
AFIT/DS/AA/95-01

BELEGTE
AUG 1 5 1995

CWHWWi ,

/x

Teaching Accommodation Task Skills:
From Human Demonstration

to Robot Control Via
Artificial Neural Networks

DISSERTATION
Paul Vincent Whalen

Captain, USAF

AFIT/DS/AA/95-01

W5Ö8U 058
DTIf QUALITY W8FECTED 3

Approved for public release; distribution unlimited

AFIT/DS/AA/95-01

Teaching Accommodation Task Skills:

From Human Demonstration

to Robot Control Via

Artificial Neural Networks

DISSERTATION

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air Education and Training Command

In Partial Fulfillment of the

Acce3ion For
\

NTIS CRA&i
DTIC TAB

4
D

Requirements for the Degree of

Doctor of Philosophy

Paul Vincent Whalen, B.S.M.E, M.S.A.E

Unannounced
Justification

D

By
Distribution/

Availability Codes

Dist
Avail and/

Special
or

Captain, USAF

AH

March 1995

Approved for public release; distribution unlimited

AFnVDS/AA/95-01

Teaching Accommodation Task Skills:

From Human Demonstration

to Robot Control Via

Artificial Neural Networks

Paul Vincent Whalen, B.S.M.E, M.S.AE

Captain, USAF

Approved:

Sm^Y /MtfiP
3nny, Chairman

Matthew Kabrisky
/3/u», 4s

MoJk <c.®dL (3 k^ir
Mark E. Oxley

Accepted:

Robert A Calico, Jr.
Senior Dean

Acknowledgements

Competitors in the Tour de France cycling competition have elaborate support teams

that enable them to compete in this grueling endurance event. Despite their incredible

athletic talents, the competitors know they wouldn't stand a chance without a good support

team. In many ways, completing this dissertation has been a grueling endurance event for

me. Like the Tour de France competitors, my success is almost wholly attributable to my

support team.

The captain of my support team has been my lovely wife, Shawna, who gave of herself,

on my behalf, like no other can. Even when she was stressed out or lonely, she always

encouraged me to work on my dissertation. In many ways, this dissertation has been more

work for her than for me. An enormous part of Shawna's work load our two children,

Erika Leigh and Matthew Ryan, who were both born during the arduous course of this

dissertation. For their parts, Erika and Matthew have been a BIG source of joy, inspiration,

and motivation. With no effort at all, they helped me keep my perspective.

My coaching staff consisted of Dr. Curtis H. Spenny, Major (Dr.) Michael B. Leahy

Jr, Dr. Matthew Kabrisky, and Dr. Mark E. Oxley. As my chairman, Dr. Spenny provided

the right-brain viewpoint to keep me oriented and caused me to rethink things on numerous

occasions. His assistance in pulling the final piece of work together was pivotal. Major Leahy

was my robot mentor as well as career counselor. It was Mike's influence that convinced

me to do the experimental part of this dissertation and it was his assistance that saw me

through it. Dr. Kabrisky is a wise man with an incredible breadth and depth of knowledge. I

am grateful that he was kind enough to spoon-feed me. Dr. Oxley provided the mathematical

ladder which enabled me to reach new personal heights. Occasionally I could even keep up

with him as he derived something.

The crew chief of my maintenance team was the ever-helpful, chameleon-of-computer-

operating-systems-and-equipment, Dan A. Zambon. I know I wouldn't be writing this if it

wasn't for Dan's patient help with even the most irritating problems (it's okay if you want to

do that rm * . * now, Dan). Also on my maintenance team were Nick Yardich, Jay Anderson,

Dan Rioux, Andy Pitts, and Mark Derriso who helped me with a lot of my hardware even

in

though I was working in the "other" lab. Other members of my maintenance team were

Gregory L. Tarr and Dennis W. Ruck who provided me with the initial software I used to

train my networks and Kevin L. Priddy who was the only peer with whom I could discuss

neural network problems. A final, but crucial member was my good friend Dr. Raymond E.

Slyh. He started his dissertation after me, finished before me, and provided hours of helpful

discussion and lots of encouragement that I could do it too.

Tim Hancock, John Brohas, Ron Ruley, and Jack Tiffany in the AFIT model shop made

up my fabrication team. They did a fantastic job of bringing my concept drawings from vague

ideas to finely crafted, precision pieces of hardware.

I had an incredible cheering squad consisting of my parents (Bill and Joann), my in-

laws (Mike and Billye Ruth), my siblings (Susi, Julie, Mark, and Tony), and other relatives

too numerous to mention. These are the folks who tried to understand why it took so long

and (usually) patiently waited for me to come visit them during the few breaks I took over the

six years of this effort. In addition to my relatives, there were many other encouraging and

understanding fans such as the Pedro's, the Sizemore's, the Powell's, my boss (Dr. Nixon),

and my mentor Major Ronald G. Julian. The list could go on from there, but suffice it to say,

that my achievements are a testimony to their faith in me which often exceeded my own. To

all of you who have grown fearful of asking, it's safe again because the answer is "YES!"

Of course, I cannot forget to thank the Owner and Creator of my, and all other, support

teams; God. It's amazing what God can do with a stupid lump of clay. He deserves better

than this.

Paul Vincent Whalen

IV

Table of Contents

Page

Acknowledgements iü

List of Figures x

List of Tables xxiv

List of Symbols xxvi

List of Acronyms xxix

Abstract xxx

I. Introduction 1-1

1.1 Motivation 1-2

1.2 Problem Statement 1-4

1.3 Objective 1-5

1.4 Assumptions 1-5

1.5 Approach 1-6

1.6 Contributions 1-8

II. Related Research 2-1

2.1 Peg Insertion Research 2-1

2.1.1 Classical Analysis Works 2-1

2.1.2 Logic-Branching Works 2-3

2.1.3 Learning Control Works 2-5

2.2 Research on Transferring Human Skills to Robots 2-9

2.3 Summary. 2-11

Page

III. Overview of Concept and Nomenclature 3-1

3.1 Operational Configuration 3-1

3.2 Raw Data Collection 3-3

3.2.1 Sources of Raw Data 3-4

3.3 Configurations of Raw Data 3-5

3.3.1 SISOData 3-5

3.3.2 RISOData 3-7

3.3.3 DISOData 3-7

3.3.4 DIDO Data 3-8

3.4 Training Data Preparation 3-9

3.5 ANN Architecture and Training 3-9

3.6 ANN Training Evaluation 3-10

3.7 Controller Implementation 3-10

3.8 Controller Performance Evaluation 3-10

3.9 Summary 3-11

rV. Hardware Description 4-1

4.1 End-Effector Design 4-1

4.2 Training Handle Design 4-1

4.3 PLIMMS Design 4-1

4.4 Robot Testbed Description 4-4

4.5 Summary. 4-7

V. Methodology 5-1

5.1 Raw Data Collection 5-1

5.1.1 SISO Data CoUection 5-1

5.1.2 RISO Data Collection 5-1

5.1.3. DISO Data Collection 5-2

VI

Page

5.1.4 DIDO Data Collection 5-2

5.1.5 Differentiation 5-9

5.2 Training Data Generation Procedures 5-10

5.2.1 Magnitude Normalization 5-10

5.2.2 Low-Pass Filtering 5-11

5.2.3 Velocity Pruning 5-12

5.2.4 Hemisphere Pruning 5-13

5.2.5 Lipschitz Clipping 5-14

5.2.6 Collision Pruning 5-17

5.2.7 Subsampling 5-18

5.2.8 Allowable Data Processing Combinations 5-18

5.3 ANN Training 5-18

5.3.1 ANN Structure 5-19

5.3.2 ANN Training Algorithm 5-19

5.4 ANN Training Evaluation 5-21

5.4.1 ANN Error Tracking 5-21

5.4.2 ANN Interrogation by Unit-Vector Probing 5-21

5.4.3 ANN Interrogation by LSMF. 5-22

5.4.4 Matrix Similarity Indexes 5-23

5.5 Controller Implementations 5-24

5.5.1 Implementation via Simulation 5-25

5.5.2 Implementation on Robot Testbed 5-31

5.5.3 Velocity Integration 5-33

5.6 Timing Considerations 5-34

5.6.1 Processing Delay Time 5-35

5.6.2 Causality. 5-37

5.6.3 The Human Factor. 5-40

vn

Page

5.7 Controller Performance Evaluation 5-40

5.8 Summary. 5-42

VI. Results 6-1

6.1 Baseline Accommodation Matrix Controller. 6-1

6.1.1 Nominal Task Execution 6-1

6.1.2 Experimental Tests 6-3

6.1.3 Simulation Tests 6-4

6.2 SISO Observations 6-10

6.2.1 Factors Related to Training Data Distribution 6-10

6.2.2 SISO Training Data Distribution Investigation 6-16

6.2.3 SISO Summary. 6-40

6.3 RISO Observations 6-41

6.3.1 Effects of Data Processing on RISO controllers 6-45

6.3.2 Included Angle Statistics 6-51

6.3.3 Matrix Similarity Indexes 6-55

6.3.4 RISO Summary. 6-56

6.4 DISO Observations 6-61

6.4.1 DISO Summary. 6-67

6.5 DIDO Observations 6-70

6.5.1 DIDO Data Collected From PUMA Manipulator. 6-70

6.5.2 DIDO Data Collected From PLIMMS 6-73

6.5.3 DIDO Summary. 6-89

VII. Conclusions 7-1

7.1 Demonstration Data Quality. 7-1

7.2 Effectiveness of Data Processing Options 7-2

7.3 Matrix Interrogation Investigations 7-4

vni

Page

7.4 ANN Training Difficulties 7-5

7.5 Summary. 7-6

VIII. Recommendations 8-1

Bibliography BIB-1

Vita VITA-1

Appendix A. Artificial Neural Network Computations A-l

A.1 Feedforward Computations A-l

A. 1.1 Hidden Layer Computations A-l

A. 1.2 Output Layer Computations A-2

A. 2 Back Error Propagation Training Algorithm A-3

Appendix B. Data Tables B-l

Appendix C. Supplemental Data Plots C-l

Appendix D. Untried Processing Options D-l

D.l Time Shifting D-l

D.2 Time Delaying D-l

D.3 Angle Features D-2

IX

List of Figures

Figure Page

1.1. The spectrum of MITL robotic systems showing tradeoffs between local

autonomy and operator control [47] 1-3

1.2. Motion associated with the edge-mating task 1-6

3.1. Proposed process used to learn an ACC task 3-1

3.2. Simplified block diagram of operational system configuration 3-2

3.3. Diagram depicting the four configurations used to generate input-output

training pairs for the ANN 3-6

3.4. Illustration of how input feature vectors might be distributed across the

input feature space of a two-input ANN for: a) SISO, b) RISO, and c) DISO

training data 3-6

3.5. Schematic of MLP ANN showing: a) overall architecture, and b) details of

second node in hidden layer 3-9

4.1. Illustration of the end-effector peg showing its dimensions 4-2

4.2. Training handles used to backdrive the PUMA robot during demonstration

training data collection 4-2

4.3. Basic structure of the PLIMMS showing the encoder locations and end-

effector configuration 4-3

4.4. Kinematic description of the PLIMMS 4-4

4.5. The PUMA 562 robot structure 4-5

5.1. PUMA control system block diagram with accommodation controller run-

ning during collection of RISO data 5-2

5.2. PUMA control system block diagram during DIDO data collection 5-4

5.3. Coordinates used to describe the PUMA robot as a planar manipulator op-

erating in the vertical plane 5-4

5.4. PLIMMS controller block diagram during demonstration data collection . . 5-7

Figure Page

5.5. Coordinates used to describe the position of the peg on the PLIMMS during

demonstration data collection 5-8

5.6. Illustration of the coordinate system used to describe the position of the peg. 5-24

5.7. Controller block diagram for complete simulation model 5-26

5.8. Controller block diagram for simplified simulation model 5-27

5.9. Illustration of frictionless constraint model used in the simulation 5-28

5.10. Illustration of no-sliding constraint model used in the simulation 5-29

5.11. Plot of the blending function showing: a) S(ß) which turns off the Vn as ß

increases, and b) (1 - S(ß)) which turns on the Vc 5-30

5.12. Detailed block diagram of the scheme used to implement controllers on the

PUMA manipulator. 5-32

5.13. Block diagram of a system designed to track a moving target with the end-

effector of a robot using a vision system for feedback 5-36

5.14. Illustration of causal time shift between captured input and output data for

an example case of a controller having a processing delay of five sampling

periods 5-37

5.15. Illustration of the general relationships between the input signal frequency

content, the controller bandwidth, and the sensitivity of the input-output

mapping to variations in the causal time shift 5-39

6.1. Idealized results of a nominal ACC controller performing the edge-mating

task from a CCW initial misalignment angle. Time histories of position

((a)-(c)), commanded velocities ((e),(g)), and measured forces ((d),(f),(h)) are

shown. Note that Vs = 0 6-2

6.2. Force and commanded velocity time histories of an ACC controller perform-

ing the edge-mating task from a CW initial misalignment angle on the

PUMA robot 6-5

6.3. Force and commanded velocity time histories of an ACC controller perform-

ing the edge-mating task from a CCW initial misalignment angle on the

PUMA robot 6-6

XI

Figure Page

6.4. Simulation results of the ACC controller performing the edge-mating task

from a CCW initial misalignment angle. Time histories of position ((a)-(c)),

commanded velocities ((e),(g)), and measured forces ((d),(f),(h)) are shown

when the Aa, given in Eq (6.2), is implemented. Note that Vx = 0 6-7

6.5. Simulation results of ACC controller modeling the PUMA robot environment. 6-9

6.6. Effect of turning the modeled friction on and off in the simulation software

on the X-axis position trace 6-10

6.7. Two-dimensional projection of data distributed according to the even spacing

function (y = x) 6-13

6.8. Two-dimensional projection of data distributed according to the sine spacing

function (y = sin(x)) 6-13

6.9. Two-dimensional projection of data distributed according to the cubic spac-

ing function (y — x3) 6-14

6.10. Two-dimensional projection of data distributed according to the complex

spacing function (y = 0.88 [(sin x + 0.3) cos 10a; tan x + 0.46]) 6-14

6.11. Illustration of modified input and output spaces resulting from using gaus-

sian normalization on the training data 6-15

6.12. Performance metrics of controllers trained on evenly-spaced SISO data as a

function of the range and number of divisions 6-17

6.13. Performance metrics of controllers trained on sine-spaced SISO data as a

function of the range and number of divisions 6-18

6.14. Performance metrics of controllers trained on cubic-spaced SISO data as a

function of the range and number of divisions 6-19

6.15. Performance metrics of controllers trained on complex-spaced SISO data as

a function of the range and number of divisions 6-20

6.16. Performance metrics of controllers trained on complex-spaced SISO data

after being mirrored about all axes as a function of the range and number

of divisions. Note that no controllers were trained on data with a range of

0.5, so they are artificially assigned zero performance metrics 6-21

xn

Figure PaSe

6.17. Performance metrics of controllers trained on complex-spaced SISO data

after being mirrored about all axes and subsampled back to their original

size. The results are plotted as a function of the range and number of

divisions 6"22

6.18. Matrix similarity indexes for a series of Aa' fitted to the mapping from

the weights trained on evenly-spaced SISO data. Shown is (a) structural

similarity, (b) gain similarity, (c) sign similarity, and (d) ratio similarity.

