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ABSTRACT 

Using limited resources, a network interdictor attempts to disable components of a 

capacitated network with the objective of minimizing the maximum network flow 

achievable by the network user. This problem has applications to reducing the importation 

of illegal drugs and planning wartime air attacks against an enemy's supply lines. A 

deterministic model using Benders decomposition is developed and improved upon with 

an original "flow-dispersion heuristic." An extension is made to accommodate 

probabilistic scenarios, where each scenario is an estimate of uncertain arc capacities in 

the actual network. A unique sequential-approximation algorithm is utilized to investigate 

cases where interdiction successes are binary random variables. 

For a network of 3200 nodes and 6280 arcs, Benders decomposition solves the 

network interdiction problem in less than one-third of the time required by a direct branch- 

and-bound method. The flow-dispersion heuristic can decrease solution time to one-fifth 

or less of that required for the Benders decomposition algorithm alone. With six allowable 

but uncertain interdictions in a network of 100 nodes and 84 possible interdiction sites 

among 180 arcs, a stochastic network interdiction problem is solved to optimality in 24 

minutes on a IBM RISC/6000 Model 590. With uncertain arc capacities in five scenarios, 

and three allowable and certain interdictions, a 900 node and 1740 arc network is solved 

to optimality in 17 minutes on a 60MHZ Pentium PC. 
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THESIS DISCLAIMER 

The reader is cautioned that the computer programs developed in this research may not 

have been exercised for all cases of interest. While every effort has been made, within the 

time available, to ensure that the programs are free of computational and logic errors, they 

cannot be considered validated. Any application of these programs without additional 

verification is at the risk of the user. 
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EXECUTIVE SUMMARY 

This thesis develops new mathematical methods for the effective employment of 

limited resources to reduce the undesirable flow of a commodity that can be moved 

through a capacitated transportation system by an adversary. Typically, this commodity is 

moved along routes made up of many shorter interconnected segments, or links, giving the 

adversary flexibility to select a variety of transportation routes from one or more initial 

sources to one or more ultimate destinations. If information can be obtained about these 

routes, a mathematical model of the transportation system can be constructed and 

represented as a network of junctions and links between the junctions. Each link (and 

possibly, each junction) has a capacity, i.e., an upper limit on how much of the commodity 

it can accommodate in a given time period. By expending resources on a link or junction 

in the network, an interdictor may stop, or interdict, all flow of the commodity on that link 

or junction. Given a limited budget for resources that can operate on the network, the 

interdictor can analyze the network to determine the best interdiction locations to achieve 

the greatest reduction in the flow of the commodity. 

This network interdiction problem has applications to curbing the importation of 

illegal drugs, disrupting an illegitimate communications network, or wartime air attacks 

against an enemy's supply lines. This problem has been studied before, especially during 

the Vietnam War effort. These existing works, however, tend to be specific to the 

application and not easily adaptable to variations and enhancements. More recently 

developed techniques, while offering many advantages over the methods used previously, 

may still have difficulty solving a large-scale network interdiction problem in a reasonable 

period of time. 

Using the well-known technique of Benders decomposition, this thesis addresses this 

shortcoming by developing a solution by separating the network interdiction problem into 

several smaller problems, which when solved sequentially, solve the original problem. The 

nature of this decomposition technique allows the observation of both lower and upper 

bounds on the optimal solution while the problem is being solved. 

XI 



The decomposition algorithm may be viewed as a sequence of actions and reactions 

between the interdictor and the adversary. The interdictor can be thought of as reacting to 

the adversary's rerouting of flow subject to a previous interdiction decision. Therefore, 

we can enhance the decomposition algorithm by requiring the adversary to maximize flow 

while simultaneously keeping flow on any individual link or junction as small as possible. 

This allows the interdictor to gain more information about which links or junctions are the 

most important, helping to reduce the time required to obtain a solution. 

This research also explores the effects of uncertainty on the network interdiction 

problem. One study of uncertainty considers the implications of links with variable 

capacity. This study also considers the possibility that a given link is not, in fact, present 

in the network. Another study employs a unique method to investigate the effect of 

incorporating interdictions that may fail at certain locations in the network. Either the 

interdiction attempt is completely successful at stopping flow in that location, or it is 

entirely unsuccessful. 

The usefulness of the decomposition technique is undisputed as a viable alternative 

for solving large-scale network interdiction problems. Two example cases show dramatic 

improvements in the time required to obtain a near-optimal solution. The enhancement 

procedure to aid in decreasing the number of interdictor-adversary actions and reactions 

also produces, in most cases, further reductions in solution time. 
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I. INTRODUCTION 

This thesis develops new mathematical programming methods for the effective 

employment of limited interdiction assets to reduce the flow of a commodity that can be 

moved through a capacitated transportation system. An adversary strives to maximize 

flow of the commodity through the system, represented as a network, while an interdictor, 

with limited assets, attempts to interdict (destroy) arcs or links in the network to minimize 

the maximum flow. While this thesis is motivated by the ongoing effort to curb the 

importation of illegal drugs, many other applications of these methods exist. Some other 

uses may include disrupting an illegitimate communications network or wartime air attacks 

against an enemy's supply lines. The primary solution methodologies employ Benders 

decomposition for both deterministic and stochastic models. The stochastic programming 

models incorporate scenarios and approximation techniques to examine the effects of 

uncertainty with respect to network topology, capacities, or success of interdiction. 

A. BACKGROUND 

The familiar war on drugs is a war on two fronts, supply and demand. From the 

moment anti-drug efforts first became a serious public issue, the debate has raged over 

which front deserves most attention. Without engaging in this debate, the focus here is on 

methods to reduce the supply of illegal drugs transported into the United States from 

abroad. These drugs are typically moved along routes made up of many shorter 

interconnected segments, giving the drug trafficker flexibility to select the complete 

transportation route from initial source to ultimate destination. If planners can obtain 

information about these routes, a mathematical model of the drug transportation system 

can be constructed and represented as a capacitated network.   Given a limited budget for 

anti-drug resources that operate on the network, e.g., ground inspection teams, 

surveillance aircraft, etc., planners can analyze the network to determine where best to 

expend this budget to achieve the greatest reduction in illegal drug flow into the United 

States. 

The network interdiction problem is addressed from the viewpoint of a network 



interdictor. From this stance, an interdictor observes a network user striving to move as 

much commodity as possible from an origination point to a destination point. A network 

interdictor is also aware of a network user's ability to reroute flow around an interdiction 

site in the network. Under these conditions, an interdictor works to reduce the 

undesirable outcome of a user achieving a large flow of commodity through the network. 

Specifically, a network interdictor attempts to minimize the maximum flow in the network 

subject to his limited supply of interdiction resources, as each interdiction demands a 

resource expenditure at the interdiction site. Therefore, an interdictor must make the best 

decisions possible about where to apply his resources. A network user has no reprisal; he 

endeavors to produce his best flow results while constrained by the destructive efforts of 

the interdictor and the capacity of the network. 

This problem and many variants have been studied by others under various labels. 

These range from the very general, for example, "Removing Arcs from a Network" by 

Wollmer (1964), to the very specific, such as, "Algorithm for Targeting Strikes in a Lines- 

of-Communications Network," also by Wollmer (1970). Other contributors address 

similar topics under other titles, but almost all these works share the common 

characteristic of being specific to the application and not easily generalizable. Two recent 

works by Steinrauf (1991) and Wood (1993) overcome this limitation by adopting a 

mathematical programming approach that readily generalizes and is easily adaptable to a 

variety of network interdiction applications. These mathematical models, however, are 

difficult-to-solve integer and mixed integer programs. Wood shows that the basic 

network interdiction problem is NP-complete, even when restricted to planar graphs 

where interdictions require varying amounts of resource, or to non-planar graphs requiring 

only one unit of resource per arc. 

Advocating the advantages of a generalizable approach, this thesis develops new 

mathematical programming techniques for the network interdiction problem that offer 

significant advantages over earlier methods by splitting a difficult-to-solve problem into a 

sequence of several, more manageable problems that are easier to solve. Finally, and 

perhaps most significantly, this thesis begins to explore the implications of uncertainty in 



network interdiction. 

B. NETWORKS AND INTERDICTION 

1. Description of a Network 

A directed network, denoted G = (N,A), has node set N and arc set A. The total 

number of nodes and arcs in a network is denoted \N\ and \A\, respectively. An arc is an 

ordered pair (ij) with i,j eN. For an arc (ij), i is the "tail node" from which the arc 

originates, andy is the "head node" at which the arc terminates. It is assumed that G 

contains no arcs of the form (/,/). In a transportation network, an arc (ij) can be thought 

of as a length of roadway or a river segment that provides a path for the flow of a 

commodity from /' toy. A model where commodity can flow in either direction on an arc 

i.e., arcs are undirected, is discussed later in this chapter in Section B.5. A node i can be 

thought of as a road junction or waypoint. A commodity flowing through the network 

originates at a source node s e Nin the network, and flows to a sink node t e N. 

Each arc (i,j) has an associated set of parameters that describe its characteristics. 

The finite nominal capacity, or maximum allowable flow on an arc is denoted uip where u 

;> 0   The cost, in units of resource, to interdict an arc (i,j) is rip typically assumed to be a 

small integer. It possible that an arc cannot be interdicted at any cost for political, tactical, 

or other reasons and therefore rtJ = « . A total of R units of resource are available for 

interdiction. More parameters may be considered, since it is possible to include node 

capacities and node interdictions, as discussed in Section B.5 of this chapter. 

2. Network Maximum Flow Models 

The standard maximum flow linear programming model (e.g., Ahuja, et al., 1993, 

p. 168) determines the maximum quantity of a commodity that can be moved through a 

capacitated network from source node s to destination node t. This model is 

ij 



MF max    x, ts 

.t. y^ x. - y^ x. - xt = o 

Ex, - r r t r   =0 
tj £-*i     Jt ts 

j j 

0 <. x.. <, u.    V (ij) eA 
i] ij v v / 

where x;J is the flow of commodity from node /' to nodej on directed arc (ij) e A, and xto is 

the flow from sink node t to source node s, on an artificial arc (t,s). 

By partitioning the nodes of a network into two sets Ns and Nt, with s e Ns and 

t eN„ the set {Ns,Nt} forms an s-f cw/sef. With respect to that cut, an arc is a "forward" 

arc if it is directed from a node in Ns to a node in TV,. The capacity of the cut is the sum of 

the capacities of all forward arcs associated with the cut. A minimum cutset, then, is a 

cutset of minimum capacity among all possible cutsets in the network. By the well-known 

maximum flow-minimum cut theorem, the maximum flow in a capacitated network is 

equal to the minimum cutset capacity (Ford and Fulkerson, 1956). A minimum cutset can 

be found directly by solving the dual of the maximum flow problem (e.g., Wood, 1993): 

MFD mm    Y    t/..ß 

s.t.    a. - a. + ßö * 0    V(ij)eA 

a   - a   ^ 1 
t s 

ß.. * 0   V{iJ)eA. 

