
REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-01 S3 

-"JDIK <??:" ~~ OL'aer- 'or •.'■■, ... i>:".'.run üt .r.r..i..T.1iiCn * *:■>]im.^i.-o :.j -tjer^qe '■ four D?r 'fiyorse. inr.iuaing [rie lime TOI r».^1.-,! 
:^:!r-:'f:' i :.-z - -- r:.= i-in j ■ r-; ;<.;,i.-- nee3>i. £nd ■:: r-oiling ^::d rp.ü-.Mr: -.N ■ ;]:■:--:i ;•"■;:.' "J: "r.jlion, *.r-n:j ;:>rTTnrnr. r«■■ -j•;-c'- ■.: 
.'o!l'-'tor' ."' ^' ^'m,iiivn, ruiL-cing iuqaeitio^i lar rpduano ihis Durcf-n to ■.Vrishinciion nznaou jne^ -;p'*|.:,>y Direciordip for nk-r 
C:*.is Hi:r.',;.. Su'le '.:,04   .'. rhn 51 ^n. ,'C  ;2;Ci'-3 3C*. ar-d K. trie Qliii.? ol M^H<jem</nt nna Suc^CM. PAp-jr-YOrk fl^a'uaion P*o,0:; IC' 

>*: imuuniom. seauhmc ew.tnq anta sources. 
K\ b^.'dr.n C'.-trinatC -ol .vr', ' :L.(-r ;!'*L'" :\ ',■' ".^ii 

■n^lion Onfr*Tiom nnd f*pr>:.'H, 1/1S J"f^rsc.n 
C-J-BiBB). »Vashificjion. :>C ;0',"3 

1.   AGENCY USE ONLY (lea^e b/anit; 2. REPORT DATE 3. REPORT TYPE   AND DATES COVERED 

FINAL  REPORT      01  Feb  92  - 15 Mar 95 
i. TITLE  AND SUBTITLE 

Plasma Microwave Electronics:     Studies of High Power 
Plasma-Loaded Backward Wave Oscillators 

r o.  #*u i nwrv^/ 

Professor Granatstein 

5.   FUNDING NUMBERS 

61102F 

2301/ES 

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 

Institute  for Plasma Research 
University of Maryland 
College  Park,   MD  20742-3511 

AFOSR-TR-95 

^35 
J 

9. SPONSORING/MONITORING AGENCY NAME{S) AND ADDRESS(ES) 

AFOSF/NE 
110  Duncan Avenue  Suite  B115 
Boiling AFB DC     20332-0001 

t 11,  5-UF'f". EYifNTA^Y   NOIES 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

F49620-92-J-0152 

APPROVED FOR PUBLIC RELEASE:   DISTRIBUTION UNLIMITED 

13. ABSTRACT (Maximum 200 words) 

SEF FINAL REPORT ABSTRACT 

-.SECSSBSB®^ 

KäsÄ; 
k1.^ ,- 

IS 

' ' 

„a-ss»»«!« 

DTI@ QUALITY INSPECTED 3 

14.   SUBJECT TERMS 15. NUMBER Of PAGES 

16. PRICE CODE 

SECURITY CLASSIFICATION        18.    SECURITY CLASSIFICATION 
OF REPORT f OF THIS PAGE 

UNCLASSIFIED UNCLASSIFIED 

19.   SECURITY CLASSIFICATION    I 20. LIMITATION OF ABSTRACT \ 
OF ABSTRACT I 

UNCLASSIFIED UNCLASSIFIED 
NSW 75"C>-V'-.?80-SSOO S-a"darö :orm 29S (Rev 2-39) 

'•'■V :>C-C    Dv -:.X;  i!D  ,'.itJ. - j 



Final Report 

PLASMA MICROWAVE ELECTRONICS: STUDIES OF 
HIGH POWER PLASMA-LOADED BACKWARD WAVE OSCILLATORS 

For the period February 1, 1994 to March 15, 1995 

AFOSR Grant Number F49620-92-J-0152 

Submitted to 
Air Force Office of Scientific Research 

Submitted by 
Electrical Engineering Department 

and 
Institute for Plasma Research 

University of Maryland, College Park, MD 20742-3511 

19950824 198 



DISCLAIMER NOTICE 

TfflS DOCUMENT IS BEST 

QUALITY AVAILABLE. THE COPY 

FURNISHED TO DTIC CONTAINED 

A SIGNIFICANT NUMBER OF 

PAGES WHICH DO NOT 

REPRODUCE   LEGIBLY. 



Contents 

Executive Summary 1 

Papers Published or Submitted for Publication 3 

Appendix: Copies of Selected Papers 5 

"5^"~"1 

f L.  i-  



EXECUTIVE SUMMARY 

This final report summarizes work done under AFOSR Grant Number F49620-92-J-0152 
during the period February 1, 1994 to March 15, 1995 on the three-year research program 
entitled "Plasma Microwave Electronics: Studies of High Power Plasma-Loaded Backward 
Wave Oscillators". 

The purpose of our research in Plasma Microwave Electronics was to study the funda- 
mental concepts of high power, efficient-microwave generation by using relativistic electron 
beams in plasma loaded microwave devices. The thrust was to carry out an intensive experi- 
mental and theoretical study of improved plasma-filled Backward Wave Oscillators (BWOs) 
operating at X-Band (frequency of 8.5 GHz) in order to identify the nature of the interaction 
in the three component system (beam/plasma/e.m. wave) and optimize it. We wished to a 
develop a systematic understanding of the operation of these devices and their scaling with 
parameters that would allow for the future design of larger diameter overmoded devices to 
obtain even higher output powers (1-10 GW). 

During this reporting period, significant progress was made both in the experimental and 
theoretical aspects of the program. 

A brief summary of the work performed during this reporting period: 

1) We successfully developed and implemented a technique to determine the reflection 
and the electromagnetic field profile in an empty cavity which is open, i.e. couples to 
an antenna. 

2) A wide band microwave matching section was designed and fabricated. It will be 
installed between the cavity and the output antenna in order to improve the coupling 
between the two. This novel matching section is now being tested. 

3) A novel, long Langmuir probe was developed in order to accurately measure the back- 
ground plasma density and temperature inside the backward wave oscillator tube. A 
series of experiments was completed successfully in order to accurately map the density 
profile in both the axial and radial direction. 

4) We successfully developed and implemented a microwave technique to measure the 
dispersion characteristics of smooth and corrugated cavities loaded with time varying, 
radially inhomogeneous plasma. Using this technique, the dispersion characteristics of 
TMoi modes in a plasma loaded cavity were measured over a wide range of background 
plasma densities, from 109 to 1013 cm-3. 

5) A code was developed to analyze the frequency upshifts of TM0n modes in a corrugated 
cavities due to the presence of a radially inhomogeneous plasma background. 

6) We began a series of hot tests of an improved plasma loaded backward wave oscillator. 
The improvements include: a) preventing microwave breakdown near the collector, 
which can cause microwave pulse shortening, using an improved output section; b) novel 
techniques for plasma injection and filling of the tube; and c) electron gun protection 
against adverse plasma effects. 



7) We developed the nonlinear model of the parametric excitation of plasma mode in the 
relativistic BWO. This model was used to compare with experimental results. Particu- 
lar attention was paid to confirmation of the parametric decay hypothesis. Predictions 
of the model with regard to the output spectrum of the device, the excitation of plasma 
waves, and the dependence on plasma density were determined. The development of 
the model proceeded through stages. Particle methods were introduced. A code was 
developed in which the plasma electron motion is one-dimensional owing to the strong 
applied magnetic field. The radiation is still modeled by an envelope equation allowing 
the code to run much faster than a full PIC simulation. Results of this code indicated 
that parametric decay was possible in principle, but not likely for the parameters of 
the experiments. 

8) We undertook an extensive comparison of the results of model simulations of the type 
discussed above, and full PIC calculations using MAGIC. This work is ongoing. We 
have developed numerical tools which extract the EM fields from MAGIC and integrate 
the orbits of beam electrons in these fields. This effort will ultimately determine the 
range of validity of various models of BWO operation. 

Publications and Conference Proceedings: 
1 invited paper 
5 papers in refereed journals 
7 papers at scientific meetings 
1 article in conference proceedings 

Student Involvement 
The following students were engaged in the research: Susanne Miller participated in the 

theoretical work while James Weaver and Satoru Kobayashi participate in the experimental 
work. 
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Electromagnetic Properties of Open and 
Closed Overmoded Slow-Wave Resonators for 
Interaction with Relativistic Electron Beams 

W Main, Y. Carmel, Senior Member, IEEE, K. Ogura, J. Weaver, G. S. Nusinovich, Senior Member, IEEE, 
S. Kobayashi, J. P. Täte, J. Rodgers, A. Bromborsky, Member, IEEE, S. Watanabe, M. R. Amin, K. Minami, 

W. W. Destler, Fellow, IEEE, and V. L. Granatstein, Fellow, IEEE 

Abstract—Specific slow wave structures are needed in order 
to produce coherent Cherenkov radiation in overmoded rela- 
tivistic generators. The electromagnetic characteristics of such 
slow wave, resonant, finite length structures commonly used in 
relativistic backward wave oscillators have been studied both 
experimentally and theoretically. In experiments, perturbation 
techniques were used to study both the fundamental and higher 
order symmetric transverse magnetic (TM) modes. Finite length 
effects lead to end reflections and quantization of the wave 
number. The effects of end reflections in open slow wave struc- 
tures were found from the spectral broadening of the discrete 
resonances of the different axial modes. The measured axial and 
radial field distributions are in excellent agreement with the 
results of a 2-D code developed for the calculation of the fields 
in these structures. 

Index Terms— Periodic structures, slow waves, dispersion 
curve, resonators. 

I.   INTRODUCTION 

VARIOUS electrodynamic structures capable of support- 
ing the propagation of slow electromagnetic waves are 

widely used for microwave generation and for the acceleration 
of charged particles. These slow-wave structures are designed 
to match the phase velocity of the propagating electromagnetic 
waves to the speed of electrons in the same structure in order 
to facilitate an effective beam/wave interaction. For interaction 
with weakly relativistic electron beams it is therefore necessary 
to slow down the wave's phase velocity significantly while for 
interaction with relativistic electron beams the phase velocity 
required is only slightly smaller than the speed of light. The 
electromagnetic properties of structures with very different 
phase velocities, obviously, would also be expected to be very 
different. Therefore, in spite of the availability of detailed 
studies of structures intended for operation in conventional, 
weakly relativistic microwave tubes [1], [2] there is still a need 

Manuscript received September 30, 1993; revised May 30, 1994. Part of 
this work was presented as an invited talk at the IEEE ICOPS 1993. This 
work was supported in part by the Air Force Office of Scientific Research 
and the Army Research Laboratory. 

The authors are with the Institute for Plasma Research, University of 
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K. Ogura, S. Watanabe, M.R. Amin, and K. Minami are with Niigata 

University, Niigata City, Japan. 
A. Bromborsky is with Army Research Laboratories, Adelphi, MD USA 
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for more detailed studies of slow wave structures intended for 
operation with relativistic electron beams. 

A second motivation for the work presented in this paper is 
the recent interest that has developed around the generation 
of high power microwave radiation in devices employing 
overmoded slow wave structures. Despite traditional concerns 
about mode competition in overmoded devices, recent experi- 
ments [3], [4] have shown that efficient, high power operation 
can be achieved in such devices operating in a single mode. 
The present study, therefore, has been undertaken in part 
to accurately determine the electromagnetic characteristics of 
overmoded slow wave structures to aid in the linear and 
nonlinear analysis of advanced microwave sources employing 
such circuits. 

Finally, such issues as finite length of the periodic structures 
and finite reflections at both ends should be studied in more 
detail. For example, in a finite length structure the axial 
wave numbers of the electromagnetic modes are quantized 
affecting the spectral characteristics of device operation. Also, 
the amount of reflection at both ends of the structure affects 
the quality factor of each of the quantized axial modes in 
the multiple resonance "slow-wave" cavity in a unique way. 
This, in turn, strongly influences the interaction of the electrons 
with the electromagnetic waves associated with each mode. 
Especially important is the effect of reflections on the non- 
stationary operation of short pulse relativistic backward wave 
oscillators (BWO's) [5], [6]. 

Perturbation techniques are available for measuring the 
spatial distribution of fields in resonant cavities [1], [2]. These 
techniques have been primarily applied to the fundamental 
modes in accelerator cavities, which are electromagnetically 
closed (shorted) at both ends and typically have quality factors 
(Q) over 4000. In contrast, the Q factors of spatially periodic 
slow-wave structures intended for operation with intense rel- 
ativistic electron beams are much lower (~ several hundred) 
and the electromagnetic properties of these structures have 
not been studied in detail until recently [7]-[ll]. Due to the 
high fields achieved in these devices, microwave power is 
usually extracted via open-ended matching sections that lower 
the total Q and can cause asymmetric axial field distributions. 
To accurately model this type of device it is important to know 
the reflection coefficient at the end of the structure and the field 

0093-3813/94S04.00 © 1994 IEEE 
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distribution. To date, parameters have usually been obtained 
through numerical calculations, which are more complicated as 
the Q-factor decreases. In this study we present experimental 
methods for determining these parameters and for checking 
the results of numerical calculations. 

To properly address these issues we have developed a 
formalism describing the fields inside a finite length, spatially 
periodic structure and methods for measuring the fields and 
end reflections. For this study we used a periodic structure 
in the shape of a cylindrical waveguide with a sinusoidally 
varying conducting wall. A schematic diagram of this"appara- 
rus appears in Fig. 1(a). The dispersion diagram for the first 
six symmetric transverse magnetic modes in an infinitely long 
slow wave structure with the same dimensions is shown in 
Fig. 1(b). The periodic nature of the structure leads to a band 
pass characteristic of each mode. The passbands are given 
an index, starting with 1 for the lowest and increasing by 
1 for each subsequent passband. Thus, the first is referred 
to as TMoi, the second as TM02, and the nth as TMo„. In 
this paper, we have studied the fundamental (TMoi) and two 
higher order (TM02, TM03) transverse magnetic modes in a 
spatially periodic, sinusoidally corrugated structure of finite 
length. Preliminary data for TM04 is also available. 

This paper is organized as follows. In Section II we discuss 
the formation of axial modes associated with each transverse 
mode in a finite length periodic resonator and the relation of 
these modes to the dispersion diagram of the corresponding 
infinite length structure. This dispersion diagram is useful for 
modeling some aspects of BWO operation, such as the relation 
of beam energy to the approximate operating frequency. To 
model the more complex nonlinear behavior, it is necessary 
to numerically simulate the operation of the BWO. For that 
purpose one needs to know the amplitude and phase of the 
reflection coefficient from the structure ends, as well as the 
beam-wave coupling coefficient. The coupling coefficient can 
only be calculated once the field profile in the structure is 
known. In Section III we describe how the electromagnetic 
fields are calculated by expanding the fields in a spatially 
harmonic series. In Section IV we show how the resonant fre- 
quencies as well as the radial field profile associated with each 
axial mode of the closed slow-wave structure was measured 
for the three TM modes considered. In Section V we describe 
how we experimentally determined the reflection coefficient 
at the open end of our slow-wave resonator. This was done 
by measuring the spectral width of each resonance, which 
broadens as the end of the slow-wave resonator is opened. We 
present both experimental and numerical results for the end 
reflection. Section VI summarizes our work and describes our 
latest efforts to increase the accuracy of our results. Possible 
extensions of these techniques to plasma filled systems are 
also discussed. Two appendices are also attached to explain 
the calculation of the reflection coefficient and the analytic 
model used for the closed cavity quality factor. 

II. AXIAL MODES IN A FINITE LENGTH SLOW-WAVE CAVITY 

The dispersion characteristics of electromagnetic modes in 
an infinitely long spatially periodic structure are determined 

Antenna 
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Fig. 1. (a) Schematic diagram of a spatially periodic (corrugated wall) 
structure shorted at both ends, (b) The calculated dispersion diagram for six 
symmetric transverse magnetic (TMo») modes in an infinitely long, spatially 
periodic structure of Fig. 1(a). 

only by the geometry of the conducting walls. A finite length 
structure, however, can be described by a simple dispersion 
relation only when it is well matched at both ends (i.e., no 
reflections). Structures used in relativistic BWO's are usually 
not well matched. First, relativistic BWO's utilize a strong 
reflection at the entrance of the structure to prevent microwave 
propagation into the diode region [7], [8], [10], [11]. At the 
output end of the structure, part of the microwave radiation is 
reflected and part transmitted. As a result of these reflections 
a standing wave pattern is created leading to a spectrum of 
axial modes. This effect was studied in [5] and [6]. 

Any spatially periodic structure with end reflections con- 
taining N periods will support N + 1 different axial modes 
for each transverse mode [12]. Each of these axial modes is 
characterized by a discrete frequency (fr) and a discrete axial 
wave number (ßr), which are located on the dispersion curve 
of the same transverse mode in an otherwise identical structure 
of infinite length. As a consequence of the spatial periodicity 
of the structure, traveling waves can be presented as a super 
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position of spatial harmonics. The standing wave is formed 
by a pair of such traveling waves propagating in opposite 
directions. As an example, the measured frequencies and wave 
numbers of the seven axial modes associated with the lowest 
order symmetric transverse magnetic mode (TM0i) of the six 
period slow-wave structure of Fig. 1 are shown in Fig. 2(a). In 
Fig. 2(a) we show, for simplicity, only axial wave numbers for 
the forward wave in the zero's Brillouin zone. Bear in mind 
that for a given frequency, the total field contains a set of axial 
wave numbers corresponding to different spatial harmonics. 
Throughout this paper, resonance plots will be presented as 
frequency (in GHz) versus the normalized wave number, ßd, 
which is equal to the phase advance per structure period. Here 
ß is the axial wave number and d is the length of the structure 
period. The structure wall radius is given by 

 Numerical (Superfish) 
o    Experiment 

Rw = R0 + hcos{2irz/d) (1) 

where R0 is the average radius and h is the amplitude of the 
wall corrugations. Even though all seven axial modes shown 
belong to the same transverse magnetic mode (TM0i), they are 
characterized by completely different patterns of field lines. As 
an example, the calculated electric field line pattern of two of 
the seven axial modes in the slow-wave structure of Fig. 1 
are shown in Fig. 2(b). The technique used to calculate these 
patterns will be described in Section III. 

A few features of finite length structures follow from 
Fig. 2(a), which describes an X-band slow-wave structure 
having a passband from 7.4 to 8.7 GHz for the fundamental 
symmetric transverse magnetic (TM0i) mode. First, the dis- 
crete axial modes which are equally spaced in wave number 
are not equally spaced in frequency within the structure 
passband. The mode separation varies between 0.05 and 0.25 
GHz for the structure studied in this work. Second, the spectral 
resonance width (and thus the quality factor) of each of 
the axial modes is different since the group velocity of the 
electromagnetic wave varies. This feature is used to calculate 
the end reflection of shorted and open slow-wave structures, 
as will be shown in Section V. 

In addition to the dispersion curve, Fig. 2(a) shows all seven 
TMoi resonance peaks for a closed six-period slow-wave 
cavity as measured with a microwave network analyzer. For a 
structure with N periods of length d the resonance condition 
can be stated as [12] 

Nd = (nr/2)(27r//3) (2) 

where nr is the number of half wavelengths along the axis 
of the structure and (2TT//3) is the axial wave length. The 
resonant axial wave number ßr is then found from nr using 
the above equation. Points on the dispersion curve are found 
by recording the resonant frequencies fr and associated axial 
wave numbers ßr for the set of axial modes associated with 
each transverse magnetic (TM) mode. The complete dispersion 
relation can then be constructed from these discrete points [13] 
or calculated, as will be shown in Section III. Measuring the 

o -1 -2 -3 -* 
Reflection (dB) 
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73 
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«4-1 

(b) 

Fig. 2. (a) The dispersion diagram of an X-band slow wave structure having 
a passband of 7.4 to 8.7 GHz for the TMoi mode as calculated by Superfish, 
presented as a smooth line. Only half of the first Brillouin zone is shown. Also 
shown is the measured reflection data and all seven TMoi resonance peaks 
of the closed six period slow wave cavity (open circles), (b) The electric field 
line pattern associated with two of the seven axial modes (0,57r/6). 

dispersion relation is therefore reduced to finding the set of 
resonant frequencies and axial wave numbers (/r, ßr) for the 
desired TM mode. In practice it is much easier to find the 
frequencies than the wave numbers. For a spatially periodic 
resonator excited by an ideal mode launcher, the N + 1 axial 
modes associated with a single TM mode should be equally 
spaced in wave number. Thus if the dispersion curve, f(ß), is 
known to be an increasing or decreasing monotonic function of 
the wave number over one Brillouin zone, then it is necessary 
to measure only the resonance frequencies. If the dispersion 
relation is non-monotonic, then it is necessary to measure both 
/ and ß to determine f(ß). In this study we consider the 
fundamental (TM0i) and the next two higher order (TM02 and 
TM03) transverse modes, which are monotonic; however, the 
techniques presented also apply to nonmonotonic modes. In 
Section IV we show how these resonances were measured. 
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in. NUMERICAL MODELING OF THE 

SLOW-WAVE STRUCTURE FIELDS 

A. Field model 

The first step in the simulation of overmoded slow wave 
structures is to find a way to accurately and efficiently calculate 
the electromagnetic fields in the structure. As higher modes 
are centered, these calculations become more complex and 
* becomes also ,mportant to experimentally verify the results 
Here we present a technique which shows good agreement 
with experimental measurements for closed, spatiallfZ'dic 
structures at least up to the TM03 mode 

We use a model [14]-[16] in which the fields are expanded 

Sdlin^h "H      °niC Seri6S' aCC°rding t0 n«^ «Lern- Saving the dispersion relation for the sinusoidal boundary 
of the slow-wave structure given by (1) gives the expansk* 
coefficents. Using Maxwell's equation, we get the folwing 
expressions for the electromagnetic field components, Ez   E 

vwwvi 

z = o Z = L 
(a) 

,i(ßnZ-ut) 

Er(r.z.t) = -lRo   £   ^jJXjLrUw»,-^ Xn 

(3) 

Normalized Axial Wavenumber, ßd 

(b) 

Fig. 3.    (a) A wave propagating forward along the z-axis. F reflects at - - T 

^rje^-ot)   (5)    Rg ^3(b) shows the locat.on ^ these w^es ^ ^ dispersion 
n=-oo *n        V-^O    / 

_ diagram. 