Window size of fitting was 200 samples 6-23

6.19. Matrix similarity indexes for the same data as in Figure 6.18, but fit with a

window size of 600 samples 6-24

6.20. Simulation results from implementing the ACC matrix controller derived

from the same weights interrogated using the LSMF technique in Fig-

ure 6.18. The matrix was derived using the LSMF technique on the entire

data set 6-27

6.21. Performance metrics achieved by Aj extracted from ANN controllers trained

on euerc-distributed SISO data using the LSMF technique. Data are plotted

as a function of range and divisions for comparison to Figure 6.12. Note,

however, the difference in the scale of the Best Metric axis 6-28

6.22. Performance metrics achieved by Aa' extracted from ANN controllers trained

on sirce-distributed SISO data using the LSMF technique. Data are plotted

as a function of range and divisions for comparison to Figure 6.13. Note,

however, the difference in the scale of the Best Metric axis 6-28

6.23. Performance metrics achieved by Aa' extracted from ANN controllers trained

oncu&ic-distributed SISO data using the LSMF technique. Data are plotted

as a function of range and divisions for comparison to Figure 6.14. Note,

however, the difference in the scale of the Best Metric axis 6-29

6.24. Performance metrics achieved by Aa' extracted from ANN controllers trained

on compZex-distributed SISO data using the LSMF technique. Data are plot-

ted as a function of range and divisions for comparison to Figure 6.15. Note,

however, the difference in the scale of the Best Metric axis 6-29

xm

Figure PaSe

6.25. Performance metrics achieved by Aj extracted using the LSMF technique

from ANN controllers trained on compZex-distributed SISO data after they

were mirrored about all axes. Data are plotted as a function of range and

divisions for comparison to Figure 6.16. Note, however, the difference in the

scale of the Best Metric axis 6-30

6.26. Matrix structural similarity index, Tä, of Aa' extracted from ANN con-

trollers trained on euerc-distributed SISO data using the LSMF technique.

Data are plotted as a function of range and divisions for comparison to

Figure 6.12 6-31

6.27. Matrix gain similarity index, Tg, of Aa' extracted from ANN controllers

trained on euen-distributed SISO data using the LSMF technique. Data are

plotted as a function of range and divisions for comparison to Figure 6.12. . 6-31

6.28. Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers

trained on euen-distributed SISO data using the LSMF technique. Data are

plotted as a function of range and divisions for comparison to Figure 6.12. . 6-32

6.29. Matrix structural similarity index, T,, of Aa' extracted from ANN con-

trollers trained on sine-distributed SISO data using the LSMF technique.

Data are plotted as a function of range and divisions for comparison to

Figure 6.13 6-33

6.30. Matrix gain similarity index, Tg, of Aa' extracted from ANN controllers

trained on sine-distributed SISO data using the LSMF technique. Data are

plotted as a function of range and divisions for comparison to Figure 6.13. . 6-33

6.31. Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers

trained on sme-distributed SISO data using the LSMF technique. Data are

plotted as a function of range and divisions for comparison to Figure 6.13. . 6-34

6.32. Matrix structural similarity index, Ts, of Aa' extracted from ANN con-

trollers trained on cu&ic-distributed SISO data using the LSMF technique.

Data are plotted as a function of range and divisions for comparison to

Figure 6.14 6-34

6.33. Matrix gain similarity index, Tg, of Aa' extracted from ANN controllers

trained on cubic-distributed SISO data using the LSMF technique. Data

are plotted as a function of range and divisions for comparison to Figure 6.14. 6-35

xiv

Figure PaSe

6.34. Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers

trained on cwöic-distributed SISO data using the LSMF technique. Data

are plotted as a function of range and divisions for comparison to Figure 6.14. 6-35

6.35. Matrix structural similarity index, T5, of Aa' extracted from ANN con-

trollers trained on compZex-distributed SISO data using the LSMF tech-

nique. Data are plotted as a function of range and divisions for comparison

to Figure 6.15 6-36

6.36. Matrix gain similarity index, Tg, of Aa' extracted from ANN controllers

trained on compZez-distributed SISO data using the LSMF technique. Data

are plotted as a function of range and divisions for comparison to Figure 6.15. 6-36

6.37. Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers

trained on compZex-distributed SISO data using the LSMF technique. Data

are plotted as a function of range and divisions for comparison to Figure 6.15. 6-37

6.38. Matrix structural similarity index, Ts, of Aa' extracted using the LSMF

technique from ANN controllers trained on compZex-distributed SISO data

after they were mirrored about all axes. Data are plotted as a function of

range and divisions for comparison to Figure 6.16 6-37

6.39. Matrix gain similarity index, Tg, ofAa' extracted using the LSMF technique

from ANN controllers trained on compZex-distributed SISO data after they

were mirrored about all axes. Data are plotted as a function of range and

divisions for comparison to Figure 6.16 6-38

6.40. Matrix ratio similarity index, Tr, of Aa' extracted usingthe LSMF technique

from ANN controllers trained on compZex-distributed SISO data after they

were mirrored about all axes. Data are plotted as a function of range and

divisions for comparison to Figure 6.16 6-38

6.41. Sample of raw RISO force and velocity training data collected via simulation. 6-42

6.42. PUMA manipulator completing the edge-mating task under the control of

an ANN controller trained on RISO data starting from a CCW misalignment

angle 6-43

6.43. PUMA manipulator completing the edge-mating task under the control of

an ANN controller trained on RISO data starting from a CW misalignment

angle 6-44

xv

Figure PaSe

6.44. RISO data from Figure 6.41 after low-pass filtering it to l/20th of its original

bandwidth 6-46

6.45. Phase-volume diagram showing distribution of the same raw RISO data

presented in Figure 6.41 6-47

6.46. Phase-volume diagram showing distribution of the same filtered RISO data

presented in Figure 6.44 6-47

6.47. Performance metrics of ANN controllers trained on RISO data as a function

of the low-pass cutoff frequency and number of points skipped between

subsampling intervals 6-48

6.48. Performance metrics of ANN controllers trained on RISO data after velocity

pruning with a threshold of 0.05 m/s. Plotted as a function of the low-

pass cutoff frequency and number of points skipped between subsampling

intervals 6-49

6.49. Performance metrics of ANN controllers trained on RISO data after velocity

pruning with a threshold of 0.1 m/s. Plotted as a function of the low-pass

cutoff frequency and number of points skipped between subsampling inter-

vals 6-49

6.50. Performance metrics of ANN controllers trained on RISO data after hemi-

sphere pruning with a threshold of 86.5 degrees. Plotted as a function of

the low-pass cutoff frequency and number of points skipped between sub-

sampling intervals 6-51

6.51. Performance metrics of ANN controllers trained on RISO data after collision

pruning with a threshold of 0.05 and a window size of 1. Plotted as a function

of the low-pass cutoff frequency and number of points skipped between

subsampling intervals 6-52

6.52. Standard deviation of included angle between F and V in RISO data as a

function of low-pass cutoff frequency and number of points skipped between

subsampling intervals 6-53

6.53. Standard deviation of included angle between F and V in RISO data as a

function of low-pass cutoff frequency and number of points skipped between

subsampling intervals after velocity pruning with a threshold of 0.05 m/s. . 6-53

xvi

Figure Page

6.54. Standard deviation of included angle between F and V in RISO data as a

function of low-pass cutoff frequency and number of points skipped between

subsampling intervals after velocity pruning with a threshold of 0.1 m/s. . 6-54

6.55. Standard deviation of included angle between F and V in RISO data as a

function of low-pass cutoff frequency and number of points skipped between

subsampling intervals after hemisphere pruning with a threshold of 86.5

degrees 6-54

6.56. Standard deviation of included angle between F and V in RISO data as a

function of low-pass cutoff frequency and number of points skipped between

subsampling intervals after collision pruning with a threshold of 0.05 using

a window size of 1 6-55

6.57. Matrix structural similarity index, T„ of Aa' extracted from ANN con-

trollers trained on RISO data using the LSMF technique. Data are plotted

as a function of low-pass cutoff frequency and number of points skipped be-

tween subsampling intervals after velocity pruning with a threshold of 0.05

m/s 6-56

6.58. Matrix gain similarity index, T«,, of Aa' extracted from ANN controllers

trained on RISO data using the LSMF technique. Data are plotted as a

function of low-pass cutoff frequency and number of points skipped between

subsampling intervals after velocity pruning with a threshold of 0.05 m/s. . 6-57

6.59. Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers

trained on RISO data using the LSMF technique. Data are plotted as a

function of low-pass cutoff frequency and number of points skipped between

subsampling intervals after velocity pruning with a threshold of 0.05 m/s. . 6-57

6.60. Matrix structural similarity index, Ts, of Aa' extracted from ANN con-

trollers trained on RISO data using the LSMF technique. Data are plotted

as a function of low-pass cutoff frequency and number of points skipped

between subsampling intervals after hemisphere pruning with a threshold

of 86.5 degrees 6-58

xvu

Figure PaSe

6.61. Matrix gain similarity index, Tg, of Aa' extracted from ANN controllers

trained on RISO data using the LSMF technique. Data are plotted as a

function of low-pass cutoff frequency and number of points skipped between

subsampling intervals after hemisphere pruning with a threshold of 86.5

degrees 6-58

6.62. Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers

trained on RISO data using the LSMF technique. Data are plotted as a

function of low-pass cutoff frequency and number of points skipped between

subsampling intervals after hemisphere pruning with a threshold of 86.5

degrees 6"59

6.63. Matrix structural similarity index, Ts, of Aa' extracted from ANN con-

trollers trained on RISO data using the LSMF technique. Data are plotted

as a function of low-pass cutoff frequency and number of points skipped

between subsampling intervals after collision pruning with a threshold of

0.05 N 6-59

6.64. Matrix gain similarity index, Tg, of Aa' extracted from ANN controllers

trained on RISO data using the LSMF technique. Data are plotted as a

function of low-pass cutoff frequency and number of points skipped between

subsampling intervals after collision pruning with a threshold of 0.05 N. . 6-60

6.65. Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers

trained on RISO data using the LSMF technique. Data are plotted as a

function of low-pass cutoff frequency and number of points skipped between

subsampling intervals after collision pruning with a threshold of 0.05 N. . 6-60

6.66. Comparison of (a) Vx, (b) Vy, and (c) uz outputs for DISO and DIDO training

data originally collected as demonstration number 1 on the PLIMMS. See

Figure Oil for the complete plot of the DIDO data 6-63

6.67. Performance metrics of ANN controllers trained on DISO training data. . . 6-64

6.68. Recordings of (a)-(c) forces and (d)-(f) velocities from ANN controllers trained

on DISO training data and implemented on the PUMA manipulator. Peg

rotation was counter-clockwise 6-65

6.69. Recordings of (a)-(c) forces and (d)-(f) velocities from ANN controllers trained

on DISO training data and implemented on the PUMA manipulator. Peg

rotation was clockwise 6-66

xvm

Figure Page

6.70. Matrix structural similarity index, Ts, of Aa' extracted from DISO training

data using the LSMF technique. Data are plotted for 3 different fitting

window sizes to show variation 6-67

6.71. Matrix structural similarity index, Ts, of Aa' extracted from ANN con-

trollers trained on DISO data using the LSMF technique 6-68

6.72. Matrix gain similarity index, Tg, of Aa' extracted from ANN controllers

trained on DISO data using the LSMF technique 6-68

6.73. Matrix sign similarity index, T±, of Aj extracted from ANN controllers

trained on DISO data using the LSMF technique 6-69

6.74. Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers

trained on DISO data using the LSMF technique 6-69

6.75. Demonstration number 3 of DIDO training data collected on the PUMA

manipulator. 6-72

6.76. Matrix similarity indexes of Aa' extracted using the LSMF technique from

DIDO training data collected on the PUMA manipulator showing (a) struc-

tural similarity, (b) gain similarity, (c) sign similarity, and (d) ratio similarity. 6-73