Since MFD is totally unimodular, all variables will be 0 or 1 in an optimal extreme point 



solution. The variables in the model have the following physical interpretation: a,= 1 

indicates / eN„ ot,= 0 indicates /' eNs, and ßy= 1 if arc (i,j) is a forward arc of the 

minimum capacity cut (otherwise ß^ = 0). 

3. The Network Interdiction Problem 

The network interdiction problem can be formalized in a min-max flow-based 

model. The network user attempts to maximize the flow across the network, while the 

interdictor is simultaneously striving to minimize this maximum flow while observing a 

budget constraint. In this model, y0= 1 if arc (i,j) is interdicted and ytj = 0 if the arc is not 

interdicted. The model is 

MINMAX mm  max    x 
ts Y eT      x 

S.t.     Y"    X . -   J*    X.   - X=   0 
*-^ SJ 4—/ js ts 

J J 

E*ff"   E*>   =   °     V/6^-{V) 

E xt, - E xjt+ xts- ° 

0 s x.. <L u..{\ - Yff)    V(iJ)eA 

where r = { y.. : y.. e {0,1} V (ij) e A , Y^(ij)eA 
r^ti * R)     The resource 

constraint is for the interdiction of arcs using a single type of resource; this constraint may 

be expanded to accommodate multiple resource types and other more complicated 

restrictions. As generalizations of model MINMAX, the models presented in this thesis 

allow multiple source and sink nodes. 

This problem and some variants have been extensively studied in the past in a 

planar network setting (e.g., Wollmer, 1969), but only recently has a more general 

mathematical programming approach been applied (Steinrauf, 1991; Wood, 1993). This 

thesis will extend the mathematical programming approach and explore both deterministic 

and stochastic networks, and stochastic interdictions. 



The approach here is not game-theoretic. In game theory, it is assumed both 

opponents have the ability to make decisions based on known probabilities that the 

opponent will take each possible action. In contrast, this thesis makes the assumption that 

the network interdictor will interdict with impunity and the network user must maximize 

flow, subject to the interdictions. 

Once an arc is interdicted, the network user is assumed to have complete 

knowledge of the interdiction and reroutes the commodity as best possible. For example, 

suppose cocaine is being shipped into Miami from Columbia along two major routes: (1) 

Columbia - Nicaragua - Miami; and (2) Columbia - Jamaica - Nassau- Miami. Suppose 

each leg along the major routes (1) and (2) can accommodate 10 kg and 20kg of cocaine 

traffic per month, respectively. With no law enforcement action, 30kg of cocaine per 

month will arrive in Miami. If the budget allows one interdiction, the best choice is to 

interdict any leg along major route (2) (i.e., Columbia - Jamaica, Jamaica - Nassau, or 

Nassau - Miami) to stop 20kg of cocaine per month. The drug runner maximizes drug 

flow over the remaining network along major route (1), still succeeding in delivering 10kg 

per month of cocaine to Miami. If law enforcement had interdicted along major route (1) 

instead, the drug runner could get 20kg of cocaine per month into Miami along the higher 

capacity connections of major route (2). If it costs law enforcement $1M to interdict 

major route (1), and $3M to interdict major route (2), the interdiction location must be 

major route (1) under a $2M budget restriction. 

The above example hints at the subtle role that arc capacity can play. In the realm 

of drug interdiction, a likely value of capacity may be the greatest volume of drug traffic 

that can be moved on an arc during a given time period without attracting the attention of 

law enforcement. On the other hand, a value of capacity may be more closely linked to 

physical assets. For example, only a few vessels or persons may be available to complete 

an ocean transit at any given time. 

4. Basic Network Interdiction Model 

Recent work by Steinrauf (1991) and Wood (1993) overcomes many shortcomings 

of previous models by developing an integer programming model that minimizes the 



maximum flow. This thesis expands upon their model, which is: 

IP1 mm    V    u ß 
^      iff if 

«>P,Y   ft/M 

s.t.    a. - a.+ ß. + y.. * 0    V(iJ)eA 
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■£-■      (/' 17 

a. e {0,1} V/eJV 
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The interpretations of variables in DPI are similar to those of the dual of the 

maximum flow formulation MFD, with the addition of the interdiction variable, y. With 

respect to some cutset {Ns,Nt}, a = 1 indicates node /' eyV„ a,= 0 indicates node /' eNs, yy 

= 1 if arc (ij) is a forward arc of the cutset and is interdicted (otherwise yy = 0), and ß;>.= 1 

if arc (ij) is a forward arc of the cutset but is not interdicted (otherwise ß(J = 0). As 

before, the resource constraint is for the interdiction of arcs using a single type of 

resource, but could be expanded to handle multiple resource types. 

5. Undirected Arcs and Interdictable Nodes 

For simplicity of presentation, we develop network interdiction models considering 

only directed arcs and interdictions restricted to arcs. However, since undirected arcs and 

node interdictions are possible in practice, modified versions of some models 

accommodating these variations are also discussed, with computational results presented 

in Chapter II. These variant models use transformations standard in the literature (e.g., 

Ahuja, et al., 1993, pp. 38-43). 

In many cases, including the network interdiction problem, it is necessary to 

consider arcs that are both directed and undirected. Most roads, for example, allow 



transport of a commodity in either direction. To analyze such a network, each undirected 

arc {ij) in the original network G = (N,A) is represented by two directed arcs, {ij) and 

(/',/') in anti-parallel. Arcs (i,j) and (/',/') would then exist in an equivalent transformed 

directed network, on which all computations would be performed. An interdiction of arc 

(i,j) implies an interdiction of arc (/,/'), and vice versa. To effect this, the capacity 

constraint in model MTNMAX is replaced by 

0 < x.. <, u.(\ - v..) 

0  <. x.. £  «..(1  - V ) 
V(iJ)eA. 

The interdictor, by expending ry units of resource, stops the flow of commodity in both 

directions on undirected arc (i,j). 

In addition to interdicting arcs, the network interdictor may find node interdiction 

attractive. This is appealling if node capacities are smaller than or about the same size as 

arc capacities, or the number of nodes in the network is small relative to the number of 

arcs. Node interdiction is facilitated by first transforming the network by "node splitting." 

Such a node / in the original network is split into two nodes /' and /" in a transformed 

network, joined by a directed arc from /' to /" with capacity equal to the capacity of the 

original node /. All original arcs that were directed toward / are now directed to /', and all 

arcs originating from / now come exclusively from /'". All such nodes in the original 

network are then handled as arcs in the transformed network. An interdiction of "arc" 

(/'/'") is interpreted as an interdiction of node / in the original network. 

Admitting undirected arcs and interdictable nodes may provide more realistic 

modeling, but computations can be hindered by the larger size of the transformed network. 

In a large, undirected network with all nodes interdictable, it is possible the added 

computational burden may be substantial. 



C. LITERATURE SEARCH 

During the Vietnam War, efforts to destroy enemy supply lines produced the first 

of many studies of the network interdiction problem. The list of contributors is extensive: 

Wollmer(1964, 1970, 1970), Durbin( 1966), McMasters and Mustin( 1970), Helmbold 

(1971), Ghare, Montgomery, and Turner (1971), Lubore, Ratliff, and Sicilia (1971,1975). 

More recent contributors are Cunningham (1985), Steinrauf (1991), Phillips (1992), and 

Wood (1993).   The recent efforts, inspired mostly by the anti-drug crusade, have 

attempted to generalize on the earlier, more specific approaches. This section describes 

some of the more interesting works on the subject. 

1. Previous Work 

Many works in the literature assume the network in question is "s-t planar." A 

network is planar if it can be drawn in a two-dimensional plane such that no two arcs 

cross (intersect) each other. A. face in a planar network is a region of the two-dimensional 

plane bounded by arcs in which any two points can be connected by a continuous curve 

that intersects no nodes and no arcs. Finally, an s-t planar network is a planar network 

with source node s and sink node t where both s and t lie on the boundary of the outer 

face (e.g., Ahuja, et al., 1993, pp. 260-263). 

Wollmer (1964) first studied the deterministic network interdiction problem. 

Wollmer starts by constructing a modified topological dual of an undirected s-t planar 

network; dual network nodes are located in each face of the original (primal) network and 

each dual arc crosses an original arc to connect the dual nodes. The length of each dual 

arc is equal to the capacity of the primal arc that it crosses. Reminding the reader of the 

maximum flow-minimum cut theorem, Wollmer shows how the problem of finding the 

minimum cut in the primal network is equivalent to finding the shortest path through the 

dual network from the dual source to the dual sink. If the resource budget allows n 

interdictions, the n optimal arcs for interdiction are those arcs that when assigned zero 

length will minimize the shortest route in the dual network. He then presents a 

polynomial-time labeling algorithm that accomplishes this by analyzing a modified dual 

network in which each dual arc is replaced by two parallel arcs. One arc has length zero 



and the other has length equal to the capacity of the associated primal arc. The optimal 

set of arcs to interdict in the primal network then corresponds to the set of zero-length 

arcs in the shortest path of the modified dual. Unfortunately, the use of the dual network 

restricts the problem to planar graphs, since otherwise the dual network cannot be 

constructed. Also, Wollmer assumes that the cost of interdiction does not vary from arc 

to arc. 

Phillips (1992) presents several pseudo-polynomial time algorithms using dynamic 

programming for interdiction of undirected planar networks. The algorithms are pseudo- 

polynomial since they allow each interdiction to require a different amount of resource. 

Phillips also shows how to modify these algorithms to achieve approximations of the 

optimal solution in polynomial time. A simplifying assumption is made that arcs can be 

partially interdicted, so that expending a fraction of the cost necessary to interdict an arc 

removes the corresponding fraction of flow. All computations involve use of the dual of 

the network, similar to Wollmer. However, there is no requirement here that the network 

be s-t planar. Phillips goes on to describe algorithm modifications to allow complete or 

partial arc interdiction, and to accommodate a general interdiction function such that the 

cost of interdiction increases as increasing amounts of interdiction resources are expended. 

Finally, a proof shows that the basic network interdiction problem is NP-complete. 

Steinrauf (1991) and Wood (1993) solve the network interdiction problem with 

mathematical programming techniques. By avoiding the use of the dual network, the 

topology of the network is unrestricted. Wood shows how the model is easily generalized 

to accommodate binary (complete) or continuous (partial) arc interdiction, node 

interdiction, multiple sources and sinks, undirected networks, multiple resources, and 

multiple commodities.   Wood does point out, however, that as network interdiction 

problems become larger, certain measures may be necessary to decrease solution times. 

To this end, two types of valid inequalities are presented to tighten the LP relaxation of 

the models. Although Wood's computational experimentation does achieve a reduction in 

solution time, a practical drawback of this method is that the amount of effort needed to 

construct such inequalities may not justify any time savings gained from their use. 
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Although several works on this subject exist, they all may be categorized as being 

not as generalizable as Wood's model, and the models presented in this thesis. 

