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1. INTRODUCTION.

This report describes a computer model of a battlefield communications
network that consists of a moderate number of nodes operating on a single radio
channel. The nodes in a battlefield network are not stationary and they may
become inoperable randomly for unpredictable lengths of time. The
communications channel may also contain noise that is random or introduced on
purpose. If we disregard the noise then the main obstacles to communication in
such a network are message collisions. Because all messages are broadcast on
the same channel, message routing is not possible and collision can be reduced
only by controlling the accesses to the network. A central control that would
assign broadcasting times to each node is not practical because in order to carry
out such a control intelligently the controller would need current information
about the state of the network, such as, the number of nodes, the lengths of
their message queues, etc. To collect such information some broadcasting time
would be needed that otherwise would be available for messages, and the
information might be outdated on arrival. An alternative approach is to install
at each node an independent access controller that would listen to the network
traffic and regulate its own access time in such a manner that the overall
information throughput rate is enhanced. A goal of ongoing research at the U.S.
Army Research Laboratory is to devise algorithms for such controllers, that is,
to develop a distributed cooperative control for battlefield networks.

Experiments with existing battlefield communication networks have shown
that the behavior of the network is non-linear and difficult to predict
theoretically (Kaste, Brodeen, and Broome 1992). Therefore, any new control
concepts should ultimately be tested in experiments. A problem with such
experimental investigations as described by Kaste, Brodeen, and Broome (1992)
is that they are time consuming, expensive, and are limited to the use of existing
hardware. To experiment with new protocols and new hardware concepts a
computer model of a battlefield network offers many advantages by allowing for
computational experiments which are cheaper, faster, and more flexible.
Detailed computer models of large networks are available commercially.
However, a simple and flexible in-house model that operates at a high level of
abstraction is better suited for the development and testing of control
procedures in a battlefield environment because a battlefield network simulator
need not have as many options as simulations of stationary networks. (For
instance, not needed are all the parameters that define the multitude of paths
and node characteristics in a stationary network.) In the present report such a
simple battlefield communications network model called BATNET is described.
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The model is mainly intended for experiments with congested networks, that is
with situations where several nodes have message queues waiting to be
transmitted.

Section 2 contains an outline of the model, Section 3 defines the input
format for the model, Section 4 describes the output, Section 5 presents some
examples of experiments with the model, and Section 6 contains conclusions
about the usefulness of the model. The program is coded in Fortran 77 and the
code is listed in the Appendix.

2. PROGRAM OUTLINE
2.1. Program Structure

The principal part of the computer model BATNET is a subroutine called
EXCASE that executes a case of network traffic and moritors the network
activities. The queue management and access control for each node are
simulated by a subroutine NODUPD that is called from EXCASE. On each call,
NODUPD selects a message from the message queue of a node (see Section 2.3)
and determines a time for the broadcasting of the message (see Section 2.5).
The input arguments for the subroutine consist of a reference {ime,
identification of a node, and parameters describing the message queue of the
node. The output arguments are the identification of the message that is to be
broadcast and the intended broadcast time. The network traffic is modeled as
follows. First, the network monitor EXCASE determines that the network is free
at time ¢4, and repeatedly calls NODUPD with #f, and each node as arguments
" in turn. Each call produces an intended broadcast time for the respective node.
The monitor compares the intended broadcast times and assigns network access
to the node with the smallest intended broadcast time. It then checks whether a
collision takes place (see Section 2.6), determines whether the message is received
and acknowledged, and tags the message correspondingly (see Section 2.3). The
monitor then advances the time to the next free time spot, typically to the time
after the message has been sent and acknowledged, and repeats the procedure
with calling NODUPD. The broadcast times and broadcast types are stored in a
time-line file (see Section 4). The subroutine EXCASE returns control to the
main program when all queues are empty. The main program then may stop or
call EXCASE to start another experiment.

The BATNET model is designed for experiments with congested networks,
that is, with networks Where several nodes have non-empty message queues.
Therefore, each "experiment” is ended when the message queues have been
emptied. The model can be used, with minor modifications, also to simulate
stable network traffic, but that is not the intended application.
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The code contains several input and output routines and a number of
routines for the computation of various statistics that characterize the
performance of the net. In a real life implementation, such network statistics
would be computed independently and continuously at each node, and enable
the controllers at the nodes to determine network access modes based on these
statistics.

2.2. Representation of Messages.

The purpose of the BATNET model is to test general techniques for the
control of a battlefield network. In these tests, a message can be represented by
the time in seconds during which the communication channel is occupied with
the broadcasting of the message and the corresponding acknowledgment. (We
are not interested in character transfer rates and message coding.) A message in
BATNET can be thought as consisting of the following four parts: a head that
contains the address and other information for the decoding of the message; the
main body containing the actual information to be transmitted; a hold time
during which the addressee has the opportunity to start broadeasting an
acknowledgment; a tail that constitutes the acknowledgment of the message.
The broadcast length of a message in BATNET is the sum of at least the first
two parts. The length of the tail is zero if the addressee is silent, and the tail
and hold time are both zero if the message was not successfully transmitted due
to collision or network disturbance. (It is assumed that the listening. nodes can
recognize disturbed messages and do not wait for an acknowledgment if a
message is garbled.) The lengths of the four parts for the communications
protocol described in Kaste, Brodeen, and Broome (1992) are as follows:

Head: 0.627 s
Body: typically 0.5 to 10 s
Hold time: 1.000 s
Tail: 0.787 s

These values are adjustable parameters in BATNET and can be changed to
represent other transfer protocols and transfer rates. The salient characteristic
of this message model is that a message has a minimum length (0.627 s) and
that the length of the hold time and acknowledgment (1.787 s), if existent,
occupies the channel immediately after the broadcast of a message.

2.3. Queue Management.

For the modeling of message traffic in a congested network the lengths of
the messages: are the only important message characteristics. For the
management of message queues, however, other message characteristics are more
important. (Message lengths may be important for the queue manager only if
message splitting and combination are considered.) Such characteristics are the

.




submission time and the priority of the message. The submission time is the
time at which the message is submitted to a node for broadcasting. The priority
is a number between zero and ten and is assigned to the message by the source
(author) of the message. By assigning high priority numbers to important
messages the source should increase the probability that such messages will be
broadcast first. When a message is submitted the node manager augments the
submitted message length by the length of the head (0.627 s) to obtain the
queued length of the message and enters into the message queue a set of the
following three numbers: submission time [s], queued message length [s], and a
priority number.

In the BATNET model, the queues are established by the subroutine
NODINI that is called from the main program before calling the case execution
subroutine EXCASE (see Section 2.4). The lists of messages are stored in one
floating point array and one integer array. The floating point array has three
indexes and is called flcue. The array is constructed as follows:

First index = identification n of the node;
Second index = identification of a floating point characteristic:
flcue (n, 1, i) = message submission time ¢,; [s],
flcue (n, 2, i) = queued message length L; [s],
flcue (n, 3, ¢) = message priority p in the range from zero to ten,
flcue (n, 4, i) = message weight w; (see below),
flcue (n, 5, 7) = time of last broadcast of the message #y; [s];
Third index = identification ¢ of the message.
The integer array also has three indexes and is called incue. This array is
constructed as follows:
First index = identification n of the node;
Second index = identification of an integer characteristic:
incue (n, 1, 1) =identification number of addressee ("0" = "world"),
incue (n, 2, ) = number of tried broadcasts N,
incue (n, 3, 1) = acknowledgment code: O - not sent, :
1 - acknowledged, 2 - sent but not acknowledged, 3 - collided,
incue (n, 4, 1) = activity indicator: O - active, 1- dormant;
Third index = identification ¢ of the message.
The activity indicator incue(n,4, 1) allows to identify as dormant, for
instance, those messages that have been repeatedly sent to a not-responding
receiver or are inactivated because of age. The dormant messages may be later
reactivated when network traffic is low. :

The queues are managed by the subroutine NODUPD that is called from
EXCASE with a reference time and a node identification number as arguments.
On each call, NODUPD computes weights for all messages in the queue of the
argument node and selects the message with the largest weight for broadcasting.
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The weight depends on the following characteristics of the messages:

Message priority p,
Elapsed time since message submission ¢ — ¢,, and
Number of unsuccessful broadcasts N.

At the beginning of a network experiment, each node is supplied with a list of
future messages (see Section 2.4). The message queue of a node at a reference
time ¢ consists of all such messages from the list that are submitted before the
time ¢ and have not been broadcast successfully. The node management
subroutine NODUPD assigns a zero weight to messages with a submission time ¢,
larger than ¢ and a positive weight to other unsent messages. The formula for
the positive message weight that is used in the BATNET model is as follows.

w=(1+p+N)'ma,x{0.01,exp[—(t—taa-@f]}. (1)
The formula assigns higher weights to messages with higher priority p and to
messages that have been repeatedly broadcast but not acknowledged. The
weight also increases with elapsed time ¢ — ¢, up to ten minutes (600 s). After
that, the message is assumed to become stale and its weight is gradually
reduced. At about 31 minutes after submission the weight ceases to depend on
submission time and is very small compared to recently submitted message
weights. (At ¢ =, the value of the exponential function is 0.37, ten minutes
after submission it reaches unity and 31 minutes after submission it drops to
0.01.) The "stale time" of 600 s is arbitrary and can be replaced by another
number. Such changes have, however, only little effect on the performance of a
congested network because the weight merely determines which message from
the queue has the first access to the network.

In practical applications the queue management might be different and the
weight formula (1) modified to serve specific needs. For instance, messages with
repetitions N larger than a threshold might be deactivated under the assumption
that the receiving node is temporarily out of action. At the same time, all other
messages in the queue with the same addressee could be deactivated.
Furthermore, the weight function could be made dependent on the time that has
elapsed since the last unsuccessful broadeast so that deactivated messages
periodically would receive higher weights.

2.4. Message Generation.

At the start of a network traffic experiment with BATNET, lists of future
messages are established for all active nodes. These lists are made by the
subroutine NODINI that is called from the main routine in turn for each node.
On each call, the subroutine generates a list of future messages as will be
described below. If the model is used for the simulation of congested networks
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then the algorithm of message generation is not important, because the network
trafic conditions depend only on the first messages in the queues. It does not
matter whether the remaining messages entered the queues randomly, at regular
time intervals, or by some other scheme. The message generation algorithm
described below was chosen for NODINI because it generates a wide variety of
queues with the help of only few and easily understood parameters.

The input to BATNET specifies for each node a message frequency and an
average submitted message length. The subroutine NODINI, called from
BATNET, uses this information to generate messages with random submission
times and random lengths. Let f[Hz] be the frequency of messages, I [s] be
their average length, and rand be random numbers from an uniform distribution
in the range [0,1]. Then the time interval between the submissions of the

messages ¢ and 7 — 1 is computed by

A;j=rand -2 /[ [s] . (2)
The submission time of the message ¢ is
i
toi =3 A [s], (3)
k=1

and its queued length is X
[;=0627 +rand-2-1 [s], (4)

where 0.627 s is the length of the mandatory head of a message. (The random
numbers rand in Egs. (2) and (4) are, of course, not the same.) The addressee
and the priority of each message are also assigned randomly. This information
is stored in two lists (arrays) that contain the data for all nodes (see Section 2.3).
The end of a message list generation by NODINI is determined by the end time
of message generation (an input datum), i. e., when #,; exceeds the specified end
time. If the declared arrays in the program are not sufficiently large for the
storage of all messages up to the end time then BATNET writes an error message
in the file named <input-summary > and stops.