6.77. Mean values for the (a) Fx, (b) Fy, and (c) Mz components of F of the DIDO

data collected on the PUMA manipulator. 6-74

6.78. Demonstration number 1 of DIDO training data collected on the PLIMMS. 6-76

6.79. Matrix similarity indexes of Aa' extracted using the LSMF technique from

DIDO training data collected on the PLIMMS showing (a) structural simi-

larity, (b) gain similarity, (c) sign similarity, and (d) ratio similarity. 6-77

6.80. Matrix structural similarity index, Tä, for DIDO training data collected on

PLIMMS. Ten different demonstration files are examined as a function of

the data processing steps applied 6-78

6.81. Matrixgam similarity index, Tg, for DIDO training data collected on PLIMMS.

Ten different demonstration files are examined as a function of the data pro-

cessing steps applied 6-79

6.82. Matrix sign similarity index, T±, for DIDO training data collected on

PLIMMS. Ten different demonstration files are examined as a function of

the data processing steps applied 6-79

xix

Figure PaSe

6.83. Matrix ratio similarity index, Tr, for DIDO training data collected on

PLIMMS. Ten different demonstration files are examined as a function of

the data processing steps applied 6-80

6.84. Simulation results from the ANN controller trained on PLIMMS DIDO

training data after hemisphere pruning with a threshold of 90 degrees (con-

figuration code 3) 6-82

6.85. Simulation results from the ANN controller trained on PLIMMS DIDO

training data after collision pruning with a threshold of 0.05 and low-pass

filtering using 5.0 points (configuration code 10) 6-83

6.86. Simulation results from the ANN controller trained on PLIMMS DIDO

training data after collision pruning with a threshold of 0.05 and low-pass

filtering using 10.0 points (configuration code 11) 6-84

6.87. Simulation results from the ANN controller trained on PLIMMS DIDO

training data after collision pruning with a threshold of 0.05 and velocity

pruning at 0.05 m/s (configuration code 12) 6-85

6.88. Mean values for the Fx components of F for DIDO data collected on the

PLIMMS manipulator. Ten different demonstration files are examined as a

function of the data processing steps applied 6-88

6.89. Mean values for the Fy components of F for DIDO data collected on the

PLIMMS manipulator. Ten different demonstration files are examined as a

function of the data processing steps applied 6-88

6.90. Mean values for the Mz components of F for DIDO data collected on the

PLIMMS manipulator. Ten different demonstration files are examined as a

function of the data processing steps applied 6-89

6.91. Best performance metric, £, achieved for ANN controllers trained on DIDO

data after they were mirrored. Ten different demonstration files are exam-

ined as a function of the data processing steps applied. Table 6.1 provides

the translations for the configuration codes used. Note that only configura-

tion codes 1-6 and 10 were mirrored and tested. Other codes are set to zero

and included to enhance plot labeling uniformity. 6-90

A.l. Plot of the nonlinear sigmoid activation function A-3

xx

Figure Page

C.l. Demonstration number 1 of DIDO training data collected on the PUMA

manipulator C-2

C.2. Demonstration number 2 of DIDO training data collected on the PUMA

manipulator C-3

C.3. Demonstration number 3 of DIDO training data collected on the PUMA

manipulator C-4

C.4. Demonstration number 4 of DIDO training data collected on the PUMA

manipulator C-5

C.5. Demonstration number 5 of DIDO training data collected on the PUMA

manipulator C-6

C.6. Demonstration number 6 of DIDO training data collected on the PUMA

manipulator C-7

C.7. Demonstration number 7 of DIDO training data collected on the PUMA

manipulator C-8

C.8. Demonstration number 8 of DIDO training data collected on the PUMA

manipulator C-9

C.9. Demonstration number 9 of DIDO training data collected on the PUMA

manipulator C-10

C.10. Demonstration number 10 of DIDO training data collected on the PUMA

manipulator C-ll

Oil. Demonstration number 1 of DIDO training data collected on the PLIMMS C-12

C. 12. Demonstration number 2 of DIDO training data collected on the PLIMMS C-13

C. 13. Demonstration number 3 of DIDO training data collected on the PLIMMS C-14

C.14. Demonstration number 4 of DIDO training data collected on the PLIMMS C-15

C. 15. Demonstration number 5 of DIDO training data collected on the PLIMMS C-16

C. 16. Demonstration number 6 of DIDO training data collected on the PLIMMS C-17

C.17. Demonstration number 7 of DIDO training data collected on the PLIMMS C-18

C. 18. Demonstration number 8 of DIDO training data collected on the PLIMMS C-19

C. 19. Demonstration number 9 of DIDO training data collected on the PLIMMS C-20

xxi

Figure Page

C.20. Demonstration number 10 of DIDO training data collected on the PLIMMS C-21

C.21. Comparison of (a) Vx, (b) Vy, and (c) uz outputs for demonstration number

1 of the PLIMMS DIDO training data (ref. Figure C.ll) and their corre-

sponding DISO outputs C-22

C.22. Comparison of (a) Vx, (b) Vy, and (c) u>z outputs for demonstration number

2 of the PLIMMS DIDO training data (ref. Figure C.12) and their corre-

sponding DISO outputs C-23

C.23. Comparison of (a) Vx, (b) Vy, and (c) uz outputs for demonstration number

3 of the PLIMMS DIDO training data (ref. Figure C.13) and their corre-

sponding DISO outputs C-24

C.24. Comparison of (a) Vx, (b) Vy, and (c) u>z outputs for demonstration number

4 of the PLIMMS DIDO training data (ref. Figure C.14) and their corre-

sponding DISO outputs C-25

C.25. Comparison of (a) Vx, (b) Vy, and (c) u>z outputs for demonstration number

5 of the PLIMMS DIDO training data (ref. Figure C.15) and their corre-

sponding DISO outputs C-26

C.26. Comparison of (a) Vx, (b) Vy, and (c) uiz outputs for demonstration number

6 of the PLIMMS DIDO training data (ref. Figure C.16) and their corre-

sponding DISO outputs C-27

C.27. Comparison of (a) Vx, (b) Vy, and (c) u>z outputs for demonstration number

7 of the PLIMMS DIDO training data (ref. Figure C.17) and their corre-

sponding DISO outputs C-28

C.28. Comparison of (a) Vx, (b) Vy, and (c) wz outputs for demonstration number

8 of the PLIMMS DIDO training data (ref. Figure C.18) and their corre-

sponding DISO outputs C-29

C.29. Comparison of (a) Vx, (b) Vy, and (c) u>z outputs for demonstration number

9 of the PLIMMS DIDO training data (ref. Figure C.19) and their corre-

sponding DISO outputs C-30

C.30. Comparison of (a) Vx, (b) Vy, and (c) uz outputs for demonstration num-

ber 10 of the PLIMMS DIDO training data (ref. Figure C.20) and their

corresponding DISO outputs C-31

xxu

Figure Page

D.I. Illustration of time-delayed force vectors used in the input feature of the

ANN D-2

D.2. Vector diagram for derivation of angle feature parameters <pf and A; from

normalized cartesian vector components D-3

xxm

List of Tables

Table Pa§e

5.1. Table depicting allowable combinations (•) and disallowed combinations (o)

of processing options for raw data 5-19

5.2. Summary of parameters used for the simulations 5-31

6.1. Key to configuration codes of DIDO training data listed in Figures 6.80

through 6.83 6-78

6.2. Summary of the simulation results for testing the ANN controllers trained

on PLIMMS DIDO data 6-81

6.3. Summary of the simulation results for testing the accommodation matrix

controllers using the Aa' extracted from planar low-impedance motion mea-

surement system (PLIMMS) Demonstration Input/Demonstration Output

(DIDO) training data 6-86

6.4. Means and standard deviations for F components of RISO training data. . 6-87

B. 1. Implementation results (best metric) of various distributions of SISO train-

ing data after ensuring a consistent training data exposure was maintained

between the data sets B-2

B.2. Matrix structural similarity indexes of Aa' extracted from ANN controllers

trained on various distributions of SISO training data B-3

B.3. Matrixgam similarity indexes of Aa' extracted from ANN controllers trained

on various distributions of SISO training data B-4

B.4. Matrix ratio similarity indexes of Aa' extracted from ANN controllers trained

on various distributions of SISO training data B-5

B.5. Performance metrics of Aa' extracted using the LSMF method from ANN

controllers trained on various distributions of SISO training data B-6

B.6. Implementation results (best metric) of various configurations of RISO

training data after ensuring a consistent training data exposure was main-

tained between the data sets B-7

xxiv

Table Page

B.7. Included angle standard deviations of various distributions of RISO training

data B-8

B.8. Matrix structural similarity indexes, Ys, of Aa' extracted from ANN con-

trollers trained on various distributions of RISO training data B-9

B.9. Matrix gain similarity indexes, Tg, of Aa' extracted from ANN controllers

trained on various distributions of RISO training data B-10

B.10. Matrix ratio similarity indexes, Tr, of Aa' extracted from ANN controllers

trained on various distributions of RISO training data B-ll

B. 11. Overall Aa' extracted from each of the PUMA DIDO raw training data files

using the Least-Squares Matrix Fitting (LSMF) interrogation technique . B-12

B.12. Overall Aa' extracted from each of the PLIMMS DIDO training data files

using the LSMF interrogation technique B-13

B.13. Matrix similarity index data for PUMA DIDO training data files B-14

B.W.Matrix similarity index data for PLIMMS DIDO training data files B-14

B.15. Mean values for PLIMMS DIDO training data files B-15

B.15. Table B. 15 continued B-16

B.15. Table B.15 concluded B-17

B. 16. Matrix similarity index data for PLIMMS DIDO training data files B-18

B.16. Table B. 16 continued B-19

B.16. Table B. 16 concluded B-20

XXV

List of Symbols

Symbol Description Page

A Accommodation matrix, (nxn) 3-2
Aa A designed for edge-mating task, (nxn) 3-3
Aa* Extracted A using unit-vector probing (UVP) technique, (nx n) 5-21
Aa' Extracted A using least squares matrix fitting (LSMF) technique, (nXn) 5-22
F Input feature vector composed of cartesian components, (k x 1) 3-2

{fiifiifz-, • • •)/*}
Components of F A-l

Fa Input feature vector composed of angle components, (k x 1) D-3
Fr Raw force data vector, (6x 1) 3-7
F Input feature vector for training, (kx 1) 3-5
T Concatenation of N input feature vectors into a matrix, (k x N) 5-22
T* Right generalized inverse ofT,(N x k) 5-22
V Vector of computed network outputs, (nx 1) 3-2
V Output feature vector for training, (nx 1) 3-5
TV Peg tip cartesian velocity vector in tool-frame coordinates, (nx 1) 5-3

{Tip,
Typ,6p\ Components of TVP in tool-frame coordinates D-3

WV Peg tip cartesian velocity vector in world-frame coordinates, (nx 1) 5-5
TVC Commanded cartesian velocity vector generated by controller

in tool-frame coordinates, (nx 1) 3-3
TV* TVC after blending operator is applied, (nx 1) 5-30
TVn Nominal cartesian velocity vector in tool-frame coordinates, (nxl) 3-3
TVn TVn after blending operator is applied, (nx 1) 5-30
TVd Desired cartesian velocity vector in tool-frame coordinates, (nxl) 3-3
TVm Measured cartesian velocity vector in tool-frame coordinates, (nxl) 3-8
V Concatenation of N output feature vectors into a matrix, (n x N) 5-22
X Position of peg tip in world-frame coordinates, (nxl) 5-5
Xm Measured position of peg tip in world-frame coordinates, (nxl) 5-27
Xd Desired position of peg tip in world-frame coordinates, (nxl) 5-27
Xe Error between wXd and WXm (nxl) 5-29
Xi Position of peg corner 1 in world-frame coordinates, (n X1) 5-27
X2 Position of peg corner 2 in world-frame coordinates, (nxl) 5-27

Lp Length of peg 5-7
Ljjts Length (thickness) of JR3 force sensor 5-7
(L3x, L3y) Offset and length, respectively, of PLIMMS tool handle 4-4
LT Total length of tool from last joint pivot axis to tip of peg 5-5

Half the width of the rectangular peg 5-27

w

w

w

w

w

r. p
(A2, A3, D4) Denavit-Hartenberg parameters describing PUMA robot structure 5-4

xxvi

Symbol Description Page

CJ Lipschitz cutoff ratio, 5-15
dj Lipschitz ratio between the ith and jth vectors, 5-14
wKe Environment stiffness matrix in world-frame coordinates, (nxn) 5-26
TC Vector of commanded torques for robot DC servomotors, (6x1) 4-5
WJ(q) Jacobian matrix in world-frame coordinates, (n Xn) 5-5
TJ(q) Jacobian matrix in tool-frame coordinates, (nxn) 5-3
Tj\qfl Inverse of TJ{q), (nxn) 5-32
(p. Angle of planar force vector projection onto x y-plane D-3
A/ Elevation angle of planar force vector above the zy-plane D-3
<pv Angle of planar velocity vector projection onto zy-plane D-3
A„ Elevation angle of planar velocity vector above the xy--plane D-3
T Time, in seconds, between commanded position trajectory updates 5-9
(Scalar performance metric used to evaluate the various controller

configurations tested 3-11
X Composite performance index used in computing C 5-41
X Composite performance index of best Aa 5-41
(p, ß, 7, £, <j>) Weighting coefficients for x 5-41
| AP|max Maximum (peak) RMS position error after first alignment 5-41
1^1 max Maximum (peak) RMS force amplitude after alignment 5-41
jjP|avg Average RMS force amplitude after alignment 5-41
V RMS path length traversed from impact to initial alignment 5-41
Wh Hidden layer weight matrix, (mxk) A-l
W0 Output layer weight matrix, (nxm) A-2
k Number of input features (nodes) for ANN 5-22
m Number of hidden layer nodes in ANN A-l
n Number of output features (nodes) for ANN 5-22
p Number of input-output pairs applied to ANN during training A-4
<f Vector of hidden layer node outputs, (mxl) A-2
xfh Vector of biases (offsets) for hidden layer nodes, (mx 1) A-2
ip0 Vector of biases (offsets) for output layer nodes, (mxl) A-2
77 Training rate coefficient for ANN 5-20
a Training momentum coefficient for ANN 5-20
$ Matrix of training data input-output pairs, (px(k+ n)) A-4

<f>i A training exemplar vector equal to (F ,V),(lx(k+n)) A-4

60 ANN output error vector (V -V),(nx 1) A-5
8h Error-related term used to adjust hidden layer weights, (mx 1) A-6
q Vector of joint angles, (6x1) 5-3
qm Vector of measured joint angles, (6x 1) 5-34
qd Vector of desired joint angles, (6x1) 4-5
q Vector of joint velocities, (6x1) 4-5
TRW Matrix transformation from world-frame to tool-frame coordinates 5-6

RT Matrix transformation from tool-frame to world-frame coordinates 5-26

xxvn

w

Symbol Description Page

Ft Threshold force vector magnitude for collision pruning 5-17
Vt Threshold velocity vector magnitude for velocity pruning 5-12
e Parameter controlling blending of Vn and Vc 5-30

Average (mean) value 6-12
Standard deviation 6-12
Coefficient of friction 5-27

Ts Scalar index of structural similarity between two matrices 5-23
Tg Scalar index of magnitude similarity between two matrices 5-23
Tr Scalar index of similarity between ratio of (3,3)/(2,2) elements of two matrices 5-24
T± Scalar index of sign similarity between two matrices 5-23
\P Included angle between F and V 5-13
i$t Threshold value of $ for hemisphere pruning 5-13

Standard deviation of \P for a training data set 6-51

w
a

a *

xxvm

List of Acronyms

Acronym Description
ACC: accommodation relation
ADC: analog-to-digital converter
DAC: digital-to-analog converter
DIO: digital input-output
AFIT: Air Force Institute of Technology
ANN: artificial neural network
ARCADE: AFIT Robotic Control Algorithm Development and Evaluation
ASN: Associative Search Network
CBR: chemical/biological/radioactive
CCW: counter-clockwise
CG: center of gravity
CMAC: Cerebellar Model Articulation Controller
CW: clockwise
DIDO: Demonstration Input/Demonstration Output
DIO: digital input-output
DISO: Demonstration Input/Synthetic Output
DoF: degree-of-freedom
FFT: Fast Fourier Transform
HMM: hidden Markov model
Hz: hertz (cycles per second)
I/O: input/output
Kg: kilogram
MITL: Man-In-The-Loop
MLP: Multi-layered Perceptron
mm: millimeter
ms: milliseconds
NGMH: next-generation munitions handler
PID: position-integral-derivative
PIH: peg-in-hole
PLIMMS: planar low-impedance motion measurement system
PSD: power spectral density
RCC: remote center of compliance
RISO: Real Input/Synthetic Output
RMS: root-mean-squared
SISO: Synthetic Input/Synthetic Output
SCARA: Selective Compliant Articulated Robot for Assembly
TDANN: time-delayed ANN
UFS: universal force-moment sensor
USAF: US Air Force
V-AI: vertically-articulated, industrial (manipulator)

XXIX

AFIT/DS/AA/95-01

Abstract

A simple edge-mating task, performed automatically by accommodation control, was

used to study the feasibility of using data collected during a human demonstration to train an

artificial neural network (ANN) to control a common robot manipulator to complete similar

tasks. The 2-dimensional (planar) edge-mating task which aligns a peg normal to a flat table

served as the basis for the investigation. A simple multi-layered perceptron (MLP) ANN

with a single hidden layer and linear output nodes was trained using the back-propagation

algorithm with momentum. The inputs to the ANN were the planar components of the

contact force between the peg and the table. The outputs from the ANN were the planar

components of a commanded velocity. The controller was architected so the ANN could

learn a configuration-independent solution by operating in the tool-frame coordinates. As

a baseline of performance, a simple accommodation matrix capable of completing the edge-

mating task was determined and implemented in simulation and on the PUMA manipulator.

The accommodation matrix was also used to synthesize various forms of training data which

were used to gain insights into the function and vulnerabilities of the proposed control

scheme.

Human demonstration data were collected using a gravity-compensated PUMA 562

manipulator and using a custom-built planar, low-impedance motion measurement system

(PLIMMS). The raw demonstration data collected using both systems were found to be poor

examples of accommodation mappings for reasons that are discussed. In addition to the

problem of the existence of the desired mapping in the demonstration data, the sensitivity of

the ANN paradigm to the richness of the training data was also determined. For the proposed

controller training method, a key problem is one of matching the distribution statistics

(mean and standard deviation) between the training data and what is to be encountered

in the measurement stream when the trained ANN controller is implemented. Seven data

processing algorithms were investigated independently and in combinations to determine if

they could improve the quality of the demonstration data. None were found to produce very

xxx

robust results, although mirroring the raw data about all the axes to force a zero mean upon

the training data set was found to improve controller performance significantly.

xxxi

Teaching Accommodation Task Skills:

From Human Demonstration

to Robot Control Via

Artificial Neural Networks

7. Introduction.

The mission of the US Air Force (USAF) is to fly and fight. To be an effective part

of the United States' capability to deter war, the USAF must be capable of conducting its

mission in a broad spectrum of environmental conditions. From the biting sub-zero temper-

atures of Thule, Greenland to the intense heat of the Saudi Arabian desert, mission sorties

must be flown and flightline operations must continue. Several war scenarios predict even

more hazardous environments for mission operations than temperature extremes. Prolifer-

ation of ballistic missile technology and chemical weapons indicates a real possibility that

future conflicts will require the USAF to operate in a chemicaVbiological/radioactive (CBR)

environment.

During an active air campaign, military aircraft will often undergo a process called

/ioi-aircraft turnaround between mission sorties. They land at their airbase and taxi to a

hot ramp where they are simultaneously refueled and reloaded with munitions so they can

immediately be launched for another sortie. This whole operation occurs while the plane's

engines are running, hence the term hot. In some cases, minor repairs such as modular

component replacements can also be made on the hot ramp.

The threat of a war involving CBR weapons is not new to the USAF. In such a war

the entire flightline may be contaminated with chemical or biological agents making it much

more difficult to perform routine aircraft maintenance, let alone hot-aircraft turnarounds.

Consequently, CBR defensive procedures and equipment have been under development for

decades. However, despite the great improvements that have been made, contemporary

protective garments are still bulky, lack adequate ventilation, and seriously degrade the

1-1

dexterity of the wearer. As a result, even simple aircraft maintenance and hot-aircraft

turnaround procedures can become very difficult to perform. The added time it takes for

an airman to connect arming lanyards or mate cannon plugs extends his/her exposure time

to the hazardous environment and increases the hot-turnaround time of the aircraft being

serviced. Increased turnaround time ultimately results in reduced mission capability.

