
AFIT/DSG/ENG/95M-01

"DTIC
ELECTE
AUG 1 5 1995

F

FORMAL FOUNDATIONS
FOR THE

SPECIFICATION OF

SOFTWARE ARCHITECTURE

DISSERTATION
Mark James Gerken

Captain, USAF

AFIT/DSG/ENG/95M-O1

19950811 050 DTI QUALIT1 CTD 5

Approved for public release; distribution unlimited

AFIT/DSG/ENG/95M-01

FORMAL FOUNDATIONS

FOR THE

SPECIFICATION OF

SOFTWARE ARCHITECTURE

DISSERTATION

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Accesion For Air University

NTIS CR-A&. 1
DTIC TAB D In Partial Fulfillment of the

LUnannouoid DtfJustif Unatod Requirements for the Degree of

By__ .Doctor of Philosophy

Distribution I'

Availability Codes-
Dist. Avail--ofc I or Mark James Gerken, B.S., M.S.
I Dist Special

Captain, USAF

March, 1995

Approved for public release; distribution unlimited

AFIT/DSG/ENG/95M-01

FORMAL FOUNDATIONS

FOR THE

SPECIFICATION OF

SOFTWARE ARCHITECTURE

Mark James Gerken, B.S., M.S.

Captain, USAF

Approved:

Paul D. Bailor, Chairman

Thomas C. Hartrum

Eugen antos, Jr

Mark E. Oxley ,/

Gary a-amont

Robert A. Calico, Jr

Dean, Graduate School of Engineering

Acknowledgements

I would like to thank my advisor, Dr. Paul Bailor, for his insight, guidance, and

encouragement - it was instrumental to the successful completion of this research. I would

like to thank my committee, Dr. Eugene Santos, Dr. Thomas Hartrum, and Dr. Mark

Oxley, for their advice given during the course of the investigation and for their suggestions

for improving this document. I am indebted to several other researchers, especially Dr.

Douglas Smith, Dr. Richard Jfillig, and Dr. Yellamraju Srinivas of the Kestrel Institute for

answering my multiple questions concerning category theory and specification construction

techniques. I would also like to thank a fellow graduate student, Captain Frank Young,

for the many hours we spent discussing specification techniques.

I especially wish to thank my wife, Debora, for her patience and understanding.

Mark James Gerken

iii

Table of Contents

Page

Acknowledgements iii

List of Figures x

List of Tables xv

List of Symbols xvi

List of Abbreviations xviii

List of Definitions xix

Abstract xxiii

I. Introduction 1-1

1.1 Purpose and Motivation 1-1

1.2 Investigation Overview 1-2

1.3 Related Work 1-4

1.3.1 Software Development Systems 1-4

1.3.2 Architecture Description Languages 1-10

1.3.3 Summary of Related Work 1-14

1.4 Assumptions 1-14

1.5 Contributions 1-16

1.6 Summary 1-17

II. Software Development Framework 2-1

2.1 Overview of the Framework 2-1

2.2 Composition Mechanism 2-2

2.2.1 Functional Specifications 2-3

iv

Page

2.2.2 Architecture Specifications 2-7

2.2.3 Using the Composition Mechanism 2-8

2.3 Design Refinement Mechanism (DRM) 2-11

2.4 Summary 2-11

III. Combining Theories to Make Theories 3-1

3.1 Introduction 3-1

3.2 Basic Definitions 3-3

3.2.1 The Category Sign 3-4

3.2.2 The Category Spec 3-11

3.3 Specification Construction 3-18

3.3.1 Basic Specification 3-18

3.3.2 Translate 3-19

3.3.3 Import 3-21

3.3.4 Colimit 3-22

3.3.5 Specification Interpretation 3-25

3.3.6 Summary of Specification Building Operations . . . 3-26

3.4 Institution-Based Specification Development 3-27

3.5 Summary 3-32

IV. Combining Functional and Process Specifications 4-1

4.1 Introduction 4-1

4.2 Development of a Specification for a Pipeline Application . . 4-2

4.2.1 Introduction 4-2

4.2.2 Problem Description 4-2

4.2.3 Development of the Sort-Search Specification 4-3

4.2.4 Observations 4-6

4.3 Development of the Four Sum Moving Average Unit Specifica-

tion 4-7

v

Page

4.3.1 Introduction 4-7

4.3.2 Problem Description 4-8

4.3.3 Development of a Specification for the Moving Average

Problem 4-9

4.3.4 Observations 4-13

4.4 Summary 4-15

V. Mathematical Foundations 5-1

5.1 Introduction 5-1

5.2 A Theory Presentation for CSP 5-4

5.3 CSP Structures 5-9

5.3.1 Syntax 5-9

5.3.2 Semantics 5-10

5.3.3 Summary of CSP Structures 5-17

5.4 The Category of Process Signatures and Process Signature Mor-

phisms 5-17

5.4.1 Summary 5-24

5.5 The Category of Process Specifications and Process Specifica-

tion Morphisms 5-25

5.6 Relationship Between Functional and Process-Based Specifica-

tions 5-32

5.6.1 Components 5-32

5.6.2 The Category App 5-36

5.7 Summary 5-39

VI. Software Architecture 6-1

6.1 Introduction 6-1

6.2 Architecture Defined 6-2

6.2.1 Functional Architecture Theory 6-4

vi

Page

6.2.2 Process Based Architecture Theory 6-13

6.2.3 Component-Based Architecture Theory 6-16

6.2.4 Summary 6-18

6.3 Process Based Architecture Theories 6-19

6.3.1 Structuring Specifications 6-20

6.3.2 General Parallel Structures 6-24

6.3.3 Batch Architectures 6-49

6.3.4 Composite Architectures 6-57

6.3.5 Constraint-Based Architectures 6-60

6.4 Summary 6-63

VII. Analysis of Process-Based Architecture Theories 7-1

7.1 Introduction 7-1

7.2 Mathematical Foundations 7-1

7.3 Relationship Between Parallel and Layered Designs 7-6

7.3.1 Translating Layered Designs to Parallel Designs. .. 7-6

7.3.2 Translating Parallel Designs to Layered Designs. .. 7-7

7.3.3 Summary of the Relationship Between Parallel and

Layered Designs 7-9

7.4 Relationship Between Parallel and Pipeline Designs 7-10

7.4.1 Translating Parallel Designs to Pipeline Designs . 7-10

7.4.2 Translating Pipeline Designs to Parallel Designs . 7-13

7.4.3 Summary of the Relationship Between Parallel and

Pipeline Designs 7-14

7.5 Relationship Between Layered and Pipeline Designs 7-15

7.5.1 Translating Layered Designs to Pipelined Designs.. 7-15

7.5.2 Translating Pipeline Designs to Layered Designs . 7-16

7.5.3 Summary of the Relationship Between Layered and

Pipeline Designs 7-19

vii

Page

7.6 Other Relationships 7-20

7.7 Summary 7-21

VIII. Feasibility Demonstration 8-1

8.1 Introduction 8-1

8.2 Creating a Piped-Batch Sequential Design 8-2

8.2.1 Introduction 8-2

8.2.2 Adding Communication 8-2

8.3 Feature Selection Problem Description 8-5

8.3.1 Introduction 8-5

8.3.2 Skeleton Problem Description 8-5

8.3.3 Erode 8-9

8.3.4 Open 8-13

8.3.5 Summary 8-15

8.4 Specification Development 8-15

8.4.1 Specification Development for Partition-Solve-Compose 8-16

8.4.2 Specification of Erosion 8-2ý

8.4.3 Specification of Open and Dilate 8-32

8.4.4 Specification of Skeleton 8-36

8.4.5 Using Skeleton for Feature Selection 8-45

8.5 Summary 8-47

IX. Conclusions and Recommendations 9-1

9.1 Conclusions and Results 9-2

9.2 Future Work 9-3

9.3 Summary 9-7

viii

Page

Appendix A. Category Theory A-1

A.1 Initial and Terminal Objects A-1

A.2 Homomorphisms A-1

A.3 Types of Morphism A-3

Appendix B. Refinement of a Global Search Algorithm Theory B-1

B.1 Derivation of a Specialized Algorithm Theory B-1

B.2 Derivation of a Feasibility Filter B-6

B.2.1 Key-Search Feasibility Filter B-6

B.2.2 Find-Location Feasibility Filter B-7

B.3 Summary B-9

Appendix C. An Informal Introduction to Components and Connectors . . C-I

C.I Components C-i

C.i.i Component Functional Specification C-I

C.I.2 Component Interface Specification C-4

C.I.3 Summary of Components C-6

C.2 Connectors C-6

C.3 Summary C-10

Appendix D. Constraints D-I

D.I Introduction D-I

D.2 Constraints over operations D-I

D.3 Constraints over process expressions D-5

D.4 Recommendations for Future Research D-6

Bibliography BIB-i

Vita VITA-i

ix

List of Figures

Figure Page

2.1. Software Development Using Architecture Specifications 2-2

2.2. Problem Theory 2-4

2.3. Global Search Theory 2-6

3.1. Definition of a Pushout 3-7

3.2. Example of a pushout involving signatures 3-7

3.3. Using Pushouts to Instantiate Parameters 3-8

3.4. Instantiation of a Signature for a List of Natural Numbers 3-8

3.5. Definition of a Cone 3-10

3.6. Definition of a Colimit 3-11

3.7. Coproduct Definition 3-12

3.8. Product Definition 3-12

3.9. A Specification for a Ring (106) 3-14

3.10. Definition of seq(S) 3-22

3.11. Specification Building using the Colimit Operation 3-24

3.12. Covariant and Contravariant Functors 3-28

3.13. An institution 3-30

4.1. Specifications for Searching an Ordered Sequence 4-2

4.2. Specification for Sorting a Sequence of Integers 4-2

4.3. Block diagram of the sort-search problem 4-4

4.4. Problem Specification for Find-Location 4-5

4.5. Structuring specification 4-7

4.6. Defining structure using a structuring specification 4-8

4.7. Block diagram for the moving average problem 4-9

4.8. Communicating Entity Specification 4-10

x

Figure Page

4.9. Specification of the Summation and Averaging Components 4-12

4.10. Specification of a Pipeline Segment for Finding the Moving Average . . 4-14

5.1. Mathematical Overview 5-3

5.2. Signature of CSP Event Operators 5-7

5.3. Signature of CSP Process Operators 5-7

5.4. Pictorial Representation of the Process Defined by the Expression P =
CSP ((f P CS((g P))) 5-13

5.5. A Simple Process Signature 5-20

5.6. Process Signatures and Process signature Morphisms 5-22

5.7. A Simple Process Specification 5-27

5.8. Proof Schemas 5-34

5.9. A Simple Component 5-35

5.10. Mathematical Summary 5-39

6.1. Architecture Taxonomy 6-1

6.2. Operation Composition Using a Functional Architecture 6-7

6.3. Using Functional Architecture Theory to Decompose an Operation (Based

on (57)) 6-12

6.4. Using Process Specifications to Define Structure 6-22

6.5. Using Channel Specifications to Unify Port Symbols 6-23

6.6. Using Parallel Architecture Theory to Construct Specifications 6-27

6.7. Using a Structuring Specification of a Parallel Architecture Theory . . 6-27

6.8. Layered Systems (Based on (38)) 6-29

6.9. Simple Layered Processes 6-33

6.10. Recursive Application of Pipeline Structuring Specification 6-38

6.11. ISlang Diagram Depicting Recursive Application of Structuring Specifi-

cations 6-38

6.12. Channel Specifications and Pipeline Structure 6-40

xi

Figure Page

6.13. An ISlang Diagram for Two 2-Stage Pipelines in Parallel 6-40

6.14. Comparison of Layered versus Pipelined Operation 6-42

6.15. Client-Server Structuring Specification 6-45

6.16. Some Stages for Image Recognition Systems (33:295) 6-52

6.17. Creation of a Seven Segment Batch-Sequential Design 6-54

6.18. A Batch-Sequential Specification for Image Recognition 6-56

6.19. Source of Process Symbols 6-56

6.20. Piped Batch-Sequential Structure 6-59

6.21. Architecture Taxonomy 6-64

7.1. Translating a Pipeline Design to a Layered Design 7-17

7.2. Design Translation 7-22

7.3. Relative Expressive Power of Process Based Architecture Theories. . . 7-23

8.1. Piped-Batch Sequential Image Recognition 8-3

8.2. Image Recognition Extended with Communication 8-4

8.3. Determining skeleton for isosceles triangle (33:352) 8-6

8.4. Skeleton for various pictures (33:352) 8-7

8.5. Square disks of increasing size (33:353) 8-8

8.6. Block diagram of SKEL (33:355) 8-9

8.7. Minkowski addition and subtraction 8-11

8.8. Block diagram of DILATE (33:342) 8-12

8.9. Block diagram of ERODE (33:345) 8-13

8.10. Opening in terms of dilation and erosion (33:334) 8-13

8.11. Block diagram of OPEN (33:347) 8-14

8.12. Block diagram of Partition-Solve-Compose 8-17

8.13. Specification for Partition-Solve-Compose 8-18

8.14. Specification for Two-Partition-Solve-Compose 8-21

xii

Figure Page

8.15. Specification for Ninety2 8-23

8.16. Specification for Domain 8-23

8.17. Specification for Translate 8-24

8.18. Specification for the Logical Operations And and Or 8-24

8.19. Specification Construction for Domain>Ninety-Sq 8-25

8.20. Structure of Erode 8-26

8.21. Specification for Ninety 2-Domain Pipeline 8-27

8.22. Specification for Two-Solve-as-Tran 8-28

8.23. Specification Diagram for Two-Partition-Tran-Compose 8-29

8.24. Specification for Two-Partition-Tran-Compose 8-30

8.25. Specification for Erode 8-32

8.26. Specification for Dilate 8-33

8.27. Specification for Open 8-36

8.28. Specification for EOCA 8-39

8.29. Communication Network for EOCA 8-39

8.30. Communication Network for Two-Partition-EOCA-Compose 8-41

8.31. Specification for DSet 8-43

8.32. Specification for Skeleton 8-44

8.33. Process Communication in Skeleton 8-45

8.34. Selection as Skeleton in Image Recognition 8-47

9.1. Formalizing the Relationship Between Functional and Process Institutions 9-4

9.2. Using Architecture Theories 9-6

A.1. Homomorphism ... A-2

B.1. Problem Specification for Find-Location B-1

B.2. Global Search Algorithm Theory Morphism B-2

B.3. Global Search Theory B-3

xiii

Figure Page

B.4. Specialized Global Search Algorithm Theory B-5

B.5. Key-Search Problem Specification B-6

B.6. Domain Specific Rules B-7

B.7. Domain Specific Rules Incorporating Sort1 B-10

C.1. Problem Specification for Complex Adder C-5

C.2. Communication Taxonomy (based on (112)) C-6

C.3. Asynchronous Buffered Communication C-8

xiv

List of Tables

Table Page

4.1. Output of the Four Sum Moving Average 4-9

6.1. Properties of the Operations • and o 6-10

B.1. Derivation of Additional Terms B-5

B.2. Generation of Terms for the Key-Search Feasibility Filter B-8

B.3. Generation of Terms for the Find-Location Feasibility Filter B-9

B.4. Generation of Feasibility Filter Terms for Find-Location using the En-

hanced Domain Theory B-11

D.1. Proof of Input Condition Satisfaction D-3

xv

List of Symbols

Symbol Page

I D I Objects of a Category D 3-4

D0 P Opposite Category 3-4

E = (S, Q) Signature 3-4

Sign Category of Signatures 3-5

k Logical Consequence 3-11

(E, 4) Specification, Theory 3-12

Sen[E] E-sentences .. 3-12

Mod[SP] Models of a Specification SP 3-12

A =(As, FA) A E-Algebra 3-12

A'].Reduct 3-15

SIsomporphic 3-16

T Closure 3-17

-- Importation 3-21

A 2q A-as-B <- dB 3-25

5T:X -+ X' Functor 3-27

(Sig,, Sen1 , Mod,, 1=) Institution 3-29

Sigi Category of signatures and signature morphisms 3-29

Sen, : Sigi -, Set Functor from the category Sig to the category Set . . . 3-29

Modi:Sig, -* Cat6 P Contravariant functor from the category Sig to the cate-

gory Cat6 P 3-29

, Satisfaction Relation 3-29

Tp(X) Terms 5-5

TCsP(X) ... 5-6

II = (E, E, P, V, n) Process signature 5-17

=T Trace equivalence 5-27

chaninternal(P) Internal channels of a process P 6-34

xvi

Symbol Page

chanexternal(P) Internal channels of a process structure P 6-34

_ External compatibility 7-2

-C External equivalence 7-2

D (A, B) Dilation 8-10

£(A, B) Erosion 8-10

DA Domain of A 8-10

O(A,B) Opening 8-13

OPEN(A,B) Digital opening 8-14

xvii

List of Abbreviations

Abbreviation Page

CARDS Comprehensive Approach for Reusable Software 1-2

DSSA Domain Specific Software Architecture 1-4

ADAGE Avionics Domain Application Generation Environment 1-4

OCU Object-Connection-Update 1-5

SEI Software Engineering Institute 1-5

J-MASS Joint Modeling and Simulation System 1-7

LEAP Lockheed Environment for Automatic Programming 1-8

GUI Graphical User Interface 1-8

CIDL Common Intermediate Design Language 1-8

KIDS Kestrel Interactive Development System 1-8

ADL Architecture Description Language 1-10

MIL Module Interconnection Language 1-11

CM Composition Mechanism 2-3

DRM Design Refinement Mechanism 2-11

ATL Abstract Target Language 2-11

LTS Labeled Transition System 5-11

FAT Functional Architecture Theory 6-5

PAT Process Based Architecture Theory 6-13

CAT Component-Based Architecture Theory 6-17

xviii

List of Definitions

Definition Page

Category 3-3

Signature and signature morphisms 3-4

Extension 3-5

Pushout 3-6

Diagram 3-10

Cone 3-10

Colimit 3-10

Coproduct 3-11

Product 3-11

Logical Consequence 3-11

Specification 3-12

Algebra 3-12

Homomorphism 3-15

Reduct 3-15

Specification Morphism 3-16

Closure, Closed 3-17

Theory presentation 3-17

Interpretation 3-25

Functor 3-27

Contravariant Functor 3-28

Institution 3-29

Indexed collection of sets 5-4

Terms 5-5

Value 5-5

CSPA 5-5

xix

Definition Page

Tcsp(X) . 5-6

CSP structure 5-9

Labeled transition system 5-11

Automaton 5-11

CSP process state 5-13

Initial State 5-14

Final State 5-14

Next-State Relation 5-14

CSP Automaton 5-15

Process signatures 5-17

Relationship between CSP structures and Process Signatures 5-18

Process signature morphisms 5-21

Process specification 5-25

Satisfaction 5-27

Process specification morphisms 5-29

Component 5-34

Consistency 5-35

Component Models 5-37

Component Morphisms 5-37

Architecture Theory 6-3

Design 6-3

Functional Architecture Theory 6-5

Syntactically well-formed 6-5

Semantically well-formed 6-6

Process-Based Architecture Theory 6-13

Component-Based Architecture Theory 6-17

Structuring specification 6-21

xx

Definition Page

Parallel processes 6-24

Parallel Architecture Theory 6-25

Layered processes 6-30

Layered Architecture Theory 6-31

Internal and External channels 6-34

Pipelined processes 6-34

Pipeline Architecture Theory 6-35

Server 6-43

Client 6-43

Client-Server processes 6-43

Client-Server Architecture Theory 6-44

Pipe 6-46

Filter 6-46

Pipe-Filter processes 6-46

Pipe-Filter Architecture Theory 6-47

Batch-Sequential processes 6-50

Batch-Sequential Architecture Theory 6-50

Piped-Batch Sequential Processes 6-57

Piped-Batch Sequential Architecture 6-58

Constraint-Based Architecture Theory 6-60

Repository processes 6-61

Repository Architecture Theory 6-62

External Compatibility 7-2

External Compatibility 7-4

Euclidean skeleton .. 8-6

Translate 8-7

Skeleton 8-8

xxi

Definition Page

Complement 8-9

Minkowski difference 8-10

Minkowski sum 8-10

Erosion 8-10

Domain 8-10

And, Or 8-11

Minkowski addition 8-11

dilation 8-11

ERODE 8-12

Opening 8-13

OPEN 8-14

SKEL 8-14

Derived Antecedent D-3

xxii

AFIT/DSG/ENG/95M-01

Abstract

This investigation establishes a formal foundation for software architecture that al-

lows for the specification of large, non-trivial software systems using well founded, con-

sistency preserving construction techniques. Two fundamental problems were addressed:

how to define and express architectures formally using the concept of theories, and how

architecture theories can be practically applied in specification construction. The initial

stages of this investigation sought to establish a formal, mathematical relationship between

functional specifications of behavior and specifications defining system structure. Experi-

mental results lead to the conclusion that architectures defining the structure of functional

operations can be defined using functional logic, but more complex architectures require

a separate process logic. A process logic based on Hoare's Communicating Sequential

Processes (CSP) was selected for representing and reasoning about system structure and

was used in the definition of a process-based specification development system. Specifi-

cally, CSP was used to define a category of process-based specifications and specification

morphisms. This allowed well-founded specification construction techniques such as spec-

ification morphisms, colimits, and interpretations to be applied to the construction of

consistent software architecture. Architecture theories expressed in terms of functional

and process-based specifications were defined, and translations between these architec-

ture theories were investigated. A feasibility analysis on an image processing application

demonstrated that architecture theories can be used to develop specifications for large,

non-trivial applications.

xxiii

FORMAL FOUNDATIONS

FOR THE

SPECIFICATION OF

SOFTWARE ARCHITECTURE

L Introduction

"Software Development will not become software engineering until the tra-
ditional methods of engineering are incorporated." Richard D'Ippolito.(30:256)

1.1 Purpose and Motivation

Traditional engineering makes extensive use of models and libraries of reusable enti-

ties; "without reusable technology, engineering could not support the level of productivity

and product success that it now enjoys." (30:256) The lessons of engineering have not been

lost on the software profession; software researchers and developers have been concerned

about re-usability for some time. In 1967, Mc~lroy (71) "proposed the idea of a soft-

ware components catalog from which software parts could be assembled, much as is done

with mechanical or electronic parts;"(83:99) McIlroy envisioned "interchangeable source

code parts." (85) Although research continues in the area of reusing source code, over time

the emphasis of re-usability has changed; there is now an increased emphasis on reusing

knowledge, such as domain theories and specialization information, rather than reusing the

implementation.

Knowledge can be reused in several ways. One of these is to reuse knowledge about

architecture. Before proceeding, the use of the term "architecture" needs to be clarified.

Different authors have different definitions of architecture:

"* A unifying or coherent form or structure; a method or style of building.(68)

"* A selection from a set of models and rules of composition that defines the structure,

performance, and use of a system relative to a set of engineering goals.(61)

1-1

* The high level packaging structure of functions and data, their interfaces and controls,

to support the implementation of applications in a domain.(58)

An architecture defines the entities of a system and defines composition rules for these

entities. Pipelines are an example of an architecture. The entities in a pipeline architecture

are pipes and stages, and the composition rules state that stages can be connected to other

stages only through a pipe such that the resulting structure is acyclic and connected.

Some developmental systems such as REACTO (124) directly incorporate architec-

tural notions. Specifications developed in the REACTO environment are based on an

implicit architecture for hierarchical state machines. Other systems, such as the Central

Archive for Reusable Software (CARDS),(123, 122) use knowledge structures to explicitly

represent the architecture of a collection of related applications. In CARDS, new systems

are created by instantiating the architectural models defined in these knowledge structures.

CARDS explicitly represents potential architectural solutions for related applications, but

the definition of architecture in CARDS is informal. One of the purposes of this investi-

gation is to make explicit and formal the definition and use of software architecture in the

development of software specifications.

1.2 Investigation Overview

The basic premise of this investigation is that software architecture can be formally

defined and used to develop specifications for complex applications where such specifi-

cations are constructed using well defined, consistency preserving techniques. Algebraic

specifications are one such technique, and they form the basis of this investigation.

In general, algebraic specifications consist of three parts:(108:107)

1. Signatures: Each specification has a collection of sort names and operation names.

A signature identifies the basic [elements] of the domain being described, and thus

forms a vocabulary for the domain.

2. Axioms: These are formulas generated using the vocabulary provided by the sig-

nature. The axioms define the behavior of the operations in terms of properties of

values in the sorts.

1-2

3. Models: Models are usually algebras which form the denotation of the specification.

An algebra corresponding to a signature provides a set for each sort and a function

or relation for each operation. The behavior of these sets, functions, and relations

are such that they satisfy the axioms.

Axioms are expressed in a logic appropriate for the domain. Functional (stateless) spec-

ifications can be expressed in first order predicate calculus. Other logics, such as modal

logic, can also be used to define specifications. See, for example, (96, 62) or (77) for a

treatment of reactive system specification. The interested reader can find any number of

articles and texts describing algebraic specification, such as (108, 91, 119, 16, 24, 54, 34,

35, 111, 127, 128, 23, 42, 43, 40, 56, 91, 45, 41) and (49).

Algebraic specifications are used in this investigation to define architecture. Concep-

tual foundations for the definition of architecture were established through an investigation

of the relationship between algebraic specification and architectural structure. After es-

tablishing the conceptual relationship between architecture and algebraic specification, a

formal definition of architecture is developed and several architectures are defined within

a specification framework. Specifically, three types of architecture are formally defined:

1. A functional (stateless) architecture expressed within a higher order logic;

2. A process-based architecture expressed within a process logic; and

3. A component-based architecture, where specifications are expressed using both higher-

order logic and process logic.

Several process-based architecture specifications are formally defined, including pipeline,

layered, repository, batch-sequential, and client-server, and relationships between various

process-based architectures are investigated.

The feasibility of using architecture specifications in the development of large, non-

trivial software specifications is demonstrated through the development of a specification

for a portion of an image recognition application. Architecture specifications provide a

mechanism through which algebraic specification can be scaled up to the specification of

large, complex problems.

1-3

This investigation includes a description of a software development formalism based

on the concept of software architecture. This research, like the CARDS system, places an

emphasis on reusing domain knowledge. However, it is on a more formal basis than that

of CARDS. Instead of composing code fragments together to define an application, our

formalism can be used to create an application from algebraic specifications. The soft-

ware development formalism incorporates category theory, architecture specifications, and

advances in domain modeling. It allows the system developer to create application speci-

fications, specialize algorithm specifications, explore communications issues, and translate

specifications from one architecture to another.

Related work is described in the following section. The assumptions and contri-

butions of this investigation are described in Section 1.4 and Section 1.5, respectively.

Section 1.6 outlines the sequence of presentation.

1.3 Related Work

This section describes existing work that is either directly or indirectly related to this

investigation. This section begins by taking a look at some existing software development

systems such as the Domain Specific Software Architecture (DSSA) program.

1.3.1 Software Development Systems.

1.3.1.1 DSSA. There are six projects within the DSSA program; four of

the projects are in military specific domains such as avionics and navigation, while two

of the projects, hybrid control and prototyping technology, address underlying support

technology.(69) Between these six projects, there are three distinct approaches to software

architecture: (72)

1. The avionics project managed by Loral Federated Systems (14) and the command and

control project managed by GTE (84) are based on the domain modeling approaches

of Prieto-Diaz (e.g., (85, 83, 82)). That is, an architecture is drawn from a domain

model of the problem class, where the architecture describes a family of solutions.

The Loral project, called DSSA-ADAGE, has as a goal "to provide system devel-

1-4

opers with the necessary environment to locate, adapt, compose, generate (write),

integrate, and evaluate avionics applications ... by analyzing a problem domain and

creating/refining a set of standardized solutions within it" (114:22) (emphasis added).

The emphasis is on instantiation and verification of pre-existing architectural solu-

tions using code modules.

The Loral project uses a formal language called LILEANNA (115) to describe ar-

chitectures. LILEANNA is used to specify class hierarchies (in the object oriented

sense) and compose them into Ada packages.(25) The GTE approach also defines

an architectural model that is instantiated with reusable code modules based on the

requirements of the application. Although formal languages are used, verification is

limited to type checking and simulation.(14)

This is a fundamentally different approach than the theory-based approach described

in Chapter II. Instead of using a formal language to declare an architecture and

populate it with reusable code fragments, our approach uses a specialization process

with inference rules and soundness axioms to compose and specialize specifications

using architecture theories.

2. The distributed intelligent control project managed by Teknowledge Federated Sys-

tems is based on a particular "architectural style" similar to the object-connection-

update (OCU) model proposed by the Software Engineering Institute (SEI).(61)

This project includes a "domain controller" which generates plans of action. The

Teknowledge approach is based on work in robotic control,(3) wherein an architec-

ture "... . proposes a multi-level hierarchy of controllers." (72:4) Two levels of controller

are used. "A 'Domain Controller' has responsibility for determining plans of action

without regard to time constraints, ... [and a] 'meta-controller' directs the execu-

tion of the planned actions with the goal of maximizing the use of scarce resources,

particularly time constraints." (72:4)

3. The intelligent guidance project managed by Honeywell (1) and the hybrid control

project managed by the ORA Corporation (78) are based on formal models of the

application domain where the software architecture is derived from these formal

models.

1-5

(a) The Honeywell system uses a formal language called MetaH to describe archi-

tectures. The MetaH language "...allows users to specify how source mod-

ules are combined into higher level entities such as processes and modes of

operation." (121:1) Honeywell, like Loral, uses a formal language to encapsulate

source code written in a traditional programming language. As noted in the

MetaH language reference manual, "... an application developer must produce

two things: a collection of Ada source modules that implement the functions

of the application system; and an application specification that describes how

these source modules communicate, share resources, and are to be scheduled in

the application system." (121:5) Application specifications are written in MetaH.

"A MetaH specification identifies and groups Ada source code modules into en-

tities to be included in the application, describes interfaces for entities, [defines]

resource sharing and connections between entities, and [defines] attributes of

entities. Applications are specified as one or more modes of operation, where a

mode of operation is a collection of processes together with a pattern of com-

munication and resource sharing between processes. Processes are specified as

groups of monitors, packages, and subprograms written in the Ada program-

ming language." (121:6) The Honeywell approach, like the Loral and the GTE

approaches, is fundamentally different than our approach. MetaH is used to

describe relationships between existing source code modules where these rela-

tionships define the architecture for an application family.

(b) The ORA Corporation is "investigating an environment for the design, im-

plementation, and evaluation of hierarchical, distributed, intelligent, hybrid

control." (78:73) The term 'hybrid control' refers to "an integrated approach to

continuous physical devices (mechanical, electrical, hydraulic, etc.) being con-

trolled by discrete computational units (digital CPUs)," where "one attempts

to study the problem without . .. reducing the discrete to the continuous or the

continuous to the discrete." (78:74) These researchers are developing both a the-

oretical basis for hybrid control as well as design tools whose emphasis is on

analyzing and simulating dynamic systems. They are also investigating syn-

1-6

thesis of non-linear controllers as a means of "automatically generating control

algorithms and software for non-linear hybrid control." (78:75)

The DSSA projects described above contain "reusable engineering experience" (knowl-

edge) in the form of source code modules arranged to define an architecture for a family of

related systems. Each of these architectures serves as a model or blueprint for applications

developed in their respective domains.

These DSSA projects each define a specific architecture for a problem domain and

instantiate the architecture with existing or custom developed modules based on applica-

tion requirements. In none of the projects is an architecture for an application developed

as a specialization of more general architecture theories.

1.3.1.2 CARDS. The Comprehensive Approach for Reusable Defense Soft-

ware (CARDS) is another code-based reuse system.(123, 122) Like the DSSA-ADAGE

project, CARDS exploits architecture-based reuse of code modules. CARDS explicitly rep-

resents solution space objects using a frame-based knowledge structure, where the knowl-

edge structure describes relationships between solution space objects. The solution space

objects in CARDS are source code and object code modules. CARDS uses two processes

during the creation of an application:

1. An elicitor that obtains the requirements and instantiates portions of the ontology

for the application.

2. A harvester that collects instantiated objects and complies and links them into an

executable form.

CARDS uses the frame-based KL-ONE language (22) to represent relationships between

solution-space objects.

1.3.1.3 J-MASS. Another model-based reuse program is the Joint Mod-

eling and Simulation System (J-MASS) Program.(47) The J-MASS system concept docu-

ment (SCD) describes a software development environment based on templates which are

instantiated with code fragments. The J-MASS SCD describes two libraries:

1-7

1. A Software/Data Structures Library containing "software structural templates used

for development of software components" (47:7) as well as "data structure templates."

2. A Software Components Library containing pre-compiled "parts" that are ready to

be assembled into simulation models.

1.3.1.4 LEAP. The Lockheed Environment for Automatic Programming

(LEAP) is a software development environment built by the Lockheed Software Technology

Center. LEAP solicits application requirements through a series of templates. Based on the

requirements, a suitable architecture for the application is created. This architecture is an

instantiation/specialization of an architecture description stored in the LEAP knowledge

base. Constraint propagation is used to facilitate requirements acquisition and thereby

facilitate instantiation of the architectural template. LEAP contains at least two features

related to the research described here:

1. Object-based interface. LEAP allows a user to define architectural aspects of an

application via a graphical user interface (GUI). Inputs to the GUI are automatically

reflected in the underlying application.

2. A parameterized, executable theory-based language called Common Intermediate

Design Language (CIDL).(80) Applications developed using LEAP are represented

internally as a collection of CIDL components. The CIDL representation of an ap-

plication can be compiled and executed, or it can be translated into Ada or LISP for

execution. Although CIDL is theory based, the axioms of the language are not yet

used,(79) nor is it used to define architecture.

1.3.1.5 Kestrel Interactive Development System (KIDS). KIDS is a for-

mal and mathematically well-founded software specification and synthesis system.(100) In

KIDS, a problem is specified using sorts and operations defined in an underlying domain

theory.

KIDS includes a collection of algorithm theories which can be specialized for a given

problem. Once an algorithm has been specialized, it is transformed from its specification

1-8

representation to a representation in the REFINE language.(88) Once in REFINE, the

algorithm can be optimized, compiled, and executed.

1.3.1.6 SpecWare. A theory-based system being developed at Kestrel In-

stitute is SpecWare.(18, 19, 56, 55) SpecWare is based on the work of Wirsing (128) and

Turski and Maibaum (117) among others where a category of specifications and specifi-

cation morphisms is used to combine specifications into new specifications. One of the

benefits of defining a specification development system in terms of category theory is that

consistency preserving specification construction operations can be defined (see Chapter III

for details). SpecWare is a higher order, functional specification development system that

incorporates algorithm theories and specialization techniques. However, architecture the-

ories are not explicitly used to define structure; there is no mechanism in SpecWare for

connecting the output of one operation to the input of another outside of using nested

function calls. SpecWare includes a collection of mappings from its specification language,

SLANG, to compilable programming languages such as C or LISP. Because of the benefits

offered by its foundation in category theory and its ability to specialize existing specifica-

tions, SpecWare was used in this investigation to define functional specifications.

1.3.1.7 Other Approaches. Other research related to this investigation is

in area of architecture description languages and architecture definitions. Several papers

attempt to formally describe either architecture classes or other aspects of software archi-

tecture, such as (74, 6, 38, 39, 76, 1, 78, 64, 114, 94, 93, 4, 5, 72, 60) and (95). Each of

these papers provide some insight into the features a formal definition of architecture must

support. For example:

"* A pipe and filters formal model based on Z in (4).

"* Several classes of architecture including pipeline, object-oriented, layered hierarchy,

table driven interpreters, and repositories are described in (94). Although these

architecture classes are not formally defined in the paper, the author does describe

their identifying characteristics and structural - not semantic - patterns.

"* Module interaction is formally described using Z in (37).

1-9

Other clues to the aspects a formal definition of architecture must address can be

found by investigating architecture description languages (ADL). One such language is

LILEANNA which was previously mentioned as part of the Loral DSSA work. ADLs are

described in the following subsection.

1.3.2 Architecture Description Languages.

1.3.2.1 ADLs. An ADL called LIL is described in (43). An extension

to LIL for use with Ada, called LILEANNA, is described in (115). LIL is a theory-

based specification language with an emphasis on interfaces and data flow. Theories in

LIL "declare properties an actual parameter must have to meaningfully substitute for

the formal parameter of a generic entity." (43:127) Theories in LIL also define an entity's

properties. Tracz states that specification construction operations such as colimits can be

defined over LILEANNA specifications.(115) Although both LIL and LILEANNA support

inheritance and parameterization, Tracz's work does not include the use of architecture

theories. The specifications developed using LILEANNA are not structured to support

automated code synthesis, but instead are used for "automated selection, composition,

tailoring and instantiation of (existing) Ada code." (120)

Another ADL is MetaH. Although MetaH allows "no functional specification beyond

a simple naming of inputs, shared objects, and outputs," (120) it has several interesting

aspects. For example, MetaH has nine different types of components, such as events, ports,

and processes. The language also has four different classes of "connection," an example of

which is a port connection.

p-Rapide is an ADL designed for event-driven systems.(64) One of the interesting

features of 1.-Rapide is its handling of connections between components. "Connections

themselves may have complex behaviors specified, and in general, the expressive power of

connections and component behaviors is equivalent. In fact, there is a straight-forward way

of rewriting a complex connection specification as a component specification . . . "(120).

Each of the three ADLs have two classes of entity: a component and a connection.

In addition, Vestal notes the following similarities:

1-10

"* Component interface declarations define types of components, where there may be

multiple instances of a declared component type.

"* Components have distinct interface and implementation aspects.

"* Connections can be made between "things" in component interfaces, not always

directly between components themselves.

"* Components may be defined in terms of sub-components and connections between

them.

ADLs may be used to document or declare possible architectural solutions which -

depending on the ADL - may be parameterized. The emphasis of ADLs is quite different

than our formalism described in Chapter II. The emphasis of ADLs is on the efficient

management of the structure and implementation of large applications. In contrast, our

formalism described in Chapter II is concerned with the generation of a consistent archi-

tectural and behavioral definition of large applications.

1.3.2.2 Module Interconnection Languages (MIL). MILs, such as Thomas'

MIL (113), state what the system modules are and how they fit together to implement

the system's functions. MILs are not concerned with what the system does (specification

information), how the major parts of a system are embedded into the architecture (analysis

information), or how the individual modules implement their function (detailed design

information). (86)

According to (86), researchers working in formal models view interconnection in two

ways: as a structural model of the resource usage and as a consistency model of the

construction of the system. In short, a MIL is a language for "programming in the large

with a formal machine-process-able [sic] syntax that provides a means for the designer of a

large system to represent the overall system structure in a concise, precise, and verifiable

form." (86:309)

Polylith is a MIL used at the University of Maryland. (87) Polylith provides a "pack-

aging system for analyzing configurations and then generating all stubs, build commands

and other interfacing structures according to the developer's abstract interfacing deci-

1-11

sions," (15:82) and provides a "run-time system providing various forms of communication

support." (15, 87) Polylith is used to document the architecture of a family of applications

and is designed to facilitate program compilation such that they are consistent with the

defined architecture. Polylith is not designed to manipulate formal algebraic specifications.

The main concepts of a MIL are:

* the use of a separate language to describe system design;

* the ability to perform static type-checking at an intermodule level description;

"* the ability to consolidate the design and construction process (module assembly) in

a single description; and

"* the ability to control different versions and families of a system.

MILs are used to document the structure of an application; they are not used to derive

the structure of an application. Although MILs typically provide static type checking, they

do not typically provide semantic compatibility checks. For example, a module designed

to compute the square root of an integer argument has an implicit input assumption that

the argument it receives is greater than or equal to zero. MILs typically do not ensure

that input assumptions such as these are satisfied.

1.3.2.3 Specification Languages and Proof Systems. Many specification

languages and specification development systems exist (e.g., (2, 53, 59, 89, 92, 13, 9)). Some

of the more widely known systems include KBEmacs, which is a specification development

system with an emphasis on specialization of code generics,(125) and LaSSIE, which is

a frame-based specification syst.em.(29, 28) Other specification development environments

include ENCORES (70), OIKOS (7), Clear (23), 4-nix (12), and DRACO (73). The text

Automating Software Design (63) contains a description of several of these specification

development systems, and (46) contains a survey of several others.

Three specification development systems or languages, Larch, OBJ3, and Promela

are described in the following paragraphs.

1-12

1. Larch. Larch is a specification language which is bundled with a theorem prover.(48)

Larch is a two-tiered specification language consisting of a shared language and an

interface language.

(a) The Larch Shared Language is used to specify sorts, operations, and axioms.

The Larch theorem prover can be used to prove properties of traits, which are

the fundamental specification unit of Larch.

(b) The Larch Interface Language is a programming language specific language that

introduces terms, such as exceptions or timers, that are part of the programming

language but not part of the shared language. The Larch interface language

can also be used to define state. A Z-like notation is used to denote state

manipulation.

2. OBJ3 is a "wide spectrum functional programming language." (44:1) Two types of

module are used in OBJ3:

(a) objects encapsulate executable code, and

(b) theories which "specify both syntactic structure and semantic properties of mod-

ules and module interfaces." (44:1)

OBJ3 supports parameterized programming and includes a theorem prover based on

an order sorted equational logic.

3. Promela is a process-based specification development system consisting of two back

ends: (126)

"* One back end generates C++ code "suitable for compilation onto an embedded

controller";

"* The second back-end "generates gate level designs suitable for input to conven-

tional silicon compliers or field-programmable gate array ... tools."

In Promela, static channel definitions are used to define communication. However,

the authors incorporate notions of an "unreliable" channel that may corrupt or com-

pletely lose messages. Channels are either typed or untyped, and may be declared

to be external (e.g., a hardware interface).

1-13

All communication in Promela is either message based or via shared data values.

Communication can either be synchronous or asynchronous, but synchronous com-

munication need not block if the other party is not ready to communicate. Instead,

the communication attempt could return a "fail" value. All Promela processes are

concurrent.

1.3.3 Summary of Related Work. No system or language that develops a formal

foundation for general architecture theories, develops a specialization process with infer-

ence rules and soundness axioms, or applies these concepts to some problem class was

found in any paper. Current architecture based development systems such as CARDS,

DSSA, or LEAP tend to contain static architectural descriptions of solution space objects.

Architecture description languages such as MetaH and module interconnection languages

such as Polylith are targeted toward documenting architectural solutions. Algebraic speci-

fication languages such as Larch or SLANG do not incorporate architecture specifications.

In addition, differing definitions of the term architecture can be found in the current liter-

ature.

1.4 Assumptions

The overriding goal of this research was to formally define architecture and architec-

ture specifications, and demonstrate how architecture specifications can be used to define

software specifications. Given this goal and the background presented in the previous

section, this research is predicated on the following assumptions:

Assumption 1.1 Nonfunctional Constraints. Issues associated with sizing and timing,

schedulability, priority, periodicity, and real-time constraints are ignored. All processes of

an implementation are assumed to be schedulable. Only functional constraints are consid-

ered.

Sizing and timing issues are abstracted away to simplify the development of architecture

theories. Including sizing and timing constraints in an architecture theory requires not only

representational structures, but would also require the development of reasoning facilities

over those structures. Such a reasoning facility would need to determine whether an imple-

1-14

mentation or model exists for a given specification such that the non-functional constraints

were satisfied, or which given an implementation, could determine if it was consistent with

the specification (i.e., if the implementation is a valid model of the specification). There

has been some work in the area. For example, (42) touches on the subject of constraint

representation, while (116) addresses reasoning with constraints in more detail.

Assumption 1.2 Functional Model Definition. The application developer is responsible

for defining the functional model of an application.

That is, the application developer identifies the data flows within an application. Prece-

dented design - in the form of parameterized specifications - may already contain func-

tional model information.

Assumption 1.3 Software Synthesis. A KIDS-type synthesis system can be used to syn-

thesize implementations for the functional portions of application specifications. If other

logics such as modal logic are used to define component behavior, the assumption is made

that a synthesis system exists which can find implementations for specifications written in

the given logic.

Assumption 1.4 Operation Termination. All operations identified in a signature are

atomic (without duration) and terminating.

Note that this assumption has significant implications for the class of application that can

be developed under this restricted semantic model. Specifically, operations that are not

guaranteed to terminate can still be defined in functional specifications and referenced in

process specifications, but claims of lack of deadlock or live-lock over processes referencing

these operations may no longer be valid. A process that engages in an evaluation of a

nonterminating operation is, for all practical purposes, deadlocked.

Assumption 1.5 Communication Network. A static, reliable communication network is

assumed. Communication links, such as pipes or connectors, are declared and defined prior

to system execution.

1-15

The assumption of reliable communication eliminates the need to define handling of com-

munication errors. Static communication networks are assumed because the language

chosen for defining communication does not support dynamic definition of communication

channels.

Assumption 1.6 Existence of Colimits. Colimits of specifications are assumed to exist,

and specifications are assumed to be consistent.

Assuming the existence of colimits of specification diagrams simplifies the theoretical devel-

opment and, according to Srinivas, such an assumption is reasonable.(109) Specifications

are assumed to be consistent due to the semi-decidable nature of first order theorem prov-

ing: A specification can be proved to be inconsistent if such an inconsistency exists, but

in general it cannot be proven that a specification is consistent.

1.5 Contributions

Based on these assumptions, the contributions of this investigation include:

1. Development of a category of process-based specifications.

2. Definition of a mathematical relationship between functional and process-based spec-

ifications.

3. Development of a formal definition of software architecture, including functional,

process-based, and component-based architectures.

4. Definition of a specialization process for software architectures.

5. Incorporation of architecture specifications into a software development framework.

6. The ability to develop system level specifications using different logics, separately

considering functional and process aspects of an application.

7. Demonstration of the feasibility of developing software specifications using formal

architectures.

1-16

1.6 Summary

This chapter has provided a brief introduction to the research goals and objectives

of this investigation and has presented a summary of related work. The remainder of this

dissertation is organized as follows:

"* Chapter II introduces a framework for developing system level specifications.

"• Chapter III discusses specification construction techniques.

"* Chapter IV describes an early attempt to combine functional (stateless) and process-

based specifications, and provides a more detailed description of components and

connectors.

"* Chapter V establishes the mathematical foundation of our framework and formally

defines components and connectors.

"* Chapter VI defines architecture, and introduces and defines several architecture spec-

ifications.

"* Chapter VII contains an analysis of the relative expressive power of the process-based

architecture theories defined in Chapter VI.

"* Chapter VIII demonstrates the feasibility of our framework by developing a process-

based specification for a problem drawn from the image recognition domain.

"* Chapter IX presents the conclusions of this investigation and provides recommenda-

tions for future research.

1-17

II. Software Development Framework

This chapter provides an overview of the specification development framework defined

as part of this investigation. This discussion is general in nature; a rigorous treatment of

the specification development using our framework is in Chapter V.

2.1 Overview of the Framework

A framework for the development of software based on the notion of architecture

specifications is depicted in Figure 2.1. Only part of the framework shown in the figure

is defined in this research. Specifically, this research establishes the mathematical founda-

tions for the Composition Mechanism (CM) and formally defines architecture specifications

including functional, process-based, and component-based architecture specifications. The

library of functional specifications shown in the figure exists as part of SpecWare.(18, 19)

The remaining portions of the framework, the Design Refinement Mechanism (DRM), the

Abstract Target Language (ATL), and the Source Code Generation and Optimization Unit

are informally described in this chapter but are left for future research. Additional detail

can be found as follows:

1. (81, 105, 99, 101, 100, 104) and (98) contain descriptions of domain specifications

and algorithm specifications, and include descriptions of how algorithm specifications

can be specialized for specific problems.

2. (56, 57, 55) and (102) contain descriptions of how functional specifications can created

using a framework based on Category Theory.

3. (8) and (51) define process logics, and (50, 11, 31, 32) describe implementations or

models of process-based specifications.

4. (21) and (75) address optimization in more detail.

Application-level specifications are developed using the CM, where the specification

construction operations of the CM are consistency preserving. Existing functional and

architectural specifications are retrieved from the specification libraries and used in the

development of system specifications. Once a system specification has been developed,

2-1

History

M SOURCE CODE Ad,
COMPOSGENERATION & C/C++

Theory-Bo.ed ATL
MECHANI MEC OPTIMIZATION LISP

Sy-.ste p-ificati-OPM ATO

Library of Spooecoi-fon Troorlations

Libny ofLbmyof Li-my Arhitectu

SFecfloiodeeooo -ecData Str Aecture

Epocifcatfioor Epecifflalitoo

Figure 2.1 Software Development Using Architecture Specifications

the DRM is used to refine the sorts, operations, and architecture(s) of the application.

After refinement, the DRM is used to map the specification constructs to an intermediate

language, the Abstract Target Language (ATL). A code generator is used to map the ATL

representation to a representation in some compilable target language such as Lisp, C, or

Ada.

2.2 Composition Mechanism

In Figure 2.1, two types of specifications are used in the development of system

specifications:

1. Functional specifications, which are stateless and timeless entities, used to specify

sorts and operations.

2. Architecture specifications, used to define structure, state, and interface require-

ments.

Some system specifications can be developed using only functional specifications, but these

systems consist of a single operation that computes f(x) for an input value without regard

to state, or a collection of such operations. Process-based specifications use functional op-

2-2

erations in the specification of communicating processes; process-based specifications are

defined in Chapter V. Architecture specifications allow a developer to better define the

structure of an application. Specifically, architecture specifications allow the explicit com-

position of operators, as in h = f c g, and provide the flexibility to define communication

networks between collections of operations, where such collections may retain state.

The specification composition operations of the Composition Mechanism CM are

defined using Category Theory, where the objects of the category are specifications, and

the arrows of the category are specification morphisms. Conceptually, a specification mor-

phism defines a relationship between specifications; a specification morphism defines how

one specification is contained in another. These terms are defined more precisely in Chap-

ter II. The specification construction operations of the CM allow, for example, a functional

specification to be extended with new sorts, operations, and axioms, and they allow sorts

and operations of a specification to be refined or specialized. For example, an algorithm

specification that requires one of its sorts, say X, to be partially ordered can be special-

ized to an algorithm specification which requires X to be totally ordered. Specification

construction is also addressed in more detail in Chapter Ill.

2.2.1 Functional Specifications. Functional specifications are used to define the

sorts and operations of an application, where sorts are collections of related values. Specifi-

cations include statements called axioms expressed over the sorts and operations identified

in the signature of a specification, where the axioms of a specification are interpreted in

some well-founded logical system.

Functional specifications may be defined using reusable specifications drawn from a

specification library. These reusable specifications contain definitions of sorts and opera-

tions common to variety of problem domains. Domain independent specifications define

sorts and operations applicable across multiple problem domains. For example abstract

types for sets, sequences, and maps are domain independent, as are the concepts of partial

and total order. Domain specific specifications contain definitions of sorts and operators

that are not as applicable across multiple problem domains. For example, a domain specific

sort for representing complex-valued digital signals could be defined.

2-3

spec Problem-Theory is
sorts D, R

op I D --+ Boolean
op 0 D, R --* Boolean

end-spec

Figure 2.2 Problem Theory

Relationships between specifications are represented using formal objects called ar-

rows or morphisms. These objects define how the specification at the tail of the arrow is

contained within the specification at the head of the arrow. For example, consider the sim-

ple functional specification Problem- Theory show in Figure 2.2. This specification, written

using the syntax of the specification language SLANG,(19) introduces two sorts, D and

R, and two operations I : D -* Boolean and 0 : DxR --* Boolean, where I defines an

input condition and 0 defines an output condition. This simple specification is contained

within the global search algorithm specification shown in Figure 2.3. The specification

Filtered-Global-Search encapsulates global search as follows:(100, 105)

"* D is the input sort.

"* R is the output sort.

"* The function I: D --* Boolean constrains the input domain.

"* 0 : D, R --* boolean is a function defining the output condition. O(x, z) evaluates to

true if and only if the output domain value z E R is a feasible solution with respect

to input x E D.

"* R is the type of the subspace descriptors.

"* I defines legal search space descriptors.

"• i and b are arbitrary search space descriptors.

"• r0 (x) is the descriptor of the initial set of candidate solutions.

"* Satisfies(z, ý) evaluates to true in case z is in the subspace defined by P.

"• Split(x, •, .) means that . is a subspace of i with respect to input x.

2-4

"* Extract(z, ý) defines the conditions under which z may be directly extracted from i.

"* GSO asserts that the initial space descriptor is a legal space descriptor.

"* GS1 asserts that legal space descriptors split into legal space descriptors.

"• GS2 states that all feasible solutions are contained in the initial space.

"• GS3 gives the denotation of an arbitrary descriptor ý. An output object z is in the

set denoted (described) by ý if and only if z can be extracted after finitely many

applications of Split to i.

"* Filter : D,R -+ boolean is a feasibility filter used to eliminate spaces from further

processing. By construction, the filter only eliminates spaces that do not contain

feasible solutions.

External to Filtered-Global-Search is a soundness axiom which describes the conditions in

which a global search theory A can be refined into a global search theory satisfying the

constraints of a problem theory BF.

The relationship between Problem-Theory and Filtered-Global-Search can be defined

by the simple arrow Problem-Theory F-* Filtered-Global-Search defined by the map DPT I-4

DGS, RPT i-- RGS, IPT F- -GS, OPT ý-4 OGS where the subscript PT refers to Problem-

Theory and the subscript GS refers to Filtered-Global-Search.

Arrows between functional specifications in the specification library define a hierarchy

of related specifications. Although not developed as part of this investigation, an intelligent

retrieval system or library manager could be defined. This retrieval system could be used

to index into the specification library and retrieve specifications satisfying some set of user

defined constraints. For example, such a retrieval system could be used to retrieve all

specifications defining or containing a partial order. The developer could then filter this

set of specifications using additional constraints, after which, the remaining specifications

could be refined or incorporated into a system specification.

Not only does the specification library contain specifications for abstract types, it

also contains algorithm specifications. Algorithm specifications represent the structure

common to a class of algorithms and abstract out concerns about the specific problem to be

2-5

spec Filtered-Global-Search is
Sorts D, R,R1

op I: D --+ Boolean
op 0 : D,R --+ Boolean
op I: D,R - Boolean
opr'o : D-- R
op Satisfies: R,R - Boolean
op Split: D,R, R -* Boolean
op Extract: R,R - Boolean
op Filter : D,R - Boolean
axiom GSO is

(fa x (implies (I x) (_ x (ýo x))))
axiom GS1 is

(fa x (fa ý (fa . (implies (and (and (I x) (I x 2)) (Split x)
(I x)mm

axiom GS2 is
(fa x (fa z (implies (and (I x)(O x z))(Satisfies z (ýo x)))))

axiom GS3 is
(fa x (fa ý (fa z (implies (and (I x)(i x

(iff (Satisfies z
(ex . (and (Split* x • i)(Extract z

axiom filter is
(fa x (fa ý (ex z (implies (and (and (satisfies z r) (0 x z))

(I x ý))
(filter x i)))))

end-spec

Figure 2.3 Global Search Theory

solved, the control strategy (top down versus bottom up versus depth-first etc.), the target

language and style (e.g., functional versus imperative), and the target architecture.(105)

The composition mechanism can be used to define an arrow from the specification Problem-

Theory to a problem specification in some problem domain, such as the problem key-search

described in Appendix B. The theory based operations of the CM are used to define

an interpretation from Filtered-Global-Search to the problem specification containing key-

search. An interpretation defines how Filtered-Global-Search can be specialized such that

it can be used to find solutions to the key-search problem. Specification construction

techniques such as this are described in more detail in Chapter III. See (103) or (102) for

a discussion concerning algorithm theory interpretation.

2-6

A hierarchy of algorithm specifications has been developed by researchers at Kestrel

Institute.(105) These algorithm specifications include global search, shown in Figure 2.3,

problem reduction,(101) and divide and conquer (99) among others. Also developed at

Kestrel Institute is a higher order specification language, SLANG,(19) useful for defin-

ing functional specifications, and a specification development environment, Spec Ware,(18)

based on Category Theory. Both SpecWare and SLANG are used throughout the remain-

der of this dissertation; the syntax and semantics of SLANG are described in Chapter III.

Operations identified in the signature of a specification can be combined using a

functional architecture specification to define new operations, or the signature of a specifi-

cation can be used to define a component, where a component defines the communication

protocol of its operations. Component-based architecture specifications are then used to

define communication networks between these operations. This leads to the concept of an

architecture specification.

2.2.2 Architecture Specifications. Functional specifications define sorts and oper-

ations. Architecture specifications define structure and state, and they define how complex

structures can be built out of simpler structures. As shown in Figure 2.1, there are at least

three types of architecture specifications:

1. Functional. Functional architecture specifications are used to define functional oper-

ators in terms of other operators. That is, functional architecture specifications are

used to compose operators to define new operators, or they can be used to decompose

an operator into a structured collection of simpler operations. For example, the op-

eration f : D -- R could be defined by the composition of the operations g : D -+ E

and h : E --* R. That is, f = h o g. Functional architecture theory is formally

defined in Section 6.2.1.

2. Process-Based. Process-based architecture specifications define communication pro-

tocols, process structure, and state. Process-based architecture specifications define

the structure of an application as a collection of processes and a communication net-

work between them. The fundamental building blocks of process-based architecture

specifications are processes and communication channels, where process semantics

2-7

are provided by C.A.R. Hoare's Communicating Sequential Processes (CSP).(52)

Written in a language called ISLANG, process specifications and process-based ar-

chitectures presented in Chapters V and VI respectively.

3. Component-Based. Component-based architecture specifications are an extension of

process-based and functional architecture specifications. A component consists of a

functional specification defining sorts and operations, and a process specification that

defines interface requirements. Component-based architecture specifications define

how components can be defined in terms of other components. In this case, a sys-

tem specification consists of a component specification which defines the processes,

communication network, communication protocol, sorts, and operations of an appli-

cation. Components and component-based architecture specifications are defined in

Sections 5.6 and 6.2.3, respectively.

While this section has presented a brief overview of the composition mechanism

depicted in Figure 2.1, it has provided limited information on how a developer would use

the CM to develop a system specification. Using the composition mechanism to develop

system level specifications is the topic of the next section.

2.2.3 Using the Composition Mechanism. There are at least two ways in which

the composition mechanism can be used to develop system specifications: a top-down

approach (imposed architecture) and a bottom-up approach (constructed architecture).

2.2.3.1 Imposed Architecture. Given a specification S, an architecture

specification A can be used to decompose the sorts, operations, or processes of S into a

collection of simpler, cooperating elements. For example, a functional architecture speci-

fication encapsulating operator composition can be be used to define an operation f of S

to be the composition of two, simpler operations as in f = g o h. An architecture speci-

fication defines a structuring of some of the elements of S by defining how operations or

processes of S are decomposed into simpler elements. In the case of functional architecture

specifications, the elements structured are functional operations. In the case of process-

based architecture specifications, the elements structured are processes. See Figure 6.2

2-8

of Section 6.2.1 for an example of using a functional architecture specification to define

structure.

The advantage of this approach is that complex specifications can be decomposed

into simpler structures. For example, it might not be possible to define an interpretation

from an algorithm specification in the specification library to a given problem specification,

especially if the problem specification involves aspects of more than one algorithm theory.

However, if the problem specification were decomposed into a collection of simpler, coop-

erating operations, such as f = g o h, then it might be possible to define interpretations

from algorithm specifications to g and h, respectively and then use the composition g o h

for f.

Consider the following problem. Given an unordered sequence A and an element el

in the sequence, determine where in A the element el would appear if the sequence were

ordered. That is, define an operation f such that f(A,el) = i where the output condition of

f is f(A,el) = i #:ý (exists Z (permutation (A,Z) A ordered(Z) =• Z[i] = el). Permutation

evaluates to true if and only if its arguments are permutations of each other and ordered

evaluates to true if and only if its argument is ordered. Note that in this case, the conjunct

permutation (A,Z) A ordered(Z) is true only if Z is an ordered permutation of the input

sequence.

This problem contains aspects of both divide-and-conquer for the sorting of the input

sequence and global search for the searching of the ordered sequence for occurrences of the

input element. Thus, one possible decomposition of this problem would be search (sort

(A), el), where sort is a specification for sorting and search is a specification for searching

an ordered sequence for occurrences of a given element. That is, f(A, el) could be defined

by search (sort (A), el). A functional architecture specification defining operator compo-

sition could be specialized via specification morphism for this purpose. The consistency

preserving nature of specification morphisms ensures the resulting specification satisfies

the original input specification. Unfortunately, the mathematics required to demonstrate

this type of specialization have not yet been developed at this point in this document. A

more detailed treatment of using architecture specifications in a top down manner must

2-9

therefore wait until the mathematical foundations of specification construction using ar-

chitecture specifications have been established.

Architecture specifications can also be used to compose larger, more complex spec-

ifications from smaller, simpler specifications. That is, architecture specifications can be

used in a bottom-up manner to compose simpler specifications to define specifications for

complex problems. This bottom-up approach is discussed next.

2.2.3.2 Constructed Architecture. In the bottom-up approach, a software

specification is constructed out of a collection of simpler, less complex specifications, rather

than decomposing an input specification into a collection of simpler specifications. Archi-

tecture specifications are used to define the compositions. For example, a layered archi-

tecture specification can be used to compose two process or component specifications such

that one is subordinate to the other. For example, a bottom-up construction technique is

used in Chapter VIII to specify a segment of an image processing application.

One of the advantages to bottom-up construction is that system specifications can

be constructed out of specifications that may be both more reusable and easier to write.

A disadvantage of a bottom up construction is that it requires the developer to guide the

composition according to his or her perspective of the application. Unlike a top down

approach, a system specification does not exist until late in the specification development

process. Some properties of the specified system can be investigated as the system specifi-

cation is developed, but some system level properties might not be well-defined until late

in the development process.

Whether employed in a top-down or a bottom-up construction, architecture specifi-

cations define application structure.

Once a specification for a given application has been created, the next task is to

define or construct an implementation of it. As shown in Figure 2.1, the Design Refinement

Mechanism is used for this task.

2-10

2.3 Design Refinement Mechanism (DRM)

The Design Refinement Mechanism (DRM) is used to find models of specifications.

That is, the DRM is used to translate specifications from a denotational language to an

intermediate, executable language such that the translation is behavior preserving. For

example, operations defined by a specification to be associative can only be mapped to

associative executable operations.

The Library of Specification Translations shown in Figure 2.1 contains a collection

of mappings which define how to translate the constructs of the specification language

to constructs in a lower-level abstract target language (ATL). More formally, the DRM

is responsible for translating expressions in the -specification language to expressions in

the ATL such that satisfaction is preserved. This topic is addressed in more detail in

Section 3.4.

Once a specification has be translated into ATL, it may be optimized using optimiza-

tion rules that hold in the target language. For example, it may be possible to collapse a

process definition found in a component specification into a single operation or a collec-

tion of operations within the ATL. Once a specification has been optimized and translated

to ATL, a code generator can be used to map ATL expressions to expressions in some

compilable target language such as Ada, Lisp, or C.

Although the DRM is a necessary part of the software formalism depicted in Fig-

ure 2.1, it is not further defined as part of this investigation.

2.4 Summary

This chapter has provided an overview of one approach to incorporating architecture

theories into the development of formal software specifications. Two primary mechanisms

are used for this task. The Composition Mechanism (CM) is used to develop system level

specifications as well as to specialize algorithm specifications, to define specification inter-

pretations, and to define application structure via architecture specifications. The second

mechanism, the Design Refinement Mechanism, is used to translate system specifications

created using the CM into an intermediate language which may then be optimized and

2-11

mapped via a source code generator and optimization unit to a compilable target language

such as Ada, C, or Lisp.

The treatment of the topics presented in this chapter has been informal. A mathe-

matically rigorous treatment of these topics is presented in the remaining chapters of this

dissertation. Specifically, the remaining chapters of this dissertation establish a mathemat-

ical foundation for the specification of software architecture, where software architecture

is defined using a combination of functional and process-based specifications.