™ri*n° a
H
nd, Jl ^ ^ Bessel functions of the first kind of    H- B°th forWard and backw^ waves have to satisfy the 

order u and 1, respectively, dispersion relation, 

det[D(ßF,Lü)} = 0. (10) 

det[£>(/?B)W)] = o. (ii) 

Electromagnetic quantities must also be single valued at a 
given position and time at the resonance, 

peW3F-3B)L} = 1 

Here, p is a round trip reflection coefficient. With the assump- 
tion of a loss less cavity that is completely shorted at both ends 
we may write p = 1 and ßB = -ßF. Hence, (12) becomes  ' 

PF = nN/L (13) 

where TV is an integer. Except for the propagation direction, 
the backward wave is identical to the forward wave; that is 
it satisfies the same radial boundary condition and has the' 
same energy. Therefore, in (3)-(5), the relationship between 
Öie coefficients A* of backward wave and those AF of the 
forward wave may be written as 

AF -  AB An   ~ A-n- (14) 

By summing the forward and backward waves, the electro- 
magnetic field components in the cavity can be written 

xl = Rl(^/c*-ßl) (6) 

where ßn = ß + n^,d is an integ£r and Q .& ^ 

light ,n vacuum. The dispersion relation is derived from the 
boundary condition [17] requiring that the tangential electric 
field is zero at the wall r = R(z), 

Et(R) oc EZ(R) + Er{R)dR/dz = 0. (7) 

The spatial Fourier transform of (7) can be expressed as: 

D-A = Q (8) 

where A is a coefficient vector in (3)-(5) and D is a matrix of 
infinite order. The dispersion relation is the non-trivial solution 
or (8) and is given by 

det[D(ß,cü)} = 0. (9) 

In the case of a finite length, slow-wave structure  the addi 
tional boundary conditions at both ends (* = 0 and z      L) 

the" axeisTed
fl
[18]- A WaVC Pr0pagating fo™d aToni the z-axis, F, reflects at z = L and becomes a backward 

propagating wave B. Fig. 3(a) illustrates this process   a"d Ez(r,z,t) \E   2AnJ0^rJcos(ßnz)     (15) 
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Er(r,z,t) = R0e' 
E2Anpn 

Xn 

Xn 

RQ 
r   sm(ßnz) 

(16) 

H0{r.z.t) = -ie0u;Roe~ 
oo 

n=— oc 

^jj^r) cos(ßnz). 
Xn \Ro   ) 

(17) 
In our calculations, the rank of the matrix was truncated at 9 
(-4 < n < 4) [15], [16]. Once the dispersion relation, (9), is 
solved numerically, the ratios of the coefficients, An/A0, are 
determined from (8). With a known set of An/A0, the field 
components Ez. Er. and H^ are calculated from (15)-(17). 

B. Perturbation Theory 

Perturbation theory indicates that slight changes in the shape 
of a resonant cavity can affect the resonant frequency. Each 
resonance (associated with an axial mode) is frequency shifted 
by a perturbing object of volume AV by a different amount. 
The general relation for the relative frequency shift is given 

by 12] 

A/r       Uv{yH-H'-*E-E')dV 

/,. Jv (ßH ■ H* + tE ■ E*)dV 

where the integral in the numerator is evaluated over the 
perturbing object volume AV and the integral in the denom- 
inator is evaluated over the whole cavity. This assumes that 
the perturbing object is small compared to the amplitude and 
length of the wall ripple. For the case of a sphere [2] the 
above equation is geometrically corrected by multiplying the 
first term in the numerator by 3/2 and the second term in the 
numerator by 3. For a small metal bead of radius r0 the field 
is almost constant over AV so the integration is unnecessary. 
Thus the equation commonly used is [1] 

^=27rr„3fiffn2 

Jr 
El (19) 

Vector 
Analyzer 

6 period Slow-Wave Structure 

iwwwi Nylon string 
/OD=0.01 cm 

Aluminum bead      \ 
OD=0.24cm ^adiaI 

bead 
I path 

Calipers 

where EQ and H0 are the field amplitudes normalized so that 
the integral of Hi or El over the cavity is unity. Since the 
only field component on axis is Ez, the simplest measurement 
would be to find ßT by perturbing the field on axis. In our 
experiment, a bead was placed 0.54 cm away from the axis 
because of the difficulty associated with having both the bead 
and the antenna on axis. At this radius it was still possible 
to identify ßz for the TM0i modes by inspection of the 
axial profile of the frequency shift. Once the cavity fields are 
calculated, (19) can be used to find the associated perturbation. 
This frequency shift can then be directly compared with 
experimental measurements. 

IV. RESULTS OF THE FIELD MODEL 

AND EXPERIMENTAL VERIFICATION 

There are two levels at which we can compare the field 
model of Section III with experiment. The first and simplest 
level is to compare the measured and calculated resonant 
frequencies associated with the axial modes. The second 
is to compare the field distribution (or the related spatial 
distribution of frequency shifts) of these modes using the 

Weight 

Fig 4 Cold test system used for measuring the electromagnetic character- 
istics of spatially periodic structures. The perturbing bead could be translated 
both axially and radially. 

spatial perturbation technique described in Section III. In 
this section we will present the comparison on both levels. 
Fig. 4 shows the measurement system, including the bead-pull 
apparatus to be described later. 

A. Resonant Frequencies 

Experimentally, the modes of our slow-wave structure were 
excited using a small Hertzian antenna on the axis which 
could be moved axially in and out of the cavity to adjust 
the degree of coupling and to enable calibration. A network 
analyzer was used to measure the microwave reflection from 
the cavity over the desired frequency range (Sn single port 
measurement). The resonances appeared as narrow spikes at 
frequencies where the magnitude of the reflection was reduced. 

The experimental results appear as plots of the resonant 
frequency (/r) versus the normalized axial wave number (ßd). 
All measurements were compared with numerical calculation. 
The measurements agree very well with the boundary specific 
calculation of Section III and the general boundary calculation 
using the 2-D electromagnetic code Superfish [19]. A graph- 
ical comparison of the experimental results with Superfish 
calculations is shown in Fig. 2(a). This figure shows the 
dispersion curve and reflection data with a common frequency 
axis. The Superfish results, which were actually calculated at 
seven points, are converted to form a smooth curve to aid 
in comparison with experiment. Similar plots comparing the 
measured and calculated results [16], [20] for the TM02 and 
TMo3 modes are shown in Fig. 5(a) and 5(b), respectively. The 
measured frequencies of the TM0i resonances are, on average. 
0.17% lower than our calculations and 0.03% higher than 
Superfish. For the TM02 and TM03 modes the experimental 
data are, respectively, 0.05% and 0.37% lower than our 
calculations. 

B. Field Distribution 

To perturb the cavity a small object had to be placed at 
known locations within the structure and the resulting shift in 
the frequency of a given resonant mode was measured. Fig. 4 
shows a schematic diagram of the apparatus and Table I gives 
a few critical dimensions. 
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TABLE I 
DIMENSIONS OF SLOW-WAVE STRUCTURE. 

° Meund 
— CileuJited 

Structure Period 
Total Length 
Radius [cm] 
Bead Diameter 
Radial Position of String 

1.67 cm 
10 cm (6 periods) 
1.5 + .41 sin(3.7z) 
0.24 cm 
0.54 cm 
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Reflection (dB) Normalized Axial Wavenumber, 

(b) 

Fig. 5. (a) The dispersion diagram of an X-band slow wave structure having 
a passband of 7.4 to 8.7 GHz for the TM02 mode (smooth line). Also shown 
is the measured reflection data for the TM02 resonance peaks of the closed 
six period slow wave cavity (open circles), (b) Same as (a), but for the 
TMo3mode. 
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Fig. 6. Field perturbation results in the shorted structure for three axial 
modes of the TM01 transverse mode, (a) Plots of the electric field lines, 
axial and radial frequency perturbation for JT/2 axial mode; solid lines - 
calculation based on equation 18; open circles - experiment, (b) Same, for 
2x/3. (c) Same, for 5TT/6. 

a Measured 
— Calculated 

1 

-* w 
(a) 

\WMKM 
0     Axial 

Position (cm) 

(b) 

Fig. 7. Field perturbation results of the shorted structure for one axial mode 
of high order transverse modes, (a) Plots of the electric field lines, axial and 
radial frequency perturbation for 57r/6 axial mode of the TM02 mode; solid 
lines - calculation based on (18); open circles - experiment, (b) Same, for w 
mode of the TM03 transverse mode. 

An aluminum bead was suspended in the cavity on a nylon 
thread via one of four sets of access holes: one set parallel to 
the cavity axis and three along the diameter at axial positions 
corresponding to the maximum, average, and minimum radii 
of the slow wave structure. Bead movement was regulated 
by tying one end of the thread to a dial caliper to measure 
position and the other end to a small weight to provide tension. 
An HP network analyzer measured the forward and reflected 
power versus frequency (Su) from a coax Hertzian element 
inserted on axis through the cavity end plate. For each mode, 
the resonant frequency was recorded as a function of bead 
position. The frequency shift at a given point is then the 
difference between this frequency and the frequency in an 
unperturbed cavity. It should be noted that the effect of the 
nylon thread was negligible (less than 500 kHz in all cases). 
Both axial and radial dependence of frequency shifts were 
measured. The first shift was measured with the bead translated 
along a path parallel to the cavity axis at a radial position of 
0.54 cm. The second shift corresponded to a radial path at a 
position of maximum cavity diameter (see Fig. 4). 

In general, measurements and calculations can be performed 
for each of the seven axial modes associated with each of the 

three transverse modes (TM01, TM02, TM03). In Fig. 6 and 
7 we present selected results. All seven axial modes of the 
TMoi group of modes and some of the axial modes of the 
TM02, TM03, and TM04 have been studied numerically and 
experimentally. The results are shown in Fig. 6(a), (b), (c) 
for the TM01 TT/2, TM0I 2TT/3, and TM0i 5TT/6 modes, re- 
spectively. The experimental results appear as circles overlaid 
on solid lines that represent the numerical results. To help 
visualize the cavity fields, a plot of the electric field lines 
for each axial mode is displayed beside the corresponding 
data. Similarly, Fig. 7(a) displays the 57r/6 mode of the TM02 

series and Fig. 7(b) shows the 7r mode of the TM03 series. 
The normalized wave number, ßd, can be found from these 
results by simply counting the number of local maxima along 
the length of the resonator and multiplying the number by n/6. 

V. REFLECTION AND Q-FACTOR OF 

AN OPEN SLOW-WAVE STRUCTURE 

In most low power linear microwave devices the output 
power is extracted radially at one end of the interaction 
region. Microwave mode converters change the cylindrical 
mode produced in the interaction region into the fundamental 
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Ka-»K-b—H 

(a) 

radiative power loss through the output aperture of the cavity, 
whereas the power loss to the walls is related to the ohmic 
quality factor of the cavity (Qohm)- 

To find Qd it is necessary to separate the ohmic losses 
(<5ohm) from the total circuit losses (Qt) which include the 
radiative losses of the cavity. Since the Q-factor is inversely 
related to power loss, Qd can be found from Qt and QQhm 
by the relation 

TMoi  7t/2Mode 

\ 
/ 

-100 MHz- 

Qd = l/(l/Qt - l/Qohn (20) 

(b) 

Fig. 8. (a). A schematic diagram of an open slow wave cavity - a way for 
axial power extraction in a relativistic backward wave oscillator. In this work 
(! = 1.02 cm. b = 7.62 cm, r = 4.75 cm. (b). Demonstration of resonance 
broadening. The JT/2 resonance of the TMoi mode is broadened when the 
structure is open (dotted line) as compared to the shorted case (solid). This 
effect is used to calculate the reflection at the end of the structure. 

mode of a waveguide which can transport the energy to the 
load or antenna. At power levels of tens of MW, the complex 
geometry of the mode converter can lead to breakdown even 
in vacuum. To avoid this problem high power tube designs 
eliminate the mode converter and allow the output power 
to exit the slow-wave structure along the beam axis. Then 
the beam is separated from the microwave by tapering the 
magnetic guide field and thus dumping the beam into the wall 
of the waveguide. For these discussions this type of cavity is 
labelled "open" [23]. A diagram of a practical open cavity 
used in high power BWO experiments [8], [11] is shown in 
Fig. 8(a). 

When modeling a BWO it is important to know the end re- 
flection of the structure. End reflections affect both the starting 
conditions and saturation effects in the device [5], [6]. Several 
numerical codes can predict the end reflection coefficient (p) 
for a given geometry, however, it is often difficult to accurately 
calculate end reflections due to the complex geometry of such 
systems and the often unknown surface finish conditions used. 
For these reasons it is important to perform experimental 
measurements. The most direct method of measuring p is to 
launch the desired mode down the structure and measure the 
waves which are transmitted through or reflected from the 
end of the structure. This technique requires both launching 
the desired mode and completely absorbing the reflected wave 
inside the structure. Either of these would be very difficult in 
practice. It is much easier to find p indirectly by exploiting its 
relation to the diffractive quality factor of the structure. The 
diffractive quality factor of a structure (Qd) is related to the 

Both Qt and Qohm can be measured directly. The measured 
quality factor of the system is Qt when the structure is open, 
and Qohm when the diffractive loss is eliminated by placing a 
short at the output side of the structure. Fig. 8(b) demonstrates 
this effect by showing how the 7r/2 resonance of the TM0i 
mode is broadened when the end of the structure is opened. 

A. Experimental measurement of Q 

It is useful to give some details of our Q measurement here. 
We measured the voltage standing wave ratio (VSWR) of 
the cavity across the desired resonance or resonances using 
a HP8510C vector network analyzer (we used a one-port 
measurement for simplicity). From this data we found the 
minimum VSWR (at resonance) and the maximum VSWR 
(between resonances). From these two values we used a 
technique [21] to find the VSWR level at which to read the 
upper and lower frequencies, fx and f2, of each resonance. 
From these frequencies, and the resonant frequency fr we can 
calculate the cavity Q using the relation 

Q = /r/(/l-/2 (21) 

With the additional knowledge of whether the cavity was 
under-coupled (less than optimum coupling) or over-coupled 
(more than optimum coupling) a correction factor for the Q 
was found that eliminated the loading effect of our mea- 
surement apparatus and wave launcher. The cavity coupling 
could be adjusted by moving the launcher in and out of the 
cavity. Using the minimum insertion which would give a clear 
resonance we were certain to be in the under-coupled regime. 
The cavity was made of brass. 

Using these techniques we measured the Q's of the cavity 
modes in both open-ended and close-ended configurations. 
As a check we compared the measured Q's for the shorted 
configuration with an analytic calculation which is described 
in detail in Appendix II. These results appear in Fig. 9. 
The agreement of the measured and calculated Q's is very 
good when we use a surface roughness factor of 1.7. This 
factor effectively increases the skin depth in the calculation 
to compensate for increased field penetration due to surface 
imperfections (i.e. fabrication, oxidation). 

We use (20) to calculate Qd from the measured values of 
Qt and Q0hm- The only remaining step is to calculate the end 
reflection, p, from Qd. Appendix I presents a derivation of the 
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Fig. 9. Calculation (open squares) and measurement (bars) of the wall losses 
for various axial modes associated with the TMoi mode of the shorted periodic 
cavity. The surface finish factor is 1.7. 

relation of these two parameters. The result is 

P = 
{Ot/Qi 

l + (a/Qd) 
(22) 

where a = (uj/c)2(L/ß). Using this relation the measured 
values of p were found. These values of p for the TM01 axial 
modes were compared with a set of calculations performed 
by A. Bromborsky [22]. The results appear in Fig. 10(b). 
The measured reflection coefficients are up to 15% larger 
than the calculated ones. This is a significant difference since 
reflections are important for both the linear characteristics 
(starting conditions) and for simulations of non-stationary 
operation of pulsed relativistic backward wave tubes. For 
example, a 15% change in the reflection coefficient can cause 
the starting current to double. 

VI. SUMMARY AND CONCLUSIONS 

The electromagnetic properties of slow-wave resonators 
for high-power relativistic backward wave tubes have been 
studied both theoretically and experimentally. The agreement 
between the measured and calculated frequencies and spatial 
field distributions is very good (the discrepancy is less than 
0.2%) for the first three symmetric transverse magnetic modes 
(TM0pe) with the index p from 1 to 3 and various axial indices 
I (from 0 to N where N is the number of periods of a slow- 
wave resonator). Preliminary data is also available for the 
TM04 mode, which is characterized by a very flat dispersion 
curve (see Fig. 1). 

We have also developed a simple method to measure the end 
reflections in open slow-wave resonators by measuring their 
Q-factors. This measurement technique gives results for end 
reflections which are up to 15% higher than those that follow 
from computer code simulations [22]. 

Applying these techniques is especially important to high- 
power relativistic BWO's with overmoded structures because 
their dispersion diagram may not be a monotonic function 
of the axial wave number. For this reason it is necessary to 
measure both the frequency and the axial wave number, as 
was done in this work, in order to identify the transverse and 
axial indices of the operating mode. 
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Fig. 10. (a) Measurement of the diffractive quality factor of the open 
periodic cavity for various axial modes associated with the TMoi mode, (b) 
The measured reflection coefficient for various axial modes, derived from the 
diffraction quality factor using (22). 

The results obtained are important in the design of future 
high-power relativistic backward wave oscillators, relativistic 
travelling wave tubes, overmoded multiwave Cherenkov and 
multiwave diffraction generators. We also plan to extend 
the technique described here to the study of plasma filled 
relativistic slow wave devices [24]. 
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APPENDIX I 
DEPENDENCE OF CAVITY END-REFLECTIONON 

DIFFRACTIVE QUALITY FACTOR 

We consider a cavity consisting of a section of waveguide 
with a short at one end and a "leaky" aperture (antenna) at 
the other. We find the dependence of the reflection from this 
aperture, p, on the diffractive quality factor of the cavity Qd 

in two steps. First, we relate Qd to the ratio of circulating 
power to power loss, and then we relate this ratio to the end- 
reflection. We begin with a description of Qd and how it relates 
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to the total and ohmic quality factors. These three Q-factors 
are defined as follows: 

Qohm = Q-factor related to RF power lost in the cavity wall 
by resistive heating 

Qt = Q-factor related to all power loss mechanisms (ohmic 
and radiation) 

Qd = Q-factor related to power lost by diffraction through 
an aperture in the cavity. 

By definition, the Q-factor is related to the cavity power 
loss, Pioss, by the equation 

Q = u(U/Pioss) 

where u is the resonant frequency and U is the electromagnetic 
energy stored in the cavity. Because Q is inversely related to 
power loss, and the total power loss is equal to the sum of 
the diffractive and ohmic losses, the three Q-factors have the 
relation 

l/Qt =  l/Qohm + 1/Qd (23) 

An experimental measurement of the open cavity would give 
the value for Qt. If the aperture was shorted then the measure- 
ment would give 0ohm- Thus, using this equation, all three Qs 
can be experimentally determined. 

We now proceed to relate Qd to the end reflection. To 
accomplish the first step we use the relation between power 
and energy in an empty waveguide 

P/u = (ß/u)c2 = v. gr (24) 

where u is the energy per unit length in the waveguide (U/L) 
and vgr is the group velocity. Using this relation the definition 
of quality factor becomes 

Qd = (üj/c)2{L/ß)(PciTC/Pd (25) 

where Prirc now represents the power circulating in the cavity. 
To relate Pcivc/Pd to the end-reflection p, we consider the 
forward and reverse waves in the cavity with associated power 
P+ and P-, and the power lost through the cavity aperture 
Pd. By definition 

P-/P+ = \P\ 

and 

so 

Pd 

pd/p+ = i - M: 

(26) 

(27) 

(28) 

By eliminating P+ and P_ we relate the power ratio to the 
reflection coefficient 

P++P-      1 + \p\ 

Pd i - !P 
12' 

(29) 

Thus, substituting into the equation for Qd 

1 + IPl2 

Qd = a 
1-\P\: 

where 

a = (u,/c)2(L/ß). 

Inverting this expression in terms of p, we find 

'l-(a/Qd) 
i + («/Qd) 

(30) 

(31) 

(32) 

This is the relation we used to find the cavity end-reflection 
in Section V of this paper (22). 

APPENDIX II 
OHMIC LOSSES IN RESONATORS WITH CORRUGATED WALLS 

Consider a resonator formed by the part of a cylindrical 
waveguide with corrugated walls which is bounded with two 
end walls. In general, the ohmic quality factor (Q) of any 
resonator can be defined as 

^ohn 
w 

w. 
Jv\H~\2dV 

ohm f.        jtfJW 
= 2 (33) 

Here, the bars imply the averaging over the wave time 
period 2-K/UI, W is the microwave energy stored in the 
resonator, Wohm is the microwave energy concentrated in a 
skin-layer of the metallic walls. Vskin is the volume associated 
with the skin depth. The coefficient 2 reflects the fact that 
inside a resonator the electric field amplitude is equal to the 
magnetic field amplitude while in a metallic wall (with the 
finite but very large conductivity, a) only the magnetic field 
is significant since E^ ~ (l/y/a)H~. 

We will restrict our consideration to the simplest but most 
important case of symmetric TM0pe modes. The magnetic field 
of such modes has only one, non-zero component directed 
along azimuthal coordinate d> (H~m). In a corrugated structure 
with strong end reflections this field, excited at the given 
frequency u, can be presented as 

H^t, = H,t,eiut + complex conjugate. 

where 

An 
H4> = ie0ujR0   Y2   —Ji(9nr)el ißnZ (34) 

Xn 

ßn = ln/L + riß 

Here lir/L is the axial wave number of the field, the wave 
number ß is determined by the period of corrugation d: 
ß = 2-K/d, the transverse wave number gn is equal to gn = 
{{uj/cf-ßl]112. This is the form given by (5). For slow spatial 
harmonics g2

n < 0 (n ^ 0), and therefore, Ji(gnr) = Hi(pnr) 
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where p£ = -g\. Below we will take into account only zero 
and ± first spatial harmonics supposing that amplitudes of all 
other harmonics are negligibly small. 

Let us consider periodical corrugation of the resonator wall, 

R = R0 + h ■ cosßz (35) 

and suppose that the height of these ripples, h, is much smaller 
than the wavelength, A. In such a case of small ripples it is 
possible to replace the boundary condition for the field at the 
real corrugated wall by an approximate boundary condition 
at the wall of the cylindrical waveguide of radius R0 [25]. 
From this condition one can find the relation between spatial 
harmonic amplitudes [26]: 

A±i 
A0 

.h   g2
0T(lir/L)-ß     Ji(g0R0) 

P±i Io{p±iRo) 
(36) 

In the case of arbitrary relations between h and A the ratio of 
harmonic amplitudes can be found only numerically. 

