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ABSTRACT

The analysis of transient signals using classical techniques is frequently not
satisfactory. The Fourier analysis is based on stationarity of the signal, and transients are
non-stationary. A new technique for the analysis of this type of signal, called the Wavelet
Transform, was applied to artificial and real signals. A brief theoretical comparison
between the Short Time Fourier Transform and the Wavelet Transform is introduced. A
multiresolution analysis approach for implementing the transform was used. Computer
code for the Discrete Wavelet Transform was implemented. Different types of wavelets to

use as basis functions were evaluated.
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I. INTRODUCTION

It is believed that different transmitters have unique signatures, that is, the
transient or turn on-turn off response is unique to a given transmitter or at least to a
particular make. In this thesis we will examine this issue. The resulting process algorithms
are also useful in other transient signal applications. We will make use of a new analysis
technique called the Wavelet Transform.

Analysis of stationary signals is a very well studied subject. The researcher can
choose among a variety of methods and apply the best technique. However, the study of
non-stationary signals, like transients and signals that show a behavior with sharp
transitions, presents a challenge. The Fourier Transform method is not appropriate
because it uses as basis function the complex exponential that extends over infinite time,
while transients are of short duration. In 1946, Gabor [Ref. 1] proposed a modification to
the Fourier Transform. A sliding time-window was introduced to the original transform
equation with the intention to Jook into the signal by small portions. Assuming that this
small portion has a stationary behavior, the analysis of the signal by the Short Time
Founer Transform (STFT) is appropriate. Other methods such as the Instantaneous Power
Spectrum and the Wigner-Ville Distribution [Ref. 11], have also been developed but have
similar limitations as the STFT.

The purpose of this thesis is to investigate the use of the Wavelet Transform for
the estimation / classification of certain transient signals. The results may be adapted to

problems related to acoustic and electromagnetic transients.







II. TRANSIENT SIGNAL ANALYSIS

A. THE SHORT TIME FOURIER TRANSFORM ( STFT)

1. The Continuous STFT
The Standard Fourier Transform of a signal is defined as

XQ) = [ x(es™ar, (2.1)
or as
X(Q) = (x(1), ™). (22)

Equations 2.1 and 2.2 show that the Fourier coefficients are computed as inner products
of the signal with a complex exponential basis function of infinite duration. It decomposes
the signal into frequency components. If the signal components vary sharply in the time
domain, after being transformed these local irregularities are spread out over the entire
frequency domain loosing their localization. This approach may not be suitable if the signal
of interest is non-stationary. However, even non-stationary signals can be assumed to have
a stationary behavior for a short time. Based on this assumption, Gabor [Ref. 1] proposed

the modification of the Standard Fourier Transform. A window g(?) of short duration and

centered at location 7 was inserted in Equation 2.1 as follows
- -]
X = [ x(tgt-v)e™ar. (23)
-0

Equation 2.3 is called Short Time Fourier Transform ( STFT ). If the analysis window
8(1) is Gaussian the STFT is called the Gabor Transform. The analysis window g is




considered to be part of the specification of the STFT. The short-time section of x(1) is the
product x(2)g(?-7) and it becomes clear that changing the analysis window will, in general,
change all the short-time sections and consequently the STFT [Ref. 3]. A major drawback
of the STFT is that g(?), as a fixed duration window, is accompanied by a fixed frequency
resolution, allowing only a fixed time-frequency resolution [Ref. 2]. This is known as the
Heisenberg inequality that states that for a given transform pair
1

0/0q 2 5 (24)

where o, and o, are the root mean square of the variance of the signal over time and

frequency respectively. The variances are given by

(v o]
I 12|g(n))2dt
o; = Z— (25)
f lg(t)l2dr
-0

J Q?IG(Q)12dq

céz = . (2.6)
j IG(©)12a0
S

Hence, either time or frequency resolution can be enhanced at the expense of a poor
resolution in the other domain since there is a lower bound for the product given by
Equation 2.4. Note that the time-frequency resolution is fixed for the whole
time-frequency plane once a window has been selected. Figure 1 shows the tiling of the
time-frequency plane for the STFT, where each rectangle represents the basic resolution

cell, given by 6,0q.
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o

—
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Figure 1. Tiling of the Time-frequency Plane for the STFT

2. The Discrete-Time STFT

The discrete-time version of the STFT can be defined as
Xk,n)= Y gn—myx(m)e . (2.7)
m=—c

The analysis window g(m) is considered to be part of the specification of the STFT, and
its selection dictates the trade-off between frequency and time resolution. The
discrete-time STFT can be viewed as a set of Discrete Fourier Transforms ( DFT ) of
short duration. It can also be viewed as the output of a filter bank.

Rewriting Equation 2.7 we have

X(k,n) = f: [x(m)e " ]g(n ~ m), (28)

m=—x




Equation 2.8 is in the form of the convolution of the sequence [x(m)e_j?km], with the
sequence g(m). We can then rewrite Equation 2.8 as

X(k,n) = [x(n)e 73] % g(n), (29)

where the symbol " x " denotes the convolution operator. Thus, the discrete-time STFT
can be viewed as a collection of sequences, each corresponding to the frequency
components of x(n) falling within a particular frequency band. Figure 2 illustrates a filter

bank operation, where each filter acts as a bandpass filter centered at a selected frequency

[Ref. 3].

e-jO
ﬂé} > w(n) ——— X(n,0)
e-i2 /N
— w(n) —— X(n,1)
c-i2mn/N
x(n) vé > w(n) > X(n2)
SJ2m(N-)N
*é q w(n) — X(n,N-1)

Figure 2. The Discrete-time STFT as a Filter Bank



To overcome the time-frequency resolution constraint of the STFT a new
technique was devised to create a basis function to allow a multiresolution analysis. This

new technique is known as the Wavelet Transform.

B. THE WAVELET TRANSFORM

To obtain a multiresolution analysis we must allow both resolutions o, and o, to
vary in the time-frequency plane. When the analysis is viewed as a filter bank, the time
resolution o, increases with the central frequency of the analysis filters, consequently the
frequency resolution oy, is inversely proportional to Q, or

% =c, (2.10)
where ¢ is a constant. The analysis filter bank is then composed of bandpass filters with

proportional bandwidth (the constant Q) analysis). Figure 3 shows a division of the
frequency domain for the STFT and the Wavelet Transform.