2-12

III. Combining Theories to Make Theories

"Large specifications necessitate structuring mechanisms using which we can
build specifications out of smaller, 'mind-sized' chunks." (107:46)

3.1 Introduction

The field of mathematics has existed for thousands of years. During this time, specific

notation has developed which allows mathematicians, scientists, and engineers to reference

complex notions relatively simply and abstractly. For example, "when a mathematician

says that he is considering a continuous function or a particular form of a partial differential

equation, he is expressing himself on a linguistic level very far removed from the level of

natural arithmetic." (117:65) The notion of a linguistic level is comparable to the notion of

abstraction. That is, the mathematician is able to reason - using established patterns of

reasoning - at a given level of abstraction using, perhaps, named theorems to prove or

disprove a given hypothesis. If needed, any given step in a proof at one level of abstraction

can be minutely investigated at a lower level.(117)

As stated by Turski and Maibaum (117), there are several significant differences be-

tween the development of software as practiced today and the development of mathematical

proofs:

"* There is a lack of established linguistic levels in the field of software development. The

terminology is often chaotic (e.g., object-oriented versus object-based development),

basic premises are unlisted, etc.

"* There is no established tradition for deductive reasoning.

"* The linguistic system is confusingly used, including its simplest, grammatical aspects.

"* While the mathematician usually works within a single linguistic level, a software

developer almost invariably has to deal with several essentially different linguistic

levels.

As noted by Turski and Maibaum, "If the specification and subsequent development of

software is to be made rigorous, there is no way that present confusion could be preserved.

3-1

On the other hand it is unthinkable that specification writing and software development for

millions of applications could be more demanding of the people involved in these activities

than mathematics." (117:66)

Instead of attempting to preserve the traditional methods of software development

within a rigorous framework, Turski and Maibaum point out that "software specification for

application domains is the process of theory formation for these domains. If, however,

specification construction is in fact theory-making, we must think about means which

would make this task manageable." (117:66-67) Software development using a theory-based

formalism is shown in Figure 2.1, where algebraic specifications are combined to create an

application. This chapter defines some of the terminology used to establish the theoretical

foundations of the formalism shown in Figure 2.1.

The software development formalism described in Chapter II is based on concepts

drawn from category theory, where category objects are specifications and category ar-

rows are morphisms. Several different types of specification construction operation can

be defined in terms of arrows or morphisms. For example specification extension and

specification translation can be defined as arrows. Regardless of the type of specification

composition operation, all specification morphisms have a common or universal property:

they translate the axioms of the source specification into theorems of the target specifica-

tion. That is, the translated axioms of the source specification logically follow from or are

a consequence of the axioms of the target specification. These concepts are made precise

in the following section.

Different categories of specification and specification morphism can be defined. For

example, a category of first order logic specifications can be defined wherein the definition

of logical consequence is based on logical implication. Axioms in such a category could

be logical expressions in prenex normal form defined over the sorts and operations of the

specification, and logical implication, •*, is used to define theorems. That is, if 4) is

a collection of predicates defined over the sort and operator symbols E of a functional

specification SP, and if 0 is also a predicate defined using only the symbols in E, then 0 is

a theorem of SP if and only if 14 => 1. Other categories of specifications and specification

3-2

morphisms can be defined. For example, equational logic can be used to define a category

of functional specifications.(41)

The approach taken in this investigation is to define different categories of specifica-

tions and specification morphisms where specifications in one category may be better able

to represent application requirements than specifications in another category. Specifically,

a category of functional specifications and functional specification morphisms is used to

define sorts and stateless operations, and a category of process-based specifications and

process-based specification morphisms is defined and used to define processes and state.

Architecture theories are then defined using these categories.

This chapter establishes the mathematical foundations required to define these spec-

ification categories. Specifically, the terms introduced and defined in this chapter are used

to establish the category Spec of functional specifications and functional specification

morphisms. Examples of using Spec to develop functional specifications can be found

throughout this chapter. In Chapter V, a category of process based specifications and

process based specification morphisms is defined.

3.2 Basic Definitions

Before categories of specifications and specification morphisms can be meaningfully

described, a few terms must be defined. Because category theory is an integral part of

specification construction, a definition of category theory is presented below.

Definition III.1 Category.(106) A category C comprises

1. a collection of things called C-objects;

2. a collection of things called C-arrows;

3. operations assigning to each C-arrow f a C-object dom f (the domain of f) and a

C-object cod f (the codomain of f). If a = dom f and b = cod f we display this as

f : a--+ b or a -4 b

3-3

4. an operation, o, called composition, assigning to each pair (g, f) of C-arrows with

dom g = cod f, a C-arrow g o f :domf -4 cod g, the composite of f and g such that

we have the Associative Law: Given the configuration

f g ha -4 b -4 c -* d

of C-objects and C-arrows, we have

ho(gof) = (hog)of.

5. an assignment to each C-object b a C-arrow idb : b -+ b, called the identity arroW on

b, such that we have the Identity Law: For any C-arrows f : a --* b and g : b -4 c

idbof=f and goidb=g El

If D is a category, the symbol I D I will be used to refer to the C-objects of D, while D0 P

refers to the category D with its arrows reversed.

Note that the definition of category theory is somewhat broad; for example, directed

graphs with self loops can be considered a category. However, the relationship between

category theory and specifications (which are technically presentations of theories; see

definition 111.17) is of more concern.

3.2.1 The Category Sign. Functional specifications consist of a collection of sort

symbols, operator symbols, and axioms. The sorts and operator symbols of a specification

form the signature of the specification. This section defines a category of signatures and

signature morphisms.

The concept of signature and signature morphism is formalized in the following def-

inition.

Definition 111.2 Signature and signature morphisms. (107) A signature E = (S, Q), con-

sists of a set S of sorts and a set Q of operation symbols. Associated with each operation

3-4

symbol is a sequence of sorts called its rank. For example, f :s, s2,.. , sn -4 s indicates

that f is the name of an n-ary function, taking arguments of sorts s8, s 2 ,... , sn and pro-

ducing a result of sort s. A nullary operation symbol, c :-- s, is called a constant of sort

S.

Given two signatures E = (S, Q) and E' = (S', Q'), a signature morphism a : E -4 E'

is a pair of functions (as : S --+ S, ao : Q -4 Q'), mapping sorts to sorts and op-

erations to operations such that the sort map is compatible with the ranks of the op-

erations, i.e., for all operation symbols f : s 1 ,s 2 ,... ,s - s in Q, the operation symbol

on (f) : Us(si), Us(s 2),. . ., ,s(sSn) -4 Us(s) is in Q'.

The composition of two signature morphisms, obtained by composing the functions

comprising the signature morphisms, is also a signature morphism. The identity signature

morphism on a signature maps each sort and each operation onto itself. Signatures and

signature morphisms form a category, Sign, where the signatures are the C-objects and

the signature morphisms are the C-arrows. El

Signature morphisms allow the definition of mappings between the signatures of spec-

ifications; they allow a developer to refine the definitions of existing sorts, and to rename or

restrict the domain and range of operations. However, the rank of the operations defined

in the signature remains constant under the signature morphism (signature morphisms in

this context are called signature preserving). Morphisms are total functions; they define

how one specification is related to another. One type of morphism, an injection, can be

used to show how one specification is contained in another. This leads to the concept of

extension:

Definition 111.3 Extension. A signature E2 = (S 2, Q 2) extends a signature E = (SI, •• 1

if S E S2 and Q1 C Q2 . El

For example, consider the signature Book:

sig Bool is
sorts bool
op and : bool,bool --* bool
op or : bool,bool -- bool

op not : bool -- bool

3-5

const true : -* bool
const false -- bool

end-sig

This signature defines a single sort, bool, and defines five operations, two of which are the

constants (nullary operations) true and false. The operation implies could be added to

this signature using a signature extension:

sig ExtendedBool is
import Bool
op implies : bool,bool -* bool

end-sig

which is equivalent to the following signature:

sig ExtendedBool is
sorts bool
op implies : bool,bool - bool
op and : bool,bool - bool
op or : bool,bool - bool

op not : bool -* bool
const true : -- bool
const false : -* bool

end-sig

The keyword import indicates that the signature ExtendedBool is an extension of another

signature and eliminates the need to explicitly list the inherited sorts and operations. The

extended signature contains all of the sorts and operations of its parent signature Bool.

During the development of a signature for an application, it may be advantageous

to apply both signature extensions and signature morphisms to define new signatures. For

example, a signature SB could be extended with some additional sorts and operations to

create the signature SE. In addition, a signature morphism could also be applied to SB to

rename the sorts of the signature, creating a signature SM. SE could then be combined

with SM to create a signature which includes the operations of SE defined over the sorts

of SM. A pushout provides the capability to combine two structures such as SE and SM

along a common part.

Definition 111.4 (106) Pushout. Given a pair of C-arrows a 4 c -* b with a common do-

main, their pushout is defined to be a commutative square (shown on the left in Figure 3.1)

3-6

formed with a pair of C-arrows a - d A- b (i.e., g'of = f'og) such that for any other pair

of arrows, a -h e +- b which also form a commutative square (i.e., h o f = j o g) there is

a unique C-arrow d --+ e such that the diagram on the right in Figure 3.1 is commutative;

i.e., k o g' = h and k o f' =j.

g gc 9 b c 9b

f P fff

a 91 d a da g, g

e
h

Figure 3.1 Definition of a Pushout. The dashed arrow k d -÷ e indicates that the arrow
is unique.

sig Simple is A ->natural [sig Two-Sorts is
sort A B ->real] sort natural

sort B m sort real

end-sig end-sig

sig One-Op is sig Pushout-Example isimport Simple m', . sort [A, natural}I

op f : A -> B A ->natural sort {B, real I

end-sig B-> real op f: IA, naturall -> LB, realI
e n d -s i g

_

Figure 3.2 Example of a pushout involving signatures

As a simple example, consider the pushout formed from the signatures shown in

Figure 3.2. In the figure, the signature Simple introduces two sorts, A and B. The signature

Two-Sorts is defined by the signature morphism m : Simple --- Two-Sorts which is defined

3-7

Specification

Formal Extension : Body of
Parameter Parameterized

Specification

Specification
Morphism

Actual Instantiated
Parameter Specification

Figure 3.3 Using Pushouts to Instantiate Parameters

sig Atom is sig List is

sort atom e >, sorts list, atom

end-sig const nil : list

I op cons :atom, list -*list

op concat : list, list - list
{atom 1-4 nat end-sig

m m

sig Nat is sig List-of-Nat is
sort nat e' sorts nat, list

const 0 nat const nil : list

op succ: nat -- nat op cons : nat, list --+ list

end-sig op concat : list, list -- list

const 0 nat

op succ : nat --* nat

end-sig

Figure 3.4 Instantiation of a Signature for a List of Natural Numbers

by the map A F-+ natural, B ý-4 real. The signature One-Op is defined by the extension

e which extends Simple with the operation f : A --+ B. The pushout of the signatures

Simple, Two-Sorts and One-Op and the arrows m and e yields the signature Pushout-

Example containing the operation f defined over the sorts natural and real. Note that the

sort symbols A and natural are equivalent in the pushout signature, as are the sort symbols

B and real. These equivalence classes are represented as sets, and can be removed through

translation. Translation is defined later in this chapter.

3-8

As the simple example of Figure 3.2 indicates, one of the uses of constructing signa-

tures through pushouts involves parameter instantiation, an example of which is shown in

Figures 3.3 and 3.4. Figure 3.3 depicts the general form of using pushouts to instantiate

parameters. The formal parameter, be it a signature or a specification, is extended with

additional sorts and operations to define the body of a parameterized specification. The

formal parameter is also mapped through specification morphism to an actual parameter

such that the axioms of the formal parameter are theorems in the actual parameter. The

pushout of the resulting diagram defines a specification in which the sorts and operator

symbols of the actual parameter are used to complete the definition of the parameterized

specification. Figure 3.4 shows an example of using signature parameterization to define a

list of natural numbers.

In Figure 3.4, the parameterized signature contains the signature Atom and intro-

duces the sort List and the operations nil and cons; the signature is parameterized on the

sort atom. The actual parameter is created by applying a signature morphism to the sig-

nature Atom to define the signature Nat. A signature for a list of natural numbers is then

created by forming the pushout of the formal parameter Atom, the actual parameter Nat,

and the parameterized signature for lists. As a result of the pushout, the parameter Atom

of the parameterized signature is associated (unified) with the sort symbol nat, effectively

creating a signature for a list of natural numbers.

Pushouts are useful for combining two C-objects. However, there are situations in

which a developer might want to combine more than two objects. For example, suppose

that a relation 0 in some specification S has been defined (the definition of a specifica-

tion will be given shortly). Further, suppose that S has been extended into three other

specifications SR, Ss, and ST by adding an axiom over 0 such that 0 was reflexive in SR,

symmetric in Ss, and transitive in ST. If a developer wanted to combine SR, Ss, and ST

into a single specification and thereby define 0 to be an equivalence relation, they could

form a series of pushouts. However, as the number of objects needing to be combined

grows, so too does the number of pushouts required. If a developer needed to combine

n > 2 objects, they would need to form a minimum of n - 1 pushouts. A more practical

approach would be to generalize the notion of a pushout so that more than two C-objects

3-9

could be combined at a time. The generalized notion of a pushout is called a colimit and is

defined below. The definition of a colimit depends on the definitions of cone and diagram,

so these definitions are presented next.

Definition 111.5 Diagram. A diagram D in a category C consists of a collection Dc of

C-objects and a collection DA of C-arrows such that for any arrow a E DA, cod a G Dc

and dom a C Dc. El

For example, Figure 3.4 is a diagram in the category Sign. The C-objects of the figure

are the signatures Atom, Nat, List, and List-of-Nat. The C-arrows are the morphisms

e, e', m, and m'.

Definition 111.6 Cone. (106) Given a diagram D in a category C and a C-object c, a cone

from the vertex c to the base D is a collection of C-arrows {f, : c -+ di I d� E D}, one

for each object di in the diagram D, such that for any arrow g :di -- dj in D, the triangle

shown in Figure 3.5 commutes; i.e., g o fi = fj. El

fi fi

di g/.1 dj

Figure 3.5 Definition of a Cone.

Definition 111.7 Colimit.(106) A colimit for a diagram D in a category C is a C-object

c along with a cone {fi :di -* c I di G D} from D to c such that for any other cone

{ f"' d: di c' I di C D} from D to a vertex c', there is a unique C-arrow f : c --+ c' such

that for every object di in D, the diagram shown in Figure 3.6 commutes; i.e., f o fi = fe'.

El

Note that for the diagram • -- -*., the colimit is the pushout of the diagram.

Building colimits is a fundamental theory building operation. Their use will become obvi-

ous in the following sections. Appendix A describes some interesting aspects of colimits,

such as their initiality.

3-10

di

I fi
f -

C
Cl

Figure 3.6 Definition of a Colimit.

There are other operations required to help build some of the structures found in

specifications. For example, tuples of data types can be defined as the product of the sorts

involved, and union types can be defined as the coproduct of the sorts involved. Products

and coproducts are defined below.

Definition 111.8 Coproduct.(106) A coproduct in a category C of two C-objects a and b

is a C-object a + b together with a pair of arrows a il a + b -! b called injections such that

to any other pair of arrows a 4 c ÷•- b there is a unique arrow [f; g] : a + b -* c such that

the diagram in Figure 3.7 commutes. El

Definition 111.9 Product.(106) A product in a category C of two C-objects a and b is a

C-object a x b together with a pair of arrows a ZI a x b 14 b such that to any other pair

of arrows a - c 2- b, there is a unique arrow (f, g) : c --+ a x b such that the diagram in

Figure 3.8 commutes. E

In the specification language SLANG, the functions embed and project play the role

of i and 7r respectively.

3.2.2 The Category Spec. Specifications introduce sort symbols and operator

symbols, and define properties that implementations or models of the specification must

possess. Specifications are defined below. However, the definition of the term specification

depends on the definition of logical consequence, so logical consequence is defined next.

Definition I11.10 Logical Consequence.(107) Given a signature E, a E-sentence cp is said

to be a logical consequence of the E-sentences pa,. .-. , ýOn, written .1,... , On , if each

E-model that satisfies the sentences 1,. .. , ý, also satisfies W. E

3-11

c

A
f g

[f~g]

a il a+ b i2 b

[f;g]oi-l f and [f;g] oi 2 =g

Figure 3.7 Coproduct Definition

C

(f,g)

a 7r axb b

7r1 o (f, g) = f and 72 o (f, g) = g

Figure 3.8 Product Definition

Definition 111.11 Specification. (Based on (107)) A specification SP is a pair (E, (b) con-

sisting of a signature E = (S, Q) and a collection D of E-sentences. The collection of all

E-sentences will be denoted by Sen[l].

A model of a specification SP = (E, ,) is a E-model M such that M = 0 for each

SE 4. The collection of all such models M will be denoted by Mod[SP]. The sub-category

of Mod(E) induced by Mod[SP] will also be denoted by Mod[SP]. El

E-algebras are used as E-models of functional specifications.

Definition 111.12 Algebra. (107) Given a signature E = (S, Q), a E-algebra A = (AS, FA)

consists of two families:

1. a collection of sets, called the carriers of the algebra, As = {A, 1 s E S}; and

2. a collection of total functions, FA = {fA I f E Q} such that if the rank of f is

S1s2,...,sn --• 8s, then fA is a function from A,, x A,, x... x AI to A,. The symbol

x indicates the Cartesian product of sets here. El

3-12

Thus Mod[SP] denotes the set of all E-algebras of SP in which the axioms of SP

are satisfied. For example, consider the specification Ring shown in Figure 3.9. The

set of integers Z = I... , -2, -1, 0, 1, 2,.. .} along with integer addition and integer

multiplication form a model of the specification. Note that there are other models for the

specification; for example, the set of integers modulo two, Z2 = {0,1}, is also a model

of the specification provided the additive inverse function is defined to be the identity

function. However the set {true, false} representing 1 and 0 respectively with the logical

connectives and, or and not representing x, +, and - respectively is not a model of Ring

since a + (-a) = 0 does not hold for any aC {true, false} in this (Boolean) algebra. A

specification may have an infinite number of models. For example, consider a specification

S developed for some application. Any program that satisfies S is a valid model of S. This

implies that a variety of implementations (programs) that are each valid models of a given

specification may be defined.

There is an inverse relationship between the strength of a specification and the size of

the set of non-isomorphic models that satisfy the specification. Any model is a valid model

of the weakest specification true, while only one model exists for the strongest specification

false. This relationship is made explicit in the following theorem.

Theorem III.1 Denote by SP=(E,4ý) a specification. If SP contains a contradiction,

then Mod[SP] consists of the single model false.

Proof. Let a, and a 2 be E-sentences such that 1 • a, and q = a2 and a, A a2 # false.

Denote by m an arbitrary model of SP. Because m is a model of SP and because a, and a2

are in 4, m = a, and m = a2 which implies m • a, A a 2 . But this simplifies to m = false.

By Definition 1Il.10, we get m is false. U

This theorem has an obvious dual.

Theorem 111.2 Denote by SP an arbitrary well-formed specification. If SP contains the

single axiom true, then there exists an infinite number of non-isomorphic models of SP.

Proof. Follows from theorem Ill.1 and the principle of duality. M

3-13

spec Ring is

sorts R

ops
S+ R,R -*R /*addition*/

0 -R 1 /* additive identity*/
-_ :R -- R /* additive inverse */

x _ R, R R-* 1 /* multiplication */
1 :-- 1. /* multiplicative identity*/

axioms
Va, b, c E R - a + (b + c) = (a + b) + c

Va, b E R a+b= b+a
Va R. a ±0 =a
Va E R a + (-a) = 0
Va, b, c E Ra x (b xc) =(ax b) xc
Va C R. a x 1 = a
Va E R 1 x a = a
Va, b, c R. a x (b + c) = (a x b) + (a x c)
Va, b, c R. (a+b) x c= (ax c) + (bx c)

end

Figure 3.9 A Specification for a Ring (106)

The implication of the first theorem is that if models of specifications are to be developed or

defined, such specifications must be free of contradiction. The second theorem implies that

these specifications must be "sufficiently strong" to discriminate among non-isomorphic

models.

Axioms of a specification restrict the behavior of the operations in Q. For example,

an axiom may restrict the class of models of a specification to those in which the operation

is associative. Axioms may also be used to refine the definition of sort symbols in a

specification. For example, an axiom could define that one sort was a subsort of another.

Another use of sort axioms is to define sorts as products (tuples) or coproducts (unions)

of other sorts.

Now that the term specification has been defined, specification morphisms can be

defined. However, the definition of a specification morphism depends on the definition of

reduct, which in turn depends on the definition of homomorphism, so these definitions are

presented first.

3-14

Definition 111.13 Homomorphism. Given a signature E = (S, Q) and two E-algebras A

and B, a E-homomorphism h : A --+ B is a family of functions {h: A8 --+ B8 I s E S}

between the carriers of the algebra such that for all operation symbols f :1s x 52 ×'" X sX -X s

in E and for all al E A, 1 ,a 2 E As 2,...,an E A n,

h.(fA(al,a2 ,...,an)) = fB(h, 1(al),h, (a 2),...,h, (an)) El

Homomorphisms are described in greater detail in Appendix A. Homomorphisms are used

to define reduct.

Definition 111.14 Reduct.(106) Given a signature morphism a : E --+ E' and a E'-algebra

A', the a-reduct of A', denoted by A' 1,, is the E-algebra A = (As, FA) defined as follows

(with E = (S, 0)):

As = A'(,) for s E S, and fA = (U(f))A', for f e Q

Given a E'-homomorphism h' A' -- B' between two E-algebras A' and B', the a-reduct

of h' is a E-homomorphism h : A' - B', denoted by h' 1,, and defined by the family of

functions h, = h,(,) forsES. E

For example, consider the signature Group shown below:

sig Group is
sorts G
op_*_:G,G--G

op E G
op ()' G -- G /* inverse */

end-sig

A signature morphism from Group into Ring (Figure 3.9) is defined by the map {G F-* R, *

-- +, e i-- 0, ()' -_ --}. The aGR-reduct of any Ring-algebra is obtained by ignoring the

extra operations x and 1 in Ring.(107:12) The reduct operation can be viewed as defining

inverses to signature morphisms. That is, given two signatures A and B and an arrow a

from A to B, a defines how A is contained in B, while B a, defines how B was formed

from A.

As given in the following definition, the reduct operation is used to establish the

relationship between specifications, specification morphisms, and models.

3-15

Definition 111.15 Specification Morphism.(107) A specification morphism from a speci-

fication SP = (E, P) to a specification SFP = (s', V') is a signature morphism a : E -E'

such that for every model M E Mod[SF'] we have gE Mod[SP]. The specification mor-

phism is also denoted by the same symbol, cr : E -- E'.

There are several different types of morphisms, depending on the properties they

exhibit. (See Appendix A for a discussion concerning this topic.) For example, a E-

homomorphism h is a bijection, then h is an isomorphism. If an isomorphism exists

between specifications A and B, then A and B are said to be isomorphic. The notation

A5-B is used in case A and B are isomorphic. One property of the relation - is that

it defines an equivalence relation between specifications. This fact is expressed in the

following theorem.

Theorem 111.3 The relation ý- between E algebras is an equivalence relation.

Proof. For a proof of this theorem, see Appendix A. N

A consequence of this theorem is that structures that are isomorphic cannot be

distinguished from each other within the theory framework. That is, if two E-algebras are

isomorphic, then they are logically equivalent within the theory. If a statement s is valid

in a S-algebra A, and A ý- B, then the isomorphic image of s is valid in B. This fact can

be used to simplify specification development, especially when it is easier to reason about

or represent statements in an isomorphic algebra. For example, people perform integer

addition and subtraction using an algebra whose carrier is the set of integers. However,

computer systems perform integer addition and subtraction using an algebra whose carrier

is a base-two representation of the set of integers. The two algebras are isomorphic in this

case, and each is more widely used in one situation than the other.

When a signature is altered, the axioms over the operations defined in the signature

must be altered accordingly. For example, if an operation f in a signature E is renamed to

h, all references to f in the set of axioms defined over E must be replaced by references to

h. For example, consider a specification containing an operator symbol f : D --+ R and an

axiom (implies (I x) (0 x (f x))). Application of the morphism defined by D ý-* bag (integer),

3-16

R ý-4 seq(integer), and f F-+ sort results in a specification containing the operator symbol

sort: bag(integer) -- seq(integer) and the axiom (implies (I x)(O x (sort x))).

Specification morphisms can be used to rename operations in a signature, add axioms

to a specification, or add operations to a signature. Specification morphisms can also

be used to coalesce elements of a signature. For example, two or more sort symbols

can be mapped under specification morphism to a common sort symbol in some target

specification. If sort axioms exist, then they must translate to sort theorems in the target

specification if the morphism is to be a specification morphism.

Specification morphisms can also be used to add axioms to a specification. Axioms

can be added to a specification either by extension or by forming the colimit of a diagram

of related specifications. For example, a specification containing a bijective operation f

can be formed as the colimit of a collection of specifications and specification morphisms,

where f is surjective in one of the specifications and f is injective in another. Then f will

be both injective and surjective in the colimit specification.

The following two definitions establish a relationship between specifications and that

which they model, theories. The definition of theory depends on the following definition

of closed.

Definition 111.16 Closure, Closed.(107) Given a signature E, the closure T of a set of

E-sentences 1ý is the set of all E-sentences which are the logical consequence of 4, i.e.,

S= f I b = p}. A set of ,-sentences 1 is said to be closed if and only if b = T . E

Definition 111.17 Theory presentation.(107) A theory T is a pair (E,¢) consisting of a

signature E and closed set 0 of E-sentences. A specification (E, •) is said to be a presen-

tation for a theory (E, q) if T = 0. A model of a theory is defined just as for specifications;

the collection of all models of a theory T is denoted Mod[T]. Theory morphisms are defined

analogous to specification morphisms. E

Now that a working vocabulary for specifications and specification construction has

been established, specification construction techniques can be defined. Note that a spec-

ification is a presentation of a theory, it is not the theory itself. Because theories are

3-17

often infinite while presentations are usually finite,(107) the Composition Mechanism will

generally operate over presentations rather than theories. Burstall and Goguen show the

soundness of operating on theories by using their counterparts at the presentation level. (40)

3.3 Specification Construction

Five specification construction operations are described in this section. These five

operations provide a rich set of construction techniques, including parameterization. These

five operations are:

1. Basic Specification. Construct a specification from a signature and a collection of

axioms.

2. Translate. Translate a specification via a signature morphism.

3. Colimit. Form a specification by taking the colimit of a collection of specifications

and specification morphisms.

4. Import. Importation is similar to the #include statement in C and C++. All

sorts, operations, and axioms of imported specifications are copied into the importing

specification.

5. Interpret one abstract entity using the features provided by others (leading to the

notion of a vertical hierarchy of entities).

The last method identified above is the purpose of the Design Refinement Mechanism

(DRM) and the library of implementations, but vertical structuring may also take place

in the Composition Mechanism. These specification building operations are described in

the following section.

Each of these operations is further described in the following subsections. The syntax

and semantics of the following operations parallels that used in the SpecWare system being

developed at Kestrel Institute.(18, 19)

3.3.1 Basic Specification. Creating a specification using this technique is straight-

forward: the specification is simply declared. There are no other specification building

3-18

operations applied to help create it. Any specification that can be created using any of

the other techniques can also be created as a basic specification. However, there is a

tradeoff: relatively small and well encapsulated specifications may have a higher potential

for reuse than large basic specifications. For example, a specification for sorting complex

numbers using problem reduction (99, 101) could be defined as a basic specification, but

such a specification might not be well suited for reuse. Instead, an equivalent (isomor-

phic) specification could be developed from a collection of smaller, less problem specific

specifications.

Examples of basic specifications, such as the specification Bin-Op listed below, can

be found throughout this dissertation. Bin-Op introduces a sort E and a binary operation

binop. The single axiom of Bin-Op states that the operation binop is associative. Any

algebra that includes an associative binary operation over a single sort is a model of this

specification. For example, Boolean algebra with the carrier set {true, false} is a model

of the specification Bin-Op because the Boolean operation or is an associative binary

operation defined over a single sort.

spec Bin-Op is
sorts E

op binop : E, E -- E
axiom (equal (binop (binop a b) c)

(binop a (binop b c)))
end-spec

Basic specifications are typically small and relatively domain independent. Basic

specifications are usually combined with other specifications in the construction of appli-

cation specifications.

3.3.2 Translate. The translate operation "creates a copy of a specification with

the option of renaming some of the components." (19:13). This implies that specifications

created through renaming are isomorphic.

In the semantics of SLANG, if the renaming function maps two or more source

elements to a common target, such as mapping the two sort symbols A and B in some

specification to a common target sort symbol C, then there will be two distinct sorts in

3-19

the target specification with the common name C. Because these two distinct sorts share a

common name, the resulting specification may be ambiguous. For this reason, translations

will be restricted to be bijections; any translation that attempts to map two or more

symbols in a source specification to a common symbol in the target will be considered

ill-formed.

Specification translation is defined only over the signature. That is, specification

translation maps the symbols in the signature of a source specification to the symbols in the

signature of a target specification. The axioms of the source specification are translated by

the map defined by the translation. For example, using the SLANG syntax, the expression

translate
spec associative-bin-op is

sort E
op binop : E, E --* E
axiom associativity is

(equal (binop (binop x y) z) (binop x (binop y z)))
end-spec

by { E -* F, binop F-* plus}

evaluates to

spec associative-bin-op is
sort F
op plus: F,F-+F
axiom associativity is

(equal (plus (plus x y) z) (plus x (plus y z)))
end-spec

Note that although the two specifications above are both named associative-bin-op,

they are distinct, isomorphic entities.

A typical application of the translate operation is to simplify the denotation of spec-

ifications created using the colimit operation. For example, if a specification contained

the equivalence class {A, B, int} of sort symbols, a translation of sort symbols defined

by the map {A, B, int} - int could be used to "clean-up" the specification by replacing

instances of the equivalence class with the symbol int. Equivalence classes of symbols are

often produced as the result of colimit operations.

3-20

3.3.3 Import. Specifications can import other specifications similar to the way in

which programs written in C or C++ can import sort and operator names and definitions

using the #include construct. All of the structures of included specifications are available

to the including specification. For example, a specification for sorting sequences of some

total order object may be defined as follows:

spec SortSpec is
import TotalOrder, Seq, Bag
sorts bag(S), seq(S)
op ordered : seq(S) -- boolean

op incond : bag(S) -* boolean
op outcond : bag(S), seq(S) --* boolean

axiom (iff (outcond x z)
(and (permutation x z) (ordered z)))

axiom (iff (incond A) true)
definition definition-of-ordered is

axiom (ordered [])
axiom (ordered [a])
axiom (iff (ordered (concat a b))

(and (and (ordered a)(ordered b))
(ordering (last a)(first b))))

end-definition
end-spec

where (permutation x z) returns true if and only if z is a permutation of x and (ordered

z) returns true if and only if z is totally ordered. The operation outcond is a boolean

function defining the output of the sorting problem, namely that the output is an ordered

permutation of the input. The input condition, incond, is defined to be the constant

true. The operations permutation, [7, [_7, first, last and the sort seq are defined in the

specification Seq and are visible within SortSpec. The statement seq(S) defines a sequence

whose elements are of sort S and is "syntactic sugar" for the diagram shown in Figure 3.10.

Similarly, the statement bag(S) defines a bag whose elements are of sort S. The operation

ordering and the sort S are defined in the imported specification TotalOrder and can be

referenced within SortSpec. Importation is denoted by the hooked arrow as in TotalOrder

"-- SortSpec. All variables referenced in axioms are assumed to be universally quantified

unless stated otherwise. Note that the specification Seq-of-S shown in the figure was

3-21

spec Seq is

sort element, seq

spec TRIV is x->element op [] seq

sort x op L: element -> seq

[end-spec op append: element, seq -> seq

op concat : seq, seq -> seq

constructors {f], append} construct seq

constructors { , Li, concat) construct seq

x->S
end-spec

colimit

spec TotalOrder is spec Seq-of-S is

sort S sort {S.elementl. seq

op ordering : S, S -> boolean op [I : seq

axiom (ordering a a) op L[: { S,elementl -> seq

op append: fS.element}, seq -> seq

op -ocat : seq, seq -> seq

constructors {fl, append} construct seq

end-spec constructors I[], LI, concat} construct seq

op ordering: IS,elementl, { S,elementl -> boolean

end-spec

Figure 3.10 Definition of seq(S)

created using the colimit operation; specification construction using colimits is the topic

of the next subsection.

Importation is strictly "syntactic sugar" in that importations can be defined using

colimits and basic specifications.

3.3.4 Colimit. Informally, a colimit is "a shared union" or a "gluing of specifica-

tions along a common boundary." The colimit operation creates a new specification, the

colimit specification, and a collection of morphisms referred to as the cocone morphisms

from each of the source specifications into the colimit specification. As described in (19),

3-22

The colimit specification and the associated cocone morphisms are con-

structed using the standard union-find algorithm for computing the connected

components of a graph. The disjoint union of the sorts and operations con-

tained in the specifications attached to all nodes in the diagram is partitioned

into equivalence classes according to the mappings given by the morphisms
labeling the arcs in the diagram.

To be precise, let the disjoint union U of all signatures in a diagram D be

U = {(n, x) I n E nodes(D) A n: S A (x E sorts(S) V x E operations(S))},

where S is the specification labeling node n.

Define an equivalence relation - on the set U by

(ni,x) =_ (n2,y) (3a)a E arcs(D) A a: m A m(x) = y

where m is a morphism labeling the arc a.
This equivalence relation partitions the disjoint union U into an equivalence

class of sorts or operations (since morphisms map sorts to sorts and operations
to operations, each equivalence class will contain only one kind of object).

The colimit specification contains one sort or operation corresponding to each
equivalence class. The cocone morphism from the specification labeling each

node in the diagram is obtained as the map which takes each sort or operation

containing to the equivalence class containing it.

Another example of a colimit is depicted in Figure 3.11. The figure depicts a con-

struction of a specification for sorting a bag of natural numbers using the ordering relation

geq. The common core, the specification TotalOrder defines a total order relation ordering

over a sort S. This specification is extended in SortSpec to define the problem of sorting

a bag of elements. SortSpec adds three operations, an input condition incond, an output

condition outcond, and an operation ordered. The operation ordered is defined to return

true if the sequence is ordered according to the ordering relation. The sort S in SortSpec

is used to define two other sorts, a sequence whose elements are of sort S and a bag whose

elements are of sort S. A specification morphism from TotalOrder to NaturalNumbers asso-

ciates the operation geq of NaturalNumbers with the operation ordering of TotalOrder; this

morphism defines how the specification TotalOrder is contained within NaturalNumbers.

The colimit of the diagram defined by the three specifications TotalOrder, SortSpec

and NaturalNumbers and the specification morphisms from TotalOrder to SortSpec and

from TotalOrder to NaturalNumbers results in the specification SortSeqofNaturals as shown

in the figure. Due to space limitations, only the signature of the colimit specification is

3-23

spec Totlolrder is spec SortSpec is

sort S imsport Totlolrder. Bag, Sosq

op ordering S, S ->-lroolean sorts seq(S), bog(S)

osiomn (or (ordering . bXordoring ho) Op i-od bog(S): booboon

axiom (ordoring a a) op orlooed: hog(S). seq(S) -> booloso

asiom (imspieis (and (ordo-riog a bXordoeinB b c)) op ordered "o(S) -> booloso

(orsbrieg oc-)) op sort: ho(S) -> seq(S)

osioos (iomplies (and (orderiog a bXordoriog hoa)) definition of ortoord is

(equol a b)) axmose (iff (osdcorrd A B)

rod-spec (sod (ordered B) (permotation A B)))

end-defiition

definitioo of ordered is

axisos (ordered [1)

esiomn (ordered [a]))

-a rot riotor (iff (ordered (oppend a A))

orderiog -> q (sod (ordering a (first A)) (ordered A)))

red-delliliiso

rotors (iff (iecood A) true)

esiomn (implies (booed xXeutcnod x (sort x)))

S end-spec

-olimit

spec NoisrolNorobers is spec SooliqofNo-luca is spec SortNaterois is

sort ot sorts (S, Mo), seq((SiotD, bog(Sneot() sors 001, seqlot), lrog&et)

erostO0: md op [ordering, eqJ (Soot), (Sect) ->-bbooooa op gcq: nat,eat -> hooleoe

op sumc: -tc->ot -to:sl (See) moest 0: nol

constructors (0, roes) constructoo ea p rsucm: (Soont) -> ISoot) opinsum: rot ->-eel

op plus eel rot-ca-eel constructors 10, sees) construet (Soot) coostructors (0, eselc)onlstruct eel

opedees: eel, rot -c-ot op pies: (Soot), (Seer) - (Soot) op ples: eel, rot -> rot

op geq eel, rot-c- trootoon opemnurs (Soot), (Secat) -> (Soot op minuso:ne t eel, -ret-el

op teq :ecýnt .>t blootroa op, geq :(ISoot), (Soot) ->boeleee op eq: eel, rot -c hestee

esiore (not (equal o (sums a))) op eq: JS~oatl, (Soot - booleoo op teq: rot, eel- booleso

riobn (rq oea) op esed brg(f Sneet : bootean T op i.-od bop(ro): beeteso

axior (iorplies (rod (goq o b)(goq bro) op outeord: bog((Snat)), sq(f S,rotl) -clootees op ouolood :lrog(eel), seq(eet) - booloon

(equol ohb)) op ordered oql(IS,eot(1) ->- holeer op ordered soq(et) ->- booleso

ester (implies (sod (geq . b)(geq be) op sort: bog((Seet)) -c-sq((S~eel() op sort: bag(eet)-c seq(eet)

(geq or)) exroes. robes

rotor (or (Seq ehb)(goq bl

esters (leq aor)

rxobin (implies (sod (lrq o b)(lq bro)

(equal ohb)) cod-spec rod-spec

esters (implies (sod (teqo. b)leq bc

(lest a c))

rxomes (or (leq a b)(leq bea))

esioro (iff (sod (loq a b)(eq ohb))

(equal ohb))

axiors (or (boq o hfgoq a b))

rod-spec

Figure 3.11 Specification Building using the Colimit Operation

shown. Note that the colimit specification contains equivalence classes of symbols. Specif-

ically, the sort symbols nat and S are equivalent in the colimit object, as are the operation

symbols ordering and geq. A translation from the colimit specification SortSeqoffaturals

to SortNaturals defined by the map {{S, nat} F-4 nat, { ordering, geq} F-+ geq} is used to

remove these equivalence classes. The specification SortNaturals defines the problem of

sorting a bag of natural numbers using the relation geq. Note that an alternate ordering

3-24

in SortSeqofNaturals could have been defined by associating the relation ordering of To-

talOrder with the relation leq of NaturalNumbers. The resulting colimit specification would

then contain a definition of the problem of sorting a bag of naturals using the relation leq.

The diagram of Figure 3.11 exemplifies a form of parameterization. Specifically,

the specification TotalOrder is a formal parameter to the specification SortSpec. The

specification NaturalNumbers, which contains a total order, is the actual parameter. The

colimit specification is an instantiation of the parameterized specification for the actual

parameter.

3.3.5 Specification Interpretation. Specification interpretations define how one

abstract entity can be defined using the features provided by others. For example, a

specification for sets, Set, can be defined using a specification for heaps or arrays. The

operations defined in Set, such as union or intersection, could be defined using expres-

sions in the specification for heaps. Interpretations generalize the notions of specification

morphism: (20:30)

A morphism from A to B specifies an "embedding" of the [specification] A

into the [specification] B; an interpretation from A to B specifies an embedding
of A into a definitional extension of B, i.e., a specification consisting of B and
definitions of further sorts and operations. Both morphisms and interpreta-
tions are closed under sequential composition. [Tjhis allows us to follow one

refinement with another.

Interpretations are formally defined below.

Definition 111.18 Interpretation. Given two specifications A and B, an interpretation

from A to B consists of a pair of arrows, s and d, and a specification, A-as-B,

A-4 A-as-B <--dB

where

1. s is a specification morphism from A to A-as-B which maps the sorts and operators

of A to sort expressions and operator expressions in A-as-B.

3-25

2. d is a specification morphism from B to A-as-B such that d extends B with additional

sorts and operators where such sorts and operators are defined entirely in terms of

the sorts and operators in B.

3. The specification A-as-B is called a mediator. E

For example, a interpretation from sets to bags can be defined as follows. Let Set

denote a specification for sets, and let Bag denote a specification for bags. Define operation

no-dupes : bag -+ boolean such that no-dupes(b) is true if and only if b contains no duplicate

elements. Then the operation empty-set : --+ set of Set can be defined using operations from

Bag. Specifically, the operation empty-set can be defined using the operation empty-bag:

(20)

spec Set-as-Bag is
import Bag
sort set-as-bag
sort-axiom set-as-bag = bag I no-dupe
op no-dupe : bag -+ boolean

op empty-set: -* set-as-bag

definition of empty-set is
axiom (equal

empty-bag

((relax no-dupe) empty-set)
end-definition

end-spec

The expression ((relax no-dupe) S) converts S from sort set-as-bag to sort bag. The

single definition shown defines the operation empty-set. In this case, under the interpreta-

tion Set --- Set-as-Bag +- Bag, the operation empty-set of Set is defined using the operation

empty-bag of Bag, where the sort set of Set is mapped to the sort set-as-bag in Set-as-Bag.

For more information concerning specification interpretations, see (20) or (21).

3.3.6 Summary of Specification Building Operations. The five specification build-

ing operations described in this section, translation, importation; basic specification, colimit,

and interpretation, can be used to construct specifications defining functional entities, such

3-26

as abstract types. Additionally, it was shown how these construction operations support

the notion of parameterized specifications. The following section describes the relationship

between the specification construction operations defined in this section and the develop-

ment formalism described in Chapter II.

3.4 Institution-Based Specification Development

The software development framework depicted in Figure 2.1 shows two primary ac-

tivities: specification building using the Composition Mechanism (CM) and specification

implementation using the Design Refinement Mechanism (DRM). Both of these activities

can be supported within an institution framework.

Goguen and Burstall developed the theory of institutions after noting that "much of

programming methodology is actually completely independent of what underlying logic is

chosen." An institution is a "precise generalization of a 'logical system.' " An institution

based on first order predicate calculus can be defined, as can an institution based on equa-

tional logic and an institution based on Horn logic.(41) Each of these institutions can be

used to develop specifications in their respective logics. As noted in (107), "an institution

is an abstract logical system for specifying algebras." This logical system consists of two

parts:

1. syntax, which is defined in terms of signatures and the sets sentences that can be

generated over a given signature; and

2. semantics, which is specified in terms of models and a satisfaction relation between

models and sentences.

A more formal definition of an institution (taken from (41) as adapted by (107)) is provided

below. However, before institutions can be defined, functors must be defined.

Definition 111.19 Functor.(66:501) If X and X' are two categories, a functor F:X --

X' is a pair of functions, an object function To and a mapping function FM. The object

function assigns to each object X of the first category X an object .F(X) of X'; the mapping

function assigns to each arrow f : X -+ Y of the first category an arrow FTM(f) : Fo(X)

.Fo(Y) to the second category X'. These functions must satisfy two requirements:

3-27

1. .FM(1X) = lyo(X) for each identity 1 x of X;

2. Jcm(g o f) = a (g) o TM(f) for each composite g o f defined in X. E

Functors are morphisms between categories.

Functors as defined in Definition 111.19 are called covariant functors. A functor is

contravariant when it reverses arrows,(66:147) or more formally:

Definition 111.20 Contravariant Functor. A contravariant functor C on a category X to

a category X' is a pair of functions which assign to each object X of X an object C(X) in

X' and to each arrow f : X -* Y in X a morphism C(f) : C(Y) -- C(X) in X', assigning

to each identity arrow Ix the identity of C(X) and to each composite g o f of arrows of X

the composite C(g o f) = C(f) o C(g). (66:504) E

Figure 3.12 highlights the distinction, between covariant and contravariant functors.

f(0X .f 1 9

z

Category X with objects X, Y, and Z

C(1) C(1)

C (X CMf C(Y) C(X Cf CY

C(g) I C(f) C(g) C(f) x C(g C(g)

C(Z) C(Z)

Covariant Functor C : X ---+ X Contravariant Functor C : X --+ X'

Figure 3.12 Covariant and Contravariant Functors.

Now that functors have been defined, institutions may be defined. Institutions in-

clude several categories and functors between them. Figure 3.13 was developed to aid the

3-28

reader in conceptualizing institutions. Specifically, Figure 3.13 depicts the relationships of

the following definition.

Definition 111.21 Institution. An institution I is a 4-tuple (Sigi, Sen1 , Mod1 , =)

consisting of

1. a category Sig, of signatures and signature morphisms,

2. a functor Sen, : Sig, -- Set (where Set is the category of sets and functions over

sets) which assigns to each signature E the set of E-sentences, and to each signature

morphism o : E --* E', the functor which translates S-sentences to E'-sentences,

3. a functor Mod1 :Sig1 --+ CatP (where Cat0 P is the category of all categories1 and

functors between them) which assigns to each signature E the category of E-models,

and to each signature morphism a : F - E', the functor which translates E'-models

into E models (note the change in direction), and

4. a satisfaction relation I=I,E CModi(E) I xSeni(E) between models and sentences

for each signature E

subject to the condition that satisfaction be preserved under change of signature:

Satisfaction Condition. For any signature morphism a : F --+ E' in Sig,, for any

E-sentence W ESen1 (E), and for any F'-model M' ElModx(E') 1,

M' Ii, Seni(a)(W) € ModI(a)(M') W ,p

Notation. The function Sen(a): Sen(E) -- Sen(E') will be denoted (ambiguously) by

a. Objects in the category of models Mod(E) will be called E-models and morphisms E-

homomorphisms. The functor Mod(a): Mod(Ei) -- Mod(E) will be called the cr-reduct

functor and denoted by -1,. The subscripts for the satisfaction relation will usually be

dropped, resulting in the simplified satisfaction relation

M' I•(:-) a * M' E• V 0

1This leads to foundational difficulties similar to Russell's paradox.(65) These difficulties can be avoided

if we consider only those categories that are small with respect to some universe.(107)

3-29

SMod(Wl) -Sen(cI_M , ,,,M< --- - - - - - - -------

I I %"" --------- - `%-,en-->Sen(f)

, .M 2 _< ---------- --------- 1-_2 -- - --- _e n__ 2) _- 1()

Mgof< -- e. g o f --- ----- Sen(g o f)
I s I r

M I. -- - -... --- -- -•----- - - - - - - Sen(g)

M 3 ---------------------. . .E Se nC- -3-- ---- ---

Cat0" Sigi Sen1

Figure 3.13 An institution.

The specification construction operations defined in the previous section can be de-

fined within an institution framework. Specifically, construction of functional specifications

can take place within the categories Sign and Spec, where signature manipulation such

as adding an operation or refining a sort name take place within Sign and manipulation

of specification axioms takes place within Spec. Specifications in Spec are defined to

include a signature E and a collection 4 of E-sentences. Given a specification S = (E, 4]),

E is a signature in the category Sign, while 4 is a collection of sentences from the cat-

egory Sen1 . That is, Sign and Sen are categories within an institution of higher order,

multi-sorted predicate calculus, denoted HOPC. SigHoPc is the category of signatures and

signature morphisms (Definition 111.2). Sentences in this institution are well formed formu-

las (WFFs). That is, the functor SenHopc assigns to each signature E the set of Z-WFFs,

and to each signature morphism a a translation function or' which translates E-sentences to

E'-sentences. The combination of a signature E and a collection of E-sentences from Sen1

defines a specification. Further, the functor ModHoPC assigns to each signature E the

category of E-algebras (Definition 111.12), and to each signature morphism or the cr-reduct

functor -1, (Definition 111.14). These functors are implicitly defined in the SpecWare spec-

ification development system. Other logics, such as a logic based on trace semantics, could

possibly be used to define an institution supporting a category of process signatures and

process specifications. A more detailed treatment of this material may be found in (41).

3-30

As the above paragraph indicates, the Composition Mechanism (CM) is used to de-

fine specifications within an institution framework. The Design Refinement Mechanism

(DRM) is used to find implementations of specifications generated using the CM. How-

ever, when (or if) a developer decides to implement the sorts and operations defined in

a specification by mapping the specification to a language that can be compiled and ex-

ecuted by a computer, a "semantic ditch" is encountered. Specification languages such

as SLANG or Larch can be defined within an institution framework. Similarly, languages

such as LISP or C can be defined within (imperative) institutions. To map SLANG to

LISP for example, requires that an institution morphism be defined, where an institution

morphism must define the following:

1. Translation of signatures. For example, mapping SLANG sort symbols such as seq

to sort symbols or sort expressions, such as lists in LISP. Note that these mappings

might not be bijective. The sort map in SLANG could be translated, for example, to

either association lists or sequences of tuples in LISP.

2. Translation of sentences.

3. Translation of the satisfaction relation.

The first two are syntactic manipulations, where the second translation is obtained as a

byproduct of the first. The third item is the hard one, especially if the target institution

lacks some necessary structure. The translation must be defined such that the axioms of

specifications developed in the first institution are translated into theorems in the second

institution. The difficulty lies in the fact that the logic of the second institution may be

quite different. For example, translating the satisfaction relation from a first-order predi-

cate calculus institution to an institution whose algebras are state-based may be difficult,

but may be possible. However, translating a state-based institution to an institution based

on a stateless logic may not in general be possible because the latter lacks necessary struc-

tures for representing and reasoning about state. Some work has been done in this area.

For example, (50) are researching issues associated with translating a subset of Ada into

Milner's CCS.

3-31

I have been unable to find any work defining an institution for state-based or process

algebras, but Goguen and Burstall (41) conjecture one could be defined, and there are

some authors such as (35) who are looking into the problem. For these reasons, mapping

expressions in one institution to expressions in another institution is typically done by

defining only the first two of the above three transformations, while the translation of

the satisfaction relation is simply assumed.(109) That is, once the signature and sentence

translations are defined, they are assumed to produce a correct (consistent) representation

in the target algebra such that the properties of the sorts and operations are preserved un-

der the transformation. Because specification implementation is not a primary focus of this

investigation, the issues associated with translating a specification to an implementation

in a compilable target language are not addressed further.

Institutions and the mathematics on which they are founded can seem overwhelming.

However, developing specifications within an institution provides a number of benefits,

some of which are listed below. The relative complexity of the underlying mathematics of

institution-based specification development systems can be hidden from the user of such a

system in much the same way that the theoretical foundations of compilers can be hidden

from program developers. Some of the benefits of using institutions are:

e they allow a developer to develop specifications in various logics, such as order-sorted

logic or equational logic; and

* A user can develop specifications for sorts and operations using a institution whose

logic is stateless, such as one based on predicate calculus, while using an institution

supporting process based specifications to define the flow of data within an applica-

tion, thus allowing the developer to preserve the modularity of specifications.

3.5 Summary

This chapter has provided a number of definitions required to support the software

development framework depicted in Figure 2.1, including products, coproducts, pushouts,

and colimits. Category theory was introduced, and specifications and specification building

3-32

operations based on category theory were also introduced and defined, and it was shown

how these construction operations support parameterization.

Institutions were introduced and related to the formalism shown in Figure 2.1. Specif-

ically, the category Sign of signatures and the category Spec of specifications were related

to the concept of institutions, and the problems associated with translating specifications

written in a language of one institution to a language of another institution were briefly

explored.

Although functional specifications can be used to define many useful problems, the

category Spec of functional specifications and functional specification morphisms lacks

the necessary structures for representing and reasoning about processes. In the following

chapter, two approaches for defining process-based specifications are explored.

3-33

IV. Combining Functional and Process Specifications

4.1 Introduction

The purpose of this chapter is to document the results of two experiments aimed at

incorporating architectural information within system specifications. Two techniques were

tried:

1. The architecture of an application was defined by incorporating the functional model

(in the object oriented sense) of the application within functional specifications.

2. The architecture of an application was defined through expressions written in Hoare's

algebra of Communicating Sequential Processes (CSP).

Note that CSP is not the only approach that could be used for defining processes and

state. Other approaches such as modal logic or Milner's CCS could have been used for

this purpose.

The experimental approach was simple: For each technique listed above, select a

simple problem and attempt to develop a system specification for it using the selected

technique and observe any weaknesses in the technique. These observations would then

be used to either validate the selected technique, or they would be used to define a new

method of incorporating or defining application structure. The following sections describe

the results of these two experiments.

A pipeline-based application of sorting and searching a sequence was selected for

development using the first technique, where structural information (functional model in-

formation) is defined within the functional specification. Both this approach to defining

the structure of an application and its utility are described in Section 4.2. The second sys-

tem level specification developed defines a moving average unit. The specification for this

second problem was developed using a combination of functional specifications and Hoare's

Communicating Sequential Processes (CSP). The results of this approach are described in

Section 4.3. Section 4.4 contains a summary of the findings of these two experiments.

4-1

function KEY-SEARCH
(A:seq(integer), keyl:integer I It-ordered(A))
returns (index:integer I

index in [1..size(A)]
&z A(index) = keyl)

function ALL-KEYS-SEARCH
(A:seq(integer), keyl:integer I le-ordered(A))
returns (keys: set(integer)

keys { indexI
(index:integer) index in [l..size(A)]

& A(index) = keyl })

Figure 4.1 Specifications for Searching an Ordered Sequence

function SORTI (x:seq(integer) I true)
returns (z: seq(integer) I

bag-equal(elements-of(x), elements-of(z))
& le-ordered(z))

Figure 4.2 Specification for Sorting a Sequence of Integers

4.2 Development of a Specification for a Pipeline Application

4.2.1 Introduction. The purpose of this experiment was to determine the utility

of defining architecture through functional specification. This experiment was conducted

by selecting a simple problem, developing functional specifications for it including the

definition of algorithm theory implementations, and observing any shortcomings of the

approach. The hypothesis of this experiment was that the structure of an application can

be defined using functional specifications. The problem selected for development was a

pipeline-based problem of sorting and then searching a sequence of integers.

4.2.2 Problem Description. Given an unordered sequence of integers and an

element that appears in the sequence, report a location the element would have if the se-

quence were ordered by the relation <. For example, given the sequence (3, 7, 4, 5, 4, 6, 1, 2)

4-2

and the element 4, the operation will return either 4 or 5. This problem was selected for

two reasons:

1. Its pipeline-based structure is well suited to functional specification in that both

subproblems - sorting and searching - contain simple interfaces and neither sub-

problem requires the use of state information.

2. Algorithm theories existed in the Kestrel Interactive Development System (KIDS)

algorithm theory library that could be specialized for sorting and searching. Specifi-

cally, a global search algorithm theory could be specialized for searching the sequence

once it has been sorted, and a divide and conquer algorithm theory could be special-

ized for the problem of sorting the input sequence.

In addition, KIDS is distributed with several domain theories and problem specifications.

One of these domain theories, Ordered-Search, contains three problem specifications: Key-

Search, All-Keys-Search, and Key-Search-N. The specifications Key-Search and All-Keys-

Search, shown in Figure 4.1, formally define the problem of searching an ordered sequence

A of elements for occurrences of the element keyl. (Note that the syntax used in Figure 4.1

differs somewhat from the syntax of SLANG. The specifications shown in Figure 4.1 are not

written in SLANG, but are instead written in the specification language ReGroup used

by KIDS.) All three of these problem theories include a predicate restricting the input

sequence to one that is ordered. The predicates It-ordered(A) and le-ordered(A) return

true if the sequence A is ordered by the binary relation < or <, respectively.

In addition, KIDS includes a domain theory, Sorting- Theory, which defines the prob-

lem of ordering a sequence of integers using the relation <. The problem specification Sorti

from this domain theory is shown in Figure 4.2. The predicate bag-equal (elements-of (x),

elements-of (z)) is used to ensure that the solution returned by Sorti includes all of the

elements of the original sequence. If Sorti lacked this predicate in its output condition,

then any ordered sequence, including the empty sequence, would be a valid solution for

any input.

4.2.3 Development of the Sort-Search Specification. Sorti formally defines the

problem of sorting a sequence of integers and Ordered-Search contains problem specifica-

4-3

L, seq(integer) 91 Sort1, - A: seq(integer)

SI ~index :integer
key1 : integer :4 KeySearch ine:itgr

Figure 4.3 Block diagram of the sort-search problem

tions that formally define the problem of searching ordered sequences for occurrences of

"a given element. Therefore a specification for the problem of sorting and then searching

"a sequence can be defined by composing Sorti with one of the Ordered-Search problem

theories as shown in Figure 4.3 and defined below.

function FIND-LOCATION (A: seq(integer), keyl : integer I true)
returns (index : integerI

index in [1 .. size(A)]
& ex(z :seq(integer))

(le-ordered(z)
&bag-equal(elements-of(z), elements-of(A))
&z(index) = keyl))

Unfortunately, such a problem specification cannot be used directly by KIDS. This

single problem specification includes aspects of both divide and conquer and global search

algorithm theories in the sorting and searching of the sequence, respectively. Although the

design tactics of KIDS cannot be directly applied to this problem, KIDS can be used to

guide the development of a set of problem specifications to which the design tactics can

be applied. Specifically, the divide and conquer portion of the above specification can be

separated from the global search portion of the specification to obtain a function of the

form Key-Search (Sorti (A), keyl).

The output condition of Sorti is contained within the output condition of Find-

Location. Specifically, the conjunct bag-equal (elements-of (z), elements-of (A)) & le-

ordered (z) in the existentially quantified clause of Find-Location is equivalent to the output

condition of Sort1. This conjunct could therefore be replaced with an invocation of Sorti

4-4

function FIND-LOCATION (A seq(integer), keyl: integer I le-ordered(SORTl(A)))
returns (index : integerI

index in [1 .. size(A)]
& SORTl(A)(index) = keyl
& le-ordered(SORT1(A)))

Figure 4.4 Problem Specification for Find-Location

to obtain 3(z : seq(integer)) (z = SORTI (A) & z(index) keyl)). After substitution and

simplification, Find-Location can be rewritten as follows:

function FIND-LOCATION (A : seq(integer), keyl integer I true)
returns (index : integer I

index in [1 .. size(A)]
& SORT1(A)(index) = keyl)

Although Sortl(A) returns an le-ordered sequence (i.e., le-ordered (Sortl (A)) is true),

this fact will not be discovered by the inference mechanism in KIDS. However, this fact

can be made explicitly known. The statement le-ordered(Sortl(A)) is invariantly true;

that is, it is true both as an input and as an output condition of the problem specification

Find-Location. Adding this invariant to the above specification yields the specification

shown in Figure 4.4. This specification is of the form Find-Location(Sortl (A), keyl).

The specification for Find-Location shown in Figure 4.4 separates the global search

nature of the problem from the divide and conquer. The derivation of the divide and

conquer portion of the problem, as defined by Sorti, follows the derivation found in the

KIDS manual. However, the derivation of the global search portion of the problem differs

from that of Key-Search despite the close resemblance between the problem specifications.

These differences have a slight impact on the specialization of an algorithm for the searching

phase of the problem. Specialization of a global search algorithm theory for the search

portion of Find-Location is described in Appendix B.

In the specialized algorithm, no provisions were made for Sorti to run in parallel with

Find-Location. Instead, the filter Sorti runs to completion before passing its results to the

filter Find-Location. The static nature of the communication structure of this application

4-5

allowed the direct incorporation of an invocation of Sort1 in the specification Find-Location.

Alternatively, elements of the sequence could be compared against keyl as the sequence is

being sorted. If the input sequence is denoted A and if So and Su denote an ordered and an

unordered subsequence of A such that bag-equal(elements-of(A), elements-of(So ++ Su))

is true, then this concurrent sort and search could be terminated when keyl E So and

Vx(x E Su =: keyl < x) . However, the KIDS algorithm specialization process cannot

support this type of incremental sort and search.

4.2.4 Observations. Specifications for first sorting and then searching a sequence

of integers for occurrences of a given key were successfully developed, and algorithm specifi-

cations were successfully specialized for each of the two subproblems. (See Appendix B for

details.) Thus, development of functional specifications for this simple problem provides

some support that functional specifications can be successfully used to define the architec-

ture of an application. Although incorporating architectural information within individual

problem specifications may adversely impact their re-usability, architectural information

could be isolated in a separate "structuring specification." For example, a specification

of the form shown in Figure 4.5 could be used to compose Sortl with Key-Search. The

single axiom of Structure, which is written using the syntax of SLANG, defines the opera-

tion h to be a composite of the operations u and v. Note that h has the same structure,

h(a, b) = v(u(a), b), as the block diagram of Find-Location in Figure 4.3.

The specification Structure can be used to compose Search with Sorti to define

an operation having the structure search(sort1 (A), key) as follows. First, the "shared

union" (or colimit) of the specifications Sorti and Key-Search is formed. After forming

the union of these two specifications, a morphism from the specification Structure to the

union specification is defined such that u is associated with the operation sorti and v is

associated with search. The colimit of the two specifications and morphisms contains an

operation h defined by the equation key-search ((sorti A) key). The colimit diagram is

shown in Figure 4.6. The specification Common-Sorts contains those sorts that are common

between the specifications Sorti and Key-Search. The union (or colimit) specification,

Sortl+Key-Search, is extended with an additional operation, find-location : seq(integer),

4-6

spec Structure is

sorts D, El, E2, R
op h: D, E2 -* R
op u: D --+ El
op v: El, E2 -* R
axiom (fa a (fa b (equal (h a b) (v (u a) b))))

end-spec

Figure 4.5 Structuring specification

integer -- integer, to form the specification Extended-Sortl+Key-Search. The structuring

specification is then used to define the operation find-location in terms of the operations

sorti and key-search. The colimit of the diagram contained within the dashed box, the

specification Sort-Search, contains the operation find-location in which find-location (A,

key) equals key-search (sortl(A), key).

The benefit of this modified approach is that architectural information is isolated in

the structuring specification, while each problem specification and its associated domain

theories remain relatively free of structural information.

One of the problems of using only functional specifications is that they contain no

provision for representing or reasoning about state. Hoare's Communicating Sequential

Processes (CSP) contains structures useful for representing state, and it can be used to

define relatively complex process interfaces. While CSP is good at defining process inter-

faces, it lacks the ability to specify the behavior of functional operations such as Sorti.

However, the sorts and operations referenced in CSP process expressions can be defined

using functional specifications. The following section describes one attempt at merging the

expressive power of CSP with the power of functional specifications to define application

specifications.

4.3 Development of the Four Sum Moving Average Unit Specification

4.3.1 Introduction. This section documents the results of an experiment in which

functional specifications are combined with expressions in Hoare's Communicating Sequen-

4-7

ICommon-Sorso ! Key-Search

coilimit

ISort-Search I

Figure 4.6 Defining structure using a structuring specification

tial Processes (CSP) to define application specifications. The hypothesis of this experiment

was that the structure of an application could be defined using CSP while functional spec-

ifications could be used to define the sorts and operations of the application. Specifically,

sorts and operations of an application are specified using functional specifications, while

state and application processes are specified using CSP. Functional specifications are writ-

ten in SLANG.

4.3.2 Problem Description. The problem selected for development is a moving

average unit. Moving average units dampen an input digital signal by averaging an input

data value with the previous n inputs. As this brief problem description implies, moving

average units require state information. The input, denoted X, consists of a digitized

signal represented as a finite sequence of complex numbers. The output, denoted Z, is also

a sequence of complex numbers. The relationship between the input X and the output Z

for a four-sum unit is shown in Table 4.1. A block diagram for this problem is shown in

Figure 4.7. Filters are represented by boxed entities, and arrows denote sorted or typed

communication between the filters. The output of the summation unit is a tuple of a

complex number representing the sum, and a natural number representing the number of

elements used to form the sum. The averaging unit accepts this tuple and forms the value

defined by the division of the complex value by the natural value.

This problem was selected in part because of its simplicity, but mainly because of its

use of state data. The summation unit accepts individual signal values which it then sums

4-8

SSummation Unit Averaging Unit

Figure 4.7 Block diagram for the moving average problem

Table 4.1 Output of the Four Sum Moving Average

Output Element Value

z1 El

z 2 2

XI +X2+X 3

Z3

Xl +X2+X3+X4
Z4 4

X2 +X3 +X4 +X 5Z54

' n-3+na-2+n-- +X.