In addition to the assumptions given above let us also 
assume that the structure consists of an integer number of 
periods: L = N ■ d where N is an integer. Then, for the 
microwave energy stored in the resonator one can obtain the 
following formula: 

W = TCLRI e0ujRo— }Ji(Xp) 
Xo 

i2 

(37) 
where \p = goRo is the pth root of the equation Jo(x) — 0, 
which is the boundary condition for the TMop< mode in a 
waveguide of the constant radius R0, 

a±i    = 

± 
(/>±i 

h    gfah/L-ß 
P±l 

TU ^- [l!(P±1Ro) - Io(p±iRo)l2(p±iRo)] ■ 
(38) 

The last two terms in (II.5) correspond to the ± first spatial 
harmonics. 

In a similar manner one can find the microwave energy 
stored in a skin-layer of the depth S3k. Note that due to a 
certain roughness of the wall, a realistic skin depth is 1.5-2 
times larger [27] than the theoretical value. Correspondingly, 
the ohmic Q-factor of the closed cavity 

Q 
closed 
ohm 

w 
V* ohm,corr ~t~ ** ohn 

(39) 

where W0hm,corr is the average microwave energy concen- 
trated in a skin- layer of the corrugated wall of a waveguide 
section, and W^ohm.e.w. is the microwave energy concentrated 
in a skin-layer of end walls. Denoting the skin-depth by 
63it one can derive for H^ohn H'ohm.e.w. the following 

expressions: 

Wohm.corr = ^SskL (e0U)R0^   R0Jf(Xp) 

{' 1 + a\q{ + aii<7ii + flo aig1+a_ig_i)+(^)   J 

Wohm,e.w. = 27r6sk(e0tjRo^)2R2
0JHXp) 

PI 
0+2(liv/L) 

1 
ßRo 

(40) 

(41) 

Here q±i denotes h{p±iRo)/IQ{P±IRO)- 

Substituting equations (II.5), (II.6), (II.8) and (II.9) into 
(II.7) one can find the ohmic Q-factor of the closed cavity. In 
microwave generation experiments [3,4,6,7] structures without 
end walls are used. Correspondingly, when reflections of the 
microwave power at both ends (z = 0 and z = L) are large 
enough, the ohmic Q-factor of the resonator can be estimated 
by the following equation 

W 
Vohm ~ w. '' onm,corr 

(42) 

where W and W^0hm,corr are defined by Eqs. (II.5) and (II.8), 
respectively. Equation (II.7) was used in Section V (and Fig. 9) 
to calculate the ohmic losses in a shorted cavity. 

Two limiting cases should be considered separately. In 
case of the 0-mode, we have / = 0.^ = ß-i,Pi = 
P-i,qi = q-i,ai = a_i and 4>\ — (p-\, which means 
that the first and minus first harmonics degenerate to each 
other except for difference in propagating direction. Thus we 
have to recalculate our formulas from the first step by taking 
the degeneracy into consideration. This leads to simplified 
expressions for terms defined by eqs.(II.8),(II.9). We do not 
present here these formulas because it was found that for 
parameters of our slow-wave structure the amplitudes of ± 
first harmonics are small {A\ = A-\ = 0.02Ao), and therefore 
these harmonics can be ignored in calculation. This fact has 
been used to calculate the Q-value of the 0-mode in Fig. 6. 

In case of 7r-mode, a zero harmonic of forward wave and 
minus first harmonic of backward wave have the same axial 
wave number as well as a zero harmonic of backward wave 
and plus first harmonic of forward wave. They propagate in 
opposite directions and thus form a standing wave together. 
In other words, these harmonics degenerate to each other in 
terms of dependence of the radial coordinate and therefore all 
formulas must account for this effect. We do not present here 
these formulas recalculated, because it was found that in our 
experiment the intersection between the light-line, u = kzc 
and the dispersion curve is close to the point of the 7r-mode, 
which means \ g0 |< ß, where 

2 _ 2 
Po = -So 

ß2 

-O^T >o. 

This condition \ g0  |< ß simplifies the consideration. For 
experimental parameters the following relation between har- 
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monic amplitudes was found, 

Ax = -1.57 x 10 -4 A.-, 
= 1.025. 
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Theory of relativistic backward wave oscillators operating near cutoff 
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A numerical model for analyzing backward-wave oscillators (BWOs) operating near the upper 
edge of the transmission band is presented. The model is used to calculate starting currents for 
two finite length devices, an X-band BWO (/=8.4 GHz) and a J-band BWO (/=5.5 GHz). 
The operating frequency and efficiency predicted by the nonlinear numerical simulations are 
compared with experimental data for each device. 

I. INTRODUCTION 

Backward-wave oscillators (BWOs) utilize a high- 
current electron beam to produce high-power, coherent ra- 
diation in the centimeter and millimeter wavelength re- 
gime. Under certain voltage and beam current operating 
conditions, a backward-wave oscillator can operate near 
the upper edge of the transmission band, where the group 
velocity of the electromagnetic wave goes to zero. Most 
frequently, this corresponds to operation at the so-called 
'V point, where the electromagnetic fields have a period 
twice that of the structure. There are a number of practical 
reasons for operation near this point. First, the start cur- 
rent usually has its lowest value in this case. Thus, if the 
length of the interaction region and the available beam 
current are constrained, one can still design a device that 
will operate efficiently by placing the operating point at the 
minimum of the group velocity. Second, once a particular 
structure is chosen,, its operating point can be varied by 
varying beam voltage. The highest-frequency operation 
will occur at the 'V point. Thus, it is natural to consider 
operation in this regime. 

For frequencies near the ' V point the cold structure 
dispersion relation can be approximated as a quadratic 
function of the wave number. A theoretical model, similar 
to those presented in Refs. 1-3, is developed in this paper 
to describe the operation of the device in this regime. The 
model consists of the self-consistent set of equations that 
describe the slow evolution of the envelope of the radiation 
field and the relativistic motion of the electrons along a 
strong magnetic field. Numerical calculations of the start- 
ing current are performed and compared with an analytic 
expression for the starting current derived by assuming a 
fixed field profile. 

To compare with experimental results, the effects of a 
time-varying voltage and beam current pulse are included 
in the theoretical modeling. We consider two BWOs, an 
X-band BWO (/=8.4 GHz) and a J-band BWO (/=5.5 
GHz). We compare predictions of peak efficiencies and 
operating frequencies from the theoretical model with ex- 
perimental results.4,5 From studies performed on the 
X-band BWO, agreement is shown between experiment 
and theory. However, as will be seen, some aspects of the 
J-band BWO experiment are not explained by the model. 

Earlier theoretical modeling of the X-band device6 was 
developed, with the assumption that the interaction takes 

place at frequencies far away from the zero group velocity 
point. However, at high voltages this assumption breaks 
down. The present model allows us to accurately model the 
behavior of the device at operating points near the upper 
edge of the transmission band. 

II. THEORETICAL MODEL 

In this section we develop the theoretical model to 
describe the BWO interaction near the upper edge of the 
transmission band, where the group velocity vanishes. In 
our model, we assume the interaction between the electron 
beam and the electromagnetic waves of the cold slow-wave 
structure is weak in the following sense. Over a length 
equal to a period of the structure, the electromagnetic 
fields have the same temporal and spatial dependence as 
the cold-structure fields. The effect of the beam is to cause 
the envelope of the electromagnetic fields to vary slowly in 
axial distance and time. In addition, the beam produces a 
small space-charge field that is proportional to the beam 
density. 

Our derivation will begin by reviewing the approach of 
Refs. 4 and 6. The electromagnetic fields in the structure 
can be written as follows: 

E(x,t) = [EJx,k)e(z,t)+E(J)(x,k)]e'aa-"'>+c.c,      (1) 

B(x.r) = [BJx,k)e(z,t) + Bl
p
s)(x,k)} Hkz-uit) + C.C, (2) 

where e(z,t) is the slowly varying amplitude of the elec- 
tromagnetic waves, Ep(x,k) and Bp(x,k) are the periodic 
eigenfunctions of the empty slow-wave structure and 
E(

p
s)(x,k) and Bp

s\x,k) are the "space-charge" fields. The 
space-charge fields represent the first-order correction (in 
beam density) to the vacuum fields and contain both a 
periodic dependence due to the corrugations and a slow 
dependence [analogous to that imparted by the envelope 
e(z,t) to the vacuum fields], reflecting the degree of bunch- 
ing at a particular point in the interaction region. Note that 
the space-charge fields are also modulated by an exponen- 
tial with wave number k and frequency a. This is due to 
the fact the these fields are the responses to the bunched 
beam, which is moving with speed vz=*co/k. A more de- 
tailed treatment of the space-charge field will be given in 
Appendices A and B. 
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FIG. 1. A schematic picture of a cold-structure dispersion a>(k) of a 
TMoi mode of an infinitely long periodic structure. The straight lines that 
intersect the dispersion curve are the electron beam Doppler lines, 
<u = fcUjQ, where V& is the initial beam velocity. The two Doppler beamlines 
correspond to beam voltages of 550 and 350 kV. 

The periodic eigenfunctions of the slow-wave structure 
satisfy Maxwell's equations for a wave of frequency co and 
Floquet wave number k, namely 

10) 
--Ep = VXBpi ikzXBp, 

-Bp=VXEp+ikzXEp, 

(3a) 

(3b) 

where £ is the unit vector in the axial direction. The solu- 
tion to (3a) and (3b) with the boundary condition that the 
tangential component of Ep vanishes at the metal wall gives 
the cold-structure dispersion relation, oj(k). For example, 
consider an empty corrugated structure with period d and 
wall radius r(z)=rav[l— A cos(2A:0z)], where rav is the av- 
erage wall radius and k0=n/d is the wave number at the 
'V point. The dispersion curve for the lowest axisymmet- 
ric mode of this structure is plotted in Fig. 1 for the case 
where /-.,„= 1.5 cm, A=0.1, and d=\.bl cm. Also shown 
are the beam dispersion curves for two values of the beam's 
axial velocity, uz, corresponding to energies of 350 and 550 
kV. The significance of these curves will be discussed sub- 
sequently. 

To determine the equations governing the slowly vary- 
ing amplitude of the electromagnetic fields, one substitutes 
(1) and (2) into Maxwell's equations, 

IdE 4TT 
-— = VXB — j, 
c dt c 

\dB 
— —=VXE. 

c dt 

(4a) 

(4b) 

Then one subtracts the dot product of (4a) with B* from 
the dot product of (4b) with E* and integrates over the 
volume contained in one period of the structure. Using 
(3a) and (3b), the periodicity of E,, Ep

s\ Bp and Bp
s\ and 

the boundary condition that the tangential component of 
the electric field vanishes on the metal wall, the following 
slowly varying amplitude equation is obtained: 4,6 

+*5--W' 
de       de 

Jt 
,     E*«Je-''(fa'-",) 
axL -2 ,       (5) 

U 

4,6 where the group velocity was shown to be 

(E,XB* + E*XB„) ^M^i-^'V" "• (6) 

the normalized energy stored in one period of the structure 
is given by 

U ~jdz'jdix,(\Ep\1+\Bp\2), (7) 

and J is the component of the current oscillating at a. The 
integrals in (5), (6), and (7) are carried out over the 
volume contained in one period of the structure. The inte- 
grands in (6) and (7) are strictly periodic in z, and there 
is no ambiguity in the evaluation of the integral. In the case 
of (5) the integral is carried out over the range of z' values 
of length d, the period of the structure, centered about the 
point z. The formal basis for this type averaging is pre- 
sented in Appendix A. To be specific, we note that in the 
case of a symmetric structure the volume integral may be 
written as 

f dz'  f d2xL =  \Z+d dz' jrJU'' r dr J"2* d<j>. 

When operating far away from the 'V point (for ex- 
ample, with the lower beam voltage of Fig. 1), the disper- 
sion relation of the cold structure can be approximated by 
a straight line with slope vg, which is constant. This is the 
situation that has been treated previously, and is well de- 
scribed by (5). As the operating point moves closer to the 
zero group velocity point as the voltage is raised (for ex- 
ample, with the higher beam voltage of Fig. 1), the straight 
line approximation breaks down and (5) requires modifi- 
cation. A rigorous derivation of the amplitude equations 
for this case is presented in Appendix A. Here we present 
a heuristic derivation that yields the same result. Near the 
upper edge of the transmission band the dispersion relation 
is approximated by the parabola 

1 dv„ 
oj(k)=ü)0+-j£(k-k0)

1, (8) 

where w0 and k0 are the frequency and wave number at the 
"IT" point (zero group velocity), and dv/dk is a negative 
constant. Thus, in this range of wave numbers we have 
vg(k) = {k—k0)dvg/dk. We now regard k as an operator, 
which near the 'V point, is written as k = k0—id/dz, 
where the derivative with respect to z operates on the 
slowly varying envelope. The correct generalization of (5) 
is obtained by replacing Ugä/dz in (5) by the following: 

vg- i[a(k)—(o0\^ — 
-idvJk0) d2 

dk    d?' 
(9) 

Substituting (9) into (5), we obtain the following slowly 
varying amplitude equation: 
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de    i dvg d*e 
~di~2"dkd? ~M At 

£*. Jg-'fV-^) 

£/ 
(10) 

where 

3v, t-£W** «3 (E0XB* + E?XBJ 

(9* £/ 
(ii: 

Equation (10) is the envelope equation for an electro- 
magnetic wave driven by a source term that represents the 
interaction of the cold-structure fields with an electron 
beam current. The envelope varies slowly in space com- 
pared to the period of the structure d and the wavelength 
2w/k, and varies slowly in time compared to 2v/co. The 
boundary conditions for the slowly varying amplitude that 
are to be applied at both ends of the structure, are of the 
form 

de 
-(z=0)=(A:w€(z=0), 

de 

Tz 
(z=L) = -ikble(z=L), 

(12a) 

(12b) 

where £w and khX are parameters that depend on the cou- 
pling of the fields inside and outside the structure. By anal- 
ogy to the theory of transmission lines, these quantities can 
be thought of as admittances describing the fields outside 
the structure. These boundary admittances can be written 
in terms of the reflection coefficients at the ends of the 
periodic structure. Consider the following slowly varying 
amplitude: 

e = e  e
,(A*2+4w"-(-e^e -i(A*r—Aw f) (13) 

where e± represent the forward and backward propagating 
waves, and A/c and Am represent the shift in the wave 
number and frequency away from the ' V point. Inserting 
the above expression into the boundary conditions (12a) 
and (12b), one obtains the following expression for the 
reflection coefficient: 

*,-= 
Mc-kh, 

±k + khl' 
(14) 

„ß Ak Lr for i"=0,l, where R0 = e+/e_ and Rl=euai"'6_/e+ , cor- 
responding to the reflection at z=0 and z= L, respectively. 
As the wave number approaches k0, &k goes to zero and 
the reflection /J, goes to — 1. Now suppose that the reflec- 
tion coefficient R,{k) has been determined by some other 
means. For example, the reflection coefficient for sinusoi- 
dally rippled waveguides connected to waveguides of con- 
stant wall radius has been determined numerically in Ref. 
7. It is-found that Rj(k) -»— 1 as k—k0, the wave number 
at the 'V point. The boundary condition parameter kbi 

can then be determined by solving (14), assuming Rt(k) is 
known and taking the limit as k — k0, 

kbi= lim (k-k0) 
\-Riik) 
\+Rt(k) (15) 

By doing this one obtains a unique value for the boundary 
admittances valid for operation near cutoff. 

From (15) ones sees that the boundary admittance is a 
measure of how the magnitude of reflection coefficient for 
a particular structure goes to unity as the operating wave 
number approaches k0, the wave number at cutoff. Large 
values of the boundary admittance correspond to struc- 
tures with large values of the magnitude of the reflection 
coefficients for all operating wave numbers under consid- 
eration, whereas small values of the boundary admittance 
correspond to structures with low reflection coefficients, 
except when operating near the cutoff. 

To evaluate the source term in (10) we need to char- 
acterize the electron beam current. Consider an annular 
electron beam immersed in a strong magnetic field. Assum- 
ing the beam has initially only an axial component of mo- 
mentum and the magnetic field confines the motion of the 
electrons along the z axis, then only the interaction of the 
axial current with the axial electric field needs to be con- 
sidered. For synchronism between the electromagnetic 
fields and the electron beam, we pick out the component of 
the current that varies as e""""'. Therefore, we average the 
current as follows: 

:i6) 

The current due to an annular electron beam with radius rb 

can be written as follows: 

f- P. 
)mo 

8{r-rh) 
f(z,pz,t)     2?rr     dp,, (17) 

where f(z,pz,t) is the nonthermal electron distribution 
function defined as 

■/. 
f(z,pz,t)=n0uz0 dt05{z~z(t,t0)]8[pz-pz(t,tQ)], 

(18) 

where M0 is the initial electron density per unit length, v^ is 
the initial axial electron velocity and z(t,t0) andpz(t,t0) are 
the position and momentum, respectively, of a particle at 
time t that entered the interaction region of the structure at 
time8 t0. 

Substituting the above expression for the current into 
(10) and then normalizing the equation, we arrive at the 
following slowly varying amplitude equation: 

^        '  (19, 
da 

2Tr+lW=-I<e~'%°' 
with the following normalized boundary conditions: 

da 

da 

M 

(£=0)=ittw£fl(£=0), (20a) 

(£=l) = -/*6lIa(£=l), (20b) 

where xl>=k^—ü)0t is the electron phase, E,=z/L is the 
normalized axial distance, r=[dß/dk L\ ct/L is the nor- 
malized time, and a(z,t) =qLEzp{rb)e(z,t)/mcL is the nor- 
malized amplitude. Here we have assumed that dv/dk < 0, 
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appropriate to the upper edge of the transmission band. 
The angled bracket denotes the average over the initial 
phase of the electrons with respect to the high-frequency 
field. In addition, we have introduced a normalized current 
denned as 

/=8TT 
/A 

C(rb) 
(21) 

\dßg/dkL\ ' 

where Ix = mc}/q= 1.7 X 104 A and C(rb) is the coupling 
coefficient. The coupling coefficient is a measure of how 
well the electromagnetic fields of the cold-structure couple 
to the electron beam. The coupling coefficient is defined as 

C{rb)-. 
d\fd

QdzEzp(rbj)\ 

ftfr'lnrdrdz[ \ Ep(rj) \l+ jBp(rj) |2] 
(22) 

where the numerator is the square of the average of the 
axial electric field over one period of the structure and the 
denominator is the total electromagnetic field energy 
stored in one period of the structure. For our model we use 
the value of the coupling coefficient at the radius of the 
electron beam for the cold structure electromagnetic fields 
with frequency co0 and wave number kQ. 

An electron in the beam is characterized by its phase 
il> = k0z — cij0t and its energy mc2y, where 
y= (1 — v2/c2)~~1/2. Since the electron beam is assumed to 
be immersed in a strong axial magnetic field, only motion 
in the axial direction is considered. As the beam travels 
through the interaction region, its phase and energy evolve 
according to 

(23) 

dy vz       dy u. 

dt dz 
i)y(b-«rt+CXi        (24) 

where q is the electron charge. The particles respond 
strongly only to the synchronous spatial harmonic of the 
axial electric field. Therefore, in (24), we average the axial 
electric field over one period of the structure. The quantity 
Ezp is the axial component of the space-charge field. In 
Appendix B this field is shown to be proportional to the 
alternating beam current density, 

c     p      c JA 
-i(,kz-wt) (25) 

Consistent with our previous assumption of slow time ev- 
olution, the dominant terms in the above equations of mo- 
tion are the derivatives with respect to the axial coordinate. 
Here we are basically assuming that the slowly varying 
field amplitude changes little during the time in which an 
electron is in the structure. As an estimate, this requires 
dßJd(kL)4ßz. With these assumptions the equations of 
motion reduce to the following: 

drl> 

3l 
= k0L- 

CüQL 

' cßz 
(26) 

dy 
=2 Re a(i,r)- wn 

# (27) 

(28) 

The space-charge parameter is defined as 

where C2 is the coefficient describing the reduction of the 
plasma frequency due to the metal wall of the periodic 
structure. See Appendix B for a precise definition of C2. 
For our calculation we use the coefficient C2 calculated 
assuming an annular beam in a smooth waveguide of 
radius4'6 rw=rw. The analytic expression for C2 is given by 

l /     K0(kL rJIoikL rb)\ 
C2=S/o(*i r6)*o<*i '^"j^ rMkl rm))> 

(29) 

where I0 and K0 are modified Bessel functions and 
k\ ={kl-col/c1). This concludes the derivation of our 
theoretical model. Equations (19), (20), (26), and (27) 
describe mathematically our model and will be solved nu- 
merically to determine the operating frequency and effi- 
ciency for two different devices. In the next section we use 
this model to calculate the starting current for the two 
devices. In Sec. IV, results from nonlinear simulations will 
be presented. 

III. STARTING CURRENT 

The start current is defined as the current above which 
the linear gain exceeds losses, and signals are self-excited. 
Several authors have investigated conditions for self- 
oscillation near the edge of the transmission band.9"" Pre- 
sented here is both an analytic and numerical calculation 
for the starting current for a BWO operating near the zero 
group velocity point. Starting current calculations are pre- 
sented in Ref. 6 for operation far from the 'V point. We 
will compare this starting current calculation based on the 
linear dispersion curve valid far from the 'V point with 
our starting current calculations based on a quadratic 
curve valid near the "IT" point. 

For the analytic calculation of the starting current we 
assume a fixed field profile for the slowly varying envelope 
and use perturbation theory to solve the equations of mo- 
tion for the system. To do this, let us choose the normal- 
ized slowly varying amplitude of the electromagnetic 
waves to have the following form: 

a(£)=a0sin(A& L£), (30) 

where A* L=mr for n = \,2,-,N, where A^ is the number 
of periods of the slow-wave structure. Such a field profile 
will result when the boundary condition parameters kbiL 
are very large. Using energy balance for the amplitude 
equation (19) along with the appropriate boundary condi- 
tions (20a) and (20b), the analytic expression for the 
starting current is 
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TABLE I. Simulation parameters. 

Parameters 
Backward wave oscillator 

X-band BWO J-band BWO 

4-n- 

d^cfayl   \dß/dkd\ 
L)    co0L  C(rh)F(Ak L) 

l l 

^kfäL   kbXLj 

where the function F(Ak L) is defined as follows: 

F(Ak L)=- 
G(K_.)-G(K+) 

K_Ki.(K^+K_)sin1(K4_ + *_) ' 

where K ± = [Ak ± (k0 — OJQ/V^)] L and 

G(K)=K-7- 
sin2 K 

(31) 

(32) 

(33) 

In the above calculation we have allowed for outgoing 
waves (finite km and khl) at both ends of the structure. If 
at the input of the structure (z<0) modes are cut off [a(z 
= 0)=0] then, according to (20a) this case is treated, by 
allowing kM to become infinite. 