2.5. Network Access Management.

The access control that is modeled by BATNET is intended to work as
follows. When a node (with a non-empty message queue) observes that the
network is free at time #f.., it selects a message from its queue (see Section 2.3)
and computes an intended broadcast time £, = ¢, + A. The waiting interval
A is randomly chosen from a network access delay time interval D that is equal
for all nodes. The node then continues to monitor the network and, if the
network is still free at f,, starts broadcasting at that time. With this algorithm,
the node with the smallest intended broadcast time will broadcast, while other
nodes will find that the net is not free at their f;, abstain from broadcasting, and

.




wait for the next free time. At that time, the competition among nodes for the
smallest {, starts again. If the delay time interval D is the same for all nodes
then this algorithm assures equal access probability for all messages at the heads
of message queues. To provide a larger probability of access for high priority
messages, the global D may be reduced for such messages. This reduction of D
is implemented by the subroutine NODUPD as follows.

Let t be the reference time (provided by EXCASE when it calls NODUPD;
at this time the network is free) and let D [s] be the network access delay time
interval, also provided by the calling program. (This parameter is presently
constant and obtained from input. One of the goals of ongoing research is to
find algorithms that control and vary D such that the information throughput is
increased.) If the priority of the selected message is zero then NODUPD chooses
a random number A from the interval (0, D) and computes the intended
broadcast time by

tb=t+A . (5)

If the pi'iority p of the message is positive then A is chosen from a smaller
interval (0, Dj,.,) where

Dipear = (1 —0.09 - p) D . (6)

With this algorithm, a message with the highest priority (p = 10) has in the
average a ten times smaller A than a low priority message.

The calling program EXCASE compares the intended broadcast times of all
nodes and assigns broadecasting to the node with the smallest {; by tagging the
corresponding message as sent (see Section 2.3).

2.6. Message Collisions.

If the access control described in Section 2.5 could be carried out with
infinitesimal accuracy then the probability of message collisions would be zero.
In reality, the accuracies of the intended broadcast times i, are finite and in
addition also delays in the network communications (propagation time and
equipment-induced delays) can cause collisions. In particular, the following
takes place at the node with the smallest intended broadcast time #; and in the
network:

The node determines that the channel is free.

The node starts broadcasting.

Other nodes recognize that a broadcasting takes place.
Let the time interval between ¢, and the recognition by the other nodes be .
Then any other node that has an intended broadcast time between ¢, and {; +
will falsely determine that the channel is free, start broadcasting, and cause
collisions of messages.




For the BATNET model the collision interval o is an input item. A
reasonable value for a is about 0.5 s.

3. INPUT

The input for an experiment with BATNET is read from an input file.
Figure 1 shows an example of such a file. The first line of the input file contains
an alphanumeric identification. The second line is merely an explanation of the
input. The contents of this and subsequent explanation lines are ignored by the
program but the lines must be in the input file. Line 3 contains two numbers.
These numbers and all other numerical input data are not formatted and the
reading of the numbers is done in list-directed mode. The first number is the
collision interval o, that is, the interval between message broadcast times that
determines whether a collision takes place. Any message that has a broadcast
time within this interval after the first broadcast message is assumed to be
broadcast, too, and colliding with the first message (see Section 2.6). The second
number is the hold time, that is, the time interval after a message during which
the addressee should start an acknowledgment (see Section 2.2). Line 5 contains
three parameters for the control of the network access delay time interval D.
Presently only the first parameter is used and taken to be the global value of D.
The other two numbers are dummy parameters and included in the input for

future use.

Line 7 in Figure 1 indicates that the network has four nodes. After
another explanation line, the input lists for the four nodes message frequencies f
and message lengths I. These values are used by the subroutine NODINI to
generate lists of messages (see Section 2.4). Because each input line for the
frequencies and message lengths also contains the identification number of the
node, the sequence of these data lines is arbitrary. If the number of nodes in n
then the node description ends with Line 8+n.

Line 84n+42 contains a seed number for the random number generator.
The seed number is needed to enable repeated computations with identical
random number sequences. Line 8+n-+44 contains the end time for message
generation. The last Line 84n+6 contains the monitoring time interval L. This
is the interval that is used by the subroutine MONITOR to calculate time-
averaged network statistics, such as the percentage of time spent on
broadcasting, on idling, and on transmitting collided messages. (See Section 4
and Figures 5, 9, and 10.) :

The input is read by the subroutine READER from the file unit 21.
Therefore, a file <fort.21> must be linked to the input file before the code is
run, or the input file must be copied to <fort.21>.
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Line 1. Four different nodes. 940520. Delay interval = 10 [s]

Line 2. Collision interval [s], hold time [s]
Line 8. .5000 1.0000

Line 4. Message delay parameters (3)

Line 5. 10.00 1.00 1.00

Line 6. Number of nodes in the network

Line 7. 4

Line 8. Node No. Messg. freq. [Hz] Messg. length [s]
Line 8+1. 1 .030 9.0
Line 8+ 2. 2 .070 3.6
Line 8+8. 3 .130 2.0
Line 8+4. 4 .187 0.9
Line 84+n+1. Seed for the random number generator
Line 8+n+2. 1188

Ltne 8+n+8. End time of message generation [s]
Line 8+n+4. 600.0

Line 84+n+5. Monitoring time [s]

Line 8+n+6. 180.0

Figure 1. Input file for Experiment No. 1.

Next, BATNET calls a subroutine WRITER that writes a formatted
printable summary of the input, supplemented with computing date and time,
into a file named <input—summary>. The format of that summary is the
same as shown in Figure 1, so that this summary file can also be used as input
for repeat calculations.

Next, the main program calls the subroutine NODINI to generate message
lists (see Section 2.4). After the message generation, another output routine
WRITE2 is called to supplement the file <input—summary> with some
statistics about the message lists. At the end of the experiment, the main
program adds to the file a line with the time that was needed in the experiment
to clear all queues. The supplements to the input file are illustrated in Figure 2.

4. OUTPUT

BATNET output consists of a number of network activity records in
separate files. One such file, the <input—summary>, was described in
Section 3. Another output file <time-line> contains the time record of
network activities. Figure 3 shows the beginning of the file from Experiment
No. 1 that was run with the input shown in Figure 1. The complete file has in
this case 707 lines. The file shows that the first successful broadcast was
completed at ¢ = 4.26 s and that the length of the broadcast message was 2.76 s.
The first collided broadcast was finished at ¢ = 27.58 s and lasted 2.28 s, etc.




Computing date 09/13/94. Computing time 08:45:58.
Summary of unsent messages at time= .000

First subm. Last subm. Total msg. Total msg. Average msg.

Node time [s] time [s] number length [s] length [s]
1 1.501 601.168 17 166.155 9.774
2 20.786 600.271 42 166.766 3.971
3 13.411 607.040 73 192.410 2.636
4 7.150 604.418 116 184.523 1.591
Total: - 248 709.854

Total length including acknowledgments = 1069.039

All queues are cleared at 2179.54 [s]

Figure 2. Supplements to the input file of Experiment No. 1.

Computing date 09/13/94. Computing time 08:45:58.
Four different nodes. 940520. Delay interval = 10 [s]
End time [s], interval [s], activity code
1l =3idle, 2 = transmission, 3 = collision
4 = interference, 5 = not acknowledged

1.5007 1.5007
4.2649 2.7642
7.1497 2.8848
10.1393 2.9896
13.4109 3.2717
18.5910 5.1801
20.5391 1.9481
24,9973 4.4582
25.2944 .2972
27.5752 2.2807
29.3285 1.7533
33.0445 3.7160

Y

N WD MDD RN R

Figure 3. Output file <time—line> of Experiment No. 1.

The file <time—1line> and the other output files to be described are in
general too voluminous for reading by humans. They are intended as input files
for graphical display or statistical analysis. Each output file has a head with a
comprehensive explanation of its contents to facilitate coding of routines that
read the data for statistical analyses of graphical display. We show here only

excerpts of some output files as illustrations.
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Four output files contain information about the lengths of message queues
and waiting times at a series of sampling times. The information about the
queue lengths is obtained as one of the output arguments of the subroutine
NODUPD. Information about waiting times in each queue is compiled and
written into the file <cues—de> by a subroutine named WDELAY. The names
of these four output files are as follows.

<{cues—nr> - numbers of unsent and repeated messages

{cues—ti> - queue lengths in terms of sums of queued message lengths

{cues—-we> - queue lengths in terms of sums of message weights

{cues—de> - maximum and ensemble averages of waiting times
Figure 4 contains a part of the output file <cues—ti> from the Experiment
No. 1. The sampling times in Column (1) are the times at the end of a
broadcast activity (see the time line in Figure 3). The lengths of the queues are
averages over the monitoring time interval L ( =180 s) before the sampling time.
At the beginning of the experiment, when ¢ < L, the averaging is done over the
time elapsed since the beginning of the experiment. For instance, for
t = 100.0380 s at the Node No. 2 the average queue length during the time from
zero to 100.0380 was 20.41 s. The figure shows how the queues increase as new
messages are submitted and decrease again as the messages with largest weights
are broadcast.

The output files with information about queue lengths permit a
comparison of performances by different nodes. Individual nodes that listen to
the network do not have access to this information. .Information that is
available to individual nodes is computed by the subroutine MONITOR that is
called from EXCASE after each idle or broadcast interval with the reference time
as argument. MONITOR computes average network usage statistics for a given
time interval L immediately before the reference time. The averaging interval L
is specified by input, it is the "Monitoring time" in Figure 1. In all presented
examples we have L =180 s. Experimentation with different values of L have
shown that 180 s is appropriate if the typical message length is of the order of
six seconds. A too small averaging interval makes the detection of trends of
network usages difficult. A too large averaging interval suppresses the latest
information. MONITOR computes two types of averages: a simple unweighted
time average and a weighted average where the weight decreases linearly from
the beginning to the end of the averaging interval. The difference between the
weighted and unweighted averages can be used as a trend indicator of the
averaged quantity. (A simple numerical derivative is not useful as a trend
indicator because of the small oscillations in the averages as shown, for instance,
in Figure 9.) MONITOR uses as the averaging interval either the input value of
L (=180 s) or the time from the beginning of the experiment, whichever is less.
The output by the subroutine MONITOR is stored in two output files called
<monitor-line> and <{monitor2—numbers>.
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Computing date 09/13/94. Computing time 08:45:58.
Four different nodes. 940520. Delay interval = 10 [s]
180.0 [s] = the monitored time interval
4 = number of nodes

Time Lengths [s] of information in queues
.0000 .0000 .0000 .0000 .0000
4.2649 .0000 .0000 .0000 .0000
10.1393 .0000 .0000 .0000 .0000
18.5910 16.2685 .0000 2.6712 3.0791
24.9973 16.2685 1.6159 3.3053 5.4225
27.5752 16.2685 1.6159 3.3053 6.4197
33.0445 16.2685 7.2982 3.3053 5.3961
40.8458 16.2685 1.6159 8.2129 8.1994
43.8621 16.2685 1.6159 8.2129 8.7886
61.9401 .0000 4.2726 10.7185 15.5826
66.2095 .0000 6.4249 8.8659 17.5495
69.8474 .0000 6.4249 10.1254 19.1287
74.9873 .0000 6.4249 10.1254 18.6160
79.3721 .0000 11.9840 10.1254 18.6160
88.1773 7.2568 17.7552 11.2001 19.7031
92.0413 7.2568 17.7552 11.2001 19.3107
100.0380 7.2568 20.4104 13.2358 21.9745
104.7375 7.2568 20.4104 13.2358 20.3953

----------------------------------------------

Figure 4. Output file <cues—ti> of Experiment No. 1.