Zn _4

with the three previous signal values. The three previous signal values must be maintained.

That is, the summation unit is imperative.

For this experiment, the existence of a specification for real numbers is assumed,

as is the existence of a specification for complex numbers. For notational purposes, a

component is a specification containing a combination of a functional specification and a

CSP expression written over the sorts and operations defined in the functional specification.

A connector refers to a specification containing only a CSP expression. A more detailed,

yet still informal, description of components and connectors may be found in Appendix C.

A formal treatment of components and connectors is contained in Section 5.6.

4.3.3 Development of a Specification for the Moving Average Problem. Specifi-

cation of the multiplication and divisor units proceeded along the lines of components and

connectors. Components were represented as an extension to Problem-Theory. As shown

in Figure 4.8, a specification incorporating Problem-Theory as well as communication or

interface structures was defined. This specification, Communicating Problem Theory, is de-

fined using a specification Communicating-Entity. Communicating-Entity introduces two

new process-based operations, rcv for receiving data and trx for transmitting data; four

sorts, P, E, D and R; and includes structures for process names and process axioms. The

4-9

Spec Communicating-Entity is

sorts P, E, D, RspeeTR1V2is X X-D Process Q

son (X op trx : P, R(-> E
end-spe(op rav: P -> D

spep TRIV s is X >R axiom (equal (range rQ() D)
sort X "•"- axiom (implies (in p (domain rov)) (not (exists r (in p r (domain trx)))))

end-send-Spec

X->R ~X->D""-",

SpeF Problem-Theory is Spe4 Communicating-PrEoblem-Thory is

sorts: D, R bolimntoofbdiagram

op t: D -> Boolean F, nodes = c TRlVi , TRIV2, Problem-Thaeory, Communicating-Entityb e

op e: D, R -> Boolean arcs = Triv2 -> Commupriating-Entity ofX -> Dc

end-spec Triv2 -> Proaonlsmtheory : beX -> D b

Trivt -> Communicating-Entity aieX -> Ra

Trivt -> Problem-Theory : I hX -> Ri

axiom (etasts p t p2 z e (implies (and (equal x (r an pl)) (I x))
(and (0 x z) (equal (trx z p2) e))))

axiom (exists x q (implies (and (equal (trx z p) e) (0 x z))

(equal x (roy q))))

process-axiomn (equal Q (-> (-> rev trx) Q))

end-spee

Figure 4.8 Communicating Entity Specification

intent here being that rcv and tre could be defined according the the needs of the appli-
cation, where axioms written over trx and rcv would define the interface or protocol of

the component. For example, ncv could be specialized to be an asynchronous, unbuffered

receiver operation of a connector or a simple receiver operation of a component. Axioms

defined over rcv or trx would follow one of the patterns described in Appendix C.

Although rcv and trx are defined to be operations, they may be better viewed as

communication processes. Specifically, the statement x:=rcv(c) can be defined by the CSP

construct c?x. Note that ncv can also perform other communication activities, such as

responding with an acknowledgment. In this case, the statement x:=rcv(c) could be defined

by the CSP statement c. left?x -- c. right!acknow ledge. The operation tr~x has as its purpose

the communication of a result over a port followed by the receipt of an acknowledgment

of sort E over another port dedicated for this purpose. In this case the statement ack

:= trx(r,c) could be defined by the CSP statement c.left!r --- c. right ?acknowledge where

acknowledge is an event symbol in E, and ack is a state variable used to hold the returned

event symbol.

4-10

The specification Communicating-Problem- Theory includes the sorts, P and E, where

P is a port sort and E is an event sort. The semantics of the statement p E P in a

specification derived from Communicating-Problem-Theory is that p is a port. Note that

P is not a true sort in the sense that if p E P then the sort of p is not P, but is instead the

sort of the data communicated over p. Therefore the proper semantic interpretation of P

in Communicating-Problem-Theory is that P denotes a set of sorted port symbols where

the sort of these port symbols is the sort of the data communicated over them. Similarly,

the sort symbol E denotes a set of event symbols such as acknowledge such that E is the

meet of the partial order induced by the sub-sort relations of the functional specification.

The axioms of Communicating-Entity serve the following purposes. The first axiom

states that the rcv operation be capable of receiving any value of type D; and The sec-

ond axiom states that ports are unidirectional. Three additional axioms are defined in

Communicating-Problem- Theory:

1. The first axiom states that if a data value x is received over a port P1 and that data

value satisfies the input assumptions of the problem theory, then a value z satisfying

O(x, z) will be communicated over a second port P2.

2. The second axiom of Communicating-Problem- Theory states that if a data value is

successfully transmitted over a port of a communicating problem theory, then an

input value x must have been received on an input port of the component. This

axiom eliminates models that may spontaneously transmit data values.

3. The last axiom defines the communication process to be a cycle of receiving an input

via rcv and transmitting a result via trx.

Figure 4.9 shows a diagram for the summation and averaging components. Complex

number theory, sequence theory, and tuples of complex and naturals are common to both

the Complex-Adder and the Complex-Average specifications. Thus tuples of complex and

natural data values produced by the adder are of the same sort as the tuples of data values

consumed by the averaging component. As shown in the figure, problem specifications

for the summation and averaging problems are related to Problem-Theory by defining

a morphism from Problem-Theory to Complex-Adder and Complex-Average, respectively.

4-11

spec Comp-Nat-Pair

dspec Problem'wcry

~D->comp-nat
R>opn R->complex

1Iiptcn ->input-cond

0-'output-cond O->outpat-cond _

Spec Complex-Adder Spec Complex.Average is

colimit of diagram

Nodes = (Complex, Seq-of-Complex, Comp-Nat-Pair I

Ares = Complex->Seq-Of-Complex: {... I,

Complex->Comp-Nat-Pair: I... }

op input-cond: comp-nat -> boolean

op output-cond: comp-nal, complex -> boolean

op average: comp-nat-> complex

axiom (iff (input-cond x) true)

axiom (iff (ouput-cond x z)(equal z (average x)))

axiom (equal (average x) (complex-div ((project I) x)

(((relax is-int) ((relax non-zero) ((project 2) x))),O.O)

end-spec

spec Communicating-Problem-Theory

spec Summation-Component is spec Average-Component is

colimit of diagram colimit of diagram

nodes = {Problem Theory, Complex-Adder, nodes = (Problem Theory, Complex.Average,

Communicating-Problem-TheoryI Communicating-Problem-Theory)

arcs Problem-Theory -> Complex-Adder: I.. arcs Problem-Theory -> Complex-Multiplier: {..}

Problem-Theory -> Coanmunieating-Problem-Theory: {.. Problem-Theory -> Communieating-Problem-Theory: I..

Figure 4.9 Specification of the Summation and Averaging Components

Functional specifications for the averaging component and the summation component are

then defined by taking colimits of the diagrams as shown in Figure 4.9.

The resulting specifications, Summation-Component and Average-Component, in-

clude the communication operations trx and rcv, but these operations are at this point

only abstractly defined. The next step in the development is to define these operations.

In Figure 4.10, the specifications Complex-Average and Complex-Adder have been

extended with axioms constraining the operations trx(c) and rcv(c) to be equivalent to

the CSP constructs c.left!x -- c.rightack and cx respectively. The extended specifica-

tions also provide a definition of the set of ports for each of these components: one port

each for receiving and transmitting data values and one port for receiving acknowledgment

events following a successful invocation of trx. Also shown in the figure is the specifica-

tion Connector. Connectors are used to manage the communication protocol between the

summation and averaging components.

4-12

The set of communication events shared between the connector, the summation com-

ponent, and the averaging component are defined by the specification System-Events. By

defining the relationship between the set of events defined in System-Events and the sort

E of the connector and the summation and averaging components, the colimit of the di-

agram will have a common definition of the sort E across these three entities. Similarly,

the simple specification Channel is used to provide a unification of port names under the

colimit operation. In the semantics of CSP, unification of port names result in the for-

mation of a CSP channel. After taking the colimit, the process-base operations trx and

rcv in the connector are still abstractly defined, and could be specialized using one of the

communication paradigms described in Section C.2 of Appendix C.

4.3.4 Observations. There are a number of rather significant problems with this

approach that severely limit its practicality:

1. The semantic interpretation of the unification of port symbols pl and p2 where pl

and p2 are symbols in two distinct process expressions is that pl and p2 define a CSP

channel. This interpretation is distinct from, for example, the semantic interpretation

of sorts D and comp-nat belonging to a common equivalence class.

2. Neither trx nor rcv are implementable as functions because they are not timeless

operators. That us, the values returned by rcv(c) and trx(c,v) vary over time. In

essence, the semantic interpretation of the operations trx and rcv differs from the

semantic interpretation of any other operation.

3. The structure for defining a communication processes in component specifications

such as Communicating-Entity is awkward. Specifically, statements such as (iff (equal

x rcv(c))(c?x)) are not well formed. The statement c?x is not a boolean valued

predicate, so its use in the statement (iff (equal x rcv(c))(c?x)) is not defined.

The problem is that this approach to defining the architecture of an application

by incorporating CSP statements in functional specification results in a mixing of logics.

Specifically, this approach results in axioms containing both predicate calculus expressions

and CSP process expressions (process logics). Mixing stateless and timeless expressions of

4-13

SspecC om p-N at- eai com p-nat -> D -i e C m u i a ~ t t
comp-nat->R

sort C [colimit of diagram
T peCanl isc => Cco'a'Pi'>tmuretngEtly [e Connecto-> isC>'rgt

end-spee, nodes = {Comp-Nat-Pair, Communicating-Entity) -p}ih spec Channel is

rsp~ee Channel ýis ac=Comp-Nat-Pair->Communieating-Entity: [eomp-nat->R sot

soCComp-Nat-Pair->Comunicating-Entity: Icomp-nat->R end-spec

end -pee C ->p.left sort-axiom P = {p.left, p.right, p.control }
e n - p ce n d -S p e c C -> p .le f t

C->p.control C->p.right E->E

spee Extended-Complex-Adder is spec Extended-Complex-Average is

import Complex-Adder import Complex-Average

sort-axiom P = {p.left, p.right, p.controll E->E E->E sort-axiom P = {p.left, p.right, p.control}

axiom (iff (equal e (trx z p.right)) (-> p.rightlz p.eontrol?e)) axiom (1ff (equal e (trx z p.right)) (-> p.right! z p.control?e))

axiom (iff (equal x (rev p.left))(p.left?x)) axiom (iff (equal x (rcv p.left))(p.left?x))

end-spec end-spec

spec System-Events is

sort E

const ack -> E

end-spee

, Colimit

AdrCmoet comp-nat comp-natonent Average Component 1

ack

Figure 4.10 Specification of a Pipeline Segment for Finding the Moving Average

predicate calculus with state-based, time-dependent expressions of CSP results in axioms

that are not well formed.

Note however that this finding does not necessarily invalidate the approach of using

functional specifications to define sorts and operations and using CSP to define process

structures. Indeed, the following chapter describes a specification technique in which CSP

expressions are used to define application processes and in which functional specifications

are used to define sorts and operations. However, the technique described in the following

chapter segregates the process logic of CSP from the higher order functional logic of SLANG

and SpecWare.

4-14

4.4 Summary

Development of specifications for the two applications described in the previous sec-

tions leads to the following conclusions:

1. Architecture can be defined within functional specifications. However, such specifi-

cations remain stateless and timeless.

2. Directly incorporating CSP expressions in functional specifications allows definition

of state and allows definition of processes, but leads to ill-formed axiomatization.

The process based logic of CSP must either be segregated from the higher order logic

of the functional specifications, or the process logic of CSP must be expressed within

a first order framework.

According to Shoham, any modal logic can be replaced by a first order logic.(96:28)

This implies that if the process logic of CSP can be redefined as a modal logic, then

CSP can be interpreted within a first order logic framework. The integration of these

two logics, if possible, would eliminate many of the problems identified in Section 4.3.4.

Another approach, the approach taken in the remaining chapters of this dissertation, is to

segregate the process logic of CSP from the logic used in support of functional specification.

Specifically, the remaining chapters of this dissertation establish a mathematical foundation

for the specification of software architecture in which functional specifications are developed

in a logic separate from the process logic of CSP. Integrating the process logic of CSP with

the higher order logic of SLANG is left for future research.

4-15

V. Mathematical Foundations

5.1 Introduction

C.A.R. Hoare in his text Communicating Sequential Processes (52) provides a quasi-

algebraic definition of communicating sequential processes (CSP). CSP constructs, al-

though not formally defined, were used in the preceding chapter in an unsuccessful at-

tempt to merge the ability of functional specifications to define sorts and operations with

the ability of CSP to define state, communication, and processes. The primary failing of

the work of the preceding chapter was the incorporation of process expressions in func-

tional axioms. Functional logic and process logic were not well segregated; this lack of

segregation led to ill-formed axioms. This chapter develops a formal relationship between

the process logic of Hoare's CSP and the higher order logic of functional specifications such

that logical expressions are both well-formed and interpreted in their respective logical sys-

tem. An overview of the relationships defined in this chapter may be found in Figure 5.1.

The figure references two institutions, an institution of process logic and an institution

supporting functional specifications. Each of these institutions, as well as specification

languages within them, are described in the following paragraphs.

Goguen has established the existence of institutions supporting functional specifica-

tions, among them are an institution of equational logic and an institution of predicate

calculus.(41) As stated in Definition 111.21, an institution supplies definition to the cate-

gories Mod of models, Sign of signatures, and Set of sentences, and provides definition

of the satisfaction relation ý=. Once an institution supporting functional specification has

been defined, any number of specification languages within that institution can be de-

fined. As shown in Figure 5.1, SLANG is a specification language within an institution

supporting functional specification. Specifically, SLANG is a specification language within

a multi-sorted, higher order predicate calculus institution. Other functional specification

languages, such as OBJ and Larch can also be defined within an institution framework.

Also shown in Figure 5.1 is an institution of process logic. Process-based languages,

such as Milner's CCS or Hoare's CSP, could be used as the basis of a process-based spec-

ification language. In fact, Hoare's CSP is used in this chapter in the definition of the

5-1

process-based specification language ISlang. Although Figure 5.1 makes reference to an

institution of process logic, I have been unable to find a definition of such an institution

in any of the current literature. No attempt is made in this chapter to define such an

institution. Instead, an institution of process logic is assumed to exist.

Assumption V.1 Given Milner's definition of CCS, Hoare's quasi-algebraic definition of

communicating sequential processes (CSP), and Hennessy's deductive system for process

logic, an appropriate generalization effort could be undertaken to define an institution of

process logic. Within such a process logic institution, process-based specification languages

could be defined. The process-based specification language ISlang is one such language.

Support. In their paper Introducing Institutions, Burstall and Goguen conjecture

that an institution for process logic could be developed.(41) In addition, in his text Alge-

braic theory of processes, Hennessy defines a process algebra similar to Hoare's CSP and

develops a complete deduction system for it.(51) The closure of the set of axioms of Hen-

nessy's process algebra would establish a theory of communicating processes which could be

generalized to define an institution of process logic. U

ISlang is a specification language based on Hoare's definition of CSP. Specifically, ISlang

uses CSP expressions to define processes. CSP expressions serve to restrict the set of

models of ISlang specifications in much the same way that functional axioms serve to

restrict the class of models of SLANG specifications. Development of the specification

language ISlang proceeds in three steps:

1. Before CSP can be used in the definition of a specification language, CSP must first

be stated as a theory presentation. That is, the signatures of the event and process

operators defined by Hoare must be defined, and the behavior of these operations

must be defined. A theory presentation for Hoare's CSP is developed in Section 5.2.

This theory presentation is denoted CSPA.

2. CSPA does not include the algebra of traces defined by Hoare. To provide a trace

semantic for expressions in CSPA, CSPA is extended in Section 5.3 to define CSP

structures. CSP structures provide language based definitions of the trace operators

5-2

Institution of Institution of

Process Logic Functional Logics

CSP F Larch

CCS OBJ

ISlang many-to-many Slang

Figure 5.1 Mathematical Overview

defined by Hoare. It is through CSP structures that investigation of the behavior of

models of process expressions in CSPA is possible.

3. Next, a category PSign of process signatures and process signature morphisms is

defined. PSign is defined in Section 5.4.

4. Finally, a category PSpec of process specifications and process specification mor-

phisms is defined. The language ISlang is used to denote process specifications within

this category. PSpec is defined in Section 5.5.

ISlang specifications define processes which may make use of sort symbols and func-

tional operator symbols. Definitions of these sort and operator symbols are provided by

functional specifications. That is, the semantics of some of the sort symbols and opera-

tor symbols in ISlang specifications are provided by companion functional specifications.

In Figure 5.1 the many-to-many relationship between ISlang specifications and SLANG

specifications highlights this relationship. The sorts and functional operators of an IS-

lang specification define a functional signature E. Any SLANG specification having the

signature E can be used to constrain the set of models of these sorts and operations. Con-

versely, the sorts and operations of a single SLANG specification may be referenced in

several ISlang specifications.

5-3

Later in this chapter, constructs are introduced which can be used to associate an

ISlang specification with a SLANG specification. Specifically, components are used to

associate an ISlang specification with a SLANG specification such that the SLANG spec-

ification defines some of the sorts and operations referenced in the ISlang specification.

Furthermore, it is shown that components and component morphisms form the category

App. The relationship between process specifications and functional specifications is fur-

ther described in Section 5.6.

5.2 A Theory Presentation for CSP
I

The algebra of communicating sequential processes as defined by Hoare consists of a

number of related algebras, among them are an algebra of traces, an algebra of events, an

algebra of sets, and an algebra of processes. For example, the event algebra can be used to

define event symbols such as c?x, and the process algebra can be used to define processes

in terms of events and other processes. This section develops a theory presentation for the

event and process algebras defined by Hoare.

Before defining a theory presentation for Hoare's CSP, an algebra for defining terms

is presented. Term algebras define carrier elements for data values referenced in CSP

expressions. Term algebras are defined using indexed collections of sets, so a definition of

indexed collections of sets is provided first.

Definition V.1 Indexed collection of sets.(110:91) If D is a set and a set Ad has been

defined for each d E D, then d is called the index of Ad, the collection C = {Ad I d E D} is

called an indexed collection of sets, and P is called the index set of the collection. When D

is the index of a collection C, the notation UdEv Ad denotes the set {x I Ed[d E DAx E Ad]},

and for D # {}, ndCv Ad denotes {x I Vd[d E D =t, x E Ad]}. El

For example, if) = {int, real, bool}, and Aint = {il,i 2 }, Amal = {ri,r 2 ,r 3}, and Abool

{b}, then UdevAd = {x I 3d[d G {int, real, bool} A x G Ad]} = {ii,i 2 ,rlr 2 ,r3,b}, and

ndE.Ad = {X I Vd[d E {int, real, bool} =• x E Ad]} = {}. State variables and communi-

cation ports are defined using indexed collections of sets, where the index sets are sets of

sort symbols. The notation x : D is used as a shorthand notation for x E Ad where x is a

5-4

variable of sort D. Now that indexed collections of sets have been defined, terms can be

defined.

Definition V.2 Terms.(Adapted from (107).) Given a signature E = (S,Q), and an

indexed collection of sets X = {X, I s E S} of variables indexed by S, i.e., each variable is

associated with a sort s ofrE, the set of terms generated by the signature using the variables

X, denoted Tr(X), is defined by the indexed family

Tr(X) = {TF,8(X) I s G S1

where TE,,(X), the set of terms of sort s, is defined inductively as follows:

1. if x is a variable of sort s in X,, then x E TG,,(X);

2. if c is a constant symbol of sort s with c E Q, then c E TE,,(X);

3. if f is an operation of sort s and rank s1 , 82,.., SnI and t 1 , t 2 ,. .n are terms in

Tr ,s (X), TE',, (X),...,TF,8 (X) respectively, then f-(tl, t2 ,... n) -E Tr,,(X). El

When X is empty, then Tr,,,(X) is called the set of ground terms of E and is denoted TE.

The underscores above are used to highlight the fact that the symbol f-(tl, t2,... , tn) is

in Tr,,(X). The underscores will be dropped if the meaning is clear based on the context

of the expression. Value can now be defined.

Definition V.3 Value. Given a functional signature E = (S, Q), a value v of sort s is an

element of the set Tr,,. Rl

Now that term algebras and value have been defined, they can be used in the defini-

tion of the theory presentation CSPA.

Definition V.4 A theory presentation of CSP, denoted CSPA, has a multi-sorted signa-

ture Ecsp = (S, 0), where

1. The set S of sort symbols is the set {event, process, channel, value, variable, label},

and

5-5

2. Q is the collection of operators of Figures 5.2 and 5.3.

The set of Ecsp sentences constraining the set of Ecsp-models is given in (52). El

Although the signatures of the operations in Figures 5.2 and 5.3 appear to be SLANG

signatures, the sorts and operations of these two figures are defined in a process logic, not

a functional logic. Definition of a term algebra for the sort value is provided through asso-

ciation of a functional signature with statements in CSPA. This relationship is described

in Section 5.6. Expressions of sort process defined using the operators of CSPA are defined

using terms.

Definition V.5 The set of terms generated by the signature of CSPA using the variables

X is denoted Tcsp(X). A term in Tcsp(X) is called a CSP expression or a process

expression. El

The semantics of the functions of Figure 5.3 are described in (52). The semantics of

the operations x/ and - --+_ event, process -* process of Figure 5.2 are also described in

(52), where V/ is the successful termination event, and a - P has the same semantics as
eSP

a then P; the arrow c-) is used in an effort to eliminate confusion with the arrow -* used

in the definitions of operators. The symbol 0,4 of Figure 5.2 denotes the catastrophic event.

The other operations of Figure 5.2 are used to define communication events. That is, the

operation c!x where c is of sort channel and x is of sort value, defines a CSP communication
CSP S P

event that can be used in an expression such as P = a)- (c!x) P I d!x) P).

The operations of Figure 5.3 can be used to combine processes and events to define

processes. For example, the operator -: - : set(label),process --+ process defines a collection

of labeled processes operating in parallel. That is, the statement {0,1,2}:P where P is

a process expression defines the process 0 :P I1 1 :P 11 2 :P. Remote subordination

can be defined using the operations listed in Figure 5.3. For example, the CSP expression

doub:(Iji<27 (i:DOUBLE)) //... can be represented in CSPA by the semantically equivalent

expression doub:({O,1,...,26}:DOUBLE)) §

Each process composition operator defined by Hoare in (52) is included in CSPA.

This fact is expressed in the following theorem.

5-6

sig CSP-Event-Sig is

sort event

sort channel
sort value
sort variable
const N: -- event
const Or+: -- event
op -!- : channel, value -4 event
op 2- channel, variable -+ event
op __ channel, value, variable -* event

end-sig

Figure 5.2 Signature of CSP Event Operators

sig CSP-Process-Sig is
sort label
sort event

sort process
const STOP :-+ process
const SKIP :-+ process
op -:= - : variable, value -* process

CSP
op -*_ : event, process -- process

CSP CSPop - --- : event, process, event, process -i process
op -11- process, process -+ processCSP
op _:---_ : event, set(event), process -+ process
op _ > process, process -* process
op _f_ : process, process -* process
op -H- process, process -- process
op process, process -+ process
op _> process, process -+ process
op process, process -* process
op _ _• : process, boolean, process -+ process
op _ boolean, process -+ process
op _ process, process --+ process
op process, set(event) --+ process
op _ label,process -> process
op _ set(label),process -+ process
op process, process -* process
op ' process -+ process

A

op _- process, process -- process
end-sig

Figure 5.3 Signature of CSP Process Operators

5-7

Theorem V.1 The theory presentation CSPA is complete with respect to the class of CSP

process operators as given by Hoare.

Proof. The validity of this claim is established by the following mapping:

Hoare Construct Corresponding CSPA Construct
and Section of (52) 1

csP
a then P (1.1.1) op - - - : event, process -* process

Choice (1.1.3) op - _ p - --+ - event, process, event,

process -4 process
csP

Choice of (1.1.3) op _: _ : event, set(event), process -* process

Success (1.9.7) const V: -- event

Parallel Composition (2.3) op : process, process -+ process
Named Process (2.6.2) op -: labelprocess -+ process
Named Process (2.6.4) op : set(label),process -* process

Non-deterministic Choice (3.2) op - f1 : process, process -4 process

Choice (3.3) op _[]_: process, process -+process
Concealment (3.5) op \ :process, set(event) process
Interleaving (3.6) op : process, process -+ process

Output Communication (4.1) op! : channel, value -+ event

Input Communication (4.1) op 2_ : channel, variable -+ event

Chained to (4.4) op - _ : process, process -* process
Subordination (4.5) op : process, process -+ process
Sequential Composition (5.1) op _; : process, process -+ process
Interrupts (5.4) op A_^: process, process -* process
Catastrophic Event (5.4.1) const q-+: ---+ event

A
Catastrophe (5.4.1) op -9-- : process, process -* process

Restartable (5.4.2) op \ : process -+ process
Alternation (5.4.3) op -_ : process, process -+ process

P ifb else Q (5.5) op - ? - : process, boolean, process -+ process

While-Do (5.5) op - • : boolean, process -+ process
Assignment (5.5) op -: : variable, value -* process

Subroutine (6.2) op !?- : channel, value, variable -+ event

The Hoare construct *P (Section 5.1) is equivalent to true*P. Furthermore, Hoare's CSP

expression doub:(11i<27 (i:DOUBLE)) //... defining remote subordination (Section 6.4)

can be represented in CSPA by the semantically equivalent expression doub: ({0,1,... ,26}

:DOUBLE)) //... *

Although any well-formed CSP process expression can be represented by an ex-

pression in CSPA, such process expressions cannot be semantically investigated in CSPA

5-8

because CSPA does not include the trace algebra defined by Hoare. CSPA defines the

syntax for process expressions; the semantics of process expressions in CSPA are provided

through CSP structures. CSP structures and their use in defining the semantics of process

expressions in CSPA is described in the following section.

5.3 CSP Structures

5.3.1 Syntax. The theory presentation CSPA defined in the previous section

contained operations for defining processes using event symbols and process symbols, but

lacked the ability to investigate semantic properties of those processes. Investigation of

process expressions of CSPA could be accomplished by extending CSPA with a trace

algebra which would include operators such as traces(-) : process --* set (seq (event)).

operators. Instead, the semantics of CSPA expressions are provided by relating CSPA

to formal languages through CSP structures. That is, CSP structures provide the ability

to define collections of related process expressions and when related to language theory,

provide the capability to investigate the trace behavior of the collection.

Definition V.6 (Based on (10).) A CSP structure is the 7-tuple (P, A,C,V,,E, Op,S)

where

1. P is a finite sequence of process symbols denoting communicating sequential processes

such that each element in the sequence is unique.

2. A is a finite sequence of nonempty sets of process alphabets such that Ai contains the

alphabet of process Pi. Each Ai is further partitioned as follows:

(a) Process events - Those non-communication events generated either by the en-

vironment or by the process Pi.

(b) Communication events - Those events of the form c <op> v where c is a CSP

channel, <op> is either '!' or '?', and v is the value communicated over c.

3. C is a sequence of sets of labeled communications channels connecting the processes

in P. Each channel c E C. and c E Cj connects exactly two processes Pi,Pj E P

5-9

such that c is used exclusively for input to Pi and exclusively for output from Pj. Ci

denotes the set of labeled communications channels of Pi.

4. V is a sequence of sets of labeled variables of the form v : s such that Vi contains the

variables of process Pi.

5. E is a functional signature containing sorts symbols and operation symbols such that

(a) If the sort of a channel c E Ci is s for any Ci E C, then s is a sort symbol in E.

(b) If f : u --+ v is an operation referenced in any process expression Si E S or in

Op, then f : u -- v is an operation symbol in E and u and v are sort symbols

in E.

(c) The sort of any term in Tr (X) is value.

6. Op is a CSP expression formed over the symbols in 7P, V, E and UAEA A such that

the sort of the expression is process. Op denotes the process expression of the overall

CSP process.

7. S is a sequence of well-formed process expressions such that Si is written over the

symbols in Aj, Vi, E, and 'P such that the sort of the expression is process. Sidenotes

the process expression of process Pi El.

Symbols in the sets of Ci E C and Vi E V can be combined via operations of CSPA to

define communication events.

The expressions in S define individual CSP processes. For example, for a process

symbol Pn E P with An {e, f, g}, the statement e csP (f) P" I g - Pn) could be

written.

Now that CSP structures have been defined, they can be used to define the semantics

of CSP expressions.

5.3.2 Semantics. This section explores the semantics of CSP expressions through

an analysis of the language accepted by the corresponding processes. The following discus-

sion establishes the mathematical foundations of trace semantics for process expressions,

and includes a brief discussion concerning the refusal sets defined by Hoare. Languages

5-10

are defined in terms of labeled transition systems and automata, each of which is defined

below.

Definition V.7 Labeled transition system. A labeled transition system (abbreviated LTS)

is a 3-tuple L ' (N, L, 6) where

e N is a finite nonempty set of nodes or node symbols,

e L is a finite nonempty set of labels, and

* 6 : N x L -- N is a transition relation between nodes and labels such that if 6(nj,l) =

n 2 , then nj and n 2 E N and 1 E L. R

The transition relation need not be defined for all combinations of node and label

symbols. Nondeterminism is supported in that the transition relation need not be func-

tional, e.g., 5(nl,l) = n 2 and 6(nl,l) = n3 , n2 k n 3 with n1 ,n 2 E N and I E L is a

valid transition relation for some LTS. Note that the semantics of nondeterminism are not

defined as part of an LTS. For example, if 6(ni, l) = n2 and 6(n1 , l) = n 3 with n 2 : n3

for some LTS, then one interpretation of 6(n1, 1) could be either n3 or n4 with the choice

made non-deterministically, while another interpretation could be that 6 is multi-valued

with 6(n 1 , l) equal to the set {n3, n4}.

Constraints placed on the transition relation of an LTS, e.g., that & be functional,

one-to-one, and onto, or that 6 be a total function, restrict the semantics of the transition

system. For example, requiring 6 to be bijective eliminates nondeterminism. Placing

additional structure in an LTS allows discussion of the language accepted by an LTS.

Language is defined using a specific type of LTS, an automaton.

Definition V.8 Automaton. An automaton is a labeled transition system L = (N, L, qo,

NF, 6) where

1. N is a nonempty set of node symbols,

2. L is a finite nonempty set of labels called the alphabet of the automaton,

3. qo E N is the initial node,

5-11

4. Np C N is a set of acceptance nodes, and

5. 6 : N x L -* N is a transition relation such that if 6(n, l) = m, then m, n C N and

IE L.

Given an automaton A = (N, L, qo, NF, 6) and a sequence s = (si, s2,..., sn) of symbols

from L, the sequence is accepted by A if there exists a sequence (Mnl,M 2 ,. . . , mn) of node

symbols from N such that m, = qo andrMn E Np and for all i E {1,2,...,n-1}, 6(mr,si)

mni+. The set of all such sequences is called the language of A and is denoted L(A). El

The interpretation or semantics of the relationships defined by 6 is external to the

automaton itself. In other words, an automaton defines only syntax; semantics are defined

externally. For example, consider the process definition P = e) ((f P P) n (f s

(g £p P))) graphically depicted in Figure 5.4. Node symbols have been added to the figure

to facilitate discussion. For this process, the transition relation 6 for node 2 has two next

states for event f, i.e., 6(2, f) = 1 and 6(2, f) = 3. In the semantics of Hoare's CSP, there

are many possible implementations of this process.(52) One implementation may select

6(2, f) = 1, and would deadlock on the input sequence (e, f, g). Another implementation

could select 6(2, f) = 2, and could therefore properly recognize the input sequence (e, f, g),

but would deadlock on the sequence (e, f, e). A third implementation could delay making

the determination of the next state of node 2 until a point in the execution of P is reached

in which one branch deadlocks but the other does not. (Hoare refers to this as "angelic

nondeterminism".(52:105)) That is, both branches would tentatively be taken following

the event sequence (e, f) and the decision as to which branch is the proper branch to take

would be made based on which event, e or g, occurred next. The point here is that the

semantics of a LTS are provided by a set of behavior rules that is external to the LTS

itself. The behavior rules of CSP, and hence of CSPA, are defined in (52).

The semantics of process expressions can be defined in terms of automata theory.

As noted in Definition V.8, the development of such a definition requires definitions of the

state, the labels, the transition relation, the final states, and the initial state of a CSP

process. The state of a CSP process is given below.

5-12

C

(De
g

2

f

3

Figure 5.4 Pictorial Representation of the Process Defined by the Expression P = e-
CSP SP ss((f - P) n (f £ (g * P)))

Definition V.9 (10) CSP process state. The state of the execution of a CSP process at

time t can be described by the 3-tuple (CB,, PE, EA,), where

1. CE, E P.(C) is the set of enabled communication channels at time t. That is, CEt is

the set of communication channels that have an expression available for input.

2. PEt E P(P) is the set of enabled processes at time t. That is, the set of processes

whose guards are true allowing the process to engage in events.

3. EA, E 1P(A) is the set of events for which the enabled processes in PE, are prepared

to engage at time t. That is, those events whose occurrence would cause a change in

state. E

Note that the refusal set of an enabled process P in PE, as defined by Hoare is the set

aP- EAt.

The initial state of execution of a CSP process is defined using the above structures.

5-13

Definition V.10 (Based on (10)) Initial State. The initial state of execution of a CSP

process can be described by the 3-tuple (CE, PE, EA), where

1. CE E P(C) is the set of communication channels of the processes in P7 which initially

have expressions ready for input.

2. PE E 'P(P) is the set of processes whose guards are initially true.

3. EA E 'P(E) is the set events of the processes in PR such that e C EA if and only if

there is a process Pi E PE such that Pi is initially prepared to engage in e. The set

of events initially offered by a process Pi is denoted initial-events(Pi).

The initial state of execution of a CSP process P is denoted initial(P). El

The dual to the notion of the initial state of a CSP process is the notion of a final

state.

Definition V.11 (Based on (10)) Final State. The final state of CSP structure Scsp

(P, A, Op, S, C, V) occurs when the event V/ is engaged. That is, when P successfully

terminates. The final state of P is denoted final(P). El

Now that state has been defined, the next state relation (transition relation) can be

defined.

Definition V.12 (Based on (10)) Next-State Relation. The next-state relation of a CSP

structure Scsp = (P, A, Op, S, C, V) with alphabet A = UA•,E Ai is a relation A :

P(C),P(P),P(A),A -* P(C)P(P)P(A) such that A(CE,,PEt,EAt,a) -- (CRtPE,EAJ,

where

1. (%, is the new set of enabled communication channels,

2. PE, is the new set of enabled processes,

3, EfA is the new set of possible next events, and

4. a is an event in A,

subject to the following conditions:

5-14

1. A({},PE,,{},a)- ({},{},{}), for any a and any PP,

2. A(CE, PE,, EA,, a) =({}}, {}) for any a E A \ EA,,

3. A(CE,,PE,,EA,,aI) = A(A(CE,,PE,,EA,,a),/P), and

4. A(CE, PE,, EA,, A) = (C-,, PEt, EAJ) for any empty sequence A. El

The first two conditions placed on the next state relation A address the issue of deadlock.

The first condition states that a process that can engage in no further events is deadlocked

and that a deadlocked process remains deadlocked. The second condition states that a

process will deadlock if an event in the alphabet of the process occurs when the process is

not prepared to engage in it. The third condition defines the behavior of A over sequences

of events, and the last condition states that no change in state will occur unless an event

occurs.

A definition of CSP processes in terms of automata theory may now be given.

Definition V.13 (Based on (10).) CSP Automaton. A CSP automaton is the 5-tuple

(Scsp, Qcsp, initial(Scsp), final(Scsp), A) where

1. Scsp is a well formed CSP structure,

2. Qcsp is the realizable state space of Scsp recursively defined by

(a) initial(Scsp) E QcsP,

(b) if (c,p,e) E Qcsp, then A(c,p,e,x) E Qcsp where x E UAEAAj.

3. initial(Scsp) is the initial state,

4. final(Scsp) is the final state,

5. A: P(C),P(P),P(A),A -- P(C)P(P)P(A) is the next state relation.

Given a CSP automaton W = (Scsp, Qcsp, initial(Scsp),final(Scsp), A) and a

sequence e = (e 1,e 2 ,... ,en) of event symbols from A = U.jAjEA A, the sequence is ac-

cepted by W if there exists a sequence (mn,m 2 ,,mn) of states from Qcsp such that

mi = initial(Scsp), for all i E [1..n - 1], 6(mi, si) = mi+1 , and mn = final(Scsp) . The

5-15

set of all sequences accepted by a CSP automaton W is called the language of W, and is

denoted language(W) or L(W).

The traces of a CSP automaton P, denoted traces(P), consists of the set {t I 3(s)(t's E

language(P))} of sequences of event symbols from P, where tAs denotes the concatenation

of the sequences t and s. El

The definitions above define the semantics of process expressions such as P = (b £s

SKIP I a c (P; (c -'s- SKIP))) through an analysis of the languages they accept. In

the case of the process expression P, the language accepted is a'bc'.(52:173)

Researchers have done some work to classify the types of languages accepted by CSP

structures, with initial results presented in (52). However, a characterization of the class

of languages generated or accepted by CSP automata is not germane to this investigation.

In contrast, a characterization of the expressive power of CSP is important to this research

for the following reason: CSP is used in Section 5.5 to define process specifications, and

in Chapter VI, several architecture theories are defined in terms of process specifications.

Any limitation on the expressive power of CSP automata limits the set of architectures

that can be expressed using CSP-based process specifications. The expressive power of

CSP structures is explored in the following theorem.

Theorem V.2 (10:11-46) CSP automata have the generative power of Turing machines.

Proof. This proof is based on the results contained in Bhm and Jacopini.(17) Bihm and

Jacopini show that every Turing machine is reducible (or equivalent) to a program written

in a language which allows only sequence and iteration as formation rules. The syntax of

CSP allows for sequence, branch-on-condition (if-then-else), and iteration. Since branch-

on-condition can be written as iteration, a CSP structure meets the requirements stated in

(17). Thus, every Turing machine can be reduced to a CSP structure. U

What functions cannot be computed by a Turing machine? Church's hypothesis or

the Church-Turing thesis implies that any well-defined algorithm can be computed by a

Turing machine. (26). Taken in conjunction with the above theorem, this implies that CSP

is sufficiently powerful to specify any computable algorithm. That is, CSP is sufficiently

powerful to specify any computable architecture.

5-16

5.3.3 Summary of CSP Structures. This section has provided a trace semantic

for process expressions in the term algebra of CSPA by defining CSP structures and defin-

ing the relationship between CSP structures and automata theory. Furthermore, it was

shown that CSP automata have the generative power of Turing machines. CSP structures

provide a means for comparing collections of process expressions through an analysis of

the traces of the processes they define. The trace semantic provided by CSP structures for

CSP statements is used in the following sections in the definition of a category of process

specifications.

5.4 The Category of Process Signatures and Process Signature Morphisms

As stated in Assumption V.1, assuming an institution of process logic exists, a cat-

egory of process specifications and process specification morphisms can be defined. This

section defines such a category. Specifically, this section defines the category PSign of

process signatures and process signature morphisms. PSign is used in the next section to

define the category PSpec of process specifications and process specification morphisms.

CSP structures have several characteristics which must be identifiable in a process

signature. For any CSP structure Scsp = (p', A, C, V, E, Op, S), these characteristics in-

clude

1. the set P of process names,

2. the sequence A of sets of events,

3. the sequence C of sets of labeled port symbols, and

4. the sequence V of sets of labeled variables,

5. the sorts and operator symbols of E.

Each of these five entities is represented in a process signature, however, note that Op and

S define behavior and as such are not part of any process signature.

Definition V.14 Process signatures. A process signature H = (E, E, P, V, r,) consists of

* a signature E = (S, Q) with sorts S and functional operations 0;

5-17

"* a set E of event symbols;

"* an indexed collection of sets P = {P 8 I s E S} of port symbols indexed by S;

"• an indexed collection of sets V {V8 I s E S} of state variable symbols indexed by

S; and

"* a set r, of process symbols.

Associated with each process symbol Q E r, is a four tuple of maps, (events, var, act, chan)

where

"* events : r -- E maps process symbols to their alphabets such that for any process

symbol Q E r,, events(Q) C E;

"• var : r --* V maps process symbols to indexed collections of sets of variables indexed

on S such that for any process symbol Q (n, x: s E var(Q) =# 3(V 8)(x E V, A V, E

V);

"* act :, -K Q maps process symbols to sets of operator symbols such that for any

process symbol Q E n, act(Q) C Q; and

" chan : r -* P maps process symbols to indexed collections of sets of port symbols

indexed on S such that for any process symbol Q E r,, p: s E chan(Q) •:>](P,)(p E

PSAPS EP). El

Definition V.6 established a CSP structure to be a 7-tuple (P, A,C, V, E, Op,S).

The process expressions of Op and S of a CSP structure define process behavior and were

therefore not represented within process signatures. As given in the following definition,

the remaining elements of a CSP structure, P, A, C, V, and E can be represented within a

process signature.

Definition V.15 Relationship between CSP structures and Process Signatures. Denote

by Scsp ('P, A, Op, S, C, V, E) an arbitrary well-formed CSP structure. Define by the

following set of relationships a process signature II = (En, En, Pn, VIn, Kn) for Scsp:

* Define En to be the functional signature r, of Scsp.

5-18

"* For every non-communication event symbol e in the set UA.AAAi, define an event

symbol e in E. Thus e is an event symbol in E only if e is a non-communication

event contained in one of the sets of event symbols in A.

"* Define r, to be the set {p I p E P}. Because Scsp is well-formed, the sequence of

process symbols P in Scsp contains no duplicate symbols. Thus every process symbol

referenced in Scsp is represented in r.

"• Define for each Q E r. the mapping var(Q) ý-* Vi such that Pi = Q. Define the

collection V = {I 8 I s E S} of S-indexed variable symbols of II by the expression

V= U {var(W) I var(W) = Vi 4* Pi = W}
WE-

where Vi E V.

"* For every process symbol Q in n, define event(Q) to be the set of non-communication

events in Ai where Pi = Q.

"* For every process symbol Q in r,, define act(Q) to be the set of operator symbols

referenced in Si where Pi = Q. Note that Uwe, act(W) C Q.

"* For every process symbol Q in r,, define chan(Q) to be the set of CSP channel symbols

Ci where Pi = Q. Then C can be reconstructed by the following sequence former:

C = [c I V(i)(i E [1..size]P3(Q)(Q E n A Q = Pi =• c = chan(Q)))] El

Note that process signatures use an alternate form to represent the elements P, A, C, V, and

E of a CSP structure. For example, chan(Q) denotes the set of communications channels

used in the definition of process Q; this set can also be defined through inspection of the

sequence C of the corresponding CSP structure.

The syntax for a process signature is shown in Figure 5.5. The convention adopted in

the figure and used throughout this dissertation is to associate with every process symbol

in a process signature H a concrete representation of the maps events, var, act, and chan.

However, the map names may be omitted if the meaning of the sets is clear. The rep-

5-19

psig Simple-Pi-Signature is
sorts D, R

event ack
port input : D
port output : R

port handshake : event

var x: D

opf: D-- R
op input-condition : D - boolean
op output-condition : D, R --• boolean

process simple :events:{ack},
var:{x : DI,
act:{f:D--R},

chan:{input : D, output: R, handshake: event}
end-psig

Figure 5.5 A Simple Process Signature

resentation chosen is process-name : events:{.. .}, var:{... }, act:{.. .}, chan:{... }, where

process-name is a process symbol in n, and where the ellipses are replaced with the values

of the maps. For example, the process signature Simple-Pi-Signature shown in the figure

has the following features:

" E = (S, 0), with S = {D, R}, and Q = {f: D -- R, input-condition: D -* boolean,

output-condition : D, R -+ boolean}

"* E = {ack},

* P = {PD,PR, Peven~} with PD= {input}, PR = {output}, and Pevent = {control};

"* V = {VD}, where VD = {x}; and

" n = {simple}.

For any process symbol P in r,, elements of the sets events(P), var(P), chan(P),

act(P), and n can be used to construct a process expression for P. For example, if events(P)

= {a,b,c}, then the process expression P sat (a)_P PI b s_ Skip);(c) Skip) is a valid

process expression for P. Process expressions such as this are represented in process

specifications. Process specifications are the topic of the next section.

5-20

Now that process signatures have been defined, process signature morphisms can be

defined.

Definition V.16 Process signature morphisms. Given two process signatures 11 = (E, E,

P, V, n) and H' = (E',E', P', V', rt'), a process signature morphism o II -* H' is a

5-tuple of functions (ao, oE, up, Cv, UK), where

"* a F, --4 E' is a functional signature morphism (Definition 111.2);

"* 0Er E --+ E' is a function which maps event symbols in E to event symbols in E'

such that if e E E then oE(e) E E';

"* up is a function up : P --+ pY mapping port symbols to port symbols such that the

mapping is consistent with the sort of the port, i.e., for all port symbols p : s in P,

up(p) : (s) is in P';

"* av is a function or : V -+ V' mapping state variable symbols to state variable symbols

such that the mapping is consistent with the sorts of the variables, i.e., for all state

variable symbols v s in V, cv(v) : ow(s) is in V';

", uK is a function ca, :, --* ,'c mapping process symbols to process symbols such that if

X E r,, then u,•(X) E r.' subject to the following conditions: For all process symbols

A E,

- ifv: s is a state variable symbol of A, i.e., v: s E var(A), then ov(v) : o(s) is

in var(u,, (A));

- if c: s is a channel symbol of A, i.e., c: s E chan(A), then up(c) : ar(s) is in

chan(o. (A));

- if e is an event symbol of A, i.e., e E cA, then oE(e) E a(o,,(A)); and

- if f : s1 ,s 2 ,.. .s --* s is an operation symbol of A, i.e., f : s,2,2....Sn - s E

act(A), then or,(f S1, 82, . ., sn, --4 s) E act(a, (A)).

The identity process signature morphism maps each sort, operation, state variable,

port, and collection of process symbols back to themselves. E

5-21

psig A is psig Sort-Process is

sort D sort seq-of-int

sort R op input-cond: seq-int --+ boolean

op I : D -* boolean j op output-cond: seq-int, seq-int - boolean

op 0 : D, R -* boolean op sort : seq-int --* seq-int
op f: D--* R E

event ack a event acknowledge

port pl : event U port control : event

port p2 :D -port in : seq-int

port p3 R Rarv port out : seq-int

var d : D ---:3 var input-seq: seq-int

process X : B process Sort

events: {ack}, or events: {acknowledge},

var: {d:D}, var:{input-seq : seq-int},

act: {f:D --* R}, act:{sort :seq-int -* seq-int},

chan:{pl:event, p2:D, p3:R} chan:{in : seq-int, out : seq-int, control : event}

end-psig end-psig

Figure 5.6 Process Signatures and Process signature Morphisms

A simple process signature morphism between two process signatures is shown in

Figure 5.6. Each of the four functions defining the process signature morphism is shown

in the figure. One of the uses of signature morphisms, as pointed out in Chapter III,

is parameter instantiation. Using process signatures and process signature morphisms

(and later process specifications and process specification morphisms), the architecture

of a system can parameterized, with actual parameters supplied based on the specific

application. For example, a system consisting a four stage homogeneous pipeline, e.g.

P > P > P > P, could be defined as a parameterized specification parameterized on

a process specification P. The colimit of the diagram containing the specification P, the

pipeline specification, and a specification defining the actual parameter, defines a four

stage homogeneous pipeline where the definition of the stages are provided by the actual

parameter.

Formation of colimits as described above is predicated on the existence of an appro-

priate category. As established by the following theorem, process signatures and process

signature morphisms define a category.

5-22

Theorem V.3 Category PSign. Process signatures and process signature morphisms

form a category PSign where process signatures are the C-objects and process signature

morphisms are the C-arrows.

Proof. There are two properties that must be shown:

1. That each C-object has an identity morphism, and

2. That C-arrows compose to form C-arrows.

Each of these is proven below.

1. Identity. Identity arrows exist by definition. (See Definition V.16.)

2. Composition. Denote by al : I-- HI1 and a2 HI --+ 112 two process signa-

ture morphisms where H1 = (r,,E,P,V,rt), 1, = (E1 ,E1 ,P1 ,V1 ,nj), and 112 =

(E 2 ,E 2 ,P 2 ,V 2 ,K2). It will be shown that a1 = (aEl,aarEG 1 ,0-V1 ,0-al) and a2 =

(or., oE2, P2 , oK", U,,2) compose to define a process signature morphism a3 : 11 --+ H2

where 0 3̀ = " 2 0 0"1.

(a) By definition, the functional signature morphisms Up, and 0r,2 compose to define

0-r3 "

(b) aE1 and c-E, compose as follows:

V(e) (e c E Z # = R 1(e) E Ej) by definition

V(e') (e' E E1 => -E 2 (e') E E 2) by definition

but u-,1(e) E E l implies uE2 (a-,, (e)) E 2

.. ao1 and UE2 compose to define aE3 : E --+ E 2 where "E3 = UR,90 aE1 .

(c) Claim: up, : P ---+ P1 and -p2 : P1 -+ P2 compose to define p"3 : P -+ P 2 where

ap3 =ap 0o p,. Proof of claim:

V(p: s)(p : s E P =• up,(p): ar,(s) E P1) by definition

V(p' s')(p' s' E P, =* UpI(p'): 0-2 (s') E P 2) by definition

but -up,(p) a 0-(s) E P1 implies up,(up,(p)) : a",(U.1 (s)) E P2 .

up, and "p2 compose to define ap3 : P -* P 2 where ap, = ap, o Up,.

(d) Claim: av, : V -+ V1 and a"v, : V1 --+ V2 compose to define av3 : V -+ V3 where

0-v3 = 0-y, o av,. Proof of claim:

5-23

V(v s)(v s E V = v o 1 (v) 0 1:•(s) E V1) by definition

V(v': s')(v' : s' E 1/
i =* ry,(V'): a0 (s') E 1/2) by definition

but Yl1(v) : 1 (s) E V, implies av2 (ov1 (v)) : or, (aE1)(s) E V2.

v.' and owy compose to define cry 3 : V -• V2 where ov 3 = ay2 o ayl.

(e) Claim: l : r ---+ i and a. 2 : 61 - n2 compose to define o, r -: + r 2 where

all = U12 oall such that the maps events, act, chan and var are preserved.

Proof of claim: The proof of this claim consists of two parts. The first part

of the proof establishes that the functions Ul2 and al compose, and the second

part of the proof establishes that the composition , 0 or preserves the maps

events, act, chan and var.

i. Proof that orl and al compose:

V(W) (W E n =: all (W) E Ki) by definition

V(W') (W' E r1 = an, (W') E K2) by definition

but all (W) E r.1 implies or3 (al, (W)) E r 2

.'. al and all compose to define the function K 3 : n --+ K 2 where K 3 =

a,, 0 a,,.

ii. Items 2a, 2b, 2c, 2d and 2(e)i imply that the maps events, chan, act and

var are preserved.

,1 : H -+ IT, and U2 : H11 --+ H2: compose to define the signature morphism

a3 : 1-1+ H2 where a3 = (E 2 o Orr, , aE2 0 Ur , Op 2 0 Op 1 , OV 2 0 OV1, Oa2 0 O'rj. U

5.4.1 Summary. This section has introduced and defined the category PSign of

process signatures and process signature morphisms. A relationship between CSP struc-

tures and process signatures was defined such that all elements of CSP structures, except

for process expressions, could be represented in a process signature. Because process signa-

tures and process signature morphisms define a category, process signatures can be grown

using operations such as colimits drawn from Category Theory in much the same way that

the function signatures of the category Sign can be grown.

5-24

Process signatures, like functional signatures, do not define behavior. Process behav-

ior is defined within process specifications. Process specifications are defined in the next

section.

5.5 The Category of Process Specifications and Process Specification Morphisms

The previous section introduced and defined process signatures and process signature

morphisms, and used them to define the category PSign. This section uses the category

PSign to define the category PSpec of process specifications and process specification

morphisms. Process specifications define the behavior of the processes identified in a

process signature. The relationship between process signatures and process specifications

is formalized by the following definition.

Definition V.17 Process specification. Process specification. A process specification pSP

is a tuple (H, E) where H is a process signature and --- is a collection of process expressions

such that EE : --- Tcsp({Q, E, P, V, r}) maps process symbols in K to CSP expressions

of sort process such that for any process symbol W E r,, .-.(W) is an expression over

the symbols in var(W), act(W), chan(W), events(W) and r,. E(W) denotes the process

expression of the process symbol W.

1. IfE(W) is an expression written only over the symbols in chan(W), act(W), var(W),

events(W) and W, then W is a simple process and E(W) is a process description.

If E(W) includes process symbols from r, in addition to W, then W is a compound

process.

2. A model of a process specification pSP = (I, E) is a H-model M such that M J= .E(W)

for each W e r. The collection of all such models M will be denoted Mod[pSP]. The

subcategory of Mod[II] induced by Mod[pSP] will also be denoted by Mod[pSP].

3. The notation W sat <expression> will be used to denote .- (W), where expression is

a well-formed expression of sort process in the term algebra of CSPA. El

Note that the use of the term sat in the above definition differs from its use in (52).

In Hoare's text, process specifications are relations defined over the set of traces of a

5-25

process. For example, using Hoare's notation, a process W with alphabet {a, b} could

have a specification of W sat 0 < ((tr I a) - (tr t b))• 1 where tr is an arbitrary trace

of W, and tr I b is the count of the number of occurrences of the event b in the trace

tr. In this case, the specification requires that the number of occurrences of the events

a and b in any trace differ by at most one. Several distinct processes satisfying this

specification could be defined, among them are W = STOP, W = (a _ (b _ W)), and

W=a (b)STOP).

Hoare uses the sat construct to define constraints that a model of a process must

satisfy. For example, a process W that accepts the language a'bn could be specified by

Hoare as W sat 0 < ((tr I a) - (tr I b))< 1, where tr is an arbitrary trace of W. In

contrast, the use of the term sat in Definition V.17 associates a process symbol with an

expression defining a process. Thus from the CSPA statement W sat (a)_ (b) W)),

it could be shown that 0 < ((tr I a) - (tr I b))< 1 for any trace tr E traces(W). Hoare uses

the term sat to denote constraints, while the term sat is used in ISlang to denote process

expressions.

A simple process specification is shown in Figure 5.7. The figure extends the process

signature of Figure 5.5 by adding a process expression defining the process simple. Process

simple accepts input on the channel input and determines if the input value satisfies the

input condition. If the input condition is satisfied, then simple communicates the value

of f (x) on channel output, waits for a an acknowledgment over channel handshake, and

then repeats. If the input condition is not satisfied, then simple communicates the event

undefined over the output channel, and then repeats.

Definition V.17 of process specifications includes a reference to a satisfaction relation

Sbetween process specifications and process models. This satisfaction relation has not yet

been defined. For the category Spec of functional specifications, the satisfaction relation

was defined to be logical implication. As given below, the satisfaction relation of PSpec

is based on the trace semantic defined in Section 5.3.

5-26

pspec Simple-Process-Spec is
sorts D, R

event ack
event *undefined*

port input : D
II port output : R

port handshake : event
var x : D
opf:D --+R

op input-condition: D -- boolean
op output-condition: D, R --* boolean

process simple : events:{ack},

maps var:{x: D},II - mapsact:{f:D --+ RI

chan:{input: D, output : R, handshake: event}

simple sat input?x _

((output!f(x) S (handshake?ack csp simple))S •4 input-condition(x) ;4

(output!*undefined* Ep (handshake?ack CsP simple)))
end-pspec

Figure 5.7 A Simple Process Specification

Definition V.18 Satisfaction. Given two CSP expressions P and Q, P = Q if and only

if traces(P) C traces (Q) [ce P. That is, Q can do at least that required of P and maybe

more.

If P [Q and Q = P then P and Q are trace equivalent. The fact that P and Q are

trace equivalent will be denoted P--TQ. El

This definition parallels the definition of trace semantics found in (118), and is a relatively

weak type of satisfaction. It is a weaker semantic than the trace semantic with refusal sets

defined by Hoare.

Trace semantics cannot be used to distinguish between distinct processes that happen

to have a common set of traces yet are behaviorally quite different. For example the process

expressions P sat a • (b c P I c c P) and W sat (a S (c £• W)) F1 (a

(b £p W)) are behaviorally distinct, but are trace equivalent; a model of W can choose to

deadlock on the sequence (a, b) where a model of P will not. Other more powerful forms

5-27

of satisfaction (or equivalence) have been defined, such as observational equivalence and

bisimulation equivalence which can distinguish between processes that are trace equivalent.

See (118) for an overview of various semantics for process expressions.

The above definition of satisfaction permits trivial terminal models for process spec-

ifications. This fact is expressed in the following theorem.

Theorem V.4 For any process P, STOP • P.

Proof. Because traces(STOP) = {()} and because {0} E traces(P) for any process P, we

get traces(STOP) C traces(P). M

Note that the above theorem allows the trivial terminal model as a valid model of any

process expression. That is, the process that does nothing is a valid terminal model of

any process expression. Goguen recognized a similar problem with his work on Larch,

and adopted a "no collapse" rule to address it. That is, he disallows a terminal model as

an implementation of a specification unless the terminal model is the only model of that

specification.

The satisfaction relation [- of Definition V.18 has a number of important properties.

These properties are stated in the following theorem.

Theorem V.5 The relation = between process expressions has the following properties:

1. For any process expression A, A k A. That is, = is reflexive.

2. For any two process expressions A and B, if A = B and B = A then A =T B. That

is, ý= is antisymmetric.

3. For any three process expressions A, B, and C, if A = B and B = C, then A = C.

That is, • is transitive.

Proof.

1. Proof of 1. For any process expression A, traces(A) C traces(A) [aA which implies

ALA.

2. Proof of 2. Follows from the definition of -T.

5-28

3. Proof of 3. A = B > traces(A) C traces(B) aA, and B k C =* traces(B) C

traces(C) [aB. Substituting, we get traces(A) C (traces(C) [aB) aA. However,

traces(A) C traces(B) [aA implies aA C aB. So (traces(C) [aB) [aA simplifies to

traces(C) [aA which yields traces(A) C traces(C) [aA. U

Note that because H is reflexive, antisymmetric, and transitive, = defines a partial ordering

over process expressions. This is important for it permits an investigation of the relative

expressive power of process-based architecture theories.

As expressed in the following theorem, the satisfaction relation of Definition V.18

preserves models.

Theorem V.6 Given two process expressions A and B in the term algebra of CSPA, if

A H B then m E Mod[A] =• m G Mod[B].

Proof. If m is a model of A, i.e., if m E Mod[A], then by the definition of model,

m H A, which implies traces(m) C traces(A)[aA. Because A H B, we get traces(A)

C traces(B)[aA. Substituting, traces(m) 9 (traces(B)f aA)[am. But traces(m) 9

traces(A)[aA implies am C aA. So traces(m) 9 (traces(B)[aA)[am simplifies to

traces(m) E traces(B)[am), which implies m E Mod[B]. U

Now that process specifications and satisfaction between process specifications have

been defined, process specification morphisms can be defined.

Definition V.19 Process specification morphisms. A process specification morphism from

a process specification pSP = (11, E) with II = (E, E, P, V, r,) to a process specification

pSP' = (II', E') with I' = (E', E', P', V', r,'), is a process signature morphism u : II -- II'

such that for every model M E Mod[pSP'] we have gE Mod[pSP]. The process specifi-

cation morphism is also denoted by the same symbol, a : pSP - pSP'. 0

Consider a process signature morphism a pSP --* pSP'. If the process symbol W has

a process expression .E(W) associated with it in pSP, then when the symbols in -(W) are

translated according to the mapping defined by a, the traces of the translated expression

a(E(W)) restricted to the alphabet of W, must be a superset of traces("E(W)) if a is to be

5-29

specification morphism. That is, a is a specification morphism if a is a process signature

morphism such that for every process symbol W E K, traces(E(W)) C_ traces(o(.=(W))) 1.

In the higher order logic of SpecWare, a signature morphism is also a specification

morphism if the translated axioms are theorems in the target specification. In the process

logic of PSpec, a process signature morphism is a process specification morphism if the

processes defined by the target specification can do at least that required of the processes

defined by the source specification.

As expressed in the following theorem, process specifications and process specification

morphisms form a category.

Theorem V.7 Process specifications and process specification morphisms form a category

PSpec where process specifications are the C-objects and process specification morphisms

are the C-arrows.

Proof. There are two properties that must be shown:

1. That each C-object has an identity morphism, and

2. That C-arrows compose to form C-arrows.

Each of these is proved below.

1. Identity. Exists by definition of process signature morphism.

2. Composition. Let W 1, W2 , and W3 be three process specifications, and let 012 : W1-

W2 be a process specification morphism from W1 to W2 , and let U23 : W2 --* W 3 be

a process specification morphism from W 2 to W3. We need to show that 923 o 912

is a process specification morphism. By Theorem V.3, process signature morphisms

compose to form process signature morphisms. So 0 23 and 9 12 compose to form the

process signature morphism 0*13 = cr23 0 OU12.

By the definition of process specification morphism, O13 : W 1 -- W 3 is a specification

morphism if and only if M' E Mod[W 3] =* M' 1113 E Mod[Wi]. Because 0-2 : W1 --4

W 2 is a specification morphism, M E Mod[W2] => MI1,GE Mod[Wi]. Similarly, because

U23 : W2 --+ W 3 is a specification morphism, M' E Mod[W3] => M' 1I23 E Mod[W 2].

5-30

But M' 1,,,E Mod[W2] •' (M' 1123) 11,2E Mod[Wil. Because signature morphisms

compose, (M' 1ý23) I 12 = M' 10'23o012. But 0 2 3 0- 1 2 = a 13 , so M' I a 23 ocr02 E Mod[Wi] =*

M' I,,,E Mod[W1], which implies that "a13 = a23 0 a12 is a specification morphism. U

The above theorem allows process specifications to be grown in the same manner that

functional specifications are grown. Like their functional counterparts, process specifica-

tions can be parameterized. For example, a process specification defining a client-server

architecture could be defined, where the process expressions in the specification define the

minimum required features of the server process and the client processes. This type of

parameterization is described in more detail in Chapter VI.

Although process specification morphisms require the preservation of models under

a trace semantic equivalence, other constraints could be placed on the development of

process specifications in an effort to prevent the specification of degenerate or unrealizable

processes. These constraints could take one of the following two forms:

1. Constraints expressed over the use of functional operations within a process specifi-

cation. For example, Basic Problem Theory specifications of Chapter III use boolean

operations to characterize the range of acceptable input values and to characterize

the output condition for an abstractly defined operation. Suppose f and g are oper-

ations defined using Problem Theory specifications, where If, Ig, Of and Og denote

the input and output conditions of f and g, respectively. If the structure of the

application is such that f is an actual parameter of g as in g o f, then Ig is satis-

fied if Of =* Ig. Any specification construction that violates this constraint could

be flagged as an invalid construction. The expression Of * Ig defines a constraint

between the specifications of f and g.

This constraint could be generalized as follows. Denote by g an operation defined

using Problem Theory, and denote by F = {f,, f2,..., f,,} a collection of operations

defined using Problem Theory such that each f in F is used as an actual parame-

ter of g. Then the constraint becomes AfEF Of 4ý 1g, where AfOF Of denotes the

conjunction of the output conditions of the operations in F.

5-31

2. Constraints expressed over process expressions. For example, process expressions

should be free of both deadlock and live-lock.

Appendix D addresses constraints in greater detail.

5.6 Relationship Between Functional and Process-Based Specifications

As shown in Figure 5.1, signatures of functional specifications are mapped to process

specifications for use in process expressions. The semantics of these sort and operator

symbols are provided by the axioms of their associated functional specifications. In essence,

the many-to-many relationship depicted in Figure 5.1 establishes a relationship between

the semantics of sort symbols and operator symbols and their use in process specifications.