Equation (31) shows the starting current is inversely 
proportional to the boundary admittance. This is reason- 
able, since by (15) a large value of kh implies the reflection 
coefficient is close to unity. As the boundary admittance 
increases, the starting current of the device decreases. The 
boundary admittance at the 'V point is inversely propor- 
tional to the slope of the reflection coefficient therefore as 
the slope approaches zero [corresponding to a constant 
reflection R(k) = 1 for all k] more energy is stored in the 
device. Less energy radiates out of the device, making it 
easier to start electromagnetic waves oscillating. 

Using our model we calculate numerically the starting 
current for two devices and compare our analytic and nu- 
merical results. Table I shows the operating parameters for 
the two devices. The values of quantities such as frequency, 
coupling coefficient, boundary condition parameters, and 
group velocities are obtained using the computer code de- 
scribed in Ref. 7. The first device considered is an X-band 
BWO. This device has been extensively studied in Refs. 4 
and 6, using the model based on a linear dispersion curve 
(constant vg). However, the assumption that the group 
velocity is constant breaks down for voltages above 400 
kV. As the voltage is increased, the beamline moves toward 
the 'V point, where the dispersion curve rolls over. 

linear diepareian 
. quadratic dispemon - numerical 

quadratic diaperaion - analytic 

/o (GHz) 8.7395 5.8480 
d (cm) 1.67 2.15 :      I 

N g 10 14 35 
3             j 

r 
rav (cm) 1.500 8.440 =            h 

rh (cm) 0.775 7.375 ; 0.05 (- 

C(r„) 7.24X10-2 2.91 XlO"3 r 
**W QO 1.169 \ 
kMd 5.80 1.169 
dß/dkd 
V (kV) 

-0.4613 -2.6834 
300-600 200-900 0 

/ (kA) 0.10-0.25 2.0-10.0 

400 600 
Voltaae [kV] 

FIG. 2. Starting current versus voltage for the X-band BWO with period 
length d= 1.67 cm, number of periods N-%, cutoff frequency /0=8.7395 
GHz, average wall radius r.,.= 1.50 cm. and beam radius /•l,=0.775 cm. 

Therefore, for small changes in voltage the group velocity 
of the electromagnetic waves is no longer constant. Figure 
2 shows the starting current calculation based on the zero 
group velocity model (both analytic and numerical) and 
the start current from the model of Refs. 4 and 6. Clearly, 
the analytic and numerical calculations based on the qua- 
dratic dispersion agree very well. As expected, the slowly 
varying amplitude is very nearly equal to the assumed sine 
profile. The cusp in the starting current corresponds to a 
change in the axial mode number. For voltages between 
200 and 400 kV the field profile has Ak £ = 3ir, and for 
voltages greater than 400 kV the field profile has Ak L 
= 2ir. For the range of voltage from 300 to 400 kV, the two 
models (linear and quadratic dispersion) agree well, how- 
ever, for voltages greater than 400 kV our model near cut- 
off (quadratic dispersion) is more reliable. 

The second device considered here is a J-band BWO. 
As detailed in Table I, this device operates in the range of 
voltage, where the dispersion relation for the cold- 
structure fields is quadratic. The group velocity of the elec- 
tromagnetic wave is very nearly equal to zero. The previ- 
ous linear dispersion model is not capable of treating this 
device. Therefore for this device our "IT" point model is 
preferable. For this device three lengths, /V=14, 16, 35, 
periods are studied. Figure 3 shows the analytic and nu- 
merical starting currents for the three structures. A dis- 
crepancy exists between the two curves because the actual 
slowly varying field profile obtained from the numerical 
code differs from the sine wave assumed by the analytic 
calculation. This discrepancy is shown in the inset figure of 
Fig. 3 for the 16 period structure. We note that the bound- 
ary admittances for this device are not nearly as large as for 
the X-band BWO. Thus, the assumption of a sinusoidally 
varying field profile in the analytic calculation is not ex- 
pected to be as good. 

IV. NONLINEAR SIMULATIONS 

In this section we present the modifications to our the- 
oretical model in order to simulate actual BWO experi- 
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FIG. 3. Starting current versus voltage for the J-band BWO with period 
length d=2.\5 cm, number of periods N= 14, 16, 35, cutoff frequency 
/0 = 5.8488 GHz, beam radius ^=7.375 cm, and average wall radius 
^ = 8.44 cm. The profile in the upper right corner is the normalized 
slowly varying amplitude versus normalized length for voltage V 
= 750 kV. 

ments. Comparisons between the nonlinear simulations 
and experimental results for operating frequency and peak 
efficiency are shown. 

To simulate the BWO experiments, we include in our 
theoretical model a time-dependent voltage and beam cur- 
rent pulse. We assume a rising exponential for the beam 
current and voltage, namely 

/(*)=/.( l-<? (< + '„>/', )p, 

V{t): Vp(\* Ji + O/t, ), 

(34) 

(35) 

where tr is the rise time and tp, Vp, and lp are parameters 
chosen to best model the characteristics of the beam. We 
assume the Child-Langmuir law is approximately valid, 
and let p= 1.5. To model the end of the pulse, we assume 
the voltage and current drop exponentially at some time 
t=tr. In addition, we include the effects of direct current 
space charge. When the electron beam enters the electro- 
magnetic structure the beam slows down due to a buildup 
of an electrostatic potential. This voltage depression re- 
duces the electron beam energy. The reduction in the beam 
energy is calculated using the following formula:12 

Ar=2-^ln(— 1- 
1 

(yo-Ay)' 

-1/2 
(36) 

where rav is the average wall radius of the corrugated struc- 
ture and rh is the radius of the electron beam. Since the 
voltage and current are time dependent, the initial value of 
the relativistic factor y, is given by y;=y0—Ay, where 
Y0--,l + V(t)/mc2. 

The two BWO devices considered here do not operate 
exactly at the "IT" point, therefore, we made two additional 
modifications to our theoretical model to more accurately 
simulate these devices. The first modification to our model 
was to change the equations of motion to included the 
frequency shift away from the 'V point. Equation (26) 
then becomes 
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FIG. 4. (a) Operating frequency versus voltage for the X-band BWO 
with period length d= 1.67 cm, number of periods JV = 8, cutoff frequency 
jro = g7395 QHZI average wall radius r„.= 1.50 cm, and beam radius 
rb=0J15 cm. (b) Peak efficiency versus voltage. 

wk*L- 
(<u0+Ao))L 

(37) 

where Aa> is the average frequency shift obtained from 
(19). The slowly varying envelope is a complex quantity 
representing the amplitude and phase of the wave. The 
frequency shift Aw is the rate of change of the phase of the 
amplitude, a. To find Atu we multiply (19) by a*, integrate 
over the length, and take the imaginary part to find the 
average frequency shift. In addition, since the coupling 
coefficient varies very sharply with wave number near the 
' V point, we included the coupling coefficient as a func- 
tion of operating wavelength. Therefore, after each correc- 
tion of the operating frequency we updated the value of the 
coupling coefficient. 

Using our modified code for a finite-duration current 
and voltage pulse, we compare numerical simulation with 
experimental results.5'8 First, consider the X-band BWO 
with cutoff frequency /0=8.7395 GHz, period 4=1.67 
cm, and length L= 13.36 cm. Figure 4(a) shows the com- 
parison of the operating frequency versus voltage and Fig. 
4(b) shows the comparison of the peak efficiency versus 
voltage. With the above improvements to our model we 
obtain very good agreement between the calculated and 
measured frequencies, as shown in Fig. 4(a). The small 
discrepancy between the measured and calculated frequen- 
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FIG. 5. Axial modes for the X-band BWO with period length </=1.67 
cm, number of periods /V = 8, cutoff frequency /0 = 8.7395 GHz, average 
wall radius r„,= 1.50 cm, and beam radius rh = 0.715 cm. The solid line is 
the cold-structure dispersion curve, where the open circles represent dif- 
ferent axial modes. The dashed line is the parabolic dispersion curve used 
in the theoretical model for operation near the "IT" point, where the 
closed circles represent different axial modes. The frequencies for the axial 
modes of the cold-structure dispersion are listed on the right and the 
frequencies for the axial modes of the parabolic dispersion are listed on 
the left. 
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cies is explained by the difference between the actual dis- 
persion relation and its parabolic approximation. Figure 5 
shows the cold structure dispersion relation with the axial 
modes for the structure, assuming a shorted boundary con- 
dition [R(k) = \] at the end. The dotted line shows the 
assumed parabolic dispersion relation for the structure 
when operating near the "77" point with the corresponding 
axial modes. Fo» the first three axial modes the quadratic 
dispersion agrees with the cold-structure dispersion to 
within 65 MHz. 

The simulated frequency for diode voltages below 400 
kV is not shown in Fig. 4(a), since in the simulations the 
device did not start in this range of voltages. It should be 
noted, however, that if the diode current in the simulations 
is increased the device will operate with a diode voltage of 
365 kV in the third axial mode (/=8.19 GHz, which is 
not the observed frequency). Additionally, if the duration 
of the pulse is sufficiently increased (nearly doubled) the 
device will operate in the second axial mode (/=8.48 
GHz) at 365 kV, however, the efficiency is less than 1%. 
With the diode voltage set to 305 kV, neither raising the 
current nor lengthening the pulse leads to efficient opera- 
tion in the second axial mode (/"= 8.19 GHz). This is a 
consequence of the fact that for the measured frequency 
(8.5 GHz) and the wave number inferred from Fig. 5 
(k = ir/d+2ir/L), the resonant energy is 277 kV. Since 
efficient operation requires the energy of the entering beam 
exceed the resonant er.ergy by some margin, high efficiency 
operation at this frequency F=305 kV is not possible. 
Thus, while the calculated efficiency shows the same basic 
trend as the experimentally measured efficiency, the calcu- 
lated efficiency is shifted in voltage by approximately lOO 
kV. The origin of this shift is under current investigation. 

We consider now the J-band BWO with cutoff fre- 
quency /= 5.848 GHz and period d=2A5 cm. For this 

3>S     «3 

(b) 
600 

VolUfe [kV] 

FIG. 6(a) Operating frequency versus voltage for the J-band BWO with 
period length d=2A5 cm, number of periods /V=lO, cutoff frequency 
/„ = 5.8488 GHz, beam radius rft=7.375 cm, and average wall radius 
r„=8.44 cm. The solid line is the best-fit curve through the simulation 
points, (b) Peak theoretical efficiency versus voltage. 

device we used the experimentally measured voltage and 
current versus time traces instead of the exponential pulse 
described by (34) and (35). The operating parameters for 
this device are presented in Table I. Figures 6(a), 7(a), 
and 8(a) show the comparison between the measured and 
calculated frequencies for each of the three structure 
lengths: N= 10, 14, and 35, respectively. 

The simulated and measured frequencies of operation 
show the same general dependence on beam voltage. Fur- 
ther, both the simulation and experiment show roughly the 
same frequency shift from the 'V point (/=5.848 GHz). 
The agreement appears to be best for the 35 period struc- 
ture. While the shorter structures exhibit less variation of 
frequency with voltage in the experiment than the simula- 
tion. This suggests that the effective cavity Q in the exper- 
iment is higher than in the simulation. 

The peak theoretical efficiency versus voltage for each 
of the structures is shown in Figs. 6(b), 7(b), and 8(b), 
respectively. Results from the experimental study5 of this 
device predict peak efficiencies near 5%, based on output 
power measurements. Numerically calculated efficiencies 
are between 10%-15%. 

Two possible explanations for the relatively large dis- 
parity in predicted and measured efficiencies are the fol- 
lowing. First, there is a large uncertainty in the measure- 
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FIG. 7. (a) Operating frequency versus vollage tor the J-band BWO with 
period length rf = 2.I5 cm, number of periods JV=14, cutoff frequency 
/0 = 5.8488 GHz. beam radius /•,,= 7.375 cm, and average wall radius 
ra, = 8.44 cm. The solid line is ilie besl-til curve through the simulation 
points, (b) Peak theoretical efficiency versus voltage. 
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FIG. 8. (a) Operating frequency versus voltage for the J-band BWO with 
period length d=2A5 cm, number of periods /V = 35, cutoff frequency 
/0 = 5.8488 GHz, beam radius (-„=7.375 cm. and average wail radius 
r„,= 8.44 cm. The solid line is the best-tit curve through the simulation 
points, (b) Peak theoretical efficiency versus voltage. 

ment of the experimental efficiencies, as will be described in 
a forthcoming paper.11 Second, the theory treats only the 
lowest-order symmetric, transverse mode of the structure. 
While this mode is the one that interacts most strongly 
with the electron beam, the next two symmetric modes 
maybe important as well since they are above cutoff at the 
operating frequency. These modes will be excited at the 
discontinuity at the ends of the structure and can affect the 
transverse field profile of the radiated power. A more com- 
plete theory would follow the evolution of these modes as 
well as the lowest-order mode and include the coupling 
among the modes at the ends of the device. 

V. SUMMARY 

We have used the theoretical model for the operation 
of a BWO near the edge of the transmission band to cal- 
culate starting current for two structures. This model 
agrees well with the previous model formulated with non- 
zero group velocity assumptions for operating voltages, 
where the cold-structure dispersion makes a transition 
from a linear to a quadratic function of wavelength. After 
modifying the model near cutoff to include a time- 
dependent current and voltage, we have simulated two 
BWO experiments, and compared the predicted and mea- 
sured results for peak efficiency and operating frequency. 

Predicted and measured frequencies generally agree to 
within 4%, and show the same dependence on beam volt- 
age. However, predicted and measured efficiencies show 
various forms of disagreement. In the case of the X-band 
BWO, the magnitude of the measured and predicted effi- 
ciencies are in agreement. However, the peak efficiencies in 
the two cases occur at different voltages. Various theoret- 
ical attempts to induce the "model" BWO to operate at 
lower voltages failed. Thus, the efficient experimental op- 
eration at the reported voltages is unexplained. In the case 
of the J-band BWO, the predicted efficiency is substantially 
higher than that which is measured. However, there are 
large uncertainties in this measurement.5 Further, the 
model treats only the lowest-order symmetric mode of the 
structure. An improved theory that is currently under de- 
velopment will employ a "full-wave" solution for the sym- 
metric electromagnetic fields, including coupling at the 
output and input ends of the cavity. 
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£#*- APPENDIX A: DERIVATION OF SLOWLY VARYING 
AMPLITUDE EQUATION 

In this appendix we will present a rigorous derivation 
of the slowly varying amplitude equation used in our nu- 
merical simulations. We begin by assuming that the oper- 
ating point is near the 'V point and write the electric and 
magnetic fields in the structure as 

E(x,r) = E(x,r)e'<*°r-Wo')-|-c.c., 

B(x,r) =B(x,f)e'(*°z-a'°',+c.c., 

(Al) 

(A2) 

where k0=v/d and co0 is the 'V point frequency. These 
expressions are then substituted in Maxwell's equations 
(4a) and (4b), yielding evolution equations for the 
complex amplitudes E and B, 

l <9E    icon, . „ .477- 
- — -— E = VXB + /£oZxB-— Je"" lv-ao'\ 
c dt      c c 

l dB    icon . 
--—+ —B = VXE + /ArofXE. 

c dt      c 

(A3) 

(A4) 

We now introduce a multiple length and time scale 
analysis to describe the slow evolution in time and space of 
the amplitude of the field. Primarily this involves separat- 
ing the axial dependence of the fields into a fast dependence 
on the variable z0 and a slow dependence on the variable z,. 
Here, variations with z0 will be periodic, with a period 
equal to that of the structure describing the cold cavity 
fields, and variations with Z\ will describe the profile of the 
fields over a distance equal to the length of the structure. 
Thus, our formal expansion is based on the small param- 
eter S = d/ L, where d and L are the period and length of 
the structure, respectively. We then expand the field and 
axial derivatives in powers of <5, 

E = Eo + E, + E2+--- 

B = B0+B, + B2+--- 

add 

dz    dzn    dzx 

(A5) 

(A6) 

(A7) 

The beam current and the time derivative of the fields 
in (A3) and (A4) will be small quantities; exactly how 
small will be discussed in a moment. Thus, the lowest- 
order equations resulting from (A3) and (A4) are 

ICOn  „ 

-—Eo = VoXBo+/*o£XBo, c 

ICOn  . 

— Bo=V0XEo-HVxEo, 

(A8) 

(A9) 

which are the empty structure equations (3a) and (3b) for 
(o=d)0 and k = k0, which is at the "IT" point. The solution 
of these equations is 

Eo=E,(x,*b)eUi.O, (A10) 

B0=B,(x,*o)«Ui,'), (All) 
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where e(zx,t) is the amplitude envelope, which is to be 
determined in higher order. 

At this point it is necessary to decide the ordering with 
respect to the parameter 8 of all the terms, which we have 
dropped from the lowest-order version of (A3) and (A4). 
For example, the theory described in Refs. 4 and 6, which 
is valid far away from the ' V point assumes that the slow 
time derivative and the beam current are first order in 6, as 
is the axial derivative with respect to the variable zx. This 
results in (5), which, as we have seen, cannot be used at 
the "it" point due to the vanishing of the group velocity. 
The resolution is that one must consider the time deriva- 
tive and the beam current to be second order in 6. Physi- 
cally, this is a consequence of the fact that the dispersion 
curve is parabolic near the "ir" point, and the frequency 
depends quadratically on the deviations of the wave num- 
ber from the "it" point value. From a formal point of view, 
we will now have to go to second order in the expansion 
parameter to obtain the envelope equation. 

Proceeding now with our expansion, the first-order 
version of (A3) and (A4) are written as 

icon ... de 
-— E,=V0XB, +/*ozXB, +iXB.(x,*o) T~ 

c <JZ] 

(A12) 

ico0 de 
— B, = V0XE,-|-/Ao*xEi+fXE,(x,*b)_     (A 

C OZ\ 
13) 

Equations (A12) and (A 13) represent a pair of coupled, 
inhomogeneous partial differential equations for the first- 
order fields E, and B{. It can be verified by differentiation 
with respect to k of (3a) and (3b) that the particular 
solution of (A12) and (A13) is 

(A14) 

B,= -/ 

dEp de 

dk 

dB„ de 

dk * &■' 
(A15) 

The homogeneous solution has the same form as the 
lowest-order solution of (A 10) and (Al 1) and thus can be 
absorbed into it. 

Proceeding to second order, we find 

1      de   icon „ . w«       . w^Bn 
-Kpjr— E2 = V0XB2 + //cozXB2-/z X^ 

*o 

d2e 
X—> 

4ir 
JC-'(*O

J
ö-

<ü
O"I (A16) 

l      de   ico0 M, 
B 

'pdt 
+-U B2 = VoxE2 + 'V"xE2-/iX-^ 

cfe 

(Al7) 

where we have made use of (AlO), (All), (Al4), and 
(Al5). Taking the dot product of (A 16) with E* and 
(A 16) with B* and then subtracting, we obtain 
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1 , .de 
-(|EJ2+|BJ2)--/z 

dt 

dB. 
+■ 

*0 

3Ep 

Ök 

= V-(B2XE*-E2XB*) 
An 

E*.Je -'(*W)-<"n') 

(A18) 

In obtaining (A 18) we have made use of the complex 
conjugate of (3a) and (3b). Integrating (A18) over the 
volume in one period of the structure and dividing through 
by the electromagnetic energy per |e|2 in one period, we 
obtain the slowly varying amplitude equation. 

de 

Ji 

where 

/ dvg d
1e 

'2^icd~?^ 
Jrfzojrf2^ E*-Je- 

likfyZfi-üir,!) 

U 
(A19) 

U = ~\jdz^d1xl(\Ep\1+\Bp\1) (A20) 

is the electromagnetic energy per | e j2 in one period and 

dv^     c 

dk=4w '-"J" die 

E
P
X
K K*XB„ 

(A21) 

is the derivative of the group velocity with respect to k at 
the 'V point for the vacuum electromagnetic wave. In 
deriving (A 19), we have used the periodicity of E,, E2, 
B^, and B: and the boundary condition that the tangential 
component of the electric field vanishes on the metal wall. 
Equation (A 19) is our desired result and is clearly identi- 
cal to (10), which was derived heuristically in the text. 

APPENDIX B: DEVELOPMENT OF SPACE-CHARGE 
FIELDS 

In Appendix A we introduced an ordering scheme and 
perturbation expansion for calculation of the fields in a 
corrugated structure in the presence of an electron beam. 
The fields are represented as a sum of terms, (A5) and 
(A6), which constitutes a series expansion in the small 
parameter S = d/L, where d and L are the period and 
len 
pe 
beai 
eter 
[giv 

of the structure, respectively. As discussed in /-^p- 
v A, in solving these equations we assumed that the 
current and density was second order in the param- 
Thus, the lowest-order fields (Eo,B0) and (E^B,) 
>y Eqs. (AK; All), (A14), and (A15)] repre- 

sent, essentially, vacuum fields with slowly varying enve- 
lopes. The second-order fields (E2,B2) will contain contri- 
butions proportional directly to the local charge and 
current density. It is these terms that constitute the space- 
charge fields included in our model. 

To obtain these space charge fields we must solve Eqs. 
(A 16) and (A 17). To do this, we exploit the variation of 
parameters technique used to solve the first-order system in 

Eqs. (A 12) and (A 13). We write the second-order fields 
as the sum of a space-charge field and a second-order cor- 
rection to the vacuum field. 