—»
/8 n/4 2 3n/4 n o
>
/8 w4 2 1o ()

Figure 3. Division of the Frequency-domain for the STFT and the Wavelet Transform




The Wavelet transform is founded on dilations and translations of a basis function

known as the mother wavelet. The family derived from this basis function is of the form

Yar () = 712,-\41(’-311) (2.11)

where a is the scaling parameter and b is the shifting or translation parameter. If a is large
then (1) becomes stretched and corresponds to a low frequency function and if a is
small w,(7) becomes compressed and corresponds to a high frequency function. The
dilations and translations present in the wavelet function enable the narrowing and
widening of the time-frequency plane. Thus, it is possible to adjust to the characteristics of
the analyzed signal [Ref. 5]. Figure 4 shows the tiling of the time-frequency plane for the
Wavelet Transform. Figure Sa shows a mother wavelet function while Figures 5b, 5¢ and

5d show examples of its dilations and translations.

frequency
A
v >
scales time

Figure 4. Tiling of the Time-frequency Plane
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Figure 5a. Haar Wavelet Figure 5b. a=0.5,b=0
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>
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Figure 5c. a=2,b=1 Figure 5d. a=1,b= 1.

Figure 5. Haar Wavelet and Part of its Family

1. The Continuous Wavelet Transform

The Continuous Wavelet Transform ( CWT ) can be defined as

CWTi(a,b)=— [ was(tpx(tyat, (2.12)

where (1) is given by Equation 2.11 and the term 1//a is the wavelet energy

normalization factor. Equation 2.12 can be written as




CWTx(a,b) = —=(ya (1), (1)), (2.13)

The inverse of the Wavelet Transform is given by

x0)=2 [ [CWTa, by, (2.14)
- 0
where C, is given by
Cy =_[ YOR 40 (2.15)
0

and ¥(¢) is the Fourier Transform of y(?). Equation 2.14 holds only if the wavelet

function y,,(1) satisfies the admissibility condition. To be an admissible wavelet function,
the term C,< o, therefore y,, (1) has zero mean or its DC value is zero (H0)=0). The

function y,, (1) has compact support, hence it acts as the impulse response of a bandpass

filter that decays very fast to zero [Ref. 2].

2. The Discrete Wavelet Transform

The parameters a and b of the mother wavelet ¥,,(1) are continuous variables
making the Wavelet Transform very redundant and impractical. Both parameters can be
discretized by sampling to obtain a set of discrete wavelet functions. However, if the
sampling rate is too high, the transform is close to the continuous transform case and
hence it might be redundant. If it is too low, it may not contain the necessary amount of
information for reconstructing the original signal. The solution to the problem may be
addressed by the use of frames. The study of frames was introduced by Duffin and
Schaeffer [Ref. 6] and was also addressed by Daubechies [Ref. 7]. Their work provided a

general theory that sets the balance for the extreme cases of over and undersampling the

10



parameters of the Short Time Fourier Transform and the Discrete Wavelet Transform and
proved the existence of numerically stable inversion procedures for both transforms.

Let the sampling lattice be
a=aaf’ | (2.16)
b =kboay (2.17)
where j, k € Z.Equation2.11 becomes
Wa(t) = —w("”) aPy@t-3). (2.18)
Substituting 2.16 and 2.17 into 2.18 we obtain
Wilt) = ab (@t — kbo). (2.19)

The set of wavelet functions defined by 2.19 can be considered as a discretized version of

the continuous case and we can represent any signal or function x(t) € L*(R) as
x()=X Zk) diwi(t), JkeZ, (2.20)
J
where d} is defined as

= [ x(tyw(abt - kbo)a. (221)

The wavelet basis function cannot be considered a basis for L*(R); it is called a frame. The

Jrame does not satisfy Parseval's power theorem and the wavelet expansion may lead to

11




more than one solution. Daubechies [Ref. 7] showed that, the recovery of x(1) is possible

only if

2 .
A < 2 X |di|” < Bk, JkeZ (222)
J
where 4 and B are the frame bounds for the frame Y x(f) and |bef|2 2 J‘ |x(®)| 2dt. The set

defined by 2.19 is considered a frame only if W(?) satisfies the admissibility condition.

Then the frame bounds are constrained by

[+ ¢]

2
< X j FOPd cp g<h4<B<w. (2.23)
bologag Q|

If y;(?) is inadmissible it leads to a diverging upper bound ( B = « ). The inequalities

hold for any a, and b,. Some definitions are needed before we proceed :
> If A =B =1 then the frame is named a tight frame;
> If the removal of a function leads to an incomplete set, it is an exact frame;

> An exact and tight frame constitutes an orthonormal basis [Ref. 7].

For the set of functions defined by 2.19 to be considered a basis for L2(R) it has

to satisfy the definitions above and, therefore, the tightest set \y;i(f) is the orthonormal

set.
Let the set W;i(7) be a set of orthonormal wavelets then

L
J\Vf‘k(’)\l/j'k'(’)df= { ;‘ j=J. k=K (2.24)

otherwise.

12



Both indices are orthonormal in time within any scale j and also across all other scales
[Ref. 2].
For practical purposes a, = 2 and b, = 1, leading to what is called a dyadic or

octave lattice [Ref. 2, 4, 7]. Figure 6 shows the dyadic or octave sampling lattice.

0.5 1 1.5 2 kJ)
T 1 | |
OL (o] (o]
2k (o] (o] o (o] (o] 0 (o] (o]

-3€oooooooooooooooo

S
Figure 6. Sampling Dyadic Lattice for the DWT
If we substitute the values a, = 2 and b, = 1 in Equation 2.19 we have

wi() = 22yt~ k). (2.25)

Mathematical and practical perceptions of the wavelet transform can be better understood

by using the concept of multiresolution to define the effects of changing scales [Ref. 8].

13




3. Multiresolution Signal Analysis

Multiresolution analysis of L?(R) is defined as a sequence of closed subspace }; of

L*(R),j € Z that satisfy the following properties [Ref. 9]:

> Containment

...V..z - V.] cC Vo C V] C Vz :

< coarser Siner —»

> Completeness

‘ \ Vi={0} forjeZ, (ie., thereis no intersection of subspaces),

U Vi=L*(R) forj € Z , (i.e., the union of subspaces is equal to L2(R));

> Scaling
x(t) € V; < x(2f) € Vi for any function x € L4(R);
> Shift or translation
x(t) € Vo> x(t+k) € Vo forany function x € L*R).ke Z;
> A function @(f) € Vy exists such that, for Vm € Z. the set defined by
o) = 2j’2(p(2f t — k) forms an orthonormal basis for Vi. (2.26)

The functions defined by 2.26 are called scaling functions, since they are scaled versions

of functions in L}R) . From the above definition for multiresolution analysis, it can be said

14



that the function () in L*(R) is the limit of the approximations ¢;(f) € V; as j
approaches infinity [Ref. 5] or

o) = }E (1) .

The variable j is called a scale factor. For j > 0, @ (t) narrows, and consequently V; is
wider, being able to represent finer detail. If j < 0, (pjk(t) stretches, V; is narrower and

the resolution is coarser. Let @(f) = V) be a scaling function; then its translations

¢@(t — k) span V. Let @(2f — k) be dilations of ¢(t — k) in V. We know that Vy  V;
then @(2¢—k) span V. Therefore, @(f) can be presented as a linear combination of
translations of @(2f) as

o(0) = 2 ho(k)p(2t - k), keZ (2.27)
k
Equation 2.27 is known as dilation or fundamental equation and ho(k) are the scaling

Junction coefficients. We will see later that ho(k)can be interpreted as a FIR filter. The

space L*(R) can be represented via a Venn diagram as shown in Figure 7.