The relationship between ISlang and SLANG specifications is defined through com-

ponents. Appendix C presents an informal treatment of components, where the definition

of components was based on the results of the experiments described in Chapter IV. Now

that the mathematical foundations of process specifications have been established, a more

formal treatment of components may be presented as follows:

1. Sub-section 5.6.1 defines components, and describes how components are used to

bridge the gap between the process logic of ISlang and the functional logic of SLANG;

and

2. Sub-section 5.6.2 defines a category of components and component morphisms.

5.6.1 Components. The higher order logic of Spec and the process logic of

PSpec share a common core of mathematical principles, such as equivalence. Boolean

algebra is also common to both logic systems. The higher order predicate calculus of

SpecWare and the process logic of PSpec share common mathematical principles, and

they share a common set of symbols (in the form of operator and sort symbols) such that

the semantic interpretation of the symbols is consistent between the logics. Because of this,

expressions formed over the common symbols and common concepts can be exchanged

between the logics. For example, the statement that sort symbols X and Y belong to the

5-32

same equivalence class has the same interpretation in the logic of ISlang as it does in the

logic of SLANG.

Denote by C a mathematical concept shared between the logics of SLANG and

ISlang, and denote by X a sequence of symbols shared between a SLANG and an ISlang

specification such that C(X) is a well-formed expression. For example, suppose C denoted

the concept of sort equivalence, and suppose x and y were two sort symbols referenced in

an ISlang specification and defined in a SLANG specification. Then C(X) would in this

case be the predicate x'-y. If C(X) is generated within the logic of ISlang, then the logic

system of SLANG can be used to evaluate the expression. A proof schema can be used to

define a homomorphism from ISlang to SLANG over the common symbols and concepts

such that the proof mechanism of SLANG can be used to evaluate the expression. Such

capability is important in that ISlang lacks sort and operator axioms, and as such is unable

to answer semantic questions posed over those structures.

Invocation of the SpecWare theorem prover over a conjecture lacking axioms is of

little value. Axioms are included in SLANG specifications, but are lost when just the

signatures of the specifications are mapped into ISlang specifications. What is needed

is a structure that "remembers" the source of the SLANG signatures used in an ISlang

specification. This structure is the component.

Components include the structure necessary to associate a functional signature of

an ISlang specification with the functional specification from which it was drawn. Thus

expressions over common concepts and common symbols can be generated in ISlang, paired

with axioms from SLANG specifications, proved within the logical system of SLANG,

and the results of the proof, in the form of Boolean true or false, can be interpreted

in ISlang. This relationship is graphically depicted in Figure 5.8. In the figure, C is a

common mathematical concept such as equivalence or implication, X is a sequence of sort

and operator symbols common between SLANG and ISlang, and C(X) is a well-formed

expression over X and concept C. Additional knowledge, represented by K, has been

added to the expression by associating the symbols X with the SLANG specification in

which they are defined.

5-33

ISlang C(X) --------------------------------------- Boolean

proof

SLANG C(X,K) Boolean

Figure 5.8 Proof Schemas

As described earlier in this section, proof obligations resulting from consistency con-

straints levied between process specifications and functional specifications require a means

to identify the functional specifications from which the process specifications draw their

operator and sort definitions. Components contain the structure necessary to provide this

identification.

Definition V.20 Component. A component C is a 5-tuple (D, SD,I1, SI,i) where D) is a

diagram of functional specifications, SD is a functional specification such that SD E D, I

is a diagram of process specifications, S- is a process specification such that S, E 1, and

i is a functor from the category Sign of functional signatures to the category PSign of

process signatures such that S, Ii is isomorphic to the signature of SD. []

Every operator symbol or sort symbol referenced in a process specification of a component

is defined in the functional specification of the component.

A simple component is shown in Figure 5.9. On the left side of the figure is a

functional specification, Sort-Spec, defining the problem of sorting a bag of integers. The

signature of Sort-Spec is mapped via the functor i to the process specification Sort-Process.

Sort-Process defines a single process. The process, Sort, reads a bag of integers over the

input port in, and if the input value x satisfies the input condition, Sort outputs the value

sort(x). If the input value does not satisfy the input condition, then Sort is defined to

output the event symbol *undefined*.

The requirement that for any component C = (D, S-,1, S_, i), SI ji be isomorphic

to the signature of Sv ensures that the set of sorts and operator symbols referenced in

the process specification Sr are defined in the functional specification of the component.

5-34

sec Sort-S ec is pspec Sort-Process is

sorts seq(int), bag(int) sorts seq(int), bag(int)

op input-condition : seq(int) -- boolean op input-condition : seq(int) -- boolean

op output-condition ;seq(int), bag(int) ý boolean op output-condition :seq(int), bag(int) -s boolean

op sort : bag(int) - seq(int) op sort : bag(int) - seq(int)

op same-elements : bag(int), seq(int) -- boolean op same-elements : bag(int), seq(int) - boolean

axiom (fa, x (implies (input-condition x) event *undefined*

(output-condition x (sort x)))) port in : bag(int)

axiom (fa x (equal (input-condition x) true)) port output : seq(int)

axiom (iff (output-condition x z) var x : bag(int)

(and (equal z (sort x)) process Sort :

(same-elements x z)) events:{*undefined*),

end-spec var:{x: bag(int)},

act:{sort : bag(int) -- seq(int),
input-condition : seq(int) -s boolean),

chan:{in : bag(int), output: seq(int)}

Sort sat in?x --

((outpnt!sort(x) - Skip)

5f input-condition(x)

(output!*undefined* -- Skip);Sort

end-pspec

Figure 5.9 A Simple Component

Note however that there is no requirement that the two specifications share models of the

sorts and operations. That is, given a component C, there is no requirement that models

of SD be submodels of S1 . The relationship between models of functional specifications

and models of the sorts and operations of process specifications is formalized in the next

section.

Not only do components contain the structure necessary to associate models of func-

tional specifications with models of process specifications, components also contain the

structure necessary to define the proof schemas used to maintain consistency between de-

veloping functional and process specifications. For example, components permit expression

of conjectures involving input condition satisfaction. That is, if the operations f : u --ý v

and g : v -* w are defined using Problem Theory, the condition Of =* 1 g must hold if f

is to be used as an actual parameter of g as in g o f. The following definition formally

expresses this condition.

Definition V.21 Consistency. Denote by C a component (D, SD,1, SI, i) such that S,

contains a process expression P where f : s1 , $2, ... , , S -4 s is an operation defined by a

problem specification such that f is used as an argument in an output event c!f(xl, x 2 ,... .X)

5-35

in P. Let ci?xi, 1 < i < n be a collection of input communication events in P preceding

c~f(X1X2),... ,X,) in any trace t E traces(P), and denote by Pi a collection of process ex-

pressions in S such that ci is a port symbol in Pi where ci!hi(yi) is an output event in

traces (Pi).

If every hi has a defined boolean valued output condition Ohi, then S, is consistent

with respect to f in P if, for all occurrences of f in every trace of P,

A O(yihi(yi)) - If(Xl1X 2 '""Xn) (5.1)
i=l..n

where hi(yi) = xi. El

Equation 5.1 defines the satisfaction of the input condition of an operation f : u --* w

by the output conditions of the operations used to supply values for the arguments of f.

The structure of components allows elaboration of this equation. Specifically, input condi-

tions and output conditions of operations can be found algorithmically through exploration

of the diagram of functional specifications. The diagram of functional specifications D of a

component contains the information describing if and how operations of the specification

SD E D) are defined in terms of Problem Theory. That is, D contains the information

necessary to extract the input and output conditions (if any) of the operations in SD,

while the specification Sr contains the information necessary to determine the flow of data

between the operations. This information can then be used to elaborate Equation 5.1.

Although it is claimed that such an algorithm could be defined, no attempt is made here

to define it. The definition of an algorithm used to ensure input condition satisfaction is

left for further research.

5.6.2 The Category App. This section defines the category App of components

and component morphisms. Application specifications involving process specifications and

functional specifications can be developed within this category. Definition of the cate-

gory App further formalizes the relationship between functional specifications and process

specifications shown in Figure 5.1.

5-36

App is defined by first defining what is meant by a model of a component. As

expressed in the following definition, models of components are restricted to those that

have consistently implemented event signatures.

Definition V.22 Component Models. A model of a component C = (D, SD,', SB, i) con-

sists of a model m E Mod[SD] of the sorts an operations of SD, along with a model

m' E Mod[S1] of the process specification S, such that m' Ij= m. E

Sharing models between functional specifications and the sorts and operations of process

specifications simplifies the task of mapping the specification languages to an implemen-

tation language, and simplifies the task of ensuring the sorts and operations are treated

consistently within a component definition.

Now that models of a component have been defined, component morphisms can be

defined.

Definition V.23 Component Morphisms. A component morphism from a component

(C), SD,I, SI,i) to a component C'= (D', S1,I, SI, i' is a 4-tuple of morphisms

(up, I SDI 7rz, 7rsI)

where

1. Uap : --+ D' is a total, covariant functor from the diagram D to the diagram D' such

that if acr(SP) = SP' for any specifications SP' G D' and SP E D, then if m E

Mod[SP'] we have m 1,,E Mod[SP].

2. US, : SD --4 S'D is a functional specification morphism.

3. ir1 : -+ T' is a total, covariant functor from the diagram I to the diagram ' such

that if 7r,(SP) = SP' for any specifications SP' E T' and SP E 1, then if m E

Mod[SP'] we have m 1,,E Mod[SP].

4. irs, : S, --+ Sj' is a process specification morphism.

5. For all operations f : --) s in Q of SD where f : s1,S2,.,sn --+ s is in

the domain of i, i'(os,(f : S1,82, .. ,sn -- + s)) = 7rs,(i(f : ss2,... ,sn -+ s)).

5-37

The identity component morphism takes each component structure back to itself. El

Thus component morphisms include mappings for each of the four elements of a component.

Although the mappings op and o.r may be complex, it is anticipated that in practice they

will be defined by the identity map. More complex mappings, such as those created when

defining an interpretation of one component to another, may be defined.

Now that component models and component morphisms have been defined, the cat-

egory App can be established.

Theorem V.8 Components and component morphisms form a category App where com-

ponents are the C-objects and component-morphisms are the C-arrows.

Proof. There are two parts to the proof, the first part is to prove the existence of an

identity arrow for each object, and the second part is to prove that component morphisms

compose to form component morphisms.

1. Identity component morphisms exist by definition.

2. Given two component morphisms M 1,2 : C 1 --* C2 and M 2 ,3 : C2 --* C3 where C 1 , C 2

and C 3 are components with M1 = (aEY,usD,,1rZ,1rs,) and M 2 = (o', o-, r,,

we need to show M 2,3 o M 1,2 composes to form a component morphism M 1,3 . This

proof is shown in two parts. The first part establishes the composition of the functors

contained in component morphisms.

(a) Total covariant functors compose to form total covariant functors. Thus the

functors o, D) --+ D 2 and o-r, : D 2 -_+ D 3 compose to form the functor

aD)3 : 1 D- D3 =c /, oa-D. Similarly, the functors 7rz : 1 1 --+ I2 and 7r., : 12 - 13

compose to form the functor r,3 : I1 -- I3.

(b) Because process specification morphisms compose to form process specification

morphisms and functional specification morphisms compose to form functional

specification morphisms, we have or' o as,, is a functional specification mor-

phism and 7r's, 0 7S, is a process specification morphism.

Thus because total contravariant functors compose to form total contravariant func-

tors and because specification morphisms compose to form specification morphisms,

5-38

S.. I...i

i Category Category

PSpec Spec I
S....................

Category App

ISlang Slang
Specifications Specificatios........S .. 2.•. •.......... S. •.

Component Specifications

Figure 5.10 Mathematical Summary

we can conclude that component morphisms compose to form component morphisms.

That is, M 1,3 = M 2 ,3 o M 1,2 , where M 1,3 =(oo UC , s D 0°
0 USD,rz°T, I s1 0I s 1 > U

The category App formally establishes the relationship between functional specifi-

cations and process specifications of Figure 5.1. As shown in Figure 5.10, the categories

Spec and Spec are complete sub-categories of App.

5.7 Summary

This chapter established the mathematical foundations of the specification develop-

ment system described in Chapter II and shown in Figure 2.1. The mathematical foun-

dations were established through the definition of several related categories. Figure 5.10

depicts an overview of these categories and the relationships between them. Spec was

defined in Chapter III to be a category of functional specifications.

The primary focus of this chapter was on the development of a category of process

specifications, PSpec. Hoare's definition of communicating sequential processes (CSP)

was used in the definition of process expressions. However, before a category of process

specifications could be defined, Hoare's CSP needed to be expressed as a theory presen-

tation using a process logic. Section 5.2 developed such a theory presentation. A trace

semantic for expressions in this theory presentation, denoted CSPA, was developed by

relating CSPA to formal language theory through CSP structures. It was shown in Theo-

rem V.2 that CSP automata have the generative power of Turing machines, which implies

that any computable architecture can be defined using CSP structures.

5-39

After presenting Hoare's CSP as a theory presentation, a category PSpec of process

specifications and process specification morphisms was defined. The satisfaction relation

of the category PSpec was defined using a trace semantic; specifications in PSpec define

communicating sequential processes. This combination of category theory and the theory

of communicating sequential processes as defined by Hoare allows process-based specifica-

tions to be grown from other process-based specifications in a manner similar to the way

functional specifications are grown from other functional specifications.

Finally, a formal relationship in the form of components was established between

functional specifications and process specifications. Components define a relationship be-

tween ISlang specifications and SLANG specifications such that the sorts and operations

of an ISlang specification are defined in an associated SLANG specification. It was shown

that components and component morphisms define a category App. The following chap-

ter builds on the mathematical foundations established in this chapter by providing a

formal definition of architecture using functional specifications, process specifications, and

components.

5-40

VI. Software Architecture

6.1 Introduction

The preceding chapters of introduced the concept of architecture and introduced

mechanisms for defining formal specifications for both stateless and state bearing entities.

Although the treatment of functional and process based specifications has been formal, the

treatment of architecture has thus far been informal. This chapter presents a formal treat-

ment of architecture. Specifically, this chapter develops a formal definition of architecture

theory, as well as three classes of architecture theories:

1. Functional-based, where operations defined in functional specification are composed

into well defined structures;

2. Process-based, where process specifications are used to define the architecture; and

3. Component-based, where the fundamental building blocks of the architecture are

components.

Section 6.2 contains a definition of both architecture and design, and defines three

different architecture theories. Section 6.3 defines several process based architecture the-

ories, including pipelined and layered architecture theories. A taxonomy of process-based

Process Based

Batch-Sequential Parallel Repository

Pipe-Filter Layered Client-Server Pipeline

Piped Batch-Sequential

Figure 6.1 Architecture Taxonomy

6-1

architecture theories is also developed. Included in Section 6.3 are a few simple examples

of using architecture theories in the construction of application specifications.

6.2 Architecture Defined

As pointed out in Chapter I, different authors have different definitions of architec-

ture. A variety of authors- most notably Garlan and Shaw (e.g., (94, 93, 39, 6) and (37))

- have attempted to define software architecture, but their definitions are informal. Some

example definitions include the following:

" "In a pipe and filter style each component has a set of inputs and a set of outputs.

A component reads streams of data on its inputs and produces streams of data on

its outputs, delivering a complete instance of the result in a standard order. This

is usually accomplished by applying a local transformation to the input streams

and computing incrementally so output begins before input is consumed. Hence

components are termed 'filters'. The connectors of this style serve as conduits for

the streams, transmitting outputs of one filter to the inputs of another. Hence the

connectors are termed 'pipes'. A degenerate case of a pipeline architecture occurs

when each filter processes all of its input data as a single entity. In this case the

architecture becomes a 'batch-sequential' system." (38:5)

"* "A layered system is organized hierarchically, each layer providing service to the layer

above it and serving as a client to the layer below." (38:9)

"* "A batch transformation is a sequential input-to-output transformation, in which

inputs are supplied at the start, and the goal is to compute an answer; there is no

ongoing interaction with the outside world." (90:212)

"* "A continuous transformation is a system in which the outputs actively depend on

changing inputs and must be periodically updated. Unlike a batch transformation, in

which the outputs are computed only once, the outputs in an active pipeline must be

updated frequently (in theory continuously, although in practice they are computed

discretely at a fine time scale). ... Typical applications include signal processing,

windowing systems, incremental compilers, and process monitoring systems." (90:213)

6-2

An architecture theory identifies the building blocks of structure and defines how

these building blocks may be assembled to define more complex structures. The semantics

of an architecture theory are provided by a set of rules used to both interpret the meaning

of structures and-to identify equivalent or included sub-structures. As a simple example,

an architecture theory could be defined wherein the objects are bricks and mortar, and

the composition rules define how bricks and mortar may be assembled to define structures

such as arches, floors, walls, or bridges. Such an architecture theory includes rules defining,

for example, the load bearing capacity of various types of arches. These rules provide the

semantics of the architecture, and can be used to determine if a given assembly of bricks

and mortar is equivalent in some way - such as load bearing per unit area - to other

assemblies where the notion of equivalence may be context dependent.

In the bricks and mortar example, various types of arches can be defined. Although

different types of arches share many of the same characteristics, they each have their own

unique structural qualities which manifest themselves in either their aesthetics or in their

load bearing capability or both. An architecture theory identifying these structures con-

tains rules for determining if a given collection of bricks and mortar form an arch as well

as rules defining how arches can be used to define other structures such as bridges. Addi-

tionally, it includes rules for interpreting how one arch-structure is equivalent to another.

Although this simple example contained physical real world objects, other, more abstract

architecture theories can be defined.

All architecture theories have a common theme: they identify fundamental building

blocks, they define operations or rules for creating structure, and they define the semantics

of those structures. These notions are formalized in the following definition.

Definition VI.1 Architecture Theory. An architecture theory is a 3-tuple (0, R, =) where

0 is a collection of objects, R is a collection of relations defined over 0 such that R defines

the syntax of object composition, and = is a satisfaction relation between O-sentences and

0-models such that = defines a well order. E

A related concept is that of design.

Definition VI.2 Design. A design is a well-formed sentence in an architecture theory. El

6-3

Definition VI.1 is somewhat abstract in that it permits a wide variety of entities

to be classified as architecture theories. For example, the category Spec of functional

specifications written in the higher-order logic of SpecWare can be viewed as an architecture

theory:

1. The objects of the theory are functional specifications;

2. The set R of composition relations define signature and specification morphisms;

3. The satisfaction relation = defines the relationship between models of functional

specifications and the specifications themselves. Note that the definition of model

allows = to be extended for use between specifications. That is, SP kz SP'

V(m)(m E Mod[SP] =•r m E Mod[SP']).

An architecture theory for functional specifications defines how functional specifications

can be built out of other functional specifications, and it defines how to interpret the spec-

ification diagrams which form the structures of the architecture theory. A more interesting

architecture theory based on functional specifications uses the operations of functional

specifications as the objects and uses higher order operations to define structure. This

architecture theory is defined next.

6.2.1 Functional Architecture Theory. Functional specifications may include the

signatures and definitions of multiple operations. For example, a functional specification

may contain signatures for the operations f•,,, g•,. and h ,v,. Suppose a definition of h

in terms of f and g is desired. That is, suppose an axiom such as h = f o g defining

h to be the composition of f and g is desired. Such an axiom can be used to define the

structure of h as follows. If F : Au1 , A,,,... , A_ -* A, is a model of the operation f•,, and

G : A•1,,A 2 ... , A. -, Au is a model of the operation g•,, where Au = Au, x A, x ... x

A•, then F o G : A, I A ,...., A n -+ A, is a model of the operation hx,, = fu,,o 0 ,•.

The relation o is a higher order operation used to define structure; as such, o could be

viewed as a composition operator of an architecture theory whose objects are functional

operations. An architecture theory whose objects are functional operations and whose

composition relations are defined over functional operations is presented below.

6-4

Definition VI.3 Functional Architecture Theory. A functional architecture theory (FAT)

is a 2-tuple (D,AF) where D is a diagram of functional specifications and AF is an archi-

tecture theory (0, R, •) where

1. 0 is a collection of operators of the form f : s 1 , S2,... s , -- s contained in and defined

by a functional specification SP = (E, (b) in D9, where E = (Q, S) such that 0 C Q

(i. e.,. f : S1 1s2,1....,sn -- 8 E 0 =: f : 811S2,....,isn- _4S E)

2. R consists of the higher order operator -0- : operator, operator -4 operator defining

operator composition, (i.e., f o g(x) = f(g(x))) and the higher order operator -.

operator, operator --+ operator defining operator product;

3. ý= is defined to be the relation = between functional specifications and models of

functional specifications such that if F : As, As 2 ,...., As. -- S is a model of the

operation f :S, s2... sn -- s and G : Ay,,Ay2,...,Ay_ --+ Ay is a model of the

operation g Y1,,Y2, .. . , -* Y with F and G E m EMod[SP], then

(a) if S = Y1 ,Y2,...yYm, then G(F) : As,As 2 ,...,As3 -- Ay is a model of g o f,

and

(b) G x F : Ayi,Ay2 ,...,Aym x As,,As 2 ,...,As. - Y x S is a model of g. f. 0

As stated in Definition VI.2, functional designs are well-formed sentences of a func-

tional architecture theory. But what does it mean to be a well-formed sentence? Certainly,

a well-formed sentence of a functional architecture theory must involve operators with com-

patible signatures. The following definition states the conditions under which application

of composition operation of a FAT results in a well-formed statement.

Definition VI.4 Syntactically well-formed. Given a functional architecture (7D, AF) where

A --- (0,R, I), an application of an operator p in R with arguments f,,, E 0 and gw,, E 0

used to define an operator hy,•, denoted h = f p g, is syntactically well-formed if the fol-

lowing conditions are satisfied:

1. The result of the operation, hy,•, is also in 0.

6-5

2. The resulting operation h = f p g is consistent with respect to the signatures of h,

f and g. That is, the arity of h must be consistent with (equivalent to) the arity of

f p g, and if p is the composition operator o, then the rank of f must be consistent

with the sort of g. 1

For example, if the operations f : u,v,w --* v and g : x,y --* z are composed using the

composition operator o to define an operation h = f o g, then Definition VI.4 implies that

z must be isomorphic to the product sort u x v x w if h is to be well-formed.

As the above example illustrated, composition of functional operations can have an

impact on sort definitions. Note however that Definition VI.4 only addresses the syntactic

compatibility of the operations involved in a composition. No mention is made in Defini-

tion VI.4 of semantic compatibility. For example, f o g may be syntactically well-formed,

but may not be semantically well-formed. For example, suppose both f and g are defined

using problem theory. Then If => Of and Ig =* Og must hold. If Og does not imply If, i.e.,

the output condition of g does not satisfy the input condition of f, then not only may f

not terminate, but Of may not be established. Clearly in this case f o g is not semantically

well formed. The following definition strengthens Definition VI.4 by defining semantically

well-formed designs.

Definition VI.5 Semantically well-formed. Denote by A = (D, AF) a functional archi-

tecture where AF = (0, R, ý=), and suppose f : x -• y and g : u --+ v in 0 are defined using

Problem Theory. Then

1. f • g is semantically well-formed, and its input condition is If A Ig and its output

condition is Of A Og.

2. f o g is semantically well-formed if

(a) f o g is syntactically well-formed, and

(b) 09 Og If.

3. If f o g is semantically well-formed, then

(a) Ifog is 19 and Ofog is Of; and

6-6

w x yI I
f g

h

IV

j k

V YY

Figure 6.2 Operation Composition Using a Functional Architecture

(b) If.g is If A Ig, and Of.g is Of A Og. El

The operation f • g forms the product of the operations f and g. (See Definition 111.9.)

A functional architecture theory allows operators to be combined either horizontally

as products or vertically as compositions as shown in Figure 6.2. In the figure, the op-

erations f w --- w' and g : x -- x' have been horizontally combined using the product

operation to define an operation f. g : w, x -+ w', x' where f . g is defined by the product

f(y.) x g(yx). This structure has in turn been combined with the operation h : w', x' --+ v

to form a simple functional pipeline. The operation ho (f.g) : w, x --+ v is in turn combined

with the operation j : v -- v' to define the operation (j o h o (f. g)) : w, x - v'. Finally, this

operation is combined horizontally with the operation k : y --* y' to produce the operation

(o h o (f . g)). k w,x,y-- z, where z = v',y'.

A design in a functional architecture theory can be likened to a program written

in a purely functional programming language. For example, the structure of the LISP

statement (sort (car x) (cdr x)) is sort o (car . cdr).

Properties of the higher-order operations o and • are shown in Table 6.1. The opera-

tion project used in the table is defined in Slang and reflects the operation 7r of Figure 3.8.

Based on the properties listed in the table, (j k) o h is not in general equal to j . (k o h).

This fact is made explicit in the following theorem.

6-7

Theorem VI.1 Denote by f :s . -+ s, g " : U,u 2 ,...,Up --* v, and h : wIw2,

... ,Wr -+ x three arbitrary operations. If (f - g) o h and f . (g o h) are both well-formed

expressions, then f is a nullary operation.

Proof. Because the expressions (f . g) o h and f . (g o h) are well-formed, we have

(s 1,s 2,...s m) X (u1,u 2 ,... ,up) - x (f . g) o h is well-formed

u1 ,u 2 ,. .. u. p x f. (go h) is well formed

((s1,S2,s m) X (U1,U2...Up)) ' U1,U2, Up transitivity of -

which implies that SI, S2, .-. sm is a 1 or identity for u1 , u2 ,... Up,. Because f, g, and h

are arbitrary operations, this implies that S1, S2, . m is the empty sort, which implies

that f is a nullary operation. U

Thus (j k) o h and j (k o h) might both be well formed if j is a nullary operation.

If j is a nullary operation, then (j • k) o h is an operation whose rank is defined by h and

whose sort is the product of the sorts of j and k. But j • (k o h) also has its rank defined

by the rank of h and its sort defined by the product of the sorts of j and k. That is, if

both (j k) o h and j. (k o h) are well-formed, then they have the same signature. If both

(j k) o h and j. (k o h) have the same signature, do they also define equivalent operations?

The answer to this question is yes.

Theorem VI.2 Denote by f : s, S2, ,sm -- s : ul,u 2 ,2.... ,up --+ v, and h : wl, w2,

... w, --+ x three arbitrary operations defined in a functional specification where f, g, and

h are defined using problem theory. Denote by I and Oj, j E {f,g,h}, the input and

output condition respectively of these operations.

If (f . g) o h and f . (g o h) are semantically well formed expressions then (f . g) o h

Sf. (go h).

Proof. By Theorem VI1, (f . g) o h and f . (g o h) are both well-formed implies that f is

a nullary operation. Because f is a nullary operation, If is true. This fact will be used to

show that I(f.g)oh €'# If.(goh) and O(f.g)oh '=* Of.(goh).

6-8

Input Condition. The input condition of f . (g o h) is If A Igoh, which simplifies to

0goh. Because f . (go h) is semantically well-formed, Oh =: I.. Because g and h 'are defined

using problem theory, we have Ig •* Og and Ih =* Oh. Using the transitive property of

implication, this yields Ih =* Oh == Ig =* Og, which implies 1h =* Ig, so Ih A Ig simplifies

to Ih.

The input condition of (f . g) o h is I(f.g)oh, which by definition is Ih.

Output Condition. The output condition of f • (g o h) is Of.(goh), which equals Of A

Ogoh. But Ogoh is, by definition, Og, SO Of.(goh) simplifies to Of A Og.

Similarly, the output condition of (f • g) o h is O(f.g)oh, which by definition is Of.g,

where Of.g = Of A Og. E

Given a functional specification SP and a FAT F whose functional specification

diagram contains SP, the application of an operation r in R induces a morphism from SP

to a specification SP'. Specifically, if f : A --+ B, g : C --* D and h : -E F are operations

contained in SP, and r is an operation of the FAT, the statement f = g r h induces a

morphism from SP to a specification SY' containing an axiom defining f in terms of g and

h. If r is the operation o, then the axiom will have the form (equal (f x) (g (h x))), which

requires F •-- C, A • E, and B 5--- D. If the product operation • is used, then the axiom

will be of the form (equal (f x)(product (g ((project 1) x)) (h ((project 2) x)))), where the

binary operation product forms the product in the categorical sense of its arguments. Note

that in either case, there are proof obligations concerning sort compatibility which must be

verified. These obligations are listed in Table 6.1. The use of FATs to create new operators

in terms of old operators is described next.

Figure 6.3 depicts the use of an architecture theory to decompose an operation defined

by a problem specification into a composition of two simpler operations. The specification

S introduces the sort E, two operations g : D -- ý E and h : E -4 R, and the single axiom

f = hog.(57) The specification 13F is a problem specification for a specific problem, such as

the sort-search problem of Chapter IV, and BFS defines a partition of f into the operations

g and h. That is, BFs contains the axiom (equal (f x)(h (g x))). The specification morphism

from S to BFS is part of an interpretation from the structure defined in S to the problem

6-9

Table 6.1 Properties of the Operations and o

Property Expression Comments

1 fo (goh) = (fog) oh Associativity (Provided z = w and x =u)

2 f. (g. h) = (f. g) • h Associativity

3 f. g = g . f Commutativity
4 f o (g h) = f o j Where j : a--* , ((project 1) a)= w,

((project 2) a)= y, ((project 1) /3)= x,
((project 2) P)=z, and P -3-- u.

5 (f. g)o h = j o h Where j : a -/3, ((project 1) a)= u,

((project 2) a)= w, ((project 1) P3)= v,

((project 2) /3)=x, and a ---- y
6 fog.h=fo (g.h)
7 f. goh= (f. g) oh

8 Ifog Ig f, g defined by Problem Theory

9 Ofog = Of f, g defined by Problem Theory
10 If.g = If A Ig f, g defined by Problem Theory
11 Of.g = Of A Og f g defined by Problem Theory

For any operations f :u - v, g : w --* x, and h : y -- z

defined in BF. Note that BF may need to be extended before this partition can be defined,

and the input and output conditions of g and h will be defined using If and Of. Specifically,

If => Ihog and Ohog =* Of must hold, and h o g must be semantically well-formed.

As a concrete example, consider once again the sort-search problem described in

Chapter IV, where the input and output conditions of sort-search, sort, search, and the

identity operation are:

ISortSearch(el, a-seq) (in el a-seq)

OSortSearch(el, a-seq)
(equal (sort-search el a-seq) i)

(exists i (exists z (implies (and (permutation z a-seq)

(ordered z))
(equal z[i] el))))

ISort(a-seq) = true
OSort(a-seq) =

(equal (sort a-seq) v)

(exists v (and (permutation a-seq v) (ordered v)))

6-10

ISearch(el, v) = (and (in el v)(ordered v))

OSearch(el, v) =
(equal (search el v) i)

(equal v[i] el)

lid(X) = true

Oid(x) =
(equal (id x) x)

true

The specification for Sort-Search plays the role of BF of Figure 6.3, and the specification S

defines the composition h o (g id). S can be used to decompose the operation sort-search

into search o (sort • id) as follows:

1. Because search o (sort • id) must be semantically well-formed, Osort.id must imply

'search" A derived antecedent, (98) P, over the variables a-seq and el is used to

strengthen isearcho(sort-id) as follows:

P(a-seq,el) = (Osort.id r 'search)

S(Osort A Oid > 'search)

S(exists v (implies (and (permutation a-seq v)

(ordered v))

(and (in el v) (ordered v))))

Which is true if (in el v) is assumed. Because a-seq is a permutation of v, the derived

antecedent P(a-seq,el) becomes (in el a-seq). This implies that search o (sort. id) can

be used for sort-search provided the input condition Isearch.(sort-id) is strengthened

to (in el a-seq).

2. Osearcho(sort-id) =. Osort-search as follows:

Osearcho(sort.id) = Osearch

= (equal v[i] el)

But v is an ordered permutation of a-seq. Therefore 0 searcho(sort.id) = Osort-search

ifz =v.

6-11

Diagram of
uctional Specifications

13 1
BF (Domain Theory)

S . FS

.-.--"11 \ / I17N.
AF• AF,

one-solution A, 2................ A32

..n-soluon .. e-solution

colimit colimit

AF5 ~
PT 1 i AFPT2

Specification for f

with structure S

S = Structuring Specification

B, B., 1B2 = Basic Problem Theory

BF = Specification for Specific Problem

BFS = Structured Problem Specification
1Bone-solution = Problem Theory for One Solution

Ai, A 2 = Algorithm Theories

Aone-solution = Algorithm Theory for One Solution

Af_, = Algorithm Theory for Specific Problem

AFh = Algorithm Theory for Specific Problem

PT = Translation To ATL

Figure 6.3 Using Functional Architecture Theory to Decompose an Operation (Based on

(57))

Items 1 and 2 above imply that sort-search can be decomposed into search o (sort. id). The

resulting specification, denoted BFS, contains a definition of sort-search as the composition

search o (sort . id).

After an interpretation from S to BF has been defined, the resulting subproblems

of f, the operations g and h, can each be addressed as separate problems. Continuing

6-12

with the sort-search problem, this means that search and (sort • id) can be associated

with problem specifications as shown abstractly in Figure 6.3. For example, search can

be associated with a problem specification B1 by defining a specification morphism from

B, to the definition of search in BFs. Similarly, sort can be associated with a problem

specification B2. After each subproblem has been associated with a problem specification,

Figure 6.3 indicates that algorithm theory interpretations for these subproblems can be

defined. In the case of search, an interpretation from a global search algorithm theory,

denoted A1 in the figure, to a specification for search can be defined, and in the case of

sort, an interpretation from a divide and conquer algorithm theory, A2, can be defined.

The colimit of the resulting diagram contains both sort-search defined using search o (sort

* id) as well as refined algorithm specifications for sort and search.

In Figure 6.3, the arrows PTi denote translations or interpretations from the struc-

tures of the specifications from which they emanate to structures in the abstract target

language (ATL). Definition of these arrows to ATL is left for future research.

6.2.2 Process Based Architecture Theory. An architecture theory whose objects

are CSP process symbols and whose operations can be used to define processes in terms

of other processes can be defined. For example, such an architecture theory could be used

to define a process P to be the parallel composition of processes Q and R. A definition of

such a process-based architecture theory is presented below.

Definition VI.6 Process-Based Architecture Theory. A process based architecture theory

(PAT) is a 2-tuple (I, Ap) where I is a diagram of process specifications and Ap is an

architecture theory (0, R, I=) where

1. 0 is a collection of process symbols contained in and defined by a process specification

pSP = (11, E) in 1, where

(a) 1I • (F, E, P, V, .) is a process signature and F , (S, Q) is a functional signa-

ture,

(b) E :i -, Tcsp(X) is an injective relation between process symbols and process

expressions,

6-13

such that 0 C K,

2. R is a subset of process operators shown in Figure 5.3 and defined in (52),

3. f= is the satisfaction relation of Definition V.18.

An operation r in R can be used to combine processes P and Q in 0 to define a process

W provided

1. W is in 0, and

2. PrQ is a well-formed expression in Tcsp(O).

Application of an operation r in R to processes P and Q in 0 to define a process W in 0

will be denoted W sat P r Q, where

1. -(W) = P r Q,

2. chan(W)= chan(P) U chan(Q),

3. var(W) = var(P) U var(Q),

4. act(W) = act(P) U act(Q), and

5. a(W) = a(P) U oe(Q). E

Note that this definition could be generalized in that CSP is a specific type of process

logic, and the relation = of Definition V.18 defines a very weak form of process equivalence.

References to CSPA expressions in the above definition could be replaced with references to

process logics of which CSP is one instance. Furthermore, the relation = could be replaced

with a set of process equivalence relations defining a well ordering over processes. For

example, the satisfaction relation = of the above definition could be based on observational

equivalence or bisimulation semantics rather than trace semantics.

In the definition above, CSP process definitions in conjunction with the process

composition operators of Figure 5.3 define the structure of the architecture, while the

behavior rules in (52) provide the semantics of the structures. Equivalence between process

structures is defined in this case to be trace-equivalence. This type of architecture theory

defines global structure in that the structures of the architecture theory - CSP process

structures - are relatively large building blocks which may contain multiple functional

6-14

operations. The functional operations of these structures may be composed or decomposed

into assemblies of equivalent operations through the use of a FAT.

Definition VI.6 does not introduce any process operators that are not already in-

cluded in the process logic of CSP. That is, CSP process specifications and the PAT of

Definition VI.6 are equally powerful. However, if the set of operators R of a PAT is re-

stricted to a subset of process operators, such as the sequential composition operator _ ; _

: process, process -- process, then the structures or designs that can be generated by such

a PAT are more constrained. The PAT of Definition VI.6 defines a meta-class of process-

based architecture theories because it contains the full set of CSP process operators. That

is, any well-formed CSPA expression can be composed using these operators. Other, more

structurally constrained process-based architecture theories can also be defined in terms

of the PAT of Definition VI.6. These architectures are described in Section 6.3.

The structures created using a PAT define process specifications. The process sym-

bols in 0 represent CSP processes, and the composition operators in R applied to the

symbols in 0 result in process expressions which extend E. for some process specification

pSP.

The process symbols combined using a PAT may have process expressions associated

with them. There is no requirement in a PAT that these expressions be formed using only

the operations contained in R. That is, for any process symbol W in 0 where .E(W) is

defined, the expression E(W) need not be written using only the process operations in R.

E(W) may have been defined using another PAT. The set of process operators R serves

to restrict how the processes referenced in 0 may be combined to define the structure of

other processes referenced in 0. This leads to the notion of heterogeneous architectures,

where the structure at one level of abstraction - as constrained by the operators of one

PAT - may differ from the structure at another level of abstraction as constrained by the

operations of another PAT. This concept is further explored in the following sections.

As is the case with application of operations of FAT, application of operations of a

PAT defined over a process specification pSP induce morphisms as well, in this case from

the process specification pSP to a process specification pSP'. If an operation r contained

6-15

in the set R of a PAT is used to combine the process symbols P and Q to define the

process W, then E(W) in pSP' will have the form W sat P r Q. Note that this implies

that the induced morphism must also include mappings establishing act(W), chan(W),

var(W), and aW. Specifically, the application of an operation r in R of a PAT (2, Ap)

defined over a process specification pSP in I induces a morphism 7r pSP -- pSP' such

that if W = P r Q, where P, R, and Q are in 0, then:

1. 7r(=(W)) = E'(W), where E'(W) = P r Q,

2. 7r(var(W)) = var(P) U var (Q),

3. 7r(chan(W)) = chan(P) U chan (Q),

4. 7r(act(W)) = act(P) U act (Q),

5. 7r(a(W)) = a(P) U a(Q), and

6. 7r(X) = id(X) for any other X in pSP.

Provided only finite automata are generated by the expressions in and ', this induced

morphism may be checked to determine if it is a process specification morphism. That is,

a check can be made to determine if traces(E.(W)) C traces(-'(W)) 1 where --'(W) is the

expression P r Q.

PATs and FATs share a common core. Specifically, PATs and FATs share a core

of sorts and functional operations. Process specifications lack axioms constraining the set

of models of their sorts and functional operations. As defined in Chapter V, these sorts

and operations are given semantics through association with functional specifications. The

structure used to make this association is a component. Component-based architecture

theory is defined next.

6.2.3 Component-Based Architecture Theory. Components contain the structure

necessary to provide definition to the sorts and functional operations of process specifica-

tions. Because components consist of a combination of functional and process specifica-

tions, a component based architecture theory is defined as a combination of a functional

and process-based architecture theory.

6-16

Definition VI.7 Component-Based Architecture Theory. A component-based architec-

ture theory (CAT) is an architecture theory defined by the 3-tuple (C,Af,Ap)where

1. C is a diagram of components (D,SD,I1, SI,i),

2. AF p (OF, RF, ý=F) is a functional architecture theory where the set OF of operations

are contained in and defined by a functional specification SP of a diagram D) of a

component C in C, and

3. Ap • (Op, Rp, •p) is a process-based architecture theory where the process symbols

in Op are contained in and defined by a process specification pSP of a diagram I of

a component C in C

such that

1. AF and Ap are applied to the same component C in C, and

2. the models of the process specification pSP of a component are restricted to the set

of models {m I mIiE Mod[SP] Am E Mod[pSP]}. That is, valid models of the sorts

and functional operations referenced in a process specification pSP of a component

are restricted those which are also models of the functional specification SP. E

A CAT consists of a diagram of components and two architecture theories, one for defining

functional operations in terms of other functional operations and the other for defining pro-

cesses in terms of other processes. Basing an architecture theory on components provides

at least some of the structure needed to define and evaluate constraints between functional

specifications and process specifications.

The operations in Rp of a CAT place constraints on how process symbols in Op can

be combined to provide definitions for other process symbols in Op. The application of an

operation in Rp to provide a definition of a process in Op induces a morphism between

process specifications, and the application of an operation in RF to define an operation

in terms of other operations induces a morphism between functional specifications. Taken

together, this implies that the application of an operation r in R = Rp U Rp of a CAT

to define structure in terms of other structure induces a morphism between components.

The morphism so defined is either a morphism defining structure of functional operations

6-17

if r E RF, or it is a morphism defining process structure if r E RP. Denote by a the

morphism between components induced by the application of an operation r E R of a

CAT. Then,

1. If the operation R in RF is applied to the operation symbols f, g, and h in OF to

form the expression f = gRh, then

(a) a(1)=I;

(b) a(Si) si;

(c) u(SD) is an injection which extends SD with an axiom of the form (equal (f) (r

(g) (h)));

(d) a(D) is an injection extending D) by adding the object 0(SD) and the arrow

U(SD) from SD to o(SD); and

(e) (i)= i.

2. If the operation r in Rp is applied to the symbols W, V, and T in Op to form the

expression W sat V r T, then

(a) (D)= ;

(b) a(SD) = SD;

(c) a(SI) is an injection extending S, with an axiom of the form W sat V r T

and which maps var(W) to var(V) U var(T), chan(W) to chan(V) U chan(T),

act(W) to act(V) U act(T), and o(W) to a (V) U a(T);

(d) or(I) is an injection extending I by adding the object a(S1) and the arrow from

the specification S, to the specification a(SI) as defined by a(S1).

The diagram C of a CAT is extended through the application of an operation in Rp U Rp

by the addition of the component C' defined above and the arrow a from the component

to which the operation was applied to the component C'.

6.2.4 Summary. The reader may be wondering why three different types of

architecture theory have been introduced and defined. The reason is simple: flexibility.

6-18

Defining a CAT in terms of a PAT and a FAT allows relatively independent development of

structure within each of these architecture theories. The PAT of a CAT provides the mech-

anisms necessary for defining global structure at one level of abstraction, while the FAT

of a CAT provides the means for defining local structure in the form of operator composi-

tions. In addition, a CAT provides at least some of the necessary structure for expressing

and evaluating constraints expressed between functional and process-based specifications.

Note that there are there are at most two composition operators, o and -, in any

functional architecture theory, leading to at most four different classes of functional ar-

chitecture theory, one for each possible combination of the two composition operators.

However, there are several possible composition operators that can used in the definition

of process-based architecture theories. In fact, as shown in Figure 5.3, there are at least

eight distinct composition operators that can be used to define processes in terms of other

processes. Some of these process composition operators can be used to define rather well

known homogeneous designs. For example, the sequential composition operator can be

used to construct batch-sequential designs.

Because the set of process-based architecture theories that can be defined using the

composition operators of Figure 5.3 is rich in comparison to the set of functional architec-

ture theories that can be defined using the composition operators o and ., the following

section on constrained architectures deals exclusively with process-based architecture theo-

ries. Extension to component based architecture theories is straightforward. Process-based

architecture theories are used in Chapter VIII to develop a specification for a segment of

an image recognition application.

6.3 Process Based Architecture Theories

This section addresses process-based architecture theories defined using a subset of

the process operators depicted in Figure 5.3. No attempt is made to define all possible

architectures. Instead, architecture theories for the well known architectural paradigms are

defined, and they are applicable to a wide variety of problem classes. Eight process-based

architecture theories falling into four broad categories are developed.

6-19

1. Parallel architectures: General parallel architecture is discussed in Section 6.3.2, and

five specific architecture theories are defined.

(a) Parallel architecture.

(b) Layered architecture, where layered architecture is defined in terms of parallel

architecture.

(c) Pipeline architecture.

(d) Client-server architecture.

(e) Pipe-filter architecture.

2. Batch architectures: A batch-sequential architecture theory is defined in Section 6.3.3.

3. Composite architectures: An architecture theory called piped-batch sequential based

on the combination of pipe-filter and batch-sequential architectures is defined in

Section 6.3.4.

4. Constraint-based architectures: An architecture theory wherein structure is defined

through the use of constraints is presented in Section 6.3.5.

Examples of using architecture theories to define structure can be found throughout the

following subsections as well.

6.3.1 Structuring Specifications. Architecture theories are used to define struc-

ture. Functional architecture theories define structure through the operations "." and "a",

while process based architecture theories define structure through the process operations

of Figure 5.3. There are at least two ways in which architecture theories can be used to

define structure:

1. An architecture theory can be used to define structure through specification exten-

sion. For example, consider a process-based specification pSP containing the process

symbols T, U, and V. EE(T) can be defined as the sequential composition of the

process expressions •(U) and -.(V) by extending pSP with an axiom of the form T

sat U;V.

6-20

2. An architecture theory can be used to define structure through the use of structuring

specifications, and this is the approach taken here.

A structuring specification for an architecture theory (0, R, ý) uses one of the com-

position operators in R to define a structural relationship between elements in 0. For

example, a structuring specification for a process-based architecture theory containing the

composition operator ";" could be defined. In this case, the structuring specification would

define the structural relationship U; V where U and V are parameters. Definition of U

and V would be provided through morphism. That is, structuring specifications are pa-

rameterized on the process symbols used in the structure defining expression. The notion

of a structuring specification is made precise in the following definition.

Definition VI.8 Structuring specification. Given an architecture theory A = (0, R, =)

and a binary composition operator p E R, a structuring specification S for p is a parame-

terized specification containing three 0-objects, 01, 02 and 03 and a single axiom defining

01 to be the composition 0 2P0 3. [F

Structuring specifications encapsulate architecture theory concepts for use in creating

structure using the specification construction paradigm described in Chapter II. That is,

architectural designs can be created by forming colimits of diagrams wherein the diagrams

include structuring specifications. This concept is depicted in Figure 6.4 and is described

in the following paragraphs.

Process-based structuring specifications, such as the one referenced in Figure 6.4,

contain three process symbols related through the process composition operator encap-

sulated by the structuring specification. For example, a structuring specification for the

parallel composition operator 11 will contain three process symbols, e.g., T, U and V, and a

statement T sat U 11 V. In this case, U and V can be given definition through association

with process symbols in more concrete specifications. As shown in the figure, association is

accomplished through the use of a trivial process specification and two specification mor-

phisms. The trivial specification contains a single process symbol such as Triv for which

the sets chan, events, var and act are empty. Of the two specification morphisms involved

in an association, one is from the process symbol of the trivial specification to either U

6-21

ISlang Trivial Process ISlang Process Slang Functional

Specification Specification Specification

ISlang Structuring ISlang Channel ISlang Process

Specificaion Specificaton Specification

ISlang Trivial Pc ISlang Process Slang Functional

Specification Specification Specification

Figure 6.4 Using Process Specifications to Define Structure

or V of a structuring specification, and the other from the process symbol of the trivial

specification to a process symbol of a more concrete specification. Once association has

been made for both U and V, the colimit of the diagram can be taken. The colimit object

will then contain an expression relating the identified process symbols together through the

process composition operator embodied in the structuring specification. This relationship

is also depicted in Figure 6.4.

Figure 6.4 shows the use of a channel specification to unify port symbols. Port symbol

unification will result in the formation of CSP channels if the resulting unified port symbols

are shared between exactly two concurrent processes. That is, a structuring specification

can be used to define process structure, and a channel specification can be used to define

communication channels within this structure. A channel specification has the following

form:

pspec Channel-Spec is
sort msg
port c : msg

end-pspec

In Figure 6.4, morphisms from a channel specification to each of the process spec-

ifications being combined through the structuring specification identify the port symbol

6-22

msg -> X pspec Q-Spec is

pspec Channel is c q sort X

sort mnsg port q: X

port c msg process Q :chan: {q :X}

end-pspee act: {}
event: {

msg W var: {}

-> p end-pspec

colimit

pspec P-Spec is pspec Colimit-Spec is

sort W sort {X, W, msg}

port p : W port {c,p,q} : {X,W,msg}

process P : chan: {p : W} process P : chan: I 1c,p,q} : {X,W,msg} I

act: {} act: {

event:{} event:{}

var: {} var: {}
end-pspec processQ: chan: {{c,p,q}: {X,W,msg}}

act: (I

event: { I
var: {}

end-pspec

Figure 6.5 Using Channel Specifications to Unify Port Symbols

of the channel specification with a port symbol in each of the process specifications com-

bined under the structuring specification. A colimit of the diagram results in a process

specification containing a design based on the architecture theory reflected in the struc-

turing specification, and the use of the channel specification results in individual process

structures sharing port symbols.

For example, consider the diagram of process specifications shown in Figure 6.5. In

the figure, specification P-Spec introduces a process P which has the single port symbol

p: Win its set of ports. Process Q of specification Q-Spec has the port symbol q:X in its set

of ports. A channel specification is used to unify the port symbol q:X of Q with the port

symbol p: W of P. The colimit of the diagram defined by the nodes P-Spec, Q-Spec and

Channel-Spec and the arrows Channel-Spec -* P-Spec : { c ý-+ p, msg -4 WM, Channel-Spec

--+ Q-Spec :{ c i-* q, msg ý- X} contains the process symbols P and Q and the port definition

port {p, q, c} : {msg, X, Y}. That is, in the colimit object the port symbols p, q, and c

are equivalent and the sort symbols msg, X, and Y are equivalent. A proof schema must

be used here to ensure that the sorts X and Y are semantically equivalent. Note that sort

compatibility of the ports used to define channels requires that the functional specifications

6-23

from which sort symbols draw their definitions come from a connected diagram (connected

in the graph-theoretical sense). That is, the proof of sort equivalence requires that the sort

symbols in question be comparable. Depending on the operator used to combine P and

Q, the port symbols p, q and c become synonyms for a CSP channel. For example, if the

colimit object of Figure 6.5 was extended with the axiom P>. Q, then p, q and c would be

equivalent names for the CSP channel connecting P to Q.

Figure 6.4 also shows how structuring specifications can be used with components.

That is, the figure shows Slang functional specifications associated with ISlang process

specifications through signature injections. The combination of the signature injection,

process specification, and functional specification define a component. In this case, the

colimit of the diagram defines a new component. Process-based architecture theories de-

fined using a subset of the operations of Figure 5.3 are defined next.

6.3.2 General Parallel Structures. CSP contains a number of process operators

that result in parallel structures. Three of these operators, 1, /1, and > are used in

this section to define architecture theories. In addition, constraints can be placed on the

processes composed using an architecture theory to define additional architecture theories.

For example, a buffered architecture theory can be defined by requiring that one of the

processes composed using the operation I1 be a buffer process and the other process contain

no intra-process communication.

6.3.2.1 Parallel Architectures. As given in the following definition, a par-

allel architecture design consists of a set of process executing concurrently (or in parallel).

Definition VI.9 Parallel processes. The class of parallel processes is inductively defined

as follows:

1. (Basis.) Any well-formed expression in CSPA of sort process defines a parallel pro-

cess.

2. (Induction.) If P and Q are well-formed expressions in CSPA such that P and Q

define parallel processes, then the CSPA expression PIIQ defines a parallel process.

6-24

3. (Extremal.) No CSPA expression defines a parallel process unless it can be created

through a finite number of applications of clauses I and 2. 12

The simplest parallel processes defined by CSPA expressions are processes such as SKIP

or STOP. However, the basis clause of the above definition admits processes defined by

any well-formed process expression in CSPA. How these process expressions are formed is

of little concern. They could, for example, be defined as sequential compositions of other

processes. Through the inductive clause, such process expressions can be combined using

the parallel composition operator 11 to define more complex parallel processes. For example,

the process expression P;Q;R could be combined with the process expression V//T to define

the parallel process (P;Q;R)II (V//T). In this example, the basis clause states that P;Q;R

and V// T define parallel processes, while the inductive clause states that (P;Q;R)II (V// T)

defines a parallel process.

Now that the class of parallel CSP processes have been defined, an architecture theory

based on Definition VI.9 is presented.

Definition VI.10 Parallel Architecture Theory. A parallel architecture theory is 2-tuple

(I, Ap) where I is a diagram of process specifications and Ap is a process architecture

theory (0, R, ý=) where the set R of process operators is restricted to contain only the CSP

parallel composition operator - -: process, process -+ process. El

As formalized by the following theorem, parallel architecture theory is complete with re-

spect to the class of parallel architectures.

Theorem VI.3 Parallel architecture theory is complete with respect to the class of parallel

processes.

Proof. A proof by induction is used to establish the claim.

1. (Basis). Based on Definitions V.14 and V.17, any well-formed process expression

in CSPA can be represented as a process specification.

2. (Induction). Denote by P and Q two arbitrary well-formed process expressions in

CSPA such that P and Q define parallel processes. Then the CSPA expression R =

PIIQ can be expressed using a parallel architecture theory as follows.

6-25

Let PI-P and PI-Q be process specifications where Ps is a process symbol in PI-P

such that -(Ps) equals the process expression P and where Qs is a process symbol in

PI-Q such that E(Qs) equals the process expression Q.

Construct a process specification PI-R for R as follows. Define the process specifica-

tions TI, T2, and Parallel-Structure as shown in Figure 6.6. Note that the structur-

ing specification Parallel-Structure is defined using a parallel architecture theory.

Define the morphisms

(a) M1 = Ti - Parallel-Structure: {Trivl F-- P1},

(b) M2 = T2 -- Parallel-Structure: {Triv2 F-4 P2},

(c) M3 = TI -+ PI-P: {TrivI -* Ps}, and

(d) M4 = T2 -- PI-Q: {Triv2 - Qs},

as shown in Figure 6.6. Then the colimit of the diagram defined by the nodes Ti,

T2, Parallel-Structure, PI-R and PI-Q and the arrows MI, M2, M3, and M4 defines

a process specification PI-R in which

(a) rPI-R is the set {{Ps, Trivl, PI}, {Qs, Triv2, P2}, Pl-par-P2}, and

(b) E ({Ps, Trivi, P1}) is the process expression P,

(c) E ({Qs, Triv2, P2}) is the process expression Q,

(d) E(Pl-par-P2) is the process expression {Qs, Triv2, P2} 11 {Ps, Trivl, P1} which

is isomorphic to the process expression PIIQ. E

As seen in the proof of Theorem VI.3, creation of parallel designs can be accom-

plished through use of a structuring specification. In the case of parallel architectures, the

structuring specification has the form

pspec Parallel-Structure is
process J: f
process S {},{},}
process V
J sat S II V

end-pspec

6-26

pspec Paale istrcei

* process Tiv act: jI chan: f1vr I~ee (I
procesP2:ct: l~chn: I var: lvn: event:nss

end-pspec

FM2

pspecPrle-tntcis i

process Ppriv2: act: 1).clan: (var: I(event: (se~-

essd-pspec,

Figure 6.6 Using Parallel Architecture Theory to Construct Specifications

spec S2 65 Slang Press Schemas: Sort Ceompatability
rests XYsource-sorts: IS)

pspecS~is pg:-> targot-sarts IXI
prprc Toviet is -> ~~sorts X, Y ocsorrse:S

ssU. onolll -Cs: med-spec target-spec:S2

eed-prpe opg: X -Y

ponts qt : X, q2 : Y
process Z :qt:X, q2:Yllg:X-cYI II LXXI pspec f-&-in-Parsttet is

U->V Z sat qt?x -> (q2lg(x)-> Z) sorts IX, R, KID, Y .od: D
end-papec oep f: D -> IX, R, X) ers IXRK

p -> qt op g: lX, R, KI -> Y

psprc Porte- Sor1seornre is K-Xports pt:D, I pp2, ql I: ix. R,. KI. q2: Y
prcss J:1 1HI II pspec Chrese is preces IP,STI:jps:D,I p,p2,qtl1:IXRKII,1 f:D->IXRKII,I ljd.D I

procssS:IH1111 It MrsK ter process! J:lpt:D, I p~p2, ql 1: (X.RKI, q2:YI,

prooesV:(1111IM) perrp: K lfzD->IXX,LKg~: IXRKI-cYl, I,Id:Dýa: XR5tKI I
trot! li 11V d-papec pr-es Itt,VZI:I (pp2,qtI1: IXX),RqI2:YI,

TP ->p2

eod prpe r st pt',ST -et p2!t-> -e P)ljf~)>jS j

Fo.riexampe Fiur 6o.7 show tw fucioa spciictin SRadSwihhv
ben sscate wit thejj~ process s; pecfiaton p i an pI respctiely The sorts an

opraionse of7 th Unciongal StuurnSpecificationshv en mfape toale sorthsymbolseandeoprato

6-27

symbols in the process specifications. The specifications pS1 and pS2 of the figure each

introduce a single process defining an interface for the functional operations they encap-

sulate. The single axiom of pS1 states that the process P consists of at least a repetition

of an input event on port p, followed by an output event on port P2, where the output

value is obtained from evaluation of the operation f. Specification pS2 is similarly defined.

These two process specifications are combined using a structuring specification for a par-

allel architecture theory. A channel specification is used to unify ports P2 of pS1 and q, of

pS2 so that they form a CSP channel. Because a CSP channel is strongly typed, the sort

R of functional specification S1 and the sort X of the functional specification S2 must be

compatible. The proof of sort compatibility is carried out in the logic of the functional

specification; a proof schema is used for this purpose (see Section 5.6.1 for details). Input

condition satisfaction is also required but not shown.

As shown in Figure 6.7, a copy of the specification Trivial is used to associate the

process symbol S of the structuring specification Parallel-Structure with the process symbol

P of pS1. Another copy of the specification Trivial is used to associate the process symbol

V of the structuring specification with the process symbol Z of pS2. When the colimit is

taken over the specifications and arrows shown in Figure 6.7, process symbols T, S, and

P are unified as are the process symbols U, V, and Z. Thus the process expression J sat

S 11 V of Parallel-Structure is translated to the expression J sat { T,S,P} 1{ U, V,Z} in the

colimit object. Similarly, the process expressions for P and Z are translated as follows:

P sat pl ?d) (p2!f(d) c P)

- {T,S,P} sat pl?d c ({p,p2,ql}!f(d) £Žp {T,S,P})

Z sat q1lx) (q2!g(x) csp Z)

-{ U, V,Z} sat {p,p2,ql} ?x £s (q2!g(x) c { U, V,Z})

The colimit object specifies a CSP process that accepts a value d of sort D over pl and

outputs the value g(f(d)) of sort Y over q2.

The specification f-g-in-Parallel can be combined with another process specification

using a structuring specification such as the one in the figure to create a larger design.

Specifically, the process symbol J of f-g-in-Parallel can be associated with a process sym-

6-28

Composites of various elements Basic Utility

Interfaces :9D

Users

Figure 6.8 Layered Systems (Based on (38))

bol of a structuring specification in the same way in which the process symbol P of the

specification pS1 was associated with the process symbol S of the structuring specification

Parallel-Structure. A process symbol, say A, of some other process specification can be

similarly associated with the other process symbol of the structuring specification. The

colimit of the resulting diagram would define the relationship between J and A. For exam-

ple, J and A could be defined to operate in parallel, resulting in JI1A. This procedure is

repeated to form even larger designs.

A specific type of parallel structure, a layered structure, can be created using the

composition operator /. This operator is defined as a constrained parallel composition.

6.3.2.2 Layered Architecture. Layered systems are organized hierarchically,

with inner layers providing services to adjacent outer layers. Each layer builds on the

capability of inner layers of the system, and in essence, defines an increasing level of

abstraction. The outer layer of a layered system defines the signature of the system.

Figure 6.8 is a conceptual representation of a layered system.

The core layer of a layered design contains definitions of primitive operations. The

basic utility layer uses the primitive operations of the core layer to define more complex

operations, and the outer layer builds on the operations of the utility layer to define system

capability. Interfaces between the layers define communication protocols. The interface of

the outer layer defines the user interface. To facilitate discussion, the core or inner-most

6-29

layer of a layered system S is denoted Ls,0 . The layer immediately adjacent to Ls,o is

denoted Ls,1 , and so on.

Although only adjacent layers in a layered system may communicate, operations of

inner layers may be made available to non-adjacent outer layers. Specifically, an operation

g : X --+ W of an inner layer Ls,i can be made available to an outer layer Lsj, j > i, as

follows: In each layer Ls,a, a = i + 1..j, define an operation fa : X --* W and define fa in

Ls,, using the operation fa-i of layer Ls,a-l. In this way, the operation g : X -- W can

be accessed indirectly in Ls,j. Optimization can be applied to make this indirect access

direct.

In CSP, each layer of a layered system is a process, where the processes defining inner

layers are subordinate to the processes defining outer layers. The process composition

operator used in CSP to define subordinate processes is the binary operation //. Layered

systems are formally defined below.

Definition VI.11 Layered processes. The class of layered processes is inductively defined

as follows:

1. (Basis.) Any well-formed expression in CSPA of sort process defines a layered pro-

cess.

2. (Induction.) If P and Q are well-formed expressions in CSPA such that P and Q

define layered processes, then the CSPA expression P//Q defines a layered process.

3. (Extremal.) No CSPA expression defines a layered process unless it can be created

through a finite number of applications of clauses 1 and 2. El

The statement P//Q defines a layered process wherein P defines a layer on which Q

is built. The semantics of the operator // are such that if P// Q is well-formed, then Q can

"engage independently in the actions of (aQ - aP), without the permission and without

the knowledge of its partner P."(52:161) Communication on any channel c between P and

Q with P//Q is hidden from the surrounding environment.(52). P//Q is well-formed if

1. aP C aQ, and

6-30

2. chan(P) 9 chan(Q), in which case

(a) ce(P/Q)= (PIIQ) \ aP, and

(b) the set of external ports of P//Q is the set chan(Q) \ chan(P).

This implies that if P//Q is a well-formed layered design, then it is equivalent to the

parallel design (PIIQ) \ aP. The ability to redefine a design of one architecture theory

in terms of a design in another architecture theory has significant impact on optimization

and on top down specification construction. For example, a layered implementation may

be less efficient than a pipeline implementation of the same problem. The topic of design

translation is addressed in Chapter VII.

An architecture theory based on the class of layered processes is presented next.

Definition VI.12 Layered Architecture Theory. A layered architecture theory is a 2-tuple

(1, Ap) where I is a diagram of process specifications and Ap is a process architecture

theory (0, R, •) where the set R of process operators is restricted to contain only the CSP

subordination composition operator -// - : process, process --+ process. EJ

Layered architecture theory is complete with respect to the class of layered processes of

Definition VI.11. That is, any well-formed layered process can be constructed using the

above architecture theory. A proof of this claim is similar to the proof of Theorem VI.3.

A simple structuring specification for layered systems is shown below.

pspec Layered-Structure is
process R: },11,f},{}
process S f}j{},{},{I
process T 1},1},11,0
R sat S / T

end-pspec

CSP contains a syntax for denoting communication across labeled channels. The

notation m:P//Q defines a process in which Q communicates with P along channels with

compound names. Each communication takes the form m.c.v, where m is a label, c is a

channel name shared between P and Q, and v is a value. The above structuring specification

6-31

can be extended to include labels and ports as shown below. In the specification below,

process S is defined to be subordinate to T. As such, communication between S and T

is hidden from the outside environment. This differs from the semantics of SlIT in that

communication between S and T in SIlT is not hidden from the environment.

pspec Extended-Layered-Structure is
sorts D, R
port left : D
port right : R
port in : D
port out : R
label m
process R: {left:X, right:R, in:D, out:R},{},{},{}
process S: {left:X, right:R},{},{},{}
process T: {left:X, right:R, in:D, out:R},{},{},{}
R sat m:S // T

end-pspec

As a simple example of a layered design, consider the problem of computing g(f (x)),

and suppose a process specification F has been defined such that F encapsulates the op-

eration f. F could be defined to be subordinate to a process H where H includes, for

example, error detection mechanisms or handshaking mechanisms not contained in F. Us-

ing the layered architecture structuring specification where S is associated with F and T

is associated with H, g(f(x)) can be computed provided

1. F sat left?x p right!f(x), and

2. H sat ind) (left!d) (rightd -- • (out!g(d) c SKIP))).

A simple diagram corresponding to these process expressions is shown in Figure 6.9. None

of the communication over the channels left or right is visible to the outside environment.

