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ABSTRACT 

Research in the following areas is reported in this Annual Summary Report: 

A. Scattering of high-frequency sound or pressure impulses by elastic objects 
in water-Experiments and theory are examined for scattering of pressure impulses and 
high-frequency tone bursts by elastic objects in water. Improved capability for measuring 

the impulse response is discussed and examples are given including: (i) the bipolar 
specular feature that reveals the mass-per-area of the shell; (ii) the beating of low 
frequency flexural modes of a shell; and (iii) the impulse response of a thick cylindrical 
shell. Thick shell dispersion and radiation damping curves display qualitative differences 

with thin shell results relevant to our measurements. Other measurements include retro- 
reflective backscattering of tone bursts due to Rayleigh waves on objects with corners. 
Theoretical advances include a convolution formulation of leaky wave contributions to 
scattering for objects having variable curvature or truncations and analysis of the phase of 

background contributions to backscattering by thick and thin shells. 
B. Wavefields of random caustics produced by reflection:   Measurements of 

intensity moments and twinkling exponents-Wavefields were measured for 
reflection from a randomly corrugated pressure-release surface in water for a range of 
frequencies of the incident pulse. The resulting wavefields and intensity moments were 
modeled with catastrophe theory which accounts for the fluctuations due to caustics. The 
intensity moments greater than the second were proportional to the frequency raised to an 

exponent (M. V. Berry's "twinkling exponent"). 
C. Interaction of sound with sound mediated by a suspension of particles--A 

new measurement configuration was demonstrated where the ultrasonic probe wave is 

collinear with the standing pump ultrasonic wave. 
D. Supplemental research:   Light scattering and sonoIuminescence-Publications 

pertaining to light scattering are noted as well as aspects of the optical modes of bubbles 

and single bubble sonoluminescence. 
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I. RESEARCH PROJECTS 

This section summarizes the research results in the context of previous work by others 

and by Marston and associates. The reader should see the various publications and reports 
referenced for theoretical and technical details. The publications give additional references to 

the broader scientific literature and are listed in Section m. Most of the work previously 
submitted for publication and published during this year was described in last year's Report.1,3 

Some of that research will be reviewed when needed to introduce the current research. 

A. Scattering of high-frequency sound or pressure impulses by elastic 

objects in water. 

This research program has examined high-frequency scattering situations where the 

elastic contributions to backscattering are large. For situations where the scatterer is an 
elastic shell, various elastic responses of interest include waves not describable by theories 
for scattering by thin shells being developed by other researchers. Thus, for example, it is 
usually necessary to rely on dispersion relations based on the full equations of elasticity 
with fluid loading (instead of the much simpler equations of a fluid-loaded "thin shell"). 
Examples of pronounced coupling processes included backwards (or negative group 
velocity) waves16 and coincidence frequency enhancements17^9 occurring near frequency 

thresholds for coupling. Kaduchak's Ph.D. dissertation11 (some of which he had 
previously published) gives an experimental study of such processes. The dissertation 
abstract is given as Figure 1. Another unique aspect of our investigation is the response 
of shells to pressure impulses of extremely broad spectral content as summarized in 
Sections Al-3. The high-frequency content for some of the scattering processes of interest 
may preclude the description of scattering features by various numerical algorithms based 
on discretized descriptions of the structure being developed by other programs. Potential 
applications are not limited to underwater acoustics but also include ultrasonic testing. 

1.   Source of plane wave pressure impulses for scattering experiments: 

Analysis and testing. 
A new transducer configuration was developed with the support of this grant for the 

measurement of the response of a target to a plane wave impulse.19'73 The source 
consisted of a large sheet of PVDF piezoelectric polymer with water in contact with both 
sides. This year Scot Morse improved the source and the spectrum of the pressure impulse 
was modeled.M12 The improvements include: (a) a high current FET pulse generator to 
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drive the PVDF and other improvements that reduce spurious electrical coupling to the 
hydrophone and (b) a 71 cm x 71 cm PVDF sheet. Figure 2 illustrates the new 

configuration and a representative hydrophone record corresponding to the location of the 

scatterer. The extension of the sheet width to 71 cm delays the arrival of the edge wave to 
At ~ 0.2 ms after the initial pulse such that the low frequency roll-off of the spectrum 
begins at l/(2At)« 2.5 kHz. The high-frequency spectral and temporal properties of the 

radiated impulse (visible on the left side of the lower part of Fig. 2) were modeled by 
application of our previous result19 showing the following proportionality holds for the 

spectral region of interest: 

p(t - to) = Ki(t),   i(t) = current into sheet, 0) 

p   =   pressure amplitude of plane wave (does not include edge wave) 

