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Abstract 

Periodic surfaces are the microwave analogs of optical diffraction gratings. While 

diffraction gratings serve as spectrum analyzers, periodic surfaces have found many 

practical applications as frequency selective surfaces which transmit or reflect a 

preselected band of frequencies. In examining the electromagnetic scattering from a 

periodic surface, one generally assumes the surface is planar and is truly periodic which 

implies the surface is infinite in extent. Practical considerations make deviations from the 

ideal unavoidable. For example, infinite surfaces are impossible and true periodicity may 

not be achieved due to manufacturing tolerances and imperfections. The effects of such 

deviations on the performance of a given periodic surface thus are matters of practical as 

well as theoretical interest. 

The purpose of this work is to characterize the degradation due to deviations from 

strict periodicity, on electromagnetic scattering for plane wave incidence upon a periodic 

surface. To render the problem tractable and still yield useful results, the two-dimensional 

case of a strip grating consisting of infinitely thin conducting metallic strips with parallel 

edges, separated by gaps or slits, was chosen to initiate investigations into the effects of 

the variations. The variations are assumed to be small random perturbations in the widths 

of the strips and slits as compared to an ideal periodic strip grating. 

Prior works in random linear antenna arrays treat the element location as a random 

point with distributions such as Poisson or uniform. This treatment is not suitable for use 

as a basis for this study because a distribution specifying the distance between successive 

points is more appropriate in specifying the random errors in the width of each strip and 

slit. Using this specification, the average power factor of a linear array of point sources is 

calculated and is equal to the power spectral density of the random process specifying the 

inter element spacing.   The variance and standard deviation of the average power factor 
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are also calculated and as the number of points approaches infinity, the standard deviation 

approaches the mean. 

Random variations in geometry preclude exact analytical solutions using 

techniques such as the Wiener-Hopf method. Hence, formulations for the far-field 

statistical average power pattern of a strip grating with errors in the widths of the strips 

and the slits are presented using two approximate methods. The first formulation utilizes 

the Born approximation in which the unknown aperture fields are replaced by the incident 

fields. The second formulation utilizes an approximation for the unknown fields which 

satisfies the edge condition, i.e. has singularities at the edges of the slits/ strips. 

Approximations for the scattered fields are first derived using perfect electrical conducting 

(PEC) surface equivalence for a TEz polarized plane wave incident upon a strip grating 

consisting of an infinite PEC screen cut by a number of infinitely long slits (infinite in the 

z-direction). Babinet's principle is then used to obtain approximations for the fields 

obtained when a TMz polarized plane wave is incident upon the complementary grating 

formed by interchanging the slits and strips of the original grating, i.e. a number of 

infinitely long strips in free space. Expressions for the average power pattern are 

developed in terms of the following variables: number of slits or strips, desired width- and 

spacing-to-wavelength ratios, and the characteristic functions of the probability density 

functions of the width and spacing errors. Examples are presented showing the effects of 

the above variables for both uniform distributed errors and errors with a density function 

based upon a cosine function. The variance and standard deviation for both 

approximations are examined, and , like the power factor of the array of point sources, as 

the number of points approaches infinity, the standard deviation approaches the mean. 

The results are compared to and agree with the average of a number of patterns computed 

for realizations of gratings containing actual randomly generated errors in the width of 

each strip and slit. 
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TOLERANCE THEORY OF PERIODIC SURFACES 

I. Introduction 

Purpose 
The purpose of this research effort was to develop analytical methods to 

characterize the degradation in electromagnetic scattering when a plane wave is incident 

upon a periodic surface having small but random variations in geometry. The 

characteristics of interest were the reflection and transmission properties as functions of 

angle of incidence, frequency, and polarization. To render the problem tractable and yet 

yield useful results, the analysis considered a two-dimensional periodic surface composed 

of perfect electrical conducting (PEC) strips separated by gaps or slits, i.e. a strip grating. 

In the ideal case, all strips have equal widths and all slits have equal widths. This research 

investigated the effects of small changes in the widths of the strips and slits from the ideal 

case. 

Background 
Periodic surfaces are the microwave analogs of optical diffraction gratings. While 

diffraction gratings serve as spectrum analyzers, periodic surfaces have found many 

practical applications as frequency selective surfaces which transmit or reflect a 

preselected band of frequencies. In formulating the problem of reflection and transmission 

of a periodic surface within the framework of Maxwell's equations, one generally assumes 

the surface is planar and is truly periodic which implies the surface is infinite in extent. 

Practical considerations make deviations from the ideal unavoidable. For example, infinite 

surfaces are impossible and true periodicity may not be achieved due to manufacturing 
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tolerances and imperfections. The effects of such deviations on the performance of a 

given periodic surface thus become matters of practical as well as theoretical interest. 

Similar problems arise in antenna array theory and have been investigated by 

several authors, notably Lo (14) , Ruze (23), Skolnik (25), and Steinberg (26). In 

antenna array analysis, the location of each element is treated as random and the problem 

can be solved using well established time series formulations if one replaces distance by 

time. 

A number of authors have investigated different mode matching, variational, and 

Wiener-Hopf solutions to the problem of the exact periodic strip grating. Several of these 

include Agronovich, Marchenko, and Shestopalov (1), Baldwin and Heins (5), Chen (8), 

Daniele, Gilli and Viterbo (9), Ishimaru (11:189-194), Kieburtz and Ishimaru (13), 

Luk'yanov (16), Luneberg and Westpfahl (17), Miles (18), Vanblaricum and Mittra (28), 

Weinstein (29:267-281), and Wu (30). No work has been done, however, on gratings 

with random variations in geometry. 

Overview 

The purpose of this work was to conduct a thorough and detailed investigation of 

the effects of deviations from strict periodicity on the scattering from periodic surfaces. 

To make the problem tractable and at the same time reflect prevailing manufacturing 

standards, the deviations were assumed to be small random perturbations in an otherwise 

periodic system. The two-dimensional case of a strip grating consisting of an infinitely 

thin, planar PEC screen cut by an infinite number of periodically spaced, infinitely long 

slits with parallel edges formed the basis for this research. The effects were characterized 

in terms of the expected value of the far-field power pattern of the scattered fields. 

Before starting on the strip grating problem, two chapters are included to provide 

important background information and theory. First, the average power pattern of a linear 
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array of point sources with random spacing between points is determined in Chapter II. 

Associated with this chapter is an appendix which presents the calculation of the variance 

of an array with an infinite number of point sources. The methods developed in this 

chapter and the associated appendix for dealing with random spacings in the array serve as 

the basis for analyzing the random errors introduced into the strip grating in later chapters. 

Second, basic electromagnetics theory used in the formulation of the scattered fields is 

presented in Chapter III. Here, PEC surface equivalence is used to derive a general 

expression, in terms of the unknown equivalent magnetic surface current, for the fields 

produced when a TEz polarized field is incident upon a strip grating with the slits and 

strips infinite in the z-direction. Babinet's principle is then used to derive an expression for 

the fields, in terms of the unknown equivalent electric surface current, produced with TMz 

incidence upon the complementary grating. The complementary grating is obtained by 

interchanging the slits and strips in the original grating. As a result of Babinet's principle, 

the equivalent magnetic surface current for TEz incidence upon a strip grating is the same 

as the equivalent electric surface current for TMz incidence upon the complementary 

grating. Consequently, the same integral equation is used to represent the scattered fields 

for both cases. 

The next two chapters utilize two different approximations for the unknown 

equivalent surface currents. Chapter IV presents the results of utilizing the Born 

approximation in which the unknown fields are replaced by the incident fields while 

Chapter V presents the results of utilizing an approximation which satisfies the edge 

condition. For both methods, expressions for the far-field average power pattern are 

derived for both gratings with no errors and gratings with independent, identically 

distributed errors in width (i.e. the length of each slit for the TEz mode or the length of 

each strip for the TMz mode) and spacing (i.e. the length of each strip for the TEz mode 
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or the length of each slit for the TMz mode). The probability density functions (PDF) of 

the errors in width may or may not be equal to the PDF of the errors in spacing. 

The far-field average power pattern is computed and presented in graph format 

using uniformly distributed PDFs with zero mean for the following conditions: 

1) Width errors alone, spacing errors alone, and both width and spacing errors 

2) Width equal to spacing, width less than spacing, width greater than spacing 

3) Maximum error values (expressed as a percentage of desired width or spacing) 

of: 0 (i.e. no error), 5,10,15 and 20% 

Graphs are presented for gratings with a finite number of slits/strips to allow comparison 

between the patterns of gratings with errors to gratings with no errors. In addition, graphs 

are presented for gratings with an infinite number of slits/ strips. Finally, to provide a 

more realistic picture of the average power pattern, patterns are provided for PDFs based 

on a cosine function which distributes most of the errors around the mean value of zero. 

Associated with these two chapters are appendices which present the calculation of the 

variance of a strip grating with an infinite number of slits/ strips for both the Born 

approximation and the edge condition approximation. 

To validate the expressions for the average power pattern derived in Chapters IV 

and V, the results of a number of trial realizations are presented in Chapter VI. Here, 

errors in a number of gratings are randomly generated using the uniform or cosine density 

functions. The average power pattern is computed for each grating and the results 

averaged together. This average of the realizations is then compared to the statistical 

average computed using the expressions derived in Chapters IV and V. Plots showing the 

standard deviation of the realizations are also provided. 

Finally, the results of this research are summarized in Chapter VII which outlines 

the major accomplishments and provides observations and conclusions arising as a result 

of this effort 
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II. Linear Array of Point Sources 

Overview 

Before looking at the problem of the strip grating, it is insightful to calculate the 

average power pattern of a linear aperiodic array of point sources. This is equivalent to 

the average power pattern of a linear aperiodic antenna array. As stated previously, 

several authors have investigated the problem of random errors in antenna arrays. In the 

works referenced in Chapter I, the authors calculate the average power pattern of a linear 

aperiodic array where the location of each element is treated as random. The distribution 

of the element locations is typically specified by normal or Poisson PDFs. These 

calculations, however, are not useful in this investigation because they consider the 

location of each element as the random quantity, not the spacing between elements. 

Average Power Pattern of a Linear Array of Point Sources 

Let N+l point sources be arranged on a line with the location of the ntn source 

denoted by Xn as shown in Figure 2.1. Define the distance between the point sources to 

be given by: 

Ln=Xn-Xn_!    ,n = l,2,...N (2-1) 

The array factor is given by (15:11-9): 

f(u)=£ejkuX« (2-2) 
n=0 
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Figure 2.1 Linear Array of Point Sources 

where 

u = sin 0 

9 = angle measured with respect to the normal to the array 

k = 2TC IX, X = wavelength 

(2-3) 

The average power factor will be defined as: 

|f(u)|  = 
2 1 

N + l 
y eJkuXn 

n=0 
(2-4) 

For the case where the spacing is periodic with period T, then: 

Ln=T   for all n (2-5) 

and the average power factor becomes: 
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FexactW|        p.    , 
n=0 

jkunT 

sin (N+l) 

N + l sin w 
kTu (2-6) 

In the limit as the number of point sources approaches infinity, the average power factor 

becomes: 

lim 
N->°° 

i2    X ^ xf    nX KM 418 u- (2-7) 

Now let the array have random errors in spacing such that the 1^ are 

independent, identically distributed random variables with a PDF denoted by p(L). The 

average power factor is now given by: 

if(u>i2=^EM (2-8) 

where E(|f(u)|2} denotes the expected value of |f (u)|2given by (21:138): 

E{|f (u)f } = J+J |f (u)|2p(L)dL = fj |f (u)|2p(L)dL (2-9) 

The last equality arises from the fact that p(L) = 0 for L < 0, i.e. the distance between 

sources is always a positive number. Thus 
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|f(u)|  =E 
1      N 

L_ Y e
jkuX" 

1 

N + ln=o 

" N      N 

N + l    InTo^O 
eJkuXne-jkuX„ 

1 N   N-n 

N + l 
EUN + l) + 2Re£ Ee Jku(Xn+m-X„. 

n=l m=0 

(2-10) 

Where "Re" denotes the real part. But, 

and 

X_-Xm=Lm,1+Lm+,+   -   +Lm+n    (n terms) '■n+m     -^-m — ^m+1 T ^m+2 (2-11) 

N    N-n 

lf(u)|2=^T7E (N + D + 2Re£Xe 1
 N + l    I ~ ^0 

Jku(Lm+l+Lm+2+    —    +Lm+n) 

N    N-n 

= 1 + E^ ReY Ye 
N + l     ^f ±1 

Jku(Lm+1+Lm+2+   -   +Lm+n) 

n=l   m=0 

N    N-n 

= !+• 
N 

~ is    N-n    r 
jku(Lm+1+Lm+2+   -   +L„ 

n=l   m=0 

(2-12) 

Where the last equality arises from the fact that the expected value of a sum of 

independent random variables is the sum of the expected value of each separate random 

variable.  Since all the Lj, are independent but identically distributed, 

gL Jku(Lm+i+Lm+2+   -   +Lm+n) j _ g|eJkuLm+1 jgjgjkuLm+2 T ..g L jkuLm+n J 

= En{ejkuL} 
(2-13) 

and 
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N    N-n 

^ ^ l        n=l   m=0 

l-Re|;(N+l-n)En{e^} = 1 + - 

(2-14) 

Now define the characteristic function O(u) as: 

O(u) = pp(L)ejkuLdL = pp(L)ejkuLdL 
J—oo JO 

(2-15) 

The characteristic function has the following general properties (21:153-154): 

1   =»   |0(u)|<l       (2-16) 

»+0O 

1. 0(0) = [   p(L)dL = l 

2. |<D(u)|=J    ejkuLp(L)dL< J^pttOdL 

3. |0(u)|<l   for u * 0 unless L takes on values forming an 

arithmetic progression(i.e. periodic) 

Substituting for the characteristic function, the average power factor becomes: 

|f(u)|  =l + 2Re£<Dn(u) ^-Re£nOn(u) (2-17) 
n-l n-1 

Now use the relations: 

y0n=^_zS 
~ l-< n=l o 

and 
N            <D + NO

N+2
-(N + 1)$ 

> nOn = -T  

N+l 

(2-18) 

(2-19) 
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to obtain: 

<D(U)-<D(U) 
N+l 

lfH =1+2Re \-^W) N + l 
■Re- 

O(u) + N0>(u)N+2-(N + l)o(u) 
N+l 

[l-0(u)f 

(2-20) 

Application of L'Hopital's rule yields: 

|f(0)|  = N + 1 (2-21) 

For the case of an infinite number of point sources, i.e. N -»°o, use the following 

relations for |$|<1: 

and 

to obtain: 

O 
lim5>n=r XT     v . 1 N->°o n=l <£ 

limln<1,n=7r^ 

(2-22) 

(2-23) 

|fH =lim 
N->oo 

l + 2Re^ 
O(u)   | 2_ 

l-<D(u)|    N + l 
Re< 

<D(U) 

[l-0(u)f 

= l + 2Re<^ 
_$(u)_ 

l-O(u) 

|l-*(u)|2 

(2-24) 
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For the case where u = 0, application of a Taylor series expansion around u = 0 can be 

used as follows: 

Let 

U-> U.+ JÜ) (2-25) 

then retaining only the first order terms of a Taylor series expansion for small u. and (0, 

and 

where 

eJkuL _» i + jk(ji+ jo)L = 1 -cokL+ jkuL 

JIOO 

p(L)[l - G)kL + jk^LjdL 
o 

= 1 - (okL + jk|j.L 

L = E{L}= fp(L)LdL 
»o 

(2-26) 

(2-27) 

(2-28) 

Substituting Equation (2-27) into Equation (2-24) yields: 

i-7 TT2      l-|l-(okL +jkjiLl       * 
fU+Jw)   =\, = =t = _" 

l-(l-o>kL + jk[iL) 

(l-cokL) +(k|iL) 

((0kL)2+(k|iL)2 

2to-kL(co2 + n.2) 

kL"(ü)2+ji2) 

(2-29) 

or retaining only the first order terms: 
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IfU+jco)^;2^    2. (2-30) 
kL(co2+^i2) 

Using the following relation (27:166): 

2(0       »2TI5(H)       as   W-^0 (2-31) 2 2 CD  +n 

Equation (2-24) becomes: 

■i2 2TC8(H)    ^S(u.) |f(^)|  =±^ = ^p       for   n = 0 (2-32) 

which is the same as for an array with exact periodic spacing. 