That is, the set of traces over F//H consists of communication events over the channels in

and out, with 0 < tr[in - trrout < 1 for any trace tr in traces(F//H).

6.3.2.3 Pipeline Architecture. Pipelined designs consist of a collection of

processes operating in parallel wherein inter-process communication is severely limited. A

process Pi in a pipeline design may only receive incoming communication from the process

6-32

x H g(fx))

x f(x)

F

Figure 6.9 Simple Layered Processes

Pi- 1 immediately preceding it in the pipeline and may only communicate results to the

process Pj+j immediately following it in the pipeline. Each process of a pipeline is called a

stage. Each stage of a pipeline has exactly two channels: one for input and one for output.

Given a CSP structure S containing the process symbols P 1 , P2,..., P, such that

P, IP2 11... I lP. in S, then PilIP 2 11... IIPn is a pipeline design if

1. Each process symbol Pi in S has exactly two channels associated with it, one for

input and one for output;

2. A bijective mapping m from the process symbols P = {P1 , P2 ,..., P,,} to the set

N = {1,2,...,n} can be defined such that for all Pi, Pj in {P 1,P 2 ,...,Pn}, if

m(P2) = m(Pj) - 1 then Pi shares exactly one channel c with Pj such that c is used

for output in Pi and for input in Pj; and

3. All communication between processes Pi and Pj with m(Pd) = m(Pj) + 1 is concealed

from the outside environment.

The first condition requires that each process in a pipeline design contain the requisite

number of channels. The second condition requires that communication between processes

in a pipeline design defines a total order over the process symbols, and the third condition

states that internal communication in a pipeline is not visible outside of the pipeline. For

example, consider the following process expressions:

A sat p?x csP (q!f(x) c A)

B sat rx) (s!h(x)) B)

C sat q?x _ (r!g(x))s C)

Each process, A, B and C has exactly two channels, one for input and one for output. In

addition, the bijective mapping m can be defined as follows:

6-33

A I1
B 3
C 2

such that V (x,y) (x,y E {A, B, C} =: (m(x) m(y)-1 =* 3 (c) (c E chan(x) A c E chan(y)

A c is used for output in x and for input in y))). That is, both AIICIIB and A > C > B

are well-formed.

Internal communication in a pipelined design occurs over internal channels, while

observable communication of a pipelined design occurs over external channels. Internal

and external channels are defined below.

Definition VI.13 Internal and External channels. A channel c of a CSP structure P is

an internal channel of P if P contains at least two concurrent processes P1 and P 2 such

that c is a channel connecting P1 to P2 . The set of internal channels of a process P is

denoted chaninternal(P).

The set of external channels of a CSP structure P are those channels of P that

are not internal channels. The set of external channels of a CSP structure P is denoted

chanexternal(P). 0l

Communication over internal channels of layered designs or pipeline designs are con-

cealed from the outside environment. In contrast, communication over internal channels

of parallel designs is not concealed from the environment. This implies, for example, that

a parallel design will exhibit a wider range of observable behavior than either

a functionally equivalent layered or pipelined design.

CSP contains a process composition operator > that can be used to define pipeline

designs. This operator is used in the following definition of the class of pipeline designs.

Definition VI.14 Pipelined processes. The class of pipelined processes can be inductively

defined as follows:

1. (Basis.) Any well-formed expression in CSPA of sort process containing exactly two

external ports, one for input and one for output defines a pipeline process.

2. (Induction.) If P and Q are well-formed expressions in CSPA such that P and Q

define pipeline processes, then the CSPA expression P > Q defines a pipeline process.

6-34

3. (Extremal.) No CSPA expression defines a pipeline process unless it can be created

through a finite number of applications of clauses 1 and 2. E

The above definition allows for pipeline stages to contain internal channels such as

those used for communication with subordinate processes.

The class of pipelined processes leads to the following architecture theory.

Definition VI.15 Pipeline Architecture Theory. A pipeline architecture theory is a 2-

tuple (I, Ap) where I is a diagram of process specifications and Ap is a process architecture

theory (0, R, ý=) where the set R of process operators is restricted to contain only the CSP

process composition operator - > - : process, process -* process. 0

Note that the definition of the operator > requires that the processes being combined

contain exactly external two channels, one for input and one for output. In addition,

because communication over channels connecting two stages of a pipeline is concealed

from the external environment, all communication over internal channels of any stage in a

pipeline design must be concealed as well.

Pipeline architecture theory is complete with respect to the class of pipeline processes

of Definition VI.14. That is, any well-formed pipeline process can be constructed using the

above architecture theory. A proof of this claim is similar to the proof of Theorem VI.3.

Concealment of communication is problematic, because as the following theorem il-

lustrates, application of the concealment operator to an expression in a process specification

induces a specification morphism from the target specification to the source specification.

Theorem VI.4 Given a process specification pSP - (H,..), II = (E, E, P, V, t), such that

E (W) is defined for some W E r,, an application of the concealment operator _\ process,

set(event) --* process to the expression E(W) to define a process specification pSP' induces

a specification morphism from pSP' to pSP.

Proof. Denote by A the set of events to be concealed in the expression E.,(W) for a process

symbol W in a process specification pSP = (II, E). pSP' is defined by the concealment

operator to be the process specification (II', •') such that

6-35

1. traces(1'(W)) = traces(E(W)\A) and

2. ceW' = cW - A.

pSP' and pSP are identical except for the above two distinctions. Clearly the com-

mon structures between pSP and pSP' share a common set of models. What remains

to be shown is that models of E'(W) are also models of .(W). That is, we need to

show Vm(m E Mod[E'(W)] =>- m E Mod[.=(W)]), or equivalently, that traces(S'(W)) C

traces(07M [(W)) '

By the definition of concealment, traces(.'(W)) = traces(E(W)\A), which equals It

(aW - A) I t E traces(E=(W))}. But traces(.(W)) [(ceW') = traces(E(W)) [(aW-A), which

also equals {t [(aW-A) I t E traces(.(W))}. Thus traces(E'(W)) 9 traces(E(W)) [(CQW'),

which implies that the concealment operator induces a process specification morphism from

pSP' to pSP. U

The concealment operator can be thought of as the inverse or opposite of specification ex-

tension. As a consequence of this theorem, specification morphism arrows for specifications

defined using the concealment operator "point the wrong way." In other words, an appli-

cation of the concealment operator to a process specification specification P to produce a

process specification Q induces a specification morphism from Q to P, not from P to Q. In

general, this implies that a parallel design cannot be converted under specification

morphism into a pipeline design through concealment of communication over

internal channels because the induced specification morphism would run from the pipeline

design to the parallel design. The relationships between pipeline and parallel designs are

further explored in Section VII.

A structuring specification for pipeline architecture theory is defined below:

pspec Pipeline-Structure is

sorts x, y, z
port left : x
port center : y

port right : z
process R: {},{},{},{left:x, center:y, right:z}
process S {},{},{},{left:x, center:y}
process T: {},{},{},{center:y, right:z}

RsatS»>T

6-36

end-pspec

The sort-symbols x, y and z and the port-symbols left, center, and right are introduced in

the structuring specification for the purposes of achieving communication. As their names

imply, port left is an input port, port center is a CSP channel connecting S to T, and port

right is an output port. (Recall that a port symbol shared between two concurrent process

is semantically equivalent to a CSP channel.) The semantics of the operation > are such

that S uses center for output while T uses center for input. Refinement of the sorts x, y

and z can be accomplished through association with sort symbols defined in a functional

specification. Elaboration of the processes S and T can be accomplished using any one of

the process specification construction operations.

Because this structuring specification contains port symbols, it may be instructive to

demonstrate the creation of multi-stage pipelined designs. In the paragraphs that follow,

two approaches to using this structuring specification are presented. The first approach

parallels that used in Section 6.3.3 to develop batch-sequential designs, while the second

approach combines pipeline segments using channel specifications.

Creating Pipelined Designs through Recursive Application of Structuring

Specifications. One method of creating multi-stage pipeline designs is to recursively

apply a structuring specification to each stage of a pipeline design. This approach is

illustrated in Figure 6.10. In the figure, process P2 is defined to be the pipelined process

Q1 > Q2. Association of P2 with the pipelined process Q1 > Q2 requires that the port

symbols cl and 12 be unified, and that the port symbols rl and r2 be unified. Associating

P2 with the process Q1 > Q2 results in a three stage pipelined design.

Figure 6.11 shows an ISlang diagram corresponding to the recursive application of

pipeline structuring specifications. In the figure, a trivial process specification containing

a single process symbol and two port definitions is used to unify process P2 with the

pipelined process QL. The port symbols of the trivial specification are used to associate

ports cl and rl of Pipeline-One with ports 12 and r2 of Pipeline-Two respectively. The

colimit object contains a definition of a three-stage pipeline defined by P1 > (Q1 > Q2).

6-37

P1 >> P2
11 cl 1iP2 r

QI>>Q2
12 1 c2 2 2

1 c2 rl

PI>>P2 = P>>(Ql>>Q2)

Figure 6.10 Recursive Application of Pipeline Structuring Specification

pspec Trivial is pspec Pipeline-Two is

sorts tl, t2 sorts x2, y2, z2

port pl :tl T -> QL port 12 :x2

port p2 : t2 pl ->12 tl ->x2 port c2 : y2

process T: {}{}}{ p2 ->r2 t2 ->z2 port r2 :z2

end-pspec process Q1 : { }{}{ }{12:x2, c2:y2}

process Q2: { }{II}{c2:y2, r2:z2}

process QL :{ }I}{ }{12:x2, c2:y2, r2:z2}

QL sat Q1 >> Q2

T -> P2 end-pspec

pl -> el tl ->y

p2 -> rl t2 -> z

,. olimit

pspec Pipeline-One is pspec 3-Stage-Pipeline is

sorts X, y, z sorts x, {tl, y, x2}, {z, t2, z2}, y
2

port 11: x port 11 : x

port cl: y port {cl,p1,12} {y,tl,x2}

port rl z port c2 : y2

process P1 : {I{{ } {ll:x, cl:yl port {rl, p2, r2} {z, t2, z2}

proces P2: {(}{1{}{cl:y, rl:z} process P1 : { }{ }{ } {1l:x, {cl, pl, 12 :{y, tl, x2}I

process PL :{}{}{}{li:x, cl:y, rl:z} process PL: {(}{ {}{11 : x, {cl, pl, 1
2

}:{y, tl, x2}, {rl p2, r2}:{z, t2, z2}}

PL satP1 >> P2 process Q1 : {}{}{}{{cl, pl, 12}:{y, tl, x2}, c2:y2}

end-pspec process Q2: { }{ }{ }{c2:y2, {rl, p
2
, r2}:{z, t2, z2}}

process {TQL,P2} : I}{ }{I I {12,cl~pl}:{y, tl, x2}, c2:y2, {rl, p2, r2}:{z, t2, z2}}

PL sat P1 >> {T, QL, P2}

IT, QL, P2} sat Q1 >> Q2

end-pspec

Figure 6.11 ISlang Diagram Depicting Recursive Application of Structuring
Specifications

6-38

It is readily verified that the morphisms of Figure 6.11 are specification morphisms. This

specification construction technique can be applied recursively to define, for example, Q1

to be the pipelined process T where T sat T1 > T2 to obtain the structure P1 > ((T1

> T2) > Q2), where Q1 sat T1> T2 and P2 sat Ql>Q2.

Note that the colimit object can be made more readable through the application of

a specification translation operation. For example, the expression port {cl, pl, 12} : {y,

ti, x2} could be mapped under translation to the expression port pl-2-q1 : y.

Combining Pipelined Designs via Channel Specifications. Two pipeline

structuring specifications P and Q can be combined through unification of the channel

right of P with the channel left of Q. This approach is highlighted in Figure 6.12. In the

figure, the two stage pipeline P1 > P2 is combined with the two stage pipeline Q1 >

Q2 to form the structure P1>»P211 QI> Q2 through unification of the channels rl and 12.

An ISlang diagram reflecting this construction is shown in Figure 6.13. The statement

P1>P21QI>»Q2 shown in the figure is a conservative extension of the colimit object.

Note that although P2 and Q1 share exactly one channel identified by the equivalence

class {c, rl,12} such that the channel is used for output in P2 and input in Q1, it is

not valid to conclude P2 > Q1. Communication over {c, 12, rl} is concealed in P2 >

Q1 but is not concealed in the colimit object. This is an important distinction, for it

implies that this technique cannot be used to form larger pipeline designs out

of collections of smaller pipeline designs. Instead, this technique can be used to

define parallel compositions of communicating pipelines. Although the example presented

here combined two 2-stage pipelines, this technique may be generalized to combine two

pipelines of arbitrary, finite size.

Summary of Pipeline Architecture. As is the case with the other archi-

tecture theories, pipelined processes such as PL of Figure 6.11 can be combined using other

architecture theories to define non-homogeneous designs. For example, several pipelined

processes could be combined using a parallel architecture theory to define a design consist-

ing of parallel pipelines. One such example occurs in computer graphics, where multiple

parallel pipelines are used to render two and three dimensional images.

6-39

P1 >> P2

unify Q1»Q2

11 cl c12 c2 r2

P1>>P2IQ1>>Q2

Figure 6.12 Channel Specifications and Pipeline Structure

pspec Channel-Spec is msg -> x2 pspec Pipeline-Two is

sort msg c ->12 sorts x2, y2 , z2

port c msg port 12 x2

end-pspec port c2 y2

port r2 z2

process Q1 { I{ I 1{12:x2, c2:y2]

process Q2: {[{ 11 {c2:y2, r2:z2l

process QL :1 { I { } { 12:x2, c2:y2, r2:z2}

QL sat Q1 >> Q2
msg ->z end-pspec

c -> rl

colimit

pspec Pipeline-One is pspec Two-Pipe-in-Parallel is

sorts x, y, z sorts x, y, [z, msg, x2}, y2, z2

port 11 :x port 11 :x

port cl :y port cl :y

port rl z port Irl, 12, ci : (z, msg, x2}

process PI : {}{]{}{l1:x,cl:y} processP1 : I1{}{l}ll:x,cl:y}

process P2: ()1{ }{ {cl:y, rl:z} process P2: { {IIIcl:y, {c,rl,12}:{msg,z,x2}

process PL:{ I I I I I {ll:x, cl:y, rl:z} process PL: 1{) 1111 :x, cl:y, {c,rl,12}:jz,msg,x211

PL sat P1 >> P2 process Q1 :I I I (I I fc,rl,12}:{msg,z,x2}, c2:y2}

end-pspec process Q2: I I [I{f I c2:y2, r2:z2}

process QL : I I I I If {c,rl,12 }: msg,z,x2}, c2:y2, r2:z2}

PL satP1 >> P2

QL sat Q1 >> Q2

end-pspec

Figure 6.13 An ISlang Diagram for Two 2-Stage Pipelines in Parallel

6-40

Further classification of pipelined designs is possible. For example, a constraint

expressing the requirement that the processes combined using the pipelined architecture

theory be isomorphic leads to the notion of a homogeneous pipeline. If each stage in a

n-stage homogeneous pipeline encapsulated a single operation of the form f : D --> D,

then the pipeline would produce a value of f (f... f(d))) for argument d. Definition of

f nested n deep
a taxonomy of pipeline designs is left for future research.

The architecture theory of the following section, pipeline architecture theory, also

results in designs containing communication that is hidden from the outside environment.

Relationship between layered and pipelined designs. Consider once

again the problem of computing g(f(x). A layered design for this problem was defined in

Section 6.3.2.2. A two-stage pipeline can also be defined for this problem. However, the

protocol of layered systems differs from that of pipelined systems. If S was defined to be

the pipeline F > G, where F sat inx c (c!f(x) c F) and G sat cd csP (out!g(d) CS'P

G), then the set of traces of H would consist of communication events over the channels

in and out, where 0 < tr~in - tr[out < 2 for any trace tr in traces(F>>F). In contrast, the

layered design S' = (F'//G'), where P sat px • (q!f(x) c F) and G' sat inx " (p!x

s_._v (qfy C' (out!g(y) CsP- G))) also computes g(f(x)), but 0 < tr[in - tr[out < 1 for any

trace tr in traces(S').

That is, although communication on internal channels of a pipeline design is hidden

from the surrounding environment, an n-stage pipeline design can accept up to n inputs

before generating an output. In contrast, a layered design may be defined such that it will

completely process an input and generate an output before accepting additional inputs.

This distinction is highlighted by the example depicted in Figure 6.14.

As shown in the figure, the processes of the layered design have twice as many ports

as the processes of the pipelined design. Although the two designs may be functionally

equivalent, they are behaviorally distinct. Both S > R > Q > P and ((S//R)//Q)//P

may return the value p(q(r(s(x)))) for an input x, but the pipeline design may engage in

up to four successive input events before engaging in up to four successive output events,

6-41

xX p(q(r(s(x)))

p S

x q(r(s(x))) s(x)

Q R

X r(s(x)) r(s(x))

X s(x) q(r(s(x)))

p(q(r(s(x)))

((SIIR)//Q)I/P S>>R>>Q>>P

Figure 6.14 Comparison of Layered versus Pipelined Operation

whereas the layered design must engage in an output communication event following the

engagement of an input communication event.

As this discussion implies, it is often possible to recast a design of one architecture

theory into an equivalent design of another architecture theory, where the notion of equiv-

alence may be context dependent. For example, Figure 6.14 depicts two designs which are

functionally equivalent in that they produce equivalent values for equivalent inputs, yet

are not trace equivalent. Formalization of this relationship between architectural designs

is presented in more detail in Chapter VII.

As discussed in the opening paragraphs of this section, pipeline architecture could

be defined as a constrained type of parallel architecture. Instead, the semantics of the

process composition operator > were used to define pipeline architecture theory. The

architecture theory of the following section, client-server architecture theory, requires the

use of constraints.

6.3.2.4 Client-Server Architecture. A client server design consists of a

server process running in parallel with a finite number of client processes. The server

process typically encapsulates a resource or collection of resources which are shared among

the clients. Individual client processes have access to those resources through the server.

For example, a server could encapsulate an UNIX socket and provide operations for reading

6-42

from and writing to the socket. Individual client processes have access to the socket via

the operations provided by the server. How data obtained from the socket is used within

individual clients is not of concern to the server process. A client-server design may contain

multiple servers and multiple clients, and a server at one level of abstraction may be a client

at another. Client processes and server processes are formally defined below.

Definition VI.16 Server. A server is a process which

1. consists of at least two channels, pi and pj, one for input and one for output;

2. encapsulates at least one operation of the form service : msg-in -• msg-out; and

3. satisfies pi?m c (pj!service(m) c Server).

Client. A client is a process which

1. contains at least two ports, p.left and p.right, one for input and one for output; and

2. satisfies p!x?y for a value x and a variable y. E

Note that the CSP-based definition implies a server of a client-server design contains at

least two ports for every client it services.

Client-server processes can be defined using a combination of the parallel composition

operator and a constraint.

Definition VI.17 Client-Server processes The class of client-server processes can be in-

ductively defined as follows:

1. (Basis.) Any well-formed expression in CSPA of sort process defining a server is a

client-server process.

2. (Induction.) If C and S are well-formed expressions in CSPA such that C defines a

client process and S defines a server process, then the CSPA expression PIIQ defines

a client-server process provided C and S share a common pair of CSP channels, one

from C to S and the other from S to C.

3. (Extremal.) No CSPA expression defines a client-server process unless it can be

created through a finite number of applications of clauses 1 and 2. El

6-43

The basis case above identifies a server process as the simplest client-server process. The

inductive case establishes a client-server process to be a parallel composition of a server

and a collection of clients such that each client shares a pair of channels with the server and

in which the clients are independent, parallel processes. A formal definition of client-server

architecture is presented next.

Definition VI.18 Client-Server Architecture Theory. A client-server architecture theory

is a 2-tuple (1, Ap) where I is a diagram of process specifications and Ap is a parallel

architecture theory (0, R, 1=) where two process symbols C and S in 0 can be combined

using only the operator 11 provided

1. The process expressions of C and S, E(C) and E(S), both define client processes such

that chan(C) n chan(S) ={} and event(P)nevent(S) = {}, or

2. E(C) defines a client process and E(S) defines a server process, and chan(C)nchan(S)

={c : s1 , c2 : S2}, where cl is a channel connecting the process defined by E(C) to

the process defined by E(S), and c2 is a channel connecting the process defined by

E(S) to the process defined by E(C).El

This architecture theory permits a degenerate case of client-server design consisting solely

of a parallel composition of client processes since it does not require that at least one of

the process symbols in 0 define a server process. This requirement could be established

through constraints.

Any client-server process can be defined using the above architecture theory. That

is, client-server architecture theory is complete with respect to the class of client-server

processes of Definition VI.17. A proof of this claim is similar to the proof of Theorem VI.3.

A structuring specification for a client server architecture is presented in Figure 6.15.

This structuring specification requires a number of extensions to the ISlang language. For

example, the statement port si. : msg-in, i=l..max identifies an indexed collection of ports

of sort msg-in. Similarly, the statement process Server: {si,, :msg-in, Sio., :msg-out}, {},

{ }, {}, i=l..max identifies a process named Server that includes two indexed collection of

ports sii, : msg-in, i=l.. max and siout : msg-out, i=l..max. The statement process Clienti:

6-44

pspec Client-Server is
sorts msg-in, msg-out

const max: Nat
op service : msg -- msg

var xi : msg-in, i 1..max
var yj : msg-out, i = 1..max
port si. : msg-in, i = 1..max

port si. : msg-out, i = 1..max
process Server: chan:{si,,:msg-in, s 0o.,:msg-out},

events: {}, act: {}, var: {m:msg-in}, i-- 1..max
process Clienti: chan: {si :msg-in, so,,,:msg-out},

events: {}, act: {service: msg --* msg},
var:{x, : msg, y. : msg} i E [1..max]

process CS: chan: {si, :msg-in, sj.o,:msg-out},
events: {}, act:{},
var:{m:msg-in, xi : msg, yj : msg}, i = 1..max

CS sat Server 11i=1..max Clienti

Clienti sat si!xiyi, i = 1..max

Server sat [I]i=l..max (si,.?m CsP (Sio.,!service(m) c Server))
end-pspec

Figure 6.15 Client-Server Structuring Specification

{ si,:msg-in, Sio., :msg-out}, {I}, {}, {}, i in [1..max] identifies an indexed collection of

processes Client1 , Client2 , ... , Clientmax where max is a natural number identifying the

maximum number of clients supported by the server. Each client Clientj has associated

with it a pair of ports sjin and sjo.t, where the use of the port pair in Clientj is defined

by the statement Clienti sat si!xi?yi, where si!xi?yi is defined to be the atomic process

CSPsii.!Xi) so•?i.u,

Each client process contains a set of variables, one used as an argument to the

operation or resource service encapsulated in the process Server, and the other used to

hold the return value of service invocation. The process Server is defined by the operation

[] to be a process that can engage in communication over the first channel sj,. on which

a client is prepared to communicate, and returns on the corresponding channel SJot the

value obtained from servicing the data supplied by the client. Note that the constant

valued operation max is defined to be of sort Nat, where Nat is the natural numbers.

However, process specifications lack functional axioms, so the sort Nat is unconstrained

6-45

in the specification Client-Server. Thus a constraint must be placed on the structuring

specification expressing the requirement that any model of the sort Nat in Client-Server

be isomorphic to a model of the natural numbers.

As is the case with the other structuring specifications provided in this chapter, the

sorts, operations, and processes of the above specification can be refined using specification

construction techniques. For example, by extending the process Server with two additional

port symbols, p.left and p.right, and extending the expression E (Server) to include p!x?y

for some state variables of Server, it can be identified as a client of another server process.

Extending Server to be a client of another server process can be accomplished via process

specification morphism.

Also note that the clients may be refined using other structuring specifications. For

example, a client may be defined using a process architecture theory to be a loose confed-

eration of communicating processes, or a client may be defined to have a much more rigid

structure, such as a pipeline.

Like client-server architecture theory, the architecture theory of the following section,

pipe-filter architecture theory, is dependent on constraints for its definition.

6.3.2.5 Pipe-Filter Architecture. A pipe-filter architecture consists of two

concurrent processes, a pipe process and a filter process.

Definition VI.19 Pipe. A CSPA expression P defines a pipe if P contains exactly two

external channels left and right of a common sort such that P sat left?x c (right!x P

P).

Filter. Given a pipe P, a CSPA expression F defines a filter process in case F 11 P is

well-formed. El

The class of pipe-filter processes is formally defined below.

Definition VI.20 Pipe-Filter processes. The class of pipe-filter processes is defined as

follows:

1. Any well-formed expression in CSPA defining a pipe process is a pipe-filter process.

6-46

2. If P and F are expressions of sort process in CSPA such that P defines a pipe process

and F defines a filter process, then PIlF defines a pipe-filter process if

(a) chan(P) n chan(F) -: {}; and

(b) PIIF is well-formed. El

That is, pipe and filter designs use pipe processes as buffers between filters. Case 1 above

identifies a pipe-filter consisting of a pipe and an empty filter, and case 2 above places

a filter in parallel with a pipe process to define a pipe-filter process. The constraint

channels(Pipe) n channels (Filter) :A {} can only be satisfied if the pipe process and the

filter process share at least one channel. Note that the filter process can have additional

channels that are not shared with the pipe process.

Now that the class of pipe-filter processes has been defined, a pipe-filter architecture

theory can be defined.

Definition VI.21 Pipe-Filter Architecture Theory. A Pipe-Filter Architecture Theory is

a 2-tuple (E, Ap) where I is a diagram of process specifications and Ap is a parallel archi-

tecture theory (0, R, 1=) where R is restricted to contain only the CSP process composition

operator - 1 - : process, process --+ process where the process symbols P and Q in 0 can

be used to define a pipe-filter process only if

1. 'E(P) defines a pipe process,

2. E(Q) defines a filter process,

3. chan(P) n chan(Q) :A {}, and

4. E(P)IJE(Q) is well-formed. El

The above architecture theory completely characterizes the class of CSP pipe-filter

processes. A proof of this is similar to the proof of Theorem VI.3. Note that a filter

process in a pipe-filter design may interact with the outside environment. That is, a filter

in a pipe-filter design may take inputs from and supply outputs to the environment. A

restriction could be placed on pipe-filter designs to preclude this type of filter-environment

interaction. Specifically, the expression chan(P) n chan(Q) = {} of Definition VI.21 could

6-47

be replaced with the expression chan(P) = chan(Q), in which case the only interaction

a filter could have with the environment is through engagement in non-communication

events. Such an architecture theory could produce a class of designs closely matching the

informally defined class of batch transformation systems given in the introduction of this

section.

A structuring specification encapsulating a pipe-filter architecture theory has the

following form:

pspec Pipe-Filter-Structure is
sort msg
port left : msg
port right : msg
var m : msg
process Pipe: {left:msg, right:msg},{} ,{},{m:msg}
process Filter : {left:msg, right:msg},{},{},{}
process Pipe-Filter : {left:msg, right:msg},{},{},{}
Pipe-Filter sat Pipe 11 Filter

Pipe sat left?m • (right!m c Pipe)
end-pspec

The above structuring specification can be defined as an extension to the parallel

structuring specification of the previous section. Specifically, the above specification con-

strains one of the process symbols involved in the parallel composition to be a pipe process.

The process Filter is defined to share a set of CSP channels with the Pipe process. Using

specification construction operations, the structure of the process Filter can be refined.

However, care must be given to ensure that the structure of the process Filter is compat-

ible with the structure of Pipe when the two are combined. For example, Filter could be

defined to be a collection of parallel processes wherein only one of them can read from the

pipe and only one of them can write to the pipe.

Note that a pipe process acts as a buffer of size one. Larger buffers do not qualify as

pipes. A buffer of size greater than one can engage in more than one input event before

engaging in an output event. However, the pipe process above cannot engage in two or

more input events in succession. A more general architecture theory than pipe-filter could

6-48

therefore be buffer-filter, where a buffer process is defined to be any first-in first-out buffer

process. Clearly a simple pipe is one such process.

A filter in a pipe-filter design could be defined to be a sequential composition of

processes. This class of pipe-filter designs is classified as piped-batch sequential designs.

Compilers are often organized along these lines. Before formally defining piped-batch

sequential architecture, batch-sequential architecture is formally defined.

6.3.3 Batch Architectures. A batch-sequential design, as mentioned in Sec-

tion 6.2, is one where each process contained in the design processes all of its input data as

a single entity. That is, a batch sequential system consists of a finite sequence of processes,

each of which accept or obtain input values, operate over those values, produce a possibly

empty result, and terminate.

The process connective in CSP that matches this informal description is the sequen-

tial composition operator - ; - : process, process -- process. As with the other process

composition operators, the semantics of the sequential composition operator are defined in

(52). However, the semantics of the sequential composition operator do not preclude the

formation of structures of the form T sat U; V; W where one or more of U, V or W deviates

from the input, process, output, terminate paradigm.

Each process expression used in the definition of a batch-sequential system could be

restricted to the input, process, output paradigm through the use of constraints. That is,

given a batch-sequential structure of the form T sat T1; T2 ; ... ; T,, a constraint C could

be defined over T such that for any trace t in traces(T), t is either

1. empty,

2. a finite sequence of input events,

3. a finite sequence of input events followed by a finite sequence of non-communication

events, or

4. a finite sequence of input events followed by a finite sequence of non-communication

events, and terminates with a finite sequence of output communication events.

6-49

Further restrictions could be placed on T, for example, the size of the sequence of input

and output events could be specified. The point here is that constraints could be used to

restrict the structure of each process used to compose a batch-sequential design. In the

discussion that follows, no such constraints are implied.

Definition VI.22 Batch-Sequential processes. The class of batch-sequential processes can

be inductively defined as follows:

1. (Basis.) Any well-formed expression in CSPA of sort process defines a batch-sequential

process.

2. (Induction.) If P and Q are well-formed expressions in CSPA such that P and Q

define batch-sequential processes, then the CSPA expression P; Q defines a batch-

sequential process.

3. (Extremal.) No CSPA expression defines a batch-sequential process unless it can be

created through a finite number of applications of clauses 1 and 2. El

In general, P;Q 9 Q;T. An architecture theory based on the above definition is

straightforward.

Definition VI.23 Batch-Sequential Architecture Theory. A batch-sequential architecture

theory is a 2-tuple (I, Ap) where I is a diagram of process specifications and AP is a

process-based architecture theory (0, R, 1=) where R is restricted to contain only the CSP

process composition operator - ; : process, process --> process. El

The above architecture theory completely characterizes the class of batch-sequential de-

signs. A proof of this is similar to the proof of Theorem VI.3.

A structuring specification for batch-sequential architectures has the following form:

pspec Batch-Sequential-Structure is
process A {}j,{},:{
process B f},1},f:I
process Batch: :},{},11,11
Batch sat A;B

end-pspec

6-50

This structuring specification can be used to develop batch-sequential designs con-

sisting of a finite number of sequentially composed processes. For example, consider the

domain of image recognition. Applications in this domain could be developed using a

batch-sequential architecture theory. Figure 6.16 depicts some of the stages involved in

image classification. As indicated in the figure, seven of these stages can be executed on

digital computers. In the following paragraphs, a seven stage batch-sequential design cor-

responding to these seven stages is developed. Specification of the structure and operation

of each of these stages is presented in more detail in Chapter VIII.

Creation of a seven segment batch-sequential design is straightforward. The structur-

ing specification Batch-Sequential-Structure is used to define the structure of each process

A and B in the structuring specification. That is, the structuring specification is used to

recursively define the structure of each process of the batch-sequential design. Figure 6.17

depicts this recursive application.

Several structuring specifications are used. The names of the process symbols con-

tained within these specifications have been altered to avoid confusion. The colimit of

the diagram in Figure 6.17 yields a seven segment batch-sequential design. The following

paragraphs describe the formation of the colimit object.

The figure is partitioned into two segments, one containing the process symbols

Batch, Batch2, and Batch3, and the second containing Batch, Batch4, Batch5, and Batch6.

The colimit of the first partition yields a batch-sequential design consisting of three sequen-

tially composed processes. The colimit of the second partition yields a batch-sequential

design consisting of four sequentially composed processes. Taken together, the two par-

titions define a sequential composition of seven processes. The formation of the colimit

objects for each partition is further explained in the following paragraphs.

In the first partition, a trivial process specification containing a single process symbol

is used to associate process A of specification Batch-Sequential with the process Batch2 of

specification Batch-Sequential2. Batch2 is defined to be the sequential composition of the

processes C and D. Another trivial specification is used to associate process C with another

6-51

Set S
of 3D

Objects

Imaging A
sensor I

----- ------------------------

Image Dgtlcmue

creation B Dgtlcmue

Image I

I restoration C

Preprocessing of image
Image DI

enhancement

I --- ------------------ I

Image E
I segmentation

Feature

Iselection F

Image

I registration G

Image H
classificationH

------------------------ I

Decision:

or not of

object(s)

Figure 6.16 Some Stages for Image Recognition Systems (33:295)

6-52

batch-sequential process Batch3, where Batch3 is defined to be the sequential composition

of processes E and F. Thus the colimit object of the first partition is the following object:

pspec Colimit-Partition-1 is
process {A,Batch2} : {},{},{},{}
process B: 0},1}11,0
process {C, Batch3} : f}J{},{},{I
process D f},{},{},{
process E {},{},{},{}
process F {},{}l{},{}
process Batch: {},{ 1}{
Batch sat {A, Batch2};B
{A, Batch2} sat {C, Batch3};D
{C, Batch3} sat E;F

end-pspec

Renaming the equivalence class objects {A, Batch2} and { C, Batch3} to A and C

respectively through specification translation results in a cleaner specification. In addition,

the transitive property of sat can be exploited to highlight the process structure of the

colimit object. Specifically, the expressions Batch sat A;B, A sat C;D, and C sat E;F

can be combined to produce the expression Batch sat ((E;F);D);B, or equivalently, Batch

sat E;F;D;B. The second partition of Figure 6.17 defines the structure of B to be a four

segment sequence.

In the second partition, process B of the specification Batch-Sequential is associated

with process Batch4 of specification Batch-Sequential$. Batch4 is defined to be a sequential

composition of processes G and H. However, both G and H are associated with other batch

sequential structures. Specifically, G is associated with Batch6, which is defined to be the

sequential composition of K and L, and H is associated with process Batch5, where Batch5

is defined to be the sequential composition of processes I and J. Thus the colimit object

of the second partition is the object:

pspec Colimit-Partition-2 is
process A: {},{},:},{}
process {B, Batch4} :{,{},{},{}
process {G, Batch6} {},{},{},{}
process {H, Batch5} : },{},{}I
process I: {},{l,{l,{l

6-53

pspec Tnivial is pspec Batcts-Sequential2 is pspec Trivial is

a..~~ pspec2 Bac-eqTta CappcBthSqet3i
a processAT: f}}}1processET: {}(

a.. pocesB:{1I{}{ proessprocess }

a ~ ~ ~ ~ ~ ~ ~ rcs prcssach{{l}} rccsat

Batch~Bach sat A;Qac3 aD;

T eA-ae end-papec Bach

a, papcTas lipec ecaBat-hequaential4ii papec Trvalc-euni1 is

procsss A}{ T> procesTs Ei}{{

process{J{{}B edproessFc

proproces Batch4 procss Btch

Batch~Bach sat G;HBth3st

end-pspec T -> Batch

Tao BacBeunilii

a seTiili papec; Batch-Sequential5 is pspec Trivial is poesBthi

processlI}{}lIT Bath6satK;

a -ppc pocessJ H}}{{ ead-pspecen-po

a proceprocess Batc(h4

a:Bah satch satI;

eadndppppe

Figur 6.17Creaion o a Sven Sgmen Batch-Sequential Desig

proes H
processs K:
processs L:

pspec ~ ~ ~ roes Batchqetil i rcesBac

proc{Bs Iac4 saTG Batch6};{Hs T Batch5}atK;

{Goes Bath6}satK;
{Hch Bath5 saW;

eend-pspec

Aginurenamingtrougho spcficatiovn tramnsltiontcan bequsedntoa cleain-u h pc

ification.J

procss f 16-54j

When the colimit of both partitions is taken, the following specification is created,

where the process symbol T has been omitted for clarity:

pspec Seven-Segment-Batch is
process {A, Batch2} : {,{},{},{I
process {B, Batch4} : I
process {C, Batch3} : {},l1,11
process D {},{l,{I,{l

process E 11,11,1},1}
process F {},{},{},{}
process {G, Batch6} :1,11,11,f}
process {fH, Batch5} : 1},{f,{},{
process I:

process J:
process K:

process L
process Batch:
Batch sat {A,Batch2};{B, Batch4}
{A, Batch2} sat {C, Batch3};D

{C, Batch3} sat E;F
{B, Batch4} sat {G, Batch6};{H, Batch5}

{G, Batch6} sat K;L
{H, Batch5} sat I;J

end-pspec

The set of process expressions E of the above specification can be simplified to pro-

duce the expression Batch sat ((E;F);D);((K;L);(I;J)), or equivalently, Batch sat E; F; D;

K; L; I; J. Renaming these process symbols using the map

* Batch '-* ImageRec,

* E F-* Creation,

* F '-* Restoration,

* D '-4 Enhancement,

* K ' Segmentation,

* L '-+ Selection,

• I F-* Registration, and

* J F-- Classification

results in the process specification of Figure 6.18. The specification Image-Recognition

shown in the figure contains a number of "unused" process symbols. That is, of the thirteen

6-55

pspec Image-Recognition is
process A
process B
process C {},11j}I
process Enhancement:
process Creation: 11,{},1},1
process Restoration: f
process G0 {},11j}I
process H {},1},f},{}
process Registration: f
process Classification: {},11,1}
process Segmentation: 11,1M,{'ll
process Selection: {},{},{},{}
process ImageRec
ImageRec sat A;B
A sat C;Enhancement
C sat Creation;Restoration
B sat G;H
G sat Segmentation;Selection
H sat Registration;Classification

end-pspec

Figure 6.18 A Batch-Sequential Specification for Image Recognition

Image-Recognition

A B

C Enhancement G H

Creatation Restoration Segmentation Selection Registration Classification

Figure 6.19 Source of Process Symbols

process symbols contained in the specification, only eight are required. The remaining five

symbols, A, B, C, G, and Hare a bi-product of the binary composition operator ";" and can

be eliminated through optimization. Figure 6.19 shows the source of these five symbols.

The semantics of the sequential composition operator preclude communication via

a CSP channel between sequentially composed processes. That is, if Q sat T;V, then no

communication over a CSP channel between T and V can occur. In this example, process

V can begin execution only after process T has terminated. Thus the results of one process

6-56

can be passed to another process sequentially composed with the first only through either

a shared concurrent process such as a pipe or through shared state. The first approach

results in a class of designs called piped-batch sequential, while the second approach is a

specific instance of a repository. Repositories are defined in Section 6.3.5. Piped-batch

sequential architectures are defined in the following section.

6.3.4 Composite Architectures. This section examines an architecture theory

defined in terms of other architecture theories. Specifically, this section defines a piped-

batch sequential architecture theory, which is a composite of a the pipe-filter and the batch

sequential architectures.

Processes composed together using a batch-sequential architecture theory have ex-

tremely limited inter-process communication options. The results of a process P sequen-

tially composed with a process Q can be made available to Q through a shared concurrent

process R provided P sat c!x, Q sat p?x, R sat c?x) (p!x) SKIP), and W sat R

I1 (P;Q). Process R in this expression acts as a buffer or pipe process between P and Q.

R is established to run in parallel with the process defined by P;Q. This parallel struc-

ture cannot be generated using the batch-sequential architecture theory of the preceding

section. However, it can be generated from a composition of the parallel architecture

theory - specifically, from the pipe-filter architecture theory - and the batch-sequential

architecture theory. A piped-batch sequential design consists of a batch-sequential process

running concurrently with a pipe process. The following definition characterizes the class

of piped-batch sequential processes.

Definition VI.24 Piped-Batch Sequential Processes. The class of piped-batch sequential

processes is defined as follows: Any process expression Pipe 1 Filter such that Pipe is a pipe

process and Filter is a batch-sequential process is a piped-batch sequential process. Nothing

else is a piped-batch sequential process. E

Implicit in this definition is that the process Filter is inductively defined. The structure

of a filter process is restricted only by the constraint that its subprocesses be sequentially

composed, and when combined in a parallel with a pipe process, the resulting structure

is well-formed. A filter in a piped-batch sequential design consists of a finite number

6-57

of sequentially composed processes, P1 ;P 2 ,...,P,. Any communication between Pi and

Pj+j can occur only indirectly through the process Pipe. Communication within any Pi,

i E [1..n], may occur on channels contained within Pi. For example, Pi could be defined to

be the parallel composition of the processes Pi,, Pi,, ... , Pi,, in which case communication

between Pi. and Pit, a, b E [1..m] may occur independently of the process Pipe. This again

highlights the possibility of non-homogeneous designs.

Now that the class of piped-batch-sequential processes have been defined, a definition

of the corresponding architecture theory may be given.

Definition VI.25 Piped-Batch Sequential Architecture. Piped-Batch Sequential Archi-

tecture. A piped-batch sequential architecture theory is a pipe-filter architecture theory

PF n (5, ApF) and a batch-sequential architecture theory BS ` (1, ABs) defined over

a common process specification diagram I such that the filter process of the architecture

theory PF is defined using the architecture theory BS.

Designs created using a piped-batch sequential architecture theory have the form Pipe

Filter, where

1. Pipe is a pipe process, and

2. Filter is a batch-sequential design

such that Pipe 11 Filter is well-formed. El

The process Pipe in the above definition acts as a buffer between successive sequentially

composed processes used to define the filter. Note that no restriction is placed on any

process F, used to define the filter concerning communication with the environment. That

is, Fj may be defined to include explicit communication with the environment. A constraint

restricting communication of filter processes could be defined. For example, the constraint

chan(Filter) = chan(Pipe) effectively precludes any filter process F, in Filter from engaging

in any communication events other than with the process Pipe.

Figure 6.20 depicts process specifications from which a piped batch-sequential design

may be defined. Note that the process symbols V and Y shown in the figure may be

6-58

pspec TRIV is pspec Pipe-Filter-Structure is

process TRIV :{}{}{}{} TRIV ->Filter sort msg

end-pspec port left: msg

port right : msg

var m : msg

process Pipe: {left :D, right:D}{ } {} {m:msg}

process Filter [left: D, right:D},{ },{1},1}

TRIV -> W process Pipe-Filter: {left :D, right:D} { I{ } {m:msg}

Pipe-Filter sat (PipellFilter)

Pipe sat (left?m -> (rightlm -> Pipe))

end-pspec
colimit

pspec Batch-Sequential is pspec Piped-Batch-Sequential is

processW: {}{}{}{} sort msg

process V: {}{}{}{} port left: msg

processY: {{}{ }{} port right: msg

W sat V;Y var m : msg

end-pspec process Pipe: {left :D, right:D} {I} {} {m:msg}

process Filter {left: D, right:D,{},{ },{}

process V: {}{}{}{}

processY : {}{}

process Pipe-Filter: {left :D, right:D}{ }I{ } { m:msg}

Pipe-Filter sat (PipellFilter)

Filter sat V;Y

Pipe sat (left?m -> (right!m -> Pipe))

end-pspec

Figure 6.20 Piped Batch-Sequential Structure

given further definition through process specification morphism. In fact, V and Y could

be defined to be sequential composition of other processes.

Compilers are often organized around a piped-batch sequential paradigm. The filter

process of a compiler could consist of the sequential composition of a parser, a semantic

analyzer, an optimizer, and a code generator. The data communicated over the pipe in

this case could consist of an annotated abstract syntax tree (AAST) representation of the

input program. The parser reads the input program, creates an AAST representation of

the program, writes this structure to the pipe, and terminates. The semantic analyzer

reads the AAST from the pipe, operates over it, generates output error messages (if any),

6-59

writes the modified AAST to the pipe, and terminates. The operation of the remaining

filters are similarly defined. In Chapter VIII, the batch-sequential design of Figure 6.18 is

extended to a piped-batch sequential design.

This section has presented one approach to achieving communication between se-

quentially composed processes. The following section introduces another mechanism -

one based on shared variables - that can be used to achieve communication between se-

quentially composed processes. The architecture theory of the following section is defined

using constraints.

6.3.5 Constraint-Based Architectures. Architecture theories can be defined

through constraints placed on other architecture theories. For example, the layered ar-

chitecture theory of Section 6.3.2.2 could be defined as a constrained parallel architecture

theory. The architecture theory of this section, repository architecture theory, is defined

as a constrained type of process-based architecture theory. Before defining repository

architecture theory, the notion of constraint-based architecture theory is made precise.

Definition VI.26 Constraint-Based Architecture Theory. A constraint-based architec-

ture theory is a 3-tuple (1, Ap, C) where I is a diagram of process specifications, Ap is an

architecture theory (0, R, 1=), and C is a set of constraints defined over R and 0 such

that each c E C satisfies one of the following:

1. c defines the alphabet of a process expression of a process symbol in 0.

2. c defines both the alphabet and a set of traces that a process expression of a process

symbol in 0 must exhibit.

3. c restricts how a relation in R can be used to define structure. E

That is, a constraint-based architecture theory is an architecture theory in which either

some of the process symbols in 0 have been given partial definition or in which application

of the composition operations in R is restricted. Client-server architecture theory and

pipe-filter architecture theory are each constraint-based architecture theories. Repository

architecture theory is also a constraint-based architecture theory.

6-60

A repository design consists of a collection of processes operating over a shared

structure. Repositories are ubiquitous in compute science. For instance, the JOVIAL pro-

gramming language is designed around this theme where the comm-pools of the language

play the role of the shared data structures. Common-blocks in FORTRAN-77, header files

in C and C++, and Ada package specifications can also be used to define common data

pools in their respective languages.

Some repository designs have been given special treatment in the literature (e.g., (74,

7)). For example, Blackboard systems are a constrained class of repository where the shared

structure is the blackboard. A collection of processes operating over the shared structure

are usually either control units which post changes to the shared structure or knowledge

sources which monitor the shared structure and generate requests to alter some subset of

the shared structure. Some compilers are based on repository architectures. For example,

the shared structure for a compiler or family of compilers could be an abstract syntax tree.

As the parser builds the tree, semantic analyzers, optimizers, and translators may begin

operating over the tree. The order of execution for repository-based compilers is consistent

with the order of execution of batch-sequential or piped-batch sequential implementations,

but in a repository based implementation, each stage may be concurrently executing. For

example, a section of an abstract syntax tree representation of an input program may be

built by the parser then semantically analyzed while other portions of the tree are built.

The following definition characterizes the class of repository designs.

Definition V1.27 Repository processes. The class of repository processes is inductively

defined as follows:

1. (Basis.) Any well-formed expression in CSPA of sort process containing at least one

state-holding variable defines a repository process.

2. (Induction.) Let P and Q be two well-formed expressions in CSPA such that P and

Q define repository processes. If P and Q share at least one variable, then the CSPA

expression PpQ defines a repository process where p is any binary process composition

operator of CSPA such that P p Q is well-formed.

6-61

3. (Extremal.) No CSPA expression defines a repository process unless it can be created

through a finite number of applications of clauses 1 and 2. E

The above definition does not restrict communication over CSP channels. Processes

of a repository design can communicate with each other through shared data structures.

For example, semaphore variables can be shared between processes to ensure protection

of critical regions as follows. Denote by mutex a semaphore variable whose initial value

is the integer 1, and define the parameterized atomic operations wait(S) : while (S •_ 0)

do SKIP; S := S - 1 and signal(S) : S := S + 1 where ":=" is destructive assignment.

If each process requiring access to the critical section guarded by the semaphore variable

mutex includes mutex in its set of variables and observes the protocol wait(mutex); critical-

section; signal(mutex), then only one process at a time will have access to the critical

region.(97) Note that critical section protection could also be provided through a shared,

subordinate semaphore process SEM where SEM sat p . (v "') SEM) wherein p and

v are events. If p and v are included in the alphabets of each process Pi of a structure

P requiring access to the critical section, and if each such process observes the protocol

mutex.p -- p (critical-section mutex.v) with mutex:SEM//P, then the critical section

will be protected.(52) The point here is that shared data structures, like shared events,

permit a form of communication not involving channels.

A constraint-based architecture theory leading to repository designs is defined next.

Definition VI.28 Repository Architecture Theory. A repository architecture theory is

a constraint-based architecture theory (1, Ap, C) where C requires that:

1. For any process symbol P in 0, var (P) is not empty; and

2. Two process symbols P and Q in 0 can be related through the process composition

operator r in R only if P r Q is well-formed and if var(P) n var(Q) = {}. E

Clause 1 requires that every process of a repository design contain state variables, and the

statement var(P) n var(Q) k {} in Clause 2 requires repository designs to share some

set of variables. The above architecture theory is complete with respect to the class of

repository processes. A proof of this is similar to the proof of Theorem VI.3.

6-62

The constraint reflected in the architecture theory can be used to achieve communi-

cation between sequentially composed processes. That is, if P sat P1 ; P2 ; ... ; P, where

P1, P 2 , ... , Pm share a common variable, the value of the variable when process Pi termi-

nates is the same as the value of the variable when Pj+I begins. Continuity of the value of

the variable is ensured by process P and the definition of value. Note that specification of

repository-based applications will be feasible in ISlang only after constraint representation

and constraint-based reasoning over process specifications have been defined.

6.4 Summary

This chapter has introduced and formally defined several architecture theories, in-

cluding functional, process, and component based architecture theories. Each of these

architecture theories was defined in terms of category theory.

Functional Architecture Theory is used to define operators in terms of other operators

using the the product and coproduct operations of category theory. Application of a

functional architecture theory to define the structure of operations defined in functional

specifications was explored.

Several process-based architecture theories such as layered, pipeline, and batch-

sequential process-based architecture theories were defined. Structuring specifications en-

capsulating the composition operators of architecture theories were introduced and defined,

and their use in defining structure was explored via the development of several simple

process-based specifications.

Figure 6.21 depicts a taxonomy of the architecture theories presented in this chapter.

The arrows in the figure denote specialization. At the root of the taxonomy is the general

process based architecture theory of Definition VI.6. Each of the architecture theories

defined in the previous subsections are specializations of this process based architecture

theory.

Batch sequential, pipeline, and parallel architecture theories were defined by restrict-

ing the set of operators used to combine processes to form other processes. Repositories

were defined using constraints; specifically, that each process in the design share a common

6-63

Process Based

Batch-Sequential Parallel Repository

Pipe-Filter Layered Client-Server Pipeline

Piped Batch-Sequential

Figure 6.21 Architecture Taxonomy

variable. The architecture theories for client-server, layered, and pipe-filter, were defined

as specific types of parallel architecture. But does this imply that any layered design,

pipe-filter design, or client-server design is also a parallel design? Is the converse also true?

Under what conditions can a parallel design be translated into a pipe-filter design? Into a

layered design? Or into a client-server design?

Relationships between some of the process-based architecture theories developed in

this chapter were briefly explored. Among the results of this preliminary investigation

is that parallel architecture theory appears to be a more expressive architecture theory

than any of the other process-based architecture theories. In addition, the use of the

concealment operator to define relationships between process specifications was shown in

induce a a specification morphism from the target of the concealment to the source of

the concealment. The implication of this finding is that application of the concealment

operator to a process specification results in a specification whose set of models may be

larger than the set of models of the source specification. The next chapter explores in

greater detail relationships between the process-based architecture theories defined in this

chapter.

6-64

VII. Analysis of Process-Based Architecture Theories

7.1 Introduction

The previous chapter defined several architecture theories. Some of the architecture

theories were introduced as specializations of more general architectures. For example, a

client-server architecture was defined to be a specific type of parallel architecture. Simi-

larly, some of the architecture theories were defined to be combinations of other theories.

This chapter highlights relationships between the various architecture theories defined in

the proceeding chapter. These relationships are developed through an exploration of the

issues involved in translating a design in one architecture theory into a design in another

architecture theory such that the translation process is behavior preserving. For example,

this chapter investigates whether layered designs can be translated under process specifi-

cation morphism to pipelined designs.

This chapter is organized into the following subsections:

1. Section 7.2 defines a semantic weaker than trace semantics. This weaker semantic

can be used to determine if a translation preserves traces consisting solely of com-

munication events.

2. Section 7.3 describes the relationship between parallel and layered designs.

3. Section 7.4 describes the relationship between parallel and pipeline designs.

4. Section 7.5 describes the relationship between layered and pipeline designs; and

5. Section 7.6 describes other relationships.

7.2 Mathematical Foundations

The definition of successful design translation may be context sensitive. Depending

on the application, a translation that preserves trace satisfaction may not be required;

perhaps some communication can be concealed from the environment without unduly

impacting application functionality. At issue is whether a translation from one design to

another can be defined such that it preserves at least a subset of the behavior of the source

design.

7-1

One measure of successful translation, trace satisfaction, was defined in Chapter VI.

A weaker semantic, one that ignores everything except for communication over external

CSP channels, is defined next.

Definition VII.1 External Compatibility. Given two process expressions Di and D2

where chanexternal(D1) = {fcI, c2 ,..., ck}, D 2 is externally compatible with D, if for any

trace t E traces(Di) there is a trace t' E traces(D 2) such that t [{c 1 ,c 2 , .. . ,ck} = t'

{cI) C2, c... , ck1 }. The expression DIED 2 is used to indicate that D 2 is externally compatible

with D1 .

If D1 E_ D 2 and D 2 E Di then Di and D 2 are externally equivalent designs. The

notation Di =cD 2 will be used if D1 is externally equivalent to D2 . El

For example, consider the following process expressions:

P sat PglIP2

P1 sat (qx £• Skip I c?x c (r!f(x) c Skip))

P2 sat lefty ((c!g(y) c (rv 's (right!h(v) csP Skip)))

Q sat Start; Q, > Q2 > Q3

Start sat e) Skip
Q, sat left?y) (c12!g(y) £) Skip)

Q2 sat C12 ?x (c2 3 !(y) £ Skip)
Q3 sat C23 ?v) (right!h(v) c Skip)

Then chanexternal(Q) = {left, right}, and traces (P)[{left, right} = {f(left.y), (left.y,

right.h(f(g(y))))}. Similarly, traces(Q)[{ left, right} = {f,(left.y), (left.y, right.h(f(g(y)))

)}. Thus Q _E P. That is, P and Q exhibit the same behavior with respect to the external

channels left and right. Note however P 9 Q. Also note that traces(P) 9_ traces(Q)[aP

and traces(Q) g traces(P)r aQ.

External compatibility, like trace satisfaction, defines a partial order over designs:

1. Reflexive - A design is externally compatible with itself. That is, for any design D,

DE-D.

2. Transitive - If Di E D2 and D 2 __ D3 , then Di E_ D 3.

7-2

3. Antisymmetric - By definition, if D1 ; D 2 and D 2 E; D1 , then D1 =, D 2.

If process P is externally compatible with process Q, then P exhibits at least the external

communication behavior of Q. However, P and Q may exhibit quite distinct internal

behavior in terms of their trace. That is, D, =- D 2 does not imply that D1 and D2 are

trace equivalent. This fact is formalized in the following theorem.

Theorem VII.1 Given two well-formed process expressions P and Q, Q E P does not

imply traces(Q) c traces(P) ý a Q.
CSP S

Proof. Consider the simple process expressions P sat e - (c?x qsf(x)) and

Q sat c?x c (e) q!f(x)). Clearly Q E; P. However, traces(P) = {J(,(e), (e,c.v),

(e, c.v, q.f (v))} and traces(Q) = {(),(c.v), (c.v, e), (c.v, e, q.f (v))}, thus traces(Q) r traces

(P) [aQ.

This theorem implies that translations that can be shown to preserve external compatibility

are not necessarily process specification morphisms.

At a minimum, external compatibility must be maintained when translating a de-

sign of one architecture theory to a design of another architecture theory. Ideally, trace

satisfaction should be preserved as well. However, it may not be possible to preserve trace

satisfaction between designs, yet it may be possible to preserve external compatibility be-

tween designs. As formalized in the following theorem, preserving trace satisfaction implies

that external compatibility is preserved as well.

Theorem VII.2 Given the well-formed process expressions P and Q such that P =-T Q,

then P =-, Q.

Proof. By definition, P =T Q if and only if every trace of P is also a trace of Q. Denote

by tr = (el, e2 , . . e,m) an arbitrary trace of P. If tr contains no communication events,

then neither input nor output was accepted or produced by P during tr. Because tr is also a

trace of Q, this implies that for such traces, P =-, Q is trivially true. On the other hand, if

tr includes communication events, P =-T Q implies that both P and Q must have engaged

in the same sequence of communication events of the same values over the same channels,

im plying P =- Q . 7

7-3

This theorem can be generalized as follows.

Theorem VII.3 Given the well-formed process expressions P and Q such that traces(Q)

C traces(P) r aQ, then Q E_ P.

Proof. Denote by tr = (ej,e 2,... , e.) an arbitrary trace of Q. If tr contains no com-

munication events, then neither input nor output was accepted or produced by Q during

tr. This implies that for such a trace, Q E_ P is trivially true. On the other hand, if tr

includes communication events, then with tr E traces(Q) and tr E traces(P) [ceQ, if Q can

engage in a sequence s = (Cl.Vi, c2.v2, ... ck.vk) of communication events over the channels

{cI, c2, ... , ck}, then traces(Q) 9 traces(P) [ceQ implies there exists a trace t' in traces(P)

such that t' r {c1,c 2 ,... ,c} -- s, which implies Q E_ P. U

External compatibility can be generalized for use with process specification mor-

phisms as stated in the following definition.

Definition VII.2 External Compatibility. Given the process specifications pSP and pSP'

and a morphism a from pSP to pSP', pSP' is externally compatible with pSP if for every

process symbol P in pSP, cu(P) = P' implies traces (E(P)) rchan(P) C (traces (-'(P')) r

chan (P')) 1, where traces(E'(P'))I1 is the set {ti It E traces(E'(P'))}. El

There is a subtle distinction between the above definition and Definition VII.1. Specifically,

external compatibility in Definition VII.1 required both processes to share a common set of

channels, while no such requirement is made in the above definition. Definition VII.2 allows

a process defined by a process expression of a process specification pSP' to accept values

over channels not contained in pSP and to produce additional results and communicate

them over channels not contained in pSP. Definition VII.2 can be used to formalize the

relationship between process specification morphisms and external compatibility as stated

in the following theorem.

Theorem VII.4 Given process specifications pSP and pSPY, if a process specification

morphism a from pSP to pSP' exists, then pSP' is externally compatible with pSP.

Proof. Denote by o a process specification morphism from process specification pSP

to process specification pSP'. Because a is a specification morphism, for any process

7-4

symbol P' in r.' such that oa(P) = Y', traces(.E(P)) 9 traces(E'(P'))I a. This implies

traces(E(P))[chan(P) C (traces(E'(P')) [chan(P')) 1. 0

Thus, if a process specification morphism between two specifications can be defined, then

the target specification is externally compatible with the source specification.

As stated in the following theorem, if a design D1 can be translated under specifica-

tion morphism to a design D2 , and if D 2 can be translated under specification morphism

to D 1 , then D1 and D 2 are isomorphic.

Theorem VII.5 Given two well-formed specifications S and S2 , if a specification mor-

phism from S to S2 exists and a specification morphism from S2 to S exists, then S1 , S2 .

Proof. Denote by U12 a specification morphism from S to S2 , and denote by 0.21 a specifi-

cation morphism from S2 to S1. Because 0.12 is a specification morphism, S = S2 1,12 and

S2 = S1 1121, which implies S = (S1 I a21) 1,1 and S 2 = (S 2 I 01̀ 2) I,,,. These facts will

be used to establish that a12 and a21 are bijections. A specification morphism is bijective if

and only if it is both one to one and onto.

1. One-to-one. Suppose o 12 is not one-to-one. Then there exists a collection {al, a 2 ,

... , am} of elements of S1, m > 2, such that 0c12 (ai) = b, 1 = i..m, for some b in

S 2 . This implies that b I112-= {ai,a 2 ,...,aam}. Because (b I112) 1 2 1 = b, this implies

that ai 1,,1= b, i = 1..m. But then (ai I1,) 1112= b I,= {a 1 ,a 2 ,...,a,m} 0 a,, for

i = 1..n. This implies that 012 must be one-to-one. A similar argument shows that

a21 must be one-to-one.

2. Onto. Suppose a12 is not onto. Then there exists a b in S2 such that b 1,,2 is

undefined. This implies that (b 1,,,) 1,21 is undefined as well, which implies (b 12

) 1121•= b which contradicts the requirement that (b Ia1,) 1,21= b. Thus a12 must be

onto. A similar argument shows that a 21 must also be onto.

By conditions 1 and 2 above, 0a12 and a21 are both one-to-one and onto, which implies that

they are both bijections. Because 0"12 : S1 --+ S2 is a bijection, S •- S2 . E

The implication of this theorem is that if every design D of an architecture A can be

translated under specification morphism to a design D' of an architecture A', and if every

7-5

design D' of A' can be translated to a design D of A, then A and A' are isomorphic

architectures. For example, if every layered design can be translated under specification

morphism to a pipelined design, and if every pipelined design can be translated under

specification morphism to a layered design, then pipeline architecture is isomorphic to

layered architecture.

This subsection has introduced some of the desired properties that should be pre-

served whenever a design is translated. These properties, trace satisfaction and external

compatibility, each define partial orders that can be used to determine the relative success

of a translation effort. The following subsections describe whether translations between

designs of some of the architecture theories of Chapter VI can be defined such that these

properties are preserved.

7.3 Relationship Between Parallel and Layered Designs

As shown in Figure 6.21, a layered architecture is a specialized parallel architecture.

But can this specialization be defined via a specification morphism? Can a design using

a parallel architecture theory be translated under specification morphism to a design us-

ing a layered architecture theory? Conversely, can a layered design be translated under

specification morphism to a parallel design? This section formally addresses these issues.

7.3.1 Translating Layered Designs to Parallel Designs. Communication between

a process and its subordinate in a layered design is concealed from the environment. In

other words, a layered design can be viewed as a parallel design in which inter-process

communication has been concealed, and in fact, the composition operator // used in the

definition of layered architecture theory is itself defined in terms of the parallel composition

operator 11. As described in Theorem VI.4, concealment induces a specification morphism

from the target specification to the source specification. This implies that specification

morphisms from layered designs to parallel designs exist. This fact is expressed in the

following theorem.

Theorem VII.6 Any well-formed layered design can be translated under specification

morphism to a parallel design.

7-6

Proof. Both layered processes and parallel processes are defined inductively. Therefore

structural induction is used to prove the claim.

1. (Basis). Based on Definition VI.11, any well-formed expression in CSPA of sort

process defines a layered process. However, by Definition VI.9, such an expression

also defines a parallel process. Thus for the basis case, the translation is simply the

identity map.

2. (Induction). Based on Definition VL11, if L, and L2 are layered processes, then so

is L 1 //L 2 . Based on the definition of the operator //, L 1 //L 2 = (L11IL 2) \ cLj. By

Theorem VL.4, there exists a process specification morphism from (L111L 2) \ OYL 1 to

L1 IL2 . N
CSP

For example, the layered design L sat (P//Q) where P sat inx - out!p(x), and Q

sat left?x) (in!q(x)) (out?y) (right!r(y) £p SKIP))) has the set of traces {(,

(left.x), (left.x, right.r(p(q(x))))}. Translating to the parallel design LP sat PIIQ yields a

process which has the set of traces {(), (left.x), (left.x, in.q(x)), (left.x, in.q(x), out.p(q(x))),

(left.x, in.q(x), out.p(q(x)), right.r(p(q(x)))),}, which when restricted to the alphabet of

L, where aL = aQ - aP, or {left, right}, yields {(), (left.x), (left.x, right.r(p(q(x))))}.