Figure 5 shows a part of the file <monitor—1ine> from the Experiment
No. 1. The complete file has 1412 lines. The first column contains the end
times of messages and idle periods, that is, the same time values as in Figure 3.
The second column lists the average length of all not-colliding messages that
were sent during the averaging time interval before the reference time in the
first column. (Idle time and colliding messages are not included in this
calculation. If a message overlaps the averaging interval then only that part is
considered that is within L.) The next two columns list the average usage of
network time by idling: Column (3) contains the relative time in percent of L
and Column (4) contains the average length of idling intervals in seconds. The
subsequent line contains in Columns (3) and (4) the same quantities computed
with weighted averaging. The difference between the second and the first line
can be used as a trend indicator of the data.

The remaining columns contain in the same format network usage data for
the following categories: transmissions, collisions. interferences, and . not
acknowledged messages. For instance, at ¢ = 13.411 s the average length of all
messages was 2.877 s, idling had occupied 57.1% of network time, the average
length of an idle interval was 2.55 s, transmissions used 42.9% of network time
and the average length of transmissions was 2.88s. The average message
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Computing date 09/13/94. Computing time 08:45:58.
Pour different nodes. 940520. Delay interval = 10 [s]
180.0 [s] = the monitored time interval
Column (1) = time; (2) = active interval length [s]
(3,4) relative length [%] and length [s] of idling
(5,6) the same for transmission, (7,8) = collision

(9,10) = interference, (11,12) = not acknowledged
Second line = the same with weighted calculation
1.501 .000 100.0 1.50 .0 .00 .0 .00 .0 .00 .0 .00
100.0 1.50 .0 .00 .0 .00 -0 .00 .0 .00
4.265 2.764 35.2 1.50 64.8 2.76 .0 .00 .0 .00 .0 .00
42.8 1.50 57.2 2.76 .0 .00 .0 .00 .0 .00
7.150 2.764 61.3 2.19 38.7 2.76 .0 .00 .0 .00 .0 .00
58.8 2.04 41.2 2.76 .0 .00 .0 .00 .0 .00
10.139 2.877 43.3 2.19 56.7 2.88 .0 .00 .0 .00 .0 .00
46.3 2.09 53.7 2.85 .0 .00 .0 .00 -0 .00
13.411 2.877 57.1 2.55 42.9 2.88 .0 .00 .0 .00 .0 .00
55.3 2.40 44.7 2.86 .0 .00 .0 .00 .0 .00
18.591 3.645 41.2 2.55 58.8 3.64 .0 .00 .0 .00 -0 .00
44.1 2.45 55.9 3.45 .0 .00 .0 .00 -0 .00
20.539 3.645 46.8 2.40 53.2 3.64 .0 .00 .0 .00 .0 .00
47.5 2.37 52.5 3.47 .0 .00 .0 .00 .0 .00

Figure 5. Output file <monitor—line)> of Experiment No. 1.

lengths in Columns (2) and (6) are equal because during the monitoring time the
network was used only for successful transmissions.

Computing date 09/13/94. Computing time 08:45:58.
Pour different nodes. 940520. Delay interval = 10 [s]
180.0 [s] = the monitored time interval
Column (1) = time [s];
(2) — (6) = relative numbers [%] of accesses during dtimon:
2 = idle, 3 = transmission, 4 =~ collision
5 = interference, 6 = not acknowledged

Second line = the same with weighted calculation

1.5007 100.000000 -000000 -000000 -000000 -000000
75.000000 .000000 .000000 -000000 .000000

4.2649 100.000000 100.000000 -000000 .000000 -000000
137.762634 100.000000 -000000 -000000 .000000

33.3765 116.666664 83.333328 16.666668 .000000 .000000
117.110291 86.220726 13.779278 .000000 .000000

40.8458 100.000000 85.714287 14.285715 .000000 .000000
104.784988 87.053612 12.946394 -000000 .000000

41.1045 114.285721 85.714287 14.285715 .000000 .000000
114.324318 87.042328 12.957665 .000000 .000000

....................................................

Figure 6. Output file <monitor2—-numbers> of Experiment No. 1.

Figure 6 shows the output file <monitor2—-numbers> that contains the
relative number of accesses to the network during the monitored time interval.
For instance, at ¢ = 33.3756 s the network was accessed for successful message
transmission in 83.3% of all accesses and for sending collided messages in 16.7%
of all cases. The percentage is calculated in terms of message accesses without

- counting an idle interval as "access". Therefore, a formal calculation of the
number of idling “accesses” yields in the discussed entry line the value of
116.7%. (In general this value should be about 100% because within the
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monitoring time interval the number of idling intervals is always about equal to
the total number of all accesses.) Every other line in the file shows the weighted
averages of access numbers. As discussed above, the difference between
weighted and unweighted values indicate the trend of the averaged quantity.

5. EXAMPLES

We present in this section results from experiments with the BATNET
code. In the first experiment, we consider a network with four nodes that is
defined by the input shown in.Figure 1. The number of messages and their
frequencies are different for different nodes, but the message lengths and
frequency parameters were chosen such that the combined lengths of all
messages are approximately equal for all nodes. This means that in this
experiment the amount of information that is submitted to each node during the
message generation time (about 600s) is approximately the same while the
average lengths of messages and frequencies of message submissions vary widely.
The total queued length of submitted messages is 710 s, but one needs at least
1069 s of network time to transmit the messages and their corresponding
acknowledgments (see Figure 2). In reality, the communication channel will be
used for a substantially longer time because of the idling between messages and
the time that is wasted with colliding messages. In this experiment, the clearing
of all queues required 2179 s or about 36 minutes.
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Figure 7. Cumulative network usage times in Experiment No. 1.

Figure 7 shows the network usage times in Experiment No. 1. During the
36 minutes that were needed to clear all queues, the network was idle for about
8 minutes and was transmitting colliding messages for about 10 minutes. The
collision time can be easily reduced by increasing the network access delay time
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interval D. To demonstrate the effect of changing D a second experiment was

* conducted for the same set of messages but with an access delay time interval D
increased from 10s to 20 s. The result of this "Experiment No. 2" is shown in
Figure 8. The collision time is indeed reduced to about one quarter of the
previous experiment but now the idle time has increased from 8 to 15 minutes.
All queues are emptied in 35 minutes. The example shows that the network
performance is quite sensitive to the access delay time interval. It also indicates
that with a dynamic adjustment of the delay time interval D one might achieve
better results than with a fixed D. If the communication traffic is light then a
small value of D is advantageous, because it reduces the idle time. In a heavy
traffic situation D must be made larger to reduce collisions.
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Figure 8. Cumulative network usage times in Experiment No. 2.

An example of network statistics that is available to a listening node is
shown in Figure 9. It displays for the first experiment (D = 10 s) the network
usage in percent for different usage categories during the 180 s monitoring
interval. For instance, at ¢ = 5 minutes we see that during the time between 2
and 5 minutes the network was occupied 50% with collisions, 40% with
successful transmissions, and 10% with idling. A listening node with local
control would notice the large amount of collision time and increase the value of
D, for instance, starting at about ¢t =5. Towards the end of the experiment D
could be decreased again because there the idling time becomes substantial.

Figure 10 shows the network usage statistics in Experiment No. 2 where
the larger D =20 s was used. We notice that the larger D indeed has reduced
the many collision at the beginning of the experiment, but towards the end of
the experiment the amount of idle time exceeds that of transmissions. The total
time for the clearance of the queues could be reduced if a dynamic assignment of
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Figure 10. Average network usage in Experiment No. 2.

of active nodes.
network control.

D were used to reduce idling during periods when the number of collisions is

_ Other useful statistics that can be obtained by listening to the network
are, for instance, the message lengths, the number of accesses, and the number
It remains to be seen how such information can be used for

An interesting statistic that is not available to the listening nodes but is

available in this model to the network monitor is the length of message queues.
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Figure 11. Average queue lengths in Experiment No. 1.

Figure 11 shows the average queue lengths in the Experiment No. 1 with four
nodes and D; =10s. The lengths are expressed in seconds as sums of queued
message lengths and averaged over 180 s. For instance, the figure shows that at
t =15 minutes the average queue length during the time from 12 to 15 minutes
was 151 s at Node No. 4 and 51 s at Node No. 1. It is obvious from Figure 11
that the nodes with fewer and longer messages empty their queues sooner. This
is not surprising since a node with many short messages uses more network
access delay time and must compete more often with other nodes for network
access. In a noiseless network (as in this experiment) it is, - therefore,
advantageous to combine messages in packets.

In the next two experiments the BATNET code was executed for a network
with ten equal nodes, that is, for a network where the message frequencies and
average message lengths are the same for all nodes. Figure 12 shows the input
part of the file <input-summary> and Figure 13 shows the supplement part
of the file. The average queued length of a message was about 4.6 s, and a total
of 241 messages were submitted in 600 s. The numbers of messages per node are
between 22 and 26. In the Experiment No. 3 we used a network access delay
parameter D = 20 s and obtained network usage times as shown in Figure 14. It
is obvious that the delay time parameter which was in general too large for the
four-node network is too small for ten nodes: during the first 25 minutes the
collision time is as large as the transmission time. To reduce the collisions we
increased the delay time parameter to D =50 s in the next Experiment No. 4.
The corresponding network usage times are shown in Figure 15. A comparison
of Figure 14 with Figure 15 shows that the increase of D has improved the
network utilization. As in the four-node network; further improvements could
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Ten equal nodes. 940520. Delay interval = 20 [s]
Collision interval [s], hold time [s]
.5000 1.0000
Message delay parameters (3)

20.00 1.00 1.00
Number of nodes in the network
10.
Node No. Messg. freq. [Hz] Messg. length [s]
1 . 040 4.0
2 . 040 4.0
3 . 040 4.0
4 . 040 4.0
5 .040 4.0
6 . 040 4.0
7 . 040 4.0
8 . 040 4.0
9 .040 4.0
10 .040 4.
Seed for the random number generator
1188
End time of message generation [s]
600.0
Monitoring time [s]
180.0

Figure 12. Input part in <input-summary> for Experiment No. 3.

be achieved by a dynamic assignment of the parameter. A comparison of the
experiments involving four and ten nodes, respectively, again indicates that an
optimal network control must be dynamic since the size of a battlefield network
(the number of active nodes) varies with time and cannot be used to determine
access control parameters in advance.
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Computing date 09/13/94.

Computing time 09:31:48.

Summary of unsent messages at time= .000
First subm. Last subm. Total msg. Total msg. Average msqg.
Node time [s] time [s] number length [s]. length [s]
1 1.126 604.328 23 107.188 4.660
2 19.050 629.708 25 109.951 4.398
3 3.123 619.942 22 88.075 4.003
4 17.230 604.079 23 105.828 4.601
5 10.633 637.609 24 118.828 4,951
6 27.055 609.393 26 115.484 4.442
7 19.754 624.656 26 139.010 5.347
8 48.742 614.667 24 107.109 4.463
9 20.011 608.909 22 119.861 5.448
10 26.413 600.082 26 128.541 4.944
Total: 241 1139.875

Total length including acknowledgments = 1541.948

All cues are cleared at 2932.98 [s]

Figure 13. Supplements in

{input-summary> for Experiment No. 3.
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Figure 14. Cumulative network usage times in Experiment No. 3.