D. PROPOSED MODELS AND SOLUTION TECHNIQUES 

Motivated by a need to solve network interdiction problems of increasing size, it is 

useful to consider techniques other than trying to solve the basic integer program directly, 

with or without valid inequalities. Having recognized the advantages of the generality of 

the mathematical programming approach, this thesis begins with the model of Steinrauf 

and Wood and develops an alternate solution technique using Benders decomposition 

(Benders, 1962). This algorithm decomposes the network interdiction problem into two 

problems that are usually much easier to solve. The simpler of the two is a network 

maximum flow problem, which is solved very quickly. The interdiction decisions are made 

by an integer program that, at the onset of the algorithm, also produces the optimal 

solutions to a relaxed problem quickly, since it is small and simple. The optimal solution 

to the network interdiction problem is constructed by iteratively solving these two 

problems. The final solution to the network interdiction problem should be rapidly 

determined if the number of iterations is not too large, since the decomposition algorithm 

demands that the integer program grow in size by one constraint at each iteration. 

Therefore, if the number of decomposition algorithm iterations is limited, some time 

savings may be achieved over directly solving the integer programming model. 

With a desire to solve practical problems, network interdiction is also addressed in 

the stochastic arena. Both simple and more advanced solution techniques are explored to 

give results under various manifestations of uncertainty. Since the purpose here is to 

explore various methodologies, and not achieve absolute efficiency, all computations 

should be regarded as prototypic. The General Algebraic Modeling System (GAMS) 

(Brooke, et al., 1988) is used to formulate the equations and interface the network data 

with the algorithms. This software is not specific for this problem, or for decomposition 

techniques. Consequently, more computation time is required than is actually necessary to 

solve this problem, if software were designed specifically for this purpose. To obtain 

solutions to the algorithms formulated with GAMS, the solvers XA (Sunset Software, 
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1987) and XS (Insight, Inc., 1994) are used. The final stochastic programming algorithm 

uses more advanced techniques in a sequential-approximation technique (Cormican, 

Morton, and Wood, 1995). This algorithm is solved with OSL (International Business 

Machines Corp., 1991). 

The algorithms and solution techniques explored in this thesis are: 

1. Deterministic Networks with Benders Decomposition 

This method employs an iterative solution procedure using Benders 

decomposition. In the Benders master problem, a set of arcs is chosen for interdiction 

subject to a budget constraint. The Benders subproblem maximizes flow subject to fixed 

interdiction locations. The master and subproblems are solved iteratively until the gap 

between the lower bound from the master problem and the upper bound from the 

subproblem is small enough to satisfy optimality criteria set by the user. 

2. Deterministic Networks with Benders Decomposition and Heuristic 

A modification to the straightforward Benders decomposition algorithm, this 

technique employs a "flow-dispersion" heuristic after solving the Benders subproblem. 

The heuristic has the effect of dispersing the maximum flow from source(s) to sink(s) 

throughout the network by approximately solving a minimum cost flow problem with a 

quadratic cost function that keeps flow on any arc no larger than it has to be to still 

achieve the maximum flow through the network. The result is more rapid convergence of 

the upper and lower bounds, decreasing the time and number of algorithm iterations 

required to produce a satisfactory solution. 

3. Simple Stochastic Models with Benders Decomposition 

If there is some uncertainty with respect to arc capacities, a set of "scenarios" may 

be constructed where each scenario is one realization of several possible combinations of 

arc capacities in the network. Assigned to each scenario is a probability that the scenario 

represents the actual network, with all arc capacities as specified in the scenario. In this 

treatment, uncertain capacity also models uncertain network topology since an arc with a 

capacity of zero models an "arc" that is not present in the actual network. If the number 

of possible scenarios is manageable, direct integer programming may be used, but as the 
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number of scenarios grows, Benders decomposition becomes more attractive. The 

application of Benders decomposition to a set of probabilistic scenarios was developed as 

the L-shaped algorithm by Van Slyke and Wets (1969). 

4. Stochastic Networks with a Sequential-Approximation Algorithm 

If the number of probabilistic scenarios becomes too large, the scenario method 

becomes computationally burdensome since the number of Benders subproblems to solve 

at each iteration is equal to the number of scenarios. To avoid such difficulties, a 

sequential-approximation algorithm is employed (Cormican, Morton, and Wood, 1995; 

Kail, et al., 1988). This algorithm sequentially refines partitions of the sample space and 

employs the L-shaped algorithm to solve a sequence of approximating problems. This 

technique can accommodate uncertainty in arc capacities as well as interdiction success, 

and assumes all random variables are independent. In this thesis, we explore only the 

situation where uncertainty takes the form of complete success or failure for interdiction 

attempts. It is possible to extend the methodology to discrete and continuous distributions 

for interdiction success and arc capacities, as well as certain types of dependency 

structures for the stochastic parameters, but these topics are beyond the scope of this 

research. 
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H. DETERMINISTIC NETWORK INTERDICTION 

Solving network interdiction problems on large networks may be computationally 

impossible with standard integer programming techniques. This possibility motivates the 

evaluation of decomposition techniques that separate a large complicated problem into a 

sequence of smaller, quicker-to-solve models. In this chapter, Benders decomposition for 

the deterministic network interdiction problem is developed, improved upon, and 

computationally tested. 

A. NETWORK INTERDICTION WITH BENDERS DECOMPOSITION 

In this section, a decomposed formulation is developed from the integer program 

formulation and is computationally tested. 

1. Model 

Benders decomposition is a solution technique that is best applied when a certain 

set of "complicating" variables link what would otherwise be separate, easily solved 

models. The network interdiction problem is a prime candidate for Benders 

decomposition due to the complicating binary interdiction variables: if the interdiction 

variables are fixed at zero or one for every arc, the resulting model is a network flow 

problem that is easily solved by several methods. If the choices for interdiction can be 

made relatively quickly at each iteration, the decomposed problem may offer some 

advantage over the original integer program model. The derivation of the decomposed 

model begins with Wood's basic model, which is restated as 
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IP1 min    Y    u ß 
Y,P,a   {ij)eA 

s.t.    a. - a;. + ß.. + y.. z 0   V (/,/)€ ,4 

a   - a   £  1 
f jr 

Y"    r.y.. <; i? 

a. e {0,1} VieiV 

ß.,Y(,.6 {0,1} V(tJ)eA. 

For fixed values of y, the LP relaxation of IP 1 is just the dual of a network flow 

problem with an intrinsically integer solution. The dual of this LP relaxation may be taken 

to obtain the equivalent problem: 

min  max    x:   -   V1     v ••*•• ts i—i        ' ij   y 

.t.   y x. - y X. - X= 0 
l—l SJ l~t js ts 

j j 

E ** "  E ** + *ft =  ° 
0 z x   <. u .   V (IJ) e ^4 

ij ij \ v / 

where T = { Y, : Y,e {0,1} V (ij) 6 ^, E,^ ^Y, * *}. 

Now, enumerate the set X of all the extreme point solutions of the inner 

maximization and select that solution with minimum value subject to y e T. This model 
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may be written as 

min max    xf   -   V    y x.. 

Equivalently, the min-max problem may be written as the simple minimization: 

MASTER (X)       min    z 

st-    z * xu ~   E   xij  Yij     VxkeX 

Y„ e  {0,1}        V(iJ)eA. 
tj 

The efficiency of Benders decomposition rests on the ability to solve MASTER(JQ 

with the enumeration of only a fraction of the extreme points X. The formulation with a 

subset of constraints corresponding to extreme points X clis the Benders master 

problem, denoted MASTER(X'). Each constraint in the master problem is generated by 

the Benders subproblem. At each iteration in the algorithm, the solution to the 

subproblem is checked to see if it violates any constraints in MASTER^. If so, X and 

MASTER(X') are updated with the solution to the subproblem (an extreme point). This 

iterative process repeats until the solution to the subproblem is feasible to MASTER(Z). 

At this point, MASTER^) has enough information to solve the original problem to 

optimality. Furthermore, each iteration of the master problem produces a non-decreasing 

lower bound (LB) on the optimal value of the objective function. Similarly, the 

subproblem will generate an upper bound (UB, not necessarily non-increasing) at each 

iteration. With this information, the algorithm may be terminated prior to optimality if the 

gap between the current lower bound and best upper bound is sufficiently small. 

The Benders subproblem is 
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SUB(?) max      xu-   £    ^Y, 

.t.    V   3C . - y   x.  - r  = 0 
*-*' SJ 4—1 js ts 

j 

s.t. 

E *v - E ^+ x
ts = ° 

0 < x.. ^ u..   V (/,/') 6^4 

where y is the solution to MASTER^). The subproblem is simply a variant of the 

maximum flow formulation that penalizes flow on any arc chosen for interdiction in the 

master problem. Letting z(f) denote the optimal value of the objective function to the 

optimization problem/ the algorithm is: 

Benders Decomposition Algorithm for Network Interdiction 
Input: Network G=(N,A), arc capacities uip arc interdiction 

costs rip interdiction budget R, special nodes s and t, 
convergence tolerance toler. 

Outputlnterdiction vector Y\ which is the solution within (100 • toler)% 
ofoptimality. 

step 1 Solve maximum flow problem MF for flow values JC
1
; 

LetX'^ix1}; 
Let k = 2; 
LetUB=z(MF) 

step 2 Solve MASTER^ for y*; 
Let LB = z (MASTER^) 

step 3 Solve SUB($) for *"; 
LetX' = X'U{^}; 
If z(SUB) < UB then let UB = z(SUB($ )) and Y*= y ; 

step 4 If UB - LB <, LB • toler then stop: Interdiction set 
Y * is a solution to the network interdiction problem with 
objective function value within (100 • toler)% of the optimal 
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objective function value. 

step 5 Let k = k+ 1; 
Go to step 2. 

2. Computational Results 

In the network interdiction problem, there are potentially unlimited numbers of 

combinations of network size and topology, arc direction, arc and node capacities, arc and 

node interdiction costs, resource budget, and prohibited interdiction locations. We 

present only a few test cases using GAMS to construct simple grid networks as 

hypothetical capacitated transportation networks for our calculations. 

Since some coherence in tests is desirable between different solution techniques to 

allow meaningful comparisons, some of the characteristics listed above remain unaltered in 

all cases studied. Any exception cases to the following "fixed" characteristics are clearly 

labeled. Three network sizes are analyzed, as shown in Figure 1. All data used in the test 

cases is available from the advisors of this thesis. 

Small network (NS): 100 nodes, 180 directed arcs, 10 by 10 grid; 
Medium network (NM): 900 nodes, 1740 directed arcs, 30 by 30 grid; 
Large network (NL): 3200 nodes, 6280 directed arcs, 40 by 80 grid. 