Thus traces(L) 9_ traces(LP)4 aL, which implies that the translation from L to LP is a

specification morphism.

7.3.2 Translating Parallel Designs to Layered Designs. The preceding subsection

illustrated how a layered design is translated via a specification morphism to a parallel

design, and it provided some insight to the problem of translating parallel designs to

layered designs. As stated in the following theorem, non-trivial parallel designs cannot be

translated under specification morphism to layered designs.

Theorem VII.7 Given two arbitrary well-formed expressions P1 and P 2 in CSPA where

apP, aP 2 : {} and aP1 / aP 2 such that traces (P 11P2) {(0}, (P111P2) •= (P2//Pl).

Proof. Communication of all forms between a process and its subordinate is hidden from

the outside environment. Thus if processes P1 and P2 share a common CSP channel c in

P2 //P1 , communication over c will not appear in any trace of P2 //P 1 , but will appear in

7-7

a trace of P111P2. This implies traces(PiIP 2) 9 traces(P 2//Pi), which yields (PIIIP 2) ý=

(P2//P1). Similarly, if P, and P2 share a non-communication event e, then e may appear

in a trace of P1I1P2 but will not appear in any trace of P2//Pl, which implies (P111P 2) K=

(P2/P 1) .

The above theorem is not very strong. It simply states that a direct mapping of non-

trivial subprocesses of a nontrivial parallel process to individual layers of a layered design

cannot be accomplished via specification morphism. The stronger theorem provided below

states that no non-trivial parallel design can be translated under specification morphism

to a layered design of more than one layer.

Theorem VII.8 Given a well-formed parallel design P sat P1 11 P2 Pn consist-

ing of n nontrivial subprocesses such that traces(P) : {f}, P cannot be mapped under

specification morphism to a layered design L consisting of two or more non-trivial layers.

Proof. Suppose a specification morphism a from P to a layered design L consisting of

m > 1 nontrivial layers could be defined. Because only those events of the outer layer

Lmi of L not shared with any subordinate layer Lb, b < m - 1 appear in any trace of L,

each subprocess of P contributing to any trace of P must be mapped to the outermost layer

Lm-i of L. This implies that for any event e in any trace t in traces(P), if e E aPi for

any subprocess Pi of P, then Pi must be mapped to the outer layer of L.

If every Pi shared a common alphabet, i.e., aP2 = aP for every Pi of P, then each

Pi must be mapped under a to the outer layer of L, otherwise every layer of L would share

a common alphabet, resulting in traces(L) = {()}. However, mapping every Pi in P to the

outer layer of L results in a layered design of less than two layers. Therefore, P cannot be

translated to a layered design of more than one layer if V(Pi)(Pi E P =. Pi = aP).

If aPa :A aP for any Pa in P, then traces(P) = {t I (t [aP1) E traces(P1) A (t

aP 2) E traces(P 2) A ... A (t [aP,) E traces(P•) A t E {aP1 U aP 2 U... U eP,}*}, where

{aQ}* denotes the Kleene closure of ceQ.(26) Distributing U over A produces traces(P) =

{t I (t [aP 1) E traces(Pi) A t E {cxP1 U cyP2 U... U aP•}*} U {t I (t [aP2) E traces(P 2)

A t E {aP1 U aP 2 U ... U aPn}*} U...U {t I (t [cP,) E traces(P•) A t E {aP1 U aP2

U... U aP•}*}. Because no Pi is a trivial process, no set traces(Pi) for any Pi in P is

7-8

empty. Suppose for some Pj in P the set {t I (t [aPj) E traces(Pj) A t E {aPi U aP 2

U ... U aPn}*} was empty. Then Pj in P contributes to no trace of P, which again implies

that Pj is a trivial process. Because no subprocess of P is trivial, this implies that each set

{t I (t [aPi) E traces(Pi) A t E {aPi U xaP2 U... U aPn}*} for Pi in P is nonempty. This

implies that each Pi in P contributes to the traces of P, which in turn implies that each

Pi of P must be mapped to the outer layer of L. U

If layered designs could be translated under specification morphism into parallel

designs and parallel designs could be translated under specification morphism to layered

designs, then parallel and layered architecture theories would be isomorphic.

Theorem VII.8 implies that arbitrary well-formed parallel designs consisting of non-

trivial subprocesses cannot be translated under specification morphism to layered designs

of more than one layer. Furthermore, Theorem VII.8 implies that specification construc-

tion operations cannot be defined for translating designs of parallel architectures to designs

of layered architectures because such translations do not in general preserve trace satis-

faction. Although parallel designs cannot be translated under specification morphism to

layered designs, this does not preclude the possibility of translation under external com-

patibility.

Claim VII.1 Any well-formed design P of a parallel architecture theory can be translated

to a design L of a layered architecture theory such that P E_ L.

The above claim can be proven using language theory, and is conceptually the same as

saying that any parallel design can also be implemented as a sequential design sacrificing

only performance. A proof of the above claim is out of scope of this research effort.

7.3.3 Summary of the Relationship Between Parallel and Layered Designs. This

section has highlighted the relationship between designs of layered and parallel architecture

theories. The result of this comparison is that layered designs can be translated under

process specification morphism to parallel designs, but the converse is not true; parallel

designs cannot in general be translated under specification morphism to layered designs.

When taken into conjunction with Theorem VII.5, this implies that parallel architecture

7-9

theory is not isomorphic to layered architecture theory. This is not a surprising result, for

subordination is defined to be a restricted form of parallel composition.

7.4 Relationship Between Parallel and Pipeline Designs

This section explores some of the relationships between parallel and pipelined designs.

7.4.1 Translating Parallel Designs to Pipeline Designs. Pipeline architecture the-

ory is shown in Figure 6.21 to be a specialization of parallel architecture theory. However,

this specialization - like the specialization from parallel architecture to layered archi-

tecture - cannot be defined via specification morphism. This fact is formalized in the

following theorem.

Theorem VII.9 Given two arbitrary well-formed expressions P1 and P 2 in CSPA such

that P1 > P 2 is well-formed and traces(PilIP 2) 4 {f}(, then (PilIP 2) L (P1 > P 2).

Proof. Communication between successive stages of a pipeline process is hidden from the

outside world. Processes P1 and P 2 share a common CSP channel in P1 > P2 such that

communication over that channel does not appear in any trace of P1 > P 2 . However,

communication over the common channel between P1 and P2 will appear in the traces of

P111P 2. This implies traces(PilIP 2) V traces(Pi >» P2) [a(PilIP2), which yields (P1IIP2) k4

(P1 > P2). U

Theorem VII.9 addresses only whether the processes of a parallel design can be

mapped under a bijective specification morphism to processes in a pipeline design. The

theorem can be generalized to address the issue of whether other forms of specification

morphisms such as injections can be defined which map the subprocesses of a parallel design

to subprocesses of a pipeline design. The following theorem is one such generalization.

Theorem VII.10 Given a well-formed parallel design P such that P sat P111P211 ... IIPs,

if

1. For every subprocess Pi, i = 1..n, of P traces(Pi) = {}(), and

7-10

2. aPh n aPj = {} for at least two subprocesses Ph and Pj, h 7 j, of P such that

3 (t) (t E traces(P) ==> 3 (e) (e E a•Ph n cep =: e in t)),

then P cannot be translated under specification morphism to a pipeline process G of two

or more non-trivial stages.

Proof. Suppose a specification morphism a from P to an m-stage pipeline could be defined,

where m > 2. Then ceG = aleft(Gi)Uaright(Gm), where left is the input channel of G, and

right is the output channel of Gm. Thus, if any trace t E traces(P) contains anything other

than communication events, then traces(P) 9 traces(G) ,, because traces(G)l, contains

only communication events.

Suppose then that every trace of P contained only communication events. Denote

then by Ph and Pj, where h # j, two subprocesses of P such that cYPh fl aPj :7 {} and at

least one common event between Ph and Pj appears in some trace t of P. Such processes

Ph and Pj are guaranteed to exist based on the assumptions of the theorem. Because all

events in any trace of P are communication events, this implies that Ph and Pj commu-

nicate. However, no communication between any two stages of G can appear in any trace

of G. This implies that t E traces(P), but t 0 traces(G)I,, which implies that or is not a

specification morphism. N

The above theorem states that specification morphism cannot generally be used to

translate parallel designs to pipeline designs. However, specification morphism can be

used to translate parallel designs to pipeline designs in the degenerate case when the set

traces(PiIIP 2) consists of only the empty trace.

As formalized in the following theorem, there are conditions under which parallel

designs can be translated into pipeline designs such that the pipeline design is externally

compatible with the parallel design.

Theorem VII.11 Given a parallel design P such that P = P1 lIP 2 11 ... IIP", P can be

translated into a pipeline design L such that P Fl L if

1. No subprocess of P shares an event with any other subprocess of P except for possibly

the successful termination event V/.

7-11

2. Each sub-process Pi, i 1..n, of P contains exactly two CSP channels, one for input

and one for output; and

3. A bijection m : Process -- Nat mapping each sub-process of P to an element of the

set {1, 2,..., n} can be defined such that m(Pi) = m(Pj) - 1 if and only if Pi and Pj

share a single CSP channel such that the channel is used exclusively for output in Pi

and exclusively for input in Pj.

Proof. The first of the above two conditions restricts the subprocesses of P to be stages.

The second condition requires that a total order over the stages of P exist. Because RIIS =

SJIR, P can be defined by the expression PflIPIl ... IIP• where for i = 1..n, Ph = Pj

such that m(Pj) = i. Communication over the internal channels of P can be concealed

as follows. Denote by C the set of channels used for interprocess communication in P.

That is, C = {c I 3(i,j)(i,j E {1,2,... ,n} =• c E chan(Pi) A c E chan(Pj) A m(Pi) =

m(Pj) - 1)} where Pi and Pj are subprocesses of P. Then P\ C defines a process in which

all communication over the internal channels of P are concealed from the environment.

Then the traces of P \ C consists of sequences of input events over the input channel of PI

and output events over the output channel of Pn' such that for any trace t in traces(P \ C),

{0 < size(t I in) - size(t I out) •_ n} where in is the input channel of P• and out is the

output channel of Pn. In this case, t E traces(P \ C) •ý t E traces(P• » P2 > ... > P,),

which implies (PilIP 211"'" IIPn) ý_ (P; > 2' >»... >P Pn'). U

The above theorem does not imply that a parallel design will, when translated to a

pipeline design, exhibit the same behavior for the same sequence of enabled events. In fact,

a pipeline design and a parallel design whose internal communications are concealed may

engage in different sequences of communication events. For example, consider the three

stage pipeline P >» P 2 > P3 and the three process parallel design PilIP2 11P3 operating in

an environment in which inputs are always ready for P1. Because the semantics of the con-

nective > places an emphasis on external communication, no trace of P1 > P2 > P3 will

contain an output event unless the output event has been preceded by two input events.

However, the semantics of the connective 11 places no such emphasis on communication.

Thus an output event may appear in the traces of P1 lIP 2 lIP 3 concealed over internal commu-

nication following a single input event, which implies that the two designs yield differing

7-12

sequences of communicated values when operating in the same environment. However,

Definition VII.1 makes no reference to the operating environment. If Definition VII.1 was

strengthened to include references to the external environment, then the above theorem

would not hold.

As the above theorems illustrate, only trivial parallel designs can be translated under

specification morphism to pipeline designs, and only a very restricted class of parallel design

can be translated under external compatibility to a pipeline design.

7.4.2 Translating Pipeline Designs to Parallel Designs. Although parallel de-

signs cannot generally be translated under specification morphism to pipeline designs, as

pointed out in the following theorem, pipeline designs can be translated under specification

morphism into parallel designs.

Theorem VII.12 Any well-formed pipeline design can be translated under specification

morphism to a parallel design.

Proof. Both pipeline designs and parallel designs are defined inductively. Therefore struc-

tural induction is used to prove the claim.

1. (Basis.) A single stage pipeline design P, by definition, contains exactly two chan-

nels, one for input and one for output. If P is not chained to any other process,

then by Definition VL.9, P is also a parallel process. Thus for the basis case, the

translation is the identity specification morphism.

2. (Induction.) Consider the pipeline design P1 > P2 . Both P1 and P 2 have exactly

two channels, one for input and one for output, with communication between P1

and P 2 not only concealed from the environment but of lower priority than external

communication. Denoting the channels of both P1 and P2 by left and right, with

right of P1 and left of P 2 defining a channel c between P1 and P 2 , P1 > P2 has the

following laws:(52)

(a) (c!v) Pi) > (c?v) P 2) = P1 > P 2 (v), where P 2 (v) is denotes the process

P 2 after accepting the value v. (Internal communication is concealed.)

7-13

(b) (c!v ...) P1) > (right!w " P2) = right!w _ ((c!v • P1) > P2) (External

communication takes precedence.)

(c) (left?v £• P,(v)) > (c?w £) P 2 (w)) = left?v £ (P1(v) > (c?w £S P2 (w)))

(External communication takes precedence.)

Concealment of internal communication can be accomplished through application of the con-

cealment operator, and the possibility of engaging in external communication over internal

communication is offered in parallel designs:

1. With respect to communication over the internal channel c, traces(PI > P2) [{c}

{1}, but traces((PiIIP 2) \ {c})[{c} = {0}. Thus concerning communication over

the internal channel c, we have traces(P >» P2) {c[} _ traces((PI11P 2) \ {c}) r {c}.

2. Concerning external communication, ((left?v ¶sP p(v)) l(c?w)_ P2(w))) is equiv-

alent to (left?v £s (Pl(v) IIc?w £S P2(w))) I (c?w (left? p() P2(W))),

which clearly offers the possibility to engage first in external communication before

engaging in internal communication. Similarly, ((c!v c_ Pp)ll(right!w • P 2)) is

equivalent to (c!v £• (Pill(right!w csi P2))) i (right!w cs~p ((c!v) P1)11P2)), which

clearly offers the possibility to engage first in external communication before engaging

in internal communication. Clearly then, traces(Pi >» P2) _ traces((PiliP 2) \ {c}).

Noting that traces((Pi > P2) \ {c}) = traces(P >» P2) where c is the channel between P1

and P2 , items 1 and 2 above imply that traces(Pi > P2) _ traces((PilIP 2) \ {c}), which

implies that P >» P 2 can be translated under specification morphism to (P1IIP 2) \ {c}.

Theorem VI.4 states that a specification morphism from (P1 1P2)\f{c} to P lIP 2 exists. Since

specification morphism compose to form specification morphisms, a specification morphism

exists from P1 > P 2 to P lI P 2 . M

Because well-formed pipeline designs can always be mapped under specification mor-

phism to parallel designs, TheoremVII.4 states that parallel designs are externally com-

patible with pipeline designs.

7.4.3 Summary of the Relationship Between Parallel and Pipeline Designs. The

result of this comparison is that pipeline designs can be translated under specification

7-14

morphism to parallel designs, but not conversely. When taken into conjunction with The-

orem VII.5, this implies that parallel architecture theory is not isomorphic to pipeline

architecture theory.

7.5 Relationship Between Layered and Pipeline Designs

This section addresses the issue of translating layered designs to pipeline designs and

vice-versa.

7.5.1 Translating Layered Designs to Pipelined Designs. The process composition

operators > used in pipeline architecture theory and // used in layered architecture theory

both conceal communication. However, the locus of concealment differs between the two

operators.

The operator > conceals all communication from the external environment except for

communication over the input channel of the first process of the chain and communication

over the output channel of the last process in the chain. Thus, the set of traces of an

n-stage pipeline P where P sat P1 > P2 > ... > Pn is the set defined by {t 1 (0 < size(t I

{in}) - size(t I {out}) < n) A t E {in, out}*} where in is the input channel of P1 and out

is the output channel of P,. In addition, communication in a pipeline design is acyclic; a

stage in a pipeline can communicate data to only the next stage in the pipeline.

The operator // conceals from the external environment all events shared between a

process and its subordinate process. Thus the set of traces of a layered design L where

L sat ((Lo//L1) / ... Ln-1) //L is the set traces(Ln \ aLn- 1), where aLi- 1 C Li, Vi E

{1, 2,..., n}. Communication between a process and its subordinate can be cyclic since

there are no restrictions concerning the flow of data between a process and its subordinate.

Because only the communication over the input channel of the first stage and commu-

nication over the output channel of the last stage of P appear in any trace of P, the outer

layer Ls,, of a layered design Ls must map to both the first stage of P if Ls accepts input

and must map to the last stage of P if Ls generates output. These restrictions greatly

reduce the class of layered designs that can be translated under specification morphism

7-15

to a pipeline design. In fact, as the following theorem states, non-trivial layered designs

cannot be translated under specification morphism to multi-stage pipeline designs.

Theorem VII.13 An arbitrary layered design L containing at least one input channel ci,

and at least one output channel Cout such that cin and cout appear in a trace of L cannot

be translated under specification morphism to a pipeline design P of two or greater stages.

Proof. Suppose a specification morphism a from a layered design L of n > 1 layers to a

pipeline design P of m > 1 stages could be defined. Then traces(L) C traces(P)I, only if

every external channel of Ls,, can be mapped to either the input channel of Pi or the output

channel of Pm. This is the only means through which communication over these channels

will appear in the traces of the pipeline design. Because all external channels of a layered

design reside in the outermost layer Ls,n- 1 , this results in Ls,"- 1 being mapped to both P1

and Pm under a. But traces(Ls,n-1) g traces(P,)1, under this map because traces(Pn)I1

includes only communication over the output channel(s) of L, while traces(Ls,ý_,) may

include communication over both input and output channels. Thus U does not preserve

trace satisfaction and is therefore not a specification morphism. U

Determination of whether an arbitrary well-formed layered design can be translated

to an externally compatible multi-stage pipeline design requires analysis of the functional

model of the layered design, and is left for future research.

7.5.2 Translating Pipeline Designs to Layered Designs. Communication within

a pipeline design also poses some problems for translating pipeline designs to layered de-

signs. Only the communication over the input channel of the first stage and the output

channel of the last stage appear in any trace of a pipeline design. In contrast, only the

external communication of the outermost layer of a layered design appears in its traces.

If a specification morphism from a pipelined design to a layered design could be defined,

then the first and last stages of the pipeline must be mapped to the outer layer of the

corresponding layered design. This implies, for example, that a two stage pipeline design

collapses to a single layer layered design. But what about larger pipelines? Can a speci-

fication morphism from an n-stage pipeline, where n > 2, to a layered design be defined?

7-16

X

p t(s(r(q(p(x))))

(X) p(x) s(r(q(p(x)))

q(p(x)) q(p(x)) r(q(p(x))

R I
r(q(p(x))

(PRI/(QIIS))ll(PIIT)
S I

s(r(q(p(x)))

t(s(r(q(p(x))))

P>>Q>>R>>S>>T

Figure 7.1 Translating a Pipeline Design to a Layered Design

As shown in Figure 7.1 and stated in the following theorem, the answer to this question is

yes.

Theorem VII.14 Given an arbitrary well-formed pipeline design P, such that no two

stages share any common non-communication events except for the successful termination

event V/, P can be translated under specification morphism to a layered design.

Proof. Denote by P sat P1 > P 2 » ... > Pn, n > 1, an arbitrary, well-formed pipeline

design, with in denoting the input channel of P, and out denoting the output channel of

Pn. If traces(P) equals {0}, then P •- STOPp. Which by Theorem V.4 implies that

P = L for any well-formed layered design L such that caL = aP.

For the general case when traces(P) / {f}, a specification morphism o, from P to

an m-layer, layered design Ls can be constructed as follows.

P sat PI > P2 > ... > Pn
P F-+ Ls

Ls sat ((Ls,o§Ls,))//Ls,,, where m = ((n + 1) div 2) - 1
Pi I-4 Ls,m•

7-17

L s ,, sat (=(P 1),l1(P7))

P 2 Ls,m-,
P.-I L s,m•-

Ls,m-i sat (•(P 2)II (P.- 1))

n even =-

P div 2 Ls,o

P(n div 2)+1 Ls,,

Lso sat (-(Pn div 2) (P(, div 2)+1))

n odd :
P(n div 2)+1 Ls,o

Ls'o sat "' (P(n div 2)+1)

Thus, for any stage Pi in P, if ap, maps Pi to its corresponding layer Ls,b as de-

fined above, traces(Pi) g traces(L,,b)I•p. What remains to be shown is that traces(P) _

traces(L).

Based on the above mapping, traces(Ls,m) = traces((PilIP7) \{c1, 2, c,-, 7 1 }). Because

P, and P2 share no common non-communication events, (P l11P7) \ {cI,2 ,cn-l,n} equals

(P1 \ {c1,2, cn-l,.I}IP 2 \ {c1,2, cn_1,n}), which simplifies to (P1 \ {c1, 2}11P 2 \ {cnI,n}). This

implies that traces(Ls,m•) consists of sequences of communication events over the channels

in and out. What remains to be shown is that for any trace t E traces(Ls), the number of

input events over channel in minus the number of output events over channel out satisfies

the condition {t 1 (0 < size(t I {in}) - size(t I {out}) <_ n) A t E {in, out}*}.

Ls can accept up to n inputs before generating an output as follows. Based on the

definition of a stage, each stage Pi of P satisfies ci-,j?y £) (ci,i + 1!pj(y) £• Pj). Then

each layer Ls,, contains up to two stages operating in parallel, which implies that each layer

can accept up to two inputs, one for each stage, before generating an output. The number

of inputs a given stage can accept is dependent on whether n is even or odd.

1. If n is even, there will be ((n + 1) div 2) - 1 + 1 = (n div 2) layers, each containing

two stages and capable of accepting 2 x (n div 2) = n inputs before generating an

output.

7-18

2. If n is odd, there will be ((n + 1) div 2) layers, of which ((n + 1) div 2) - 1 layers

contain two stages. layer Ls,0 can accept only one input before generating an output,

so Ls can accept up to 2 x ((n + 1) div 2 - 1) + 1 inputs before generating an output.

Because n is odd, this simplifies to 2 x (n div 2) - 1 = (n + 1) - 1 which equals n.

Thus for any trace t E traces(L), (0 < size(t I {in}) _< n) A t E {in, out}*.

Conversely, Ls can generate up to n outputs in succession as follows. Suppose Ls

has accepted n inputs as described above. Then each layer of L except possibly layer Ls,0

has two outputs ready for communication. Due to the definition of a stage, communication

over channel out of Pn of layer Ls,m is the only communication that can occur. Once

communication over channel out has occurred, then Pn of Ls,m can accept an output from

Pn-1 of Ls,,m-,, which can then accept an output from Pn- 2, and so on. This process can

continue until the n values contained in L have been processed by the stages contained in

L and output over channel out. In addition, based on the definition of a stage, each stage

contained in any layer of L can generate only one output per input. Thus for any trace t E

traces(L), (0 < size(t t, {out})size(t I. {in})) A t E {in, out}*, which implies that traces(L)

- traces(P). U

Figure 7.1 depicts a translation from a pipeline design to a trace equivalent layered

design. As shown in the figure, the layered design has just over half the number of layers

as compared to the number of stages of the pipeline design. The functional model of the

pipeline design is intact in the layered design; adjacent stages of the pipeline design are

mapped to adjacent layers in the layered design. Also shown in the figure is a value x as

it propagates through both the pipeline design and the layered design.

7.5.3 Summary of the Relationship Between Layered and Pipeline Designs. This

subsection has highlighted some of the relationships between pipeline and layered designs,

and as such compliments the discussion relating pipeline designs and parallel designs con-

tained in Subsection 7.4 and compliments the relationship between layered and parallel

designs presented in Subsection 7.3. The result of this comparison is that pipeline designs

can be translated under specification morphism to layered designs, but not conversely.

7-19

When taken into conjunction with Theorem VII.5, this implies that layered architecture

theory is not isomorphic to pipeline architecture theory.

7.6 Other Relationships

The previous subsections have formally described relationships between parallel,

pipeline, and layered designs. This subsection takes an informal look at relationships

between designs of some of the other architecture theories, beginning with the relationship

between piped-batch sequential designs and pipeline designs.

Based on the definition of piped-batch sequential architecture, any well-formed piped-

batch-sequential design is also a pipe-filter design. Similarly, any well-formed pipe-filter

design is also a parallel design. Because specification morphisms compose to form spec-

ification morphisms, for any piped-batch sequential design D, a specification morphism

from D to a parallel design P can be defined. This means that piped-batch-sequential de-

signs can be refined through specification morphism to define pipe-filter designs or parallel

designs. However, Theorem VII.10 states that non-trivial parallel designs cannot be trans-

lated under specification morphism to pipeline designs of more than one stage. This means

that piped-batch sequential designs cannot be translated under specification morphism to

pipeline designs of more than one stage.

Theorem VII.11 identified three conditions under which a parallel design P can be

translated under external compatibility to a pipeline design PL. Because piped-batch se-

quential designs can be translated under specification morphism to parallel designs, if it

can be shown that if a piped-batch sequential design PBS satisfies the three conditions of

Theorem VII.11, then PBS can be translated under external compatibility to a pipeline

design. Fortunately, two of the three conditions of the theorem are satisfied by the defi-

nition of piped-batch sequential designs. The remaining condition, that each sub-process

Pi, i = ..n, of P contains exactly two CSP channels, one for input and one for output, is

also readily verifiable.

Translating a pipeline design PL to a piped-batch sequential design PBS can be

accomplished by translating PL to a parallel design P under a specification morphism

7-20

OYPL,P PL -- P, and then translating P to a pipe-filter design PF using a morphism

crp,pF P - PF, and finally, PF can then be translated to PBS using a morphism

cYPF,PBS : PF --+ PBS. However, some of these morphisms might not be specification

morphisms. For example, an n-stage pipeline design PL where PL sat P1 > P 2 > ... >

P, can engage in up to n input events in succession before engaging in an output event. But

if each Pi, i G [1..n], is mapped to a filter process Fi, i E [1..n], of a piped-batch sequential

design PBS such that Pi E; Fi, then PBS can accept only one input from the outside

environment before generating an output for consumption by the external environment.

In PBS there is only one pipe used to communicate intermediate results between successive

filter processes while in PL there are n - 1 pipes used to communicate intermediate results

between concurrent stages. This implies that although it might be possible to translate a

pipeline design under external compatibility to a piped-batch sequential design, it might

not be possible to translate a pipeline design to a piped-batch sequential design using

specification morphisms.

Other translation possibilities exist. For example, it should be possible to translate

repository designs under specification morphism to parallel designs simply by making the

implicit communication of repository designs explicit. Similarly, it is easy to see that a

piped-batch sequential design PBS can be made into a repository design R by replacing

the explicit communication encapsulated in the pipe process of PBS with implicit commu-

nication via shared data structures. Clearly such a translation would not be a specification

morphism. And finally, the definitions of piped-batch sequential architecture and batch

sequential architecture indicate that batch-sequential designs are included in piped-batch

sequential designs.

Examination of the relationships between the remaining process-based architecture

theories of Chapter VI is left for future research.

7.7 Summary

This chapter has formally described relationships between several architecture theo-

ries through an exploration of the existence of specification morphisms between them. A

summary of these relationships is shown in Figure 7.2, where the arrows in the figure rep-

7-21

Procers-Based

S s

Batch-Sequential Paralllel Repository

SF F

S S

Pipe-Fiter Layered Pipeline Client-Server

S

Piped-Batch Sequential

Figure 7.2 Design Translation

resent morphisms. Arrows annotated with an S are specification morphisms, while arrows

annotated with an F are morphisms which preserve external compatibility. The strongest

condition shown to hold is depicted in the figure. Relationships that have been shown not

to hold are annotated with a slash. For example, Theorem VII.13 states that arbitrary

well-formed layered designs cannot be translated under specification morphism to pipeline

designs of two or more stages, so the arrow from Layered to Pipeline in Figure 7.2 is an-

notated with the symbol 8S. Note that the lack of an arrow between architectures is not

necessarily significant. Also note that the arrows compose. For example, an arrow exists

between Piped-Batch Sequential and Parallel, but it is not shown in the figure.

Relationships between process-based architecture theories were explored through an

examination of design translation, where the goal of design translation is to translate a

design D of an architecture theory AD into a design D' of an architecture theory AD,.

Two definitions of successful translation were introduced. The first, trace satisfaction, was

defined in Chapter V. The second, external compatibility, was defined in Section 7.2.

A partial order over architecture theories can be defined based on the existence of

specification morphisms between designs of the respective theories. A partial elaboration

of this partial order was developed in this chapter. The relationship between four of the

architecture theories is shown in Figure 7.3, where the existence of specification morphisms

from designs of an architecture theory A to designs of an architecture theory B is is

represented by B appearing above A in the diagram.

7-22

Process Based

Parallel

I
Laye-red

Pipeline

Figure 7.3 Relative Expressive Power of Process Based Architecture Theories

Much analysis work still remains, especially with respect to design translation. For

example, it may be possible to define relationships between external compatibility and

functional models (in the object-oriented sense) where these relationships could be used to

establish necessary and sufficient conditions for demonstrating that a morphism preserves

external equivalence.

This chapter concludes the theoretical development portion of this investigation. The

feasibility of using process-based architecture theories to define structure is demonstrated

in the next chapter where a specification for a segment of an image processing application

is developed.

7-23

VIII. Feasibility Demonstration

8.1 Introduction

In this chapter, formal process based specifications for a portion of an image pro-

cessing application are developed using the framework defined in the preceding chapters.

Specifically, one of the stages of the image recognition application depicted in Figure 6.16

and partially specified in Figure 6.18 is further refined. (Recall that the image recognition

application of Figure 6.16 consists of series of eight segments used to create, process, fil-

ter, and classify images.) A batch sequential design for this application was developed in

Section 6.3.3. This batch-sequential design is extended in this chapter to a piped-batch

sequential design so that data may be communicated between successive filter processes.

In addition, a process based specification for one of the sequentially composed processes

- Selection - is developed.

This chapter is organized as follows:

1. In Section 8.2, the batch sequential design of Figure 6.18 is extended to a piped-batch

sequential design.

2. Section 8.3 describes the problem selected for the Selection stage, that of extracting

the skeleton of a two dimensional image.

3. Process-based specifications for Selection are developed in Section 8.4; and

4. Section 8.5 contains an qualitative evaluation of the specification methodology.

Process specification names and process symbols will be denoted in typewriter font as in

Selection. The use of a process symbol in a statement refers to either the process it names

or to its process expression depending on the context of the statement. That is, for a

process symbol P, the symbol P may be used to refer to the process expression E(P).

Models of a process specification P will be denoted Pmod, and functional operations will

be denoted in italics. The subscript mod will be dropped if the meaning is clear based on

the context of the expression.

This chapter does not seek to demonstrate the utility of all previously defined archi-

tecture theories, nor does it attempt to demonstrate the feasibility of design translation.

8-1

The goal of this chapter is to establish the feasibility of using architecture theories to

combine simple, process based specifications using specification morphism to define more

complex, application level specifications, and to show that reusable, problem independent

designs can be defined and used effectively in the construction process.

8.2 Creating a Piped-Batch Sequential Design

8.2.1 Introduction. Figure 6.16 depicts some of the stages for image recognition

systems. The figure hints that pipeline architecture theory could be used to define the top

level design of such systems in that each stage of Figure 6.16 has exactly one input and

one output channel and a total ordering over the stages is apparent. However, piped-batch

sequential designs can also be used for image recognition systems wherein successive stages

of Figure 6.16 correspond to sequentially composed processes. Communication between

these batch processes is achieved through extension of the batch-sequential design to a

piped-batch sequential design.

The relative merits of these two approaches, e.g., time versus space, are not germane

to this chapter and are therefore not debated herein. Instead, the batch-sequential design

of Figure 6.18 is used as the starting point for the development of a piped-batch sequential

design.

This section discusses the extension of the specification of Figure 6.18 to form a

piped-batch sequential design.

8.2.2 Adding Communication. The specification of Figure 6.18 lacks communica-

tion between the successively composed processes. However, Figure 6.16 clearly shows that

communication between successive stages is required. Therefore the first task in further

development of a specification for this class of problem is to extend the specification of

Figure 6.18 with communication. This is accomplished by associating the batch sequen-

tial specification ImageRec of Figure 6.18 with the process symbol Filter of a piped-batch

sequential structuring specification. Figure 6.20 depicts how this is done in general. Fig-

ure 8.1 is specific to the problem of image recognition.

8-2

pspec TRIV is pspec Pipe-Filter-Structure is
process TRIV : { } { } { } { } TRIV ->Filter sort msg

end-pspec port left : msg

port right : msg

vat m : msg

process Pipe : Cleft :msg, right:msg},{],{ },{m:msg}

process Filter Cleft : msg, right:msg},{ },{ },{ }

rRIV -> ImageRec process Pipe-Filter : {left :msg, right:msg } { } { } { m:msg }

Pipe-Filter sat (PipellFilter)

Pipe sat (leftm -> (right!m -> Pipe))

end-pspec
colimit 1

pspec Image-Recognition is '. pspec Piped-Bateh-Sextuential-Image-Rec is

process Creation : { }.l },1 },{ I '.. sort msg

process Restoration : { },[},1 },11 •I port left : msg

process Enhancement : [},{ },{ },{ } port right : msg

process Segmentation : { }.1 I.{ },1 } vat m : msg

process Selection : [},{].{ },{ } process Pipe : {left :msg, right:msg} { }{ Hm:msg}

process Registration : { },{ },1 },[I process {ImageRec, Filter} : Cleft : msg. right:rnsg },{ }.{ },1 }

process Classification : { },{],{ },{ } process Creation : { 1,{ },1 },1 }

process ImageRec : { },{ },{ },{ } process Restoration : { },{ },{],{ }

ImageRec sat Creation;Restoration; process Enhancement : { } ,{ },{ },{ }

Enhancement;Segmentation; process Segmentation : { },{ },{ },{ }

Selection;Registration; process Selection : [},{ }.{ },{ }

Classification process Registration : { },{ },{ },{ }

end-pspec process Classification : { },{ },{ },{ }

process Pipe-Filter : Cleft :msg, right:msg} { }{ } {m:msg}

{ ImageRec, Filter} sat Creation;Restoration;

Enhancement;Segmentation;

Selection;Registration;

Classification

Pipe-Filter sat (Pipell{ ImageRec, Filter})

Pipe sat (leftm -> (right!m -> Pipe))

end-pspec

Figure 8.1 Piped-Batch Sequential Image Recognition

The batch sequential specification Image-Recognition of Figure 8.1 has been some-

what simplified from that of Figure 6.18. In the colimit object of Figure 8.1, ImageRec

shares a common set of port symbols with Pipe. However, due to an artifact of the defini-

tion of colimit of process specifications, namely that alphabet extension of a process does

not automatically extefid the alphabets of its subprocesses, none of the subprocesses of

ImageRec contain these port symbols in their alphabets. This implies that even-though

ImageRec shares common port symbols with the process Pipe, IlO communication between

8-3

TRIV ->Filter i p

pspec TRIV pspec Pipe-Filter-Structure

TRIV -> Imageec colimit

pspec Image-Recognition pspec Piped-Batch-Sequential-Image-Rec

pspec Image-Rec-System is

sort msg

port left: msg

port right : msg

var m: msg

process Pipe: {left :msg. right:msg} { } { I {m:msg}

process {ImageRec, Filter} : {left : msg, right:msg},{}.{}

process Creation : {left:msg, right:msg},{ 1,{ [,{ 1

process Restoration : {left:msg, right:msg},{ I, },{ I
process Enhancement: {left:msg, right:msg},{ }.11,1

process Segmentation: {left:msg, right:msg},1 }.{ }.{ I

process Selection : {left:msg, right:msg}.{ },{ 1{,}

process Registration : Ileft:msg, right:msg},{ I,{ },{ I

process Classification: {left:msg, right:msgl,{ 1.1)},{ I
process Pipe-Filter : [left :msg, right:msgl { }{} {m:msg}

{ImageRec, FilterI sat Creation;Restoration;

Enhancement;Segmentation;

Selection;Registration;

Classification

Pipe-Filter sat (PipeillImageRec, Filterl)

Pipe sat (left?m -> (right!m -> Pipe))

end-pspec

Figure 8.2 Image Recognition Extended with Communication

Pipe and any of the sequentially composed port-less subprocesses defining ImageRec can

take place. The port symbols of ImageRec need to be incorporated into the alphabets of

the sequentially composed processes. This simple extension is shown in Figure 8.2, where

each subprocess of ImageRec has been extended with the port symbols left : msg and

right : msg. Although this results in multiple processes all sharing a common set of port

symbols, the semantics of CSP have not been violated in that only one of the sequentially

composed processes will be active at any given time. Thus the port symbols left and right

will be shared between the process Pipe and exactly one of the filter processes when the

process Pipe-Filter is executing.

A consequence of the extension depicted in Figure 8.2 is that the functional model

of the top level process specification Pipe-Filter is now a connected graph, whereas before

8-4

the extension is was not. It may be possible to develop or define high level specifications

for problem domains such as image processing wherein these high level specifications are

partially expressed as constraints over functional models. Definition and expression of such

specifications is left for future research.

Now that the sequentially composed processes of the specification ImageRec can

communicate with each other via a pipe process, results of one image recognition subprocess

such as Image-Segmentationmod can be passed to the next subprocess in turn.

The following section contains a problem description for one of these subprocesses,

Selection. After the feature selection problem has been defined, a process based specifica-

tion for it is developed.

8.3 Feature Selection Problem Description

8.3.1 Introduction. The purpose of feature selection is to extract from an image

information that can be used to classify it. For example, feature selection can be used for

edge detection or intensity gradient computation. Once features have been selected, they

can be used to classify the image. The feature selection problem chosen for specification

development in this chapter is one of computing the skeleton of an image. This problem was

selected because its structure is well suited for specification using a mixture of architecture

theories and because its well structured nature is suited for design reuse.

A process defined by the specification Selection accepts as input a digitized black

and white image represented as a two dimensional matrix, and produces another two

dimensional matrix. The entries in these matrices represent pixel values, and come from

the set {1, 0, *} where 1 corresponds to black, 0 corresponds to white, and * corresponds

to a lack of sensory data. Although matrices are used as both an input and an output

data sort (as is required by the semantics of piped-batch sequential architecture theory),

no attempt is made here to define a functional specification for matrices. For the purposes

of this chapter, a functional specification for matrices is assumed to exist.

8.3.2 Skeleton Problem Description. As described in (33), the skeleton oper-

ation is a thinning operation where a "... figure is replaced by a thin representation of

8-5

D(w)

D'

D(x)

(1) (2)

(3)

Figure 8.3 Determining skeleton for isosceles triangle (33:352)

itself." (33:351) Informally, the skeleton of a two dimensional image can be defined as fol-

lows:

Definition VIII.1 The Euclidean skeleton of a set S is defined in the following manner.

For each x in S, let D(x) denote the largest disk centered at x such that D(x) is a subset of

S. Then x is in the skeleton of S if there does not exist a disk D 1, not necessarily centered

at x, such that D1 properly contains D(x) and such that D1 is contained in S. (33:351) El

The creation of a skeleton for an isosceles triangle is shown in Figure 8.3. The point x

shown in the first image is part of the skeleton of the triangle because no other disk D1

can be defined such that D(x) C D1 . However, as shown in the second image, the point w

is not part of the skeleton because a disk DY can be defined such that D(w) C D' and DY

is contained within the triangle. The third image in the figure depicts, using heavy lines,

the skeleton of the triangle.

The skeleton of several simple pictures is shown in Figure 8.4. As shown in the

figure, skeletons are not necessarily unique; several different pictures can all have the same

skeleton. Also evident in the figure is the fact that noise can have a significant impact on

the resulting skeleton. For example, the disk with a single missing or incorrect pixel value

8-6

Skeleton is a A single point

single point (the center)

(the center) removed

Figure 8.4 Skeleton for various pictures (33:352)

at the origin has a much different skeleton than the noise free disk next to it. However,

noise such as this can be mitigated by an image enhancement stage of an image recognition

application.

Definition VIII.1 defines skeleton for Euclidean space. However the input to Selection

is digital, not Euclidean. One of the difficulties of using a digital representation of Euclidean

space is that of defining an analogue to Euclidean disks. The solution to this problem

proposed in (33) and used here is to use "square disks" as shown in Figure 8.5. In Figure 8.5,

the element at the origin is circled. These "square disks" are used in the definition of the

digital skeleton operation SKEL. The definition of SKEL depends on the definition of the

operation TRAN : matrix, index --- matrix. TRAN is defined below.

Definition VIII.2 (33) Translate. If f = (apq),t is a matrix, then for integers i and j,

TRAN(f; i, j) = (apq)r+i,t+j. 0

In other words, TRAN(f; i, j) translates f by (ij). Given the definitions of square disks

and TRAN, a more formal definition of digital skeleton skeleton can be given:

8-7

(11)
D2= (1

D 3=D

(1111)
D3 --- 1 ! 1

D4= (j11

I ~i ~I 11ID5 = 1l!

Figure 8.5 Square disks of increasing size (33:353)

Definition VIII.3 Skeleton. Let T be a constant image (pixel values 1 or *). For any

pixel (i,j) in the domain of T, the maximal disk for (ij), MAXDISK(i, j), is the highest

numbered disk Dk, translated so that its new center is at (ij), such that TRAN(Dk; i, j)

is a sub-image of T. The skeleton of T, SKEL (T), is a constant image (1's and * 's) such

that a pixel lies within the domain of SKEL (T) if and only if its maximal disk is not a

proper sub-image of any other translated disk that is itself a sub-image of T.(33:353) E

A block diagram for SKEL(T) is depicted in Figure 8.6, where the skeleton of the

image T is taken with respect to the disk D2 . The block diagram shown in the figure works

by "finding the skeleton pixels that have maximal disk of edge length 1, then those with

maximal disk of edge length 2, and so on. It then takes the set theoretic union of those

pixel classes." (33:358) As shown in the figure, there are several operations used to compute

the skeleton of an image. Among them are the operations ERODE and OPEN, and a few

matrix valued logical operations. ERODE is a thinning operation described in Section 8.3.3.

OPEN is a smoothing operation described in Section 8.3.4. OR and COMPLEMENT are

8-8

D2 OPEN COMPLEMENT

D2

T -- D 2 COPRE N S I E L (T)

OPN COWLEMENT
D2

Figure 8.6 Block diagram of SKEL (33:355)

logical operations; OR is defined in Definition VIII.8, and COMPLEMENT is defined

below.

Definition VIII.4 Complement. Given a constant (1, *) valued matrix f, the complement

of f is defined by the following equation.

[COMPLEMENT(f)](i,j) I if f(i,j) =

* iff(i,j) = 1 E

8.3.3 Erode. When a human analyzes an image, they do so by filtering the image

to form precepts, which become "the raw material for analysis." (33:327) Computer based

image recognition systems can be developed around this same paradigm. That is, digital

images can be filtered to extract relevant information which is then used to categorize the

image. One class of filters used for this purpose are morphological filters.

"The morphological approach is generally based on the probing of a two-valued [1, *]

image by some predetermined geometric shape known as a structuring element." (33:327)

Morphological filters can be used for such purposes as edge detection, segmentation, and

image enhancement.(33). One of the advantages morphological filters have over linear

filters is that morphological filters preserve much of the underlying geometric form of an

image. One such morphological filter, ERODE is defined in this section.

8-9

ERODE is defined in terms of a simpler morphological filter. Specifically, ERODE is

defined in terms of Minkowski difference.

Definition VIII.5 Minkowski difference and Minkowski sum. (33) Given two images A

and B in R 2, the Minkowski difference of A and B is defined set-theoretically as

A e B = flbBA + b

and the Minkowski sum or dilation of A and B, denoted D (A, B), is defined set-theoretically

as

A E B = UbeBA + b

For example, consider the square A with vertices {(0, 0), (0, 2), (2, 0), (2, 2)} and the

structuring element B defined by the line segment with endpoints {(1, 1), (2, 2)}. Then

A D B is the union of the sets A + (i, i), 1 < i < 2, which defines an object with vertices

{(1, 1), (1,3), (2,4), (4,4), (4,2), (3,1)}, and AGB is the intersection ofthe sets A + (i,i),

1 < i < 2, which defines the unit square with vertices {(2, 2), (2,3), (3,2), (3, 3)}. These

operations are graphically depicted in Figure 8.7. Now that Minkowski subtraction has

been defined, a definition for ERODE can be given.

Definition VIII.6 Erosion.(33) Given two sets A and B in R2, where -B is defined to

be the set {-b I b E B}, where -b is defined to be the scalar multiple of the vector b by

-1, the erosion of A by B, denoted £(A, B) is defined to be A e (-B). El

Note that the above definitions of erosion, Minkowski addition and Minkowski subtraction

are based on Euclidean geometry, while image recognition systems operate over digitized

images. Generalization of the above definitions for use in a digital environment is straight-

forward. However, before defining digital Minkowski operations, a few other fundamental

digital operations must be defined. These operations are defined below.

Definition VIII.7 (33) Domain. If A denotes a constant (1, *) digital image, then the

domain of A, denoted DA, is the set {(i,j) ajj G A A aij = 1}.

8-10

3

A
2

B

-1 1 2 3

4 4

3 3

AeB

2 2

AeB
1 1

1 2 3 4 -1 1 2 3 4

-1 -1

Figure 8.7 Minkowski addition and subtraction

Definition VIII.8 (33) And, Or. If Si, S2,..., S,, denote constant (1,*) images, then

iVk Sk] = 1, if there exists at least 1 k' for which Sk,(i,j) 1

•, if Sk(i, j) = *for all k

IiAkSk = 1, if Sk(i,j) = 1 for all k

I * if there exists at least 1 k' for which Sk,(i,j) = * E

The term AND will sometimes be used for A, and OR will sometimes be used for V. Now

that these simple operations have been defined, digital Minkowski addition and subtraction

can be defined.

Definition VIII.9 (33) The Minkowski addition or dilation of S by E where S and E

are constant (1, *) valued images is denoted S [E and is defined by the following equation:

SmE E = V(i,j)EDs TRAN(E; i,j)

= DILATE(S, E)

The Minkowski subtraction of S by E, denoted S B E, is defined by

SE3E ' 1, if TRAN(-E;i,j)VS = S

* otherwise 0

8-11

E

S OO---- DILATE(SýE)

Figure 8.8 Block diagram of DILATE (33:342)

The domain of S ED E equals the union of the domains of the translates TRAN(E; ij). A

block diagram for DILATE is shown in Figure 8.8.

Erosion can be described intuitively as "template translation." As noted in (33), "If,

for a given pixel, say (ij), the translated copy of E, TRAN(E;i,j), is a sub-image of S,

then (i,j) is activated [in the erosion of S by E]; otherwise (i,j) is given the value * in the

image. ... [E]rosion eliminates those parts of the image that are small in comparison to

the structuring element." (33:343)

Because £(A, B) = A e (-B) in Euclidean space, the corresponding digital equation

for ERODE is ERODE(A,B) = A E3 (-B). One way to compute -B is to rotate B 180

degrees around the origin. A primitive matrix operation, NINETY, can be used for this

purpose. Specifically, -B = NINETY[NINETY(B)], where [NINETY(f)](ij)= f(j,-i).(33)

This leads to the alternate formulation of ERODE:

Definition VIII.10 ERODE. Given two constant (1, *) valued matrices S and E, the

digital erosion of S by E, denoted ERODE(S,E), is defined as follows:

ERODE(S,E) = A(i,j)EDOMAIN[NINETY2 (E)] TRAN(S;i,j)

S is called the image or picture, and E is called the structuring element. El

This alternate definition of erosion has the block diagram shown in Figure 8.9. The ero-

sion morphological filter is used in the computation of OPEN. OPEN is described in the

following section.

8-12

ITRAN

s

TRAN

E NINETY 2 DOMAIN AND ERODE(S,E)

Figure 8.9 Block diagram of ERODE (33:345)

erode dilate

Erosion of S by E Opening of S by E

E

Figure 8.10 Opening in terms of dilation and erosion (33:334)

8.3.4 Open. OPEN is a morphological filter that, depending on the structuring

element used, has a smoothing effect on the input image and has the effect of "expanding"

the image in a manner defined by the structuring element.(33) Open can be defined using

the Euclidean operations of erosion and dilation.

Definition VIII.11 (33) Opening. Given two images A and B in R2 , the opening of A

by B, denoted O(A,B), is defined by the equation O(A,B) = D[$(A, B), B]. El

8-13

S
ERODE

E DilA OPEN(S,E)

Figure 8.11 Block diagram of OPEN (33:347)

As a simple example, consider the series of images depicted in Figure Figure 8.10.

The input image, a rectangle, is opened by the second image, a disk. The erosion of the

rectangle by the disk yields an image that has been thinned or shrunk. Dilation of the

eroded image yields an image in which the corners of the rectangle have been rounded.

Definition VIII.11 defines Euclidean open. Digital opening is defined below.

Definition VIII.12 OPEN. Given constant (1, *) valued images A and B, the opening

of A by B, denoted OPEN(A,B), is defined by the equation

OPEN(A,B) = [A El (-B)] EE B

= DILATE[ERODE(A,B), B] El

DILATE is the digital analog to Euclidean dilation D9; see Definition VIII.9. Now that

ERODE, OPEN, COMPLEMENT, AND and OR have been defined, a definition for digital

erosion can be given.

Definition VIII.13 SKEL. Given a constant (1, *) valued image T, the skeleton of T,

denoted SKEL(T), is defined by the equation

SKEL(T) = ORp [AND (COMPLEMENT(OPEN(ERODE(T, Dm),D2)),

ERODE(T, Dn))]

where D = {Di : 3(i,j)((i,j) E DOMAIN(T) •' TRAN(Di;i,j) _ T)}. That is, V9 is the

maximal set of square disks such that any disk Di in D9 can be translated such that it is a

sub-image of T. El

This definition of SKEL is based on the block diagram of Figure 8.6, and it will be used

in conjunction with Figure 8.6 to guide the development of a process based specification

for this morphological filter.

8-14

8.3.5 Summary. This section has defined a variety of morphological filters use-

ful for a feature selection stage of an image recognition application, including DILATE,

OPEN, ERODE, and SKELETON. Block diagrams for these operations were presented.

As evidenced by the block diagrams, these filters can be defined using a relatively small

set of building blocks. For example, OPEN was defined in terms of DILATE and ERODE.

This indicates that once specifications for the simple filters have been developed, they can

be used as building blocks in the construction of specifications for the more complex filters.

Now that these filters have been defined, formal process based specifications for them

can be developed. These specifications are developed in the following section.

8.4 Specification Development

In this section, process based specifications for the morphological filters defined in

the preceding section are developed. One of these filters, SKEL, is used to define the

feature-selection stage of the image processing application depicted in Figure 6.16 and

partially specified in Figure 6.18. As part of the specification development effort, the

batch sequential design of Figure 6.18 is extended to a piped batch sequential design so

that the results of one filter process such as Selection can be made available to the next

filter process in turn.

This section is organized as follows:

1. In Section 8.4.1 a reusable design based on a partition-solve-compose paradigm is

developed.

2. In Section 8.4.2 a process-based specification for ERODE is developed.

3. In Section 8.4.3 diagrams leading to process-based specifications for DILATE and

OPEN are developed.

4. In Section 8.4.4 a diagram leading to a process-based specification for the filter SKEL

is developed.

8-15

5. In Section 8.4.5 the process SKEL is associated with the process Selection to produce

a piped batch sequential design for an image recognition system which uses the

skeleton of an image for classification purposes.

8.4.1 Specification Development for Partition-Solve-Compose. The morphologi-

cal filters depicted in Figures 8.6, 8.8, and 8.9 each show several concurrent sub-designs.

For example, the block diagram for the filter ERODE, pictured in Figure 8.9, shows several

concurrent filters, TRAN, each encapsulating a translate operation. However, a careful ex-

amination of the definitions for SKEL, DILATE, and ERODE reveals that the number of

concurrent sub-designs is data dependent. Furthermore, Assumption 1.5 states that the

framework defined in the previous chapters can be used to develop process based specifi-

cations containing only static communication networks; CSP does not support dynamic,

data-dependent specification of communication networks. Therefore, process based speci-

fications for the morphological filters ERODE, DILATE, and SKEL must be defined using

static communication networks.

Although data dependent parallelism cannot be achieved within this framework, some

degree of flexible parallelism can be provided. Specifically, an inspection of Figures 8.6,

8.8, and 8.9 reveals a common architectural pattern: each figure contains a one or two to

m partitioning of the incoming data, i.e., m parallel sub-designs used to compute partial

solutions, and an m to one composition of the partial solutions. Because a partition-solve-

compose design can be reused in the construction of process based specifications for each of

the three morphological filters ERODE, DILATE, and SKEL, a process based specification

for this partition, solve, compose approach is developed in this section and will be used in

the development of the specifications for the individual filters.

The partition-solve-compose approach has the block diagram shown in Figure 8.12.

The arrows in the figure represent communication channels between processes. Port names

and port sorts have been added to the figure to highlight the relationship between the

block diagram and its process based specification; a specification based on Figure 8.12

will be presented shortly. As shown in the figure, the process Partition accepts set-valued

inputs, where the sort of individual set elements is left abstractly specified. Partition

8-16

Sp2sl: cay

2s2 any . s2c2: an y2

ParttionCompose
pleft: set(any) cright: bag(any2)

p2s maý any 2 max: any2
Solve

Partition-Solve-Compose

Figure 8.12 Block diagram of Partition-Solve-Compose

shares a channel with each Solve process, and each Solve shares a channel with the process

Compose. The output port of the specification Compose, cright, is used to communicate

the results collected from the individual Solve processes. The operation of the processes of

Figure 8.12 are described in the next several paragraphs.

Partition defines a process that accepts a set valued input over an input channel.

After accepting the input, Partitionmod enumerates over the input set, communicating

individual set elements over its output channels such that each element in the input set

is communicated exactly once. The output channels of Partitionmod are input channels

of Solve processes. A Solve process is defined to have exactly two external ports, one for

input and one for output. Each Solve process reads incoming data from its input channel,

operates over that data, and communicates its results over its output channel. The outputs

of the Solve processes are collected by the process Compose. The output of the process

Compose is the complete set or bag of solutions generated by the Solve processes. Bags are

used as the output sort of Compose in case duplicate solutions are significant. A process

specification for these processes is shown in Figure 8.13.

As shown in Figure 8.13, Partition contains an input port, pleft, and a collection

of output ports, p2si, one for each Solve process. The process expression of Partition

defines a process that accepts a set-valued input over pleft, and while the set is not empty,

communicates an arbitrary element, el, of the input set to one of the Solve processes,

removes that element from the input set, and repeats. After all elements of the input set

have been communicated to Solve processes, Partition is defined to engage in the event

8-17

pspec Partition-Solve-Compose is

sorts any, set(any), any2, bag(any2)

const max: Natural

op empty : set(any) -4 boolean,

op arb : set(any) -- any,

op less: set(any), any -- set(any)

op with: any2, bag(any2) --* bag(any2)

var b : any2 var accum : bag(any2)

var el: any var set-any : set(any)

port pleft : set(any) port p2si : any, i = 1..max

port s2c, : any2, i = 1.m.max port cright : bag(any2)

event done

process Partition : events: {done}

chan: {pleft : set(any), p2si : any i = 1..max }
act: { empty: set(any) -- boolean, arb : set(any) - any,

less : set(any), any -4 set(any) }
var: {set-any : set(any), el : any}

process Solve, : events: {done}

chan: {p 2 sj : any, s2ci : any2 }
act: {}
var: {}, i = 1..max

process Compose : events: {done}

chan: {s2c, : any2 i = 1..max, cright : bag(any2) }
act: {with: any2, bag(any2) -- bag(any2)}

var: {accum : bag(any2), b : any2 }
process Part-Solve-Comp : events: {done}

chan
act
var

Partition sat {pleft?set-any csp_

[not (empty (set-any)) * [el:= arb(set-any);

(x:{p2si!el I i E [1..max]} £• set-any := set-any less el; Skip)]]}
CSP

done - SkipCSP
Solve, sat done) Skip

Compose sat (x:{s2ci?b I i E [1..max]} c accum := accum with b; Compose))

I (done csp_ (cright!accum csp Skip))

Part-Solve-Comp sat (Partition IjI=1..,ax Solvej)II Compose

end-pspec

Figure 8.13 Specification for Partition-Solve-Compose

8-18

done. The event done is used by Partition to signal that there are no further elements

of the input set left to communicate. Similarly, each process Solve is defined to engage

in the input event done, as is the process Compose. Compose is defined to accept inputs

over the channels it shares with the Solve processes, and accumulates these inputs in a

bag data structure. When Partition, Compose, and each Solve process are ready to engage

in the event done, they do so simultaneously. After engaging in done, Compose is defined

to output over the port cright the bag of values it has accumulated. The construct (x:B
CSP
-- P(x)) is used in the definition of Partition and Compose so that these processes can

engage in communication with any enabled Solve process. That is, when Partition is ready

to communicate with a Solve process, it will communicate an element from the input set

to the first Solve process ready to receive input, and when Compose is ready to accept an

input from a Solve process, it will accept input from the first Solve process ready to report

its results.

Note that in Figure 8.13, the alphabet of the process Part-Solve-Comp has been

denoted with ellipses for purposes of brevity. Also note that the notation process Solves

: events : {} ... var: {}, i=l..max declares an indexed collection of process symbols,

each of which has the alphabet given. Individual solve processes can be referenced through

subscripting. For example, Solve3 references the third solve process. Similarly, the notation

port p2si : any i=l..max declares an indexed collection of port symbols of sort any.

The specification Partition-Solve-Compose can be refined through specialization of

the sort symbols any and any2, and through specification of the constant max. Additional

port and sort symbols can be added to the specification through specification morphism

to define a partition-solve-compose design in which each process Solves accepts more that

one input. Such a specification is developed later in this section.

Solve is left abstractly specified in Figure 8.13; the intent is that Solve will be re-

fined through process specification morphism. The values generated by Partition-Solve-

Composem.od are dependent on the definition of Solve; any discussion concerning the value

generated a model of Partition-Solve-Compose will have to wait until Solve is refined. If

a more detailed process expression for Solve were given, then refinement of any Solvej

through process specification morphism must preserve the traces of that expression. For

8-19

example, if each Solvei was defined to satisfy (p2s. ?x csp (s2ci!fi (x) cs_) Skip)) I (done £s

Skip), then any refinement of Solvei through specification morphism must preserve the set

of traces {0, (done), (p2si.x), (p2si.x, s2ci.fi(x))}. Because fi(x) is an output value refer-

enced in a trace of Solved, any refinement of Solvei through specification morphism must

contain fi(x) as an output value. This greatly restricts the options available for defining
Csp

fi. However, because Solvei is only defined to satisfy done - Skip, Solvei can be refined

through process specification morphism to be a collection of communicating processes.

Note that there is no requirement that the collection of Solve processes be heteroge-

neous. For example, a pipeline design P can be associated with one of the Solve processes,

say Solvei, by defining morphisms from a trivial specification T to Solvei and from T to

P. Similarly, a layered design L can be associated with one of the other solve processes,

say Solvej. The colimit object of the resulting diagram will be a partition-solve-compose

specification in which the pipeline design P and the layered design L are each used in

parallel to find solutions for elements of a common input data set.

Homogeneous designs, such as those required for Dilate or Erode can also be defined.

A homogeneous design in which Tran is used for each process Solves is developed later in

this section. However, before such a design can be developed, Partition-Solve-Compose

must be extended so that partition accepts two inputs from the environment and provides

two outputs to each Solve process. This extension is defined next.

It is a simple matter to extend Partition and Solve through specification morphism

so that they share a pair of channels, such that Partition accepts two inputs from the

outside environment and provides two outputs to each Solve process. Specifically, the

sort s and the ports pleft2 : s and p2s2i : s, i=l..max can be added to the specification

Partition-Solve-Compose. The alphabet of Partition can then be extended with the port

pleft2 of sort s and with the indexed collection of ports p2s2i of sort s, i = 1..max.

Similarly, the alphabet of each Solvei can be extended with the port p2s2i of sort s. This

extension effectively defines a collection of channels from Partition to each process Solvei

for i=l..max. In addition, the process expression for Partition can be extended to include

communication over these new ports. Figure 8.14 depicts such an extension. Only those

portions of Figure 8.13 that have been modified are shown. It is easily verified that this

8-20

pspec Two-Partition-Two-Solve-ComPOSe is

sorts any, set(any), any2, bag(any2), s
port pleft2 s
port p2s2, s, 't =..max

var m s

process Two-Partition :events: {done}
chan: {pleft :set(any), pleft2 : s

p2 sj : any, i =1..max
p2s2, s, i = 1..max}

act: I empty : set(any) --+ boolean,
arb: set(any) -*any,

less :set(any) -*set(any)}

var: {set-any :set(any), m : s}

process Two-Solves events: {donel
chan: f{p2si : any, p2 s2 j : s, s2ci any2 I
act: f{I
var: {}, i =1..max

Two-Partition sat {pleft2?m Cs'1) pleft?set-any £sp

[not (empty (set-any)) * [el: = arb (set-any);

(x:{p2si!el I i E [1..max]} csp

CSP (p2s2i!m csp set-any := set-any less el; Skip))]I};

done Skip

Two-Part-Solve-Comp sat (Two-Partition ij=.mxTwo-Solvei)I Compose

end-pspec

Figure 8.14 Specification for Two-Partition-Solve-Compose

8-21

extension defines a process specification morphism from Partition-Solve-Compose to Two-

Partition-Two-Solve-Compose. Note that the process expression for Two-Partition defines

a process that accepts a matrix-sorted value before it will accept a value of sort set(index).

Attempts to communicate these values in the reverse order will lead to deadlock. This

explicit ordering places some constraints on the use of communication channels in any

process defined by some Solve2 . A more general expression for Two-Partition would permit

incoming communication to be in either order.

Two-Partition-Two-Solve-Compose is used in the following sections in the develop-

ment of specifications for the morphological filters described in the preceding section.

8.4.2 Specification of Erosion. The erosion of S by E was defined in Section 8.3.3

by the equation ERODE(S,E) = A(i,j)EDOMAIN[NINETY2 (E)] TRAN(S;i,j). This sec-

tion develops a process based specification for this morphological filter. The specification

for ERODE developed in this section is based on the block diagram of Figure 8.9. Each

box in Figure 8.9 is treated as a separate process; there are four such boxes, Ninety2 ,

Domain, Tran, and And. Specifications for these processes are straightforward and are

shown in Figures 8.15, 8.16, 8.17, and 8.18 respectively. The partition-solve-compose

specification of Figure 8.14 is refined for use in a specification for ERODE, leading to the

block diagram of Figure 8.20. This block diagram is used to guide the development of a

specification for digital erosion.

In the paragraphs that follow, the specifications Two-Partition- Two-Solve- Compose,

And, Tran, Domain and Ninety-Sq are combined through specification morphism to define

the specification Erode. Construction of a specification for the filter ERODE proceeds in

three steps:

1. Domain and Ninety-Sq are combined using a pipeline structuring specification to

produce the specification Domain-Ninety-Sq.

2. The specification Two-Partition-Two-Solve-Compose is refined for use with the filter

TRAN.

8-22

pspec Ninety-Squared is
sort matrix
var m : matrix
op ninety : matrix -+ matrix

port left : m
port right : m
process Ninety-Sq

events: {}
chan: {left : m, right : m}

act: {ninety : matrix -* matrix}
var: {m : matrix}

Ninety-Sq sat left?m -- p right!(ninety(ninety(m)))
end-pspec

Figure 8.15 Specification for Ninety2

pspec Domain-Spec is
sorts matrix, index, set(index)
var m-in : matrix

op domain : matrix --+ set(index)
port left : matrix
port right : set(index)
process Domain

events: {}
chan: {left: matrix, right : set(index)}
act: {domain : matrix -* set(index)}
var: {m-in : matrix}

CSP

Domain sat left?m-in ' right!domain(m-in)
end-pspec

Figure 8.16 Specification for Domain

3. The resulting specifications from the above two steps are combined with And to yield

a specification for erode having the structure depicted in Figure 8.20.