L2(R)

Figure 7. Multiresolution Representation of L*(R)

15




Another way of graphically representing L*(R) is shown in Figure 8.

V, W W, W, W, - LX(R)
— v,
«— 1 >
V.
—y 3
| A
M

Figure 8. Multiresolution Representation of L?(R)

Note in Figure 8 that the areas denoted by Wy, W, W,, Wsetc., are the difference

spaces between (V1,V0), (V2, V1), (V3,V2),(Va, V3), respectively. The idea can be
extended to an arbitrary W;. The spaces W} are defined to be the orthogonal complement

of the spaces V;, with respect to V) [Ref. 5] that is
Vi =V, ® W, (2.28)
Vi L W, (2.29)

Where the symbol * @ * stands for direct sum. This means that each element of V)+1 can
be written as the sum of an element of W and an element of V;. A subspace W,

provides the necessary detail information to go from subspace Vi to V)41 . The direct sum

of all the possibly infinite spaces is equal to L2(R) [ Ref, 10 ].

16




Let (), as defined by Equation 2.25, be an element of any given subspace W;.
The subspace W is itself a subspace of V1. Therefore, W(f) can be written as a linear

combination of translations of ((7)

v =2 mF)eQRt-k), kez (2.30)
k

where h11(k) represents the wavelet coefficients that can be used as a high pass Finite
Impulse Response (FIR) filter. These coefficients are related to the scaling coefficients, as

they span two orthogonal spaces, they must also be orthogonal. Note that both equations
are derived from a common term and differ only by the coefficients Ao(k) and 4, (k).

Hence, orthogonality can be achieved by requiring that

(ho(k), h1(k))=0. (231)

Assuming that the number of coefficients defining Ao(k) and A, (k) is even and
hi(k) = (-1 ho(N-1-k), (2.32)

where NV is the number of coefficients, then the inner product of the coefficients is equal to
N-1 N-1
Eo ho(k)h, (k) = Eo ho(k)(=1)*ho(N-1-k). (233)

The expansion of 2.33 is equal to zero. Therefore, the space L2(R) is spanned by a linear
combination of functions in the subspace Vy and functions in subspaces W, to WJ As a

consequence, any function x(?) in L2(R) can be written as

17




x(1) = k=i arQi(t) + i i iy i (0). (2.34)

j: l k:—d)

Equation 2.34 is an expansion in terms of scaling and wavelet functions. The coefficients

arand dj, are the Discrete Wavelet Transform coefficients. They completely describe the

original signal and are defined as:

0

a = (x(), sk = | x(Oox(t)at, (2 35)

-0

®

di = (x(O), w®) = [ x(tywt)ar. (2.36)

-0

Where @4(f) and () are real functions. If the scaling and the wavelet functions form

an orthonormal basis, Parseval's power theorem holds. For the expansion defined by 2.34,

Parseval's theorem is

flx(t)lzdt= 2 lad?+Y X ldl2 (237)
k=—0

J=1 k==

If the functions are orthonormal and have compact support ( finite duration ), the desired

time localization in all scales is achieved [Ref. 8, 10].

a. The Scaling Function and the Scaling Coefficients
The coefficients Ay(k) in Equation 2.27 have to be chosen carefully in
order to generate scaling functions that have compact support (finite duration). They must
satisfy some necessary conditions to ensure this compact support [Ref. 10, 11, 12]. The

development of these conditions are provided in Appendix A.

18



1. The sum of the scaling coefficients must be equal to two

N-1
> ho(n)=2. (2.38)
n=0

) 2
2. If a solution to 2.27 exists, and f(p(t)dt #0, and “(p(t)l df=1, and an
integer number of translations of ((f) are orthogonal to each other, as defined by

(eu(®) = I Q(Do(t - k)dt = 5(k) = { Lk=0

0, else
then
N-1
> ho(yho(n - 2Kk) = 28(k) . (2.39)
n=0

3. The sum of the squares of the coefficients is equal to two.

Let k=0, Equation 2.39 reduces to
N-1
> lho(m)|2 =2, (2.40)
n=0

4. The individual sums of the odd and even terms of ho(n) is equal to one

S1+8,=2, (2.41)
where
N-1
S1 =2 ho(2n), (2.42)
=0
and
N-1
Sy =2 ho(2n+1). (2.43)
n=0

19




b. Scaling and Wavelet Functions Regularity
The N number of scaling function coefficients has to be even. These

coefficients have to satisfy the linear constraint determined by Equation 2.38 and the %
bilinear constraints determined by Equation 2.39. This leaves %— 1 degrees of freedom
for choosing them. That will guarantee the existence of the scaling function, and the set
derived from it will be orthonormal [Ref. 10].

The degrees of freedom in the scaling function coefficients determine how
regular the function will be. Regularity or smoothness of a function is defined by the
number of times that a function can be differentiated. In other words, a regular scaling or
wavelet function can be defined as a function with compact support in time and reasonably

localized in frequency.

¢. The Frequency Domain
The Discrete Fourier transform of Equation 2.27 is defined as

H(w) = i ho(k)e 7ok, (2.44)
k=—00

It turns out that a solution to Equation 2.27 exists only if H(0) =2, or the DC gain of the
FIR filter equals two.

If the integer translates of Equation 2.27 are orthogonal, then the

constraint defined by Equation 2.39 is true, if and only if

|H()]* + |H(o +m)|* = 4. (245)
Equation 2.45 is equivalent to a Finite Impulse Response (FIR) filter and is called a

Quadrature Mirror Filter (QMF) [Ref. 10, 18]. This allows the implementation of the

Discrete Wavelet Transform via a Filter Bank technique.

20



4. Filter Banks and the Discrete Wavelet Transform

The multiresolution analysis introduced in the previous section can be implemented
by applying a technique called Pyramid decomposition, or Mallat's algorithm [Ref, 13].
The algorithm does not include the use of scaling or wavelet functions; only the scaling
and the wavelet coefficients need to be considered. We derive the basic relationship
between the expansion coefficients at a lower scale in terms of those at a higher scale.