-19 —




A
¢ 30.
E o ad
e -t
’_'/'
- ”
o 20. )_..{_
(o)
o] /’
z 4 /
L /
x 10. »Z L~
- b L]
o} -7 // L
V, A P (R SN (RPTTTY (bt e
-é /"', ST
z 0.4 ol -
0. 10. 20. 30. 40. 50.

Time, [min]

idle time = = = transmission
.......... collision

Figure 15. Cumulative network usage times in Experiment No. 4.

6. SUMMARY AND CONCLUSIONS

A battlefield communications network that consists of a limited number of
independent nodes that all broadcast on the same radio channel has been
considered. Control of access to the channel is important when several nodes try
to broadecast at the same time. A possible way to control the access is to install
at-each node a controller that regulates the node’s access in such a way that the
overall throughput rate of information is increased. This report describes a
computer model of such a network. The purpose of the model is to test
experimentally algorithms for the distributed network controllers.

The computer code models the network at a high level of abstraction.
This makes the model simple and reduces computing time. An experiment with
BATNET typically requires 0.1 to 0.5 percent of the real time of the modeled
event. That is, one hour of heavy traffic in a battlefield network can be
simulated by BATNET in a fraction of a minute on a Cray Y-MP computer.
The simple structure of the model facilitates code modifications to accommodate
new hardware concepts and new communication protocols.

Preliminary experiments with the model indicate that the network
throughput characteristics are quite sensitive to network access parameters.
Therefore, an enhancement of information throughput can likely be achieved by
a dynamic adjustment of these parameters. The model BATNET wsll be used
for experimental testing and fine-tuning of dynamsic control rules.
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*

*

program batnet

Battlefield net model to simulate the behavior of shared—channel

multi-node net.
Aivars Celmins fecit 14 March 1994. Version 12 September 1994.:

implicit none
real flcue(10,5,301),ttrans(10),tculen(10),wculen(10),freqms(10)
A ,tmslen(10),delmax(10),delave(10),delpar(3),timeli(2,501)
B ,stat(3,5),restat(3,5),tclear ]
C ,tmmin,tackno,dtimon,tend,tinter,thold, tinit
integer lastms(10),incue(10,4,301),ntrans(10),nollen(10)
A ,nculen(10),ntimel(501),nostor
B ,nadim,nfdim,nidim,ncdim,ntldim,nrnods,ka,iseed
character head*70,ida*8,icl*8

parameter(nadim=10,nfdim=5,nidim=4,ncdim=301, nt1dim=501)
Dimensions of various arrays

parameter(tmmin=0.627)

parameter(tackno=0.787)
tmmin is the minimum length of a message, [s]
tackno is the length of message acknowledgment, [s]

call reader(head,nrnods, freqms, tmslen,nadin, iseed, tend
A ,tinter,thold,delpar,dtimon)
Reader has provided the following network parameters:
nrnods = number of nodes in the net
fregms(10) = frequency of message for each node, [1/s]
tmslen(10) = medium message length for each node, [s]
iseed = seed number for the random number generator
tend = end time of message generation [s]. (Start time is zero.)
tinter = the minimum separation of messages to avoid interference, [s].
thold = hold time for waiting for acknowledgment, [s]
delpar(3) = three parameters of the delay function used in <nodupd>
(1) = factoxr in the delay function (delay time interval) [s],
(2) and (3) — presently not used
dtimon = time interval [s] for monitoring of net activities by <monitor>

Next read the day and time from fort. 20 where the script has placed them
read(unit=20,’ (a8)’) ida,icl

call writer(ida,icl,head,nrnods, freqms,tmslen,nadim, iseed
A ,tend, tinter,thold,delpar,dtimon)
This makes a print file fort.37 = {input—summary> with
comprehensive input summary

tinit=0.
do 26 ka=1,nrnods
call nodini(nrnods,ka,tmmin,tinit, freqms,tmslen,tend
A ,lastms,flcue,incue,nadim,nfdim, nidim,ncdim, iseed)
This generates message queues and stores the queue information in
lastms, flcue, and incue.
lastms(ka) = identification number of last message at node <ka>
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*

flcue floating point information about the queues
incue = integer information about the queues
See <{modini? for detailed description.

if(flcue(ka,l,lastms(ka)).lt.tend) then
write(37,21)’ Stop because nodini has not sufficient storage’
A ,’ to initiate queues’,’ Last message at node ’,ka
B ,’ is submitted at ’,flcue(ka,l,lastms(ka))
C,’ End time is ’,tend,’ Storage size is ’,ncdim
D ,’, index of last stored message is ’,lastms(ka)
21 format(/,a,a,/,a,i2,a,1lpel2.5,/,a,1pel2.5,/,a,1i5,a,15)
close(unit=37)
stop
endif

26 continue

call write2(tinit,nrnods,lastms,tackno,thold

A ,flcue,incue,nadim,nfdim,nidim, ncdim)
This supplements the input information on the file fort.37=<input-summary?>
with some statistics about the queues prepared by <nodini>.

nostor=0
If nostor.eq.0 then store results in files for plotting and examination
Next carry out the network experiment for this case.

call excase(nostor,tclear
,ida,icl,head,nrnods,iseed, tend,tinter, thold,delpar,dtimon
,tmmin,tackno,tinit,lastms,flcue,incue
,ttrans,ntrans,nollen,nculen,tculen,wculen,delmax,delave
,timeli,ntimel,stat,restat
,nadim,nfdim,nidim, ncdim,ntldim)

HOQWP

write(37,’(/,a,0pf10.2,a)’) ’ All queues are cleared at’
A ytclear,’ [s]’
close(unit=37)

stop
end

kkkkkkkkkdkkdkkxk

*

*
*
*
*

subroutine reader(head,nrnods, freqgms,tmslen,nadinm, iseed, tend
A ,tinter,thold,delpar,dtimon)

To read data from fort.21 for network traffic simulation.
Aivars Celmins fecit 15 March 1994. Versiomn 20 May 1994.

implicit none

real freqms(nadim),tmslen(nadin),tend,tinter,thold,delpar(3)
A ,din(2),dtimon

integer nrnods,nadim,ka,j,nin,kb,iseed

character head*70, dum*1 -

‘head=’ Default input. 20 May 1994. Delay interval 15 [s]’

‘nrnods=4
iseed=0
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tend=600.
tinter=0.5
thold=1.0
delpar(1)=15.
delpar(2)=1.
delpar(3)=1.
do 5 ka=1,nadim
fregqms(ka)=0.05
tmslen(ka)=5.

5 continue

The default values will be used if the input file fort.21 is empty

or incomplete.

rewind(unit=21)

read(21,11,end=21,exrr=21) head
11 format(a70)
read(21,12,end=21,err=21) dum
12 format(al)
read(21,*) tinter,thold
tinter = minimum interval between messages to avoid collision, [s]
thold = hold time, [s], to wait for acknowlwedgement
read(21,12,end=21,err=21) dum
read(21,*) (delpar(j),j=1,3)
delpar = message delay control parameters

read(21,12,end=21,err=21) dum
read(21,*,end=21,err=21) nin
nrnods=min(nadim,nin)
The number of nodes in the network <{nrnods> cannot be larger than <{nadim>

read(21,12,end=21,err=21) dum
do 17 ka=1,nin
read(21,*,end=21,err=21) kb, din(1l),din(2)
if(kb.le.nadim) then
The maximum number of nodes that can be stored is <nadim>.
freqms(kb)=din(1)
tmslen(kb)=din(2)
endif
17 continue
fregms = frequency of messages, [1/s]
tmslen = medium message length, [s]

read(21,12,end=21,exrr=21) dum
read(21l,*,end=21,err=21) iseed
iseed = seed for the random number function <unif>

read(21,12,end=21,err=21) dum
read(21,*,end=21,err=21) tend

tend = end time of message generation
read(21,12,end=21,err=21) dum

read(21,*,end=21,err=21) dtimon
dtimon = monitoring time used by the subroutine monitor

21 continue
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close(unit=21)
return
end
*
kkkkhkkkkkkkkkkkkk

*
subroutine writer(ida,icl,head,nrnods, freqms,tmslen,nadim,iseed

A ,tend, tinter,thold,delpar,dtimon)

This makes a file <input—summary> with a comprehensive input sAummary
Aivars Celmins fecit 16 March 1994. Version 20 May 1994

* N % ¥

implicit none

real freqms(nadim),tmslen(nadim),tend,tinter,thold,delpar(3)
A ,dtimon

integer nrnods,nadim,ka,j,iseed

character head*70,ida*8,1icl*8

open(unit=37,file='input—summary’)
rewind(unit=37)

write(37,’(a70)’) head
write(37,*)’ Collision interval [s], hold time [s]’
write(37,10) tinter,thold

10 format(2x,2(0pf10.4))
write(37,*) ’ Message delay parameters (3)’
write(37,12) (delpar(j),j=1,3)

12 format (2x,3(1x,0p£f10.2))
write(37, *) ’/ Number of nodes in the network’
write(37, ‘(5x%,i10)’) nrnods

write(37,*) ’ Node No. Messg. freq. [Hz] Messg. length [s]’
do 17 ka=1,nrnods
write(37,13) ka,fregms(ka),tmslen(ka)

13 format(3x,i3,10x,0pf7.3,10x,0pf7.1)

17 continue

write(37,*) ’ Seed for the random number generator’
write(37,7(5x,110)’) iseed

write(37,%*) ’ End time of message generation [s]’
write(37,21) tend
21 format(3x,0p£f10.1)

write(37,*) ' Monitoring time [s]’
write(37,21) dtimon

write(37,11) ida, icl
11 format(//Computing date ’,a8,’. Computing time ’,a8,’.’)

*

close(unit=37)
return

end

*
khkkkhkhkhkhkkhkkkkkkkkx
%
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subroutine write2(timup,nrnods,lastms,tackno,thold
A ,flcue,incue,nadim,nfdim,nidim,ncdim)

This supplements the file < input—summary > with message statistics
Aivars Celmins fecit 20 May 1994.

* % % *

implicit none

real timup,tackno,thold, flcue(nadim,nfdim, ncdim),tsubm, tsum
A ,avleng,tstart,total,actot .

integer nrnods,lastms(nadim),incue(nadim,nidim,ncdim)
A ,nadim,nfdim,nidim,ncdim, numtot, ka, kb, number

write(37,10) timup

10 format(/’ Summary of unsent messages at time=’,0pf7.3/)
write(37,12)

12 format(’ First subm. Last subm. Total msg. Total msg.’
A ,’ Averagemsg.’