The variance and standard deviation (o) of the average power pattern of an array 

with an infinite number of point sources is calculated in Appendix A with the following 

results: 

o = < 
|f(u)| for   u*0 (233) 

0 for   u = 0 

Comparing Equation (2-6) to Equation (2-20), we see that the average power 

pattern for the array with random spacing errors is related to the average power pattern 

with no spacing errors via terms involving the characteristic function of the spacing 

errors. Similar expressions will be developed for the strip grating. 
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III. Electromagnetic Theory 

Overview 

This chapter presents basic electromagnetics theory required to develop the 

expressions for the fields scattered by a strip grating. Expressions for the scattered fields 

are derived in terms of integral equations involving unknown equivalent magnetic or 

electric scattering currents. 

Integral Equations for an Aperture in a Conducting Screen 

The following forms of the free space Maxwell's equations expressed in Gaussian 

units with ejtot time convention will be used in all derivations: 

VxH = jkE (31) 

VxE = -jkH 

Consider a plane wave incident upon a planar PEC screen containing one or more 

apertures as shown in Figure 3.1. Let A denote the aperture(s) and M denote the PEC 

surface. An equivalent problem can be obtained by wrapping a Huygen surface around the 

screen and using PEC surface equivalence with the appropriate equivalent electric and 

magnetic surface currents (4:329-334). The equivalent surface currents are given by 

(4:330): 

Js=nxH 
_       _ (3-2) 
MSeq=Exn 
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Y 

M 

A 
X 

z 
=0 

Figure 3.1 Plane Wave Incident upon PEC Screen with Aperture 

where n is the outward normal from the Huygen surface and E and H are the total fields 

on the surface of the screen. Since the screen has been replaced with a PEC plane, the 

JSeq electric currents do not radiate. Also, MSeq = 0 on the original PEC surface, leaving 

a non-zero MSeq magnetic current only in the location of the former aperture as shown in 

Figure 3.2. MSeqi and MSeq2 are given by (4:330): 

MSeql=-nlxEA=-yxEA 

MSeq2 = -n2 x EA = y x EA = -M, Seql 

(3-3) 

where 

EA = total E in the aperture 
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Figure 3.2 Equivalent Problem 

The vector potential F is given by (4:279): 

F(R) = JAMs(R')G0(R,R')da' (3-4) 

where 

~..    e 
-jkR-R' 

is the free space Green's Function and 

R' 
(3-5) 

|R - R'l = yj(x - x')2 + (y - y'? + (z - z')2 (3-6) 

The scattered fields due to the vector potential are given by (4:259): 
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Es=-VxF 

Hs = -—(VxEs) = -ivx(-VxF) = -jkF--fv(V-F) 
jk k k 

(3-7) 

The total fields are given by, using image theory (7:97): 

E=H 
Ei+Er+Es(2MSeql)        ,y>0 

Es(2MSeq2) ,y<o 
(3-8) 

H = 
Hi+Hr+Hs(2MSeql)       ,y>0 

Hs(2MSeq2) ,y<0 
(3-9) 

where Es(2MSeql)andHs(2MSeql) are the scattered fields due to 2MSeql and 

Es(2MSeq2) and Hs(2MSeq2) are the scattered fields due to 2MSeq2. The factor of two is 

due to the image of the magnetic current in the presence of the PEC plane. E1 and Hl are 

the incident fields while Er and FT are the fields reflected from the PEC plane. From 

image theory, the components of the reflected fields are given by (3:158): 

E^(x,y,z) = -EUx,-y,z) 

E;(x,y,z) = E;(x,-y,z) 

Er
z(x,y,z) = -EUx,-y,z) 

H^(x,y,z) = H^(x,-y,z) 

Hr
y(x,y,z) = -H;(x,-y,z) 

H^(x,y,z) = H;(x,-y,z) 

(3-10) 

Boundary Conditions for an Aperture in a Conducting Screen 

Due to the symmetry of the problem and the vector potential, the following 

relations apply to the scattered fields (12:436), (7:97), (6:559): 
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Ex(x,y,z) = Ex(x,-y,z) Hs
x(x,y,z) = -Hx(x,-y,z) 

Es
y(x,y,z)=  -Es

y(x,-y,z) Hs
y(x,y,z) = Hs

y(x,-y,z) (3-11) 

E*(x,y,z)= Es
z(x,-y,z) Hs

z(x,y,z) = -Hs
z(x,-y,z) 

On the PEC surface, the tangential E-field components must be zero. Thus, on the PEC 

surface M, 

Ex=Ez=0 (3-12) 

In the aperture A, continuity of the fields requires that 

Es
x2 = E'x + Er

x + Es
xl Hs

x2 = Hx + Hx + Hs
xl 

E;2 = E;+E;+Es
yl Hs

y2 = Hy + Hy+Hs
yl 0-13) 

E^ =£!+£', +EL Hz2=Hz+Hz+Hzl 

Using Equation (3-10) and the fact that x=0 in the aperture, Equation (3-13) becomes 

Es
x2=Exl Hs

x2=2Hx+Hs
xl 

'y2 = 2Ey + Eyl Hy2 = Hyl 

Es    _ es TTS    _ OTji   i us 
z2 ~ bzl Hz2 - Ztiz + Hzl 

Ey2=2Ey+Eyl Hs
y2=Hs

yl (3-14) 

Using Equation (3-11) at x=0, we see that in the aperture, 

Hs   -H1 nx2 _ nx 

Hz2=Hz (3-15) 

Ey2  = Ey 
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Equations for TEz Mode Incident on Screen with Infinite Slits 

Now consider a TEz polarized wave incident upon a conducting screen in which 

the aperture or apertures are infinite in the z-direction. For the geometry shown in Figure 

3.3, the TEz incident wave is given by: 

H1 = H^ z = e _   jk(xsin9 + ycosG) (3-16) 

Since the incident magnetic field has only a z-directed component which is 

independent of z and the screen has no variations in z, the scattered and total magnetic 

fields also have only a z-directed component which is independent of z. 

Figure 3.3 Plane Wave Incident upon PEC Screen with Slit, TEz Mode 

The scattered magnetic fields can be found using Equations (3-4) through (3-7) assuming 

Ms has only a z-directed component which is independent of z (4:698-699). Thus 

-jkx/(x^x')2+y2+(z-z')2 _ r p-jkv(x-x'r+y +(z-zr 
F(x,y) = z    M^xO^-n —2 rdx'dz' (3-17) 
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Use the following integral: 

1 
-jWa2-2 

+00  g-JkVa +z 
(2), 

^? •dz = -J7uH^(ka) (3-18) 

to obtain 

F(x,y) = -Z|JLMSZ(X') HS,2)(kV(x-x')2+y2)dx' (3-19) 

where LI is the set of lines on the x-axis where the apertures cut the z = 0 plane. 

Substituting Equation (3-19) into Equations (3-7) and (3-9) yields 

H = Hzz (3-20) 

where 

HZH 
Hz+Hz-|jLMs(x')H[)

2)(kV(x-x')2+y2)dx' ,y>0 
2Ju 

(3-21) 

U  Ms(x') *42)(kV(x-x')2+y2) dx' ,y<0 

and 

MS = MSeqlz = -Mseqj, = EM 

= the x component of the E field in the aperture 
(3-22) 

The E-field components are found by substituting Equation (3-20) into Equation (3-1) to 

obtain: 
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E  -1^ 
x   jk 3y 

Ey=_l^ (3-23) 

Ez=0 

The unknown quantity Ms can be found by solving the following integral equation 

obtained by substituting Equation (3-21) into the boundary condition for the tangential 

component of the H-field in the aperture (Equation (3-15)): 

JL1Ms(x')HS,2)(k|x-xi)dx'-|Hi(x,0) (3-24) 

which is valid for points in the slit regions. 

Equations for TMz Mode Incident on Screen with Infinite Slits 

Now consider a TMz polarized wave incident upon a conducting screen in which 

the aperture or apertures are infinite in the z-direction. For the geometry shown in Figure 

3.4, the TMz incident wave is given by: 

E1 = E[ Z = ejk(xsine + ycose) z (3-25) 

Since the incident electric field has only a z-directed component which is 

independent of z and the screen has no variations in z, the scattered and total electric fields 

also have only a z-directed component which is independent of z. The scattered electric 

fields can be found using Equations (3-4) through (3-7) assuming Ms has only a x- 

directed component which is independent of z. This leads to a solution for the scattered 

electric field in the form of: 
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Figure 3.4 Plane Wave Incident upon PEC Screen with Slit, TMz Mode 

E  =z      * 
dy 

(3-26) 

An alternative solution can be found directly from the TEz mode solution using Babinet's 

principle. Babinet's principle is as follows (3:166) and (6:560): 

1) Let EJ = F and Hj = G be incident on the screen from the +y side and E! and Hj be 

the resulting fields on the -y side. 

2) Let E2 = -G and H2 = F be incident on the complementary screen from the +y side 

and E2 and H2 be the resulting fields on the -y side. The complementary screen is formed 

by interchanging the PEC surfaces and the apertures. 

Then: 
E!+H2=F 

^-E^G 
(3-27) 
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Babinet's principle can be used as follows: 

Let EpEJ.Hj.H} be the TMz fields and E2,E2,H2,H2 betheTEz fields. Then, 

El_Ezli (3-28) 
^2 - Hz2z 

and 

EJ=H2=Fzz (3-29) 

From Equation (3-27), 

Ezl=Ezl--f   Ms(x')H[)
2)(k>/(x-x')2

+y2)dx' (3-30) 
2 *L2 

where L2 is the set of lines on the x-axis where the PEC surfaces cut the z=0 plane. 

Although Ms is numerically equal to the magnetic scattering current found in the TEz 

case, it now can be considered to represent the electric current density induced on the 

surface of the strips. This leads to introducing an electric scattering current Js by the 

following substitution: 

MS->JS (3-31) 

With this notation, Equation (3-30) becomes 

EzI = Kx -=: \  JsU') 42)(kV(x-x')2
+y2)dx' (3-32) 

2 »L2 

Thus, for the TMz mode, 
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z E = E.z (3-33) 

where 

Ez = Ez -\JL2Js(x') H(
0
2)(k,/(x-x')2

+y2 )dx'   for y< 0 ^ 

= Ez+Es
z
tot 

The Ez
,tDt notation is used to differentiate the field scattered by the complementary grating 

for the TMz case from the field scattered by the original grating for the TEz case as given 

in Equation (3-8). To solve for the electric field for y>0, superimpose the image problem 

of  -E^(x,-y,z) incident on the negative side of the screen which yields -Ez(x,-y,z) 

(3:163-164). Now 

Ez(x,y,z)-Ez(x,-y,z) = EUx,y,z) + Er(x,y,z)-E^(x,-y,z)-Es
z'
tot(x,-y,z)   (3_35) 

= Ez(x,y,z)-Ez(x,-y,z) 

since Ez'tot is an even function in y. Thus for y>0, 

Ez(x,y,z) = Ez(x,-y,z) + Ez(x,y,z)-Ez(x,-y,z) 

= EUx,-y,z)-|jL2JsH(2)(kA/(x-x')2+y2)dx'+EUx,y,z)-EUx,-y,z) 

= EUx,y,z)-|]L2JsHj2)(kV(x-x')2+y2)dx',   y>0 

(3-36) 

Equations (3-34) and (3-36) have the same form, thus 

Ez=Ez-|jL2Js(x')H(
0
2)(kV(x-x')2

+y2)dx'   for ally 

= Ei+Es,tot 
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Note the similarity in the form of the integrals for the TMz case, Equation (3-37) and the 

TEz case Equation (3-21). The H-field components are found by substituting Equation 

(3-33) into Equation (3-1) to obtain: 

x     jk 3y 

H  =— ^ (3-38) y    jk dx 
Hz=0 

The unknown quantity Js can be found by solving the following integral equation obtained 

by substituting Equation (3-37) into the boundary condition for the tangential component 

of the E-field on the (PEC) surface (Equation (3-12)): 

JL2Js(x')H|,2)(k|x-x'|)dx' = |EUx,0) (3-39) 

which is valid for points on the original PEC surfaces. Note that Equation (3-39) has the 

same form has Equation (3-24) obtained for the TEz case. In fact, since 

E[ for the original grating = H^ for complementary grating 

L2 for the original grating = Lj for the complementary grating 
(3-40) 

then as expected from Babinet's principle, 

Js for the original grating = Ms for complementary grating (3-41) 

and in the region behind the grating, i.e. y<0, 
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-E*'tot for the original grating = H* for complementary grating (3-42) 

Equations for TEz and TMz Modes Incident on Strip Grating 

The integrals for the TEz mode in Equation (3-21) and the TMz mode in Equation 

(3-37) both are of the form: 

S = ^JLisH?)(kV(x-x')2
+y2)dx' (3-43) 

where S is the scattered field, Is = Ms or Js, and L = Lj or L2 as appropriate. Thus both 

can be evaluated in the same manner. Now consider the screen to contain a number of 

strips and slits infinite in the z-direction as shown in Figure 3.5. 

Figure 3.5 Infinite Strip Grating 

For the TMz case, the wn represent the width of the strips and the an represent the 

width of the slits. For the TEz case, the an represent the width of the strips and the wn 

represent the width of the slits. For future discussion, the term width will refer to the wn 

3-13 



while the term spacing will refer to the an. Using these specifications for the grating, 

Equation (3-43) becomes: 

S = £" Jx
XnIs(x') H?(kV(x-x')2

+y2)dx' (3-44) 
n2K 

where n ranges from 0 to +°°.    The integral equations incorporating the boundary 

conditions, Equation (3-24) and Equation (3-39), become: 

Y * fnIs(x')HS)
2)(k|x-x1)dx' = eJkxsine (3-45) 

n  1K 

Equation (3-45) is valid for Xn < x < Tn. 

Referring to Figure 3.5, the following relations hold for a grating with no errors: 

a„=A 
wn=W (3-46) 

A + W = T 

where T is the period of the grating. Setting the origin at X0, i.e. X0 = 0, Equation (3-44) 

becomes: 

S = Y^ IT^OO H?}(kV(x-x')2
+y2)dx' (3-47) 

9 JnT 
n   A 

Using the change of variables 
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x" = x'-nT (3-48) 

Equation (3-47) becomes: 

S = 2- LW Is (*" + nT) H® (kV(x-x"-nT)2+y2)dx" (3-49) 
2 Jo 

n   ^ 

Since the grating is periodic, the current in the slits or strips is related according to 

Floquet's theorem by (24:14): 

Is(x" + nT) = Is(x")ejknTsine (3-50) 

This leads to 

S = E-J0
Wls(x")eJnkTsin6 H[)

2)(k.N/(x-x"-nT)2+y2)dx" (3-51) 

The equation for the boundary conditions, Equation (3-45) becomes: 

£JE. JW Is(x-) e^Tsine H(2)(k|x _x„ _ nT|)dx„ = ejkxsine (3.52) 

n 

For the purposes of this analysis, errors in geometry of an ideal grating will be introduced 

as perturbations from the desired values of each strip and slit width. This can be 

expressed as: 

a"=A + £n (3-53) 

subject to the conditions: 
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E{e} = E{!} = 0 (3-54) 

where the en are independent, identically distributed random variables with a PDF denoted 

by pe(e). Similarly, the |n are independent, identically distributed random variables 

with a PDF denoted by p|(S-). The PDFs pe(e) and p^© may or may not be equal to each 

other. 
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IV. Born Approach 

Overview 

This chapter presents results obtained when the unknown fields in the integral field 

equations are replaced by the incident fields. This is an application of the Born 

approximation (20:1073) and is equivalent to a physical optics approximation. It is valid 

in the high frequency region where the wavelength of the incident wave is much smaller 

than the widths of all the slits and strips. Consequently, it is especially useful in problems 

of optical diffraction. 

Far Field Pattern for Grating with No Errors 

For a grating with no errors, the scattered fields are given by (Equation (3-47)): 

S = Zff +    Is(x')HS,2)(kV(x-x')2
+y2)dx' (4-1) 

2JnT 

Using the relation   
Hf(x)«^'e-j(x-,t/4) asx^oo (4-2) 

the scattered fields in the far zone become: 

— [   L(X')    y r-^^^0 l Uv' S - Y4 I    Is(x')  WT== e ^ V (4-3) 

Next, use the Fraunhofer approximation: 
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V(x-x') 2+y2 
fR for amplitude purposes 

IR + x' sin 9     for phase purposes 
(4-4) 

where 

A/^7 = R (4-5) 

and 0 is the observation angle as defined in Figure 4.1 to obtain: 

f      | k    •>*/ e jkR v fiiT+w T / A s*s'=fee   vr?'- '•(x)e jkx'sinG JX, (4-6) 

where the superscript "f' refers to the far-field approximation for the scattered fields. 