Reproducing the fundamental equation
o) =2 ho(H)o(2t-k), keZ (2.46)
k
Next, we dilate and translate Equation 2.46 to obtain

e2t-n)= %‘, ho(K)p(2(2't—n)—k) =

=2 ho(k)p(2*'1-2n—k). (2.47)
k
Let m =2n+ k or k= m - 2n, substituting into Equation 2.47
OQR/t-ny=2 ho(m-2n)p™*'t - m). (248)

Let V; be the subspace spanned by @(2/t — k) then

x(1) € Vi = x(1) = 2 auo(2*'1-k). (2.49)
k

Consequently x(#) can be expressed in terms of scaling functions and no wavelets. At one

immediately lower scale, the wavelets will provide the necessary detail not available in

21




that scale space and for a lower resolution the detail has to be accounted for. Therefore,

the wavelets have to be included in Equation 2.49, which is now rewritten as

x(t) = 2 ap2 ot - ky+ X du2 Pyt - k). (2.50)
k k

Where the term 2772 is the normalization for the various scales, and the terms aj; and djx
are the discrete wavelet transform coefficients. Note that x(1) belongs to V}+1 and

(2t -k) and W(2't - k) belong to V. If we substitute Equation 2.26 into Equation

2.50 we obtain

x(1) = %’ a@(t) + % Ay u(t), keZ. (2.51)

The discrete wavelet transform coefficients can be written as

-

aj, = I X(t)(pjk(t)df. (2.52)

-0

Substituting Equations 2.26 and 2.48 into Equation 2.52 leads to
o
ai= [ (YT ho(m — 2602022t - mydt,
-0 m

or

a =2, ho(m - 2k)_[ x(2GD2 24t — mydh (2.53)

Note that the integrand of Equation 2.53 is the discrete wavelet transform coefficient of
the scale j + 1, which leads to the following relation

22



aj = 2 ho(m —2k)aj 4. (2.54)

The analogous relationship for dj is of the form

dix = 23 h(m - 2K)ag . ' (2.55)

Therefore, the scaling and wavelet coefficients at a given scale j are obtained by
convolving the coefficients at that scale with Ao(~m) and #,(-m), and then decimating to

produce the expansion coefficients at scale j— 1. This is equivalent of filtering the j " scale
coefficients with two FIR filters. The impulse responses are so(-m) and h,(-m). After
decimation or down sampling, the next coarser scaling coefficients are obtained [Ref. 10].

Figure 9 shows the implementation of Equations 2.52 and 2.53 for three levels of
analysis. The notation LP stands for the lowpass FIR filter (i.e., the weights /o(~m) ) and

HP stands for the highpass FIR filter (i.e., the weights /,(-m) ).

—» HP —b@——bdf

a. d.
- LP—#@—J—- —» HP —-b@-—l;z

—> LP—b@—Ey

Figure 9. Three levels of Wavelet Transform Analysis
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The implementation of the algorithm was done using matrices. An example of a
DWT using a four coefficient wavelet is given as follows.

Defining a wavelet coefficient matrix A as

ho(0) hy(1) ho() ho(3)
hy(0)b,(1) hy(2)h,(3)
ho(0) hy(1) ho(2) hy(3)
hy(0)by(1) hy(2)h,(3)

ho(0) hy(1) ho(2) hy(3)

hy(0) h, (1) h,2) b, (3)
ho(2) hy(3) ho(0) hy(1)
| hi(0) by (1) i) h,3) |

The matrix 4 is a sparse matrix composed of scaling coefficients 4(m), and wavelet
coefficients /1(m) as non-zero entries. The blanks indicate zero entries. If we multiply a
given signal by the matrix 4, the first row generates one component of the signal
convolved with the scaling coefficients. The following odd numbered rows perform the
same operation. The even numbered rows generate the convolution of the signal with the
wavelet coefficients. Note that there is an offset by two every two rows. This offset by
two is the equivalent of a decimation operation. The last two rows wrap around like
convolutions with periodic boundary conditions [Ref. 15).

The DWT consists of applying the matrix 4 repeatedly to a signal with
starting length N until a stopping criterion is reached. In this thesis, when the number of
scaling coefficients was equal to one, we stopped.

As an illustration, let x(1) be an arbitrary signal of length 16. Applying a

DWT to it, we obtain:

24



1 ai ]
- - [ as; as) [
[ da [ aa d, ’-a32 dy,
3,1 i
Fa T ds 24,2 ass ass dy |
x Q42 a3 a4 lerc.. | 4
x§ d Q44 d3,2 d 22
X4 a4’§ Qas ass permute d3’l d3,l
Xs d ’ A6 *4 d3,3 3.2 d3,2
X6 4.3 a4 asa ds; d
X7 » d d
34 34 d
Xg |, A d4,4 permute d4,1 d d 34
X9 ass dis 4.1 4.1 ds
::10 das s d4,2 d4,2 ds;
x:; Qs d’ das3 dss dys
4.4
X13 dsg d das dsa dsq
; 14 aaz d4’5 dss d4,5 dys
15
X16 _‘ d4,7 4.6 d4,6 d4 6 d
L asg da7 dy dys d4 6
| d4,8 J [ d4,8 J d d 4.7
| d4g | | 448 | dyg J

Figure 10. DWT of an Arbitrary Signal x(1)

Note that at each level matrix 4 is applied to half of the values of the previous iterations.

Once the d coefficients are generated, they just propagate through all subsequent levels.
The DWT can operate only at signals with length equal to a power of two (2”,n ¢ 2).
These matrices operations are generally carried until there is only one DWT scaling
coefficient q, , .

The Matlab code used for implementing Mallat's algoritmh in this thesis plots the
scales of the DWT, with a number of points equal to half of the total length of the signal.
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III. WAVELET SIGNAL PROCESSING

A. INTRODUCTION

The Discrete Wavelet Transform was implemented using the Mallat's Pyramid
algorithm described in Chapter I1.4. All programs for the DWT were written in Matlab®
[Ref. 17] and are given in Appendix B. The processing phase was divided in two parts. A
simulation phase where the DWT was applied to four artificial communication signals,
and a testing phase where the DWT was applied to three types of real signals. The real
signals were composed of transient signals created by metallic objects, radar pulses, and
turn-on / turn-off transients of push-to-talk radios. Six types of mother wavelet functions

were used to process the signals.

B. MOTHER WAVELETS

The Haar wavelet is the simplest type of wavelet basis function. It is very well
localized in time, but the frequency localization is poor due to the discontinuities in the

time domain. Figure 11 shows the Haar wavelet.

1 T ¥

Figure 11. The Haar Wavelet

Figure 12 shows the one-sided spectrum of the Haar wavelet and its dilations.

Note that the spectral sidelobes produce a poor frequency localization.
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Figure 12. One Sided Spectrum of the Haar Wavelet and its Dilations

The Daubechies' scaling and wavelet functions are the most popular functions for
use in DWT. Daubechies' scaling coefficients satisfy all necessary conditions. The wavelets
are highly regular. They have compact support in time and their use in the DWT leads to a
reasonable localization in frequency. The regularity of this type of wavelets increases
linearly with the length of the FIR filter [Ref. 2]. Daubechies' wavelets are identified by the
number of their coefficients, e.g., a four coefficient wavelet is called Fourth Order
Daubechies or Daubechies four. In this thesis, the short notation Daub(m) is used to
denote the n* order Daubechies filter. Figures 13, 14, and 15 show the fourth, twelfth and

twentieth order Daubechies' wavelets, respectively.