to   =   propagation time to observation point 

K  =   constant determined by piezoelectric properties 

To approximate i(t) for a step voltage source, the lumped electrical parameter circuit model 

shown in Figure 3(a) was introduced with the result that the current is: 

i(t)=6(t)i0e-t/RC,    i0 = VJR (2a'b> 

where 6 is a unit step function and C denotes the sheet capacitance. Ordinarily the added 

resistance RA may be neglected but to test the model various resistances RA were inserted 
and the resulting increase in the exponential decay time of the radiated pressure impulse 

was observed. The spectrum of the current i(t) and acoustic pressure p(t - to) was 
computed. Normalized such that the spectral amplitude S(co) becomes unity at zero 

frequency, the magnitude is 

.-1/2 

|S(co)| =[(coRC)2+lJ      . (3) 

Figure 3(b) shows an example of how this magnitude (the smooth curve) fits the 
spectrum of the hydrophone signal for Kaduchak's 44 cm x 44 cm sheet source. The 

observed peak (near 300 kHz) and subsequent roll-off (above 350 kHz) are a consequence 
of the fundamental resonance of the hydrophone. In the model, the effective sheet electrical 
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Figure 3(a) Transducer model and (b) spectrum. 



resistance Rs was adjusted to fit the spectrum giving Rs - R = 2 ohms. The unusually 
broad spectral properties of the source could be extended to even higher frequencies with 
the use of suitable hydrophone. Acquisition of target spectral data in the 10 kHz to 400 

kHz range was previously described.J9 

A sheet source was also tested with tone burst excitation for target scattering 
experiments. It was found to be useful for a frequency range where tone burst sources are 

not generally available that are free from spurious ring-down tails. 

2.   Observations of the bipolar specular reflection and the dependence on 

the mass-per-area of a shell. 
One prominent feature of the impulse response of shells that we previously 

reported73 and analyzed19 is the bipolar specular feature. A brief summary of the analytical 
model is needed to facilitate a description of the experiments. The model is appropriate to 
the early-time reflection of a pressure impulse by an empty spherical or cylindrical shell at 
normal incidence with other limitations noted below. Let T = tc/a where a is the local shell 
radius of curvature and c is the sound speed in water. The early time pressure impulse 
response is proportional to the Fourier transform of the reflection coefficient R(x) where x 
= kfl = coa/c is the scaled frequency and R is approximated as described in Sec. A7. The 

specularly reflected farfield pressure becomes proportional to 

1     - -% 
P(T) = 2K  I ^^P^^ = 5(T)" 2V     6CD 

x   = pa/p h = null frequency,  p h = mass/area of the shell of thickness h,       (4) 

t   = p h/pc = decay time of negative feature, 

where 8 is a delta function and 6 is a unit-step function. The initially positive delta function 

specular reflection is followed by an exponentially decaying negative feature resulting from 
the finite inertia of the shell. Experimental and computational evidence of this result was 
discussed previously by us for spherical shells19'13 and an additional computational test of 
the magnitude of the negative feature is given in Kaduchak's dissertation.T1 While our 
original derivation was based on the aforementioned Fourier transform, Marston has 
recovered Eq. (4) by differentiation of an approximate Laplace transform analysis of the 
pressure step-response of a spherical membrane [Milenkovic and Raynor, J. Acoust. Soc. 
Am 39,556-563 (1966)]. Analytical or experimental descriptions of the bipolar specular 
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feature appear to have been lacking prior to our study'9»13 since to resolve this feature the 
width of the incidence impulse needs to be somewhat less than tjj. We also studied the 
negative portion of the bipolar feature in other new calculations and experiments which 
serve to clarify the assumptions and general nature of this feature. The results are 

summarized as follows: 

(a) Computational study showing the negative part of the bipolar feature is 
only weakly affected by placing water on the interior of the shell:   The 
calculated impulse responses were compared by evaluating the FFT of the form function 
filtered [as in Kaduchak and Marston, J. Acoust. Soc. Am. 93,2700-6 (1993)] to smooth 

the transient steps across the width of the shell that are usually not resolved in the 
experiment The impulse responses were evaluated and compared for a 2.5% thick 
spherical shell as well as for an identical shell filled with water and one filled with water 
having an artificially large attenuation of sound.1"1 (The attenuation was introduced to 
isolate certain features of the late-time response.) The result of the third calculation is 
shown in Figure 4. The bipolar feature begins at ct/a = 1 and the relaxation of the 
negative feature is clearly visible. The relaxation time tN appears to be only slightly smaller 

than in the corresponding feature calculated for an empty shell. 