E, = EV'-- (J) 
1 d*e d2En 

B, = B U) 

2ä^"äF 

1 d>-e d% 

~2~d£~dkr 

(Bl) 

(B2) 

and insert these expressions in Eqs. (A 16) and (A 17). We 
then use Eq. (A 19) to eliminate the term proportional to 
de/dt in Eqs. (A 16) and (A 17). We note that terms pro- 
portional to d1e/dz\ cancel, since they multiply the second 
derivative of Eqs. (3a) and (3b). That is, by differentiating 
Eqs. (3a) and (3b) twice with respect to k, we have the 

identity 

idza 

cdk1 E„- 
icof) d'Ep 

=vx d
2B, 

W 
d:B, 

+ /*ozX—f + 2ZfX 
3k1 

.3Bp 

dk 
(B3) 

cW-\ 
ud1Bp 

c ok 

:VX 
dlE, 

dk1 + ikoi X- 
a2Er 

*0 
dk- 

(B4) 

After noting the cancellations, the space-charge fields are 

found to satisfy 

--Ei"=V„XBl!,+/itnfXBl"-  477 . Je- '(*Wn-">n" 

dz0 d2x{ 

jr*. je-'( Vo-<V> 

U 

(B5) 

+ ^Bi') = VnXE£,f/*„zXE:
Jl 

B„     dzn     d~Xl 

Y*. je-'(*o*>-"*)'> 

Thus,     the    space-charge    fields 

U 

(B6) 

E[!)(z0^,)    and 
B^'Uo^i) are linearly proportional to the beam current. 
These space-charge fields are referred to in the main text as 
Ep

s) and B^J). For the model considered in our paper in 
which the beam is annular, and the magnetic field restricts 
the current to point in the axial direction we have, follow- 

ing the steps leading to Eq. (19), 

Je Uktf-uiQt). 
mr-rb) 

2irrh 
{e -itfUl) ). (B7) 

Note that the "bunching function" <exp[ — /t/>(z,)]> 
varies on the slow scale, z,, that is, the bunching varies 
slowly over a distance equal to one period of the structure. 
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A?.-*-"- 

„«■can vary by a large amount over the length of the 
Ittucture. Thus, we may write the space charge fields as a 
product of the beam current, the bunching factor, and a 
field profile C^x, *>?„), which depends on the geometry 
of the structure, the operating point, and the location ot 

the beam, 

^E(<>=^ te-^CUi *,;*)<*-»>.       (B8) 

The axial component of this field when evaluated at the 
beam radius and averaged over axial distance enters the 
equations of motion in Eq. (24). 

It is reasonable to ask the basis for retaining the space- 
charge field in the interaction, but not retaining the higher- 
order corrections to the vacuum field. There are two justi- 
fications. The first is that the space-charge field produces a 
qualitatively different interaction with the beam than the 
vacuum electromagnetic field. This is due to the fact that it 
is locally proportional to the beam current, unlike the vac- 
uum field, whose effect is integrated over the length of the 
structure. Thus, including higher-order corrections to the 
electromagnetic field will not change the results as much as 
including the space-charge field. The second reason is that 
the space-charge field, though formally small in the small 
parameter 8 = d/L, tends to be peaked at the location of 
the beam, whereas the synchronous component of the elec- 

tromagnetic field tends to be larger at the wau, and de- 
pends also on the ripple size. In a device with small npples 
the space-charge field can dominate. Thus, we retain only 
the space-charge field and the lowest-order electromagnetic 

field. 
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Parametric effect of a spatially periodic voltage depression on operation 
of Cerenkov sources of electromagnetic radiation 
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In microwave sources of coherent Cerenkov radiation the electrons usually propagate near the 
rippled wall of a slow-wave structure. These ripples cause the periodic modulation of electron 
potential depression, and therefore, lead to periodic modulation of electron axial velocities. Since 
the period of this electrostatic pumping is the period of the slow-wave structure the parametric 
coupling of electrons to originally nonsynchronous spatial harmonics of the microwave field may 
occur. This effect can be especially important for backward-wave oscillators (BWO's) driven by 
high current, relativistic electron beams. In the paper both linear and nonlinear theories of the 
relativistic resonant BWO with periodic modulation of electron axial velocities are developed 
and results illustrating the evolution of the linear gain function and the efficiency of operation in 

the large-signal regime are presented. 

I. INTRODUCTION 

Operation of Cerenkov sources of electromagnetic ra- 
diation is based on the synchronism between the electron 
axial velocity, v2, and the phase velocity of the electromag- 
netic wave, vph. To provide this synchronism slow-wave 
structures are used. Usually these structures are made in 
the form of metallic waveguides with periodically corru- 
gated walls (see Fig. 1). According to the Floquet theo- 
rem, the electromagnetic fields of any mode in such a struc- 
ture can be represented as a superposition of spatial 
harmonics 

E= ^E/rt"|t,"s(2*/'"1;>+i:.<;. (1) 

(A similar expression can be written for H.) In this equa- 
tion d is the structure period, co is the field frequency, k0 is 
the axial wave number of the zero spatial harmonic, and Es 

is the harmonic amplitude. The above mentioned condition 
of synchronism 

vz^vph=co/kz (2) 

where kz=kQ-slir/d, may be fulfilled either for the zero 
spatial harmonic (in traveling wave tubes, TWT's) or for 
the minus first spatial harmonic (in backward wave oscil- 
lators, BWO's). Usually the theory of these devices con- 
siders only the interaction of electrons with the synchro- 
nous harmonic of the electromagnetic field. 

During the last 20 years high-power microwave 
sources based on Cerenkov radiation of relativistic electron 
beams have been actively studied both theoretically and 
experimentally (an extensive review of these studies has 
recently been done by Benford and Swegle1). In spite of a 
large number of publications there is still at least one effect 
which may be important for operation of these devices but 
which, as far as we know, has not been analyzed before. 

"'Permanent address: Department of Physics, Moscow State University, 
Moscow 119899, Russia. 

This effect is based on the periodic axial modulation of the 
velocities of electrons moving linearly along the metallic 
structure with rippled walls (see Fig. 1). 

In principle, depression of electron potential with re- 
spect to the applied voltage, which is caused by the finite 
distance between the electron beam and the accelerating 
structure wall, is well known and its effect on the operation 
of relativistic Cerenkov devices has been discussed 
elsewhere.2'3 However, usually this effect is treated only as 
a reduction of the mean value of electron energy. 

In fact, for electron beams propagating in a metallic 
structure with rippled walls, the voltage depression de- 
pends also on the electron axial position which leads to 
axial modulation of electron velocities. The period of this 
modulation is, obviously, the period of the slow-wave 
structure d. Therefore, this modulation may cause the res- 
onance parametric coupling between electrons and other 
originally nonsynchronous spatial harmonics. Of course, as 
the current grows, the voltage depression effect becomes 
more pronounced. There is also another not so obvious 
reason which makes this effect potentially important for 
relativistic BWO's. From the scaling laws for Cerenkov 
microwave sources with ultra-relativistic electron beams it 
follows that with the increase in operating voltage, Vb, the 
optimal amplitude of the synchronous spatial harmonic of 
the field scales as y0"' > where Yo= l+eV^mc1 is the elec- 
tron Lorentz factor. This tendency becomes distinctive 
enough at voltages above 300-400 kV.5 In the case of 
BWO's the minus first harmonic is synchronous. So, its 
amplitude becomes smaller as the voltage grows while the 
amplitude of the zero spatial harmonic becomes larger be- 
cause the radiated power grows proportionally to the beam 
power. From here it follows that at high voltages the role 
of the electrons' interaction with the zero spatial harmonic 
becomes more important, and this interaction may partly 
be caused by the above discussed axial modulation of elec- 
tron velocities. 

In a general form this effect was taken into account in 
Ref. 6 where the dispersion equation for the waves ma 
waveguide with corrugated walls was derived and the cor* 
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FIG. 1. A schematic picture of a relativistic backward wave oscillator. A 
thin annular relativistic electron beam of radius rb propagates inside of a 
metallic structure with rippled walls. 

responding terms proportional to dv^Jdz were presented. 
However, no analysis of the effect has been carried out. 

The present paper is aimed at studying the effect of 
parametric coupling between electrons and the zero spatial 
harmonic of the field in the simplest model of a relativistic 
Cerenkov device, the backward wave oscillator with large 
end reflections. The paper is organized as follows. Section 
II contains general equations describing the effect. In Sec. 
III the linear theory is presented. In Sec. IV the stationary 
nonlinear theory is given. Finally, Sec. V contains the dis- 
cussion and summary of our results. 

II. GENERAL EQUATIONS 

First of all, let us consider the effect of voltage depres- 
sion on an electron beam propagating near a corrugated 
metallic wall. Let a thin annular electron beam propagate 
at a distance from the corrugated wall of the cylindrical 
waveguide that for all z is much smaller than the period of 
corrugation, d. In such a case, which corresponds to the 
condition 

A,    Kd, (3) 

where A is the distance between the average radius of the 
wall, rav, and the electron beam radius, rb, and / is the 
height of corrugation (see Fig. 1), the axial modulation of 
voltage depression can be considered locally, which leads 
to the standard definition of electron energy depression 

2/„ 
7o-r= mc Ve~JT^i n ln^. (4) 

In this equation Ib is the electron current, and the wave- 
guide radius rw is a slowly varying function of z. For small 
voltage depression we can assume that in the right-hand 
side of Eq. (4), r=7o- Als0> supposing that the sizes A and 
/ are small not only in comparison with d, as given by Eq. 
(3), but also with the beam radius, rb, we can expand 
ln^u/Zi) in the form 

rw    A    I       llir 
In— =*— cos \-j-z 

rb     rb   rb      \d 
(5) 

The latter expression is given for the wall corrugation in 
the form rw=rb+&-lcos(2-rrz/d). Correspondingly, the 
depression of the beam potential can be described by a 
simple equation for Ay=y0—y: 
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elb    1 (2n 
A —/cosl — z '(6) 

Here the initial electron velocity normalized to the speed of 
light is equal to ßa = yjl-yö1- As follows from Eq. (6), 
the effect of energy depression is rather small. However, it 
may play an important role in phase relations between 
electrons and synchronous spatial harmonic of the wave. 
Indeed, by introducing, according to Eq. (1), the phase of 
an electron with respect to the minus first harmonic as 
<f) = cot-[k0+ (2n/d)]z, where electrons z and t are related 
as dz/dt=v2, one can obtain the standard equation for 
d<f>/dz: 

dj>_}_ 

d~z=Jz 

k0+2ir/d 

co/c 

Here the axial coordinate z is normalized to co/c. 
Correspondingly, by introducing the mean value of 

electron energy, which accounts for energy depression 

rd.m-ro-z^&c^. 
(7) 

(cf. Eq. 6), the mean value of the electron unperturbed 
normalized velocity, 

and the mean mismatch of synchronism, 

l     k0 + 2v/d 
8=-— , 

ßa        u/c 

one can rewrite the equation for the phase </> in the form 

d4> l      l 
-^-=5+——. 
dz ft   &o 

(8) 

The equation for the electron energy should include 
the periodic modulation of energy depression [see Eq. (6)] 
and the field of the nonsynchronous, zero spatial harmonic. 
The latter could be important because, as was mentioned in 
the Introduction, in relativistic BWO's the amplitude of 
this harmonic can be much larger than the amplitude of 
the synchronous, minus first harmonic. Therefore, in spite 
of the lack of synchronism, the effect of the nonsynchro- 
nous interaction with the large amplitude harmonic can be 
comparable to that of the synchronous interaction with the 
small amplitude harmonic. Correspondingly, by represent- 
ing the axial component of the electric field acting on elec- 
trons in the form 

Ez=Rc E_xe^[\+^e'^ 

(here z is normalized to co/c, A is the wavelength), one can 
obtain for the normalized energy y the following equation: 

dy aJ.= -I(yl-1 )3/22 T sin(Äz) -RelAe'H l +hLgeihz) ] 
dz L 

Here 

(9) 
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r   eh        } l L 

is the normalized beam current parameter responsible for 
axial modulation of electron energies and velocities near 
the ripple structure, L is the normalized length of a struc- 
ture, h=lirc/cod is the normalized axial wave number of 
the slow-wave structure, hL=2irN, where N is the number 
of structure periods, A=eE_l /mcco is the normalized am- 
plitude of the synchronous spatial harmonic, and the ratio 
of harmonic amplitudes is presented as E0JE_Xz=hLq. 
Note that since both the ratio E0yE_Uz in relativistic 
BWO's and hL are large, the parameter q = E0i2/2nNE_lz, 
which describes the effect of a large amplitude, nonsyn- 
chronous zero spatial harmonic, may have an arbitrary 
value. Also note that when the condition given by Eq. (3) 
is fulfilled, the ratio of harmonic amplitudes E0t2/E_u in- 
troduced by Eq. (l) may be found from formulas given in 

Ref. 7: 

E~^r'[go+koÜir/d)]! J\{g<fm)  IoiP-i'b)' 

Here g0 is the transverse wave number for the fast-wave 
zero spatial harmonic and p_, is related to the transverse 
wave number of the minus first, slow wave spatial har- 
monic, g_„ by g.\ = ip-\- From Eq. (10), it follows that 
the ratio of harmonic amplitudes can be positive or nega- 
tive. 

In comparison with the standard equation for electron 
energy in backward wave oscillators with negligibly small 
space charge forces (see, e.g., Refs. 4 and 5), Eq. (9) 
contains two additional terms responsible, respectively, for 
spatial modulation of electron energy depression and for 
interaction with the zero spatial harmonic of the wave. 

The boundary conditions for equations of electron mo- 
tion (8) and (9) are 0(O)=^oe[O;2ir] and y(0)=y0- The 
efficiency of interaction between the electrons and the elec- 
tromagnetic field is 

'■^(»-sr""w4 do 

In principle, the equations for the electron motion 
should be supplemented with the equations defining the 
amplitude of the electromagnetic field, which varies along 
z when at least one end of the structure is opened (as 
shown in Fig. 1). However, below we shall restrict our 
consideration to the simplest model of a resonant Cerenkov 
device with strong reflections at both ends of the interac- 
tion region. In such a system the amplitude of the field 
acting on electrons is practically independent of z and can 
be determined by a standard balance equation between the 
microwave power radiated by an electron beam and the 
power of microwave diffractive and Ohmic losses. 

III. LINEAR THEORY 

To develop the linear theory one has to linearize the 
equations for electron motion (8) and (9) with respect to 

776        Phys. Plasmas, Vol. 1, No. 3, March 1994 

the field amplitude A. Zeroth-order terms lead us to the 
expression for the electron energy given by Eq. (6) and for 

the phase <f>: 

™» -ilsin^zl.   (12) 

Then, linearizing Eqs. (8) and (9) one can find the first- 
order terms in y and 4>. However, after averaging over 
initial phase </>0 in Eq. (11) these terms will not contribute 
to energy exchange between the electron beam and the 
microwave field. Therefore, it is necessary to take into ac- 
count the second-order terms in perturbations in electron 
energy. The corresponding formalism has been described 
in detail elsewhere,8 so we will present here only the final 
expression for the electron efficiency defined in the frame of 

the linear theory: 

^ = 2(y0J)(ri-l)^e'q,Ih (13) 

Here the function 9~ depends on the electron transit angle 
through the interaction region, 6=8 L, on the parameter q 
responsible for the interaction with the zero spatial har- 
monic of the microwave field, and on the normalized beam 
current parameter / describing the effect of axial modula- 
tion of electron velocities by rippled walls: 

.y(fl.g,/)J+ye) {0 sin 0[1+<?(/+<?)] 

-2(l-cos0)(l+$7)}. (14) 

This expression is valid for any structure containing an 
integer number of periods, d. Note that among the terms 
accounting for parametric resonance with nonsynchronous 
spatial harmonics only the terms responsible for interac- 
tion with the large-amplitude zero spatial harmonic are 
accounted for here. When both new effects, interaction 
with the zero spatial harmonic and axial modulation of 
electron velocities, are negligibly small (?->0,7-0), Eq. 
(14) is reduced to the standard gain function well known 
in the theory of the "O" type, linear beam devices. When 
we neglect only the effect of axial modulation of electron 
velocities, the effect of interaction with the zero spatial 
harmonic still exists [see Eq. (14) for 7 = 0, qj*S[. How- 
ever, if we neglect the effect of interaction with the zero 
spatial harmonic (?=0), the parameter / does not play 
any role in Eq. (14); that demonstrates the parametric 

nature of this effect. 
In order to illustrate the effect of the two new param- 

eters presented in Eq. (14), let us give some results of the 
linear analysis. In Fig. 2(a) the standard linear gain func- 
tion is shown for the case «7=7=0 as the function of the 
transit angle 0. In Figs. 2(b) and 2(c) the lines of equal 
ratios of gain functions Sr/Sr(q=I=0) are given in the 
plane of these parameters q and 7. Figure 2(b) corresponds 
to the transit angle 0= -2.62 which gives the maximum 
linear gain function for q=I=Q. Figure 2(c) corresponds 
to 0= -5, where operation with the high efficiency can be 
realized, as will be shown below. In the case shown in 
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(c) 

FIG 2   (a) Standard linear gain function in the absence of new effects. 
(b) and (c) The lines of equal ratios of linear gain functions .?"(?,/)/ 
jrtq-j=0) in the plane of normalized parameters proportional to the 
axial modulation of electron potential (/) and to the coupling with the 
zero spatial harmonic of the microwave field (<?). In (b) electron transit 
angle 0= -2.62, which corresponds to the minimum starting current; in 
(c) e=-5, which corresponds to highly efficient operation. 

Fig. 2(b) the changes in the linear gain function are small 
while in the case shown in Fig. 2(c), the effect is much 
more pronounced. As follows from Fig. 2(c), the main 
role is played by the interaction with the zero spatial har- 
monic. At negative q this effect reduces starting currents 
and vice versa. 

0.06 °°8 

Norm, amplitude 

FIG 3 Contours of equal efficiency for a resonant BWO in the plane of 

normalized amplitude of the microwave field and detuning of Cerenkov 

synchronism. 

IV. NONLINEAR THEORY 

Numerical simulations of the nonlinear set of equa- 
tions (8) and (9) have been carried out for the specific 
value of electron initial energy, ro=2- Tne electron effi- 
ciency was first studied in the absence of the two new 

| 0.06 - 

(a) 

(b) 
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FIG 4. Lines of equal efficiency in the plane of normalized parameters? 

and / for the normalized length of a slow-wave structure L = 20, ff-t. 
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effects (at q=I=0) as the function of the mismatch of 
synchronism, <5, and the normalized field amplitude, A, at 
different values of the normalized length, L. It was found 
that when L varies from 15 to 25 the maximum efficiency 
is a rather weak function of L. The typical dependence of 
efficiency on 8 and A is shown in Fig. 3 for L = 20 as lines 
of equal efficiency in the plane of frequency detuning, 8, 
and the normalized amplitude, A. 

Then, the effect of new parameters, q and I, was stud- 
ied. It was found that these parameters may give relatively 
weak enhancement in the efficiency of operation when the 
detuning, 8, and amplitude, A, correspond to the maximum 
efficiency in the absence of the new effects. However, these 
effects may widen the region of parameters where efficient 

FIG. 5. Axial dependences of electron velocities with and without ac- 
count for axial modulation of electron potential and interaction with zero 
spatial harmonics of the field. All figures correspond to 7.=20, 
6=-0.25. Other parameters are (a) ,4=0.05, 7=?=0; (b) ,4=0.05, 
/=0, q=-0.l, JV=8; (c) ,4=0.05, 7=0.1, g=-0A, JV=8; (d) 
.4=0.07, /=?=0; (e) ,4=0.07, 7=0.15, ?=-0.03. 

operation may take place, especially at small amplitudes. 
Corresponding results are presented in Fig. 4, where 
A =0.05 and L = 20. In Fig. 4(a) the lines of equal effi- 
ciency are shown in the plane of parameters q, I for 6 = 
— 0.25 and an 8-period structure (results of the study of a 
6-period structure for the same values of A, L, and 5 are 
very similar). In Fig. 4(b) the same lines are shown for 
5= —0.2 and an 8-period structure. In both cases the max- 
imum efficiency is above 26% which is close to the 
T7max=;29% shown in Fig. 3 for the system without these 
new effects. 

To illustrate the effect of velocity modulation by inter- 
action with the zero spatial harmonic of the wave and a 
rippled wall structure, it is expedient to present the axial 
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dependencies of electron velocities with and without these 
effects. Such dependencies are shown in Fig. 5. Figures 
5(a)-5(c) correspond to the field amplitude/* =0.05; Figs. 
5(d) and 5(e) to ,4=0.07. All other parameters are 
L=20, 5=-0.25, N=%. Figures 5(a)-5(d) correspond 
to q=I=Q; Fig. 5(b) to 7=0, ?=-0.1; Fig. 5(c) to 
7 = 0.1, q= -0.1; and Fig. 5(e) to 7 = 0.15, ?=-0.03. 
Comparing these figures, one can find that the interaction 
of electrons with the zero spatial harmonic and the axial 
modulation of the electron potential have a significant ef- 
fect on the reduction of electron velocities. In particular, 
Fig. 5(e) shows mat the operation at given parameters is 
close to the appearance of reflected particles that can also 
be stimulated by an initial electron velocity spread, which 
was not taken into account here. 

V. DISCUSSION 

To illustrate the results of the theory developed in the 
normalized parameters above, let us express these param- 
eters in real numbers corresponding to a typical experi- 
mental setup. Consider the 8-period slow-wave structure 
described in Ref. 9 and used in a number of experiments 
with relativistic BWO's at the Institute for Plasma Re- 
search, University of Maryland. This structure operated in 
the 8 GHz frequency range. The period of the structure is 
1.67 cm, its average radius is 1.5 cm and the height of 
corrugation is 0.4 cm. Correspondingly, if we take the axial 
wave number for the zero spatial harmonic as equal to 
-IT/Id, then for an electron beam with 500 kV operating 
voltage and 1 cm beam radius we get that the value of 
normalized current parameter 0.05 corresponds to —0.5 
kA of the real electron beam current. 

In the same manner one can find from Eq. (10) that 
parameters of the slow-wave structure and the electron 
beam given above correspond to the ratio of harmonic am- 

plitudes E0j/E_yj=*-l0-6, which in turn corresponds to 
the value of the normalized parameter <?= -0.236. 

This example shows us that the results presented in the 
paper can be used for interpretation of a number of exper- 

iments. 
Note in conclusion that the effects studied may lead, 

first, to achieving a highly efficient operation at low beam 
currents and, second, to a more smoother dependence of 
the BWO efficiency on the beam current than that pre- 
dicted by the theory developed without these effects. Be- 
sides the efficiency increase, these effects may also cause 
significant reduction in efficiency at certain parameters. 
Also important are pulsations in electron axial velocities 
caused by these effects because such pulsations may lead to 
the appearance of reflected electrons in high efficiency op- 
eration regimes. 

ACKNOWLEDGMENTS 

This work has been partially supported by the U.S. 
Army Research Laboratory and Air Force Office of Scien- 

tific Research. 

'J. Benford and J. Swegle, High Power Microwaves (Artech House, Nor- 

wood, MA, 1992). 
2J. Swegle, J. W. Poukey, and G. T. Leifeste, Phys. Fluids 28, 2882 

f 1985) 
JJ. M. Butler, C. B. Wharton, and S. Furukawa, IEEE Trans. Plasma 
Sei. PS-18, 4906 (1990). 

"M. I. Petelin, Radiophys. Quantum Electron. 13, 1229 (1970). 
5Z. N. Krotova and Y. S. Chertkov, Radiophys. Quantum Electron. 17. 