Figure 4.1 Incidence and Observation Angles 

Consider TEz incidence with the incident electric field defined by: 

■rri _    jkCxsinej + ycosej) (4-7) 

then, 
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and 

IsW = Ms=-yxE 

»-y xE 

i en. 

y=0 

y=0 

:-yxT 

1 (dH        öH„   ) 
* x —-y 

jk [ay      ax   j 
y=0 

jk   ay 
z = cos0;e

jkxsine'z 
y=0 

(4-8) 

Ii(x') = coseie
jkx'*inei (4-9) 

for both the TMz and TEz cases. Inserting this into Equation (4-6) yields: 

Sf = cosei,|5TeJ^^yfT+W ejkx'sine* e"jkx'sinedx' 
V27C VR   „   nT 

12K     VR 4jJnT 

cos0; J— e /4 e    /2 —T=  
"VTtk VR       u 

.JknTu 

(4-10) 

where 

u = sin 0; - sin 0 (4-11) 

Let n range from 0 to N, then Equation (4-10) becomes: 

[ÖT W  ikWu/ e"jkR sin(^) sin[(N+i)ßS>l 

w     n   fk-*/   jkWu/ e-jkR sin(^) sin[(N+i)^] 
= Wcos0:J— e /4 e    n —j=—T-^ . /.T \ 

'V271 VR    (^)      sin(^) 

(4-12) 
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The average power pattern for the grating with no errors is given by: 

SeXactVU/ N + l 
Sf(u) 

1    k(Wcos9i) 

N + l       2ÜR 

1     k(Wcose;) 

"N + l        2~7tR 

(4-13) 

where 

Io = 
k(Wcosej)2 

27iR 
(4-14) 

is the power intensity for a single slit or strip with u=0. With the exception of the 1/(N+1) 

factor, Equation (4-13) is the familiar Fraunhofer diffraction pattern of an array of N+l 

slits found in optics textbooks (10:410). 

To find the average power pattern for the infinite strip grating, use Equation (2-7): 

S exact vu/ = In 
sin(^) 

1¥T T ^ IU~"T~ 

8 u- 
nX 

(4-15) 

Grating with Errors 

Now let the width of the strips and slits be defined as in Equation (3-53).   The far 

zone scattered fields in Equation (4-10) become: 
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=       JC0S9i      *A  e"JkR Y   (eJk-n _eJkuxn) 
UVä     VR r 

(4-16) 

Again let n range from 0 to N. The average power pattern is given by: 

Sf(u)2=    l     COs2^ EIYY (ejkux« -ejkux«)(e-jkux"' -e-jkux">)|       (4-17) 
N + 127rkuR   [^~ J 

Let 

N     N 

D = JT ]T (ejkux" - ejkux" )(e-jkUTm - e-jkuXm) 

jku(tn-Tm)        jku(xn-xj _   jku(tn-xm) _   jku( 

n=0 m=0 

N     N 
_yy  I eJMTn-TmJ + eJkuixn-xmJ _ eJkiHTn-xm; _ eJkmxn-xm) j 

n=0 m=0 

(4-18) 

Separating the terms for which n=m, this becomes: 

D = (N +1)+(N +1) - 2 ejku(x"-xJ - X e-jku(t"-Xn) 

n=0 n=0 

N  N-n 

. n=l m=0 

jku(xn+m-tm)        jku(xn+m-xm) _ eJku(xn+m-xm) _ eJku(xn+m-xm) 

(4-19) 

or 
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( N 

D = 2(N + l)-2Re Jku(xn-xn) 

Vn=0 

N  N-n r 

II' + 2Re<! >   >   |e 
,n=l m=0 

jku(xn+m-xm)  , Jku(xn+m-xJ       jku(xn+m-xj       jku(xn+m-xm) + e 

(4-20) 

Now the following relations are true: 

Tn-Xn=Wn (4-21) 

Vm-tm=am+wm+l+am+l+wm+2+-+an+m-l+Wn 

n+m-1 

=   X(ak+wk+l) 
k=m 

xn+m - xm = Wm + am + Wm+1 + am+l +''' +W n+m-1 + an+m-l 

n+m-1 

=   X(ak+Wk) 
k=m 

^n+m -xm=Wm+am+-" + Wn+m-l + an+m-l + Wn+m 

n+m-1 

= wn+m+ £(ak+wk) 
k=m 

xn+m - Tm = am + Wm+1 + am+l +' • ■ +Wn+m-l + an+m-l 

n+m-1 

= am+  £(ak+Wk) 
k=m+l 

(4-22) 

(4-23) 

(4-24) 

(4-25) 

Also define the following characteristic functions: 

0(u) = E{ejkuw} 

0(u) = E{ejkua} 
(4-26) 
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For the types of errors given by Equation (3-53), these become: 

0(u) = E{ejkuw } = E{ejku(w+^} = ejkuWE{e^} 

<D(U) = E{ejkua} = E{ejku(A+e)} = ejkuAE{ejkue} 
(4-27) 

Then 

or 

N   N-n 

E{D} = 2(N + l)-2Re £©  +2Re ££ [o>n0n + On0n -<Dn0n+1 -O"©""1] 
^n=0     ) [n=lm=0 J 

= 2(N + l)-2(N + l)Re{©} 

+ 2Re|^(N + l-n)[on@n+On0n-On0n+1-On0n"1]l 

(4-28) 

E{D} = 2(N + 1) 1-Re{©} + Re £(0©)n[2-©-)4 
n=l 

-2Re £n(O>0)n[2-0-)/ 
ln=l 

(4-29) 

Use Equations (2-18) and (2-19) to obtain: 

E{D} = 2(N + 1) 1-Re{@} + Re 
(OQ)-(«DQ)N+1 

I-(O@) 

-2 Re 
(<£©) + N(0@)      - (N + l)(<D0) VN+1 

[l-(*0)]' 

[2-B-y9] 

2-0-1 0J 

(4-30) 

Substituting Equation (4-30) into Equation (4-17), the average power pattern becomes: 
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Sf(u) 

[2-0-}/; 
n (4-31) 

or using Equation (4-14), 

Sf(u) 
(kuW) 

1-Re{0} + Re 
(O0)-(OQ)N+1 

1-(O0) 
2-0-1 0j 

N + l 
-Re< 

(O0)+N(O0)N+2-(N + l)(O0) 

[l-(<D0)f 

\N+1 

[2-0-%, 

(4-32) 

Note the similarity of Equation (4-32) to Equation (2-20).  Substituting u=0 into the first 

equation in Equation (4-16) yields: 

i2       1    kcos2G N    N 
f(0)p=_^KCOS_«LEyy . 

V 'I      N + l    2TIR       |f*±l n=0 m=0 

1        I 
N + 

T^[(N + 1)E{W
2
}+(N

2
+N)E

2
{W}] 

^-[E{w2} + NE2{w}] 

(4-33) 

or 

Sf(0)|  =^[(N + l)W2
+Efe2}] (4-34) 
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For the case of an infinite number of slits or strips, i.e. N -» oo,     Equations (2-22) and 

(2-23) can be utilized to obtain: 

Sf(u) 2    I       2 

° (kuW)2 
1-Re{0} + Re 

(0®) 
1-(O0) 

2-0-1 
0. 

(4-35) 

To examine the behavior at u = 0, again let u -> fi + jo and use the first order terms of 

the following Taylor series expansions: 

O(n + jco)« | pa(a)[l-©ka + jkua]da 
Jo 

= l-©kä + jkuä 

0(H + j©)« | pw(w)[l-©kw + jkuw]dw 

= 1 - ©kw + jkuw 

(4-36) 

With the types of errors given by Equations (3-53) and (3-54), 

a = A + E{e} = A 

w = W + E&} = W 
(4-37) 

and Equation (4-36) becomes: 

0(|i + jco)« 1 - ©kA + jkuA « e jk(n+jco)A 

0(u + j©)«l-©kW + jkuW*e jk(n+ja)W 
(4-38) 

for small \i and ©. Substitution into Equation (4-35) yields: 

4-9 



Sf(^ + j(ö) 
[k(n + jö>) 

2 ri-Re{ejk(jl+jm)w} 
W 

+Re< 

(eJk(n+Ja)AeJk(n+jta)wj 

1 _ (eJk(^+J<a)A
eJk(fl+Ja))w 

[2 - eJk(n+J«>)W _ e-jk(|i+j«.)WJ 

1 (4-39) 

or 

Sf(^ + jco)| =Ifl 

[k(n + j(ö)2w] 

Ljk(n+j»XA+w)J 

[l-cos[k(|x + jcö)w] 

+Re{ 
1-e jk(n+jo)(A+W) 

[2-2cos[k(|i + j©)w]] 

(4-40) 

which becomes: 

Sf(u + jo) = In 

[k(n + jo))2w] 
■2\ sin 

k(|i + jco)W 
-i^2 

1 + Re^ 

/eJk(n+j»XA+W)J 

1-e jk(^+ja>)(A+W) 

(4-41) 

or 

Sf(n + jco) = M 
sin k(n+j(o)W 

-n2 

k(n+jco)W 

Jk(n+jeo)T 

1-e jk(^+jco)T 
(4-42) 

Using Equation (2-31), this becomes as © -» 0: 
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Sf(n)f=^5(n)       for   n = 0 (4-43) 

which is the same as for the case of the grating with no errors. 

Grating with Uniformly Distributed Errors 

Suppose 8 is uniformly distributed over the range: -cA < e < cA where c is the 

maximum spacing error expressed as a percentage of the desired spacing A. The PDF of e 

is given by: 

r i 
P.(e)= 

c A < 6 < c A 
2cA 
0 otherwise 

(4-44) 

The characteristic function O is given by: 

<D(u) = ejkuAE{ejkuE} 

jkuA      A 

ejkuEd8 
J-cA 

(kucA) 

2cA J-CA 

_ gjkuA 

kucA 

(4-45) 

Now let Z, be uniformly distributed over: -bW < £ < bW where b is the maximum width 

error expressed as a percentage of the desired width W. The PDF of £, is given by: 

p*te)= 

i 
2bw 
0 

- bw < 2; < bw 

otherwise 
(4-46) 

The characteristic function 0 is given by: 
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0(u) = ejkuWE{ejku^} 

eJkuW fbW     ., . 
= f f     e

jku|d£ (4-47) 
2bW J-bw 

ikuw sin(kubW) 

kubW 

Graphs comparing the average power patterns, normalized by dividing by I0 

(denoted by I/I0), for exact gratings and gratings with errors are shown below. To allow 

a clearer picture of the effects of the random errors, a finite number of slits/ strips is used 

for most of the graphs. Plots for an infinite number of slits/ strips are included to show the 

degradation to the impulse functions of the ideal grating. The following notation is used 

in the graphs to indicate the values of the appropriate variables: 

u: sin 0j - sin 0 

N+l: Number of Slits or Strips. 

WA.: Desired Width (Ratio of desired slit (TEz) or strip (TMz) width (W) to 

Wavelength) 

AA.: Desired Spacing (Ratio of desired strip (TEz) or slit (TMz) width (A) to 

Wavelength) 

Uniform Dist: Values for grating with errors computed using uniform distributions for 

the errors 

%W Tol: The maximum value allowed of the error in width (£) expressed as a 

percentage of width W. This corresponds to the variable "b" in Equation (4-46) 

%A Tol: The maximum value allowed of the error in width (e) expressed as a percentage 

of width A. This corresponds to the variable "c" in Equation (4-44) 
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Figure 4.2 shows the average power pattern for an exact grating (i.e. a grating 

with no errors) with a finite number of slits or strips. The plots consist of a series of large 

spikes located arcsin (k/T) apart in angle. The plot clearly shows the sine envelope of the 

average power pattern which is governed by the w/T ratio. On an expanded scale, Figure 

4.3 shows the effects of increasing the total number of slits or strips. As the number of 

slits/ strips increases, the amplitudes of the spikes increase and while the widths of the 

spikes decrease and the pattern begins to resemble a series of impulse functions as given in 

Equation (4-15). Figure 4.4 presents the same pattern with the values normalized so that 

the maximum value (at u = 0) equals one, again showing the sine envelope to the ratios of 

the main spikes. 

a 

3 

4 ■ 

3 - 

2 - 

1 ■ 

n M y M M /W\ ru<fl ■ Jl   A    . T       A      A      A      A      A      r,      -  T  

0       0.1      0.2     0.3     0.4     0.5     0.6     0.7     0.8     0.9       1 

u 

N+l- 5    W/h- 2    A/k- 18 

Figure 4.2 Far Field Born Approximation - Grating with no Errors 
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 Wßj- 2      A/X= 18 

Figure 4.3 Far Field Born Approximation - Effects of Total Number of Slits/ 
Strips on Grating with no Errors 
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0 0.02     0.04     0.06     0.08      0.1      0.12     0.14     0.16 

WA= 2     A/X- 18 

Figure 4.4 Normalized Far Field Born Approximation - Effects of Total 
Number of Slits/ Strips on Grating with no Errors 
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Figures 4.5 through 4.8 show the effects of errors in spacing alone, width alone, 

and both spacing and width respectively for a finite grating with desired width equal to 

desired spacing, i.e. W = A. The plots show the overall effect is to lower the amplitude 

of the main peaks and broaden the width of the spikes. The values between the main 

spikes also increase slightly. The effects become more pronounced as the parameter u is 

increased. A comparison of Figure 4.5 to Figure 4.6 shows that the effects of error in 

width alone are on the order of the errors in spacing alone for a given tolerance level. 

Figures 4.7 and 4.8 show the combined effects of errors in both spacing and width. 

Figures 4.9 through 4.12 show the effects of errors in spacing alone, width alone, 

and both spacing and width respectively for a finite grating with desired width less than 

the desired spacing, i.e. W < A. The plots again show the overall effect is to lower the 

amplitude of the main peaks and broaden the width of the spikes. A comparison of Figure 

4.9 to Figure 4.10 shows that, for this case, the effects of error in spacing alone are 

greater than the effects due to errors in width alone for a given percent tolerance level. In 

terms of absolute tolerance in wavelengths, however, the errors are similar, i!e. the %A 

Tol = 5 errors in Figure 4.9 are similar to the %W Tol = 15 errors in Figure 4.10. Figures 

4.11 and 4.12 show the combined effects of errors in both spacing and width. 

Figures 4.13 through Figure 4.16 show the effects of errors in spacing alone, 

width alone, and both spacing and width respectively for a finite grating with desired 

width greater than the desired spacing, i.e. W > A. A comparison of Figure 4.13 to Figure 

4.14 shows that, opposite to the previous case, the effects of error in width alone are 

greater than the effects due to errors in spacing alone for a given percent tolerance level. 

In terms of absolute tolerance in wavelengths, however, the errors are similar, i.e. the %A 

Tol = 15 errors in Figure 4.13 are similar to the %W Tol = 5 errors in Figure 4.14. 