"B ,/, '’ Node time [s] time [s] number length [s].’
C,’ 1length [s]’/)
total=0.
numtot=0
actot=0.

do 31 ka=1,nrnods

tsubm=0.

numbexr=0.

tsum=0.

avleng=0.
if(lastms(ka).gt.0) then

tstart=flcue(ka,1,1)
do 21 kb=1,lastms(ka)
if(incue(ka,2,kb).eq.1l) goto 21
number=number+1
tsum=tsumt+flcue(ka, 2,kb)
actot=actot+flcue(ka, 2,kb)
if(incue(ka,1l,kb).ne.0) actot=actot+thold+tackno
* To obtain the total length including acknowledgment, add hold time and
* acknowledgment length to queued message length if addresse is not "world"
tsubm=flcue(ka,l1l,kb)
21 continue
*
total=total+tsum
numtot=numtot+number
if (number.gt.0) avleng=tsum/float(number)
endif
write(37,15) ka,tstart, tsubm, number,tsum,avleng
15 format(i3,1x,0pf10.3,4x,0p£f10.3,6x,1i3,6x,0pf10.3,3x,0pf10.3)
31 continue
write(37,39) nuntot, total
39 format(/20x, 'Total: ’,14,6%x,0pf10.3)
write(37,41) actot
41 format(/2x,’Total length including acknowledgments =’ ,0p£10.3)

return
end
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subroutine excase(nostor,tclear

sida,icl,head,nrnods,iseed, tend, tinter, thold,delpar,dtimon
,tmmin,tackno,tinit,lastms,flcue,incue
yttrans,ntrans,nollen,nculen,tculen,wculen,delmax,delave
,timeli,ntimel,stat, restat

ynadim,nfdim,nidim, ncdim,ntlidim)

MoQwk

This routine runs the battle network until all messages are sent.
Fecit 19 August 1994

nostor =0: store statistics in files for plotting, =1: do not store
tclear = time at which all message queues have been cleared.

ida,icl = date and time of computation

head = alphanumeric identification of case to be run
nrnods = number of nodes

iseed = seed number for random number generator

tend = end time of message generation [s]

tinter = interference interval alpha [s]

thold = hold time while waiting for acknowledgment [s]
delpar(3) = three parameters for access control

dtimon = monitoring time for calculaitons of averages [s]

tmmin = 0.627 is the minimum length of a message, [s]

tackno = 0.787 is the length of message acknowledgment, [s]

tinit = initial time of network experiment [s]

lastms = identification number of last message in each queu

flcue = floating point information about the queues (see subr. nodini)
incue = integer information about the queues (see subr. nodidi)

ttrans = transmission (send) time for the top message in the queue
ntrans = number (ID) of the top message (first in line to be sent)
nollen = number of previous unsuccessfully transmitted messages

nculen = gueue length (number of messages waiting)

tculen = queue length in [s] (sum of the lengths of waiting messages)
wculen = weighted length of each que queue.

delmax = largest time delay (waiting time) in each queue [s]

delave = average time delay (waiting time) in each queue [s]

timeli = time—-line storage: time & time interval [s]

ntimel = activity code for the time interval specified by timeli(..,2)
stat = statistics of net usage, see subroutine <monitor>

restat = reference statistics (weighted averagings of stat)

nadim, nfdim,nidim, nodim,ntldim = dimensions of the various arrays.

The following code is for the time line and the overall net activity.
netuse = net usage of time intervals (stored in <ntimel’ and
written in the file <time—line) )
1 - not used (idle time)
2 - successful and acknowledged transmission
3 - colliding message time
4 - lost time due to interference
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* %

*
*

5 — message sent but not acknowledged (receiver failure)

implicit none :
real tclear,flcue(nadim,nfdim,ncdim),ttrans(nadim)
A ,tculen(nadim) ,wculen(nadim),delmax(nadim),delave(nadim)
B ,delpar(3),timeli(2,ntldim),stat(3,5),restat(3,5)
integer nostor,lastms(nadim),incue(nadim,nidim,ncdim)
A ,ntrans(nadim),nollen(nadim),nculen(nadim),ntimel(ntldim)
real tmmin, tackno,dtimon,tend, tinter,thold,tinit,timup,tisent
A ,timsnd,dumtim, ttend,timesqg,tlmesg,avlent
integer nadim,nfdim,nidim,ncdim,ntldim, nrnods, ka,messnd
A ,nrmesg,nodsnd,netuse,interf,nrtime,iseed
character head*70,ida*8,icl*8

parameter(nadim=10,nfdim=5,nidim=4, ncdim=301,nt1dim=501)

if(nostor.eq.0) call openfil(ida,icl,head,dtimon,nrnods)
This opens and starts files for the storage of various net statistics
nrtime=0
timup=tinit
Next statement starts loop by sending messages and monitoring traffic.
The end of the loop is before statement 97.
37 messnd=0

Next call the control routine to compute the parameters <{delpar> of
the delay function that is used in <nodupd>.

The changes of <delpar> depend on the results <stat> and <restat>
obtained by the monitoring soubroutine <monitor>

The current values of the delay parameters <{delpar? are written by
the routine <control? into unit 48 = <control-line>

call control(nrtime,timup,delpar,dtimon
A ,avlent,stat,restat,nostor)
B ,moante,mocons,axante,axcons,naxdim)
To control the parameters of the access delay function

tinit=timup
timsnd=max(tinit,tend)*1000.
do 54 ka=1,nrnods
call nodupd(ka,timup,lastms,nrmesqg,timesg,tlmesqg,tisent
A ,nollen,nculen,wculen,tculen
B ,flcue,incue,nadim,nfdim,nidim,ncdim,delpar,iseed)
This finds the transmission time of the first message in each queue.
ntrans(ka)=nrmesg
ttrans(ka)=tisent
if(nrmesg.eq.0) goto 54
Next find the smallest send time = timsnd [s] among active nodes
if(tisent.lt.timsnd) then
nodsnd=ka
timsnd=tisent
messnd=nrmesqg
endif
54 continue
Now <nodsnd? is the transmitting node (first in line), and <messnd>
is the ID—number of the message to be transmitted.
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*

*
*

*

if (messnd.eq.0) goto 97
Branch to stop if all queues are empty

if(nostor.eq.0) then

call strcue(timup,nculen,nollen,wculen,tculen,nrnods,nadim)
Write information about queue lengths in three {cues—**> files showing
nculen, nollen, wculen, and tculen for all nodes

call wdelay(nrnods,timup,lastms,delmax,delave
A ,flcue,incue,nadim,nfdim,nidim,ncdim)
Compute and write delay (waiting) times for each node in file <cues—de>
delmax = largest time delay (waiting time) in each queue [s]
delave = average time delay (waiting time) in each queue [s]
endif

Write time usage information in <time—line>.
netuse=1
if(nostor.eq.0) write(41,63) timsnd,timsnd—tinit,netuse
63 format(2(2x,0pf10.4),3x,13)
Network was not used in the last interval up to <timsnd>
nrtime=nrtime+l
timeli(1l,nrtime)=timsnd
timeli(2,nrtime)=timsnd-tinit
ntimel (nrtime)=netuse

call monitor(nrtime,timeli,ntimel,ntldim,dtimon, stat,
A restat,avlent,nostor)
This routine computes various network activity statistics and writes
the results in fort.43=<monitor—line> and fort.44=<monitor2—numbers>

if(nrtime.ge.ntldim—1)
A call reduce(nrtime,timeli,ntimel,ntldim,dtimon)
If array <timeli? overflows then remove old information from it.

Next advance time to the next message sent
timup=timsnd+flcue(nodsnd, 2,messnd)
Add message length to reference time
if(incue(nodsnd,l,messnd) .ne.0) timup=timup+thold+tackno
If message was not addressed to the world then add also hold time
and acknowledgment time
incue(nodsnd, 2,messnd)=incue(nodsnd,2,messnd)+1
Indicate that message has been transmitted one more time
netuse=2
Net-~usage code for successful transmission in this interval
incue(nodsnd, 3,messnd)=1
flcue(nodsnd, 5,messnd)=timsnd
Indicate that message has been sent and acknowledged.

Next check if this message suffers interference from any other messages
ttend=timsnd+flcue(nodsnd, 2,messnd) .
End time of the message without acknowledgment
interf=0 '
Interference indicator.
do 73 ka=1,nrnods
jif(ka.eq.nodsnd.or.nculen(ka).eq.0) goto 73
nculen(ka) is zero if the queue of node <ka?> is empty
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*

*

* %

*

if(timsnd+tinter.le.ttrans(ka)) goto 73

Branch if no interference from the node <ka
interf=1 :
incue(nodsnd, 3 ,messnd)=3

Indicate collision for the first broadcasting node
incue(ka, 2,ntrans(ka))=incue(ka, 2,ntrans(ka))+1
incue(ka,3,ntrans(ka))=3
flcue(ka,5,ntrans(ka))=ttrans(ka)

Indicate send attempt and collision for the other node (the collider)
dumtim=ttrans(ka)+flcue(ka,2,ntrans(ka))
ttend=max(ttend,dumtim)

Reference time is the maximum end time of all collided messages without

acknowledgments.
73 continue
if(interf.ne.0) then
timup=ttend
netuse=3
Indicate that net was used by colliding messages in the time interval
ending with <ttend?
endif

kRkkkkkkhkkkkk

*xxx* Future: In case of no collison (interf=0) check here for corruption

***** by noise and whether the receiving node was operational.
Khkkkhkkkhkkkkkkx

*
*

* % % % % %

* % % % %

Write time—line information in the file fort.4l=<time-line>
if(nostor.eq.0) write(41,63) timup,timup—-timsnd,netuse
Next store the end point of this time interval and the activity code
in the time—line arrays <timeli and <ntimel?, respectively.
nrtime=nrtime+1
timeli(l,nrtime)=timup
timeli(2,nrtime)=timup—timsnd
ntimel (nrtime)=netuse

call monitor(nrtime,timeli,ntimel,ntldim,dtimon, stat,

A restat,avlent,nostor) .
This routine computes network activity statistics and writes network
time usages in fort.43 = <monitor-line> and the nubers of network
accesses in fort.44 = <monitor2—numbers>

Now have broadcast a message and advanced the reference time to the

end of that message (including colliding messages, if any).
if(timup.lt.tend*1000.) goto 37

Branch to 37 for the broadcasting of the next message.

The conditional branch is to guard against infinite looping.

<tend> is the end time of *message generation* and the queues should

be empty long before <tend*1000>.

97 continue
teclear=timup

if(nostor.eq.0) call closfil
Close the files with statistical information (see openfil)

return
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end
*
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* »
subroutine nodini(nrnods,node,tmmin, tinit, freqms, tmslen,tend
A ,lastms,flcue,incue,nadim,nfdim, nidim,ncdim, iseed)

This generates a list of future messages at the node No. <node>.
Aivars Celmins fecit 4 March 1994. Version 17 March 1994

nrnods = number of nodes in the net (needed for addressee determination)
node = identification number of the node

tmmin = minimum length of a message (message head), [s]

tinit = initial time, {s]

freqms(nadim) = frequency of messages for each node, [messages / s}
tmslen(nadim) = medium lenght of messages for each node, [s]

tend = end time for message generation, [s]

lastms(nadim) = number of last message in each list
flcue(nadim,nfdim,ncdim) = floating number items in the list
First index = node number (= "node")
Second index: 1 = submission time [s]
2 = message length, [s]
3 = priority in the range [0,10]
4 = weight, computed in subroutine <{nodupd>
5 = last transmission time, [s]
Third index = number of the message (up to ncdim messages in the list)
incue(nadim,nidim,ncdim) = integer number items in the list
First index = node number (= "node")
Second index: 1 = identification number of addresee (0 means "world")
2 = number of tried transmissions
3 = acknowledgment (0 — not sent, 1 — acknowledged,
2 — not acknowl., 3 — collided)
4 = activity indicator (0 — active, 1 — dormant)

Third index = number of the message
nadim, nfdim, nidim,ncdim = dimensions of various arguments
iseed = seed number for the random number generator.