(b) Observations with the empty endcap of an MIT/NRL model shell:   A 
ribbed nickel alloy shell having spherical endcaps (connected to the shell by short conical 
sections) has been studied with bandlimited transients at NRL [see Bondaryk and Schmidt, 
J. Acoust Soc. Am. 97,1067-77 (1995)}. Since the spectrum of the incident transient 
used in the NRL experiments typically rolls-off above 50 kHz, the time resolution is not 
sufficient to isolate the details of the bipolar feature predicted by us. To facilitate our 
observations an extra endcone was borrowed from I. Dyer (MIT) and mounted in the 
WSU tank with the spherical end close to the sheet source. An example of one of the 
resulting time records is shown in Figure 5. The relaxation of the negative feature is 
clearly observed with the relaxation time being close to the predicted value from Eq. (4) of 
tN « 4.3 |is where the thickness of the Ni alloy shell is 0.73 mm. 

(c) Observed scattering by an empty thick cylindrical shell:  The bipolar 
feature was also observed for scattering of an impulse by a thick cylindrical shell with the 
arrangement shown in Figure 6. Only the broadside results will be discussed here. The 
cylinder was filled with air and sealed with small rubber plugs on the ends. Figure 7 
compares calculated and observed features of the broadside response. The calculation is 
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the FFT of the foim function of an infinitely long cylindrical shell. The shell is thick 
having h/a = 0.169 so the reverberations of waves traveling across the thickness are more 
greatly spaced than in our other calculations. These reverberations are superposed on the 

negative feature of the calculated bipolar response. While the negative part of the bipolar 
feature is clearly visible in the experimental record, the reverberations are not resolved by 

the hydrophone. 

3.   Guided-wave features of the pressure impulse response of shells and 

mode beating:   Observations and theory. 
Observations and calculations in the previous Annual Report73 and our 

publication19 were extended to new situations summarized below. We also investigated 

guided-wave theory for a class of spheroidal shells in Appendix B of Ref. J7. 

(a) Guided-wave contributions to scattering by a thick cylindrical shell: 
The configuration is shown in Figure 6 with the shell air-filled and sealed by rubber as 
previously noted. Only the broadside results shown in Figure 7 will be discussed here. 
After the bipolar specular feature has relaxed, the next prominent low frequency feature 
visible on both the theoretical and experimental records is a wavepacket chirped from high- 
to-low frequency. To identify the cause of this new feature in the thick-shell impulse 
response, the dispersion relations were calculated for guided waves using the full elasticity 
theory and Watson methodology as described by us in previous publications.J7 The 
dispersion relations for the ka region of interest are shown in Figure 8 where c/ is the 
phase velocity of the /th guided wave and ß/ as the radiation damping. The analysis shows 

that the chirped wavepacket is a consequence of a guided wave labeled a0 which shows a 
transaction from subsonic to supersonic behavior. Calculation of the group velocity of this 
wave shows that the high-frequency components of the wavepackets are backscattered 
earlier than the lower-frequency components as manifested by the chirped signal in Fig. 7. 

(b) Beating of the low-frequency modes of thin shells excited by a 
pressure impulse: In our previous observation of the impulse response of a thin 
spherical shell19-73 the millisecond time window for the experiment would only allow the 
first few cycles of the lowest frequency modes to be observed. To gain an understanding 
of the late-time behavior of these modes Scot Morse used smaller thin stainless steel 
spherical shells than previously studied. The small size pushed the coincidence frequency 
(and some of the other elastic features) above the frequency response of the hydrophone. 
Figure 9 shows calculated (a) and measured (b) band-limited impulse responses for an 

empty stainless steel spherical shell having a diameter of 1.9 cm and a thickness to radius 
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ratio of 0.035. In (c) the calculated (dashed) and measured (solid curve) spectra are 
shown. The measured spectrum is the FFT of the record in (b). It is scaled in amplitude 
such that the peak near 40 kHz corresponds to the predicted amplitude calculated for an 
infinite duration record. The first three predicted peaks correspond to the n = 2,3, and 4 
partial waves and are associated with the lowest flexural modes of the shell (see e.g. 
Appendix D of Ref. J9). These modes are evident in the measured spectrum. The beating 
between these modes produces the envelopes of the calculated and measured signatures in 

Figs. 9 (a) and (b) and these envelopes are similar in appearance. For a different shell 
having water on the inside observations were obtained where only two modes were excited 

and the beating pattern is much simpler. 