Mission capability in a protracted war is often drastically affected by the efficiency of

the logistics support. The logistics support of the USAF is provided by the Air Force Materiel

Command (AFMC). Besides making sure that the "beans and bullets" are placed where they

are needed, when they are needed, the AFMC is responsible for refurbishing and renovating

aircraft, missile, propulsion, and munition systems. Since some of the weapon systems are

very old, the AFMC also manufactures and assembles replacement parts for older systems at

various Air Logistics Center (ALC) throughout the nation when the replacement parts are no

longer available commercially. Thus, these ALC function as military manufacturing plants

operating similar to those in civilian industry except that they often produce low volumes

of a high variety of products. Consequently, flexible manufacturing and assembly systems

potentially offer premium payoffs for the AFMC.

1.1 Motivation.

Robotic systems promise to be a very beneficial part of the future USAF. Robotic

systems can reduce the exposure of airmen to CBR environments and streamline the hot-

aircraft turnaround process in hazardous environments. In addition, robotic manufacturing

and assembly systems can help the ALC with their missions.

The process of turning a hot aircraft for another sortie involves three steps: fueling,

loading munitions, and possibly making simple, module-replacement type repairs. Funda-

mental to all three of these steps is the ability to mate parts. In the case of fueling, the nozzle

of the hose from the fuel truck must be inserted into the aircraft's fueling receptacle. In the

case of munitions loading, the bomb lugs must be aligned with the bomb rack and the bomb

jammed into place prior to latching the rack. In the case of the module-replacement repairs,

one component is removed and another inserted in its place. Robots capable of performing

these tasks with total autonomy are considered a distant reality. However, Man-In-The-

1-2

Task Complexity

'Perfect'
Manual
Teleoperator

Presence

Autonomy

Useless Telerobot

Figure 1.1 The spectrum of MITL robotic systems showing tradeoffs between local auton-
omy and operator control [47]

Loop (MITL) robotic systems, also known as telerobotic systems, are a viable, near-term

alternative.

In the MITL scenario, a human operates a master unit to provide the high level of

intelligence and experience required to perform complex tasks and a robotic system acts as

a slave to the master unit's commands. Depending on the balance between control guidance

provided by the human operator and autonomous control of the slave, an MITL robotic

system can be categorized on a spectrum between telepresence and autonomous as shown in

Figure 1.1. Although one may imagine that telerobotic systems are simpler to build than

autonomous robots and require very little autonomous capability, they actually demand a

fairly high degree of local autonomy in the slave robot unit. Local autonomy is encouraged

by at least four important benefits.

• It requires less information to be sent back to the operator thereby lowering the trans-
mission bandwidth requirements.

• Operator fatigue from concentrating on the task and trying to process the sensory
feedback information is reduced so his/her efficiency is enhanced.

1-3

• For the autonomous functions, it eliminates delays in the control loop caused by com-
munication and operator-induced time delays, both of which cause instability in the
control system.

• Local autonomy can allow a simple operator command set to perform a large variety of
relatively complex tasks by taking care of the details of task execution automatically

Increased local autonomy in the slave unit means increased intelligence. Because

parts mating is fundamental to aircraft turnaround operations, a robotic control system

capable of intelligently mating parts would constitute a foundation on which an MITL robotic

system could be developed to replace airmen on the flightline in hazardous environments.

A robotic system capable of mating parts would also be useful in assembly and module-

replacement repairs at the ALC since many of their operations also share the fundamental

characteristics of parts mating. In the ALC the main motivation for implementing robotic

systems would be increased efficiency rather than increased safety as in the case of flightline

operations. A further beneficiary from intelligent parts mating technology would be the

space industry. The National Aeronautics and Space Administration (NASA) determined

that it needed telerobotic systems to help build and maintain the proposed space station

Freedom because of the enormous number of extravehicular activity (EVA) hours required.

Consequently, they began development of a telerobotic system called the Flight Telerobotic

Servicer (FTS) which was intended to perform assembly and repair EVA tasks under the

supervision of an astronaut. The functional requirements for the FTS were fairly similar

to those of the proposed flightline robotic system. Unfortunately, cost overruns and budget

cuts have essentially halted development of the FTS and the USAF has yet to embrace the

concept of telerobotic systems on the flightline. Very recently, however, a feasibility study has

begun to determine whether telerobotics technology can improve existing munitions loading

equipment and operations. This program, called the next-generation munitions handler

(NGMH) project, may field one of the first systems employing telerobotics technology in a

combat operations application.

1.2 Problem Statement.

This dissertation explored a method of increasing the level of local autonomy available

for robots that perform parts mating tasks under teleoperator control. The principle of the

1-4

method was to have a person physically demonstrate the task or skill to be learned and have

the robotic system monitor and analyze the resulting data to extract the abihty to perform

similar kinds of tasks autonomously. The acquired skill would then be a part of the local

autonomy toolbox for the telerobotic system.

1.3 Objective.

The specific objective of this dissertation was to determine the feasibility of using a

limited set of demonstrations by a human operator to teach a robot how to insert a chamferless

peg in a chamferless hole by feel alone. The implication of doing the peg-in-hole (PIH) task by

feel alone is that the robot has no prior knowledge of the table's precise location or orientation

and no camera vision data are available to extract estimates of the table's location. Thus,

only limited sensory data are available for the controller. Our objective to use a limited set

of demonstrations implies that only a small portion of the total reachable workspace will be

included in the demonstration data. Thus, the controller must be able to somehow generalize

from the demonstration data so it can perform the task anywhere in the reachable workspace

of the manipulator regardless of the joint configuration. This trait is commonly referred to

as a configuration-independent solution.

1.4 Assumptions.

The geometry of the grasped peg is assumed to be known and the table is stationary

relative to the robot during the operation. All parts are taken to be rigid bodies, though the

methods presented are robust to small deformations. It is also assumed that the collected

demonstration data have been filtered to prevent aliasing. We assume that the kinematic

structure of the manipulator is known and it's Jacobian transformation matrix is available.

For the edge-mating task, which is described in Section 1.5, another assumption is that the

peg initially contacts the table such that the total of the normal and tangential contact forces

produces a vector pointing so as to cause a moment that tends to align the peg normal to

the surface. In practice, this restriction is a function of the coefficient of friction, the radius

of the peg, and the direction of the nominal free-space velocity relative to the table surface.

1-5

Figure 1.2 Motion associated with the edge-mating task

For the edge-mating task, if the free-space velocity is outward along the axis of the peg, this

restriction is always met.

A final assumption is that the only sensor data available during operation are:

• the net 6-axis contact force between the robot and the environment, and

• the robot's internally-measured joint angles.

1.5 Approach.

In pursuit of the final objective mentioned above, we began with simpler tasks that

would validate the technique, equipment, and software. The progressively-more-difficult

tasks identified were:

• to align the flat end of a rectangular peg with the flat surface of a table by feel alone.
This alignment task has recently been referred to as an edge-mating task [31] and is
shown in Figure 1.2.

• to insert a rectangular peg into a chamfered slot; this is a planar projection of the
general cylindrical peg insertion problem.

• to insert a rectangular peg into a chamferless slot.

• to insert a chamferless cylindrical peg into a round, chamferless hole.

1-6

All of these tasks were to be performed by artificial neural network (ANN) controllers

trained on data collected from observing a human perform the same task. Beginning with

the edge-mating task, alternative sources of training data were to be used to test our under-

standing of the task. Since the edge-mating task can be accomplished by an accommodation

matrix controller, the matrix controller was used as a baseline for performance measure-

ment and a source for gaining insights into the functions and characteristics of the trained

ANN controllers. In addition, the accommodation control law commands velocities which, if

expressed relative to a coordinate frame attached to the peg, will provide the configuration-

independent capability that is a critical part of our objective. Another positive feature of the

accommodation control law is that it requires no sensing of the environment; only the direct

interaction forces between the peg and the environment need to be measured.

In the interim testing, training data were synthesized from observing the matrix

controller in action. The results of those tests were then used in our attempts to train an

ANN controller to perform the edge-mating task using human demonstration data. Because

of the complexities and risks inherently involved in implementing a new control strategy

on a robot manipulator, a simplified computer simulation of the manipulator, the controller,

and the task environment was used initially. However, to collect the human demonstration

data, the inevitable transition to experimental hardware was made early in the effort. At

that early phase of testing, the human demonstration data was collected and used to verify

the function of the matrix controller on the manipulator. In addition, the ability of some

ANN controllers to complete the edge-mating task after being trained on data collected

from observing the matrix controllers was verified. An extensive phase of investigations

based on the simulation model was then entered which lasted to the conclusion of the effort.

These investigations explored the sensitivity of the success of the ANN controllers to various

characteristics of the data presented during the off-line supervisory training of the ANN. The

simulations were also used to evaluate several techniques that were proposed to enhance

the quality of the training data.

1-7

1.6 Contributions.

Although this effort never attempted to complete the PIH task with an ANN con-

troller, most of the understandings gained in the investigation of the edge mating task are

fundamental to the proposed technique, regardless of the task. As such, those insights are as

applicable to the PIH task as they are to the edge-mating task examined. The tests conducted

proved that an ANN controller could be trained to perform a simple accommodation task if

the off-line, supervisory training data were carefully formulated from a specific control strat-

egy. In the case of the edge-mating task, an accommodation matrix control law was used to

prove that the ANN could learn to control a common manipulator to perform the task. Thus,

the feasibility of the concept was established. In the process of this investigation, the critical

features of the control architecture and training data were identified. Human demonstration

of the simple edge-mating task was found to contain several degrading characteristics which

were analyzed in detail. The analysis revealed that human demonstration will inherently

lead to problematic training data for the controller architecture used. Corrective measures

were proposed for several of the detrimental characteristics and their efficacies were demon-

strated. In addition, the desirable characteristics of demonstration data collection systems

were identified.

1-8

//. Related Research

The topic of this dissertation spans several fields which, until recently, were unrelated,

specifically the fields of artificial neural networks, robotic part mating, and human skill

transfer to robots. Since this dissertation uses only well established ANN techniques and

there is a plethora of literature on ANNs, this chapter will not attempt to detail works in that

field. The reader can refer to [35], [44], [54] or [28] for general introductions to a variety of

ANN methodologies and techniques. In particular, [28] gives a good comprehensive overview

of the latest techniques and insights about parameter interactions. References to specific

works of interest will be included as required in the remaining text, and Appendix A provides

a brief introduction to the ANN methodology used in this dissertation.

The field of robotic part mating is enormous, and a multitude of researchers have tried

many different techniques. We quickly draw our attention to only those works that are

applicable to the classic part mating tasks of inserting a peg into a hole and edge-mating1.

Numerous researchers have attacked the PIH task directly, and the most recent and related

works are summarized in Section 2.1. Because of its classic simplicity, there are very few

works in the literature that discuss the edge-mating task. Therefore, we will draw heavily

upon the literature for the PIH task and apply the insights to our simpler edge-mating task.

The final important related field of research has to do with transferring human skills

to robots. Section 2.2 identifies previous research that is relevant to the work presented in

this dissertation.

2.1 Peg Insertion Research.

The work done directly on the PIH task can be categorized into classical analysis,

logic-branching control, and learning control.

2.1.1 Classical Analysis Works. Whitney has been one of the trail blazers in in-

creasing our analytic understanding of part mating for assembly. He has done several classic

analyses of the peg insertion task. In [56] he examined general quasi-static interactions dur-

1See Section 1.5 for a description of the edge-mating task.

2-1

ing part mating during the assembly of compliantly-supported rigid parts. In [60] he did a

detailed analysis of peg interaction with chamfered holes, and detailed the geometric rela-

tionships that designers should use to select chamfer shapes that reduce the peak insertion

forces required. It was in this work that the terms jamming 2 and wedging 3 were first

defined, and geometric relationships were derived that predict the occurrence of jamming

and wedging. In addition to developing methodologies for designing chamfer shapes that

minimize insertion forces, Whitney was involved at Draper Lab in the design of the remote

center of compliance (RCC) device which allowed chamfered insertions to be accomplished

passively. With this device, chamfered parts could be aligned and mated without exact fix-

turing of the pieces or explicit force control of the assembly robot. He also was involved

in development of an instrumented RCC [16] which expanded the capability of insertion by

robots. Probably the best technical overviews of part mating and assembly can be found in

[59] and [57]. As a point of interest, in [59] Whitney mentions that Gustavson patented in

1982 a passive device that could accomplish chamferless insertions within a limited range of

angular offsets.

Caine [11,12] utilized insights gained from Whitney's analyses to treat the chamferless

insertion problem. He showed that when the peg encounters two-point contact without both

corners entering the hole, a strategy based on applying an arbitrary force independent of the

direction of tilt will not succeed. To solve the problem, he proposed constraining the allowable

set of contacts to eliminate any ambiguity about the direction that the peg may be tilted.

Given foreknowledge about the direction of tilt, he showed that if you simply rotate the peg

while maintaining contact, the critical angle will be reached and the peg will slide into the

hole. Although Caine gives expressions for the force and moment required to rotate the peg,

they have little practical value for an unstructured task in an unstructured environment,

since you cannot ensure the direction of tilt without additional sensory information such as

a vision system.

2 Jamming is defined by Whitney as the condition that exists when the insertion force points too far off the
axis of the hole for the peg to advance into the hole.

3Wedging is defined by Whitney as an event in which the contact forces between the peg and hole fall within
their respective friction cones, thereby preventing the peg from advancing into the hole.

2-2

Shahinpoor and Zohoor [46] present an elaborate dynamic analysis and arrive at some

constraints to prevent jamming and wedging while performing dynamic PIH insertions. They

only present equations for the two-dimensional problem, but they derive dynamic equations

for six distinct cases and develop three inequality constraints that must be held to avoid

jamming under all possible geometrical situations as well as one inequality constraint to

avoid wedging. They assume that all the peg and hole descriptions are available a priori and

that precise, noise-free sensor data are also available. Both of these assumptions make it

difficult to implement their results in a real system.

Besides the simple mechanical RCC devices used commonly in industrial robots to

insert pegs [16, 58, 61], there are analytic methods which utilize either programmable com-

pliant motion control [42] or accommodation control. In Peshkin's work [42] the goal is to

develop a method which specifies a single compliance matrix that will guarantee that an

insertion task will succeed. The matrix must be "error-corrective" and must be consistent

with every contact configuration that may possibly occur. For a structured task, the tech-

nique can work, although Peshkin does not say anything about how one enumerates all the

possible contact configurations nor how one can sense what contact configuration exists with

real sensors. These difficulties make it virtually impractical for general applications.

2.1.2 Logic-Branching Works. Handelmanetal. have tried combining a knowledge-

based system with a Neural Network-based Reflex Modulator to have a manipulator learn

a skill [25]. As an example, Handelman et al. taught a two-link manipulator how to make a

"tennis-like" swing. They came up with the rules through trial-and-error in LISP and then

translated them automatically from LISP to Pascal. For the network, they used Cerebellar

Model Articulation Controller (CMAC) network modules as described by Albus [1]. Their

rule-based Execution Monitor decides how to make a successful swing using rules only. Then

it teaches the CMAC by presenting examples. Following the training, the Execution Monitor

continuously watches the CMAC performance and re-engages rule-based control if the CMAC

performance is below par.

Asada has used Petri nets to control a robot for assembly [36, 37]. He argues that a

discrete event approach to assembly is required because, unlike most force-feedback appli-

2-3

cations, the state of contact changes during an assembly process. The changes in contact

result in different constraint equations, which, in turn, result in varying numbers of motion

degrees of freedom and equations of motion. His implementation is similar to the controller

configuration of the present work. His discrete event controller (DEC) and process monitor

together can be thought of as a real-time trajectory generator which is equivalent to the ANN

in the controller of this dissertation. The similarities of the systems include off-line training

and the use of a continuous controller to track the commands of the real-time trajectory

generator. The off-line training for his system consists of the analysis required to construct

the Petri net model for the task.

Buckley proposed an iterative learning method of teaching compliant strategies to a

robot which is based on a search tree and a lookup table [9]. The system graphically displays

the start and goal regions; the user inputs a commanded position that is used to compute

a set of robot configurations that keep the robot in contact with the environment and from

which the goal region can be reached via the commanded position. These "solved" robot

configurations are then stored in an appropriate lookup table and subtracted out of the start

region. If there is any remaining unsolved area of the start region, the process repeats until

the start region is consumed by the solved robot configurations. The iterative nature of

this method resembles the iteration required by the method proposed in this dissertation.