Figure 13. The Fourth Order Daubechies Wavelet
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Figure 14. The Twelfth Order Daubechies Wavelet

Figure 15. The Twentieth Order Daubechies Wavelet

Note that as the order of the wavelet is increased it becomes smoother. However, if
computation speed is a factor then a lower order Daubechies' wavelet might be preferred.

Figures 16, 17, and 18 show the frequency response of Daub4, Daubl2 and
Daub20 wavelet functions, respectively. Note in Figure 16 the sidelobes around 2.5
radians. Observe that in the subsequent figures these sidelobes are gradually becoming

smaller, as the order of the wavelet increases.
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Figure 16. One Sided Spectrum of the Daub4 Wavelet and its Dilations
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Figure 17. One Sided Spectrum of the Daub12 Wavelet and its Dilations
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Figure 18. One Sided Spectrum of the Daub20 Wavelet and its Dilations
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The Quadratic B-spline wavelets are piecewise quadratic functions. These wavelets

are called the Battle-Lemarié bases [Ref. 14] and are referred to in this thesis as spline
functions. The initial scaling function o(®) is compactly supported. However, the
functions 2172(p(2f't — k) derived from it are not orthogonal. The spline scaling coefficients

do not satisfy all the constraints described in Subsection ILB.3.a. The use of the spline
function in the DWT leads to a redundancy in the scales. Transient signal analysis may,
sometimes, benefit from this redundancy. These functions have an arbitrarily high number
of derivatives [Ref. 7], which makes them extremely regular. Figure 19 shows the four

coefficients spline function, and Figure 20 shows the one-sided spectrum of its dilations.

04 ‘ .

02 .

0

-0.2 + 4

<04 ' ) ‘

1 ] 1

0 20 40 60 80 100 120

Figure 19. The Fourth Order Spline Wavelet
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Figure 20. One Sided Spectrum of the Spline Wavelet and its Dilations
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The ad hoc wavelet is a trial-and-error wavelet function. The of purpose of using it

was to find a matching wavelet function. This function would be matched to the signals
characteristics and, therefore, enhances the detection of the signal when wavelet

transformed.

05 .

_05 1 ! L L 1 1 1
0 0.5 1 1.5 2 25 3 35 4

Figure 21. The ad hoc Wavelet
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0 0.5 1 15 2 2.5 3
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Figure 22. One Sided Spectrum of the ad hoc Wavelet and its Dilations

C. THE SIMULATION PHASE
In this part, four artificial communication signals created by Yayci [Ref. 16] are

used as test data. These signals have sharp transitions in time that are exploited via the
wavelet transform. They are: Binary Phase Shift Keying (BPSK), On-Off Keying (OOK),
Frequency Shift Keying (FSK) and Quadrature Phase Shift Keying (QPSK). They are
shown in Figures 23 through 26.
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Figure 25. FSK Signal
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Figure 26. QPSK Signal

1. Application of the DWT to Artificial Signals

The DWT was applied to each of the communication signals. The first experiment
used noise free signals. Gaussian White Noise (GWN) was added to the signals with six
levels of Signal-to-Noise-Ratio (SNR). The SNR levels were 20 dB, 15 dB, 9 dB. 6 dB, 3
dB, and 0 dB. Figures 27 to 33 present the decomposition of the noise free signals. The
order of the scales in these plots are reversed, i.e., the first DWT level appears at the end.
Only the last four scales are shown because the other ones have few coefficients and little
energy. The decompositions for the other levels of SNR are shown in Appendix B.

The transition points of the signals are easily seen in the noise-free case but
become harder to identify as the SNR decreases. Preprocessing the noisy signals using
differentiation, Hilbert transforms and a combination of these two techniques did not seem
to improve the identification of the transients. Differentiating a signal in additive GWN
causes the scales to display false peaks. The increase in the order of Daubechies' wavelets
improves the probability of identification of the transitions. The ad hoc wavelet performs
equally well for all cases of GWN. The transitions on the BPSK and the OOK signals can
be identified at lower SNR relative to the FSK and QPSK signals. This is, in part, due to

the presence of sharper transitions in time.
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Figure 28. DWT of BPSK
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Figure 29. DWT of OOK
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Figure 30. DWT of OOK
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Figure 31. DWT of FSK
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Figure 32. DWT of FSK
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Figure 33. DWT of QPSK
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2. Evaluation of the DWT for the Artificial Signals

The ability of identifying the transients of the artificial signals embedded in noise
was the performance measure for the wavelet functions. The true transient locations were
known a priori. Therefore, a simple comparison between the peaks shown in the
transform domain and the known transition instances was sufficient to determine how well
the wavelet function performed. The figures used for comparison are shown in Appendix
B. The ad hoc wavelet function clearly outperformed the other ones. This wavelet was
chosen by trial-and-error, and it produced the strongest peaks at the transition instances. It
is possible that its efficiency will be degraded when working with other types of signals.
The spline wavelet achieved a reasonable result down to 6 dB of SNR. The twelfth order
Daubechies' wavelet presented acceptable results for all signals of interest. Hence, it was

chosen to be the basis function for the analysis of the real signals during the test phase.

D. THE TEST PHASE

This section presents a description of the signals used and their respective
transforms. Only the last four scales of the DWT are shown. The signals were divided into
three groups of transients: sounds produced by metallic objects, radar pulses, and turn-on /
turn-off transients produced by push-to-talk radios. These transient signals are embedded

in noise with unknown power levels.

1. Metallic Sound Transients

The first group of transient signals was obtained from the sound files directory of
the Digital Signal Processing group of the Electrical and Computer Engineering
Department Computer Center. There is no documentation on how they were generated or
recorded. The length of the transients was cut to the immediate lower power of two.
Figures 34.a to 34.c show the time representation of sounds produced by a dropped

metallic object on a metallic surface, a gong, and a latch being opened, respectively.
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Figure 35 shows the DWT of the last four scales of the metallic sound transients using a
Daub12 wavelet.

Each signal has a particular sound. The time representation of the gong and the
dropped metallic object show that both signals have an exponential decaying. The sound
produced by the latch is clearly different from the other ones, with no particular time
behavior.

The DWT of these signals show that the gong and the dropped metallic object
sounds have similar characteristics in the transform domain. This is due to their
exponential type behavior in the time domain. However, the latch sound has a very
particular transformation and the transition instances appear clearly throughout the scales.
A preliminary analysis of the plots shows that the sounds produced by the dropped
metallic object and the gong can be classified in the same group of transients, while the
sound produced by the latch belongs to another group. It is possible to observe these
features directly from the time domain plots, maybe due to a high SNR. Hence, a wavelet
transform is not necessary. We have seen during the simulation phase that if the SNR is
low, the transition instances become harder to identify from the time domain plots. Using a
DWT is a good technique to determine these transitions.