(c)   Coincidence frequency wavepacket in the impulse response of a water- 
filled thin shell: A prominent high-frequency feature of the thin shell impulse response 
is the coincidence frequency wavepacket associated with the üQ. wave.19 Kaduchak T1 

carried out a computational study to determined whether the OQ- wavepacket would be 
completely quenched if water is on the inside of the shell. The method was to evaluate the 
FFT of the form function of a water filled shell. As explained in Section 2(a) the 
calculations were also used to investigate the bipolar specular feature and were done with a 
shell having h/a = 0.025. In the absence of attenuation within the water interior, the 
wavepacket is present but arrives at the same time as other strong scattering contributions 
attributable to waves transmitted through the walls of the shell. By artificially adding 
attenuation to the inner water, these waves can be quenched and the first three 
circumnavigations of the a0. wavepackets are clearly evident in Figure 4. 

4.   Retro-reflective backscattering of sound due to Rayleigh waves on a 

solid rectangular parallelepiped. 
Consider a solid object cut with square comers which may have a random 

orientation relative to the direction of incident sound from a high-frequency sonar. The 
question of interest is to identify the most likely mechanism for producing a strongly 
backscattered signal. Research carried out by K. Gipson has confirmed the existence of a 
mechanism that is more likely to occur than simple specular reflection back towards the 
source.M1° (The specular mechanism requires that two of the Euler angles of the scatterer 
he in a narrow range while the mechanism studied here puts narrow limits on only one of 
the Euler angles.) The novel mechanism is illustrated in Fig. 10: a Rayleigh wave is 
launched on the stainless-steel block in water such that after reflection from two edges the 
radiated wavefront is directed back towards the source. It is necessary only that the angle 
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of incidence 6 lie within about a degree of the Rayleigh angle 6R of the elastic material. 

This was demonstrated in last year's report13 along with results of an approximation based 
on the convolution formulation*10 for leaky wave scattering contributions, Eq. (5). During 

the current period Gipson extended the measurements by rotating the block relative to the 
source at fixed angle of incidence 0 = 6R. (The experiment used a rotary stage and laser 
alignment system) The degradation of the backscattering with rotation angle y is given by 
the product D(y) = B(y) F(y) where F(y) = (1 - tan2y)/(l + tan2^ is a geometric factor and 
B(y) is a product of Rayleigh wave reflection coefficients off of the block comers 
normalized to the value at y = 0. The factor B may be approximated by making use of 

computational results of Gautesen [Wave Motion S, 27 (1986)] for oblique Rayleigh wave 
reflection at an elastic quarter space in a vacuum. A comparison of the measurements 
(points) with the approximate theory (curve) is shown in Figure 11. The important result 
is that the slow decrease of D(y) with increasing y confirms the backscattering depends only 
weakly on the Euler angle y. Some of the discrepancy may result from Poisson's ratio of 

the steel block differing slightly from the value of 1/3 used in Gautesen's computation. 
A connection between this work and experiments on plates carried out at ARL 

(University of Texas) during Marston visit (Spring 1993) is noted in last year's report.13 

5.   Torsional and edge wave excitation on a plate with an EMAT. 
In our previous work Matula measured the acoustic wavefield in water and the 

transition radiation that occurs when a subsonic flexural wavepacket on the plate first 
crosses the free surfaces of the water. This work is summarized in the abstract of his 
recent publication^ from the Journal of the Acoustical Society of America reproduced here 

in Figure 12. In those experiments a specific type of Lamb wave corresponding to a 
flexural wave was excited with an EMAT (electromagnetic acoustic transducer). The plate 
was 16 feet in length and was hung with its lower half in the water. To facilitate possible 
future investigations of the acoustic wavefield for more complicated excitations on the plate 
Dave Ermer11 modified the EMAT such that the induced electrical currents in the plate 
would be asymmetric across the width (the wide-dimension) of the plate. Since the plate is 
in a uniform magnetic field, this resulted in asymmetric Lorentz stresses which were used 
to excite wavepackets of torsional and edge wave spatial modes on plate. (This new EMAT 
configuration may be contrasted to the configuration shown in Fig. 3 of Manila's 
publication18 where the stresses are uniform across the wide dimension.) Ermer's 
experiments were done with the plate entirely in air but, as in Manila's experiments, a tone 
burst excitation was used of sufficient duration to simulate steady-state excitation. The 

spatial distribution of the excited wavepacket across the wide dimension of the plate was 
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Energy branching of a subsonic flexural wave on a plate 
at an air-water interface. I. Observation of the wave field 
near the interface and near the plate 

Thomas J. MatulaB) and Philip L Marston 
Department of Physics, Washington State University, Pullman, Washington 99164-2814 

(Received 27 April 1994; revised 25 August 1994; accepted 25 October 1994) 