Development proceeds by defining a pipeline structure which returns the value domain

(ninety (ninety (E))) for an input E.

8-23

pspec Tran is

sorts matrix, index

op tran : matrix, index -* matrix

var tran-mat: matrix
var ij: index
port tleftl index
port tleft2 matrix
port tright matrix
process Tran:

chan {tleftl index, tleft2 : matrix,

tright matrix }
var : { tran-mat : matrix, ij : index}
event: {I
act { tran : matrix, index -- matrix}

CSP CSP

Tran sat (tleftl?ij c tleft2?m -- +
CSPtright!tran(m, ij) -+ Skip);Tran

end-pspec

Figure 8.17 Specification for Translate

pspec And-Or-Spec is

sorts matrix, bag(matrix)
var and-matrix-bag : bag(matrix)
var or-matrix-bag : bag(matrix)

op and : bag(matrix) -* matrix
op or : bag(matrix) -+ matrix
port and-left : bag(matrix) port or-left : bag(matrix)
port and-right : matrix port or-right : matrix
process And

events: {}
chan: {and-left : bag(matrix), and-right : matrix}

act: {and : bag(matrix) -+ matrix}
var: {and-matrix-bag : matrix}

CSP
And sat and-left?and-matrix-bag -- and-right!and(and-matrix-bag)
process Or :

events: {}
chan: {or-left : bag(matrix), or-right : matrix}
act: {or : bag(matrix) --+ matrix}
var: {or-matrix-bag : matrix}

CSP

Or sat or-left?or-matrix-bag • or-right!or(or-matrix-bag)

end-pspec

Figure 8.18 Specification for the Logical Operations And and Or

8-24

pspec TRIV is

sorts a, b

port c :a

port d : b pspec Domain-Spec

process Triv events: (1, act: I1, var: { b -> set(index)

chan: {c :a, d:b c ->left

end-pspec d -> right

Triv -> P1 c -> left Triv -> Domain

a -> x b->y d -> center

pspec Pipeline-Structure is

sorts x, y, z

port left :x

port center: y

port right: z

process P1 : events:1 }, act f1} var colimit

chan: {left : x, center: y pspec Domain-of-Ninety-Sq

process P2 : events:(], act [1, var: (
chan : Jcenter: y, right : zI

process PL : events : 1], act : f 1, var: I}

chan: (left: x, center: y, right: z)

PL sat PI>>P2

end-pspec

Triv -> P2 c -> center
a~~~~~ -> yma-tzdr>iigtx.

a - y ->z d-> igh b -> matrix
pspec TRIV is c ->left

sorts a, b

portd
-> right

port d:b Triv -> Ninety-S

process Triv : events: {I, act: { var: {

chan: 1c: a, d: b}

end-pspec

Figure 8.19 Specification Construction for Domain>Ninety-Sq

Process specifications for the filters DOMAIN and NINETY2 are shown in Fig-

ures 8.16 and 8.15 respectively. Because both Domain and Ninety-Sq define stages, one

way to compose Domain with Ninety-Sq is through a structuring specification for a pipeline

architecture as shown in Figure 8.19; note that morphisms used to unify the sort symbol

matrix of Domain-Spec with the sort symbol matrix of Ninety-Squared are present but for

purposes of brevity are not shown. The colimit object of Figure 8.19, the specification

Domain-of-Ninety-Sq, is shown in Figure 8.21. For purposes of clarity, equivalence classes

8-25

S : matrix -T

E :matrix - Ninety-Squared matrix set(index)
• n'• matrix

Trn Ta . . . T

Erode Compose An

bag(matrix) mti

Figure 8.20 Structure of Erode

of symbols such as {x, y, matrix, a}, are not shown in the colimit object. It is easily

verified that the pipeline process, Domain-Ninety-Sq, of Figure 8.21 produces the value

domain(ninety(ninety(E))) of sort set(index) for an input value E. It is also easily verified

that the morphisms shown in Figure 8.19 are process specification morphisms.

The specification Domain-of-Ninety-Sq defines part of the erosion process. The next

part of erosion is specified through a specialization of the process specification Two-

Partition-Two-Solve-Compose. Specifically, the process Tran is extended for use in the

partition-solve-compose specification of Figure 8.14.

Refining the specification Two-Partition-Two-Solve-Compose so that each process

Two-Solve, computes the translation of an input matrix by a index is relatively straight-

forward. Refinement can be accomplished by defining an implementation of Two-Solve by

Tran, where "an implementation of a specification S by a specification T is a realization of

the behavior specified in S using the concepts from T." (56:2) The concept of interpretation

is formalized in the following definition.

Definition VIII.14 (Based on (56).) An interpretation of a specification S to a specifi-

cation T is a pair of specification morphisms S --+ S-as-T +- T where the arrow +- denotes

extension by definition. 0

Define the specification Two-Solve-as-Tran as shown in Figure 8.22. Then an imple-

mentation of Two-Solve by Tran, denoted Two-Solve -- Two-Solve-as-Tran <-- Tran, can

be defined as follows:

8-26

pspec Domain-of-Ninety-Sq is
sorts matrix, index, set(index)
var m : matrix

var m-in : matrix
op domain : matrix --+ set(index)
op ninety : matrix --* matrix
port left : matrix
port center : matrix
port right : set(index)

process Domain
events: {}
chan: {center: matrix, right: set(index)}

act: {domain: matrix -- set(index)}
var: {m-in: matrix}

process Ninety-Sq
events: {}
chan: {left : matrix,center : matrix}
act: {ninety : matrix -- matrix}
var: {m : matrix}

Process Domain-Ninety-Sq
events: {}
chan: {left : matrix, center : matrix, right : set(index)}
act: {ninety : matrix --> matrix, domain : matrix --+ set(index)}
var: {m : matrix, m-in : matrix}

CSP

Domain sat center?m-in -- right!domain(m-in)
CSP

Ninety-Sq sat left?m --- center!(ninety(ninety(m)))

Domain-Ninety-Sq sat Ninety-Sq > Domain

end-pspec

Figure 8.21 Specification for Ninety2-Domain Pipeline

8-27

pspec Two-Solve-as-Tran is
sorts matrix, index
op tran : matrix, index --- matrix

var tran-mat: matrix
var ij : index
port tleftl : index
port tleft2 matrix
port tright matrix
event done
process Two-Solve-as-Tran:

chan {tleftl index, tleft2 matrix,
tright matrix }

var : { tran-mat : matrix, ij index}
event: {}
act { tran : matrix, index -- matrix}

Two-Solve-as-Tran sat (done S ipT w -S lv -a -T an sa (on Skip) I

CSP

tright!tran(m, ij) C p Skip]);Two-Solve-as-Tran
end-pspec

Figure 8.22 Specification for Two-Solve-as-Tran

"* The specification morphism Two-Solve -4 Two-Solve-as-Tran is defined by the map

{done '-- done, any ý-4 index, any2 '-* matrix, p2s '-- tleftl, p2s2 i-* left2, s

matrix}.

"* The specification morphism Two-Solve-as-Tran *-- Tran is defined by extending the

alphabet of Tran with the event symbol done and by extending the process expression
CSP

of Tran with the nondeterministic choice of done)- Skip.

Because Two-Solve can be extended through process specification morphism to define Two-

Partition-Two-Solve-Compose, and because process specification morphisms compose to

form process specification morphisms, the implementation of Two-Solve by Tran can be

extended through process specification morphism to define the specification Two-Partition-

Tran-Compose as shown in Figure 8.23. The arrows in the figure denote specification mor-

phisms, with e denoting an extension, m denoting a morphism, and d denoting an extension

by definition. The specification Two-Partition-Tran-Compose is shown in Figure 8.24. For

purposes of clarity, equivalence classes are represented by a single symbol from that class.

8-28

m d
Two-Solve - Two-Solve-as-Tran - - " Tran

"e"-. colimit

m'
Two-Partition-Two-Solve-Compose - Two-Partition-Tran-Compose

Figure 8.23 Specification Diagram for Two-Partition-Tran-Compose

For example, the equivalence class of sort symbols { any, index} is represented by the sym-

bol index. Specifically, the specification of Figure 8.24 is the colimit object of Figure 8.23

translated by the following map:

{tleftl, p2s} - p2t

{tleft2, p2s2} '-* p2t2

{s2c,tright} j-* t2c

{any2, s, matrix} F-4 matrix
{any, index} '-4 index

{ Two-Solve, Tran, Two-Solve-as-Tran} - Solve-as-Tran

set-any •-* index-set

Part-Solve-Comp F-- Two-Partition-Tran-Compose

where the rest of the map is defined by the identity map.

Now that Solve has been refined, the values returned by the processes defined by

Two-Partition-Tran-Compose can be determined. Specifically, for an input matrix S and

an input set of indices E, Two-Partition-Tran-Composemod generates the value { tran(S,

ij) : ij E S as follows:

1. Partition accepts the values S and E, and enumerates over E communicating both

S and an element of E to individual Tran processes.

2. Tran accepts the matrix S and the index ij and generates the value tran(S, ij).

Because Partition enumerates over the entire set E, there will be one value tran(S,ij)

generated by a Tran process for every ij in E.

3. Compose accepts the values generated by individual Tran processes and collects them

in a bag data structure. Compose then communicates the accumulated bag of values

over its output channel.

8-29

pspec Two-Partition-Tran-Compose is

sorts index, set(index), matrix, bag(matrix) }
const max: nat
port pleft : set(any) port pleft2 : matrix

port p2ti : index, i = .max port p2t2i matrix, i = i..max

port t2c-i : matrix, i 1..max port cright : bag(matrix)
var m: matrix var tran-mat : matrix
var b: index var accum : bag(matrix)

var el : index var index-set : set(index)
op empty : set(index) -- boolean,
op arb : set(index) --* any,
op less: set(index), index -- set(index)
op with: matrix, bag(matrix) --- bag(matrix)
op tran: matrix, index -- matrix
event done

process Two-Partition : events: {done}
chan: {pleft : set(index), pleft2 : matrix,

p2t. : index i = 1..max, p2s2i : matrix i = 1..max }
act: { empty : set(index) --* boolean, arb : set(index) -- index,

less : set(index) --- set(index) }

var: {index-set : set(index), m : matrix}
process Solve-as-Trani : events: {done} chan: {p2ti : index, p2t2i : matrix }

act: {tran : matrix, index --+ matrix}
var: {tran-mati : matrix, ij : index}, i = 1..max

process Compose : events: {done} chan: {t2ci : matrix i = 1..max, cright : matrix }
act: {with : bag(matrix), matrix --+ bag(matrix) }
var: {b : matrix, accum: bag(matrix)}

process Two-Partition-Tran-Compose : ...

Two-Partition sat {pleft2?m cs pleftindex-set £

[not (empty (index-set)) * [el:= arb(index-set);

(x:{p2ti!el I iE[1..max]} CSP

(p2t2i!m cs index-set := index-set less el; Skip))]]};CSP
done) Skip

Solve-as-Trani sat (done c Skip)

(p2ti?ij c p2t2i?tran-mat c t2ci!tran(m, ij) c Skip]);Solve-as-Trani

Compose sat (x:{t2ci?b I iE[1..max]}) accum := accum with b; Compose)

(done -- (cright!accum) Skip))
Two-Partition-Tran-Compose sat (Two-Partition ij=I..max Solve-as-Trani) Compose

end-pspec

Figure 8.24 Specification for Two-Partition-Tran-Compose

8-30

The specification of Figure 8.24 defines the last major building block for the specifica-

tion Erode. What remains to be done to complete the process based specification Erode is

to connect the output of the process Domain-Ninety-Sq of Figure 8.21 to the set-sorted in-

put of the process Two-Partition-Tran-Compose of Figure 8.24, and to connect the output

of Two-Partition-Tran-Compose to the input of the process And of Figure 8.18. This can

be accomplished through port symbol unification as described in Section 6.3.1. Figure 8.25

is specific to this case.

In Figure 8.25, port symbols pleft of the specification Two-Partition-Tran-Compose

and left of the specification Domain-Ninety-Sq are unified using a simple channel specifi-

cation. Similarly, the port symbols cright of Two-Partition-Tran-Compose and and-left of

And are also unified. The colimit of the diagram, Connected-Erode contains specifications

for the processes Domain-of-Ninety-Sq, Two-Partition-Tran-Compose, and And, including

specifications of their subprocesses. In addition, port unification has resulted in the forma-

tion of two CSP channels, one from Domain-Ninety-Sq to Two-Partition-Tran-Compose

and one from Two-Partition-Tran-Compose to And. However, the colimit object does not

yet fully define how these processes are related. Therefore, the colimit object is extended

with the process symbol Erode and the process expression Erode sat Domain-Ninety-Sq

11 Two-Partition-Tran-Compose I1 And. Translation of the colimit object is used to clean

up the specification by replacing equivalence classes with a representative element, and to

rename the external channels of Erode to s-erode, e-erode, and erode-out, where s-erode

is the matrix sorted input port of Two-Partition-Tran-Compose, e-erode is the set-sorted

input port of Domain-Ninety-Sq, and erode-out is the output port of And. The resulting

process expression for Erode defines a collection of processes having the structure depicted

in Figure 8.20. This nearly completes the generation of a process based specification for

the morphological filter ERODE; all that remains is to provide a definition for the constant

max.

For values S and E, where S is an image and E is a structuring element, Erode

defines a process encapsulating the filter ERODE as follows:

8-31

c-sort > set(index) c-sort-> bag(matrix)

2.TheprcesPwoPa tition-Tran-Compose acet thevale SCrohanel enirnmn

pspec Channel is epr lf nCmoe L cpr rgt ppcCanli

sort c-sort sort e-sort

port c-port Sqt. Afe ar-porthe-eeae
end-pspe- end-pspec

"the l e{tan (S i) c-sort -> bag(matrix)

f -port .> left "oPt a -m o and gt ean(,) j

Domain-Ninety-Sq I () wect d-Erql E
extend and

translate

Figure 8.25 Specification for Erode

1. The process Domain-Ninety-Sq accepts the vcsue E from the environment and gen-

erates the value .

2. The process Two-Partition-Tran-Uompose accepts the value S from the environment

and accepts the value domain (ninety (ninety (E))) of sort set(index) from Domain-

Ninety-Sq. After accepting both inputs, Two-Partition- Tran- Compose then generates
the value f tran(S, ij) : ij E domain (ninety (ninety (E)))}.

3. The process And accepts the value f tran(S, ij) : ia E domain (ninety (ninety (E)))8
from Two-Partition- Tran- Compose and generates the value and({ tran(S, ij) : ij E

domain usni the nety (E)))}, which equals ERODE(S,E).

Some of the specifications developed in this section are referenced in the next several

sections. Specifically, Two-Partition- Tran- Compose is used as a major building block for

the specification Dilate, and Erode is used in the construction of the specifications Open

and Skel. A process based specification for the morphological filters OPEN and DILATE
are developed in the following section.

8.4.3 Specification of Open and Dilate. As shown in Figure 8.6, the filter OPEN is

used in the computation of the skeleton of an image, and as shown in Figure 8.11, OPEN

is defined using the morphological filters ERODE and DILATE. The previous section

developed a process based specification Erode encapsulating the filter ERODE. This section

develops a specification Open encapsulating the filter OPEN. Because OPEN is defined in

terms of DILATE, a process based specification Dilate encapsulating the filter DILATE

8-32

c-sort -> set(index) c-sort-> bag(matrix)

pspec Channel is c-ot tet Two-Partition-Tran-Comnpose c-ot cih pspec Channel is
sort c-sort1 sort c-sort

port c-port ""-..,......" "" .- "y port c-port

end-pspec .end~ppc-P s orI)C agmtr

c-sort -> set(index) , bag(.atrix)

-port -left colimit c-port-> or-left

DomL ain] Comtiunizai nDiaeI

eXtlend and

translate

I Dilate

Figure 8.26 Specification for Dilate

is developed in the following paragraphs. After Dilate is developed, it is combined with

Erode to define the specification Open.

The equation given in Definition VIII.9 for the morphological filter DILATE is DI-

LATE(S,E) = V(i,j)CD, TRAN(E;i,j). As indicated by this equation for DILATE and as

shown in its block diagram, Figure 8.8, DILATE can be specified using multiple, concur-

rent translate processes, each translating the input image by an index element drawn from

the structuring element. The specification Two-Partition-Tran-Compose of Figure 8.24

can be reused for this purpose. In addition, the process specifications Domain-Spec of

Figure 8.16 and Or of Figure 8.18 have also already been developed and can be used in

the construction of Dilate. To define Dilate from these three specifications, all that needs

to be done is to unify port symbols to define CSP channels and to introduce the process

symbol Dilate and to define a process expression for Dilate as a parallel composition of

the processes Domain of Domain-Spec, the process Two-Partition-Tran-Compose of the

specification with the same name, and the process Or.

Figure 8.26 contains a specification diagram used to construct the process-based

specification Dilate. As shown in the figure, the output port of the process Domain is

associated with the set-valued input port of the process Two-Partition-Tran-Compose via

a simple channel specification. Similarly, the output port of the process Two-Partition-

Tran-Compose is associated with the input port of the process Or via a simple channel

specification. The colimit of this diagram, the process specification Communicating-Dilate,

contains process expressions for Domain, Two-Partition-Tran-Compose, and Or such that

8-33

a CSP channel exists from Domain to Two-Partition-Tran-Compose and a CSP channel

exists from Two-Partition- Tran-Compose to Or.

The colimit object of Figure 8.26 is extended with the process symbol Dilate and

is translated to clean up the specification by replacing equivalence classes with a repre-

sentative element. Part of the translation morphism involves renaming the external ports

of Dilate to s-dilate, e-dilate, and out-dilate, where s-dilate is the matrix sorted external

port of the process Two-Partition-Solve-Compose, e-dilate is the set-sorted input port of

the process Domain, and out-dilate is the matrix sorted output port of the process Or.

Thus for the inputs S and E where S is an image received over s-dilate and E is a struc-

turing element received over e-dilate, Dilate will return the value or({tran(S;i,j) : (i,j) G

domain(E)}. This value is generated as follows:

1. Domain communicates the value domain(E) to the process Two-Partition-Tran-

Compose.

2. The process Two-Partition-Tran-Compose iterates over the elements of the set do-

main(E), computing and accumulating the bag of values TRAN(S;i,j) for every (i,j)

E domain(E). This bag of values is then communicated to the process Or.

3. Or accepts the bag of values {tran(S;ij): (i,j) E domain(E)} and returns the value

or({tran(S;i,j) : (i,j) E domain(E)}). This is equivalent to the value returned by

the filter DILATE for image S and structuring element E. This implies that the

specification Dilate encapsulates the filter DILATE.

As is the case with the other morphological filters defined using the specification Two-

Partition-Tran- Compose, the constant max of specification Dilate can be given definition

through morphism to establish the number of concurrent translate processes. Now that the

specification Dilate has been developed, it is a simple matter to use it in the construction

of a specification for the filter OPEN.

As given in Definition VIII.12 and shown in Figure 8.11, OPEN(S,E) equals DILATE

(ERODE (S,E), E). Note that both Figure 8.11 and the equation DILATE (ERODE (S,E),

E) indicate that the input E is used in both ERODE and DILATE. The lack of a broadcast

8-34

semantic in CSP implies that the process based specification Open must include a connector

that provides a broadcast semantic. A specification for such a connector is given below.

pspec Broadcast is
const number-of-outputs : nat

sort any

var the-item : any
port b-in : any
port b-outi : any, i 1..number-of-outputs

process Broadcast
events: {}
act : {}
var: {the-item: any}
chan : {b-in : any, b-outi : any, i = 1..number-of-outputs}

Broadcast sat b-in?the-item C IIi=l..number- of -outputs(b-outi c Skip)
end-pspec

Broadcast defines a process that reads a data value over its input channel and com-

municates that value over a collection of output ports. The sort of the input and output

ports and the number of output ports can be defined through refinement of the specifica-

tion. In the case of Dilate, the sort is matrix and the constant number-of-outputs is the

natural number 2. This refined specification will be referred to as Broadcast-2.

Connecting the output of Erode to the input of Dilate can be accomplished through

port symbol unification as shown in Figure 8.27. In the figure, a simple channel specifi-

cation is used to unify the output port of Erode, erode-out, with the input port s-dilate

of Dilate. The colimit of this diagram, the specification Erode-to-Dilate, contains a CSP

channel from Erode to Dilate. The colimit object is then extended with the process sym-

bol Open and the process expression Open sat Erode 11 Dilate. However, this specifica-

tion, Concurrent-Erode-Dilate does not yet address the issue of broadcasting the input

structuring element to both Dilate and Erode. Therefore Broadcast-2 is brought into the

specification to provide a broadcast semantic. Specifically, one of the two output ports

of the specification Broadcast-2 is associated with the input port e-erode of Erode, and

the other output port of Broadcast-2 is associated with the input port e-dilate of Dilate.

The colimit of this diagram, the specification Cluttered-Open, contains two external input

ports, one from Broadcast-2 and one from Erode, and one external output port, dilate-out.

Equivalence classes of symbols are prevalent in Cluttered-Open, and are removed through

8-35

c-port-> erode-out

c-soextandUnit
-Pol rt> sI

c-port-> e-erode c-port -> e-dilate

c-seert-> matrix c-sort -> matrix c~ort -> b-ourt

Sc-sort -> matrix
cpr-> b-outl

Ic-sort-> matrix D racs-

SClutpeed-Open

exteed ord

toranslate

Figure 8.27 Specification for Open

translation. Part of the translation includes renaming the external ports according to the

following map: { b-in -H e-open, s-erode -* s-open, dilate-out - open-out}.

For an image S and a structuring element E, Open defines a process that generates

a value equivalent to the opening of S by E as follows:

1. E is accepted by Broadcast-2 which relays it to both Dilate and Erode.

2. Erode accepts the value E from Broadcast-2 and accepts the value S from the envi-

ronment. After accepting both of these inputs, Erode computes the erosion of S by

E and communicates this value to Dilate.

3. Dilate accepts E from Broadcast-2 and accepts the value v generated by Erode. Dilate

then returns the value defined by the dilation of v by E.

Now that Open is defined, it can be used as a building block for the specification

Skel.

8.4.4 Specification of Skeleton. In this section, a process based specification

for the filter SKEL is developed. The specification developed in this section builds on

the specifications for the filters OPEN, ERODE, OR, and AND presented earlier in this

chapter.

8-36

The equation given in Definition VIII.13 for the morphological filter SKEL is SKEL(T)

ORD [AND (COMPLEMENT (OPEN (ERODE (T,D,), D2)), ERODE(T,D,))], where

T is a constant (1,*) valued matrix and D = {Di : 3(i,j)((i,j) E DOMAIN(T) •*

tran(Di; i,j) C T)}. Each disk Di E D is a "square disk" of diameter m; see Figure 8.5.

As indicated by both its equation its block diagram (Figure 8.6), the skeleton of an

image can be determined using a parallel composition of series of simpler filters. This series,

ERODE, OPEN, COMPLEMENT, and AND, is referred to as EOCA. Specifically, EOCA

(T, Din) = AND (COMPLEMENT (OPEN (ERODE (T,Dm), D 2)), ERODE(T,Dm)).

Using this definition of EOCA, SKEL can be defined as SKEL (T) = ORDmcD (EOCA

(T, Di)). This alternate definition of SKEL is used to guide the development of a process

based specification Skel for this filter.

Development of the specification Skel proceeds in three steps:

1. A process based specification EOCA encapsulating the filter EOCA is developed.

2. An implementation Two-Solve --- Two-Solve-as-Eoca <-- EOCA is developed, which

yields a specialization of the specification Two-Partition-Two-Solve-Compose such

that each Solve, is implemented by EOCA.

3. The specification generated by the above action is then extended with the process

symbol Skel and a process expression defining Skel in terms of the other process

symbols of the specification.

These steps are described in the following subsections.

8.4.4.1 Development of the Specification EOCA. The specifications Erode,

Open, Complement, and And have all been developed in the preceding sections and will be

used here as building blocks in the construction of the specification EOCA.

The specification for the process And, shown in Figure 8.18, defines a process that

accepts a bag of constant (1, *) valued matrices and generates a matrix defined by the

operation AND of Definition VIII.8. However, Erode generates a single constant valued

matrix, as does Complement. This indicates that there is a type mismatch between the

input sort of the process defined by And and the output sorts of the processes defined

8-37

by Erode and Complement. This disparity can be overcome by either extending And or

by defining a merge connector. Specifically, And can be extended through specification

morphism with the operation and-two : matrix, matrix --* matrix, the variables ml and

m2 of sort matrix, and the ports and-two-i : matrix and and-two-2 : matrix. The process

expression for And can then be extended with the nondeterministic choice of and-two-1 ?ml

__ (and-two-2?m2 c (and-right!and-two(ml,m2) c Skip)). However, the approach

taken here is to define a connector Merge as given below.

pspec Merge is

sort any, set(any)
var mi : any, i=l..fan-in
var accum : set(any)

const fan-in : nat
port merge-ini : any, i=l..fan-in
port merge-out any
process Merge is

events {}
act: {}
chan : {merge-ini : any, i=l..fan-in, merge-out: any}

var : {m: any, accum : set(any)}
Merge sat

CSP

(IIiG{1..fan-in} merge-ini?mi ---- accum := accum with m; Skip);
(merge-out!accum SP(megeou~acu Skip)

end-pspec

Merge defines a process that accepts exactly fan-in elements of sort any and then

outputs a bag containing those values. Merge can be refined by providing definition to the

sort any and by specifying the constant fan-in. For the specification EOCA, Merge can be

refined through specification morphism by the following map: {any '-4 matrix, fan-in '-*

2}. The resulting specification, Merge-2, is used in the construction of EOCA.

A specification diagram for EOCA is shown in Figure 8.28. The arrows in the figure

denote morphisms. Channel specifications are used to unify port symbols and thereby

define CSP channels. Specifically, the output port of Erode, erode-out, is associated with

the input port of the broadcast specification Broadcast-2. One of the output ports of

Broadcast-2 is associated with the port s-open of Open, and the other output port of

Broadcast-2 is associated with one of the input ports of Merge-2. The other input port

of Open, e-open, is associated with the simple process DTwo. DTwo specifies a process

8-38

ChnnlChanneltdEC

extend and

tanslate

Figure 8.28 Specification for EOCA

s-coc mh•a matrix

n-coca : "ari ou-cn: "ar

I)ToThane Op~nnl Co hlamnt e

i CI

Figure 8.29 Communication Network for EOCA

that outputs the matrix D2. Thus the Open in the colimit specification outputs the value

OPEN (ERODE (S,E), D2) for the values S and E accepted by Erodemod. Furthermore,

the output port of Open is associated with the input port of Complement, and the output

port of Complement is associated with the other input port of Merge-2. The output port

of Merge-2 is associated with the input port of And. The colimit object of this diagram,

the specification Connected-EOCA defines a collection of processes having the communica-

tion network shown in Figure 8.29, where the arrows in the figure denote communication

channels.

The colimit object of Figure 8.28, Connected-EOCA, is extended through specifica-

tion morphism with the process symbol EOCA and with the process expression EOCA

sat Erode 11 Open 11 Complement 11 And 11 Broadcast-2 11 Merge-2. The resulting process

specification has four external ports; three are input ports and one is an output port. As

shown in Figure 8.29, two of the input ports are the input ports of Erode. The third input

port is the port e-open of Open. This input port of open Open, as shown in Figure 8.6,

will be connected to the output port of a simple process that simply outputs the constant

8-39

matrix D2. The external ports of EOCA can be renamed through the map {e-erode -*

e-eoca, s-erode F-4 s-eoca, e-open --* e-open, and-right i-* out-eoca}.

Although more efficient specifications are possible, this specification of EOCA is

sufficient for purposes of demonstration.

8.4.4.2 Implementing Two-Solve as EOCA. Defining an implementation

of Two-Solve as EOCA is straightforward. Specifically, two morphisms need to be defined,

Two-Solve -ý Solve-as-EOCA and Solve-as-EOCA ý- EOCA. These two morphisms can

be defined as follows.

1. Define the process specification Solve-as-EOCA to be the specification EOCA ex-

tended with the event done such that done is added to the alphabet of the process

EOCA. Furthermore, extend the process expression for the process symbol EOCA
csPto include the nondeterministic choice of done - Skip. That is, the extended pro-

cess expression for EOCA is (done s_ Skip) n (Erode I1 Broadcast 11 DTwo 11 Open

1 Complement I1 Merge-2 II And). Then the traces of the process EOCA are con-

tained within the traces of this extended process expression because traces(P Fl Q) =

traces(P) U traces(Q) for any processes P and Q. That is, denoting the extended pro-

cess expression by Solve-as-Eoca, traces(EOCA) C traces(Solve-as-Eoca)[aEOCA.

Clearly, Solve-as-EOCA + EOCA.

2. Define Two-Solve -4 Solve-as-EOCA by the map { Two-Solve ý-* Solve-as-EOCA, s

-* matrix, any ý- matrix, any2 --+ matrix, p2s F-* e-eoca, p2s2 v- s-eoca, s2c ý- eoca-

out}. Because traces(Two-Solve) = {(), (done)} C traces (Solve-as-EOCA)[a Two-

Solve, Two-Solve --* Solve-as-EOCA is a specification morphism.

Because Two-Solve can be extended through process specification morphism to de-

fine the specification Two-Partition-Two-Solve-Compose, and because process specification

morphisms compose to form process specification morphisms, the implementation of Two-

Solve by EOCA can be extended through process specification morphism to define the

specification Two-Partition-EOCA-Compose. This extension is shown in the diagram of

Figure 8.32. The arrows in the figure denote specification morphisms, with e denoting an

extension, m denoting a morphism, and d denoting an extension by definition.

8-40

s-eca marix/• EOCA

s'~a : m oati ou-e: matrix:mari

pleft: set(matrix)
_ Two-PartitionW--• Compose

pleft2: matrix cright: bag(matrix)

Two-Partition-EOCA-Compose EOCA

Figure 8.30 Communication Network for Two-Partition-EOCA-Compose

As shown in Figure 8.30, Two-Partition-EOCA-Compose defines a collection of pro-

cesses uses EOCA to find solutions to input data values. The arrows in the diagram denote

communication channels. Two-Partition-EOCA-Compose has three external ports, pleft,

pleft2, and cright. The sorts of the three external ports have been refined based on the

implementation of Solve by EOCA. Specifically, because Two-Solve --* Solve-as-EOCA is

defined by the map { Two-Solve '-* Solve-as-EOCA, s F matrix, any '-4 matrix, any2 F->

matrix, p2s •-* e-eoca, p2s2 t-* s-eoca, s2c i-4 eoca-out}, and because Two-Partition-Two-

Solve-Compose is defined as an extension to Two-Solve, the colimit of the upper portion of

the diagram of Figure 8.32 yields the unification of the sort symbols any, any2 and s with

matrix in the colimit object.

Inputs to Two-Partition-Two-Solve-Compose are accepted by Two-Partition which

is contained within Two-Partition-EOCA-Compose. After accepting the inputs, Two-

Partition enumerates over the input set of matrices, communicating both the single matrix

accepted over the port pleft2 and a matrix value from the input set of matrices to one of

the EOCA processes. Subprocess Compose of Two-Partition-EOCA-Compose collects the

values generated by the individual EOCA processes, and when all output values have been

generated, Compose is defined to output the bag of values it has accumulated.

The block diagram for Skel, Figure 8.6, gives an indication of how the external

ports of Two-Partition-EOCA-Compose will be used. As shown in the figure, the input

image T is replicated and communicated to m parallel EOCA processes. Definition VIII.13

indicates that m is the largest natural number such that TRAN(Dm; i,j) g T for (i,j) e

8-41

DOMAIN(T). This implies that the set 29 should be computed after Skel accepts the image

T. This set of square disks will be the set valued entity communicated to Partition over

the port pleft.

Two-Partition-EOCA -Compose is the largest building block used in the construction

of the specification Skel. A diagram used to construct the specification Skel is developed

in the following subsection.

8.4.4.3 The Specification Skel. In the introduction to this section, the

skeleton of an image T was defined by the equation SKEL (T) = ORDmEv (EOCA (T,

Din)), where E) = {D, : 3(i,j)((i,j) G DOMAIN(T) =: tran(D,;i,j) C T}. This implies

that the skeleton of T can be computed by taking the disjunction of the set of values

{EOCA(TDi) : Di G }. In other words, the skeleton of an image T can be determined

by

1. Defining the set D = {Di : 3(i,j)((i,j) E DOMAIN(T) •• tran(Di;i,j) C T)}.

That is, D is the maximal set of square disks such that any disk Di in D can be

translated such that it is a sub-image of T.

2. Enumerating over the set D9 to compute the set of values and(complement (open

(erode (T, Di)), D2), erode (T, Di)) such that Di G D.

3. Taking the disjunction of the set values generated in the above step. The resulting

value, or({ and (complement (open (erode (T, Di)), D2), erode (T, Di)) : D} E E)}),

equals SKEL(T).

The process specification Skel developed in this section is organized around these three

steps. Specifically, Skel has three main subprocess, DSet which is used to compute the

set 2D, Two-Partition-EOCA-Compose used to compute the set of values {EOCA(T,D) :

Di E D} for an image T, and Or which forms the disjunction of the values generated

by Two-Partition-EOCA -Compose. Both Or and Two-Partition-EOCA-Compose have al-

ready been developed in preceding sections of this chapter. The specification DSet is

developed in the following paragraphs. After DSet is developed, it is used in the definition

of a specification diagram for Skel.

8-42

pspec DSet is
sorts matrix, set(matrix)
var t : matrix
port left-DSet : matrix
port right-DSet : set(matrix)
op get-dsets matrix -* set(matrix)

process DSet events {}
act: {op get-dsets : matrix --+ set(matrix)}
chan : {left-DSet : matrix, right-DSet : set(matrix)}
var : {t : matrix}

DSet sat left-dset?t • right-dset!get-dsets(t)
end-pspec

Figure 8.31 Specification for DSet

DSet specifies a process consisting of two ports, an input port left-dset of sort matrix

and an output port of sort set(matrix), and defines a process that accepts a matrix t and

produces the set {Dj : 3(ij)((ij) E DOMAIN(t) •ý TRAN(Di;i,j) C t)}. There are

many interesting approaches for defining DSet, including one based on a layered architec-

ture where Tran and Domain are subordinate to DSet. Another approach would be to

define a subordinate partition-solve-compose structure. In any case, the form of the spec-

ification of DSet is not that critical; any specification for DSet that returns the requisite

set of values for an input image t is acceptable. Therefore, an operation get-dsets : matrix

---+ set(matrix) contained in DSet is assumed to exist. This operation has the functional

axiom V (T : matrix) (get-disks(T) = Di : 3(ij) ((ij) E DOMAIN(t) =• TRAN(DI;i,j)

C t)}). The specification DSet then takes the simple form shown in Figure 8.31.

Both DSet and Two-Partition-EOCA-Compose of Skel require access to the input

variable T. Rather than accepting the input twice, the specification Broadcast can be

refined through specification morphism to accept values of sort matrix and relay them to

both DSet and Two-Partition-EOCA -Compose. The specification Broadcast-2 can be used

for this purpose. Thus the specification Skel can be composed from the specifications DSet,

Broadcast-2, Two-Partition-EOCA-Compose, and Or. A specification diagram composing

these specifications to define Skel is shown in Figure 8.32.

8-43

[Two-Solve eTwo-Patition-To-Solve-Compose

"' colimit

translated --- --- --- -- --- --- -- --- ---.---- --- --- -- --- --- -- -- .--- --...................
[EOCAnnel Two-Partition-EOCA-Compose

Figure8.32 SpecificationfS c-portke-t
ofBradwth t ut port otaneroutpt~-pr 1 por - e-oc

[-Broadcast iah mtield iarn-e

i bofuthe p s Tc-Port i no dset-out

the suproces Comose i assoiatedwith he inut pot of r.hsth orlemitobet

c-port -> dset-in

extend and

tanslate

Figure 8.32 Specification for Skeleton

In the portion of Figure 8.32 enclosed by the dashed box, one of the output ports

of Broadcast-2 is associated with the input port of DSet, and and other output port of

Broadcast-2 is associated with the matrix-sorted input port pleft2 of Two-Partition-EOCA-
Compose (recall that any value received over the port pleft2 of Two-Partition is commu-

nicated to each Solve process along with an element from the set of values received by

Two-Partition over the port pleft.) Similarly, the output port of DSet is associated with

the port pleft of sort set(matrix) of the process Two-Partition. Finally, the output port of

the subprocess Compose is associated with the input port of Or. Thus the colimit object,

the specification Connected-Skel, defines a collection of processes containing two external

ports, both of which are of sort matrix. The input port of Connected-Skel is the input port

b-in of Broadcast-2, and the output port of Skel is the output port of Or.

8-44

Ha• roadcost-2 Two-Parrition-EOCA-Composr O

t-skel mtrixSkl matrix

Skel

Figure 8.33 Process Communication in Skeleton

The colimit object of the boxed in portion of Figure 8.32 defines a collection of

communicating processes, but the specification does not yet define - beyond the commu-

nication network defined by the CSP channels between the processes - how the processes

it defines interact. Therefore the colimit object is extended with the process symbol Skel

and the process expression Skel sat Broadcast-2 11 DSet 11 Two-Partition-EOCA-Compose

1 Or. The external ports of Skel can also be renamed; specifically, b-in is renamed to

t-skel and or-right is renamed to out-skel. After renaming, the specification Skel defines

a collection of processes having the communication network shown in Figure 8.33. The

arrows in Figure 8.33 represent CSP channels.

Skel generates the skeleton of an input image t as follows. Broadcast-2 accepts the

input t and relays it to both DSet and Two-Partition-EOCA-Compose. DSet accepts t and

computes the set D = {Di : 3 (i,j) ((i,j) E DOMAIN(t) == TRAN(Di; ij) C t)}. This

value is communicated to Two-Partition-EOCA-Compose, which then generates the set

{EOCA(t, Di) : Di E D}. This set is communicated to Or, which forms the disjunction of

the elements of the set. That is, Or accepts the set of values from Two-Partition-EOCA-

Compose and outputs the value OR({EOCA(t, D1) : Di E D}), which equals SKEL(t).

Now that the specification Skel has been defined, it can be used to define the feature

selection stage of an image recognition application.

8.4.5 Using Skeleton for Feature Selection. In the previous subsections, a process

based specification for the feature selection operation skeleton was developed. In this

section, the skeleton process specification, Skel, is associated with the feature selection

stage of the image recognition design shown in Figure 8.1. This association will result in

the skeleton operation being used for feature selection.

8-45

The process specification for Selection, shown in Figure 8.1, simply defines a process

that has two ports, left : msg and right : msg. Although there is no process expression

associated with the process symbol Selection, the process expression for ImageRec, Pipe

11 (Creation; Restoration; Enhancement; Segmentation; Selection; Registration; Classifica-

tion), where Pipe shares the port symbols left and right with the sequentially composed

processes, indicates that one of the ports of Segmentation is an input port and the other

port is an output port.

The specification Skel also defines a process that has two external ports, one used

for input and one used for output. In addition, the input and output sorts of Skel - like

the input and output sorts of Selection - are identical, so mapping the sort msg to the

sort matrix is a consistent with respect to the process signatures of Skel and Selection.

That is, the interface defined by Skel is compatible with the interface defined by Selection.

(Actually, the interface of Sel is isomorphic to the interface of Selection.)

Associating Skel with Selection is straightforward, and can be accomplished either

by defining an implementation Selection --* Selection-as-Skel +-- Skel, or through explicit

unification Selection and Skel through the the colimit of the diagram defined by T -*

Skel and T --* Selection, where T is a specification containing only a single process symbol

whose alphabet includes exactly two ports. In this case, the two approaches are equivalent.

That is, T - Selection. Thus the approach taken here is to define an implementation of

Selection by Skel as follows. Define the specification Selection-as-Skel to be a copy of the

specification Skel. Then

1. Selection --- Selection-as-Skel is defined by the mapping { msg -- matrix, left --* t-skel,

right -* out-skel, Selection ý- Ske}. Because traces(Selection) = {()}, and because

{ ()} is a subset of the set of traces of any CSP process, Selection - Selection-as-Skel

is a specification morphism.

2. Selection-as-Skel +- Skelis trivially defined to be the identity specification morphism.

The implementation of Selection by Skel is shown in Figure 8.34. Also shown in

the figure is the extension of Selection to the specification Image-Rec-System. Because

Selection can be extended to Image-Rec-System and because Selection can be mapped un-

8-46

Selection Image-Rec-System]

msg -> matrix Selection -> Skel: { msg -> matrix

left -> t-skel left -> t-skel

right -> out-skel Colimit right -> out-skell

Selection-as-Skel Skel-Image-Rec-System

id

Iskel

Figure 8.34 Selection as Skeleton in Image Recognition

der specification morphism to Selection-as-Skel, Image-Rec-System can be mapped under

specification morphism to the specification Skel-Image-Rec-System. Specifically, the mor-

phism Image-Rec -+ Skel-Image-Rec-System is defined by the map {msg - matrix, left

t-skel, right i-4 out-skel, Selection '-* Skel} where the rest of the symbols in Image-Rec are

mapped under the identity morphism.

The specification Skel-Image-Rec-System defines a piped-batch sequential design in

which one of the sequentially composed filter processes, Selection, is implemented by the

specification Skel.

8.5 Summary

The construction of a process based specification for the feature selection portion

of an image recognition system was carried out in this chapter, where smaller process

based specifications were defined and combined through process specification morphism

to define an application-level specification. This specification development effort resulted

in the formation of several reusable, domain independent designs. These reusable designs

were specialized under specification morphism to define specifications for various subprob-

lems. The definition, development, and use of these reusable designs provides at least

some empirical validation for the notion of a library of reusable design elements described

in Chapter II. In addition, the utility of architectural structuring specifications in the

development of application specifications was demonstrated through their use in the con-

8-47

struction of the top level image recognition specification, Image-Rec-System, and through

their use in defining subproblem structure.

Although not investigated as part of the feasibility demonstration, it should be possi-

ble to use architecture theories to guide the development of application level specifications.

That is, rather than use architecture theories to compose application level specifications

from the bottom up, as was done in this chapter, it should be possible to use architecture

theories to guide the decomposition of a problem into smaller, more manageable "mind-

sized" chunks. Additional research on this and other application level specification issues

can be supported by the theoretical foundations established in the preceding chapters.

8-48

IX. Conclusions and Recommendations

The purpose of this investigation was to establish a formal foundation for software

architecture which allows for the specification of large, non-trivial software systems using

well founded, consistency preserving construction techniques. Based on this, two funda-

mental problems were addressed. First, how to define and express architectures formally

using the concept of theories, and second, how architecture theories could be practically

applied in specification construction.

The initial stages of this investigation sought to establish a formal, mathematical

relationship between functional specifications of behavior and specifications defining sys-

tem structure. Two experiments were defined and executed, and their results lead to the

conclusions that an architecture defining the structure of functional operations could be

defined within a functional logic, but more complex architectures, such as those involving

collections of communicating processes, require a separate process logic. Based on these

experimental results, a process logic based on Hoare's Communicating Sequential Processes

(CSP) was presented and used in the definition of a process-based specification develop-

ment system. Specifically, CSP was used in the definition of a category of process-based

specifications and specification morphisms. CSP structures were introduced and defined to

provide a trace semantic for process expressions within this category. Architecture theories

expressed in terms of both functional specifications and process-based specifications were

then defined, and relationships between these architecture theories were investigated. A

feasibility analysis demonstrated that process-based specifications and architecture theories

could be used to develop specifications for large, non-trivial applications.

A category of process specifications and process specification morphisms exists, and

process-based architecture theories can be defined within this category. The category-

based operations of importation, translation, product, coproduct, and colimit, among oth-

ers, can be used to define consistency preserving process-based specification construction

operations. In addition, the semantics of sorts and functional operators referenced within

process expressions of process specifications can be given definition through associated

functional specifications. Components are used to make this association. Finally, it was

shown that components and component morphisins form a category, and it was shown how

9-1

component-based architecture theories could be defined and used in the construction of

large, non-trivial specifications.

9.1 Conclusions and Results

In addition to the broad conclusions stated in the above paragraphs, several specific

conclusions and results can be stated.

1. The category PSpec of process specifications and process specification morphisms

proved to be effective in the construction of process specifications. In addition, def-

inition of the satisfaction relation j= could be extended to include a semantic more

powerful than the trace semantic used in the definition of PSpec. The major benefit

of defining a category of process specifications is that process specifications can be

used to define state, communication, and processes, and consistency preserving spec-

ification construction operations such as colimits can be defined with the category.

2. The relationship defined between process-based specifications and functional specifi-

cations provides a means to develop system level specifications using logic-appropriate

techniques. Sorts and functional operators can be defined using functional specifica-

tions, while these same sorts and functional operators can be referenced in a process

specification defining communication, state, and process. Furthermore, a category

App of related functional and process-based specifications was defined. Such a cate-

gory permits application level specifications to be grown using consistency preserving

construction techniques.

3. Functional architecture theories, process-based architecture theories, and component-

based architecture theories were defined. Several process-based architecture theories,

including layered, pipelined, and repository architectures were defined. Furthermore,

it was shown how architecture theories can either be used in a bottom-up manner to

define structure in terms of other, simpler structures, or used in a top-down manner

to decompose an element into a structured collection of simpler elements.

4. A semantic for comparing process-based architecture theories was defined and used

to establish a hierarchy of process-based architecture theories. It was shown, for

9-2

example, that any well-formed pipeline design can be translated under specification

morphism to a layered design. The semantic developed is weaker than the trace

semantic used to define process specification morphisms in that it is only concerned

with sequences of communication events between a process and its environment; all

internal communication and all non-communication events are ignored.

5. The utility of architecture theories was demonstrated through the development of a

process-based specification for a segment of an image processing application, where

pipeline, batch-sequential, piped-batch-sequential, and general process-based archi-

tecture theories were used during the development.

9.2 Future Work

The mathematical foundations established as part of this investigation permit ex-

ploration of issues associated with the specification of software architecture. However, the

results are not complete and should be extended through further analysis and definition of

the mathematical framework. Several areas requiring further work have been identified; a

summary of these areas is presented below.

1. A formal definition of a grammar and domain model for the ISlang specification

language should be developed. After defining the domain model and grammar for

the language, the Composition Mechanism (CM) can be implemented. Implementing

the CM requires elaboration of a deductive system for process expressions. Some work

has been done in this area, e.g., (8) and (51).

2. Safety and liveness issues and their decidability within a process logic should be

further defined. Some work on this issue, including identification of CSP constructs

leading to finite state automata,(36) has been done.

3. Constraint representation and use needs further elaboration. It should be possible

to use constraint information to complete partially defined morphisms. For exam-

ple, sort compatibility can be used to complete some simple morphisms. It should

be possible to extend this concept to use derived antecedents, for example, to com-

plete more complex morphisms such as those defining architecture interpretations.

9-3

SSenC.• A Component
- - - - - --- -

..... . . f,, M I÷ .•~ ~~ ---- --- ---- ---• I . . • - - l-,: - > S e n (f)

"". Institution of a

M< .. Functional Logic

M igor , , go , Sen(g o f),

9 /MI ~ e(g)

M 3 _<- - - - - - - - - - - - - - - - - - - ---E 3 S~C)
'

.........
..........._._.._...--: .€

\ \ '. .. H

M ~~l ..A

__,g _2 \ 1 2

"- ---e - - - - - - - - - -- -----/

g I

'Modf1 Sen(f)
Institution of a , ,o B , Ps
Process Logic this top --5-.¢

4.o - me h ns used.. .. to ma sp ciic ti n to. mo el s n eed oto bedein d

M ',o ,f"------d--l Se L ,-a >Sng

M 3 - - - - -3 -S-e- -L H -__ . . .

Figure 9.1 Formalizing the Relationship Between Functional and Process Institutions

Goguen suggests that constraints could be represented as a well-formed expression in

some logic where the values of variables referenced in the expression are represented

as morphisms to the constrained elements of the affected specifications. Another

Ph.D. candidate at the Air Force Institute of Technology, Frank Young, is actively

researching this topic.(129)

4. The mechanism used to map process specifications to models needs to be defined.

Before this can be accomplished, a more rigorous definition and characterization of

models of process specifications is required. Some work has been done in this area.

See, for example, (50).

5. A generalization effort could be undertaken to provide an algebraic unification of

processes and functional operators. Specifically, it may be possible to associate a

process with a functional operator so that operators such as f : u, v -+ w can be

defined as a collection of cooperating processes.

9-4

6. The relationship between functional specifications and process specifications needs to

be further formalized. Figure 9.1 depicts the relationships between process specifica-

tions and functional specifications developed during this investigation. Specifically,

a component is defined by the dotted box in the figure, where the dashed arrow from

E-signatures to H-signatures represents the functor i of a component. Missing from

the figure is the relationship between models of the two institutions. Elaboration

of this relationship would first require the elaboration of the process logic institu-

tion. Although the figure depicts an institution of process logic, neither the category

Mod[pSP] of process specification models nor the functor Mod from 11 signatures

to 11-models were formally defined as part of this investigation.

7. Finally, an appropriate generalization effort could be undertaken to partition speci-

fication construction using architecture theories into two distinct aspects: a prob-

lem specific aspect of classification, and a problem independent aspect of solu-

tion/synthesis. The problem dependent aspect of specification development is con-

cerned with defining interpretations from successively more refined architectures to

the specified problem. The problem independent aspect of specification construction

is concerned with defining interpretations from the architecture of the target platform

to the architecture theories used to structure the problem.

Figure 9.2 conceptually represents specification construction using this approach.

Abstractly shown in the figure is a Basic System Specification from which a definition

of a specific problem such as Skeleton can be defined. Basic System Specification is

also used to characterize the target platform, in this case an n-cube. A morphism

from Basic Problem Theory to Partition-Solve-Compose (PSC) can be used to define

an interpretation from PSC to Skeleton and from n-cube to PSC. Interpretations

are shown in Figure 9.2 as a bold arrow. The specification n-cube-as-PSC defines

how an n-cube can be used for the PSC architecture. Note that the construction

of an interpretation from n-cube to PSC is problem independent. The specification

PSC-as-Skeleton defines how PSC can be used to define solutions to the problem

Skeleton.

9-5

Architecture Theories System Specification Problem Specification

n-cube Basic System Specification Skeleton

n-cube-as-PSC Partition-Solve-Compose (PCS) - PSC-as-Skeleton

n-cube-as-PPSC , Pipelined-Partition-Solve-Compose (PPCS) PPSC-as-Skeleton

n-cube-as-PPSC-as-Skeleton

Solution/Synthesis Classification

Figure 9.2 Using Architecture Theories

An additional level of refinement is shown in the figure. Specifically, a pipeline ar-

chitecture theory (not shown as part of the figure) has been used to define Pipelined-

Partition-Solve-Compose (PPSC). The colimit of the resulting diagram, the speci-

fication n-cube-as-PPSC-as-Skeleton defines how solutions to the problem Skeleton

can be found using PPSC on an n-cube.

The architecture of target platforms could be represented using appropriate archi-

tecture theories. Additional process-based architecture theories such as wavefront

arrays, systolic arrays, pyramids, or cubes (27) could be defined and used to char-

acterize target platforms. Interpretations from the structures defined in the center

column of Figure 9.2, such as PSC, to the architecture of the target platform are

problem independent. Once such an interpretation has been defined, it becomes a

piece of reusable knowledge that can be stored in the library of architecture specifi-

cations shown in Figure 2.1.

The center column of Figure 9.2 could be defined using the relationships between

process-based architecture theories developed in Chapter VII. For example, Chap-

ter VII demonstrated how pipeline designs could be refined as layered designs. The

existence of specification morphisms involving designs of other architecture theories

was demonstrated, but these morphisms were not defined. Development of the center

9-6

column of the figure will require further elaboration of the relationships between the

various process-based architecture theories. These relationships could then be used

exploit the characteristics of the problem to facilitate the definition of an interpreta-

tion from the architecture of the target platform to the architecture inherent in the

given problem.

9.3 Summary

Based on the results and conclusions reported in this and previous chapters, it can be

concluded that this investigation successfully met its objectives. Solid mathematical foun-

dations for software architectures were established. Specifically, several categories of speci-

fications and specification morphisms were defined wherein software architectures could be

formally defined and used in the construction of specifications for large, non-trivial soft-

ware systems, and relationships between various process-based architecture theories were

investigated and formalized. An additional benefit of this investigation was its identifi-

cation of additional areas of research and analysis in several other areas of specification

development and implementation.

9-7

Appendix A. Category Theory

A.1 Initial and Terminal Objects

An interesting aspect of colimit objects is their initiality.

Definition A.1 Initial. A C-object c is initial in a category C if and only if there exists

a unique arrow from c to any other C-object in C. El

A dual to initiality is the following:

Definition A.2 Terminal. A c-object c is terminal in a category C if and only if there

exists a unique arrow from any other C-object in C to c. El

The definition of initial objects coupled with the definition of pushouts and colimits

leads to the following theorem.

Theorem A.1 Initiality of Colimit Objects. The colimit of a diagram D of a category is

an initial object in a category whose C-objects extend D.

Proof. The proof follows from the definition of colimit and initial object.

Denote by L the colimit of a diagram D. Let c be any other C-object extending D.

Then there exists a cone from D to c. By the definition of colimit, then there exists a

unique arrow from L to c. Since c was an arbitrary object extending D, we get that L is

initial in the category of objects that extend D. U

This theorem can be extended to pushouts as well:

Corollary A.1 Initiality of pushout objects. Given a diagram D consisting of a pair of

C-arrows a +f c 2• b with a common domain, the pushout of D is initial in a category

whose C-objects extend D.

Proof. Follows from Theorem A.1. U

A.2 Homomorphisms

Figure A.1 depicts the concept of a homomorphism. The following paragraphs high-

light this concept.

A-1

fA

h ,b2 ,... ha >a

.fB

Figure A.1 Homomorphism.

The equality in the above definition can be used to determine if a proposed function

between two X-algebras is a homomorphism. For example, consider the following signature

E:

sign E is
sorts N
op plus: N,N ->N
op succ : N - > N
op pred: N - > N

op zero: - > N
end-sign

Then (N, EN) is a E-algebra where

"* N is the set of natural numbers,

"* EN is given by

- zeroN is the number 0;

- succN N -- N is defined by sUCCN (n) = n + 1;

- predN N -* N is defined by predN (0) = 0 and predN (n+l) =n;

- plusN N x N --* N is defined by plusN(n,m) = n + m where + denotes the

usual arithmetic plus.

Denote by N 2 the set of even natural numbers. Then (N 2 , FN) is also a E-algebra where

"* N 2 is the set of even natural numbers (i.e., N 2 = {m m = n + n,n E N

" YIN is given by

A-2

- zeroN, is the number 0;

- SUCCN, N -- N is defined by succN, (n) = n + 2;

- predN, N -- N is defined by predN, (0) = 0 and predN, (n+2) = n;

- plusN2 N x N --* N is defined by plusN, (n,m) = n + m where + denotes the

usual arithmetic plus.

Then in: N -- N 2 defined by in(n) = 2n is a homomorphism:

"• in(sUccN (n)) = in(n+1) = 2n+2 and succN, (in(n)) = succN2 (2n) = 2n+2;

"* in(plusN (n,m)) = in(n+m) = 2(n+m) = 2n+2m, and PlUSN, (in(n), in(m)) = PIUSN,

(2n, 2m) = 2n+2m;

"" for n 7 0, in(predN (n)) in(n-1) = 2n-2 and predN, (in(n)) = predN, (2n) = 2n-2;

for n = 0, predN (in(O)) 0 and predN, (in(0)) = pred,. (0) = 0.

A.3 Types of Morphism

Definition A.3 Types of Morphisms. A E-homomorphism h is called

"* an isomorphism if h is a bijection;

"* an epimorphism if h is a surJection; and

"• a monomorphism if h is an injection.

If h takes an algebra back to itself, then h is called an endomorphism, and if it's bijective,

an automorpism. 0

We will use the symbol E to denote isomorphism. That is, A - B if and only if there

exists an isomorphism between the E-algebras A and B. If the signature E is clear based

on the context of the expression, the E subscript will be dropped.

Lemma A.1 Identity function. The identity function id taking each sort and operation

symbol onto itself is an isomorphism.

Proof. The proof is straight-forward. We first show that id is a homomorphism. Let A

be a E-algebra. Then for all operation symbols f : s, X S2 X ... X sn -* s in E and for all

a, G A,,, a2 E A,2,...,an e A,,, we have

A-3

id(fA(al, a2 ,..., an)) fA(al, a 2 ,..., a.) and

fB(id ,,,(a ,), id .,,(a2),... id•..(an)) = fA (al,,a2,... an).

It is trivial to show that id is bijective:

"* V(a)(id(a) = a) by definition of id,

"* V(a, b)(id(a) = id(b) =• a = b) by definition of id.

Therefore id is a bijective homomorphism. U

Theorem A.2 Equivalence relation. The relation • between E algebras is an equivalence

relation.

Proof. We'll prove the theorem by showing • is reflexive, symmetric, and transitive.

In the following, let A, B, and C be E-algebras.

"* Reflexive. A ý- A follows from Lemma A.1.

"• Symmetric. Let A ý- B. Then there exists a bijective homomorphism h from A onto

B. Since h is bijective, it has an inverse h-1 from B onto A such that B ý- A.

" Transitive. Let A • B and B - C. Then there exists an isomorphism h between A

and B and an isomorphism j between B and C. Let k be defined as the composition

j o h. We claim that k defines an isomorphism between A and C. Proof of claim:

For all operation symbols f : s, X s2 X ... X sn --* s in E and for all a, E A,,, a2 E

AI...,Ian E A, and for all bl E B8 ,b 2 c B2,.... ,b E B8 , and for all cl E

C, iC2 E C8 , . . . , Cn E C, we have

k(fA(a,,a 2 ,...,an)) = (joh)fA(aj,a2 ,...,an)

= j(h(fA(al,a 2 ,. .. ,an)))

= j(fB(bl, b2 , .. bn)) by definition of h

= fc(cl,c 2 ,... , cn) by definition of j

similarly k-(fc(cl,. .. ,cn)) = (j o h) -(fc(c,... ,cn))

= j-(h-(fc(cl,. .. n)))

A-4

= fA(a1,..In

Therefore, A B A B C=AC. U

A-5

Appendix B. Refinement of a Global Search Algorithm Theory

This appendix contains an in-depth discussion of the specialization of a global search

algorithm theory for the problem of searching an ordered sequence of integers. The problem

specification for this problem, shown in Figure B.1, incorporates architectural information

in that SORT1 is a call to an operation defined by another problem specification. A

description of this problem can be found in Section 4.2.2.

The information in this appendix supplements the information contained in Sec-

tion 4.2. This appendix is written with the assumption that the reader has some familiarity

with the Kestrel Interactive Development System (KIDS).

B.1 Derivation of a Specialized Algorithm Theory

There are a couple of global search algorithm theory instances in the KIDS theory

library that could potentially be specialized for Find-Location. One of these global search

theory instances, gs-binary-split-of-integer-subrange, is shown in Figure B.2. Because the

specifications Find-Location and Key-Search are so similar, and because the global search

algorithm theory gs-binary-split-of-integer-subrange was used for the derivation of a specifi-

cation for Key-Search, the algorithm theory gs-binary-split-of-integer-subrange was selected

for specialization for the problem defined by Find-Location. The following paragraphs de-

scribe the specialization of this global search algorithm theory for the specification Find-

Location.

Specializing a global search theory instance HG = (DG, RG, IG, OG) so that it satisfies

a problem specification IIF = (D, RF, IF, OF) is accomplished in part by deriving an

function FIND-LOCATION (A: seq(integer), keyl: integer I le-ordered(SORT1(A)))
returns (index : integer I

index in [1 .. size(A)]
& SORT1(A)(index) = keyl
& le-ordered(SORT1(A)))

Figure B.1 Problem Specification for Find-Location

B-1

% Binary Split of Integer Subrange %

form index-gs-binary-split-of-integer-subrange

k=make-binding('k) &

m=make-binding('in) &

n=make-binding('n) &

i~make-binding('i) &

j=make-binding(j) &
new-i~make-binding('new-i) &

new-j~make-binding('new-j)

C (Global-Search-Theory gs-binary-split-of-int eger-subrange
input-types integer, integer % D

output-types integer % R.

input-vars m, n

output-vars k

input-condition true % I(X)
output-condition m<=k & k<=n % k in Em.. ni

subspace-types integer, integer % R-hat

subspace-vars i,j % r..hat

subspace-split-vars new-i, new-j % s-hat

subspace-vars-constraint m<=i & i<=j & j<=n % I-hat

% [i. .jlsubset[m. .nl?

satisfies i<=k & k<=j % k in [i. .j] ?

initial-space (<in, n>) % rO

split ((new-i = i & new-i = ((i+j) div 2))

or (new-i = (1+(i+j) div 2) & new-i = j))
extract i~j & k~i

Feasibility-filter true

Simplified-Feasibility-filter true

Splittable i<j

Extractable i~j)' in gs-theories-prop(find-global('integer))

Figure B.2 Global Search Algorithm Theory Morphism

B-2

spec Filtered-Global-Search is
Sorts D, R,Rh

op I: D --i Boolean

op 0: D,R -- Boolean

op i: D,Ri-- Boolean

op 70 : D •-

op Satisfies: R,R -+ Boolean

op Split: D,R, R -- Boolean

op Extract: R,R--* Boolean

op Filter : D,R -1 Boolean
axiom GSO is

I (fa x (implies (I x) (j x (ýo x))))

axiom GS1 is
(fa x (fa ý (fa ý (implies (and (and (I x) (I x #)) (Split x i)

(I x)MM
axiom GS2 is

(fa x (fa z (implies (and (I x)(O x z))(Satisfies z (io x)))))
axiom GS3 is

(fax (fa ý (fa z (implies (and (I x)(i x
(iff (Satisfies z

(ex . (and (Split* x • i)(Extract z
axiom filter is

(fa x (fa ý (ex z (implies (and (and (satisfies z i) (0 x z))
(i xi))

(filter x ý)))))
end-spec

Figure B.3 Global Search Theory

antecedent to the soundness axiom of the global search theory. Global search theory is

shown in Figure B.3. The soundness axiom given below contains an existentially quantified

variable y : DG; the antecedent derived by KIDS will be over the sort DG. This antecedent

helps define a substitution - denoted 9 -0 that defines how to specialize HIG for IIF. The

0 substitutions for the sort RG, variables over RG, and the operations IG and OG can be

directly extracted from HF.

axiom soundness is
(and (equal Rp RG)

(fa x (ex y (fa z (implies (and (IF x) (OF x z))
(OG y z))))))

B-3

The instantiated soundness axiom for the algorithm theory instance gs-binary- split-

of-integer-subrange and problem theory Find-Location is shown below. An antecedent for

Equation B.1 will define a substitution ED6 : DG F-i DF which, when applied to the

symbols of the sort DG, satisfy the axiom. The substitution 1D, completes the definition

of E and thus completes the definition of a specialization of the algorithm theory instance

for this problem.

le-ordered(SORT1(A)) &
IF

index E [1..size(A)I&SORT1(A) (index)= keyl&le-ordered(SORT1(A))

OF

C 1 C 2

m < index & index < n (B.1)
OG

Before attempting to discover E, KIDS first collects additional terms by applying

several levels of forward inferencing to the antecedent. Additional terms are generated

from the antecedent through the application of domain independent and domain dependent

rewrite rules. Domain dependent rules are defined in the domain theories from which

problem theories are defined. The domain theories from which Find-Location is defined

are Ordered-Search and Sorting- Theory.