Obtaining more metallic sound transients and transforming them, using the DWT

for the purpose of their classification into groups, is recommended as a future study.

2. Radar Pulses

Four types of radar pulses were obtained from two types of radar at the Naval
Postgraduate School. The first radar recorded was an AN/APS 31-A operating at a center
frequency of 9.379 GHz, having a nominal pulse duration of 0.5 microseconds. The other
three types of radar pulses were generated by an AN/SPS 64 (V) radar operating at a
center frequency of 94 GHz and nominal pulse duration of 1.0, 0.5 and 0.15
microseconds. All signals were heterodyned to 500 MHz using a local oscillator and a

mixer, then digitized at 2 GHz with 8 bits per sample. There are 64 pulses per record, 8



records for the first type of radar pulse, 15 records for the second, 8 records for the third
and 8 records for the fourth. Figures 36.a through 36.d show the first pulse of the first
record of each one of the radars. Figures 37 through 44 show the last four scales of the
DWT of six pulses of the first record of each radar using the Daub12 wavelet.

The DWT was applied to the first six pulses of each record. Although the pulses
inside one record were generated sequentially by the same radar, their DWT scales do not
present a particular repeating feature. Therefore, at this point, we could not classify the
transformed radar pulses. Statistically, the number of radar pulses that were transformed
was not enough to make any assessments. Hence, this is an area where additional research

1s recommended.

3. Turn-On / Turn-Off of Push-To-Talk Radios

These transient signals were generated by the turn-on and turn-off of six different
models of transmitters produced by the same maker. They were collected and recorded by
the Naval Security Group Activity, Charleston, SC. Ten samples of each of six
push-to-talk Motorola radios were recorded. The carrier frequency of all of them was set
to 138.525 MHz. The signals were passed through a 1 MHz bandwidth filter and then
digitized with a sampling frequency of 5 MHz and a center frequency of 1.075 MHz.
Figures 45.a through 45.f show one sample of the turn-on of each transmitter and Figures
46.a through 46.f show the corresponding transmitter turn-off .The last four scales of the
DWT of the turn-on transients, using a Daub12 wavelet, are shown in Fgures 47 and 48
and the turn-off transients in Figures 49 and 50.

The localization of the exact moment of the turn-on or tumn-off of the transmitter
can be extract from the DWT of these transients. Although these signals are sinusoidal,
and as such the DWT should not perform well on them, their behavior in the transform
domain is different before and after the switching instant. This might be due to the noise
present in the records. Denoising the signals before applying the DWT is a possibility and

deserves further studies. The transition instances can also be observed from the time
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domain plots for most of the signals. If we observe Figure 45.d, the switching instant is
difficult to identify, although if we look at Figure 48 the transition instance is observable at
levels ten, 11 and 12. A spectrogram of the record in question was performed. Figures
51.a and 51.b show the result of the spectrogram using a hamming window and without a
window, respectively. The instant of the switching time can also be observed in both
spectrograms. The results of wavelet transforming these signals are inconclusive, since the
spectrogram produces a good localization of the transition instant. A feature extraction
algorithm based on the energy of each scale for the purpose of classification other than
detection was implemented. The results were not satisfactory, since the levels of energy

for a given scale seemed to be similar for all records and all transmitters.
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Figure 34. Time Representation of The Metallic Sound Group
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Figure 36. First Pulse of First Record of Radar

(a) AN/APS-31A .

(b) AN/SPS 64(V), 1.0 Microsec., Pulse Duration
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IV. CONCLUSIONS

A. RESULTS

The identification of transient signals using the Discrete Wavelet Transform
(DWT) provided mixed results. When the signals of interest have sharp variations in the
time domain and the Signal-to-Noise-Ratio is positive, it is possible to identify these
behavior changes in the scales. The wavelet used as a basis function determines the overall
performance of the algorithm. The use of the ad hoc wavelet as a basis function improved
the identification of the test signals in low SNR, possibly because it matched the signal
characteristics better and enhanced them relative to the noise.

The DWT of the sounds produced by metallic objects indicated that it might be
possible to use the wavelet transform for classification purposes. Also, the latch sound
analysis showed that the exact instant of the transient occurrences can be established.

The question of what should be the scale of interest was brought up during the
simulation and the test phase. The higher scales have more energy and better time
resolution and should; therefore, have more importance than the lower scales.

A transient detection algorithm for the transmitters turn-on / turn-off based on the
energy of the scales was implemented, but the results were inconclusive. The transformed
signals have the same total energy at any given scale when compared between signals. This
was perhaps due to the transmitters being manufactured by the same maker.

The DWT is simple to implement and is very fast. Its speed depends on the number

of scaling function coefficients that is being used.

B. RECOMMENDATIONS FOR FUTURE STUDIES

The implementation of an automatic transient detection algorithm based on the
scales of the signal is the goal. Further studies, focused on finding an optimum wavelet
function, are necessary. The use of a larger number of actual transient signals with known

characteristics is recommended to make the conclusions statistically more reliable An
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additional untapped source of information is the phase of the DWT, which should be

investigated if the signals of interest are complex.
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APPENDIX A. DEVELOPMENT OF NECESSARY CONDITIONS

Necessary Condition 1:

Integrating both sides of Equation 2.27
[ ot = [  hoyp(2r - kydt
k
= X ho®) ot - kyar. (A1)
k

Let z =2t -k, so dz = dt/2, substituting into Equation A.1

J ot =2 T hotf o)z, (A2)
k
J(P(f)dt 1
E h k . .
_fcp(z)dz 3 Zkl o(k) (A3)

The left hand side of Equation A.3 is equal to 1 and so

%ho(k)= 1,

N | —

or

% ho(k) = 2. (A.4)
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Necessary Condition 2:
Substituting Equation 2.27 in Equation 2.39 we obtain

@9t~k = [ T ho(m)gQ1 ~ )T ho(m)e(2(t - k) - m)ds

=2 2 ho(m)ho(m)| 92t - n)p(2t — 2k - m)dt = 5(k) . (A5)

The integral of Equation 2.44 is non-zero only if

20-n=2t-2k-m=>n=2k+m.

That leads to
[ 0t = n)p(2t = 2k - mydt = %S(n —m=-2k). (A6)

Substituting in equation A.5 we obtain
) ho(n)ho(m)%B(n —m—2k) = 8(k). (A7)

The Kronecker delta on the left hand side exists only if m =n -2k and Equation A.7 is
now

-;- 3 ho(n)ho(n - 2k) = 5(k) |

or

2 ho(n)ho(n - 2k) = 25(k) . (A.8)
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Necessary Condition 3:
Reproducing Equation A.8

> ho(mho(n — 2k) = 26(k) .
Let k=0, and substitute in Equation A.8

2. ho(m)ho(n) = 28(0) = 2. (A.9)

Necessary Condition 4:

Substituting Equation 2.47 and summing over & we get

Z Z ho(nho(n—2k) =2. (A.10)
k n
Splitting Equation A.10 in even and odd terms

> [Z ho(2m)ho(2k + 2m) + X ho(Rk + 2m + Dho(2m + ])] =2, (A1])
k m m

rearranging terms

> [Z ho(2k¥ 2m)]ho(2m) +2, [Z ho(Rk +2m + 1)]ho(2m +1)=2 (A 12)
k m |k

m

Substituting Equations 2.41 and 2.42 into Equation A.12

Slz ho(zm)-i-SzZ ho(2m+ 1)=2 (A.13)

Applying the same equations again in Equation A.13
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Sf+S§=2.