Figures 4.15 and 4.16 show the combined effects of errors in both spacing and width. 
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~ Exact Grating 

- %W Tol- 0, %A Tol- 5 

- %W Tol- 0, % A Tol- 10 

■• %W Tol- 0, % A Tol- 15 

- %W Tol- 0, %A Tol- 20 

0       0.02     0.04     0.06     0.08      0.1      0.12     0.14     0.16 

u 

 N+l-10    W/X-10    A/X-10     Uniform Dist 

Figure 4.5 Far Field Born Approximation - Effects of Spacing Errors on 
Grating with Desired Width Equal to Desired Spacing 

0       0.02     0.04     0.06     0.08      0.1      0.12     0.14     0.16 
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 N+l-10    WA.-10    A/X-10     Uniform Dist  

Figure 4.6 Far Field Born Approximation - Effects of Width Errors on 
Grating with Desired Width Equal to Desired Spacing 
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 N+l=10    W/X- 10    A/X- 10     Uniform Dist 

Figure 4.7 Far Field Born Approximation - Effects of Width and Spacing 
Errors on Grating with Desired Width Equal to Desired Spacing 
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 N+l-10    W/k-10     AJX=\0     Uniform Dist 

Figure 4.8 Far Field Born Approximation - Effects of Width and Spacing 
Errors on Grating with Desired Width Equal to Desired Spacing 
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 N+l-10    WA.-5     A/X-15     Uniform Dist 

Figure 4.9 Far Field Born Approximation - Effects of Spacing Errors on 
Grating with Desired Width Less Than Desired Spacing 
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 N+l-10    WA.-5     Aa=15     Uniform Dist  

Figure 4.10 Far Field Born Approximation - Effects of Width Errors on 
Grating with Desired Width Less Than Desired Spacing 
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PLH 
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Exact Grating 

MVTol-5, %ATol-5 

*>W Tol- 10, %A Tol- 10 

%WTol-15, %ATol-15 

%W Tol- 20, %A Tol- 20 

0.01 
0       0.02     0.04     0.06     0.08      0.1      0.12     0.14     0.16 
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 N+l=10    W/X.-5     AIX= 15     Uniform Dist 

Figure 4.11 Far Field Born Approximation - Effects of Width and Spacing 
Errors on Grating with Desired Width Less Than Desired Spacing 

• Exact Grating 

■ % W Tol- 5, % A Tol- 5 

 % W Tol-10, % A Tol-10 

  %WTol-15, %ATol-15 

 % W Tol- 20, % A Tol- 20 

0     0.1    0.2    0.3    0.4    0.5    0.6    0.7    0.8    0.9      1 
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 N+l=10    W/X=5    AJl=\5     Uniform Dist 

Figure 4.12 Far Field Born Approximation - Effects of Width and Spacing 
Errors on Grating with Desired Width Less Than Desired Spacing 
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■ - %W Tol- 0, %A Tol- 10 

•• %W Tol- 0, % A Tol- 15 

■ - %W Tol- 0, %A Tol- 20 
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 N+l=10    W/X- 15     A/A.= 5      Uniform Dist 

Figure 4.13 Far Field Born Approximation - Effects of Spacing Errors on 
Grating with Desired Width Greater Than Desired Spacing 
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 N+l-10    W/A.= 15     AA.-5     Uniform Dist  

Figure 4.14 Far Field Born Approximation - Effects of Width Errors on 
Grating with Desired Width Greater Than Desired Spacing 
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■ %W Tol- 5, %A Tol- 5 

%W Tol- 10, %A Tol- 10 

%W Tol- 15, %A Tol- 15 

%W Tol-20, %A Tol-20 
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N+l=10    W/A.= 15     AJX= 5     Uniform Dist   

Figure 4.15 Far Field Born Approximation - Effects of Width and Spacing 
Errors on Grating with Desired Width Greater Than Desired Spacing 

■ Exact Grating 

■ %W Tol-5,% A Tol- 5 

• %W Tol-10,% A Tol-10 

%WTol-15,%ATol-15 

- - % W Tol- 20, % A Tol- 20 

0     0.1    0.2    0.3    0.4    0.5    0.6    0.7    0.8    0.9      1 
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N+l=10    W/X- 15     A/A.-5     Uniform Dist 

Figure 4.16 Far Field Born Approximation - Effects of Width and Spacing 
Errors on Grating with Desired Width Greater Than Desired Spacing 
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Figure 4.17 shows the average power pattern for a grating with an infinite number 

of slits/ strips for varying amounts of equal width and spacing tolerances. The effects due 

to increasing the amount of errors follow the same trends as for the finite cases. Although 

not shown on the graph, the patterns still contain an impulse at the origin (u = 0) which is 

not plotted due to its infinite amplitude. Using a ray analysis approach, the presence of 

the impulse can be regarded as being due to the fact that all rays travel equal optical path 

lengths for u = 0. The graph also shows significant reduction in amplitude and an 

increase in beam widths as compared to a grating with no errors. The figure also shows 

non-zero values at locations between the main spikes. These effects increase as the 

parameter u is increased, essentially washing out the grating lobe pattern of the grating 

with no errors. 

Figure 4.18 shows the progression of increasing the number of slits or strips from a 

small finite value up to an infinite number. Here the build up to the impulse at the origin is 

seen as well as the to the finite values at the other main spike locations. 

For completeness and later reference, Figures 4.19 and 4.20 show the average 

power pattern for low frequency scattering, i.e. T/X < 1. Figure 4.19 presents the results 

for a grating with a finite number of slits or strips. The main effect of the errors is to raise 

the value of the nulls in the floor of the pattern while the main lobe is not significantly 

affected. Figure 4.20 presents the results for a grating with an infinite number of slits or 

strips. 
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Figure 4.17 Far Field Born Approximation - Effects of Width and Spacing 
Errors on Grating with Infinite Number of Slits or Strips 
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Figure 4.18 Far Field Born Approximation - Effects of Total Number of 
Slits/ Strips on Grating with Errors 
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Figure 4.19 Far Field Born Approximation -Effects of Errors on Grating 
with Finite Number of Slits or Strips, Low Frequency Case 
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Figure 4.20 Far Field Born Approximation -Effects of Errors on Grating 
with Infinite Number of Slits or Strips, Low Frequency Case 
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Grating with Cosine Function Distributed Errors 

The uniformly distributed errors can be regarded as representing a worst case 

distribution of the errors and may not be representative of typical manufacturing errors. A 

PDF based upon a cosine function is more representative of actual errors. Let the PDF of 

8 be given by: 

r i 
Pe(e) = 2cA 

0 

1 + cos' m - cA < e < cA 

otherwise 

(4-48) 

This PDF distributes most of the errors around zero while the density tapers off to zero at 

e = ±cA. The characteristic function O is given by: 

<D(u) = ejkuAE{ejkue} 

I eJkuA r<=A    ■,, c I        ejkue 

2cA J-cA 
l + cos(^-) de 

(4-49) 

Using the integral: 

J eaxcosbxdx = 
eM (a cosbx + b sin bx) 

a^Tb1 (4-50) 

the characteristic function becomes: 

0(u) = - 
1- 

ejkuA      sin(kucA) 
fkucA'i2     kucA 

n 

(4-51) 

Use of L'Hopital's rule yields: 
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1 j-                     ft 
0(u) = ^-ec    for   u =  

2 kcA 
(4-52) 

Similarly, let the PDF of | be given by: 

pE(S = 

1 

2bW 

0 

1 + cos 
7t§ 
cX -bW<|<bW 

otherwise 

(4-53) 

The characteristic function 0 is given by: 

0(u) = ejkuWE{ejku|} 

ejkuW     sin(kubW) 
!   (kubw)2     kubW 

and 

(4-54) 

n i   p- 
0(u) = ^-e b    for   u: 

2 kbW 
(4-55) 

Graphs showing the average power pattern of gratings with errors using the cosine PDF 

are shown below. Figures 4.21 and 4.22 show the pattern for a grating with a finite 

number of slits/ strips while Figure 4.23 shows the pattern for a grating with an infinite 

number of slits/ strips. The overall effects are similar to the gratings with the uniformly 

distributed PDFs. As expected, for a given maximum error (i.e. % Tol), the errors in 

spacing and width have less of an effect upon the average power pattern of a grating with 

cosine distributed errors than to a grating with uniformly distributed errors. 
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Figure 4.21 Far Field Born Approximation - Cosine PDF, Finite Number of 
Slits/Strips 
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Figure 4.22 Far Field Born Approximation - Cosine PDF, Finite Number of 
Slits/Strips 
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Figure 4.23 Far Field Born Approximation - Cosine PDF, Infinite Number of 
Slits/Strips 
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V. Edge Condition Approach 

Overview 

This chapter presents results obtained when the unknown current in the integral 

field equation is replaced by an approximation which satisfies the edge condition, i.e. the 

current behaves as p-0"5 where p is the distance from the edge (11:577-579). The 

approximation is first obtained for the case of a grating with no errors and an infinite 

number of slits/strips and then modified for the case of a grating with width and spacing 

errors. This approach is especially valid in the low frequency region where the wavelength 

is much larger than the widths of all the slits and strips. 

Far Field Pattern for Grating with No Errors 

Setting the origin at the mid point of the first slit or strip, i.e. 1/2 (XQ + TQ) = 0, 

the scattered fields for a grating with no errors are given by (Equation (3-44)): 

s k,nT+w/2 (2) ^(x_xf     2)dx, (5.1} 

*-* 2 JnT-W/2 ¥ 

n 

which becomes in the far field: 

,f k      J%  e"JKK ^ fnT+W/2 
jkR 

S' = UL e
J74 *      V fni+^ is(x') e-^dx' (5-2) 

The unknown current Is can be approximated by the following expression (11:192): 

r  jlcx'sinOi 

iJ*')=r-Jr ^ (5-3) 
[(w^)2-(x'-nT)2] H 
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where the subscript "n" refers to the current in the ntn slit or strip and "C" is a constant. 

The value for the constant "C" can be obtained using a modal expansion for the scattered 

field as provided in Appendix B. This results in: 

C=  k*X-i-[j0(^)f (5-4) 
I       m^Pm1 J 

where 

pm=fk2-(ksinei+^)2f2 (5-5) 

Figure 5.1 compares the reflection and transmission coefficients as a function of the T/X 

ratio computed using this approximation to the coefficients obtained from an exact 

solution using the Wiener-Hopf method (29:267-281). The coefficients are calculated for 

a grating with no errors, an infinite number of slits/strips, normal incidence TEz mode, and 

the width equal to the spacing, i.e. W = A = T/2. For the range of TA. ratios shown, 

corresponding to only one propagating scattered mode, the approximation agrees very 

well with the exact solution. 

Substituting Equation (5-3) into Equation (5-2) results in: 

,f _  IT" i% £^_y f"T+w/2       cejkx'sinei 
"   "  '2*e       VR^.W/2   ^)2_(x._nT)2]> 
S' = JJL e

J% IP V fnT+W/2 _£^in__ e-J^«dx' (5-6) 
Alo- JT>    Z-lJnT-W/2    r..... .-> WA 

Using the change of variables: 

x" = x'-nT (5-7) 
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Figure 5.1 Comparison of Approximation Using the Edge Condition to 
Exact Solution Obtained via the Wiener-Hopf Method 

Equation (5-6) becomes: 

Sf = DT j% l^y fw/2 Ce
jk(sinej"sin9)(x"+nT) dx„ 

27i VR 

^eJku„Tf 
W/2 ikux" 

•W/2 [ra2-(x")2] K 
dx" 

(5-8) 

The integral is simplified in Appendix C with the following results: 

I 
W/2 Jkux" ,        . 

B-dx'^TcIoW 
■w'2 [ra2-(*-)2] M 

(5-9) 
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Which leads to: 

Sf^Fe^^JnWy.e^ 
VR 

'OV   2   /z-( 
n 

(5-10) 

The average power pattern for the grating with no errors is given by: 

SexactlU) 

2       1    C2k:i 

N + 

I 

i K7trT (MX\\ 
i-^-[Jol 2 ij 

sin (N+I) 

I« I?) 

_     i0     |"T   fkuw'jl 

sin 

kTu 

2 

■, ^2 

sin w 
(5-11) 

where 

Io = 
C2k7i 

2R 
(5-12) 

To find the average power pattern for the infinite strip grating, use Equation (2-7): 

s:-(»^i[j.wM»-T (5-13) 

Grating with Errors 

Now let the width of the strips and slits be defined as in Equation (3-53).   Using 

T 
Xn+tn+Wn 

2 

Xn+Tn-
Wn 

(5-14) 
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The far zone scattered field becomes: 

V2jt 

-jkR xn+in+wn 

^VS^Ii(x')e'J""6dX' <5"15) 

The approximation for the unknown scattering current given in Equation (5-3) is modified 

to retain the appropriate edge condition behavior as follows: 

U*') = Ce jkx'sinSj 

(^)2_(x'-^)2 
VJ 

(5-16) 

Substituting this into Equation (5-15), the scattered field becomes: 

\2K 

/ «-JkR xn+in-fwn r \\2~\~y^ 

Using the change of variables: 

n i      ^n n 
X    =X— (5-18) 

The scattered field becomes: 

S' = ^"^Iltce^-»[(^-(X.f]-KdX" 

= CJ—e 
k    >/ e"jkR v-, #(xn+xn) r^ 

27t VR 
IeJ^x"+tJJ_XeJkux"(w^)2-(x") -K 

(5-19) 

dx" 
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Using Equation (5-9), this becomes: 

s< = cW^^Y^"\(*?-) 
VR n 

(5-20) 

Letting n range from 0 to N, the average power pattern is given by: 

Sf(u) 
C'ak    Jv^ i¥ 

(N + 1)2R   1£ 
Eaze 

m=0 

f(xn+tn)j  /tajw^L-J^Um+x»^  /taiwj (5-21) 

Separating terms for which n=m, 

Sf(u) 
C27ik 

(N + l)2R 
Z[JO(^) 

ln=0 

N  N-n   .fa, •.      , 
1"2~lxn+m+'cn+ni-xm_xm^T   I kuw Jot^Jot^) 

. n=l m=0 

(5-22) 

or 

S'(u)f=^rE{[j0(Y)r} 
2R L 

+ Re 
N + l 

N  N-n   ;ku E |]£e^w,M",""gjfl(^)j0(^) 
. n=l m=0 

(5-23) 

Let 

N   N-n    .fa, _     _     s 
"V   ' V   '     J-9_\xn+m"'"xn+m   xm   *m) 

n=l m=0 
h(^Hh(^) (5-24) 
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From Equations (4-22) and (4-23), the following is true: 

n+m-l n+m-1 

Xn+m-Xm+Tn+m-tn^   £(ak+Wk) +   Z(ak+wk+l) 
k=m k=m 

n+m-1 

= 2am+wm+wn+m+2 £(ak+wk) 
k=m+l 

(5-25) 

Using the characteristic functions: 

0(u) = E{ejkuw } = E{ejku(w+I)} = ejkuWE{eJ'^} 

O(u) = E{ejkua} = E{ejku(A+e)} = ejkuWE{ejkue} 
(5-26) 

Then 

N  N-n kuw 

E{B} = £ £(e*r>E2| eJ^j0(^) 
n=l m=0 *- 

= E2je^J0(^) ^(N + l-nXeo)"©-1 

I J n=l 

{■kuw 1 T N N 

eJ^Jo(Y) 0-i (N + i)Y(©o)n-Yn(0O)n 

J . n=l n=l 

(5-27) 

Use Equations (2-18) and (2-19) to obtain: 

E{B] = E2 je^Jof^) M3T1 
(N + l) 

©O)-(0O)(N+1) 

1-0O 

+N(0O))(N+2)-(N + l)(©O)(N+l) 

[1-0O]2 

(5-28) 
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Inserting Equation (5-28) into Equation (5-23), the average power pattern becomes: 

S'(u)f=^E{[j0(^)f}+2Re 
:kuw 

E2\e  2 j0(ky*)\Q-K 
0O-(0O)(N+1) 

-2Re 
:kuw 

E2V 2 J0(Y) \®~K 

1-0O 

'+N(0O)(N+2)-(N + l)(0O)(N+l)' 

(N + l)[l-0O] 

(5-29) 

Substituting u=0 into Equation (5-21) yields: 

Sf(0)f=^(N + l) = I0(N + l) (5-30) 

For the case of an infinite number of slits or strips, i.e. N -> QO, Equations (2-22) and 

(2-23) can be utilized to obtain: 

Sf(u) 
■2       p2 C^tk 

2R 
{[Jo(-)f} + 2Re 4*J,WH^ (5-31) 

To examine the behavior at u = 0, again let u -» \i + jo and use the first order terms of 

the following Taylor series expansions for u + jco «0: 

k(|i+jo>)w «1 

.kfji+jcojw Qkw       ^w 

\--—+j- 
2 2 

(5-32) 

(5-33) 

which leads to: 
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.k(|x+jco)w 

Jr 
k(n+jco)w ,    cokw    . kuw 

1 ^ + J^- (5-34) 

and 

Eej" 
.k(n+jco)w 

k(ji+j<a)w H Pw(W) 
'     cokw   . kuw' 
1 +J-r— 

2 2   . 
dw 

,    cokw    . kuw 
(5-35) 

k(n+jffl)w 

lf}-: (5-36) 

With the types of errors given by Equations (3-53) and (3-54), 

a = A + E{s} = A 

w = W + Efe} = W 
(5-37) 

Equation (5-35) becomes: 

.k(n+jco)w 

E<jeJ~^~ J0 
k(fi+jm)wl| cokW    .kuW     j^^ 

——+J—^*e (5-38) 

for small u, and co. Using Equation (4-38), 

0(u +jco)())(u +jco) * ejk(,1+jö,)wejk(^j(D)A 

Ä eJk(^+J»)T 
(5-39) 

Substitution into Equation (5-31) yields: 
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Sf(u + jco) 
C27ik 

2R 
l + 2Re 

(   .k(n+jco)w A 
J 2  e      2 

V J 

Jk(n+ja)A 
\\ 

_(eJk(^+J«>)TJ 
(5-40) 

or 

Sf(^ + jcö) 
C27ik 

2R 
l + 2Re<^ 

eJk(>i+jü))T 

\ _ eJk(^+J°>)T 

C2::k v 
jk(n+j(fl)T 

2R    i _ eJk(n+j«)T 

(5-41) 

Using Equation (2-31), as © -> 0 this becomes: 

Sf(n + jo>) 
2    C27tk X U., 8(n) = i^8W 

2R  T T 
for   \x = 0 (5-42) 

Grating with Uniformly Distributed Errors 

Let 6 and £ have uniform PDFs as given in Equation (4-44) and Equation (4-46). 