318 (1974). 
6N. F. Kovalev, Relativistic High-Frequency Electronics, edited by A. v. 
Gaponov-Grekhov (Institute of Applied Physics, Gorky, USSR, 1984). 

Vol. 4, p. 5. 
7N.  F. Kovalev, Elektronnaya Tekhnika, Ser.  1, Elektronika SVCh 

March(3), 102 (1978). 
8A. Vlasov, G. Nusinovich, B. Levush, A. Bromborsky, W. Lou, and Y 
Carmel, Phys. Fluids B 5, 1625 (1993). 

"Y Carmel, K. Minami, R. A. Kehs, W. W. Destler, V. L. Granatstein. 
D Abe, and W. L. Lou, Phys. Rev. Lett. 62, 2389 (1989). 

Phys. Plasmas, Vol. 1, No. 3, March 1994 
G. S. Nusinovich and A. N. Vlasov 779 



Presented at the IEEE Conference on 
Plasma Science, June 5-8, 1995 
in Madison, Wisconsin. 

Characterization of the Plasma Column Used in 
Studies of a Plasma-Loaded Relativistic Backward 

Wave Oscillator 

J. Weaver, S. Kobayashi, A. Shkuvarunets, 
Y. Carmel, J. Rodgers, W.W. Destler 

and V. L. Granatstein 

* 

University of Maryland, College Park, MD 

General Physics Institute, Russian Academy of Science, 
Moscow, Russia 



C5 

< 

> 

2 
^G 

£ <-> 

o c 

<D   g 
O   55 

•5   ^ 
<L)   G 
N *~ 

4^       CO 
O    ^ 
cd    <L> 

c3 § 
-G   £ 
O .G 

O   C 

73 ^ 
cd   o 
£ o 

cd 

G 73 

si 
II « *G ^ 

G •-: 
r^ .22 
73 > 

cd jd 

M 

5 cd 

II   o 
00 
3 M 

CO 
cd 

'— 

G .2 
• G   ^ 

v-H   C 
<U   cd 
a. is 
x ^ <D   cd 

cd   o 

> 
cd 

O 
o 
cd 

o o 

££ 

G--S 
oo IzJ   bJQ^ 
<D    c    C 75 
M   r"   O 

or w 
O H   3 

<M 
o 

^£ 
.2 £ 

GO p 
cd a 

o o 
c c 

•^ (U 
cd 3 

cd <+G 

a bo 
u_i G 
O 

C 
o 

5-H 
<D 

4—> 

G 

^ o 
.2   <D 
X Ä 
cd   w 

o c 
o o 
cd 73 

42   C 

^   O 
cd   <*> 

Ö    M 
C ts 

73 
00  •»-« 

oo jj^ .^ 
G   /-* L     73 

-n   O     •   G ~ .S ^-s o 
M •- >   O 

CX G.^" .£ 
(D   G    , 

4^   G o 

G  ^   (73    ^ 
C31J   D    (3J 

cd 
M 

s s 00 
Z2 

cd 
M 

ex 
o 

oo 
cd • — 

cd -G 

4^   G 
H.2 

cd 
M 
<D 
G 
<D 
00 

> 
cd 

PQ 

M 
o 

4—> 
cd 

o 
oo 
O 

£ ° 
4J ^ 
C G 

M So 
S '- G <D 
O > 

cd oo 
<D cd 

2T 

>^ oo 

T3 G 
cd 2p 
M   cd 

O O 

> O 
C M 

73 o 

£ <D ^ oo 

Cu 

00 

O 

<L) 

O 
M 
o 

G 

Id  W) 
^ 2 
O 73 

G: >^ 
cd 45 

G 
O 
M 

•4—» 

o 
^    M 

<D   cd 
cd   > 

£ o 
O0  <4G 

G* <U 

<D 73 

3 "5 
G 
CD 

oo 
<D 

M 
o oo o 

B> o 

"cd 73 

73 
cd 
O 

oo   Ü 

O0    M 

cd   ^ 

bX) cd 

^ £ 
00 
cd 

O 
G 

OH 
M 
o 



q 
C! 

C! 

£ ^ 2 * « ^ c w 

c co s g a) 
C   C TJ O +- 
O   3   <U ^ <D 
GO   -M  12 CO 5-t 

^ ^   g-jO cd 
cd 'S   ^ ^ <D 

Cd 

c 
E 

° o 
'O   CD 

§ .2   o 
co   CJ 

8 E 

c E Cd u 

to O 
o w 

o .2 

<D 

E ^   ' 

gaga 
E   3   o   cd 

£ T3   g    O 
•-H   (D (U'O 
bD ?-* >   CD 
.     CD !>   co 
£^ ^ co   cd 
C   ^ ^ X) 

~~ 3   <D cd   co 
^    M    3 

CD 
X> 
O 

co*   <L> 
CD   °° 

£^ ~ a. 
cd   bß _* 
—   <D   ~ 

Q* <D cd   O   C 
cd 

E ^i: 
S D 2 cd c 

1—1 bo cd 

c 
<D 

CD 

C 
O 

cd o 
cd >—3 

2 =G   (D   O   cd 
-     co 

XJ   CD 

cd 
■— 

O cd 
*<- 
=3 

SH &k 

ü g ü c 

£   >^ CD 

So g £ 
O «—• G bfl 
n   2 CD cd 

oo   cd co o 
•r^    ^ Cd VH 

Ö.T3 « t3 

cd r^ CD  t2 

i—i    C! O i__    O <D     .   (D   "ST!   S-C   C   O 
^Pü.TpG h > 2 E-c P 
w   3   " 

i     cd   3 *t2   VH 

>   O 4H   *3 

Ö   -   CD   ^ ^ 

P   CD cd cd cd 
O   0,^-0^ 



Plasma Source 
Plasma is formed when a high voltage pulse is 

applied between the center and outer conductor 
of gun. Ionized gas is ejected from titanium hydride 
impregnated rings concentric with the center 
conductor. 

Side View: 

Coaxial Cable 

Stainless steel outer 
jacket/ ground connection 

Insulatin 
support 

End View: 

Graphite — 

Stainless steel outer 
jacket/ ground connection 

Spark generated 
between conductors 
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A system for mapping the plasma density inside the RF 
interaction region of a plasma loaded relativistic BWO. 
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Schematic Diagram of Probe Arrangement: 

Center axis 

12.375" 

Probe Position |^ 
Reference 

Probe diameter: .13mm 
Probe material: tungsten 

Vacuum Vessel 

Plasma 
Gun 

Plasma Gun Position 
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End View: 
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Column 
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Probe 



Probe Bias Circuits for Plasma Measurement: 

Pulse Bias Circuit: 
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Measuring the Plasma Density Within the 
Microwave Generator 
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Schematic Diagram of Resonant Cavity 
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Plasma Radius Vs. Applied Gun Voltage 
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Starting Energy and Current for a Large 
Diameter Finite Length Backward Wave 

Oscillator Operated at the Fundamental Mode 
K. Minami, K. Ogura, Y. Aiba, M. R. Amin, X. D. Zheng, T. Watanabc, Y. Cannel, Senior Member, IEEE, 

W. W. DesÜer, Fellow, IEEE, and V. L. Granatstein, Fellow, IEEE 

Abstract—We study the starting conditions for a large diameter 
(diameter/wavelength a 4.8) finite length backward wave oscil- 
lator designed for 24-GHz operation at the fundamental TMoi 
mode. This geometry is very promising for high power handling 
capability. We analyze two separate threshold conditions. First, 
finite length effects give rise to a threshold in electron beam 
energy below which oscillations cannot be sustained at any beam 
current The second is the more familiar current threshold known 
as a start current It is also found that the growth rate for the 
fundamental mode can be much larger than those of other higher 
order modes thus leading to coherent operation of large diameter 
sources free from mode competition. 

I. INTRODUCTION 

HIGH-POWER MICROWAVE sources are important for 
a number of advanced applications ranging from current 

drive and RF heating of magnetically confined plasmas in 
fusion devices to high resolution nanosecond radars [l]-[3]. 
Pulsed high power microwave oscillators utilizing intense 
relativistic electron beams» have been extensively studied in 
recent years [2]-[6]. Among various microwave sources, the 
multiwave Cerenkov generators (MWCG's) developed by [7] 
at the High Current Electronics Institute, Tomsk, Russia, have 
recently attained record outputs [7], [8]. Radiation powers of 
7.5 GW at a wavelength A = 9.7 mm with an electronic 
efficiency of 20% were reported. The MWCG involves a 
slow wave structure (SWS) with an average diameter D much 
larger than A. In the above example, D/X = 13. This large 
diameter SWS enables a larger output power for a given 
RF energy density inside the SWS before breakdown occurs. 
Despite a possibility of mode competitions, efficient, high 
power single mode oscillation was attained in a device utilizing 
overmoded SWS [9]. Twenty years ago, high average power 
millimeter microwave sources (gyrotrons) were invented by 
combining an electron cyclotron maser and an overmoded 
open barrel cavity [2], [3]. The large diameter (overmoded) 
SWS in MWCG's may be an innovative key technology 
which corresponds to the overmoded open cavity employed 
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in gyrotrons, although the final evaluation of performance and 
the feasibility of using MWCG's in actual applications are 
yet to be established. The MWCG has a close relationship to 
conventional backward wave oscillators (BWO's), since both 
employ SWS's in common [4], [5], [7]-[14]. 

Although the physical processes involved in the MWCG's 
[7], [8] are complicated, we point out here that high-power 
millimeter microwaves can be generated without decreasing 
the mean diameter of the SWS. Both BWO's and large 
diameter BWO's can be operated in the fundamental TMoi 
mode as will be shown in this paper. The difference in SWS's 
between the two devices is as follows. The inner radius of 
the metal surface of the SWS, R(z), is assumed to vary 
sinusoidally around the mean radius Ro, i.e., R(z) = Ro + 
h cos K0z, K0 = 2ir/zQ. Here, z0 and h are, respectively, the 
axial length of periodicity and the amplitude of corrugation. In 
BWO's [4], [5], [10]-[14], the mean radii, Ro = D/2, were 
chosen such that D/A = 2Ro/X ~ 1. whereas, in the present 
large diameter BWO, the condition D/X » 1 is explored. 
The key point is that, in the latter, oscillation frequency is 
raised by carefully choosing small values of h and zo, keeping 
Ro larger than A. This situation is quite similar to the SWS 
design of MWCG's [7]-[9]. In the present paper, numerical 
studies are made within the scope of linear analysis for a 
large diameter SWS with D/X ~ 4.8. Specifically, the starting 
energy and the starting current of the beams for initiating 
microwave oscillation in such a finite length SWS are analyzed 
in detail. Previously, the starting current conditions for finite 
length BWO's have been studied by various authors [5], [13], 
[15], [16]. Swegle analyzed the starting condition for a BWO 
[15]. In his treatment, 100% reflection at the beam entrance 
boundary and 0% reflection at the RF output boundary were 
assumed. This assumption was valid for the case of matched 
termination at the output end of the SWS. We consider here 
an alternative case of nonzero round trip reflection which may 
correspond to the experimental situations in [4] and [10]. Such 
nonzero round trip reflection produces discrete spectra of axial 
wavenumber of eigenmodes of an axisymmetric TM mode 
[13], [14], [17]. 

In Section n, we describe the model of our linear analysis. 
The difficulties to be overcome in the practical numerical 
computation in the case of D/X » 1 are discussed. Numerical 
results are shown in Section HI. Discussion and conclusions 
are given in Section IV. 

0093-3813/95S04.00 © 199S IEEE 
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H FORMULATKHTAND DTJWCUUNES 

- IN NUMERICAL ANALYSIS 

The model of an axisytmaetric large diameter SWS with 
length L shown in Pig. 1 is analyzed. The radius R(z) of 
perfectly conducting metal wall varies with R{z) = Ro + 
h cos KQZ. The entire system is immersed in a strong longitudi- 
nal external magnetic field. The transverse motion of the beam 
electrons is assumed to be negligible. We also assume that an 
infinitely thin annular beam with radius Rb, monoenergetic 
beam energy V\, and current /« is incident to the SWS. The 
linear dispersion relation for the system in Fig. 1 was derived 
previously [15], [18], [19] and the results are summarized here. 
The boundary condition that the tangential components of the 
RF electric field at die corrugated metal surface of the SWS 
must be zero gives 

oo 

£      [l + (n-m)Qn)(BnCin + CnCZn)     ' 
m, n=—oo 

CORRUGATED WALL 
WAVEGUIDE 
R(z)-Ro+hcosK0z 

ANNULAR BEAM 
ENERGY Vb 

CURRENT 11 

z-0 z-L- 
Rg 1. Model of analysis. Annular beam of monochromatie energy V» anr 
current h i» incident on the axisymmetric corrugated wall large diameter 
slow wave structure with length L. 

— Umn ' An 
= 0 (1) 

/•*/*„ 
?mn =    / eXP l»(n ~ m)Ko*\ 

J-ir/Ko 

■ Jb[Vn(l + a cos K0z)] dz (2) 

(yna)(W-m»42q+{n-m"(yn) 
229+|n-m|?!(g+|n_m|)! 

(3) 

=   £ 
,=0 

a = h/Ro 

where Qn = K0kn/(u2/c2 - k2
n), kn = k + nK0, yl = 

RI(UJ2/C2 - kn) and c is the vacuum velocity of light. The RF 
field amplitudes, An,Bn, and C„ of the Floquet harmonics are 
the same as those in (7) in [18]. The beam quantities such as h 
and Vb are involved in Bn and Cn. In (1), C£n is obtained by 
replacing the Bessel function of the first kmd, J0, in (?;£„ by 
that of the second kind, No- In the above expressions, temporal 
and spatial phase factors exp [i(knZ - tut)] have been assumed 
for every RF quantity. The dispersion relation combining w 
and Jfc is given from (1) as the determinant equation. 

D(k, u) = det [£>„,„] = 0 (4) 

some difficulties for cornputing (2) and (3). In order to ge; 
a large oscillation frequency w/2* without decreasing Ro 
we must choose a small h and z0 in Fig. 1 that results ir 
a large K0 and that makes y2 < 0 in (2). For negative 
yl, the Bessel function J0 becomes modified Bessel functioi 
To consequently, and the integrand of (2) is rewritten a. 
exp [i(n-m)K0z}Io[yn(l + <x cos K0z)}, where yl = -& 
The modified Bessel function I0 in the integrand become 
extremely large, if y'n is large. This effect causes an overflow i: 
the process of numerical computation of (4). Such a difficult 
arises often in the calculation of the large diameter SWS wit: 
small z0. To avoid the difficulty, we express Iv{z) as 

which is required to have nontrivial A„ in (1). As is well 
known, No goes to infinity at the origin which occurs in the 
case of light line in vacuum, w = ckn- Because the roots of 
(4) are slow waves, they are located in the complex w and k 
planes considerably seps ad from where w = ckn. Difficulty 
of No infinity does not     :ur for finding the roots. 

We discuss here some peculiar difficulties that arise in 
the computation for the large diameter SWS. For the time 
being, we consider the simple case without the beam, i.e., 
Ib = 0, and An = Bn, Cn = 0 in (1) accordingly [18]. 
Because no input energy is present in the SWS, oscillations 
cannot be expected. For a real w, real fc's are obtained in 
(4) and vice versa. Equations (2) and (3) were useful to 
compute the dispersion relation of a BWO [19], [20]. In the 
present case of large diameter BWO's, however, there exist 

/,= 
(27TZ)1/2 

^-l      (/X-IXM-9) 
1_    8z 2l(Sz)2 

|arg(z)|<-, /i = 4i/2 

Using this asymptotic expansion, (1) is expressed as 

£     [1 + (n - m)Qn] Cmn Gn = D'mnGn 
exp(j£) 

m, n«—oo 
G„ = An exp {y'n). 

D'(k, w) = det [jymB] 

= 0. (f 

The dispersion relation is given by (5) instead of (4). Equatio 
(5) does not have problems with numerical overflow. 

The next problem concerns the adequacy of the Taylc 
expansion used in (3). In general, numerical integration of (2 
takes much computation time and the expanded form of (3) i 
preferable, as long as the sinusoidally corrugated SWS in Fij 
1 is considered. A large K0 again may result in |y„o| > 
in (3), and the summation does not converge rapidly. We fin 
that tens of terms in (3) must be calculated to get a converge 
value of summation because of increased denominators. 1 
avoid this difficulty, we truncate the rank of die determinant i 
(5) to as small a value as possible. This is because the value 
of kn and accordingly y„ will not be very large for sma 
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|jfea|>lmsy 
1 be «vokted, if one limits -l<n,m<0(2x2 detenninant) 

or -1 < n, m < I (3 x 3 determinant). Fig. 2 shows the 
• result of the design study; the oscillation frequency / = w/2w 

versus the corrugation wavenumber KQ for several corrugation 
amplitudes h. Here, Ro = 3.0 cm has been assumed as a given 
parameter. Curves in the figure are obtained by computing the 
frequencies at the crossing point of the structure mode and 
the beam space charge line with h = 0 for various values of 
K0 and h. The straight line, w = VbK0/2, in Fig. 2 is the 
boundary that divides the BWO (absolute instability) from the 
TWT (convective instability) for the case of jr-mode operation 
(k = Kd/2) with Vb = 100 keV. Microwave oscillation can be 
expected in the cases of K0 to the left of the straight boundary 
line. Roughly speaking, BWO's and large diameter BWO's 
are expected, respectively, in cases of K0 < 10 cm-1 and 
KQ > 10 cm-1. The black circle represents the parameters 
we have chosen for the present design study of a large 
diameter BWO with the following parameters: KQ = 18.5 
cm-1 (z0 = 0.34 cm), h = 0.17 cm and / = 24 GHz. 
The solid and dashed curves are, respectively, the calculations 
using (3) and (5) of the 9 x 9 and 2x2 approximate truncated 
determinants. The differences between both curves are less 
than 4%. For the chosen size parameters, the dispersion curves 
are calculated for various truncated ranks from 9 (9 x 9) to 
2 (2 x 2) of the determinant in (5). For ranks larger than 
6, the oscillation frequencies are almost unchanged, and the 
results are considered to be exact. Even in the case of rank 2, 
the deviations from exact values are less than several percent. 
These facts suggest that the truncation to the rank 2 of the 
determinant in (5) is almost correct for our purpose. Hence, 
in order to save computation time, we adopt the truncated 
determinant of rank 2 in the subsequent numerical analysis 
of complex u> and A; with incident beams, at the sacrifice of 
accuracy within a few percent. 

m. NUMERICAL RESULTS 

A. Infinitely Long Slow Wave Structure 

The parameters of the large diameter SWS used in the 
following numerical analysis are: RQ = 3.0, h = 0.17, 
z0 = 0.34, and Rt, = 2.63 cm. Beam energies of Vj, = 100 
and 65 keV are used as typical values. The beam current h is 
mostly assumed to be 0.4 kA, unless specified otherwise. 

The dispersion relation (5) for complex u>/2ir versus real 
wavenumber k is shown in Fig. 3 for two values of Vb, 100 and 
63 keV represented, respectively, by solid and dashed curves. 
Real and imaginary parts of W/2T are shown, respectively, 
in (a) and (b). Here, the beam current of Ib = 0.4 kA has 
been assumed. Because of Floquet's theorem, the dispersion 
curves have periodicity KQ for wavenumber k, in other words, 
ui(k) = u(k + nK0). Usually, figures are shown for the first 
Brillouin zone -KQ/2 < k < KQ/2, however, we depict 
hereafter the curves for 0 < k < KQ, because the important 
parts of the curves are located near k = KQ/2. As were pointed 
out previously, there exist generally 4 independent roots for 
the fundamental TMoi mode [18}, [20]. They are the fast 
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Fig. 2. Design study of the slow wave structure. Oscillation frequency for 
100 keV beam versus corrugation wavenumber Ab for various corrugation 
amplitudes h. The mean radius is Ro = 3.0 cm. The solid and dashed curves 
are, respectively, 9x9 and 2x2 approximate results of the determinant of 
the dispersion relation. The black circle is the chosen parameters of our large 
diameter backward wave oscillator. 

and slow space charge waves and the backward and forward 
structure waves. The first wave is always heavily damped and 
it is ignored entirely in the subsequent analysis. The second 
wave is the energy source for the third wave, i.e., the output 
radiation. The fourth wave can serve as a positive feedback 
mechanism in the case of a finite length SWS. For simplicity, 
the fourth wave is also ignored hereafter. For a real k, (5) 
can have a pair of complex conjugate roots of w. They are a 
growing slow space charge wave and a decaying fast space 
charge wave. The single beam line for infinitesimal currents 
is split into the fast (shown by F) and slow (shown by S) 
beam space charge waves in Fig. 3(a), because of nonzero 
beam current Absolute instability can be found around the 
crossing point of the backward structure wave (shown by B) 
and the line S. It is noted in Fig. 3 that the ranges of k for 
instability, i.e., complex w shown by thick solid and dashed 
lines in Fig. 3(b), are much more limited than the previous 
case of BWO's [18], [19]. This is because the corrugation 
parameter a = h/Ro is presendy smaller than those in the 
conventional BWO's. In other words, the oscillation condition 
in large diameter BWO's with D/A » 1 is more restrictive 
or stringent than those in BWO's with D/X ~ 1. 

In our large diameter (overmoded) SWS, there exists a 
possibility of mode competition between various candidates 
including the fundamental and higher modes. Steady oscilla- 
tion of the fundamental mode may not be realized because 
the beam energy may be fed to various modes with higher 
frequencies. In order to clarify the situation, we extended the 
analysis for the fundamental mode shown in Fig. 3 up to sixth 
higher modes. The oscillation frequency and the maximum 
temporal growth rate of the fundamental TMoi mode are 
compared with those of higher modes. We computed the 
dispersion curves similar to Fig. 3 for each higher mode. Fig. 4 
shows the dispersion curves for an infinitesimal beam current, 
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Ha 4 The dispersion curves for TMoi, • ■ •. TM06 model. The two dashec 
lines are the beam lines for 100 and 65 keV with infinitesimal currents 
respectively. The crossing points of the beam lines and structure curves give 
possible oscillation frequencies. 