(A.14)

Solving for S and S, in Equations A.10 and A.13 we obtain
S1=2ho(2n)=1. (A.15)
S=2 he@n+1)=1. (A.16)
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APPENDIX B. DWT OF THE ARTIFICIAL SIGNALS IN NOISE
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APPENDIX C. MATLAB CODES

mapdn.m

Purpose:

Computes a two-dimensional array A which defines the mean square map for a

dimensional function 1.

Synopsis:
A = mapdn(f)N,type).

Description:

Uses a = wavedn(f,N, type) to compute the wavelet transform of J, which is a sequence of
length 2n; then reorders and arranges the square of elements ( 1:2n ) to form the
two-dimensional array 4, which has n+1 rows and 2(n-1) columns; the volume under this
surface is proportional to the mean-square value of J, using four mother wavelets: Haar,

Daubechies, Spline and the ad hoc.

Algorithm:
The elements of the wavelet transform a are recorded according to the strategy described
in Ref. 12, Chapter 17, so that when the matrix A is formed each element (squared) is

located at the center of the wavelet it represents.

Limitations:
Restricted to even values of N in the range 2 to 20 for Daubechies’ wavelet functions,

being N = 2 the call for the Haar wavelet function and N = 4 to the ad hoc wavelet

function. No limitation for the number of spline function coefficients.
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Modifications:
Addition of two other types of wavelet functions to be used: spline and ad hoc.

Plotting subroutine appended to the end of the program.

function A = mapdn(f,N,type)
%
% Copyright (c) D. E. Newland 1992
% All rights reserved
%
% Modified by Jorge Pitta, by permission from the author.
%
M = length(f);
n = round(log(M)/log(2))
a = wavedn(f N, type);
b(1) = a(1);b(2) = a(2);
forj=1:n-1
fork =1:2%
index = 27j+k+N/2-1;
while index > 2(j+1),index = index-2%j;end

b(index) = a(2/y+k);

end
end
a=b;
for j=1:2(n-1)
A(1y) =a(1),
end
forj=2:n+]
for k = 1:27(-2)

for m = 1:2N(n-j+1)
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AQ,(k-1)*27(n-j+1)+m) = a(2"(-2)+k);
end
end

end
A = A *conj(A);

%% Printing Subroutine

subplot((n+1)/2,2,1),plot(abs(f),'r'),title('signal-DAUB-COEFFS'),
ylabel('f(x)") ,xlabel('x"); grid
hold on
for h=2:1:n+1

subplot((n+1)/2,2,h),plot(A(h,:),'r"),grid,ylabel(['level ' , num2str(h-2)])
end
hold off
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wavedn

Purpose:

Wavelet Transform.

Synopsis:
a = wavedn(fN, type).

Description:

Returns an array whose elements are the wavelet transform of the sequence of elements in

J- The analysing wavelet has N even coefficients.

Algorithm:
It 1s the Mallat’s Pyramid Algorithm adapted to a circular form.

Limitations:

It is necessary for the sequence f to have 2n elements, where n is an integer number. Its
transform a also has 2n elements. The wavelet’s coefficients are imported from the file
dcoeffs.m ( for the Haar and Daubechies wavelets), dcoeffs]1.m ( for the Spline wavelet )
and dcoeffs2.m ( for the ad hoc wavelet ).

If the sequence f'is complex, then the transform a is also complex.

Modifications:

Addition of a third local variable called fype that determines the type of wavelet function.
Addition of three IF statements to use with the local variable bpe.

function a = wavedn(f,N, type)

%

% Copyright (c) D. E. Newland 1992

% All rights reserved
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% Modified by Jorge Pitta, by permission from the author,
%
M = length(f);
n = round(log(M)/log(2));
if type == 1;c = dcoeffs(N);end
iftype==2;c= dcoeffs1(N);end
if type = = 3;c = dcoeffs2(N);end
clr = fliplr(c);
for j = 1:2:N-1, clr(j) = -clr(j) ; end
a=f;
fork=n:-1:1
m = 2(k-1);
x= [0y = [0};
fori=1:m
forj=1:N
k() = 2*i-2+j;
while k(j) > 2*m , k(j) = k(j)-2*m ;end
end
z=a(k);
[mr,nc] = size(z);
ifnc>1,z=2;end
x(1) =c*z;
y(i) = clr*z;
end
X=x2,y=y2;
a(l:m)=x;
a(m+1:2*m) =y;

end
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dcoeffs.m

Purpose:
Generates the Haar wavelet coefficients for N = 2 and the Nth order Daubechies’ wavelet

coefficients up to N = 20.

Synopsis:
¢ = dcoeffs(N).

Description:

It is called by a = waden(f,N, type) for providing the N Daubechies wavelet coefficients.

Limitations:

Restricted to even values of N in the range 2 to 20.
%

% Copyright (c) D. E. Newland 1992
%

% All rights reserved

%

function ¢ = dcoeffs(N)

%

ifN==2

c=[11];

end

ifN==
c = [(1+sqrt(3))/4 (3+sqrt(3))/4 (3-sqrt(3))/4 (1-sqrt(3))/4);

end
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ifN==
q = sqrt(10);s = sqrt(5+2*q);
¢ = [(1+q+s)/16 (5+q+3*5)/16 (5-q+s)/8 (5-q-5)/8 (5+q-3*s)/16 (1+q-s)/16];

end

ifN==
¢ =1[.3258030428051,1.010945715092 -892200138246,-.039575026236, -
264507167369,.043616300475,.046503601071,,-0. 149869893301;

end

ifN==10
¢ =[.226418982583,.853943542705,1 .024326944260,.195766961347,-.342656715382,
--045601131884,.109702658642,-.008826800109,-.0177918701 02,.004717427938];

end

ifN==12

¢ =[.157742432003, .699503814075, 1.062263759882, 445831322930,
-.319986598891,-.183518064060,.1 37888092974,.038923209708,
-.044663748331,.000783251 152,.006756062363,-.001523533805];

end

ifN==14

¢ =[.110099430746,.560791283626,1.031 148491636,.664372482211,
--203513822463,-.316835011281,.100846465010,.1 14003445160,
~.053782452590;-.023439941565,.017749792379, 0006075 14996,
-.002547904718,.000500226853];