Figure 1. Networks for Case Studies 

In networks NS and NM, all exterior nodes on one side of the grid are defined as source 

nodes, while all nodes at the opposite side of the grid are defined as sink nodes. In 

network NL, the nodes at the 40-node sides of the grid are similarly defined as source and 

sink nodes. Note that the techniques presented in this thesis do not require source and 

sink nodes be exterior nodes of a network. 
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Other network and network interdiction characteristics that remain unchanged 

throughout all testing are shown in Figure 2. 

Arc capacity range: [10,100], uniformly distributed in increments often; 
Node capacity range: [10,200], uniformly distributed in increments often; 
Resource cost of interdiction, each arc:   1 (except where noted); 
Probability that any arc (node) is available for interdiction: 50%. 

Figure 2. Fixed Data Characteristics for Network Interdiction Case Studies 

It is desirable to perform all calculations with the same hardware, but the 

computational demands of the larger problems make this impractical. Consequently, the 

less demanding cases are solved using a 60 MHZ Pentium PC and the more difficult cases 

utilize an IBM RISC/6000 Model 590.  Since our interest is not particular to any one data 

set, we present summarized case results: the number of Benders decomposition algorithm 

iterations performed for convergence, total "clock" time for computations, and total solver 

time for computations, where the (significant) difference between clock and solver is time 

required for the operations of the GAMS interface. 

A total of seven cases are tested with the Benders decomposition algorithm. The 

first four cases are performed on network NS, with varying resource levels R. In one of 

the instances where R = 3, approximately one-half of the arcs have interdiction costs rtJ = 

2; all other cases consider only ri} = 1. The next two cases use network NM with two 

values of R. Initial results show that solving network NM with R > 6, or solving network 

NL with only the Benders decomposition algorithm, is not efficient. These cases are 

solved, however, by other means in subsequent sections of this thesis. 

Assuming characteristics outlined in Figure 2, a summary of results for network 

NS follows in Table 1. The 60 Mhz Pentium PC is used for these calculations. The 

medium network NM was also examined also using the 60 Mhz Pentium PC. With the 

Figure 2 assumptions of characteristics, a summary for network NM is in Table 2. 

From the data in Tables 1 and 2, it is evident that an increase in computational 
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difficulty is experienced as the resource budget R increases. The test with R = 9 was 

terminated when the time required to achieve a satisfactory solution was deemed 

SMALL 
NETWORK 
CASE(NS) 

NUMBER OF 
BENDERS 

ITERATIONS 

TOTAL 
SOLVER 

TIME (hr:min:sec) 

TOTAL 
CLOCK 

TIME(hr:min:sec) 

R=l 1 00:00:00.8 00:00:15 

R = 3 5 00:00:02.5 00:00:44 

R = 3,r,f=lov2 5 00:00:02.6 00:00:44 

R = 6 8 00:00:04.6 00:01:10 

Table 1.   Benders Decomposition Algorithm Summary of Results, Small Network. 
Solving the network interdiction problem on network NS using the Benders decomposition 
algorithm, with 6 units of interdiction resource, takes 8 iterations of the algorithm, 4.6 
seconds of solver time, and 1 minute and 10 seconds of clock time. 

excessive. All of this additional time is spent solving the Benders master problem, 

MASTER(X'). This is intuitive, as the budget constraint is of a 0-1 knapsack variety and 

the number of possible combinations of feasible interdictions grows exponentially withi?. 

MEDIUM 
NETWORK 
CASE(NM) 

NUMBER OF 
BENDERS 

ITERATIONS 

TOTAL 
SOLVER 

TIME (hr:min:sec) 

TOTAL 
CLOCK 

TIME(hr:min:sec) 

R = 3 8 00:00:24.2 00:02:59 

R = 6 16 00:00:38.6 00:10:35 

R = 9 >40 > 06:12:00 > 09:00:00 

Table 2. Benders Decomposition Algorithm Summary of Results, Medium Network. 
Solving the network interdiction problem on network NM using the Benders decomposition 
algorithm, with 9 units of interdiction resource, takes more than 40 iterations of the 
algorithm, more than 6 hours and 12 minutes of solver time, and more than 9 hours of clock 
time. 

To demonstrate the simple extension of network interdiction problems on 

undirected networks where node interdiction is also allowed, two cases were studied using 

network NS', which is network NS modified to have either one-half or all of its arcs 
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undirected. The results are in Table 3. Interestingly, the number of undirected arcs had 

very little effect on the time required in this small problem. 

SMALL 
NETWORK 
CASE(NS') 

NUMBER OF 
BENDERS 

ITERATIONS 

TOTAL 
SOLVER 

TIME (hr:min:sec) 

TOTAL 
CLOCK 

TIME(hr:min:sec) 

R = 3, 50% 
undirected arcs 

10 00:00:07.6 00:02:08 

R = 3, 100% 
undirected arcs 

10 00:00:07.7 00:02:08 

Table 3. Benders Decomposition Algorithm Summary of Results, Small Network with 
Directed and Undirected Arcs, Node Interdictions Allowed. Solving the network 
interdiction problem on network NS' using the Benders decomposition algorithm, with all arcs 
undirected and 3 units of interdiction resource, takes 10 iterations of the algorithm, 7.7 
seconds of solver time, and 2 minutes and 8 seconds of clock time. 

B. ALGORITHM IMPROVEMENTS 

The objective functions of the Benders master and subproblem must converge in a 

finite number of iterations (Benders, 1962). Unfortunately, the number of iterations 

required for convergence may be large. It is useful to consider techniques that decrease 

solution time by reducing the number of iterations the Benders decomposition algorithm 

requires for convergence. 

1. Flow Dispersion Heuristic 

Comparisons of solutions to the maximum flow problem and the interdiction 

problem suggest that arcs that are capacitated, or nearly capacitated, are interdicted more 

often than those with little or no flow in the optimal solution to the maximum flow 

problem. This result supports intuition, and leads to the following argument: 

In solving the master problem, the interdictor may achieve a "better" 
interdiction by interdicting arcs where x^ is large. It is therefore likely that 
jy will be 1 where x^ is large. But, the magnitude of JC*,. may be misleading. 
It may be large, but if arc (ij) is interdicted, the flow might be able to be 
rerouted with little or no loss. The network user, consequently, would like 
x* to be closer to the "true" value necessary to achieve a maximum flow. 
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To this end, we will require the network user to maximize flow while 
simultaneously keeping flow on any individual arc as small as possible, in 
some crude sense. In such a solution, if x^ is large, it is large only because 
it must be to achieve a maximum flow. 

If the maximum flow problem MF is first solved for the value MAXFLOW = z(MF), the 

solution to the following nonlinear program will achieve a maximum flow and tend to keep 

flows on individual arcs as small as possible: 

NLP min    T    xl 

st   E   x„ - E   x,■ = MAXFLOW 
J j 

E     *,"   E     *fi-   0     Vietf-{*,/} 
/ J 

E   xv- E   xjt " -MAXFLOW 

0 * x.. * u..(l -   $..)   V(iJ)eA. 

Solving this nonlinear program exactly is computationally difficult. One exact solution 

method, simplicial decomposition, has been considered promising but is not tested since a 

solver employing this method is not available. Since the proposed technique is a heuristic, 

approximate solutions to NLP may be sufficient to produce a satisfactory flow dispersion. 

This reduces the time needed to solve NLP. Three approximate solution methods are 

explored in this thesis: 

a. Many-Level Approximation Method 

The separable quadratic objective function can be approximated by a sum 

of piecewise linear functions composed of« linear segments of equal length. This 

corresponds to the replacement of each original arc with n parallel arcs, each with capacity 

ujn. Each new arc is labeled as a "level," /, from 1 to n, and usage costs increase as the 

square of the level of the /* arc used. This method very closely approximates a quadratic 
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fünction, but has the disadvantage of increasing the number of arcs in the network «-fold. 

b. Two-Level Iterative Approximation Method 

The quadratic functions can be approximated, with iterative improvements, 

using a two-segment linear approximation. Given an initial approximation, the resulting 

flow values are then used to adjust the lengths (capacities) and slopes of the two linear 

segments to reduce the error between the linear approximation and a true quadratic 

function. This process is repeated several times for the best approximation. This heuristic 

requires each original arc to be replaced by only two parallel arcs, each with capacity utJ2, 

only doubling the number of arcs in the network. 

c. Frank-WolfeMethod 

Developed as a method to solve quadratic programming problems, the 

Frank-Wolfe algorithm is widely used in non-linear programming (e.g., Bazaraa and 

Shetty, 1979, p. 184). It is ideal for implementation of the flow-dispersion heuristic. 

Starting with a feasible solution x to NLP, the direction of movement for 

an improved objection function value is -Vf(x), projected onto the feasible region. For 

NLP, one direction-finding problem is given by the following LP: 

DFP(*) min    V    2  x.x. 

s.t.   Y   x   - y   x   = MAXFLOW 
J j 

E   *v- E   xfl- °    V/etf-{*,/} 

E   xt,■' E   xjt - -MAXFLOW 
/ i 

0  < x.. <L ii,(l -   ?,)    V(ij)eA 

where MAXFLOW = z(MF), as before. If x is not optimal, an improving direction is 

d = x - x, where x solves DFP( x). The optimal step size, X', is easily found by 
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solving 

min     /(* x.. + (1 - X) £..) 

s.t.      0 <;  A.  <;  1 

where /(A:) =   Y,   xtj ■ Differentiating with respect to A, and setting the result equal to 

zero, the optimal step size is 

EA2 V^        
A

    — 
X     -      > XX 

y  =    (V)e^l (ij)e-A  

Ex» +   yi     x.   - 2 Y*     x..3c.. 
(ij)eA (ij)eA (.'j)eA 

Because it may be impractical to find x 'exactly, we use a stopping rule to 

obtain a solution sufficiently close to JC *. The number of times x and A. * must be 

determined will depend on this stopping rule. Certainly, f(x) z f(x *) since x is a 

feasible solution to DFP(*). We know /(**) * f(x) + Vf(x)(x* - x), and since 

x minimizes DFP( x ), it follows that f(x *) z fix) + V/(*) (& - jc). As a result we 

can employ a relative stopping rule by checking the magnitude of the relative gap between 

x and x. The algorithm for this method is now apparent as: 

Frank-Wolfe Algorithm for Heuristic 
Inputs: Network G=(N,A), current arc flows x, relative gap e. 
Output: Adjusted arc flows x. 

step 1 Solve DFP( x ) for x; 
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If 
2 E     *Z " 2 E    *■■ *■■ Z-- V Z—■ ij tj 

(ij)eA                      ('j)eA < e, then stop 

2 E    *.. x.. -   T     x* Z-'        0     i/        Z-^         y 

step 2 Compute V 

step 3 Updated: 3c -  X'x + (1 - V) 
Go to step 1. 

This algorithm is a variant of the Steepest Descent Method, and as a first-order nonlinear 

method tends to stall, or converge poorly, as the optimal solution is approached (e.g., 

Bazaraa and Shetty, 1979, p. 290). This may not be a significant problem, however, since 

it is not necessary to solve the problem exactly. 