Fig. 3. Dispersion relation for complex W/2JT versus real wavenumber A:. 
Ib = 0.4 kA. Solid curves are for Vb = 100 keV and dashed curves are for 
Vb - 65 keV. (a) / = Re (w)/2ir versus k. (b) /m(w)/2jr versus k. 

from which the oscillation frequencies can be estimated. It is 
interesting to note that the dashed beam lines, 100 and 65 
keV, intersect the curve of the fundamental TMoi mode at the 
positions where the group velocities are much smaller than 
those for higher modes. The results from complex analysis 
like Fig. 3 are summarized in Table I, where the maximum 
temporal growth rate, corresponding oscillation frequency and 
oscillation wavenumber are listed for six modes. Here, the 
beam current 0.5 kA has been assumed. As is clearly shown 
in the table, the maximum temporal growth rates of the 
higher modes are much smaller than that of the fundamental 
TMoi mode. Accordingly, oscillations of higher modes may 
be ignored in the scope of the present linear analysis. Of 
course, mode competitions may be expected in large diameter 
BWO's at the saturated level of oscillation in general. At 
the linear stage, however, mode competitions are insignificant 
in the large diameter SWS, if the size and beam parameters 
are carefully chosen. For this reason, we limit ourselves the 
subsequent analysis to the fundamental TMoi mode. 

The dashed curves in Fig. 3 are for the case of VJ, = 65 keV. 
The temporal growth rate Im (w) for Vb = 65 keV shown by 
the dashed curve in Fig. 3(b) is considerably smaller than that 
for Vb = 100 keV shown by the solid curve. This difference 
suggests that, like conventional BWO's, there exists a starting 
energy threshold for oscillation in a finite length large diameter 
SWS as will be analyzed in the next subsection. 

In Fig. 3, the real wavenumber k has been assumed. The 
real A: means that we have assumed a sinusoidal small origin 
of oscillation with infinite extent in the z direction and 
have calculated its temporal evolution. On the other hand, in 
the case of a localized small origin of disturbance for the 

TABLE I 
COMPARISON OF OSCILLATION OF SIX MODES INCLUDING THE 

FUNDAMENTAL TMoi MODE. THE OSCILLATION WAVENUMBER AND 
FREQUENCY AT THE MAXIMUM TEMPORAL GROWTH RATE ARE LISTED FOR 

OUR DESIGNED LARGE DIAMETER SLOW WAVE STRUCTURE. BEAM 
ENERGY AND CURRENT ARE. RESPECTIVELY 100 KEV AND 0.5KA 

Mod* 

Oacillation 
Vavanuaawr 

(c«-D 

OscilUtioB 
Fraquancr 

-GHl) 

tfuiaui 
Taanl Growth 

Data (raaVna) 

™.l 9.8 24.1 0.198 

™0J 12.3 30.« 0.0O4S 

™M 12.5 30.9 0. 0118 

™M 12.8 31.8 0.0142 

«OS 13.3 33.1 0.0132 

™» 14.0 34.8 0.013» 

instability, the origin develops asymptotically with tempon 
and spatial factors t~1'2 exp [-»(w.t - *.*)], as was show 
in (2.22) in [21]. Here, w. and k, are, respectively, th 
complex angular frequency and complex wavenumber at th 
saddle point du./dk. = 0 in (5). The localized origin ca 
monotonically grow up in time at every point in z. This 
therefore an absolute instability. Once an unstable root of (f 
in Fig. 3 is found, it is not very difficult to access the sadd! 
point, w. and ka, which exists uniquely for a given set of a 
parameters, by using the Newton-Raphson technique. In tr 
saddle point analysis of the large diameter BWO, it is four, 
that the oscillation frequency Re (w,)/2ir and the tempon 
growth rate Im (w.) are, respectively, slightly decreasing an 
increasing functions of h, and the spatial growth rate Im (k: 

is almost unchanged with increase in /<,. 

B. Finite Length Slow Wave Structure 
In a large diameter SWS with finite length L as shown i 

Fig. 1, the wave reflections (or leakages) at both ends ai 
taken into account. The end reflections result in a feedbac 
mechanism by the backward structure wave, and the distinc 
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tion between absolute tod cooTecthw instabilities becomes 
somewhat ambiguous in the L finite case. The complex 
wavenumbcrs of me slow space charge wave and the backward 
structure wave are denoted, respectively, by a+ and o_. In the 
limit of infinite L, a+ (= o_) coincides with the saddle point 
of (5). For L finite cases, the following equations must be 
satisfied instead of (5), [20]. 

w/2*- 24.103 + J0.063 

D(a+,u) = 0 

Z?(o_, w) = 0 

R exp [-t(o_ - a+)L) = 1. 

(6) 

(7) 

(8) 

Equation (8) comes from the requirement that the electromag- 
netic field must be a single value at every z point, when the 
propagating wave comes back after one round trip [20]. In 
(8), R is the one round trip reflection coefficient of wave 
fields at the both ends of the SWS, and assumed to be a given 
parameter. The length L is assumed to be L = 70zo = 23.8 
cm. In general, the reflection coefficient R in (8) must be a 
complex number, however, for simplicity it is approximately 
replaced by a real number 0 < R < 1 in the subsequent 
analysis. This is because the argument of the complex number 
causes only changes in equivalent structure length less than 
ZQ much smaller than L. The additional requirement given by 
(8) results in the existence of the starting energy in addition 
to a nonzero starting current in finite L BWO's. Equation (8) 
is rewritten as 

Re (o_ - o+) = -2irN/L > 0 (9) 

Im (a_ - M = - In (R)/L > 0 (10) 

where AT is an integer. The following analysis is limited to 
the case N = -1 in (9), because N = — 1 is the easiest case 
for initiating oscillation among various choices of N for a 
given L. 

To solve (6M8) correctly, it is necessary to watch the 
movements of roots a+ and a_ on the complex A; plane for 
various u/s with positive Im (w) approaching to zero [20], 
[21]. This is because the physical meaning (stable or unstable) 
of the each root is lost in the course of numerical calculation 
of (6M8). We must reconsider the physical meaning through 
watching the movement of the root on the complex k plane. 
If the particular root traverses the real axis during the change 
in Im (LJ) from a large positive number to zero, the root is 
unstable, otherwise it is stable. A pair of solutions a+ and a_ 
is shown on the complex k plane in Fig. 5(a) for the case of 
\'b = 100 keV. The locations of the roots a+ and a_ are found 
at the centers of the contour mapping of \D'\ given by (6H8) 
on the complex k plane. The corresponding common value of 
complex u/2ir = 24.103 + i0.063 is found in Fig. 5(b) for 
both a+ and o_ shown by black circles on the same complex 
k plane as Fig 5(a). The white circles in Fig. 5(b) are the 
locations of Im (w) = 0 that give the boundary lines between 
BWO's (Im (w) > 0), and TWT's (Im (w) < 0). The arrows 
on the solid lines show the directions of decrease in Im (w)/2ir 
toward zero for constant Re (w)/27r. The diamond is the 
saddle point of (5). In L infinite case, oscillation (absolute 

0.4 

BEAM ENERGY 100keV 

24.1051 

24.105 

9.0 9.5 10.0 
Re(k) 

(b) 

Fig. 5. Locations of the pair of roots, a+ and a_, on the complex k plane 
for Vb = 100 keV and h = 0.4 kA, L = 23.8 cm, N = -1 and 
w/2 jr = 24.103+i0.063. (a) Contour mapping of |£>| where D is deaned by 
(5). (b) Locations of the roots (black circles) that are in the oscillation region 
within border lines of Im(u;) > 0 shown by white circles. The diamond is 
the saddle point. 

instability) is expected at the saddle point as was stated in the 
previous subsection, if it is located in Im (w) > 0 region in 
complex k plane. In this case, oscillation is expected even for 
infinitesimal beam currents and no limitations exist for starting 
energy. In L finite case, however, the oscillation happens not at 
the saddle point but at a+ obtained from (6M8). Oscillation is 
impossible, if the pair of the roots are located in Im (w) < 0 
region. Because the black circles are located in the region 
Im (w) > 0 in Fig. 5(b), the oscillation can be expected in 
the present case of Vb - 100 keV. Since we have chosen 
L = 23.8 cm and N = -1, Re (o_ - a+) = 0.264 cm-1 

from (9) is a fixed value, which is independent of the value 
of reflection coefficient R. The horizontal distance between 
a+ and a_ is a constant 0.264 cm-1 on the complex k plane 
shown in Fig. 5(b). 

A pair of solutions a+ and a_ in (6H8) in the case of 
Vb = 65 keV is shown on the complex k plane in Fig. 6. Other 
parameters are the same as those in Fig. 5. The corresponding 
common value of complex W/2TT = 23.295 - i0.092 is found 
in Fig. 6 for both a+ and o_ shown by black circles. In 
this case, a+ and a_ are located in the region of TWT's, 
Im (w) < 0, and oscillation cannot occur for Vb = 65 keV, 
although the beam current h = 0.4 kA is identical to that for 
Vfc = 100 keV in Fig. 5. Comparing Figs. 5(b) and 6, one finds 
that there may exist a threshold value in the beam energy Vb 

below which oscillation in the BWO's stops, no matter how 
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Fig. 6. Locations of the pair of roots, a+ and a-, on the complex fc 
plane for Vb = 65 keV and h = 0.4 kA, L = 23.8 cm. N = -1 and 
W/2JT = 23.295 — t0.092. Locations of the roots (black circles) are outside 
the oscillation region Im (w) > 0 shown by white circles. The diamond is 
the saddle point. 
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Fig. 7. Allowable oscillation regions of two solid curves for Vj, = 100 
and 65 keV, i.e., horizontal separation of open circles as shown in Figs. 5(b) 
and 6 versus beam current /&. The dashed line is the horizontal separation 
Re (a_ - a+) = 0.264 cm-1 of the roots for h = 0.4 kA, L = 23.8 
cm, and/V = — 1 in (9). 

large the beam current h- This statement is clarified in Fig. 
7, where the fixed horizontal separation between two black 
circles Re (a_ - a+) = 0.264 cm-1 given from (9) is shown 
by a horizontal dashed line. Two solid curves are the horizontal 
separations Re (AJfc) between two white circles, respectively, 
as shown in Figs. 5(b) and 6 as functions of ij,. Here, Re (Afc) 
is the allowable range of oscillation for a given /»•. In the case 

■     1     '      1     '      >.- 

BEAM CURRENT            / 
U.b 0.4 kA                   / 

0.4 / 

■ OSC. -/Re (a--a.)-0.264" 

ST05. S\ 0.2 STARTING ENERGY 

* 1 , 1 1      1 
_ 70 80 90 100 

BEAM ENERGY Vb (k«V) 

Fig 8 Oscillation region versus beam energy \\. The dashed line is the 
horizontal separation Re (a- - a+) = 0.264 cm"1 for h = 0.4 kA. 
L = 23.8 cm, and iV = -1. The black circle is the starting energy. 

of Vb = 100 keV, the solid curve always lies above the dashec 
line. This fact suggests that the oscillation is possible. On the 
other hand, in the case of Vb = 65 keV, the curve stays below 
the dashed line, and oscillation does not occur. 

For a given current h = 0.4 kA, the starting energy for 
oscillation is found in Fig. 8, where the horizontal separations 
Re (AJfc) of white circles such as those in Fig. 5(b) or f 
versus Vb are plotted. It is clearly shown that the startin 1 
energy denoted by the black circle is 76.5 keV for the giver 
parameters of the present large diameter SWS. The large 
length L, the smaller starting energy, because the dashed line 
becomes lower. It must be emphasized, however, that tht 
starting energy is not a sufficient condition, but a necessan 
condition for initiating oscillation in the finite length SWS. Ir 
order to have oscillation, the pair of roots o+ and a_ must alst 
satisfy (10) in addition to (9). This additional condition yield 
the starting current for oscillation. Equation (10) includes th 
reflection coefficient fiasa given parameter, and the startin s 
current I3t is affected sensitively by R. The results are showi 
in Fig. 9, where I,t versus R is calculated for Vb = 10! 
keV and L = 23.8 cm. It is reasonably shown that I,t is 
decreasing function of R. If we take into account the effec 
of the fourth wave (forward structure wave) as an additiona 
feedback mechanism in (8), an oscillatory nature arises in th 
curve IBt versus L, as was pointed out in [13], [16]. 

IV. DISCUSSION AND CONCLUSIONS 

A large diameter backward wave oscillator of D/X ~ 4. 
has been designed and analyzed numerically in detail. The ke; 
point of the design study is to raise the oscillation frequenc 
without decreasing the mean diameter of the SWS. In ou 
linear analysis, parameter selection for such purposes has beer 
readily performed. 

It was shown in the previous section that there existed ; 
starting current of the beam required to withstand the leakage 
of radiation at both ends of SWS. Moreover, there existed ; 
starting energy of the incident beam, below which oscillatio: 
could not occur, because of the finite length of the SWS. These 
two statements are never trivial and the distinction betweer 
both conditions has not been clarified in the literatures ir 
the past The former condition for the starting current giver 
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Fig. 9.    Starting current I,t versus reflection coefficient R for beam energy 
\\ = 100 keV, L = 23.8 cm. and A' = -1. 

by (10) arises from the requirement that the radiation loss 
depending on h at the ends of the SWS must be smaller than 
a threshold value. In other words, the external Q value of 
the corrugated wall resonator shown in Fig. 1 must be large 
enough for the occurrence of oscillations. The resonator must 
store a minimum amount of RF energy for oscillation. On the 
other hand, the latter condition for the starting energy given 
by (9) arises from the requirement that the coupling condition 
of real wavenumbers. Re (<i+) and Re (a_), between the 
donor of RF energy a+ (slow space charge wave) and the 
acceptor a_ (backward structure wave) becomes stringent, 
when L is small. The locations of the a+ and a_ on the 
complex k plane are considerably separated in relatively short 
L case, and the coupling condition, namely, phase matching 
condition of the waves at the ends may not be satisfied. This 
restriction. Re (AA:), is relaxed in the case of large Vj, as 
was shown in Fig. 8. This is the reason for the existence of 
the minimum starting energy for oscillation. This oscillation 
condition for Vj, is peculiar to the finite L case, and such 
additional requirement for the coupling of waves did not occur 
in conventional infinite L case shown in Fig. 3. It is well 
known that beam wave interaction is strong near it or 2TT 

mode operation, where the group velocity of the backward 
structure wave is small. In L finite case, the oscillation may 
stop somewhere between two mode operations because of 
increased group velocity. This qualitatively well known fact is 
for the first time analyzed quantitatively in the present paper, 
and it is the significance of the starting energy analyzed in 
this paper. 

The diffraction of the radiation at the ends of large diameter 
SWS relating the value of reflection coefficient R is a com- 
plicated problem to analyze, and it is not treated here. In our 
numerical analysis, L = 23.8, i?o = 3.0, and A = 1.25 cm. 
The structure length L may be considered to be longer enough 
than i?o and A, and our analysis ignoring end diffraction 
problem may be qualitatively valid. The practical value of 
the reflection coefficient R of the large diameter SWS can 
be measured by means of vector network analyzers for a real 
fabricated sample. The coefficient R is estimated to be 0.2 
at 20 GHz from a straight cylindrical waveguide assuming 
that the corrugation parameter a = h/Ro = 0.0567 is small 
enough. Then, the starting current I3t = 1 A is found in 
Fig. 9. In the previous section, we assumed the typical beam 

current J& = 0.4 kA, which is 400 times larger than I*. In 
such cases, overbunch instability may occur in the oscillation 
and degradation of the microwave output may result as was 
predicted and observed in [5] and [13]. In order to suppress 
the instability, we may raise I,t by decreasing the length L 
under the restriction that the pair of roots in (9) remain in 
the oscillation region shown in Fig. 5(b). On the other hand, 
space charge limiting current in a cylindrical pipe for the 
average radius Ro = 3 cm and beam radius Rb = 2.68 
cm is calculated to be 17(72/3 - l)3/2/2 In (Rb/Ro) = 
2.9 kA, which is much larger than the present /», where 
7 is the relativistic factor. The nonlinear analysis [22] or 
numerical simulation [13] is required to predict the power 
level and the performances of the designed large diameter 
BWO. 

The energy sources in gyrotrons are the beam velocityvx 
perpendicular to the axial magnetic field. Electron beams with 
v±/v\\ = 1.5 ~ 2 are usually required for high efficiency 
operation in gyrotrons [2], [3]. For that purpose, a sophisticated 
technology to generate such spiral beams was devised by 
means of magnetron injection gun, and analytically and em- 
pirically adjusted nonuniform axial magnetic field profiles for 
optimized performance. In contrast to gyrotrons, BWO's are 
easy to operate, because beams with v±/v\\ < 1 are available, 
and uniform axial magnetic fields are usually applicable. 

The growth rates of the large diameter BWO analyzed in 
the present paper are smaller than those in the conventional 
BWO's. This is mainly because we have chosen small a = 
h/Ro. In fact, we carried out a preliminary measurement 
of BWO operation of our designed large diameter SWS. It 
was found that the microwave output at 21 GHz was quite 
small and that the operation was made in linear regime. It 
may be important to explore a possibility of enhancing the 
growth rates of radiation from the large diameter BWO. Our 
analysis has been confined to the case of very strong applied 
magnetic field. An extension of the present linear analysis to 
the finite magnetic field case, especially the case w ~ ft, is 
very important [6]. Here, ft is the relativistic electron cyclotron 
frequency. 

Reference [23] pointed out that, in slow wave cyclotron 
devices with v\\ < w/k < c, the beam energy can be converted 
to wave energy through a transformation from v\\ to uj_. This 
device was called the slow wave electron cyclotron maser. 
Although they assumed a dielectric loaded smooth cylindrical 
configuration, their statement can be applied to a metal wall 
SWS [24], [25]. In fast wave devices such as gyrotrons, the 
normal Doppler shifted beam cyclotron wave, w = kv\\ + ft, 
is used to interact with structure TE modes. On the other 
hand, the anomalous Doppler shifted beam cyclotron wave, 
u> = fcu|| - ft, may be available to interact with structure 
TM modes in our large diameter SWS. The growth rates 
in the large diameter BWO in the present paper may be 
resonantly enhanced by the novel effect suggested by Kho 
and Lin [23]. Moreover, they showed in their Fig. 6 that the 
slow wave electron cyclotron maser was more tolerant of beam 
momentum spread than a fast wave device (CARM) for high 
efficiency operation. Their results are especially encouraging 
in the case of high beam current in which beam qualities such 
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as momentum spread and emittance are greatly inferior to the 
beams generated from thermoionic cathodes [26]. 

In conclusion, the slow wave devices such as MWCG's will 
be a hopeful candidate for the purpose of generating multi-MW 
millimeter microwaves for a variety of advanced applications. 
The large diameter BWO studied in the present paper may be 
helpful for that purpose. 
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Analysis of the Electromagnetic Waves in an 
Overmoded Finite Length Slow Wave Structure 
Md. Ruhul Amin, K. Ogura, H. Kitamura, K. Minami, T. Watanabe, Y. Carmel, Senior Member, IEEE, 

W. Main, J. Weaver, W. W. Destler, Fellow, IEEE, and V. L. Granatstein, Fellow, IEEE 

: Abstract—The electromagnetic fields of the higher order axial 
onant modes in a slow wave structure are analyzed and found 

i have considerably different characteristics from those of the 
nventional fundamental mode. Here, the reflections at both 

produce axial resonant modes corresponding to axisym- 
ic transverse magnetic (TM) modes. The period of field 

dulation of some of the higher order axial modes is shorter 
that of the usual mode in a cylindrical waveguide, which 

bald be of practical interest for higher power, higher frequency 
«ration of backward wave oscillators. A perturbation technique 
used to ascertain the field distribution inside the resonant 

■vity, and the numerical results thus obtained are compared 
i some experimental data. 

I. INTRODUCTION 

THE growing need for coherent, efficient, and high power 
microwaves has led to the development of a number 

of innovative devices, including backward wave oscillators 
(BWO's), which are a promising class of devices having 
a number of useful features, namely: high spectral purity 
microwave power, frequency tunability, high efficiency, etc. 
[l]-[5]. For example, for an overmoded structure, D/X > 1, 
1% frequency tunability in the frequency range 5.2-5.6 GHz 
has been reported [6]. Here, D is the mean diameter of the 
waveguide and A is the wavelength. Microwave radiations on 
the order of 1 GW at a frequency up to 30 GHz have been 
obtained [7], [8]. Continuous efforts are being made to enhance 
the power and frequency level of the devices. 

In the slow wave devices, the interaction of electromagnetic 
(EM) quantities takes place inside the slow wave structures 
(SWS). In order to understand the physics of the mechanism 
involved, it is necessary to analyze the SWS in a realistic 
way. Resonators are also used in linear accelerator (linac), 
but their geometries are considerably different from those 
used in BWO's. The EM behaviors of the linac cavities 
have been extensively studied by many researchers using 
numerical computational techniques. In order to study the 
accelerator cavities with complex geometries, computational 
codes such as SUPERFISH 19], URMEL-T [10], etc., have 
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been developed. These codes are based on the discretization 
techniques of Maxwell's and Helmholtz's equation, in general. 
The computational time of these codes depends on the number 
of mesh points, geometry of the cavity, boundary conditions, 
and accuracy demanded for the particular purpose. A brief 
description of the numerical codes generally used in linac 
studies is presented in [ 11 ] by Cooper and Jones. In this work, 
an attempt has been made to explore the EM quantities of 
a sinusoidally corrugated SWS typically used in the BWO 
experiments in the simplest way, by using analytic equations 
derived for this purpose. In the BWO's, the finite axial 
dimension of the SWS causes reflections from the ends and, 
thereby, quantization of the axial wavenumber results in axial 
resonant modes. The finite transverse dimension of the SWS 
limits the power handling capability due to the internal RF 
breakdown. In order to overcome such a problem, one can 
increase the mean diameter of the SWS, thus creating an 
overmoded system. In general, many higher modes can be 
oscillated in such an overmoded SWS. It is still possible to 
operate the BWO preferentially at a particular mode with 
higher frequency by carefully selecting the beam and size 
parameters. This is because the respective modes have dif- 
ferent starting current for oscillation with each other. This 
difference can be carefully used to select the particular mode 
for oscillation. In fact, recent experiments have shown that 
efficient and high power output can be achieved in such 
devices operating in a single mode [6]. Despite the numerous 
studies on conventional, weakly relativistic microwave tubes, 
more detailed studies of the resonant modes in the finite length 
SWS's intended for operation with highly relativistic electron 
beams are required. The motivation of the present work is 
the recent interest in the generation of high power microwave 
radiation employing overmoded slow wave systems. Most of 
the analyses of such systems were performed assuming infinite 
length systems or perfectly matched finite length systems, 
which are far from the actual experiments. Moreover, their 
analyses have been restricted mainly to the fundamental mode 
[12]—[18]. In this paper, we model a finite length SWS 
consistent with real experiments and include higher order 
modes in our computations. Specifically, we consider the 
two wave interaction process with 100% round-trip reflection. 
Under this assumption, our SWS becomes an SWS cavity with 
perfectly shorted ends. Detailed field calculations along with 
higher harmonic analysis of the axial resonant modes in the 
SWS have been made. For the higher order axisymmetric TM 
modes (TM0s,s > 1), some unusual and novel phenomena 
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Fig. 1. Schematic diagram of a spatially periodic slow wave structure (SWS) 
showing the directions of forwardly propagating wave F and backwardly 
propagating wave B. (a) SWS shorted at z = 0 and z = L and (b) locations 
of the F and B waves in the dispersion curve in the first Brillouin zone. 

have been found for the first time regarding the amplitude 
of the spatial harmonic components of the resonant modes for 
particular values of the axial wavenumber. Cavity perturbation 
technique [19] has been employed to calculate the resonant 
frequency shift of the cavity. Some of the present numerical 
results are compared to experimental and numerical results 
obtained by using SUPERFISH in [20], and are found to be 
in excellent agreement.' 