The radiation of subsonic flexural plate waves due to a discontinuity in fluid loading is 
experimentally investigated. A tone burst of flexural waves propagates down a plate, the lower 
section of which is submerged in water. Measurements indicate that there occurs a branching of 
energy as the flexural wave passes through the air-water interface, with little reflected energy. A 
portion of the transmitted energy continues along the plate as a subsonic flexural wave with an 
associated acoustic evanescent wave. A second acoustic wave (which is termed transition radiation) 
originates at or near where the plate crosses the interface, and propagates in water to the far field. 
In the near field of the interface there exists an interference between the two acoustic waves in water 
that results in a series of pressure nulls. The pressure nulls are associated with a IT phase change in 
the wave field and are indicators of wavefront dislocations. A numerical computation of the wave 
field in an unbounded fluid due to a line-moment excitation of a plate has similar features as the null 
pattern observed but differs in certain details. 

"•Present address: Applied Physics Laboratory, University of Washington, 
1013 NE 40th St., Seattle, WA 98105. 

1389   J. Acoust. Soc. Am. 97 (3), March 1995 
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determined by mechanically scanning a small microphone at a fixed distance from the plate. 
The microphone was also scanned down the plate to determined the phase and group 
velocities of the wave. Figure 13 shows an example of the microphone output for a 
cross-plate scan when a 27 kHz torsional packet is excited on the plate. As expected the 
signal is antisymmetric across the width, being weak near the centerline. The measured 
phase velocity of 876 m/s is close to an approximate predicted value of 899 m/s and, as 

expected, the measured group velocity of 1600 m/s is much greater. 

6.   Convolution formulation of leaky wave contributions to scattering by 
cylinders of variable curvature or with truncations:   Examples for partially- 
coated or S-shaped surfaces and the merging of launching or detachment 

points. 
To facilitate the approximation of leaky wave contributions to high-frequency 

scattering by complex objects, a convolution formulation was developed by MarstonJ4J10 

that is not based on the assumptions of thin shell theory. The abstract of the principal 
publication110 is reproduced in Figure 14(a). Figures 14(b) and (c) illustrate 
applications to partially coated or variable curvature surfaces considered there. The 
formulation approximates the amplitude of the radiated leaky wave contribution at a surface 

point parameterized by an arc length s along the surface. It is related to the incident wave 

amplitude pi(s') at s' by the following convolution with the one-sided spatial response 

function h 

s 
p (s) « J p (s')n(s - s';s,s')ds'   , (5) 

-oo 

where the one-sided line response h depends not only on (s - s') but also weakly on s and 
s' through any dependence on curvature of the local leaky wave properties. These 
properties are the real component k/ and imaginary component a of the wavenumber for the 

/th leaky wave. With fluid loading on only one side of the surface*10 

-,1/2 
h(s - s'js.s') « -2[cc(s)a(s')]    H(s - s') exp ia>,, + i f (k, + ia)ds' (6) 

where H is a unit-step function and q^ is the phase of the plane surface reflection 

coefficient of plane surface reflection at the leaky-wave angle of incidence 9/ = snr^c/c/). 
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Leaky waves on weakly curved scatterers. II. Convolution 
formulation for two-dimensional high-frequency scattering 

Philip L Marstona) 

Department of Physics, Washington State University, Pullman, Washington 99164-2814 and Advanced Sonar 
Division, Applied Research Laboratories, University of Texas at Austin, Austin, Texas 78713-8029 

(Received 16 April 1994; accepted for publication 24 August 1994) 

(a) A  simple   high-frequency   approximation   is   developed   for   leaky  wave   contributions   to 
V   ' two-dimensional scattering by curved elastic surfaces. Following Bertoni and Tamir [Appl. Phys. 2, 

157-172 (1973)] the method relies on general features of the Laurent expansion of the plane surface 
reflection coefficient R(kx) about the leaky wave pole of interest at the complex surface wave 
number kx=k,+ ia. The formulation uses the real part *, and radiation damping rate a for leaky 
waves on the curved elastic surface of interest rather than an analysis of the response of any specific 
class of structures such as thin shells. The high frequency limit of the complex coupling coefficient 
G, [see, e.g., P. L. Marston, J. Acoust. Soc. Am. 83, 25-37 (1988)] is recovered for right circular 
cylinders and the physical origin of the TT/4 phase shift is discussed. An 0(kh) phase correction 
important for empty thin shells of thickness h is obtained in agreement with results from other 
approaches. The importance of the Fresnel width of the coupling region is illustrated by 
consideration of a cylinder with an ideal coating having an abrupt edge. The leaky wave 
contribution becomes proportional to a Fresnel integral having a complex argument. The integral 
manifests the degree to which launching of a leaky wave can be considered to be a local process. 
The product of a and the Fresnel width is an important parameter. The detachment of the ray to the 
far field is taken to be separated from its launching by more than the Fresnel width. Leaky wave 
contributions to scattering by surfaces of variable curvature are approximated and applications for 
ultrasonic beams are noted. 

•'Present and permanent address: Washington State University. 

34       J. Acoust. Soc. Am. 97 (1). January 1995 
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The phase of the integrand of Eq. (5) depends not only on h but also on the shape of the 

surface and the direction of the incident wave through pi(s'). A stationary phase for some 
value of s' corresponds to the coupling of a leaky wave onto the surface within a Fresnel 
width of at that point.J4 The outgoing amplitude is propagated to the observer. For the 

special case of a circular cylinder previous results for the coupling coefficient G/ are 
obtained at high frequencies. As the frequency is lowered, wave kinematic corrections to 
arg(G/) may become significant as discussed e.g. in Marston's forthcoming Wave Morion 
paper112 discussed in last year's ReportP The present formulation illustrates the effects 
of truncations (such as a partial coating shown in Fig. 14(b)) and variable curvature (Fig. 

14(c)). 
Surfaces of variable curvature may introduce some important complications that 

were examined by Marston.M1 In the usual case there is only one stationary phase point 
corresponding to the launching of a leaky wave by a ray through point B in Fig. 14(c). 
There is also (for a given surface region) only one stationary phase point in the propagation 
integral to the observer, corresponding to the detachment point through S in Fig. 14(c). 
For some surface shapes, such as a tilted "S" shaped surface there may be two closely 
spaced launching points or two closely spaced detachment points. The launching points, 
for example may merge and disappear with variations in the direction of the incident wave. 
Marston's analysis for that situationM1 predicts a k1/6 amplitude enhancement factor for the 
simplest case of two merged launching or detachment points as well as an Airy function 
factor for which argument vanishes when the stationary points merge. Orientation of the 
surface such that there are no stationary phase points of the integral in Eq. (5) correspond 
to the shadow side of the Airy function. In that case the launching of the leaky wave is 

attributed to a "complex ray." 

7.   Phase of the background contribution for scattering by shells. 
In addition to various scattering contributions by guided waves and truncations 

considered for example in Sec. 6, an important contribution is the background contribution 
usually associated with specular reflection. That contribution causes the bipolar specular 
feature in the pressure impulse response discussed in Sec. 2. The phase of the coupling 
coefficient G/ is linked to the background in a way discussed by Marston.M13 In the new 
research, various approaches to the background and phase were compared to gain a better 
understanding of their similarities and differences. For the purposes of this comparison 
attention will be restricted to specular reflection at normal incidence from an empty sphere 
or cylinder of outer radius a and thickness h. The background contribution fO3) to the 

relevant form function may be written 
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f    = Rexp(-2ika) , 

Where R may be interpreted as a complex effective reflection coefficient. A ray-theory 

approach to R is to approximate R using the lumped-mass inertia of a thin membrane 
having the same mass per area as the shell. That approach [see e.g. Norris and Rebinski, 

J. Acoust. Soc. Am. 95,1809-1829 (1994)] gives the unimodular 

R(kn) = (^ + ika)/(-xN + ika) = e1(p , ® 

where xN is the null frequency listed earlier in Eq. (4). That approximation gives the 
smooth negative specular feature described in Sec. 2 since it smoothes out the effects of 
reverberations across the thickness of the shell. Another approximation discussed by Kargl 
and Marston [J. Acoust. Soc. Am. 89,2545-58 (1991)] is to replace R by the unimodular 
reflection coefficient of a vacuum backed plate. In new research, Marston confirmed 
analytically and computationally that these approaches give similar values for the phase 
arg(R) at low frequencies but that the differences may be appreciable at high frequencies for 

a thick shell since Eq. (8) completely neglects the internal dynamics associated with a 
thickness resonance. A numerical comparison is shown in Figure 15(a) for the 16.2% 
thick stainless steel shell studied by Kargl and Marston. The dashed curve is from Eq. (8) 
with q> in radians while the solid curve is from the more realistic plate approximation. 

Another approximation for f0>) has been proposed by Gaunaurd and Werby [J. 
Acoust. Soc. Am. 90,2536-50 (1991)] which also neglects the internal dynamics of the 
shell. That approximation which gives a simple form for the "background transition 
function" B(ka) introduced by Marston,J12,M13 includes a wave-kinematic diffractive 

correction not present in Eq. (8). For the case of the sphere, we find 

arg(R)«(p - tan_1(3/2kfl) , (9) 

where <p is defined as in Eq. (8) and the second term is the diffractive correction. A 

comparison is shown in Figure 15(b) that supports the use of Eq. (9). The short dashed 
curve shows cp for the example in Fig. 15 (a) while the curve with longer dashes is the 

right side of Eq. (9). The solid curve is from the Gaunaurd and Werby approximation. 
Equation (9) was derived by superposing inertial and diffractive corrections to the initial 

approximation of the form function. Comparisons were also plotted for thin shells. 
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B. Wavefields of random caustics produced by reflection:   Measurements 
of intensity moments and twinkling exponents. 

When high-frequency sound is reflected from randomly corrugated surfaces, the 

reflected wavefield contains a region of large intensity fluctuations dominated by the 
presence of a network of random caustics. The effect of these caustics on the statistical 
properties of the wavefield is the subject of an investigation being carried out jointly with 
Dr. Kevin L. Williams of the Applied Physics Laboratory of the University of Washington. 
Experimental investigations were carried out at the water tank measurement facility at 
Washington State University by John Stroud. During the period of the present report 
Stroud completed his Ph.D. dissertation1,2 with the support of this grant and certain 
theoretical aspects of the research were published in the Journal of the Acoustical Society of 
America,15 The experimental results are summarized in Stroud's dissertation abstract 
reproduced in Figure 16. The intensity moments which characterize the wavefield 

fluctuations are defined as follows for the mth moment: 

I m = <T>/<i>m a«) 

where for the purposes of this discussion the "intensity" I = Ipl2 where p is the peak 
acoustic pressure of a reflected wavepacket having a known carrier frequency and 
normalized to account for a weak directionality of the wave incident on the surface. The 
angular brackets in Eq. (10) correspond to a spatial average over a specified region of the 
reflected wavefield. The nature of the fluctuations are evident in the scan of the reflected 
wavefield shown in Figure 17 where the wavepacket incident on the surface was a 6 
cycle pulse having a cosine squared enveloped with a 200 kHz carrier. (The axes are 
labeled in meters.) The brightest regions are the highest intensity regions of the reflected 
wavefield. These regions lie adjacent to the predicted locations of caustics shown as the 
curves in Figure 17. The measured wavefield shown is like the one synthesized by 
modifying our analysis15 to describe pulses. One important conclusion is that for the 
region shown the moments of the reflected wavefield do not correspond to those of a 
random phasor sum which gives a Rayleigh amplitude distribution and an exponential 

intensity distribution as is often assumed. Contrary to the behavior of an exponential 
distribution, which has Im = m!, the Im tend to increase with increasing wavenumber k = 
co/c. M. V. Berry [J. Phys. A. 10,2061-2081 (1977)] predicted (for situations like the one 

measured) the following high-frequency scaling behavior 



Twinkling of underwater sound reflected by one realization from a Gaussian 
spectrum population of corrugated surfaces:   Experiments and comparisons 
with a catastrophe theory approximation—John S. Stroud, Department of Physics, 
Washington State University, May 1995 (Ph.D.). Experimental and numerical investigations 
were carried out on sound in water reflected from a single realization of a population of 
Gaussian spectrum random rough surfaces. These investigations used ultrasound of various 
frequencies and pulse lengths to study a predicted scaling of intensity moments with 
frequency. The high-frequency scaling of the moments is a consequence of the caustics in the 
reflected wavefield. The resulting spatial fluctuations of the intensity are analogous to the 
scintillations or twinkling of light resulting from focusing and defocusing within the atmos- 
phere. The surface properties (rms height and correlation length) are such that the Kirchhoff 
approximation may be used to calculate the reflected wavefield. Relevant conceptual tools and 
results from the branch of mathematics known as catastrophe theory are used to classify the 
types of contributions one expects as well as providing the scattered pressure amplitude for a 
given caustic. Catastrophe theory also provides the scaling properties of the intensity 
moments. The theoretical prediction that the second moment of intensity has a logarithmic 
dependence on the wave number is confirmed. The prediction that the third through the fifth 
moments depend upon the wave number in a manner as kVnx where m represents the with 
moment and k is the wave number of the incident sound is also supported by the measure- 
ments. For Airy caustics, the theoretical values of the twinkling exponents vm are 1/3, 2/3, 
and 1 respectively. For the largest scan of the reflected wavefield recorded, the twinkling 
exponents were measured to be 0.30,0.57, and 0.86. The dependence of the second moment 
on pulse length and distance was also measured. For long duration pulses and large distances 
from the surface, there is evidence of a transition towards a negative exponential intensity 
probability density function (PDF). A negative exponential PDF is characteristic of a 
Gaussian quadrature field associated with the interference of many contributors. 
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I   =Akm,     m>2,    vm = twinkling exponent. (11) 
mm m 

This experiment is the first laboratory measurement of the vm for sound waves. The 
measured vm for m = 3,4, and 5 lie close to the predicted values (see Figure 16). [For 

an introduction to random caustics see: P. L. Marston, Physical Acoustics 21,1-235 
(1992) Sec. 3.14.] Other statistical measurements studied by Stroud include the variation 
of the second moment h with distance from the surface and the duration of the incident 
pulse. The research has direct application to understanding the statistics of fluctuations in 

target strength resulting from high frequency sound reflected by smoothly curved surfaces. 

C. Interaction of sound with sound mediated by a suspension of particles. 

When a suspension of small particles is present in water, the interaction of sound 
with sound may be significantly enhanced by the following process: (i) a grating in the 
number density of suspended particles is induced by the spatially periodic radiation 
pressure of the standing wave formed by two of the incident waves and (ii) the reflection of 

an ultrasonic probe wave is greatly enhanced when the Bragg condition is met This 
mechanism was originally demonstrated with ONR support in the Ph.D. dissertation of H. 

J. Simpson."13 During the period under review, the theory for the interaction was 
submitted and accepted for publication in the Journal of the Acoustical Society of 
America.*11 Kwiatkowski made the following experimental and theoretical advances.M14 

1.    Collinear four-wave mixing mediated by a suspension. 
The previous experimental work was limited to oblique Bragg reflection and 

therefore required meticulous alignment. In the new geometry the probe wave propagates 
along the same axis as the pump standing wave as shown in Figure 18. A PVDF sheet is 
placed at one end of the standing wave resonator which is the source of the probe wave as 
well as the receiver of the Bragg reflected signal. The pump frequency is typically 770 kHz 
while the probe wave is scanned in the range 1.5 to 4 MHz. Another innovation is that 
hollow glass microspheres are used for the suspension to facilitate varying the 
concentration over a wide range. Varying the duration of the probe tone burst has 
approximately the same effect as varying the number of layers in the grating since the 
number of layers illuminated by the incident sound is proportional to the duration. The 
theory indicates that the frequency width of the Bragg peak varies inversely with the 
duration of the probe burst This prediction is confirmed by the comparison with theory 
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plotted in Figure 19 for the Bragg peak centered at twice the pump frequency. In each of 
the figures there is one adjustable parameter to facilitate the comparison: the magnitude of 
the reflectivity at the peak was adjusted to fit the theoretical comparison. In the future it 
should be possible to calibrate the system to give the absolute reflectivity and thereby 

acoustically infer the equilibrium volume fraction of suspended particles. 

2.   Transfer matrix analysis of the Bragg reflection amplitude. 
The analysis of Simpson and Marston111 is based on a Born approximation which 

does not take into account the depletion of the probe wave as it propagates through the 
grating. That approximation is limited to small values of the Bragg reflectivity. In 

anticipation of experiments where that assumption will breakdown, Kwiatkowski has 
implemented a transfer matrix calculation of the Bragg reflection amplitude. For weak or 

small gratings, the results based on the Bom approximation are recovered but there are 
significant differences when the number of layers is large. The transfer matrix prediction 
saturates with a maximum reflectivity of unity unlike the (incorrect) Bom predictions. 

D. Supplemental research:    Light scattering and sonoluminescence. 

During the period under review, our experimental and theoretical research on a 
sequence of complicated optical caustics was published.-*1-3 The caustics are the result of 
tight internally reflected two or more times within acoustically levitated oblate drops. 

During summer semester of 1994, Mark Marr-Lyon performed exploratory observations 

of single bubble sonoluminescence (SBSL). The type of acoustic levitator used operated at 23 
kHz and was a copy of the design developed for the levitation of large bubbles [Asaki, Marston, 
and Trinh, J. Acoust. Soc. Am. 93 , 706-13 (1993); Asaki and Marston, J. Acoust. Soc. Am. 
96,3096-9 (1994) and 97,2138-43 (1995) and J. Fluid Mech. (accepted for publication)]. 
Short pulse SBSL optical signatures were recorded.1*1 A search for effects of a superposed 
static magnetic field on SBSL was inconclusive with the equipment available at that time. 

In related research Marston investigated the theory of the lowest frequency modes 

of a cavity in water such as formed by an SBSL bubble. The question of interest is the 
following: Why does the reported SBSL spectrum fail to show any clear signatures of the 
cavity modes? In addition to the transient nature of the cavity and associated large velocity 
of the cavity walls, a tentative result of Marston's numerical analysis is that the quality 
factor or Q of bubble TE modes is small. This is in contrast to the case for drops of water 
where light may be trapped inside by internal reflection but is consistent with light 
scattering theory for bubbles, recently reviewed for bubbles by Stroud and Marston.B1 
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