However, Buckley's method uses explicit geometric models of the robot and its environment

which are not generally available for an unstructured task.

Another logic-branching or rule-based method of automated assembly was proposed

by Vaaler and Seering in [51]. Their machine learning algorithm is a "production system"

that automatically generates "production rules." They attack a planar peg-in-hole problem

using a gantry-type Cartesian robot called the MIT Precision Assembly Robot (MITPAR).

They gather six different state variables as data inputs and discretize them into six levels

each. They chose only six levels of discretization on the basis that people do assembly well

and do not appear to be capable of resolving forces to more than 5-10 distinct levels in the

range of forces used during assembly. The ranges of each of Vaaler and Seering's state

variables are determined experimentally. One of the problems with the approach is that the

time required to visit all of the states during the learning phase of the algorithm is by far

2-4

the largest part of the learning process. Even with the coarse discretization into six levels,

there are nearly 280,000 possible states. Since only about 300 of them are really feasible

for the particular system, they reduced the search space considerably. The algorithm moves

the peg a set distance for correction, and the if-then production rules decide which way to

move. Vaaler and Seeringhad a problem with the dynamics of the robot because they say that

essentially all of the time required to assemble a peg and hole was spent waiting for the robot

system to settle. This is unexpected because they used a relatively stiff Cartesian gantry

robot. Convergence of the learning algorithm took about 20-50 assembly trials starting from

random corrections. The algorithm took about 10-20 seconds to complete assemblies after it

had learned. They used a soda can as a peg (2.6-inch diameter) and a 1-inch diameter steel

peg in a 1.010-inch diameter aluminum hole. Clearance ratios of 3% to 5% were used on the

soda can experiments.

2.1.3 Learning Control Works. Perhaps the work most similar to this dissertation

is by Benady et al. in [8]. They design and implement a learning control scheme for an

impedance-controlled robot performing a contact task. They assume that a high-gain posi-

tion control inner loop will exactly follow the commanded positions generated by an outer

impedance control loop. This form of impedance control actually imitates true impedance

control by modifying the desired reference trajectory of the robot to achieve the compliance

effect of the impedance control law. The learning part of this work is an Associative Search

Network (ASN) that learns the optimal impedance parameters on-line. The ASN was orig-

inally developed by Barto et al. [7]. The ASN is similar to the network of perceptrons used

in this dissertation4, but uses different output equations and has a different training algo-

rithm. Its structure is equivalent to a MLP with no hidden layer and linear outputs from

the output layer. In addition, the ASN has a zero-mean random noise superimposed on the

output of each node rather than an adapting offset or bias as the MLP does, and the weight

update rule is somewhat different. A scalar reinforcement or reward signal is fed back from

the controlled system and is used in a nonlinear weight update rule. The reward signal is a

4The reader is encouraged to refer to Appendix A at this time for an explanation of the structure and
terminology of the network of perceptrons used in this dissertation. This review will be helpful for those readers
not already familiar with ANN s and is essential for the comparison between the Multi-layered Perceptron (MLP)
and the ASN to be understood.

2-5

weighted sum of the relative deviations of the actual manipulator tip velocity and interaction

force from their desired values. The weight update rule is similar to the back-propagation

training rule of the MLP, but instead of a simple adaptation coefficient, a, it uses a decaying

exponential function of the scalar payoff signal. The weight update rule is:

w (t + 1) = w(t) + g (z(t) - z(t - 1)) [u(t - 1) - u{t - 2)] x(t - 1) (2.1)

where w(t) is the weight at time t, z is the scalar reward signal, u is the output of the ASN,

x is the input to the ASN, and g(x) is given by:

g(x) = <
1 - exp(-z/A) ifz > 0

^ ' ' - (2.2)
-(l-exp(-|a;|/A)) ifx < 0

where A is a learning parameter. This function is similar in shape to a sigmoid activation

function which is biased to run from -1 to +1 and is symmetric about the origin.

Barto et al. implemented the system on an Adept One^robot with a Lord^ force/torque

sensor to follow both a flat and a curved surface. They had to manually select the stiffness,

viscosity, and mass parameters to give stable tracking; then they let the system adapt. There

were also many other parameters that required specification such as the contact stiffness,

learning parameter (A), initial variance of the random noise function, etc.

The Barto et al. system does not attempt to learn the motion strategy of any given

task, but instead learns how to formulate its own impedance parameters and then maintains

system performance by continuing on-line adaptation of the parameters. As such, it cannot

be categorized as a skill-acquisition method.

Gullapalli et al. [23, 22, 24] approached the PIH problem using a special form of an

ANN to learn an admittance mapping. The controller consisted of two nonlinear hidden

layers and a stochastic real-valued (SRV) output layer which is described more completely

in [21]. All of the nodes were fully connected. The admittance mapping performed by

the controller took positions and forces as input features and mapped those to commanded

output velocities. Similar to the controller proposed in the present work, the Gullapalli et

al. controller was a reactive controller which modified the end-effector trajectory in real

2-6

time based on the sensor measurements. The nonlinear admittance mapping was learned

through repeated attempts at the PIH task. The controller was demonstrated with a Zebra

Zero robot inserting a chamferless peg into a chamferless hole. The strength of the system

is the SRV output layer which allows the system to train in an un-supervised mode of

iterative operation. In addition, the SRV allows the controller to handle some measurement

uncertainties which often occur in the joint sensor readings and can additionally be caused

by unknown manipulator dynamics and motion of the peg relative to the robot gripper.

The Gullapalli et al. system demonstrated that the controller could be trained to insert

the peg in less than 100 time steps after training for about 150 runs. In addition, the amount

of excessive contact force generated during the insertions continued to decline for up to 500

training runs. The decreased contact forces are indicative of increased task skill.

Although these results are impressive, we seek a controller and training method that

do not have to use the manipulator during a lengthy training session where the learning

transients might cause damage to the manipulator or its sensors. In addition, we seek a

method of utilizing any available a priori information about the controller's mapping rather

than starting the controller from an initial random state. Since the Gullapalli network

uses position measurements as part of the input feature vector, the mapping it learns is

inherently position-dependent. This means that the trained controller can only be imple-

mented in the part of the workspace in which it was trained. If we want a controller that

can operate anywhere within the workspace of the manipulator, then samples across the

entire workspace must be included in the training data set. We seek a method that will be

able to learn a globally-applicable mapping from data collected in a small sub-space of the

entire manipulator workspace. This implies that we want a controller that will operate in

tool-frame coordinates as opposed to the Gullapalli controller which operates in world-frame

coordinates.

A final observation about the controller proposed in Gullapalli's work is that it requires

a priori knowledge of the hole location so that the evaluation criteria can be computed during

training. Recognizing that the Gullapalli et al. method is fairly robust to uncertainty, one

must still have reasonable estimates of the hole location and orientation in order for the

training to take place. When this restriction is combined with the position-dependency of

2-7

the learned mapping, it means that we must have prior knowledge of the location of every

hole into which we want to insert a peg. We seek a method that does not require prior

knowledge of the hole location or orientation.

In [5] Asada proposes using an ANN to perform the pattern recognition task in his

deburring system. He also points out that inconsistent data5 can hinder the learning and

performance of a trained ANN. Therefore, he comes up with a criterion to prune out the bad

data points. The criterion is Lipschitz's condition for continuity in a data set. By throwing

out the pairs of training exemplars that have an output-distance-over-input-distance ratio

in excess of a particular cutoff value, the continuity of the data is enhanced. The more

continuous the data were, the better the learning and performance of the ANN system he

implemented on his robotic deburring task. The concept of using the Lipschitz ratio for

clipping out training exemplars is further evaluated in this dissertation.

The piece of research that motivated this dissertation was by Asada [2]. In this paper he

proposed using an ANN to recognize the different force patterns associated with a particular

condition in a contact task and then provide the proper velocity commands to complete the

task all in one network. Since an ANN can perform a nonlinear mapping, the network could

handle the problem of nonlinear compliance, i.e. the condition of multiple contacts where

the simple combination of the appropriate response for each contact alone is inappropriate.

An example of this situation is insertion of a chamferless peg into a chamferless hole. Asada

simulated the training and testing of a network to perform a chamferless peg insertion as a

two dimensional problem. However, his work suffers from the following two limitations:

• He proposed no general method of obtaining the exemplar vectors used for supervised

training. He generated his training exemplars by a detailed theoretical analysis which

assumed a simplified contact model (i.e. no friction, rigid bodies, etc.) Obtaining

training data is often the hardest part of implementing a neural network solution.

Therefore, a simple way of generating training exemplars is needed.

5 Inconsistent data are defined by Asada to be pairs of training exemplars which are close together in the
input space but far from each other in the output space. The distance between the exemplars is computed using
the root-mean-square norm.

2-8

• The input features for his ANN required measuring the location, magnitude, and

direction of the contact forces between the peg and the environment. Such data would

only be available if the peg were fully instrumented with an array of contact sensors.

Typical implementations will have no more than a single six-axis force/torque sensor

which will not be able to discern single-point contact from two-point contact. Therefore,

a different set of input features is needed.

2.2 Research on Transferring Human Skills to Robots.

In [62], Yang et al. present a good introduction to the characteristics of a human

controller attempting to demonstrate a skill and the challenges of skill learning. A skill

is described as a mapping from stimuli onto responses. The characteristics of the human

controller are presented in [62] as:

• In general, it is nonlinear, that is, there is no linear relationship between
the stimuli and responses.

• It is time-variant, that is, the skill depends upon the environmental condi-
tions from time to time.

• It is non-deterministic, that is, the skill is of inherently stochastic property,
and thus it can only be measured in the statistical sense. For example,
even the most skillful artist cannot draw identical lines without the aid of
a ruler.

• It is generalizable, that is, it can be generalized through a learning process.

• It is decomposable, that is, it can be decomposed into a number of low-level
subsystems.

We pay particular attention to the first two of these characteristics, since they are

significant to the method proposed and the results presented in the present work. The

nonlinear nature of the stimuli-to-responses mapping requires a system that can capture

nonlinearities. For the work of Yang et al., a hidden Markov model (HMM) is used to repre-

sent the human skill as a parametric model. The skill learned was to remove a mockup of an

Orbit Replaceable Unit (ORU) from its dock using the 7-degree-of-freedom (DoF) self-mobile

space manipulator (SM2) designed and built at Carnegie Mellon University. No discussion

of the tolerances is presented, but Yang et al. do mention using 100 demonstrations by the

operator as the basis for their training set. [62] states that "skill learning is, to a certain

2-9

extent, the problem of uncovering the characteristics from recording data which represents

the nature of the skill." Thus, modeling human skill and transferring the skill to robots are

two separate issues. In both our ANN approach and their HMM approach, however, we

attempt to treat both issues simultaneously using a single controller. [62] further asserts

that "HMM is a doubly stochastic model which is appropriate for the two stochastic processes

that skill learning must deal with, i.e., the mental state (or intention) which is hidden, and

the resultant action which can be measured." In the present work, we will rely on the ANN

to provide access to the hidden mental state through the inherent averaging which occurs

with repeated looks at the same data during training. In addition, the nonlinearity of the

ANN will be our tool to properly model the nonlinear stimuli-to-responses mapping of the

human controller.

As far back as 1979, Asada has been interested in work which has evolved into skill

transfer. His early work amounted to recording and playback of force trajectories [3, 4].

Eventually Asada advocated using pattern recognition techniques to select the proper tool

commands from a set of sensor measurements [6]. Asada applied the technique to a robotic

deburring task which included a direct-drive selective compliant articulated robot for assem-

bly (SCARA) robot with the electric grinding tool. This technique involved interviewing a

human expert to identify some global rules of operation for the process to be learned. Then

the operator and task were monitored as the operator demonstrated the task and various

data were gathered. For the task of deburring, collected data were the position trajectory

of the tool along and normal to the workpiece surface, the force normal and tangential to

the workpiece, the angular velocity of the grinding wheel, and the armature current of the

grinding tool as an indicator of the load torque. Some set of features were then extracted

from the data set and used to form a pattern vector which was normalized by the standard

deviation. For the case of deburring, Asada used the mean value, the peak value, and the

root" mean square as the feature set. Finally, discriminate functions were identified to clas-

sify the sensor patterns into the control actions that the human expert identified during

his/her interrogation. The control actions for deburring were things like increase/decrease

force, how many times the motion should be repeated, etc. The selection of the proper control

2-10

action based on the extracted sensor features (pattern recognition) is a perfect application

for an ANN, and is probably what prompted Asada to propose just such a scheme in [5].

2.3 Summary.

Several benchmark articles have been used to provide a background on the PIH and

edge-mating tasks which we seek to address in this dissertation. Although very little lit-

erature was found for the edge-mating task, the PIH research will serve well to prepare

one for the edge-mating task because the PIH task is more difficult and edge-mating can be

considered as a possible phase of the PIH task. Although many researchers have analyzed

and attacked the PIH problem with numerous techniques, none have presented general so-

lutions for the nonlinear chamferless PIH task which are invariant to the hole's location in

the manipulator workspace and can be implemented with the limited amount of sensor data

we have assumed will be available. We will attempt to extend the ideas of several of these

works as we strive for our stated objective.

2-11

III. Overview of Concept and Nomenclature.

This chapter will present a quick overall view of how the proposed controller is intended

to work. It begins with a block diagram that describes the entire process at a very high level

followed by a snapshot of how an ANN controller would be used in an operational system

after training had already been completed. Then the specific concepts and nomenclature

associated with each segment of the process from raw data collection through ANN training

and finally to controller operation are presented.

Figure 3.1 depicts the entire proposed process for learning a new accommodation

(ACC) task. Initially the raw data are collected by observing a human demonstrating the

task. Then the data are processed in some way to transform them into a suitable set of ANN

training exemplars and the off-line training is conducted. Finally, the new set of learned

ANN weights are implemented into the operational configuration on a robot and tested.

The complete system concept consists of an operational configuration, raw data collection,

training data preparation, the off-line training of the ANN, implementation of the controller,

and the evaluation of the controller's performance. Each of these facets will be discussed in

turn.

3.1 Operational Configuration.

The proposed operational control system consists of an inner feedback control loop and

an outer reactive control loop as shown in Figure 3.2. The inner loop is a stiff position-

integral-derivative (PID) control servo that would run at a much higher rate than the outer

HUMAN
DEMONSTRATION

raw
data ^

DATA
PROCESSING

training
exemplars _

ANN
TRAINING

learned
TESTING &

EVALUATION
CONTROLLER

IMPLEMENTATION
^ weights

Figure 3.1 Proposed process used to learn an ACC task

3-1

ANN
Controller

OUTER LOOP

Feedback
Controller

Robot
Dynamics

'm

INNER LOOP

PUMA

Force
Sensor

Interaction
with

Environment

Figure 3.2 Simplified block diagram of operational system configuration

loop so that the inner loop performance can be idealized. The outer loop has an ANN

controller which approximates an accommodation control law. Accommodation is the inverse

relationship to mechanical impedance[48] and is genetically given by

V = AF (3.1)

where F is a vector offerees, V is a vector of velocities, and A is the accommodation matrix.

An accommodation control law was selected because it commands manipulator trajectory

changes that are relative to the current position. When the commanded velocities are

expressed in a coordinate frame that is attached to the peg, the accommodation controller

provides commands that are independent of the joint configuration or location of the peg in

the workspace of the manipulator. This is a characteristic called configuration-independence

and is a major goal of this dissertation effort. As the robot interacts with the environment,

it generates interface forces between the end-effector and the environment. A universal

force-moment sensor (UFS) measures the interface forces of the environment on the peg and

presents them to the ANN controller. The ANN maps those measured interface forces into

desired velocities which the inner servo loop follows. The ANN can thus be described as a

real-time trajectory generator for the low-level cartesian velocity servo loop.

3-2

The force vector presented to the ANN and the velocity it produces are both cartesian

vectors expressed in the tool-frame. Thus, the ANN has no knowledge of where the end-

effector is in the workspace or any knowledge of how the arm is configured. The effect of

the peg's weight is removed from the measured force vector prior to its presentation to the

ANN. The resulting controller is insensitive to both the location of the workpiece and its

orientation with respect to gravity.

3.2 Raw Data Collection.

Before one can implement a multi-layered perceptron ANN, it must be trained. The

simple back-propagation training algorithm was used for this dissertation. Back-propagation

training is described in Appendix A. It is a supervised training method, which means that

the network must be presented with training data representing the desired input-output

relationship in order to adjust itself to achieve that relationship as the repeated 'looks' are

made.

The mapping performed by the ANN controller is

TVd(t) = g(F(t)) (3.2)

where TVd is the desired velocity vector, F is a feature vector based on measured forces,

and </(•) is, in general, some nonlinear vector function. For the simple edge-mating task

which is to align a square-tipped peg normal to a rigid, flat surface, Peshkin [42] shows that

the function g(-) can be a linear operator representing a generalized damper. In this case,

Eq (3.2) becomes
TVd(t) = TVn + A F(t) (3.3)

where Vn is a nominal free-space trajectory velocity that dictates the motion of the peg when

it is not in contact with the environment and Aa is an accommodation matrix which is the

inverse of a damping matrix, and characterizes a generalized damper. For later reference,

we find it convenient to define a commanded velocity, Vc, as

TVe(t) = A F(t) (3.4)

3-3

which, of course implies that
TVd(t) = TVn + TVc(t) (3.5)

In Peshkin's work, TVn was taken as a simple vector which is superimposed with the com-

manded velocity. For the present work, TVn will be modulated according to whether the

peg is in contact with the environment or not. The function used for modulation is given

in Eq (5.47) in Section 5.5.1. An additional difference between the simple accommodation

controller and the controller of the present work is that Vc is also modulated out of phase

to that of TVn for the present controller. Thus, when TVn is turned on, Vc is turned off, and

vice versa. The modulating function (referred to as the blending function in later sections)

is a continuous function that gradually switches Vn off as the contact force magnitude in-

creases from zero while simultaneously switching TVc on. The prime motives for introducing

the modulating function are to prevent noisy force data encountered during free-space mo-

tion from influencing the nominal free-space commanded velocites and, more importantly, to

allow for the fact that TVn is already implicitly contained in the human demonstration data

on which the ANN is trained.

The choice of coordinate frames can greatly simplify the form of Aa in Eq (3.3). Peshkin

[42:pp. 480] shows that if the origin of the coordinates is at the center of the peg tip and

the task is planar, then Aa is a sparsely populated accommodation matrix having non-zero

values only in the (2,2) and (3,3) positions. The precise values for these two non-zero

elements can be found either analytically or by empirically tuning the matrix while running

the controller. The simple linear mapping of Eq (3.3) can readily be learned by an ANN, so it

serves as a good starting point for controller development. To teach an ANN the mapping of

Eq (3.2) using the back-propagation training method, one must create input-output training

pairs that are consistent with the relationship. The starting point for creating those training

pairs is to collect raw data.

3.2.1 Sources of Raw Data. Three types of raw data were collected: synthetic,

real, and demonstration. The synthetic raw data were generated by a computer algorithm

that systematically populated the entire range of the input space with input vectors. The

distribution of the vector samples within the range of the input space could be algorithmi-

3-4

cally controlled. For the planar problem, the input space is 3-dimensional so that evenly

distributed vectors can be depicted as an evenly-spaced, 3-dimensional volume grid of coor-

dinate points.

To collect 'real' data, an ACC matrix controller was implemented either on the robot or

in simulation to perform the task. The explicit accommodation control law, given by the ACC

matrix, provided the trajectory generation commands in response to the interaction forces

measured by the UFS. As the accommodation controller performed the task, the measured

forces and commanded velocities were recorded as 'real' raw data. Thus, the 'real' raw data

represent the behavior of the robot under the command of the explicit accommodation control

law.

Demonstration raw data were collected from observation of a human operator per-

forming the desired task. In this case, the operator controlled the motion of the peg which

was attached to some mechanism for recording the interaction forces and peg motion. Two

different mechanisms were used to collect demonstration raw data during the course of this

research: the PUMA robot and the PLIMMS. These mechanisms are described in detail in

Section rV.

3.3 Configurations of Raw Data.

Once the raw data are collected, they must be configured to create raw input-output

training pairs. Figure 3.3 depicts the four different configurations used.

3.3.1 SISO Data. The first configuration is termed SISO because it amounts to

configuring synthetic input data with synthetic output data. Creating SISO data involves

systematically fabricating input vectors, F , that span the entire input space of F as depicted

in Figure 3.4(a).

The actual spacing of the F can be varied as desired, but for this discussion assume

the F are evenly spaced along all input feature axes. Each of the F are then multiplied by

an accommodation matrix, Aa, to produce a desired output, V . SISO data can be generated

completely off-line, and they reflect a noise-free, consistent mapping from F to V . By

3-5

SYNTHETIC REAL DEMONSTRATION

RAWDATA

Fr 9 k "' ^
X

!>

TRANSFORMATIONS
• Mag. Nomulli*
• Angl« Feature*
• Lowpata Flltar
- Velocity Pruna
■ Mamla.Vnjn*
- Llpaohltt Clip
- Tim« Shin
• Time Delay

«
\

INPUT DATA i • • • ^fjjjjjjP

,-■"

V MEASURED
DATA V © A. '

''
■

\
1

;
OUTPUT
DATA V* •*

 »■ SISO • • • S> DISO

 ä> RISO >■ DIDO

Figure 3.3 Diagram depicting the four configurations used to generate input-output train-
ing pairs for the ANN

Figure 3.4 Illustration of how input feature vectors might be distributed across the input
feature space of a two-input ANN for: a) SISO, b) RISO, and c) DISO training
data

3-6

consistent, we mean that all the F are all related to all of their corresponding V by the

exact same mapping matrix.

3.3.2 RISO Data. A second method, called RISO, requires implementing the linear

feedback accommodation control law of Eq (3.4) on a robot or in simulation and letting it

perform the task. With the control law implemented and running, the measured force data,

Fr, are captured while the robot interacts with the environment to complete the task. The

captured Fr data are then propagated through Eq (3.4) to obtain desired V . The RISO data

are noise-free and consistent like the SISO data, but they are unevenly distributed across

the input space as illustrated in Figure 3.4(b). An ANN trained from RISO data should learn

the same linear accommodation relationship of Eq (3.4) that the SISO data produced. By

virtue of how the input vectors were generated, they are clustered in a region of operation

that is a subset of the entire input space. One might expect that the concentration of input

vectors in the region of operation would provide higher resolution in the training data where

the controller is likely to operate.

3.3.3 DISO Data. A third method of configuring the input-output training pairs is

called DISO because it pairs demonstration input data with synthetically generated output

data. The main difference between DISO data and RISO data is that a human is controlling

the robot or other similar demonstration device when DISO data are collected. Gravity

compensation of the device can relieve the human operator from carrying its weight as the

task is demonstrated, but the operator may still have to overcome the friction and inertia of

the device, especially if the joints are actuated and high gear ratios are used. The captured Fr

data are then propagated through Eq (3.4) to obtain the desired V . As a result, the mapping

from F to V is still noise-free and consistent for DISO data. However, the distribution

of the input vectors is naturally different from that of the RISO data because the feedback

controller has changed from an explicit accommodation control law to a human controller.

Since the characteristics of the controller are very different, one would expect a markedly

different clustering of the F in the input space as Figure 3.4(c) attempts to illustrate. As

in the case of SISO and RISO data, an ANN trained from DISO data should learn the linear

accommodation relationship of Eq (3.4).

3-7

3.3.4 DIDO Data. The final method of configuring input-output training pairs is

called DIDO because it pairs demonstration input and output data together. The demon-

stration device is controlled the same as it is for DISO data collection, but the output vector

for each training pair is the measured velocity, Vm, rather than the velocity produced by

Eq (3.4). This small change in procedure represents a vast change in principle. A fundamen-

tal difference between DIDO data and any of the previous three types described is that an

ANN trained from DIDO data may learn some nonlinear relationship as shown in Eq (3.2)

rather than necessarily learning the linear relationship in Eq (3.3). Although the clustering

of the input feature data for DIDO training data is the same as for DISO, one would expect

the output training vectors to differ significantly. Besides the possibility that the human

may use a different accommodation matrix mapping, DIDO data can contain several other

corrupting factors such as:

• Noise in the output vector data due to measurement noise on the joint angle sen-
sors, differentiation noise, and numerical errors generated while transforming joint
velocities to cartesian velocities.

• Inconsistencies in the output vector data due to poor task performance by the human
operator.

• The mapping relationship observed by the human operator may vary as a function of
time.

• Possible mismatching of input and output vectors due to causal time delay imposed by
the human operator.

• DIDO data depict a mapping from F to TVd, which means they include the operator's
rendition of Vn in accordance with Eq (3.3).

All of these factors substantiate our expectation that DIDO data will not exhibit the

same function mapping as the sparsely populated, decoupled accommodation matrix which

is derived by Peshkin in [42]. It is very likely that the DIDO data will exemplify a mapping

matrix that is fully populated which introduces coupling influences between the axes of the

task. However, the simple accommodation matrix form presented by Peshkin for the edge-

mating task is not the only matrix form which can perform the task, so there is adequate

reason to believe that with careful controller design and the nonlinear mapping capability of

the ANN, there is a good possibility that the proposed ANN controller can learn to accomplish

the desired task in the presence of all the complications mentioned above.

3-8

Outputs

1| \ Output
Layer

Hidden
Layer

Input
Nodes

Figure 3.5 Schematic of MLP ANN showing: a) overall architecture, and b) details of
second node in hidden layer

3.4 Training Data Preparation.

The raw input-output pairs of data might undergo one or more processing steps in

preparation for training. Examples of the data processing steps include low-pass filtering,

velocity pruning, collision pruning, etc. These steps are described in detail in Section 5.2.

3.5 ANN Architecture and Training.

Figure 3.5 shows a simple schematic of the MLP ANN used for this dissertation. It

is a fully-connected, two-layer ANN. Fully-connected means that all of the input nodes are

connected to each of the hidden nodes, and all of the hidden nodes are connected to each of

the output nodes. Although at first glance it may appear to have three layers, it is called a

two-layer ANN because the input nodes are simply connections for the input features to be

applied and do not perform any transformation on the data. So, the hidden layer and the

output layer are the only layers that count.

The algorithm used to train the ANN s is backward error propagation with momentum.

Appendix A presents a brief summary of the basic equations relating to ANN s. It includes

3-9

the equations for computing the ANN output vector for a given input vector as well as the

equations used to implement the back error propagation algorithm.

3.6 ANN Training Evaluation.

When a particular ANN structure had been trained, it was evaluated to determine the

success of the training session. In its simplest form, the evaluation consisted of examining

the shape of the total squared error curve during training, the tracking error between the

computed ANN output with the trained weights, V , and the desired output identified by

the training data set, V. Where appropriate, additional evaluations were made by using

various techniques to extract the mapping matrix that the ANN appeared to be emulating.

These techniques are described in detail in Section 5.4.

3.7 Controller Implementation.

Once training is complete, the weights and biases are implemented in the ANN con-

troller. This amounts to simply capturing the saved weights and biases from the training

and plugging them into the ANN feed-forward calculations. The resulting controller is then

incorporated into the robot control structure as depicted in Figure 3.2. In the cases where

the controller was implemented via simulation, the software was configured to support the

block diagram described in Figure 5.8 of Section 5.5.1.

3.8 Controller Performance Evaluation.

Since the final total squared error documented during training cannot be related di-

rectly to how well the controller will work, a method had to be developed to evaluate the

controller's performance when the weights and biases were implemented. The goal was to

have a performance metric that could be used to identify improvements or degradations in

the effectiveness of the controller as different sets of weight and bias data were run on the

PUMA. With this metric in hand, one could then argue about the effects of varying different

ANN architecture and training parameters. The metric is computed after a run is complete

to assess the results.

3-10

A scalar performance metric, (, was developed which is a function of the path length

traversed during the task, the stability of the motion, and the ease of the motion. The metric

is a dimensionless parameter which reflects the performance of the controller of interest

relative to the performance of the "best" accommodation matrix controller run under the

same conditions. Poor performance results in higher £ values, so the goal is to minimize (.

Thus, the value of C reflects the economy of motion or directness of the controller's solution.

The details of how (is derived and computed are given in Section 5.7.

3.9 Summary

This section has presented the general scheme of how the proposed ANN accommo-

dation controller is to be trained, implemented, and tested. The three types of raw data

(synthetic, real, and demonstration) which were used in this research were described, and

the reader was introduced to the four acronyms used to describe how the raw data can be

configured into input/output (I/O) data pairs. These four configurations (SISO, RISO, DISO

and DIDO) will be referred to extensively in the remainder of this document, so the reader

should be familiar with them before reading ahead. After the data are configured into I/O

pairs, they can then be processed in one or more ways to produce the actual training data

feature vectors which are presented to the ANN during its off-line, supervised training ses-

sion. Following training, the ANN is implemented as a controller and its performance is

evaluated. This is the overall scheme of the proposed controller approach. The following

chapters will detail the mechanics of the method and present the results of the investigation

into its feasibility.

3-11

TV. Hardware Description.

There were four types of custom-built hardware for this dissertation: the end-effector

that was mounted on the last link of the robot and the DIDO data collection mechanisms,

the training handles that offered the human operator a place to grasp the robot while

demonstrating tasks, the PLIMMS used to collect raw DIDO data, and the PUMA robot.

Each of these will be discussed in turn.

4.1 End-Effector Design.

The end-effector was simply a rectangular peg fabricated from solid T6016 aluminum

stock. The peg had a cross section 75 millimeter (mm) by 35 mm with an overall length of

317.5 mm, as shown in Figure 4.1. The mass of the peg was 0.6947 kilogram (Kg) while its

center of gravity (CG) was 176 mm from the face of the mounting flange not including the

alignment button. The stiffness of the peg was far greater than that of the robot or either of

the data collection mechanisms.

4.2 Training Handle Design.

A training handle was designed to provide a handgrip for a person to backdrive the

PUMA robot during collection of DISO and DIDO training data. The handle was designed

to mount on the flange of the PUMA's sixth link as shown in Figure 4.2. The screws of the

UFS pass through clearance holes in the training handle mounting plate and thread into the

flange of link six, thereby sandwiching the training handle in place. The handle grips are

made from thin-wall, stainless steel tubing, while the mounting plate is made from stainless

steel plate. The curvature of the handles is such that lines extending from the open ends

of the handle grips will pass through a point at the tip of the peg. This design feature was

intended to enhance the user's ability to make rotation motions about the tip of the peg.

4.3 PLIMMS Design.

A three-link planar mechanism was designed as a light-weight, easily backdriveable

device to collect demonstration data. Figure 4.3 shows the basic structure of the device.

4-1

Figure 4.1 Illustration of the end-effector peg showing its dimensions

PUMA Joint 6.
Mounting Flange

Figure 4.2 Training handles used to backdrive the PUMA robot during demonstration
training data collection

4-2

Link 31

Handle

///////////////////////////////

Figure 4.3 Basic structure of the PLIMMS showing the encoder locations and end-effector
configuration

Optical encoders were mounted on each of the three revolute joints to measure the

linkage joint angles. The 12-bit encoders provided for high accuracy in the position mea-

surement. The links were made of 0.125-inch thick wall aluminum box channel while the

dog-ears of the joints were machined from solid aluminum blocks. Ball bearings were used

in the joints to minimize the friction and make it easily backdriveable. The forward kine-

matics for the linkage were used to transform the measured joint positions/velocities to peg

tip cartesian positions/velocities. The UFS was mounted on the end-effector flange of link

three. The peg was then mounted to the UFS. To operate the device, the user grasped the

tubular part of link 3 just above the UFS with one hand and moved the peg as desired. The

output of the UFS was recorded on an IBM®-compatible personal computer (PC) along with

the joint encoder outputs.

The software used to control the PLIMMS data collection system was written mostly

in C with only a few low-level communication routines coded in assembly language. The

software for the PLIMMS ran on a PC 386/33 computer. It was compiled using the Borland

Corporation TurboC® compiler. The UFS was interfaced to the PC via a parallel I/O card.

4-3

Figure 4.4 Kinematic description of the PLIMMS

Figure 4.4 shows the kinematic layout of the PLIMMS. The as-built dimensions of the

PLIMMS were:

Li = 417.5 mm

L2
= 417.5 mm

L^x = 40.0 mm

Lav = 145.7 mm

The end plate of link 3 was machined to receive the same UFS that was used on the PUMA

robot.

4.4 Robot Testbed Description.

The Unimate PUMA 562 robot served as the testbed for all of the experimental work.

The PUMA is a 6-DoF, vertically-articulated, industrial (V-AI) manipulator. The six revolute

joints of the PUMA are driven by DC servo motors via geared transmissions. Figure 4.5 shows

the basic layout of the PUMA robot.

4-4

Figure 4.5 The PUMA 562 robot structure

The PUMA robot is a common university research tool, and there are many references

that describe its characteristics in detail [14, 20, 34, 49, 50]. The experiments were done

using the Air Force Institute of Technology (AFIT) Robotic Control Algorithm Development

and Evaluation (ARCADE) operating system which provides the capability to experimentally

evaluate a wide range of digital control algorithms [33]. The ARCADE system bypasses the

standard Unimate controller and VAL control language so that torques can be commanded

directly to each of the joint motors. The commanded torques, fc, were computed by software

running on a Digital Equipment Corporation® (DEC) VAXStationlll host computer (VMS

host computer) which is interfaced to the PDP 11/73 that provided low-level control of the

PUMA. When the controller was operating, the desired joint velocity vectors, q, were inte-

grated and fed as desired joint angles, qd, to the ALTER mode of the PUMA's VAL controller.

The PUMA ALTER mode used a low-level, high-speed PID control loop to servo to the qd.

A six-axis (3 forces, 3 moments) UFS (model number UFS-3012A25-U560) manufac-

tured by JR3, Incorporated was attached between the last link of the PUMA and the peg to

provide force feedback measurements. The UFS comes with its own local power supply, pro-

4-5

cessor electronics and operating system [30]. The UFS samples the forces and moments at a

rate controlled by its own operating system and makes that data available asynchronously

via a parallel connection. This digital input-output (DIO) interface was connected to a DEC

DRV-11J digital input-output (DIO) card in the PDP's QBus when ARCADE controlled the

robot. The UFS sample rate was set at 300 Hz for the experiments conducted in this research.

Two footswitches were interfaced into the system to control operation. The first

footswitch (colored red) was wired in series with the kill switch on the PUMA controller

as a safety feature. This footswitch was a normally-closed, momentary contact switch; it

gave the operator ready access to disable the PUMA during data collection or operation with-

out having to use his hands or reach for the switch. The second footswitch (colored green)

was interfaced into the analog-to-digital converter (ADC) to provide a begin or end signal

for the control software. This footswitch was a normally-open, momentary contact switch;

it enabled the operator to signal that he was ready to proceed and indicate when a data

run was over without having to use his hands or a keyboard interface. An example of how

the green footswitch was used occurred during the positioning of the PUMA for the start of

a test run. Upon pressing the green footswitch, the PUMA was gravity compensated and

backdriveable so the operator could maneuver it to the desired starting position manually.

As was mentioned above, the computing hardware for operating the robot was a VMS

host computer with a PDP 11/73 providing the low-level control interface to the PUMA robot

under the ARCADE environment. Because the ARCADE environment was evolving, the

control software was written in a mix of FORTRAN, C, and assembly languages. Since the

original ARCADE system was developed in FORTRAN, all of the communication protocols

were based on calls to FORTRAN and VAXLab subroutines. In addition, the VMS host

computer was running the VMS operating system which was written in FORTRAN, so all

of the routines that interfaced with the operating system or communicated with the robot

via the PDP 11/73 were written in FORTRAN. This included routines to read and write

data across the serial and parallel connections, data plotting routines, etc. The PDP 11/73

was running the assembly code to provide the low-level serial and parallel communications

between the VMS host computer and the robot. That code essentially wrote the torques out

4-6

to the PUMA as motor currents and read in the joint positions from the PUMA's joint angle

encoders.

4.5 Summary.

This chapter has presented the two main pieces of equipment that were used to collect

demonstration training data. The PLIMMS was designed to be a light-weight, low-friction

motion measurement system that was easily back-driveable for collecting demonstration

data. The PUMA manipulator was used for both data collection and controller implementa-

tion and testing. The special training handles were attached to the PUMA manipulator to

provide a comfortable handhold when demonstration data were collected. The peg used for

all the testing was also described. These tools were critical to the success of this research

effort.

4-7

V. Methodology

This chapter describes the methods and algorithms that were used to conduct this

research. It is organized as follows: Section 5.1 details the raw data collection procedure,

Section 5.2 describes the data processing algorithms available, Section 5.3 explains the ANN

architecture and training technique, Section 5.5 describes the implementation of the trained

ANN controller, and finally, Section 5.7 identifies how the controller was evaluated.

5.1 Raw Data Collection.

5.1.1 SISO Data Collection. To collect SISO data, a custom program was written

which allowed the user to select the spacing function, the range between the maximum

and minimum value on each axis, and how many subdivisions of those ranges to use. The

ranges were specified by a single parameter, ß, for each axis which identified the minimum

as -ß and the maximum as +ß for that axis. The parameter, a, specifying the number of

subdivisions to use actually specified how many subdivisions to use between the minimum

value and zero. If a was given as n, then the number of discrete values for that axis was

2n + 1. The program then systematically generated the input vectors, F, by starting with

all the components at their minimum values and proceeding to increment each component,

in turn, according to the prescribed spacing function until the maximum values for all three

components were reached. These F were then propagated through the desired Aa to get the

Fas per Eq (3.1).

5.1.2 RISO Data Collection. RISO data were collected from two different sources

during this research: from the simulation and from the robot manipulator. When the

simulation was used to collect RISO data, a desired Aa was implemented in a controller

simulation to produce a recorded stream of F and V data. To ensure proper time sequence

alignment of the data, the recorded F from the simulation were subsequently propagated

through the desired Aa to produce the synthetic V vectors. The matching set of recorded F

and V constituted the desired RISO training data set.

To collect RISO data from the PUMA manipulator, the control block diagram shown in

Figure 5.1 was implemented. The explicit accommodation control law, given by an accommo-

5-1

®J I—I r-0
©. WLA Accomm.

+ v Cntrl. Law
c

m
UFS

Figure 5.1 PUMA control system block diagram with accommodation controller running
during collection of RISO data

dation matrix, provided the trajectory generation commands in response to the interaction

forces measured by the UFS. As the accommodation controller performed the task, the mea-

sured forces, Fm, and commanded velocities, TVe, were recorded. The nominal velocity, V„,

was maintained at a fixed value throughout the task execution. The desired planar com-

ponents of the Fm were extracted to form the F which was then propagated through the

desired Aa to yield the desired outputs, V. Thus, the "real" inputs were used to determine

the distribution of the data set while Eq (3.1) ensured that a perfectly consistent mapping

was synthetically generated. The result, of course, was RISO training data.

5.1.3 DISO Data Collection. As mentioned in Section 3.3, DISO data are a hybrid

form of the DIDO and SISO data types. The procedure for collecting DISO data was simply

to use the demonstration inputs from a DIDO data set and propagate them through a

desired Aa to compute matching synthetic output vectors. There was no special equipment

or algorithms unique to the DISO data collection.

5.1.4 DIDO Data Collection. DIDO data were collected from two different exper-

imental platforms during the course of this research: the PUMA robot and the PLIMMS.

5-2

Each device will be discussed in turn, followed by the method of differentiation which was

common to both.

5.1.4.1 PUMA DIDO Data Collection. When the PUMA was used to collect

data, the controller was configured to provide gravity compensation of the arm's weight while

the operator manually moved the peg using the training handles described in Section 4.2 as

their interface. In this scenario, the human is providing the trajectory generation commands

in response to the interaction forces he/she feels. As compared to the "real" data collection

system, the accommodation feedback control loop that controls the robot during "real" data

collection disappears and the inner PID feedback loop is replaced with a model-based feed-

forward gravity compensation loop as shown in Figure 5.2. For the planar edge-mating

task studied herein, the PUMA joints that did not contribute to motion in the vertical plane

(joints 1,4, and 6) were servoed to their zero positions with a PID feedback control law. Thus,

the motion of the robot was restricted to he in the vertical plane. The coordinate system

describing the PUMA as a planar manipulator is presented in Figure 5.3. Note that, in the

PUMA coordinates, the vertical plane is the X-Z plane which contrasts with the X-Y plane

description used for the simulation work described in Section 5.5.1.

To use the DIDO data for training required the velocities to be expressed as cartesian

vectors in the tool-frame. The vector of measured robot joint angles, q, was differentiated to

produce a vector of joint velocities, q. The manipulator Jacobian, J(q), converted q to Vp.

TVP = TJ(q) 'q (5.1)

It is important to realize that TJ(q) must be derived specifically for transforming joint

velocities to a tool-frame cartesian velocity of the point at the origin of the peg coordinate

frame in the center of the peg tip. We now derive the TJ(q) for this purpose by differentiating

the kinematic equations in the world-frame coordinates and then transforming the result to

the tool-frame. There are other methods [20] for deriving the Jacobian, but the differentiation

method was deemed easiest for the planar configuration of the PUMA.

5-3

Human

Th

_ \t

1—»•
Grav.
Comp.

[+ T

Figure 5.2 PUMA control system block diagram during DIDO data collection

Figure 5.3 Coordinates used to describe the PUMA robot as a planar manipulator operating
in the vertical plane

5-4

Using Figure 5.3 as a guide, the forward kinematic equations for the position of the
w~ (w w w \T

peg, X = | xp, zp, 0pj are

xp = A2 cos 02 + ^3 sin #2 + I>4 sin 023 + LT sin 0235

zD = h0- A2 sin 02 + A3 cos 02 + DA cos 023 + LT cos 0235

T6L #235

(5.2)

(5.3)

(5.4)

where A2 and D4 are the Denavit-Hartenburg parameters [20] that represent the lengths of

links 2 and 3, respectively, of the PUMA, A3 is the offset in joint 2, h0 is the height of the

joint 2 axis above the ground, LT is the total distance from the axis of joint 5 rotation to the

tip of the peg, 023 = (02 + 03), and 0235 = (023 + 05). Note that 6P is measured about the

positive Y0 axis from the positive X0 axis. Taking the time derivative of these equations, we

get

Xn —

z„ =

ve„ =

-A2 sin 02 (e2) + A3 cos 02 (e2) + DA cos 023 (02 + 9a) + LT cos 0235 (o2 + 03 + 05)

-A2 cos 02 (02) - A3 sin 02 (02) - D4 sin 023 (ö2 + 03) - LT sin 0235 {o2 + 03 + 05)

02 + 03 + 05 (5-5>

which can be written in the form of

vv, = wmt (5.6)

where the cartesian velocity vector is denned as WVP = j ip, ip, 0P| . The manipulator

Jacobian matrix expressed in world-frame coordinates is given by

rm =
(- A2 sin 02 + A3 cos 02 + D4 cos 023 + IT cos 0235)

(-A2 cos 02 - A3 sin02 - D4 sin023 - IT sin0235)

(JD4 COS 023 + IT COS 023S) (IT cos 023s)

(- D4 sin 023 - IT sin 0235) (- LT sin 0235)

1 1

(5.7)

5-5

and the vector of joint velocities, q, is denned as <f = j02,03,05 j

Eq (5.7) expresses the velocity of the point at the center of the peg tip as a function

of the manipulator joint velocities and expressed in the world-frame cartesian coordinates.

For the ANN controller, we require the velocity to be expressed in the tool-frame coordinates

that are attached to the peg. To change the frame of reference of the world-frame Jacobian to

the tool-frame, the following relationship out of [14:p.l72] is used for the full 6-DoF problem:

J(Q)
Rw o

0 TR„

vm (5.8)

where TRW is the rotation matrix that transforms a velocity in the world-frame to one in the

tool-frame, and 0 is a 3x3 zero matrix. For the planar problem at hand,

R„

cos(02 + 03 + 05) -sin(02 + 03 + 05) 0

sin(02 + 03 + 05) cos(02 + 03 + 05) 0 (5.9)

and Eq (5.8) reduces to just the upper three rows of Eq (5.8) and can, therefore, be written

as:
TJ(q) = TRW

WJ{q) (5.10)

Applying Eq (5.10) to the expressions for the world-frame Jacobian given in Eq (5.7),

the manipulator Jacobian matrix expressed in tool-frame coordinates is found to be

Tm
(LT + A2 sin 035 + A3 cos 035 + D4cos05) (LT + D4cos05) (LT)

(-A2 cos 035 + A3 sin 035 + Z)4sin05) (D4sin05) 0

1 1 1

(5.11)

In summary, to collect the DIDO output data on the PUMA robot, the recorded time

history of q is differentiated to yield q which is then premultiplied by J(q) given in Eq (5.11)

to yield the desired Vp as desired output data. The planar components of the recorded time

history of force data, Fm, are used as the input data without transformation.

5-6

-~fc JR3 Force
Sensor

m

m

A
Human

i •
f

\ l

■ i
i Environment ,
■ Model i «e

A

PLIMMS
0 i

Forward
Kinematics

x .r, K^ e
■ J* t^^""""

t
d
dt

Figure 5.4 PLIMMS controller block diagram during demonstration data collection

5.1.4.2 PLIMMS DIDO Data Collection. Since the PLIMMS was not an

actuated system, it did not have any feedback control embedded in the block diagram as

shown in Figure 5.4. The PLIMMS was designed to be lightweight, low-friction, and easily

backdriveable. Section 4.3 gives a more detailed description of the PLIMMS hardware and

control software. The joint encoders and the UFS were calibrated prior to each session of

DIDO data collection with the PLIMMS.

In a fashion equivalent to that used for the PUMA when collecting DIDO data, the

PLIMMS provides measurements of joint positions, q, rather than joint velocities, q. There-

fore, we must use the same procedure to differentiate the q and transform the resulting q

into TVp using the Jacobian matrix, TJ{q), describing the PLIMMS structure. We now derive

the desired J(q) in the same way it was done in Section 5.1.4.1 for the PUMA.

Figure 5.5 shows the coordinates used to describe the position of the peg expressed in

world-frame coordinates. The forward kinematics of the PLIMMS express the position of

the point at the center of the peg tip in world-frame coordinates, X, as a function of the

PLIMMS joint angles. They are given by

xp = Li cos 6X + L2 cos 9U +L3x cos 6123 +(L3y + LJXS-\-Lp) sin 9123 (5.12)

5-7

Figure 5.5 Coordinates used to describe the position of the peg on the PLIMMS during
demonstration data collection

VP
= X1sinöi + I2sinöi2 + l3ä:Sinöi23-(i3!/ + ijE3 + ip)cosöi23 (5.13)

9p = 0m-90° (5.14)

where #12 = 0i + 02 and Ö123 = #12 + 03-

The simple time derivative of the kinematics yields

w.
VP

-Li sin0i (0\) - £2sin012 (^ + 02)

- [L3x Sin 0123 - (L3y + LJ-RS + Lp) COS 0123] (#1 + 02 + 03

Ly COS 0! (0\) + L2 COS 012 (Öy + 02)

+ [La, cos 0123 + (X3y + ijR3 + ip) sin 0123] (öi + 02 + 03)

01 + 02 + 03

(5.15)

(5.16)

(5.17)

5-8

Rearranging this into the matrix form of Eq (5.6) produces the following world-frame

Jacobian matrix

rm =
—Li sin 61 - L2 sin 0i2 - [L3x sin 6123 - (L3y + ZJR3 + Lp) cos Ö123]

Lx cos0! + L2 COSÖ12 + [£32: cos #123 + (L3y + -^JR3 + Lp)sm$i23\

1

-L2 sin 012 - [L3x sin 0123 - (L3y + £JR3 + Lp) cos 0123]

i2 cos 012 + [L3x cos 0i23 + (L3y + ZJR3 + Lp) sin 0123]

1

[L3x Sin 0123 - (i3y + £jK3 + ip) COS 0123]

[L3x cos 0123 + (£3y + ijR3 + iP) sin 0i23] (5-18)

1

To transform Eq (5.18) from the world-frame to the tool-frame, we use Eq (5.10) where

R,„ for the PLIMMS coordinates is

R„

COS 0123 Sin 0123 0

— Sin 0123 COS 0123 0

0 0 1

(5.19)

For brevity, the final expression for the tool-frame Jacobian matrix is not given here explicitly,

though it is simply the product of Rw in Eq (5.19) premultiplying J(q) given in Eq (5.18).