B O % B Ok N R ok kN ok R N N % F % N % N N % F H F % % H N % %

implicit none

real tinit, fregms(nadim),tmslen(nadim),tend
A ,flcue(nadim,nfdim,ncdim)

integer nrnods,node,lastms (nadim), incue(nadim,nidim, ncdim)
A ,nadim,nfdim,nidim, ncdim

real tmmin,tsubm,unif,delt

integer nrmes,ka,kb,nstore,ntest,nadr,iseed

if(lastms(node).gt.0.and.flcue(node,1l,lastms(node)).ge.tend)

A goto 144 -
Branch to return if the last message in the queue of <node) has a

submission time larger than <tend>.
tsubm=tinit
if(tinit.le.0.) then
The following initialization if initial time <tinit> is zero.
(Normal usage of this routine.)
nrmes=0

* %

* *
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lastms(node)=nrmes
do 19 ka=1,ncdim
do 15 kb=1,nfdim
flcue(node,kb,ka)=0.
15 continue
do 17 kb=1,nidim
incue(node,kb,ka)=0
17 continue
19 continue
goto 111
endif
* Branch to 111 and generate new messages in the queue if this is the
* first call. Else remove all sent messages before adding new ones.
*
nstore=0
ntest=1
24 if(flcue(node,2,ntest).le.0.) then
nrmes=nstore
if(nrmes.gt.0) tsubm=flcue(node,1,nrmes)
goto 111
* Branch to 111 because there are no more old messages in the queue.
endif
if(incue(node,3,ntest).eq.1) then :
If message has been sent and acknowledged (incue( ,3, )=1) then
drop the message from the queue and test the next message.
ntest=ntest+1
if(ntest.gt.ncdim) goto 111
goto 24
else
Store the message <ntest> in the queue since it has not been acknowledged.
nstore=nstore+l
nrmes=nstore
tsubm=flcue(node,1l,nrmes)
do 33 ka=1,nfdim :
flcue(node,ka,nstore)=flcue(node,ka,ntest)
33 continue
do 35 ka=1,nidim
incue(node,ka,nstore)=incue(node,ka,ntest)
35 continue
endif
ntest=ntest+1
if(nstore.ge.ncdim.or.ntest.ge.ncdim) goto 111
goto 24

* %

*

*
111 lastms(node)=nrmes

* Enter here and make a queue of new messages
nrmes=nrmes+1
if(nrmes.gt.ncdim) goto 144

* Branch to return: queue full.
lastms (node)=nrmes

* Else find the time increment to the next message.
delt=unif(iseed)*(2./freqms(node))
tsubm=tsubmtdelt
flcue(node, 1, nrmes)=tsubm

* Submission time, [s] .
flcue(node, 2, nrmes)=tmmint+unif(iseed)*2.*tmslen(node)
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* Message length [s] is at least tmmin [s].
flcue(node,3,nrmes)=float( int( 10.*unif(iseed) ) )
* Priority in the range [0.0, 10.0]
flcue(node, 4,nrmes)=0.
- flcue(node,5,nrmes)=0.
* Next determine addressee. Presently send either to world (nadr=0)
* or to a single node with a number different from "node"
nadr=int(unif(iseed)*float (nrnods+1)*0.999)
if(nadr.eq.node) nadr=nadr-1
incue(node,l,nrmes)=nadr
do 122 ka=2,nidim
incue(node,ka,nrmes)=0.
122 continue
*
if (tsubm.lt.tend) goto 111
* Add new messages until the last one is .ge. tend
*
if(nrmes.lt.ncdim) then
do 139 ka=nrmes+1,ncdim
flcue(node,2,ka)=0.
139 continue
endif
*
144 return
end
* .
KAk KXARAkXRkAkhkXhkkhk%x
*
subroutine nodupd(node, timup,lastms,nrmesq, t:.nesg,tl.esg,t:.sent
A ,nollen,nculen,wculen,tculen
B ,flcue,incue,nadim,nfdim,nidim,ncdim,delpar,iseed)

Subroutine updates the queue at the node No. <node> by checking priorities
of submitted messages and indicating on return which message will be

broadcast and at what time.
Aivars Celmins fecit 10 March 1994. Version 22 March 1994.

node = number of the node
timup = reference for update time (consider all messages submitted

before this time or first message submitted after timup
if there are none before timup.)
lastms = last message in the queue of <node>
*%* The ** jtems are provided by this routine
** nrmesqg = identification number of the message that is selected
** timesg = time at which the selected message was submitted [s]
** tlmesg = length of the selected message [s]
** tisent = time at which the selected message will be sent [s]
*% (if net is free at that time)
** nollen number of previous unsuccessfully transmitted messages
** nculen present length of queue (number of messages in the queue)
** wculen length of the queue in terms of message weights
** tculen length of the gqueue in terms of message time [s]

* % % % % O % ¥ % ¥ %

[ |

flcue, incue = floating and integer message queue arrays
See <nodini) for a description.
nadim, nfdim, nidim, ncdim = dimensions of flcue and incue, see below

* % % %
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* delpar = network access delay function parameters
iseed = seed number for teh random number generator

*

implicit none

real timup,timesg,tlmesqg,tisent,wculen(nadim),tculen(nadim)
A ,flcue(nadim,nfdim,ncdim) ,delpar(3)

integer node,lastms(nadim),nrmesg, nollen(nadim),nculen(nadim)
A ,incue(nadim,nidim,ncdim),nadim,nfdim,nidim ,ncdim

real wefu,pri,delt,defu,unif,wmax,timarg,weight

integer nur,ncue,ka,kb,nrep,kmax,iseed

wefu(pri,nur,delt)=

A (1.+pritfloat(nur)) * max( 0:01, exp(—{((delt—-600.)/600.)**2) )
* Weight is a function of priority, number of submissions, and time since
* submission. The maximun is at 10 minutes, the lower bound at 31 minutes
* after submission,

defu(pri)=delpar(1l)*(1.0-0.09*pri)*unif(iseed)
* Delay function computes delay in [s] for priority pri

* First check if there are messages submitted before timup
ncue=0
nollen(node)=0
* This counts the active messages in the queue.
do 23 ka=1,lastms(node)
kb=ka
if(incue(node,3,ka).eq.1l) then
flcue(node,4,ka)=0.
goto 23
* Set weight=0 and branch if this message has been acknowledged.
endif
if(flcue(node,1,ka).gt.timup) goto 39
* Branch when message was submitted after timup
ncue=ncue+l
* <ncue) counts messages that were submitted at or before <timup> and
* have not been successfully transmitted yet.
if(incue(node,2,ka).gt.0) nollen(node)=nollen(node)+1
<nollen> counts messages that have been transmitted unsuccessfully
23 continue

*

* Now either ncue=0 which means that all messages have been sent
* and no further messages will be broadcast from this node,
* or ncue > 0 in which case there are old messages waiting
*
if(ncue.eq.0) then
nrmesg=0
timesg=0.
tlmesg=0.

tisent=0.
nculen(node)=0
wculen(node)=0.
tculen(node)=0.
return
endif
*
* The following is entered either from inside the loop 23 or
* with ncue > 0 after completion of the loop
39 if(ncue.eq.0) then




*

*

*

In this case the queue is empty but there will be a message submitted
after the reference time <{timup>

nrmesg=kb

timesg=flcue(node,1,kb)

tlmesg=flcue(node,2,kb)

tisent=timesg
The next message that will be submitted to the queue at
tisent=timesg > timup can be broadcast at <timesg> without delay
because the net is already free.

nculen(node)=0

wculen(node)=0.

tculen(node)=0.
Nothing in the queue at the present reference time <= timup

return

endif

In the remaining cases have ncue >= 1 messages in the queue.
Compute message weights and select the message with the highest weight
wmax=0.
tculen(node)=0.
wculen(node)=0.
nculen(node)=0
do 45 ka=1,kb
if(flcue(node,2,ka).le.0..0or.incue(node,3,ka).eq.1) goto 45
Branch if message has zero length or has been acknowledged
if(flcue(node,1,ka).gt.timup) goto 45
Branch if message is a future message
nrep=incue(node, 2,ka)
timarg=timup-flcue(node,1,ka)
weight=wefu(flcue(node, 3,ka),nrep,timarg)
flcue(node, 4,ka)=weight
if(weight.gt.wmax) then
wmax=weight '
kmax=ka
Find the message with the largest weight
endif
tculen(node)=tculen(node)+flcue(node, 2,ka)
wculen(node)=wculen(node)+weight
nculen(node)=nculen(node)+1
45 continue

nrmesg=kmax

timesg=flcue(node, 1, kmax)
tlmesg=flcue(node, 2, kmax)
tisent=timupt+defu(flcue(node,3,kmax))

return
end

AkkRERAkRkRkRkRAkRKXKXk%k%
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subroutine vdel"ay (nrnods, timup,lastms,delmax,delave
A ,flcue,incue,nadim,nfdim,nidim,ncdim)

Compute and write delay times (waiting times) in fort.34=<{cues—de>
Aivars Celmins fecit 18 March 1994
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The routine computes the following:
delmax = largest time delay (waiting time) in each queue [s]
delave = average time delay (waiting time) in each queue [s]

* % % % %

implicit none '
real timup,delmax(nadim),delave(nadim),flcue(nadim,nfdim,ncdim)
integer nrnods,lastms(nadim),incue(nadim,nidim,ncdim)
A ,nadim,nfdim,nidim,ncdim
real timsum,dtim
integer ka,kt, kb, j

* Next find delay times in each node
do 34 ka=1,nrnods
delmax(ka)=0.
delave(ka)=0.
timsum=0.
kt=0

do 25 kb=1,lastms(ka)
if(flcue(ka,1,kb).ge.timup) goto 29
if(incue(ka,3,kb).eq.1l) goto 25

* Branch if message has been sent
dtim=timup—flcue(ka,l,kb)
timsum=timsumt+dtim
kt=kt+1
delmax(ka)=max(delmax(ka),dtim)

25 continue

29 delave(ka)=timsum/float (max(1l,kt))
34 continue

* Write results in <cues-de>
write(34,44) timup, (delmax(j),delave(j),j=1,nrnods)
44 format(0pf8.2, (4(1x,1pf8.1,1pf8.1)))

return

end
*

khkkkhkkkkkkkkkkkk

*
subroutine monitor(nrtime,timeli,ntimel,ntldim,dtimon,stat,
A restat,avlent,nostor)

Subroutine to monitor net activities by computing several network
statisitecs in <(stat? and <restat>. The statistics are averages for the
time interval <dtimon> [s] prior to <timeli{l,nrtime)> [s].