The corresponding characteristic functions <£ and 0 are given by Equation (4-45) and 

Equation (4-47). Graphs comparing the average power patterns (normalized by dividing 

by I0) for exact gratings and gratings with errors are shown below. The majority of the 

graphs present results for low frequency scattering i.e. X>T since the edge condition 

approach is more accurate in this regime. The expected values for terms involving the 

Bessel function (J0) were computed numerically. To allow comparison of gratings with 

no errors to gratings with errors, a number of graphs were computed using a finite number 

of slits or strips. This permits the graphs to show the progressive changes in the average 

power pattern of a grating with errors to a grating with no errors. 
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Figure 5.2 shows the effects of increasing the total number of slits or strips for a 

grating with no errors and T = 0.8?u As expected, as the number of slits or strips 

increases, the pattern begins to resemble an impulse function at the origin. This is 

consistent with only one propagating mode being scattered from a grating with no errors 

and an infinite number of slits or strips when X > T. 

•N+l-5 

N+l- 10 

■ N+l- 20 

N+l- 40 

0      0.1     0.2     0.3     0.4     0.5     0.6     0.7     0.8     0.9 

u 

W/X- 0.4      A/X= 0.4 

Figure 5.2 Far Field Edge Condition Approximation - Effects of Total 
Number of Slits/ Strips on Grating with no Errors 

Figures 5.3 to 5.11 show the effects of errors in spacing alone, width alone, and 

both spacing and width for finite gratings with various ratios of desired width to desired 

spacing.   The desired period for the graphs is T = 0.8X,.   The   plots show the overall 
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effects are similar to the effects seen using the zero order approximation. Most 

significantly, the main lobe is not significantly degraded and the nulls in the floor are 

raised. 

Figures 5.3 to 5.5 show the effects of errors in spacing alone, width alone, and 

both spacing and width for a finite grating with desired width equal to desired spacing, i.e. 

W = A. A comparison of Figure 5.3 to Figure 5.4 shows that, as in the results obtained 

using the zero order approximation, the effects of error in width alone are on the order of 

the errors in spacing alone for a given tolerance level. Figure 5.5 shows the combined 

effects of errors in both spacing and width. Note the simularity of this graph to Figure 

4.19, obtained using the zero order approach. 

Figures 5.6 through 5.8 show the effects of errors in spacing alone, width alone, 

and both spacing and width respectively for a finite grating with desired width less than 

the desired spacing, i.e. W < A. A comparison of Figure 5.6 to Figure 5.7 shows that, for 

this case, the effects of error in spacing alone are again greater than the effects due to 

errors in width alone for a given percent tolerance level. Figure 5.8 shows the combined 

effects of errors in both spacing and width. 

Figures 5.9 through 5.11 show the effects of errors in spacing alone, width alone, 

and both spacing and width respectively for a finite grating with desired width greater than 

the desired spacing, i.e. W > A. A comparison of Figure 5.9 to Figure 5.10 shows that, 

opposite to the previous case, the effects of error in width alone are again greater than the 

effects due to errors in spacing alone for a given percent tolerance level. Figure 5.11 

shows the combined effects of errors in both spacing and width. 
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Figure 5.3 Far Field Edge Condition Approximation - Effects of Spacing 
Errors on Grating with Desired Width Equal to Desired Spacing 
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Figure 5.4 Far Field Edge Condition Approximation - Effects of Width 
Errors on Grating with Desired Width Equal to Desired Spacing 
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Figure 5.5 Far Field Edge Condition Approximation - Effects of Width and 
Spacing Errors on Grating with Desired Width Equal to Desired Spacing 
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Figure 5.6 Far Field Edge Condition Approximation - Effects of Spacing 
Errors on Grating with Desired Width Less Than Desired Spacing 
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Figure 5.7 Far Field Edge Condition Approximation - Effects of Width 
Errors on Grating with Desired Width Less Than Desired Spacing 
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Figure 5.8 Far Field Edge Condition Approximation - Effects of Width and 
Spacing Errors on Grating with Desired Width Less Than Desired Spacing 
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Figure 5.9 Far Field Edge Condition Approximation - Effects of Spacing 
Errors on Grating with Desired Width Greater Than Desired Spacing 
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Figure 5.10 Far Field Edge Condition Approximation - Effects of Width 
Errors on Grating with Desired Width Greater Than Desired Spacing 
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Figure 5.11 Far Field Edge Condition Approximation - Effects of Width and 
Spacing Errors on Grating with Desired Width Greater Than Desired Spacing 

Figure 5.12 shows the average power pattern for a grating with an infinite number 

of slits/ strips for varying amounts of equal width and spacing tolerances and a desired 

period T = 0.8A.. Although not shown on the graph, the patterns still contain an impulse 

at the origin (u = 0) which is not plotted due to its infinite amplitude. Whereas a grating 

with no errors would have a power pattern equal to zero for u * 0, the graph shows small 

but non-zero values for u * 0. Note the simularity of this graph to Figure 4.20. 

Figure 5.13 shows the average power pattern for a grating with an infinite number 

of slits/ strips for varying amounts of equal width and spacing tolerances and a desired 

period T = 20A,. Although not shown on the graph, the patterns still contain an impulse at 

the origin (u - 0) which is not plotted due to its infinite amplitude. The graph is very 

similar to Figure 4.17 which has the same width and spacing values. 
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Figure 5.12 Far Field Edge Condition Approximation -Effects of Width and 
Spacing Errors on Grating with Infinite Number of Slits or Strips 
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Figure 5.13 Far Field Edge Condition Approximation - Effects of Width and 
Spacing Errors on Grating with Infinite Number of Slits or Strips 
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Grating with Cosine Function Distributed Errors 

Let e and | have cosine function PDFs as given in Equation (4-48) and Equation 

(4-53). The corresponding characteristic functions O and ® are given in Equation (4-51) 

and Equation (4-54). Graphs showing the average power pattern of gratings with errors 

using the cosine PDF are shown below. Figure 5.14 shows the pattern for a grating with 

a finite number of slits/ strips while Figure 5.15 shows the pattern for a grating with an 

infinite number of slits/ strips. The overall effects are similar to the gratings with the 

uniformly distributed PDFs. As expected, for a given maximum error (i.e. % Tol), the 

errors in spacing and width have less of an effect upon the average power pattern of a 

grating with cosine distributed errors than to a grating with uniformly distributed errors. 
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Figure 5.14 Far Field Edge Condition Approximation - Cosine PDF, Finite 
Number of Slits/Strips 
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Figure 5.15 Far Field Edge Condition Approximation - Cosine PDF, Infinite 
Number of Slits/Strips 
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VI. Realizations and Validation 

Overview 

This chapter compares the statistical average power pattern computed using the 

expressions developed in the previous chapters to the average of a number of trial 

realizations. To compute the average power pattern for a realization, the errors in a 

grating are randomly generated using the uniform or cosine function PDFs. For all cases, 

a total of twenty realizations are computed for each grating. The average power pattern is 

then computed for each grating and the results averaged together. Plots showing the 

standard deviation of the realizations are also provided. 

Realizations Using the Born Approximation 

Figures 6.1 through 6.12 present the results of trial realizations using the Born 

approximation. Figure 6.1 shows a typical realization of the average power pattern for a 

grating with N+l= 10 slits/ strips and uniformly distributed errors with maximum width 

and spacing errors equal to five percent. The graph also shows the statistical average 

power pattern computed using the formulas developed in Chapter IV. As shown, the 

realization tends to follow the statistical average. Figure 6.2 shows the results of 

averaging the power pattern for twenty trial realizations. Even for only twenty 

realizations, the statistical average and the average of the realizations show excellent 

agreement. The standard deviation and the standard deviation/ mean ratio of the twenty 

realizations are shown in Figure 6.3. The standard deviation at the origin (u = 0) is small 

(-0.14). For values of u greater than zero, the standard deviation resembles the average 

power pattern. In fact, the ratio of the standard deviation to the mean shows this as the 

curve starts out at a small value at u = 0 and then oscillates about a ratio equal to one. 
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Figures 6.4 through 6.6 present results for the same gratings with maximum width 

and spacing errors equal to ten percent. The same trends are apparent and the statistical 

average power pattern again agrees with the average of the realizations. The number of 

slits/ strips is increased to N+l= 100 for Figures 6.7 through 6.9. Again the statistical 

average power pattern agrees with the average of the realizations and the ratio of the 

standard deviation to the mean starts out at a small value at the origin and then oscillates 

about a ratio equal to one. This behavior of the standard deviation is consistant with the 

expression developed in Appendix D for the standard deviation of a grating with an 

infinite number of slits/ strips. 

Finally, Figures 6.10 through 6.12 present the results for a grating with N+l- 10 

slits/ strips with errors generated using the cosine function PDF. Again, the same trends 

appear as for the gratings with the uniformly distributed errors. 
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Figure 6.1 Realization of Far Field Average Power Pattern - Born 
Approximation with Uniformly Distributed Errors 
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Figure 6.2 Far Field Average Power Pattern - Comparison of Average of 
Realizations to Statistical Average - Born Approximation with Uniformly 

Distributed Errors 

10 

1 
;> 
<u 
Q 0.1 
Tt 
4-> 

GO 

Ö 0.01 
> 
<D 
Q 
V, 0.001 
Vi 

0.0001 

i : 

Standard Deviation of 
Realizations 

■ Standard Deviation/Mean 

»fi- 
ll' :*..: 

••>i 
\.  .*'   \   it'1'-"'    ^'"••'••.%:vJ'. • 

0      0.1     0.2    0.3    0.4    0.5    0.6    0.7    0.8    0.9      1 

u 

N+l-10    W/X.-10    AA.- 10    %WTol=5     %ATol=5    Uniform Dist 

Figure 6.3 Far Field Average Power Pattern - Standard Deviation of 
Realizations - Born Approximation with Uniformly Distributed Errors 
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Figure 6.4 Realization of Far Field Average Power Pattern - Born 
Approximation with Uniformly Distributed Errors 
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Figure 6.5 Far Field Average Power Pattern - Comparison of Average of 
Realizations to Statistical Average - Born Approximation with Uniformly 

Distributed Errors 

6-4 



10 

Q 
T3 
00 

> 

Q 

00 

0.0001 

Standard Deviation of 
Realizations 

■ Standard Deviation/Mean 

0      0.1     0.2    0.3    0.4    0.5    0.6    0.7    0.8    0.9      1 

u 

N+l-10    W/X-10    A/A.-10     %WTol=10    %ATol=10     Uniform Dist 

Figure 6.6 Far Field Average Power Pattern - Standard Deviation of 
Realizations - Born Approximation with Uniformly Distributed Errors 
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Figure 6.7 Realization of Far Field Average Power Pattern - Born 
Approximation with Uniformly Distributed Errors 
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Figure 6.8 Far Field Average Power Pattern - Comparison of Average of 
Realizations to Statistical Average - Born Approximation with Uniformly 

Distributed Errors 
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Figure 6.9 Far Field Average Power Pattern - Standard Deviation of 
Realizations - Born Approximation with Uniformly Distributed Errors 
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Figure 6.10 Realization of Far Field Average Power Pattern - Born 
Approximation with Cosine Distributed Errors 
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Figure 6.11 Far Field Average Power Pattern - Comparison of Average of 
Realizations to Statistical Average - Born Approximation with Cosine 

Distributed Errors 
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Figure 6.12 Far Field Average Power Pattern - Standard Deviation of 
Realizations - Born Approximation with Cosine Distributed Errors 

Realizations Using the Edge Condition Approximation 

Figures 6.13 through 6.15 present the results of trial realizations using the Edge 

Condition approximation. Figure 6.13 shows a typical realization of the average power 

pattern for a grating with N+l= 10 slits/ strips and uniformly distributed errors with 

maximum width and spacing errors equal to ten percent. The graph also shows the 

statistical average power pattern computed using the formulas developed in Chapter V. 

As shown, the realization tends to follow the statistical average. Figure 6.14 shows the 

results of averaging the power pattern for twenty trial realizations. The statistical average 

and the average of the realizations show excellent agreement. The standard deviation and 

the standard deviation/ mean ratio are shown in Figure 6.15. As a consequence of using 

the edge condition approximation, the standard deviation at the origin is zero. For values 

of u greater than zero, the standard deviation resembles the average power pattern.  The 
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ratio of the standard deviation to the mean follows the same trend has for the previous 

cases although the ratio does not quite reach a value of one about which to oscillate. The 

number of slits/ strips is increased to N+l= 100 for Figures 6.16 through 6.18. Again the 

statistical average power pattern agrees with the average of the realizations. As shown in 

Figure 6.18, the ratio of the standard deviation to the mean does reach a value of one 

about which to oscillate. Again, the behavior of the standard deviation is consistant with 

the expression developed in Appendix E for the standard deviation of a grating with an 

infinite number of slits/ strips. 

• Realization 
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N+l=10    W/5i=0.4    AJX~0A    %WTol=10    %ATol=10     Uniform Dist 

Figure 6.13 Realization of Far Field Power Pattern - Edge Condition 
Approximation with Uniformly Distributed Errors 
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Figure 6.14 Far Field Average Power Pattern - Comparison of Average of 
Realizations to Statistical Average - Edge Condition Approximation with 

Uniformly Distributed Errors 
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Figure 6.15 Far Field Average Power Pattern - Standard Deviation of Realizations ■ 
Edge Condition Approximation with Uniformly Distributed Errors 
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Figure 6.16 Realization of Far Field Power Pattern - Edge Condition 
Approximation with Uniformly Distributed Errors 
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Figure 6.17 Far Field Average Power Pattern - Comparison of Average of 
Realizations to Statistical Average - Edge Condition Approximation with 

Uniformly Distributed Errors 
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VII. Conclusions 

Overview 

This chapter summarizes the accomplishments of this research effort, provides 

observations and conclusions regarding the results, and suggests several areas for possible 

follow on investigation. 

Accomplishments 

The first accomplishment of this effort is the formulation for the statistical average 

power pattern of a linear array of point sources with errors in spacing. This is equivalent 

to the average power pattern of a linear antenna array. Other authors have investigated 

the problem of the random array by treating the location of each element as random. The 

formulation developed in this work treats the spacing between the elements as random or 

as a desired spacing plus or minus a random error. This approach is more practical from a 

manufacturing standpoint than the random location approach. Although the development 

of the average power pattern of a linear array of point sources is presented to provide a 

basis for the formulation of the grating problem, its applicability to antenna array analysis 

makes it a noteworthy accomplishment in its own right. This is especially true when one 

considers the ease with which random amplitude and phase errors could be added to the 

formulation. 

The major accomplishment of this effort is the development of two formulations 

for the far-field statistical average power pattern of a strip grating with errors in the widths 

of the strips and the slits as compared to an ideal, exact periodic grating. The first 

formulation utilizes the Born approximation in which the unknown aperture fields are 

replaced by the incident fields. The second formulation utilizes an approximation for the 

unknown fields which satisfies the edge condition. Approximations for the scattered fields 
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are first derived using PEC surface equivalence for a TEz polarized plane wave incident 

upon a strip grating consisting of an infinite PEC screen cut by a number of infinitely long 

slits (infinite in the z-direction). Babinet's principle is then used to obtain approximations 

for the fields obtained when a TMz polarized plane wave is incident upon the 

complementary grating formed by interchanging the slits and strips of the original grating, 

i.e. a number of infinitely long strips in free space. Expressions for the average power 

pattern are developed in terms of the following variables: number of slits or strips, desired 

width- and spacing-to-wavelength ratios, and the characteristic functions of the PDFs of 

the width and spacing errors. 

The formulation of the far-field statistical average power pattern is unique in that it 

is based upon independent but identically distributed errors in the widths of each slit/ strip 

and independent but identically distributed errors in the spacings between them. The use 

of the independent errors leads to expressions incorporating geometric series involving the 

characteristic functions of the width and spacing PDFs which can be evaluated in closed 

form even for an infinite number of terms. This allows the average power pattern of a 

grating with errors to be calculated for gratings with an infinite as well as a finite number 

of stripsand slits. 