2. Computational Results 

Several cases are tested with the Benders decomposition algorithm and the 

different implementations of the flow-dispersion heuristic. The final cases analyze 

network NL with the most efficient heuristic technique and compare the results with those 

obtained from direct integer programming. To allow comparison, all data for the cases 

tested here are the same as those in Section A, where the heuristic is not used. 

Table 4 presents a summary of results for network NS with the many-level 

approximation method. Also given is the percent of time or iterations the algorithm 

required compared to the straightforward Benders decomposition algorithm without the 

heuristic as tested in Section A of this chapter. 
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SMALL 
NETWORK 
CASE(NS) 

BENDERS 
ITERATIONS 

SOLVER 
TIME (hr:min:sec) TOTAL 

CLOCK 
TIME(hr: min: sec) NUMBER 

OF 

% 
OF 

SEC. A 
TOTAL 

% 
OF 

SEC. A 

R=\ 1 100% 00:00:02.3 288% 00:00:22 

R = 3 2 40% 00:00:04.1 164% 00:00:35 

R = 3,r=lor2 4 80% 00:00:07.8 300% 00:01:05 

R = 6 16 200% 00:00:38.6 839% 00:04:22 

Table 4. Benders Decomposition Algorithm with Heuristic: Many-Level 
Approximation Method Summary of Results, Small Network. Solving the network 
interdiction problem on network NS using the Benders decomposition algorithm with the 
many-level approximation implementation of the flow-dispersion heuristic, with 3 units of 
interdiction resource, took 2 iterations of the algorithm, 4.1 seconds of solver time, and 35 
seconds of clock time. This is 40% of the number of iterations and 164% of the solver time 
required to solve the problem with Benders decomposition alone. 

Using the two-level iterative approximation method, the results are in Table 5. 

SMALL 
NETWORK 
CASE(NS) 

BENDERS 
ITERATIONS 

SOLVER 
TIME (hr:min:sec) TOTAL 

CLOCK 
TIME(hr:min:sec) NUMBER 

OF 

% 
OF 

SEC. A 
TOTAL 

% 
OF 

SEC. A 

R=\ 1 100% 00:00:01.2 150% 00:00:19 

R = 3 3 60% 00:00:04.7 188% 00:00:56 

R = 3, rt/=l or 2 3 60% 00:00:05.6 215% 00:01:02 

R = 6 13 163% 00:00:30.4 661% 00:04:20 

Table 5. Benders Decomposition Algorithm with Heuristic: Two-Level Iterative 
Approximation Method Summary of Results, Small Network. Solving the network 
interdiction problem on network NS using the Benders decomposition algorithm with the 
two-level iterative approximation implementation of the flow-dispersion heuristic, with 3 units 
of interdiction resource, took 3 iterations of the algorithm, 4.7 seconds of solver time, and 
56 seconds of clock time. This is 60% of the number of iterations and 188% of the solver 
time required to solve the problem with Benders decomposition alone. 
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The Frank-Wolfe method produced the results in Table 6. In this instance, the 

Frank-Wolfe implementation of the heuristic seems to be most effective in the case where 

differing arc interdiction costs are present. 

SMALL 
NETWORK 
CASE(NS) 

BENDERS 
ITERATIONS 

SOLVER 
TIME (hr:min:sec) TOTAL 

CLOCK 
TIME(hr:min:sec) NUMBER 

OF 

% 
OF 

SEC. A 
TOTAL 

% 
OF 

SEC. A 

R=l 1 100% 00:00:01.0 125% 00:00:19 

R = 3 3 60% 00:00:06.2 248% 00:01:18 

R = 3, r$=\ or 2 2 40% 00:00:03.6 138% 00:00:46 

R = 6 14 175% 00:00:46.2 1004% 00:07:43 

Table 6. Benders Decomposition Algorithm with Heuristic: Frank-Wolfe Method 
Summary of Results, Small Network. Solving the network interdiction problem on 
network NS using the Benders decomposition algorithm with the Frank-Wolfe 
implementation of the flow-dispersion heuristic, with 3 units of interdiction resource, took 3 
iterations of the algorithm, 6.2 seconds of solver time, and 1 minute and 18 seconds of clock 
time. This is 60% of the number of iterations and 248% of the solver time required to solve 
the problem with Benders decomposition alone. 

The medium network NM is also examined using a 60 Mhz Pentium PC. Table 7 

shows a summary for network NM using the many-level approximation method with the 

standard assumptions of characteristics. Due to the poor performance of the case where 

R = 9 in Table 2, no test is performed in Section A for a case where R = 12 using only the 

Benders decomposition algorithm. The case where R = 9 is a striking demonstration of 

the usefulness of the flow-dispersion heuristic. With the exception of the case where R = 

6 using network NS, the heuristic has been successful in reducing the number of iterations 

of the algorithm, but is unsuccessful at improving solver time. The R = 9 case in Table 7, 

however, clearly shows that it is possible to significantly decrease the solver time by using 

the heuristic. 
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MEDIUM 
NETWORK 
CASE(NM) 

BENDERS 
ITERATIONS 

SOLVER 
TIME (hr:min:sec) TOTAL 

CLOCK 
TIME(hr: min: sec) NUMBER 

OF 

% 
OF 

SEC. A 
TOTAL 

% 
OF 

SEC. A 

R = 3 2 25% 00:00:42.3 175% 00:03:10 

R = 6 3 19% 00:01:00.3 156% 00:04:31 

R = 9 7 < 18% 00:02:26.9 <1% 00:10:24 

R=12 15 NA 00:27:31.6 NA 00:44:31 

Table 7. Benders Decomposition Algorithm with Heuristic: Many-Level 
Approximation Method Summary of Results, Medium Network. Solving the network 
interdiction problem on network NM using the Benders decomposition algorithm with the 
many-level approximation implementation of the flow-dispersion heuristic, with 9 units of 
interdiction resource, takes 7 iterations of the algorithm, 2 minutes and 26.9 seconds of solver 
time, and 10 minutes and 24 seconds of clock time. This is less than 18% of the number of 
iterations and less than 1% of the solver time required to solve the problem with Benders 
decomposition alone. No comparison is made for the test case where R = 12. 

The two-level iterative approximation method results are in Table 8 and the results 

using the Frank-Wolfe method are in Table 9. Now, the results in Table 4 through Table 9 

show that the heuristic is almost always useful for decreasing the required number of 

Benders iterations. Unfortunately, this is not always accompanied by a decrease in solver 

times. This is due to running the heuristic at each iteration. With only a few test cases 

here, it is not possible to state conclusively that the heuristic has either a positive or 

negative effect on required solver time, but there is some indication that it may be more 

effective on the larger and more difficult problems. 
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MEDIUM 
NETWORK 
CASE(NM) 

BENDERS 
ITERATIONS 

SOLVER 
TIME (hr:min:sec) TOTAL 

CLOCK 
TIME(hr:min:sec) NUMBER 

OF 

% 
OF 

SEC. A 
TOTAL 

% 
OF 

SEC, A 

R = 3 2 25% 00:00:23.3 96% 00:02:35 

R = 6 3 19% 00:00:39.2 102% 00:04:12 

R = 9 20 < 50% 00:43:59.6 < 12% 03:41:10 

R=U 31 NA 01:48:38.0 NA 04:03:40 

Table 8. Benders Decomposition Algorithm with Heuristic: Two-Level Iterative 
Approximation Method Summary of Results, Medium Network. Solving the network 
interdiction problem on network NM using the Benders decomposition algorithm with the 
two-level iterative approximation implementation of the flow-dispersion heuristic, with 9 units 
of interdiction resource, takes 20 iterations of the algorithm, 43 minutes and 59.6 seconds of 
solver time, and 3 hours, 41 minutes, and 10 seconds of clock time. This is less than 50% of 
the number of iterations and less than 12% of the solver time required to solve the problem 
with Benders decomposition alone. No comparison is made for the test case where R = 12. 

MEDIUM 
NETWORK 
CASE(NM) 

BENDERS 
ITERATIONS 

SOLVER 
TIME (hr:min:sec) TOTAL 

CLOCK 
TIME(hr:min: sec) NUMBER 

OF 

% 
OF 

SEC. A 
TOTAL 

% 
OF 

SEC. A 

R = 3 3 38% 00:00:49.1 203% 00:10:53 

R = 6 5 31% 00:02:19.1 360% 00:23:07 

R = 9 12 < 30% 00:08:53.6 <3% 01:23:04 

R=12 28 NA 01:35:43.5 NA 04:39:16 

Table 9. Benders Decomposition Algorithm with Heuristic: Frank-Wolfe Method 
Summary of Results, Medium Network. Solving the network interdiction problem on 
network NM using the Benders decomposition algorithm with the Frank-Wolfe 
implementation of the flow-dispersion heuristic, with 9 units of interdiction resource, takes 
12 iterations of the algorithm, 8 minutes and 53.6 seconds of solver time, and 1 hour, 23 
minutes, and 4 seconds of clock time. This is less than 30% of the number of iterations and 
less than 3% of the solver time required to solve the problem with Benders decomposition 
alone. No comparison is made for the test case where R = 12. 
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The best method for implementation of the heuristic, as problems become larger, 

seems to be the many level approximation method. It is significantly more effective for 

solving the larger, harder problems. For the cases studied, the number of iterations of the 

Benders decomposition is significantly less for this method compared to the others, about 

half for the case where R = 12. Similarly, the solver time required for the many-level 

approximation method is only about 20% of either the two-level iterative approximation 

method or the Frank-Wolfe method. An exception to this statement is the case where R = 

3 and arc interdiction costs are varied, where the Frank-Wolfe method is the most 

efficient. The two-level iterative approximation method is also competitive when resource 

levels are small. If the many-level approximation method is indeed the best, it still has at 

least one drawback: it requires a larger computer memory capacity than the other 

methods. 

The large network NL is analyzed using the RISC/6000 and the many-level 

approximation method. The results for network NL are in Table 10. 

LARGE 
NETWORK 
CASE(NL) 

7? =12 

NUMBER OF 
BENDERS 

ITERATIONS 

21 

TOTAL 
SOLVER 

TIME (hr:min:sec) 

00:36:57.3 

TOTAL 
CLOCK 

TIME(hr:min:sec) 

05:44:20 

Table 10. Benders Decomposition Algorithm with Heuristic: Many-Level 
Approximation Method Summary of Results, Large Network. Solving the network 
interdiction problem on network NL using the Benders decomposition algorithm with the 
many-level approximation implementation of the flow-dispersion heuristic, with 12 units of 
interdiction resource, takes 21 iterations of the algorithm, 36 minutes and 57.3 seconds of 
solver time, and 5 hours, 44 minutes, and 20 seconds of clock time. These results are later 
compared to results from solving this problem directly. 

The advantage of the many-level approximation method is made clearer from the results in 

Table 10. Only 21 iterations of the algorithm are required for the large network, 

compared with 31 and 28 iterations to solve the medium network using the two-level 

approximation method and the Frank-Wolfe method, respectively. Comparison of solver 

and clock times yield similar differences. The large clock time in Table 10 is discouraging, 
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but the prototypical nature of this research admits such. In practical application, an 

efficient compiled high-level computer language should be used with solvers rather than 

prototypic GAMS, which is easy to apply but painfully slow to execute. Also, additional 

methods beyond the scope of this thesis are available to speed up solution time in the more 

time-consuming Benders master program. 

The many-level implementation of the heuristic is extended to accommodate 

directed and undirected arcs and node interdictions. The same two cases are studied, 

using network NS' as before. The results are displayed in Table 11. 

SMALL 
NETWORK 
CASE(NS') 

BENDERS 
ITERATIONS 

SOLVER 
TIME (hr: min: sec) TOTAL 

CLOCK 
TIME(hr:min: sec) NUMBER 

OF 

% 
OF 

SEC. A 
TOTAL 

% 
OF 

SEC. A 

R = 3, 50% 
undirected arcs 

5 50% 00:00:14.3 188% 00:06:03 

R = 3, 100% 
undirected arcs 

5 50% 00:00:15.6 203% 00:06:11 

Table 11. Benders Decomposition Algorithm with Heuristic: Many-Level 
Approximation Method Summary of Results, Small Network with Directed and 
Undirected Arcs, Node Interdictions Allowed. Solving the network interdiction problem 
on network NS' using the Benders decomposition algorithm with the many-level 
approximation implementation of the flow-dispersion heuristic, with all arcs undirected and 
3 units of interdiction resource, takes 5 iterations of the algorithm, 15.6 seconds of solver 
time, and 6 minutes and 11 seconds of clock time. This is 50% of the number of iterations 
and 203% of the solver time required to solve the problem with Benders decomposition alone. 

As in the computations of Section A where the heuristic was not used, the computational 

effort required depends very little on the number of undirected versus directed arcs in this 

small problem. We conjecture, however, that this might not be the case when solving a 

large-scale problem. 

Having obtained a sufficient sample of results from the implementation of the 

Benders decomposition algorithm, with and without the flow-dispersion heuristic, it is 
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interesting to finally compare these results with those obtained from solving the network 

interdiction problem directly with model IP1. We suspect any payoff from the 

decomposition methods shown here will be most evident when solving larger problems. 

Therefore, we solve the R = 12 case with IP1 and present the results in Table 12. The 

solver terminated prior to reaching a satisfactory solution due to exceeding pre-set time 

limits. The results are sufficient to clearly demonstrate that, in this example, the Benders 

decomposition algorithm with the flow-dispersion heuristic provides a solution more 

quickly than solving the integer program directly. Comparing Tables 10 and 12, we see 

that we achieve at least a 68% reduction in required solver time over the direct solution 

method. We do not compare clock times because, as previously stated, they include the 

relatively slow operations of GAMS. 

LARGE 
NETWORK 
CASE(NL) 

TOTAL 
SOLVER 

TIME (hr:min:sec) 

TOTAL 
CLOCK 

TIME(hr:min: sec) 

R=\2 > 01:57:59 > 03:09:27 

Table 12. Integer Programming Summary of Results, Large Network. Solving the 
network interdiction problem on network NL directly using integer programming model IP1, 
with 12 units of interdiction resource, takes more than 1 hour, 57 minutes, and 59 seconds 
of solver time, and more than 3 hours, 9 minutes, and 27 seconds of clock time. The same 
problem is solved in less than 68% of this solver time using Benders decomposition with the 
many-level approximation implementation of the heuristic, as shown in Table 10. 
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m. NETWORK INTERDICTION OF PROBABILISTIC SCENARIOS 

Some degree of uncertainty is likely in network interdiction problems. Only the 

most intensely studied or simplest drug transportation networks will be known in sufficient 

detail for a planner to be confident that the best interdiction sites can be selected using 

(only) deterministic methods. More likely, there will be varying degrees of uncertainty 

associated with arc capacities, node capacities, the very existence of network components, 

and the success of each interdiction attempt. 

Unfortunately, the complexity of this problem can be overwhelming. For example, 

consider the case of each arc having only two possible values of capacity. If arc capacities 

are probabilistically independent, then there are 2W realizations of this network to analyze 

for the optimal interdiction set. For all but the smallest network, this problem is 

intractable using standard methods. If, however, a relatively small set of the most likely 

instances of the network can be constructed and probabilities ascribed to these instances, 

the problem may be readily solved. 

This chapter explores an application of the L-shaped algorithm (Van Slyke and 

Wets, 1969) to the stochastic network interdiction problem and gives examples of 

computations. For additional information on general stochastic programming techniques, 

the interested reader is referred to Kail and Wallace (1994). 

A. INTEGER PROGRAMMING METHOD 

Suppose the capacity of each component in a network is a discrete random 

variable. This includes situations where there is a non-zero probability that an arc in the 

mathematical network model may not actually exist in the real network. Such a 

"nonexistent" arc is treated as an actual arc with zero capacity.   If this sort of uncertainty 

is present, a set of "scenarios" may be constructed, where each scenario is one realization 

of the network in which exactly one instance of each probabilistic arc in the network is 

selected. By enumeration of all scenarios, the interdiction decision can be made in an 

optimal manner over all possible network realizations. The interdictor's objective is to 

minimize the expected value of the adversary's maximum flow. 
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1. Model 

In this model, the capacities of some or all of the arcs are discrete random 

variables, possibly dependent. A manageable number of scenarios v e Fis established, 

each occurring with a probability/^, that describes the possible outcomes of the random 

variables. For illustration, suppose three separate law enforcement or anti-drug agencies 

have constructed three differing estimates of monthly cocaine traffic being transported 

from Jamaica to Nassau by air. The first two agencies estimate 10kg and 20kg, 

respectively. The third agency, though, believes this particular air route is not used for 

drug trafficking, i.e., 0kg of monthly cocaine traffic (a nonexistent arc). Confidence in 

these estimates is ranked and probabilities are assigned in accordance with the confidence 

ranking, the higher the confidence the higher the probability assignment. Thus the 

probabilities/?,, of 0.35, 0.40, and 0.25 might be assigned to weight the estimates, 

respectively. Note that in each of the three scenarios in this example, only the Jamaica - 

Nassau link is addressed; the remainder of the network must be identical between 

scenarios to allow a proper assignment of probabilities. 

Let xljv be the flow on arc (ij) in scenario v, and let uijv be the corresponding arc 

capacity. A stochastic network interdiction model with | V\ scenarios is 

min { £  pv   max     xtsv } 
veF *v e X.. 

where 

X   = <x.. : 
IJV 

Ex .  - V1   x    - x     =0 
sjv        £-*/       jsv tsv 

j j 

Tx.   - Y x    =0    VieN-{s,t\ £-*/     ijv       is    jiv i   »  J 

Ex„.  - y x.„ + x„   =0 
t)V i-*l     jtv tsv 

0 s x    z u..( 1  - Y  )   V (ij')eA 
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and   T = { y.. : y.. e {0,1} V (ij) e A, £(y)ej4 r.Yy * #}•  This model is simply an 

extension to the one-scenario (deterministic) model of Wood. Fixing y^ and taking the 

dual of the inner maximization yields 

mm   \ Y   p     mm  V*    u   (\ 
v   e   r      ^        v      a B    ^ Vv Y )6 1 yy    i/v 

s.t.    a    - a.   + 6 ..   ;>  0    V (ij)eA tv jv ijv \ its 

CC      -   a       2:    1 

a.v e {0,1} VieN 

6..v,Y(,. £ {0,1} V(/V)e^ 

f   V v e V. 

The model is then linearized by replacing (1 - y ..)&..   with    ß .. where 

ß     e  {0,1} and ß     ;>  6    - y   for each scenario v. The resulting model is 
ijv ijv 

win    Y, p y « ß aß Over v    ^       'JvV'Jv 

s.t.    a    - a.  + 6 .  * 0   V (ij)eA 
iv jv ijv v »// 

or   -  a     ^   1 
ft> tv 

ß*v+ Yff- 0,^ 0    V (ij)eA 

a.v e {0,1} VieJV 

ß.v,e..v,Y(,e {0,1} V(/j)€^ 

r   V v e V. 

Using an argument analogous to that of Wood, the constraints ß     + y   - 6    ä  0 may 

be replaced with equalities ß.v + y.. - 6    = 0 which allows 6.. to be replaced by 

Pyv + Yy   The interdiction set T is now stated explicitly as a constraint, yielding the 

final model: 
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>   V v e V. 

IPV min     y p    y  uß.. 
„ *—i  r v    i-^        ijv r ijv 

a>P>Y     VeV (ij)eA 

s.t. y  r.yzR 

a.   - a.  +ß+Y^O    V (iJ)eA iv jv       ~ ijv        ' ij \ u/ 

at - a    £  1 
tv sv 

a.   e {0,1} V ieN 
IV l     '     ' 

ß.v)Y(,. e {0,1} V (ij)eA 

Interpretation of variables in IPV is the same within each scenario as for the case where 

\V\ = 1, presented earlier as model IP1. 

A potential limitation of IPV is the very large number of constraints required for a 

problem with many scenarios. The computational difficulties imposed by an very large 

integer program invites the use of decomposition methods of the previous chapter for this 

multi-scenario situation. We will first, however, examine direct solution of model IPV. 

2. Computational Results 

A five-scenario example is constructed and solved using network NM and the 

branch-and-bound implementation in GAMS/XA. This test case confirms that this is an 

inefficient technique for larger networks with many scenarios; it fails to exploit the special 

structure of the problem. The results are in Table 13. As in the one-scenario integer 

programming case tested in Section II.2 (Table 12), the solver terminated prior to 

reaching a satisfactory solution due to exceeding pre-set time limits. These results will be 

compared against the Benders decomposition approach, analyzed in the next section. 
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MEDIUM 
NETWORK 
CASE(NM) 

TOTAL 
SOLVER 

TIME (hr:min:sec) 

TOTAL 
CLOCK 

TIME(hr:min:sec) 

R = 3 > 00:47:03 > 01:12:28 

Table 13. Integer Programming for Five Scenarios Summary of Results, Medium 
Network. Solving the network interdiction problem for five scenarios on network NM 
directly using integer programming model IPV, with 3 units of interdiction resource, takes 
more than 47 minutes and 3 seconds of solver time, and more than 1 hour, 12 minutes, and 
28 seconds of clock time. These results are later compared to results from solving the five- 
scenario problem with the L-shaped algorithm. 

B. BENDERS DECOMPOSITION: THE L-SHAPED ALGORITHM 

In the same manner as the one-scenario case, an equivalent formulation is derived 

from the original integer program that suggests a Benders decomposition algorithm. The 

final decomposed model and computational results are then presented. 