Aivars Celmins fecit 11 April 1994. Version 29 July 1994.

nrtime = index of the reference time timeli(l,nrtime)
timeli = array representing the time line of network activities
timeli(l,nrtime) = reference time [s]
timeli(2,nrtime) = interval before the reference time [s]
ntimel = array indicating the usage of time intervals <timeli(2, ..)>:
1 - not used (idle time)
2 - successful and acknowledged transmission

% % % % % % F N % ¥ % *
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3 - colliding message
4 -~ message corrupted by interference (network noise)
5 - message sent but not acknowledged (receiver failure)
ntldim dimension of the arrays timeli and ntimel
* dtimon = time interval for the averaging [s]
*
* The ** items are provided by this routine
** stat(1l,n) = cumulative time [s] in the time interval dtimon [s],
** divided by dtimon. (Relative length of net usage)
** stat(2,n) = average message length [s] during the time interval dtimon.
** stat(3,n) = number of idle intervals, messages, collisions, etc. in dtimon
* divided by the total number of accesses (n=2,3,4,5)
* The index n indicates the usage category. The valueof nis
* retrieved from <ntimel(nrtime)>.
**x restat(i,n) = the same as stat( ) but computed with weighted averages
* to provide an approximation of previous values
** avlent = average length [s] of all not colliding messages in dtimon
* nostor = if this is .ne.0 then do not write results in files.
*

* * %

%

implicit none
real timeli(2,ntldim),dtimon,stat(3,5),avlent,restat(3,5)
integer nrtime,ntimel (ntldim),ntldim,nostor,j
real timref,timone,adtone,totmes,cumone,delt,anrmes,anrtot
A ,recumo,renrms,rewefu,tau,wend,wedelt,redelt,renrto,anrlen

integer ku, ka

*

rewefu(tau,wend,wedelt)=wend—(1l.-wend)*tau/wedelt
tau =t - timref

Weight function for the computation of <restat( )> with weighted averaging.
The weights are greater for past values. The weighted averages

approximate preceeding unweighted averages in time.
The difference "value — weighted value" indicates the "trend of the value"

* % X % H % %

timref=timeli(l,nrtime)
timone=timref-dtimon
adtone=max(timone,timeli(l,1)—timeli(2,1))
* The averages will be computed for the time interval ( adtone , timref )
wend=0.5
<wend> is the value of the weigth function <{rewefu? at time <timref>
wedelt=min(dtimon,timref—-adtone)
<wedelt? is another parameter of the weight function. It is determined
such that <rewefu’ equals one at <(adtone> = adjusted timeone
and equals <wend> at <timref>

*

* ¥ ¥ %

anrtot=0.

renrto=0.

totmes=0.

avlent=0.

anrlen=0.

do 107 ku=1,5

* Loop over the five net usage codes <ku>

anrmes=0.

stat(2,ku)=0.

-cumone=0.

— 40 —




recumo=0.
renrms=0.

do 46 ka=nrtime,1l,-1
if(timeli(l,ka).le.adtone) goto 91
if(ntimel(ka).eq.ku) then
delt=min(timeli(2,ka),timeli(l,ka)—adtone)
cumone=cumone+delt
tau=timeli(l,ka)-delt*0.5-timref
recumo=recumo+t+delt*rewefu(tau,wend,wedelt)
* This accumulates the net usage time for the usage <ku?
anrmes=anrmes+l.
renrms=renrmst+rewefu(tau,wend,wedelt)

* Count number of sent messages of type <ku’

endif
46 continue
*
91 stat(1l,ku)=cumone/(timref-adtone)

* Store the relative length of time used for <ku’ type messages in dtimon
tau=(timref+adtone)*0.5—timref
redelt=(timref-adtone)*rewefu(tau,wend,wedelt)
restat(1l,ku)=recumo/redelt

* The relative length of time by weighted averaging
if(anrmes.gt.0.) stat(2,ku)=cumone/anrmes
if(renrms.gt.0.) restat(2,ku)=recumo/renrms

* The average lengths of messages in dtimon. Unweighted and weighted.

if(ku.ne.l) then
anrtot=anrtot+anrmes
renrto=renrto+renrms
if(ku.ne.3) then
anrlen=anrlent+anrmes

* Total number of all not colliding messages sent (colliding message lenght

can be larger than an individual message; therefore they are not used

* for the computation of the average length).

totmes=totmes+cumone ‘

* The total length of not—colliding messages in seconds

endif
endif

*

stat(3,ku)=anrmes
restat(3,ku)=renrms
Store the number of messages of type <ku> Unweighted and weighted

%

*
107 continue
* End of loop ku=1,5 over the five network usage modes
if(anrtot.gt.0.) then
avlent=totmes/anrlen
do 127 ku=1,5
stat(3,ku)=stat(3,ku)/anrtot
if(renrto.gt.0.) restat(3,ku)=restat(3,ku)/renrto
* Compute the relative number of accesses in each category ku=1,2,3,4,5
* (Divided by the number of accesses, i.e., sum over ku = 2,3,4,5)
127 continue
endif

if(nostor.eq.0) then




write(43,186) timeli(1l,nrtime),avlent,
A (100.*stat(1l,3),stat(2,3),j=1,5),
B (100.*restat(l,j),restat(2,]j),j=1,5)
186 format(O0pfl10.3,2x,0pf7.3,5(2x,0pf5.1,2x,0pf6.2)/
A 19x%,5(2x,0pf5.1,2x,0pf6.2))
* Store statistics in <monitor-line?
* .
write(44,187) timeli(1l,nrtime), (100.*stat(3,3j),j=1,5),
A (100.*restat(3,3j),3j=1,5)
187 format(2x,0pf10.4,5(2x,0pf10.6)/12x,5(2x,0pf10.6))
* Store statistics in <monitoxr2—numbers?
endif
*
return
end
*
Xhkkhkkhkhkkkkkkkkxk
*
subroutine reduce(nrtime,timeli,ntimel,ntldim,dtimon)

Subroutine to reduce storage in the time line arrays <timeli)> and
<ntimel? by deleting old records and shifting the new records down.
Messages will not be removed if they are submitted within the monitoring
time interval dtimon before the last message (to enable the <monitor>

to calculate network traffic statistics).

Aivars Celmins fecit 5 April 1994.:

* % ok N * F N %

implicit none

real timeli(2,ntldim),dtimon

integer nrtime,ntimel (ntldim),ntldim
real endtim,strtim

integer ka, kb, kc

if(nrtime.le.1l) return
endtim=timeli(1,nrtime)
strtim=endtim-dtimon
if(timeli(1,1).ge.strtim) return

* This return because timeli contains only length <dtimon?> or less
do 26 ka=2,nrtime
if(timeli(l,ka).gt.strtim) goto 36

26 continue

* In the following case dtimon=0. Store the nrtime data at position "1"
timeli(1l,1)=timeli(1l,nrtime) .
timeli(2,1)=timeli(2,nrtime)
ntimel(1)=ntimel (nrtime)
nrtime=1
return

*

36 if(ka.eq.2) return

* Return because no record can be deleted
kc=1
do 46 kb=ka—1,nrtime
timeli(1l,kc)=timeli(1,kb)
timeli(2,kec)=timeli(2,kb)
ntimel (kc)=ntimel (kb)
kc=kc+1l
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46 continue
nrtime=kc—-1

return
end
*
ARk kkERXkkhkkkkkk%k
*
real function unif(iseed)
Obtained from from net on 1 VI 94.
Here is a uniform 0—-1 based on work of L’Ecuyer — Comm. of the ACM,
Vol 31, number 6 pp. 742—-749. He reports detailed, excellent results.
Meyer Kotkin kotkin@arl.army.mil
USAMSAA Inventory Research Office
800 U.S. Customs House ‘
Phila. PA 19106 (215)597-8377 DSN:444-3808 FAX:(215)597-2240
Modified 13 VII 94. Original in Utilpro/random2.
Note that this program changes the value of iseed. Therefore, the
next call with the same variable provides a different random number

* % % % % % % % % % %

implicit none
integer ia, iq, ir, iseed, k, m
parameter (ia=40692,iq=52774,ir=3791,m=2147483399)

k = iseed/iq

iseed = ia*(iseed — k*iq) — k*ir

if (iseed.le.0) iseed = iseed + m

unif = real( dble(iseed)/dble(m) )

return

end
*
AEXAkEXXEKXkKkARkEkXXkhkkk%k
*

subroutine openfil(ida,icl,head,dtimon,nrnods)
* Open and start files for the storage of network statistics
*

implicit none

real dtimon

integer nrnods

character head*70,ida*8,icl*8

open(unit=31,file='cues—nr’)
rewind(unit=31)
write(31,11) ida, icl
11 format(’Computing date ’,a8,’. Computing time ’,a8,’.’)
write(31,’(a70)’) head
write(31,23) dtimon
write(31,12) nrnods
12 format(2x,i5,’ = number of nodes’)
write(31,13)
13 format(’Time, nrs. of waiting and repeated messages in cues’)

open(unit=32,file='cues—we’)
rewind(unit=32)

write(32,11) ida, icl
write(32,’(a70)’) head
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write(32,23) dtimon
write(32,12) nrnods
write(32,*) 'Time, weight lengths of queues’

open(unit=33,file='cues—ti’)

rewind(unit=33)

write(33,11) ida, icl

write(33,/(a70)’) head

write(33,23) dtimon

write(33,12) nrnods

write(33,*) ‘Time, lengths [s] of information in queues’

open{unit=34,file='cues—de’)

rewind(unit=34)

write(34,11) ida, icl

write(34,’(a70)’) head

write(34,23) dtimon

write(34,12) nrnods

write(34,*) 'Time, maximum and average delay [sl’

open(unit=41,file=’'time—line’)

rewind(unit=41)

write(41,11) ida, icl

write(41,’(a70)’) head

write(41,*) ’ End time [s], interval [s], activity code’
write(41,*) /’ 1= idle, 2 = transmission, 3 = collision’
write(41,*) ’ 4 = interference, 5 = not acknowledged’

open(unit=43,file='monitor-line’)
rewind(unit=43)
write(43,11) ida, icl
write(43,7(a70)’) head
write(43,23) dtimon

23 format(1x,0pf10.1,’ [s] = the monitored time interval’)
write(43,*)’ Column (1) = time; (2) = active interval length [s]’
write(43,*) ’ (3,4) relative length [%] and length [s] of idling’
write(43,*) ' (5,6) the same for transmissiomn, (7,8) = collision’
write(43,*) ’ (9,10) = interference, (11,12) = not acknowledged’
write(43,*) ’ Second line = the same with weighted calculation’

open(unit=44,file="monitor2—numbers’)

rewind(unit=44)

write(44,11) ida, icl

write(44,’(a70)’) head

write(44,23) dtimon

write(44,*) ’/ Column (1) = time [s];’

write(44,*)’ (2) — (6) = relative numbers [$] of accesses’
A ,’ during dtimon:’

write(44,*) / 2=1idle, 3 = transmission, 4 = collision’
write(44,*) ’ 5 = interference, 6 = not acknowledged’
write(44,%*) ’ Second line = the same with weighted calculation’

open(unit=48,file='control-line’)
rewind(unit=48)

write(48,11) ida, icl
write(48,’(a70)’) head
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write(48,*) ' Column (1) = time [s]; (2) = first access control /,
A ’'parameter [s];’
write(48,*) ’ (3) — (4) = remaining control parameters’

return

end
*

AkkkhkRhkhkhkkhkhhkhkkkhkkkkkkk

*
subroutine closfil

* Close the files with statistical information
close(unit=31)
close(unit=32)
close(unit=33)
close(unit=34)
close(unit=41)
close(unit=43)
close(unit=48)

return
end
*
Rk kkkkkkkkkk
*
subroutine strxcue(timup,nculen,nollen,wculen, tculen,nrnods,nadim)
* Store information about queue lengths in three files showing
* nculen, nollen, wculen, and tculen for all nodes
* Fecit 18 August 1994
*
implicit none
integer nrnods,nadim
real timup,tculen(nadim),wculen(nadim)
integer nculen(nadim),nollen(nadim),j

write(31,57) timup, ( nculen(j),nollen(j),j=1,nrnods)
57 format(0p£f10.4,6(4x%x,i4,1x,i2),(/11x,6(4x,14,1x,12)))
* This is file <cues—nr>
write(32,58) timup, (wculen(j),j=1,nrnods)
58 format(0pf10.4,5(3%x,1pel0.4),(/11x,5(3x,1pel0.4)))
* This is file <cues-we>
write(33,59) timup, (tculen(j),j=1,nrnods)
59 format(0pf10.4,5(3x,0pf10.4),(/11x,5(3%x,0p£10.4)))
This is file <{cues-ti>

*

return
end
*
AhkkkkhhkRrkEKRAkkhkkkkhkkhkkkkhkkhkhkkkkkkkhkkkkkkkx
*
subroutine control(nrtime,timup,delpar,dtimon
A ,avlent,stat,restat,nostor)
To control the parameters of the access delay function
On returm delpar(l) and dtimon might be changed.
Aivars Celmins fecit 26 July 1994.