Observations and Conclusions 

A number of observations and conclusions can be drawn from the graphs in 

Chapters IV and V which show the far-field average power patterns of gratings with 

different geometries. Three observations are immediately apparent when looking at the 

patterns of gratings with a finite number of slits/ strips. First and possibly the most 

significant, the main lobe of a grating with errors is not significantly different from that of 

a grating with no errors. Second, the grating lobes are reduced in magnitude and 

broadened slightly.   Third, the level of the sidelobes between the grating lobes and the 
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nulls between the sidelobes are raised.     Furthermore, the effects increase as the 

observation angle moves away from the main lobe. 

The graphs also show the relative effects of the errors are consistent with the ratio 

of the desired width to desired spacing. For the same amount of maximum percent error, 

the effects of spacing errors are more pronounced on a grating with desired spacing 

greater than desired width than the effects of width errors. Similarly, for the same amount 

of maximum percent error, the effects of width errors are more pronounced on a grating 

with desired width greater than desired spacing than the effects of spacing errors. For a 

grating with desired width equal to desired spacing, the effects of errors in width are on 

the order of the effects due to errors in spacing. 

The same observations can be made regarding gratings with an infinite number of 

slits/ strips. For a periodic grating with no errors and an infinite number of slits and strips, 

the power pattern consists of a number of impulse functions located arcsin(A./T) apart in 

angle. These impulse functions correspond to plane waves. As shown in Chapters IV and 

V, the impulse function at the origin (i.e. the main lobe) for an infinite strip grating with 

errors is unchanged from that of a grating with no errors. The remaining grating lobes are 

significantly reduced in amplitude and broadened in width as evidenced by the fact they are 

no longer impulse functions. This means that, except for the main lobe, the scattered 

waves are no longer discrete plane waves. The power patterns of the infinite strip gratings 

also show non-zero values between the grating lobes. 

It is interesting to note that the average power pattern for a grating computed 

using the Born approximation is similar to the average power pattern for a grating 

computed using the edge condition approximation. This leads to the conclusion that the 

effects would be similar if an exact expression for the unknown fields could be obtained 

and utilized. 
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The power patteras of a number of strip gratings containing random errors in 

spacing and width were computed and the results averaged together. As shown in 

Chapter VI, the average of these realizations agrees with the computed statistical average 

for both the Born approximation and the edge condition approximation. This result 

validates the formulations developed in Chapters IV and V for the statistical average 

power pattern. The standard deviation of the realizations was also computed and the 

results agree with the formulations developed in Appendices A D, and E for the case of a 

grating with an infinite number of slits/ strips. 

The behavior of the standard deviation approaching the average power pattern as 

the number of slits/ strips goes to infinity is quite interesting. As a possible explanation, 

consider the case of the array of point sources. By invoking the central limit theorem for 

probability, the PDF of the array factor approaches gaussian. As a result, the PDF of the 

square of the magnitude of the array factor, i.e. the power factor, approaches a negative 

exponential. One property of a process with a negative exponential PDF is that the 

standard deviation is equal to the mean. 

It is obvious that the formulations developed in this work can be used to determine 

the average power pattern for a strip grating for a given distribution of errors in width and 

spacing. Conversely, they can be used to determine allowed tolerance limits to meet 

specific design criteria. Additionally, the formulation developed for the two-dimensional 

case of a strip grating can be expanded to the three-dimensional case of square or 

rectangular apertures in a PEC plane or its complement. 

Recommendations 

Several areas exist where follow on work relating to this research effort can be 

investigated. The first area involves an extension of the analysis of the linear array of 

point sources. The applicability of this analysis to antenna array theory makes the addition 
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of random phase and amplitude errors a worthy effort. The additional effort in this area 

could be strengthened by extending the analysis to two-dimensional arrays. 

Second, as mentioned above, the formulations presented for the average power 

pattern of a strip grating using the Born and edge condition approximations can be 

expanded to include square or rectangular apertures on a PEC plane (or its complement) 

as opposed to infinitely long slits and strips. The examinations of the quadruple 

summations found in the Appendices A, D, and E will be helpful in these areas. 

A third area of possible additional effort involves the investigation into a purely 

analytical formulation. Diffraction from a strip grating with no errors has been 

investigated by many authors. Most of the analytical solutions have involved use of the 

Wiener-Hopf method. As outlined in Appendix F, several problems exist which make the 

use of the Wiener-Hopf method inapplicable to the problem of a grating with errors in slit 

and strip widths. Nevertheless, a concentrated effort to develop an analytical formulation, 

whether based upon the Wiener-Hopf method or some other method would be 

worthwhile. 
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Appendix A. Variance of Linear Array of Point Sources 

This appendix derives an analytical expression for the variance of the average 

power pattern of a linear array of point sources. To keep the number of terms at a 

manageable level and simplify the expressions, the variance is calculated for an array with 

an infinite number of point sources. 

As given in Equation (2-2), the array factor for the array of point sources is given 

by: 

f(u) = £< JkuXn 

n=0 

The variance of the average power pattern is given by: 

(A-l) 

a =E IN y*wr 
(A-2) 

The second term is the square of the average power pattern, which for an infinite number 

of slits/ strips, is given in Equation (2-24): 

if^^i+2Re{iS). 
l-|*(u)|2 

(A-3) 

|l-0(u)f 

where O is the characteristic function and 

A-l 



|fM| 
2\ 

= l + 4Re^ 
$(u) 

l-O(u) 
■ + 4 Re^ *(u)   * 

l-$(u) 
(A-4) 

The first term in Equation (A-2) is given by: 

(N+I)    '    '     Ul ■ (N + l)' 

1 

(N + l)2 

•E<^ 
N    N    N    N 

SIII 
p=0 1=0 m=0 n=0 

N    N    N    N 

■«SSSS« 
p=0 1=0 m=0n=0 

eJkuXpe_jkuXleJkuXme-jkuXn 

jku(Xp-X1+Xm-Xj 

(A-5) 

The quadruple summation can be expressed as: 

N    N    N    N 

ISIS' 
p=0 1=0 m=0 n=0 

Jku(Xp-X1+Xm-Xj 
• = Sj +S2H HSJ5 (A-6) 

where 

Sj=N + l     [for indices p = 1 = m = n] 

S2 = N(N +1)     [for indices (p = 1) * (m = n)] 

(A-7) 

(A-8) 

The notation (p = 1) * (m = n) refers to indices such that p = 1 and m= n but p * mor n 

and 1 * mor n. Continuing with the summations: 

S3 = N(N +1)     [for indices (p = n) * (1 = m)] (A-9) 
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S4 = E<! 
N    N     N     N 

p=0 1=0 m=0n=0 

jku(Xp-X1+Xm-Xn) 
•, p^l^m^n   [forindicesp^l^m^n] (A-10) 

N    N 

S5 = (N-l)EJ££ejku(Xm~XnH ,n*m     [forindices (p = 1) *m*n]      (A-ll) 
,n=0m=0 

The notation (p = 1) * m* n refers to indices such that p = 1, m^n, and p^morn. 

N    N 

S6=(N-l)E^^ejku(Xm_Xl)[ , m*l     [forindices (p-n)*m*l]       (A-12) 
,m=0 1=0 

S7=(N-I)E« 
N     N 

lie 
p=0 1=0 

jku(Xm-X,) • , p * 1     [for indices (m = n) * p * 1]        (A-13) 

S8=(N-1)E 

N    N 

^JeWXp XnJ \ , p * n     [for indices (1 = m) * p * n]        (A-14) 
p=0 n=0 

N    N 

S9 = E\ £JVku2(Xm~Xn) Lm^n     [for indices (p = m) * (1 = n)] (A-15) 
km=0n=0 

S10 = E<! 
N    N    N 

X X ^eM2Xp_X,"Xnj I- , p * 1 * n     [for indices (p - m) * 1 * n]       (A-16) 
p=0 1=0 n=0 

N    N    N 
Jku(Xp+Xm-2X, Sn=ElSZZeJKUVAp^m^i; 

p=0 1=0 m=0 

• , p * 1 * m    [for indices (1 = n) ^ p ;* m]      (A-17) 

N    N 
si2 = EJ X ^ejku(Xra_Xn) [ , n * m     [for indices (p = 1 = m) * n] (A-18) 

kn=0 m=0 
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N    N 

Si3 = E EX 
Jku(xm-Xn) 

ln=Om=0 

- , n * m     [for indices (p = 1 = n) * m] (A-19) 

S14 = E^ 
N    N 

p=0 1=0 

MXp-x,, • , p * 1     [for indices (p = m = n) * 1] (A-20) 

N    N 

S15 = E\£]T eJ  l p   " I- , P * 1     [for indices (1 = m = n) * p] (A-21) 
^p=0 1=0 

Examining the above equations, the following are true: 

and 

$5 =s6 =S7 =S8 

SJJ =s10 

$12 =Sl3 =Si4=S15 

(A-22) 

(A-23) 

(A-24) 

The double summations can be expressed as: 

N    N 

Si2=^SSe        •n,tm= 

ln=0m=0 

N     N 

HII Jku(Xm-Xn) 

. n=0 m=0 

■(N + l) 

= 2(N + l)Re< 
O(u)-0>(u) N+l 

l-O(u) 
2Re< 

<D(u) + N<D(u)N+2
-(N + 1)O(U) 

N+l 

[l-O(u)]2 

(A-25) 

For the case of N —> °o, the following is true: 

-^±^ = 0 
^   / N2 N^(N + l) 

A-4 

(A-26) 



and thus there are no contributions from S12, S13, S14, and S15.  A similar argument 

shows that: 

lim /   
S\2=0 (A-27) 

N
^°°(N+I) 

and 

S5         ..     (N-l)S12 bm -—5—I= bm -r- 
N-»-(N + l)      N

^°°  (N + I) 

. fa 2(N-l)(N + 1)Re|^u)  1 (A.28) 

N-»-     (N + I)
2
        [i-®(u)J 

f   *(u)   1 
= 2Re^      v '   ' 

1-G>(u) 

Thus, 

M s5+s6+s+s8=8RJ^) (A.29) 
N-»-       (N + l) [1-0(U)J 

Also for the infinite case: 

and 

lim ,   Sl N?=0 (A-30) 
N^°(N + l) 

lim—^-T = —^-r = l (A-31) 
N->°°(N+I)

2
   (N+I)

2 

Now consider S4. It can be broken into 24 cases as follows: 

Case   l:p>l>m>n Case 13: l>p>n>m 
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Case   2:p>l>n>m Case 14:1 >p >m > n 

Case   3: p > m > 1 > n Case 15:1 > n > p > m 

Case   4:p>m>n>l Case 16: l>n>m>p 

Case  5: p > n > 1 > m Case 17:1 > m > p > n 

Case  6:p>n>m>l Case 18: l>m>n>p 

Case  7:m>l>p>n Case 19: n>p> l>m 

Case   8: m > 1 > n > p Case 20: n > p > m > 1 

Case   9:m>p>l>n Case 21: n> l>p >m 

Case 10: m > p > n > 1 Case 22: n > 1 > m > p 

Case ll:m>n>l>p Case 23: n > m > p > 1 

Case 12: m>n>p>l Case24: n>m>l>p 

First, consider case 1, p > 1 > m > n. The following relations are true: 

Xn=X0 + L,+L2+-+Ln (A-32) 

Xm = X0 + LI+L2+-+Ln+Ln+l+-Ln (A-33) 

X, = X0 + L! + L2 +• • • +Ln + Ln+1 +• • ■ Lm + Lm+1 +• • • +L, (A-34) 

Xp=X0 + L,+L2+-"+Ln + Ln+1+-"Lm + Lm+1+-"+L1+L1+1+--Lp (A-35) 

and 

Xp-X1 + Xm-Xn=L1+,+-+Lp+Ln+1+-+Lm (A-36) 
v v ,        v „ 1 

p-1 terms m_n terms 
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The summation becomes: 

N   p-1 1-1 m-1 .,       . 
S4,1=IIH^(")(P   )+(m_n) (A-37) 

p=3 1-2 m-1 n=0 

The notation S4>1 signifies case 1 of summation 4. Next consider case 2, p > 1 > n > m. 

For this case, the following are true: 

Xm = X0+L1+L2+-+Lm (A-38) 

Xn=X0+L1+L2+-+Lm+Lm+1+-Ln (A-39) 

X, = X0 + L, + L2 +• • • +Lm + Lm+1 +• • • Ln + Ln+1 +• • • +L, (A-40) 

Xp=X0+L1+L2+-+Lm + Lmfl+-Ln + Ln+1+-+L1 + L1+1+-Lp     (A-41) 

and 

Xp-X1+Xm-Xn=LI+1+-+Lp-(Lm+1+-+Ln) (A-42) 
* „ '        > v ' 

p-1 terms n-m terms 

The summation becomes: 

N   p-1 1-1 n-1 „     , /      \       N   p-1 1-1 m-1 ,     , /       \ 

p=3 1-2 n-1 m=0 p=3 1-2 m-1 n=0 
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Now consider case 3, p > m > 1 > n. For this case, the following are true: 

Xn=X0 + L1+L2+-+Ln (A-44) 

X, = X0 + Lj + L2 +• • • +Ln + Ln+1 +• • • L, (A-45) 

Xm = X0 + L, + L2 +• • • +Ln + Ln+1 +• • • L, + L1+I +• • • +Lm (A-46) 

Xp=X0 + L1+L2+-+Ln + Ln+1+-L1+L1+1+-+Lm + Lmfl+-Lp (A-47) 

and 

Xp-X1+Xm-Xn=2(L1+1+-+Lm)+(Ln+1+-+L1) + (Lm+1+-+Lp)    (A-48) 

m-l terms 1-n terms p_m terms 

The summation becomes: 

s4,3 = £ Si;So(2u)(m-1)o(u)(p-m)a)(u)(1-n) 

p=3 m-2 1-1 n=0 

N   p-1 1-1 m-l , 

p=3 1-2 m-l n=0 

(A-49) 

For case 4, p > m > n > 1, the following are true: 

X! = X0 + Lj + L2 +• • • +Lj (A-50) 

Xn=X0 + L1+L2+---+L1+L1+1+---Ln (A-51) 
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Xm = X0 + Lj + L2 +■ • • +Lj + L1+1 +• • • Lj + L1+1 +• • • +Lm (A-52) 

Xp=X0 + L1+L2+---+L1+L1+1+---Ln + Ln+1+---+Lm + Lffi+1+---Lp     (A-53) 

Xp-X1+Xm-Xn=2(Ln+1+-+Lm) + (L1+1+-+Ln) + (Lm+1+-+Lp)   (A-54) 
m—n terms n—1 terms p—m terms 

The summation becomes: 

S4,4=iXi;i0(2u)(m-n)a>(u)(n-l)<D(u)(p-ra) 

p=3 m-2 n-1 1=0 

N   p-1 1-1 m-1 , , 

= IIII^2U)(l_m),I,(U)(P~1+m"n) 
p=3 1-2 m-1 n=0 

(A-55) 

which is the same as case 3, i.e. 

SM=S4(3 (A-56) 

For case 5, p > n > 1 > m, the following relations are true: 

Xm = X0 + L1+L2+---+Lm (A-57) 

Xj = X0 + L! + L2 +• • • +Lm + Lm+1 +• • • L, (A-58) 

Xn=X0 + L1+L2+--+Lm + Lm+1+-L1+L1+1+-+Ln (A-59) 

Xp=X0 + L1+L2+---+Lm + Lm+1+---L1+L1+1+---+Ln + Ln+1+---Lp     (A-60) 
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Xp-X1+Xm-Xn=(Ln+1+-+Lk)-(Lm+1+-+L1) (A-61) 

k-n terms n-1 terms 

The summation becomes: 

N   p-1 n-1 1-1 N   p-1 1-1 m-1 

S« = XEXI*(»)(Pi®'(u)] M=IIEE*(ur)[**(u)r-"'      (A-62) 
p=3 n-2 1-1 m=0 p=3 1-2 m-1 n=0 

which is the same as case 2, i.e. 

S4)5=S4i2 (A-63) 

For case 6, p > n > m > 1. The following relations are true: 

X1=X0 + L1+L2+—+Li (A-64) 

Xm = X0 + Lj + L2 +• • • +L, + L1+1 +• • • Lm (A-65) 

Xn=X0 + L1+L2+-+L1+L1+1+-Lm + Lm+1+-+Ln (A-66) 

X  =X0 + L1+L2+---+LI+L1+1+---Lm + Lm+1+---+Ln+Ln+1+-"Lp     (A-67) 

and 

Xp-X,+Xm-Xn=Ln+1+-+Lp+L1+1+-+Lm (A-68) 
\ v J       v" w ' 

p-n terms m_1 terms 
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The summation becomes: 

N   p-1 n-1 m-1 ,      .   ,      ,       N   p-1 1-1 m-1 

S« - ESIi*(u)(p-"W"-" =£ESE4,MM+<m"n) (A-69) 
p=3 n-2 m-1 1=0 p=3 1-2 m-1 n=0 

which is the same as case 1, i.e. 

S4t6=S4!l (A-70) 

By symmetry, the cases when "m" is the highest index, i.e. cases 7 - 12, give identical 

results. Similarly, the cases when '1" and "n" are the highest indices, i.e. cases 13-24, 

result in the complex conjugates of the above cases. The final result is: 

S4=8Re<( EIIE^u)(M)+("n)+0(u)(p"10*(u)]   +°^2u)   °(u) "1+m" 
p=3 1-2 m-1 n=0 

(A-71) 

Let 

where 

S4=8Rc{s4.+Sft+S4c} (A-72) 

N   p-1 1-1 m-1 

ste=SSIS*(»r'*m"n <A-73> 
p=3 1-2 m-1 n=0 

N   p-1 1-1 m-1 ,     . ./„ „\ 

s«=EEll«(»)(,-,,[*-w](^ <A-74> 
p=3 1-2 m-1 n=0 

and 

A-ll 



N   p-1 1-1 m-1 .      , , . 
S* = XX£i;0(2u)(l-m)0(u)(p-1+ra-n) (A-75) 

p=3 1-2 m-1 n=0 

The following relations will be utilized in examining these summations: 

5U.£_L_1L£=J_(«--1) 
Z- Zrftm      ii/      1-tv ' 
m=0 m=0l 1     /t 

N £4 t(l-tN) 

m=l m=0 

N t(l-tN) ?    , „  A Vtra=- i_t = -L_(i_tN-1) 

Let 
0(u) = A 

0(2u) = B 

Returning to S4, S4a can be written as: 

N p-1 1-1 m-1 N p-1 1-1 

p=3        1=2 m=l n=0 p=3        1=2 m=l 

N p-1 N 
= ^Ap^A-'s2 = ^Aps3 

p=3        1=2 p=3 

where 

sl = YA-n=—(A-m-l) 
n 1-A n=0 

A-12 

(A-76) 

(A-77) 

Vtra=- --t = — l-tN-! (A-78) 
4» 1-t l-tv ; 
m=2 

(A-79) 

(A-80) 

(A-81) 



s2 
1-1 A A 1-1 I"1 

m=1l_A 1     A _m=0       m=0 m=l 

Al A A 
• + 

l+i 

1-A    (l_A)2    (l-A)' 

(A-82) 

and 

p-i 

s3 = - 
1-A 

A 

IX1- A     ÜA-^Ü* 
1=2 

fp-1 

1-A 

A2p   (1 

i^4 
(1-A)2t2 

A 
1=1 

2«     f 1 \P 

A     (1-A) 

(1-A)2f=2 

Ap + ■ 
2A 

1=0 

2 

A   (i-Ar 

(1-A)2UJ     (1-A)2    (1-A)3    (I-AYVAJ 
n p-2 

(A-83) 

2 N 

$4a _ SP
+

77-T^IP
AI 2A 2       N 2A 2       N 

(1-A)2£r'(l-A)2
p=3 

(1-A)' 
SP-1-2 

LP=I 

K 
(1-A)2 

2A' 

(1-A)3 
lAp-l"A2[- 
P=i 

(1-A)3fe 
N 

£pAp-A-2A2 

IP=I 

2A2(N-3) 

I^-T^WS1 
(1-A)3

P=3 

(1-A)3 

(A-84) 

or 

>^Aa   — 4a    (1-A)2 

N(N + 1) 
-3 + 

J    (1-A)' 

A + NA(N+2)_(N + 1)A(N+1) 

(1-A)2 
-A-2A2 

2A' 

(1-A)J 

A-A (N+l) 

1-A 
■1-A' 

2A2(N-3) 

(1-A)3 

(A-85) 

For the infinite case, 
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lim-^*—— 
N^»(N + 1)

2
     2(1-A)' 

(A-86) 

Next, S^ can be expressed as: 

N p-1 1-1 m-1 N p-1 1-1 

p=3        1=2 m=l n=0 p=3        1=2 m=l 

N p-1 N 

= £Ap^A-1s2 = ^Aps3 
p=3        1=2 p=3 

(A-87) 

where 

si=SA""n=iS(A""'""i) 
n=0 

(A-88) 

1-1 A   * 

s2 ■S^(>-A-)-T^ 
m=l 

A*l A* A 
■ + 

1-A 

(l+i) 

l-i      l-i 

m=0       m=0 

1-A*    (!_A*)2    (l-A*) 

(A-89) 

s3 = 
A *    P-1 A *      P_1 A *      ti 

!~A  1=2 (l-A )  £2 (1-A )   1=2 

*    f p-i *      [p-i 

Mt"-'-i'n^7\^-i 
l] . A*(p-2) • + 

= AAV1Y+_VP   + 

A*)2^""      "   Aj(l-A*)2 

2AA* AA*(2-A-A')nV . A'A-KA'-A) 
,2   '  ii      A|2/<      A\ i,      »|4 I   A   I   + i,      A|4 |1_A|2UJ     |1-A|2    |1-A|2(1-A) |l-Af |l-Af 

(A-90) 

and 
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$4b -' 
AA *      N 

|1-A|^ 
EP

+
7^-7TEP

AP
 
+ 

£      |1-A|2^F 

2AA* A*A->(A'-A)' 
■ + ■ 

|1-A|2(1-A) |1-A|' p=3 

AA*(2-A-A*) N 

|1-A|4 ^ p=3 

(A91) 

which becomes: 

AA~ 
ö4b — ,,       A,2 |1-A| 

N 

XP-1-2 
P= 

2AA* 
■ + ■ 

|1-A|2 

A*A-
1
(A*-A) 

£pAp-A-2A2 

P=i 

|1-A|2(1-A) |l-Af 
£A>-I-A

2
[- 

P=I 

AA*(2-A-A*)(N-3) 

ii-Ar 

(A-92) 

or 

AA 
^4b — i,       A i2 

|I-A|
2 

N(N + 1) 
-3 

A* 

|1-A|' 

A + NA(N+2)-(N + l)A(N+1)    A   2A2 

2AA* A'A-^A'-A)' 
- + • 

|1-A|2(1-A) |l-A|< 

(1-A)2 

A-A(N+1) 

1-A 
1-A2 

AA*(2-A-A*)(N-3) 

|l-Af 

(A-93) 

For the infinite case, 

lim-^* 
AA* 

N^~(N + 1)
2
     2|1-A|2 

(A-94) 
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Referring to Equations (A-84) and (A-91), the only contribution as N -> « is from terms 

involving V p. Next, S^ can be expressed as: 
p 

N P-Vu\l 1-1 /n\-mm-l N p-1 / R\l W / r>Vm 

A ) *-^\ A 
p=3        1=2 vrv/ m=lv'rl"'      n=0 

*=^mm) i—IA'ST sm - BYvVB 

p=3        1=2 m: 

p=3        1=2 ylKJ p=3 

(A-95) 

where 
m-l * si=IA"n=A<A""-1' 
n=0 

(A-96) 

1-1 /Bym     A 

-g£J  ^--»T 
l-l l-l/BN-m 

1-A 

B 

1-B 
(B-'-l)- 

B/ 

1-B/ 

,m=0 m=0 

!%)-' 

(A-97) 

A   &(B\\   B B/ 

1-A£IAJ|1-B
V 1-B/ 1=2 

p-1 

—i B 

1-B yj-(yj 
A 

B/ 

1- .B/ 

;B/J -1 

i-ft 

(A-98) 

or 

s3 = - 
_A B_ 

1-A1-B l-1/ 
1-1 

p-2' (%r 
1-B/ 

1-A1-B/ 
p-2- (

B
/A)

2 

1-B/ 
1-ft 

A 

p-2 

P-2' 

(A-99) 

which becomes: 
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and 

s3 = - 
%f-(yAY 

(l-A)(l-%) 

B/ B 
!-B/A    1-B 

(A-100) 

+ • 
(l-A)(l-BXl-%J 

B(p-2) AB \(\/\2    /I/\P1 B(p-2j 
^(TIT7J[(/A) "(/A) J-(1.A)(I_B/A) 

s4 = 
(l-A)(l-%) 

B/ B 

I-
B

/A   I"». 

N N 

 AB 

(1-A)(l-B)(l-K) 

B
/A)TAP-SB^ 

P=3 P=3 

N N 

(/A)TAP-II 
p=3 p=3   J 

B 

■"(1-A)(1-%)1 
£PAP-2£A

P 

P=3 P=3 

(A-101) 

While these summations can be calculated, the above expression does not contain a term 

of the form V p and: 

lim 
J4c 

N^°°(N + l) 
= 0 

Thus, 

(A-102) 

N^°°(N + l) 

S4_=lim  8ReS4a+S4b+S 4c 4A2 4AA 
■+■ 

N-»» (N + I)        (I-A)    4|I-A|- 
(A-103) 

Now consider S10. It can be broken into six cases as follows: 

Case   l:p>l>m 

Case   2: l>p>m 

Case   3:1 > m > p 

Case 4: p > m >1 

Case 5: m > p > 1 

Case 6: m > 1 > p 

A-17 



First, consider case 1, p > 1 > m. The following relations are true: 

2Xp=2(X0 + L1+-+Lm) + 2(Lm+1+-+L1) + 2(L1+1+-+Lp)        (A-104) 

X1=X0+L1+-+Lm + Lm+1+-L1 (A-105) 

Xm = X0 + L1+L2+-+Ln (A-106) 

and 

2XD-X1-Xm=2(L1+1+-+Lp)+(Lm+1+-+L1) 

p-l terms 1-m terms 

(A-107) 

The summation becomes: 

N   p-l 1-1 N       P-l / A Y id 

S.C'IIIA'-B-^XB'I:^ IA 
p=2 1=1 m=0 

N p-l 

p=2        1=1 v D '  m=0 

p=2        1=1 
=IBPI Vk H=XBPs2 

B p=2 

(A-108) 

where 
S1 = I>-=-^-(A-'-I) 

m=0 

(A-109) 

^'BY1   A 
fflAj   1-AV '    1-. 
1=1 

A 

1-A 

B 

1-B 
(B-p-l)- 

B/ 

1-B/ 

P-l P-l / R \-l I«"'-If 
1=1 1=1 v^y 

X) -■ 
(A-110) 

and 
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N 
Siw=rxS> 

p=2 

N 

B 
1-B 

(B-P-I)- 
B/ 

B/ 

=_A_yjjLfi_Bpl-^[AP-BPl 
I-A6J I-B

L
      

J
  1-

B
/ 

L J 

[(B/A) -
p-l] 

- 

-Bp] • 

(A-lll) 

or 

$10,1 _ 
A      B 

1-A1-B 

2- 
(N.lj-ilfl-BN-1) 
v 1-BV ; 

A      B/A 

1-Al-B/ 
A2  I.    . N_,\     B2 

1-A 
(1_AN-1)__5_(1_BN-I) 

1-B 

(A-112) 

which becomes 

$10,1 _ 
AB (N-l)    | AB2(l-BN-^    B A 

(I-A)(I-B)   (I-A)(I-B) U-B  1-A 

A
3
B(I-A

N
-

!
) 

"(I-A)
2
(A-B) 

(A-113) 

and 

Km -5^ = 0 
N^°°(N+I) 

(A-114) 

Now, consider case 2,1 > p > m. The following relations are true: 

2Xp=2(X0 + L1+-+Lm) + 2(Lm+1+-+Lp) (A-115) 

X1=X0+L1+-+Lm + Lm+1+-Lp+Lp+1+--L1 (A-116) 

Xm = X0 + L,+L2+-+Lm (A-117) 
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and 

2Xp-X,-Xm = Lm+1+-Lp-(Lp+1+-+L1) 

p-m terms 1-p terms 

(A-118) 

The summation becomes: 

or 

N 

Sm =iiS>~A-<>-» =lA-'£( f [ SA 
1-1 /   A   \P P-l 

•ft-   1   V1  » -m 

1=2 p=l m=0 

*lWA 

1=2 p=l 

*1 

m=0 

-5>JI £ sl=lA s2 
1=2 D=1

VA
   ' 1=2 

(A-119) 

where 

sl = f>-m=—(A-"-I) 
m=0 

(A-120) 

and 

-SC^TT A 
-A 

■(A- -P-l) = 
A 

1-A 

"I-I / 

±) '-m] 
A A* (\*-1 l)  ' 

A*/ /A [(AX) -*j 1-A l-A*lA       lj    !. -A*/ /A 

A     N 

S10,2-1      AX
A

    
4 

1
    A 1=2 

A*.(A---I)- 
1-A*V            ' 

AX [m'-'l >-AX 
A           N 

1-A£ 

A* 
'l-A*1' 

A*/ /A A1-A*'' 
1- A* l-> /A 

(A-121) 

(A-122) 
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A     A* 
S»* - 1-A 1-A' 

(N-l)--^(l-A*N1 
1-A 

A      VA 
I-AI-A; 1-A 

(1.A»-i).4(l-A^1) 
1-A* 

(A-123) 

which becomes 

Si0,2 ~~ ' 

AA" (N-l)      AA,3(l-A,W-')/     l 1    ^ 

(l-A)(l-A*)     (l-A)(l-A*) U-A'TÄV 

A34-AN-') 
(I-A)

2
(A-A*) 

(A-124) 

and 

lim '10,2 

N->°°(N+I) 
= 0 (A-125) 

Next consider case 3,1 > m > k. The following relations are true: 

2X=2(X0+L1+-+Lp) (A-126) 

X,=X0 + L,+-+L +L   1+-Lm + Lm+1+-L1 (A-127) 

Xm = X0 + L1 + L2+-+Lp + Lpfl+-+L (A-128) 

and 

2Xp-X]-Xm - - 2(Lp+1+-Lm)-(Lm+1+-+L1) (A-129) 

m-p terms 1-m terms 
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The summation becomes: 

N   1-1 m-1 

1=2 m=l p=0 

N 1-1/'■D*>\mm-1 

S,„,3=SSlA-(|-m,B*("-ri=lA-'£ f    £B 

N        . 1-1 /^r>* Am N 

1=2 m=lVA   y 1=2 

1=2 m=lVn  /    p=0 

*1 

(A-130) 

where 

sl=yB«-p=Jl(B»-m-i) (A-131) 

.    ^   BM"   B*   /   ,-m     x__Bl_ 

B* 

1-B* 
A* 

1-A' 
■(A-'-I)- 

A*, 

1-AV 
/B* 

1-1 /   !   \m     m-1/' sä -sv m=AA   ' 1=1 V 

AV   I   -1 
/B*

1 

11 
A* 

(A-132) 

and 

B I 

B 

1=2 

N 

i^-t-^MKT-1 

A* 

1-A* 
1-A »i 

A*/ 
V 

1-A* 

B* 

B-'-A*1 

B* 

(A-133) 

or 

B*      A* 

^'l-B'l-A* 
(N-l)-^(l-A^) 

B* 
A% 

1     /B* 

B^(l-A*-0-^(l-A-K1 1-B 1-A' 

(A-134) 
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which becomes 

!(>-A-N-)r A- 
»10,3 

A'B'(N-l)      BA   
S,n,"(l-A*)(l-B*)+ (l-A-Xl-B*) IB*-A*~1-A* 

B^Vfl-A^1) 

(l-B*)V-A*) 

(A-135) 

and 

Km -^l^o 
N->oo (N + l)2 

(A-136) 

Thus 

lim lio  

N-»»(N + l) 
0 (A-137) 

and there are no contributions from S10. Since Sn is the complex conjugate of S10, 

lim Sn     _ 
(N + l)2 

= 0 (A-138) 

Collecting the non-zero terms, 

(N + l 

1—E{|f(u)|4} = 2 + 4Re, ° ,.+4Re ™>        +8Re-^    (A-139) 
(1_0>)2 (1-*)(!-*•) 1-® 

The variance is given by: 
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°2=^*»>r}-M 
= 2 + 4Re 

& 0>O* O 
v, + 4Re- ^f r + 8Re- 

(l-O)2 (l-*)(l-*') 1-® 
(A-140) 

l + 4Re<^ 
«D 

l-<£ 
• + 4 Rd 

O 
1-<D 

or 

9 O 
c2=l + 4Re 

OO' o> 
x„+4Re- ^ r+4Re^—-4 

(l-O)2 (l-*)(l-**) 1-* 
Rei 

O 
-]2 

l-O 
(A-141) 

Simplifying, 

o2=l + 4Re 
*    ,   /T.2/F.* <D2 -020* + 00* -O20>  + 0-0  -<M> +02<E> 

(i-o)2(i-o*) 

-4 Re^ 
O 

o(l-0<£*) 
= l + 4Re- —^ r-4 

(i-o)2(i-o*) 

(A-142) 

Rd O 
l-O 

Now, 

o(i-oo*) O>(I-OO*)(I-<D*)        o(i-oo*)-oo*+oo)*2 

4 Re- -^ r = 4Re -T- = 4Re -r  
(l-0)2(l-<D*) (l-0)2(l-0f (l-0)2(l-0*)2 

= 4Re 
(o + 0*)(l-0<E)*)-00*+00*2 

(l-0)2(l-<D*)2 

(A-143) 

20> + 2O*-2O2<I>*-2OO* -400*+4020 
2^*2 

(i-o)2(i-o*)2 
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and 

0 o(l-0*)       i(o + 0*)-00» 
ReI^Ö=   e(l-<D)(l-0*)~   (l-0)(l-0*) 

(A-144) 

which leads to: 

Re- 
O 

l-O 
= 4 

±(<3> + 0*)-00* 

(l-0)(l-0*) 

$2 + «j,*2 + 2®$>* _4O20>* - 400*2 + 4020 2^*^ 

(i-o)2(i-o*)2 

Substituting Equations (A-143) and (A-145) into Equation (A-142) yields: 

(A-145) 

o2=l + 
20 + 20* + 2020* + 200*2 -6OO* -O2 -O*2 

(i-o)2(i-o*)2 

(l-O)2(l-O*) +20 + 20* +2020* +200* -6OO* -O2 -O 

(i-o)2(i-o*)2 

(A-146) 

or 

G2 = 
1-200*+o2o 2*^ (1-00*)2 

d-o)2(i-o*r [d-o)(i-o*)] 

"i-|o|2" 
2 

Ji-ofJ = if(u)r 

(A-147) 
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Thus the variance is equal to the square of the average power pattern and the standard 

deviation is equal to the average power pattern, i.e. 

o = |f(u)| (A-148) 

Equations (A-147) and (A-148) are valid for u * 0. For the case of u = 0, 

and 

(N + l) ^Wrt-TT1 -E< 
N    N     N    N 

p=0 1=0 m=0n=0 (N + l)2 

-1^E{(N+I)
4
}=(N+I)

2 

(N+I) 

(A-149) 

lf(0)f^E{llf^(N+1)2=N+1 (A-150) 

-2=7^E{|f(0)r}-[|f(0)f 

= (N + l)2_(N + l)2 

= 0 , foru = 0 

(A-151) 
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Appendix B. Modal Formulation for Infinite Grating with No 

Errors 

Conversion of Integral Equation to Modal Equation 
Setting the origin at the mid point of the first slit or strip, i.e. 1/2 (XQ + TQ) = 0, 

the scattered fields for a grating with no errors are given by (Equation (3-51)): 

S = -£ J w Is (x") ejnkTsinei H[>2) (k^(x - x" - nT)2 + y2 )dx" 
2 n=0   ~T 

= -XjtIs(x")  — Jej0K^jejnkTsinei H0
(2)(kA/(x-x''-nT)2+y2)} 

n=0      2 L *• 

dwdx" 

(B-l) 

where 

and 

^{f(x)} = Jf(x)e-JWXdx (B-2) 

(B-3) 

are the Fourier and inverse Fourier transform relationships. Using the Fourier Transform 

(2:58): 

^H%^7)\=2e -jyh/kW 

Vk^O)2 (B-4) 

the scattered fields become: 
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s4y 2Lux-) 
2n=0      2 2TUJ 

JWX 
0   -j|y|Vk^?   -jW(x"+nT) 

JnkTsinGi _££ f  

Vk2-co: 
dtodx" 

(B-5) 

k  ff 
"2 

e jto(x-x") e -j|y| Vic^ 

Ju^J   V^^ (0 

.£eJnkTsi„9ie-jConTdG)dx„ 

n=0 

or 

S = — f'ls(x")f 
Jo)(x-x")e-j|y|Vk2-w2 2jt 

Vk2-co - „=_„ v2 T 

,2 

£«(«,-( k sin G.+^i)) dcodx" 2un 

V -a feJC0(x-x") -jiyiVi?^5 
(B-6) 

where 

ßn =ksinei + 
27tn (B-7) 

Using the sifting property of the delta function, the scatterred fields become: 

S = f I Jlls(x-) , dx" 
V^-ß? 

]f     "      f^ eJ'ßn(x-x")e-j|y|pn -IS^x")- Pn 
dx" 

(B-8) 

where 

P„=>/^Iß" (B-9) 

Equation (B-8) can be rewritten as: 
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£Bnej(ß„x-P„y)       fory>0 

s=< (B-10) 
£Bnej(ß„x+P„y)       fory<o 

.  n 

where 

B=   k   f^L(x")e-jß"x"dx"                                 (B-ll) 

Equations (B-10) and (B-ll) are equivalent to modal formulations found in many 

references ((11:189-194) for example). For the TEz mode, coefficients of reflection (R) 

and transmission (O are given by: 

R = 1_B°                                                  (B-12) 
T = B0 

and for the TMz mode: 

R = _B°                                                  (B-13) 
r = i-B0 

Born Approximation 

Using the Born approximation as given in Equation (4-9): 

Is(x") = coseie
jkx"sinei                                        (B-14) 

then, 
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kcOsG;  ff      Xksin9i-ßn)x" 

■I Bn = ZT I "- e' 
PnT 

kcosG 

dx" 

wkcosBj sin(^) 

Pn1 T 

2ffn„// 
T     dx" (B-15) 

with 

BO-Y (B-16) 

Edge Condition Approximation 

Using the edge condition approximation as given in Equation (5-3): 

U*") = 7 
Ce jkx'sinOj 

0%)2-(x"-nT)a X 
(B-17) 

then 

lr     f"i"        - jkx"sin6: 
B  =JLf2_^ L_e-jf3"x dx' 

Pn TJ_W [o%)2-(*")2 TI 

= Ck_fT 

"PnTJ-f 

:2n7t_» 

[0%)W IK 
dx" 

Ck 

PnT 
«JoM 

(B-18) 
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To determine the value for the constant "C", use the integral equation relating the 

boundary conditions: 

2    jkxsinOi _ <; - V R pjß"x 
(B-19) 

Multiply both sides by Is* and integrate over -w/2 to w/2 to obtain: 

or 

i dx Ck7iv J0(T) f" CeJ'kx"sineieJ^" 

2     /   \2 i Hr-h 
_CkHYJ0(T) f' 
r  T   .     p"    J-f[(w/2)Mx")21Ä 

n fn 

(B-20) 

Cn = 
C2k7t2 

n   Hn 

c=fei^owr 
n  Kn 

(B-21) 
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Appendix C. Simplification of Integral Used in Edge Condition 

Approximation 

This appendix simplifies the following integral used in the edge condition approximation: 

Let 

Then 

Now, let 

then 

1 = I 5jAxdx 

-f^-x2]' 

2x 
u =— =M 

w 

wu 

w 
dx = —du 

2 

1 = 

_1 :Awu „1        jAwu 

P1       eJ~fdu f ej2 fd 

L\«)2-(^)2f2   J_,(i_u2)> [(y2)
2-(wu/2)

2] 

 du 

(l-u2)/2 

v = cos 1 u => < 

U = COS V 

du = -sinvdv 

(l-u2)M=sinv 

(C-l) 

(C-2) 

(C-3) 

(C-4) 
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j Aw cosv 
.   e    2    sinvdv I 0 smv 

Aw cosv 

= I   e 
o 

J   2     dv (C-5) 

= 1Ü0M 
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Appendix D. Variance of the Average Power Pattern of a Strip 

Grating - Born Approximation 

This appendix derives an analytical expression for the variance of the average 

power pattern of a strip grating computed using the Born approximation. As in the case 

of the array of point sources, the variance is calculated for a grating with an infinite 

number of slits/ strips to keep the number of terms at a manageable level and simplify the 

expressions. 

The variance of the average power pattern is given by: 

a =E 

=^E{|s(u)r}-[M 

N ̂ m7 
(D-l) 

The second term is the square of the average power pattern, which for an infinite number 

of slits/ strips and using the Born approximation , is given in Equation (4-35): 

|S(u)|  =I0 

= 1 

(kuW)' 

4 
0 (kuW)2 

1-Re{0} + Re 

E{sin2(^)} 

(3>®) 
1-(<D0) [2-©-X> 

+ 2ReE2U 2  sin(^) 
<D 

2 '   1-(O0) 

(D-2) 

The first term in Equation (D-l) is given by: 

D-l 



(N + l)2    U       ' J    (N + l)2    ' 
V^ 
kuW 

1        161 2 

K 

(N + l)2(kuW)' 

n=0 

2 

^E<! 

eJkuxn _ eJkuXn \ 

;kuwn 

^ejkuX"eJ 2nsin(k^iL) 

n=0 

(D-3) 

Following the same procedure used in Appendix A for the array of point sources, this 

becomes for the case of N —> °°: 

lim —i-5-E{|s(u)|4} = -i^r2E2{sin2(j^)} 
N^(N + l)      '      '       (kuW)4L 2 

+4ReE4|eJ^"Sin(^)U 
& 

-0<D) 
(D-4) 

+ 4ReE2<|eJ^~Sin(^)| E2< 
.kuw 

e    2 Sin M OO* 

+ 8ReE2< ^Sin(^) E{sin2(*f)} 

2 ' i |i_©or 

(l-0O) 

Substituting Equations (D-2) and (D-4) into Equation (D-l), the variance becomes: 

o  = 
16L 

(kuW) 
!{sin2(>^)} + 4ReE< 

.kuw 

SinM 
O2 

(1-0*) 

+ 4ReE^ e^SinM j E2< 
_J5™L      /      \ 

e ^Sin(^) 
OO 

+ 4ReE2- ^Sin^) E{sin2(^)} 

|1-©<X>| 

(1-0O) 

-4 ReE2<!e 2  sin(^) 

-i2' 

o 
1-(O0) 

(D-5) 
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To simplify, let: 

a E2< e^SinM (D-6) 

The second and third terms of Equation (D-5) become: 

4 Re 
a202       aa*00* 

(l-0O)      |l-0O| 

a2O2(l-0*O*) + aa*OO*(l-0O)(l-©*O*) 

(i-©o)2(i-©*o*) (i^©*o*J 

aO l-©*0* +a*0* 1-0O      , N 
= 4 3— Re aO-a0*OO*) 

|l-©0| 

ao(l-0*O*) + a*O*(l-®o)r/ h    s   ,     „      .   x      ,n 
= 2— T— %xO + a*O*)-(a0*+a*©JOO* 

|1-0<I>| L J 

[ao(l-0*O*) + a*O*(l-©o)]2 

1-0O 

(D-7) 

The fifth term of Equation (D-5) can be expressed as: 

Re- 
ap    1-<D*0* 

1-00 1-0*0* 

-i2 

= 4 
(aO+a*O*)-(a©* + a*0)oo, 

2II-O0I2 

[ao(l-0*O*)+a*O*(l-0O)]2 

1-0O 

(D-8) 

Substituting Equations (D-7) and (D-8) into Equation (D-5), the variance becomes: 
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o2 = 
16L rE

2{sin2(^)} + 4ReE2|e^Sin(^).E{sin2(^)}^ 
(kuW)4 

|ao(l-©*O*) + cc*O*(l-0O)l 
+ ; r*  1-00 

o 
0d>) 

(D-9) 

or after substituting Equation (D-8) for the last term: 

G2 = i^E2{Sin2(i^)} + 4ReE2je^Sin(^) E{sin2(^)j^ 
(kuW) (l-0O) 

+ 4 ReE2 psin(^)        * = [|S<u)f] 

(D-10) 

and the standard deviation is equal to the mean, i.e. 

o = |s(u)| (D-ll) 

The above equations are valid for u * 0. Substituting u = 0 into Equation (D-3) yields: 

(N + l) 
i_E{|S(0)|4} = —A—T[(N + 1)E{W

4
} + 4N(N + 1)E{W

3
 }E{W} 

+ 1)2    u       ' J     W4(N + 1)2L 

+6N(N + 1)(N - 1)E2 {W}E{W
2
 } + 3N(N + l)E2 {w2 }      (D-12) 

+N(N + 1)(N - 1)(N - 2)E4 {w}] 

and from Equation (4-33): 

|S(0)|=i[E{w2} + NE2{w}] (D-13) 

D-4 



Sustitution of the last two equations into Equation (D-l) yields: 

°(0)2=-^ W< 
2N-4N2 

N + l 
r2 

E4(w}+2NzlE2{w2}+J_E{w4} 
N + l N + l 
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(D-14) 

which goes to infinity as N -> °o. On the other hand: 

lim   °(°)2
2=o^lim^ = o 

N-> |s(o)| N->°° |s(o)| 
(D-15) 
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Appendix E. Variance of the Average Power Pattern of a Strip 

Grating - Edge Condition Approximation 

This appendix derives an analytical expression for the variance of the average 

power pattern of a strip grating computed using the Edge condition approximation. As in 

the cases of the array of point sources and the grating using the Born approximation, the 

variance is calculated for a grating with an infinite number of slits/ strips to keep the 

number of terms at a manageable level and simplify the expressions. 

As given in Equation (D-l)The variance of the average power pattern is given by: 

G=E -Ez 

^E{|s(u)r}-NF] 

IN Viyl*>l2 

(E-l) 

The second term is the square of the average power pattern, which for an infinite number 

of slits/ strips and using the edge condition approximation, is given in Equation (5-32): 

|s(u)|  =I0 [[jo(^)f ■ + 2R6E2< 
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e 2 Jo(T) 
<£ 

1-(O0) 
(E-2) 

The first term in Equation (E-l) is given by: 
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Following the same procedures used in Appendix A for the array of point sources and 

Appendix D for the grating using the Born approximation, this becomes for the case of 

N->°o: 

^CTE{|S(U)|4}=I°12E1[,O(^] 
+4 Re EN 

.kuw 

JoM 
& 

(I-©<D) 
(E-4) 

+ 4ReE2< 
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^Hwrfefe 
Substituting Equations (E-2) and (E-4) into Equation (E-l), the variance becomes: 
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To simplify, let: 
.kuw 

a = ENe j 2 JoM (E-6) 
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The second and third terms of Equation (E-5) become, using Equation (D-7): 

4 Re 
a202      aa*0<I>* 

■+- 
(l-0O>)      |l-0O| 

= 2 
[ao(l-0*<D*) + a*<D*(l-0O)]2 
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(E-7) 

The fifth term of Equation (E-5) can be expressed as, using Equation (D-8): 
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Substituting Equations (E-7) and (E-8) into Equation (E-5), the variance becomes: 
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(l-0O) 
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or after substituting Equation (E-8) for the last term: 
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and the standard deviation is equal to the mean, i.e. 
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o = |s(u)| (E-ll) 

The above equations are valid for u * 0. Substituting u = 0 into Equation (E-3) yields: 

—1      E{|S(0)|
4
} = I0

2
(N + 1)

2 (E-12) 
(N + l) 

and from Equation (5-30): 

|S(0)|   =I0(N + 1) (E-13) 

Substituting the last two equations into Equation (E-l) yields: 

o(0)2=0 (E-14) 
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Appendix F. Problems with Finding an Analytical Solution 

As stated in Chapter I, the problem of diffraction by a strip grating has been 

investigated by many authors. The pioneering works in solving this problem analytically 

was accomplished by Baldwin and Heins (5) and Weinstein (29) using the Wiener-Hopf 

method. Several problems exist which make use of the Wiener-Hopf approach 

inapplicable to the problem of a strip grating with random errors in strip width and 

spacing. First, the mathematical formulation of the problem of diffraction by a grating 

containing an infinite number of strips and slits results in an infinite set of integral 

equations. The periodic property of the solution allows the infinite set to be replaced by a 

single integral equation valid over one period. Once the solution over one period is 

obtained, the solution to other periods is obtained through phase adjustment (Floquet's 

theorem). Second, an analytical solution using the Wiener-Hopf method is possible only 

when the width of the strips is equal to the width of the apertures. As a result, use of the 

Wiener-Hopf approach is inapplicable to the problem of finding an analytical solution to 

the problem of diffraction from a grating with random strip and slit widths. 
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