1. Model 

Proceeding as before, if y is fixed, the LP relaxation of IPV is the dual of a 

network flow problem with an intrinsically integer solution. The dual is taken with respect 

to a and ß and the resource constraint is again represented as an interdiction set T. The 

model becomes 

min  max    y v    - y   y     Y * 
_ i—i      tsv        /—t     jL-i ' ij   ij\ 

Yel        * veV veV(ij)eA 
ijv 

S.t.      T     X. ^ , 
t—s        sjv        £—t       jsv tsv 

J J 

- y x - xt =o 
Z—t       jsv tsv 

J 

Tx..  - y x..  =0   VieN-{s,t) t—l       ijv 4S      JIV l    *   J 

j j 

EX„    -   y X„   +  Xf     =0 tjV £—/      JtV tSV 

j j 

0 <. x    <. p u      V (/'/') eA 
ijv        r v    i\v \ v / 

}     V V 6 V. 

Now, as before, we enumerate all the extreme point solutions of the inner maximization 
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and then select that solution with maximum value subject to y e T.   The Benders master 

problem becomes 

min z 
YeT 

st    z *  E XL - E   E   xl Y„   V xkeX' 
veV veV(ij)eA 

Y, e {0,1}    V(iJ)eA 

where X\s the set of all extreme point solutions JC* and Z'c X. With   y •• ßxed at 0 or 1 

the Benders subproblem for the multi-scenario case is 

Z—s        tsv       Zs    Z—i i) 
max 

tsv       is    JL-t ijv   i ft 
x VEV ve.V(ij)e.A 

A 

s.t.   V"  x. - y  x   - x,   =0 
£—1 SIV i—l isv tsv SJV 

y x    - Y x.   = 0    VieN-{s,t} 
4—1       IIV 4-^1       ItV l    '   J IJV i—/      J1V 

J J r   VveF. 
Ex. - y x 

tiv        4-^     n tjV i-^     jtv tsv 

j j 

0 <. x    <, p u..    V (ij) eA 
ijv        r v   ijv v v / 

The objective function of the subproblem may be rewritten as 

max 
x veV 

E {x    -   V    Y x.. } 
Z—e   «•     tsv i-^       ' ij   ijv ' 

and the constraints may be separated into | V\ independent maximizations, each 

representative of a different scenario. The objective function value of the complete 

subproblem is then obtained by summing over all the scenarios. Therefore, the flow 

variables  x.. returned to the master problem as extreme point solutions are sums of the 

flows in each arc (ij) over all the scenarios. The master problem simplifies to 
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min z 

~k       v^ ~k .       _   _      ~K \-> ~k 
.t.    z ^   x.   -    >     Y -x.. 

y..e {0,1}    V(ij)eA 

~i    r'   *       i   ~fc    T-^     it 
where  xft = ]T) x^ and  3c? = *£, xiJV- Equivalently, the arc capacity constraint in the 

ve V ve V 
subproblem can be replaced by 

ijv ijv \ v/ 

in each scenario v. The probability of the occurrence of each scenario, pv, is taken into 

account in the aggregation of scenarios:   xk=yP p x*  and  xk=Y* p x.k 
"a    a ts     Z—«■ * v   tsv ij      Z—t  " v   ijv 

veV veV 
Regardless of method, the flow values returned to the master problem as cuts (constraints) 

are the expected values of flow on each arc, observed over all scenarios. Therefore, each 

iteration of the algorithm requires the solution of one master problem and \V] subproblems. 

The arc flows computed in the subproblems are combined in a sum weighted bypv prior to 

the next iteration of the master problem. 

To summarize this procedure, we display the algorithm below. As before, let z(f) 

denote the optimal value of the objective function to the optimization problem/ 

The L-Shaped Algorithm for Network Interdiction 
Input: Network G=(N,A), arc interdiction costs rip interdiction budget R, 

special nodes s and /, convergence tolerance toler, and for each 
scenario v: probability of occurrence^ and arc capacities uijv. 

OutputTnterdiction vectorY*, which is the solution within (100 • toler)% 
of optimality. 

stepl Letu.j=J2Pvu*> 
veV 

Solve maximum flow problem MF for flow values x1; 
LetX'-l*1}; 
Let k = 2: 
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LetUB=z(MF) 

step 2 Solve MASTER^) for y"; 
Let LB = z (MASTER^) 

step 3 For v = 1 to V 
Solve SUBv(y) for jcv

k 

next v; 

Calculate x   = ^ Pv x i 
veF V 

LetX' = X'U{x*}; 
Calculate z(SUB) = J) /V(SUBV); 

If z(SUB) < UB then let UB = z(SUB) and Y*= Y 

step 4 If UB - LB ^ LB • toler then stop: Interdiction set 
Y * is a solution to the network interdiction problem with 
objective function value within (100 • toler)% of the optimal 
objective function value. 

step 5 Let k = k + 1; 
Go to step 2. 

Note that the upper bound obtained in step 1 is valid due to Jensen's inequality (e.g., Kail 

and Wallace, 1994, p. 168), although it may not be a strong bound since there are no 

interdictions. 

2. Computational Results 

The same five-scenario example from Section A is analyzed here. The results are 

presented in Table 14. Comparing the direct integer programming results in Table 13 and 

the L-shaped algorithm results in Table 14, the advantages of decomposition are clear. 

Here, we achieve at least a 93% reduction in required solver time over the direct solution 

method. As the number of scenarios, network size, and resource budget grows, the 

possible advantages of a decomposition approach become more apparent. This result is 

paralleled earlier for the one-scenario case in Section B.2 of Chapter II. Again, clock 

times are not compared here due to the relatively slow operations of GAMS. 
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MEDIUM 
NETWORK 
CASE(NM) 

NUMBER OF 
ALGORITHM 
ITERATIONS 

TOTAL 
SOLVER 

TIME (hr:min:sec) 

TOTAL 
CLOCK 

TIME(hr:min:sec) 

R = 3 13 00:02:57.2 00:17:15 
Table 14. L-Shaped Algorithm for Five Scenarios, Summary of Results, Medium 
Network. Solving the network interdiction problem for five scenarios on network NM using 
the L-shaped algorithm, with 3 units of interdiction resource, takes 13 iterations of the 
algorithm, 2 minutes and 57.2 seconds of solver time, and 17 minutes and 15 seconds of clock 
time. The solver time is a reduction of at least 93% over the solver time required to solve the 
five scenario problem directly with integer programming, as shown in Table 13. 
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IV. STOCHASTIC NETWORK INTERDICTION 

The multi-scenario approach of the previous chapter is adequate when the number 

of scenarios is limited. If uncertainty is prevalent in the network or the assumption of 

dependency between arc capacities is not valid, more efficient means are available to arrive 

at a solution. In this chapter, a unique algorithm is used for computations. The results are 

compared to those of the deterministic models. 

A. A SEQUENTIAL-APPROXIMATION ALGORITHM 

In this chapter, a proposition is stated that aids in the derivation of the stochastic 

network interdiction problem. An algorithm is presented that efficiently solves the two- 

stage stochastic program with recourse. Two example problems are solved and discussed. 

1. Development 

Consider a network with a special subset of arcs A* c A. Ifthearcsin A' 

have been interdicted, evaluating the maximum flow in the "residual network" can be done 

by solving Ml: 

Ml max    x 

s .t.    J2   x . - Y,   x.  - xt  = 0 
l—/        sj        L-J       js ts 

J J 

1J     ^   Jl 

J j 

Ex, - y x, + JC,  =0 n      x-/    it        ts tj        L~i     jt 
J j 

0  * x.. i  u..   V(iJ)eA 

xv* 0    V(ij)eA\ 

The determination of the set A * is exogenous to Ml. In the development of the Benders 

decomposition model in Chapter II, it was shown how SUB( ^ ) solves the network 

interdiction problem with ^ = y*. Model M2, below, is a generalized version of SUB(^) 
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which has a modified objective function that penalizes an arc's membership in the set A *: 

M2 max    x-Y*     x. 
x ts /-*> IJ 

S t. y^ x. - Y x • - x, = o 

EX„. -   Y X.+  X,    =   0 
J j 

0 <, x . <. u.    V (/'/) eA. ij ij \ v / 

Proposition 1: Models Ml and M2 yield equal objective function values: z(Ml) = 

z(M2). 

Although the flow values x will not necessarily be the same in optimal solutions to Ml and 

M2, this is not important. From the viewpoint of the interdictor, the most significant 

information to be gained from solving the network interdiction problem is the interdiction 

sites, y. 

Proposition 1, as we shall show, facilitates the development of a stochastic 

network interdiction algorithm. 

2. Stochastic Models 

In an uncertain environment, a network interdiction attempt may be completely 

successful, partially successful, or unsuccessful. We consider only the binary case where 

an attempted interdiction of arc (ij) is completely successful with probability/^, and 

completely unsuccessful with probability 1 -pir 

Let Iy be an indicator random variable that is 1 with probability pi} and is 0 with 

probability 1 -ptj. The vector of indicator variables I has state space J = {0,1 }|A|. For 

binary, random, interdiction success, the following min-max model is the stochastic analog 

46 



of model MINMAX: 

S-l w* =   min Eh (y,I) 

where 

Ä(y,I) = max    x 
ts 

s.t. y* x - y^ x - x =o 
^^        jr;        ^        js ts 

J j 

E*„ - y^ *,+ *, = o 5       ^-^f    jt ts 
J J 

0  s x.. s  M.(l  -/..v..)    V(iJ)eA. 

Now using Proposition 1, S-l can be reformulated as 

S-2 w* =   min ££(Y,I) 

where 

g(Y,I) = max    *, -   T^    I.y.x.. 

s.t.   V   x . - Y"   x   - x   = 0 
^—' J/ *—/ js ts 

J J 

E*,- E*, " 0    VJetf-{*,*> 

Ex„. - V x. + x.  =0 

0 s x.  < «..   V(iJ)eA. 
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and giy,I) = h(y,I) for all (y,7) e {0,1 }|A| xj. In this application, the set A ' is defined 

as   A * = { (ij) e A\y   = 1, /.. = 1 } . Models S-l and S-2 allow us to develop 

upper and lower bounds on w *with the use of Proposition 2, below. 

Proposition 2: For fixed y, g(y,I) andh(y,I) are convex and concave functions on the 

convex hull of 3, respectively. 

Letting I ?= £7^ and applying Jensen's inequality twice we obtain 

g(yj) * Eg(y,I) -Eh(y,I) * A(Y,I). 

Bounds on w *may be obtained by solving min   e r g(y,I)to obtain y, producing: 

g(9,I) s w' * htfj). 

In the algorithm, we use these bounds extended to a partition of the state space of the 

indicator random variables. Let S = {J^J2,...^} be such a partition of J. Members of S 

are referred to as "cells." If I = £(I|I e Jk) and;/ = Prob(I e Jk), then a lower bound on 

w 'with respect to the partition S is 

w' * 1(5) « min   £/»**(Y,I*). 
Y e r tr i 

The upper bound associated with a fixed first stage decision vector y is 

K 

W *  U(S,y) =  J>*/KY,I
1
). 

k - 1 

This upper bound is most easily found by applying the optimal decision y obtained during 

the calculation of L(S). Alternately, it is possible to calculate the least upper bound, with 

respect to partition S, by solving min   e r U(S,y). 
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3. Algorithm 

The algorithm is a sequential-approximation method that utilizes the bounds 

developed in Section 2. Its design and implementation are described in more detail in 

Cormican, Morton, and Wood (1995). 

Sequential-Approximation Algorithm 
Input: Network G=(N,A), arc capacities utp arc interdiction costs rip 

interdiction budget R, special nodes 5 and t, probabilities of interdiction 
success pjß convergence tolerance toler. 

Output Interdiction vector y* approximately solving S-l, lower bound L* and 
upper bound U* on w* such that L* < w* <, Eh (y *,I) ^ U* and 
U* -L* <, toler. 

stepl Let5={J}, f/*-+oojZ* = o 

step 2 CalculateL* = L(S) and associated minimizer ^; 
Calculate U'=U(S,$) 

step 3 If U' < U*, let U* = IT and let y'= $ 

step 4 If U* - L* < toler, then stop: Approximate solution is y* 

step 5 Refine the partition S; 
Go to step 2. 

In this algorithm, step 1 establishes the initial partition and sets bounds. The upper 

bound is directly determined in step 2, while the lower bound may be found either directly 

or with Benders decomposition. Step 3 updates the upper bound, if needed, and saves the 

solution associated with the best upper bound. Step 4 terminates the algorithm if 

convergence criteria have been met. 

The partition refinement of step 5 is a procedure that selects and subdivides a cell 

from the partition S. The cell for selection is determined by first noting that the gap 

between the upper and lower bounds is 

K 

u{sj) - L(S) - Y,pklHÜk) - s(Y\i')] 
k- 1 
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with a difference due to each cell of 

We select a cell k' to subdivide such that D k'(<}) = max^ D k($), although other 

selection criteria could be used. 

The refinement of partitions in the selected cell uses a method analogous to that 

presented by Kail et al. (1988), by conditioning on whether or not an attempted 

interdiction is successful. Cormican, Morton, and Wood (1995) further explains this and 

other types of partitioning, as well as more details on the specifics of the algorithm and 

alternate implementations of various steps of the algorithm. 

4. Computational Results 

Two cases are tested using OSL on the RISC/6000. The selected network is NS, 

with R = (3, 6) and all other characteristics as stated in Table 2. In these tests, an 

interdiction attempt is equally likely to be a success or failure, asp^ = 0.5  V (ij)  e A . 

The time results are in Table 15. Since this algorithm does not use GAMS, only the total 

clock time is listed. The most logical comparison of these times with those of previous 

techniques is to use the solver times of those methods. 

SMALL 
NETWORK 
CASE(NS) 

NUMBER OF 
ALGORITHM 
ITERATIONS 

TOTAL 
CLOCK 

TIME(hr:min:sec) 

R = 3 8 00:00:23.6 

R = 6 31 00:24:35.3 
Table 15. Sequential-Approximation Algorithm Summary of Results, Small Network. 
Solving the network interdiction problem on network NS using the sequential-approximation 
algorithm, with 6 units of interdiction resource, takes 31 iterations of the algorithm and 24 
minutes and 35.3 seconds of solver time. 

Although the actual arcs interdicted are not the focus of this research, it is 

interesting to note that when R = 3, one of interdicted arcs was different than those 

interdicted in the deterministic model. When R = 6, again, one interdicted arc was 
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different. 

Comparing the expected value solutions (i.e., all interdictions result in a 50% 

reduction in flow) is also interesting. This corresponds to the network interdictor 

measuring the capability of this network to carry flow by solving the problem in which all 

stochastic parameters are replaced by their expected values. Having done this, he would 

calculate a maximum flow of 165 for the R = 3 case. From Jensen's inequality applied to 

S-l, this is known to overestimate the true value of expected maximum flow. This true 

value, solved (optimally, in this case) by the algorithm, is 162.5. For thei? = 6 example, 

the numbers to compare are a mean-value problem flow of 180 and an actual flow of 130. 

The general trend is that as the number of interdiction resources increases, there is an 

increasing error between these two values. Therefore, the advantages from using this 

algorithm are best seen when the resource budget is large. 

Another benefit of using this algorithm is its adaptability to other forms of 

uncertainty. Although beyond the scope of this thesis, it is possible to use a variation of 

this algorithm to analyze stochastic network interdiction problems with arc capacities as 

discrete random variables, and cases where both interdiction attempts and arc capacities 

are uncertainties. These additional capabilities are demonstrated in Cormican, Morton, 

and Wood (1995). 
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V. CONCLUSION 

This chapter describes both the successful and not-so-successful aspects of the 

models presented in this thesis. Ideas for further model development and computational 

improvements are noted. 

A. GENERAL RESULTS OF MODELS 

This thesis has successfully solved the network interdiction problem with models 

that are applicable to almost any network type and topology. All models are easily 

generalized to accommodate almost any situation. These models allow: 

• non-planar networks, 

• any number of source and/or sink nodes, 

• any location of source and/or sink nodes, 

• directed (only), undirected (only), or both directed and undirected arcs, 

• differing costs of interdiction of network components, 

• arc and/or node interdictions, 

• placing certain arcs and/or nodes "off limits" for interdiction, 

• arc capacities as discrete random variables in scenarios, and 

• interdiction attempts as independent, probabilistic events. 

These features allow much greater flexibility in modelling than most previous 

methodologies. 

The network interdiction problem can be solved effectively using the techniques of 

Benders decomposition. The possible benefits of using Benders decomposition over direct 

integer programming include reducing the time required to solve large problems, and the 

iterative nature of the solution allows the observation of both worst-case and best-case 

outcomes as the solution progresses. If the solution is only required to be "good," rather 
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than "the best," the methods in this thesis are ideal. 

The appeal of the Benders decomposition algorithm is clear if we think of the 

network interdiction problem as an adversarial relationship between the network 

interdictor and the network user. First, the network user maximizes the flow of a 

commodity in the network. The network interdictor observes this activity, selects 

interdiction sites, and expends his interdiction budget to minimize the network user's 

maximum flow. The network user reorganizes in the wake of these interdictions, and 

again maximizes flow on the remaining network. This process repeats, until neither 

participant can do any better: an equilibrium has been reached. 

The character of this solution results in the intuitively appealing flow dispersion 

heuristic. Dramatic reductions in the number of Benders decomposition algorithm 

iterations are observed when the heuristic is used. Three different implementations of the 

heuristic are tried, with the many-level approximation method seeming to be the most 

efficient. In one instance, this method decreases the required algorithm iterations by over 

80% and lowers the clock time required for a solution by a factor of over 100. In another 

example, this method outperforms the direct integer programming method by using less 

than one-third of direct method's solver time. 

B. RESULTS FROM MODELS WITH UNCERTAINTY 

This thesis is the first work on network interdiction that applies various aspects of 

uncertainty in a quantitative fashion. In practice, very few network interdiction problems 

will be free of all uncertainty. Two types of stochastic programming algorithms are 

analyzed: network scenarios using the L-shaped algorithm, and a more flexible sequential- 

approximation algorithm. Each algorithm has been used to investigate a different 

manifestation of uncertainty. 

The capacities of arcs and nodes, and the existence (or non-existence) of arcs and 

nodes are likely candidates for modelling as random variables. The most straightforward 

approach is to construct a set of scenarios of network capacities and topologies and assign 

to each scenario an estimated probability of occurrence. This has been successfully 

accomplished, but the rapidly increasing size of a problem with many scenarios limits the 
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usefulness of this technique. 

The sequential-approximation algorithm avoids the need to limit the number of 

scenarios. It also allows uncertainty to exist in interdiction success and will soon be 

adapted to analyze networks with uncertain arc and node capacities. Insights have been 

gained into the advantages and disadvantages of this approach. 

C. POSSIBLE MODEL WEAKNESSES 

Having espoused the mathematical programming approach, it must also be 

recognized that there is a cost to including all the benefits listed in Section A. First of all, 

in very few cases will an mathematical programming approach be as fast as an approach 

using algorithms specific to solving network problems, as presented in Phillips (1992), for 

example. On the other hand, a "network algorithm" will not be as generalizable and 

adaptable as the models in this thesis. 

There are benefits to solving the network interdiction problem using Benders 

decomposition instead of direct integer programming, but they may be difficult to 

quantify. The "crossover point," where Benders decomposition becomes the better 

alternative, is not obvious. In the smaller problems, the integer program will most likely 

arrive at a solution more quickly than the Benders decomposition algorithm. Other than 

the compelling evidence in Tables 10, 12, 13 and 14, time did not allow an in-depth study 

to determine the exact point where the Benders decomposition algorithm becomes 

preferred over direct integer programming. The next step to such a determination would 

be to divorce the computations from the time-consuming manipulations of GAMS, since 

the Benders decomposition model must generate many formulations to solve each network 

interdiction problem. 

The performance of Benders decomposition improves markedly with the inclusion 

of the flow dispersion heuristic. Unfortunately, the best heuristic technique requires the 

number of arcs in the network to be increased ten-fold, demanding a large amount of 

computer memory if the network is large. If the extra memory is not available, the 

heuristic could be used with a less effective implementation. 

Many areas of this research would be supported with further investigation into the 
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following subjects: 

• algorithms implemented in an efficient, compiled, high-level computer language, 

• more extensive comparisons of Benders decomposition and direct integer 
programming methods for large and very large networks, 

• decreasing the time needed to solve the Benders master problem, 

• quantifying the effect of the flow-dispersion heuristic on algorithm 
convergence, and 

• using simplicial decomposition to implement the flow-dispersion heuristic. 

Possible areas of related further research may be: 

• incorporating various probability distributions of both arc and node capacity 
and interdiction success into the sequential-approximation algorithm, 

• investigating the effects of time during a prolonged network interdiction 
campaign, 

• investigating the reconstitution of arcs and nodes after each successful 
interdiction, 

• how to obtain the best estimates of arc and node capacities for various 
applications, and 

• applying Benders decomposition techniques to an interdiction problem with 
more general, non-network constraints. 

D. CONCLUSIONS 

The models and techniques presented in this thesis could provide effective 

analytical tools to planners confronted with a network-using adversary. It is hoped that 

these methods provide enough variety to allow planners to choose the one most suited to 

their purposes. Whether implemented in GAMS or other high-level computer language, 

these algorithms are highly transportable and solvable on most computers. If it is desired 

to solve large-scale network interdiction problems, or problems with a large number of 

stochastic parameters, the use of a PC becomes somewhat impractical and a more capable 
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machine should be used to achieve an acceptable solution time. 

Although centered on the efforts to stem the flow of illegal drugs into the United 

States, the possible applications of these techniques are as numerous as networks 

themselves are numerous. 
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