* % * % %

nrtime = time step (do not start changing control para.meté:'r:s before
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* statistics is available at nrtime > 1)

* timup = current reference time [s]

* The ** items are output:

** delpar(l) = network access time delay intexval [s]

** delpar(2) and delpar(3) = access control parameters for future use
* dtimon = listening time interval for network monitoring, [s]

avlent = average length [s] of all messages sent during <dtimon?>
stat(l,n) = cumulative time [s] in the time interval <dtimon?> [s],
divided by <dtimon>. (Relative length of network usage)
stat(2,n) = average message length [s] during the time interval <dtimon>.
stat(3,n) = number of of accesses in usage categories divided by
the total number of accesses in categories (n=2,3,4,5)
the index n indicates the usage categories:
1 — not used (idle time)
2 - successful and acknowledged transmission
3 - colliding message
4 - message corrupted by interference (network noise)
5 — message sent but not acknowledged (receiver failure)
restat(i,n) = the same as stat( ) but computed with wighted averages
to provide an approximation of previous values
nostor = if this equals zero then write <delpar> in file <control—-line>

FOoN % O N R N % % F % O H % % % %

implicit none
real timup,delpar(3),dtimon,avlent,stat(3,5),restat(3,5)
integer nrtime,nostor,j

kkkkAkkkkk

*** Puture: Adjust the parameters <delpar> taking into account the
*xx statistics in <stat? and <restat>.
khkhkkkkkkkk

if(nostor.eq.0)
Awrite(48,’(2x,0pf10.4,4(2x%,0p£8.2))’) timup, (delpar(j),j=1,3)
B ,dtimon
* Write the control parameter values in the file unit 48 = <control-line>
* for later examination E
*
return

end
*
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*
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ATTN AMSRL SS IC

MR EMMERMAN

MR TOKARCIK

2800 POWDER MILL RD
ADELPHI MD 20783-1197

DIR US ARMY ASCO
ATTN AMSLC AT

BLDG 2424

FT MEADE MD 20755-5313

CG USMC RSRCH DEV AND ACQ CMD

ATTN EXECUTIVE DPM COL STANKOWSKY

QUANTICO VA 22134-5000

DIR US ARMY RESEARCH OFFICE
ATTN SLCRO EL DR GAULT

PO BOX 12211

RSRCH TRI PK NC 27709-2211

PROJECT MANAGER PM ADCCS
ATIN SFAE CC AD MR S ALLEN
4920 UNIVERSITY SQUARE ST 3B
HUNTSVILLE AL 35816

PROJECT MANAGER PM FAAD C2
ATTN SPIC CC ADCCS FA
REDSTONE ARSNL AL 35098-5600

PROJECT MANAGER PM ASAS
ATTN JTFDO ASAS

1500 PLANNING RESEARCH DR
MCLEAN VA 22102

PROJECT MANAGER PM ASAS
ATTN JTFDO AE C

1500 PLANNING RESEARCH DR
MCLEAN VA 22102

48

NO. OF

COPIES ORGANIZATION

3

PROJECT MANAGER PM CHS
ATTN SSAE CC CHS

COL OLSON

MR LEVINE

MR BRYNILDSEN

FT MONMOUTH N7 07703-5000

PROJECT MANAGER PM OPTADS
ATTN SPIC CC OTDS
FT MONMOUTH NJ 07703-5000

PEO COMMAND & CONTROL SYSTEMS
ATTN SFAE CC

MG HARMON

MR GIORDANO

MR ALBARELLI

FT MONMOUTH NJ 07703-5000

PEO COMMAND & CONTROL SYSTEMS
ATTN SFAE CC SE'MR MERCURIO
FT MONMOUTH NJ 07703-5000

CDR US ARMY CECOM
ATTN AMSEL RD AED MR RUTH
FT MONMOUTH NJ 07703-5001

CDR US ARMY CECOM

ATTN AMSEL RD C3 CC DR KLOSE
MR QUIGLEY

MR STROZYK

~ FT MONMOUTH NJ 07703-5001

CDR US ARMY CECOM
ATTN AMSEL RD C3 TP E MR GRAFF
FT MONMOUTH NJ 07703-5001

CDR US ARMY ARDEC
ATTN TECH DIR DR DAVIDSON
PCTNY ARSNL NJ 07806-5000

CDR US ARMY ARDEC
ATTN SMCAR FSF MR LEHMAN
PCTNY ARSNL NJ 07806-5000

CDR US ARMY ARDEC
ATTIN SMCAR ASH MR LARRY OSTUNI
PCTNY ARSNL NIJ 07806-5000

CDR US ARMY MATERIEL CMD
ATTN AMCDRA DR LUCY HAGAN
5001 EISENHOWER AVENUE
ALEXANDRIA VA 22333-0001




NO. OF
COPIES

ORGANIZATION

CMDT US ARMY FIELD ARTILLERY SCHOOL
ATTN ATSF TSM C3 COL COOPER
FT SILL OK 73503-5000

CMDT US ARMY FIELD ARTILLERY SCHOOL
ATTN ATSF FSC3

MAJ SELLS

CPT WILLIAMS

MAJ SCOTT

CPT BLAKLEY

FT SILL OK 73501

CDR USMC RSRCH DEV & ENGRG CMD
ATTN PM GROUND C2
QUANTICO VA 22134-5080

NATL INST OF STNDRDZTN AND TECH
ATTN MR SANDOR SZABO

BLDG 220 RM B127

GAITHERSBURG MD 20899

DIR SANDIA NATIONAL LABS
ATIN DR LARRY CHOATE

PO BOX 5800

ALBUQUERQUE NM 87185

CDR USACADA
ATIN TPIO .
FT LEAVENWORTH KS 66027-5000

HQDA

ATTN SARD T N MR HUNTER WOODALL
THE PENTAGON ROOM 3E360
WASHINGTON DC 20310-0103

HQDA
ATTN SAUS OR MR W HOLLIS
PENTAGON

WASHINGTON DC 20310-0001

CMDT US ARMY FIELD ARTILLERY SCHOOL
ATIN ATSF CD

DIR OF COMBAT DEV

FT SILL OK 73503-5000

CMDT US ARMY FIELD ARTILLERY SCHOOL
ATTIN ATSF CD MR DUBLISKY
FT SILL OK 73503-5000

CMDT US ARMY FIELD ARTILLERY SCHOOL

ATTN PRESIDENT FA BD COL ELDER
FT SILL OK 73503-5000

49

NO. OF

COPIES ORGANIZATION

1

DIR ARPA

ATTN AST DIR TTO DR JASPER LUPO
1400 WILSON BLVD

ARLINGTON VA 22209-2308

MAGNAVOX

ATTN TOM KLAGE 4 CP
MIKE MEIER 10 06 2 CP
1313 PRODUCTION ROAD
FT WAYNE IN 46808

GE ATCCS SE&I

ATTN JOE SLADEWSKI

SHEILA HOPKINS

RICH STAATS

788 SHREWSBURY AVE
TINTON FALLS NJ 07724

COMMAND SYSTEMS INC
ATTN DEVIN R WILLIS
MARK MCCLEARY

1025 GOSHEN ROAD

FT WAYNE IN 46808

PM SINCGARS

ATIN SFAE CM GAR

COL DOMINIC F BASILE

FT MONMOUTH NJ 07703-5000

PM ADDS

ATTN SFAE CM ADD

COL LELAND H HEWITT

FT MONMOUTH NJ 07703-5000

PM EPLRS

ATIN SFAE CM ADD EPL
LTC C FORNECKER

FT MONMOUTH NJ 07703-5000

PM MSE

ATTN SFAE CM MSE

COL DAVID GUST

FT MONMOUTH NIJ 07703-5000

CMDT USAFAS

ATTN ATSF CCS

WALTER W MILLSPAUGH
MAJ DRUMMUND

FT SILL OK 73503-5600




NO. OF

COPIES ORGANIZATION

4

OPM USAFAS
ATTN SFAE ASM FA LARRY YUNG
PCTNY ARSNL NJ 07806-5000

CDR US ARMY MICOM

ATTN AMSMI RD SED

MR G CLAYTON

REDSTONE ARSNL AL 35898-5260

CDR US ARMY TACOM
ATIN AMSTA RV

MR SARNA

MR HALLE

WARREN MI 48397-5000

CDR USCAC

ATTN ATZL CDC

COL BAERMAN

LTC COOK

CPT BROWN

FT LEAVENWORTH KS 66027-5300

DIR USARL

ATTN AMSRL SC IS

MR MITCHELL

MR RACINE

COL BLAKE

115 O’KEEFE BLDG GEORGIA TECH
ATLANTA GA 30332-0800

50

NO. OF

COPIES ORGANIZATION

22

ABERDEEN PROVING GROUND, MD

DIR USAAMSAA
ATTN AMXSY C

MR HAL BURKE

MR PETE REID

MR TOM NOLAN

MR PAT WARD

MR FRANK FOX

MR JOHN DILEO
AMXSY G MR JOHN KRAMER
AMXSY A MR WALTER CLIFFORD
JTCG ME MR ART LAGRANGE

DIR USARL
ATTN: AMSRL-WT-WF,

G HORLEY

W DOUSA
AMSRL-HR-SA, D TYROL
AMSRL-IS-TP,

A BRODEEN

B BROOME

S CHAMBERLAIN

B COOPER

A DOWNS

G HARTWIG

R KASTE
AMSRL-SC-C, H BREAUX
AMSRL-SC-CC,

C NIETUBICZ

D PRESSEL

M TAYLOR

C ZOLTANI

D HISLEY

A CELMINS (3 CP)
AMSRL-SC-S, V KASTE
AMSRL-SC-SS, M THOMAS
AMSRL-SL-C, W HUGHES




USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers
to the items/questions below will aid us in our efforts.

1. ARL Report Number _ ARL-MR-244 Date of Report __August 1995

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report
will be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs
avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to
organization, technical content, format, etc.)

Organization

CURRENT Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the
Old or Incorrect address below.

Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)




DEPARTMENT OF THE ARMY

OFFACIAL BUSINESS

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 0001,APG,MD

POSTAGE WILL BE PAID BY ADDRESSEE

DIRECTOR

U.S. ARMY RESEARCH LABORATORY

ATTN: AMSRL-SC-CC

ABERDEEN PROVING GROUND, MD 21005-5067

NOPOSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES




