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Abstract 

*W»**   rer   5U£äe reieos« 

If instead of the full motion field, we consider only the direction of the motion field due to 
a rigid motion, what can we say about the three-dimensional motion information contained 
in it? This paper provides a geometric analysis of this question based solely on the constraint 
that the depth of the surfaces in view is positive. 

It is shown that, considering as the imaging surface the whole sphere, independently of 
the scene in view, two different rigid motions cannot give rise to the same directional motion 
field. If we restrict the image to half of a sphere (or an infinitely large image plane) two 
different rigid motions with instantaneous translational and rotational velocities (ti,u>i) and 
(t2, u>2) cannot give rise to the same directional motion field unless the plane through tx and 
t2 is perpendicular to the plane through Wi and u>2 (i.e., (tx x t2) • (wi x u>2) = 0). In 
addition, in order to give practical significance to these uniqueness results for the case of 
a limited field of view, we also characterize the locations on the image where the motion 
vectors due to the different motions must have different directions. 

If (u>! x OJ2) ■ (ti x t2) = 0 and certain additional constraints are met, then the two rigid 
motions could produce motion fields with the same direction. For this to happen the depth 
of each corresponding surface has to be within a certain range, defined by a second and a 
third order surface. Finally, as a byproduct of the analysis it is shown that if we also consider 
the constraint of positive depth the full motion field on a half sphere uniquely constrains 3D 
motion independently of the scene in view. 
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1    Introduction and Motivation 

The basis of the majority of visual motion studies has been the motion field, i.e., the projec- 

tion of the velocities of 3D scene points on the image. Classical results on the uniqueness of 

motion fields [6, 9, 10] as well as displacement fields [8, 12, 14] have formed the foundation 

of most research on rigid motion analysis that addressed the 3D motion problem by first 

approximating the motion field through the optical flow and then interpreting the optical 

flow to obtain 3D motion and structure [2, 7, 13, 15]. 

The difficulties involved in the estimation of optical flow have recently given rise to a 

small number of studies considering as input to the visual motion interpretation process 

some partial optical flow information. In particular the projection of the optical flow on 

the gradient direction, the so-called normal flow [5, 11], and the projections of the flow on 

different directions [1, 3] have been utilized. In [3] constraints on the sign of the projection 

of the flow on various directions were presented. These constraints on the sign of the flow 

were derived using only the rigid motion model, with the only constraint on the scene being 

that the depth in view has to be positive at every point—the so-called "depth-positivity" 

constraint. In the sequel we are led naturally to the question of what these constraints, 

or more generally any constraint on the sign of the flow, can possibly tell us about three- 

dimensional motion and the structure of the scene in view. Thus we would like to investigate 

the amount of information in the sign of the projection of the flow. Since knowing the sign 

of the projection of a motion vector in all directions is equivalent to knowing the direction of 

the motion vector, our question amounts to studying the relationship between the directions 

of 2D motion vectors and 3D rigid motion. 

We next state the well-known equation for rigid motion for the case of a spherical imaging       

surface. We describe the constraints and discuss the information exploited when using the    —4- 

full flow as opposed to the information employed when using only the direction of flow. As □ 
G 

will be shown, whereas full flow allows for derivation of the direction of translation and the 

complete rotation, from the orientation of the flow only the direction of translation and the 

direction of rotation can be obtained. 

The 2D motion field on the imaging surface is the projection of the 3D motion field of     ;^_ 
'or 

/H 
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the scene points moving relative to that surface. Suppose the observer is moving rigidly 

with instantaneous translation t = (U,V,W) and instantaneous rotation UJ — (a,/?,7) (see 

Figure 1); then each scene point R = (X, Y, Z) measured with respect to a coordinate system 

OXYZ fixed to the camera moves relative to the camera with velocity R, where 

R=-t-wxR 

If the center of projection is at the origin and the image is formed on a sphere with radius 

1, the relationship between the image point r and the scene point R under perspective 

projection is 
R 

with |R| being the norm of the vector R. 

Figure 1: Image formation on a spherical retina under perspective projection. 

If we now differentiate r with respect to time and substitute for R, we obtain the following 

equation for r: 

r = vtT(r) + vTOt(r) = 757((t • r)r - t) - u> x r = -^(r x (t x r)) - u x r 
|JK.| |rt| 

The first term vtT(r) corresponds to the translational component which depends on the depth 

Z = |R|, the distance of R to the center of projection. The direction of vtT(r) is along great 

circles (longitudes) pointing away from the Focus of Expansion (t) and towards the Focus of 

Contraction (—t). The second term vTOt(r) corresponds to the rotational component which 



is independent of depth. Its direction is along latitudes around the axis of rotation (coun- 

terclockwise around u; and clockwise around —u>). See Figure 2a, b and c for translational, 

rotational, and general motion fields on the sphere. 

(b) (c) 

Figure 2: Example of (a) a rotational, (b) a translational, (c) a general motion field on a 

sphere. 

As can be seen, without additional constraints there is an ambiguity in the computation 

of shape and translation. It is not possible to disentangle the effects of t and |R|, and thus 

we can only derive the direction of translation. If all we have is the direction of the flow we 

can project f on any unit vector n; on the image and obtain an inequality constraint: 

rn, = (-— ((t-r)r-t)-« x r) • nt-> 0    or     <0 

From this inequality we certainly cannot recover the magnitude of translation, since the 

optical flow already does not allow us to compute it. 

In addition we are also restricted in the computation of the rotational parameters. If 

we multiply u by a positive constant, leave t fixed, but multiply ^ by the same positive 

constant, the sign of the flow is not affected. Thus from the direction of the flow we can at 

most compute the axis of rotation and, as discussed before, the axis of translation. Hereafter, 

for the sake of brevity, we will refer to the motion field also as the flow field or simply flow, 

and to the direction of the motion field as the directional flow field or simply directional 

flow. 



2    Relationship Between the Orientation of the Flow and the Depth-positivity 

Constraint 

If we have the flow r, we know the value of the projection of r on any direction and we set all 

the possible information by choosing two directions ni and n2 (usually orthogonal). Thus 

we have 

r • nt-= |—-((t • r)r - t) ■ nt-- (w x r) • 11,-       for       2 = 1,2 (1) 

We can solve equation (1) for the depth, 

r • n, + (w x r) • nz        1 
for       i = l,2 

((t • r)r - t) • n,-        |R| 

Knowing the value in both directions nx and n2 we know that the inverse depth has to 

be the same, and also has to be positive; thus 

r ■ Ü! + (a; x r) ■ tii _ r • n2 + (a? x r) • n2 

((t ■ r)r - t) ■ m ((t-r)r-t)-n2    
> 

If on the other hand we do not use the value of the flow but only its direction and thus the 

sign of the projection of the flow on n;, then the only constraint that can be utilized is the 

inequality, which comes from the fact that the depth is positive. Using only the orientation 

of the flow we obtain for every direction nt: 

r • nt + (u x r) • n,- 

((t-r)r-t)-nt    
>U 

This inequality provides inequality constraints on the rotational and translational compo- 

nents, which are independent of the scene: If we consider the sign of the translational 

component ((t • r)r — t) • nt and the sign of the rotational component (a; x r) • n; and assume 

that each of them is either positive or negative, there are 2x2 = 4 combinations of signs. 

But once we know the sign of the flow r • nt, one of these four combinations is no longer 

possible. This observation has been used in the development of global constraints for 3D 

motion estimation. Choosing directions nt in particular ways the signs of (r • n,-) form global 

patterns of positive and negative areas on the image [3-5]. These patterns, whose location 

and form encodes information about 3D motion, were successfully used in the recovery of 

egomotion. In this paper, by pursuing a theoretical investigation of the amount of infor- 

mation present in directional flow fields, we demonstrate the power of the qualitative image 
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measurements already used empirically, and justify their utilization in global constraints for 

three-dimensional dynamic vision problems. 

The organization of this paper is as follows: In Section 3 we develop the preliminaries— 

constraints that will be used in the uniqueness analysis. Given two rigid motions, we study 

what the constraints are on the surfaces in view for the two motion fields to have the same 

direction at every point. From these constraints, we investigate for which points of the image 

one of the surfaces must have negative depth. The locations where negative depth occurs 

are described implicitly in the form of constraints on the signs of functions depending on the 

image coordinates and the two three-dimensional motions. The existence of image points 

whose associated depth is negative ensures that the two rigid motions cannot produce motion 

fields with the same direction. In Section 4, which contains the main uniqueness proof, we 

study conditions under which two rigid flow fields could have the same direction at every 

point on a half sphere (i.e., conditions under which there do not exist points of negative 

depth), and we visualize the locations of negative depth on the sphere. Section 5 is devoted 

to the treatment of special cases. As a byproduct of the analysis, in Section 6 we investigate 

the ambiguity of rigid motion for full flow assuming that depth has to be positive, and show 

that any two different motions can be distinguished on a hemispherical image from full flow. 

Section 7 summarizes the results. Appendix A studies whether more than two rigid motions 

could produce the same directional flow field, and the rest of the Appendices (B-F) describe 

and prove a number of geometric properties used in the main part of the paper. 

3     Critical Surface Constraints 

Let us assume that two different rigid motions yield the same direction of flow at every point 

in the image. Let ti and W] be translational and rotational velocities of the first motion, 

and let t2 and u>2 be translational and rotational velocities of the second motion. Since from 

the direction of flow we can only recover the directions of the translation and rotation axes, 

we assume all four vectors tl512, «i and u>2 to be of unit length. Let Zi(r) and Z2(r) be the 

functions, mapping points r on the image into the real numbers, that represent the depths 

of the surfaces in view corresponding to the two motions. In the future we will refer to Zx 



and Zi as the two depth maps. In this section we investigate the constraints that must be 

satisfied by Z\ and Z2 in order for the two flow fields to have the same direction. 

We assume that the two depths are positive, and allow Z\ or Z2 to be infinitely large. 

Thus we assume \jZ\ > 0 and 1/Z2 > 0. 

3.1    Notation 

We start by defining some notation: 

/w(r)   =   [«i«2r] 

/t(r)   =   [tjtar] (2) 

gij(r)   =   {u>i x r) • (t,- x r)    for i, j = 1,2 

where [abc] = (a x b) • c denotes the triple product of vectors a, b and c. 

These functions have a simple geometric meaning. If u?i x u?2 = 0, then /L,(r) = 0 for 

any r. If u>1 x «2 ^ 0, then fw(r) is zero for points r lying on a geodesic passing through 

W] and u>2. In this case /w(r) = 0 defines the locus of points r where uroti(r), the rotational 

component of the first motion, is parallel to urot2(r), the rotational component of the second 

motion. Similarly /*(r) is either zero everywhere, or it is zero for points lying on a geodesic 

passing through ti and t2. In this case /<(r) = 0 is the locus of points r where vtll(r), the 

translational component of the first motion, is parallel to utr2(r), the translational component 

of the second motion. 

If u)i = 0, or tj = 0, then ^(r) = 0 for any r. If they are non-zero, then gvj(r) is 

zero at points lying on a second order curve consisting of two closed curves on the sphere, 

the so-called zero motion contour of motion (tj,wt). Equation <fo(r) = 0 defines the locus 

of points where vTOti(r) is parallel to vtT (r) (see Appendix B). Throughout the paper the 

functions /o,(r), /t(r), ^(r) and the curves defined by their zero crossings will play very 

important roles. 

To simplify the notation we will usually drop r and write only /,- and g^ where the index 

i in fi can take values t and u>. There is a simple relationship between /,• and g^. Let 

ui = (r x (ti x r)) x (wi x r) = -[wi r (ti x r)]r = -gu r 
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u2 = (r x (t2 x r)) x (w2 x r) = -g22 r 

Since we assume (r • r) = 1, we obtain 

Ui ■ U2 = 011022 (3) 

Let 

u3 = (t2 x r) x (r x (w2 x r)) = -u2 

Then 

ui • u2 = -Ui • u3 = ftfu + g\292\ (4) 

From equations (3) and (4) we get 

511022 = ftfu + 012021 (5) 

3.2    Conditions for ambiguity 

Assuming that motion (ti,^) with depth map 2?i and motion (t2,u;2) with depth map Z2 

give rise to flow fields with the same direction at any point; then there exists \x > 0 such 

that 

- — (r x(tixr))-«ixr = /i(—s~(r x (t2 x r)) - w2 x r) (6) 
2/i ^2 

By projecting the vector equation (6) on directions t2 x r and r x (w2 x r) we obtain two 

scalar equations 

— [tit2r] + («i xr)-(t2xr) = /j (w2 x r) • (t2 x r) (7) 
2/i 

—(w2 x r) • (ti x r) - [w!«2r] = \i — (w2 x r) • (t2 x r) (8) 
Zi "2 

Since /i is positive, from (7) and (8) we get constraints on ^-: 

sgn(—ft + 0i2) = sgn(s>22) (9) 

sgn(^02i - fu) = sgn(—022) (10) 
L\ &2 

where sgn(-) denotes the sign function. 



Let us define sx = —gulft and s[ = fuijgii- At any point, /,• and g^ are constant, so 

equations (9) and (10) provide simple constraints on ^-. We call them the s^ constraint and 

the .^-constraint respectively. 

Similarly we can project equation (6) on vectors tx x r and r x (a?i x r) and obtain 

constraints on 4-: 

sgn(pn) = sgn(-— ft + #21) (11) 
ZJ2 

sgn(—£n) = sgn(—^x^/^) (12) 

We define s2 = g2i/ft, s'2 = —fwjg\2. Equations (11) and (12) provide constraints on j-, 

and we thus call them the s2-constraint and the s2-constraint. 

Let us now interpret these constraints: -^- is always non-negative; thus, if the two motions 

(ti,iVi), (t2, w2) with their corresponding depth maps Z\ and Z2 produce flow with the same 

direction, the depth Z\ must satisfy 

either   -~-Jt + gx2 > 0   and   ±-g21 - fw > 0 

hft + 9i2 < 0   and   ^2i - fw<0 

Thus Zi has a relationship to the surfaces: 

z« = ^ <13> 

and        Z(r)   =   ^i- (14) 
S1\T) 

Equations (13) and (14) provide hybrid definitions of scene surfaces. To express the surfaces 

in scene coordinates R, we substitute in the above equations Z{y)r = R. Dividing (13) by 

Z(Y) and replacing Z(r)2 by R2 in (14) we obtain 

(ti x t2)-R+(wi xR)-(t2 xR)   =   0 (15) 

and        (w2 x R) • (ti x R) - ((wi x UJ2) ■ R)R2   =   0 (16) 

Thus we see that Z\ is constrained through (15) by a second order surface and through (16) 

by a third order surface. At some points it has to be inside the first surface and at some 

points it has to be outside the first surface. In addition, at some points it has to be inside the 



(a) (b) 

Figure 3: Two rigid motions (ti,^), (t2,a>2) constrain the possible depth Zx of the first 
surface by a second and a third order surface. The particular surfaces shown in the coor- 
dinate system of the imaging sphere, projected stereographically, correspond to the motion 

configuration of Figure 7. 

second surface and at some points it has to be outside the second surface. Figure 3 provides 

a pictorial description of the two surfaces constraining Zx. 

Analogous to the above derivation, from equations (11) and (12) we obtain a further 

second and third order surface pair, which constrain the depth map Z2. 

3.3    Interpretation of surface constraints 

We next describe the sx- and s^-constraints in detail. For convenience, we express these 

constraints for -k-. 

If ft = 0, then the srconstraint is sgn(#i2) = sgn(#22), i.e., it does not depend on Zx. 

Thus it is either satisfied by any Zx, or it cannot be satisfied by any Zx. 

If ft ^ 0, then we get the si-constraint sgn(Jj- - sx) = sgn(#22)sgn(/t). So the sx- 

constraint is 

• i- > 5i, if sgn(#22)sgn(/t) > 0 

• Jr- = si, if sgn(#22) = 0 

• ± < 5i, if sgn(#22)sgn(/i) < 0 

If g21 = 0, then the s[-constraint does not depend on Zx. 
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If 02i ^ 0, we get sgn(^- - si) = sgn(^22)sgn(#2i)- Since we assume ± > 0, sgn(^-#22) 

is either 0, or sgn(g22)- So the s[-constraint is 

• ^- > «i, if sgn(>22) sgn(021) > 0 

• zl = si> if s§n(^22) = 0 

• Yi < s[, if sgn(#22) sgn(02i) < 0 

At each point we have the additional constraint J- > 0. If all three constraints can 

be satisfied simultaneously at a point in the image, then there is an interval (bounded or 

unbounded) of values of Z\ satisfying them. If the constraints cannot be satisfied, this means 

that the two flows at this point cannot have the same direction and we say that we have a 

contradictory point. 

In the following table we summarize the three constraints on -^-. According to the 

inequality relationships from the Si-constraint and the si-constraint we classify the image 

points into four categories (type I-IV). The table analyzes the general case, at a point where 

fi ^ 0 and gij ^ 0. 

Type Si-constraint .^-constraint Y~ solution interval Solution exists if 

I 1/Zl  > 51 1/% > s[ (max(si,si,0), oo) always 

II i/z1 > Sl 1/Zi < s[ (max(si,0),si) si > 0 and sj < s[ 

III 1/Zl  < 5! l/Z, > s[ (max(si,0),si) Si > 0 and si < s-i 

IV i/z1 < Sl 1/% < si (0,min(si,si)) s1 > 0 and si > 0 

If some of fi, g^ are zero at a point, we may obtain constraints that do not depend on 

Z\, or equality constraints. 

In the table above each image point is assigned to one of four categories (see Figure 4 for 

an example). Whether, for a given image point, there actually exists a value for ^- satisfying 

the constraints depends on whether the solution interval at that point is empty or not. Thus 

we classify all image points on the sphere into three categories, A, B, and C, depending on 

the kind of solution interval that exists for Z\\{K) there exists no solution for Z\, or there 

exists a solution, and the interval for Z\ is (B) bounded, or (C) unbounded. In the latter 

two cases, we can also check whether the interval has a lower bound greater than 0. 

10 
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Figure 4: Classification of image points by si-constraint and si-constraint. 

The classification of a point into one of the categories (I-IV) depends on the signs of ft, 

g2X, and g22 ■ The existence of a solution interval at a point also depends on the signs of fw 

and #12 at that point and also on the relative values of sx and si, i.e., on the sign of si - s'v 

Functions /,-(r) and ^(r) are polynomial functions of r. To find out where they change 

sigh, it is enough to find points where they are zero. The sign of sx -s[ is more complicated, 

since si(r) and si(r) do not have to be continuous. However their discontinuities occur at 

points where ft(r) = 0 or g2X(r) = 0. Thus sgn(sx - si) can change at those points and at 

points where sx - s'x - 0. Using (5), we can write 

Si - 5,  = = --. [ft Ju> + 912 921) 7  
ft 921 U 921 U921 

(17) 

So we see that sgn(si - s[) can change only at points where at least one of /,-, g^ is zero. 

At points where g22 = 0 we have the sj-constraint J- = si and the si-constraint ^- = si- 

From equation (17) we obtain si = s'x; thus at these points the depth Z\ is uniquely defined. 

Let us consider the implicit curves /;(r) = 0 and ^(r) = 0. In the general case, these 

equations describe two geodesies and four zero motion contours. Each of the curves divides 

the sphere into areas where the solution interval for Zx could be different (areas of class A, 

B, C). However, not every point on the curves separates different areas. Inside any of the 

areas, all the points have the same classification (for example an infinite solution interval for 

Zx with a positive lower bound). Figure 5 shows an example of this classification, although 

the derivation of how to actually obtain the areas where there does not exist a solution is 

11 



deferred to the next subsection. 

Figure 5: Classification of image points according to the solution interval. (The correspond- 
ing motion configuration is displayed in Figure 7.) 

Up to this point we have been discussing only the constraints for Z\. Similarly, from (11) 

and (12) we have at any point the 52-constraint (-J- > 32, J- = S2, or J~ < 52), and the 

s2-constraint (-^- > s'2, -^- = s'2, or j- < s'2). We obtain the same curves dividing the sphere 

into areas such that inside any of the areas, the type of solution interval for Z2 is the same. 

Now we can summarize the results. The curves /;(r) = 0 and gij(v) = 0 separate the 

sphere into a number of areas. Each of the areas is either contradictory (i.e., containing only 

contradictory points), or ambiguous (i.e., containing points where the two motion vectors 

can have the same direction). Two different rigid motions can produce ambiguous directions 

of flow if the image contains only points from ambiguous areas. There are also two scene 

surfaces constraining depth Z\ and two surfaces constraining depth Z2 ■ If the depths do not 

satisfy the constraints, the two flows are not ambiguous. 

3.4    Contradictory points 

In this section we investigate conditions that must be satisfied when a point is contradictory. 

Since the type of solution for Z\ and Z2 depends on the signs of fi and gij, we want to 

describe sign combinations that yield a contradiction. We investigate the general case, i.e., 

we assume fi ^ 0, and g^ ^ 0 and use the resulting constraints in Section 4. Special cases 

are treated separately in Section 5. 

12 



There are two simple conditions yielding contradiction for Z\, one for the si-constraint 

and one for the si-constraint. There is no solution for Z\ if -^ < s\ and si < 0. This 

happens under the following condition C\. 

sgn(/i) = sgn(#i2) = -sgn(#22) (18) 

which is derived from equation (9). Similarly, from (10) we get a contradiction if ^- < s[ 

and s[ < 0, i.e., under condition C2: 

sgn(/w) = -sgn(#21) = sgn(#22) (19) 

We get similar conditions for Z2. There is no solution for Z2, if Jj < s2 and s2 < 0, or if 

4- < s'2 and s'2 < 0. This happens under conditions Cz and C4: 

sgn(/t) = -sgn(flf2i) = sgn(flfn) (20) 

and 

sgn(/a,) = sgn(^2) = -sgn(^n) (21) 

We call these four constraints (C1-C4) Contradictory Point conditions, or CP-conditions for 

short. Next we show that a point (where /; ^ 0 and #j ^ 0) is contradictory if and only if 

at least one of the four conditions is satisfied. 

Let us assume that conditions (18) and (19) are not satisfied at some point, but we have 

a contradiction for Zx. Then the point must be of type II or III, since there is always a 

solution for points of type I, and a point of type IV is contradictory only if (18) or (19) 

holds. 

For a point of type II, ^- < s'x, but (19) is not satisfied, so we have s[ > 0. A contradiction 

is possible only if si > s[. This happens when sgn(#22) = sgn(/f), sgn(#22) / sgn(#2i), 

sgn(#i2) ^ sgn(/i) and sgn(/w) = sgn(^i), i-e., when 

sgn(#22) = sgn(/i) = -sgn(5r21) = -sgn(#21) = -sgn(/w) 

and si - si > 0. Since sgn(/t) = -sgn(#2i), from (17) we obtain 

sgn(0u) = sgn(#22) = sgn(/() = -sgn($r2i) 

13 



Thus in this case condition (20) holds. 

We obtain the same result for points of type III. Since (18) is not satisfied, we have 

Si > 0. So a contradiction is possible only if Si < s[. This happens when 

sgn(#22) = -sgn(/t) = sgn(#2i) = sgn(g21) = sgn(/ü;) 

and si — s't < 0. Since sgn(/t) = — sgn(#2i), we obtain 

sgn(#n) = -sgn(^22) = sgn(/t) = -sgn(#2i) 

and again condition (20) holds. 

Thus if there is no solution for Z\, at least one of conditions (18), (19) and (20) must 

hold. Similarly if there is no solution for Z2, at least one of conditions (18), (20) and (21) 

must hold. 

By examination of all the possibilities, we can show that at any point, either none of 

the CP-conditions holds (and the point is ambiguous), or exactly two of the conditions hold 

(and the point is contradictory). 

3.5     Antipodal pairs of points 

In this section we investigate constraints for a point r and its antipodal point —r to be both 

ambiguous or to be both contradictory. 

Again we describe a general case, i.e., assume fi^O and g^ ^ 0. We have ft(—r) = 

-/t(r)> fU~T) = -U(r), but 9ij(-r) = gtj(r). If sgn(^2(r)) ^ sgn(#22(r)), then con- 

dition (18) holds either at r, or at —r. We get similar results for the remaining three 

CP-conditions. Thus both point r and point —r are ambiguous only if 

sgn(0n(r)) = sgn(#12(r)) = sgn(#21(r)) = sgn(#22(r)) (22) 

Point r and point —r can also both be contradictory. As shown in Appendix F, this 

happens when 

sgn(sn(r)) = sgn(#22(r)) = -sgn(#2i(r)) = -sgn(#22(r)) (23) 
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4    The Geometry of the Depth-Positivity Constraint 

In the last section we found that if the CP-conditions hold at a point on the imaging surface, 

then one of the depth values has to be negative and thus the point is contradictory. In this 

section we investigate these constraints further; in particular we would like to know under 

what conditions two rigid motions cannot be distinguished if our imaging surface is a half 

sphere or an image plane, and we are interested in studying and visualizing the locations of 

areas where the CP-conditions are met. 

Considering as imaging surface the whole sphere, two different rigid motions cannot 

produce flow of the same direction everywhere. As shown in Section 3.5, two antipodal 

points r and -r are ambiguous only if (22) holds. Thus for any point on curve 9ij = 0, since 

the sign of gij is positive on one side of the curve and negative on the other, there must exist 

a neighborhood either around r or around -r where there is a contradiction. 

We are now ready, using the machinery already developed, to study uniqueness properties. 

As in the previous section, we assume that vectors t1? t2, wu and w2 are of unit length. 

4.1    Half sphere image: The general case 

Let us assume that the image is a half of the sphere. Let us also assume that 

(«i x w2) • (ti x t2) ^ 0 (24) 

We show that under this condition the two rigid motions cannot produce motion fields with 

the same direction everywhere in the image. 

Let us consider the projections of ux and u>2 on a geodesic n connecting ti and t2. 

Projection onto the geodesic is well defined for all points r such that r x (tx x t2) ^ 0. Since 

we assume (24), the projections of both u>x and w2 are well defined. The proof is given in 

parts A and B. 

A:    Let us first assume that one of Wi, w2 does not lie on geodesic n.   Without loss of 

generality, let it be u>i, i.e., let [tit2Wi] ^ 0. 
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Figure 6: Possible sign combinations of gn and gu in the neighborhood of r^ 

The projection of u?! onto n is 

rx = ±(ti x t2) x («! x (ti x t2)) (25) 

where the sign is chosen so that ri is in the image. Then 

fw(ri)   =   ±((ui x w2) x (ti x t2)) • (wi x (tx x t2)) 

=   rF[tit2o;1]((cj1 x w2) • (ti x t2)) ^   0 

and 5fu(r!) = $fi2(ri) = 0. So the ^-constraint is sgn(-^O) = sgn(^0 + fw) or fu = 0. 

Clearly, this constraint cannot be satisfied, so ri is a contradictory point. 

We can also show that at least one of the areas around point ri is contradictory. Point ri 

lies on zero motion contours #n(r) = 0 and g12(r) = 0. If the two contours cross at this point 

(Appendix C shows that gn(r) = 0 and g12(r) = 0 at n cannot be tangent), we obtain four 

areas in the neighborhood of ri, and all four possible sign combinations of gu and gu. If we 

look at points close enough to rx (so that fw does not change sign), then condition (21) is 

satisfied in one of the areas, and that area is contradictory. For an illustration see Figure 6. 

B: Now we need to consider the situation where both OJ1 and u>2 lie on geodesic n, i.e., 

[tit2o?1] = [tit2u;2] = 0. Let us consider point ux. We know ft{w\) = #ii(<^i) = j12(wi) = 

0. Also g2i(ui) — (u;2 x wj) • (tt- x wx). Since both a>i and u>2 lie on geodesic n, (w2 x a?!) 

is parallel to (t; x W]). Thus g2i{u>i) is zero only if (t; x u>i) is zero. However, from (24) we 

have (tx x t2) ^ 0, so either g21 or ^22 is non-zero at a*!. 

16 



If #2i(k>i) 7^ 05 then condition (11) cannot be satisfied and wi is a contradictory point. 

Again, it is not a singular point. The line tangent to gu at u>i has direction u>x x ti (and 

W[ x ti / 0, since 521(^1) 7^ 0), so gn is perpendicular to n at this point. Since ft is 

identical to n, curves gn = 0 and ft = 0 create four areas around a?i with all possible sign 

combinations. Thus in one of the areas, condition (20) holds, and we obtain a contradictory 

area. 

If g22(wi) 7^ 0) then condition (9) cannot be satisfied at «1. Again, at least one area 

around OJI is contradictory, since contour gu = 0 is perpendicular to n at this point. This 

concludes the proof that if (24) is satisfied there exist contradictory areas on the half sphere. 

Section 4.2 discusses the case when (24) is not satisfied. 

The rest of this section describes properties of the contradictory areas in order to provide 

a geometric intuition. 

Just as we projected wi on geodesic n connecting ti and t2 to obtain r1? we project u>2 

on n to obtain r2, and we project tx and t2 on geodesic /, connecting «1 and u>2, to obtain 

r3 and r4 (see Figure 7). Point r2 is at the intersection of ft = 0, g2i = 0, and #22 = 0; r3 is 

at the intersection of fu = 0, gn = 0, and g21 =0; and r4 is at the intersection of fu = 0, 

g12 = 0, and g22 = 0. By the same argumentation as before, at each of the points we can 

choose two of the contours ft = 0 and gij = 0 passing through the point and we obtain four 

areas of different sign combinations in the corresponding terms ft and g^ around the point; 

it can be shown that one of these areas is contradictory because one of the CP-conditions is 

met. 

The CP-conditions are constraints on the signs of the terms ft and g^. Thus the bound- 

aries of the contradictory areas are formed by the curves /,■ = 0 and g^ = 0. As we have 

shown the contradictory area and its boundaries must contain the points ri, r2, r3, and r4. 

For some motion configurations the boundaries also might contain ti, t2, Wi, and u>2. It 

can, however, be verified that no neighborhood around t1: t2, Wi, and u>2 needs to be con- 

tradictory. It can also be verified, by examining all the possibilities for the signs of terms ft 

and g^ in the CP-conditions, that points ti, t2, Wi, and u>2 cannot lie inside a contradictory 

area, since at least one of their neighboring areas is ambiguous. Figures 8 and 9 show the 

contradictory areas for both halves of the sphere for two different motion configurations. 
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Figure 7: Separation of the sphere through curves /; = 0 and gij = 0.  Each of t1; t2, oil, 
o?2, r1? r2, r3, and r4 lies at the intersection of three curves. 

(b) 

Figure 8:  Contradictory areas for both halves of the sphere for the two motions shown in 
Figure 7. 

Finally, let us consider the boundaries of the contradictory areas. As defined in Section 3, 

we allow the depths of the surfaces in view to take any value greater than zero (including 

infinity). Thus at any point r the motion vector r could be in the direction of vTOt(r), but not 

in the direction of vtT(r). This allows us to describe the depth values at possible boundaries 

of a contradictory area: At points on curve fw = 0 both Z1 and Z2 can be infinite, thus 

boundary points on this curve are not elements of the contradictory area. Boundary points 

on all other curves (ft = 0, or gij = 0) are contradictory, since one of the depths Z\ and Z>i 
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(a) (b) (c) 

Figure 9: (a) Motion configuration, (b) and (c) Contradictory areas for both halves of the 

sphere. 

would have to be zero. 

4.2    Half sphere image: The case when (tx x t2) is perpendicular to (wi x w2) 

In this section it is shown that there could exist (t^Wi) and (t2,a?2), with (ti x t2) perpen- 

dicular to (u>i x u;2), such that there exist no contradictory areas in one hemisphere. 

First we investigate possible positions of points ti, t2, wt and u>2 on the hemisphere, 

bounded by equator q. Then we describe additional conditions on the orientation of vectors 

ti and 0Ji with respect to the hemisphere. 

As shown in Section 3.5, two antipodal points r and -r can be ambiguous only if (22) 

holds. Thus if the border of the area defined by (22) intersects q, there will be a contradiction 

in the image. 

If curve gij = 0 intersects q at point p, at least one of the areas around p does not satisfy 

condition (22). Unless tl512, wi and u>2 all are on the boundary of the hemisphere (and then 

the motions are not ambiguous), there is a contradictory area in the image (either around 

p, or around — p). 

Let n0 be the normal to the plane of q. By intersecting the zero motion contour g^ = 0 

with the border q of the hemisphere (see Appendix D), we find that real solutions for the 

intersection point are obtained only if 

I = [twn0]2 - 4(w ■ n0)(t • n0)(w • t) > 0. (27) 
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A half sphere contains for each of the translation vectors tj and the rotation vectors 

u>i, exactly one of the vectors +t; or —tj and +a?j or —o>,-. Let us refer to the vectors 

in the considered hemisphere as tj and w,-. From equation (27), taking into account that 

(tj • no) > 0 and (WJ • n0) > 0, we see that I > 0, either if for any u>j, tj, (cDj • tj) < 0 

(i.e., ü>i and tj form an angle greater than 90°), or (a>j • tj) > 0 and Q{ and tj are such 

that [tjWj-no] > 4(WJ • n0)(tj • n0)(w,- • tj), which means that a),- and tj must be close to the 

border. 

When ft = 0 is perpendicular to f^ = 0, the projections of wi and «2 on ft = 0 and the 

projections of tx and t2 on /w = 0 coincide in one point ri, i.e., ri = r2 = r3 = r4. Point ri 

lies at the intersection of all six curves f = 0 and gij = 0. 

Any three curves fi = 0, gjj = 0 and gki — 0 (with k ^ /) intersect only in rx and one of 

the points ti, t2, (ii, or c*>2- Furthermore, since all the zero motion contours have to be closed 

curves on the hemisphere, we conclude that if there exists a contradictory area, it also has to 

be in a neighborhood of rj. It thus suffices to consider all possible sign combinations of terms 

fi and gij around ri. It can be verified that, for a hemisphere to contain only ambiguous 

areas, the two translations have to have the same sign, that is sgn(ti • no) = sgn(t2 • n0). Also 

the two rotations have to have the same sign, i.e., sgn(o?! • n0) = sgn(o;2 • no). Furthermore, 

the relative positions of ti, t2, «1, and u>2 have to be such that 

sgn(((a;i x w2) x (ta x t2)) • n0) = sgn(ti ■ n0) sgn(o;i • n0) 

Intuitively this means, when rotating fw = 0 in the orientation given by the rotations in 

order to make fw = 0 and ft = 0 parallel, then the order of points ti and t2 on ft = 0 is 

opposite to the order of points Cj\ and o>2 on fw = 0 (moving along the same direction along 

fuj = 0 and ft = 0), if sgn(ti • n0) = 1. Otherwise, if sgn(ti • n0) = — 1, the order of points 

—ti and —12 on ft = 0 must be the same as the order of points Wi and a>2 on fu = 0. 

In summary, we have shown that two rigid motions could be ambiguous on one hemi- 

sphere, if (ti x t2) is perpendicular to (o?j x «2), but only if certain sign and certain distance 

conditions on ti, t2, Wi and CJ2 are met. In addition, as shown in Section 3, the two surfaces 

in view are constrained by a second and a third order surface (as shown in equations (15) 

and (16)). Figure 10 gives an example of such a configuration. 
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(a) (b) 

Figure 10: Both halves of the sphere showing two rigid motions for which there do not exist 
contradictory areas in one hemisphere, (a) Hemisphere containing only ambiguous areas, 

(b) Contradictory areas for the other hemisphere. 

In the next section we discuss the special cases and show that they do not allow for 

ambiguity. Thus the case of (tj x t2) being perpendicular to (u>i x u>2) is the only case where 

two motions can produce the same direction of the motion field on a hemisphere. An analysis 

concerned with ambiguities due to more than two rigid motions is given in Appendix A. 

5    Special Cases 

In previous sections, we assumed that t] x t2 / 0 and Wi x w2 / 0. Here we show that if 

these conditions do not hold, then the two motions are not ambiguous. 

In Section 3 we assumed all four vectors tx, t2, u>i, and u>2 to be of unit length. Here the 

four vectors can also be zero. Thus we have two different motions (i.e. tx ^ t2, or u?i ^ u?2), 

such that ti x t2 = 0 or/and wx x a>2 = 0. 

To cover all possible cases we are required to make a minor assumption about the depth 

Z\ and Z2 for the case where Wi = a>2. 

Let u>i = u>2- Then we have tx ^ t2, and fw = 0 everywhere. From (10) we obtain the 

constraint sgn(-±-g21) = sgn(^-#22). So at points where g21 and g22 have different signs, the 

only possible solution is -J- = J- = 0. Infinite values for both depths in these areas would 
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result in pure rotational flow fields in these areas and thus in an ambiguity. The same kind 

of ambiguity would occur if we considered the full flow. Therefore it seems reasonable to 

assume that at least at one point in the areas where «711(722 < 0, depths Zx and Z2 are not 

both infinite. Under this assumption there does not exist ambiguity for the case of u>i = w2. 

In the following we thus assume u>i ^ u>2. 

Next we provide a lemma that will be of use in the following proofs concerned with special 

cases as well as in the proof for full flow in Section 6. 

Lemma: Let w; ^ 0, tj 7^ 0. As in the previous section, let the image be a half sphere 

with equator q, let no be a unit vector normal to the plane of q. Then equation 

sgn(-/i) = asgn(gij) (28) 

where a — ±1, can be satisfied everywhere in the image only if tj x no = 0 and a;,- • tj = 0. 

Proof: Since u;,- and tj are non-zero, there are points in the image where g^ ^ 0. Thus 

ti x t2 must be non-zero and geodesic n connecting ti and t2 is well defined. Equation (28) 

can be satisfied only if the zero motion contour is degenerate, i.e., ufi-tj = 0 (as in Figure 14b). 

Then the contour consists of two great circles. One of the circles must be identical to the 

geodesic n, and the other circle must be identical to «7, the border of the image. This is 

possible only if tj x n0 = 0 (see Figure 11). □ 

Figure 11: If sgn(-|/i) = a sgn(^-j) everywhere, the zero motion contour gij = 0 consists of 
two great circles, one identical to the border of the hemisphere, the other identical to ft = 0. 

We now consider two special cases in parts A and B. 
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A:    Let us assume that all t,- and wt- are non-zero. 

If ti x t2 = 0, then ft is zero everywhere. Thus from condition (9) we obtain sgn(g12) = 

sgn(#22)- Since all four vectors are non-zero, this is possible only if Wj x u2 = 0. 

So we only need to consider the case UiX«2 = 0, and since we also assume wi ^ ui2, we 

have u>2 = -wi- Then at any point in the image, g2j(r) - -5ij(r). Thus (9) can be satisfied 

only if sgn( J-/i) = sgn(#22). According to the lemma, this is possible only if t2 x n0 = 0. 

Similarly (11) can be satisfied only if sgn(^/*) = sgn(#2i)- So from the lemma we obtain 

ti x n0 = 0. Therefore we have ti x t2 = 0, function ft is zero everywhere, and the motions 

are contradictory. 

B: If one of the motion parameters is zero, we obtain either a pure translational or a pure 

rotational flow field. By considering all the possible cases, it can be verified that the two 

motions are not ambiguous. Here we just consider one of the more difficult cases. 

Let u?x = 0, u>2 7^ 0, tx ^ 0, and t2 ^ 0. Then at any point, gn = g12 = /w = 0. 

So from (9) we obtain sgn(-^/t) = sgn(#22), from (11) we have 0 = sgn(-^/t + #2i), or 

sgn(4-/t) = sgn(g2i)- From the lemma, this is possible only if t2 x n0 = 0 and ti x n0 = 0; 

thus again we obtain ti x t2 = 0 and the motions are contradictory. 

If two of the motions are zero, that is if either ta = t2 = 0 or tx = w2 = 0 (or equivalently 

t2 = u>i = 0) we obtain either two rotational, or one translational and one rotational field, 

which obviously cannot have the same direction. 

6    Ambiguities of the Full Flow 

Next we investigate the question whether there can be any ambiguities at all if we consider 

the complete flow. Horn has shown in [6] that two motions can produce ambiguous flow 

fields only if the observed surfaces are certain hyperboloids of one sheet. We show that if we 

also consider the depth positivity constraint and if the image is a half of the sphere, then 

any two different motions can be distinguished. 

Let the image be a hemisphere bounded by equator q. Let n0 be a unit vector normal to 

the plane of q. As in [6], let us assume that a motion (ti,u>i) along with a depth map Z1, 
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and a motion (t2,w2) along with a depth map Z2, yield the same flow field. At each point 

we obtain a vector equation 

- —(r x (ti x r)) - wj x r = —=-(r x (t2 x r)) - w2 x r (29) 

Projecting on directions ti x r and t2 x r, we obtain equations for the two critical surfaces 

itxtar] + (6u x r) ■ (t2 x r) = 0 (30) 

^-[tit2r] + {6u x r) ■ (ti x r) = 0 (31) 

where 8u> — w2 — &i- 

If tx ^ 0, t2 / 0, and 6UJ / 0, then according to the lemma in the previous section, these 

equations can be satisfied everywhere in the image only if 6w-ti = 0, ti x n0 = 0, 6UJ -t2 = 0, 

and t2 x n0 = 0. Thus we we obtain tx x t2 = 0. (This case corresponds to Section 4.5 in [6], 

that is, to the case when both critical surfaces consist of intersecting planes.) Therefore we 

are left only with special cases: Ambiguity can occur only if ti x t2 = 0, or 6u> = 0. 

]£ tx x t2 = 0 and 6u ^ 0, from constraint (30) we get for any r 

(Su x r) • (t2 x r) = 0 (32) 

Since 6u> ^ 0, t2 must be zero. Similarly from constraint (31) we get ti = 0. Thus we 

have a pair of rigid motions with different rotations and zero translations. Clearly these two 

motions are not ambiguous. 

There is one special case left, 6u> = 0. At each point we get a vector equation 

- i-(r x (tj x r)) = -i-(r x (t2 x r)) (33) 

Since we have two different motions and 6u) = 0, we know ti ^ t2. So the equation can be 

satisfied only when J- = J- = 0 for all points not lying on geodesic n passing through tx 

and t2. If we do not allow infinite depth, the motions are not ambiguous. 

7    Conclusions 

In this paper we have analyzed the amount of information inherent in the directions of rigid 

flow fields. We have shown that in almost all cases there is enough information to determine 
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up to a multiplicative constant both the 3D-rotational and 3D-translational motion from 

a hemispherical image. Ambiguities can result only if the surfaces in view satisfy certain 

inequality and equality constraints. Furthermore, for two 3D motions to be compatible the 

two translation vectors must lie on a geodesic perpendicular to the geodesic through the two 

rotation vectors. With this analysis we have also shown that visual motion analysis does not 

necessarily require the intermediate computation of optical flow or exact correspondence. 

Instead, many dynamic vision problems might be solved with the use of more qualitative 

flow estimates if appropriate global constraints are found. 

Appendix 

Appendix A    Ambiguity due to more than two motions 

In this appendix we investigate whether three or more different rigid motions and their 

corresponding surfaces could possibly produce the same direction of the motion field on a 

hemisphere. We present proofs contradicting the ambiguity of almost all combinations of 

three rigid motions. 

Let us consider any three different rigid motions (ti,«i), (t2, w2), and (t3,«3), such that 

any two of the directional motion fields produced are the same, i.e. (t; x tj) • (u>i x Wj) = 0 

for i = 1,..., 3, j = 1,..., 3 with i ^ j. In the following proofs it will be shown that in 

general there exist areas in the image where the corresponding depth Z3 cannot at the same 

time allow motions (ti,o>i) and (t3,w3) and motions (t2,w2) and (t3,u?3) to produce the 

same directional flow. 

Let us consider the intersections of the zero motion contours gu = 0. In the sequel we 

consider separately in part A the general case where two of the zero motion contours intersect 

in at least two points, and in part B the case where any two zero motion contours are tangent 

to each other. (Appendix E describes the conditions on the motion parameters for two zero 

motion contours to be tangential.) 

A: Let us assume that two of the zero motion contours are not tangential; let these be 

gu  — 0 and #22  = 0.    Let ri2 be the intersection point where (ti x t2) • r12  = 0 and 
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(u>i x UJ2) ■ r12 = 0, and thus utri(r12), i>tr2(ri2), urotl(r12), urot2(r12) are parallel. Let pi2 

be another intersection point where gu and g22 cross. Vectors uroti(pi2) and urot2(Pi2) are 

not parallel, and utri(Pi2) = -AiUrot^P^) and utr2(Pi2) = -^2Urot2(Pi2) for some positive Ax 

and A2 (if Ai or A2 were negative, point pi2 would be contradictory). Unless #33(pi2) = 0, 

we have utr3(pi2) x urot3(pi2) "f 0. Figure 12a shows a possible configuration of the motion 

vectors at pi2. 

We next consider the directions of urotj. (r) and utr■ (r) for points r in the neighborhood 

of p12. Let n0 be a unit vector in the direction Vtr3(Pn) x urot3(Pi2)- For i = 1..2 the 

sign of (utr.(r-) x uroti(r)) • n0 changes from inside gu — 0 to outside gu = 0 (that is, for 

example, the angle between utri(r) and vTOtl(r) is greater than 180° inside gu — 0 and is 

smaller than 180° outside gu = 0, or vice versa). The sign of (utr3(r) x urot3(r)) • no is 

the same in a sufficiently small neighborhood around p12. Since gu = 0 and <722 = 0 cross 

at p12 there are four neighborhoods around p12 with all four possible sign combinations of 

(utri x ^roti) • no and (vtT2 x urot2) • no- Thus for points r in one of the neighborhoods, in order 

for utri(r) + urotl(r) to have the same direction as vtT3(r) + urot3(r), Z3 must lie in an interval 

[a, 6], and for Utr2(
r) + vTOt2(r) to have the same direction as vtTz(r) + urot3(r), Z3 must lie 

in an interval [c,d\, where the intersection of [a, b] and [c,d\ is empty. Therefore the three 

motions cannot give rise to the same direction at r. For an example see Figure 12b. 

B: We next consider the case where all three zero motion contours are tangent to each 

other. For the case where not all three are tangential at the same point, using arguments 

similar to those used before, we prove that there cannot be an ambiguity. 

For at least two of the zero motion contours, say gu — 0 and g22 = 0, we have that 

at the intersection point ri2 the two curvature vectors «5ll(ri2) of gu = 0 and «522(ri2) 

of #22 = 0 have opposite sign. Also, the translational and rotational components are such 

that vtll = Ai^rotj = —A2utr2 = —A3ürotl for Ai,A2,A3 > 0 (see Figure 13a and b for an 

illustration). Let n0 be a unit vector in the direction Utr3(ri2) 
x ^rot3(ri2). At points r in 

the neighborhood of ri2 we obtain three of the four possible sign combinations for the signs 

of («rot*(r) x utri(r)) • n0 and (vtT2(r) x urot2(r)) • n0. In both areas outside gxl — 0 and 

outside g22 = 0 we have ((vI0tl(r) x utn(r)) • n0)(utr2(r) x vrot2(r)) ■ n0) < 0, but in one of 
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(a) G>) 

Figure 12: (a) Possible motion configuration at point pi2. (b) There must exist a neighbor- 
hood around pi2 with points r, such that for n0 = utr3(pi2) Xupot^P^VKr^P^) xurot3(pi2)|, 
(uioti x vtr,) • n0 > 0 and (utr2 x vTOt2) • n0 < 0. In order for u3 = utri(r) + vIotl{v) = 
Ai(utr3(r) + Urot3(r)), u3 has to be in the sector Si and Z3 has to take values in the interval 
(0, 6]. In order for u3 = utr2(r) + vTOt2(r) = A2(utr3(r) + urot3(r)), u3 has to be in the sector 
S2 and Z3 has to take values in the interval [c, oo] with b < c. 

the areas {vtT2{r) x uTOtl(r)) • n0 > 0 and in the other (utr2(r) x ^(r)) • n0 < 0. Since 

(utr3(r) x Urot3(r)) • n0 doesn't change sign in the neighborhood of ri2, in one of the two areas 

the depth Z3 of the third surface cannot be compatible with both the first and the second 

motion (see Figure 13c). 

(a) 

w 
UK 

■A 

(b) 

Figure 13: (a) Intersection of zero motion contours gu = 0 and #22 = 0 at point r12 with 
Kgil(ri2)Kg22(r12) < 0. (b) Possible motion configuration at point r12. (c) At point r in one of 
the areas outside gn = 0 and outside g22 = 0 (here 52) the depth of Z3 cannot be compatible 
with both (vtI1(r),vTOtl(r)) and (vtT2(r),vTOt2{r)). 

Thus, in summary we have shown that more than two different rigid motions can hardly 

ever give rise to the same direction of flow at every point on a hemisphere. The only possible 
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configurations of motions that may be contradictory, provided the surfaces in view satisfy 

the constraints described in Section 3, are: 

a: three or more motions such that the corresponding zero motion contours ga = 0 inter- 

sect in the same point pij, with vtTi(Pij) x vtTj(pij) ^ 0 for i ^ j. 

b: three or more motions, such that all corresponding zero motion contours ga = 0 are 

tangential at the same point ri2, which as described in Appendix E, can occur only if 

tanZ(t,,r12)   = c for gome constant Q_ 
tanZ.(U;j,ri2) 

Appendix B    Zero motion contours 

Let us consider the following question: What is the locus of points where the flow due to 

the given rigid motion can possibly be zero? As in [4] we can show that such points are 

constrained to lie on a second order curve on the sphere. 

The flow at point r can be zero only if the rotational and translational components at 

r are parallel to each other. Let t and u> be translational and rotational velocity of the 

observer. Then the flow at point r can be zero only if 

(r x (t x r)) x(wxr) = 0 (34) 

By simple vector manipulation, from (34) we obtain 

((w x r) • (t x r))r = 0 (35) 

Since r/0, the flow at point r can be zero only if 

(u x r) • (t x r) = 0 1 }   y        } (36) 
or      u> ■ t — (a? • r)(t • r) = 0 

Equation (36) describes a second order curve on the sphere, which we will call the zero 

motion contour of the rigid motion (t,w).  The zero-motion contour consists of two closed 

curves on the sphere. As shown in Figure 14, if (u? -t) > 0, one of the curves contains to = t_ 
1*1 

and wo = T^T and one contains —to and — u>0: if (a; • t) = 0 the two curves become great 

circles, one orthogonal to t, the other orthogonal to u; if (w • t) < 0 one of the two curves 

passes through to and —w0 and the other through —10 and u>0. 
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Figure 14: The zero motion contour (the locus of points r where r could be zero) consists 
of two closed curves on the sphere. Three possible configurations are (a) (u ■ t) > 0, (b) 

(u • t) = 0, and (c) (u ■ t) < 0. 

Appendix C    Zero motion contours are not tangent 

To show that zero motion contours gn and gt2 are not tangent at rx (see Section 4.1, part A), 

let us compute tangent lines to the contours at ri. Let the direction of the line tangent to 

gn at rx be Ui. The line lies in the plane tangent to the sphere, so 

ui • ri = 0 (37) 

Directional derivative of gn along ux must be zero. Let re = ri + ua£. Then 

dgn(re) 

de 
= (wi x Ui) • (ti x n) + («i x rx) • (ti x ui) + 2e(wi x m) • (tx x ux)       (38) 

Since (37) holds, Ui must also satisfy 

- (wi • ri)(ux • ti) - (wi • Ui)(ri • ti) = 0 (39) 

Thus we obtain 

ui • ((wi • rx)ti + (ti • r^ui) = 0 

We can compute the tangent direction from (40) and (37) as 

ui = ri x ((«i • ri) ti + (tx • n) wi) 

(40) 

(41) 
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Similarly, the direction tangent to g12 is 

u2 = ri x ((«i •r1)t2 + (t2-ri)wi) (42) 

Since point ri lies on geodesic n, we get 

uixu2   =   0 + (w1-r1)(t2-r1)((riXti)x(r1xw1))+ 

(ti • ri)(wi • ri)((rx x wi) x (rx x t2)) + 0 = 

=   (wi • ri)((t2 • ri)[wi rx tx] ri + (ti • rx)[t2 rx u>i] rx) 

=   («i • ri)((ti x t2) • (n x (wx x ri))) rx 

(43) 

Also 

WiTi = ||wi x (tj xt2)||
2 >0 (44) 

and 

(ti x t2) • (ri x (w! x n)) = [tit2wi] \\ui x (tx x t2)||
2 ||ti x t2||

2 ^ 0 (45) 

So Ui x u2 is not zero, and the two zero motion contours cross at point ri. 

Appendix D     Zero motion contour crossing the border of the image 

Let the half sphere image be bounded by equator q, let n0 be a unit vector normal to the 

plane of q. We would like to know whether the zero motion contour of motion (t, UJ) intersects 

equator q. 

Let us choose a Cartesian coordinate system such that n0 = [0,0,1]. Let t = [tx,ty,tz] 

and u; = [u}x,Ljy,u>z]. Points on equator q can be written as [cos <^,sin^>, 0]. Thus the zero 

motion contour (w x r) • (t x r) = 0 intersects q if equation 

(uxtx + uztz) sin2 <{> - (u>ytx + u>xty) sin <f> cos <f> + (oJyty + wztz) cos2 <f> = 0 (46) 

has a solution. 

Writing A = tan <f>, we obtain a quadratic equation 

(UXtx   +   UZtZ)\
2    -    (UytX   +   UJxty)X    +    (Uyty    +   & Zt z)    ~    0 (47) 
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(49) 

This equation has a real solution if 

/   =    (WytX   +  OJXty)2   -   i{UXtx   + U)xtz)(Wyty   +  Uztz)    >    0 (48) 

After some manipulation, we obtain 

I = (iüytX    -   UXtyf    -   4:(uJZtZ)(0JXtX   +   Uyty   +   Uxtz) 

=   [twn0]2 - 4(w • n0)(t • n0)(u; • t) > 0 

Appendix E    Intersections of zero motion contours 

Let (ti,a>i) and (t2,u2) be two ambiguous motions. Let us investigate possible intersection 

points of the zero motion contours of the two motions. 

Since ambiguity is possible only when wx x u>2 ^ 0, ta x t2 ^ 0, and (wi x w2) • (ti x t2) = 0, 

we can choose a Cartesian coordinate system such that 

X   =   («ixw2)/|wix«2| 

Y   =   (tx x t2)/|ti x t2| (50) 

Z   =   X xY 

In this coordinate system, we can write tx = [Ui,0, Wi], t2 = [£/2,0, W2], Wi = [0,/?i,7i], 

and üJ2 = [0,/92,72]. 

Clearly, both zero motion contours pass through point [0,0,1]. We would like to know 

whether this is the only intersection point. 

If W\ were zero, we would have tx • Wi = 0; thus the zero motion contour gtl would be 

degenerate. This is not possible if the motions are ambiguous. Thus Wx ^ 0, and similarly 

W2, 7i, and 72 are non-zero. 

Since the zero motion contour does not depend on the size (and direction) of vectors t 

and w, we can re-scale vectors t;, w;, multiplying by A; / 0 such that 

ti   =   X1t1     = [^i,0,l] 

t2   =   A2t2    = [I72,0,l] 

«1   =   A3W1   = [0,Ä,1] 

o>2   =   A4w2   = [0,#j,l] 
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Let us consider point r = [s,y,z] such that (w x r) ■ (t x r) = 0. If z / 0, point 

rjz = [x/z,y/z,l] also satisfies the equation. Thus it is enough to consider two possible 

sets of points: points of the form r = [X,T/, 1] (i.e., points lying in the plane tangent to the 

sphere at [0,0,1]), and points r = [x,y,Q] (these points correspond to points at infinity on 

the tangent plane). 

A: To obtain the possible intersection points r = [x,y, 1] we express the zero motion 

contours as 

(«i x r) • (tx x r) = x2 + y2 - x(jx - yßx - xyÜA = 0 (52) 

(w2 x r) • (t2 xr) = i2 + i,2- x(l2 - yß2 - xyÜ2ß2 = 0 (53) 

We can compute y from the difference of the two equations as 

y = ———^-7—^ — — (54) 
x(U2ß2-U1ß1) + ß2-ßi 

Substituting (54) into (52), we obtain a polynomial equation of degree 4 in x. One 

solution is x = 0 (both zero motion contours pass through point [0,0,1]). The remaining 

equation of degree 3 has at least one real solution. 

If (ßi — ß2)(U\ß2 — U2ßi) = 0, we obtain another solution x = 0. Otherwise the two 

contours intersect in two different points. Since wj x «2 j^ 0, we know ß\— ß2 ^ 0. Thus 

the two zero motion contours are tangent only if lJ\ß2 = U2ß\- If this is the case, we obtain 

an equation of degree 2 in x. Its discriminant is 

d = ßlÜlifi2 + £i)2((t/2Ä)2 - 4) (55) 

Thus if I^ÄI = \Ü\ß2\ > 2, the two zero motion contours are tangent at [0,0,1], but 

intersect at two other points. 

B: Now we compute intersection points r = [x,?/,0]. We can assume x2 + y2 = 1. Then 

we obtain equations xy t]\ ß\ = 1 and xy U2 ß2 = 1, so such intersection point exists only if 

Ü1ß1 = Ü2ß2. 

In the previous part we have shown that if U2ß\ / U\ß2} the two zero motion contours 

have more than one intersection point. So it is enough to check the tangential case here. 

32 



If the two contours are tangent at [0,0,1], from Ü^i = Ü2ß2 and Ü2ßi = V\ß2 we obtain 

\Ui\ = \U2\. Since tx x t2 ^ 0, this is possible only if Ui = -U2 and ßx = -ß2. 

Writing x = cos <f> and y = sin <j>, we obtain equation 

sin(2<£) = —Xr- = -X- (56) 
1 U&      Uxß2 

so again there is an intersection point if \U\ß2\ > 2. 

Therefore the two zero motion contours have only one intersection point if V\jß\ = U2/'ß2, 

and \Ü1ß2\ = \Ü2ßi\ < 2. If we denote the intersection point of gu and g22 as ri2, this can 

be written as 
tanZ(t!,ri2)  _ tanZ(t2,r12) ,-„, 

tanZ(wi,r12)      tan Z(o»2,r12) 

where Z(-, •) denotes the angle between two vectors. 

This relationship can also be expressed as 

[u>iU;2ti][t1t2W2] = [wiW2t2][tlt2Wi] (58) 

Furthermore from (55) we obtain the constraint 

ItWiWzti] [tit2w2]| ||wi x w2|| ||tx x t2|| < 

2 |(((wi x u2) x (ti x t2)) • ti) (((«i x w2) x (tx x t2)) • w2)| 

Appendix F    Antipodal contradictory points 

Here for the purpose of providing a description of the areas where two motion fields are 

ambiguous, the conditions are developed for point r and its antipodal point —r both to be 

contradictory. 

Clearly, if one of the CP-conditions holds for r, it cannot be true for -r. So if both r 

and —r are contradictory, two of the conditions must hold at r and the other two at —r. 

If (18) and (19) hold at r and (20), (21) at -r, we get 

sgn(/i(r)) = sgn(#i2) = -sgn(#22) = sgn(#21) = -sgn(/w(r)) 

at r and 

-sgn(/i(r)) = -sgn(p21) = sgn(#n) = -sgn(g12) = sgn(/w(r)) 
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at — r. Thus 

sgn(srn) = sgn(#22) = -sgn(#12) = -sgn(#21) 

sgn(/t(r)) + sgn(/w(r)) 

If (18) and (20) hold at r and (19), (21) at -r, we get sgn(#i2) = -sgn(#22) at r and 

sgn(<7i2) = sgn(g22) at — r, so this case cannot occur. 

If (18) and (21) hold at r and (19), (20) at -r, we get 

sgn(/i(r)) = sgn(#i2) = -sgn(#22) = sgn(/w(r)) = -sgn(^n) 

at r and 

-sgn(/ei;(r)) = -sgn($r2i) = sgn(#22) = -sgn(/t(r)) = sgn(#n) 

at —r. So we get 

sgn(0n) = sgn(5r22) = -sgn(flfi2) = -sgn(p21) 

sgn(/i(r)) = sgn(/w(r)) 

Thus point r and point —r are both contradictory if and only if 

sgn(#n(r)) = sgn(5f22(r)) = -sgn(#i2(r)) = -sgn(#21(r)) (60) 
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