The additional terms generated via forward inferencing over the antecedent of Equa-

tion B.1 are shown in Table B.1. The source of a derived term is shown to the right

of the term. This list of terms is used to derive an antecedent for the soundness ax-

iom. In the case of Find-Location, conjunct C, of Equation B.1 and generated term 1.1

yield a witness m '-* 1, while conjunct C2 of Equation B.1 and generated term 1.2 yield

a witness n -4 size(A). These witnesses define - in conjunction with the substitutions

directly extracted from Find-Location - the morphism (or E substitution) required to

specialize gs-binary-split-of-integer-subrange so that it satisfies the problem specification

Find-Location. Figure B.4 shows the specialized global search theory.

B-4

Table B.1 Derivation of Additional Terms

Depth Number] Term Source

0 1 le-ordered(sortl(A)) I(x)
2 index in [1..size(A)] O(x,z)
3 sortl(A)(index) = keyl O(x,z)

1 1 1 < index 0.2
2 index < size(A) 0.2

2 1 1 < size(A) 1.1, 1.2

New global search theory incorporating the substitution:
(global-search-theory FIND-LOCATION number-of-solutions ONE

input-types seq(integer), integer

output-types integer
input-vars A, KEY1
output-vars INDEX
input-condition LE-ORDERED(SORT1 (A))

output-condition INDEX in [I .. size(A)]
& SORT1(A) (INDEX) = KEY1
& LE-ORDERED (SORT1 (A))

subspace-types integer, integer

subspace-vars I, J
subspace-split-vars NEW-I, NEW-J
subspace-vars-constraint J <= size(A) & I <= J & 1 <= I

satisfies INDEX <= J & I <= INDEX
initial-space <1, size(A)>
split NEW-J = J & NEW-I = (J + I) div 2 + 1

or NEW-J = (J + I) div 2 & NEW-I =I

extract INDEX = I & I = J
feasibility-filter true

simplified-feasibility-filter true
splittable I < J

extractable I = J)

Figure B.4 Specialized Global Search Algorithm Theory

Up to this point the attempt to specialize an algorithm theory for the problem defined

by the specification Find-Location has been successful. However, the specialized global

search algorithm theory does not yet include an efficient feasibility filter. As described

in the following section, inclusion of architectural information in the specification Find-

Location slightly complicates the derivation of a feasibility filter 7.

B-5

function KEY-SEARCH (A: seq(integer), keyl : integer I lt-ordered(A))
returns (index : integerI

index in [1 .. size(A)]
& A(index) = keyl)

Figure B.5 Key-Search Problem Specification

B.2 Derivation of a Feasibility Filter

A feasibility filter is used to prune the search space. The type of filter used in

KIDS is a necessary filter: necessary filters prune only those portions of the search space

that contain no solutions. In the previous section, the global search algorithm theory

specialization did not attempt to strengthen the default feasibility filter true. In this

section, the development of a stronger filter based on the filter equation presented in

Figure B.3 is explored.

A feasibility filter is derived in KIDS by performing forward inference over the an-

tecedent of the filter equation. Any conjunction of terms generated from the antecedent

which contain references to the subspace descriptors (including the term true) can be used

for the filter. As a basis of comparison, the filter derived for the similar problem defined

by the specification Key-Search is described. The specification Key-Search is presented in

Figure B.5.

B.2.1 Key-Search Feasibility Filter. The instantiated feasibility filter for Key-

Search is presented below. Note that KIDS will assume I(x) during the forward inference

process.

1<IAI<JAJ<size(A) A I<INDEXAINDEX<J
-T~x,•)Satisfies(z,f')

A A(INDEX) KEY1 A INDEX E [1..size(A)I

O(x,z)

(X, 2(B.2)

B-6

r1 : assert MONOTONICITY-OF-LE-ORDERED
V (S, A, B)

(LE-ORDERED(S) A I < A A B < size(S) • A < B = S(A) • S(B))

r 2 : assert MONOTONICITY-OF-LT-ORDERED-1
V (S, A, B)

(LT-ORDERED(S) A 1 < A A B < size(S) =• A < B = S(A) < S(B))

r 3 : assert MONOTONICITY-OF-LT-ORDERED-2

V (S, A, B)
(LT-ORDERED(S) A 1 < A A B < size(S) = A < B = S(A) < S(B))

Figure B.6 Domain Specific Rules

Using domain rules such as those shown in Figure B.6, KIDS generates the list of

terms shown in Table B.2 from the antecedent of Equation B.2. A conjunction of the

terms A(I) < KEY1 and KEY1 < A(J) forms a useful filter for Key-Search. Because

Find-Location so closely parallels Key-Search, and is in fact built from the same domain

theories, a natural expectation would be that a similar set of filter terms would be generated

for Find-Location. That is, the filter terms Sortl(A)(I) •_ KEY1 and KEY1 < Sortl(A)(J)

should be generated for Find-Location.

B.2.2 Find-Location Feasibility Filter. The problem theories Key-Search and

Find-Location are almost identical; the only significant difference between them concerns

references to the input variable A.

Key-Search includes le-ordered(A) as a precondition or input assumption (i.e., as

I(x)). Like Key-Search, Find-Location also searches only an ordered sequence, but instead

depends on a call to Sort1 to order the sequence. Therefore all references to A in Find-

Location are prefixed with a call to Sortl, hence both I(x) and O(x, z) of Find-Location

include the term le-ordered (SORTl (A)). However, this term no longer matches the form

of the monotonicity laws of Figure B.6. These monotonicity laws are quantified over

sequences, not functions that return sequences. The sequence-sorted variable S in the

term le-ordered(S) in the antecedents of the monotonicity laws of Figure B.6 does not unify

B-7

Table B.2 Generation of Terms for the Key-Search Feasibility Filter

Depth Number I Term Source

0 1 1<1I
2 I<J i
3 J < size(A) I
4 INDEX < J Satisfies
5 I < INDEX Satisfies
6 A(INDEX) = KEY1 O(x,z)
7 INDEX in [1 .. size(A)] O(x, z)
1 1 < J 0.1, 0.2
2 I < size(A) 0.2, 0.3
3 A(I) • A(J) 0.1, 0.3, 0.2, r 3

4 1 < INDEX 0.7
5 INDEX < size(A) 0.7

2 1 1 < size(A) 1.2, 0.1
2 A(1) < A(J) 1<1, 0.3, 1.1, r 3

3 A(1) < A(I) 1<1, 1.2, 0.1, r 3

4 A(J) < A(size(A)) 1.1, size(A)_5size(A), 0.3, r 3

5 A(1) < A(INDEX) 1<1) 1.5, 0.5, r 3

6 A(I) _• A(INDEX) 0.1, 1.5, 0.5, r 3

7 A(INDEX) < A(J) 1.4, 0.3, 0.4, r3

3 1 A(1) < KEY1 2.5, 0.6
2 A(I) < KEY1 2.6, 0.6
3 KEY1 < A(J) 2.7, 0.6
4 A(1) • A(size(A)) 2.2, 2.4
5 A(I) • A(size(A)) 1.3, 2.4
6 A(INDEX) -• A(size(A)) 2.4, 2.7

with expressions of the form SORTI (A) found in Find-Location because Sortl (A) is of sort

function. As a result, the monotonicity laws will not be applied to the instantiated filter

equation (Equation B.3 below), resulting in very weak filter terms. This is an artifact of the

inference mechanism and does not in general invalidate the nested function call approach

to defining structure.

1 < I A I < J A J < size(A) AI < index A index < J A
Satisfiea(z,r)

sortl(A)(index) = keyl A index E [1..size(A)] A le-ordered(sortl(A)) • O(x,) (B.3)

O(X,z)

B-8

Table B.3 Generation of Terms for the Find-Location Feasibility Filter

Depth Number Term Source

0 1 1_< I
2 l<J I
3 J <_ size(A) I
4 INDEX < J Satisfies
5 I < INDEX Satisfies
6 SORT1(A)(INDEX) = KEY1 0 (x,z)
7 INDEX in [1 .. size(A)] O(x, z)

1 1 < J 0.1, 0.2
2 I < size(A) 0.2, 0.3
3 1 < INDEX 0.7
4 INDEX < size(A) 0.7

2 1 1 < size(A) 1.2, 0.1

The terms generated from Equation B.3 are shown in Table B.3. As can be seen in

the table, none of the terms form very useful filters. To compensate for the weakness in the

inference mechanism, the domain theory for Find-Location could be modified by including

references to Sort1 in the theory rules. Some of the monotonicity rules for Find-Location

incorporating these references are shown in Figure B.7.

Modifying the domain theory rules for Find-Location yielded additional terms that

could be used for a feasibility filter. The filter equation, Equation B.3, remains unchanged.

As shown in Table B.4, the additional theory rules yielded the term sortl(A)(I) :_ Keyl

that could be used for an effective filter. However, not all possible terms were generated.

For example, at depth two we should have generated the term sortl(A)(index) •_ sortl(J)

from terms 1.3, 0.3, 0.4, and modified rule rim. At depth three, we would've then generated

the term keyl < sortl(J) from terms 0.6 and sortl(A)(index) •_ sortl(J). Again, this

reflects a weakness in the inference mechanism and does not indicate any fundamental

theoretical difficulties.

B.3 Summary

Although a relatively weak filter equation was generated, a global search algorithm

theory for the problem specification Find-Location was successful specialized. Development

B-9

rim: assert MONOTONICITY-OF-LE-ORDERING-OF-SORTI-A
V (z, i, j)

(LE-ORDERED(SORT1(z)) A 1 < i A j !_ size(z) A i < j
SSORT1(z)(i) _< SORTI(z)(j))

r 2 -: assert MONOTONICITY-OF-LE-ORDERING-OF-SORT1-A-2

V (z, i, j)
(LE-ORDERED(SORT1(z)) A 1 < i A i < size(z) A i < j
•= SORT1(z)(i) < SORT1(z)(size(z)))

r 3 _: assert MONOTONICITY-OF-LT-ORDERING-OF-SORT1-A
v (z, i, j)

(LT-ORDERED(SORT1(z)) A 1 < i A j _ size(z) A i < j
• SORT1(z)(i) < SORT1(z)(j))

r 4-: assert MONOTONICITY-OF-LT-ORDERING-OF-SORT1-A-2
v (z, i, j)

(LT-ORDERED(SORT1(z)) A 1 < i A i < size(z) A i < j
SSORTI(z)(i) < SORTI (z) (size(z)))

Figure B.7 Domain Specific Rules Incorporating Sorti

of a feasibility filter was somewhat less successful, and depended in part on an extended

domain theory for Find-Location. In addition, the methodology used to extend the domain

theory may not scale well to deeply nested functions, and results in domain theory rules

that are application specific rather than domain specific.

B-10

Table B.4 Generation of Feasibility Filter Terms for Find-Location using the Enhanced
Domain Theory

Depth Number! Term Source

0 1 1<1 I
2 i<_ I

3 J < size(A)
4 INDEX < J Satisfies
5 I < INDEX Satisfies
6 SORTI(A)(INDEX) = KEY1 O(x,z)
7 INDEX in [1 .. size(A)] O(x, z)
8 LE-ORDERED(SORT1(A)) O(x,z)

1 1 1 < J 0.1, 0.2
2 I < size(A) 0.2, 0.3
3 1 < INDEX 0.7
4 INDEX < size(A) 0.7

2 1 1 < size(A) 1.2, 0.1
2 SORTI(A)(I) < SORT1(A)(size(A)) 0.1, size(A):5size(A), 1.2, rl_
3 SORT1(A)(J) < SORTI(A)(size(A)) 1.1, size(A)•<size(A), 0.3, rl_
4 SORT1(A)(I) _ SORT1(A)(INDEX) 0.1, 1.4, 0.5, rim

3 1 SORT1(A)(I) _ KEY1 2.4, 0.6

B-11

Appendix C. An Informal Introduction to Components and Connectors

This appendix contains an informal description of components and connectors. A

formal treatment of these topics can be found in Chapter V.

C.1 Components

A component specification has two distinct parts:

1. a functional specification which introduces and defines the sorts and operations of

the component; and

2. an interface specification which defines how the operations of a component may be

accessed.

Each of these two specifications are discussed in the following subsections.

C.1.1 Component Functional Specification. The functional specification of a

component is defined by a SLANG specification. The sorts and operations of a component

C are defined in an associated functional specification. This section briefly describes the

functional specifications of components.

There are essentially two ways in which operations may be defined:

1. Using axioms written in equational logic; and

2. Abstractly using a problem theory.

Each of these approaches are described in the following subsections.

C.1.1.1 Operator Definition using Axioms Written in Equational Logic.

Specification of operators using equational logic is not new; many textbooks on program-

ming languages or software engineering use equational logic to define the operators of

abstract data types (ADTs). In SLANG, there is a small twist. Equational axioms in

SLANG may take one of two forms: a simple axiom form or a definition form. The affect

of these two forms is not equivalent.

C-1

Simple axioms such as axiom (equal (size []) zero) can be used to define a relationship

between operators, in this case between the operator size and the constant zero. A series

of such axioms could be provided to constrain the class of models to those in which the

interpretation of size is initial (i.e., there is only one possible non-trivial interpretation of

the operator). A more powerful axiomatization uses the definition form.

The definition form of specifying an operator induces an additional axiom that states

that induction is a sound inference rule for the operator. For example, if the operator size

was defined using a definitional form as given below, then SpecWare will add an axiom

that states that induction is a sound with respect to the given operator.

definition defn-of-size is
axiom (equal (size []) zero)
axiom (equal (size (concat x y)) (plus (size x)(size y)))
axiom (equal (size [a]) one)

end-defn

In either case, equational axioms such as those listed above will usually be used to

define well understood, simple operations such as size for sequences, sets, and bags, or

neighbor for graphs. More abstract problems, those requiring search strategies or decom-

position methods, will usually be defined abstractly using problem theories.

C.1.1.2 Abstract Specification of Operators Using Problem Theories. An

operation of a component may be abstractly defined by a problem specification BF which is

written using the sorts and operations defined in a domain theory. A domain theory defines

the sorts, the operations, and the axioms of the problem domain. A problem specification

is a sentence in the domain theory.

For example, consider the problem of boolean satisfiability. The domain theory for

this problem might contain operations such as clause-satisfied which could be used to

determine if a given assignment of truth values to the literals of some clause satisfies the

clause. The domain theory in this case would contain definitions of literals and clauses,

and would contain axioms defining relationships between the operation clause-satisfied and

operations used to construct its arguments. For example, if the rank of clause-satisfied is

C-2

map, clause, then one possible set of axioms in the domain theory could define how clause-

satisfied distributes over the map constructors.

A problem theory can be represented in a program-like format.(105) Shown below is

the format for a problem theory and its corresponding program-like representation:

spec ProblemTheory is function F(x:D) : set(R)

sorts D, R where I(x)

op I: D --* Boolean returns {z I O(x,z)}

op O : D x R -- ý Boolean = Body

axiom
V(x E D)(I(x) =-]z E RI O(x,z))

end-spec

I(x) constrains the input domain D; the output condition O(x,z) describes the con-

ditions under which the output domain value z E R is a feasible solution with respect to

input x E D; Body, if present, is the code that can be executed to compute F (105, 100).

The single axiom of Problem Theory above indicates that if the input assumption I is satis-

fied, then there is a value z satisfying the output condition. This is the one solution form

of Problem Theory. All solutions satisfying the output condition 0 for an input x satisfying

the input condition can be obtained by introducing an additional operator f : D -+ R and

replacing the above axiom with the axiom V(x E D)(I(x) =• f(x) = {z I O(x,z)}. Thus

the simplest form of Problem Theory is one which contains no axioms. Extensions to this

simple problem theory can be made to define problem theories that return one solution or

all solutions depending on the axiom used.

A problem specification can be referred to by the tuple < D, R, 1, 0 >. Regardless of

the format, a problem specification BF for a particular problem is defined by a specification

morphism which maps

* the sort D to the sort(s) of the problem space;

* the sort R to the sort(s) of the solution space;

* I to a boolean function over D; and which maps

* 0 to a boolean function over D x R.

C-3

In other words, BF is created by instantiating the generic sorts and operations of B. A

problem specification for a four sum adder is shown in Figure C.1. The specification shown

in the figure uses some domain specific operations, such as complex-add, as well as some

domain independent operations such as image and size. The domain specific sort complex

and the operation complex-add are imported into the specification Complex-Adder via an

imports clause. In this case, the definition of these domain specific sorts and operations are

located in the specification Complex, which may in turn import other specifications. The

relationship between Problem-Theory and Complex-Adderis made explicit by the morphism

Problem-Theory -ý Complex-Adder defined by the mapping D ý- seq, R '-* comp-nat, I

H-4 input-cond, and 0 -* output-cond. The sort comp-nat is a product sort consisting of

a complex value and a natural value. The sort of add4 is comp-nat, where the complex

portion represents the summation of the complex values in the input sequence, and the

natural portion represents the number of elements summed. Using (XI, x 2) to represent a

complex value with real part x, and complex part x2 , (add4 '((1.0, 1.0), (3.5, -2.0), (3.2,

1.2))) evaluates to the tuple ((7.7,0.2), 3). Note that problem theories are not generally

used to represent simple problems such as complex-add. Problem theories are typically

used for problems that involving searching or problem decomposition.

The current version of SLANG includes only Boolean as an integral part of every

specification. Other common data types such as sets, sequences, and integers must explic-

itly defined.

A functional specification only partially defines a component. The other part of

a component, an interface specification, defines how the component interacts with its

environment. Interface specification is described next.

C.1.2 Component Interface Specification. An interface specification of a compo-

nent defines how it interacts with its environment. Interface specifications for a component

are defined using CSP. For example, an interface specification for a component whose func-

tional specification defines exactly two operations f and g may have process descriptors

Pf and Pg defining the interfaces of the operation f and g respectively.

C-4

ee triv is S->cormplex Tesp Complex is

sort S import Real

endi-peetort complex

op complex-add complex, complex -> complex

op complex-melt: complex, complex-> complex

"op complex-divide complex, complex -> complex
a0 looms

spec Sequxenc is

sort mq,

op concat: seq, seq -> seq spec Seq-of-Complex-Numbers is

op append : seq, item -> seqc -limit of diagram
.- nst 0 ; seq nodes Sequence, Triv, Comnplex spee Cornp-Nat-Pair is

op LI : item -> seq arecs Triv -> Sequence : IS -> item, import complex, natural

ecostructors 0 [LI,j, concat) construct seq Triv->Complex: IS->complex} sorteomp-nat

constructors (0, append] construct seq ed-diagram sort-axiom comp-nal = complexnaxiral

axioms end-spe ed-spee

spec Complex-Adder is

colimilt ot diagrom

spec Problmmemeory is Nodes =lComplex, Seq-of-Complex-Numbers, Comp-Nat-Pair)

sort Dt Arcs =

seat R op add4 : seq -> comp-nat

opI: D -> b°leanss D->mq. op inp.t-cood : seq -> boolean

op 0: D, R -> boolean R->comp-nat, op output-cond : comp-nat, complex -> b>olear

I-> input-cond, definition defn-of-add4 is

0 -, output-cond axiom (equal (add4 x) ((image complex-add x),(sim x))

end-defirdtioo

definition defn-of-input-cond is

axiom (iff (input-condition x) (less-than-or-equal (sime x) 4))

end-def'iotion

definition defo-of-output-cond is

axiom (iff (opulpt-cond x z)(and (equal ((project 1) z) (add4 x))

(equal ((project 2) z) (sim x))

end-deftnition

end-spee

Figure C.1 Problem Specification for Complex Adder

Each operation defined in the component's functional specification can have a unique

pair of ports associated with it, one for inputs and the other for outputs. All communication

with a component takes place over its ports. Any operation defined in a component's

functional specification that does not have a pair of ports associated with it is not accessible

outside of the component and can only be accessed indirectly.

A port is one-half of a CSP channel. Because CSP channels are unidirectional, ports

are unidirectional. Ports are also strongly typed. For example, if P is a process descriptor,

then the process expression P = pl?x) (p 2!f(x) -ir P) defines a process that reads a

value x, communicates over the port P2 the value f(x), and repeats. The sort of port Pi

is defined by the rank of f while the sort of P2 is defined by the sort of f. A more formal

treatment of this topic can be found in Chapter V.

C-5

Connectors

SSynchronous Asynchronous

SBuffered 1Un-Buffered

Figure C.2 Communication Taxonomy (based on (112))

An interface specification of a component has visibility into the syntax of the op-

erations defined in the functional specification of the component and may reference the

operation symbols found there. For example, a problem theory could be used to develop

the following interface specification for a component encapsulating a single problem theory:

P = (cl?x "') ((c 2!f(x) £' Skip) ý I(x) • Skip) I V. The process P initially engages in

a communication event over port cl, obtaining a value stored in the variable x. If I(x) is

true, then the value f(x) is communicated over port C2 ; if I(x) is false, then the input is

ignored.

C.1.3 Summary of Components. In summary, a component specification has two

parts: an interface specification which defines how the component interacts with its envi-

ronment and a functional specification that introduces and defines the sorts and operations

of the component. Components interact with each other by sending messages over CSP

channels.

A specific type of component, connectors, are described in the next subsection.

C.2 Connectors

C-6

The primary purpose of a connector is to define inter-component handshaking con-

ventions. Communication over a CSP channel is defined by the semantics of CSP to be

a synchronous event. Both the recipient and the sender of the data over a channel must

synchronize and simultaneously engage in the data transfer. However, the use of a connec-

tor between components allows for the definition of a variety of handshaking conventions

as depicted in Figure C.2 and described below.

"Synchronous. The sending component Cs transmits its data d to the connector C

over a channel shared between Cs and C. The connector C then relays the data d

just read to another component CR over a channel shared by the connector C and

CR. The connector C then transmits a an acknowledgment to Cs; on receipt of the

acknowledge signal, Cs may proceed with other computation. Cs remains blocked

until it engages in an acknowledge communication event. The general form of this

interaction is:

Cs = ... c!d?ACKNOWLEDGE ...

C = ... c.leftd --+ p!d -+ c.right!ACKNOWLEDGE ...

CR =.... p?X...

where c!x?y is defined to be the atomic process defined by c.leftlx -+ c.righty, and

where Cs, C, and CR are process definitions found in the sending component, the

connector, and the receiving component respectively.

" Asynchronous Buffered. This communication paradigm is slightly more complex

than the synchronous case. In asynchronous buffered communication, the sending

component transmits its data to the connector which then enqueues the data. The

receiving component obtains its data by via a dequeuing operation. Note that in this

case the sender is free to continue with other processing after enqueuing its output

data, and that the connector must have a component encapsulating a buffer abstract

data type slaved to it playing the role of the queue. Any buffer abstract data type

will work here, from a stack to a queue depending on the desired effects.

C-7

...................Conne~ctor uf r...................

b ereateq left!ANY -- ~ bereateq.lefi?ANY

b createq night?<q> ~-b.createq.right! (create-queue <>)

-' eleft!<d> c left?<d>

b enquene left!<d q> -~b.enqueue.left?<d,q>

b enquene right?<q> ~-- -b.enqueue.right!(enqueue <d q>)

b front leftl<q> -~~b.front~left?<q>

b front night?<d> -- b.front~right!(front <q>)

cernght?ACKNOWLEDGE e c nght'ACKNOWLEDGE

- choice:

b empty left!<q> -i ~ b empty left?<q>

b empty night?<empty-flag> --- b empty night!(isempty <q>)

empty-flag tirue - -- --- if-etse
. empty-flag false

b dequeue teft!<q> - - .ibdequeue.teft?<q>

b deqoueueright?<q> ~---'b dequeue.right!(dequeue <q>)

b empty teft!<q> - t b empty teft?<q>

b empty night?<empty-flag> -*- b empty night!(isempty <q>)

epty-flag =false

empty-flag =tru if-else

b.front.right'fcd> - - b.froni.right! (front <q>)

------------- ho-------------- -------------------------------- -- -

Figure C.3 Asynchronous Buffered Communication

The general form of this interaction is listed below and shown in Figure C.3. In the

figure, dashed arrows represent flow of control, solid arrows denote communication,

and dotted boxes have been drawn around each of the interface processes. The

general form of this interaction is:

Cs = ... c!d?ACKNOWLEDGE ...

C = 1; E; A

I = b. Create Queue!ANY?q

A =(E ID) ;A

C-8

E = c.left?d -+ b.front!(eval b.enqueue!(d, q) ?q)?d

D = p!d ---* b.dequeue!q?q -

(E < (eval b.empty!q?empty-flag) > b.front!q?d)

CR PX ...

where

- Cs is part of an interface specification for a component creating data values

which will be enqueued;

- C is part of the connector's interface specification in which

* q of is a state variable representing the state of the data queue;

* d is a state variable guaranteed to be equal to the object at the head of the

queue;

* I is a process definition which requires the queue be created before it can

be accessed;

* A is a process definition consisting of two subordinate process definitions,

E for enqueuing new objects, and D for dequeuing objects;

- CR is part of an interface specification for a component which consumes the

objects enqueued by Cs; and

- ANY and ACKNOWLEDGE are events shared between the components and

connectors of the application.

Note that the above process definitions make use of the eval construct, where (eval

c!x?y) accesses the value y. Also note that the protocols of the data object producer

and the data object consumer are unchanged from those of the synchronous case.

This is a theme that will carry over to the asynchronous unbuffered case as well.

Only the connector interface specification is affected by the choice of handshaking

mechanism.

* Asynchronous Unbuffered. This case is a slightly simplified version of asynchronous

buffered communication. The component producing data objects engages in a com-

munication event with a connector but unlike the synchronous case, the connector

C-9

first engages in a communication of an acknowledgment before relaying the data

object. The connector then attempts to engage in a communication event with a

component which will consume the object. The connector blocks until the consum-

ing component is ready to receive the data. This implies that the producer may

become blocked if the consumer has not yet consumed the previously communicated

data object. If this happens, there are at least two possible courses of action:

1. Overwrite the old data with the new. In this case, the interface specifications

will have the following form:

Cs = ... c!x?ACKNOWLEDGE ...

C = ... (c.left?x --+ c.right!ACKNOWLEDGE) --+ D

D = ((c.leftx -+ c.right!ACKNOWLEDGE) I px) --- D

CR = ... pd ...

2. Block on the second write attempt. In this case, the interface specifications will

have the form:

Cs = ... c!xACKNOWLEDGE ...

C = c.left?x - c.right!ACKNOWLEDGE -- pix -+ C

CR =... p?d ...

C. 3 Summary

This appendix has given an informal introduction to components and connectors.

Components were informally defined as a combination of a functional specification writ-

ten in SLANG and an interface specification written in CSP. Connectors were informally

defined as a component whose primary purpose is to define handshaking conventions. Sev-

eral handshaking conventions were introduced and defined, including synchronous, asyn-

chronous buffered, and asynchronous unbuffered.

C-10

Appendix D. Constraints

D.1 Introduction

Although process specification morphisms require the preservation of models under

a trace semantic equivalence, other constraints could be placed on the development of

process specifications in an effort to prevent the specification of degenerate or unrealizable

processes. These constraints could take one of the following two forms:

1. Constraints over the use of functional operations within a process specification. For

example, Basic Problem Theory specifications of Chapter III have an explicit boolean

operation used to characterize the range of acceptable values for which the operation

characterized by the problem theory is guaranteed to find solutions. A constraint

could be defined such that the output condition(s) of any operation supplying data

to the operation satisfy the input condition of that operation. Any specification

construction that violates this constraint could be flagged as an invalid construction.

2. Constraints over process expressions. For example, process expressions should be

free of both deadlock and live-lock.

Each of these type of constraints are discussed in the following sections.

D.2 Constraints over operations

Process specifications define networks of communicating processes, where the output

of one process may be consumed by another process. The values communicated over

CSP channels may have been generated as the output of a functional operation, and may

be used as an input of another operation. Constraints could be expressed over process

specifications such that any data values communicated between processes are used in both

a syntactically and semantically consistent manner. Syntactical consistency is ensured by

the strong typing of CSP. One facet of semantic consistency, that the values of actual

parameters be within acceptable ranges, is described in the following paragraphs.

Functional operators referenced within process expressions of a process specification

are defined by functional specifications. The only operations defined using Slang speci-

D-1

fications that have explicit input value restrictions identified for them are those defined

using Problem Theory specifications. For these operations, a constraint expressing input

condition satisfaction may be defined, where input condition satisfaction for functional

operations of process specifications is defined below.

Definition D.1 Denote by pSP a process specification containing a process expression P

where f :s, S2, ... , sn * s is an operation defined by a problem specification such that f

is used as an argument in an output event c!f(xI, x 2 ,. xn) in P. Let ci?x_, 1 < i < n be

a collection of input communication events in P preceding c!f(xl,x 2 , xn) in any trace

t E traces(P), and let Pi be a collection of process expressions inpSP such that ci is a port

symbol in Pi such that ci!hi(yi) is an output event in traces (E(Pi)).

Then pSP is consistent with respect to f in P if, for all occurrences of f in P,

A O(yi, hi (y)) -If (xl,x 2 ,.1,xn) (D.1)
i=l..n

where hi(yi) = xi. If hi is not defined by a problem specification, then Equation D.1 is

undefined. E

For example, consider once again the sort-search problem described in Section 4.2,

and suppose that a process specification defining an interface process for each of the oper-

ations sort : bag -- seq and search : seq, item --+ index has been defined and contains the

two process definitions below.

Psort sat ci,?x c (c!sort(x) c") Psot)

Psearch sat p?el C (c?y £ (cot!search(el, y) £• Psearch))

Based on the semantics of CSP communication, the value of x following commu-

nication over the channel c is sort(w). Recalling that Oot(x,z) = ordered(z) A bag-

equal(elements-of(x), elements-of(x) A z = sort(x) and that Lsea.ch (y) = le-ordered(y)

it can be proven, as shown in Table D.1, that the input condition of the operation search

is satisfied by the output condition of sort. It can therefore be concluded that the process

D-2

Depth Number Term Source

0 1 le-ordered(z) O(x,z)
2 bag-equal(elements-of(x),

elements-of(z)) O(x,z)

3 z = sort(x) O(x,z)
4 y - sort(x) process expression

1 1 z = y 0.3, 0.4
2 1 le-ordered(y) 0.1, 1.1

Table D.1 Proof of Input Condition Satisfaction

specification containing Po,8 t and Psearch is consistent with respect to the operation search

in Psearch.

Table D.1 shows the terms used in the proof and their source. Some of the terms,

e.g., the term y=z, are generated through analysis of the process expressions. Note that

this proof involves the axioms of functional specifications, and as such a proof schema must

be used to relay the conjecture from the process logic of ISlang to the functional logic of

SpecWare. Proof schemas are described in the following section.

Although this example is rather simplistic, it serves to illustrate the concept of prov-

ing process specifications consistent with respect to the operations they reference. Further

elaboration of a proof mechanism for this purpose is left for future research.

If a proof of the property defined in Definition D.1 fails, a derived antecedent could

be used to define the output condition for a conditioning operation which, when applied

to incoming data, is guaranteed to satisfy the input condition of the consuming operation.

This concept is formalized in the following paragraphs.

Definition D.2 Derived Antecedent. Let P(x 1 , x 2 ,... ,Xn) -' Q(y1, y2,. .. ,.y) be a well-

formed boolean formula where P(xI, x 2 ,. . . , X,) is an expression over the variables {x1, x 2 ,

X... In}, Q(yi, Y2, ...),Ym) is an expression defined over the variables {Yl, Y2, . .. ,Ym} _

{ X1 , X2, ... , xn}, and where -_4 is a well ordering such as 4, =*, or <. Then a derived

antecedent is an expression A(zl, z 2 ,..., zp) where {z, z 2 ,..., zp} J {xI, x 2 ,..., xn} such

that

D-3

A(zi, z 2 ,. .. , z,) = (P(xI, x 2,. ... ,xn) -- Q(Yl, Y2,. Ym)) E

For example, if the input condition of the operation search mentioned above was ge-

ordered(y) rather than le-ordered(y), the proof shown in Table D.1 would fail. The derived

antecedent would, in this case, be le-ordered(y). This antecedent can be used to define a

new operation, condition : seq -+ seq, constructed as follows:

1. The sort and rank of the operation are defined by the sort of the variable being

conditioned. In this case, the sort and the rank of the operation are seq.

2. The input condition of the operation condition is defined by the output condition of

the producer as follows. All references to producer input variables in the expression

Oproducer(X, z) are eliminated, and the remaining variables are renamed to maintain

consistency with variables of the process in which the conditioning operation is ref-

erenced. In the example above, elimination of non-output variables from the output

condition of the producer sort results in the expression le-ordered(z). However, z is

not a variable defined in Pseavch. Based on the semantics of CSP communication, the

variable y in P,,arch equals the value of z following a communication event on channel

c. Thus references to z in the expression le-ordered(z) are replaced with references

to y to obtain the expression le-ordered(y). Thus Icondition(Y) =le-ordered(y).

3. The output condition of the operation condition is defined by the derived antecedent.

For this example, Ocondition,(y,z) = ge-ordered(z).

Note that the above definition of the operation condition permits a trivial terminal model.

That is, the operation which returns the empty sequence is a valid model of the specifica-

tion. Whether this is acceptable depends on the application.

Once a functional specification for the conditioning operation has been defined, the

process specification of the consumer can be modified to include references to the condi-

D-4

tioning operation. For the above example, Pseach and Port are modified as follows:

Psort sat cin?x cs (c!sort(x) £p P.. t)

Psearch sat p?el) (c?y cs•P (c0,,!search(el, condition(y)) CSP Psearch))

Note that the communication network (the functional model) defined by the process ex-

pressions remained intact; the only change to the process specification was the addition of

the operation condition to the signature of Psearh and its nesting within the call to search.

Although a process specification may be consistent with respect to the sorts and

operations it contains, it still may be degenerate. For example, the modified set of process

expressions shown below is consistent with respect to the sorts and operations it references,

yet is degenerate in that processes P1 and P 2 are live-locked.

P 1 sat (e £ P1); (cinx £.• (c!sort(x) c P..,t))

P 2 sat (e cs P 2) 11(pel £S (c?y p (co0 !search(el, y)))) C Pseach)

The above two processes, once engaged, endlessly engage in a series of events e, and never

interact with any other processes. Constraints placed on process expressions aimed at

eliminating live-lock and deadlock are discussed in the following subsection.

D. 3 Constraints over process expressions

Live-lock and deadlock are are both safety properties, where a safety property is one

which states that something must not happen.(10) For example, the statement (r'e~s^e2)

0 traces(P) for some process P defines a constraint that P must not engage in the event

el before engaging in the event e2 . This constraint is equivalent to requiring that the

language W = It I t = rAe^sne 2 ,r,s E (aP)*} contain no words in common with the

language L(P). This concept is formalized by the following definition.

Definition D.3 Given a process specification P, a safety property of P is a language Ls

defined over the alphabet aP which constrains L(P) such that Ls f L(P) = {}. El

D-5

However, this question is undecidable in general. See, e.g, (67), for a discussion concerning

the decidability of language issues such as this.

A liveness property is one which states that something must happen. Liveness prop-

erties can be viewed as defining words or sentences that must be accepted by the processes

defined in a process specification. This notion is expressed in the following definition.

Definition D.4 Given a process specification P, a liveness property of P is a language

LL defined over the alphabet aP which constrains L(P) such that L(P) C LL. El

As is the case with safety properties, this question is undecidable in general. Again, the

reader is referred to (67) for a discussion concerning the decidability of liveness properties.

D.4 Recommendations for Future Research

The approach of using derived antecedents to define additional operations could be

generalized to include more than one level of process analysis. That is, the approach

could be generalized to include a deeper analysis of the flow of data within a CSP process

structure to identify invariant properties preserved by sequences of operations. These

invariant properties could be used to help establish proofs concerning the satisfaction

of input assumptions for those operations consuming data produced by the operation

sequence.

The use of derived antecedents to define addition operators poses some interesting

questions related to the operational paradigm of the framework described in Chapter II.

Specifically, should the failure of proofs of the form defined in Definition D.1 be considered

error conditions that the user of the framework must resolve, or should derived antecedents

be used to automatically add additional operations to a developing application? The

answer to this question, as well as an elaboration of an algorithm to perform automatic

insertion of derived operations is left for future research.

It may be possible to define and develop algorithms designed to ensure process spec-

ifications satisfy liveness conditions. However, an investigation of this issue is out of scope

of this research effort.

D-6

Algorithms for ensuring safety properties exist. For example, operating systems make

use of resource allocation graphs to ensure that allocation of resources such as line printers

and disk drives to processes (applications) will not result in a deadlocked system state.

Development and maintenance of resource allocation graphs is accomplished algorithmi-

cally. Such algorithms could potentially be adapted for use here. Specifically, events shared

between processes could be viewed as shared resources. An allocation graph could be con-

structed where the nodes of the graph consist of the shared events, and an edge from node

nj to node n2 exists if event nj can occur only after event n 2 . This set of edges could be

built through analysis of the process expressions contained within a process specification.

Unlike the resource allocation graphs of operating systems, the resource allocation graphs

of process specifications must be dynamically analyzed based on the set of enabled events.

That is, the occurrence of an event e in the set of enabled events will result in a new set of

enabled events, and hence in a new set of edges for the resource allocation graph. Deadlock

is possible if there exists a sequence of events in the alphabet of the process specification

which results in the formation of a resource allocation graph containing a knot, where a

knot is defined to be a subset S of the set of nodes of the graph such that S is closed under

the relation defined by the set of edges. Elaboration of this algorithm is left for future

research.

D-7

Bibliography

1. Agrawala, Ashok, et al. "Domain-Specific Software Architectures for Intelligent
Guidance, Navigation, & Control." The Domain Specific Software Architecture Pro-
gram, Technical Report CMU/SEI-92-SR-9 63-72, Carnegie Mellon University, Pitts-
burgh, PA 15213: Software Engineering Institute, June 1992.

2. Ajisaka, Tsuneo, et al. "An Automatic Program Generation System Based on Func-
tion Schema Base." IEEE COMPSAC 87. 214-220. 1987.

3. Albus, James, et al. NSAI/NBS Standard Reference Model for Telerobot Control Sys-
tem Architecture (NASREM). Technical Report 1235, National Bureau of Standards,
1989.

4. Allen, Robert and David Garlan. A Formal Approach to Software Architectures.
Technical Report, School of Computer Science, Carnegie Mellon University, 14 Febru-
ary 1992.

5. Allen, Robert and David Garlan. Towards Formalized Software Architectures. Tech-
nical Report CMU-CS-92-163, School of Computer Science, Carnegie Mellon Univer-
sity, July 1992.

6. Allen, Robert and David Garlan. "Formalizing Architectural Connection." Submit-
ted to ICSE 16, 1 September 1993.

7. Ambriola, V., et al. "Software Process Enactment in OIKOS." Proceedings of the
Fourth ACM SIGSOFT Symposium on Software Development Environments. 183-
192. Irvine CA: SIGSOFT Engineering Notes, 1990.

8. Apt, Krzysztof R., et al. "A Proof System for Communicating Sequential Processes."
ACM Transactions on Programming Languages and Systems 2, 359-385, ACM, July
1980.

9. Baiardi, F. Debugging Environment, chapter 8. World Scientific Publishers, 1992.

10. Bailor, Paul D. Theory for Graph Based Language Specification, Analysis, and Map-
ping with Application to the Development of Parrallel Software. PhD dissertation,
Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, 1989.

11. Barbacci, Mario R., et al. Durra: A Task-Level Description Language Reference
Manual (Version 3). Technical Report CMU/SEI-91-TR-18, ESD-91-TR-18, School
of Computer Science, Carnegie Mellon University, December 1991.

12. Barstow, David. "A Perspecitive on Automatic Programming." Readings in Artificial
Intelligence and Software Engineering edited by Charles Rich and Richard C. Waters,
537-559, Morgan Kaufmann Publishers, Inc., 1986.

13. Barstow, David R. "An Experiment in Knowledge-based Automatic Programming."
Readings in Artificial Intelligence and Software Engineering edited by Bonnie Lynn
Webber and Nils J. Nilsson, 289-312, Morgan Kaufmann Publishers, Inc., 1981.

14. Batory, Don. A Process and Retrospection on Creating a Domain Model for Avionics
Software. Technical Report ADAGE-UT-93-04, Austin, Texas 78712: Department
of Computer Science, The University of Texas, May 1993.

BIB-1

15. Belz, Frank C., et al. "Application of ProtoTech Technology to the DSSA Program."
The Domain Specific Software Architecture Program, Technical Report CMU/SEI-92-
SR-9 77-85, Carnegie Mellon University, Pittsburgh, PA 15213: Software Engineer-
ing Institute, June 1992.

16. Berstra, J. A. and J. V. Tucker. "Initial and final algebra semantics for data type
specifications: Two characterization theorems," SIAM J. Comput., 12(2):366-387
(May 1983).

17. B~hm, Corrado and Giuseppe Jacopini. "Flow Diagrams, Turing Machines, and Lan-
guages with Only Two Formation Rules," Communications of the ACM, 9(5):366-

371 (May 1966).

18. Blaine, Lee, et al. "SpecwareTM SLANG Core 3 User Manual (Draft)." Kestrel
Institute, 3260 Hillview Avenue, Palo Alto CA 94304, June 1994.

19. Blaine, Lee, et al. "SpecwareT M SLANG Core 3 SLANG Language Manual (Draft)."
Kestrel Institute, 3260 Hillview Avenue, Palo Alto CA 94304, June 1994.

20. Blaine, Lee, et al. "SLANG Language Manual, SpecwareT M Version Core 4." Kestrel
Institute, 3260 Hillview Avenue, Palo Alto CA 94304, October 1994.

21. Blaine, Lee and Allen Goldberg. Verifyably Correct Data Type Refinement. Techni-
cal Report KES.U.90.5, Palo Alto, CA: Kestrel Institute, December 1990.

22. Brachman, R. J. and J. Schmolze. "An Overview of the KL-ONE Knowledge Rep-
resentation System," Cognitive Science, 9(2) (1985).

23. Burstall, R. M. and J. A. Goguen. "Putting Theories Together to make Specifica-
tions." Proceedings of the 5th International Joint Conference on Artificial Intelli-
gence2. 1045-1058. 1977.

24. Cheng, Jingwen. "Parameterized Specifications for Software Reuse," Software Engi-
neering Notes (ACM SIGSOFT), 17(4):53-59 (May 1992).

25. Coglianese, Louis H. and Raymond Szymanski. "DSSA-ADAGE: An Environment
for Architecture-based Avionics Development." DSSA-ADAGE Collected Papers of

the Domain-Specific Software Architectures (DSSA) Avionics Domain Application
Generation Environment (ADAGE) MD 0210, Owego NY 13827: IBM Federated
Sector Company, May 1993.

26. Cohen, Daniel I.A. Introduction to Computer Theory. John Wiley and Sons, 1991.

27. DeCegama, Angel L. The Technology of Parallel Processing: Parallel Processing

Architectures and VLSI Hardware. Prentice Hall, 1989.

28. Devanbu, Premkumar, et al. "A Knowledge-Based Software Information System."
IJCAI-89 Proceedings of the 11th International Joint Conference on Artificial In-
telligence, edited by N. S. Sridharan. 110--115. Palo Alto, CA: Morgan Kaufman,

1987.

29. Devanbu, Premkumar, et al. "LaSSIE: A Knowledge-Based Software Information
System," Communications of the ACM, 34 (5):34-49 (May 1991).

BIB-2

30. D'Ippolito, Richard S. "Using Models in Software Engineering." Tri-Ada '89. 256-
265. 1989.

31. Doubleday, Dennis L., et al. Building Distributed Ada Applications from Specifica-
tions and Functional Components. Technical Report CMU/SEI-91-TR-22, Software
Engineering Institute, Carnegie Mellon University, December 1991.

32. Doubleday, Dennis L., et al. A Descrition of Cluster Code Generated by the Durra
Compiler. Technical Report CMU/SEI-91-TR-19, ESD-91-TR-19, School of Com-
puter Science, Carnegie Mellon University, December 1991.

33. Dougherty, Edward R. and Charles R. Giardina. Mathematical Methods for Artificial
Intelligence and Autonomous Systems. Prentice Hall, 1988.

34. Fiadeiro, J. and T. Maibaum. "Describing, Structuring and Implementing Objects."
REX School/Workshop on Foundations of Object-Oriented Languages489. Lecture
Notes in Computer Science. 274-310. Noordwijkerhout, The Netherlands: Springer-
Verlag, May 1990.

35. Fiadeiro, Jos6 and Amflcar Sernadas. "Structuring Theories on Consequence." Re-
cent Trends in Data Type Specification, 5th Workshop on Specification of Abstract
Data Types. Lecture Notes in Computer Science, Volume 332. 44-72. Gullane,
Scotland: Springer-Verlag, September 1987.

36. Fredlund, Lars-ake, et al. "An Implementation of a Translational Semantics for an
Imperative Language," Lecture Notes in Computer Science, 458:246-262 (1990).

37. Garlan, David and David Notkin. "Formalizing Design Spaces: Implicit Invocation
Mechanisms." To appear in "Proceedings of VDM '91: Formal Software Development
Methods", October 1991.

38. Garlan, David and Mary Shaw. "An Introduction to Software Architecture." To
appear in Advances in Software Engineering and Knowledge Engineering, Volume I,
World Scientific Publishing Company.

39. Garlan, David, et al. "Experiences with a Course on Architectures for Software Sys-
tems." Proceedings of the Sixth SEI Conference on Software Engineering Education.
October 1992.

40. Goguen, J. A. and R. M. Burstall. "Some Fundamental Algebraic Tools for the
Semantics of Computation, Part 1: Comma Categories, Colimits, Signatures and
Theories," Theoretical Computer Science, 31 (2):175-209 (1884).

41. Goguen, J. A. and R. M. Burstall. "Introducing Institutions." Logic of Programs,
Lecture Notes in Computer Science, Volume 164 edited by E. Clarke and D. Kozen,
221-255, Springer, 1984.

42. Goguen, Joseph A. "Mathematical Representation of Hierarchically Organized Sys-
tems." Global Systems Dynamics. 112-128. 1969.

43. Goguen, Joseph A. "Reusing and Interconnecting Software Components," IEEE
Computer, 16-28 (February 1986).

BIB-3

44. Goguen, Joseph A. and Timothy Winkler. Introducing OBJ3. Technical Report, 333

Ravenswood Ave, Menlo Park, CA: Computer Science Laboratory SRI International,
August 1988.

45. Goguen, Jospeh. "Principles of Parameterized Programming." Software Reusability,

Volume I, Concepts and Models chapter 7, 159-225, New York: ACM Press, 1989.

46. Goldberg, Allen T. "Knowledge-Based Programming: A Survey of Program Design
and Construction Techniques," IEEE Transactions on Software Engineering, SE-
12(7):752-768 (July 1986).

47. Group, Crossbow-S Architecture Technical Working. System Concept Document for
the Joint Modeling and Simulation System (JMASS) Program, Version 1.1. Techni-
cal Report, ASD/RWWW, WPAFB OH 45433-6503, 15 November 1991.

48. Guttag, John V. and James J. Horning. LARCH: Languages and Tools for Formal
Specification. New York: Springer-Verlag, 1993.

49. Hayes, Ian, editor. Specification Case Studies, chapter Specification of the UNIX
Filing System, 91-140. Prentice-Hall International Series in Computer Science, 1987.
Carroll Margan and Bernard Sufrin, Authors.

50. Hennessy, M. C. B. and W. Li. "Translating a Subset of Ada into CCS." IFIP
Working Conference on Formal Description of Programming Concepts II, edited by

Dines Bjorner. 227-249. North-Holland Publishing Company, 1982.

51. Hennessy, Matthew. Algebraic theory of processes. MIT Press, 1988.

52. Hoare, C. A. R. Communicating Sequential Processes. Prentice/Hall International,
1985.

53. Hoshino, Hiroshi, et al. "Software Development Method with Logic Language." IEEE
COMPSAC 87. 613-619. 1987.

54. Jalote, Pankaj. "Functional Refinement and Nested Objects for Object Oriented
Design," IEEE Transactions on Software Engineering, 15(3):264-270 (March 1989).

55. Jiillig, Richard. "Applying Formal Software Synthesis." To appear in IEEE Software,

1993.

56. Jfillig, Richard and Yellamraju V. Srinivas. "Diagrams for Software Synthesis." The
Eighth Knowledge-Based Software Engineering Conference. 10-19. Los Alamitos

CA: IEEE Computer Society Press, September 1993.

57. Jiillig, Richard and Yellamraju V. Srinivas. "Describing Software Architectures For-
mally: A Case-Study Using KWIC." Kestrel Institute, Palo Alto, CA 94304, April
1994.

58. Kang, Kyo C. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report CMU/SEI-90-TR-21, Software Engineering Institute, November 1990.

59. Lafontaine, Christine, et al. "An Experiment in Formal Software Development:
Using the B Theorem Prover on a VDM Case Study," Communications of the ACM,
34 (5):62-87 (May 1991).

BIB-4

60. Lane, Thomas G. Studying Software Architecture Through Design Spaces and Rules.
Technical Report CMU/SEI-90-TR-18, ESD-90-TR-219, Carnegie Mellon University,
Pittsburgh, PA 15213: Software Engineering Institute, November 1990.

61. Lee, Kenneth J., et al. Model-Based Software Development (DRAFT). Technical
Report CMU/SEI-92-SR-00, ESD-92-SR-00, Carnegie Mellon University, Pittsburgh,
PA 15213: Software Engineering Institute, December 1991.

62. Levi, Shem-Tov and Ashok K. Agrawala. Real Time System Design. McGraw-Hill
Publishing Company, 1990.

63. Lowry, Michael R. and Robert D. McCartney, editors. Automating Software Design.
AAAI Press and the MIT Press, 1991.

64. Luckham, David C. and James Vera. "p-Rapide: An Executable Architecture Def-
inition Language." DARPA funded project under ONR contract N00014-90-J-1232
and AFOSR under Grant AFOSR91-0354, 7 April 1993.

65. MacLane, S. Categories for the Working Mathematician. New York: Springer-
Verlag, 1971.

66. MacLane, Saunders and Garrett Birkhoff. Algebra. Chelsea Publishing Company,
1993.

67. Manna, Zohar. Mathematical Theory of Computation. McGraw-Hill Computer Sci-
ence Series, 1974.

68. Mash, Frederick C., editor. Webster's Ninth New Collegiate Dictionary. Merriam-
Webster Inc., 1985.

69. Mattala, LtCol Erik and Marc H. Graham. "The Domain-Specific Software Archi-
tecture Program," Cross Talk: The Journal of Defense Software Engineering, 19-21
(October 1992).

70. McArthur, D. "ENCORES: an environment for constructing or reasoning with en-
gineered software." Software Engineering Environments edited by Pearl Brereton,
chapter 6, 69-78, Ellis Horwood Limited, 1988.

71. Mcflroy, M. D. "Mass Produced Software Components," Software Engineering Con-
cepts and Techniques, 88-98 (1969). Paper presented at the 1969 NATO Conference
on Software Engineering.

72. Mettala, LtCol Erick and Marc H. Graham. The Domain Specific Software Archi-
tecture Program. Technical Report CMU/SEI-92-SR-9, Carnegie Mellon University,
Pittsburgh, PA 15213: Software Engineering Institute, June 1992.

73. Neighbors, James M. "The Draco Approach to Constructing Software from Reusable
Components," IEEE Transactions on Software Engineering, 10(5):564-574 (Septem-
ber 1984).

74. Nii, H. P. "Blackboard Systems Parts 1 & 2," AI Magazine, 7(3 & 4):38-53, 62-69
(1986).

75. Paige, Robert and Shaye Koenig. "Finite Differencing of Computable Expressions,"
ACM Transactions on Programming Languages and Systems, 4 (3):402-454 (July
1982).

BIB-5

76. Perry, Dewayne E. and Alexander L. Wolf. "Foundations for the Study of Software
Architecture," Software Engineering Notes (ACM SIGSOFT), 17(4):40-52 (October
1992).

77. Place, Patrick R., et al. Survey of Formal Specification Techniques for Reactive
Systems. Technical Report CMU/SEI-90-TR-5, ESD-TR-90-206, Carnegie Mellon
University, Pittsburgh, PA 15213: Software Engineering Institute, May 1990.

78. Platek, Richard and James H. Taylor. "Domain-Specific Software Architectures for
Hybrid Control." The Domain Specific Software Architecture Program, Technical
Report CMU/SEI-92-SR-9 73-76, Carnegie Mellon University, Pittsburgh, PA 15213:
Software Engineering Institute, June 1992.

79. Polak, Wolfgang, "CIDL." Course notes and slides.

80. Polak, Wolfgang and Henson Graves. The CIDL Language User Manual, Version
0.9, May 1992.

81. Pressburger, Thomas T., et al. KIDS Manual, Kestrel Interactive Development Sys-
tem, Version 1.0. Kestrel Institure, 3260 Hillview Avenue, Palo Alto CA, September
1991.

82. Prieto-Diaz, Rub6n. "Domain Analysis for Reusability." Proceedings of COMPSAC
'87. 23-29. 1987.

83. Prieto-Diaz, Rub6n. "Classification of Reusable Modules." Software Reusability,
Volume I, Concepts and Models chapter 4, 99-123, ACM Press, New York, 1989.

84. Prieto-Diaz, Ruben. "Implementing Faceted Classification for Software Reuse,"
Communications of the ACM, 34 (5):88-97 (May 1991).

85. Prieto-Diaz, Rub6n. "Making Software Reuse Work: An Implementation Model,"
Software Engineering Notes, 16(3):61-73 (July 1991).

86. Prieto-Diaz, Rub6n and James M. Neighbors. "Module Interconnection Languages,"
Journal of Systems and Software, 6(4):307-334 (1986).

87. Purtilo, James M. The Polylith Software Bus. Technical Report UMIACS-TR-90-65,
CS-TR-2469, University of Maryland: Institute for Advanced Computer Studies and
Department of Computer Science, May 1990.

88. Reasoning Systems Inc., 3260 Hillview Avenue, Palo Alto CA, 94304. Refine User's
Guide.

89. Rich, Charles and Yishai Feldman. "Seven Layers of Knowledge Representation and
Reasoning in Support of Software Development," IEEE Transactions on Software
Engineering, 18(6):451-469 (June 1992).

90. Rumbaugh, James, et al. Object-Oriented Modeling and Design. Prentice Hall, 1991.

91. Sannella, Donald and Andrzej Tarlecki. "Toward Formal Development of Pro-
grams from Algebraic Specifications: Implementations Revisited," Acta Informatica,
25:233-281 (1988).

BIB-6

92. Setliff, Dorothy and Rob Rutenbar. "Knowledge Representation and Reasoning in
a Software Synthesis Architecture," IEEE Transactions on Software Engineering,
18(6):523-533 (June 1992).

93. Shaw, Mary. "Larger Scale Systems Require Higher-Level Abstractions." Fifth In-
ternational Workshop on Software Specification and Design. 143-146. 1989.

94. Shaw, Mary. "Heterogeneous Design Idioms for Software Architecture." 6th Inter-
national Workshop on Software Specification and Design. 158-165. 1991.

95. Shaw, Mary. Software Architecture for Shared Information Systems. Technical Re-
port SMU/SEI-93-TR-3, ESC-TR-93, Software Engineering Institute, March 1993.

96. Shoham, Yoav. Reasoing about Change. MIT Press, 1988.

97. Silberschatz, A., et al. Operating System Concepts (Third Edition). Addison Wesley,
1991.

98. Smith, Douglas R. "Top-Down Synthesis of Divide-and-Conquer Algorithms." Read-
ings in Artificial Intelligence and Software Engineering edited by Charles Rich and
Richard Waters, 35-61, Morgan Kaufmann Publishers, Inc., 1986.

99. Smith, Douglas R. "Applications of a Strategy for Designing Divide-and-Conquer
Algorithms," Science of Computer Programming, 8:213-229 (1987).

100. Smith, Douglas R. "KIDS: A Semiautomatic Program Development System," IEEE
Transactions on Software Engineering, 16(9):1024-1043 (September 1990).

101. Smith, Douglas R. "Structure and Design of Problem Reduction Generators." Con-
structing Programs from Specifications 91-124, Elsevier Science Publishers B.V.
(North-Holland), 1991.

102. Smith, Douglas R. Constructing Specification Morphisms. Technical Report
KES.U.92.1, 3260 Hillview Avenue, Palo Alto, CA, 94304: Kestrel Institute, April
1992.

103. Smith, Douglas R. Structure and Design of Global Search Algorithms. Technical
Report KES.U.87.11, Palo Alto CA: Kestrel Institute, 1992.

104. Smith, Douglas R. "Transformational Approach to Transportation Scheduling."
KBSE '93: The Eighth Knowledge Based Software Engineering Conference. 60-68.
IEEE Computer Society Press, 1993.

105. Smith, Douglas R. and Michael R. Lowry. "Algorithm Theories and Design Tactics,"
Science of Computer Programming, 14:305-321 (1990).

106. Srinivas, Yellamraju V. Category Theory Definitions and Examples. Technical Re-
port 90-14, Department of Information and Computer Science, Irvine, CA: University
of California, 18 February 1990.

107. Srinivas, Yellamraju V. Algebraic Specification: Syntax, Semantics, Structure. Tech-
nical Report 90-15, Department of Information and Computer Science, Irvine, CA:
University of California, 19 June 1990.

108. Srinivas, Yellamraju V. "Algebraic Specification for Domains." Domain Analysis
and Software Systems Modeling 90-124, IEEE Computer Society Press, 1991.

BIB-7

109. Srinivas, Yellamraju V., "Personal conversation with Yellamraju V. Srinivas of
Kestrel Institute, Palo Alto CA 94304," March 1993.

110. Stanat, Donald F. Discrete Mathematics in Computer Science. Prentice Hall, 1977.

111. Thatcher, J. W., et al. "Data-type specification: Parameterization and the power of
specification techniques," ACM Transactions on Programming Languages and Sys-
tems, 4 (4):711-732 (October 1982).

112. Thomas, Donald E., et al. "A Model and Methodology for Hardware-Software Code-
sign," IEEE Design & Test of Computers, 10(3):6-15 (September 1993).

113. Thomas, J. W. Module Interconnection in Programming Systems Supporting Ab-
straction. PhD dissertation, Brown University, June 1976.

114. Tracz, William and Lou Coglianese. "An Avionics Domain-Specific Software Archi-
tecture," Cross Talk: The Journal of Defense Software Engineering, 22-24+ (Octo-
ber 1992).

115. Tracz, William J. Formal Specification of Parameterized Programs in LILEANNA,
Sixth Draft. PhD dissertation, Stanford University, May 1993.

116. Tsang, Edward. Foundations of Constraint Satisfaction. San Diego, CA: Academic
Press Inc., 1993.

117. Turski, Wladyslaw M. and Thomas S. E. Maibaum. The Specification of Computer
Programs. Addison-Wesley Publishing Company, 1987.

118. van Glabbeek, R. J. The Linear Time-Branching Time Spectrum. Technical Report
CS-R9029, Centre for Mathematics and Computer Science, Amsterdam, 1990.

119. Van Horebeek, Ivo and Johan Lewi. Algebraic Specifications in Software Engineering.
Springer-Verlag, 1989.

120. Vestal, Steve. "A Cursory Overview and Comparison of Four Architecture Descrip-
tion Languages." Honeywell Sytems and Research Center, (612) 951-7049, 18 Febru-
ary 1993.

121. Vestal, Steve. Software Programmer's Manual for the Honeywell Aerospace Compiled
Kernel (MetaH Language Reference Manual), Multiprocessor Version ce.5, Draft.
Honeywell Systems and Research Center, 3660 Technology Drive, Minneapolis, MN
55418, 18 June 1993.

122. Wallnau, Kurt C., "The CARDS Program and Research Opportunities for
Architecture-Centered, Reuse Library Assisted Software Reuse." Briefing slides, 6
May 1993. Paramax Systems Corporation.

123. Wallnau, Kurt C., "CARDS Reuse Technology Principles and Applications of Model-
Based Reuse." Briefing, 10 August 1993. Paramax Systems Corporation.

124. Wang, T. C. Reacto-Verifier 1.0 User's Guide. Kestrel Institute, 3260 Hillview
Avenue, Palo Alto CA, November 1990.

125. Waters, Richard C. "The Programmer's Apprentice: A Session with KBEmacs."
Readings in Artificial Intelligence and Software Engineering edited by Charles Rich
and Richard C. Waters, 351-375, Morgan Kaufmann Publishers, Inc., 1986.

BIB-8

126. Wenban, Alan S., et al. "Codeign of Communication Protocols," Computer, 46-52

(December 1993).

127. Wileden, Jack C., et al. "Specification-Level Interoperability," Communications of
the ACM, 34 (5):88-97 (May 1991).

128. Wirsing, Martin. "Algebraic Specification." Handbook of Theoretical Computer Sci-

ence, Volume B, Formal Models and Semantics edited by J. van Leeuwen, chapter 13,

675-788, Elsevier Science Publishers B.V., 1990.

129. Young, Frank C. D. "Constraint Directed Hardware Software Codesign." Disserta-
tion Prospectus, August 1994.

BIB-9

Vita

Captain Mark Gerken was born on 30 January 1963 in Des Moines, Iowa. In February

1985 he married Debora Sue Mallory. He received a Bachelor of Science degree in Computer

Engineering from Iowa State University in May of the following year. After receiving his

commission through ROTC, he was assigned to 82nd Student Squadron at Williams AFB,

Arizona, where he attended flight training. He was later assigned to the Directorate of

Engineering Reliability within the Acquisition Logistics Division at Wright-Patterson AFB

Ohio, and later transferred to the C-17 System Program Office at Wright-Patterson AFB.

In May of 1990, Mark entered the Air Force Institute of Technology at Wright-Patterson

AFB in pursuit of a Master of Science degree in Computer Engineering and continued into

the Ph.D. program. Captain Gerken has three children: Mallory (age eight), Mark (age

six), and Meghan (age four).

Permanent address: 5214 Cobb Drive
Dayton OH 45431-1415

VITA-1

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 07A4-o188

Public beportng ourden for tnhis roljection of nforrrator, ,s estimated ro -}erage " hour •er esor'se. ricluding the time 'or re,lewing nstructcns. searlrvnq existing data sources,
gathering and mnamtaining the data needed, and completing and revie-ri the .:ollecýon of reformation. Send comments rega-ding this burden esttmate or any other aspect of this
collection of information, neduding suggestions 'or reducing zhns burceen To Nashington Headquarters Serv ces, Directorate for informatton Operations and Reocrts, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office D' Management and Budget, Paperwore Reduction Project (0704-0138), WVashington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 1995 I Ph.D. Dissertation
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

FORMAL FOUNDATIONS
FOR THE SPECIFICATION OF
QQWPWA RE A RCT-TTTICTTT'R,
6. AUTHOR(S)

Mark J. Gerken, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology
WPAFB OH 45433-6583

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPON SORING/ MONITORING
AGENCY REPORT NUMBER

AFOSR/NM
110 Duncan Ave, Suite B115
Bolling AFB, DC 20332

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

This investigation establishes a formal foundation for software architecture that allows for the specification of
non-trivial software systems using well-founded, consistency preserving techniques. Two fundamental problems
were addressed: how to define architectures formally, and how architecture theories can be applied in specification
construction. The initial stages of this investigation sought to establish a formal relationship between functional
specifications of behavior and specifications defining system structure. Experimental results lead to the conclusion
that architectures defining the structure of functional operations can be defined using functional logic, but
more complex architectures require a separate process logic. A process logic based on Hoare's Communicating
Sequential Processes (CSP) was selected for representing and reasoning about system structure and was used
in the definition of a process-based specification development system. Specifically, CSP was used to define
a category of process-based specifications, allowing well-founded specification construction techniques such as
colimits, and interpretations to be applied to the construction of consistent software architecture. Architecture
theories expressed in terms of functional and process-based specifications were defined, and translations between
these architecture theories were investigated. A feasibility analysis demonstrated that architecture theories can
be used to develop specifications for non-trivial applications.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Software Architecture, Algebraic Specification, Formal Methods 327
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Prescrimed by ANSI Std 139-18
298- 02

