates both die primary and iccoodary paths. 
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completing an entire path is determined by multiply- 
ing the probabilities of each subpath. 

A path of length (n=n with threshold n is defined as: 

ao,ai e A 
Aao^aj 
ATJ e R 
A a^aj e rj 
A Cardinality(A) = 2 
A Cardinality(R) = 1 
A Probability(r1(a0,a1)) £ p] 

A path of length Cn>1 ^ with thershold p is defines as: 

Ptao.vA.R^) = [P^Vi.A-an.R-r,^') (r^ x rn) a„ | 

ao,Vi.an 6 A 

Aao^Vi^3!. 
Arn.,/neR 

A an-i.an e rn 
A Vi e rn.! 
A p' = p I ProbabilityfrnCvLa,,))] 

Potential inference above some threshold p(0<p£l) 
exists if there are multiple paths between two 
attributes such that the levels are not equal and the 
combined probability of completing each path meets 
or exceeds p. 

Ka^a^) = [TRUE 13 AL A2, R1( R2, PI, P2. Up',p" 
[pi = P(a0,an,A1,Ri^') 
A P2 = P(iQ,l^,A2^2'P") 

ALCPLO^UPZ,!) 

A V r,j2 (riJ2 e (Ri n Rj) A r, = r2 

-*Level(ri,t) = Level(r2,t) 
A CompO^t) = Comp(r2,t))]] 

Where Probability(r(a1,a2)) is denned as the probabil- 
ity that at will uniquely identify a2 through relation 
r. The method used for ctetennining these probabili- 
ties is a subject in and of itself, and will not be 
addresses in the context of this paper. 

Disregarding potential inferences below a certain 
threshold would both reduce the number of false 
inferences identified by the inference engine, and sig- 
nificantly reduce the time required to perform infer- 
ence analysis. Reducing complexity is critical if we 
intend to provide inference analysis within an accept- 
able time constraint. 

Considering Path Length 
The probabilities mentioned heretofore do not take 
into account the human's ability to recognize poten- 
tial paths. For example, the probability that a per- 
son's social security number uniquely identifies 
their pay grade is one, and the probability that a spe- 
cific pay grade uniquely identifies the corresponding 
salary is one. Therefore the probability that a per- 
son's social security number can be used to 
uniquely determine that person's salary is one. 
However, the probability that all users will be aware 
of this path is not one1. 

Imagine a database where all subpaths had a proba- 
bility of one. Still, the longer an inference path, the 
less likely the user will be able to substantiate that 
path. Given enough information, the user will be 
overwhelmed and less likely to complete or "see" 
all possible inference paths. 

The reason for considering path length is again to 
reduce complexity. We must balance our ability to 
protect, against our adversary's ability to attack. 

The advantage of considering path length instead of 
probability is the elimination of the need to cor- 
rectly ascertain the proper weights for each path in 
the database. Not only is this a difficult burden, but 
one which requires continuing maintenance since 
the correct weights are potentially volatile. 

Potential inference bounded by length / exists if 
there are multiple paths between two attributes such 
that the combined length of the primary and second- 
ary paths is less than /. 

I(ao,an,/) = [TRUE 13 A^ A2, Ri, R2, Pi, P2. t. f. f 
[Pi = P(a0,an,A1,R1,0 
Ap2 = P(ao,an,A2,R2.0 
Af + r</ 
AUPLO^L^O 

A V xx j2 fri ^2 e <Rin R2>A ri = r2 
-* Level(ri,t) = Level(r2,t) 

A CompO^t) = Comp(r2,t))]] 

1. Although in thii simplistic example, it would be very close. 
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Where: 

P(a0,a1,A,R,/)=[a0(
ri)ail 

ao,ai e A 
Aao*ai 
ATJ e R 
A ag.ai 6 Tj 

A Cardinality(A) = 2 
A Cardinality(R) = 1 
AH/] 

Ptao.vA.R,/) = [P(ao^..i^A*-r«^-1)<rn-i XTJK\ 
»O-VIAI 

e A 

A ao # vi * *n 
A rn.! jB e R 
A rn-l * rn 
AVl-»n6 rn 
A an.j € rB.i] 

It may be the case that the longer a classified path is, 
the less likely the reason for classification of an ele- 
ment in the path is to protect the relationship between 
the beginning and end attributes of the path. In 
which case, it may be better to specify the length tol- 
erances of the primary and secondary paths individu- 
ally when defining potential inference. 

Of course, it is possible to combine traversal analysis 
based on actual probability of traversal with the 
notion that inference potential diminishes as path 
length increases. 

Implementation Considerations 
While this approach attempts to automatically clas- 
sify aggregates based on perceived human intent, we 
must allow for explicit human input. If the inference 
engine incorrectly identifies an inference path, the 
human must be allowed to inform the engine that it 
has misinterpreted his intent and to disregard this as 
an inference path. 

Because of the need to bound analysis time and 
reduce the number of false inferences identified by 
the engine, we have accounted for both probability 
and path length in our definitions. Adjusting the con- 
straints on path length effects our scope: Minimally, 
the analysis will check for simple classification 
inconsistencies; limiting the primary path length to 
one will confine our search to simple cases of 
inference; and relaxing our restrictions on length 
increases both the complexity of inference we are tar- 
geting and the cost of analysis. 

Summary 
There is no single definition of inference which both 
addresses all facets of the inference problem (logical 
attacks, statistical attacks, world knowledge, etc.) and 
is capable of being implemented. Since the general 
inference problem is not solvable, we must bound the 
inference problem The ultimate goal of this work is 
to develop a comprehensive inference policy capable 
of being implemented. Our plan is threefold First, 
individually recognize and formally define each class 
of inference we encounter. Second, propose solu- 
tions to each of the formally defined classes. 
Finally, bring each of the solutions together within 
the structure of a single, comprehensive inference 
policy; recognizing those classes of inference for 
which we have no practical solution. To this end, we 
have formally defined two classes of inference: infer- 
ence through polyinstantiation[l] and inference 
through secondary path analysis. A third class, 
inference through a common link, has been recog- 
nized but not yet formally defined. 

Inference through secondary path analysis can be 
characterized as multiple paths between two 
attributes such that the paths' security levels are 
inconsistent. This paper formalizes this notion of 
inference in a manner which easily maps to the rela- 
tional model. 

Lin's approach places the burden of defining aggre- 
gates on the human. This assumes the human has 
sufficient awareness of the system and how it can be 
used/abused. The approach stated here aids the 
human by identifying potential aggregates and infer- 
ence paths automatically. There is a trade off 
between the two approaches. By placing the burden 
on the user, implementation becomes more 
practical. While the latter approach is theoretically 
more robust, it also provides a greater challenge and 
risk to implement 

Our definition of inference in a record level labeling 
environment is applicable to the element level 
environment. In the case of SeaView, this is accom- 
plished by treating each fragment of the decomposed 
table as a logically different table. The drawback to 
this is that the decomposition is driven by data 
input So, much of the analysis of even potential 
inference channels cannot be done at database design 
time unless the designer has a good concept of how 
the system will be utilized. 
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The purpose of an inference tool is to detect classifi- 
cation inconsistencies which arise from poor data- 
base design, and suggest a proper course of action. 
Ideally, an inference engine should prevent the user 
from creating a table that would lend itself to an ille- 
gal inference path. Where elimination of potential 
inference is too restrictive, run-time analysis could 
monitor the contents of the database based on design- 
time analysis. In this case the tool would allow the 
existence of a poorly designed database, but would 
flag the insertion of data that would allow a potential 
inference path to become an active inference path. 
By doing analysis at design time, overhead at query 
time is eliminated. Run-time analysis leads to 
higher overhead during update, but makes design 
capability more flexible. 

We have shown how the potential of inference can be 
quantified by considering the likelihood that the 
inference exists (probability of traversing a path suc- 
cessfully) and the likelihood that a user is aware of 
the potential inference (examining the length of the 
path). Although these issues were addressed sepa- 
rately, they can be incorporated into a single defini- 
tion. 

A significant number of inference tasks are under- 
way, for this we need to develop and refine our com- 
mon ground. Formally denning what we mean when 
we say "inference" is a step in that direction This 
paper identifies one piece of the inference problem. 
Our goal was to bound and specify it so that we 
might 1) be able to follow through with a solution, 
and 2) verify that the solution maps to our specifica- 
tion. 

Finally, we have taken the first steps in our approach 
to solve inference. With each step, we're likely to 
realize that we've grossly underestimated the total 
number of steps. 
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Appendix A 

The example in figures 1 and 2 do not explicitly match Lin's model, but they are essentially based 

on the following example which does adhere to Lin's model: 

F.m.i.FooffiFirU.C1 

Employee [U] Foo[C] 
,1 ,1      
|   Smith |   fl 

X 
I   Jon« s 

Foo[C] Grade [ 

in 1u 
I in n^ 

Emu-lob CFJ) rUl 

Employee     Job 
I . ...         = .      ■ 

|    Smith         |    Senior Technical Aiulyrt 

|    Jona         |    DaU Entry 

Inh-ßrade (1W HJI 

Job Grade 
1                                        I 

|    Sailor Technkil Analyit j 13 

[    Data Entry                      | 2 

1                                           « 

r.r.de.SalarWflSl rUl 

Grade     Salary 

15,— 

UrB 45,tM 

This example is valid in Lin's "inference free" model. Attribute "foo" is introduced because of 
Lin's requirement that the values assigned to an attribute be labelled consistently throughout the 
database (in the previous example, value 13 for attribute "grade" existed at both the unclassified 
and confidential levels). Foo is being used here to classify the link between employee and grade, 
whereas in the previous example an instance of grade was classified to do the same thing. In 
essence, both examples provide the same information but do it using a different mechanism for 
classification. In each of these examples, the underlying reason for the classification was to 
protect the employee's salary. Of course, this fact is not explicitly shown in the schema -- but it 

can be derived by considering the possible intent of classification. 

Since this example can exist in Lin's "inference free" model, and the example in figures 1 and 2 
have a reasonable mapping to this example, it is argued that Lin's model should consider the 

schema described by figures 1 and 2 to be free of inference. 

Figures 1 and 2 were used in the text instead of this example for reasons of clarity, since it is not 
obvious at first glance why foo exists in the schema. Foo is essentially being used here to allow 
the classification of a relationship between employee and grade, without having to classify either 

employee or grade. 
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Abstract 

Disclosure control methods in statistical databases often rely on modifying responses to 
queries while approximately maintaining values of aggregate statistics. Response 
modification schemes suggested in the literature have adopted one of two extreme 
measures; the responses for repeated queries are either independent or they are totally 
dependent. In the former case the risk of disclosure through repeated queries is 
extremely high, while the latter approach suffers from the problems of increased risks 
under tracker attack and the possibility of a consensus on an incorrect inference. Our 
proposed response modification scheme based on autoregressive noise addresses each 
of these problems. 

We have shown that under our scheme the reduction in the variance of an estimator 
based on repeated queries is significantly less than in the case of disclosure control 
methods which provide independent responses. Furthermore, the modified responses 
cross frequently to both sides of the true value, thus preventing a possible consensus on 
an incorrect inference. Most significantly, the risk of disclosure under tracker attack is 
significantly less under our method than when a data perturbation method is in place. 

1. INTRODUCTION 

Providing security to statistical databases against disclosure of confidential information 
is a problem both of practical concern to database administrators, and of theoretical 
interest to statistical and computer science researchers [5]. A single database may serve 
both administrative and statistical functions. For example, a medical database is used by 
physicians to clinically monitor individual patients; this is an administrative function since 
information is supplied relevant to the treatment of a particular patient. On the other 
hand, public health researchers require only aggregate statistics, since their goal is 
population inference. As defined by Adam and Wortmann [1], a statistical database 
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enables users to retrieve only aggregate statistics for a subset of the entities whose 
microdata values are represented in the database. A statistical database can be thought 
of as a shell for a database in which authorized users are entitled to access yielding such 
quantities as counts, averages, and regression coefficient estimates. They are not entitled 
to obtain, directly or through inference, the identity of an entity. In typical applications 
where sensitive information such as income, criminal history, and sexual practices may 
be stored, that would be a breach of confidentiality. 

Direct identification is easily controlled by database software that refuses access to fields 
containing individual identifiers such as name and social security number. However, even 
when such identifiers are suppressed, it may be possible to infer confidential information 
about individuals based on available information. This type of disclosure is referred to 
as inferential disclosure, and is much more difficult to control. In their attempts to 
address this problem of inferential disclosure, researchers have developed several 
methods for inference control in statistical databases. These methods may be broadly 
classified into one of two classes. One class-query restriction-involves restrictions on 
certain types of queries, while the other class-response modification-relies on methods 
which modify responses to queries while approximately retaining values of aggregate 
statistics. 

In the query restriction approach, a query may be disallowed if, for example, the number 
of records satisfying the conditions of a query is smaller than a specified threshold value 
[6,8]. The motivation behind this inference control scheme is that if very few records 
have certain characteristics, then these records may be easily identified. Nullifying the 
promise of query restriction control is the finding that through certain sequences of 
seemingly innocuous unrestricted queries called trackers, the answers to restricted 
queries can always be deduced [2]. 

By releasing other than the true response to a query, the response modification approach 
introduces uncertainty so as to reduce the risk of disclosure. A common implementation 
is through stochastic modification. However, under most such schemes the sequence of 
responses to repeated queries are stochastically independent, and hence the uncertainty 
may be drastically reduced by making inferences based on responses to repeated queries. 
Duncan and Mukherjee [4] demonstrated this problem using one such scheme, the 
Random Sample Query Control method discussed by Denning [3]. The variance of the 
estimator for the protected value was found to decrease very rapidly as the number of 
repeated queries increased, thus resulting in unacceptably high risks of disclosure. 

The problem of variance reduction of the estimator through repeated queries may be 
solved by providing the same modified response every time a query is made. The 
database user would hence, in effect, be making queries of a modified database and gain 
no additional information by repeating queries. This technique of disclosure control is 
termed a data perturbation method [1]. However, a data perturbation method suffers 
from certain drawbacks. 

In a data perturbation method, the modified attribute is used to select records when a 
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query requires selection based on the original values of the attribute. Since, in general, 
the distribution of the modified attribute is different from the distribution of the original 
attribute, the resulting set of records selected may be quite different from the set of 
records required by the database user. Responses to any statistical query such as count 
and averages may hence provide an answer to the wrong question [7]. 

While the problem of incorrect selection of records may be eliminated by using the 
original attribute values in the selection process, a second problem may arise when all 
users of the database obtain the same modified response to a query. For example, if the 
modified response is used for a statistical inference procedure such as determining a 95 
percent confidence interval for the true value of the response, the interval computed by 
every user is identical. While in 95% of such cases the true value of the response is 
included in the interval, it may happen that all users agree on a certain confidence interval 
which does not contain the true value of the response. Under many circumstances a more 
desirable scenario is one that eliminates the possibility of such a consensus on an 
incorrect inference. 

The above discussion suggests that under a response modification method of disclosure 
control, responses to repeated queries should neither be independent nor totally 
dependent. Under independence too much additional information is available through 
each repeated query, while under total dependence there is a possibility of a consensus 
on an incorrect statistical inference. A balance between the concern about disclosure 
through repeated queries and the need to prevent misleading consensus may be achieved 
by providing positively correlated responses to repeated queries. 

In this paper we demonstrate an added advantage of providing positively correlated 
responses to repeated queries. We show that the precision with which values of 
confidential information about individual data subjects may be inferred using tools such 
as trackers is significantly lower when positively correlated responses are provided than 
when a data perturbation method is used. Since a statistical database should allow users 
to access only aggregate statistics and prevent the inference of information about 
individuals, response modification using correlated noise may be considered a more 
desirable disclosure control method than a data perturbation scheme. 

A method for disclosure control using autocorrelated noise is presented in this paper. 
While our method is not vulnerable to disclosure through repeated queries as are 
disclosure control methods using independent responses, our scheme also addresses the 
drawbacks of the data perturbation method. First, record selection is based on the actual 
values of the attribute, rather than on the modified values. This solves the problem of 
providing answers to questions different from those posed by the database user. Second, 
the modified responses to repeated queries are distributed roughly symmetrically about 
the true response, thereby eliminating the possibility of a consensus on an incorrect 
inference. Third, under our disclosure control method, the precision with which values 
of confidential information may be inferred using tools such as trackers is significantly 
lower. 

215 



Section 2 presents the response modification scheme and shows that the reduction in 
variance through repeated queries is significantly less than in the case of disclosure 
control methods using independent responses. Section 3 demonstrates that the precision 
with which confidential information may be inferred using tools such as trackers is lower 
when correlated responses are provided than in the case when a data perturbation 
method is used. Section 4 investigates the distribution of the additive noise and indicates 
that our scheme does not suffer from the problem of possible incorrect consensus as 
does the data perturbation method. Implementation issues are discussed in Section 5 and 
our conclusions are presented in Section 6. 

2. AUTOREGRESSIVE NOISE RESPONSE MODIFICATION 

We propose autoregressive noise response modification (ARM). Upon sequential 
queries, autocorrelated noise is added to the value of an attribute before it is used to 
compute the response released to the user. The rationale for such a scheme is that 
positively correlated noise reduces the additional information content in each repeated 
query. 

Consider a numerical attribute X for which respondent i in the database has a value X;. 
For the jth occurrence of a query involving this value, the modified value M^, used to 
compute the response is given by 

Mii = Xi + eU (1) 

where e;j is the autocorrelated noise added to X;. Specifically, 

_1_ 
ei0   ~       , „ei0 

eiJ 

(2) 

ij " Pei.j-i+ €ü for j = 1,2,... , (3) 

where {ej is a sequence of identically distributed, independent, zero mean random 
variables with standard deviation a, and 0</><l. It follows that for all i,j 

ElMjjlXj]   « X± , (4) 

vlMtJxj  = -^— and, (5) 13 1-p2 

Correlation[MljtMiij+k]   -   p*        for k=l,2,... . (6) 

The above properties indicate that a sequence of modified values M,a, M^,..., is unbiased 
for the true value Xj of an attribute, and follows a covariance stationary process. 
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Now consider an aggregate query about the attribute X of a set of data subjects C for 
which the true response R[C] is 

RIO   -£, iec   i (7) 

Under our response modification scheme, the modified response   Rj     released to the 

user for the jth occurrence of the query is 

It follows that the conditional variance of the released response is 

V[R*[C] \R[C]]   = 
i-p2 (9) 

where | C | is the number of data subjects satisfying the conditions of the query. 

It is clear that the uncertainty about the true value of the response may be maintained 
at an acceptably high level by selecting appropriate values for a and p. However, under 
repeated queries, the uncertainty about R[C] may be reduced by using an estimator 
based on n repeated queries 

*zi* --£ES;-[C] npi 
It follows that 

E[R*[C\]   = R[C]        and, 

V[R:ICI] = \C\a2 

1-p2   n2(l-p) 
n P'l-Pfl) 

1-p 

(10) 

(11) 

(12) 

Note that in the case where responses are independent (/> = 0), the variance of the 
estimator is given by |C|a2/n. As the correlation coefficient p increases, less and less 
additional information is available from each repeated query. Figure 1 shows the 

standard deviation of  fia'[C]   as a fraction of the standard deviation of  R? t C] 

different values of p and n. 

for 

Notice that for a choice of p = 0.9, the standard deviation of an estimator using 6 
repeated queries is about 70 percent of the standard deviation of a single response, 
whereas this reduction can be achieved with just 2 repeated queries in the independent 
(p = 0) case. Thus, in order to reduce the uncertainty appreciably, each query must be 
repeated numerous times. Databases containing sensitive information maintain audit 
trails, and such anomalous behavior as frequent repetition  of queries is likely to be 
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discovered. This may act as a deterrent, and a database user with malicious intentions 
has substantially less incentive to attempt disclosure through repeated queries. 
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Figure 1. Effect of Autocorrelation 
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The risk of disclosure may be maintained within acceptable limits by ensuring that the 
standard deviation for the estimator is greater than some fraction \ of the standard 

deviation of   Rj . This condition may be stated as 

n2(l-p)  [ 
n -   P<l-Pa> 

1-p 
>    X2 (13) 

While our proposed scheme reduces the risk of disclosure through repeated queries, the 
data perturbation method clearly does better since it provides no additional information 
through repeated queries. However, when tools such as trackers are .used to infer 
confidential information about individuals, our method offers greater protection than 
does the data perturbation method. We demonstrate this advantage of our method in 
the next section. 
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3. DISCLOSURE RISK UNDER TRACKER ATTACK 

Statistical databases are intended to provide aggregate statistics rather than information 
on individual data subjects. When a query on statistical database involves a sensitive 
attribute of a small group of data subjects, the query is not answered since these 
individuals may be easily identified. A common disclosure control method used to 
implement this restriction is the Query Size Restriction (QSR) control method. Under 
QSR control, a query is allowed only if the number of records satisfying the query is 
greater than some threshold value k. However, even under QSR control, answers to 
restricted queries may easily be inferred through a sequence of seemingly innocuous 
legitimate queries. 

Consider, for example, the following hypothetical employee database which contains 
information on the salary of the employees in addition to information on their gender 
and designation. 

Table 1. Aggregate annual Salary of employees based on their gender and 
designation. 

Salary is represented in thousands of dollars. 
The number in parenthesis shows the number of employees in that category. 

Vice President Others Row Totals 

Male 210 (1) 2400 (59) 2610 (60) 

Female 190 (1) 2000 (39) 2190 (40) 

Column Totals 400 (2) 4400 (98) 4800 (100) 

When QSR control is in place with k=3, a direct query about aggregate salary of vice 
presidents will not be answered since there are only two vice-presidents in the database. 
However, this restricted information can be obtained through the following sequence of 
legitimate queries: 

Ql. What is the aggregate salary of employees who are vice presidents or males? 
Al = 2800 
Q2. What is the aggregate salary of employees who are vice presidents or females? 
A2 = 2400 
Q3. What is the aggregate salary of male employees? 
A3 = 2610 
Q4. What is the aggregate salary of female employees? 
A4 = 2190 

The aggregate salary of the two vice presidents may now be computed as 

219 



A1+A2-A3-A4 = 400 thousand dollars. 

Such a sequence of legitimate queries that yield the value of a restricted attribute is 
called a tracker. QSR control may be easily subverted using trackers [2]. When the actual 
number of data subjects |C| satisfying a query C is less than the threshold value k 
imposed by QSR control, the restricted value R(C) may be computed as: 

R(C) = R(C or T) + R(C or -T) - R(T) - R(~T) 
where 

T is a logical formula specifying a set of records such that 2k<|T|, and 
2k< | ~T|, 

and,  ~T is the complement of T. 

Notice that all the four responses used to compute the restricted response are answers 
to legitimate queries. Trackers can always be found in any practical database and pose 
a significant threat to security. The risk of disclosure through trackers may be reduced 
by the introduction of uncertainty in the responses to queries. As discussed earlier, a 
common implementation of this strategy is through the addition of zero mean noise to 
the values of the sensitive attributes and providing masked responses to the user. When 
the masked responses are used in the tracker formula to estimate the response to 
restricted query, it can be shown that 

Proposition 
When disclosure control is based on noise addition, the variance of the estimator R [C] 
of the restricted response under tracker attack is 

V[R*[C\]   = a2   [  \C\ + 2[tf(l-p1)+  \C\(PX-P2)]] (14) 

where N is the total number of records in the database, |C| is the number of records 
satisfying the restricted query, a is the standard deviation of the additive noise, and p{ 

is the correlation coefficient between the additive noise for the kth and the (k+i)th 

repeated query. 

Proof: In the Appendix. 

For the data perturbation method, the response to every repeated query is the same. 
That is, pj = 1 for all i. It follows from the above proposition that the variance in the 
estimator for the restricted response is 

V[R'[C]]   = a2\C\  . (15) 

Under our proposed response modification method (ARM) based on autoregressive 
noise p2 = p?. Therefore, from Equation [14], the variance of the estimator for the 
restricted value is given by 

V[R*[C}]   = o2   [   \C\  + 2[N(l-p1)*  ICJpid-Pi)]] (16) 
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Thus the ratio of the variance of the estimator for a restricted value under ARM to the 
variance of the estimator under the corresponding data perturbation method (DPM) is 

m*[c]3U, = i+ 2*<i-Pl)   +2pi(1_pi)   >x  . (17) 

V[R*[C\] \DPM 

For a database to be of any practical use to the legitimate users, the restricted range 
(|C| <k , |C| >N-k) under QSR control must be only a very small fraction of the total 
number of records in the database; typically k/N is less than 1%. Consider the case 
where N = 100, |C|=2<k, and p = .9 (note that k/N > 2% here). Under these 
circumstances, the variance of the estimator under ARM is more than 11 times greater 
than the variance of the estimator under DPM. Notice that N/k is the dominant factor 
deciding the ratio of the variances, and hence under more typical circumstances ARM 
performs even better. For DPM to offer the same level of protection as the ARM does, 
the variance of the additive noise must be significantly increased. This, of course, would 
adversely affect the interest of the legitimate database user. 

An advantage that DPM has over ARM is that no reduction in the variance of the 
estimator is possible through repeated queries under DPM. Hence we need to consider 
the effect of repeated queries in the comparison between the two methods. Under ARM, 
the reduction in variance through n repeated queries has been computed in the previous 
section. For the set of parameters under consideration (N = 100, | C | = 2, and p = .9) it can 
be shown (using [13]) that under ARM, each query must be repeated more than 100 
times for the user to obtain the restricted information with the same degree of precision 
as under the data perturbation method. 

Clearly, for the same level of noise addition, our proposed method using autoregressive 
noise performs better than the data perturbation method under tracker attack. This is 
because under DPM the noise components of the various terms in the tracker formula 
cancel each other out. As was noted earlier, a second problem with this constant noise 
based scheme is that it may lead to a consensus on an incorrect inference. A similar 
concern may be raised about ARM. If the additive noise component over consecutive 
queries remain relatively constant due to the positive nature of the correlation then 
ARM may suffer from the same problem as does DPM. This issue is investigated in the 
following section. 

4. DISTRIBUTION OF MODIFIED RESPONSES OVER CONSECUTIVE QUERIES 

In order to guarantee that modified responses are not repeatedly above or below the 
true value, we would like to ensure that the added noise elf e2, do not all have the 
same sign for any long sequence of repeated queries. This condition may be formally 
stated as follows 

E[CN] > -yN , (18) 
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where CN is the number of zero crossings of the process elv..,eN, and y is some 
acceptably high fraction. This count CN of zero crossings can be expressed as 

CN = 2 Z; 

where Z; = 1 if {^ > 0 and ei+1 < 0} or {^ < 0 and ei+1 > 0} 
Zj = 0 otherwise. 

Due to the stationary nature of the process, 

E[CN] = 2 E[ZJ = N E[ZJ. 

(19) 

(20) 

Further, 

E[Zj] = P{ei > 0 and ei+1 < 0} + ?{ei < 0 and ei+1 > 0} 
= 2P{ej > 0 and ei+1 < 0} 
= 2P{ei+1 < 0 I e; > 0} P{e| > 0} 
= 2f0" H-py/o)<P(y(i-P2)V2/o)dy (21) 

where $ and <p are the distribution function and density function, respectively, of the 
standard normal variable. 

Figure 2 presents the decrease in the expected number of zero crossings with increasing 
values of the correlation coefficient in a sequence of 1000 responses, computed in 
accordance with [20] and [21]. 

The values for E[CN] in Figure 2 were obtained with a = 1. In order to corroborate our 
theoretical results, we simulated autoregressive errors and computed the number of zero 
crossings in sequences of length 1000. With a = 1 and four different values of p ( 0.6, 
0.7. 0.8, and 0.9) we estimated the mean number of crossings in each case from 60 
independent runs. Table 2 presents the simulation results along with our theoretically 
computed figures. 

Table 2. Simulation Results Compared with Theoretical Results. 

Correlation 
Coefficient 

P 

Simulation 
Result (C1000) 

Theoretical 
Result (E[C1000]) 

0.6 296 299 

0.7 253 256 

0.8 207 208 

0.9 143 146 
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Figure 3. Expected number of zero crossings as a function of the 
correlation coefficient. 

As evident from Table 2, the simulation results agree well with the number of crossings 
predicted by our theoretical results (x4

2 = 7.90, p-value = .095). More consequentially, 
even with the value of the correlation coefficient as high as 0.9, the additive noise 
changes signs more than 140 times on average, in a sequence of length 1000. Hence, one 
can expect the modified responses to give values distributed on both sides of the true 
value for any sequence of seven consecutive responses. 

To summarize this section, while the addition of autocorrelated noise serves to reduce 
the risk of disclosure through repeated queries, it does not suffer from the problem of 
possible consensus on an incorrect inference, as does the data perturbation method. 
Even for highly correlated noise, the sign of the noise changes frequently. It remains to 
be seen, however, if this additional benefit can justify the cost of implementing 
autocorrelated response modification. This issue is addressed in the next section. 
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5. IMPLEMENTATION ISSUES 

We consider the cost of implementing autocorrelated response modification and 
compare it with the cost of data perturbation. For the purpose of our analysis, 
implementation cost is split into storage costs and computational costs. 

In DPM, noise is added to all sensitive attributes, and these modified values are 
maintained in addition to the original values of the attribute. Statistical users are allowed 
to access only the modified values for these attributes. Computation is hence a one-time 
effort while the storage requirements increase by the proportion of disk space occupied 
by sensitive attributes. 

The storage requirement for ARM is the same as that for DPM. This is because the 
noise added follows an autoregressive process of order one. Only the current values of 
the noise components need to be maintained, along with the original attribute values, 
in order to generate modified responses. 

In terms of computation, though, the response attribute values need to be generated for 
each repeated query. The computation involves three basic operations: (1) independent 
noise generation (e;), (2) multiplication of the current value e; of the noise by the 
correlation coefficient p, and (3) addition of the autocorrelated noise to the original 
value of the attribute to obtain Mi=X+pei+ €j. 

As a fraction of the total query processing effort required, this computational load is not 
weighty. This is especially true for large databases, and hence the additional computation 
may well be justified. Moreover, in a dynamic database where confidential attributes are 
updated almost as often as they are queried, the computational cost of ARM is not 
significantly greater than the computational cost of DPM. This is because every time an 
attribute changes its value, even under DPM, its modified value has to be recomputed. 

6. CONCLUSIONS 

Response modification schemes suggested in the literature have adopted one of two 
extreme measures; the responses for repeated queries are either independent or totally 
dependent. In the former case the risk of disclosure through repeated queries is 
extremely high, while the latter approach suffers from the problems of increased risks 
under tracker attack and the possibility of an incorrect consensus. Our proposed 
response modification scheme, ARM, based on autoregressive noise addresses each of 
these problems. 

We have shown that under our scheme the reduction in the variance of an estimator 
based on repeated queries is significantly less than in the case of disclosure control 
methods which provide independent responses. Furthermore, the modified responses 

224 



cross frequently to both sides of the true value, thus preventing a possible consensus on 
an incorrect inference. Most significantly, the risk of disclosure under tracker attack is 
significantly less under our method than when a data perturbation method (DPM) is in 
place. 

7. APPENDIX 

Proof of Proposition 

Define 
ejj : error term added to R[C & T] for the jth repeated query. 
e2j : error term added to R[~C & T] for the jth repeated query. 
e3j : error term added to R[C & ~T] for the jth repeated query. 
e4j : error term added to R[~C & ~T] for the jth repeated query. 

Note that 
EleyeJ = PLJ_,| for i=k, .7 otherwise. 

Required 
V[R*[C]] =    V[e[C or T]] + V[e[C or ~T]] + V[e[T]] + V[e[-T]] 

2{ Cov[e[C or T], e[C or ~T]] - Cov[e[C or T], e[T]] - 
Cov[e[C or T], e[~T]] - Cov[e[C or ~T], e[T]] - 
Cov[e[C or ~T]], e[~T]] + Cov[e[T], e[~T]]  } 

= a2 ( |C or T| + |C or ~T| + |T| + | ~T| + 
2{ E[e[C or T] e[C or ~T]] - E[e[C or T] e[T]] - 
E[e[C or T] e[~T]] - E[e[C or ~T] e[T]] - 
E[e[C or ~T]] e[~T]] + E[e[T] e[~T]]  }} 

= CT
2
(2N + |C|) + 

2a2 { E[(en + e21 + e31)(e12+e32+e41)] - E[(e11+e21 + e31)(e13+e22)] 
EKen+e^ + e^Xe^+e«)] - E[(e12+e32+e41)(e13+e22)] - 
E[(ei2+e32+e4i)(e33+e42)] + E[(e13+e22)(e33+e42)] } 
= a2[ |C| +2^(1-^)+ |C|(/yp2)]] 

Proved. 
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Abstract- Transactions are vital for database management systems because they provide 
transparency to concurrency and failure. For this reason, concurrency control and recovery are 
important issues in multilevel secure transaction processing systems. This paper examines the 
security properties of database recovery management protocols. We adopt an analytical 
approach to the problem in the sense that given a system described by a protocol, we attempt 
to determine if it is secure, rather than show how the system could be constructed from secure 
components. This is essential because a protocol that is inherently insecure can have no secure 
implementation. We present a model for transaction processing systems and a corresponding 
security property based on noninterference and demonstrate that the property is composable. 
This allows us to consider the security of each subsystem in the transaction processing system 
independently. We also present a recovery protocol for multiversion schedulers and show that 
this protocol is both correct and secure. The behavior of the recovery protocol depends only on 
previous actions of the same transaction. For this reason, we believe an untrusted 
implementation of the recovery manager may be feasible. 

1.  INTRODUCTION 

Multilevel Secure (MLS) computer systems provide strong mechanisms for controlling the 
disclosure of sensitive information. MLS database management systems (MLS DBMSs) apply 
the access controls of multilevel secure computers to database management systems. The goal 
of such systems is to protect sensitive information from unauthorized users. 

Transactions are vital in database management systems because they provide transparency to 
concurrency and failure. Because of this, transaction processing in MLS DBMSs has received 
much attention recently [SHOC89], [OBRI90], [KEEF90b], [JAJO90], [GREE91], 
[COST91]. There are two main issues in transaction processing: concurrency control and 
recovery. Most of the previous work has focused on scheduling protocols that avoid illegal 
information flow through covert channels, however, secure recovery protocols have not yet 
been addressed in detail. 

We distinguish two approaches to the design of a secure subsystem, synthesis and analysis. In 
the synthetic approach we construct the subsystem from components known to be secure and 
composable. An example of such a component is an untrusted subject executing on a secure 
operating system. If we can demonstrate how to construct a subsystem in this way, we know 
that the subsystem is no less secure than the system it is layered upon. For example, Two- 
Phase Locking protocol for database scheduler is shown to be insecure in [KEEF92]. This 

This work has been supported by the Department of Defense under contract number MDA904-91-7043. 
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implies that it is impossible to construct a secure two-phase locking scheduler from untrusted 
subjects (or in any other way). 

In the analytical approach, we attempt to determine if a given system is secure. Note that this 
does not rule out an untrusted implementation. We can describe properties of the system which 
imply security, e.g., the MLS property [HAIG87a, GOGU82]. This approach was taken in 
[KEEF92] where noninterference was applied to database transaction schedulers. A problem 
associated with this approach is composition. The composition of two trusted subsystems may 
lead to insecurities which do not exist in either one in isolation [MCCU90]. Analyzing the 
security of one system without considering the system it is incorporated into leaves us open to 
this problem. One solution is to completely reverify the security of the two systems together. 
This will require much effort. Another approach is to show that each system individually 
satisfies some composable security policy such as restrictiveness [MCCU90]. Thus, the 
composed system will also have this property. The composition of systems can in some cases 
result in nondeterminism. Demonstrating the security of nondeterministic systems is still an 
open problem [WITT90]. 

Secure recovery is also considered in [SHOC89], [OBRI90] and [GREE91]. These papers all 
follow a synthesis approach, each showing how to carry out recovery using untrusted subject. 
They also assume that subjects cannot "write-up."1 However, this approach is not suitable for 
demonstrating that a protocol is not secure. In this paper we take an analytical approach, and 
we do allow for the possibility of writing up. We first define a model for a Transaction 
Processing System (TPS) and a corresponding MLS property. Following this we show that 
this MLS property is composable. This allows us to consider the security of each subsystem in 
the TPS independently. 

The rest of the paper is organized as follows: Section 2 introduces the notion of multilevel 
security. Section 3 describes a model for a transaction processing system. Section 4 describes 
a security property applicable to our TPS model based on noninterference. Following this, in 
Section 5 we consider the problem of composition in the context of our TPS model. Section 6 
briefly examines the security properties of various recovery protocols and introduces a protocol 
which we show to be both secure and correct. Finally, Section 7 presents our conclusion. 

2. MULTILEVEL SECURITY 

In this work we consider only mandatory security. Mandatory security is based on a set of 
security classifications partially ordered by the 2s relation. When two security classifications Ij 
and (2 satisfy /; 2s 12 we say /; dominates I2. If /; 2s I2 and Ij * I2 we say that // strictly 
dominates I2, or I] > 12- If neither one dominates the other, we say I] and I2 are incomparable 
classes. 

Elements of information in the system are assigned security classifications called sensitivity 
levels which represent their sensitivity. Users are assigned security classifications called 
clearance levels which represent the levels to which they are trusted. The security policy 
[DOD85] requires that the system satisfy the following properties [BELL76]: 

^y "write-up" we mean a transaction with classification level / writes an object with classification level /' such 
that /' >/. 
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Simple Security Condition 

A subject may have read access to an object only if the subject's classification level 
dominates the object's sensitivity level. 

♦-Property (Star Property) 

A subject may have write access to an object only if the object's sensitivity level 
dominates the subject's classification level. 

We must also consider information flow through covert channels. A covert channel allows 
information to be transferred in violation of the security policy (i.e., either from a high-level 
subject to a low-level subject or between two subjects with incomparable security levels). 
Covert channels are associated with a shared resource and can be categorized as either storage 
or timing channels. Timing channels require that a subject or user have the ability to measure 
time, while storage channels do not. At higher levels of assurance, a limit is placed on the 
maximum bandwidth a covert channel may have [DOD85]. 

3. A MODEL FOR TRANSACTION PROCESSING 

There are two tasks involved in transaction processing: scheduling and data management 
[BERN87]. The scheduler orders the actions of several concurrently executing transactions so 
as to maintain correctness, i.e., serializability [PAPA86]. The data manager processes the 
scheduled database access requests (read, write, abort and commit actions) in a way which 
allows recovery from system or media failure, i.e., reliability. The relationship between the 
components is shown in Figure 1. 

Transaction 

Transaction 

System Restart 

Figure 1 - Components of a Transaction Processor 

Transactions issue read, write, commit and abort requests to the scheduler. The scheduler 
orders these requests and submits them to the data manager for execution. The data manager 
receives requests from the scheduler and returns results and acknowledgments. The data 
manager must follow an update protocol which allows proper recovery in the case of system or 
media failure. In this paper we consider only system failures. 

Following a system failure, a system restart signal is sent to the data manager which causes the 
data manager to start the recovery process. To be correct, recovery should leave the database in 
the same state as the committed projection of the execution which precedes the failure. 
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The scheduler and data manager are not independent. To allow proper recovery, the scheduler 
must output only recoverable schedules [BERN87]. A schedule is recoverable if whenever 
transaction Tj reads from transaction Tj, Tj commits before Tj. 

The design of a data manager can be simplified if the scheduler outputs only strict schedules. A 
schedule is strict if no data item is read or overwritten by another transaction until the writing 
transaction aborts or commits [BERN87]. This allows the effect of an aborted transaction Tj to 
be undone by replacing the value of every element written by Ti with the value it had just prior 
to the write. 

The Data Manager can be decomposed into Recovery Manager, Cache Manager and Disk 
Manager. In the following section we describe interface, characteristics and correctness 
requirements of each. 

3.1.   Scheduler 
A schedule (i.e., the output of the scheduler) is correct if it is equivalent to a serial schedule. A 
serial schedule executes a set of transactions with no interleaving (i.e., each transaction runs to 
completion before the next one begins). A serial schedule limits the concurrency among 
transactions as each transaction must wait until all previous transactions have completed. We 
give an example of a serial schedule below: 

Ti(S):      R(x,U)     W(y,S)    C 

T2(U): R(z,U)     W(x,U)    C 

Here, R(x, U) denotes a Read action accessing an element x which has a sensitivity level U 
(Unclassified). Similarly, W(y, S) is a Write action. The classification level of the subject 
making the request is associated with the transaction name. For example, the action R(x, U) is 
part of transaction Ti which is executed by a subject with a classification level S (Secret). The 
action Ti : C is the commit step. It indicates the transaction's readiness to commit However, a 
transaction is not committed until its commit step is executed and acknowledged by the data 
manager. The schedule shows the order in which actions are executed (i.e., actions on the left 
are executed before those on the right). All of the steps of transaction Ti are executed before 
any of the steps of transaction T2. 

Another important property of schedules is concurrency. A schedule is concurrent if it is an 
interleaved sequence of actions from two or more transactions. A serial scheduler (i.e., one 
which only outputs serial schedules) is correct by definition, but is inefficient. It is also 
insecure, since it may force low-level subjects to wait for the transactions of high-level subjects 
to complete. 

The scheduler must produce serializable schedules and submit actions to the data manager in 
such a way that conflicting operations are never in the data manager at the same time. Two 
operations conflict if they access the same data element and at least one of them is a write.* We 
assume handshaking is employed to enforce the execution order of operations. If a module 
requires that two operations be executed in a particular order, the module must submit the first 
operation, wait for the executing module to acknowledge its completion and then submit the 
second operation. Therefore, the data manager can process any of its pending reads and writes 
concurrently and still achieve a serializable execution. The handshaking mechanism allows for 

'in the case erf multiversion schedules, two actions conflict only if they access the same version. 
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the concurrent execution of multiple operations within a module. However, care must still be 
taken to synchronize access to shared data structures local to the module. 

3.2. Recovery manager 
During the normal mode of operation, the recovery manager controls the movement of data 
between the cache and stable storage and collects recovery information in the form of a log to 
aid in recovery from system failure. In the failure mode of operation, the system restart 
process must be able to utilize this recovery information (maintained on stable storage) to 
restore the database to a consistent state. There are three types of failures: transaction failure, 
system failure and media failure. A transaction failure corresponds to a transaction being 
aborted. A system failure results in the loss of volatile storage with the stable storage left intact 
A media failure results in stable storage being corrupted. In this paper we only consider 
transaction and system failures. We use stable database to mean the state of the database in 
stable storage (e.g. on disk). 

The recovery manager manipulates data as follows. On receiving an access request, it sends a 
fix operator to the cache manager (or afix_new operator if a new object is to be created). As 
a result, the cache manager "pins" a cache slot for this object and returns the slot number to the 
recovery manager. Thereafter, the recovery manager can read or write the object cached in the 
slot. Pinning a cache slot insures that the cache manager will not replace it. After the access 
request has been acknowledged, the recovery manager can issue an unfix operation to allow the 
cache manager to replace the slot. In addition to this data manipulation, the recovery manager 
also maintains a log in stable storage to allow correct recovery after system failures. 

The Recovery Manager must keep sufficient information in stable storage for the restart process 
to undo updates by aborted transactions and redo updates by committed ones. These 
requirements are called the Undo and Redo rule [BERN87]: 

Undo Rule: Ifx's location in the stable database presently contains the last committed 
value ofx, then that value must be saved in stable storage before being overwritten in the 
stable database by an uncommitted value. 

Redo Rule: Before a transaction can commit, the value it wrote for each data item must 
be in stable storage. 

In [BERN87] recovery protocols are categorized as (1) Undo/Redo, (2) Undo/No-Redo, (3) 
No-Undo/Redo and (4) No-Undo/No-Redo. This classification is based on characteristics of 
the system restart process, i.e., whether it requires undo or redo for handling system failure. 
A protocol requires undo if it allows an image written by a uncommitted transaction to replace 
a part of the stable database. A protocol requires redo if it allows a transaction to commit 
before all its updates are incorporated into the stable database. 

To allow proper recovery after system failure, at times the recovery manager must insure that 
certain data elements are in stable storage. For example, when a transaction commits, the 
recovery manager may instruct the cache manager to flush the data elements written by the 
transaction to stable storage via the flush command. When a transaction aborts, the recovery 
manager may need to remove the effects of the aborted transaction from the stable database. 

3.3. Cache Manager 
The cache manager is designed to minimize the traffic between the cache and stable storage. 
The behavior of the cache manager can be described by its allocation and replacement protocol 
[EFFE84]. On afix_new request, the cache manager pins an available slot and returns the slot 
number. In executing a fix request, the cache manager searches the cache for the desired 
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object.1 If the data object is not in the cache, the cache allocation protocol is used to choose an 
available cache slot for the requested object. If no slot is available, a cache replacement protocol 
chooses an unpinned cache slot for replacement. If the victim slot is dirty, it is flushed to the 
disk and then the requested object is fetched. The cache slot containing the requested object is 
pinned to prevent further replacement and the slot number is returned. On a read request, the 
cache manager reads the cache slot contents and returns the result to the requester. On a write 
request, a new value is written into the cache slot and an acknowledgment is returned. An unfix 
request marks the cache slot available for replacement and returns an acknowledgment. 

Data is moved between the cache and disk explicitly via the fetch and flush operations. The 
flush command takes an object name as its parameter and causes the object's contents to be 
written to disk if it is in the cache, otherwise the flush has no effect. The fetch command 
causes an object to be read from the disk and written into an available cache slot. 

The outputs of the cache manager are readjiisk and write_disk requests to the Disk Manager 
and acknowledgments to the recovery manager. The inputs to the cache manager are 
acknowledgments from the disk manager and requests from the recovery manager. 

3.4. Disk manager 
The disk manager reads and writes pages from the disk. At any time, several operations may be 
pending. Thus, the disk manager must schedule the execution of these operations. While the 
scheduling could be as simple as a first come first serve, other more complex scheduling 
protocols are also possible and may be required to insure security [KARG91]. 

The inputs to the disk manager are readjiisk and write_disk requests from the cache manager. 
The outputs are the corresponding acknowledgments. 

4. A SECURITY PROPERTY FOR TRANSACTION PROCESSING SYSTEMS 

We now introduce a security models for transaction processing. As in [KEEF90b], we refer to 
the set of schedules which satisfy the simple and *-property as Class 2-SS. Occasionally, we 
consider a more restrictive class of inputs we call Class 1-SS. This is the strict subset of Class 
2-SS which includes an action T: W(x) only if level(x) = level(T). 

We can model a Transaction Processing System (TPS) as a Temporal Labelled State Machine 
(TLSM). A TLSM is a deterministic state machine which accepts a sequence of input events 
and generates a sequence of output events. An input event (output event) is an input (output) 
action tagged with a non negative timestamp representing the time it enters (left) the system. 
We assume events never coincide and thus these timestamps are unique. Each input event is 
labeled with the classification level of the requesting subject which issued it Each output event 
is also labeled with a classification level of the receiving subject 

We define an event as follows. 

Definition- An event is a triple DOMAIN x TIME x SC, where DOMAIN is a set of 
actions; TIME is a set of non-negative real numbers; SC is a set of security classification levels; 

1Thc data object is assumed to be a fixed size page. 
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Note that in the definition, TIME is a set of non-negative real numbers. This implies different 
events never coincide. We let dorn, time and level be functions which return the DOMAIN, 
TIME and SC component of an event, respectively. 

Given a machine with input domain (a set of acceptable input actions) I and output domain (a 

set of output actions) O, we use X to denote the set of input events {(i, t, I) I i E I, t E TIME, 

/ E SC} and Y to denote the set of output events {(o, t, 0 I o E O, t E TIME, / E SC} for that 
machine. We now define a Temporal Labelled State Machine. 

Definition- A Temporal Labelled State Machine (TLSM) is a deterministic state 
machine (S, so, I, O, ö, X) where, 

• S is the set of states of the machine; 
• SQ is the initial state of the machine; 

• I is the input domain, giving the set of acceptable input actions; 

• O is the output domain, giving the set of acceptable output actions; 

• 6: S x X -* S is the state transition function. It maps a state and an input event to the 

next state; 
• \ : S x X-* Y is the output function. It maps a state and an input event to an output 

event; 

It is clear now an input or output sequence is a set of events ordered by their timestamps (the 
TIME component of events). The notation p = a\w means a is the event with the smallest 
timestamp in/? withvv containing the remaining events. 

We next define the extended output function and extended state transition function for a 
TLSM. 

Definition- Define the extended output function A: S x 2X -* 2Y 

ks, 01) =<i> 
Ä.(s, alw) = X(s, a) U A.(ö(s, a),w) 

Definition- Define the extended state transition function o: S x 2X -* S 

&(s, <f>) = s 
&(s, a\w) = $( 6(s, a), w) 

In an event based system, it is convenient to describe system behavior in terms of a set of 
traces as defined below. 
Definition- A trace of a TLSM m = (S, so, I, O, 6, X.) is of the form: 

so(xisiyi)....(xnsnyn) 

0 denotes the empty set. 
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where so is the initial state of m, Xi6 X, yi = X.(s;_i, xi) 6 Y and sj = 6(si_i, Xi) E S for i = 
1, ...n. In addition, the timing in a trace satisfies time{x\) < time{y\) ^ time(x2)....£ time{x^) < 
timeiy^. 

If an output event yj_i is identical to the input event xj (i.e., yj-i = Xi) then we say yj.i is a 
feedback event. The timing constraint implies that no other events can occur during a state 
transition. This may seem not applicable to systems with long input-output delays. However, 

we can model delays by introducing the tick events. A tick event x, * (null, time(\), 1) denotes 

a null operation occurring at time(i), where 1 is the classification level dominated by all 
others. The tick events serve as event markers to the system. Thus, a subtrace (xj Si"q)....(xj 
Sj yj) models an output yj in response to an input xj which is delayed for time(yj) - time{xi) 
time units. 

We next define the purge function. 

Definition- The purge function purge : SC x 2(XUY) -» 2(>CUY)is defined as 
purge (I, #) = <j> 

purge (I, a\w)        = a I purge (I, w) if / a leveled) 

= xa I purge (I, w) otherwise. 

It is easy to verify that the purge function has the following properties: 

purge (I, p) = purge (I, purge (I, p)) ...purge property (1) 

purge (I, pUq) = purge (I, p) Upurge (I, q) ...purge property (2) 

We now define an MLS property for our model as in [GOGU84]. 

Definition- A TLSM is MLS with respect to a class of input schedules S which is prefix 
closed if for every schedule/? in S, and every subject classification level / in/?, 

purged Uso, P)) = purge (I, i(so, purge(l, /?))) 

In other words, a TLSM is MLS if a subject at level / cannot distinguish the outputs in the two 
cases even when time is taken into account Therefore, our definition of MLS property implies 
the system is free of timing as well as storage channels. 

This property may be quite difficult to model or verify in practice as it requires reasoning about 
the real-time behavior of the system. We plan to simplify the problem through approximations 
in our system modelling. We make the following assumptions: 

1. Events are of short duration and thus never coincide. 

2. The execution of an action progresses, alternating between processing and I/O. We 
assume that the processing time is negligible compared to the I/O and is therefore 
ignored. 

3. Whenever an input action arrives for processing, the machine executes for some 
time, produces one output action and awaits an acknowledgment. While waiting for 
an acknowledgment, another input action can be processed. Thus, each subsystem 
is multi-threaded. Scheduling of the threads is completely determined by the arrival 
of input events and acknowledgments. Thus, the system is deterministic. 
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In the next section we show that this MLS property is composable. 

5. DECOMPOSITION AND THE MLS PROPERTY 

To simplify security analysis, we decompose the system into subsystems. The interconnection 
of subsystems for a TPS is shown in Figure 2. A transaction submits its operations to the 
"Input" of TPS and receives acknowledgments from the "Output" of TPS. Each module sends 
requests for service to the next module, and receives inputs from the previous module and 
acknowledgments from the next. Note that restart is not modeled as an input to the system. 
This is because restart can only be triggered by system failure. We assume no subject is able to 
control system failure and thus a Trojan Horse program cannot utilize the restart to drive a 
covert channel. 

Figure 2 - Interconnection of subsystems in TPS 

We will show that a TPS is secure if each of its subsystems is secure. The security requirement 
is that every subsystem satisfies the MLS property with respect to its set of possible inputs 
(Note that this includes the acknowledgments from following subsystems). We first introduce 
the following restriction operation. 

Definition- Restriction Operator lA 

The restriction of a set p to the set A denoted p|A is the subset of p consisting of just those 
elements in p which are also in the set A. 

It is easy to see that 

purge(/, p)|A = purge(/, plA) .purge property (3) 

We begin by considering a feedback configuration as shown in Figure 3. In Figure 3, a portion 

of the output, denoted by Ylx is fed back to m 's input. We formally define this below. 
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Figure 3 - A feedback configuration 
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Definition- Let so(xisiyi)....(xnsnyn) be a trace of a TLSM m = (S, so, I, O, öm, Xm). 

The Feedback Machine of m , denoted M = (S, so, (I - O) U {null}, O, 6M, >^M) is also a 
TLSM defined as follows: 

• 6M(si-i,Xi) =6m(si-i,yi-i), if<km(yi-i)ei; 
öm(si-i,Xi), otherwise. 

• XM(si.i,Xi) =Xm(si.1)yi.i), ifrfoffi(yi.i) e I; 

Xm(si.i,Xi), otherwise. 

From the definition it is clear that the feedback machine of a TLSM is deterministic and can be 
modeled as a TLSM as well. 

Lemma 1- Given a trace 

tm = so(xisiyi)....(xnSnyii) 

of a TLSM m, we can find a corresponding trace 

tM= sö(Xisiyi)....(Xnsnyn) 

of the feedback machine M of m such that 
Xi       =V,   ifyi-i = Xi; 

= Xi,    ifyi.i^xi; 
for i = 1,.., n. 

Proof: We need to show that tM defined this way is always a trace. We prove this by an 
induction over the length of tm. 

Basis. tm = so-We have tM = so, trivial. 

Induction step. Assume Lemma 1 holds for ^ = so(xiSiyi)....(Xn.isn.iyn_i). 

Let (XnSnyn) be the continuation of trace tm. We have 

XM(sn-l,Xn) = ^(Sn-l.Tii).     ifyn-l = xn' 
^M(sn-1> Xn)*    otherwise,     -by the definition of Xn 

Msn-1, yn-l). if yn-l = Xn(i.C, dom(yQ.i) E I); 

^m(sn-1, Xn),    otherwise;     -by the definition of X.^ 
= ^-m(sn-l» Xn) 
=        yn -tm is a trace of m 

Similarly, 
6M(sn-l»Xn) = Sn 

In addition, tM satisfies the timing constraint of a trace since timeQii) = time(xi) for i = 1,... n. 
Thus, we have shown tM = so(Xisiyi)....(Xnsnyn) is a trace of M. [] 

IT: - xj = (null, time{Xi), JL). 
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Lemma 1 implies that if p is an input sequence to m then we can find the corresponding input 
sequence q to m's feedback machine M such that AmCso, p) = X\i(so, q)- Now, consider the 
question: given p an input to m and q the corresponding input sequence to M the feedback 
machine of m. Is purgeil, q) the corresponding input sequence for purgeil, p)? Surprisingly, 
the answer is not necessarily true. 

Consider the following example: Suppose input a is a high event; feedback b (dom(b) *null) 
is a low event (b serves both as an input and an output); output event c is also low. Let 
^m(s0> ti) =xi' and 8m(so, xj) = so, for i = a, b ; Xm(s,ft) =c and 6m(s,fc) = Sb, for any state 

s. Further assume so(a si b){b sjjc) is a trace of m , then by Lemma 1, so(a si b)(xb Sb c) is 
the corresponding trace of M. That is, p = ab is the input sequence to m and q =a xj, is the 
corresponding input sequence to M. Therefore, purgeil, p) = xab and purgeil, q) = xaxb, where 
/ = low. So, so(xa so Ta')(£ Sb c) is the trace of m corresponding to input purgeil, p), and 
so(fa so xa')(6 Sb c) is the corresponding trace of M by Lemma 1. However, so(xa so x^)(b sb 
c) is not the trace corresponding to the input sequence purge(l, q) of M, since purgeil, q) = xaxb 

* Tab. 

We will show in the next lemma that if m is MLS and q is the corresponding input sequence 
for p, then purgeil, q) is the corresponding input sequence for purgeil, p). 

Lemma 2- Let M be the feedback machine of a TLSM m and q be the corresponding input 
sequence for p such that Ä.m(so, p) = ^M(

S
0» q)- If m is MLS then purge(l, q) is the 

corresponding input sequence for purge{l, p) such that A.m(so, purgeil, p)) = AM(SO, purge(l, 
q)) for all classification levels /. 

Proof: Let p = xiX2-..xn and q = XiX2...Xn. Also let purge(l, p) = xi^'.-.Xn' and 
purge(l, q) = Xi'X^.-.Xn1. Assume tm = sq(xiSiyi)....(xnSnyn) is a trace of m. We know tM 
= so(Xisiyi)....(Xnsnyn) is the corresponding trace of M since q is the corresponding input 
sequence for M. Given m is MLS and t'm = so(xilsilyi')....(xn

,sn'yn') is a trace of m, we 
need to show t'M = soCXi'si,yi,)....(Xn

lsn
lynl) is the corresponding trace of M (i.e., purge(l, 

p) and purge(l, q) are corresponding input sequences). Since m is MLS, we have 
purgeil, yi'y2,--yn') =purge(l, km(so,purge(l, p))) ...by def. of t'm 

= purge(l, Ä.m(so, p)) ...by m is MLS 
= purgeil, yiy2-yn) ...by def. of ^ 

So, 
yi = yi1 if        leveliyi) z I or leveliyi') £ I for i = 1,.., n. ...(1) 

Now, consider 

(Xi-i Sj.i yj-iXxiSiyO C tm and (xj.i' SM* yi-i')(xi' si' yi') C t'm 
We claim 

Xi' * yi-i'       if        Xi * yi-i and levelixO £ /  for i = l,..,n. ...(2) 
since if levelixi) <, I, we have xj' = xj because xj' = purgeil, xj). There are two cases to 
consider 

case 1. /eve/(yi_i') £/. 
We have yi-i' = yi-i by (1). So, xi' = xi * yi-i = yVi, i.e., xi' * yi-i'. 

case 2. leveliyi.\*) fcl. 
xi' *■ yi-i1 since levelix?) ^ /. 

Therefore, 
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Xi'      =Xi?   if level(Xi) z I; 
xi,    otherwise. -by Xj' =purge(l, Xi) 

= xj,    if leveled £l and x; * yi_i; 
xj,    otherwise. -by tm and tM are corr. traces 

and the application of Lemma 1 
= xj',   if level{\{) <.l and xj * yi-i; 

xj,    otherwise;. -by purge(l, x\) = Xj' and 
level(xi)zl 

= xj',  if xj' * yj-i'; 
xj,    otherwise. -by (2) 

By t'm = so(xi'si,yi,)....(xn'sn
,yn') is a trace of m and Lemma 1, we have shown t'M = 

so(Xi,si'yi')....(Xn
,sn'yn') is the corresponding trace of M. Therefore, tm(so, purge(l, p)) = 

Wso. purge(l, q))- D 

The next theorem shows a sufficient condition for MLS composability for the feedback 
configuration. 

Theorem 1- If a TLSM m is MLS then its feedback machine M is also MLS. 

Proof: Let p be an input sequence to m and q be the corresponding input sequence to m's 
feedback machine M. Therefore, 

purge(/, 1M(SO, q)) 
= purge(/, lm(s0, p)) -by Lemma 1 
= purge(/, tm(s0, purge(/, p))) ...bym is MLS 
= purge(/, ^.M(SO, purge(/, q))) ...by Lemma 2 □ 

We now show a sufficient condition of MLS composability for the configuration shown in 
Figure 4. Consider a TLSM A = (SA, S0A, I A. °A> öA, >-A)> and a TLSM B = (Sß, SOB, Iß, 

OB, OB, ^e). Let the construction of the composite machine m = (Sm, som, Im, Om, öm , h^ 
shown in Figure 4 be such that 

^m(S0, p) = Ä-A(S0A> pl%A) U ^,B(S0B, P'
XB

) 

where p is the input to m and pF*A and plxB are p restricted to the events in the input domain of 

A and B, respectively. Note that if the input domains IA and Iß are not disjoint, some input 

events may appear in the input of both A and B. However, the output function of A and B will 

map the same input event to different output events (with different timestamps) by our 

assumption that different events never coincide. 
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Figure 4 - Parallel configuration 

Theorem 2- Consider the configuration as shown in Figure 4. If both A and B are MLS, then 

m is also MLS. 

Proof: 

purge(l, im(som, p)) 

= purged AA(SOA> plXA) U A.B(SOB> plXB)) —by the construction of m 

-purged Ä.A(SOA. plXA)) Upurge(l, WSOB, plXß))        -by purge property (2) 
= purged, Ä-A(SOA. purge{l, pl*A») U purged, ^B(SOB, purge(l, plxB))) 

...by A and Bare MLS 

= purged ^X^OK, purged P)I
XA

) U i^OB, purged p)lXß)) 
...by purge property (2) & (3) 

= purged ^m(s0m. purged P))) —by the construction of m 

D 
It is easy to see that the cascaded configuration in Figure 5.1 is equivalent to the feedback 
machine of m shown in Figure 6.1. By equivalent we mean that the input and output behavior 
are the same. The lower-case letters appeared in Figure 5-6 denote the input or output set to the 
corresponding TLSM. Moreover, the configuration in Figure 5.2 is equivalent to machine B 
cascaded with the parallel configuration in Figure 6.2 (where I is the identity machine which 
transmits input to output). Therefore, MLS property is composable for the configuration 
shown in Figure 5.1 and Figure 5.2 by Theorem 1 and Theorem 2. 

B B 

d 

c   C 

Figure 5.1- Cascaded configuration Figure 5.2- Cascaded with 
feed-forward configuration 
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Figure 6.1- Configuration equivalent 
to figure 5.1 

Figure 6.2- Feed-forward 
configuration 

Now we show that if each module of a TPS is MLS, then the TPS is also MLS. 

Theorem 3- The TPS shown in Figure 2 is MLS if: 
1. The Scheduler is MLS; and 
2. The Recovery Manager is MLS; and 
3. The Cache Manager is MLS; and 
4. The Disk Manager is MLS. 

Proof: We will construct a TPS equivalent to the configuration shown in Figure 7. First 
consider only the inner most subsystem A. We use fbkDM to denote the feedback 
(Acknowledgment) portion of the DM's output. Subsystem A without the feedback fbkDM is 
the same as the configuration in Figure 6.1, therefore, A is MLS. By similar reasoning we can 
show that the composite machine M (with total output) is MLS. We then restrict the output of 
M to be the output (fbkjy^) of the TPS shown in Figure 2 which is a subset of M's original 
total output. If M is MLS then obviously the TPS is MLS as well. Q 

r 

RM 

fbkpM 

/r fbk 

/ L|—i /J -*—hjHcM I—*-► 
1   \ ft*™ 

fbkcM     \ 

DM V'\ 
TZ 

\fbkcM 

Al 

Figure 7 - The composite machine M 

It is no surprise that the MLS property is composable for the TPS shown in Figure 2. In fact, 
using our model, any composite machine can be constructed from the basic configurations 
(Figure 3 and Figure 4) is deterministic. This is because of our assumption that different events 
never coincide and are ordered by their timestamps (the time they arrive or leave the machine). 
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Therefore, we can show that the MLS property is composable. This is consistent with the fact 
that restrictiveness [MCCU90] and nondeducibility on strategy [MILL90] are composable, 
since they are both equivalent to noninterference for deterministic systems. 

Using the TLSM model we show a way to model the composition of deterministic machines. 
We apply this modeling technique to analyze the security of a TPS. Since scheduling and 
recovery are the main issues in transaction processing, we next focus on the security of 
recovery protocols using the MLS property. An analysis of scheduling protocols can be found 
in [KEEF92]. 

6. SECURITY PROPERTIES FOR RECOVERY PROTOCOLS 

In this section we take up recovery protocols. Our goal is to determine whether a given 
protocol is secure. We do not consider how to implement the protocols using untrusted 
components. 

We first examine the security of strict schedulers. Strictness is a common assumption for 
many recovery protocols. We then briefly analyze the security of various existing protocols. 
Finally, a secure recovery protocol is presented. 

6.1. Strict execution 
A scheduler which produces only strict schedules simplifies the Recovery Manager design by 
allowing it to roll back a transaction by simply replacing the before image of each element 
written by the transaction. However, strictness causes security problems for Class 2-SS 
transactions. Strict execution requires that whenever a transaction Tj writes to the object x, 
subsequent reads or writes to x from other transactions must be delayed until Tj terminates 
[BERN87]. If write up is allowed, the scheduler must delay low transactions who write to a 
high-level object x until the high-level transaction which previously wrote x terminates. 
Therefore, a scheduler which produces strict schedule is insecure with respect to Class 2-SS 
schedules. If write up is not allowed, a scheduler which is otherwise secure can be made strict 
in a secure way [KANG92]. 

6.2. Analysis of various recovery protocols 
We distinguish two types of Recovery Managers. The first type employs Update In-Place. 
Each time a data item is overwritten, the old value is destroyed. The policy for the second type 
is called Shadowing [BERN87], each write creates a new version and old versions are not 
overwritten. 

The Write Ahead Log protocol employs an Update In-Place policy and requires that the 
before image of a write be logged ahead of the write [BERN87]. However, this is sufficient 
only when the scheduler outputs strict schedules. Since a strict scheduler is not secure with 
respect to Class 2-SS transactions, this protocol is not suitable for systems which allow 
transactions to write up. 

We can classify recovery protocols based on the time at which a transaction's updates become 
part of the stable database. The operation that makes a previously written page part of the stable 
database is called propagation [HAER83]. This operation writes the directory structure (if any) 
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for mapping data items to their locations in stable storage. We can distinguish two types of 
propagation strategies1: 

Atomic: The updates of a transaction are propagated as a unit at commit time, such that 
either all or none of the updates become part of the stable database. 

~Atomic: Each update is propagated as a unit to the stable database, thus, the updates of 
a transaction can be made visible to others even while the transaction is still active. 

An example of a recovery protocol based on Atomic propagation is the Shadow Page 
Algorithm [BERN87]. The Recovery Manager maintains a Master record and two directories 
called Current and Scratch. The Master record stores a pointer to the Current directory. These 
two directories alternate between being the current and being the scratch directory, depending 
on the pointer in the Master record. The directories must be kept in stable storage but can be 
cached for efficient access. Each modification of the Master record and the Current directory 
must be reflected in the stable storage, as they define the current state of the stable database and 
therefore must be available after system failure. In addition, for each active transaction Ti there 
is a private directory which stores the locations of the new versions written by Tj. When a 
transaction Tj is ready to commit, the Recovery Manager updates the Scratch directory to 
include Ti's updates (recorded in the private directory). Then it swaps the Current and Scratch 
directories in an atomic action, by swapping the pointer in the Master record. This allows only 
one commit to be processed at a time [BERN87]. Therefore, the process of updating the 
Scratch directory followed by swapping the pointer in Master record must be done without 
interruption. If a low-level transaction wishes to commit while a high-level transaction is in its 
commit phase, then the low-level transaction must wait for the high-level transaction to 
complete. However, this violates the MLS property and thus, an RM which employs the 
Shadow Page Algorithm is insecure. 

6.3. A recovery protocol for an MLS DBMS 
We now consider a recovery protocol which is secure. First we need to define the interface 
between the RM and the CM. We assume the CM supports the following operations: 

fix_new{opi, obj): Allocate and pin an empty slot in the cache for object obj then return 
the slot number to the requesting operation opt. This is used to create a new object 

fix{opi obj): Locate and pin a slot in the cache containing obj and return the slot number 
to the operation op(. 

write(opi ,c,v): Write the value v into cache slot c for the operation opt. 

read(ppi, c): Read the contents of the object which currently occupies slot c and return 
the value to the operation opt. 

flush(opi, obj): Flush the object obj from the cache. Flush has no effect if the object is 
not in the cache. 

unfix(opi, c): Unpin the cache slot c. 

1Our definition of Atomic and ~Atomic propagation strategy differ slightly from the definitions given in 
[HAER83] 
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appendlog(opi, v): Append a record with value v to the log on behalf of operation opt. 

We call the actions described above concrete actions. Note that each concrete action keeps track 
of the operation opt from transaction Tj which issues it. We call these transaction operations 
abstract actions. 

A cache slot can be pinned by more than one transaction. When a cache slot c is pinned by a 
transaction, the Cache Manager cannot select c as a victim for replacement until all transactions 
have unpinned the slot 

6.3.1. Analysis of the Undo/No-Redo protocol 
If the recovery manager employs update in-place and an Undo/No-Redo protocol, it must undo 
aborts by restoring before images which would require strict scheduler. So this class of RM is 
not suitable for Class 2-SS transactions. Here we consider the Undo/No-Redo protocol for use 
with multiversion schedulers. In this case, strictness is not required. 

We can describe the recovery protocol in terms of the above concrete actions and some internal 
computations. We will refer to the RM procedures for Write, Read, Commit and Abort as 
abstract actions. When an abstract action arrives at the RM, it will trigger some internal 
computations, output a sequence of concrete actions to the CM and receive a sequence of 
acknowledgments. When a concrete action is output, the computation is blocked until 
acknowledgment is received. While awaiting the acknowledgment, the RM can process the 
next input action. If a variable is assigned the return value of a concrete action, we mean that 
the variable is assigned the return value contained in the acknowledgment of this concrete 
action. 

Under our model for a transaction processing system, the acknowledgments from the Recovery 
Manager are part of the inputs to the scheduler. Also, the acknowledgments from the Cache 
Manager are part of the inputs to the Recovery Manager, and similarly for the Cache Manager 
and Disk Manager. Thus, we capture the notion of concurrency within a subsystem by the 
interleaved execution of several operations. An operation is considered complete only when its 
acknowledgment from the next subsystem is received. 

In the following procedures, objseq[0.N\ is an array in which objseq[i\ contains the sequence 
of objects written by transaction Tj. 

RM-Write(transaction tj; item x; version i; value v): acknowledgment 

objseq[i] := objseq[i] I addr(x, i); 
c :=fix_new(Wi(x, i, v), addr(x, i)); 
wite(Wi(x, i, v), c, v); 
unfix(Wi(x, i, v), c); 
return(Ack(RM-Write(ti ,x, i, v))); 

The first statement in RM-Write appends the address of object (version) x[i] to the end of the 
sequence objseqfi], where the function addr(x, i) computes the address of an object given item 
name x and version number i. The notation Wj(x, i, v) appeared in the concrete actions {Italic 
letters) means the requesting abstract action is a write to version x[i] with value v. 

RM-Read(transaction tj; item x; version j): acknowledgment 

c :=fix(R[(x, j, null), addr(x, i)); 
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v := read(Ri(x, j, null), c); 
unfix(Ri(\, j, v),c); 
retum(Ack(RM-Read(ti ,x, j, v))); 

Note that the acknowledgment of RM-Read must contain a return value. So the notation Ri(x, 
j, v) appeared in the concrete actions means the requesting action is a read of version x[j] with 
return value v. Before the object is actually read, the value of v will be null. After the CM 
acknowledges RM's read action, the return value is stored in the variable v and is subsequently 
passed to the scheduler. 

RM-Commit(transaction tj): acknowledgment 

For obj in objseq[i] do 
flush(Ci, obj); 

appendlog(C[, (ti, commit, objseq[i])); 
retum(Ack(RM-Commit(ti))); 

The RM-Commit flushes objects from the cache in the order the transaction wrote them, and 
appends a commit record to the log. It then returns an acknowledgment to the scheduler. 

RM-Abort(transaction tj): acknowledgment 

appendlog(A[, (tj, abort)); 
return( Ack(RM-Abort(tO)); 

The RM-Abort simply appends an abort record to the log and returns an acknowledgment. 

A multiversion scheduler maps a Read to an appropriate version and maps a Write to a new 
version. It maintains a version table storing the version numbers for each data item. Since 
unused versions can be garbage collected, and the number of versions can be bounded by the 
degree of multiprogramming, we assume that the version table is stored in primary memory. 
Each version is tagged by the name of the transaction that created it. The transaction names are 
a set of totally ordered identifiers. The scheduler must use the version table to find an 
appropriate version for a Read. When the scheduler decides to abort a transaction Ti, it must 
make sure the versions created by Tj in the version table are removed. 

We assume that the Recovery Manager can compute the address in the stable database of a 
version given its name and version number, therefore, the function addr(x, i) can compute the 
address of the version x[i] using only the item name x and the version number /. One way to 
achieve this is to maintain a lookup table with an entry for each useful versions. The entry 
includes the disk address of the element. There is a default location on disk for each data item. 
Only the last committed versions and active versions need to be maintained in the table. So, the 
table will be much smaller than the size of the database. The last committed version for each 
database item can be recovered from stable storage after system failure as we will see in the 
Restart procedure. 

RM-Restart(): acknowledgment 

1. Discard the contents of all cache slots; 
2. Scan the log and construct the commitjist and objseq from the commit records; 
3. Reconstruct the final state of the database: 

Let CL := commitjist; 
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ItemNotDone := the set of database item names; 
While CL * EMPTY and ItemNotDone * EMPTY do the following: 

let n := the transaction name with maximum timestamp in CL; 
For each x in objseq[n] and in ItemNotDone 

Set last committed version of x to n; 
CL:=CL- {tn}; 
ItemNotDone := ItemNotDone — {objseq[ri]}; 

End while; 
Reconstruct the version table from the last committed version of every item; 

4. Free the space for the versions in stable storage which are not the last committed versions; 
5. Acknowledge to the scheduler the completion of Restart; 

6.3.2.   Correctness 
We say a recovery protocol is correct if after a system failure, recovery should leave the 
database in the same state as the committed projection of the execution which precedes the 
failure. To achieve this, it is necessary that the recovery protocol satisfy the undo and redo rule 
and the RM outputs only serializable and recoverable schedules. This algorithm satisfies the 
undo rule, because the last committed version is never overwritten. It also satisfies the redo 
rule for the simple reason that it does not require redo. All writes are flushed to the stable 
database before the transaction that issued them commits. Therefore, the last committed 
versions are always available in the stable storage for restart after a system failure. In step (3) 
of RM-Restart, the last committed version of x is restored if x is written by a committed 
transaction and no other committed transactions wrote a larger version of x. Correctness here is 
based on the rule that the highest committed versions constitutes the final state of the database. 
Thus, when restart terminates, the last committed version of each data item is restored. The 
version table is reconstructed from the last committed versions for the scheduler as its new 
initial state. The restart is also idempotent, meaning any incomplete execution of restart 
followed by a complete execution has the same effect as one complete execution. This is true 
because the restart does not change the information in the log until it is completed. The changes 
to the database made by an incomplete restart will be recovered from the log by the last 
completed one. 

We assume the scheduler produces serializable and recoverable schedules and never outputs 
two conflicting (abstract) actions to the RM at the same time. Two actions conflict whenever 
one modifies an element and the other observes its state. We can show that no additional 
synchronization is necessary for the RM executing the above protocol to ensure that no two 
conflicting actions are dispatched to the CM. 

Lemma 3- A multiversion scheduler which never sends two conflicting (abstract) actions to 
the RM using the Undo/No_Redo protocol described above, outputs no conflicting (concrete) 
actions simultaneously to the CM and makes no conflicting accesses to shared variables, if no 
synchronization is enforced except that provided by the scheduler. 

Proof: If the RM does not enforce any synchronization, we must make sure that there are no 
conflicting accesses to the shared variables in the RM and no conflicting concrete actions are 
issued to the CM for all possible execution traces. Note that the only shared variable in the RM 
is objseq. We examine the interaction between all possible pairs of the RM procedures. Here 
we assume the actions in the same transaction execute serially but the execution of actions 
from different transactions can be overlapped. 

Case 1. The execution of RM-Write(ti, x, i, v) overlaps that of RM-Write(tj, x, j, v) 

for   i*j. 
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Because version x[i] and x[j] are different objects, they cannot share a common cache 
slot c. Thus, the concrete actions operate on different slots and do not conflict. 
Moreover, access to the shared table objseq will not conflict, since objseq[i] and 
objseq\j\ represent separate elements in the table. 

Case 2. The execution of RM-Write(Q, x, i, v) overlaps that of RM-Read(tj, x, k) for 

H- 
They do not conflict when k * i because x[i] and x[k] represent different objects. Thus, 
each concrete action operates on a different slot. The case when k = i is excluded by the 
fact that the scheduler never sends two conflicting abstract actions to the RM. 

Case 3. The execution of RM-Write(tj, x, i, v) overlaps that of RM-Commit(tj) for i * 
j- 

They do not conflict because object x[i] is not in the object sequence objseq\j] written 
by tj because we do not allow a version to be overwritten. The appendlog does not 
conflict with any action since each invocation of appendlog writes a new log record. 

Case 4. The execution of RM-Write(ti, x, i, v) overlaps that of RM-Abort(tj) for i * j. 

They do not conflict since appendlog does not conflict with any other action. Access to 
objseq[i] and objseq\j] do not conflict since they represent different elements. 

Case 5. The execution of RM-Read(ti, x, k) overlaps that of RM-Read(tj, x, n) for i * 
j- 

They do not conflict because there is no access to a shared variable. 

Case 6. The execution of RM-Read(tj, x, k) overlaps that of RM-Commit(tj) for i * j. 

They do not conflict when k # j because object x[k] is not in the object sequence 
objseqlj] written by tj. If k = j then the object being read, x[k], is in the object 
sequence objseq\j] written by transaction tj , therefore it is possible that tj flushes 
object x[k] which occupies the slot currently being read by another transaction t{. 
However, the two accesses to the slot do not conflict. 

Case 7. The execution of RM-Read(ti, x, k) overlaps that of RM-Abort(tj) for i * j. 

They do not conflict because appendlog does not conflict with any action and there is 
no access to a shared variable in RM-Abort 

Case 8. The execution of RM-Commit(ti) overlaps that of RM-Commit(tj) for i * j. 

They do not conflict since objseq[i\ and objseq[f] are different elements in the objseq 
shared variable. The objects in objseq[i] and objseq\j] do not intersect because no 
versions can be overwritten, thus no two actions flush the same object. 

Case 9. The execution of RM-Commit(ti) overlaps that of RM-Abort(tj) for i * j. 
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They do not conflict since i and j address different elements of objseq. 

Case 10. The execution of RM-Abort(ti) overlaps that of RM-Abort(tj) for i * j. 

They do not conflict since appendlog operations never conflict 

Therefore, we conclude that no conflicting actions are output to the CM concurrently and no 
conflicting accesses to a shared variable are made at the same time. Thus, output actions are 
dispatched immediately without delay. Q 

If the recovery algorithm is correct when each abstract action is executed atomically, it will 
also be correct if the synchronization provided by the scheduler is the only synchronization. 
Therefore, Lemma 3 implies that all possible interleavings of concrete actions output by the RM 
are correct, and the RM never needs to delay actions. 

6.3.3.   Security 
We now examine the security property of the undo/no-redo protocol described above. 

Theorem 4- A RM following the Undo/No-Redo protocol described above is MLS. 

Proof: The intuition is based on the following observations: 

1. The RM never delays actions. 
2. The input-output mappings for Write, Read and Abort are state independent. The 

mapping for a Commit operation only depends on the issuing transaction. 

We need to prove the outputs of RM satisfy purge(l, k(so, p)) = purge(l, h(so, purge(l, p))) for 

all possible inputs p. We prove this by an induction over the length of the input p. 

Basis./? =  <j>. 

purge(l, U*0,P)) =purge(l, t(so, purge(/,/>))) = f. 

Induction. Assumepurge(l, fl(so,p')) =purge(l, h(so,purge(l,p'))) holds for Ip'l < n. Let 
p=p'\a and sp> =o(so,p') be the state after input/?'. We have 

purge(l, Uso,p'b) 

= purge(l, t(so,p') U k(sp>, a)) ...by def. of extended output function 

= purge(l, t(so,p')) Vpurge(l, \(sp; a)) ...by purge property (2) 

Similarly, let sq> = t(so,purge(l, p')) be the state following the input purge{l,p'). We have 

purge{l, Uso, pwgeil, p'\a)) 

~purge{l, i.(s0,purge(l,p'))) Upurged, Usq;purge{l, a))) 

Case 1. level(a) <. I. 

Because the RM never delays actions, an output action of the RM is labeled with the 
classification level of its corresponding input We have: 
purge(l, k(sp', a)) = X(Sp', a) andpurge(l, \(sq<,purged a)) = Usq; a). ...(1) 
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Case 1.1. input a is Commit or the acknowledgment of a flush action for some transaction 
Ti. 
The output \(Sp>, a) depends on the state component sp:objseq[i\, which is the value of the 
sequence objseq[i\ in state s„\ Similarly, X(sq; a) depends on sq\objseq[i]. Observe that in 
the procedures of Undo/No-Redo protocol, only transaction Tj can modify objseq[i\. Since 
level(T\) ^ /, the actions of Ti are not purgeable and therefore the sequence of Tj's actions in 
schedules p' mdpurge{l, p') are identical, we have sp:objseq[i] = sq:objseq[i] by the 
induction hypothesis. If a is RM-Commit(Ti) then output \(sp\ a) =flush(C[, obj) = 
X(sq>, a), where obj  is the first element in objseq[i]. If a is the jth Ack(flush{C{, obj) 

following RM-Commit(Ti) then output X(sp; a) =flush(T[, obj[j]) = X(sq', a), where obj[j] 
is the jth element following obj in objseq[i\. If j equals the number of elements in objseq[i], 
then output X(sp>, a) = appendlogiQ, (Ti, commit, objseq[i\)) = \(sq; a). 

Case 1.2. a is an input action other than those in Case 1.1. 

The output actions are determined by the input-output mapping of RM which are fixed in this 
case. We list all possible actions for input a and its corresponding output X(s, a) below: 

a Us, a) 

RM-Write(ti, x, i, v) fix_new(Wi(x, i, v), addr(x, i)) 
Ack(/i;t_neH'(Wi(x, i, v), obj), c) wrc7e(Wi(x, i, v), c, v) 
Ack(H77te(Wi(x, i, v), c, v)) unfix(W[(x, i, v), c) 
Ack(wM/z;c(Wi(x, i, v), c)) Ack(RM-Write(tj ,x, i, v)) 

RM-Read(tj, x, j) ./fr(Ri(x, j, null), addr(x, j)) 
Ack(/ür(Ri(x, j, null), obj), c) read(R[(x, j, null), c) 
Ack(read(R[(x, j, v), c)) unfix(R[(x, j, v), c) 
Ack(unfix(Ri(x, j, v), c)) Ack(RM-Read(ti, x, j, v)) 

RM-Abort(ti) appendlog(k[, (ti, abort)) 
Ack(appendbg(Ai, v)) Ack(RM-Abort(ti)) 

Ack(appendlog(Ci, v)) AcktRM-Commitft))1 

Note that the function addr(x, i) only depends on the item name x and version number i 
which are supplied by the input arguments. Therefore, function addr which computes the 
address of a version is state independent. Because the RM never delays actions, we have: 
X(sp', a) = \(sq; a) for all sp> and Sq>. —{1) 
By the induction hypothesis purge(l, \{so,p') =purge(l, h(so, purge(l,p')). 
We conclude 

'This is the final acknowledgement for a commit action. 
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purgeil, k(so,p'\a)) 

= purge{l, h(so,p') U "k(sp; a)) ...by def. of extended output function 

= purgeil, i(so,p')) U purgeil, \(sp; a)) ...by purge property (2) 

= purged i(s0, p')) U Hsp ;a) ... by (1) 

= purge(l, %(so, purgeil, p'))) U \(sq; a) ...by induction hypothesis and (2) 

= purgeil, i(so,purge(l,p'))) Upurge(l, \(sq; purge(/, a)))     ...by (1) 

= purge(l, Uso, purge(l, p')) U X(Sg', purge</, a))) ...by purge property (2) 

= purgeil, k(so, purge(/, p'\a))) ...by def. of extended output function 

Case 2. level{a) $. I. 
We havepurgeil, "k(sp; a)) = xa = purge{l, Msn\ purge{l, a)) because the output in response 
to a is labeled with the classification level(a), it follows that   . 

purge(l, i(so,p'\a)) 

= purge(l, t.{so,p') U \{sp; a)) ...by def. of extended output function 

= purge{l, t(so,p')) Upurge(l, Msp% a)) ...by purge property (2) 

= purgeil, iis0, p'))Uxa ... by purgeil, Xisp ;a)) = xa 

= purgeil, kiso,purgeil,p'))) U xa ...by induction hypothesis 

= purgeil, iiso,purgeil,p'))) Upurgeil, Usq; purge(/, a))) 
...bypurgeil, \isq>,purgeil,a)) =xa 

= purgeil, tiso, purgeil, p')) U kisq; purge(/, a)))       ... by purge property (2) 
= purgeil, $.iso, purgeil, p'la ))). ...by def. of extended output function 

We have established Theorem 4. [] 

7.  CONCLUSION 

In this paper, we introduce a model for a Transaction Processing System (TPS). This model 
captures the real time behavior of the system in the sense that each input is labeled with its 
arrival time and each output is marked with its departure time. Based on this model, we 
introduce a security (MLS) property based on noninterference. We show that the MLS property 
is composable for our model. We also show how to construct a TPS using only parallel 
composition on feedback. This allows us to decompose a large system into smaller subsystems 
which simplifies the analysis of security for each subsystem. Based on the notion of MLS 
composability we have shown that a TPS is MLS if the scheduler, recovery manager, cache 
manager and disk manager are all MLS. 

We have analyzed the security properties of various recovery protocols. Most existing recovery 
protocols rely on the scheduler to output strict schedules. We have shown that no strict 
scheduler is secure with respect to Class 2-SS transactions. An RM which employs Update In- 
Place and undoes aborts by replacing before images, requires a scheduler which outputs strict 
schedules. This implies the Undo/Redo and Undo/No_Redo protocols as described in 
[BERN87] when used with single version schedulers are not secure for Class 2-SS 
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transactions. The No-Undo/No-Redo protocol (Shadow Page Algorithm) allows only one 
transaction to commit at a time, and so we have argued that it is insecure. 

We have described an Undo/No_Redo protocol suitable for multiversion schedulers. We have 
shown this protocol is both correct and secure. 

We assume that the location of versions of data elements can be computed or maintained in 
memory. This simplifies our modeling. In the future we would like to investigate other 
solutions to this problem. 

It is interesting to note that the actions taken by our recovery protocol depend solely on the 
requesting transaction. For this reason, we believe an untrusted implementation may be 
feasible. This will be the subject of future work. 
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Abstract 

In most models of trusted database systems, transactions are considered to be 
single-level subjects. As a consequence, users are denied the ability to execute 
some transactions which can be run on conventional (untrusted) database 
systems, namely those that perform functions that become inherently multilevel 
in the MLS environment. This paper introduces a notion of multilevel transaction 
and proceeds to an algorithm for their concurrent execution. The algorithm is 
proven to be correct in the sense that resulting schedules for executing the 
multilevel transactions is one-copy serializable. 

1. INTRODUCTION 

Most approaches to transaction processing for trusted database systems (TDBS) 
do something like the following. There is a set of data items, labeled with security 
classes from a lattice of security classes (or levels), which serve as the objects of 
the system. There is another set, of transactions, also labeled with security 
classes, in the role of the subjects of the system. A mandatory access control policy 

*The work of this author was supported in part by the Naval Research 
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is adopted that enforces the Simple Security and ^-property of Bell and LaPadula 
[1]; namely subjects may write to objects only if the label of the subject is 
dominated by that of the object, and subjects may read from objects only if the 
label of the subject dominates that of the object. (Frequently the write condition 
is restricted to permit a subject to write to an object only if the labels are the 
same.) From the point of view of the security world, then, subjects and objects are 
the atomic units of interest. The approach described above enforces this point of 
view on the database system (and its users) as well. 

On the other hand, in the database world, a different view of what constitutes 
atomicity prevails. Data items remain the elements of interest from the users' 
point of view. However, DBS users see two types of entities that operate on the 
data items. First there are read and write operations that are applied directly to 
data items. They also construct transactions as sequences of these operations that 
the users' expect to be executed atomically on the database. That is, a transaction 
is either executed completely and the resulting changes to the values of the data 
items made permanent, or the transaction has no effect at all. In addition, these 
transactions are independent in that there is no communication among 
transactions except through their effect on the values of data items. There is no 
external communication among transactions. 

At first glance, the views of the security world and the database world seem in 
agreement. However, a conflict between them does exist. Implicit in the security 
view is that transactions have a unique security level. That is, subjects are single- 
level. From the database users' view, operations on data items are single-level, 
but requiring entire transactions to be so may be inadequate for many 
transactions that they may want to use. Examples may help. 

A satellite uses sensors to collect sensitive information in its scanning range. That 
data, together with the position of the satellite, is used by an analytical process. 
The position data has security level U (unclassified) while the other data and the 
result of the analysis has security level S (secret). The security world would like 
to split this into two transactions; a U transaction that records the position data 
and an S transaction that then reads the position data, retrieves the other data, 
performs the analysis, and finally writes the result to the database. To do this, 
the user would have to log-on to the system at level U and submit the first 
transaction, then log-out and log-in at level S, where the second transaction would 
be submitted. The database world would like to do this using only a single 
transaction since it must be done as a single atomic action to insure that the 
result be correct. The two transactions approach embodies the following pitfall. 
Since the two transaction cannot communicate except through their action on 
data items, there is no assurance that the second transaction will read the 
position data submitted by the first. Incorrect data could be read by the second 
transaction in two ways. The update to the position data may not have been made 
by the time the second transaction reads the position data item and so the old 
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position would be used in the analysis. This can be overcome by the user waiting 
for a commitment message from the system before logging out from the U level. 
But there is another way that incorrect data can be read by the second 
transaction. Namely, newer position data is written by a different user's 
transaction before the correct data is read by the second transaction and again 
the analysis is incorrect. This cannot be corrected without the two transactions 
communicating in some external way. 

The situation can get more complex, as shown in this second example. Suppose 
a company records the hours worked by each employee and computes the 
employees' salaries for the pay period. The hours data has security level U 
(unclassified) while the hourly rate data and the gross salary data have security 
level S (secret). The transaction to be performed first updates the hours worked 
from the time card, and then retrieves the hourly rate and computes the salary. 
Finally, the hours worked data item is reset to zero. The security world technique 
would require three transactions. The first updates hours worked. The second 
retrieves the rate and computes the salary. The third resets the hours worked to 
zero. Three distinct log-ins are required, and the first and second have the same 
problem as our previous example. Beyond that if the third were completed before 
the second transaction retrieved the hours data, the salary would be calculated 
incorrectly. 

In the conventional (not trusted) database world, these problems would not exist, 
because the user could submit these combined actions as a single transaction. 
Ordinary concurrency control mechanisms (which enforce serializability of 
collections of transactions) would insure that correct values were read and written 
in the proper sequence. 

It appears that some notion of multilevel transaction is required to resolve this 
dilemma. Previous work in this direction for a limited class of multilevel 
transactions and for replicated architecture multilevel database systems appears 
in [4]. Here we intend to extend the idea of multilevel transaction to a 
significantly larger class of multilevel transactions, one that encompasses 
virtually every situation that we can construct. We will formally define notions 
of multilevel transaction and the correctness of their execution (serializability) in 
centralized multilevel database systems with kernelized architecture. A 
scheduling algorithm will be presented and shown to be correct. 

2. THE SECURITY MODEL 

The architecture for the systems under consideration is based on one that is 
frequently proposed [7,8]. The security features are enforced by a security kernel, 
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the trusted computing base of the trusted operating system, together with 
whatever additional trusted processes are necessary in the database application 
to enforce the overall system's security policy. The idea is to minimize the trusted 
processes required to do this. 

The security policy for our system will be a variant of the mandatory access 
control policy of Bell and LaPadula [1]. There is a set D of data items of the 
database system that serve as the objects of the multilevel system. The subjects 
of the system, denoted Sub, are quite similar to the single-level transactions used 
in earlier work [3,6,7,8,9,10]. However our transactions will be more complex and 
will be formed by interleaving the subjects of the database system. 

More formally, we limit operations on the data items. Only Reads, denoted r[x], 
and Writes, denoted w[x] together with Aborts, denoted a, or commits, denoted 
c are considered. A subject of Sub is a sequence of Reads and Writes ending with 
either an Abort or a Commit (but not both). There is a lattice (SC,<) of security 
labels and a function L, mapping subjects and objects into security classes, i.e., 
L:DuSub->SC. The security policy has two conditions: 

(1) (Simple Security Property) If TeSub and r[x]eT, then L(x)<L(T). 

(2) (Restricted •-Property) If TeSub and w[x]eT, then L(x)=L(T). 

That is, subjects can read from dominated security levels, but only write at their 
own security level. These are basically the mandatory access control policies of [1], 
slightly modified. 

3. THE TRANSACTION MODEL 

To define multilevel transaction, we need some preliminaries. A data item x can 
take on values from its domain, dom(x). A state of the database is determined by 
assigning each x in D a value from its domain, i.e., the states are functions 
f:D-Mdom(x) |xe D and f(x)e dom(x)}. V will denote the set of all such functions. 
Further, let D|sl={xeD|L(x)<l and leSC} and let V(sl be obtained by restricting 
each fe V to D^ (denoted f^). Notice that any action on the database defines a 
mapping of V to V. In particular, if T is a transaction and fe V, then (T(f))(x) is 
the value of x resulting from executing T on the database starting with the values 
of the data items specified by f. T^ will denote T restricted to V^. Alternatively, 
T^ is the transaction obtained by discarding the operations not dominated by 1 
(and keeping the implied order). 

\ 
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Definition A multilevel transaction Tj is a sequence", ordered by <, of ordered 
pairs of the form (o„l) where o4 is one of a^ c,, rt[x], w^x] for some xeD and 
leSC that satisfies the following conditions: 

(1) Either {(c,,l) |le SOcT, or {(a^l) |le SC}cT„ but not both. 

(2) Let e4 be either a4 or c,. Then for each leSC, (©„D^Ce^D . 

(3) For fe V, we have T^f^CT^f))^ for each le SC. 

The first condition requires a multilevel transaction to commit at each security 
level or abort at each security level. Security considerations alone would only 
require that no commits occur at security levels higher than one at which an 
abort had occurred, else lower level subtransactions would have to be rolled back 
to insure atomicity. Imposing this condition guarantees that this possibilty is 
avoided. We should point out that we are only accounting for aborts due to 
concurrency control considerations and not for those due to violations of integrity 
constraints, such as range constraints. Aborts for other reasons are problematic 
regardless of the concurrency control technique employed. The second condition 
forbids further operations to be done at a given security level after the commit or 
abort at that level. 

The third condition is more difficult to explain. Notice that for a multilevel 
operation (o„l), o} can only operate on a data item whose security level is 
dominated by 1 in SC. This means that operations in T^ are only applied to data 
items at the level of 1 or below, and that T^Cfj,) is the result of applying these 
operations to those data items. (T/f))^ is the result of executing T on the entire 
database and then looking only at the result on the data items with security level 
1 or below. The equality in the condition says that the values of data items at 
level 1 and below which result from executing T depend only on the values of 
those data items when T was initiated, and not on the values of any higher level 
data items. Said differently, no information about the value of higher level data 
items can flow to lower level data items by virtue of running the transaction. 

Consider our earlier examples in light of this definition. The first example 
becomes (w[x],U)(c,U)(r[x],S)(r[y],S)(w[z],S)(c,S) where L(x)=U, and the other 
data items have security level S. This clearly satisfies the conditions. Condition 
(3) is satisfied since the transaction never writes to a lower level data item after 

**We could use a definition of transaction based on partial orders, as in [2]. 
However the results are actually no more general but the definitions, the 
algorithm, and the proofs are more complicated. We will use sequences rather 
than partial orders throughout this paper since it simplifies the explication 
with no loss of generality. 
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accessing a higher level one. Transactions of this form are treated in [4] for a 
different architecture. 

Our second example becomes (omitting the commit operations for simplicity), 
(w[x],U)(r[y],S)(r[y],S)(w[z],S)(w[x],U). Unlike the prior example, this 
transaction writes a lower level data item after reading a higher level one. But 
since the second time x is written the value is always zero, the last condition is 
satisfied, and we have a legitimate multilevel transaction. 

Whether the third condition is satisfied is not easily determined by the TDBMS 
itself. One way to resolve this difficulty is to limit transactions to those that 
satisfy a more restrictive, but more easily detectable form (as in [4], for example). 

Another solution, which we believe is more likely, is to restrict multilevel 
transactions to predefined transactions that can be determined ahead of time and 
verified to satisfy this condition. Ad hoc user denned transactions would not be 
allowed because of the risk of violating the condition. Under this approach, the 
data items on which a transaction would operate would be known at the time the 
transaction is submitted to the system. The algorithm presented here relies on 
this assumption. 

Operations of several transactions can be commingled so that concurrency of 
execution can be extended to sets of transactions, as reflected in the following. 

Definition A complete multilevel history H over a set of multilevel transactions 
T = {T\, T2, , Tn} is a sequence with ordering relation <H where 

(1) There is a multilevel T0 that precedes all other transactions. T0   has 
operations {(w0[x],l)|xeD}. 

(2) H 2 T0 u Tx u T2 u u Tn 

(3) <H 2 <0u<j u <2u u <n 

The first condition provides initial values of the data items, so a Read operation 
always succeeds some Write operation on the desired data item [11]. The second 
requires the history to contain precisely the operations of the original 
transactions. The third condition provides that the ordering of operations within 
the history is consistent with that of each transaction. 

Notice that our notion of multilevel transaction does not limit the number of Read 
or Write operations on a given data item within a transaction, or even within a 
given level of a transaction, in contrast to the usual practice in concurrency 
control theory [2,11]. Since it does not, a transaction may read or write the same 
data item several times. We will denote the nth Write operation on x by Tj by 
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Wj n[x] when necessary to avoid confusion. This multiple write capability has led 
us to choose a multiversion approach to concurrency control. Multiversion systems 
create a new version of a data item each time it is written and maintain the old 
versions, which does not impose significant additional burden on the DBMS, since 
these versions must be maintained for purposes of recovery in any case. 

The preceding definition of history represents the view of the user, to whom 
versions of data items are transparent. The users' view represents the logical 
order of the execution of operations as seen by the users. Histories of this type 
will be called one-copy histories when it is necessary to distinguish them from 
histories that represent the system's view of a transaction and that deal with 
multiple versions of data items. The representation of the system's view requires 
a different definition of history. 

When a set of transactions is executed by a multiversion DBMS, an operation in 
a transaction must be translated into the equivalent operation on some version 
of the data item. A translation function h performs the mapping. For a Read, h 
determines the version of x to be read, i.e., h(ri[x],l))=(r1[xi>n],l) where Xj>n is the 
nth version of x written by TV For a Write, h, determines what version of x will 
be created, i.e., hCw^x^D^WiEx,,J,l) if wtxj is the nth Write operation on x in T,. 

The concept of a multiversion data history is needed to represent the actions of 
the translated transactions on the multiversion data. Recall that T0 is an 
initializing transaction that writes initial values into every data item in D. 

Definition A multiversion data history H over a set of multilevel transactions 
T={T!, T2, ,Tn} is a linear order with ordering relation <H such that 

(1) H 2 h(T„) u h(Tx) u h(T2) u u h(TB) 

(2) If (PiJ), (qj,m)e % with (pi?l) ^(q^m) then h(pi,l)<Hh(qi,m) 

(3) For all le SC, all i>0, (w0[Xo> J,l)<H(ru[x],1) for all xe D. 

A multiversion data history represents the order in which operations are executed 
by the data manager of the TDBMS on the data items stored in the TDBMS. 

The first condition says that the history contains the translations of the original 
transactions. The second condition insures that the order of operations within 
transactions is preserved. The third condition provides that at each security level, 
T0 initializes each data item before it is read by any of the original transactions. 

Histories, one-copy or multiversion, are complete if they contain no operations 
from aborted transactions. Since we are primarily concerned with these kinds of 
histories, we will refer to them simply as histories. (As it turns out, our algorithm 

259 



prevents aborts, so the notions are coincident in any case.) We now turn to 
denning a notion of correctness for execution of multilevel transactions. 

A history, one-copy or multiversion, is serial if for every pair of transactions Tj 
and T, that appear in H, either all of the operations of T4 precede those of Tj or 
vice versa. In one-copy histories, correctness is defined as being equivalent to a 
serial history, where equivalence is, in turn, defined in terms of reads-from 
relationships and final writes in the usual way [2]. It is well known in the theory 
of database concurrency control that the parallel notion of equivalence is 
insufficient for multiversion transactions [2] because Read operations may now 
read from different versions of a data item, and a transaction may read from the 
correct transaction but choose the wrong version. We will now make these ideas 
more formal. 

Definition In one-copy histories, we say (rj[x],m) reads-x-from (Wi[x],l) if 
(wi[x],l)<H(rj[x],l) and there is no (wk[x],l) for which 
(wi[x],l)<H(wk[x],l)<H(rj[x],l). Notice that m>l and that there is no requirement 
that i, j, and k be distinct. If i?*j, we say T, reads-x-from T„ and call it a 
transaction reads-from. If i=j, we call it a reflexive reads-from. We can extend 
these notions to multiversion histories by considering different versions of a data 
item x as distinct data items, as usual. 

Definition Two histories, one-copy or multiversion are, equivalent if they have 
the same transaction and reflexive read-from relationships. In the one-copy case 
we also require that they have the same final writes (which we will not define as 
we will not use equivalence for this case). 

As previously mentioned, it is inadequate to require that a multiversion history 
be equivalent a serial multiversion history for a history to represent a correct 
execution of the given transactions. Something more is required. We must require 
that, in addition to being equivalent to a serial history, that it be equivalent to 
a special class of serial history. 

Definition A multiversion history H is one-copy serial if it is serial and satisfies 

(1) If Tj reads-x-from T, is a transactions reads-from then the first Read 
operation in Tj that reads any version of x, reads it from the version of x 
written by the last Write operation of Ti (note that this is well-defined 
since H is serial.) 

(2) If (ri[Xi)n],m) reads-x-from (wjx^l) is a reflexive reads-from, then p=n. 
That is, each Read of x in T{ reads-x-from the version produced by the 
immediately preceding Write of x in Tj. 
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It is intuitively quite clear that one-copy serial histories are correct since they 
look just like the corresponding one-copy history except that the data items have 
versions and the Read operations are "correctly" matched to the right Write 
operations. 

Definition A multiversion history is one-copy serializable (1SR) if it is equivalent 
to a one-copy serial multiversion history. 

To show that this is an adequate criterion for correctness for (multilevel) 
multiversion histories, we state the following theorem without proof. A proof can 
be easily constructed from [2, Theorem 5.3]. Only minor changes are required are 
to account for reflexive reads-froms. 

Theorem Let H be a multiversion history over a set of multilevel transactions 
T={T1,T2, ,Tn}. Then His equivalent to a serial one-copy history over T if and 
only if His 1SR. 

4. THE INFORMAL PRESENTATION OF THE ALGORITHM 

What must the concurrency control process in our multilevel database system do? 
First, it must produce a 1SR multiversion history. In addition, the way in which 
transactions and their operations are scheduled cannot result in the flow of high 
security level information to lower security level subjects. In particular, no lower 
security level transaction can be allowed to roll back because of the execution of 
a higher security level part of a transaction. We want to accomplish this with a 
minimum of trusted processes. 

Definition Given a multilevel transaction Tj and leSC, the l-projection of Ti|=1 

of Tj is {(Oi^lCOijDeTj} with the linear ordering inherited from Tt. We refer to 
these 1-projections generally as subtransactions. 

Definition The write set of T^ is WS(Ti,.I)={x€D|(w[x],l)€Ti} and it's read set 
is RS(Ti|=1)={x€D|(r[x],l)eT,}. Similarly, WS(Ti|sl)={xeD|(w[x],m)eT, and m<l} 
and RS(Tilsl)={x€D|(r[x],m)€Ti and m<l}. 

Notice that Ti(i:1 is a subject of the trusted system as we have defined them, and 
that Ti(=1 also can be viewed as a single-level transaction with security level 1. 
Every multilevel transaction naturally gives rise to a set of subtransactions. 
Notice that the definition of multilevel transaction guarantees that values written 
at one security level cannot depend on values read at higher security levels, even 
if the Read precedes the Write. This means that every multilevel transaction is 
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equivalent to one that executes the subtransactions in an order consistent with 
the security lattice ordering (from low to high). 

Our multiversion TDBMS will also have an untrusted strict multiversion 
timestamp order scheduler [2], P„ for each le SC. These schedulers will be called 
local schedulers and will be used to schedule the subtransactions for their level, 
just as if they were single level transactions. Subtransactions, therefore, may 
commit (and, in theory, abort) and we refer to such as local commits (or aborts). 
If a subtransaction has begun execution but not locally committed, we say it is 
active. 

There is also a global scheduler Q, which will manage subtransactions across 
security levels (between the local schedulers). Q will be largely untrusted, though 
a few trusted processes will reside there. Q will assign timestamps to 
transactions, compare read sets and write sets as necessary, and distribute 
subtransactions to the appropriate local schedulers. 

Informally, the algorithm works as follows. When a multilevel transaction is 
received, a timestamp is assigned and Read and Write operations on each data 
item are indexed. I.e., the first Write of x is indexed by 1, the next is indexed by 
2, and so on. Read operations receive the same index as the last preceding Write 
of the same data item, or 0 if there is none. The indices will allow reflexive reads- 
froms to find the correct version and also indicate which Read operations are 
involved in transaction reads-froms. 

The multilevel transaction is then parsed into its subtransactions, which are 
distributed to the corresponding schedulers. The algorithm will execute the 
multilevel transaction by correctly executing the subtransactions and controlling 
the interleaving of subtransaction among the various transactions. The algorithm 
must simultaneously insure that reads-froms are executed so as to generate a 
1SR history and yet not allow information to flow from high security levels to 
lower ones because of concurrency control mechanisms. (In this paper, we do not 
address covert channels that may arise for other reasons.) 

We see two ways in which transaction processing might allow high level data to 
be transmitted to lower security levels. First, since multilevel transactions can 
have Write operations that execute after higher level data items have been read 
by the same transaction, one must be sure that any values written after reading 
higher level data items do not depend on the values read at the higher levels. 
This is precisely what is insured by the third condition of our definition of a 
multilevel transaction. Second, execution of transactions must be scheduled so 
that no rollback of lower level or noncomparable level subtransactions can result 
from the scheduling mechanisms for those at higher security levels. In particular, 
the concurrency control algorithm cannot allow a subtransaction to abort after 
another subtransaction of the same multilevel transaction has been executed at 
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a lower level. Allowing this would require that the subtransactions at lower 
levels or noncomparable levels be rolled back (to satisfy the first condition of the 
definition of multilevel transaction), creating a covert channel. 

The problem is avoided by the following technique. First, for a given multilevel 
transaction, subtransactions are executed in the order determined by the security 
lattice. That is, the subtransaction at a given security level cannot begin to 
execute its operations until all of the subtransactions at dominated security levels 
have locally committed. This guarantees that a reflexive read-from will always be 
able to find the correct version of the data item to be read. But it is not sufficient 
to insure correct schedules that avoid aborts. 

Multiversion timestamp order schedulers require that each Write operation create 
a new version of the data item, and each Read operation will read the last version 
written by a committed transaction with an earlier timestamp (or from the last 
version written by the same transaction in the case of reflexive reads-froms). 
Aborts arise in such schedulers when a Write operation occurs after a Read 
operation on the same data item and the timestamp of the Read is later than that 
of the Write. That is, the Write operation has arrived too late to preserve the 
timestamp ordering. In such instances, the transaction requesting the Write is 
aborted because executing it would invalidate a Read operation that had already 
been performed. In our system, we cannot allow a subtransaction to locally abort 
if another subtransaction of the same multilevel transaction locally commits. 
Because the security classes form a lattice, and a transaction may have 
subtransactions at noncomparable security levels, to prevent covert channels we 
must insure that transactions never locally abort. 

In other words, we must guarantee that if a subtransaction is going to write a 
data item, then no subtransaction with a later timestamp will ever want to read 
it. We must be sure that Read operations only occur after all subtransactions with 
later timestamps and that Write the same data item have been locally committed. 
Our security policy implies that it is sufficient that the local commitment criterion 
hold for subtransactions at security levels dominated by the level of the Read 
operation. The algorithm forces subtransactions to wait to start until its read set 
has a null intersection with the write sets of all subtractions that are active (not 
locally committed) at the same or lower security levels and have earlier 
timestamps. Notice that there is no reason to ever delay the execution of a lower 
level subtransaction because of a higher level subtransaction, since any relexive 
reads-froms can always locate the correct version of the required data item. 

Finally, though these are really implementation details, we mention how one 
might start a multilevel transaction, though other scenarios are possible. The user 
would submit the transaction to Q by logging on the system at the least upper 
bound of the security classes of the operations of the transaction. If there is no 
operation of the transaction at the level of the greatest lower bound of the 
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transaction's operations, then Q creates an artificial one, thereby reducing the 
amount of trusted code if the lowest levels of the transaction's operations are 
noncomparable, since then the indication that it is all right to start the 
transaction would be transmitted across noncomparable levels. The processing 
could then proceed as described above. 

5. SPECIFICATION OF THE ALGORITHM 

We need a few additional definitions before specifying the algorithm. We use 
ts(Tj) to denote the timestamp assigned to the multilevel transaction Tt. Similar 
notation is used for the timestamps of subtransactions and operations, which 
inherit them from their parent transactions. We denote by lub(i) the least upper 
bound of the security classes of the subtransactions of Tt. 

Definition If Ti{sl is a subtransaction, the conflict set of T^, CS(Tih,), is 
uiWSCTji^lTjia is active}. 

CS(Til=1) is precisely the set of Write operations that have the potential to 
invalidate a Read operation of Tj|=1, because subtransactions can only read data 
items at or below their own security level. 

The algorithm processes transactions as follows. 

At the global scheduler Q: 

1.1 The initializing transaction T0 is received and assigned a timestamp. 

1.2 As a transaction T, begins to be received, it is assigned a timestamp and 
Read and Write indices are assigned. 

a. (Wi[x],l) receives an index of 1 larger than the last preceding Write 
operation of Tj on x unless there are none, whence it receives an 
index of 1. 

b. (rj[x],l) receives an index equal to that of the last preceding Write 
operation of T, on x unless there are none, whence it receives an 
index of 0. 

1.3 After an operation (Oi,l) is indexed, it is sent to a single-level subprocess Q, 
ofQ. 

1.4 The Qi construct the subtransactions Ti!=1 for all relevant 1, and form each 
WS(Ti|=1) and RS(Ti|=1). | 
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1.5 The Q, distribute the T1)rf, their read and write sets, and their index 
information and timestamps to the corresponding local scheduler P,. 

1.6 CommitCTj) messages are received from Plvb(i), and Q globally commits the 
multilevel transaction. 

At each local scheduler P^ 

II. 1    Pi receives subtransaction packages for the T^., from Qi and determines 
RS(TM=1)nCS(Ti|=1). 

a. If RS(Ti|=,)nCS(Ti|=1)=0, then P, initiates execution of Ti|=„ 
provided that Tij=m has been locally committed for all m<l in SC. 

b. If RS( Ti|=1)nCS(Ti|=,)*0, then Pt queues T^ for later execution. 

11.2 As P, executes Ti!=1, it performs the operations according to the rules 

a. For (wjtx] ,1), a new version xin is created where n is the index of the 
operation, i.e., (w^x^J,!) is done. 

b. For (ri[x],l), if the index of the operation is n>0, the value written 
by (WitXi^m) with index n is read. If the index is 0, (ri[x],l) reads 
from the last version of x written by a committed Tjj=m that has the 
largest timestamp < ts(T,|=1). 

c. When all operations of Ti|_, have been performed, P, locally commits 
Ti|=, 

11.3 For the Ti(=1 that have been queued for later execution by Il.l.b, P! 
periodically checks whether RS( Ti|=1)nCS(Ti|=,)=0. If so then P, initiates 
execution of T^,, provided that T,,^ has been locally committed for all 
m<l in SC. (A new timestamp is not issued). 

11.4 Piubd) recognizes when every subtransaction of Tj has been locally 
committed, and then sends a Commit to Q. 

Steps 1.1,1.2,and 1.3 require some level of trust. These steps deal directly with the 
multilevel transaction, so will see operations at various security levels. The 
amount of trusted code needed to implement these is very small relative to what 
would be required to construct a complete trusted scheduler. The remainder of the 
algorithm can be done with untrusted processes. 
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Since the Qi deal only with entities of a single security level, they may be 
untrusted (for the access control policy here), so 1.4 and 1.5 can be performed 
without trusted processes. 

For 1.6, notice that the global commitment of a multilevel transaction is a 
technical requirement only, used solely to let the "user" know that the work 
submitted is finished. The rest of the scheduling mechanism does not make use 
of this information, but relies only on the behavior of the local schedulers. 

II. 1 can be untrusted since the computation required relies solely on information 
available at Pm for m<l. The same observation applies to II.2 and II.3. II.4 clearly 
can be implemented untrusted. 

6. VARIATIONS ON THE ALGORITHM 

The version of the algorithm presented above is very pessimistic (conservative?) 
in that it waits to execute a subtransaction until it is absolutely certain that it 
can be executed without (locally) aborting or rolling back. Aside from minor 
changes that make the algorithm somewhat more optimistic, which may be 
beneficial for some applications, we believe that the algorithm is intuitively as 
good as can be done for these kinds of transactions. 

Given the nature of multilevel transactions, the conventional definitions of 
database theory, and the security policy, there seems to be limited choice in the 
approach to constructing a multiversion timestamp scheduler if trusted processes 
are to be minimized. 

There appear to be three general statements that can be made about this family 
of algorithms. First, because of the security policy, it seems necessary that there 
be some way of determining when the subtransaction are finished, so that it is 
safe to use the values they produce. This is our notion of local commit or abort. 
Second, because of the required atomicity of database transactions, if one local 
commit occurs, then all local commits must occur. Third, the behavior of higher 
security level operations must conform to what is done at lower levels in order to 
obtain correct results and prevent covert channels. The variations of the 
algorithm arise by enforcing these three conditions in slightly different ways. 

For reflexive reads-froms, a Read of a data item x cannot occur until the proper 
Write operation has been done, possibly by a lower security level subtransaction. 
We have chosen to make the higher security level subtransactions wait until the 
lower level ones from the same multilevel transaction have locally committed to 
insure that the correct version is available to be read. A more optimistic 
alternative would allow the higher level subtransaction to begin and progress 
until some Read operation could not be performed because the corresponding 
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Write operation had not been completed. The higher level subtransaction could 
continue to attempt to read other data items until a Write operation is 
encountered (which could depend on a blocked Read operation for its value), at 
which point the whole subtransaction would be suspended. As the appropriate 
Write operations are done and the blocked Read operations completed, the 
subtransaction would resume. This technique requires significantly more 
overhead than the pessimistic approach, but may be warranted for some 
applications when it is unlikely that the reflexive reads-froms will result in 
waiting. 

For transaction reads-froms, there are two variations, both more optimistic than 
the one presented. The first is similar to the technique for reflexive reads-froms. 
Subtransactions process their operations up to the point of reading data that 
might be invalidated by a Write operation at the same or lower security level, 
whence it is blocked until the lower level subtransaction from which it might read 
is locally committed. As before, such Read operations could continue until a Write 
operation is encountered, and then suspended. It could continue when the 
potentially offending lower level subtransaction is locally committed. The second 
variation is more optimistic in that it attempts to execute all subtransactions at 
the various security levels simultaneously. No initial determination of the read 
sets or write sets of potentially conflicting subtransactions is done. Rather, as 
subtransactions are completed at lower security levels, the resulting read sets and 
write sets are compared with the results already obtained at the higher levels. If 
the higher level actions are inconsistent with those of the lower levels, they must 
be rolled back and redone, reading the correct versions and redoing the Write 
operations that depend on them. These roll backs may involve cascading of these 
reversals through all higher security levels. Whether either of these variants is 
more appropriate than the pessimistic approach depends on the frequency of the 
need to invoke suspensions or rollbacks. 

7. PROOF OF CORRECTNESS OF THE ALGORITHM 

We must show that the multiversion (multilevel) history produced by the 
algorithm is 1SR by showing that it is equivalent to a one-copy serial history. To 
this end let G be the multiversion history produced by arranging the multilevel 
transactions in timestamp order with operation indices and versions ordered so 
that G is one-copy serial. That this is possible is trivial. Let H be the multiversion 
history produced by the algorithm. Clearly H satisfies the definition of a 
multiversion history. We have the following result. 

Theorem Let T={T1,T2, ,Tn} be a set of multilevel transactions. If H is a 
multiversion history produced, by the algorithm for T, then H is 1SR. 
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Proof Let G be as defined above. It is obvious from the definition of G and the 
specification of the algorithm, that G and H have the same reflexive reads-from 
relationships. Thus it is sufficient to show that G and H have the same 
transaction reads-from relationships to prove the theorem. 

First, suppose Tj reads-x-from T, in G so there are (w^x^DeTj, (rj[x],m)€Tj for 
which (wi[x],l)<G(rj[x],m), and no other Write operation on x falls in between. 
Suppose now that Tj does not read-x-from T{ in H. Then there is a (wk[x],l)eTk 
for which (wi[x],l)<H(wk[x],l)<H(rj[x],m). Now if i=k, then (ij[x],m) would not 
have read x from the last Write of x by a committed subtransaction as required 
by the algorithm, so i, j, and k must be distinct. Since (Wi[x],l)<H(wk[x],l), the 
local scheduler Pj must have scheduled (wk[x],l) after (Wi[x],l), so 
ts(T,)=ts(T,|=1)<ts(Tk|=I)=ts(Tk). Again, by the algorithm, Pm would not allow 
Tjhm to begin until Tk[=m was locally committed, since it reads x after it, so 
ts(Tk)=ts(Tk|=1)<ts(Tj|=J=ts(Tk). Therefore Tk appears between T\ and Tj in G, 
contradicting that Tj reads-x-from Tj in G. Hence Tj does read-x-from Tt in H. 

Conversely, suppose Tj reads-x-from Tt in H so there are (WiMJOeTj, 
(rj[x],m)eTj) for which (Wi[x],l)<H(rj[x],m), and no other Write operation on x 
falls in between. Suppose now that Tj does not read-x-from T, in G. Then there 
is a (wk[x],l)eTk for which (wi[x],l)<G(wk[x],l)<G(rj[x],m). If i=k, G would not be 
one-copy serial. As before, i j, and k are all distinct, and 
ts(Ti)=ts(Ti|,1)<ts(Tk|=1)=ts(Tk)<ts(Tj|=1D)=ts(Tk) because G is one-copy serial in 
timestamp order. Since Tk,=1 writes x and has an earlier timestamp than Tj|=m 

but later than that of T1|=1, the algorithm would have finished TkH before 
starting TJhm, contradicting that Tj reads-x-from Tt in H. Thus Tj does read-x- 
from Tj in G. 

We conclude that G and H have the same reads-from relationships and so are 
equivalent. Therefore H is 1SR. | 

8. CONCLUSION 

The notions of atomicity for transaction processing that are usually suggested for 
databases are not easily reconcilable with those of multilevel secure systems. This 
is extremely problematic for multilevel secure database systems. Users' 
expectations may not be met if what the user considers a single transaction is 
decomposed into a sequence of single-level transactions that are then treated as 
non-communicating entities by the system's concurrency control mechanisms. 
Further,dt is incumbent upon those who develop multilevel secure database 
systems to ensure that the users' needs and expectations are met to avoid 
misunderstandings about the system's functionality.  To this end, we have 
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proposed the idea of multilevel transactions to resolve these difficulties. In cases 
where this is not an acceptable solution, system-high systems may be a solution, 
or developing completely trusted database systems, though this would be a 
significantly more costly route. 

In this paper we have defined multilevel transaction for multilevel secure 
databases and defined a notion of correctness that is consistent with the 
traditional idea of correctness for database systems. To demonstrate the 
applicability of these ideas, an algorithm for correct transaction processing within 
this framework was presented for a multiversion architecture multilevel database. 
Very few trusted processes are needed to implement the algorithm, which greatly 
reduces the time and cost needed to develop a system using the algorithm. 

We chose to develop the algorithm for the kernelized architecture since it has 
been the one of most interest to the database security community. The problem 
for multilevel secure database systems based on the replicated architecture [5], 
however, is no less interesting a research (and application) issue. An algorithm 
for this case, based on the correctness criterion for transaction processing in 
replicated database systems, will be the subject of future work. 
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ORANGE LOCKING: CHANNEL-FREE DATABASE CONCURRENCY 
CONTROL VIA LOCKING 

John McDermott 
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Sushil Jajodia 
George Mason University 

The concurrency control lock (e.g. file lock, table lock) has long been 
used as a canonical example of a covert channel in a database system. 
Locking is a fundamental concurrency control technique used in many 
kinds of computer systems besides database systems.Locking is gener- 
ally considered to be interfering and hence unsuitable for multilevel 
systems. In this paper we show how such locks can be used for concur- 
rency control, without introducing covert channels. 

1. Introduction 

A database system is a software system that provides a collection of predefined oper- 
ations with three features: 1) efficient management of large amounts of persistent 
data (the database), 2) transaction management for transactions composed of those 
operations on the data (concurrency control, atomicity, and recovery from failure), 
and 3) a data model that provides a simple abstraction for understanding how the 
predefined operations and data interact. Our concern is with the second of these fea- 
tures, transaction management. 

Transaction management for conventional centralized database systems is fairly 
well understood and much progress is being made for distributed and federated da- 
tabase systems [14]. Our concern is with transaction management in what we call 
multilevel database systems (which may also be centralized, distributed, federated, 
etc.). Multilevel database systems assign their data to security classes and restrict 
database operations based on those classes [6]. The security classes are partially or- 
dered; the data and operations are considered to be in various levels, hence the term 
multilevel. 

A database system that just provides security classes and restrictions on operations 
is not multilevel. An additional feature of multilevel database systems is their ability 
to enforce the classes and restrictions in the face of nontrivial attempts to bypass or 
tamper with the enforcement mechanisms. One of the most difficult challenges for 
multilevel databases is the covert channel problem. A database system user with 
"low" privileges can obtain information from "higher" security classes by having it 
leaked into his or her security class from the higher classes, by a Trojan horse or vi- 
rus, via a covert channel. A covert channel is a means of unauthorized interprocess 
communication that uses a mechanism nofrinteaded for interprocess communication. 
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The concurrency control lock (e.g. file lock, table lock) has long been used as a canon- 
ical example of a covert channel in a database system. Locking is a fundamental con- 
currency control technique used in many kinds of computer systems besides 
database systems. Locking is generally considered to be interfering, in the sense of 
[5,13], and hence unsuitable for multilevel systems. 

In this paper we show how locks can be used for concurrency control, without intro- 
ducing covert channels. We have developed three locking algorithms that do not in- 
troduce signalling channels1 yet they produce serializable transaction histories. 
Previous algorithms for concurrency control without channels have relied on times- 
tamping [1,8,9] or are based on subtle properties of a particular database system ar- 
chitecture [3,7,11]. Our orange locking algorithms do not use timestamps and they 
do not depend on the underlying architecture of the database system. The rest of this 
paper is organized as follows. First, we discuss transactions, conventional locking, 
and covert channels. Then we present three locking algorithms: conservative orange 
locking, reset orange locking, and optimistic orange locking. We show these algo- 
rithms to be correct (serializable) and secure (noninterfering), and discuss their 
deadlock properties. Finally, because of our own interest in the replicated architec- 
ture, we show how orange locking can be used to implement immediate-write algo- 
rithms for the replicated architecture. 

2. Transaction Management in Multilevel Databases 

A transaction is an abstract unit of concurrent computation that executes atomically. 
The effects of a transaction do not interfere with other transactions that access the 
same data. Also, a transaction either happens with all of its effects made permanent 
or it doesn't happen and none of its effects are permanent. A useful model of a trans- 
action must show how these properties can be achieved by composing smaller units 
of computation, when those smaller units are not necessarily guaranteed to compose 
into an atomic transaction. Thus the model must be concerned with showing poten- 
tial conflicts between operations and with showing arbitrary orderings. Since we are 
managing transactions for secure database systems, our model must also reflect the 
security policy enforced by the DBS [10]. 

In this report we model transactions as sequences of abstract read, readjock, 
read_unlock, write, write Jock, writejinlock, commit, and abort operations, denoted 
r[x], rl[x], ru[x], w[x], wl[x], wu[x], c, and a, respectively. The sequence models the or- 
der in which database operations are sent to the transaction management algo- 
rithms, without modeling the control structure of transactions themselves.Modeling 
transactions as sequences is desirable because the sequences can be used in a nonin- 
terference model [5,13] to reason about the security of our algorithms. 

Definition 1. A database D is a finite set of pairwise disjoint data items that can be 

1. We distinguish implementation invariant (i.e. inherent in the algorithm itself) covert channels as 
signalling channels. An implementation of a signalling-channel free algorithm may still have covert 
channels. 
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operated on by a single atomic database operation. Each data item* inD has a count- 
able domain dom(x). A database state is an element of the Cartesian product of the 
domains of elements of D, that is, a state associates a value with each data item in 
the database. The integrity constraints on a database specify a subset of the Carte- 
sian product, that is, the consistent database states. A transaction state of a transac- 
tion is an element of the Cartesian product of the domains of the transaction's basis 
set. A transaction state associates a value with each data item that is read or written 
by the transaction. A database system state, or DBS state, on a history H is a tuple 
containing a database state as its first element and a transaction state for every 
transaction in history if. Each database operation maps a DBS state to a DBS state. □ 

Definition 2. A transaction T is a finite sequence of database operations from some fi- 
nite set O. Usually O = { r[»], rl[*], ru[»], w[*], wl[»], wu[*], c, a} . We will take this 
read-write model as our definition unless we say otherwise. We denote single opera- 
tions as one-element sequences thus <r[x]>. Concatenation of sequences is denoted by 
juxtaposition. If transaction T reads x, then writes x and commits we can denote 
transaction T as the sequence <r[x]xw[x]><cf>. We can also show a transaction as a 
concatenation of unspecified sequences of database operations, like T=a<r[x]>$. We 
will always use lower case Greek letters to indicate subsequences of database opera- 
tions.We use <> to denote the empty sequence. 

If a sequence of database operations is a transaction, we further require that if the 
transaction T=a<p>, that is, the sequence of operations a followed the singleton se- 
quence <p>, thenp must be either c? or ay and also that neither cj< nor a? be in a. Q 

Definition 3. Let Sj be a sequence that contains only distinct elements and let S2 be 
a sequence that contains only distinct elements. Say that these two sequences are 
compatible if they do not contain inconsistent orderings of elements common to Sj and 
S£. For example, if a, beSj and a,b e S^ and if Sj orders a and b as a<b and S2 orders 
a and b as b<a, then Sj and S2 are not compatible sequences. Let image Sj denote the 
set of elements in sequence Sj. Define the shuffle of two compatible sequences Sj and 
S2, denoted Sj*S2, to be the set of all sequences that contain just the elements of (im- 
age Sj) U (image S2) and contain Sj and S^ as subsequences. The extension to the 
shuffle S1*S2*...*S}i of more than two compatible sequences is straightforward. Q 

Definition 4. A history H over a set of transactions T={T1,T2, ... ,Tk} is an element 
of the shuffle of T, that is if is a sequence in Tj*T2*. ■. *Tk. A serial history has every 
operation of transaction Tt before every operation of transaction Tj (or vice versa), for 
every pair of transactions (Ti} Tj) in H. O 

Definition 5. We define two operations p[x] and g/x7to conflict if one of them is a write 
operation. Intuitively conflicting operations do not commute; we get different results 
if conflicting operations p and q are done in different orders. We say that two transac- 
tions conflict if they contain conflicting operations. O 

We can now define conflict equivalence using the notion of conflicting operations. 

273 



Definition 6. Two histories Hi and H2 are (conflict) equivalent if 

1. they are defined over the same set of transactions and operations, 
2. for any pair of conflicting operations Pjj[x], q/x], (i not necessarily dis- 

tinct from,;') such that a» a; are not in Hj, we have 
Hj= aj<p/*7>ßj<g/*7>Yj I" H2= a2<Pi[x]>$2<Q/x]>y2 

□ 
In this discussion we take the view that histories are correct if they are serializable, 
that is, equivalent to some serial history. Because aborted transactions have no per- 
manent effect on the database state we do not include them in our equivalent serial 
histories. Because active transactions (i.e. those that have not committed or aborted 
yet) may abort, we do not include them either. To accommodate this in our equiva- 
lence we define the committed projection C(H) of a history if to be the history ob- 
tained from H by removing operations that belong to uncommitted transactions. 

Definition 7. Formally, we say that history if is serializable if its committed projection 
C(H) is equivalent to some serial history Q 

Definition 8. A serialization order of a history H is the order that transactions appear 
in a serial history that is equivalent to the committed projection of history H. A serial 
history equivalent to the committed projection of if is not necessarily unique so H may 
have several serialization orders. Q 

Definition 9. To model the security policy enforced by our database systems we intro- 
duce a finite set of subjects S, and a finite lattice (SC, <) of security classes. The data 
items in D of our transaction model will be the passive entities of our security model, 
that is, abstract units of protected computer resources. A subject is an abstract unit 
of secure computation. We relate subjects to transactions by defining a subject to be a 
sequence of database operations. A subject may or may not be a transaction. Every 
transaction will be a sequence of one or more subjects and every subject in our secu- 
rity model will be in one and only one transaction. We may use the terms higher and 
lower to refer to a relation between two or more security classes. By higher, we mean 
strictly greater than and by lower we mean strictly less than. We use a mapping 
\JXJS-*SC to give the security class of every data element and every transaction. 

The algorithms we present here apply to database systems that enforce the following 
security policy: 

1. All transactions are single-level. That is, every subject in a transaction has the 
same security class and we can meaningfully apply our level function to 
transactions, thus X(T). 
2. Subject S is not allowed to read data element x e D unless X (S)>X (x). 
3. Subject S is not allowed to write into data element x e D unless X (S)=X (x) . 

4. A.fö)*and X (x) do not change. 
a 
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Definition 10. If two transactions Tt and Tj have security classes X (Tj), X (Tß such that 
X (Tj)< X (Tß, then Tt and Tj are low and high transactions with respect to each other. 
We introduce this definition simply for convenience of exposition. O 

Definition 11. A transaction Tt reads x from transaction Tj in history H if 

i?= a <Wj[x]>$ <rt[x]>y 

and a.j€ ß and if w^xje ß then aye ß. O 

Definition 12. A read-down is a read operation r/x7 of a transaction Tj such that 
X (Tj)> X (x). Data item x is a read-down data item. If transaction Tt reads x from trans- 
action Tj and x is a read-down data item, then 7) reads-x-down from Tj, and if for some 
data item x, Tt reads-x-down from Tj, then Tt reads-down from Tj. □ 

3. Locking and Channels 

Concurrency control via conventional locking is based on the following principle: 1) 
each operation that is to be scheduled includes a (possibly implicit) lock request, and 
2) if a transaction requests a lock plt[x] that conflicts with a lock qlj[y] that is already 
set then the requesting transaction is delayed. Two locks pljfx] and qlj[y] conflict if 
their corresponding operations p and q conflict, x=y, and i*j. Locks can be imple- 
mented as a lock table inside the scheduler. Our abstract read lock rljfx] is imple- 
mented as a lock table entry <x, read, i>. Transactions that are delayed can be placed 
on a queue associated with the entry; the mechanism for effecting the delay depends 
on the underlying operating system. The setting and releasing of locks and the 
scheduling of operations is done by the scheduler. Transactions request operations 
and the scheduler returns the results when they are available. 

Intuitively, locking should be sufficient by itself to ensure correct database system 
operation. Unfortunately, it is not. Locking intended to achieve serializability must 
also be two-phase, in the following sense. Transactions that use two-phase locking 
have a growing phase wherein all of a transaction's locks are set and a shrinking 
phase wherein all of its locks are released. A transaction's locks are not necessarily 
set or released all at the same time, but no lock may be set after a lock has been re- 
leased. Formally, we say that for any data items x andy, and any transaction Tj, it is 
always the case thatpljfx] precedes qut[y]. 

To make recovery from failures tractable, two-phase locking algorithms are often de- 
signed to be strict. A transaction scheduled by a strict two-phase locking algorithm 
holds all of its write locks until the end of the transaction, and then releases them to- 
gether. 

Conventional locking introduces a signalling channel. If a virus or Trojan horse in 
transaction Tj wishes to signal information to a less privileged transaction Tj (i.e. Tj 
runs in a lower security class) it can do so by reading down, from some predeter- 
mined data item x such that the security class of x is the same as Tj's security class. 
Transaction Tj's read request will set a read lock rlffx]. If transaction Tt now tries to 
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write into data item x, transaction Tj will be delayed by the read lock rife]. By selec- 
tively read locking and read unlocking data item x, transaction 7^ can leak informa- 
tion to Tj. It is this well-known scenario we wish to prevent. 

4. Optimistic Orange Locking (OOL) 

Now we show how to use locks for concurrency control, in a way that does not intro- 
duce signalling channels. Our first algorithm is optimistic, that is, operations are 
never delayed by the scheduling algorithm. Instead, when a transaction is ready to 
commit, the scheduling algorithm checks the schedule to see if it is correct. If not, 
then some transaction is aborted (to be rerun later) to make the schedule correct. 

In our first approach we simply let the high transaction T; set read locks on low data 
items as in a conventional, untrusted database system. If a low transaction Tt then 
tries to set a write lock on one of the same data items, we immediately grant Tt's 
write lock and change Tfs read-down lock to an orange lock, indicating the possibility 
of an incorrect read. 

Low transactions will not be interfered with by high transactions following this ap- 
proach. However, we have to decide what to do with high transactions that read data 
via orange locks instead of read-down locks. If we simply inform the transactions of 
the orange locks but let them read anyway, the transactions will probably be incor- 
rect. The read-down operations will have been invalidated by the conflicting write 
that was performed in a nonserializable fashion. 

We can obtain serializable schedules by simply aborting a transaction whenever its 
first read down is orange locked. If most transactions only read down on a few data 
items and transactions are easy to restart, this approach will allow us to correctly 
schedule them in a simple manner. This approach begins to have problems when the 
number of read-downs increases or the cost of restarting a transaction is high. We 
can do better, at the expense of an increase in complexity, by reducing the number of 
aborts and making restarts easier. 

First, we add a local workspace for each transaction. The local workspace contains 
storage for all the values a transaction will read down. We begin each transaction by 
having it perform all of its read-downs before beginning any processing. After all of 
the data items in the local workspace are read, the transaction proceeds as a conven- 
tional transaction, reading from and writing to the database directly, within the 
transaction's security class. Any read-downs during processing are performed from 
the transaction's local workspace. 

Definition 13. A transaction Tt has a home-free point that it must reach before com- 
pleting its processing. A transaction 7^ has reached its home-free point when all data 
items x to be read down by Tt are either read locked and read into T{s local workspace 
or orange locked and read into T{s local workspace. □ 

If a high transaction Tt reaches its home-free point without any orange locks it is al- 
lowed to proceed. If Tt has an orange lock set before it reaches its home free point, it 

276 



is aborted. This abort can be made a lightweight abort, that is, we do not need to re- 
submit the transaction to the scheduler. Instead we can abort by releasing all read- 
down locks, resetting the local workspace, and moving the transaction's program 
counter back to the beginning of the transaction. Thus we achieve the effect of a full 
abort with less overhead. Because we do all our read-downs together, we reduce the 
length of time we are likely to be interfered with by a low transaction. 

Our simple optimistic approach can be shown to be correct because its histories are 
identical to histories produced by conventional two-phase locking. Transactions that 
do not conform to the conventional two-phase model are aborted and do not appear 
in the committed prefix that defines the current stable database state. Our work- 
space-based improvement is also correct; we will show how later in this paper. 

The advantage of this optimistic approach is that we have a relatively simple algo- 
rithm, even with our workspace version. We do not have to change our conventional 
two-phase locking implementation very much. Unfortunately, we get poor perfor- 
mance if lock contention is heavy and we can get also get starvation as a high trans- 
action's read-down locks are repeatedly set to orange, forcing the high transaction to 
restart. 

Remark. The potential for infinite overtaking suggests a possibility for denial of ser- 
vice. While this is theoretically true, it is of no practical concern. A more effective de- 
nial of service attack can be mounted with crude techniques such as resource 
exhaustion. 

5. Conservative Orange Locking (COL) 

If aborts and restarts are too expensive, but we still want to maintain correctness for 
our transactions, we can do so by using a conservative approach. Our approach is not 
conservative in the usual sense because it can still deadlock. Our approach is conser- 
vative in the sense that it does not need to abort any transactions for concurrency 
control reasons and also because it tries to avoid any possible missteps in its ap- 
proach to scheduling. 

In the OOL scheduler, we lock and schedule operations as we normally would, except 
we cannot delay low write operations to ensure correct read-down operations. In 
OOL we give up on the high transaction as soon as we detect a conflict with a low 
write operation. We can do better than this by trying to save the high transaction in- 
stead of aborting it. In the conservative orange locking approach, we will use the or- 
ange locks to identify a current low transaction that we can safely read from, thus we 
do not have to give up if a low transaction has a conflict with a read-down. To do this, 
we may have to resubmit some read-down operations that were invalidated by low 
transactions. In fact, we can sometimes do even better than rereading invalidated 
read-downs. If we override a read-down lock into an orange lock before we schedule 
the associated read-down operation, we can delay that read operation until we have 
identified the proper low transaction to read from. We will avoid performing an in- 
valid read in the first place. 
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We continue with some data structure definitions. We will unavoidably use some 
terms before they are denned; we ask the reader to trust that all meanings will be re- 
solved as quickly as possible. 

5.7 Local Workspace 

Each transaction has a local workspace that is used to hold the values of data items 
the transaction needs to read-down. The local workspace is used in the same way as 
in optimistic orange locking; any read-downs during processing are performed from 
the transaction's local workspace. In conservative orange locking, each read-down 
data item in the local workspace can be marked read or unread. These markers are 
used to determine when a transaction has reached its home-free point. Since a high 
transaction does not give up when it finds one of its read-down operations has been 
invalidated, the transaction must know which data items to reread or delay on in or- 
der to get a valid view of the database. 

5.2 Read-Down Queue 

The scheduler associates every transaction with a transaction-specific queue Qt, 
called a read-down queue. Whenever a high transaction Tj must repeat or defer one 
of its reads, it does so in order to read from a currently active low transaction Tt. To 
do this, the scheduler places transaction 7) on the low transaction Tt's read-down 
queue to wait for Tt to write the necessary value. Management of the read-down 
queues is done by the scheduler. A low transaction Tt is not even aware of the exist- 
ence of its corresponding read-down queue Qt. 

Along with low transaction Tt's read-down queue, the scheduler keeps a list Wt of val- 
ues written by the corresponding transaction. For efficiency, this list Wt may be in- 
corporated into the database system's cache and recovery log, depending on their 
implementation. When low transaction Tt commits, the scheduler services the reads 
requested by any high transaction Tj that was placed on T{s read-down queue. The 
values returned are taken from list V^. (To preserve recoverability, cascadelessness, 
and strictness, the scheduler should not make orange locked data items in Wt avail- 
able for reading via Qt until transaction Tt has committed.) 

5.3 Conservative Orange Locks: Overriding Read Locks for Read-Downs 

The heart of our conservative approach is the way we use orange locks. Instead of 
passively marking data items, our orange locks actively affect the individual sched- 
uling of reads and writes. Whenever a low transaction Tt needs to obtain a write lock 
on a data item x that is being read by a high transaction Tj, the scheduler tries  to 
override the high transaction Tfs read-down of x. On behalf of transaction Tj, the 
scheduler converts Tfs read lock to an orange lock on data item x. Whenever a data 
item x is orange locked on behalf of transaction Tj, data item x in Tfs local workspace 
is also marked unread by the scheduler. Even if data item x had previously been read 
it is still marked unread. A high transaction Tj that has its read lock converted to an 
orange lock is placed on the appropriate read-down queue to wait for the overriding 

1. The read lock may be released before it is overridden. 
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low transaction T± to complete. At the same time, all of the read-down data items in 
Tj's write set are also orange locked and thus marked unread. At this point we say 
that transaction Tj is orange locked into transaction Tp If Tj commits, then Tj will 
read-down from transaction Tt every data item in the write set of transaction Tt that 
Tj reads. If this happens then the override is considered to have occurred. If instead 
transaction T^ aborts, then all of the orange locks that were associated with it must 
be reset to read locks (the affected data items will all still be unread) and transaction 
Tj must continue to try to reach its read-down point. If another low transaction T^ 
tries to write lock data item x and high transaction Tj already holds an orange lock 
on x then the original orange lock is retained but the low transaction Tj, gets its 
write lock and continues. We state this formally as the orange locking rule. 

Definition 14. We denote the read set and write set of a transaction Tt as fij and Wi 
respectively. We also define the read-down set of transaction T± as the set .Ej of all Tj's 
read-down data items and we also define the orange-locked set Ojj as the set of all 
read-down data items that Tj reads down from transaction Tj via an orange lock. If 
transaction Tt reads x down and transaction Tj converts Tj's read lock on x to an or- 
ange lock then O^E^ Wj. If transaction Tj reads x down and its read lock is not con- 
verted but x is in Wj then Oy is empty. We will refer to this condition as the 
conservative orange locking rule, that is if data item x is in 2^n Wj. then Ojj=Eir\ Wj 
or Oy-=0. 

5.4 The Conservative Orange Locking Algorithm 

Now that we have a clear definition of the override operation, it is possible to talk 
about how orange locking is used in the algorithm. We give the steps to be followed 
by a transaction Tt and by the scheduler in serializing Tj's operations. 

(1) Transaction Tt declares its read-down set Ei and its write set Wi. 

(2) The scheduler marks all of T/s local workspace unread and sets Qj, its read-down 
queue, to empty. 

(3) While some read-down data item in its local workspace is still marked unread, 
transaction Tj submits read-down operations for those unread data items. If the 
read-down data item is read locked it is read from the database and marked read in 
the local workspace. Otherwise the data item must be orange locked and the transac- 
tion reads, via the scheduler's list Wj, from the committed transaction Tj whose write 
operation required conversion of Tj's read lock into an orange lock. When this step 
completes, transaction Tt has reached its home-free point. 

(4) Transaction Tj now releases the locks on its read-down data items. The read- 
down locks can be released together in a single operation. Alternatively, if read- 
down locks are not released together and some low transaction Tj requests a write 
lock after Tj has reached its home-free point but before the scheduler has released all 
of Ti's read-down locks, the scheduler simply grants tije write lock and schedules the 
write before releasing the rest of Tj's locks. 
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(5) Transaction Tt now performs the rest of its processing using conventional strict 
two-phase locking on data items within its own security class. If transaction Tt needs 
to perform a write operation on data item x at the same time another transaction Tj 
needs to read-down x, then Tt will override Tja read-down by converting T/s read- 
lock to an orange lock. 

(6) When transaction Tt commits, all of the high transactions that are waiting for Tt 

on the scheduler's queue Qt are allowed to read from Tt, via the scheduler's list Wt. 
At this point transaction Tt will have succeeded in overriding the reads of those high- 
er transactions, thus requiring them to read from list Wt. 

Q 

A COL scheduler avoids starvation because it selects a specific active low transaction 
for a high transaction to read from, or it schedules the high transaction to read from 
the database itself via valid read-downs. It achieves this at the expense of complexity 
of mechanism. Note that by waiting until the selected low transaction completes, we 
incur less delay than our intuition would suggest, since we would have had to wait 
almost as long for the selected low transaction if it had already held the lock. 

The serialization order established by a COL scheduler is determined by the home- 
free points between security classes and by the lock points within the same security 
class. The home-free point of a transaction must come either before or after the lock 
point of every conflicting transaction. By holding its read-down locks until its home- 
free point, conservative orange locking becomes a four-phase protocol. There is a 
growing and a shrinking phase for read-downs and then a growing and a shrinking 
phase for intra-class reading and writing. 

6. Reset Orange Locking (ROD 

Intuitively, the conservative orange locking rule may seem to be too strong. We 
would like to do something less than orange lock the entire intersection of a transac- 
tion's read-down set and the corresponding update transaction's write set. Fortu- 
nately, we can do better than the conservative orange locking rule, if we are willing 
to return to the possibility of infinite overtaking or starvation. We can do this while 
still avoiding the need to abort any high transactions that have had read-downs in- 
validated by low write operations. 

In the reset orange locking algorithm, we use the same definitions. Again the local 
workspace only holds the values the transaction needs to read down. In the ROL al- 
gorithm, values to be written are not held in a list Wt by the scheduler and there is 
no read-down queue Qt for a transaction. Instead, we can let transactions read down 
directly from the database. 

6.1 Reset Orange Locks: Resetting Read Locks for Read-Downs 

In reset orange locking, just as in COL, low transactions override the read down 
locks of high transactions. Whenever a low transaction Tt needs to obtain a write 
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lock on a data item x that is being read by a high transaction Tj, the scheduler tries 
to override the high transaction Tj's read-down of x. 

In reset orange locking, the effect of an override is different from COL. First, the 
scheduler sets low transaction T/s write lock on data item x and schedules transac- 
tion Tj's write operation. Then the scheduler marks data item x in transaction TJs lo- 
cal workspace as unread. Next, the scheduler releases high transaction TJs read 
lock. Eventually transaction T; requests the scheduler to set it again, by asking for 
the corresponding read operation. The result of this attempt is that high transaction 
Tjs read request is queued waiting for a chance to read according to the normal rules 
of two-phase locking (e.g. it may have to wait for other writes besides T/s). In the 
case of reset orange locking, if another low transaction T^ tries to write lock data 
item x and high transaction Tj has once more obtained its read lock on data item x, 
the new low transaction does override high transaction Tj. This repeated overriding 
can cause starvation and transaction Tj may never reach its home-free point. 

Because a transaction holds all its read-down locks until it reaches its home-free 
point it is sure to detect (via resetting) any writes that could potentially invalidate a 
previous or pending read operation. 

6.2 The Reset Orange Locking Algorithm 

We give the steps followed by a transaction Tt scheduled by ROLand by the ROL 
scheduler. We follow the same style of exposition to allow comparison with COL. 

(1) The scheduler marks all of T{& local workspace unread. 

(2) While some read-down data item in its local workspace is still marked unread, 
transaction T; submits read-down operations for those unread data items. If the 
read-down data item is read locked it is read from the database and marked read in 
the local workspace. Otherwise transaction T/s read request is queued waiting for a 
chance to read according to the normal rules of two-phase locking. When this step 
completes, transaction Tj has reached its home-free point. 

(3) Transaction Tt now releases the locks on its read-down data items. The read- 
down locks can be released together in a single operation. Alternatively, if read- 
down locks are not released together and some low transaction Tj requests a write 
lock after Tt has reached its home-free point but before the scheduler has released all 
of Ti's read-down locks, the scheduler simply grants the write lock and schedules the 
write before releasing the rest of T/s locks. 

(4) Transaction Tt now performs the rest of its processing using conventional strict 
two-phase locking on data items within its own security class. If transaction Tt needs 
to perform a write operation on data item x at the same time another transaction Tj 
needs to read-down x, then Tt will override (via the scheduler) Tj's read-down by con- 
verting Tj's read-lock to a queued read-lock request. Transaction Tt commits accord- 
ing to the rules of conventional strict two-phase locking. 
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The reset orange locking algorithm is simpler than conservative orange locking. It 
also does not require declaration of read-down and write sets. In return for this de- 
crease in complexity, we now have the possibility of starvation. 

7. Correctness 

Our proofs depend on the following important definition: 

Definition 15. We define the home-free point HFPt of transaction Tt to be the first un- 
lock operation rut[x] performed on a data item x that is read down by Tt. We define the 
lock point LPt of transaction Tt to be the first unlock operation qut[y] performed on a 
data itemy in the same security class as transaction Tt. Intuitively, the lock point of 
Tj is the conventional lock point associated with strict two-phase locking, as we use it 
within a security class. For a transaction that does not read down we consider the 
home-free point to be the lock point. Q 

We will now show the correctness of ROL. Instead of the usual graph theoretic proof, 
we argue directly towards the definition of conflict serializability. 

Given any history H produced by an ROL scheduler, construct from H a serial histo- 
ry Hs as follows: take the committed projection ofH and for every pair of transac- 
tions (Tif Tj) in C(H), if 

1. the security class of transaction Tt is the same as the security class of 
transaction Tj, that is, X(Tj)=X (Tj), then put the transactions into Hs in the order 
that their lock points appear in C(H), or 
2. X (Tj) < X (Tß or vice versa, then put the transactions in Hs in the order that the 
home-free point of the high transaction appears with respect to the low 
transaction's lock point in C(H), or 
3. some transaction is pairwise incomparable to every other transaction in C(H); 
put each such transaction at the end of Hs. 

The serial history Hs is defined over the same set of transactions and has the same 
set of operations as C(H). We show that the committed projection C(H) orders pairs 
of conflicting operations the same as serial history Hs by constructing a chain of 
equivalent histories starting from C(H) and ending with Hs. 

By the definition of conflicting operation and conflict equivalence, we can swap two 
adjacent nonconflicting operations in a history and the result will be equivalent to 
the original history. Thus, if the conflicting operations in C(H) and Hs are already in 
the same order we can transform C(H) into Hs via a finite number of equivalence pre- l 

serving swaps. 

To show that all pairs of conflicting operations are already in the same order, we con- 
sider three cases: 
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Case X(Tf)=X (Tß: Only operations on data items at the same security class conflict, 
all other operations must be read downs. By the strict two-phase locking of step (4) 
we know that, for any pair of conflicting operations prfx], q/x], either 

(1)C(H)= a <Pi[x]>$ <LPt>y<qfx]>h and 

(2)HS= e <pj[x]>{, <LPt>y\ <qj[x]>Q 

or vice versa, depending on which lock point comes first in C(H). Thus all pairs of 
conflicting operations from transactions in the same security class are ordered the 
same in C(H) and Hs. 

Case X(Tj)<X (Tß: Definition 9 tells us that we can only have conflicting pairs of the 
form Wj[x], rßx], in either order. Suppose we have committed projection 

(3) C(H)= a <r/x]>$ <wt[x]>y 

for some pair of operations wt[x], r/x]. By steps (2), (3), and (4) of the algorithm, the 
committed projection must be 

(4) C(H)= a <rj[x]>b <HFPj>e <wt[x]>^ <LPt>\\ 

We know that every other pair of operations wt[y], r/y] in C(H) must also be shuffled 
such that 

1- r;[y]e a or rj[y]e 8, by the definition of home-free point, and 
2. Wifxfe a and w^xfe 8, since transaction Tj will be in its step 2 or step 3 and 
transaction Tt will be in its step 4. 

Thus if one pair of conflicting operations wt[x], r/x] is ordered according to equation 
(3) then all pairs of conflicting operations are also ordered the same way, which 
corresponds to the application of serial history construction rule 2: place transaction 
Tj before transaction Tt in Hs because T/s home-free point HFPj is before Tt's lock 
point LPt in C(H). 

Suppose that the committed projection has some pair of operations Wj[x], rßix] in the 
other order, that is 

(5) C(H)= a <Wi[x]>§ <rj[x]>y 

By steps (2), (3), and (4) of the algorithm, the committed projection must be 

(6) C(H)= a <WjlxJ>b <LPt>e <rj[x]>^ <HFPj>r\ 

We know that every other pair of operations Wj/jy], rj[y] in C(H) must also be shuffled 
such that 

1. rjfyje a and rj[y]<£ 8, since transaction Tj will be in its step 2 or step 3 and 
transaction Tj wül be in its step 4, and '   » 
2. wt[x]€ a or w^xje 8, by the definition of two-phase locking. 
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Thus if one pair of conflicting operations Wj[x], rJx] is ordered according to equation 
(5) then all pairs of conflicting operations are also ordered the same way, which 
corresponds to the application of serial history construction rule 2: place transaction 
Tt before transaction Tj in Hs because T's lock point LPt is before Tjs home-free 
point HFPj in C(H). 

Case X(Tj)>X(Tj): The arguments are symmetric to the preceding case. 

O 

The correctness proofs for COL and workspace-based OOL are very similar. For sim- 
ple OOL we simply note that any potentially nonserializable transactions are miss- 
ing from C(H) and use the proof for conventional two-phase locking given in [2]. 

8. Security 

We argue informally that orange locking is noninterfering. We need to do this be- 
cause some parts of the algorithm may be implemented as trusted code. We can re- 
strict our discussion to read-down operations because they are the only parts of the 
algorithms that have the potential to affect the low state of the database system in a 
way that is interfering. We assume without discussion that no low state variables 
are changed explicitly by any of the algorithms, including error messages that might 
report a data item as being locked. Instead we are concerned with delays; that the 
value of time as a state variable can be made to change according to high inputs 
(read down requests) to our algorithms. In all three algorithms, if no write is re- 
quested while a read-down lock is set, there is no delay possible. 

In COL scheduling we must set the low transaction's write lock immediately, before 
we invalidate the read-down of the high transaction. Likewise, the scheduling of the 
write operation must precede the orange locking action. If our mechanism for record- 
ing values in the list Wt causes a perceptible delay in returning an acknowledgment 
for the write, then COL scheduling could have a problem. However, the value of a 
write is usually recorded in a cache or recovery log or both, as part of the normal 
write process. If not, we can simply make the write operation always put the value in 
Wt> thus it becomes a constant time operation. We also need to make the action of 
placing a high transaction on the read-down queue part of the action of setting a 
write lock. 

In ROL scheduling, we must also set the write lock immediately and schedule the 
write operation right away so as to make the write a constant time operation. The re- 
lease and resetting of the high transaction's read lock will not interfere with any low 
transaction. Also, in ROL we do not have to deal with read-down queues and lists of 
writes, so it is easier to make ROL secure. 

OOL scheduling is trivially noninterfering; the scheduler only has to override read- 
down locks. Since the orange locked transaction will be aborted, there is no problem 
of getting correct values for the read that is overridden. 
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9. Deadlocks 

Conventional two-phase locking is subject to deadlocks. Two or more transactions 
can obtain exclusive locks (i.e. write locks) that the others are waiting for and none 
of the transactions will be able to proceed. This is because the two-phase nature of 
the algorithm precludes releasing some lock and resetting it later. Deadlocks are 
usually resolved by restarting one of the transactions involved in the deadlock. 

Orange locking has the same potential for deadlocks, within transactions at the 
same security class, for the same reason. Read-down operations across security 
classes cannot cause deadlocks at lower classes because read locks can never delay a 
lower transaction. Transactions that read down via orange locking can be involved in 
deadlocks because they may also interact with transactions in their own security 
class. 

10. Application to the Replicated Architecture 

While orange locking is applicable to kernelized multilevel database systems we are 
interested in its potential for use in concurrency and replica control for the replicat- 
ed architecture [4]. 

The frontend-backend architecture with full replication has been around as a con- 
cept for some time [12]. In its SINTRA1 project, the Naval Research Laboratory is 
currently prototyping several frontend-backend architectures with full replication. 
What will be called in this paper the SINTRA architecture was proposed by Froscher 
and Meadows. 

The SINTRA architecture uses full replication to provide multilevel security. There 
is an untrusted backend database system for each security class. Data from dominat- 
ed security classes is replicated in each backend system. Logically, the user is al- 
lowed to read down and write at the same class but physically the frontend reads all 
data at the same class and writes at the same class and up into dominating classes 
to maintain the replicas. It is important to remember that while the replicated archi- 
tecture uses distributed database system technology, the replicated approach is a 
centralized architecture. These techniques may be adapted to distributed database 
systems but not without careful consideration of additional issues. Figure 1 illus- 

1. Secure INformation Through Replicated Architecture. 
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trates the basic replicated architecture, for the partial order of Figure 2. Notice that 
the low data appears at all backends, left data at the left and high backends, etc. 

frontend 

r~?\ 

KJJ 

high backend 

right backend 

left backend 

«DBSL nggmiip 
low backend 

Figure 1. The Replicated Architecture 

left 

Figure 2. Partial Order for Figure 1 

Several deferred-write algorithms have been developed for the replicated architec- 
ture [3,7,11]. Deferred-write replica control algorithms perform updates on one repli- 
ca at the time the update is requested and defer the other updates until later. In 
contrast, immediate-write algorithms update all replicas simultaneously. 

Immediate-write concurrency control algorithms for the replicated architecture re- 
quire the concurrency control mechanism in general and the lock table in particular 
to reside on the frontend. Obtaining a lock on data item x must lock all replicas of x, 
simultaneously, by a global lock for x acquired on the frontend. This is because the 
write operations must be sent to the backend databases simultaneously. Since or- 
ange locking can provide this kind of concurrency control without introducing signal- 
ling channels, it is suitable for immediate-write concurrency control in the replicated 
architecture. 

11. Conclusions 

Locking is the preferred mechanism for achieving concurrency control in practical 
systems. Conventional locking introduces signalling channels. We have shown three 
different ways of provided channel-free locking for concurrency control: conservative 
orange locking, reset orange locking, and optimistic orange locking. 

The structural differences between these three algorithms are significant. The COL 
approach avoids the possibility of starvation in the theoretical sense. In the practical 
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sense, it also avoids multiple overrides that could reduce the performance of ROL. 
COL is structurally more complex than the other two approaches, in both algorithm 
and data structures. The ROL approach is simpler than COL in algorithm and data 
structure. It can suffer from multiple overrides of its read locks but it does not need 
to abort transactions to deal with overrides. The OOL approach without the local 
workspace has the simplest structure of all. In systems where conflicts are few, this 
simplicity will give it the best performance of three. As the level of conflict (number 
of conflicting operations per transaction) and multiprogramming (number of transac- 
tions active at the same time) increases, determining best performance among the 
three approaches becomes problematic. 

The need to declare read-down sets and write sets in COL is not as limiting as it first 
seems. The declarations prohibit correct scheduling of ad-hoc transactions with COL, 
but not interactive applications. Many interactive DBS applications are supported 
through forms, which are compatible with COL scheduling. 

Some trusted code may be necessary to implement orange locking. The lock tables 
themselves may be multilevel objects and should only be accessed by trusted code. 
How much trusted code is required outside the lock table is also problematic. In 
some systems it may be possible to implement the lock table as a collection of single- 
level objects and the lock manager as a collection of single-level processes. 

Future work should investigate performance issues in greater depth and look into or- 
ange locking implementation architectures with minimal trusted code. Extension of 
four-phase locking to untrusted systems, with an eye to increasing concurrency, is 
something else we plan to investigate. 
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Abstract 

A new transaction model for multilevel-secure databases which use the repli- 
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teria for multilevel-secure databases which use the replicated architecture. Based on 

this criteria, we prove that our algorithms are correct. 

t     Supported by the Naval Research Laboratory under coMract N0001489-C-2389. 

289 



1. INTRODUCTION 

There are several approaches for multilevel database systems which protect 

classified information from unauthorized users based on the classification of the data 

and the clearances of the users. One, the integrity lock approach [5], attempts to com- 

bine encryption techniques with off-the-shelf database management systems. The 

trusted frontend applies an encrypted check sum to data in untrusted backend data- 

bases. Another, the kernelized approach [11], relies on decomposing the multilevel 

database into single level databases which are stored separately, under the control of a 

security kernel enforcing a mandatory access control policy. 

The integrity lock approach is computationally intensive and has a potential 

covert channel. The kernelized approach can yield reduced performance due to the 

need for recombining single level data to produce multilevel data. Motivated by per- 

formance concerns, a replicated architecture approach has been proposed. 

The replicated architecture approach [6] uses a physically distinct backend data- 

base management system for each security level. Each backend database contains 

information at a given security level and all data from lower security levels. The sys- 

tem security is assured by a trusted frontend which permits a user to access only the 

backend database system which matches his/her security level. 

The SINTRA1 database system, which is currently being prototyped at the Naval 

Research Laboratory, is a multilevel trusted database management system based on 

this replicated architecture. The replicated architecture system contains a separate 

database system for each security level. The database at each security level contains 

data at its own security level, and replicated data from lower security levels. 

The SINTRA database system consists of one trusted front end (TFE) and 

several untrusted backend database systems (UBD). The role of the TFE includes user 

authentication, directing user queries to the backend, maintaining data consistency 

among backends, etc. Each UBD can be any commercial off-the-shelf database sys- 

tem. Figure 1 illustrates the SINTRA architecture. 

1.    Secure INformation Through Replicated Architecture 
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Figure 1: The SINTRA Architecture. 

In the SINTRA project, we make the following assumptions: 

(1) All UBD use the same database query language (e.g., SQL). 

(2) The TFE changes the database states of the UBD only through database queries. 

(3) Each UBD performs some type of scheduling which produces a serializable and 

recoverable history. 
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1.1. Merits and Problems for the Replicated Architecture 

At first glance, a database mangement system for each security level may seem 

excessive. However, we think this approach has the following merits: 

• The security policy can be easily enforced by carefully designing interfaces 

among different database systems. 

• Development cost can be reduced because commercial database systems for 

backend computers are widely available. 

• The amount of trusted software can be minimized. 

• Performance can be improved by using optimization and parallelization tech- 

niques which have been developed for conventional databases. This is the case 

because the replicated architecture uses conventional database systems as back- 

end database systems, and uniprocessor or multiprocessor computers can be 

chosen as backend computers without affecting the security policy. 

Despite the above advantages, the replicated architecture has a unique problem. Since 

each UBD in a replicated architecture contains data from lower levels, update transac- 

tions have to be propagated up to higher security level databases. There are some 

problems which are related to this propagation. 

[a] Since lower level update transactions propagate to higher level databases, high- 

level databases can be overloaded with lower level update transactions. This 

creates problems such as slow response to the request of a high-level user and 

longer propagation time for lower level update transactions. 

[b] The propagation of update transactions has to be carefully controlled. If the pro- 

pagation of update transactions is not carefully controlled, inconsistent database 

states among backend databases can be created. Consider this example. Two 

confidential level update transactions Tj and T are serialized in the order of <Tj, 

T> at the confidential level backend database system. Since these two transac- 

tions are update transactions, these transactions have to be propagated to the 

secret level. If these two transactions are serialized in the order of <Tj, T^ at the 

secret level, an inconsistent database state between confidential and secret level 

backend databases may be created. Therefore, the serialization order introduced 

by the local scheduler at the user's session level must be maintained at the higher 
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level UBDs. 

A possible solution to problem [a] is presented in [10]. In this paper we concentrate on 

solutions to problem [b]. 

1.2. Motivation for Another Concurrency Algorithm 

Several concurrency control mechanisms which preserve database consistency 

and security for the replicated architecture have been proposed [4, 8, 12]. Those con- 

currency control algorithms assume that each UBD uses conservative scheduling or 

something similar to preserve the scheduled order of conflicting updates (i.e., never 

abort update transactions from lower security classes). In reality, off-the-shelf data- 

base systems do not generally guarantee this condition. Also such scheduling may 

either pass the burden to the user by asking him to predeclare read and write sets or 

remove the interactive query capability of database system. Hence, this assumption 

poses performance and usability problems for the SINTRA project. 

Also the proposed algorithms use the conventional basic operations, read and 

write, to describe transactions. Traditionally, r[x] and w[yj are used to denote "read 

data item x" and "write data item y," respectively. Data items x and y may be rela- 

tions, fixed-sized pages, or tuples depending on the granularity of concurrency con- 

trollers. In this paper, we propose a new transaction model which is better suited for 

the SINTRA architecture. 

The scheduler for the SINTRA architecture has two kinds of components; global 

and local. The global scheduler enforces data consistency among the UBDs. On the 

other hand, the local scheduler enforces serializability among transactions which are 

submitted to the backend database system. In theory, where the global scheduler exe- 

cutes is not important in this architecture. However, since we expect that I/O will be a 

bottle-neck for this type of architecture, we distribute much of the single level part of 

the global scheduler to the backend computers, depicted in figure 1. The local 

schedulers are the concurrency controllers of the off-the-shelf database systems. 
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The local schedulers typically use locks or timestamps based on the knowledge 

of actual data or physical layout of the data in each UBD. However, the global 

scheduler has very little knowledge about the behavior of the local scheduler or the 

physical layout of data. For example, the global concurrency controller has no 

knowledge about where a specific tuple is located or which physical page should be 

locked. Sometimes the tuples which will be modified are unknown until the computa- 

tion based on existing data is completed. The above factors may force the global con- 

currency controller to use relations as basic units to detect conflicts among transac- 

tions. Such a scheduler will be too restrictive and inefficient because it ignores the fact 

that referencing only a few tuples or few attributes of a relation is not the same as 

referencing the entire relation. 

Based on the observations above, we argue that the traditional transaction model 

is not sufficient to model transactions for this replicated architecture. In this paper, we 

introduce a layered view of transactions. In our model, a transaction can be viewed as 

a sequence of database queries, and each query can be viewed as a sequence of read 

and write operations. Based on this model, we introduce a concurrency control algo- 

rithm which makes no assumption that each UBD uses any particular scheduling tech- 

nique. 

This paper is organized as follows. Section 2 discusses a transaction model for 

the SINTRA architecture. A concurrency control mechanism based on this transac- 

tion model is presented in section 3. Finally, section 4 summarizes the contributions 

of this paper. 

2. THE MODEL 

In this section, models are presented for security, replicated architecture, and 

transaction processing. The transaction model, which is presented in this section, can 

alleviate the difficulties described above in section 1.2. 
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2.1. Security Model 

The security model used here is based on that of Bell and LaPadula [1]. The 

database system consists of a finite set D of objects (data item) and a set T of subjects 

(transactions). There is a lattice S of security classes with ordering relation <. A class 

S. dominates a class S. if Sj > S.. There is a labeling function L which maps objects 

and subjects to a security class: 

L:DuT->S 

Security class u covers v in a lattice if u > v and there is no security class w for which 

U > W > V. 

We consider two mandatory access control requirements: 

(Simple Security Property) 

If transaction T. reads data item x then L(T4) > L(x). 

(Restricted *-Property) 

If transaction T. writes data item x then L(T.) = L(x). 

The simple security property allows a transaction to read data items if the security 

level of a transaction dominates the security level of data items. The restricted *- 

property allows a transaction to write if the security level of a transaction is the same 

as that of data items (i.e., no write-ups or write-downs are permitted). In [8], it is 

argued that write-ups (i.e., Tj cannot write to data item x if L(Tj) < L(x)) are undesir- 

able in database systems for integrity reasons. 

2.2. Replicated Architecture Model 

The system has a TFE, which mediates the access of subjects to objects. The 

TFE contains the trusted computing base (TCB), but not all of the TFE need to be 

trusted. The system also contains a set of single level untrusted backend databases C, 

one for each element of the security lattice. Each backend database Cu contains copies 

of all data items in all databases whose security level is dominated by security level u. 
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Alternatively, if L(x) = u such that x e Cu, then there is a copy of x in each database 

whose security level dominates u. 

2.3. Transaction Model 

We adopt a layered model of transactions, where a transaction is a sequence of 

queries, and each query can be considered as a sequence of reads and writes. For 

example, replace and delete queries can be viewed as a read operation fol- 

lowed by a write operation, insert can be viewed as a write operation, and 

retrieve can be viewed as a read operation. A layered view of two transactions Tj 

and T2 is shown in figure 2. 

1(2) 

<Jl2 ^21 ^22 KD 

rn[z] wn[z]     w12[u]      r13[y]w13[y] r21[z]       w22[y]      r23[x]   w23[x]       l(Q) 

Figure 2: Layered model of two transactions. 

Definition 1. 

A transaction T. is a sequence of queries, i.e., Tj = <qn, qa, ..., qin>. Each 

query, q^, is an atomic c 

replace, or    delete. 

query, q.., is an atomic operation and is one of   retrieve,    insert, 
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To model the propagation of updates produced by a given transaction to higher secu- 

rity level databases, update projection is defined. 

Definition 2. 

An update projection UL, which corresponds to a transaction T{, is a sequence of 

update queries, e.g., Ui = <qi2, qi5,..., qin> obtained from transaction T by sim- 

ply removing all retrieve queries. 

Note that our update projections consist of read and write operations. 

To describe concurrency control mechanisms, we adopt the following definition 

of conflict. 

Definition 3. 

Two operations at the same layer conflict if and only if there is a possible state in 

which they do not commute. Alternatively, two operations conflict if they 

operate on common data and not both are  retrieve operations. 

It is interesting to compare our transaction model to another multilevel transac- 

tion model which appears in [13]. In their model, the low-level conflicts impose con- 

straints on the serialization orders for higher levels. However, in the SINTRA archi- 

tecture, the global scheduler does not have enough information about the conflicts 

which may occur at the local scheduler. Therefore, the global scheduler has to make 

serialization decisions independent of the those of the local scheduler. 

In the following section, we present a concurrency control algorithm using the 

transaction model above. In our concurrency control algorithm, the global scheduler 

works at the query level (i.e., 1(1) in figure 2). 
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3. A CONCURRENCY CONTROL MECHANISM 

In this section, a concurrency control algorithm is presented, which makes no 

assumption about UBD scheduling. In this algorithm, two types of schedulers can be 

identified, global and local schedulers. The global scheduler enforces data consistency 

among different security levels. On the other hand, the local scheduler enforces serial- 

izability among transactions, including update projections, which are submitted to the 

backend database system. The local scheduler deals with layer 1(0) in figure 2, and the 

global scheduler deals with layer 1(1) and upper layers. The global scheduler detects 

conflicts at level 1(1). Therefore, no knowledge of the specific items to be accessed or 

even the granularity of the lower level concurrency controller is required. 

3.1. Algorithm C 

To describe the concurrency control protocol, we need to define several mechan- 

isms: 

• A queue Q is associated with each backend database Cu, where u is a security 

level. The purpose of Q is to maintain a list of update projections which have 

been executed and committed at Cu. The queue is ordered by the serialization 

order of the execution of these transactions at Cu. 

• In addition, there is an untrusted mechanism Ru which maintains Qu and can 

read the contents of Qv for all v which are dominated by u in the security lattice. 

• Another queue A is associated with each backend database Cu. The purpose of 

A is to maintain a list of update projections which come from Qv, where v is 

covered by u, and are waiting to be sent to Cu. The order of update projections 

in A is determined by the concurrency control algorithm which will be 

described later. 

In our algorithm, Qu, Au, and Ru are considered parts of a global scheduler. Since 

mechanism R has to read the contents of Qv for all v which are dominated by u, the 

Ry and the Qu may be located in the TFE. However, Au may be located in the 
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backend system (see figure 1). Also in our algorithm, we say a backend database Cu 

covers C if u covers v in the security lattice. The protocol processes transactions as 

follows: 

Algorithm C: 

At each backend database Cu: 

[1] Primary transactions (that are submitted directly by the user) and update 

projections are received from the global scheduler and submitted to the 

local backend scheduler. 

[2] As local transactions (primary transactions and update projections) are com- 

mitted, a report of their serialization is sent to the global scheduler. These 

reports are sent in an order consistent with the serialization order deter- 

mined by the local scheduler. 

At the global scheduler: 

[1] For each primary transaction Tj submitted to the TFE, T. is dispatched to 

Cu for processing where L(T.) = u. 

[2] Whenever a serialization report for Tj or U. is received from Cu, it is added 

to the end of Qu. 

[3] The Ru scans the queue Qv for those v for which Cu covers Cy. The Ru 

will retrieve an update projection U. from Qv and add it to the end of Au 

when the following condition is satisfied for all v € S: 

•      If C   covers Cy, and U. can eventually appear in Qy, then it does 

appear in the beginning of Qy. 

[4] For update projections in the queue Au, update projections are sent to Cu 

one after another. Specifically, if U. is before U. in the queue Au, then send 

U. and wait until IL is committed at Cu, and then send U.. 

[5]   An update projection is removed from Au once it is committed. 

[6]   If an update projection, U., is aborted then resubmit U. to Cu< 

In algorithm C, we assume that local schedulers produce schedules such that the seri- 

alization order and the commit order of transactions are the same2 (i.e., for any pair of 

transactions T. and T., if T. is committed before T then T-i also precedes T. in the 
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serialization order). However, most database schedulers do not guarantee the above 

condition. The take-a-ticket [7] operation can be used to force any recoverable 

scheduler [2] to produce schedules such that the serialization order and the commit 

order of transactions are the same. The take-a-ticket operation consists of reading the 

value of a ticket prior to commit time, and incrementing it through regular data mani- 

pulation operations. The value of a ticket determines the serialization order. All 

operations on tickets are subject to the local concurrency control. 

Note that algorithm C does not slow down user (primary) transactions. The glo- 

bal scheduler of algorithm C concerns the serialization order of the update projections 

in A at each security level. Concurrency control among primary transactions and 

update projections is the responsibility of the local scheduler in the UBD. 

Also note that Q and R are not needed if the security classes form a com- 

pletely ordered set, since Au satisfies all the requirement of the algorithm. 

3.2. Proof of Correctness 

Many concurrency control algorithms have been proposed for the replicated 

architecture [4, 8, 12]. These papers use one-copy-serializability (or 1SR) [2] as the 

correctness criteria for their concurrency control algorithms. In this paper, we present 

an alternative correctness criteria which we consider more intuitive. Based on this cri- 

teria, we will prove that algorithm C is correct. We will then show that our criteria 

imply one-copy-serializability. 

For the sake of mathematical convenience, in this section, we assume read-only 

transactions have empty update projections which serve solely to mark their position 

in the serialization ordering of all transactions.   Also, in this section, we do not 

2. Consider the history of two transactions, T\ and T\, H, where H = r[x] w;[x] r.[x] Wj[x] w^y] 
c c. This history does not satisfy the rigorousness condition [3]. However, this history will 
be satisfactory for our purpose because the serialization order and the commit order of tran- 
sactions are the same. 
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distinguish the queue Q  at the security class u and the contents of update projections 

in the queue Qu> 

An example will help to clarify our approach. Consider the security lattice in 

figure 3, and two non-conflicting L-level transactions Tj and T.. Also consider an 

Ml-level transaction T , and an M2-level transaction Ty. Let's further assume that Tu 

conflicts with T\ and T., and Ty conflicts with Tj and T-. Since two transactions, T{ and 

T., are not conflicting and our security model does not allow write-down, an execution 

order <Tj, T , T.> at security class Ml and an execution order <T., Ty, Tr> at security 

class M2 will generate the same result on replicas of security class L data. However, 

the reversed order between T. and T. at security classes Ml and M2 will create confu- 

sion in applying our update projection propagation rule. Specifically, at security class 

H, a consistent ordering among Tj, T., Tu, and Ty cannot be determined then 1SR will 

be violated. Consequently, any global scheduler which does not enforce the same 

ordering among transactions at each relevant UBD may fail to produce consistent 

schedules. Thus any algorithm which gives 1SR schedules must preserve the orderings 

at lower levels. 

H 

<^i,Tu,T.>    Ml M2    ^..T^T^ 

<Ti>Tj> 

H>M1>L 
H>M2>L 

Figure 3: A security lattice 

In this paper, we use another criteria which says "preserve the order between 

update projections which is determined at lower security class (or preserve the relative 

order)." We also show that any schedule for this architecture which preserves the 

relative order of update projections satisfies 1SR. 
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Let U = { U. IT. e T} be the set of all update projections and U be the set of all 

strings from U. Then for each pair of security classes u and v of S, for which u > v, 

there is a projection n    : U  -> U which is defined as follows: 

(a) 7iuv(Ui) = UiifL(Ti)<v. 

(b) 7t    (U) = X, the null string, otherwise. 

Definition 4. 

If u and v are in S, with u > v, and 7tuv (Qu) = Qv then we say that the relative 

order between Qu and Qv is preserved. 

For example, if Qu = <Uj, Ufc, U-> and Qv = <V{, U->, and Uk is originated from secu- 

rity class w, where u > w > v, then the relative order of update projections in Qu and 

Qv is preserved because 7tuv (Qu) = Qv = <Ui? Uj>. We can now state our concept of 

correctness for transaction processing more precisely. 

Definition 5. 

For replicated architecture trusted database systems as above, let Qu be the seri- 

alization order of the transactions and update projections committed at Cu. Then 

a concurrency control algorithm is correct if it preserves relative orders for all 

elements of the security lattice. 

Theorem 1 

Algorithm C is correct. 

Proof. 

This is evident from the algorithm, since at each class, the update projections are exe- 

cuted and committed in the same relative order established at lower security class. D 

Briefly, a schedule of transaction execution on a replicated database system is 

one-copy-serializable if it is view equivalent to a serial schedule on a one-copy data- 

base systems. View equivalence requires the two schedules to have the same reads- 

frora and final-writes relationships. Details for this architecture may be found in [4]. 
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Such schedules will be referred to as ML-1SR. Although in the following proofs, we 

use only read and write operations, we could instead use   retrieve,   insert, 

replace, and delete as in our query languages. We denote read and write opera- 

tions on a data item x, or a copy of it xn, of transaction T\, by r^x] and wjx]. 

Theorem 2 

With the architecture as specified above, if each UBD has a local scheduler 

which produces serializable schedules and there is a global scheduler such that 

for all u and v with u > v, the relative order between Qu and Qv is preserved, 

then the global schedule is ML-1SR. 

Proof. 

Let S , where m is the maximal element of the security lattice, determine a serial 
m 

execution order on the one-copy logical database corresponding to the replicated sys- 

tem, and let H be the schedule produced by an algorithm satisfying the hypotheses of 

the theorem. We assert that H is view equivalent to Sm. Clearly, H and Sm have the 

same final-writes, by definition of Sm. We will show that H and Sm have the same 

reads-from relationships using proof by contradiction. 

(1) Suppose T. reads-x-from T. in Sm, but not in H. Let L(l\) = n. Then in Cu, 

Wj[x] precedes wfc[x] and wR[x] precedes r.[x]. But then at Qu, the serialization 

order is T. precedes Tk and Tk precedes T.. This is preserved in Sm, by 

hypothesis, contradicting that T reads-x-from Tj in Sm> 

(2) Suppose T. reads-x-from Tj in H, but not in Sm. Then if L(T.) = n, Tj reads-x- 

from T. in C . But if there is a Tk for which w.[x] precedes wk[x] and wk[x] pre- 

cedes r.[x] in S  . then because L(T ) = L(T.) = L(x) < n, this relationship also 
1 HI «- * 

holds in C   and thus in H. This contradicts our assumption that T reads-x-from 

Tj in H. D 

It is worthwhile to note that if the system has a completely ordered security lattice, the 

relative order between non-conflicting update projections does not have to be 

preserved. It is sufficient to preserve the ordering of conflicting update projections, 

rather than all update projections. This may permit greater concurrency. 
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Corollary 1 

Algorithm C produces ML-1SR schedules. 

Proof. 

This follows immediately from the preceding theorems. D 

3.3. Two Variations 

Step [4] of algorithm C forces update projections to execute serially. However, 

if the global scheduler of the SINTRA system can detect conflicts among transactions, 

we can achieve better concurrency among update projections by taking advantage of 

this knowledge. Since the backend database system usually cannot report whether 

there were conflicts, an accurate analysis technique which can detect conflicts among 

transactions is needed. Data dependence analysis, introduced in [9], can detect 

conflicts among transactions without any knowledge of actual data or physical layout 

of data. Rather, it relies on analysis of the queries themselves, detecting conflicts by 

determining if common data is to be accessed. 

The rest of the section introduces two variations of the algorithm C, optimistic 

and semi-optimistic approaches, which may achieve better concurrency. These varia- 

tions are concerned with how update projections in Au are submitted to the UBD, and 

therefore how committed user transactions and update projections are placed in Qu. 

In our two variations, transactions are executed hoping that the "correct" schedule is 

produced. When it is not, some amount of work already done will have to be undone. 

Hence, processing that is completed will have to be certified before it can be commit- 

ted. 

For the rest of the section, we assume that the serialization order is known at the 

end of each transaction (just before it might be committed). No transaction may actu- 

ally be committed unless the global scheduler certifies it. If a user transaction or an 

update projection is committed, then it will be dispatched to Qu. However, if a user 

transaction or an update projection is executed but not yet committed, the global 
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scheduler will store it in a queue Pu. Pu holds candidates for insertion into Qu. Once 

the global scheduler certifies and commits a transaction then it will be moved from Pu 

toQ„. 

3.3.1. Optimistic Approach 

Generally, the optimistic variation of the algorithm C works as follows. User 

transactions and update projections at any security level are submitted to the backend 

as they arrive. If an update projection is completed out of the submission order, it is 

held in P awaiting certification, along with the completed user transactions submitted 

at that level. When an update projection which is submitted earlier completes and is 

placed in P , data dependence analysis is used to determine whether the serialization 

order determined by P is equivalent (in a technical sense) to a correct (update order- 

preserving) one. If it is, Pu is rearranged to get a maximal prefix which is correct. The 

transactions in the prefix are certified and committed. If Pu cannot be rearranged, all 

transactions in Pu must be rolled back and re-submitted. 

More specifically, the optimistic approach works as follows: 

[a] Submit update projections in Au to UBD as they arrive. 

[b] Commit user transactions and update projections as long as update projections 

are serialized in the order that they are submitted to UBD up to that time (i.e., Pu 

is empty). Once those are committed then dispatch them to Qu. 

[c] If U. should be next to be serialized but U- is already serialized then put U in Pu 

without committing it. Any user transactions or update projections which are 

executed will be put in Pu without committing them until U4 is executed. After 

U. is executed, put U4 into Pu. 

[d] While the first and last transactions in Pu are update projections, do the follow- 

ing steps:. 

(1)   Find an update projection in Pu which should be serialized before any other 

uncommitted update projections. Call that update projection Tn. 
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(2) Test if the first transaction in Pu, Tj (which must be an update projection), 

conflicts with T . If Tj and Tn conflict then abort and remove all transac- 

tions in P , re-submit them, and return to [a]. 

(3) Test if Tj conflicts with any of the transactions from T2 through Tfl r If 

there is no conflict, then move Tj to immediately after Tfl in Pu and go to 

step (5). 

(4) Test if T conflicts with any of the transactions from T2 through Tn]. If 

there is a conflict, then abort and remove all transactions in Pu, re-submit 

them, and return to [a]. Otherwise move Tn to the beginning of Pu. 

(5) While the first transaction in Pu, Tp is either a user transaction or an update 

projection which is in the proper order to be serialized then do the following 

steps: 

•      Commit Tp remove it from Pu and Au if applicable, and dispatch it to 

Qu 

An example of this may be helpful. Consider a situation where the global scheduler 

submits update projections in the order of <Uj, ll> and the serialization order at the 

UBD is <U., Tk, \J> where Tk is a user transaction. Since Uj is serialized before Uj, 

U. cannot be committed until Uj is committed. Now the task is to find if the order of 

either U or U. can be rearranged. The only way this can happen is: 

•      There is no conflict between Uj and II, and either 

(a) There is no conflict between II and Tk, or 

(b) There is no conflict between Tfc and Uj. 

If situation (a) happens then <Tk, Ui? ll> will be the order which will be sent to Qu by 

the algorithm. If situation (b) happens then <U{, U., Tfc> will be the order which will 

be sent to Q . This more complex approach may be justified if conflicts are likely to 

occur more frequently. 

We could improve the performance of this algorithm by minimizing the number 

of transactions which must be aborted. For example, assume that Tj and Tn do not 

conflict but Tj conflicts with Tk and Tn conflicts with Tk+r We could just abort Tk+1 

through T to ensure that Tfl is serialized before Tk+1. 
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3.3.2. Semi-optimistic Approach 

Since the SINTRA security policy prohibits write-up or write-down, the proba- 

bility of conflict between a user transaction at security class u and an update projec- 

tion from the security class v where u > v may be quite small3. Hence if conflicts 

among update projections are detected before those are submitted then there is less 

probability of aborting. 

The semi-optimistic variations is similar to the optimistic one, but rather than 

submitting update projections as they arrive, it checks for conflicts first, thereby 

reducing the likelihood of having to roll back work already done. Specifically, the 

semi-optimistic approach replace the step [a] of the preceding optimistic approach 

with following: 

[al] Detect conflicts among update projections in Au> 

[a2] If two update projections \J-l and U. conflict then submit them serially (i.e., sub- 

mit one and then wait for a commit message before submitting another). 

[a3] If there are update projections in Au which do not conflict then submit one after 

another (i.e., submit one and then submit next update projection without waiting 

for commit message of previous update projection). 

After applying steps [b] and [c] of the optimistic approach, Pu can be tested, as before 

(i.e., step [d] of optimistic approach). The only difference is that there is no need to 

detect conflicts among update projections because those have been already tested. 

Therefore, only steps (1), (3), (4), and (5) from the optimistic approach are required. 

This technique clearly falls between those of the previous two algorithms. The fol- 

lowing table clarifies the different approaches of the three variations. 

3.    The SINTRA security policy allows read-down. Hence, a user transaction at level u can 
conflict with an update projection from level v where u > v. 
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Algorithm Variant 
Submission Process for 

Update Projections 

Mechanism for Insuring Consistent 

Update Projection Ordering 

Pessimistic 

(Algorithm C) 

One at a time None required 

Semi-optimistic Check for conflicts be- 

fore submitting. Main- 

tain submission order 

for conflicting update 

projections. 

Check for conflicts between update 

projections and primary transac- 

tions after execution. Roll back 

and redo as necessary. 

Optimistic As they arrive (No 

checking or delaying) 

Check for conflicts among all local 

transactions after execution. Roll 

back and redo as necessary. 

3.3.3. Correctness of the Variations 

Corollary 2 

The Optimistic and semi-optimistic variations of algorithm C produce ML-1SR 

schedules. 

Proof. 

This is evident from the algorithm, since the global scheduler certifies a schedule only 

if the relative order between Qu and Qv is preserved for all u and v with u > v. D 
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4. CONCLUSIONS 

In this paper, we have presented arguments that the traditional transaction model 

is not sufficient to model transactions for multilevel-secure databases which use the 

replicated architecture. We have proposed a new transaction model for multilevel- 

secure databases. 

Even though several concurrency control algorithms for the replicated architec- 

ture have been proposed, those algorithms assume that each UBD uses conservative 

scheduling or at least assumes schedules preserve the order of update projections 

without indicating how it is done. We present a concurrency control algorithm which 

does not assume that each UBD uses conservative scheduling. Our concurrency con- 

trol algorithm is based on the transaction processing model which is proposed in this 

paper, which controls ordering through other means, outside the UBD. 

Our basic concurrency algorithm, algorithm C, executes update projections seri- 

ally. We also offer two variations of algorithm C, optimistic and semi-optimistic 

approaches, which may achieve better concurrency under a variety of likely condi- 

tions. Our directions for future research are performance comparison among different 

variations under different application scenario. These algorithms are, in fact, being 

implemented in our prototype for the SINTRA project. 
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Abstract 

A multilevel relational database represents information in a multilevel state of 
the world, which is the knowledge of the truth value of a statement with respect to 
a security level. The security semantics of a data classification scheme specifies the 
way that the classification of data in a multilevel relational database corresponds to 
the classification of statements in a multilevel state of the world. We formalize the 
security semantics of tuple-level and element-level data classification schemes, and 
show that they have the same expressive power. We derive entity, referential, and 
polyinstantiation integrity properties from the security semantics, and show that 
existing approaches to polyinstantiation integrity are inappropriate. Our results 
provide the foundation for the multilevel relational model, its integrity properties, 
its operational semantics, and its implementation. 

1    INTRODUCTION 
A state of the world can be envisioned as a set of elements linked together by relationships 
and functions. Information in a state of the world is the knowledge of the truth value of 
a statement [9], which can be either an elementary fact as "Enterprise is on a spy mission 
to Rigel" or a general law as "every ship has a unique destination". 

A relational database captures a finite set of elements linked together by relationships 
and functions. Relationships are represented as relations, and functions are represented 
as functional and referential dependencies. Every tuple in a relation represents the truth 
of an elementary fact, and every functional or referential dependency represents the 
truth of a general law. These are the only information explicitly captured by a relational 
database, from which implicit information can be derived. For example, from the explicit 
elementary fact "Enterprise is on a spy mission to Rigel" represented by the tuple "(En- 
terprise, spy, Rigel)" in relation Starship-Mission-Destination, we can derive the implicit 
information "there is a ship Enterprise". 

A multilevel state of the world is a state of the world together with a classification 
mapping: every piece of information — either an elementary -fact or a general law — 

'This work was supported by U.S. Department of Defense Advanced Research Projects Agency and 
U.S. Air Force Rome Laboratory under contract F30602-91-C-0092 for Inference-Channel Detection and 
Elimination in Knowledge-Based Systems. 

311 



is mapped to a security level in a classification lattice. Information in a multilevel 
state of the world is the knowledge of the truth value of a statement with respect to a 
security level[12], which can be either a classified elementary fact as "it is top-secret that 
Enterprise is on a spy mission to Rigel", or a classified general law as "it is confidential 
that every ship has a unique destination". 

A multilevel relational database is a relational database together with a data clas- 
sification scheme, which is a mapping of every data item in the relational database to 
a security level in a classification lattice. We consider two data classification schemes: 
tuple-level classification and element-level classification1. Tuple-level classification con- 
siders every tuple in every relation to be a data item, while element-level classification 
considers every element of every tuple in every relation to be a data item. 

The data classification scheme of a multilevel relational database is intended to rep- 
resent the classification mapping of elementary facts of a multilevel state of the world. 
More specifically, for every elementary fact in the multilevel state of the world that is 
captured by some data item in the multilevel relational database, the classification of 
the elementary fact under the classification mapping should be equal to the classification 
of the data item under the data classification scheme. Moreover, the classification of 
every data item in the multilevel relational database under the data classification scheme 
should represent the classification of some elementary fact in the multilevel state of the 
world under the classification mapping. In other words, the diagram in Figure 1 should 
commute. This correspondence between the data classification scheme of a multilevel re- 
lational database and the classification mapping of elementary facts of a multilevel state 
of the world establishes the security semantics of the data classification scheme. 

Represent 
Data — **   Facts 

Cd C; 

Classified          Represent Classified 
Data    Facts 

Figure 1: Data vs Fact Classification 

The security semantics of tuple-level classification can be easily specified. Because 
every tuple in a relation represents the truth of an elementary fact in a state of the 
world, the classification of the tuple under tuple-level classification naturally represents 
the classification of the elementary fact under the classification mapping. For example, 
if tuple "(Enterprise, spy, Rigel)" is classified top-secret under tuple-level classification, 
then the elementary fact "Enterprise is on a spy mission to Rigel" is classified top-secret 
under the classification mapping, and vice versa. 

The security semantics of element-level classification is more problematic however. 
xOur results can be easily generalized to multilevel relational databases where a combination of 

data classification schemes is used, such as SeaView which uses both tuple-level and element-level 
classification. 
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Since elements in tuples of a relational database do not have direct correspondence to 
elementary facts in a state of the world, it is unclear what the correspondence is between 
the classification of an element in a tuple and the classification of any elementary fact. 
For example, element "spy" in tuple "(Enterprise, spy, Rigel)" could represent any of 
the elementary facts "Enterprise is on a spy mission", or "there is a ship whose mission 
is spy", or even "there is a ship on spy mission to Rigel". Hence the classification of 
the "spy" element in this tuple under element-level classification could represent the 
classification of any of these elementary facts under the classification mapping. It is 
therefore no coincidence that Thuraisingham chose tuple-level classification in her logical 
formalization of multilevel relational databases [12]. Neither is it accidental that the 
Franconia model of [11] imposes the requirement of one tuple per tuple class. We believe 
that a security semantics for element-level classification should be the foundation of any 
formal semantics of the multilevel relational model based on element-level classification. 

Polyinstantiation integrity has been a subject of continuous debate in the literature[l, 
3, 5, 8, 11]. Although polyinstantiation has been recognized as inevitable in a multilevel 
state of the world[2], no semantic justification has been given. Existing proposals are 
all based on informal arguments to eliminate certain intuitively undesirable relations. 
A restricted polyinstantiation integrity is proposed in [10], which not only introduces 
signaling channels but also causes loss of low information or denial-of-service to low 
users. It is suggested in [6] that whether a relation is desirable should be application 
dependent. While integrity constraints in the standard relational model are intended to 
capture general laws in a state of the world, it is unclear what general laws in a multilevel 
state of the world are captured by various notions of polyinstantiation integrity. 

There have been several proposals on an operational (update) semantics for the mul- 
tilevel relational model[l, 4, 6, 7, 8], all of which impose integrity properties such as 
entity integrity and various notions of polyinstantiation integrity. Since these integrity 
properties are justified only informally[8, 11] (often based on intuition or implementa- 
tion considerations), the operational semantics that derives from them is unavoidably 
controversial. It is worth noticing that the semantics of the standard relational model 
— either model-theoretic or proof-theoretic — is defined completely independent of its 
operational semantics [9]. We think that a lot of the controversy surrounding the oper- 
ational semantics of the multilevel relational model is due to the lack of a formal basis 
of polyinstantiation integrity, and this formal basis should be formulated based on the 
security semantics of element-level classification, rather than the operational semantics. 

Intuitively, element-level classification seems to be more expressive than tuple-level 
classification, because it is more fine-grained in capturing the classification of elementary 
facts in a multilevel state of the world. On the other hand, element-level classification, 
seems to be more complicated and difficult to implement than tuple-level classification. A 
formal characterization of the expressive power of these data classification schemes would 
be invaluable in making design decisions such as which scheme to choose in building a 
multilevel relational database. 

We formalize the security semantics of element- level classification in multilevel rela- 
tional databases. Based on the security semantics, we show that element-level classifi- 
cation is equivalent to tuple-level classification in expressive power. As an application 
of the security semantics, we also show that the various models of polyinstantiation in- 
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tegrity proposed in [11] are inappropriate. The paper is organized as follows. Section 2 
formally defines the standard relational model. We characterize the information captured 
by the standard relational model in Section 3. Section 4 defines the security semantics of 
tuple-level and element-level classification, and shows that these two data classification 
schemes are equivalent in expressive power. We analyze in Section 5 the various models 
of polyinstantiation integrity proposed in [11], and show that they are inappropriate. 
Finally, Section 6 gives some concluding remarks. 

2    RELATIONAL MODEL 

The relational model can be defined formally as follows. Suppose U is a finite set of 
attributes. If X, Y are subsets of U, then XY denotes the union of X, Y. A relation 
scheme R[X, K] is a set of attributes X C U named R with non-empty primary key 
K C X. A schema B = (R,, C) is a set of relation schemes 1Z together with a set of 
well-formed referential dependencies C: 

1.1 every referential dependency in C has the form Ri[Y] <—► Rj, where Ri[Xi,Ki\ and 
Rj[Xj,Kj] are relation schemes in 1Z, Y = K{ or Y C X — K{, and \Y\ = \Kj\; and 

1.2 Y = Z or Y fl Z - 0 for Ä,-, Rj, Rk in 11 and Ri[Y] <-► Rh Ri[Z] «-»• Rk in C. 

The picture in Figure 2 shows a sample database schema, where boxes represent relation 
schemes, attributes on the left of double lines form primary keys, and arrows between 
boxes represent referential dependencies. 

A B C 

D' A' B' F 

Figure 2: A Schema 

Let V be a (possibly infinite) set of values. A tuple over attributes X is a partial 
mapping t[JV]:-Y !-► T> that assigns values from V to attributes in X. For A € X, t[A] 
denotes the value assigned to A by t[X], and t[A] = _L denotes that t[A] is undefined2. 
For Y C X, t[Y] denotes the partial mapping whose domain is restricted to attributes 
in r, and t[Y] = 1 (t[Y] ± J.) denotes that t[A] = ± (t[A] ^ L) for all A € Y. A 
relation r over relation scheme R[X, K] is a set of tuples over X such that the primary 
key integrity property holds: 

2We distinguish between unknown nulls and not-applicable nulls. The symbol ± represents unknown 
nulls. Unknown nulls say that some elementary facts are missing from the database. Because a database 
is not a part of the state of the world that the database tries to capture, unknown nulls do not represent 
elementary facts in the state of the world. 
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2.1 for every t € r, t[K] ^ 1, and 

2.2 for every tx,t2 € r, tx[K) = t2[K] implies h[X] = t2[X\. 

In other words, tuples could be uniquely identified by their values in the primary key 
attributes. For Y C X, r[Y] denotes the set of tuples t[Y] where t 6 r. A database b over 
schema B with relation schemes R\ [X\, K\],..., Rn[Xn, Kn] is a set of relations rj,..., rn 

where r; is a relation over Ri for / = 1,..., n, such that the foreign key integrity property 
holds: 

3.1 for every Ri[Y] ^ Rj in C and *,- € r,-, either U[Y] = J_ or ft-[F] ^ 1, and 

3.2 for every Ri[Y]c-^ Rj in C and £,• € r\ where U[Y] ^ ±, there exists tj € r;- such that 
ti\Y] = tj[Kj]. 

In other words, the foreign key value of every tuple, if non-null, should refer to an existing 
tuple in the referenced relation. V is the universe of b. 

For y C X, the total projection of relation r[X] to Y, denoted as IIyr[X], is defined 
eis the set of tuples t[Y] such that t[Y] € r[Y] and t[Y] ^ JL the nu// extension of relation 
r[F] to X, denoted as r[Y] f A", is defined as the set of tuples t[X] such that t[Y] G r 
and t[X — Y] = ±. For two relations rjXi] and r2[A"2], the natural-join ri M r2 denotes 
the set of tuples t[XlX2] such that t[X{\ € ri[Xi] and <[X2] € r2[X2]. The outer-join 
rioor2 is defined as: 

(n - fa M r2)[Xx]) T XtX2 U (ra M r2) U (r2 - (n cxi r2)[X2}) | Xi^2 

3    ATOMIC DECOMPOSITION 
Every tuple in a database represents an elementary fact. Often, the elementary fact 
represented by a tuple is a conjunction of several smaller elementary facts. For example, 
tuple "(Enterprise, spy, Rigel)" represents the elementary fact "Enterprise is on a spy 
mission to Rigel", which is the conjunction of two smaller elementary facts "Enterprise 
is on a spy mission" and "Enterprise goes to Rigel". In this section, we show how 
to decompose a tuple into a set of smaller tuples, which represents a set of smallest 
elementary facts whose conjunction is equivalent to the elementary fact represented by 
the original tuple. 

Suppose that B = (fc,C) is a schema, the atomic decomposition of B is a schema 
consisting of the following relation schemes: 

• RK[K,K] for every R[X,K\ in K, 

• RY[KY,K] for every R[Y] <-+ R' in C where Y C X - K, and 

• RA[KA, K] for every A € X - K where A $ Y for any R[Y] «-► R' in C; 

and the following well-formed referential dependencies: 

• RY[K] ^ RK and RA[K] *-♦ RK for every RK[K, K],RY[KY, K], RA[KA, K], 

315 



• Rf[Ki] «-> Rf for every £,-[#,■] «^ Ä,- in C, and 

• i^[y] -» Rf for every ifc[y] <-► Rj in C where F C X, - #,. 

The picture in Figure 3 is the atomic decomposition of the sample database schema of 
Figure 2. 

A B C 

Figure 3: Atomic Decomposition 

From every database 6 over B = (R,C) we can construct a unique database 8(b) over 
the atomic decomposition Ba = (%a,Ca) of B as follows. From every relation r € b over 
R[X,K] in 7£, we construct relations rK = HKT, rY — HKYT, and rA = UKA'"' in 6(6) 
over RK ,RY, and i^4 respectively. 

Theorem 1 For every database b over B = (1Z,C), 8(b) is a database over the atomic 
decomposition Ba = (Ra,Ca) ofB. 

Proof    Obviously relations in 8(b) satisfy the primary key integrity property and the 
first requirement of the foreign key integrity property.   Now we show that relations in 
8(b) also satisfy the second requirement of the foreign key integrity property. 
For every R[X, K] in % and t € rY in 8(b), there exists a t' £ r in b such that t = ^[ÄY] 
and hence t' [K] € rK. This means that 8(b) satisfies the referential dependency fi^fÄ-] ^-> 
RK- Likewise we can show that 8(b) satisfies the referential dependency i?A[ÜT] «—»• RK. 
For every #,[#,] «-+ Rj in C and t 6 rf in 8(b), there exists a U € r,- in 6 such that 
t = U[K~i].  Because o satisfies the referential dependency i2,[A",] «-»• i2;-, there exists a 
tj e ^ in 6 such that *,[#,] = <j[if,-]. But tj[Kj] € rf in 8(b), and hence tf € rf. This 
means that o"(6) satisfies the referential dependency Rf [R~i] «-► Rf. 
For every i2j[F] c-* ify in C and < € rj'' in 8(b), there exists a i,- € r,- in 6 such that 
£ = i,[Ä"y] and U[Y] ^ ±. Because b satisfies the referential dependency R%[Y] t-* Rj, 
there exists & tj E rj in b such that i,-[Y] = tj[Kj]. But <J[ä"J] € rf in 8(b), and hence 
£[y] € rf. This means that 6(6) satisfies the referential dependency -RH^I C

~
¥
 Rf ■       ^ 

Similarly, from every database 6° over the atomic decomposition of B, we can con- 
struct a unique database cr(ba) over B as follows. Every relation r € cr(ba) is constructed 
as the outer-join of relation rK with all relations rY and rA: rK ooyrY OOAT

A
- 
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Theorem 2 For every database ba over the atomic decomposition Ba = (/R,a,Ca) ofB = 
{H,C), o~(ba) is a database overB. 

Proof Obviously relations in o-(ba) satisfy the primary key integrity property and the 
first requirement of the foreign key integrity property. Now we show that relations in 
cr(ba) also satisfy the second requirement of the foreign key integrity property. 
For every Ri[Y] «^ Rj in C and U € r,- in a{ba) where Y C X<; - Ki and U[Y] ^ 1, we 
have that i,[ÄY] € rf in ba. Since 6° satisfies the referential dependency Rf[Y] *-► Rf, 
U[Y] € rf in ba. According to the definition of outer-join, there exists a tj € rj in 
<r(6°) such that U[Y] = tj[Kj]. This means that cr(ba) satisfies the referential dependency 
Ri[Y] ^ Rj. 
For every Ri[Ki] <—► Rj in C and U G rt- in 0"(6°), we have that £,[#,] € rf in 6", or 
U[Ki] € rY[Ki] in 6° for some Y C X,-Ku or *<[#,] € r^[Äi] in 6° for some AeX{-Ki. 
Suppose that U[Ki\ € rf [üf,-]. Since ba satisfies the referential dependency Rj[Ki\ «-»• i?f, 
«•[Ä'i] € rf. Likewise, if *,[#,] e rf[K{] then *,[#,] € if. Because ba satisfies the 
referential dependency Rf [Ki\ «-» Ä*, <,-[#,■] € i?^ in 6°. According to the definition of 
outer-join, there exists a tj € rj in cr(ba) such that U[Ki\ = tj[Kj]. This means that cr(ba) 
satisfies the referential dependency i2,[i^i] '—+ Rj.       O 

The existence of these unique constructions from b to 6° and vice versa implies that B 
and its atomic decomposition Ba capture exactly the same elementary facts, and hence 
are semantically equivalent. Notice that every tuple in b is in general broken into several 
tuples in 6°, every elementary fact captured by B is therefore equivalent to a conjunction 
of several smaller elementary facts captured by Ba. It is easy to verify that 6 and a are 
inverse mappings of each other: 

Corollary 3 For every database b over B, o-(S(b)) = b. For every database ba over Ba, 
6(a(ba))=ba. 

Notice that the atomic decomposition of a database does not contain X (by the 
definition of the total projection operator II). This implies that null values in a database 
do not represent elementary facts in a state of the world, which coincides with our 
intuition. 

Furthermore, the atomic decomposition of B into Ba is the finest possible decompo- 
sition, in the sense that every tuple in Ba represents an atomic elementary fact whose 
further decomposition leads to loss of information. For example, tuple "(Enterprise, 
spy)" represents the elementary fact "Enterprise is on a spy mission", while tuples "(En- 
terprise)" and "(spy)" represent the elementary facts "there is a ship Enterprise" and 
"there is a ship on a spy mission" respectively. The conjunction of the latter two is not 
equivalent to the former. 

4    SECURITY SEMANTICS 
A multilevel schema is a pair (B,£), where B = (7£,C) is a schema and C = (Af, ^) is 
a classification lattice consisting of a set of nodes Af and a partial order ■< on M.  A 

317 



multilevel database over (B,£) is a pair (6, K), where 6 is a database over B and K is a 
rfaia classification scheme. Figure 4 shows a classification lattice that we use in the rest 
of this paper. 

Figure 4: Classification Lattice 

4.1 Tuple-level classification 

For multilevel database (b,nt) with tuple-level classification, nt is a mapping where 
Kt(r,t) € M is a node in the classification lattice for relation r G 6 and tuple t G r. 
We define the security semantics of tuple-level classification as follows. For every rela- 
tion r £ b and tuple t € r, /ct(r,2) represents the classification of the elementary fact 
represented by t under the classification mapping of a multilevel state of the world. 

Notice that the data items classified at the same level should satisfy all the functional 
dependencies. This requirement justifies the polyinstantiation property of tuple-level 
classification: 

4 for every r over R[X,K] in 71 and t,t' € r where t[K] = t'[K] and Kt(r,t) = iit(r,t'), 
we have that t = t'. 

A referential dependency Ri[Y] <-+ Rj represents a function from every elementary fact 
represented by a tuple in r,- to some elementary fact represented by a tuple in rj, and 
r,[y] encodes this function in b. Notice that knowing a function between two elementary 
facts ti, tj demands knowing the two elementary facts first. This requirement justifies the 
foreign key security property of tuple-level classification: 

5 for every Ri[Y] ^ Rj in C, U € T\, and tj € rj where U[Y} = tj[Kj], we have that 
Kt(rj^j) di Kt(ri,ti). 

Figure 5 shows a multilevel database with tuple-level classification, over the schema 
of Figure 3. The classification of every tuple is specified to the right of the tuple. 

4.2 Element-level classification 

For multilevel database (6, Ke) with element-level classification, K« is a mapping such that 
Ke(r,t,A) € M is a node in the classification lattice for relation r over R[X,K] in 71, 
tuple f£r, and attribute A € X where t[A] ^ _L As the result, null values in b are not 
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Figure 5: Tuple-Level Classification 

classified, which is natural because they do not represent elementary facts in the state of 
the world captured by 6. 

In order to determine a proper security semantics of element-level classification and 
the necessary security properties, let us consider the atomic decomposition of b into 6° 
and a multilevel database (ba,Kt) with tuple-level classification. Notice that both b and 
6° capture exactly the same elementary facts, and every elementary fact represented in 
b is a conjunction of several elementary facts represented in ba. Hence both ne and /ct 

should capture exactly the same classification mapping of elementary facts in a multilevel 
state of the world. Hence we define the security semantics of element-level classification 
as follows. For relation r over R[X,K] in TZ, tuple i£r, and attribute A € X where 
t[A] ± L: 

• Ke(r,M) = Kt(r
K,t[K]) if A G K, 

• «e(r,i, A) = Kt(r
Y,t[KY]) if A G Y and t[Y] ^ ±, and 

• Kt(r,t,A) = Kt(r
A,t[KA}) Ht[A] ± 1. 

The multilevel database (ba, Kt) with tuple-level classification is the atomic decomposition 
of the multilevel database (6, /ce) with element-level classification. From this definition, 
we derive the key classification property of element-level classification: 

6.1 Ke(r,t,A) = Ke(r,*, A') for all A,A' G K, and 

6.2 *e(r, t, A) = «e(r, t, A') for every R[Y] *-+ i?' in C, all A, A' € F, and t[Y] ^ J_. 

When /ce(r, t, A) = «e(r, i, A
7) for all A, A' € Y, we denote «e(r,i, A) by /ce(r,*, Y). 

From the polyinstantiation property of tuple-level classification, we know that t[K] = 
t'[K) and Kt{r

Y,t) = Kt(r
Y, f) implies t = t' for all t,t' G ry. Similarly <[JT] = t'[K] and 

"^(r^4, <) = Kt(r
A,t') impHes t — f for all t, f G r"4. From these properties we derive the 

polyinstantiation property of element-level classification: 

7 for every r over R[X, K] in "R, tuples t, f 6 r, and attribute A G X — K, we have 
that t[K] = *'[#], /ce(r,<,ir) = ne(r,t',K), and /ce(r,i,A) = Ke(r,t',A) implies 
t[A] = *'[A]. ;   *   '   ■■' 

From the foreign key security property of tuple-level classification and referential 
dependencies RY[K] «-► £*, ^[AT] «-♦ i?K in C°, we know that t[K] = *' implies 
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Kt(rK,t') X Kt(r
Y,t) for all t € rY,t' € rK; and t[K] = *' implies ict(r

K ,t') X K,(rA,f) for 
all i € r*,i' € r^. Prom these properties we derive the primary key security property of 
element-level classification: 

8 for every r over R[X, K] in % and tuple £ € r, we have that «e(r, t, K) < ne{r,t,A) 
for all A e X - K where t[A) ^ 1. 

Again from the foreign key security property of tuple-level classification and the ref- 
erential dependency RY[Y] «-+ Rf in Ca, we know that t[Y] = t' impHes Kt(rf ,t') ■< 
itt(r

Y ,t) for all t € rf,*' € r*. From this property we derive the foreign key security 
property of element-level classification: 

9 for every Ri[Y] «-» Rj in C and tuples 2,- € r,-,tj € rj where ti[Y] = tj[Äj], we have 
that /ce(r, ij,Ä,-) X Ke(r,i,-,y). 

Our properties 2.1, 6.1, and 8 together form the entity integrity as denned in [3, 6]. 
Hence our definition of the security semantics of element-level classification provides a 
semantic justification of entity integrity. Furthermore, our properties 3.1, 3.2, 6.2, and 9 
together provide a formal definition and semantic justification of referential integrity in 
the multilevel relational model. 

Figure 6 shows a multilevel database with element-level classification, over the schema 
of Figure 2. The classification of every element is specified as its superscript. Notice 
that its atomic decomposition is the multilevel database of Figure 5 with tuple-level 
classification. Hence the two multilevel databases are semantically equivalent. The null 
values in Figure 6 have disappeared in Figure 5. 

D E D' A' B' F A B C 4 
4 

ei 
c2 

d?1 

d?2 
ami 

_L 

bmi 

1 ft 
a1 bl c* 

Figure 6: Element-Level Classification 

4.3    Tradeoff 

From our definition of the security semantics of element-level classification, we can con- 
clude that tuple-level and element-level classification schemes have exactly the same 
expressive power, because for every multilevel database with element-level classification, 
we can find a multilevel database with tuple-level classification that captures exactly the 
same information in a multilevel state of the world, and vice versa. 

But tradeoff does exist between tuple-level and element-level classification schemes 
when designing a multilevel database with data classification. On one hand, element- 
level classification is more complicated than tuple-level classification, since classification 
levels are attached to elements rather than tuples. On the other hand, tuple-level classi- 
fication requires more complicated schema to capture the same amount of information as 
element-level classification, making query and update more expensive because the same 
elementary fact captured by one tuple with element-level classification is captured by 
several tuples with tuple-level classification. 
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5    POLYINSTANTIATION INTEGRITY 
As an application of the security semantics of element-level classification, we analyze 
models of polyinstantiation integrity that have been proposed in the literature. As we 
argued before, null values should not be classified in multilevel databases with element- 
level classification. With this requirement, our polyinstantiation property 7 is equivalent 
to the PI-FD property of [11]. Various extensions of this property have been approached, 
the most representative being the three models discussed in [11], to eliminate intuitively 
"undesirable" multilevel relations. 

The polyinstantiation integrity of the SeaView model[3] has an additional PI-MVD 
property, which informally says that for every tuple there should be a tuple for every 
combination of classified non-key attribute values. For the two relations in Figure 7, the 
first would be allowed but the second would be prohibited. However, it is easy to verify 
that the two relations are semantically equivalent, because their atomic decompositions 
are identical. The critical difference between the two relations lies in redundancy rather 
than semantics. Intuitively, the first relation is more redundant than the second relation, 
hence the second should be more desirable than the first. 

Starship# Mission Destination 

Enterprise' Exploration' Tabs' 

Enterprise' Exploration' Rigel'1 

Enterprise Spying'1 Tabs' 

Enterprise Spying'1 Rigel'1 

Enterprise' Exploration' Tabs' 

Enterprise' Spying'1 Rigel'1 

Figure 7: PI-MVD 

The polyinstantiation integrity of the Oakland model[5] has an additional Pi-null 
property, which informally says that any non-key attribute values in two tuples with the 
same primary key value and classification must either be both null or be both non-null. 
For the two relations in Figure 8, the first would be allowed but the second would be 
prohibited. However, it is again easy to verify that the two relations are semantically 
equivalent, because their atomic decompositions are identical. The critical difference 
between the two relations lies again in redundancy rather than semantics. Intuitively, 
the null values in the second relation are redundant because they are implied by the first 
relation, hence the first is more desirable than the second. 

The polyinstantiation integrity of the Franconia modelfll] has an additional PI-tuple- 
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Starship# Mission Destination 

Enterprise' Spying"11 Rigel"11 

Enterprise' Spying"11 1 

Enterprise' _L Rigelms 

Figure 8: Pi-null 

class property3, which informally says that two tuples with the same primary key value, 
the same primary key classification, and the same least upper bound of attribute value 
classification, should agree on their non-key attribute values. For the two relations in 
Figure 9, the first would be allowed but the second would be prohibited. However, it is 
also easy to verify that the two relations are semantically equivalent, because their atomic 
decompositions are identical. The critical difference between the two relations lies also 
in redundancy rather than semantics. Intuitively, the elementary fact "the destination of 
Enterprise is Rigel'1 is recorded once in the first relation but twice in the second relation, 
hence the first is more desirable than the second. Notice that Pi-null does not prohibit 
the second relation. 

Starship# Mission Destination 

Enterprise' Exploration' 1 

Enterprise' Spying'1 Rigel* 

Enterprise' Exploration' Rigel'1 

Enterprise' Spying'1 Rigel* 

Figure 9: Pi-tuple-class 

Finally, the two relations in Figure 10 all satisfy the PI-tuple-class property, although 
the first is redundant while the second is not. It is easy to verify that the two relations 
are semantically equivalent, since their atomic decompositions are identical. However, 
the second relation is not necessarily more desirable, because the null value in the second 
tuple is misleading. By the semantics of null values, it should mean that the mission of 
Enterprise is unknown to A-users, but the elementary fact "Enterprise is on an exploratory 
mission" should be true for Ä-users according to the first tuple. It has been proposed in 

3Contrary to the claim in [11], PI-FD and PI-tuple-class properties are incomparable: neither implies 
the other. 
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[11] that the semantics of null values be modified from "no available data at this level" 
to "no additional data at this level", in order to accommodate the second relation. This 
solution not only further complicates the problem of null values, but also violates the 
principle of standard relational model that all elementary facts about an entity should 
be collected in a single tuple. For the second relation, the elementary facts on Enterprise 
for A-users are scattered in two tuples. 

Starship# Mission Destination 

Enterprise' Exploration' Talos' 

Enterprise' Exploration' Rigel* 

Enterprise' Exploration' Talos' 

Enterprise' _L Rigel'1 

Figure 10: Redundancy vs Null Value 

Hence it is fair to say that, while the essence of the basic polyinstantiation integrity 
property is to capture functional dependencies in a multilevel state of the world, the 
essence of various extensions of the basic polyinstantiation integrity property is instead to 
eliminate redundancy in a multilevel database, although no existing proposals fully meet 
this requirement. In fact, we can show that redundancy cannot be completely eliminated 
without problematic uses of null values, as evidenced by the second relation of Figure 10. 
So there cannot be a perfect polyinstantiation integrity that both preserves functional 
dependency and eliminates redundancy. Notice that redundancy is not an artifact of the 
state of the world that a database is to capture, but rather ein artifact of the database 
itself. In comparison, functional dependencies represent general laws of a state of the 
world. Following the spirit of standard relation model where integrity constraints capture 
real world semantics, we conclude that polyinstantiation integrity should be designed to 
represent functional dependencies only, and should not be overloaded with the task of 
redundancy elimination. In other words, the basic polyinstantiation integrity property is 
appropriate in capturing polyinstantiation integrity in the multilevel relational model. 

6    SUMMARY 
We characterized the information in a multilevel state of the world that is captured 
by a multilevel relational database. Based on the characterization, we formalized the 
security semantics of tuple-level and element-level data classification schemes. Entity and 
referential integrity constraints for the multilevel relational model are derived from the 
security semantics. We also showed that the two data classification schemes are equally 
expressive, and identified design tradeoffs between the two in developing a multilevel 
relational database. 

323 



Polyinstantiation integrity is critical in the multilevel relational model. Besides cap- 
turing the notion of functional dependency, it not only provides the basis of an opera- 
tional semantics of multilevel relational databases, but also serves as correctness criteria 
for implementation techniques such as the decomposition and recovery algorithm. Ap- 
plying our security semantics, we derived the polyinstantiation integrity for element-level 
classification, and showed that existing approaches to polyinstantiation integrity are in- 
appropriate. 

We believe that the controversy surrounding the polyinstantiation integrity, the op- 
erational semantics, and even the decomposition and recovery algorithm in multilevel 
relational databases is primarily due to the lack of a proper security semantics for 
element-level classification. By formalizing the security semantics, our results supply 
the foundation for the multilevel relational model, its integrity properties, its operational 
semantics, and its implementation. 
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INFERENCE SECURE MULTILEVEL DATABASES 

T. Y. Lin 

Mathematics and Computer Science 
San Jose State University 
San Jose, California 95192 

1. INTRODUCTION 

What is database security? It is not computer security applied to 
database systems. Multilevel databases with access control are not 
necessarily secure, because inference threats are rather real in 
database systems [Hinke88J, [Lunt89]. Naturally, we wonder if we 
should or could stop all possible inference attacks. The answers 
are that unfortunately we can not and fortunately we need not. The 
essence of database security research is then to find a practical 
and acceptable level of inference free database systems. For this, 
we define the navigational inference as the process of accessing 
high data via navigating through legally accessible low data. Such 
inference includes the classical inference studied by Hinke and 
Lunt. We believe that the navigational inference is the "proper and 
correct" level of inference to be stopped. So we propose the 
following: 

A multilevel data model is inference secure if 

(1) it is a Bell LaPadula Model (secure under "MAC"), and 
(2) it is navigational inference free. 

In [Lin91], we gave a preliminary report on algebraic inference 
free (navigational inference free) multilevel relational data 
models; We showed that the lattice model is an algebraic inference 
free relational data model. In this paper, we give a full and 
formal report on the work and some of its generalizations. In fact, 
we have shown the converse that an algebraic inference free model 
is the lattice model. This paper is a cumulation of our earlier 
works on security algebra (lattice model), aggregation, and 
rigorous applications of Bell LaPadula model to data models. 

This research is supported by MDA904-91-C-7048 
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1.1. Main Results. 

A data model consists of data structures, operations and 
constraints [TsLo82J. A multilevel relational model R consists of 
multilevel relational structure, relational algebra, and constrains 
(primary key, foreign key, and ..). Let D be the set of primitive 
data in R. The set of information (view instances) stored in R is 
a subset of P(P(D)). Let SC be the lattice of security classes. A 
security map of R assigns each view instance a security class. If 
the security class of each view instance is the l.u.b. of the 
security classes of its elements, then the security map is called 
a lattice model. It is easy to see that a security map is a lattice 
model iff it is a homomorphism which maps the Union operator of R 
to the l.u.b. operator of SC. If the security class of each tuple 
or its subtuple is the l.u.b. of the security classes of its 
elements, then the security map is called a horizontal lattice 
model. A security map is said to be a horizontal homomorphism if 
the security map is a homomorphism on each tuple of R. One can 
easily see that a security map is a horizontal lattice model iff it 
is a horizontal homomorphism. If the aggregation problems of R are 
all removed, then the security map is called an aggregation free 
security map. 

Theorem 7.2.  The aggregation free security map 

[]: P(P(D))  > SC 

is a lattice model, or eguivalently, a homomorphism which maps the 
Union operator of R to the l.u.b. operator of SC. 

Remark: In [Lin90a, pp. 332] we observed that the minimum set of 
relational operators (to generate all view instances) consists of 
Cartesian Product and Union. By using the "pure" set theory, in 
this paper the minimum set is reduced to a singleton, namely the 
Union operator. 

Hinke studied the inference problems via second paths analysis. A 
multilevel relational database is said to be second paths inference 
free if all the second paths have been eliminated. We give such a 
database an algebraic characterization. 

Theorem 7.6. A multilevel relational database is second paths 
inference free iff the security map is a horizontal lattice model. 

In the relational model (not logic based model), one uses the 
relational algebra to navigate, so the algebraic inference is the 
navigational inference. 

Theorem 9.3. A multilevel relational database is algebraic 
inference free iff the security map [] is a lattice model. 

Corollary 9.4. A multilevel relational database is second paths 
inference free if its security map is a lattice model. 
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2. "CLASSICAL INFERENCE" 

Example 2.1. 

This is our interpretation of Hinke's example [Hink88]. We will be 
responsible for our interpretation or mis-interpretation. 

VISITOR-LOG 

Visitor-name Visitor-company Contact Tuple-Class 

Peterson       Hughes John      U 

MEETINGS 

Room   Time   Project-number Contact Tuple-Class 

MH123   13:00      SP92745 John     U 

CONTRACTS 

Proj ect-number Classification  Tuple-Class 

SP92745 

CONTRACTORS 

Proj ect-number 

SP92745 

Secret U 

Company 

Hughes 

Tuple-Class 

S 

According to [Hinke88], if the join actually exits, then the 
database has an inference problem. 

Path 1 below is a tuple in the join of three relations VISITOR-LOG, 
MEETING and CONTRACTS. 

Path 1: 

Peterson—Hughes— John—MH123— 13:00—SP92745—Secret 

Path 1 is accessible to unclassified users, since it is a join of 
unclassified tuples. On the other hand, it has a subpath 

Path 2: 
Hughes SP92745 

which is classified as secret in the relation CONTRACTORS. So 
unclassified users can access high data (Path 2*) via the join of low 
data (Path 1). 
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The next example is taken from [Lunt89] 

Example 2.2. Suppose there is a relation R(A,B,C), where A and B 
are classified as SECRET and C as TOP_SECRET. Further suppose there 
is an integrity constraint 

C = A * B 

Then a SECRET user can "infer" the TOP_SECRET information C via 
join operation. 

In [Hink89], Hinke asserted that "while many second paths may 
exist, it suffices to find just one to perform an inference. If 
this path is closed, then technique can search for any other second 
paths. Ultimately, all such second paths must be eliminated to 
eliminate the inference possibilities from the database." 

Our goal is similar to Hinke, however, approaches are totally 
different. Hinke's approach is geometric in nature, namely, he 
searches for and closes all possible second paths. Our approach is 
algebraic in nature, we structure the security classification 
carefully so that all such second paths are closed from the very 
beginning (never opened). 

3. INFERENCE PROBLEMS AND DATABASE STRUCTURES 

Databases are very rich in structures, for examples, relational 
algebra, data manipulation language (navigational operators), 
functional dependencies, multi-valued dependencies, semantic 
networks, first order logic. One can use these structures to 
compute or derive "new" set of data from "old" set of data. In 
secure computer systems both "old" and "new" data have security 
classes. If the security classes of "old" and "new" set of data are 
not consistent, inference problems arise. In general, 

Inference problems exist if the security classifications of data 
are inconsistent with some database structures. 

Logical inference problems: The security classification of a 
theorem (a derivable formula) in a formal theory should be 
consistent with its proof. If not, then logical inference problems 
arise. 

Algebraic inference problems: The security classification of 
"algebraically derivable data" should be consistent with its 
relational algebraic structure. If not, algebraic inference 
problems arise. 

Navigational inference problems: The security classification of 
data should be consistent with its navigational operators (which 
generate navigational paths). If not, navigational inference 
problems arise. 
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Most fortunately we found some general solutions for algebraic and 
navigational inference problems. 

4. ALGEBRAIC INFERENCE AND CLASSICAL EXAMPLES 

In the literature the terms sensitive data and high data are used 
interchangeably. We will use, instead of sensitive data, the term 
high data. The reason is that the connotation of sensitive data is 
a reflection of human opinion, while high data is an actual 
representation or expression of his opinion in computer systems. 
Computer systems can not detect sensitive data (they can not read 
human mind) unless they are classified high. Sensitive data that 
are miss-classified consistently as low data are certainly 
available to low users; we do not call such "mistakes" or 
"uncovering such mistakes" as inferences. 

Let E, F, G and H be relations and 

E = F * G * H. 

If the security class of E is strictly higher than that of F, G and 
H, then there is an inference problem; we will call it join 
inference. More generally, we have the following proposition. 

Proposition 4.1. Suppose there is a relational algebraic equation 

E = f(F, G, H,...). 

An inference exits if 

[E] > l.u.b. {[F], [G], [H],...} 

where E, F, G, H and ... are relations. Such inference is called 
algebraic inference. 

Proof: A low user who are allowed to access low data F, G, H, and 
 can infer or derive the high data E by the algebraic expression 
f. So there is an (algebraic) inference problem. 

Proposition 4.2. A database is algebraic inference free if 

[E] =< l.u.b {[F],[G],[H],..} 

is true for all relational expression E = f(F, G, H,...). 

Proof: A low user who is entitled to access data F, G, H, and., is 
entitled to access E. So there is no inference problem. 

Example 4.3. The Example 2.1 Revisited. Path 1 is a tuple in the 
following relation (instance) .? > 

NEW RELATION = VISITOR-LOG * MEETING * CONTRACTS. 
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Note that CONTRACTORS (Path 2 is its tuple) is a "sub-relation" of 
NEW_RELATION (Path 1 is its tuple). So there is a projection 

CONTRACTORS =  Proj (NEW_RELATION) 

Thus, we have an algebraic relation 

CONTRACTORS -  Proj (VISITOR-LOG * MEETING * CONTRACTS) 

Their security classifications satisfy the following inequality 

[CONTRACTORS] > l.U.b {[VISITOR-LOG], [MEETING], [CONTRACTS]) 

Thus users can infer the high data, CONTRACTORS, by the algebraic 
relation. 

5.  BELL LÄPADÜLA DATA MODEL (BL-DM) 
— The Data Model As A Bell LaPadula Model. 

In Bell Lapadula Model (BLM), an object or a subject is assigned a 
security class. Now if we apply BLM to database systems, then BLM 
requires that every object processed by database systems should 
have security classification. What are the objects processed by 
databases? 

(1) Intentional Objects: They are objects in Data Dictionary, such 
as, names of attributes, relation Schemas, view Schemas, relational 
algebraic expressions, query statements (relational calculus), and 
constraints. The security class of an intentional object is related 
to its extension. For example, the security class of an attribute 
name should be dominated by the security classes of its elements of 
attribute domain. The security class of a view schema should be 
dominated by its tuple instances. The security class of an 
intentional object protects the existence of a high datum. 

(2) Extensional Objects: They can be a single element, a tuple, a 
view or relation instances. In next section, we will reformulate 
the relational model so that an element is a primitive data, a 
tuple is a set of primitive data, and a relation or view (instance) 
is a set of sets of primitive data. 

A relation (instance) can be generated from elements by Cartesian 
product and Union [Lin91a]. Cartesian product produces the tuples, 
and Union produces the relation instances. In this paper, we 
represent a tuple as a union of elements. Thus a relation instance 
is a set of sets of primitive data. We reduce "the generating 
operations" of relational structures into a single operation, 
Union. The security classification of extensional objects can then 
be derived from Union. This give us a consistent way of classifying 
all the .extensional objects. However, in some occasion, we may 
emphasize the Union within a tuple, then we will term it as 
inhomogeneous Union. In the next section, we will give an 
exposition on this "new" representation of the relational model. 
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6. SET REPRESENTATION AND SECURITY CLASSIFICATIONS 

In this section, we will show that all relation instances can be 
generated by the operator, Union, on the primitive data. 

6.1. Tuples as Sets 

We will reexamine the construct of Cartesian product and interpret 
the ordered tuples as a set of "inhomogeneous" elements. 

Let Aj be attribute domains. Strictly speaking, Aj plays two roles, 
one is the name of the attribute domains, another is the set 
itself. We may use Name(Aj) or Domain(Aj) to denote one of these 
two roles whenever there is some danger of confusing. 

Let F be a family of attributes. That is, 

F = {A1,A2,...Aj, }={Name(Aj): j =1,2..} 

Let S be the union of all Aj's. 

S = U{Aj: j=l,2,...} = U{Domain(Aj): j=l,2..} 
= Al U A2 U...U Aj,... 

The Cartesian Product of Aj's 

P = Al x A2 x Ai x — 

consists of all possible functions 

t: F > S, 

where t(Aj) is an element of Aj. 

There is a one-to-one correspondence between the function t and its 
graph: 

t < > {(Aj, t(Aj)): j=l,2,...} 

The function t is called ordered tuple. The graph is a set of 
attribute value pair (Aj, t(Aj)) [Hsaio70], [Date90]. 

6.2. Relations and Power sets 

Let D, called primitive data, be the set of all attribute value 
pairs of a database. Then a tuple, as shown above, is a set of 
attribute value pairs. So tuples are elements of P(D), the power 
set of D. Since a relation (instance) is a set of tuples. So, a 
relation instance, as well as a view instance, is an element of 
P(P(D)). A database returns view inatanqes to a user's query. In 
other words, a database provides information through a set of view 
instances. Thus information supported by a database is a subset of 
P(P(D)) [Lin91a]. A datum can be interpreted as a view with a 
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single datum. A tuple is a view with single row. So both D and P(D) 
can be identified as subsets of P(PD)). The collection of all view 
instances are the extensional objects. 

Example 6.2.  Let E be a relation. 

E = US-TROOPS 

city CL troops! CL 

Rome S 755 S 
Athens S 345 S 
London C 231 C 
Berlin S 500 S 
Paris S 500 S 

The relation E is a set of ordered tuples, namely 

E = { Rome X 755, 
Athens X 345, 
London X 231, 
Berlin X 500, 
Paris X 500 }, 

where ordered tuples are denoted by Cartesian product X. 

We represent these tuples as sets of attribute pairs: 

tl={(city, Rome), (troop*, 755)}, 
t2={(city, Athens), (troop*, 345)}, 
t3={(city, London), (troop*, 231)} 
t4={(city, Berlin), (troop*, 500)}, 
t5={(city, Paris), (troop*, 500)}. 

Then E is a set: 

E - {tl, t2, t3, t4, t5} 

In other words, the relation E is a set of sets. A closely related 
set, denoted by Set(E), is the union of all tuples: 

Set(E) = { (city, Rome), (troop*, 755), 
(city, Athens), (troop*, 345), 
(city, London), (troop*, 231), 
(city, Berlin), (troop*, 500), 
(city, Paris), (troop*, 500) } 

The Set(E) and E give us basically the same primitive information; 
they have the same primitive data. Strictly speaking E has more 
information than.Set(E) , it has the intermediate structure, namely, 
tuples, which may carry some information that Set(E) can not carry. 
For security purpose, they carry the same secrecy labels. 
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7. SECURITY MAPS FOR THE RELATIONAL MODEL 

7.1. Implied Labels 

SeaView classifies individual elements, TRW and many others 
classifies tuples. We would like to point out that either approach 
give us some form of element level labeling. Suppose we are given 
an unclassified tuple in which there is no label on any individual 
element: 

MH123   13:00     SP92745  John   U 

Note that since the tuple is unclassified, an unclassified user can 
access any element of the tuple. This element level accessibility 
implies that each element is effectively "unclassified". We will 
call this effective class the implied label or implied security 
class. Hence whatever the security classification scheme is, all 
elements have labels or implied labels. So it is legal to assume 
that in either approach an element level labeling of primitive data 
is given. That is, a security map 

[]: D > SC 
is given. 

7.2. Aggregation Problems 

The secrecy semantics of a collection of data often requires us to 
assign the collection a higher security class. Such problems are 
referred to as aggregation problems. There are several proposals to 
solve such problems. 

(1) Hinke: Upgrade some elements in the given aggregate. 
(2) Lunt: Upgrade all elements. 
(3) LDV : Upgrade some elements depending on the past history. 
(4) Lin: There are two parts in this solution* Part one is the 
solution for a single aggregate: The whole aggregate is classified 
high, and the internal data can only be seen via aggregate. So 
effectively, it is equivalent to Lunt's. For Part two, there is an 
algorithm APR to remove all "redundant" aggregates. The selected 
aggregates are called marked aggregates. 

If we apply Lunt's or Hinke's solution to these marked aggregates, 
we solve the aggregation problem with minimum upgrading. In the 
rest of this paper, we assume that all aggregation problems are 
solved by this Lin-Lunt or Lin-Hinke methods. So all databases have 
no aggregation problem. 

7.3. Algebraic Classifications Maps 

A security map on primitive data 

[]: D > SC 

is given, say by DoD. 
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Let CO be the set of all information stored in the database; it is 
the set of all view instances [Lin91a]. Now we will extend the 
security map to 

H[]: CO > SC, 

which is defined by 

H[X] ■ l.u.b.{[x]: x in Set(X)} 

Intuitively, it is the l.u.b. of the labels of all primitive data 
appeared in X. The H in H[] denotes both the High water mark and 
the algebraic Homomorphism determined by []. 

Proposition 7.1. H[] is a homomorphism from a subset CO of P(P(D)) 
to SC which maps the Union operator to the l.u.b. operator of SC. 

Proof: Let X and Y be two elements in CO. Then 

H[X U Y] - l.u.b.{[z]: z in Set(X U Y)} 

« l.u.b.{[z]: z in Set(X) U Set(Y)} 

= l.u.b.{[z]: z in Set(X)} U l.u.b.{[z]: z in Set(Y)} 

= H[X] # H[Y], 

where # is the l.u.b. operator in SC. 

Definition 7.2. The security map H[] is called the lattice model or 
the algebraic classification map. 

Next we will investigate general security maps which are defined on 
CO. Let an arbitrary security map be 

Sec: P(P(D)) (partial) > SC 

From the secrecy semantic, the security class of a subset should be 
dominated by that of the whole set. From BLM, all information 
should be classified. More precisely, the security map Sec should 
satisfy the following constraints: 

(1) Monotonicity constraint: Let A, B be two elements in P(P(D)). 

Sec(A) >- Sec(B) if Set(B) is a subset of Set(A) 

(2) Totality constraint: Sec is defined on CO(all view instances). 

The constraint (1) is implied by the secrecy semantics, (2) is 
implied by Bell LaPadula Model. 

In Section 7.2, we have assumed that all aggregation problems have 
been removed (otherwise, there are inferences via aggregates). So 
we have the following constraint. 
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(3) Aggregation free constraint: Let X be an element of P(P(D)). 

Sec(X) = l.u.b. {[xj: x in X}, 

where Sec(x) is denoted by [x]. 

One can easily show that (3) implies (1):  If X is a tuple, then 

Sec(X) = l.u.b.{[x]: x in Set(X)}. 

If X is a view instance, then 

Sec(X) = l.u.b.{[x]: x are tuples in X} 
= l.u.b.{[x]: [x] = l.u.b {[t]}} 
= l.u.b.{[t]: t in Set(X)} 

So 

Sec(B) =< Sec(A) if Set(B) is subset of Set(A) 

Proposition 7.2. The security map, which satisfy the three 
constraints, 

Sec: P(P(D)) (partial) > SC 

is the lattice model H[] (the algebraic classification map). 

Proof: Let X be an element in P(P(D)) (i.e., a view instance). 

X = {tl,t2, tn) 

where ti = {eil, ei2,...} i= 1,2,.. are tuples, where eij are data 
in D. By(3), (Sec(x) is denoted by [x]) 

[ti] = l.u.b.{[eil], [ei2], } 
= [eil] # [ei2] #   

Again, by (3) 

Sec(X) = [X] = l.u.b.{[tl], [t2],...[tn]> 
= [tl] # [t2] #.. # [tn] 
= ([ell] # [el2] #  ) # ([e21] # [e22] #  ) 
# ([e31] # [e32] #  )   
= l.u.b {[eij]: eij in Set(X)} 
= H[X] 

Since this is true for any X in CO, so we have proved that 
the two security maps are equal. 

Sec = H[] 

In other words, all security maps which ..satisfy the three 
constraints are precisely the algebraic classification map (the 
lattice model). 
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7.4. Second Paths Inference Free Security Maps 

Hinke uses second paths to analyze inferences. We will show that 
"second paths inference free" databases are "horizontal" lattice 
model. 

Let a security map 

S: CO > SC 

be given, where CO is a subset of P(P(D)). Suppose that we have 
found all the second paths for all possible pairs of data in D 
[Hink89]. And suppose that each second path is closed up by 
upgrading some elements in D. Then we have a new security map 

S1: CO > SC. 

in which there is no second path inference. Let the restriction of 
S' to D be []'. Then we have several propositions. 

Proposition 7.3. Let A, B be two elements (tuples) in P(D).  Then 

S«(A) >- S'(B) if B is a subset of A 

Proof: Let B be a subset of A. Let UN be the maximal element in 
P(D) that contains A. Then the monotonicity constraint holds for 
all subsets in UN. Otherwise, one can easily found a second path 
inference; This can be accomplished by mimic the arguments of 
Hinke's Example 2.1. This is true for all such UN's in P(D). 

The conclusion of 7.3 is called the horizontal (tuple) monotonicity 
constraint. 

Proposition 7.4. Let X be an element of P(D). 

S'(X) - l.u.b. {[x]: x in X}, 

Proof: Assume X = {xl,x2,...} is an aggregate. Then we can infer X 
by visiting xl, x2,.. in this order. So aggregation free constraint 
(3) is satisfied for element in P(D). 

The conclusion of 7.4 is the horizontal (tuple) aggregation free 
constraint. 

Definition 7.5. A security map which satisfies the horizontal 
aggregation free constraint for each tuple or its subtuples is 
called a horizontal lattice model. 

Theorem 7.6. A multilevel relational database is second paths 
inference free iff its security map is a horizontal lattice model. 

Proof: Assume {xl,x2,....y} is a second path for the direct path 
{xl, y}. Then the maximal tuple UN that contains {xl,y} is not 
horizontal aggregation free. Hence the security map is not a 
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horizontal lattice model. Conversely, if {xl, y} has label higher 
than that of {xl, x2,...y}, then there is a second path inference. 

Remark: Let X = {tl,t2,..} be an element in P(P(D)), where tl are 
tuples. If [X] > l.u.b.{ [tl], [t2],...}, then X is a vertical 
aggregation. 

Definition 7.7. A security map which satisfies the vertical 
aggregation free constraints for all view instances is called a 
vertical lattice model. 

Theorem 7.8. If the security map Sec is a horizontal and vertical 
lattice model, then Sec is the lattice model. 

Proof: Let X = {tl,t2,...} be a set of tuples. By assumption, each 
ti is a horizontal lattice model. So 

Sec(ti) = l.u.b.{[eil],[ei2],...} 

where ti = {eil, ei2,...}, and each eij is an element in D. 

Sec(X) = l.u.b. {[tl],[t2],...} 

=([ell] # [el2] # ...) # ([e21] # [e22] #..) 
# ([e31] # [e32] # ...) #   
= l.u.b {[eij]: eij in Set(X)} 

= H[X] 

In other words, the Sec is the lattice model. 

7.5. Examples 

Example 7.9. (Continue from Example 6.2.) 

The security class of an element is that of the corresponding 
attribute value pair, for example, 

[Rome] = [(city, Rome)] = S. 

The security class of a tuple is the l.u.b. of the security classes 
of its elements, for examples, 

[tl] - [(city, Rome)] # [(troop#, 755)] 

[t2]= [(city, Athens)] # [(troop#, 345)], 

where # is the l.u.b. operator of the security lattice SC. 

The security class of a relation is the l.u.b. of the security 
classes of its tuples 

[E] =  [tl] # [t2] # [t3] # [t4] # [t5] 

=  [(city, Rome )]  # [(troop*, 755)] # 
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[(city, Athens)] # [(troop#, 345)] # 
[(city, London)] # [(troop#, 231)] # 
[(city, Berlin)] # [(troop*, 500)] # 
[(city, Paris)] # [(troop*, 500)]. 

-  [Set(E)] 

If there is no regularity in the assignment of security classes to 
every possible subsets of E, it is an exponential problem [Lin89a]. 
Since [] is a homomorphism, this problem has been avoid. Note that 
careless assignment leads to violations of monotonicity constraint 
and create inference problems. 

Example 7.10. In Hinke's example, there are two inference paths. We 
can represent paths by collections of data, namely, 

Path 1 = {Peterson, Hughes, John, MH123, 13:00, SP92745, Secret} 

We should use attribute value pairs, for example, Peterson should 
be (person, Peterson). However, in this example, the attributes are 
obvious, so we suppress them from our presentation. This path is 
joined by unclassified data, so 

[Path 1] = U 

However, there is a second path from CONTRACTOR table 

Path 2= {Hughes, SP92745} 

and its security class is 

[Path 2]= S 

This security map violates the monotonicity constraint of our 
model. Therefore Hinke's example can not occur in our model. To 
close up the inference path, Hinke has to upgrade some of the 
tuples which contains either Hughes or SP92745. 

Analysis: Although TRW only classifies tuples, there is an implied 
security class for each element. Let us examine the VISITOR-LOG and 
MEETING tables. The implied security classes of 

(2)   'Hughes' and 'SP92745' are U. 

On the other hand, the label of Path 2 - {Hughes, SP92745} is S. 
So Path 2 is an aggregation. Using either Hinke's or Lunt's method 
we can reclassify the data, so the database become a legal member 
of our model. To avoid over classifications, we upgrade the element 
labels, and the tuple label will be the l.u.b. First, we assume 
that each element receives an implied label. 
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Case 1. Lunt's upgrading: All elements in Path 2 will be upgraded. 

VISITOR-LOG 

Visitor-name Visitor-company Contact Tuple-Class 

Peterson U    Hughes S John U S (was U) 

MEETINGS 

Room   Time   Project-number Contact Tuple-Class 

MH123 U 13:00 U   SP92745 S John U S (was U) 

Classification  Tuple-Class 

Secret U       S (was U) 

CONTRACTS 

Proj ect-number 

SP92745  S 

CONTRACTORS 

Project-number   Company    Tuple-Class 

SP92745  S     Hughes S     S 

Case 2. Hinke's upgrading: We have two choices. For this particular 
example, SP9274 will be the right one to be upgraded. VISITOR-LOG 
is the same as original. 

VI SITOR-LOG 

Visitor-name Visitor-company  Contact   Tuple-Class 

Peterson U    Hughes U      John U    S (was U) 

Other tables are the same as case 1. 

Now with this new security classes, the database is algebraic 
inference free. 

However, users might find that his data are over-classified. Note 
that over-classification is a result of the aggregation problem, 
not the inference. In this case, users may have to decide between 
over-classification or inference insecure, 

8. RELATIONAL OPERATORS ON BL-DM 

Let R(A1,A2,...) be a relation instance. Let R(Akl,Ak2,..), 
be a subrelation, where Akl, Ak2,... is a subsequence of Al, A2,.. 
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(1) Projection 

P: R1=R(A1,A2,...)  > R2=R(Akl,Ak2,..) 

be a projection. The security classes of these relations satisfy 

[R(AlfA2f...)]  
>= [R(Akl,Ak2,..)] 

On The Surface P is a downward flowing operation. 

(2) Selection 

S: R1(A1,A2,...)  > R2(A1,A2,..) 

be a selection, where R2 is a subrelation (instance) of Rl. The 
security classes of these relations satisfy 

[R1(A1,A2,...)]  >= [R2(A1,A2,..)] 

Again the selection S is a downward flowing operation. 

Therefore both S and P are "illegal" operations. So S and P have 
to be "trusted subjects". SeaView solved this by its architecture. 

8.1. SeaView type solution 

In SeaView, the data is stored in base relations, so both R and S 
are views. The operation S does not transfer data from R to S, it 
transfers data from base relations of R to base relations of S. 
So S transfers data "horizontally" (same level of security). 

S or P 
R1     >     R2 

! ! 
Base table  >  Base table 

Therefore SeaView's architecture is very important for multilevel 
data model. Without SeaView's architecture, all relational 
operations are trusted subjects. Hence their codes has to be 
trusted too. (Note that trusted codes is not trusted subjects). 
Such a large trusted codes may become impossible. Some commercial 
multilevel database systems which are developed without SeaView 
type architecture may have difficult to show that their models 
satisfy the security requirements setforth by Bell LaPadula Model. 

9. ALGEBRAIC INFERENCE FREE DATA MODELS 

Proposition 9.D. [Set(R)]=[R] 

Proof: Let R - {tl,t2,...} be a set of tuples. Let tl={al,,a2,..} 

342 



Since [] is a homomorphism, we have 

[tl] = [al]#[a2]#... 

so the security class of R, 

[R] = [tl] # [t2] #... 
= ([al]#[a2]#...)#(  
=[Set(R)] 

(Al) Cartesian product Rl X R2. 

Observe the following relation: 

Set(Rl X R2) = Set(Rl) U Set(R2) 

Proposition 9.1.    [Rl X R2] = [Rl] # [R2] 

Proof: [Rl X R2]=[Set(Rl X R2] = [Set(Rl) U Set(R2)] 
=[Set(Rl)] # [Set(R2)] = [Rl] # [R2]. 

(A2) Union 

Proposition 9.2.  [Rl U R2] = [Rl] # [R2] 

The same proof for the Cartesian product works here too, 

(A3) Intersection 

[Rl n R2] =< l.u.b {[Rl], [R2]} 

(A4) Difference 

[Rl \ R2] =< [Rl] 

(A5) Divide 

[Rl / R2] =<  l.u.b {[Rl], [R2]} 

(A6) Projection 

[Proj Rl to  ] =<  [Rl] 

(A7) Join 

[Rl * R2] - <  [Rl X R2] = [Rl] # [R2] 

(A8) Selection 

[Select Rl, where WFF] =< [Rl] 
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These analyses lead us to conclude the following. 

Theorem 9.3. A multilevel relational database is algebraic 
inference free iff the security map [] is a lattice model. 

Corollary 9.4. A multilevel relational database is second paths 
inference free if its security map is a lattice model. 

Proof of 9.3: To simplify our narration, we will say that the 
resulting new relations of any relation operations is an output (of 
the operation). The original relations before the operation is 
called the input(of the operations). 

To prove this theorem, we only need to show that the security class 
of an output is always less than or equal to the security class of 
an input, that is, 

[output] =< [input] 

An input may have several relations, the security class of an input 
is the l.u.b. of all these input relations. 

The results in Al - A8 confirm the inequality for every relational 
operation. So we have proved that it is algebraic inference free. 

Conversely, an algebraic inference free data model implies that it 
is aggregation free (since union is a relational operator). An 
aggregation free data model has the lattice model as its security 
map. 

Let us restate the theorem in other forms. 

Corollary 9.5. Let 

E = f (F, G, ...) 

be an expression of relational algebra. Then 

[E] =< l.u.b. {[F], [G],...} 

Verbally, the theorem concludes that 

[Relational operations on F, G, ..]  =< l.u.b. {[F],[G],..} 

10. NAVIGATIONAL INFERENCE 

Given a multilevel database system DBS (not necessary relational). 
Let Opl, Op2,  be the navigational operators in its data 
manipulating language. Navigational operators do not involve 
updating, deletion or insertion. 

If the security class of the output of a navigational operator, say 
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Opi, is strictly greater than that of its input, then there is a 
navigational inference. Or more formally 

Proposition 10.1. Suppose for some k 

[input of Opk] < [output of Opk]. 

Then there is a navigational inference. 

Proof: A lower user inputs some low data to the Navigational 
Operator Opk. By assumption Opk produces some high data to the 
lower user. In other words, the low user can derive or infer the 
high data by navigation. This is a navigational inference. 

Example 10.2. The navigational operators of Information Management 
System of IBM are GN (get_next), GNP, GNH, GNPH. 

Proposition 10.3. A multilevel database is navigational inference 
free, if [output of Opi] =< [input of Opi] for all i. 

Proof: Since the security class of the output of any navigational 
operator is always lower than that of its input data, a low user 
can not infer any high data via navigational operators. There is no 
inference problem. 

11. THE TOWER OF POWER SETS 

If we identify x with the singleton {x}, D is a subset of P(D). We 
will embed D to P(D), similarly P(D) to P(P(D)), and so forth. A 
finite sequence D, P(D), P(P(D)),... (with all the identifications) 
is a monotonic increasing sequence of sets. The nth terms will be 
called the tower of power set of order n. Let PD be the union 
(direct limit) of this sequence. Then D, P(D), P((D)),... are 
subsets of PD. 

Definition 11.1. The set PD is called the tower of power sets. The 
nth term is called the tower of power set of order n, in short, 
order n power sets, PDn. 

Proposition 11.2. An instance of a data model corresponds to an 
element of PDn for some n. 

Example 11.3. An instance of a relational database corresponds to 
an element of PD2 or a subset of PD1. 

Each relation, say E is a set of tuples and a tuple is a set of 
primitive data. 

Example 11.4. An instance of object oriented database corresponds 
to an element of PDn for some n. 
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11.1. Set(E) 

A subset in PD is a finite tower of primitive data. It is 
convenient to express the finite tower as subset of D. Roughly, we 
are taking the "union" of the tower. In Example 6.2, we give an 
example of Set(E). We will proceed more formally here. 

Let E be an element in D 

SetO(E) = {E} 

Roughly, SetO(a primitive datum) is the singleton of the datum. 

Let E be an element in P(D)=PD1, we define 

Setl(E) = E 

Example 11.1. Let E be a tuple, say tl={(city, Rome), (troop#, 
755)} 

E - tl = {(city,  Rome), (troop#, 755)}, 

Setl(E) = tl 
■ {(city,  Rome), (troop#, 755)}, 

Let E be an element in P(P(D))=PD2, then 

Set2(E) = Union { x: x is an element in Setl(E)} 

Example 11.2. Let E be the relation in Example 6.2. 

E = {tl, t2,  , t5} 

Set2 (E)  = Setl(tl) U Setl(t2)   Ü Setl(t5) 
= tl U t2 U .... U t5 
= { (city, Rome), (troop#, 755), 
(city, Athens), (troop#, 345), 
(city, London), (troop#, 231), 
(city, Berlin), (troop#, 500), 
(city,  Paris), (troop#, 500) } 

In general, let E be an element in PD(i+l) = P(PDi), then 

Set(i+1)(E) = Union { Seti(x): x is an element E} 

We will simply and vaguely use Set for Seti for any i. Its meaning 
should be clear from its context. 

11.2. Security Maps for The Tower. 

Let D be the. primitive data (attribute value pairs) of a database. 
Let SC be the lattice of security classes. Primitive data are the 
data that can not be derived by other data. So their security 
classes have to be given by human. Therefore we assume that the 
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security labels of the primitive data are given, that is, the 
security map 

[]0: D > SC 

is given, where []0 is called Oth order security map. 

BLM requires every extensional object has to have a security 
labels, so we need to extend this map to a subset of PD, namely, 
a partial map 

(1)      []$: PD (partial map) > SC. 

where []$ is the ultimate security map (of infinite order). 

We will extend the security map []0 level by level. 

Step 1: The label of a subset is the l.u.b. of the labels of its 
elements: 

[]l: P(D) (partial map) > SC 

Step 2: The label of a set of subsets is the l.u.b. of the labels 
of its subsets: 

[]2: P(P(D)) (partial map) > SC 

Step i: Similarly, we can define []i for any i, i=l,2,.. 

Final Step: Note that D, P(D), P(P(D)), and   are all identified 
to some subsets of PD. Taking the union (direct limit) of all the 
previous []'s, we have our final security map: 

[]$: PD (partial map) > SC 

Since it is a finite tower, note that []$ is equal to some []i for 
some finite i. 

Proposition 11.4. []$(X) = []l(Set(X)), for all X in PD. 

12. NAVIGATIONAL INFERENCE FREE MULTILEVEL DATA MODELS 

In this section, we will investigate the navigational inferences on 
multilevel databases, especially on MLS-OODB (multilevel object 
oriented databases). Some MLS-OODB's are based on the assumption 
that the security classification of every object is given. Such an 
assumption is not legitimate in the sense that its construction is 
not trivial. To see my point, let us assumed that a multilevel 
database application is modeled by both MLS-RDB (multilevel 
relational database) and MLS-OODB. Let D be the primitive data. An 
instance of an object in MLS-OODB corresponds to an element in PD. 
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Thus the (extensional) security map of a MLS-OODB is a partially- 
defined function 

S: PD  > SC 

where SC is the poset of security classes and PD is the tower of 
power sets. The secrecy semantics requires that S is monotonic. The 
map S that satisfies this monotonic constraint is called a 
compatible security map. Some authors simply assume that such a 
map exists and it satisfies the monotonicity constraint. With all 
the semantic constraints on MLS-OODB, such compatible security map 
is not easy to construct. We believe that a legitimate MLS-OODB 
should have an algorithm to construct such security map. Another 
group of authors simply assume a security map exits without any 
compatibility assumptions. For such MLS_OODB, there will be a lots 
of inference channels. An inference secure MLS-OODB has to have a 
compatible security map. The fundamental question is whether such 
a compatible security map exits. We believe that the security map 
[]$ constructed is one such map for all extensional objects in MLS- 
OODB. 

13. CONCLUSIONS 

The results are somewhat surprising. But it is a natural 
consequence of the theory of security algebra. Note that in 
security algebra, a derived data is assigned a security class by 
its algebraic relation. So there is no inconsistency in security 
classifications among variables/data of relational algebraic 
equations. Therefore there is no algebraic inference. In 
literature, aggregation and inference problems are separated, 
however, from our point of view the two notions are in one. A good 
solution for aggregation problems always implies a good solution on 
inference problems. Finally we should stress that we have no claims 
on logical inferences. 
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Abstract 

Mandatory access control emphasizes the security classification of data and establishes 
privileges for users based on their ability to read and write data at different levels. This 
is contrary to discretionary access control (DAC), where the privileges are assigned to 
users based on their particular needs within the application. User-role based security 
(URBS) has been proposed as a means to support DAC and considers the responsibilities 
of users within the application as the guiding factor for determining privileges. Our 
recent work has explored URBS for an object-oriented design model via a definitional 
and analytical framework, where security designers can define the different user roles, 
assign privileges, and evaluate their established security policy against the application's 
intended requirements. This paper extends our previous work in three ways. First, 
we offer a set of new techniques to more fully describe user roles and their capabilities. 
Second, we present a set of new analysis techniques that allow security designers to verify 
the consistency of their user-role definitions, by automatically alerting the designer when 
conflicts have been detected among privileges. Finally, we demonstrate that the new 
definition and analyses techniques form a specification methodology for URBS. To serve 
as a basis for our discussion throughout this paper we utilize a health care application. 

1    Introduction 

Mandatory access control (MAC), the reading and writing of data by individuals based 
on their authorized security clearance level, is the main approach taken in multilevel 
secure database systems [8,9,13,16,19,22,25,26] using the Bell and Lapadula security 
model [2]. A complementary approach, discretionary access control (DAC), uses a richer 

*The work of S. A. Demurjian and M.-Y. Hu is partially supported by grant IRI-8902755 from the 
National Science Foundation. 

351 



set of access modes that are specific to the particular types or categories of information to 
those individuals with a need-to-know for the information. Unlike MAC, DAC is closely 
linked to the requirements of the database application. To support DAC, user-role based 
security (URBS) has been proposed [18,24,27,28], and emphasizes the responsibilities 
of the end-users within the application when assigning privileges. The relationship 
between DAC, URBS, and MAC is shown in the top portion of Figure 1. In the figure, 
the request by the user to access the database must first pass through the identification 
and authentication (I & A) control, before proceeding on through DAC and MAC to 
the database, requiring that both policies are satisfied before any response is provided. 

DAC A 
MAC A 

User 
Request 

—- I&A 
User-Role 

Based Security]    .«_►. 
Model 

Classification 
Based Security!    .«_». 

Model 
Data 
Base 

Application/Security Design 

I ^ 

Application 
Design 

URBS 
Definition 

Authorization 
Definition 

Figure 1: An Overview of Security. 

Figure 1 also contains the expansion of the URBS model to include the steps taken 
by both the application and security designer in developing a specific instance of a URBS 
model, which has been the focus on our ongoing research effort [6,7,29,30]. We have 
divided this process into four parts. First, the application's design (i.e., the require- 
ments via the model/schema of the underlying database system) must be understood 
and considered as an integral aspect of the overall security specification process. Then, 
URBS can be defined under the guidelines and restrictions of the URBS model. Coin- 
cident with this definition process is a set of analysis techniques that allows designers 
to understand, evaluate, refine, and redefine their security specifications against their 
application's intended security requirements. The interactions between these first three 
parts are both iterative and incremental. Once the URBS has been completely defined, 
authorization can commence, with the security designer granting and revoking, rights 
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and privileges to individuals based on their user roles. Interactions with the I & A 
process are also required, to establish the allowable privileges for an individual based 
on his/her authorization. We have chosen an object-oriented approach for representing 
the application schema and characterizing its security requirements. 

Specifically, we have examined the incorporation of URBS into an object-oriented 
design model in a manner that both utilizes and is consistent with the object-oriented 
paradigm and its precepts, principles, and philosophies [6,7,29,30]. A major aspect 
of the object-oriented paradigm is the separation of the hidden implementation from 
the public interface, which allows changes to be relatively transparent. It is through 
the public interface (i.e., the methods which are denned) that users access the object 
type (i.e., call methods), and hence implicitly access the data that is hidden. The 
single public interface is shared by all of the users of the object type. Our work has 
sought to extend the public interface concept, so that different individuals based on their 
user roles are assigned different subsets of the public interface at different times. This 
assignment of methods to user roles obscures the data and its access, but is offset by 
two factors: one, the obscuring is consistent with object-oriented philosophy; and, two, 
the security designer can focus on abstract concepts (the methods) rather than detailed 
information (the data). In this process of assigning methods to roles, the security 
designer is able to review rights (based on his/her understanding of the application's 
security requirements), to determine the privileges that should be granted. 

To support the definition of URBS, our previous research has provided a mechanism 
that allows designers to identify and organize the different types of users and their roles 
in an application via a hierarchy. We extend this effort to emphasize the definitional 
aspects of DAC for characterizing user roles and their responsibilities. We have devel- 
oped a new set of definitional techniques that allow the security designer to more fully 
describe user roles and their capabilities within the application. Throughout the defini- 
tion process, a set of new analysis techniques are available for verifying consistency and 
identifying conflicts within user-role definitions. Some of these techniques are designer 
initiated, while others automatically provide feedback to the designer when his/her ac- 
tion will introduce an inconsistency into the URBS definition. To assist the designer in 
the definition and analyses of the security privileges for the application, a specification 
methodology for URBS is promoted. Through the methodology, a more precise char- 
acterization of the user roles and their security privileges can be attained. To serve as 
a basis for our discussion throughout this paper we utilize a health care application. 
Health care information management and its security control are a growing concern, 
and have received much attention in the national media. 

The remainder of this paper is organized into four sections. In Section 2, we present 
background information on the concepts of our object-oriented design model and an 
example using health care databases. In Section 3, we examine the definition process 
of a hierarchy of user roles and the analysis techniques that promote more accurate 
and complete design. Section 4 discusses the specification methodology including its 
implications and reflects on its applicability to the advanced needs of applications such 
as health care. Finally, Section 5 summarizes the paper and indicates ongoing research. 
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2    Background Concepts 

2.1    An Object-Oriented Design Model 

In this section, we present the characteristics and features of an object-oriented design 
model, utilized as a basis for our work, and influenced by work on model and paradigm 
concepts [1,14,32,34], and our own effort in the development of object-oriented modeling 
tools [4,5,11]. In object-oriented models, an object has a unique identifier, and encap- 
sulates a state (i.e., the values for the attributes of the object) and a behavior (i.e., the 
set of methods that operate on the attributes). When objects share a similar state and 

behavior, an object type is defined: 

Definition 1: An object type, OT, is denned using a three tuple: (OTName,V,M) where 
OTName uniquely identifies the OT, 2? is a set of private data for the OT, and M = 
{HM,VM} is a set of hidden and public intra-type methods that can only be applied to 

the instances of OT. 

Definition 2: V is denned as a set of unique attribute name, attribute type pairs, where the 
type may be primitive (e.g., integer, float, character, etc.) or complex (another object type). 

Many of our assumptions for an object-oriented design model have their origins in 
abstract data types [17]. This is especially true for our interpretation of information 

hiding: 

Definition 3 : To support information hiding, an OT is partitioned into a hidden private 
implementation, (HPI), and a potential public interface, (PPI). V and HM are part of HPI, 

while VM = PPI. 

This definition extends the information hiding concept to support database security. 
The public interface serves as the basis for making the OT available to different users. 
Hence, the methods of the public interface have the potential to be made public, at the 
discretion of the security designer. The distinction between public and private methods 
must be maintained, since it is the cornerstone of object-oriented concepts. Effectively, 
we are prohibiting the possibility that any private methods can ever be made available 

for general use. 
A critical aspect of our design model involves the requirement by the designer to 

specify the method profile for each method of an application: 

Definition 4 :    Each method M; € M is denned using a method proße, MP, that contains: 

1. a prose method description for the method's actions within the application. 

2. the method's name, its return type, a list of parameters (with their names and types), 
and the portion of private data of the OT that the parameter maps to. 

3. The read/write set for each private attribute of the OT that is used by the method Mi, 

called -RWi. 

4. The other methods that are called by Mi to accomplish its task, referred to as CM;. 
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For example, the method profile of a push operation for a stack OT contains its descrip- 
tion (Ptish modifies the stack by inserting a new top element as long as the stack has 
space remaining.), its parameters (e:char; s:stack), its return type (stack), a mapping of 
the parameters to private data (e to top and s to st, where top and st are private data 
items), the read/write set (top/w and st/w), and the other methods called (isJull()). 

There are many possible interpretations of inheritance, differing in the data and 
methods of the supertype that are available for use by the subtype. Our version of 

inheritance is: 

Definitions: 0T2 ISA 0TX => 0T2 = (OTName2,{V2}, {M2}) with PPI methods 
from the supertype only available via security authorization. 

OT2 as a subtype of OTx permits OT2 to be used when an OTx instance is expected 
(substitutability). If OT2 needs access to OTi's PPI methods, they must be explicitly 

authorized. 
Other relationships in addition to inheritance are also possible: 

Definition 6a: OTx REL OT2 => OTx can call the PPI methods of OT2. REL has an 
associated set of PPI methods to support the behavior of the relationship. 

Definition 6b: COL(OTi), short for COLlection, is a relationship involving a single OT, can 
call the PPI methods of 0TU and includes a set of PPI methods for managing the instances 
of a collection. 

For example, if REL was 1-to-many, the PPI methods would support the addition and 
deletion of source and destination instances. A different relationship (say, is-part-of), 
would have different PPI methods. SET is similar to a COL relationship, with duplicates 

not allowed. 

2.2    The Health Care Application 

In Figure 2, we present a probable characterization of the main object types and their 
associations via inheritance that are appropriate for a health care database. We have 
based this characterization on discussions and input from those familiar with the health 
care profession (see Acknowledgement). We do not claim that this characterization 
is complete, but we do believe it gives strong indications on the different and diverse 
database needs and requirements for health care information. 

The major OTs are Person, Item, Formulary, Record, Organization, and Budget, as 
indicated in Figure 2a. Person is expanded in Figure 2b to contain Patient, Physician, 
Staff, and Administrator, where Staff has many different subtypes. Each subtype of Staff 
represents many different job categories, e.g., Nurse represents RNs, LPNs, and Nurse's 
Aides, Support includes Housekeepers, Security, Electricians, Carpenters, etc. Similar 
enumerations are also present in other parts of the hierarchy, such as the specialties of 
physicians, different Radiology Tests (X-ray, CAT scan, MRI, etc.), and so on. Figure 
2a also indicates that for each patient, a Medical Record irrrrairrtamed that contains a 
collection of Items. Visit, Prescription, and Test are all subtypes of Item, and indicate 
procedures performed on a patient's visit to a physician.   Each Visit can be further 
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Figure 2a: The Major Object Types. 
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Figure 2b: The Person Object Type and its Subtypes. 
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Figure 2c: The Test Object Type and its Subtypes. 
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Figure 2d: The Organization Object Type and its Subtypes. 

Figure 2: A Probable Conceptualization of Health Care Data with Inheritance. 
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Figure 3: A Subset of the Possible Relationships. 

specialized using inheritance with OTs for Inpatient and Outpatient visits (not shown 
in Figure 2). The Test OT has many subtypes that are distinguished functionally. 

Elsewhere in Figure 2, Records are maintained on all prescriptions (Prescription_R) 
filled by the Pharmacy (for accounting purposes) and for all revenue generating require- 
ments (FinanciaLR). The Formulary OT refers to an entire sub-hierarchy for a database 
of all drugs and their interactions, which pharmacists utilize to notify physicians when 
there is a conflict between the drugs prescribed for a patient. The other major portion 
of the figure, is the Organization OT and all of its subtypes, shown in part in Figure 
2d. There are many different organizations, including the Hospitals, Units, MD Offices, 
Insurance agencies, Departments, and Regulatory agencies (oversee and accredit health 
care). Departments are the major divisions of responsibility within a hospital. We 
have listed six major departments (Nursing, Radiology, Lab, Finance, Pharmacy, and 
Housekeeping) and have omitted other smaller ones. The functional Units (previously 
called wards) within a hospital are quite broad, and include: Critical Care, Rehabil- 
itation, Surgical, Medical, Recovery Room, Emergency Room, Maternity, Operating 
Room, Psychiatry, Outpatient, Neurology, and Nursery. These Units correspond to 
where the direct care is administered to patients. 

To complement the OTs given in Figure 2, we have developed a partial subset of 
the relationships between OTs, as given in Figure 3. In the figure, we have estab- 
lished associations between the different OTs. For example, a Hospital contains many 
Administrators and Staff, and has a number of Physicians in various capacities (e.g., 
attending, residents, interns, administrators, etc.). Each Physician can have privileges 
at many Hospitals, can see one or more Patients on many Units, and may have one or 
more Offices at various locations. Also, for a Patient, many Physicians may be con- 
sulted, and multiple Financial_R(ecords) (for each visit) and a single Medical_R(ecord) 
(for all visits) are maintained. A MedicaLR(ecord) contains the Visits, Prescriptions, 
and Tests that catalog the complete medical history of the Patient. 

Finally, in Figure 4, we include OT descriptions for Item, Visit, Prescription, Test, 
Record, and MedicaLR. We have omitted the Prescription_R and FinancialJR. subtypes 
of Record shown in Figure 2a from Figure 4. For each of these OTs', We have indicated 
both the private data and the PPI methods. Much of the information in this figure has 
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been motivated and developed from examples in [31]. We have included a wide range 
of basic methods that create and retrieve the different information. For clarity, each of 
the methods is numbered with MX.Y. The X refers to an OT. The Y refers to a method 
within an OT. We have omitted the method profile for each method. Information from 
the method profile will be provided as needed in Section 3. 

Finally, we must introduce one last concept related to Definition 5 in Section 2.1. 
First, we define the local public interface, or LPIof the OT to be the PPI at individual 
nodes in an application, without considering inheritance. In Figure 4, the LPI of Visit 
contains the methods M2.1 through M2.6. Second, we define the global public interface, 
or GPI, to be the set of all LPIs from the current node through its ancestors from 
inheritance. Referring to the example again, the GPI for Medical JR. would contain M6.1 
through M6.12 (its own LPI methods) and M5.1 to M5.6 (LPI methods from Record). 
Third, the aggregate public interface, API, is the set of all possible potential public 
methods, namely, the union of all methods in all LPIs regardless of type boundaries, 
i.e., all methods MX.*, where X ranges over all OTs of an application. Fourth, the 
unified public interface, UPI, is {LPI., GPI., API}, the set of all possible interfaces. 
The different interfaces are easily and automatically constructed and maintained while 

an application is being designed. 

3     Defining User-Role Based Security 

Once the OTs of an application have been developed (see Section 2.2 and Figures 2 and 
4), the security designer can begin the process of defining the user roles and their asso- 
ciated security privileges. This section describes this process by: reviewing the concept 
of a user-role definition hierarchy for organizing user roles; introducing the concept of 
a node profile which contains descriptions of the role responsibilities, the methods to 
be assigned and prohibited for each role, and consistency criteria for roles; and, pre- 
senting new analysis techniques which assist the security designer in establishing precise 
and correct privileges for their application. Throughout the section, we elaborate on a 
specification methodology for supporting the definition of user roles and the analyses of 

their privileges. 

3.1    The User-Role Definition Hierarchy 

A user-role definition hierarchy (URDH), is used by the security designer to characterize 
the different kinds of individuals (and groups) who all require different levels of access 
to an application. We employ a hierarchy to represent associations between individuals 
(or groups) with different, yet related, needs. We characterize the responsibilities of 
individuals into three distinct levels of abstraction for the URDH: user roles, user types, 
and user classes. User roles allow the security designer to assign particular privileges to 
individual roles. For example, user roles for the registrar's office of a university might 
be grade-recorder or transcript-issuer. These two roles are different; a grade-recorder 
enters changes and checks corrections; a transcript-issuer will have different access. 
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Figure 4: Selected Object Types and their Private Data/PPI Methods. 
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Figure 5a: User Types, User Classes, and Selected User Roles. 
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Figure 5b: User Roles for Nurse and Physician. 

Pharmacist Technician Therapist 

Staff Director     Lab Radiology Pharmacy     Physical   Respiratory   Occupational 

Figure 5c: User Roles for Pharmacist, Technician, and Therapist 

Figure 5: User Roles, User Types, and User Classes for Health Care. 

To represent similarities that exist among user roles, a user type can be defined. 
For example, the user roles grade-recorder and transcript-issuer can be grouped under 
the user type registrar-staff. User types characterize common responsibilities among 
related user roles, e.g., all registrar-staff access names and addresses in student records. 
Privileges that are assigned to a user type are systematically passed to all of its user roles. 
The different user types of an application can be grouped into one or more user classes. 
For a university, appropriate user classes might be non-academic-staff (with types such 
as purchasing-staff, campus-police, maintenance-staff, etc.) and academic-staff (with 
types such as dept-staff, registrar-staff, presidents-office, etc.). The responsibilities are 
broadly classified into two user classes. Privileges that are supplied to each class are 
passed on to its types and their roles. The grouping of user types into user classes 
is very application-dependent. Finally, note that our URDH is analogous to the role 
lattice proposed in [20,21] and the role network discussed in [18]. 

We further illustrate the aforementioned concepts with a partial URDH for the health 
care application in Figure 5. In the figure, the roles are denned in a two-step process 
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of specialization (top-down definition) and generalization (bottom-up definition). From 
a top-down perspective in Figure 5a, there are eight different user types: Nurse, Physi- 
cian, Pharmacist, Technician, Therapist, Support, Patient, and Spouse. In this case, 
the security designer is assuming that each of these user types may have privileges that 
would be common to all user roles under the type. Within each user type, one or more 
user roles may be defined. For example, in Figure 5b, user roles for Nurse include 
StafLRN, Discharge_Plng (planning), Education, and Manager. In this top-down ex- 
amination, specialization identifies the various users and their roles. Figure 5a can also 
be examined from a bottom-up perspective to determine the common characteristics by 
the grouping of the user types into user classes MedicaLStaff, Support_Staff, and Other. 
This is one possible grouping of user types. The bottom-up perspective corresponds to 
generalization for establishing the user classes, as shown by the dashed lines. 

3.2    The Concept of a Node Profile 

To more accurately characterize the capabilities of user roles in the URDH, with respect 
to the privileges to be granted against the application, we propose the creation of a node 
profile. A node profile contains the assigned methods (the privileges for each URDH 
node), as we have described in our earlier work [6,30]. A node profile also includes a 
node description, the prohibited methods, and consistency criteria. 

3.2.1    Node Descriptions 

Node descriptions are utilized to specify the responsibilities of a URDH node via a 
concise prose statement. Below, are node descriptions for our example of Figure 5: 

MedicaLStaff:    Collectively, responsible for all aspects of direct patient care. 

Support_Staff: Different support personnel that address non-medical needs 
of patients and maintain the physical building. 

Other: Other individuals that have the potential to access limited portions of 
the health care database. 

Nurse:    Direct involvement with patient care on a daily basis. 

Physician: Handle the medical needs (diagnosis, treatment, etc.) for pa- 
tients. 

Pharmacist: Control the supply and distribution of all drugs throughout the 
hospital. 

Technician:    Provide a variety of medical testing support for Patients. 

Therapist:    Evaluate patients and develop treatment plans for therapy. 

StaffJLN: Administer direct care to patients and implement the physician 
treatment plan. 

Discharge_Plng: Link between patients and outside agencies for care after 
discharge. 
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Education: Educate both the nursing staff and patients regarding new treat- 

ments and self care. 
Manager:    Responsible for the day-to-day operation of a nursing unit. 

Director: (For Physician or Pharmacist) Responsible for the day-to-day op- 
eration of their respective department/medical service. 

Private:    The physician within his/her office/private-practice setting. 

Attending: A physician that has privileges to admit and treat patients at a 
hospital. 

Staff: Responsible for ßling prescription orders for patients and analyzing 
appropriateness of drugs and dosages. 

Lab:    Perform/collect different tests involving body/blood on patients. 

Radiology:    Perform radiology based tests/treatments on patients. 

Pharmacy:    Distribute drugs to specific patients at correct times. 

Physical:    Perform physical therapy on patients at prescribed times. 

Respiratory:    Perform respiratory therapy on patients at prescribed times. 

Occupational: Perform therapy geared towards returning the patient to the 
independent activities of daily living. 

Support:    Limited contact with patients on a day-to-day basis. 
Prepare_Room:     dean and prepare room after a patient is discharged. 

Volunteer: Satisfy the needs and interests of patients by offering activities, 
reading materials, etc. 

Security:    Involved when prisoners/VIPs must be guarded/protected. 

Each of these descriptions can be supplied as the security designer is creating the URDH 
and its roles, types, and classes, and may be refined/modified as needed. 

3.2.2    Assigned Methods 

Once the URDH has been specified, the security designer assigns methods to hierarchy 
nodes, to characterize the privileges based on his/her understanding of the security re- 
quirements. We have focused on the methods that are assigned from the application 
(see Figure 4), with the data and its access intentionally obscured [6,30]. In [20,21], im- 
plication rules compute implicit authorization which is similar to our process of method 
assignment, but differs since they assign objects and authorization types to roles. Our 
approach also contrasts to [18], where the access rights/permitted roles are assigned 
based on data levels. Finally, our approach and [23] both have the goal of providing 
different interfaces to different users, but differ since they assign views based on data. 

To support the method assignment process, the information required by each user 
and the associated privileges (e.g., read, write, or both) must be understood. This 
corresponds to the application's intended security requirements, and is developed by 
the security designer as part of the requirements definition for the application under 
development. We use the term access to mean read only. Explicit write needs are 
noted separately. Also, the term clinical information is broad, and coincides to Medical 
Records, Visits, Prescriptions, and Tests (all information on a patient). Below is a list 
of the information accessing requirements for our health care example: 
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StafLRN: All clinical information for the patients that they are responsible 
for (referred to subsequently as clinical info.). Can write/modify a substantial 
portion of clinical information to record the results/patient progress: Cannot 
change a Physician's orders on a patient. 

Discharge_Plng: All clinical info, for patients. In addition, financial infor- 
mation is consulted, since patients might be placed in a continuing care facility 
or may require home visits from various health care professionals. Don't have 
as much write access to clinical info, of a patient as Staff-RN, but can write 
notes. Cannot change a Physician's orders on a patient. 

Education: More limited access to clinical data than Staff.RN, but since they 
do teach patients after-discharge care (e.g., diabetic care, etc.), they do need 
access to a patients history. Like Discharge-Ping, can write notes which doc- 
ument a patient's progress. Cannot change a Physician's orders on a patient. 

Manager: All clinical info, plus information required to transfer patients 
between units, information on the nurses that work in their unit (includ- 
ing shifts, staffing, and skill levels), and budgetary data. Write privileges of 
Staff.RN plus extra privileges to read information on other units (censuses) 
and write summary and employee data on their own units. Cannot change a 
Physician's orders on a patient. 

Director: (For Physician) Information on physicians in their departments, 
budgetary data, clinical information on patients including summary data on 
trends and volumes. Write ability on employee data. 

Private: All clinical info, on patients and who they can contact (nurses, 
technicians, therapists, etc.) regarding their patients. Also, insurance related 
data and other office-based data to maintain their private practice. Overlap 
of write privileges with Staff.RN, but can also modify portions of clinical info, 
that issue orders. 

Attending:    All clinical info, on their patients. Similar to Private. 
Director: (For Pharmacy) Information on pharmacists and technicians that 

are employed, budgetary data, summary information on drug distribution and 
usage, limited clinical info, on patients. Write ability on employee data. 

Staff: Access to the Formulary database, all clinical info, on patients due to 
possible drug interactions, and prescription records. 

Lab: Limited access to clinical info, on patients. They need to know what 
tests are required for which patients and when they are to be performed. Lim- 
ited write access on clinical info, to record test results of patients. 

Radiology:    Similar to Lab user role. 
Pharmacy:    Similar to Lab user role. May need access to Formulary database. 

Physical: Access to clinical info, that is greater than Lab user role but less 
than StaffiRN. Can write notes on patient's progress which are permanently 
recorded into the medical record. 

Respiratory:    Similar to Physical user role. 

Occupational:    Similar to Physical user role. 
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PrepareJtoom: Very limited clinical info, on patients - discharge date and 
time. No write access is allowed. 

Volunteer: Very limited clinical info, on patients • names, location, restric- 
tions (food/smoking), and interests. No write access is allowed. 

Security: Very limited clinical info, on patients - duration/location of pris- 
oners/VIPs. No write access is allowed. 

Using this information, the security designer can establish privileges for URDH nodes. 
To illustrate the method assignment process, we highlight some possible assignments 

for the URDH in Figure 5 against the health care database of Figure 4. First, consider 
the user roles of Nurse: StafLRN, Discharge_Plng, Education, and Manager. Individu- 
ally, they all need read/write access to clinical information on patients. StafLRN would 
likely have access to most Get methods from Figure 4 (14 methods), including, for 
example, Get_Symptom of Visit, Get_Medication of Prescription, Get_Patient_Name of 
Record, and Get.Test of MedicaLR, but may be unable to access the Get_All methods. 
StafLRN would also access the two read methods and a selected subset of the Set/Insert 
methods, e.g., Set_Symptom (record symptoms on patients), Set.Test.Code (record test 
to be conducted), Set_Patient_Name, Insert.Visit, Insert_Med_History (taken by nurses), 
etc. Discharge_Plng and Education nurses would have similar Get access, but more 
restricted write access, say Insert.Visit or Insert_Med_History, since the information ac- 
cessing requirements state that they only write notes on patient progress. Managers 
would have all of the access of StafLRN, but may also have additional access to fulfill 
their role (such as the Get_All_Medicine and Get_All_Physician methods). 

Methods are also assigned using the different public interfaces that were discussed 
in Section 2.2. For example, the user type Nurse could be assigned LPI of Record, 
since all of its roles can access all of these methods. The role Physician/Private could 
be assigned LPI of Medical_R, indicating that the doctors are able to invoke all of the 
methods which are defined (M6.1 to M6.12). A better assignment for this role would 
be the GPI of Medical_R, since the GPI also includes all methods from Record, which 
doctors should also be able to utilize, e.g., doctors need access to the patient's name 

and visit history that is maintained in Record. 
From the above discussion, a methodology for method assignment begins to appear. 

All privileges are assigned at the bottom-most level of the URDH, corresponding to the 
user roles. Given the privileges assigned to roles, the security designer can examine the 
roles under a single user type (in this case, Nurse), and seek to identify commonalities 
between the specific assignments. Commonalities with respect to shared privileges are 
pushed up the URDH from the user roles to their shared user type. In this case, all 
of the Get methods and any common Insert methods can be moved up to the Nurse 
type. When multiple user types have the same user class (e.g., Nurse and Physician 
are under MedicaLStaff in Figure 5), common methods may also be moved up to the 
user class. However, the methods must be common to all user types of a specific user 
class, or a type/role, may acquire methods on which privileges were not intended. For 
example, all user types of MedicaLStaff would have access to the Get_Patient_Name 
method of Record. A method that is shared by all user types of a URDH can be moved 
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up to Users. Get_Patient_Name may be such a method for this application. Thus, the 
specification methodology indicates that method assignments at the user roles flow up 
the URDH to the user types, user classes, and User. Flow of common information up 
the tree effectively forces differences in method assignments to be pushed down the tree. 

3.2.3 Prohibited Methods 

The prohibited methods on a URDH node represent those methods which cannot be 
accessed by the URDH node. Thus, the security designer augments the positive actions 
of the node (i.e., the assigned methods) with the non-allowed actions (i.e., the prohibited 
methods), as reflected in the information access requirements of the user roles (see 
Section 3.2.2). Our concept of prohibited methods is similar to the concept of denied 
roles in [18] and permission tags in [3], but differs since both of their efforts emphasize 
data; we focus on types/methods. 

Prohibited methods are very important in the overall specification of privileges. 
Recall from Definition 4 in Section 2.1, that a method profile contains, the methods 
which a method calls. Thus, there is the potential to call a great number of different 
methods which are defined on many different object types and that involve numerous 
private data items, when a single method is assigned to a URDH node. Since this is the 
case, the prohibited methods can be utilized to explicitly identify which methods cannot 
be accessed by a URDH node. With this information, the analyses we will discuss in 
Section 3.3 can automatically inform the security designer when a prohibited method 
conflicts with a assigned method (or a method called by a assigned method, and so on) 

on a URDH node. 
In our example, the security designer can explicitly list the methods that the dif- 

ferent user roles cannot access. For different roles of Nurse: StafLRN cannot access 
Set.Treatment of Visit, Set_Medication of Prescription, Get_All methods from Medi- 
cal_R, and so on; Discharge_Plng and Education would have a larger exclusionary list; 
and Manager would be similar to StafLRN, but may be able to utilize some of the 
Get_A.ll methods that StafLRN cannot. A similar specification methodology to the 
steps described for assigned methods is also employed for prohibited methods. Com- 
mon prohibited methods will pass up the URDH via the paths from user roles to a user 
type, and from user types to a user class. However, in this case, the prohibited methods 
are not explicitly repositioned in the URDH. Rather, the semantics of prohibited meth- 
ods imply that a method prohibited from a user role (type), is also prohibited from its 

associated user type (class). 

3.2.4 Consistency Criteria 

Consistency criteria in a node profile relate any two user roles, types, or classes with 
respect to their capabilities. Equivalence criteria allow the security designer to iden- 
tify which user roles (types/classes) must have the same capabilities, as reflected in 
the methods, OTs, private data that are assigned/prohibited. Equivalence criteria are 
very important for defining URBS, since whenever a change is made to the URDH (as- 
signed/prohibited method is added/removed), the security designer can be alerted that 
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the privileges are no longer equivalent and particular nodes must be also modified. For 
example, from the information accessing requirements in Section 3.2.2, the roles Physi- 
cal, Respiratory, and Occupational of the Therapist user type, would all be equivalent, 
and a change to one role, would require a corresponding change to the other two. 

Subsumption criteria allow the security designer to establish an ordering among 
URDH nodes, indicating that the capabilities of one node cannot exceed the capabil- 
ities of another node. In our example, there are many subsumptions that should be 
specified by the security designer. Both Education and Discharge_Plng are subsumed 
by StafLRN (since the latter writes more portions of the database) which is subsumed 
by Manager. Education is also subsumed by Discharge_Plng, since the latter requires 
access to financial information. Physical, Respiratory, and Occupational roles are sub- 
sumed by Education, since the former three have limited database access. The three 
types of Therapist are also subsumed by Discharge_Plng, StafLRN, and Manager, via 
transitive closure. Subsumptions at the user type level are also possible, e.g., Technician 
subsumed by Therapist. A formal definition of consistency criteria is: 

Definition 6: Let 0 be the set of OTs that can be accessed by a URDH node N, M be 
the set of methods that can be assigned and/or prohibited by N, and P be the set of 
the private data that can be accessed by N. Let equivalence be represented by =, and 
subsumption be represented by <. Then, we define JV; = (<)Nj with respect to OTs 
if Oi = (C)0j, Ni = {<)Nj with respect to methods if Mi = (C)M,-, and N{ = (<)Nj 
with respect to private data if Pi = (c)Pj. 

The different criteria are checked by comparing methods, OTs, or private data. 

3.3    Analyses for Design Feedback 

To assist the security designer in the definition of privileges on the URDH via the 
node profiles, a set of new analysis techniques are provided. Some of these techniques 
are designer initiated; others automatically alert the designer to possible conflicts and 
inconsistencies. Designer-initiated analyses on a chosen URDH node are: a summary 
of the node descriptions including ancestors; a summary of the methods which have 
been assigned/prohibited (including ones acquired from ancestors); and, a summary 
of the method descriptions for assigned methods. Automatic analysis techniques are: 
the identification of conflicts between assigned/prohibited methods as reflected in the 
methods, OTs, or private data items of the application; checking the consistency of 
the different equivalences and subsumptions; and, alerting the designer when privileges 
given/removed to a chosen URDH node must also be made to other nodes to maintain 
existing equivalences or subsumptions. Also, since method calls can be nested, all of 
the analyses can be performed recursively to any desired level of depth. 

3.3.1    Node-Description Summary 

From a strictly informational perspective, the security designer can aggregate or sum- 
marize the node descriptions for a chosen URDH node to check whether the written 
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descriptions correspond to their interpretation of the node's responsibilities, and to up- 
date the node profiles if necessary. In our example, when the designer chooses StafLRN, 
the following descriptions are supplied: 

MedicaLStaff:     Collectively, responsible for all aspects of direct patient care. 

Nurse:    Direct involvement with patient care on a daily basis. 

StafLRN:   Administer direct care to patients and implement the physician 
treatment plan. 

If Support is chosen, then the descriptions: 

Support_Staff:    Different support personnel that address non-medical needs 
of patients and maintain the physical building. 

Support:    Limited contact with patients on a day-to-day basis. 

are returned, indicating that roles under this type interact minimally with patients. 
Node-description summaries are most likely performed as the designer is creating the 
URDH, by defining roles, types, and classes. The security designer is using the sum- 
maries to verify whether the hierarchy has been correctly structured as reflected in the 
aggregated descriptions. 

3.3.2    Capabilities Analyses 

Capabilities analyses allow the security designer to review the permissions given to a 
chosen URDH node on an application's OTs, methods, and private data. This review 
can occur throughout the time period when the designer is defining the URDH and 
establishing assigned/prohibited methods for its nodes. For example, the designer can 
choose the StafLRN node and be presented with the following information: 

• all methods which have been assigned to StafLRN and its ancestors (Nurse, Med- 
icaLStaff and Users); 

• all OTs which can be accessed by StafLRN, since each assigned method belongs 
uniquely to a single OT; and 

• all private data which is accessed by StafLRN, since each assigned method uses 
private data in a read, write, or read/write fashion. 

This information corresponds to a first-level inspection of the implications of the method 
assignments of StafLRN (and its ancestors). Analysis is also available in a similar fashion 
for the prohibited methods and the OTs and private data which cannot be accessed. 
These analyses are supported at a direct level as described or an indirect level (since 
methods calls can be nested). Algorithms for the assigned method analyses appear 
elsewhere [6]. The Appendix contains the direct techniques for capabilities analyses of 

prohibited access. 
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3.3.3    Method-Description Summary 

Once the method-assignment process begins, the security designer can initiate method- 
description summary analysis, to aggregate the functional descriptions of the methods 
assigned to a chosen URDH node. For example, if the role Technician/Lab is selected, 
the following method descriptions would be provided: 

M5.S Get_Patient_Name():    Identify the patient by name. 

M5.1 Get_Record_No():    Find a specific medical record by number. 

M4.8 Set_Technician(Name):    Set the name of the technician that per- 

forms the test. 
M4.2 Set_Test_Code(Code):    Set the code of the test to be conducted. 

M4.4 Set_Spec_No(No):    Set the speciman number for the test. 

M4.6 Set_Status(St):    Set the status for the test. 

M6.4 Insert_Lab_Test(Test):    Insert a lab test result. 

These descriptions are from the URDH, e.g., M5.3 could be assigned to Users, M5.1 to 
MedicaLStaff, M4.8 to Technician, and M4.2, M4.4, M4.6, and M6.4 to the Lab role. 
These assignments are consistent with the node description for Lab (i.e., Perform/collect 
different tests involving body/blood on patients) and its information accessing require- 
ments in Section 3.2.2 (i.e., Limited access to clinical info, on patients. They need 
to know what tests are required for which patients and when they are to be performed. 
Limited write access on clinical info, to record test results of patients). 

3.3.4    Conflict Identification Analyses 

When the privileges which have been granted to a URDH node are in conflict, the 
security designer must take action to resolve the identified problem. Conflict identi- 
fication is automatically performed whenever changes are made to a URDH node via 
assigned/prohibited methods. As a result of the identification, the security designer up- 
dates the assigned and/or prohibited methods to correct the problem. Three automatic 
analysis techniques are supported for conflict identification, based on methods, OTs, 
and private data. As the security designer is assigning/prohibiting methods to URDH 
nodes, s(he) is receiving real-time feedback when a method that causes a conflict (in a 
method, OT, or private data item) is inserted into a node profile. Like the capabilities 
case, both direct and indirect analyses are supported. 

To illustrate conflict identification analysis, consider the example from the previous 
section for the Technician/Lab role, and add the prohibited methods Get_Test_Code, 
Get_Spec_No, Get_Status, and GetJTechnician from the Test OT to the node profile of 
this role. Now consider that at some later point in time, the security designer attempts 
to add the method GetJTest(Date) of MedicaLR to the Lab role, and suppose that 
Get.Test calk the^Get methods from Test to return the information on a lab test. 
When this assignment is attempted, since Get.Test calls methods that are prohibited 
for the Lab role, the designer would be notified that their intended assignment cannot 
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be made. Other conflicts can occur when a prohibited method is assigned to a chosen 
URDH node that conflicts with an existing assigned method (e.g., the prohibited method 
calls methods that have already been assigned to the node), and may also be evaluated 
from the perspective of OTs and private data. 

3.3.5    Consistency Criteria Checking 

A second analysis technique would automatically check the consistency criteria be- 
tween URDH nodes in two ways: as equivalences and subsumptions are being defined 
among URDH nodes and whenever changes in the form of additions/deletions of as- 
signed/prohibited methods are made. Whenever the designer is alerted that an incon- 
sistency to a subsumption or equivalence has occurred, modifications of privileges to 
correct the problem must be made. To illustrate the first checking, suppose that the 
following subsumptions have been established: 

Education < Discharge_Plng < StafLRNs < Manager 

If, at some later time, the designer attempts to establish either of the two equivalences: 

Education = StafLRNs or StafLRNs = Manager 

s(he) would automatically be informed of inconsistencies with existing criteria. These 
checks are especially useful when the criteria involve user roles that are specialized from 
different user types. 

In the second checking, criteria are examined for consistency with respect to the 
application's methods, OTs, and private data as reflected in the assigned/prohibited 
methods for the URDH. Both equivalences and subsumptions are checked for methods, 
OTs, and private data with respect to assigned and prohibited methods (a total of 12 
checks). Checking is also supported at direct and indirect levels (as in the capabilities 
and the conflict identification cases), resulting in a total of 24 analysis techniques for ver- 
ifying consistency. To illustrate this checking, again consider the subsumptions for Nurse 
roles shown above, with Manager assigned Get_All_Medicine and Get_All_Physician of 
Medical_R, but not Get_All_Visit. If at some point during the definition of privileges, 
the security designer assigns Get_All_Visit to StafLRN, s(he) would be automatically 
informed that such an assignment would violate an existing subsumption. Subsump- 
tions and equivalences can also be violated if one URDH node can access an OT (or 
private data item) that the other cannot, e.g., Education can access a Nutrition OT 
that Discharge_Plng cannot. 

To support consistency checking during the security-definition process, we allow the 
designer to establish a set of default consistency checks that s(he) wishes to be auto- 
matically verified as the URDH is being developed, customizing the checks to suit a 
designer's needs. For example, a designer may want the checks to only occur automat- 
ically for assigned and prohibited methods, and not for OTs or private data items. All 
checks which are not automatically provided can be explicitly initiated by the designer. 
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4    Methodological Issues and Considerations 

This section discusses issues related to the specification methodology. We begin by 
reviewing the steps of the methodology. We then provide a post-mortem on the ap- 
plicability of the methodology for the health care example. Finally, we discuss other 

experiences that have impacted on the methodology. 

4.1     A Specification Methodology 

Throughout Section 3, when examining the definition and analyses available for devel- 
oping the user roles and their privileges, we have also emphasized a methodology for 
specifying this information in a controlled fashion. In this section, we synopsize and 
justify the features of the methodology. There are four major steps in the methodology. 
The first step corresponds to the development of the URDH by the security designer, 

and can be subdivided as: 

la. Define user types and user roles in a top-down fashion with specialization. 

lb. Define user classes in a bottom-up manner with generalization. 

lc. Coincident with these two definition steps is supplying node descriptions 
and invoking summary analysis (Section 3.3.1) on nodes to verify the aggre- 
gate descriptions. 

With these actions, the security designer obtains an initial characterization of the 

URDH. 
Once the overall structure of the URDH has stabilized, the security designer can 

proceed to assign methods to URDH node, which corresponds to the positive actions or 
capabilities. In this process, the designer is using the information accessing requirements 
(Section 3.2.2) as a guide for insuring that the correct privileges are given. There are 

five substeps: 

2a. Assign methods starting with the user roles under a user type. 

2b. Move methods shared by all user roles to its common user type. 

2c. Move methods shared by all user types to its common user class. 

2d. Move methods shared by all user types to Users. 

2e. Perform capabilities (Section 3.3.2) and method-description summary 
(Section 3.3.3) analyses after any of the above steps to verify that assigned 
methods correspond to intent. 

The result of this step in the methodology is an initial identification of the privileges 

for each URDH node. 
The third step in the methodology focuses on actions which are to be explicitly 

prohibited from access by the URDH nodes. This step is divided into: 

3a. Associate prohibited methods with user roles (types), which implies the 
methods are also prohibited on the roles shared user type/class (class). 
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3b. Perform capabilities analyses (Section 3.3.2) for prohibited methods to 
insure that the correct non-allowed actions have been specified. 

Once the security designer starts to add prohibited methods to the node profiles, conflict 
identification analyses (Section 3.3.4) automatically begins, to notify the designer when 
assigned/prohibited methods contradict. 

The fourth and final step of the methodology is used by the security designer to 
specify consistency criteria among the URDH nodes: 

4a. Define equivalence criteria between any two user roles, types, or classes. 

4b. Define subsumption criteria between any two user roles, types, or classes. 

As criteria are being defined, automatic analyses verify that the criteria do not conflict 
with one another (first check of Section 3.3.5). Analyses also alert the designer when 
privileges that are assigned/prohibited to a URDH node violate the existing consistency 
criteria (second check of Section 3.3.5). The actions taken in steps 1,2,3, and 4 of the 
methodology are iterative, incremental, and cyclical. They can be repeatedly performed 
by the security designer until s(he) is satisfied that an accurate characterization of user 
roles and their capabilities have been developed. 

4.2 The Applicability of the Methodology 

The specification methodology has adapted well to the health care case, and while our 
example was not complete, it was complex enough to illustrate both the applicability and 
utility of the methodology. The definition of the URDH can represent traditional roles 
such as StafLRN, Director, Therapist, etc., quite well. Assigned/prohibited methods 
allow the positive and non-allowed actions to be clearly identified. Subsumption and 
equivalence can be employed to establish associations/invariants that must exist among 
URDH nodes. The various analysis techniques (Section 3.3) complement the definition 
process, and provide tools for the security designer to arrive at a more precise and 
correct characterization of roles and privileges. 

However, we have yet to explore the user roles of patient and spouse (see Figure 
2), which we believe will be the most difficult with respect to understanding their 
responsibilities and capabilities. Also, the concept of a sub-role of a user role needs 
investigation, though this may be achieved in our approach by simply defining finer 
grained user roles. Another glaring absence in the methodology is a lack of integrity 
and security constraints. Integrity constraints are required to control and maintain data 
consistency. Content and context based security constraints are necessary to allow the 
privileges to be more specialized (e.g., a StafLRN role can only access the Patients that 
occupy their Unit). These and other issues are currently being explored to support 
URBS more completely for real-world applications. 

4.3 Other Related Experiences 

Finally, we mention other related experiences that have, in part, driven our research 
directions towards a specification methodology for URBS. As part of a Ph.D. qualify- 
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ing examination in January, our baseline URBS approach [6,30] was applied by three 
students against a university database example. One exam was particularly interesting, 
and contained the most extensive version of a URDH that has been developed so far 
based on our approach. The object-oriented design of the university database had a 
total of 11 OTs, with 54 total methods. The URDH contained 20 user types grouped 
under three user classes. Each of the 20 user types had an average of two user roles (47 
total). The answers to the exam has impacted on our work, especially with respect to 
the assignment of privileges to URDH nodes in step 2 of the specification methodology. 

5    Concluding Remarks and Ongoing Research 

In this paper, we have presented a specification methodology for supporting the precise 
and accurate characterization of user-role based security (URBS) for an object-oriented 
design model. The core of the methodology is supported by: a user-role definition 
hierarchy (URDH) for specifying the different user roles, user types, and user classes 
for an application; node profiles that allow the security designer to define the privi- 
leges of each URDH node using a node description, assigned/prohibited methods, and 
equivalence/subsumption criteria; analysis techniques (designer initiated and automatic 
feedback) that provide, for a URDH node, summary information (on node and method 
descriptions), capabilities (with respect to assigned/prohibited methods), conflict iden- 
tification (between assigned/prohibited access privileges), and consistency checking (for 
equivalence/subsumption criteria). To illustrate the utility of the methodology we have 

used a health care application. 
Overall, we believe that the following conclusions can be made regarding the speci- 

fication methodology: 

1. The methodology serves as a systematic discipline. 

2. The methodology is consistent, and is divided into a set of well-defined steps or 
stages that interact well with one another. 

We believe that these conclusions have been demonstrated using the health care appli- 

cation. 
We are developing a prototype to support the work described in this paper and 

our earlier research [6,7,30], and expect a baseline system to be available within six 
months. Our prototyping effort extends our earlier work on object-oriented design tools 
[4,5,10,11,12]. Over the past two years, we have developed the database design tool 
ADAM, short for Active DAta Model, that allows an application designer to graphically 
and textually specifiy their application behavior and semantics using an object-oriented 
approach. ADAM supports the modeling constructs of object types, inheritance, and 
relationships, and automatically generates code and code templates (in C++) for an 
application's design. Our work on ADAM has also explored application specific database 
design tools through the development of a version of ADAM that supports scenario 
design [5,12] for a dynamic distributed decisionmaking environment [15]. In this effort, 
we are currently examining the ability of URBS for characterizing the roles, information 
privileges, and sharing requirements of human decisionmakers. 
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Appendix. Algorithms for Analysis Methods 

This appendix includes the techniques that support the direct analyses discussed in 
Section 3.3. The indirect analyses are not shown since they are just extensions of the 
direct case that consider nested method calls to any level of depth. We have employed 
an object-oriented approach to defining these techniques, as discussed elsewhere [6,30]. 

Capability Analyses 
Capabilities analyses are performed for a chosen URDH node to determine the privileges 
that have been granted to the node. There are six analysis techniques for the capabilities 
of assigned methods, for the access of a chosen URDH node to an application's methods, 
OTs, and private data. These analyses have been described elsewhere [6]. The method 
headers are given below since they are used in other analysis algorithms. 

Node::URDH_DIR_M_A() : Return Method.Set; 

Node::URDH_DIR_OT_A() : Return App.Object.Type.Set; 

Node::URDH_DIRJPD_A() : Return Private_Data_Access_Set; 

Node::URDHJND_M_A(numJevels) : Return Method_Set; 

Node::URDHJND.OT_A(numJevels) : Return App_Object.Type.Set; 

Node::URDHJNDJPD_A(numJevels) : Return Private_Data_Access_Set; 

In addition to assigned method analyses, there is also capabilities analyses for the pro- 
hibited methods, with the techniques shown below: 

• Return the prohibited method set of a URDH node. 

Node::URDH_DIR-P-M_A() : Return Method_Set; 
URDH_DnLP_M-A «- {prohibited_methods()}; 

End Node::URDH_DIR-P_M_A; 

UserType::URDH_DIR_P_M_A() : Return Method.Set; 
URDH_DIR_P-M_A «-- {usersjaode().prohibited_methods(), 

user_dass_node().prombited_methods(), 
Node::URDHJDIR_P-M_A()}; 

End UserType::URDH_DIRJ>-M_A; 
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UserRole::URDH_DIR_P-M-A() : Return MethocLSet; 
URDHJDIRJP-M_A *- {users jode().prohibited_methods(), 

user_classjaode().prohibited_methods(), 
user_type_Qode().prohibited_methods(), 
Node::URDHJ)IR_P31_A()}; 

End UserRole::URDH_DIR-P_M-A; 

• Return the prohibited OT set of a URDH node. 

Node::URDH_DIR_P_OT_A() : Return App_Object_Type_Set; 
Let MS <- URDHJDIR_P_M_A(); - - MS short for method set 
Let OTJIS «- {}; - - RS short for result set 
Iterate Over All Methods M; in MS; 

Let ot «- Mi.which_OT(); - - return the OT for Mi 
Let OTJIS «- OTJIS U ot; 

End Iteration; 
URDH_DIR_P.OT_A «- OTJIS; 

End Node::URDH J)IRJ>.OT_A; 

• Return the prohibited private data set of a URDH node. 

Node::URDH_DIR_PJPD_A.() : Return Private_Data_Access_Set; 
Let MS «- URDH_DIRJP3I_A(); 
Let PDJIS «- {{OT!,{}},{OTa, {}},..., {OTn,{}}}; 
Iterate Over All Methods M; in MS; 

Let ot «- M;.which_OT(); - - return the OT for M; 

Let RW.Set <- Mi.read_write_set(); - - return the read/write set of 

Mi 
Let PDJIS <- PD_RS.union(ot,Mi.MJ^ame, RWJSet); 

End Iteration; 
URDHJJIR-PJD-A 4- PDJIS; 

End Node::URDHJ)IRJPJ>D_A; 

Indirect techniques are also available, employ similar algorithms, and are omitted for 

brevity. 

Conflict Identification Analyses 
Three kinds of analyses can be provided for conflict identification based on methods, 
OTs, and private data, as a result of the assigned /prohibited methods on a chosen 
URDH node. The direct analysis techniques axe listed below: 

t Identify conflict between the assigned and the prohibited methods. 

Node::URDH J)nLM-CON() : If conflict, return an error message ; 
Let MS «- URDHJ)nLM-A(); 
Let PJvIS «- URDHJ)IRJ>Jvl-A(); 
If MS fl P-MS ? {} 
Then return error message; 

End Node::URDH_DIR_M-CON; 
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• Identify conflict between the OTs that can and can't be accessed. 

Node::URDH_DIR_OT_CON() : If conflict, return an error message ; 
Let OT_Set «- URDH_DIR_OT_A(); 
Let P_OT_Set <- URDH_DLR_P_OT_A(); 
If OT.Set n P.OT_Set ^ {} 
Then return error message; 

End Node::URDH_DIR-OT_CON; 

• Identify conflict between the private data items that can and can't be accessed. 

Node::URDH_DIR_PD_CON() : If conflict, return an error message ; 
Let PD_Set <- URDHJ)IR_PD_A(); 
Let P_PD_Set <- URDH_DIR_PJ>DjV.(); 
If PD.Set n P_PDJSet ^ {} 
Then return error message; 

End Node::URDH_DIR_PD.CON; 

Indirect analysis algorithms for each of these techniques have also been developed. 

Consistency Criteria Checking 
Consistency checking is based on an application's methods, OTs, and private data, and 
can be performed from the perspective of both assigned and prohibited methods (a 
total of 6 checks). Consistency is also considered for both equivalence and subsumption 
checks (12 total checks). Similar to previous techniques, direct and indirect analyses 
are available, resulting in a total of 24 algorithms. The direct analysis techniques for 
assigned methods are listed below: 

• Checks equivalences/subsumptions for assigned methods. 

Node::URDH_DIR_M_EQU() : Return Boolean ; 
Let MS «- URDH_DIR_M_A(); 
Let NS <- equivalent_set(); - - return the equivalent nodes 
Iterate Over All Nodes Ns in NS; 

Let N_MS 4- Ni.URDH_DIR_M_AO; 
If N_MS ^ MS 
Then return False; 

End Iteration; 
Return True; 

End Node::URDH_DIR_M-EQU; 

Node::URDHJDIR_M-SUB() : Return Boolean ; 
Let MS «- URDH_DIR_M-A(); 
Let NS <— subsumption_set(); — return the subsumed nodes 
Iterate Over All Nodes Ni in NS; 

Let N_MS «- N5.URDH_DIR_M-A.(); 
If N_MS \ MS ? {} 
Then return False; 
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End Iteration; 
Return True; 

End Node::URDH_DIR_M_SUB; 

• Checks equivalences/subsumptions for OTs accessed by assigned methods. 

Node::URDH_DIR_OT_EQU() : Return Boolean ; 
Node::URDH_DIR_OT-SUB() : Return Boolean ; 

• Checks equivalences/subsumptions for private data items accessed by assigned 

methods. 

Node::URDH_DIR_PD_EQU() : Return Boolean ; 

Node::URDH_DIR_PD_SUB() : Return Boolean ; 

Techniques for direct analyses of prohibited methods have also been developed, as well 
as indirect analyses for both assigned/prohibited methods. 
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ABSTRACT 

Research to date and current practice in trusted database 
management system (DBMS) audit have focused 
primarily on issues of confidentiality. In this paper, we 
address the need for auditing with respect to integrity. 
Although the TCSEC establishes policy for collecting 
data relevant to confidentiality, it gives little guidance 
on the audit for integrity. However, the protection of 
data integrity is an important aspect of DBMSs. In the 
paper we review the definition and purpose for audit and 
discuss the implications for integrity. Since the audit of 
integrity-related DBMS actions or events requires an 
examination of the context in which integrity is used, 
the paper uses the example of a medical information 
system to provide a rich context. This paper 
recommends that an explicit audit policy be established 
for a database system to ensure that both confidentiality 
and integrity concerns are throughly addressed. We 
describe the content of such a policy and give a 
framework to show how it would be applied to the 
medical example. 

1.0    INTRODUCTION 

In multilevel or trusted operating systems (OS), the broad emphasis of auditing has been on 
meeting the Accountability Control Objective as specified in the Trusted Computer System 
Evaluation Criteria (TCSEC) [TCSEC85]. Now, the same auditing requirements are being 
applied to trusted Database Management Systems (DBMS) as documented in [NCSC91d, 
Scha90, NCSC88c]. The Accountability Control Objective from the TCSEC states 
"Systems that are used to process or handle classified or other sensitive information must 
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assure individual accountability whenever either a mandatory or discretionary security 
policy is invoked" [TCSEC85]. The Accountability Control Objective is defined in such a 
way as to be applied to access control requirements for an OS and a trusted DBMS; 
however a trusted DBMS must further consider integrity requirements. A trusted DBMS 
must not only adhere to the Mandatory Access Control (MAC) and Discretionary Access 
Control (DAC) policies, but also to an integrity policy. Subsequently, audit for a trusted 
DBMS must be comprehensive in order to meet all three policy domains. 

For the purpose of this paper, integrity is concernd with two concepts: data integrity as it is 
applicable to the objects in a DBMS, and system integrity, which relates to the DBMS in its 
environment Data integrity is related to the type of audit that is automated and internal to 
the DBMS, whereas system integrity is more closely associated with the type of audit that 
is conducted external to the DBMS and involves other automated and unautomated 
components. 

To illustrate the distinction between integrity audit and security audit, an example is taken 
from the health care industry. Since medical Automated Information Systems (AISs) 
containing DBMSs are complicated applications, it is not sufficient to characterize 
accountability as "the audit of security-relevant events." Instead, a statement of the 
intended audit goals that addresses the concerns of both security-related audit and integrity- 
related audit is needed to capture robust DBMS protection requirements. An audit policy 
can express these audit goals, objectives, and requirements. An audit policy plays a role 
similar to that of a security policy in a trusted system; together, they define the philosophy 
of protection for a particular implementation. 

The Decentralized Hospital Computer Program (DHCP) delivers health care services to 
eligible veterans as one of the primary missions of the Department of Veterans Affairs 
(VA). DHCP does not have a multilevel security requirement in the Department of Defence 
(DOD) context, however, an argument could be made for hierarchical classification of data 
due to need-to-know restrictions. The DHCP is a rich source of complex data relationships 
ideal for the study of data and system integrity. 

The remainder of this paper is organized as follows. Section 2 gives the definition and 
purpose for audit in a trusted DBMS. The purpose for audit is related to both integrity and 
security. Section 3 presents a discussion of accountability that incorporates both access 
control security objectives and integrity objectives. The general nature of an audit policy is 
presented in section 4. The DHCP system described in section 5 provides background 
information for the DHCP audit policy framework. The guidance for an DHCP audit 
policy illustrates how integrity audit objectives can be addressed in a medical information 
system. Section 6 concludes by reviewing the key points identified in this paper. 

2.0   AUDIT DEFINITION 

A broad definition of audit is that it is the collection and review of a documented history of 
the use of a system to verify that the system is intact and working effectively. The auditing 
activity, viewed in its entirety, encompasses the notion of both an external and internal 
audit. 

An external audit consists of gathering and analyzing documentary evidence about the 
system by methods which are external to the system. External audit includes an extensive 
review of a system that covers an assessment of system security policy, data integrity 
controls, system development procedures, and back-up and recovery procedures. External 
audit is an in-depth audit of a particular system for accuracy. An auditor inputs special 
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transactions and monitors their progress as they flow through the system. Verifying the 
correctness of the transaction flow provides evidence to certify the accuracy and 
accountability of the system. The external audit process and the collection of documentary 
audit evidence provide assurance that the system under inspection is functioning properly. 

An internal audit is distinguished from an external audit by the fact that, whereas an 
external audit is only performed periodically and by means external to a system, an internal 
audit is designed into the system and runs continuously. Internal audit consists of 
automated collection and analysis of documentary evidence of the system's use. An 
internal audit subsystem must include mechanisms for continuously collecting and 
recording audit information in chronological order and for periodically reviewing and 
analyzing the collected information. The internal audit collection mechanism records 
information about system activities that have been judged significant enough to audit, 
which are referred to as audit events. An audit event may originate in the operating 
environment (e.g., a network connection to a DBMS), in the operating system (e.g., as a 
file open), or in the TDBMS (e.g., as a database query). 

Information collected about the occurrence of audit events is recorded in an audit trail. 
Since it serves as the only internal accountability mechanism, the audit trail must be 
tamperproof and must be afforded protection equivalent to that provided for the 
documentary evidence used in external auditing. 

The health care industry is well acquainted with the auditing process. The term medical 
audit has a distinct meaning: 

Medical audit is a retrospective review by medical staff members of 
selected hospital medical records, performed for the purpose of 
evaluating the quality and the quantity of medical care in relation to 
accepted standards [HAT89]. 

For a health care environment in which medical records are not computerized, medical audit 
is associated with what has been defined here as external audit. Medical audit is a catalyst 
for the move to computerization of medical records [Nixon90]. As the health care industry 
comes to depend on AISs, then medical audit will most likely include requirements for 
internally auditing computerized medical records. If medical audit becomes the driver for 
automated medical records, then audit generated from a medical DBMS must contain 
information that is not strictly related to security or privacy of the DBMS, but for integrity 
as well to support the objective of evaluating medical care. 

2.1 PURPOSE OF AUDIT 

The purpose of audit is to allow an authorized agent to review a history of events taking 
place on the system in support of the accountability control objective [TCSEC85]. Trusted 
operating systems built to the requirements of the TCSEC are concerned with the disclosure 
of information and support a security policy whose emphasis is confidentiality. A trusted 
DBMS has an additional concern, that of integrity, and it must enforce integrity properties 
in addition to the nondisclosure policy. 

The audit subsystem is generally structured in two parts: the audit mechanism itself, which 
does the actual collection and posting of an audit event to the audit trail; and a reduction 
facility or tools to aid in the analysis and review of audit trail data. Both parts together are 
needed to meet the audit objectives. 
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The Guide to Understanding AUDIT in Trusted Systems [NCSC88c], hereafter referred to 
as the Guide, incorporates the TCSEC accountability control objective and provides an 
interpretation of the TCSEC audit requirements. It amplifies the purpose for trusted 
computer system audit given in the TCSEC, providing five specific objectives satisfied by 
audit. However, like the TCSEC, the Guide discusses audit in terms of its support for the 
confidentiality control policy. Each of the five specific audit objectives stated in the Guide 
is restated below, with extensions added to include both confidentiality and integrity 
concerns. 

1. Allow for reviewing patterns of access - In order to allow a complete 
audit analysis for a DBMS, the appropriate audit information must be retained in 
the audit trail. A Medical information system (MIS) has the need for 
confidentiality of medical records and for assurances of the integrity of those 
records. To address both confidentiality and integrity policies, database read 
operations are audited to support a confidentiality policy, whereas write or 
modification operations are audited to support both the confidentiality and 
integrity policies. 

2. Allow for discovery of attempts to bypass system controls - Given 
that adequate audit information has been collected, the ability to detect policy 
violations also depends on the capabilities of the tools used to review and analyze 
the audit information. In order for a DBMS to meet this objective, the tools must 
support the capability to discover attempts to violate both confidentiality and 
integrity policies. 

In an MIS, control over access to patient medical records is provided by the 
attending physician who is sworn to uphold the Hippocratic Oath1. An audit 
record would provide the history of accesses and updates to patient medical 
records necessary for the protection of confidentially and integrity. Intrusion 
detection tools are needed in MIS to serve as monitors for the protection of patient 
privacy and preserve integrity through identification of unauthorized 
modifications. 

3. Allow for discovery of use of privilege - Audit must record the use of 
privilege to support the TCSEC accountability control objective. Execution of a 
privileged command permits a subject to violate a system's security or integrity 
policy; therefore, these become critical functions to audit. The privileged 
command set is primarily used by those administering the system who are 
permitted to violate a system's security or integrity policy. The use of a DBMS's 
privileged commands must be accounted for in the audit trail. One of the utmost 
concerns in health care is limiting professional liability exposure, as hospitals face 
increasing liability for the actions of its employees and physicians, physical 
records such as the audit trail provide proof of the use and abuse of privilege. 

4. Act as a deterrent - As in an OS, the mere knowledge of the existence of an 
audit capability in the DBMS is an important element in deterring malicious 
behavior. The deterrence objective is met by the provision of auditing for both a 
confidentiality and an integrity control policy. With many functional departments 

1    "Whatsoever things I see or hear concerning the life of men, in my attendance on the 
sick or even apart and herefrom, which ought not to be noised abroad, I will keep 
silence thereon, counting such things as to be sacred secrets." [LICH86]. 
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of a health organization becoming integrated within the boundary of one AIS, it is 
essential that the audit of DBMS medical records be a well known fact in the user 
population. 

5.     Provide additional assurance - The assurance objective of the audit 
mechanism applies uniformly to both trusted OSs and trusted DBMSs. It is 
important in providing the ability to reliably document bona fide policy violations. 
The audit mechanism is relied upon to record all significant system activity and 
nothing else. The audit mechanism should be trusted to record only the 
significant system activity prescribed by a system administrator or designee. 
Audit provides proof of accuracy among medical records. Audit is an additional 
assurance of quality for an MIS. 

The audit of integrity encompasses both data integrity and system integrity. One of the 
broad goals of integrity is to maintain internal and external consistency among the data in 
the database and the reality they represent externally. The Clark and Wilson Integrity 
Model [Clark87] introduces the concept of a Transformation Procedure (TP), which is an 
integrity mechanism that is built into the system and meant to preserve internal and external 
controls. The audit trail is a double check on the controls provided by the TPs. Through 
the collection and review of audit data, an internal and external view of the data can be 
maintained. Internal and external consistency are system integrity controls that are attained 
by the DBMS audit indirectly through the analysis of audit data, as stated in objective 2. 
That is, internal and external consistency are byproducts of the audit trail analysis, rather 
than the audit activity itself. 

If the DBMS audit mechanism provides a comprehensive record of system actions, then 
analysis of audit data can detect violations of internal consistency controls. Data integrity 
constraints add to the richness of the DBMS semantics by two methods: one is structural 
and the other is content-based. The structural integrity constraints concern only equalities 
among values in the database. The most prevalent of this type of integrity constraint is 
called a unique key constraint The unique key constraint defines a set of fields or attributes 
that form a unique key for the record or relation. When a column within a table is specified 
as the unique key, then, typically constraints on those fields values are also stated. 

The second content -based method a TDBMS uses to enforce integrity concerns controlling 
the actual values stored in the database. There are three types of constraints over actual 
database values: domain, entity, and referential. Most DBMS languages support a 
restricted set of domain types: fixed length character, fixed point number, integers, etc. In 
addition, domain integrity constraints allow for the specification of a valid set of data 
values. They are used to allow more precise control over the values that will be allowed on 
an UPDATE or an INSERT. For example, a patient cannot have an age greater than 110 
in the age field of the patient record. Entity integrity states "that no primary key attribute of 
a base relation is allowed to have null values. (Null values represent "information 
unknown.") The entity integrity rule is justified because, by definition, entities in the real 
world are distinguishable (i.e., they have a unique identification of some kind) [Date90]. 
Referential integrity affects the actual data values in the database. It guarantees that values 
appearing in one table for a given set of attributes, also appear in another table. For 
instance, for every doctor assigned a patient in the patient's file; the doctor's name and 
associated information must exist in the doctor's file. While these referential integrity 
"linkages" help to maintain a consistent view of the data, in order to enforce this property, 
the DBMS must modify tables without explicit instruction from the end user. The DBMS 
must be trusted to enforce this property correctly. As is to be expected, the audit of the 
actions taken with respect to referential integrity should reflect all data modifications. Since 
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even a small data modification can result in several additional modifications required to 
enforce the integrity contraints. The result of one command may produce many audit 
records. Today, many commercial DBMSs minimally implement domain integrity 
constraints and very few enforce referential integrity. 

Separation of duty is an external consistency control useful for maintaining system 
integrity. External consistency controls are implemented most commonly by separation of 
duty methods:  where an action is broken into subparts and each subpart must then be 
executed by a different person. The audit mechanism may be used to detect deviations of 
separation of duty controls; specifically, the order in which each subpart or subtransaction 
is executed and who executed it can be detected by audit trail analysis. Karger [Karger88] 
suggests the role of the audit trail is not just for security audit, but for the implementation of 
separation of duty as described by the Clark and Wilson (C&W) Model [Clark87]. The 
separation of duty (C&W rule C3) can only be enforced by using information about past 
actions. Historical information governing past actions, that is the action and the subject of 
each action, is found in the audit trail. 

Another goal of integrity is to prevent authorized users from making unauthorized or 
improper modifications to data. Mechanisms, like the audit trail, are usually provided to 
minimize the risk of this type of integrity violation. Objectives 2 and 3, the discovery of 
attempts to bypass system controls and the audit of the use of privilege mechanisms, are 
applicable to this integrity goal. Medical staff, such as physicians, are given specific 
clinical privileges according to the hospital policies, and must have these privileges 
renewed at certain intervals [AAP90]. The clinical privilege granted by the hospital 
administration is mapped to the access control policies enforced in an AIS. The audit trail 
is one mechanism that can be used to provide assistance in monitoring the actions and 
privileges of the medical staff to ensure that the activities result in quality care for the 
patients. 

Additional system integrity objectives are met through objectives 4 and 5. The deterrence 
and assurance audit objectives fulfil system integrity goals rather than data integrity goals, 
because these audit objectives relate to the DBMS environment. The competitive 
environment of today's health care industry, coupled with the rising malpractice verdicts, 
defense costs, and insurance premiums, has forced hospital administrations and physicians 
to respond by placing increased emphasis on systems to monitor, promote, and guarantee 
quality service. An MIS is used to promote a higher quality of health service. The 
deterrence and assurance goals of the audit of MISs serve to aid system integrity as a means 
in attaining a higher standard of health care delivery. 

Audit in a medical information system may have many purposes that can be met by the five 
objectives described above. A hospital information system, for instance, collects specific 
information for a medical audit (as previously defined). That is, the audit information 
collected becomes the means by which the quality of care is assessed, performance (of 
health care professionals) indicators are derived, liability is reduced, and the interrelations 
among fundamental hospital components are examined. It is clear that audit can be used to 
meet a broad range of requirements, when integrity audit events are included in the audit 
trail. 

3.0    ACCOUNTABILITY 

The audit trail is the only physical record of DBMS accountability. System integrity must 
figure prominently into the accountability objective since integrity concerns are; like 
accountability, related to the external environment Both integrity from a data sense and 
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from a systems sense is needed for accountability. The technical report, Integrity in 
Automated Information Systems, addresses one aspect of system integrity in the definition 
it provides on accountability: 

... accountability... requirements [that] are derived to uniquely 
identify and authenticate the individual, to authorize his actions 
within the system, to establish a historical track or account of these 
actions and their effects, and to monitor or audit this historical 
account for deviations from the specified code of action 
[NCSC91b]. 

This definition of accountability incorporates the notion of an external standard code or 
policy to which an individual is expected to conform. Many organizations contain a code 
of good conduct. The medical profession has very stringent codes of conduct. "Medical 
staff credentialing, including the delineation of clinical privileges for each staff member, 
represents a cornerstone in the hospital quality assurance program [AAP90]." The entire 
medical credentialing process must be clearly stated in the hospital staff medical bylaws. 
Given such a firm foundation in an external code of conduct, the task at hand is to represent 
that code in a policy the DBMS can enforce. An audit policy can serve, in part, as a 
representation of the external hospital policy. If specific actions, such as updating the 
medical record each time the patient receives care, relate to an external code of conduct that 
can be audited, such deviations from the code can be detected. The audit policy can 
address both data integrity by delineating the level of accountability, and system integrity 
by incorporating the external code of conduct. 

In summary, since accountability is a product that is derived from the physical record of 
end-user actions it should incorporate both data integrity and system integrity attributes. To 
ensure that the audit is complete and comprehensive, it is necessary to make the objectives 
for audit a formal part of a system's protection strategy. This requires documenting these 
objectives in the form of an audit policy. 

4.0   AUDIT POLICY DEFINITION 

A health service is like an organism that needs a central nervous 
system to cope with the complexities of modern information 
handling. Without a policy for information handling, data systems 
become patchy and idiosyncratic — an opinion that may not be 
unfamiliar to those trying to draw conclusions from existing data .... 
[Seddon90]. 

An audit policy is a statement of high-level rules, goals, and practices that describes how 
the organization manages and protects its audit data. The audit policy encompasses 
technical, administrative, and procedural aspects of DBMS audit. The technical aspects of 
the audit policy will d&fmewhat objects are important for audit (for security and integrity) 
and when actions against these objects should be audited. Not every object or class of 
objects will have to be audited at all times. The set of auditable objects may vary depending 
on the level of risk and the perceived threats. The policy should be sufficiently detailed so 
it can be tailored to the technical capabilities of the target DBMS. A technical mechanism 
important for the enforcement of an audit policy within a DBMS is the ability to define 
audit options associated with data objects. The audit policy can help to delineate which 
audit options are to be used: part, some, or all of the time. Once it has been determined 
what objects are to be controlled and which actions are security-relevant and which are 
integrity-relevant, then the DBMS audit options can be set to optimize the audit resource. 
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Selectable audit events are provided by the DBMS as a way to balance the trade-off of too 
much unintelligible audit information against too little or none. 

The administrative part of an audit policy addresses organizational values. This section of 
an audit policy may be used to define the risks the audit attempts to minimize. An 
organization-wide audit policy may state the overall purpose and intent of audit, but each 
functional unit will be interested in accountability over its own data objects. For example, a 
hospital, as an organizational entity has an interest in maintaining one level of 
accountability, while organizational subparts, such as pediatrics or finance, may have 
separate or mutual exclusive accountability goals. An audit policy attempts to provide some 
adhesion to the different perspectives of audit The administrative criteria also must 
establish the scope and coverage of the audit with the associated costs of the audit. The 
costs of audit include the audit review time, audit collection, and audit storage media, in 
addition to the DBMS performace costs. 

The audit policy contains details on the procedural aspects of audit data for its use once it 
has been collected. The importance of protecting the audit data is paramount The audit 
policy can direct who is to view the data, how often it must be reviewed, key data points to 
be gathered, and, most important what to do when anomalous events are detected. Several 
procedural and operational system management requirements can also be delineated in the 
audit policy, such as, the handling of audit data and maintenance of records pertaining to 
the storage of the data. The movement of online audit trails to offline storage is another 
facet of the policy. The audit policy should define an archive schedule for labeling and 
storing audit trail data offline. Audit trail maintenance information is needed for the 
retrieval and analysis of audit information stored offline. 

5.0 HEALTH CARE SERVICE APPLICATION 

This section applies the concept of an audit policy to an application. The DHCP was 
chosen because the DHCP is one of the few MISs that supports multiple medical centers 
and incorporates clinical and administrative information. The following paragraphs 
describe the DHCP functionality, and then the framework for an audit policy is presented. 
Although, security plays an important role in audit the purpose of this paper is to define 
the integrity view of an audit policy for a health care organization. 

5.1 THE DHCP 

The delivery of health care services to eligible veterans is one of the primary missions of 
the Veterans Administration (VA). AISs are indispensable resources to the delivery of 
quality health care to the vast numbers of veterans. The Veterans Health Administration 
(VHA) operates the largest centrally directed health care system in the United States (US) 
through 172 VA Medical Centers (VAMCs), 229 outpatient facilities, 122 nursing homes, 
and 27 domiciliaries. During Fiscal year 1990, these facilities attended 1.3 million 
inpatient and 22.6 outpatient visits. Because of the need to serve U.S. veterans, the DHCP 
is in a unique position for creating standardization in the field of medical informatics 
[Mun86]. Due to its success, the DHCP is being used as a model hospital information 
system. The DHCP system is also being adapted for use by the Indian Health Service, and 
the DOD has implemented the system on selected military bases. The Helsinki University 
Central Hospital, in Finland, has also implemented the DHCP. 
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The focus of the DHCP has been to develop a set of core modules that was easily 
integratable into a complete hospital information system. The key architectural features of 
the DHCP are listed below: 

1. Single standard language - MUMPS (Massachusetts General Hospital Utility 
Multi-Programming System).  MUMPS is an American National Standards 
Institute (ANSI) language. 

2. Common database - The set of common databases is controlled by an active data 
dictionary. These data dictionaries are designed to allow for both centralized and 
decentralized control of the data. This common database environment is provided 
by FileMan, which is a collection of MUMPS routines written by the VA, but is 
available now as public domain software. FileMan is fundamentally a hierarchical 
data management system; however, it includes a pointer data type and a trigger 
mechanism common with relational DBMSs [Dav87a]. 

3. Host and communication services - Digital Equipment Corporation (DEC) 
equipment is networked through an X.25 packet-switching system. 

There are three major areas of the DHCP: the system/database kernel, the clinical, and 
hospital administration applications. Each area of the integrated hospital management 
system is described below. The DHCP system/database management function is structured 
as a set of kernel programs that provides an interface between MUMPS applications and the 
OS. The major portions of the system/database management kernel are: 

1. The file manager (FileMan) which includes the DBMS and supporting utilities 
such as a report writer, data dictionary, and data editor. 

2. Electronic mail (E-mail) provides user-to-user teleconferencing, networking, and 
software distribution. 

3. The task manager (similar to the Unix cron program) initiates time-sensitive 
background tasks. 

4. The menu manager controls the user access to functional elements of the DHCP 
and provides online help. 

5. The security monitor controls user identification and authentication, locks out 
devices, tracks usage, and controls which menus a user can access. 

6. The OS configuration data are managed by a table designed for each OS on which 
the DHCP is implemented. 

The clinical application area contains the set of core medical databases. The DHCP 
contains many other clinical modules; however, not all of these other modules are 
distributed nation-wide. Only the core databases are resident at every VA medical center. 
The core medical modules are listed below: 

1.     Admissions, Discharge and Transfer (ADT). This application collects and tracks 
inpatient activity, collects patient demographic information, bed assignment, 
patient release (discharge), and waiting lists. The ADT also prepares patient 
classification information that is used for assessing the cost of the services 
provided and for developing management reports for utilization review. 
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2. Outpatient Scheduling. This application establishes clinical appointments. The 
appointments are scheduled to minimize travel time and expense of patients by 
scheduling multiple appointments on the same day. 

3. Outpatient Pharmacy. This application allows pharmacists or technicians to 
manage outpatient prescriptions. It has a suspense system to hold prescriptions 
until 10 days before they are due, and has 30 user-controlled site parameters to 
allow local pharmacist control over the system when local policy does not conflict 
with national policy. The package does automatic checks for duplicate drugs and 
displays allergies and other clinical-relevant information. Reports are established 
for drug utilization review, physician prescribing practices, and cost 

4. Laboratory. The clinical lab supports the collection and storage of lab test 
information. Retrieval of this information is restricted to authorized lab, ward and 
clinical personnel. The lab tests may be entered manually or through automated 
interfaces with lab equipment. All information is verified before being entered 
permanently in the patients medical record. The laboratory module can accept 
orders for tests from the lab or the ward. It also prints worklists that help the 
staff track test specimens and the tests to be performed with the specimens. 
Additionally, the system can display comparative analysis of data, flag abnormal, 
and critical values, and prevent the release of information if controls or instrument 
calibrations are out of acceptable ranges. Reports generated include test 
descriptions and requirements, lab workload, tests in progress, and data related to 
a single patient's lab tests for a specified time period. 

5. Inpatient Pharmacy. The inpatient pharmacy application is composed of three 
functions: unit dose, ward stock and IntraVenous (TV) drugs. The unit dose 
supports inpatient drug distribution while the patient is in the hospital. Orders are 
entered, reviewed, or canceled by appropriate medical personnel. The unit dose 
reports patient demographics, all active orders, and administration schedules. 
Ward stock or automatic replacement of supplies handles the distribution and 
drugs inventory for the hospital. The IV function is a dispensing package that 
provides the pharmacy users with drug labels, manufacturing data, and basic 
counting or reporting of IV orders. 

The management modules contain the hospital aclministration, decision support and 
financial applications. A selected few management applications are described below. 

1. Accounts Receivable. This application is a bookkeeping function that tracks the 
monies that are due to the VA. 

2. Decision Support System. This application consists of a set of data extract 
routines that capture data from other clinical and management DHCP applications. 
The data are used for modeling, variance analysis, and ad hoc reporting. 

3. General Inventory. This application is designed to provide the basic inventory 
tasks such as ordering, receiving, and distributing hospital supplies. This 
application is fully integrated with accounting and procurement applications. 

4. Interim Management Support. This application focuses on staffing, costs, 
materials, and space resources. The management function&are targeted for the 
VA medical center director, the associate director, and the chief of staff. 
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The DHCP has implemented a global data model that is centrally controlled, but 
implemented and modified according to local medical and legal requirements. Information 
flows horizontally from to regional local medical centers, and in some cases, to national 
data processing centers. Local medical centers and regional data processing centers also 
exchange data; thus, information flows vertically as well. 

A two-tiered data architecture within the DHCP is used for some applications and other 
applications involve a three-tiered data architecture. The database applications are 
developed and maintained centrally at a national level. Applications and data are distributed 
to each VA medical center for use and modification on a local level. Some application areas 
are also required to maintain consistency with national-level databases. The Tumor 
Registry application allows personnel to abstract cancer cases from the national-level for 
use in treatment and provides utility options for file maintenance, and data consistency with 
the National Registry for online changes. A three-tiered data hierarchy involves the 
Regional level data processing centers within the VHA. The Quality improvement 
application is designed to enhance the VA's accountability with respect to quality health 
care and enhanced management of resources. A quality checklist is submitted from a local 
medical center and forwarded to the national database, where it is compiled and analyzed. 
Results are then reported to the VA Central Office which ultimately provides feedback to 
the local level. Information within this application is extracted and reviewed from 
databases at three levels. Information is also exchanged between VA medical centers. An 
Automated Medical Information Exchange (AME) application facilitates information 
exchange among several VA components: the Veterans Benefits Administration (VBA) at 
the national level, the regional offices and each local VA medical center. Information is 
exchanged for benefit eligibility, status of pending examinations and tests, confirmation of 
payments, and benefits adjustment 

The basic security and integrity features provided in the DHCP are built and maintained 
within the kernel system software. Security management includes access controls of users 
to resources (e.g., programs, menu options, files, fields with files, and devices). These 
access controls can be specified by user, device, time of day, and day of week. Before an 
application is distributed to a local medical center, the access controls for the application are 
specified by the local medical center, but implemented in the kernel (FileMan) at the central 
control distribution facility. 

The FileMan software controls access based on user identity. A user identifier is associated 
with a file, and within the file, to a field. The DBMS functions are mapped to the controls 
implemented by FileMan in table 1. These access controls are used for the file level; access 
at the field level is limited to Read, Write, and Delete. Access to each DBMS file or field is 
controlled by a "permission key" established when the file is created. A user must have the 
"key' to the data dictionary in order to set field level granularity access control. 
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DBMS Functions FileMan Options Controlled 

Read 
Print, Search, Inquire, Statistics, and List 
File Attributes 

Write Enter/Edit 

Delete Enter/Edit and Transfer File Entries 

Data Dictionary Modify File Attributes and Utility Options 

Table 1. Granularity of DBMS Access Control 

The effect of creating file and field level granularity is that a user is presented with a 
specific view of the application data. Each clinical and hospital management application has 
the ability to be configured for a user's privileges. The data and the application are tightly 
coupled and control is provided using a view. An example of the use of the access control 
mechanisms is the Mental Health application menu which contains several functions, 
including clinical record, patient-administered instruments, vocation rehabilitation, general 
management, inpatient functions, and Mental Health Service (MHS) manager functions. 
The MHS manager functions allow the designated manager (as set by the DHCP kernel) to 
administer permissions. The MHS manger menu contains functions for configuring the 
inpatient features, the local site management parameters, individual permissions for field- 
level control of the clinical record, and access to E-mail. This example of view-based DAC 
heightens the need for a comprehensive audit criteria. 

The integrity features within the DHCP include domain, entity, and referential constraints. 
Data fields are configurable to allow a preset list of values. For example, the field CITY 
can be programmed to accept only a list of local cities in an area. The VERIFY FIELDS is 
a utility that helps to identify entity and referential integrity constraints. The utility locates 
values in the file that are inconsistent with the definition of the element in the data dictionary 
[Dav90b]. To identify referential integrity constraints, the utility seeks database pointers 
that are not pointing to a valid data element. These dangling references are not prevented 
from occurring in FileMan; they are only identified after the fact, when the utility is 
executed. 

The audit of integrity features performed by FileMan will be an inadequate subset of what 
is required to support a DHCP comprehensive audit trail that supports both confidentiality 
and integrity. Until referential and entity integrity constraints are incorporated into the 
DBMS product, much of the integrity-related audit information is found in the DHCP 
applications. The actual audited actions implemented in the DHCP are unavailable (at this 
time); therefore the following assumptions concerning audit have been made: 

a. Audit data are collected and used at the local level, and some relevant audit 
information may be transferred to the regional or national levels. 

b. Audit records contain an identifier, time, location, object name, the action taken 
with the object, and status of the event (success/fail). 
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c. Audit events are created as a result of information transfer out of or into a local 
VA Medical Center. 

d. Audit events are created as a result of access controls placed on files and fields 
within files (DAC-based views). 

e. Manipulation of the data dictionary is audited. 

The semantics for integrity-related audit are found in the DHCP applications. 
Nevertheless, many individual operations on data are performed transparently to the user 
and should be audited. 

The DHCP is an evolutionary system addressing many health care administration 
technological issues. Its extensive clinical and management features are still being 
developed. Application areas, such as medical knowledge bases and research and 
development with universities and teaching hospitals, have yet to be exploited. Many 
technology areas, such as improved clinical displays and workstations along with software 
development tools, are areas identified for future growth. With a continuing interest in the 
field of medical audit brought on by the increasing need for medical record review, audit is 
likely to be considered an area for future growth as well. The framework for the 
development of an audit policy is just one step needed to address the complex policies in a 
large, integrated, hospital medical information system such as the DHCP. A fully 
developed audit policy requires very specific knowledge and research into the DHCP, but it 
will provide a good foundation for maximizing the audit capability. 

5.2   FRAMEWORK FOR A DHCP AUDIT POLICY SUPPORTING 
INTEGRITY 

The framework and guidance for an audit policy is described below. The audit policy 
initially requires the statement of the DHCP audit goal and purpose for audit. To address 
the goal and purposes, the framework for the audit policy is divided into three areas: 
technical criteria, administrative criteria, and procedural criteria. Accountability, 
confidentiality, system and data integrity are discussed within the technical portion. 

Audit Goal 

The DHCP audit policy is based on a statement of the goal or goal to be achieved through 
the audit of the DBMS. The goal of audit is derived from the more encompassing DHCP 
goal of attaining quality health care while minimizing the costs. 

Audit   Purpose 

Purpose of the DBMS audit is to support individual and legal accountability, integrity and 
confidentiality among all the local VA medical centers, and the regional and national data 
processing centers. 

To obtain the goal and purposes set forth, the audit policy must be developed together with 
risk management and quality-control plans. Audit is a natural extension of risk 
management Risk management programs are designed to identify and reduce actual or 
potential risks to patient safety, so that patient care is improved and negligence claims are 
restricted. Higher risk areas such as, obstetrics, trauma centers, burn units, psychiatry, 
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and intensive care, are prone to be clinical areas that require close attention when the 
decision is made to identify auditable objects. In the DHCP, each application area should 
be assessed to determine the appropriate audit. In consideration of the many VA medical 
centers, additional focus must be given to the requirements for each facility. The purpose 
of an audit in one facility may not be critical to another. Each facility should have a 
common audit goal, but the risks may vary. The strength of audit lies in the local 
implementation, but the benefit is shared. The purpose of audit is a variable dependent on 
application, site, and the associated risks. 

Technical Criteria 

The technical criteria identifies potential auditable events that pertain to the DBMS and its 
application. As stated above the, criteria are dependent on the associated risks, the site and 
the particular application area. 

Accountability 

The audit for accountability is based on the relationship of the DHCP end user and that of 
the information required by the end user to perform a job. In TCSEC terminology, this is 
related to subjects and objects. The accountability-related audit data includes the following: 

1. Identification and authentication (I&A), I&A parameters uniquely associate the 
user with a role and data The environment or profile of each database user 
includes attributes and default access settings. The creation and maintenance of 
the user environment must be part of the audit paradigm. 

2. Functional roles. The DHCP roles are defined per application/database area. 
Within each application, one or more roles maybe defined. The number of roles 
within an application/database varies depending on the requirements of the 
application. Some applications process sensitive patient data and therefore, 
require a greater level of accountability. It is assumed that every user of the 
DHCP interfaces with the system in a role capacity. 

3. Information. The information (objects) the user seeks is processed at many levels 
of abstraction, e.g., application/database, data dictionary, table, view, form, or a 
report. The granularity of the audit is a function of the control required on 
specific information. The accountability and control may vary according to the 
application, the role defined for the information, and dynamic circumstances such 
the context of a particular operation, for example date/time. Named objects on 
which privileged subjects may perform operations must be identified. 

The implementation of roles in a DBMS enhances accountability and eases the audit 
burden. The implementation of functional roles is also used to support separation of duty 
controls. When a user's job functions are carefully defined and controlled under the 
umbrella of a role, then audit for the purpose of revealing "patterns of access" is more 
predictable; therefore, variations of access can be identified. The degree to which 
commands and roles overlap has a strong correspondence to how narrow in scope a role is 
defined. A very fine construction of functional roles (more users having the same 
privilege) will create a wider accountability overlap; hence, more privileged data will be 
held by more users in the performance of some tasks. While this increases accountability 
from a functional aspect, it also has the effect of making the audit of privileged operations 
less unique. For example, when several end users are identified to assume a role that 
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includes the printing of a patient's medical record, then the output action is not as unique an 
action as it could be if only one person were assigned to the role. 

The audit for accountability focuses on the subject of the action rather than the object of the 
action. The remaining three areas of confidentiality and integrity focus on audit of the data 
object. 

Confidentiality 

With computer-based medical records, medical personnel can be restricted to obtain only 
parts of the medical record that is germane to their responsibilities. Very strong 
confidentiality controls obtained through MAC are not available on the DHCP. The 
confidentiality that is available is auditable through the VA kernel utilities and within the 
application modules themselves. The audit collected for confidentiality should include the 
following information: 

1. MAC (when available). Access control based on labeled data is not currently 
implemented in DHCP. 

2. DAC implemented by the DBMS and application. 

3. Privilege. The auditing of privileged operations provides assurance that the 
controls implemented through privileged actions are being used properly.  A 
privileged action is one that is authorized to violate a DAC, integrity, or other 
system enforced-policy. 

Sensitive data within the DHCP must be identified. Parts of the DHCP databases that 
contain this data or data that can be derived from sensitive data should be audited 
commensurate with the level of risk. With medical information systems, the risk of 
disclosure is based on the identity of the patient. Confidentiality can be protected by the 
minimization of the amount of sensitive information revealed in case the patient is 
identified. Therefore, the identity of the patient should be masked if written in the audit 
trail. 

System    Integrity 

System integrity audit is related to the external consistency requirements for the DHCP in 
its environment System integrity-related audit includes the following information: 

1. Inter- and intra-DHCP organization data. 
2. Inter- and intra-DHCP clinical and administrative data. 
3. Data required for a medical audit 
4. Data supporting separation of duty. 

The audit trail from the DBMS should support the requirements for external quality control, 
such as medical audit Specific information for medical audit includes audit events which 
could be used to derive the quality of clinical services and treatments that actually produced 
the most effective outcomes. The information ratio of services and treatment to effective 
outcomes is important for maintaining and setting standards of care. 
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Data   Integrity 

The audit of integrity constraints enforced within the DBMS and within the application 
modules will provide the means to assess the quality of data integrity. Audit for integrity 
purposes, must be an outcome of the application, as it is not sufficient from the DBMS 
itself. The audit for data integrity purposes includes: 

1. Domain, entity, and referential integrity constraints. This audit is aimed at the 
identification of integrity and consistency problems on a semantic level. 

2. Triggers or similar mechanisms (e.g., FileMan logical file pointers) that are used 
to maintain data consistency at different levels of abstraction in the DBMS. 
Triggers may be employed for maintaining consistency between databases 
existing between sites and between database tables at the same site. 

3. Audit of externally defined medical terminology. The MUMPS language exploits 
the use of medically coded phrases and lists of standard terms. The possible 
relationship between those phrases and lists within the program application 
creates a consistent interpretation of medical terminology within the DHCP. 
Clinical applications external to the DHCP may not conform to the precise 
definitions and would be candidate information for integrity-related audit 

Administrative   Criteria 

The administrative criteria within the audit policy addresses the policy decisions made 
concerning the scope and coverage of the audit Three criteria are noted: 

1. All services that affect the care of patients will be audited. Preplanning precisely 
which characteristics are to be audited is associated with risk management planning. 
Audit system designers should avoid the tendency "to create their own special 
purpose [audit system] designed only to satisfy the initial requirements" [Bony81]. 

2. The audit trail review process will be conducted performing an analytical review of 
the data for both confidentiality and integrity purposes. The results of the reviews 
affect the quality of patient care and its delivery. 

3. Assistance to quality assurance programs. The product of the audit trail may 
contribute to quality assurance committees on pharmacy, nursing service and 
administration, medical record review, infection control, blood utilization review, 
and antibiotic review. 

Pertinent to this policy decision concerning the scope of audit is the determination of 
resources available to manage audit data. Considerations for this decision concern the time, 
cost, and storage resources that are required for administration of audit data. The overall 
cost in terms of performance and storage requirements must be commensurate with the 
benefit from the audit A performance versus audit tradeoff study conducted periodically 
will maintain an acceptable level of audit Administrative decisions with respect to audit 
trail storage will be reflected in how easily audit trails are able to be retrieved and analyzed 
retrospectively. The storage records pertaining to archived audit trails must conform to 
strict quality-control standards Audit trails may be used for legal accountability and 
therefore, must be maintained systematically without error. 
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In addition to specific management of resources, advanced technology in audit trail analysis 
and intrusion detection tools can help maximize the benefits of retaining and using audit 
trails when needed for reducing audit and detecting suspicious behavior. When the audit 
includes integrity-related events, audit trial analysis becomes even more important There 
are more events of interest in the audit trail and the audit events are not collected soley for 
detecting system intruders. Different types of audit trail review are needed. The review of 
the audit trail will require sophisticated tools to take full advantage of the data collected. 

The product of the audit trial review may extend into quality-assessment activities. The 
identification and assessment of the extent of observed problems in the areas of 
confidentiality, system, and data integrity will provide feedback into the quality-assurance 
planning activity in the DHCP organizational hierarchy. 

Procedural  Criteria 

The procedural criteria for audit data are related to the actual guidelines and steps needed to 
implement the policy. Standards and operations guides are used for reviewing, 
maintaining, creating, and protecting archived audit data.  The standards should address 
the frequency and type of audit trail review that will be performed. The frequency and type 
of review may be commensurate with the associated risks. Maintaining and creating audit 
trail data both on-line and offline are conducted according to prescribed standards. The 
protection of audit trail data encompasses online and offline storage. The protection of 
audit trail data should be addressed in contingency planning activities. The audit procedural 
criteria reflect the standards and operations between VA medical centers, and regional and 
national sites. 

5.3   THE DHCP AUDIT POLICY SUMMARY 

The audit policy attempts to provide a framework in which to study the specific objectives 
for audit within the DHCP. An audit policy will ensure the DHCP and VA administrators 
that what is being audited is done for an intended pupose. In order to create a fully 
effective audit policy, it is necessary that it be strongly coupled with the risks and 
vulnerabilities of the system. Audit can serve many purposes including confidentiality, and 
both system and data integrity. Some of the areas identified for audit are overlapping. 
Because "absolute" integrity is impossible to achieve, audit from several perspectives is 
provided to minimize risks. The policy, while, not complete at this point, requires more in- 
depth study of the information flow from within the application modules and between 
organizational components that support the DHCP. A long term study of the DHCP can 
yield audit principles applicable to similar medical information systems. 

6.0    CONCLUSION 

A DBMS audit mechanism is used to support both data integrity and system integrity. 
Data integrity serves, as an objective, to control the modification of data within the DBMS. 
System integrity is not so much related to the mechanism as it is to internal and external 
consistency requirements - the view of the data with respect to real-world actualities. 
Integrity is tied to an application [NCSC91], and to analyze integrity, it is convenient to 
examine the integrity constraints of an existing system, such as the DHCP. An audit policy 
is required for a DBMS due to the complexity of the objects requiring accountability, 
confidentiality, and integrity. The audit policy imposes some structure on the nature of 
DBMS audit to ensure that the audit process is successful in obtaining its statement of 
goals. Further, the exercise of creating a policy is justified by the outcome of the audit 
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because it is more likely to be systematic, rather than random, and built on measures 
validated with risk management and quality-assurance policies. 
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Abstract 
Formalization of security policies using a logic programming paradigm starts with the repre- 
sentation of each security policy as an axiom. Theorems describing the properties of the re- 
sulting set of axioms can then be formally derived with the aid of an automated reasoning 
system. However, the ability to generate a proof is dependent in part on the structuring of the 
entities and relationships within and between security policies. Errors in structuring them can 
result in no indication (i.e., proof) when a conflict in axioms exists, or in an incorrect proof 
when in fact there is no conflict To reduce errors, we consider the effect of using a model 
representation as the "front-end" to axiom formulation. In particular, we present a case study 
that compares a model-based approach to one with no pre-structuring. Both approaches 
axiomatize security policies as clauses in predicate calculus. The two differ in that the model- 
based approach begins with the definition of a structural model of the entities, mechanisms, 
and relationships contained in the security policies. This schema is then used to guide the 
axiomatizion of the security policies. In the other approach, the security policies are axioma- 
tized without the aid of a schema. Reasoning about the set of security policies is accom- 
plished by posing queries in the form of theorems to an automated reasoning system The 
schema-based approach appears to produce fewer structuring errors in formalizing security 
policy than the non-schema-based approach. However, the schema-based approach introduces 
more rigid rule formulation, and thus may not allow some valid queries. 

1. INTRODUCTION 

An organization responsible for protecting sensitive information from unauthorized access 
typically has a set of security policies represented as natural language statements in a security 
policy manual. In order to comply with these policies, members of an organization need to be 
able to understand and correctly interpret them. However there is usually some degree of 
imprecision in natural language representations of security policies. Precision in this context 
is defined as the degree to which a security policy or set of policies are free of ambiguities and 
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omissions. Imprecision can lead to misunderstanding and misinterpretation which, in turn, can 
result in violation of security policies. 

Similarly, a secure computer system must be able to correctly enforce security policies. Ar- 
ticulation of policies using formal methods is one approach to developing precise representa- 
tions upon which to automate the reasoning about and application of security policies. How- 
ever, the degree of precision attained in representing them is dependent upon how well a 
formal method is applied. Imprecision can arise when the policy entities, mechanisms, and 
relationships are not explicitly modeled. Without such a model, omissions and ambiguity may 
not be readily discernible to a human or computer system. 

We present a case study that compares a model-based approach with one not using a prior 
structure. Both approaches axiomatize security policies as clauses in predicate calculus. 
The model-based approach begins with a structural model of the entities, mechanisms, and 
relationships contained in the security policies. This schema is used to guide the axiomatiza- 
tion of the security policies. The other approach axiomatizes the policies without the aid of a 
schema. Our goal is to provide an initial demonstration that a schema-based approach pro- 
duces fewer structuring errors in formalizing security policy than the non-schema-based ap- 
proach. Our hypothesis is that the overall logic rule formulation is simplified in the model- 
based approach by capturing many of the rules in the structural model and formulating rules in 
terms of this model. This results in partitioning the rules into two sets: one for purely struc- 
tural information, and the other for policy dynamics. The axiomatization of intentional policy 
(e.g., epistemic notions of knowledge and belief) is outside the scope of this paper. 

One of the problems in applying formal methods according to Holt and deChampeaux [6] is 
that the supporting tools are often not integrated. The integration of a structuring mechanism, 
formal method, and theorem prover for modeling and analyzing policy is one step in this di- 
rection. Reasoning about the policies is accomplished by posing queries (stated as theorems) 
to the OTTER resolution-style theorem-proving program [7] for first-order logic with equal- 
ity. The ability of the reasoning system to generate a proof is dependent in part on the struc- 
turing of the entities, mechanisms, and relationships within and between security policies. 
Errors can result in the erroneous generation of no proof or an incorrect proof: failing to find 
rule conflicts or not detecting existing conflicts. The schema-based model helps reduces these 
errors. The problem of verification also arises in using formal methods to prove program 
correctness [5]. However, by modeling a secure system at the policy level, many of the 
modeling errors that arise in proving program correctness are eliminated because policies are 
closer to the social processes that define a system, e.g., assumptions made by system users 
and developers are more visible at the policy level versus being embedded in algorithms and 
code. However, strict conformance to a schema concept may prevent the formulation of 
queries of potential importance. This is why we take a trial-and-error approach to policy for- 
malization in this paper, i.e., the schema is just an aid for guiding the axiomatization of policy. 
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2. SECURITY POLICY EXAMPLE 

This case study is based on a slightly modified version of a security policy example posed at 
the 1991 IFIP WG 11.3 Workshop on Database Security [9]. The example consists of a set 
of security policies regarding the access by employees and visitors to a secured building con- 
taining company-sensitive information. The policies are intended to be a reasonable facsimile 
of an extract, the Security Manual (SM), from a firm's Policy Manual. The security policies 
are listed in Figure 1. 

2.1 Method for axiomatizing security policies 
An informal experiment is presented as the basis for comparing the two approaches. The 
authors split into two pairs for the two approaches; the groups worked independently in for- 
malizing the security policies. 

The non-schema-based approach consists of first representing each policy statement as a 
clause in predicate calculus, and then adding any real-world knowledge as real-world axioms 
that are deemed necessary to complete the linkage between security manual axioms. 

The schema-based approach begins with the development of a structural model of the policy 
structures (i.e., classes) and their corresponding relationships. This model was represented as 
an extended entity-relationship (EER) model [10]. An EER model is an entity-relationship 
model [3] with classification hierarchies and aggregation. The feasibility of using the EER 
formulation as a vehicle to guide the construction of logic models has been studied by Ackley 
et al. [1]. The security policies are then axiomatized in two broad sets: one based upon the 
structural information contained in the EER model, the other based on the policy requirements 
written in terms of the EER model. 

2.2 Criterion for making comparisons 
The two formalizations of the security policies are compared based upon their ability to sup- 
port the OTTER theorem prover in answering the queries given in Figure 2. Query 0 is from 
the 1991 IFIP paper. Also considered are the restrictions imposed on query formulation by 
the model-based representation. 

3. AXIOMATIZATION WITHOUT A SCHEMA 

In the first model of policy formulation, all facts were represented as axioms. They were then 
input to a theorem prover to determine whether the set of statements showed internal consis- 
tency. Next they were debugged by augmentation and modification until a consistent set was 
achieved. Finally, questions or situations were formulated and presented to the theorem 
prover to prove that the statement produced a consistent condition, show that the question 
was valid within the frame of reference, or show that a fallacy existed in the interpretation. 
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SMO. 

SM1. 

SM2. 

SM3. 

SM4. 

SM5. 

SM6. 

SM7. 

SM8. 

SM9. 

SM 10. 

SM11. 

SM 12. 

SM13. 

SM14. 

SM15. 

SM16. 

SM17. 

The Security Department is responsible for administering and enforcing security policy. All the following 

policies are examples of this. 

The Security Department issues security badges. 

The Security Department provides guards. 

The Security Department patrols the area- 
New employees are issued employee badges on their first day of work. 

Guards issue visitor badges at the door to visitors if: the visitor signs toe security log, shows identification to 

the guard, and the visitor visits an employee.  

Visitors must be escorted at al times by an employee. 

People must show their badges while in the building. 

Violation of security policy must be reported to the Security Department. 

Loss of a badge is a security violation. 

All security escorts are employees. 

The security log is permanency retained at the entry station. 

Acceptable forms of identification include a current driver's license, current state non-driver identification 

card, or current t t passport. 

K a person is in the building and does not have a security badge and is observed by an employee, then that 

employee must escort the person to the security department. 

Visitors must surrender their security badge to the security escort upon leaving the building. 

Employees may take their security badge with them when exiting the building. 

Upon separation of service, an employee must surrender his or her security badge to the security department. 

Employees who lose their security badge must obtain a replacement for it. 

SM18. 

SM 19. 

Employee and visitor badges can only be obtained on regular business days from the security department. 
Any employee who is wearing someone else's employee badge has committed a security violation and is to 
be escorted to the security department.  

SM20. A visitor must not wear an employee badge. 

Figure 1. Extract of a corporation's Security Manual 

Query 0. 

Is it possible that a person inside a secure building can be unescorted and have surrendered his or 

her visitor badge to a security guard? 

Query 1. Can an employee be inside the building and not have a badge? 

Query 2. 

Query 3. 

Can a visitor be inside the building and not display a security badge and not cause a security violation? 

Can a visitor in the building display one badge but not a second badge?  

Query 4. Must an employee have a security escort? 
Query 5. Can an employee tose a badge and not create a violation? 

Query 6. Can a visitor be inside the building having shown an expired identification at entry? 

Query 7. 

Query 8. 
Can a visitor that has exited the building display a badge? 

Can an employee be in the building before the first day of employment and cause a security violation? 

Query 9. 
Query 10. 

Can a person obtain a badge from the security department on a holiday? 

Can a visitor be in the building and only be visiting another visitor and not cause a security violation? 

Query 11. Can a visitor be in the building without having been issued a badge? 

Query 12. Can an employee leave the building with his or her badge? 

Figure 2. Queries about ttie corporation's security policies 

3.1 Formalization of security policies 
First, the statements in the Security Manual had to be translated into axioms; at this time, it 
became obvious that real-world knowledge also had to be added as axioms. The real-world 
knowledge consists of those aspects of the environment that may be assumed to be under- 
stood by a typical employee and are normally included in a Policy Manual. The lack of their 
explicit inclusion contributes to ambiguities or unexpected need for a synonym dictionary or 
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thesaurus [8] to facilitate the construction of relationships between axioms. This was solved 
by the addition of the set of "formalizable" Real-World (RW) statements listed in Figure 3. 

As an example, statement SM 2 The Security Department provides guards means that 
there is an entity that will be represented by the term security_department and an entity 
termed a guard with a predefined relationship that this department provides all the guards. 
This can then be represented as 

3aV6 • (security _department(a) A guard(b) o provides(a,b)). 

Similarly, in order to deal with the fact that Visitors are not employees (RW 3), the encoding 
in Appendix 1 indicates that there is no way that an employee can be considered a visitor 

Va • visitor(a) =) -employee(a). 

RW1. 
RW2. 
RW3. 
RW4. 
RW5. 
RW6. 
RW7. 
RW8. 
RW9. 
RW10. 
RW11. 
RW12. 

The Acme Corporation has a secured building (termed "the building"). 
The Acme Corporation has a Security Department. 
Visitors are not employees. 
Employees are not visitors. 
Employees and visitors are people. 
Not all employees are security escorts, but guards are employees. 
All employees are assigned to a department. 
An employee may walk without a security escort in a secure building. 
The regular business day is either Monday, Tuesday, Wednesday, Thursday, or Friday. 

A security violation results from non-compliance with security policy.  

A holiday is not a regular business day. 
£yp/retf identification (e.g., out of date) is not current. 

Figure 3. Initial set of real-world facts 

3.2 Initial analysis and modifications 
After the real-world knowledge had been encoded, problems were detected regarding inter- 
pretation and cross referencing between one or more statements. This was an indication that 
the statements had to be further refined to correct errors. The initial set of axioms that were 
added is enumerated in Figures 4 and 5. The formalization of these axioms appears in Ap- 
pendix 1. Some of the errors encountered during axiomatization included the following: 

1. Statement SM 3 that the Security Department patrols the area needs a demodulator 
to express the fact that this area is in a secure building: this calls for addition of a "real 
world" fact, ARW 1 (Addition to the Real World). 

2. Statement SM 4 says that New employees are issued an employee badge on their first 
day of work. This also needs a demodulator ARW 2. 

3. Statement SM 7 uses the term display, while statement SM 20 uses the term wear. 
This is a synonym or demodulator problem, solved in ARW 3. 

4. The words person and people (see SM 7 and SM 13) must be equated, as in ARW 4. 
5. SM 8 states that Violation of security policy must be reported to the Security De- 

partment . . ..  This is ambiguous; someone must be designated to do the reporting. 
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SM 8 is therefore modified to SM 8' (Any employee who observes a violation of se- 
curity must.. .)• 

6. Who loses a badge in SM 9?  ARW 5 was needed to fix this. 
7. In SM 8 and 9, Security violation and violation of security must be equated; hence 

ARW 6. 
8. SM 11 assumes there is only one entrance, hence ARW 7. There are also several syno- 

nyms: guard desk, door, entry station, and exit, which are equated in ARW 8. 
9. There is a tacit assumption that SM 12 refers to a visitor, the revised version that clari- 

fies this is SM 12': Acceptable forms of identification for a visitor include . . .. 
Also, an acceptable form of identification must be stated to be equivalent to identifi- 
cation, as shown in ARW 9. 

10. SM 13 is somewhat wordy (to ensure no ambiguities); this was to ensure no problems 
with its interpretation. 

11. In SM 14, a security escort is any employee who is escorting a visitor. An addition 
(ASM) to the SM was made to this to improve "maintainability" of later versions of the 
manual; e.g., there may be a future requirement that restricts who can escort all or cer- 
tain types of visitors. Hence ASM 1, which could be easily changed, as needed, for 
such changes to the Security Manual. 

12. Leaving in SM 14 must be related to exiting in SM 15. ARW10 equates the terms. 
13. SM 14 assumes that the visitor has not lost the badge at a time prior to exiting; this is 

also true for employees (in SM 16). This was, however, left as an example that shows 
the value of the theorem prover in highlighting linking and naming problems. 

14. In SM 17, Losing a security badge means that a person no longer has it, as in ARW 
11. 

15. For SM 18, both employee and visitor badges must be defined as instances of a secu- 
rity badge. This is given in ARW 12. 

16. SM 20 is stated positively in the formalization as a security violation (see also RW 10). 

Naming and linking errors are typical of the generic problem of representing policy. As an 
example, suppose that the personnel department (which is within the secure building) adds the 
rule: 

A new employee must sign in at the personnel office before going to the security depart- 
ment. 

With the addition of this rule to the policy set, policies SM 18 and 20 and all policies related 
to them become inconsistent unless the "new employee" is treated initially as a "visitor." That 
is, an unsatisfiable condition exists until provision is made for an new employee to get into the 
building to obtain a badge. 

SM8". Any employee who observes a violation of security must report this violation to the Security Department 
SM 12. Acceptable forms of identification for a visitor include a current driver's license, current state non-driver 

identification card, or current passport. 
ASM1. A security «scort te any employee. 

Figure 4. Necessary modifications and additions to the security manual 
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ARW1. The area that is patrolled is secured. 
ARW2. An employee badqe is a type of security badge. 
ARW3. A person displaying a badge is equivalent to a person wearing or showing it. 
ARW4. Person is the sinqular version of the word people. 
ARW5. People may lose Iheir badge 
ARW6 Security violation and violation of security are equivalent. 
ARW7. There is only one entrance to the secure building. 
ARW8. The words entry and exit have the following synonyms: quard desk, door, entry station. 
ARW9. An acceptable form of identification is the same as identification. 
ARW10. Leaving a buildinq is equivalent to exitinq a building. 
ARW11. Losing a security badqe is equivalent to the person no longer has a security badge. 
ARW12. Both employee badge and visitor badge are both instances of security badge. 

Figure 5. Additions to the real-world knowledge (ARW) 

4. AXIOMATIZATION USING A SCHEMA 

We now present a combined object-oriented and logic formulation approach to modeling the 
security manual policies and real-world constraints. The "structural" information was ex- 
tracted from the general policy statements, and is represented as separate structural knowl- 
edge in a schema which consists of an object-oriented specification of class inclusion (e.g., 
employee is_a [ISA] person), class relationships (e.g. employee [belongjto] dept), and class 
properties or functions (e.g., separatedJrom_service( employee)). An additional component 
was the stipulation or definition of terms (e.g., regular_business_day is equivalent to Mon- 
day, ... .Friday). These components were then reformulated as logic statements. Finally, the 
remaining (non-structural) policy statements were written as logic statements in terms of the 
constructs in the structural model. The representations in the model and non-model ap- 
proach are intended to be equivalent. 

4.1 An object-oriented structural model 

Overview of structural model 
We first develop the object-oriented structural model. It is assumed that the reader is familiar 
with the fundamentals of object-oriented representation (e.g., see [2]). This model of the 
central entities in the Security Manual is shown in Figure 6. This model structure conforms to 
the EER model. It uses only single inheritance, represented by directed arcs. Relationships 
between classes are denoted by undirected arcs, with accompanying relationship names. An 
attribute of a class is denoted by V, with the domains of the class attributes indicated. At- 
tributes are represented in the model by properties (or functions) on the classes. For example, 
the statement visitor (called v) signs the log is represented as signsjog(v), where signsjog 
is an attribute of visitor, but is now stated as a property. 

The following relations are associated with the object Security_Department and are based 
on the Security Manual statements. 
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Administers(security_dept, security_policy), 
Enforces(security_dept, security_policy), 
Patrols(security_dept, area), and 
Provides(security_dept, guards) 

(subsumed by relation Belong_to(employee, dept)). 

These relations are not directly used in defining dynamic behavior of the policy set. For ex- 
ample, SM 3 states: The Security Department patrols the area. SM 3 is not referenced by 
any other statement. For this reason the above relations are not shown in Figure 6. Similarly, 
statements RW1 and RW 2 are not directly referenced elsewhere and are also not depicted. 
The relations corresponding to RW 1 and RW 2 are as follows: 

Belongs_to (secured_biiilding, Acme_Corporation), and 
Unit_of (security_dept, Acme_Corporation). 

Unlike a typical object-oriented model, class behavior within policy statements is not modeled 
here by methods and message passing. Instead, policy dynamics are represented by logic 
statements formulated in terms of classes, class relationships, and/or class attributes 
(properties). This is consistent with our desire to isolate class structures from the policy rules, 
and ultimately to express the model as logic statements. The translation of methods/messages 
adds an extra step to logic formulation and complicates the demarcation of class structure and 
policy actions, and is not addressed in this paper. 

in_the_building 
axiting_buiiding 
at_«ntry 
at_sacurity_dapt 

hat 

issuad 
display 
has 
surrender 

Saeurity_badga 

Dapt 

batong_to 
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*»ign»_tog (y/n) 
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Employ»« 
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Rgure 6. Object-oriented model of the security manual policy objects 
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Development of structural model 
The structural model is developed in four steps. The first three yield an object-oriented class 
structure for the model. In the last, the isolated class methods are determined, along with the 
specification of terms made in the policy set 

The first step consists of identifying the model classes in the policy statements. Class determi- 
nation is based on the analysis of noun/verb pairs. The policy statements directly used in class 
determination are as follows: 

(part of) SM 2, SM 10, SM 11, (part of) SM 18, RW 3, RW 4, RW 5, RW 6, RW 7, and RW 11. 

We found that policy statements SM 15, SM 20, and RW 8 are implied by the other rules of 
the structural model. Hence they are not explicitly stated. For example, the result of Query 4 
(see Appendix 4) indicates that RW 8 is implied and consistent with the rule set, and therefore 
does not need to be included in the structural model. 

In step two, the relationships between the model classes (class hierarchies and class relation- 
ships) are specified. Class attributes (e.g., area (location) of a person) are used to depict 
simple class properties. For instance, in_the_building(person) denotes that object person is 
located within the secured building. The class inheritance hierarchy is primarily based on 
the policy statements used to determine the classes. Next inter-class relationships are repre- 
sented. To this end, the policy statements are decomposed into components using the actions 
(verbs) which link classes. The corresponding relationship is then expressed via the classes; 
e.g., policy RW 7 states that All employees are assigned to a department, expressed by the 
relationship belong_to between the class employee and the class dept. An alternative ap- 
proach proposed by Dobson [4] would treat, for instance, a security guard as two or more 
separate classes: an escorting agent, a guarding agent, and so on. 

Class instances (objects) specified by the policy statements are identified in step 3. These are 
determined from fairly explicit policy statements, such as RW 2: The Acme Corporation has 
a Security Department. The specific policy statements used are 

RW 1, RW 2, (part of) RW 6. 

The OTTER rule set of Appendix 2 contains a listing of these class objects in the section 
Class Instances. 

In step four, we identify the definition or specification of various policy terms, especially those 
statements that specify permissible domain values such as RW 9: The regular business day 
is either Monday,... »Friday. The policy statements used are: 

SM12andRW9. 

Almost all of the allowable term values are treated via object inheritance; e.g., the day Mon- 
day ISA (is a subtype of) regular_business_day. Values for valid class properties 
(attributes) are similarly treated; e.g., Area can only consist of one of four domain values, 
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though this is not explicitly enforced in the current model. For this reason, values for area are 
not treated through inheritance and are only listed in Figure 6. 

We also identify those class actions that are not explicitly used in other statements, such as 
SM 0: The Security Department is responsible for enforcing ... security policy. These 
class actions are formulated as relations involving the class security_dept. The policy state- 
ments involved are 

SM 0, SM 2, SM 3, RW 1, RW 2, and RW 10. 

Since the above statements are distinct from the rest of the policy statements, they are in- 
cluded in the set of axioms as "passive rules." As such, these rules are used by the theorem 
prover for subsuming other clauses while constructing a proof tree, but not for forward 
chaining. Given this class-object structure, we then formulate the necessary policy rule set as 
logic statements; see Appendix 2, Class Structure. 

4.2 Non-Structural Portion of the Object-Based Approach 
The second set of rules is a translation of the non-structural policy statements into logic state- 
ments. These statements are written in terms of the structural model constructs. The policy 
statements used are 

SM 1, SM 4, SM 5, SM 6, SM 7, SM 8, SM 9, SM 13, SM 14, SM 16, SM 17, SM 18, SM19. 

By encoding the rule set in terms of the structural model, we are forced to address the prob- 
lems of cross-references, synonyms, and interpretation while formulating the rules, rather than 
after rule formulation (as occurred in Section 3). Hence there is less need for demodulation 
rules in this second rule set. On the other hand, we are required to rephrase various policy 
statements to explicitly refer to the constructs of the structural model before formulating the 
rules. For example, rule RW 12 states Expired identification (e.g. out of date) is not cur- 
rent. The term "current" has no direct counterpart in this model. The intended meaning, 
however, is that such an identification is not valid. An invalid identification is therefore di- 
rectly represented and RW 12 is rewritten as RW 12": Expired identification (e.g. out of 
date) is not valid identification. Likewise, other policy statements are rewritten to refer di- 
rectly to the structural model as depicted in Figure 7. 

SMS- 
SMS" 

SM6" 
SM18" 
SM 20" 

RW12" 

The Security Department patrols the building. 
Note: No distinction is made between employee and visitor badges since Site is a common attribute (there is no 
reason to differentiate). 
Visitors must be escorted at all times by security escorts while in the building. 
Security badges can only be obtained on regular business days from the security department. 
Note: Meaningless in Ms representation, since there is only one type of security badge (implemented via in- 
heritance); '  
Expired identification (e.g., out of date) is not valid. 

Figure 7. Policy statements as revised for the structural mode! 
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After rephrasing the policy rules in terms of model constructs, vague or "non-connected" 
policy statements still remain. For example, to identify certain security violations, we must 
explicitly state that if a person displays a badge, then that person must have the badge. 
In addition, as previously stated, we need to add some real world assumptions to provide 
statement connections for making deductions about the policies. For example, a security 
violation occurs if a person has two security badges is added to the axiom set. The resid- 
ual (or non-structural) statements of the Security Manual are then coded, and appear in Ap- 
pendix (after the section Class Structure). 

5. OBSERVATIONS 

Before discussing the actual similarities in and differences between the two representations it 
is useful to consider the effect of the theorem proven 

5.1 Effects of the theorem prover 
To understand how OTTER processes logic statements we found it was necessary to learn 
how OTTER parses axioms stated as formulas (i.e., with existential quantifiers and implica- 
tion). This is now briefly discussed with respect to assertions and queries against the data set. 

1. Consider the process of stating rule assertions with universal and existential quantifiers. 
For the statement all visitors have a badge, if we write this as: 

(all x (exists y (visitor(x) & badge(y) & has(x,y)))) (1) 

OTTER will form three clauses, one being: 

visitor(x) (2) 

that is, 

(all x visitor(x)) (3) 

If we add the statement there exists an employee and employees are not visitors, there is 
now a built-in contradiction, since OTTER will assert that for some constant d (denoting 
something exists—actually the Skolomization term) 

employee(d) (4.1) 

(-visitor(d)) (4.2) 

yielding a contradiction between (2) and (4.2). That is, (2) states that everything, including 
the existing employee, must be a visitor, which contradicts (4.2). 
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However, if assertion (1) is written as an implication, this problem does not arise. For then 
assertion (1) becomes: 

(all x (visitor(x) -> (exists y (badge(y) & has(x,y))))) (5) 

OTTER interprets (5) as possible alternatives 

-visitor(x) I badge(c) I has(x,c) (6) 

where c is a constant Now everything (including the existing employee) need not be a visitor. 
Hence, there is now no contradiction within OTTER between assertion (4) and (6), and thus 
the original two statements. 

Therefore, when writing general rules which include existence statements, it is generally (but 
not always) necessary to use implication with universal quantification. That is, when stating 
general rules, it may be that the universal statement 

(aU x exists y (P(x) & Q(y))) (7) 

which results in the OTTER statements 

P(x) (8.1) 

Q(c) (8.2) 

should be restated as the implication 

(aU x (P(x) -> (exists y Q(y)))) (9) 

which results in the OTTER representation 

-P(x) I Q(c) (10) 

a statement of two distinct possibilities. In particular, no assertion is made about P(x) always 
holding. 

2. Queries can be used to test of the rule set. The same but "opposite" consideration must be 
used in writing queries. Here, you generally need to avoid implication when using OTTER. 
For example, to test is it possible to have a visitor without a badge?, it is better to state 

(exists x (all y (visiton» & badge(y) & -has(x,y)))) (11) 

OTTER will turn this into disjoint clauses, will add them to the rules or set of support (sos), 
and will attempt to find contradictions. If, however, the query is phrased as: 

(exists x ((visitor(x) -> (aU y (badge(y) & -has(x,y))) (12) 

this query may succeed (i.e., be found true), where the first one may not because OTTER will 
turn this statement into one statement of distinct alternatives 
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-visitor(c) I badge(y) I has(cy) (13) 

and this may be true "vacuously"—if it is possible to have no visitors, the statement above is 
true. Therefore when writing queries to test rules it is generally (but not always) better to 
avoid using implication if the statement involves existence. That is, 

(exists x (P(x) -> (all y Q(y)))) 

may need to be rewritten as 

(exists x all y (P(x) & Q(y))) 

(14) 

(15) 

The above observations are dependent on how OTTER reformulates rules during theorem 
proving. Similar behavior may occur for other theorem provers; the above indicates points to 
consider in such an analysis. 

5.2 Observations on the two approaches 
The two axiomatizations of the Security Manual policies are first compared based on the 
number and types of axioms that were generated. This information is summarized in Table 1. 

Table 1 
Comparison of statements produced in the two approaches 

Type 

Number of Clauses 
Non-Schema- 

based Approach 
Schema-based 

Approach 

Constraints 21 13 
Schema NA 17 
Real World 12 0 
Implied by schema NA 3 
Added 63 8 
Total 96 41 
Total without schema N/A 24 

The total number of axioms required using the non-schema-based approach was more than 
twice that required for the schema-based approach, and four times as many if the schema 
(structural) axioms are not counted in the schema-based application. The reduction in the 
number of axioms in the object-based approach is primarily due to the embedding of many of 
the necessary axioms in the schema. In the theorem proving phase of the non-structured ap- 
proach, naming and linkage errors required the addition of 48 ADTP (Added During Theorem 
Proving) axioms. The ADTP axioms represent real-world knowledge that was necessary to 
explicitly represent in order to correct missing linkages between policies and naming prob- 
lems. The inability of the theorem prover to prove a theorem (answer a query) about the pol- 
icy set indicated the existence of an error in the formulation of the theorem or in naming or 
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linkage. Most of this knowledge was captured during the first refinement in the schema-based 
model. 

There are certain restraints imposed by the object-based approach. They may result in certain 
overly constraining rules that appear reasonable to a data administrator, but actually cause 
real-world problems. As an example in the stated approach, there is only one badge-type as- 
sociated with a person. Thus the concept of a visitor accidentally or deliberately exchanging 
badges with an employee is essentially impossible due to internal constraints of the model. 
This is not to say that it would not be possible to define a correct representation of the policy, 
but rather that an overzealous data definer (administrator) could ignore the real world, be- 
cause "It really shouldn't happen." In contrast, the unstructured approach resulted in the 
specification of many types of badges and the attendant problems of correctly naming and 
linking all of the different badge types. 

The formalization approach taken also influenced the framing of queries about the set of poli- 
cies listed in Figure 2. The schema-based approach resulted in fewer explicit linkages needing 
to be made within the queries. The queries and proofs appear in Appendices 3 and 4. The 
queries were run one at a time (and with no other background processes) on an IBM-compat- 
ible PC with a 20 MHz 80386 processor, 8 MB of RAM, and MS-DOS version 5.0. Both the 
hyperresolution and unit resolving (UR) resolution inferences rules were applied by the theo- 
rem prover. Some clause generation and resource usage statistics are presented in Tables 2 
and 3. Note that the theorem prover generated a much smaller search space and consumed 
less resources (both in terms of memory usage and run time) when using the schema-based 
axiomatization. One reason for this outcome is that the schema-based approach provided the 
theorem prover with more compact and fewer axioms. The "passive" axioms were identifi- 
able from the class structure (as disjoint nodes) and placed in the list of passive axioms so mat 
OTTER would not try to use them in the search. 

Table 2 
Number and types of clauses generated by OTTER for the unstructured dataset 

Quen f 
Clauses 0 1 2 3 4 5 6 7 8 9 10 11 12 

Input 0 0 0 0 0 0 0 0 0 0 0 0 0 

qiven 16 8 3 20 13 4 26 21 7 41 23 17 27 

generated 28 19 12 49 58 18 70 62 12 79 56 28 66 

demod & eval rewrites 0 0 0 0 0 0 0 0 0 0 0 0 0 

tautologies deleted 0 0 0 0 0 0 0 0 0 0 0 0 0 
forward subsumed 12 13 5 29 41 11 46 46 2 43 33 11 37 

subsumed by sos 4 6 5 13 19 10 22 21 1 18 18 5 21 

kept 16 6 7 19 17 7 24 16 10 36 23 17 29 

empty 1 1 1 1 1 1 1 0 1 1 1 1 1 

back subsumed 49 3 26 48 9 1 20 0 38 23 22 86 32 

sos size 0 0 0 0 0 0 0 0 0 0 0 0 0 

Kbytes malloced 215 215 215 215 215 215 215 215 215 223 215 215 215 

proof at (sec.) 8.52 7.47 6.98 9.18 8.13 7.03 9.72 9.67 7.31 10.77 9.18 8.35 9.72 
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Table 3 
Number and types of clauses generated by OTTER for the structured dataset 

Query 

Clauses 0 1 2 3 4 5 6 7 8 9 10 11 12 

Input 0 0 0 0 0 0 0 0 0 0 0 0 0 
qlven 29 13 11 58 1 7 23 16 21 7 36 13 92 
generated 93 27 23 337 2 17 39 41 54 19 173 32 17333 

demod & eval rewrites 0 0 0 0 0 0 0 0 0 0 0 0 0 
tautologies deleted 0 0 0 0 0 0 0 0 0 0 0 0 0 
forward subsumed 54 12 10 221 0 8 12 16 24 10 126 15 17228 

subsumed by sos 52 8 10 155 0 8 12 16 24 10 50 12 818 
kept 38 15 13 116 2 9 27 25 30 9 47 17 105 
empty 1 1 1 1 1 1 1 1 1 1 1 1 0 
back subsumed 2 2 2 12 0 0 9 2 0 0 2 2 18 
sos size 0 0 0 0 0 0 0 0 0 0 0 0 0 
Kbytes malloced 135 119 119 151 119 119 127 167 127 119 135 119 167 
proof at (sec.) 7.09 423 4.34 16.04 2.91 3.79 5.16 4.83 6.87 3.57 8.02 4.01 150.55 

The formulation of the policies generated by the unstructured approach consisted of two 
categories of statements: roles and responsibilities, and actions. The need for creating links 
between these two categories of statements did not become evident until the theorem proving 
phase of the experiment The theorem prover failed to prove any of the theorems until the 
linkages were made between these two categories of statements. For example, the responsi- 
bility of security guards to escort must_escort visitors had to be related to the actions es- 
corted and escorted_by before many of the theorems could be proved. Some of the axioms 
only represented responsibilities or actions, but not both. As a result, there was initially no 
linkage between these axioms. 

6. CONCLUSIONS 

The recasting of security policies into an object-oriented model provides a basis for partition- 
ing a set of policy statements into a structural and dynamic set of rules. The structural set 
represents the real-world relationships (schema) between entities; the dynamic set represents 
the policy actions themselves. The occurrence of naming and linkage errors can be reduced 
by using the schema to guide the axiomatization of real-world, passive, and procedural rules. 
In particular, the schema provides a common referent for terms used in the rules (similar to a 
data dictionary), and relations between the rules. For the unstructured approach, the number 
and complexity of axioms and the number of axiomatization errors increases as the axiom base 
is refined primarily because there is no model available to guide the structuring of the axioms 
or to facilitate the construction of connections between security policies. 

The effects of this modeling approach upon such operations as the refinement and mainte- 
nance of security policy remain to be explored. For example, the imposition of a model can 
preclude posing unanticipated policy queries. This and determining heuristics for identifying 
under- and over-representation of policy are fertile areas for further research. 
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Appendix 1. 
Non-Object-Based Representation of Policy: Security Manual Policies 

formulajist(usable). 
%%% Security Manual policies 
% AXIOM SMO. 
(all a (all b ((security_department(a) & security_policy(b)) -> (administers(a,b) & enforces(a,b))))). 
% AXIOM SM 1. The security department issues securityjbadges. 
(all a (all b ((security_department(a) & security_badge(b)) -> issues(a,b)))). 
% AXIOM SM2. 
(all a (all b ((security_department(a) & guard(b)) -> provides(a,b)))). 
% AXIOM SM 3. 
(all a (all b ((security_department(a) & area(b)) -> patrols(a,b)))). 
% AXIOM SM 4. 
(all a (all b (all c    ((new_employee(a) & first_day_of_work(b) & employeejbadge(c)) 
-> (issued_to(a,b) & issued_on(c,b)))))j. 
% AXIOM SM 5. 
(all a (all b (all c (all d (all e (all f (all g ((guard(a) & visitor(b) & visitor_badge(c) & door(d) 
& identification(e) & employee(f) & securityjog(g) & signs(b.g) & shown_by(e,b) & shownjofoa) 
& visiting(b.f) & at(a,d) & at(b,d))        -> (issued_by(c,a) & issued_to(c,b) & issued_at(c,d)))))))))). 
% AXIOM SM6. 
(all a (all b ((visitor(a) & employee(b)) -> (all c (all_times(c) & must_be_escorted_by(a,b) 
& must_be_escorted_at(a,c)))))). 
%AXIOMSM7. 
(all a (all b ((person(a) & security_badge(b)) -> (all c (building(c) & must_be_shown_by(b,a) 
& must_be_shown_inside(b,c)))))). 
% AXIOM SM8. 
(all a (security_policy_violation(a) -> (all b (security_department(b) & must_be_reported_to(a,b))))). 
% AXIOM SM9. 
(all a (all b ((badge(a) & security_policy(b) & loss_of(a)) -> violation_of(b)))). 
% AXIOM SM10. 
(all a (security_escort(a) -> employee(a))). 
% AXIOM SM11. 
(all a (all b ((securityjog(a) & entry_station(b)) -> permanently_retained_at(a,b)))). 
% AXIOM SM12. 
(all a ((driversjicense(a) & current(a)) -> acceptable_form_of_ident'fication(a))). 
(all a ((state_non_driver_identification_card(a) & current(a)) -> acceptableJc<mj)fJdentification(a))). 
(all a ((passport(a) & current(a)) -> acceptabte_form_of_identification(a))). 
% AXIOM SM13. 
(all a (all b (all c (all d (all e ((person(a) & building(b) & security_badge(c) 
& employee(d) & security_department(e) & inside(a,b) & -has(a,c) & observed_by(a,d)) 
-> (must_escort(d,a) & must_be_escorted_to(a,e)))))))). 
% AXIOM SM14. 
(all a (all b (all c (all d ((visitor(a) & security_badge(b) & security_escort(c) 
& building(d) & teaving(a,d)) -> (must surrender(a,b) & must_be_surrenderedJo(b,c))))))). 
% AXIOM SM15. 
(all a (all b (all c    ((employee(a) & security_badge(b) & building(c) & exiting(a,c)) 
-> -must_surrender(a,b))))). 
% AXIOM SM16. 
(all a (all b (all c (all d ((employee(a) & security_badge(b) & security_department(c) 
& service(d) & separate(a.d)) -> (must_surrender(a,b) & must_be_surrendered_to(b,c))))))). 
% AXIOM SM 17. 
(all a (all b (all c    ((employee(a) & security_badge(b) & replacement_security_badge(c) & lose(a,b)) 
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-> must_obtain(a,c))))). 
% AXIOM SM18. 
(all a (all b (al c (all d ((employee_badge(a) & visitor_badge(b) 
& reguiar_business_day(c) & security_department(d)) -> (must_be_obtained_on(a,c) & must_be_obtained_on(b,c) 
& must_be_obtained_from(a,d) & must_be_obtained_from(b,d))))))). 
% AXIOM SM19. 
(all a (all b (all c (al d ((employee(a) & emptoyee_badge(b) & security_violation(c) 
& security_department(d) & -owned_by(b,a) & wearing(a,b)) 
-> (committed(a,c) & mustJbe_escortedJo(a,d))))))). 
% AXIOM SM20. 
(all a (all b ((visitor(a) & employee_badge(b) & has(a,b)) -> -must_wear(a,b)))). 
%%% Real-world constraints 
% AXIOM RW1. The Acme Corporation has a secured building. 
(exists a (exists b ((Acme_Corporation(a) & securedJuilding(b)) -> has(a,b)))). 
% AXIOM RW2. 
(exists a (exists b ((Acme_Corporation(a) & seaired_department(b)) -> has(a,b)))). 
% AXIOM RW3. Visitors are not employees. 
(all a (visitor(a) -> -employee(a))). 
% AXIOM RW4. 
(all a (employee(a) •> -visitor(a))). 
% AXIOM RW5. 
(all a ((employee(a) | visitor^)) -> people(a))). 
% AXIOM RW6. 
(exists a (employee^) -> -security_eseort(a))). 
(all a (guard(a) -> employee(a))). 
% AXIOM RW7. 
(all a (all b ((employee(a) & department(b)) -> assigned_to(a,b)))). 
% AXIOM RW8. 
(all a (all b (all c    ((employee(a) & secure_building(b) & inside(a,b)) 
-> (security_escort(c) & -escorted_by(a,c)))))). 
% AXIOM RW9. 
(all a ((Monday(a) | Tuesday(a) | Wednesday(a) | Thursday(a) | Friday(a)) -> regular_business_day(a))). 
% AXIOM RW10. 
(all a (all b (all c    ((security_violation(a) & employee(b) & security_policy(c) 
& -in_compliance_with(c,b)) •> committed_by(a,c))))). 
(all a (all b (all c    ((security_violation(a) & visitor(b) & security_policy(c) 
& -in_compliance_with(c,b)) -> committed_by(a,c))))). 
% AXIOM RW11. 
(all a (holiday(a) -> -regular_business_day(a))). 
(all a (regular_business_day(a) -> -holday(a))). 
% AXIOM RW12. 
(all a (exptredjdentification(a) -> -current_identification(a))). 
(all a (currentjdentiftcation(a) -> -expiredjdentification(a))). 
%%% Necessary additions for completing toe linkages between SMs and RWs 
% AXIOM SM 8'. 
(all a (all b (all c    ((employee(a) & security_violation(b) & security_department(c) 
& observed(a.b)) -> (must_report(a,b) & must_be_reported_to(b,c)))))). 
% AXIOM SM12'. 
(all a ((drivers_lcense(a) & current(a)) -> (all b (acceptabte_form_of_identification(a) & visitor(b) 
&for(a,b))))). 
(all a ((stete_non_driversJicense(a) & current(a)) -> (all b (acceptable_rorm_of_identification(a) & visitor(b) & for(a,b))))). 
(all a ((passport(a) & current(a)) -> (all b (acceptable_form_of_identificatJon(a) & visitor(b) 
&for(a,b))))). 
% AXIOM ASM1. 

418 



(all a (security_escort(a) -> employee(a))). 
% AXIOM ARW1. 
(all a ((area(a) & patrolled(a)) -> secured(a))). 
% AXIOM ARW2. 
(all a (employee_badge(a) -> security_badge(a))). 
% AXIOM ARW3. 
(all a (all b ((person(a) & badge(b) & displaying(a.b)) -> (wearing(a.b) | showing(a,b))))). 
% AXIOM ARW4. 
(all a (person(a) -> people(a))). 
(all a (people(a) -> person(a))). 
% AXIOM ARW 5. 
(all a (all b ((person(a) & security_badge(b)) -> (lose(a,b) | -lose(a,b))))). 
% AXIOM ARW 6. 
(all a (security_violation(a) -> vioiation_of_security(a))). 
(all a (violation_of_security(a) -> security_violation(a))). 
% AXIOM ARW 7. 
(all a (secure_building(a) -> (exists b (single_entrance(a) & has(a,b))))). 
% AXIOM ARW 8. 
(all a ((guard_desk(a) | door(a) | entry_station(a)) -> entry(a))). 
(all a ((guard_desk(a) | door(a) | entry_station(a)) •> exit(a))). 
% AXIOM ARW 9. 
(all a (acceptable_form_of_identification(a) -> identification(a))). 
% AXIOM ARW 10. 
(all a (all b ((person(a) & building(b) & leaving(a,b)) -> exiting(a,b)))). 
(all a (all b ((person(a) & building(b) & exiting(a,b)) -> leaving(a,b)))). 
% AXIOM ARW 11. 
(all a (all b ((person(a) & security_badge(b) & lose(a,b)) -> -hasfob)))). 
% AXIOM ARW 12. 
(all a (employee_badge(a) -> security_badge(a))). 
(all a (visitor_badge(a) -> security_badge(a))). 
(all a (employee_badge(a) -> -visitor_badge(a))). 
(all a (visitor_badge(a) -> -employee_badge(a))). 
%%% Axioms added during the theorem proving (ADTP). 
% AXIOM ADTP1. 
(all a (secured_building(a) -> secure_building(a))). 
% AXIOM ADTP 2. 
(all a (secure_building(a) -> secured_building(a))). 
% AXIOM ADTP 3. 
(all a (all b ((visitor(a) & visitor_badge(b) & lose(a,b)) -> -has(a,b)))). 
% AXIOM ADTP 4. 
(all a (all b ((employee(a) & employee_badge(b) & losefob)) -> -has(a,b)))). 
% AXIOM ADTP 5. 
(all a (all b ((visitor(a) & visitor_badge(b) & -has(a,b) & secure_buidling(c) & inside(a,c)) -> lose(a,b)))). 
% AXIOM ADTP 6. 
(all a (all b ((empioyee(a) & employee_badge(b) & -has(a,b) & secure buidling(c) & inside(a,c)) 
->lose(a,b)))). 
% AXIOM ADTP 7. 
(all a (all b (exists c ((person(a) & (visitor_badge(b) | employee_badge(b)) & 
k)se(a,b)) -> security_violation(c))))). 
% AXIOM ADTP 8. 
(all a (guard(a) -> security_escort(a))). 
% AXIOM ADTP 9. 
(all a (security_escort(a) -> guard(a))). 
% AXIOM ADTP 10. 
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0; 

0, 

(all a (all b (all c (all d (all e ((guard(a) & visitor(b) & visitor_badge{c) & door(d) 
& -aaeptable_form_of_identificatioo(e) & shown_by(e,b) & shown_to(e,a) & at(a,d) & at(b,d) 
-> -issued_to(c,b))))))). 
% AXIOM ADTP11. 
(all a (all b (all c ((visitor(a) & visitor_badge(b) & -issued_to(b,a) & secured_buidling(c)) -> -insidefoc))))). 
% AXIOM ADTP12. 
(all a (all b ((visitor(a) & visitor_badge(b) & -issued_to(b,a)) -> -has(a,b)))). 
% AXIOM ADTP13. 
(all a (all b ((visitor(a) & visitor_badge(b) & -has(a,b)) -> (-issued_to(b,a) | lose(a,b))))). 
% AXIOM ADTP14. 
(all a (door(a) -> single_errtrance(a))). 
% AXIOM ADTP15. 
(all a (door(a) -> entry(a))). 
% AXIOM ADTP 16. 
(all a (door(a) -> exit(a))). 
% AXIOM ADTP 17. 
(all a (single_entrance(a) •> door(a))). 
% AXIOM ADTP18. 
(all a (single_entrance(a) -> entry(a))). 
% AXIOM ADTP19. 
(all a (single_entrance(a) -> exit(a))). 
% AXIOM ADTP 20. 
(all a (entry(a) -> exit(a))). 
% AXIOM ADTP 21. 
(all a (entry(a) -> door(a))). 
% AXIOM ADTP 22. 
(all a (entry(a) •> single_entrance(a))). 
% AXIOM ADTP 23. 
(all a (exit(a) •> entry(a))). 
% AXIOM ADTP 24. 
(all a (building(a) -> secured_butlding(a))). 
% AXIOM ADTP 25. 
(all a (secured_building(a) -> building(a))). 
% AXIOM ADTP 26. 
(all a (all b (all c ((person(a) & secured_building(b) & exiting(a,b) & (visitor_badge(c) 
| employee_badge(c)) & has(a.c)) -> (leaving(a,b) & must_surrender(a,c)))))). 
% AXIOM ADTP 27. 
(all a (all b (all c ((person(a) & secured_building(b) & leaving(a,b) 
& (visitor_badge(c) | employee_badge(c)) & ha^a,c)) -> (exiting(a,b) & must_surrender(a,c)))))). 
% AXIOM ADTP 28. 
(all a (all b (all c ((person(a) & (visitor_badge(b) | employee_badge(b)) 
& secured_building(c) & must_surrender(a,b)) -> (exiting{a,c) | leaving(a,c)))))). 
% AXIOM ADTP 29. 
(all a (security_badge(a) -> (visitor_badge(a) | employee_badge(a)))). 
% AXIOM ADTP 30. 
(all a ((visitor_badge(a) | emptoyee_badge(a)) -> security_badge(a))). 
% AXIOM ADTP 31. 
(all a (all b (all c (all d ((person(a) & (visitor_badge(b) | employee_badge(b)) 
& security_depar6nent(c) & holiday(d)) -> (-obtain(a,b) & •obtain_from(b,c))))))). 
% AXIOM ADTP 32. 
(all a (all b (all c (all d ((person(a) & secured_building(b) & visitor_badge(d) & 
-eseorted_by(a,c) & ajrrender(a,d) & inside(a,b)) -> (exists e security_v»lation(e))))))). 
% AXIOM ADTP 33. 
(all a (all b (all c ((person(a) & secured_building(b) & visitor_badge(c) & 
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surrenderee)) -> (-must_be_shown_by(b,d) & -mustJbe_shown_inside(c,b)))))). 
% AXIOM ADTP34. 
(all a (expiredjdentification(a) -> -acceptable_form_of identification(a))). 
% AXIOM ADTP 35. 
(all a (-acceptable form_of_identification(a) -> expiredjdentification(a))). 
% AXIOM ADTP 36. 
(all a (all b (all c ((person(a) & entry(b) & secure_buikiing(c) & at(a,b)) -> -inside(a,c))))). 
% AXIOM ADTP 37. 
(all a (all b (all c ((person(a) & entry(b) & secure_building(c) & inskte(a,c)) -> -at(a,b))))). 
% AXIOM ADTP 38. 
(all a (all b ((person(a) & badge(b) & display(a,b)) -> has(a.b)))). 
% AXIOM ADTP 39. 
(all a (all b ((person(a) & building(b) & exited(a.b)) -> -inside(a,b)))). 
% AXIOM ADTP 40. 
(all a (all b ((person(a) & building(b) & -inskje(a,b)) -> exited(a,b)))). 
% AXIOM ADTP 41. 
(all a (all b (all c ((visitor(a) & visitor_badge(b) & buikJing(c) & -inside(a,c)) -> -has(a,b))))). 
% AXIOM ADTP 42. 
(all a ((employee(a) | visitor(a)) -> person(a))). 
% AXIOM ADTP 43. 
(all a (person(a) -> (employee(a) | visitor(a)))). 
% AXIOM ADTP 44. 
(all a (all b (all c ((visitor(a) & visitor_badge(b) & building(c) & -inside(a,c)) -> -disptay(a.b))))). 
% AXIOM ADTP 45. 
(all a (all b (all c ((visitor(a) & visitor_badge(b) & door(c) & must_surrender(a,b)) 
-> (at(a,c) & surrender(a,b)))))). 
% AXIOM ADTP 46. 
(all a (all b ((visitor(a) & visitor_badge(b) & surrender(a,b)) -> -has(a.b)))). 
% AXIOM ADTP 47. 
(all a (all b ((person(a) & badge(b) & surrender(a.b)) -> (-display(a.b) & -has(a,b))))). 
% AXIOM ADTP 48. 
(all a (all b (all c ((visitor(a) & person(b) & building(c) & visiting(a.b) & inside(a,c) & inside(b,c)) 
-> employee(b))))). 

end_of_list. 
Appendix 2. 

Object-Based Representation of Policy: The Object Schema 

formulajist(usable). 
%%% policy statements which are covered by structure model 
%%% Class structure 
% RW 5. 
(all x (employee(x) -> person(x))).       % part 1 
(all x (visitor(x) -> person(x))). % part 2 
%SM10. 
(all x (security_escort(x) -> employee(x))). 
% RW 6 (part 2): ...but guards are employees 
(all x (guard(x) -> employee^))). 
% RW 3: Visitors are not employees. 
(all x (visitor(x) -> -employee(x))). 
% RW 4: Employees are not visitors. 
(all x (employee(x) -> -visitor(x))). 
% Implied real world assumptions 
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(all x (security_dept(x) -> dept(x))). 
(all x (validjd(x) -> id(x))). 
(all x (invalidjd(x) -> id(x))). 
(all x (vaJid_id(x) -> -invalid_td(x))). 
(all x (invalidjd(x) -> -validjd(x)j). 
(all x (holiday(x) -> day(x))). 
(all x (regular_business_day(x) -> day(x))). 
% RW 11: A holiday is not a regular business day. 
(all x (holiday(x) -> -regu1ar_business_day(x))).   % if 
(all x (regular_business_day(x) -> -hdiday(x))).   % only if 
%%% Class instance (object) 
% RW 6 (part 1): Not all employees are security escorts... 
(exists x (employee(x) & -security_escort(x))). 
% Implied by RW 1: There exists a secured building 
% (termed "the building"). 
(exists x secured_building(x)). 
% Implied by RW 2: There exists a security department. 
(exists x security_dept(x)). 
% The security department is unique. 
%   (implied by SM0,SM1) 
(all x all y ((securityjept(x) & security_dept(y)) -> (x = y))). 
%%% Class relationships 
% RW 7: All employees are assigned to a department 
(all x exists y ((employee(x) & dept(y)) -> belong_to(x,y))). 
% Implied by SM 2: The security department provides guards. 
(all x exists y ((guard(x) & security_dept(y)) -> belongjo(x,y))). 
% A secured building has an entry station. 
%   (implied by SM 5, SM 11) 
(all x (secured_building(x) •> (exists y (entry_station(y) & part_of(y,x))))). 
% SM 11: The security log is permanently retained at the entry station. 
(all x (securityjog(x) -> (exists y (entry_station(y) & part_of(x,y))))).   % location of tog 
(all x all y all z ((security_tog(x) & entry_station(y) & entry_station(z) % permanent log 
& entry_station(y) & entry_station(z) & part_of(x,y) & part_of(x,z)) -> (y = z))). 
%%% Definition of terms 
%SM12. 
(all x (validjd(x) -> (current_licence(x) | current_id_card(x) | current_passport(x)))).   % if 
(all x ((currentjtcence(x) | current_id_card(x) | current_passport(x)) -> validjd(x))).   % only if 
% Implied by RW 12. 
(all x (expiredjd(x) -> invalidjd(x))). 
%RW9. 
(all x (regular_business_day(x) -> (monday(x) | tuesday(x) | wednesday(x) 
| thursday(x) | friday(x)))).    % if 
(all x ((monday(x) | tuesday(x) | wednesday(x) | thursday(x) | frkJay(x)) 
-> regular_business_day(x))). % only if 
%%% functbnal connections, implications 
% Person must have a badge to display it 
(all x all y ((person(x) & security_badge(y) & display(x,y)) -> has(x.y))). 
% If a person has a badge but it was not issued, that is a violation. 
(all x all y ((person(x) & security_badge(y) & -issued(x,y) & has(x,y)) -> 
(exists z seeurity_wolation(z)))). 
% If a person is issued a badge, it was done by the security department 
(all x all y ((person(x) & security_badge(y) & issued(x,y)) 
-> (exists z (security_department(z) & issues(z,y))))). 
% Having 2 badges (more than one) is a violation. 
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(all x all y all z ((person(x) & security_badge(y) & security_badge(z) & hasfx.y) 
& has(x.z) & -{y = z)) -> (exists w security_violation(w)))). 
% A person can be issued only one badge 
(all x all y all z ((person(x) & security_badge(y) & security_badge(z) & issued(x.y) 
& issued(x^)) -> (y « z))). 
% A person can not display a surrendered badge. 
(all x all y ((person(x) & security_badge(y) & surrender(x,y)) -> -displays(x,y))). 
% A person can not display a lost badge. 
(all x all y ((person(x) & security_badge(y) & loses(x,y)) -> <Bsplay(x,y))). 
% A person must obtain badge from security dept 
% on a regular business day. 
(all x all y all u ((person(x) & security_badge(y) & security_dept(u) & obtain_from(x,y)) 
-> (exists z (day(z) & obtain_badge_from_on(x,y,u^))))). 
%%% the rest of the security manual represented as axioms 
%SM1. 
(all x (security_badge(x) -> (exists y (security_dept(y) & issues(y,x))))). 
% SM 4. 
(all x all y ((employee(x) & security_badge(y) & issued(x.y)) -> first_day_occur(x))). 
% SM 5. 
(all w all x ((visitor(w) & security_badge(x) & issued(w,x)) -> 
(exists z exists y exists t (at_entry(w) & guard(t) & at_entry(t) 
& validjd(y) & has(w.y) & showsjdjofw.y.t) & employee(z) & visiting(w,z) & signs_log(w))))). 
% SM 6. 
(all x ((visitor(x) & in_the_building(x)) -> (exists y (security_escort(y) & escorts(y,x))))). 
% SM 7. 
(all x ((person(x) & in_the_building(x)) -> (exists y (security_badge(y) & display(x,y))))). 
% SM 8. 
(all x (security_violation(x) -> (exists y (security_dept(y) & report_to(x,y))))). 
%SM9. 
(all x all y ((person(x) & security_badge(y) & loses(x,y)) -> (exists z security_violation(z)))). 
%SM13. 
(all v all x exists y exists z ((person(v) & in_the_bui!ding(v) & security_badge(x) 
& employee(y) & security_dept(z) & -display(v,x) & is_observed_by(v,y)) 
-> (escorts(y.v) & take_person_to(y,v,z) & at_security_dept(v)))). 
%SM14. 
(all w all x ((visitor(w) & exiting_the_building(w) & security_badge(x) & has(w,x)) -> 
(exists y (security_escort(y) & escorts(y,w) & surrender_id_to(w,x,y) & surrender(w,x))))). 
%SM16. 
(all w all x exists y ((employee(w) & security_badge(x) & security_dept(y) 
& separate_from_service(w) & nas(wpc)) -> (surrender_id_to(w,x,y) & surrender(w,x)))). 
%SM17. 
(all x all y exists z ((employee(x) & security_badge(y) & security_badge(z) & loses(x,y)) 
-> issued(x^))). 
%SM18. 
(all x all w all z all u (((person(x) & security_badge(w) & security_dept(z) & day(u) 
& obtain_badge_from_on(x,w,z,u)) -> (regular_business_day(u) & issued(x,w)))). 
%SM19. 
(all w all u all x ((employee(w) & employee(u) & security_badge(x) 
& has(u.x) & display(w,x)) -> (exists y exists z exists t (security_violation(y) & security_dept(z) 
& person(t) & take_person_to(t,w,z) & at_security_dept(w))))). 
end_of_lisL 
/O 

% Formulas not used, but included for completeness 
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%%% Not directly used in otiw rules. 
form ulaji st{passive). 
% Acme Corp (AC) exists (implied). 
acme_corp(AC). 
% RW1: The Acme Corporation has a secured building (termed "the building"). 
(exists y (securedJ>uiding(y) & belongs_to{y,AC))). 
% RW 2: The Acme Corporation has a security department 
(exists y (security_dept(y) & unit_of(y,AC))). 
%%% Class metiiods (listings) 
%SM0. 
(all x (security_policy(x) -> (exists y (security_dept(y) & administers^))))). % part 1 
(all x (security_policy(x) -> (exists y (security_dept(y) & enforces(y,x))))). % part 2 
%SM2. 
(all x (guard(x) -> (exists y (security_dept(y) & provides(y,x))))). 
% SM 3. 
(all x (secured_building(x) -> (exists y (security_dept(y) & patrols(y,x))))). 
end_of_Kst. 

Appendix 3. 
Queries Used in the Non-Schema Approach 

166 D -has($c6,z). 
% Query 0 (from 1991IFIP paper) 
(exists a (all b (all c (all d (person(a) & 
seeured_buMng(b) & security_guard(c) 
& visitor_badge(d) & -inside(a,b) 
& -escorted_by(a,c) & surrendered)))))). 
 PROOF  
16 [] -person(x22) | -security_badge(x23) 
| must_be_shown_inside(x23,x24). 
135 Q -visitor_badge(x166) 
|security_badge(x166). 
143[]-person(x175) 
| -secured_building(x176) 
j-visitor_badge(x177) 
j-surrender(x175,x177) 
j -must_be_shown_inside(x177^176). 
162Qperson{$c6). 
163 D secured_building(x210). 
165Qvisitor_badge(x212). 
168 [] surrender($c6,x212). 
173 [hyper,165,135] security_badge(x). 
178 [hyper.173,16,162] must_be_shown_inside(x,y). 
184 [ur,168,143,162,163,165] 
-m ust_be_shown_inside(x,y). 
185 [binary,184,178]. 

% Query 1. 
(exists x all y all z (employee^ & seeured_building(y) & 
inside(x,y) & badge(z) & -has(x,z))). 
 PROOF  
83 [] -secure_bui}ding(x104) 
|has(x104,$f1(x104)). 
98 [] -secured_building(x118) 
|secure_building(x118). 
163 Q secured_buiUing(y). 

171 [hyper.163,981 secure_building(x). 
172[hyper,171,83]has(x,$f1(x)). 
173[btnary,172,166]. 

% Query 2. 
(exists x all y all z (visitor(x) & visitor_badge(y) & - 
has(x.y) & secure_buildJng(z) & inside(x,z))). 

Level of proof is 1, length is 1. 
 PROOF ■ 
83 0 -secure_building(x104) 
|has(x104,$f1(x104)). 
164 D -has($c6,y). 
165 0 secure_building(z). 
173 [hyper.165,83] has(x,$f1(x)). 
174[binary,173,164]. 

% Query 3. 
(exists x all y all z all w (visitor(x) & secured_building(w) 
& inside(x,w) 
& visitor_badge(y) & visitor_badge(z) & display(x,y) & - 
display(x^))). 
 PROOF  
167Qdisplay($c6,y). 
168Q-display($c6,z). 
188[hyper,168,167]. 

% Query 4. 
(exists a (exists b ((employee(a) & security_escort(b)) -> 
must_be_escorted_by(a,b)))). 
(employee(a) & secure_building(b) & inskte(a,b)). 
(all y (security_escort(y) -> 
HTiust_be_escorted_by(a,y))). 
 PROOF  
46 [] -employee($c5) 
| -security_escort($c5). 
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49 [] -employee(x70) 196[binary,195,171]. 
1 -secure_building(x71) | -inside(x70,x71) 
j security_escort(x72). 

% Query 7. Note: no conflict as expected. 

73 [] -security_escort(x93) | employee(x93). % A visitor can display a badge outside, 
163 D employee(a). % but this is a security violation; set of 
164 0 secure_building(b). % support is empty as expected. 
165[]inside(a,b). (exists a (exists b (exists c (visftor(a) & building(b) & 
177 [hyper.165,49,163,164] security_escort(x). exited(a,b) & badge(c) & display(a,c))))). 
182 [hyper,177,73] employee(x). % Query 8. 

-{exists a (exists b (exists c (exists d ((employee(a) & 
secure_buikJing(b) 

183 [ur.177,46] -employee($c5). 
184 [binary/! 83,182]. 

% Query 5. & -first_day_of_employment(c) & inside(a,b)) -> 
(exists x exists y all z (employee(x) security violation(d)))))). 
& employee_badge(y) & lose(x.y)  PROOF  
&-security violation(z))). 46 Q -employee($c5) 

-      - PROOF | -security_escort($c5). 
105[]-person(x128) 49 [] -employee(x70) 
|-employee badge(x129). | -secure_building(x71) | -inside(x70,x71) 
Hose(x128,x129) j security_escort(x72). 
j security_violation($f2(x128,x129)). 162Demployee(x210). 
152 [] -employee(x195) | person(x195). 163 D secure building(x211). 
162Qemployee($c7). 165Qinside(x210,x211). 
163 Q employee badge($c6). 169 [ur,162,46]-security escort($c5). 
164Qlose($c7,$c6). 176 [ur,169,49,162,163] -inside(x,y). 
165 D -security_violation(z). 177[binary,176,165]. 
166 [hyper.162,152] person($c7). % Query 9. 

(exists x exists y exists z exists u exists w (person(x) & 172 [ur,166,105,163,165] -bse($c7,$c6). 
173[binary,172,164]. 
 end of proof  visitor_badge(y) & employee_badge(w) 

& security_department(z) & ((obtain(x,y) & 
*i                    % Query 6. obtain from(x^)) | (obtain(x,w) & obtain from(x^))) 

,                  (exists a (exists b (all c (all d (visitor(a) & &holiday(u))). 
security_escort(b) & expiredjdentification(c) & has(a.c)  PROOF  
& shown_to(c,b) & entry(d) & at(a,d) & at(b,d) & 137 D -person(x167) | -visitor_badge(x168) | - 
building(d) & inside(a,d))))j). security department(xl69) 
 PROOF  | -holiday(x170) | -obtain(x167,x168). 
98 [] -secured_building(x118) 139fJ-person(x167) 
| secure building(x118). | -employee.bado^xies) 
122Q -building(x154) j -security departmental 69) 
| secured building(x154). | -noliday(x170) | -obtain(x167,x168). 
147 [] -person(x183) | -entry(x184) 162 0person($c10). 
|-secure buikjing(x185) 163 D visitor_badge($c9). 
| -inside(x183,x185) | -at(x183,x184). 164 D employee_badge($c6). 
153 D -visitor(x195) | person(x195). 165 D security_department($c8). 
162 Q visitor($c7). 166 D obtain($c10,$c9) | obtain($c10^c6). 

i                     167Qentry(x211). 170 0 holiday($c7). 
168Qat($c7,x211). 178 [ur.170,139,162,164,165] 
170Qbuilding(x211). -obtain($c10,$c6). 
171Qinside($c7,x211). 180 [ur.170,137,162,163,165] 
172 [hyper.162,153] person($c7). -obtain($c10,$c9). 
182 [hyper,170,122] secured_building(x). 206 [hyper.166,180] obtain($c10^c6). 
191 (hyper, 182,98] secure building(x). 207[binary,206,178]. 
195 [ur.168,147,172,167,191] 
-inside($c7,x). % Query 10. 
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(exists a (exists b (all c (all d (visitor(a) & visitor(b) & 
building(c) & inside(a,c) & inside(b,c) & visiting(a,b) & 
-security_violation(d)))))). 
 PROOF  
43 D -employee(x65) | -visitor(x65). 
153 D -visitor(x195) | person(x195). 
161 [] -visitor(x207) | -person(x208) 
| -building(x209) | -visiting(x207,x208) 
| -inside(x207,x209) 
| -inside(x208,x209) | employee(x208). 
162 D visitor($c7). 
163 Q visitor($c6). 
164flbuiiding(x210). 
165Qinside($c7,x210). 
166 Q inside($c6,x210). 
167fjvisiting($e7,$c6). 
172 [hyper.163,153] person($c6). 
174 [ur,163,43] -employee($c6). 
191[ur,166,161,162,172,164,165,174] 
-visit'ng($c7,$c6). 
192[binary,191,167]. 

% Query 11. 
(all x (all y (all z (visitor(x) & visitor_badge(y) & - 
issued_to(x,y) & secure_building(z) 
& inside(x,z))))). 

Level of proof is 1, length is 2. 
 PROOF  
83 [] -secure_building(x104) 
|has(x104,$f1(x104)). 
110 Q -visitor(x140) | -visitor_badge(x141) 
| issued_to(x141 ,x140) | -has(x140,x141). 
162[]visitor(x). 
163Qvisitor_badge(y). 
164Q-issued_to(x,y). 
165 0 secure_building(z). 
173 [hyper.165,83] has(x,$f 1 (x)). 
183 [ur.164,110,162,163] -has(x.y). 
184 [binary,183,173]. 

% Query 12. Note: no conflict as expected. 
(employee(a) & building(b) & exiting(a,b)). 
(security_badge(b) & has(a,b) 
& -surrender(a,b)). 

•PROOF- 
14 D -person(x22) | -security_badge(x23) 
| buüding(x24). 
29 D -employee(x44) 
| -security_badge(x45) | -building(x46) 
| -exiting(x44,x46) 
j -must_surrender(x44,x45). 
92 D -personal 10) | -building(x111) 
| -exiting(x110,x111) | Ieaving(x110,x111). 
122Q-building(x154) 
| secured_building(x154). 
129Q-person(x159) 
| -secured_building(x160) 
| -Ieaving(x159^160) | -viator_badge(x161) | 
has(x159^161) 
| must_surrender(x159,x161). 
131|]-person(x159) 
| -secured_buikJing(x160) 
|-teaving(x159,x160) 
| -employee.badgetxiei) 
|-has(x159,x161) 
| must_surrender(x159,x161). 
134 0 -security_badge(x165) 
|visitor_badge(x165) 
j employee_badge(x165). 
152 fl -employee(x195) | person(x195). 
162 0employee(a). 
164[]exiting(a,b). 
165Dsecurity_badge(b). 
166Qhas(a,b). 
168 [hyper.162,152] person(a). 
176 [hyper.168,14,165] buiding(x). 
179 [hyper.176,122] secured_building(x). 
191 [hyper.164,92,168,176] leaving(a,b). 
192 [ur.164,29,162,165,176] 
-must_surrender(a,b). 
194[ur,192,131,168,179,191,166] 
-employee_badge(b). 
195 [ur,192,129,168,179,191,166] 
-visitor_badge(b). 
196 [ur,194,134,165] visitor_badoe(b). 
197 [binary ,196,195]. 
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Appendix 4. 
Queries Used in the Object-Based Approach 

% Query 0 (from 1991IFIP paper), 
(all x -security_violation(x)). 
(person(c) & in_the_buikJing(c)). 
guard(a). 
(all x (security_escort(x) -> -escorts(x,c))). 
(all x all y ((securityjbadge(x) & has(c,x)) -> 
(surrender(c,y) & has(a.y)))). 
 PROOF  
61 D -visitor(x) | -in_the_building(x) | 
security_escort($f13(x)). 
62 D -visitor(x) | -in_the_building(x) | 
escorts($f13(x),x). 
100[]in_the_building(c). 
102 [] -security_escort(x) | -escorts(x,c). 
105 [] visitor(c). 
112 [hyper.105,62,100] escorts($f13(c),c). 
113 [hyper.105,61,100] security_escort($f 13(c)). 
147 [hyper.102,113,1121 • 

% Query 1. 
(exists x all y (employee(x) & in_the_building(x) & 
security_badge(y) 
& -has(x,y))). 
 PROOF  
1 [] -employee(x) | person(x). 
39 [] -person(x) | -security_badge(y) 
| -display(x.y) | has(x.y). 
64 [] -person(x) | -in_the_building(x) 
|display(x,$f14(x)). 
98 D employee($c6). 
99 D in_the_building($c6). 
100 0 security_badge(y). 
101 Q-has($c6,y). 
106 [hyper.98,1] person($c6). 
114 [hyper.106,64,99] display($c6,$f14($c6)). 
120 [ur,101,39,106,100] -display($c6,x). 
121[binary,120,114]. 

% Query 2. Note: The following does not cause a 
conflict since visitor is not in the building. 
(exists x all y all z (visitor(x) & security_badge(y) & - 
display(x.y) 
& in_the_building(x) & -security_violation(2))). 
(exists x all y all z (visitor(x) & security_badge(y) & • 
display(x.y) 
& -security_violation(z))). 
 PROOF  
1 (] -employee(x) | person(x). 
39 [] -person(x) | -security_badge(y) 
| -display(x,y) | has(x.y). 

64 0 -person(x) | -in_the_building(x) 
|display(x,$f14(x)). 
98 Q employee($c6). 
99 D in_the_building($c6). 
100 D security_badge(y). 
101 G -has($c6,y). 
106 [hyper,98,1] person($c6). 
114 [hyper,106,64,99] dispiay($c6,$f14($c6)). 
120 [ur.101,39,106,100] -display($c6,x). 
121[binary,120,114]. 

% Query 3. Note: inside omitted; conflict due to two 
badges. Next statement includes inside. 
(exists x exists y exists z all w (visitor(x) & 
security_badge(y) & security_badge(z) 
& has(x,y) & has(x,z) & dispiay(x,y) 
& -display(x,z) & -security_violation(w))). 
(exists x exists y exists z all w (visitor(x) & 
security_badge(y) & security_badge(z) 
& in_the_building(x) & -security_violation(w) & has(x.y) 
& has(x,z) & display(x,y) 
&-display(x,z))). 
 PROOF  
2 [] -visitor(x) | person(x). 
43 Ö -person(x) | -security_badge(y) 
| -security_badge(z) | -has(x,y) | -has(x,z) | (y = z) | 
security_violation($f7(x,y,z)). 
98 D visitor($c8). 
99 [] security_badge($c7). 
100 D security_badge($c6). 
101[]has($c8,$c7). 
102f]has($c8,$c6). 
103 D disptay($c8,$c7). 
104 D -display($c8,$c6). 
118 D -security_violation(z). 
119 [hyper.98,2] person($c8). 
168 [ur.102,43,119,99,100,101,118] ($c7 = $c6). 
234 [para from,168,103]display($c8,$c6). 
235[binary,234,104]. 

% Query 4. Note: As desired, the following does not 
produce a conflict. However, 187 dauses 
% were needed before a conduskxi was reached. 
(employee(c) & in_the_building(c)). 
(all y (security_escort(y) -> ■escorts(yIc))). 
 PROOF  
6 D -employee(x) | -visitor(x). 
98 D employee(c). 
101fjvisitor(c). 
106[ur,98,6]-visitor(c). 
107[binary,106,101]. 
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% Query 5. 
(exists x exists y all z (employee(x) & security_badge(y) 
& loses(x.y) 
& -security_vblation(z))). 
 PROOF  
1 [] -employee(x) | person(x). 
67 [] -person(x) | -security_badge(y) 
| -toses(x,y) | s«;urity_vioJaticx\($f 16{x,y}). 
98 D emptoyee($c7). 
99 [] security_badge($c6). 
100 D loses($c7,$c6). 
105 D -security_violation(z). 
106 [hyper.98,1] person($c7). 
114 [ur,106,67,99,105] -bses($c7,$c6). 
115 [binary,114,100]. 

% Query 6. 
(exists x all y exists w exists z exists t (visitor(x) & 
guard(z) & employee(w) 
& security_badge(t) & has(x.y) & at_entry(x) & 
at_entry(z) & visiting(x,w) & expiredjd(y) 
& shows_id_to(x,y,z) & issued(x,t))). 
 PROOF  
11 D -invalidjd(x) | -validjd(x). 
32 D -expiredjd(x) | invalidjd(x). 
55 [] -visitor(w) | -security_badge(x) 
| -issued(w.x) | valid_id($f11(w,x)). 
98 Q visitor($c6). 
101 Q security_badge($f29(y)). 
106 Q expiredjd(y). 
108Qissued($c6,$f29(y)). 
115 [hyper.106,32] invalidjd(x). 
123 [ur,115,11] -valid_id(x). 
139 [ur, 101,55,98,123] 
-issued($c6,$f29(x)). 
140 [binary, 139,108]. 

% Query 7. 
(exists x exists y exists z (visitor(x) & 
exiting_the_building(x) & security_badge(y) 
& has(x.y) & displays(x,y))). 
 PROOF  
2 [] -visitor(x) | person(x). 
45 [] -person(x) | -security_badge(y) 
| -surrender(x,y) | -displays(x,y). 
74 Q -visitor(w) | -exiting_the_build«ng(w) 
| -security_badge(x) | -has(w,x) | surrender(w,x). 
98 D visitor($c8). 
99 Q exiting_the_building($c8). 
100 D security_badge($c7). 
101 0 has($c8,$c7). 
102 Q displays($c8,$c7). 
107 [hyper,98,2] person($c8). 
123 [hyper,101,74,98,99,100] surrender($c8,$c7). 

131 [ur,102,45,107,100] 
-surrender($c8,$c7). 
132[b»nary,131,123]. 

% Query 8. 
(exists x all z (empk>yee(x) & 
*st_day_ocair(x) & in_the_building(x) 
& -security violat»n(z))). 
 PROOF  
10 -employee(x) | person(x). 
39 Ö -person(x) | -security_badge(y) 
| -display(x,y) | has(x,y). 
63 D -person(x) | Hn_tfie_building(x) | 
security_badge($f 14(x)). 
64 Q -person(x) | -in_the_building(x) | 
display(x,$M4(x)). 
80 D -employee(w) | -emptoyee(u) 
| -security_badge(x) | -has(u,x) 
j -display(w^) 
j security_violation($f24(w,up()). 
98 D employee($c6). 
100 D in_äie_building($c6). 
105 D -security_violation(z). 
106 [hyper.98,1] person($c6). 
112 [hyper,106,64,100] display($c6,$f14($c6)). 
113 [hyper,106,63,100] security_badge($f14($c6)). 
133 [hyper.112,39,106,113] has($c6,$f14($c6)). 
135 [ur,112,80,98,98,113,105] 
-has($c6,$f14($c6)). 
136[binary,135,133]. 

% Query 9. 
(exists x exists y exists z exists u (person(x) & 
security_badge(y) & security_dept(z) & holiday(u) 
& obtain_badge_from_on(x,y^,u))j. 
 PROOF  
12Q-holiday(x)|day(x). 
15 O -regular_business_day(x) 
| -holiday(x). 
78 D -person(x) | -security_badge(w) 
| -security_dept(z) | -day(u) 
j -obtain_badge_from_on(x,w,z,u) 
| regular_business_day(u). 
98 D person($c9). 
99 D security_badge($c8). 
100Dsecurity_dept($c7). 
101 D holiday($c6). 
102 D obtain_badge_from_on($c9,$c8,$c7,$c6). 
109[hyper,101,12]day($c6). 
110[ur,101,15] 
■fegular_business_day($c6). 
111 (ur,110,78,98,99,100,109] 
•Obtain_badge_from_on($c9,$c8,$c71$c6). 
112[binary,111,102]. 
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% Query 10. 
(visitor(c) & in_the_building(c)). 
(all y (visiting(cy) -> visitor(y))). 
(all z -security_violation(z)). 
 PROOF  
2 fj -visitor(x) | person(x). 
6 [] -employee(x) | -visitor(x). 
39 [] -person(x) | -security_badge(y) 
| -display(x,y) | has(x,y). 
40 [] -person(x) | -security_badge(y) 
| issued(x,y) | -has(x,y) 
| securi ty_vioiation($f 5{x ,y)). 
58 [] -visitor(w) | -security_badge(x) 
| -issued(w,x) | employee($f12(wpt)). 
59 [] -visitor(w) | -security_badge(x) 
| -issued(w,x) | visiting(w,$f12(w,x)). 
63 [] -person(x) | -in_the_building(x) 
|security_badge($f14(x)). 
64 [] -person(x) | -in_the_building(x) 
|display(x,$f14(x)). 
98 D visitor(c). 
99 0 in_the_building(c). 
100 Q -visiting(cy) | visitor(y). 
101 Q -security_vioiation(z). 
102 [hyper,98,2] person(c). 
106 [hyper,102,64,99] display(c,$f14(c)). 
107 [hyper,102,63,99] security_badge($f 14(c)). 
117 [hyper.106,39,102,107] has(c,$f 14(c)). 
125 [ur,117,40,102,107,101] issued(c,$f14(c)). 
127 [hyper.125,59,98,107] visiting(c,$f12(c,$f 14(c))). 
128 [hyper.125,58,98,107] 
employee($f12(c,$f14(c))). 
142 [ur,128,6] -visitor($f12(c,$f14(c))). 
148[ur,142,100] 
-visiting(c,$f12(c,$f 14(c))). 
149 [binary ,148,127]. 

% Query 11. 
(exists x all y all z (visitor(x) & in_the_building(x) & 
securi ty_badge(y) 
& -issued(x.y) & -security_violation(z))). 
 PROOF  
2 [] -visitor(x) | person(x). 
39 [] -person(x) | -security_badge(y) 
| -display(x,y) | has(x.y). 
40 [] -person(x) | -security_badge(y) 
| issued(x.y) | -has(x.y) 
| security_violation($f5(x,y)). 
64 [] -person(x) | -in_the_building(x) 
|display(x,$f14(x)). 
98 0 visitor($c6). 
99 D in_the_building($c6). 
100 fl securityjbadge(y). 
101 0 -issued($c6,y). 

102 fl -security_violation(z). 
103 |hyper,98,2] person($c6). 
109 [hyper,103,64,99] display($c6,$f14($c6)). 
113 (ur,101,40,103,100,102] -has($c6,x). 
119 [ur,113,39,103,100] -display($c6,x). 
120[binary,119,109]. 

% Query 12. Note: no conflict as desired; % required 
92 clauses to verify; set of support % empty as 
expected. 
% Testing if SM15 implied by rule set. 
(employee(a) & exiting(a)). 
(security_badge(b) & has(a,b) 
& -surrender(a,b)). 
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