The organization of the paper is as follows. In Section II, 
we present the mathematical formulation of the SWS. Section 
III describes the numerical results of the analysis. The cavity 
perturbation technique and the corresponding numerical and 
experimental results are given in Section IV. In Section V, 
discussion and conclusion of the present works are presented. 

II. MATHEMATICAL FORMULATION 

First, we consider an infinite length SWS; next, after im- 
posing additional axial boundary condition to the system, we 
will obtain the EM field quantities in a finite length SWS. As 
depicted in Fig. 1(a), the SWS is assumed to be sinusoidally 
corrugated in the axial direction with radius R(z) = Ro + 
hcoskoz, where fc0 = 2TT/ZQ. Physical quantities associated 
with an EM mode are represented by a spatial harmonic series 
satisfying Floquet's theorem. For axisymmetric TM modes, 
the axial electric field Ez can be expressed as [14], [16] 

E,(z,r,t)=   f) 4nJb(gry<fc-*-«*" (1) 
n=—oo * ' 

where Jo is the Oth-order Bessel's function of the first kind, 
x2 = EQ(W

2
/C

2
 - A;2), fcn = k + nko, k is the axial wavenum- 

ber, and n is an integer. For slow spatial harmonic waves 
with x2 < 0, Bessel's function Jo becomes the modified 
Bessel's function IQ. Although the contributions of these 

-it       -it/2 0 it/2 it 

NORMALIZED WAVENUMBER kz0 

Fig. 2. Numerically obtained dispersion relations of the SWS 
for— 7T < kzo < z in the first Brillouin zone. The parameters of the 
SWS are: Ro = 1.4499 cm, z0 = 1.67 cm, and h = 0.406 cm. Light lines 
(ui/Jb = c) are shown by dashed lines. 

AXIAL DISTANCE z ( cm ) 

(a) 

u AXIAL DISTANCE z ( cm ) 

(b) 

Fig. 3. Electric field patterns of the TMoi mode. SWS parameters are: 
Ro = 1.499 cm, *o = 167 cm, and h = 0.406 cm. Arrows indicate 
the direction of the electric field. The density of the field lines indicates 
the strength of electric field qualitatively, (a) TMo\(0n/6) mode and (b) 
TMo\{Oz/6) mode. 

harmonics are substantial inside the deep corrugation (r ~ 
Ro + h), this region is so small that we can still determine 
the EM characteristics inside the SWS correctly. The other 
components, Er and He, are derived from Ez. The dispersion 
relation is obtained from the boundary condition at the wall 
of the structure, i.e., the tangential component of electric field 
should be zero at r = R(z). The mth spatial Floquet harmonic 
components of this boundary condition can be expressed as 

n=oo .Zo/2 
-m)kz] i + 

ikn 

(w2/c2 - A;2) dz 

0. 
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AXIAL DISTANCE z ( cm ) 

(a) 

u AXIAL DISTANCE z ( cm ) 

(b) 

Fig. 4. Electric field patterns of the TAfot mode. SWS parameters are the 
same as in Fig. 3. Arrows indicate the direction of electric field. The density 
of the field lines indicates the strength of the electric field qualitatively, (a) 
TMO4(0ir/6) mode and (b) TMo4(6ir/6) mode. 

In order to evaluate this integral, we used Taylor series 
expansion of the Bessel's function around R = RQ, since 
direct integration takes much time for computation. The radial 
boundary condition is imposed into the following matrix form: 

[D] ■ [A] = 0 (2) 

where [A] is a column vector with elements An, and [D] 
is a matrix of an infinite rank with each element given by 
Dmn = [1 + {ni- m)Qn]Cmn where 

,(ina)a«+l"-m'j^+|n-m|)(:cn 
22q+\n-m\ql(q + |n - m|)| C„ 

,=0 

(3) 

Qn - kukn/{uj2/c2 - k2
n) and a - h/Ra. The dispersion 

relation is determined from the condition that (2) should have 
nontrivial solutions, and is given by 

D(k, w) = det [Z?] = 0. (4) 

In our practical calculation, the value of n is limited to —4 
< n < 4, and 2q + \n - rn\ < 10 is chosen in (3). By 
comparing to direct integration, we have confirmed that the 
Taylor expansion of the Bessel's function converges quite 
rapidly and that the numerical errors are less than 1% for 
the fundamental mode with the parameters later described. 

In the case of a finite length SWS, the additional boundary 
condition at both ends of the structure must be included. 
Referring to Fig. 1(a), a forward propagating wave F in the 
z-direction is reflected at z = L and becomes a backwardly 
propagating wave B. The locations of the waves on the 
dispersion curve are shown in Fig. 1(b). Both F and B waves 
have to satisfy (4). The F wave propagates from the z = 0 
boundary. After a round-trip with reflection at z = L, the 
resultant wave at the z = 0 boundary should be "single" 
valued. This is a two wave interaction process, and the axial 
boundary condition can be expressed as [16] 

Rei(kF-kB)L = j (5) 

0 »t/2 T 

NOMALIZED WAVENUMBER kz0 

(a) 

< 
c < 

-10 - 

0 n/2 it 

NOMALIZED WAVENUMBER kz0 

(b) 

Fig. 5. Relative magnitude of the amplitude of the Floquet harmonics An 

versus normalized wavenumber for 0 < kz0 < T. (a) TMoi mode and (b) 
TMo4 mode. 

where R is the total reflection coefficient at the ends of 
the SWS, and kF and kB are the wavenumbers of the F 
and B waves, respectively. If the cavity is lossless and the 
ends are shorted with perfectly conducting metal plates, then 
R = 1 and kp = -fcs as shown in Fig. 1(b). Hence, from 
(5), kF = N-K/L, where N is an integer. Except for the 
propagating direction, the wave B is the same as the wave 
F. They satisfy identical radial boundary conditions and have 
the same energy. Therefore, in (1), the relationship between 
the coefficients An can be written as A% = A&n. By summing 
the F and B waves, the expressions of the EM fields in the 
SWS cavity become 

EM(z, r, t) = e~iut f; 2^ln7o fer) cos (*„*)        (6) 

Er(z, r, t) = Roe-^ £  ^Ji (gr) sin(fcn.) 

(7) 

He(z, r, t) = -ie0ujRoe~ 

■ 12-t^h^-   <8> 
n=—oo 

Once the dispersion relation (4) is solved numerically, the 
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Fig. 6. Axial profiles of Floqaet harmonics of field £2 at radial position r = 0 for TM0\ and TM0A modes. The higher order harmonics of small amplitudes 
are not shown in the figures. Thick, solid curves represent the total value of the electric field E2. Thin, dashed and chained curves represent the Floquet 
harmonics as indicated by n in the figures, (a) TM0\ (OTT/G) mode, (b) TM01(6TT/6) mode, (c) TA/O4(0jr/6) mode, and (d) rM04(6ir/6) mode. 

relative magnitudes between the An factors are determined 
from (2). With a known set of values of An, the normalized 
values of the fields Ez,Er, and He can be calculated from 
(6), (7), and (8), respectively. 

III. NUMERICAL RESULTS 

In the present analysis, a six-period SWS having the 
following size parameters is considered: the mean ra- 
dius RQ = 1.499 cm; the period of corrugation z0 — 
1.67 cm; and the corrugation amplitude h = 0.406 cm. 
These dimensions correspond to the experimental values 
used by our research group at the University of Mary- 
land [20]. Fig. 2 depicts dispersion relations computed 
from (4). The dashed lines in the figure are the light 
lines in free space. The end reflections cause the six- 
period SWS to resonate at seven distinct frequencies 
corresponding to the particular TM modes. For the first 
Brillouin zone (-7r < kz0 < ir) of the dispersion 
relation, the values of the normalized wavenumber kzo 
which correspond to the seven resonant axial modes are 
OTT/6, TT/6, 2TT/6, 3TT/6, 4TT/6, 5TT/6, and 67r/6, respectively. 
We will designate these axial modes by TM0,(Nir/6) 
hereafter. 

A. Electric Field Lines of the Fundamental Mode 

Using the derived field equations in the SWS, the electric 
field lines are calculated. The method of computation is identi- 
cal to that developed by Ogura et al. [18], with a modification 
for the higher order modes. Examples of the electric field 
patterns of the TM0i mode are depicted in Fig. 3(a) and (b), 
respectively, for TM0I(0TT/6) and TM0l(6n/6) modes. The 
separations Ar between the field lines in the radial direction 
are so chosen that Ez Ar ^constant at the axial position 
Er = 0. The density of the field lines in the radial direction 
represents the strength of the electric field qualitatively. For 
the rMoi(07r/6) mode in Fig. 3(a), the electric field is fairly 
uniform in the axial direction, and the radial variation of the 
field has a maximum on the axis of the structure. The axial 
pattern of the fields has six zero points (Ez = 0) for the 
TMoi (6ir/6) modes as shown in Fig. 3(b). The periodic nature 
of the field lines depicted in Fig. 3(b) can be explained by 
the contribution of the Floquet harmonics for n = 0 to the 
resonant axial modes. 

B. Field Patterns of Higher-Order Modes 

The numerical calculation of the field patterns for the higher 
order modes [TM0a{s > 1)] is complicated. We followed| 
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improved technique from the case of the fundamental 
de [18], and have tried to calculate the electric field 

for the TMo2,TM03, and TM04 modes. Some of the 
suits for the TM04 mode are presented in Fig. 4(a) and (b), 

fiespectively, for the case of TM04(07r/6) and TM04(67r/6) 
imodes. The field patterns have fine and peculiar structures and 
fdiffer considerably from those of the TM0i mode in Fig. 3. 
rThe radial distribution of the electric field lines in Fig. 4 is 
focalized and separated into two parts: the peripheral and 
Ithe central axis regions. The possible explanations for this 
difference can be given by the contribution of the Floquet 

; harmonics involved in the SWS. This will be discussed in 
[detail in the following subsection. 

C. Floquet Harmonics of the Electromagnetic 
Fields in the Structure 

The number of Floquet harmonics to represent the EM fields 
are practically limited by the computation time and the relative 
magnitude of the amplitude factor An's. The values of An 

differ from mode to mode as shown in Fig. 5(a) and (b), 
respectively, for TM0i and TMM modes. In general, An 

decreases with increasing \n\, namely, A0 within the first 
Brillouin zone of the dispersion relation is the largest. In 
Fig. 5(a), at kz0 = 0, the relation between An's becomes 
\An\ = |i4_„| and \An\ « |A_„_i| at kzQ = TT. At r = 
0, the nonzero field component is Ez, and it is proportional 
to Ao + A-i exp [-i(2ir/z0)z] + Ai exp [i(2Tr/zQ)z} + • • •. As 
shown in Fig. 5(a), the contribution of the n = 0 Floquet 
harmonic to Ez is predominant, and the amplitudes of the 
higher order harmonics are very small except at kz0 « TT for 
the TMoi(67r/6) mode. For this reason, the field lines of the 
TMOI(07T/6) mode, as shown in Fig. 3(a), are almost straight 
lines for r < HQ. On the other hand, the field lines of the 
TMoi(67r/6) mode are determined by the n = 0 and n = - 1 
Floquet harmonics. These two harmonics have the same field 
variations in the z-direction with a period of 2z0 and, hence, 
we obtain the field pattern with the periodicity depicted in 
Fig. 3(b). 

For the TM04 mode in Fig. 5(b), the values of A±i become 
greater than AQ for small values of k within the first Brillouin 
zone of the dispersion curve. This result is novel and was 
not known in the previous works [14]—[16], [18]. The effects 
of this unusual behavior are observed in the electric field 
patterns of the structure shown in Fig. 4. In Fig. 5(b), as k 
increases, \An\ approaches |J4_„_I| at kz0 = TT, as is observed 
for the TMoi mode in Fig. 5(a). The field quantities of the 
TMo4(07r/C) mode in Fig. 5(b) are nearly proportional to 
J4_I exp [—i{2ir/z0)z] + Ax exp [i(27r/z0)z], which is periodic 
with period z0. This fact can be seen from the field patterns 
of the TMo4(07r/6) mode as shown in Fig. 4(a). As kz0 

approaches n, the field patterns of the TMo4(67r/6) mode near 
r = 0 as shown in Fig. 4(b), have a periodicity 2z0, which is 
similar to that for the TM0i(67r/6) mode in Fig. 3(b). 

The harmonic components of Ez(r — 0, z) are shown in 
Fig. 6(a) and (b) for the TM0i mode and in Fig. 6(c) and (d) 
for the TMo4 mode. The EM fields are normalized by A0. 
The thick, solid curves in the figures represent the total value 

TMo4 (Off/6)   MODE 

I 

-20 

0 5 10 
AXIAL DISTANCE z ( cm ) 

(a) 

TM04 (6*/6)   MODE 

RADIAL DISTANCE r ( cm ) 

(b) 

TM04 (6;r/6)   MODE 

I 
2 

AXIAL DISTANCE z ( cm ) 

(c) 

Fig. 7. Resonance frequency shift Af of the axial resonant modes for the 
TMo4 mode due to perturbation by a spherical metallic bead, (a) Axial 
changes in A/ of the TA/04(07r/6) mode for the bead at r = 0; (b) radial 
changes in A/ of the TMO4(6K/6) mode for the bead at - = i\z0: (c) 
axial changes in A/ of the rA/04(Gjr/6) mode for the bead at r = 0. Here, 
N =l, 2,---, 6. 

of Ez. The thin, dashed and chained curves in Fig. 6 express 
Ez components at r = 0 denoted by the harmonic number n 
in (1), which can be understood if one compares to the values 
of An at kz0 = 0 and kz0 = TT in Fig. 5(a) and (b). The 
amplitudes of the higher order harmonics not expressed are 
very small compared to those shown in Fig. 6. The z-direction 
periodicities of Ez—as depicted in Fig. 6(a)-(d)—correspond, 
respectively, to those of Figs. 3(a) and (b), and 4(a) and (b). 
In Fig. 6(a), the contribution of the n = ±l harmonics to Ez 

results in a small superimposed perturbation in the z-direction. 
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Fig. 8. Comparison of numerical and experimental results of frequency shift A/ by the displaced bead in axial and radial directions. The solid curves 
indicate the numerical results, and the open circles represent the corresponding experimental results. The axial data were measured by the bead at a radial 
position r = 0.543 cm. (a) Axial changes in A/ for the rA/0i(Gjr/G) mode; (b) radial changes in A/ for the rA/ot(G7r/G) mode; (c) axial changes 
in A/ for the 7\U03(3ir/6) mode; (d) radial changes in A/ for the 7\V/o3(3jr/G) mode. 

The effect of this perturbation can easily be observed in the 
field lines for the TM01(07r/6) mode in Fig. 3(a). 

The above results for the TM04 mode are never trivial and 
have not been clarified in the past in the literature [ 14]—[ 18]. 
In usual cases, the fundamental Ao term is dominant in (1) as 
shown in Fig. 6(b) and (d); the shortest axial period of Ez is 
2z0 for kzQ = 7T, as was shown by Fig. 3(b) and Fig. 4(b). 
On the other hand, in the special case where |.A±i| is larger 
than AQ, as shown in Fig. 5(b), the axial period can become 
as small as ZQ for kzo « 0, which is much shorter than the 
usual minimum period of 2ZQ. 

IV.   PERTURBATION TECHNIQUE 

The perturbation technique is a powerful method to measure 
EM field variations inside the resonant cavity [19]. This 
technique has been employed in the following analysis of 
SWS cavity, and the numerical results have been compared 
to experimental ones obtained at the University of Maryland 
[20]. 

When there exists a small metallic sphere bead with radius 
r0 in the cavity, the EM fields in the cavity are perturbed and 
the resonance frequency of the cavity changes by an amount of 
A/. If the perturbation is small enough, A/ can be calculated 
approximately with the unperturbed field quantities Ez,Er, 

and He given by (6)-(8). The resultant expression for A/ 
becomes [19], [20] 

A/       irrroilnoW - 3c0(|g,|2 + \Er\
2)) 

/0        Jv(ßo\He\* + eo(\Ez\z + \Er\*)dV) ' 
(9) 

From (9), the field quantities are closely related to the fre- 
quency shift of the SWS cavity due to the bead. In the case of 
a spherical bead, the EM field quantities cannot be determined 
separately, because an unidirectional perturbation is impossible 
to achieve with the spherical bead perturber. The perturbation: 
in E is always accompanied by a perturbation in H. 

The calculated values of the frequency shift A/ for 
TM04 mode, with a bead radius of 0.1195 cm, are present« 
in Fig. 7. The axial changes in A/ in Fig. 7 are calculatf 
with the perturber at r = 0. The axial changes in A/ fa 
the TM04{0TV/6) mode are shown in Fig. 7(a). The radial andj 
axial changes in A/ for the TM04(6?r/6) mode are show 
in Fig. 7(b) and (c), respectively. At r = 0, Er = H$ =| 
0 and the only nonzero field component in (9) is Ez, and 
hence, A/ in the axial direction as shown in Fig. 7(a) 
(c), respectively, for TM04(07r/6) and TM04(67r/6) mo 
are directly proportional to -\EZ\

2. In other words, the result! 
presented in Fig. 7(a) and (c) are proportional to the squ 
of the axial profiles of total Ez in Fig. 6(c) and (d). Heno 
at r = 0, we can obtain the quantitative information ab 
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the axial electric field in the SWS from the A/ data. It 
should be noted that the solid curve in Fig. 6(c) is not 
symmetric regarding Ez (r = 0)= 0. The curve in Fig. 7(a) is 
therefore not simply sinusoidal. For r ^ 0, however, using the 
spherical perturber, it is impossible to measure quantitatively 
the individual fields involved in A/. The radial variations of 
A/ are dependent on Ez,Er, and Hg. In the case of r # 
0, at the axial positions where Er = 0, both contributions 
from Ez and Hg to A/ cannot be ignored as is seen from 
(9). The positive region in the radial profile of A/ for the 
TMo4(Ö7r/G) mode, in Fig. 7(b), is ascribed to Hg. The axial 
variations of A/ for the TMU4(07r/(J) mode, in Fig. 7(a), are 
very rapid compared to those for the TMoi((Jn/(i) mode, as 
shown in Fig. 8(a) by the solid curve. Experimentally, it is 
difficult to measure axial changes in A/ for the TM04(07r/6) 
mode, in Fig. 7(a), because of the very rapid variation of the 
fields in the axial direction. However, the TMU4(Ü7r/ü) mode 
in Fig. 7(c) has variations of A/ similar to those observed 
for the TM(n(ü7r/ü) mode in Fig. 8(a). These modes have 
field variations which are not very rapid in the axial direction 
as depicted in Fig. 6(b) and (d). The numerical results of 
A/ have been compared to experimental measurements [20|, 
and some of these results are shown in Fig. 8. The axial and 
radial changes in A/ for the TM0i(67r/()) mode are shown in 
Fig. 8(a) and (b), respectively. The axial and radial changes in 
A/ for the rM(,3(37r/6) mode are shown in Fig. 8(c) and (d), 
respectively. The open circles represent the experimental data, 
and the solid curves are the present numerical results. The 
numerical data presented in Fig. 8(a) and 8(c) are for the bead 
at a radial position ■/■ = Ü.543 cm from the axis. By comparing 
the frequency shift to the field profiles, one can determine 
the axial resonant modes in the SWS to be 7'M0i(Ü7r/G) and 
rMo:i(37r/6) modes. The agreement between the numerical 
and experimental results can be clearly estimated from the 
figures. The discrepancy between them lies within the range 
of 10-20%. 

V. DISCUSSION AND CONCLUSION 

We have numerically analyzed the EM quantities of fun- 
damental and higher order axial TM modes in a finite length 
SWS. It is found that, for the higher order modes, the am- 
plitudes of the Floquet harmonics show unusual behavior as 
depicted in Fig. 5(b) for the TMM mode. For the TM04(07r/6) 
mode (kzQ = 0), the field quantities are mainly determined by 
the Floquet harmonics with n = -1 and 1, and the fields 
have an unusual short period of z0 as shown in Figs. 4(a) 
and 6(c). This indicates that the period of field modulations 
can decrease to z0, which is small compared to that for the 
usual modes in cylindrical waveguides where the period is 
larger than 2z0. Such a mode with short field modulations may 
become important for higher frequency operation of BWO's. 

The numerical results presented in this paper are being 
verified experimentally at the University of Maryland [20]. 
Generally speaking, it is impossible to reconstruct the field 
distributions including phase change by the frequency shift 
measurements only, because the frequency shift is related to 
only the absolute values of the EM fields, as is seen from 

(9). In some cases, however, the experimental results can be 
compared to the numerical calculations as shown in Fig. 8. It is 
concluded that the measured resonant modes are TM0i(67r/6) 
in Fig. 8(a) and (b), and TM03(3TT/6) in Fig. 8(c) and (d). 
The agreement between the numerical and experimental data 
is quite satisfactory. 

To determine the dispersion characteristics of an SWS 
cavity, shorted plates are placed at both ends and the resonant 
modes are excited by a suitable mode launcher at one of the 
end plates. The degree of coupling between the mode launcher 
and the SWS determines the type of mode launcher to be 
used in the experiment. If the coupling between the mode 
launcher and the cavity is strong, complete reflection on the 
input antenna side cannot be expected. For a disc-type mode 
launcher, the reflection coefficient at the input end will be 
small, and consequently our assumption of perfectly shorted 
ends of the SWS becomes inapplicable. Hence, we prefer a 
short wire antenna at the center of the plate as a mode launcher 
to excite the cavity. However, it is difficult to excite the surface 
wave modes near kzo = ir, as was reported in [20]. 
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