end
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ifN==16

c= [.076955622108,.442467247152,.955486150427,.827816532422,
-.0223 85735333,-.401658632782,.000668194093,.1 82076356847,
-.024563901046,—.062350206651,.019772159296,.012368844819,-
.006887719256,-.000554004548,.00095522971 1,-.000166137261];

end

ifN=18
¢ = [.053850349589,.34483430381 5,-855349064359,.929545714366,
-188369549506,-.414751761802,-.136953549025,.21 0068342279,
.043452675461,-.095647264120,.000354892813,.031624165853,
—.006679620227,-.006054960574,.002612967280,.000325 814672,
-.000356329759,.000055645514];

end

ifN==20

c=[.0377171 57593,.266122182794,.745575071487,.9736281 10734,.39763774177;.
-.353336201 794,.277109878720,.180127448534,.131602987102,.100966571 196,
.041659248088,.046969814097,.0051 00436968,.015179002335,.001973325365,
.002817686590,-.000969947840,-.0001 64709006,.000132354366,-.00001875841 61;

end
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dcoeffsl.m

Purpose:

Generates spline wavelet coefficients for any integer N > 1.

Synopsis:
¢ = dcoeffs1(N).

Description:
It is called by a = waden(f,N, type) for providing the N spline wavelet coefficients.

Limitations:

None.

%

% Created by Jorge Pitta, 1994

function ¢ = dcoeffs1(N)

%
¢ = triang(N)’;
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dcoeffs2.m

Purpose:

Generates the ad hoc wavelet coefficients for any integer N = 4,

Synopsis:
¢ = dcoeffs2(N).

Description:
It is called by a = waden(f,)N,type) for providing the fourth order ad hoc wavelet

coefficients.

Limitations:

Limited to only a fourth order ad hoc wavelet function.
%

% Created by Jorge Pitta, 1994

function ¢ = dcoeffs2(N)
%

c=[51.51];
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filtspec.m

Purpose:
Generates the spectrum response plot of the Haar, n order Daubechies', spline and ad

hoc wavelet function and their dilations.

Synopsis:
filtspec.

Description:
It calls subroutines t1.m ( for the Haar and Daubechies' wavelets ), t2.m ( for Spline

wavelets ), t3.m ( for the Ad Hoc wavelet ).
Created by Jorge Pitta, 1994.

F = menu('Wavelet','Daubechies','Spline',’Ad Hoc','Own");
if F==1;tl;end
if F==2;t2;end
if F==3;t3;end

x=[1 zeros(1,1023)];n=0:511;

N=length(G);

for nn=1:N

H(nn)=((-1)"nn)*G(N+1-nn);

end

w=filter(H,1,x);e=filter(G,1,x);
W=abs(fftshift(fft(w,1024)));E=abs(fftshift(ffi(e,1024)));
W1=W(513:1024);E1=E(513:1024);

H2=upsam(H,2);
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Al=fft(H2,1024);
B1=fft(G,1024);
Cl1=A1.*B1;
H2G=fftshift(C1);
H2G1=abs(H2G(513:1024));

H4=upsam(H,3);

G2=upsam(G,2);
A2=fft(H4,1024);
B2=ff(G2,1024);
C2=A2.*B2.*Bl;
H4G2G=fftshift(C2);
HA4G2G1=abs(H4G2G(513:1024));

H8=upsam(H,5);

G4=upsam(G,3);

A3=fft(H8,1024);

B3=fft(G4,1024);

C3=A3.*B3.*B2.*B];
H8G4G2G=ffishift(C3);
H8G4G2G1=abs(H8G4G2G(5 13:1024));

H16=upsam(H,7);
G8=upsam(G,5);
Ad4=fft(H16,1024);
B4=f1(G8,1024);
C4=A4.*B4.*B3.*B2.*Bl;
H16G8G4G2G=fftshift(C4);

H16G8G4G2G1=abs(H16G8G4G2G(513:1 024));



H32=upsam(H,9);

G16=upsam(G,7);

AS=fft(H32,1024);

B5=fft(G16,1024);

C5=A5.*B5.*B4.*B3.*B2.*B1;
H32G16G8G4G2G=fftshift(C5);
H32G16G8G4G2G1=abs(H32G16G8G4G2G(513:1024));

H64=upsam(H,11);

G32=upsam(G,9);

A6=fft(H64,1024);

B6=ft(G32,1024);

C6=A6.*B6.*B5.*B4.*B3.*B2.*B1;
H64G32G16G8G4G2G=ffishift(C6);
H64G32G16G8G4G2G1=abs(H64G32G16G8G4G2G(513:1024));
m=max(H64G32G16G8G4G2G1);

y=linspace(0,pi,512);subplot(211)
plot(y,H64G32G16G8G4G2G1/m,'k"),hold on
plot(y,H32G16G8G4G2G1/m,'k"),
plot(y,H16G8G4G2G1/m,'k"),
plot(y,H8G4G2G1/m,'k"),
plot(y,H4G2G1/m,'k");

plot(y,H2G1/m,'k");

plot(y,W1i/m,k")

plot(y,E1/m,'k");
hold off
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t1

Purpose:
Calls the m.file dcoeffs.m for supplying filtspec.m with the Haar and Daubechies wavelet

coefficients.

Synopsis:
tl.

Description:
Produces a pop-up menu on screen with the order of the Daubechies' wavelet to be used,

if the order equals two, it calls Haar wavelet coefficients.

Created by Jorge Pitta, 1994,

0= menu(‘Order’,2','4','6','8','10','12','14','16','1 8'.,20";
ZZ =2*Q;

G = dcoeffs(ZZ)/sqrt(2);

forzz=1:2Z

H(zz) = ((-1)*z2)*G(ZZ+1-zz);

end

KK = "Daub";

t2

Purpose:
Calls the m.file dcoeffs1.m for supplying filtspec.m with the Spline wavelet coefficients.

Synopsis:
2.

Description:

Produces a pop-up menu on screen with the order of the Spline wavelet to be used, if the
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Created by Jorge Pitta, 1994..

O = menu('Order','2','4,'6','8','10','12','14''16''18','20");
ZZ =2*0;

G = dcoeffs1(ZZ)/sqrt(2);

forzz=1.ZZ

H(zz) = ((-1)"22)*G(ZZ+1-z2);

end

KK = 'Spline',

t3

Purpose:
Calls the m file dcoeffs2.m for supplying filtspec.m with ad hoc wavelet coefficients.

Synopsis:
t3.

Description:
Produces a pop-up menu on screen with the order of the ad hoc wavelet to be used.

However, it is limited to an order 4.

Created by Jorge Pitta, 1994.

ZZ =4,

G = dcoeffs2(ZZ)/sqrt(2);
forzz=1.2Z

H(z2) = ((-1)"22)*G(ZZ+1-zz),
end

KK = 'Weird",
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