5.1.5 Differentiation. When collecting the DIDO data, both the PLIMMS and the

PUMA robot measured the joint positions rather than joint velocities. Consequently, the

positions were differentiated to produce the measured velocities. To perform the differenti-

ation, the 3-point backwards difference formula [10:p.l40] was used:

J;«^[3/(*)-4/(*-T) + /(z-2T)] (5.20)

where T is the time, in seconds, between samples.

5-9

5.2 Training Data Generation Procedures.

Once the raw data were collected and configured as a suitable I/O pair, one or more

steps of data processing transformed it into suitable training vectors for presentation to the

ANN. There were seven possible data processing options that could be applied to the data.

These seven options are explained in the following sections followed by a discussion of when

and in what combinations they might be applied.

5.2.1 Magnitude Normalization. All of the training data are expressed in the tool-

frame cartesian coordinate system because that is the task coordinate system in which the

accommodation or ANN controller operates. For the planar problem, the input force vector

of the controller, F, has three components (fx, fy, mz) and the output velocity vector, V,

has three components (vx, vy, u2). These vectors contain two DoF of direction information

and one DoF of magnitude information. By normalizing the magnitude of the vectors, the

magnitude DoF is lost. The resulting unit magnitude vector simply identifies the direction

of the original vector. The normalized force vector, F, is given by

F=[^WWr] <5'21)

where Mj is given by

M/ = J(/.)2 + a)a + (^,a

and r is a characteristic radius taken as the radius (or half width) of the peg. The normalized

velocity vector, V, is given by

" = <£•£■*'
where Mv is given by

Mv = y/(vx)
2 + (vsf + (u,r?

It is important to note that after normalization, the number of independent parameters

contained in the normalized vectors is reduced by one.

When magnitude normalization is applied to the I/O features of a training data set, the

result is a set of unit-length vectors which identify the vector directions of the commanded

5-10

velocities in response to the measured force directions. Since the magnitude information is

lost, the number of independent DoF in the mapping is reduced by one. This has both good

and bad implications on the success of the ANN controller trained from these data. Having

one less DoF to learn can theoretically mitigate the burden of learning for the ANN. However,

since the stability of the robot controller is inherently sensitive to the gains of the system, the

I/O gain of the mapping from force to velocity is important. One must reconstruct a proper

gain to apply to the controller output after it has mapped the direction for the commanded

velocity. The question then becomes, "what gain should be applied to the controller output?"

In an attempt to answer this question, we first look at the gains contained in the

original training data before they were magnitude normalized. One quickly finds that, even

for SISO data generated using a constant Aa, the ratio of the velocity magnitude over the

force magnitude, i.e. the I/O gain, varies considerably. This can be explained by considering

the results of taking any two vectors, multiplying them by the same matrix, and then

computing the magnitude of the resulting vector divided by the input vector. Even if the

matrix is diagonal with equal elements along the diagonal, the only way to get the same I/O

magnitude ratio is to have the two input vectors linearly dependent (i.e. /i = kf2.) The

point is, we have no single I/O gain that we can capture from the original training data

and use to reconstruct the sensitivity of the mapping when implemented as a controller.

Unsuccessful attempts were made to use the average I/O magnitude ratio of the training

data in the implemented controller. Although this is a serious problem when one considers

that it destroys the original integrity of SISO data, it is possible that it could be used to treat

DIDO data which may originally contain an undesirable I/O gain. This possibility was not

investigated.

5.2.2 Low-Pass Filtering. The low-pass filtering of the raw force and velocity

data was done using custom-written software which made calls to C-language routines from

"Numerical Recipes in C" [43]. The algorithmic kernel of lpfilter. c was the "Recipe's" sub-

routine called smoof t () which first removed any linear trend, applied a Fast Fourier Trans-

form (FFT) to low-pass filter the data, and then reinserted the linear trend. In smoof t ()

the amount of smoothing is specified as the number of points in the series over which the

5-11

smoothing should occur. The number is not constrained to be an integer, and specifying zero

results in no filtering at all. Since smoof t () does not accommodate directly specifying a

cutoff frequency or roll-off rate, the resulting filtered data were examined to determine the

effective cutoff frequency. To approximate the cutoff frequency, the power spectral density

(PSD) of the filtered data was examined using DADiSP®, developed by DSP Development

Corporation [18, 19].

The difficulty with determining the corresponding cutoff frequency using smoof t()

eventually led to the use of a separate computer program that would do the low-pass filtering

in the time domain. The program was written in C-language by the author and a colleague.

Using that new program, a clear relationship between signal bandwidth and the program

arguments was possible. The argument to the program reflected the fraction of bandwidth

of the sample frequency to pass so it was much simpler to use.

5.2.3 Velocity Pruning. When a person is demonstrating an accommodation task,

it is possible that they will generate bad examples of behavior as well as good. A particularly

troublesome instance of a bad behavior is when the demonstrated velocity is zero while the

contact force is not zero and the alignment task is incomplete. In such a case, the contact

force vector can vary widely in both magnitude and direction within the bounds of friction1.

Consequently, raw data which reflect mapping from a non-zero force vector to a zero velocity

vector is deemed counter-productive. The process of excluding these counter-productive

vectors is termed velocity pruning.

To perform velocity pruning, the raw velocity vectors are each examined to determine

if the magnitude of the velocity vector exceeds a given threshold. If a velocity is encountered

which does not exceed the threshold, both the velocity and force samples are discarded for

that sample point. If the threshold, Vu is exceeded, then the force/velocity sample pair is

*It is important to note that the contact force vector may vary widely for any velocity state when the human
is in charge. This is indicative that the mapping may not be one-to-one. The goal of the post-collection data
processing is to make the data reflect a subjective mapping where every velocity vector is the image of at least
one force vector.

5-12

passed without modification. The algorithm to perform velocity pruning is described by:

Keep: if V > Vt (5.23)

Discard: if V < Vt (5.24)

For an accommodation matrix controller, the mapping from non-zero forces to a zero

velocity would only occur in two situations. The first case is when the peg is stuck in a friction

cone and it cannot move. However, because we have chosen the tool-frame coordinate system

origin to be a the center of the peg tip and contact must occur at the peg corners, there is

almost always going to be a moment component to the force measurement which will have a

corresponding non-zero desired angular velocity component. Therefore, we should rarely, if

ever, see V=0 due to the first case.

The second possibility for observing V=0 is upon completion of the edge mating task

when the peg has been aligned and motion has stopped. In the latter case, it is a desired

behavior and we want to include it in the training data set or the ANN may never learn to

stop motion upon alignment. We will demonstrate this behavior in the results to follow by

experimenting with two different Vt on some sets of training data. In the end, we will find

that we must use caution with velocity pruning so as to only prune exemplar vectors prior

to the peg being aligned.

5.2.4 Hemisphere Pruning. This method of pruning the data excludes all the

measured force/velocity vector pairs which have an included angle, $, greater than a specified

threshold, $t. The idea behind hemisphere pruning is that if F and V point in roughly the

same hemisphere of space, then it is likely that V will be moving the peg so as to comply

with F, and, therefore, reduce the contact force. If V points in the opposite direction to F,

then the contact force will increase. The included angle is computed using

/ F»V
$ = arccos — — I (5.25)

F V

5-13

where • indicates the dot product operator and ||*|| indicates the root-mean-squared (RMS)

magnitude of the vector argument. Using Eq (5.25) to compute \P, the rule for hemisphere

pruning can be written as:

Keep: if * < % (5.26)

Discard: if * > ft (5.27)

If we choose to simply prune out the vector pairs that indicate F and V are separated

by more than 90-degrees, then we can reduce Eq (5.25) and the criterion for pruning to

simply

Keep: ifF»V>0 (5.28)

Discard: ifF*V<0 (5.29)

When the two vectors have a positive dot product the velocity vector points within the same

hemisphere as the force vector which is a prerequisite for a controller to reduce contact force

magnitudes.

5.2.5 Lipschitz Clipping. Asada [5] has suggested that Lipschitz's condition for

continuity of a function can be used to ensure that the training data are consistent before

they are presented to an ANN for training. Such a screening process is said to improve the

efficiency of training and is also said to allow the training to reach a global minimum2. The

Lipschitz condition ensures that two points which are close together in the input space will

map to two points in the output space which are also close together. Mathematically, the

Lipschitz ratio, £tj, is expressed as:

£ij = j1-"^11 Vi,j e(0<i<N),(0<j<N),i?j (5.30)
11/«' — /jll

2This author does not accept Asada's statement that a neural network converges to a global minimum when
the teaching data satisfying the Lipschitz condition are used as training samples.

5-14

where N is the total number of force/velocity vectors. Note that the Lipschitz ratio, £i;,

must be computed for all combinations of i and j in the data set except for the cases when

i = j. This means Eq (5.30) must be computed N2 - N times. For the present work, the

root-mean-squared norm was used to compute the distances in Eq (5.30).

The Lipschitz clipping criterion is given by:

Keep: if >C,j < £'

Discard: if £{j > £' (5.31)

When a pair of vectors is encountered that fails to meet the criterion given in Eq (5.31),

both of the potential training vectors are discarded since the blame for failure cannot be

associated with either of them individually. It is the relationship between the two vectors

that is the target of this examination.

There are two significant shortcomings of using Lipschitz clipping to process the train-

ing data. First, there are no sound criteria for choosing the value for £' as a function of any

system parameters. In practice, it might be chosen rather arbitrarily based on a qualitative

examination of a histogram plot of £tj population for all potential training vectors. This

examination would consider the percent of the vectors that a given £' would discard and the

£' might be chosen so as not to discard more than about 20 percent of the potential training

vectors. Because we have no method for relating £{j to the resulting ANN controller's per-

formance, we would be forced to rely on an iterative approach to selecting a "proper" value

for £'.

The second problem stems from the expectation that SISO data should pass unchanged

through all the processing steps, since it is perfectly consistent and accurate data. With the

Lipschitz ratio clipping, however, we find that, even though there may be a constant linear

analytic mapping from the input space to the output space, the Lipschitz ratio will not

necessarily be a constant. The implication is that if the ratio is not a constant for a perfect

mapping, then selecting a cutoff ratio, £', which excludes any of the vectors, may exclude

'good' vectors as well as 'bad' vectors. The only time that the Lipschitz ratio will be a

5-15

constant is if the mapping matrix is diagonal and all the elements are identical. Otherwise,

the mapping matrix warps the input space as it maps it onto the output space.

To understand how the Lipschitz ratio can vary for a constant mapping matrix, consider

a two-dimensional example. The Lipschitz ratio takes the ratio of the distance between two

points in the output space over the distance between their corresponding two points in the

input space. If we have two input points in the two-dimensional input space which are

separated by a distance of one in the x-axis direction and one in the y-axis direction (i.e.

their difference is (1,1)), we can picture a right triangle whose hypotenuse connects the two

points in the input space. If we have the following mapping matrix:

1 0

0 2
(5.32)

then the two corresponding output points will be likewise connected by the hypotenuse of a

right triangle whose sides measure (1,2). The Lipschitz ratio between the two input/output

pairs is V5/V% = 1-58. If, on the other hand, we had two input points separated by

coordinates (1,2), the input triangle hypotenuse would be y/E in length while that of the

output triangle would be vTr, SO the Lipschitz ratio would be 1.84. Thus, we have shown

that for a constant linear mapping matrix, the Lipschitz ratio is a function of the distance

between the input vectors, and is NOT a constant when the mapping matrix has unequal

diagonal elements. If the mapping matrix has equal diagonal elements, such as:

2 0

0 2
(5.33)

then the Lipschitz ratio is preserved as a constant all across the input space for all distances

between input points. In the example given above, the ratio for the (1,1) input vector would

be 2, as it would also be for the (1,2) input vector.

It is important to note that, although using the Lipschitz ratio as a criterion to exclude

training vectors is not compatible with our objective of excluding only 'bad' vectors, the

vectors which are not excluded will be passed unchanged by the examination. This means

5-16

that Lipschitz clipping will not distort the I/O mapping of any vectors which meet the criterion

expressed in Eq (5.31). Despite the fact that it will not distort the mapping, however, we

discard Lipschitz clipping as a useful technique for data processing and will not investigate

it further in the present work.

5.2.6 Collision Pruning. In free-space motion, the force measurement, Fr, is iden-

tically zero, which generates a zero output from either the ACC or the ANN controller. This

essentially turns off the controller until the peg contacts the table surface. Consequently, we

defined a nominal behavior for the controller that would command the peg motion when there

were no sensed forces. That behavior consisted of a constant nominal velocity, Vn, which

was chosen as a pure translational velocity in the direction the axis of the peg pointed (y-axis

in the planar tool-frame coordinates.) This nominal commanded velocity was assumed to

be capable of bringing the peg into contact with the table. Upon contact, the Fr becomes

non-zero in magnitude and the nominal velocity is turned off according to Eq (5.47) that

follows. Since neither the accommodation matrix controller nor the ANN controller had any

authority in free-space motion, provisions were made to exclude that data from the training

data sets. This process of exclusion was called collision pruning. The intent of collision

pruning was to remove all of the F and V pairs which represented data taken prior to the

initial contact of the peg with the table surface. To accomplish this, the original training

data force vector, F, was scanned until a consecutive series of N points was found which all

exceeded the desired threshold RMS force magnitude, Ft. The value of N was specified by

the user. Upon finding N points that exceeded Ft, the index of the first point in the N -length

window was identified as k. Having thus identified the index of the first data point believed

to be taken after contact between the peg and the table, the algorithm to perform collision

pruning is described by:

Keep: Fi,Vi Vi>k (5.34)

Discard: FuVi Vi<fc (5.35)

where i is the counting index of data vectors.

5-17

5.2.7 Subsampling. In some cases, it was desirable to see if fewer data points

could be used to train the ANN. In these cases, one approach was to simply extract every

nth vector from the original training data file. The algorithm to extract the desired subset

of vectors simply used the modulo operator to determine whether to keep a vector with a

particular index. Any leftover vectors after the last vector matching the modulo criterion

were also discarded.

5.2.8 Allowable Data Processing Combinations. Although one may apply more than

one processing option to a particular raw training data file in succession, not all combinations

of the possible processing options make sense. Table 5.1 shows which processing options can

be combined together in sequence and which cannot. Note that the table is interpreted by

assuming that the option listed across the top of the table is executed before the option listed

along the left side of the table. For instance, one cannot velocity prune vectors after they have

been magnitude normalized because all of the vectors will already have the same magnitude

(unity) and would be pruned or kept as a whole set. On the other hand, velocity pruning

can be applied before magnitude normalization. The primary reason for the disallowed

combinations is that the first operation destroys the integrity of the time sequence for the

data set and the second operation requires that sequence to be intact. This is the case for

the velocity pruning, hemisphere pruning, and Lipschitz clipping which all destroy the time

base, thereby preventing one from subsequently low-pass filtering or collision pruning3 the

data.

5.3 ANN Training.

To completely describe the ANN training requires mention of the structure of the ANN

and the training algorithm. Since development of the ANN was not the central theme of this

research, a specific structure and a specific training algorithm were selected early and held

constant throughout. Both the structure and the training algorithm are simple.

3The reason we cannot collision prune data after the time base is corrupted is that our collision pruning
criterion looks for a consecutive sequence of points that exceed a given value. If the sequence is corrupted by
pruning out data points, then it is no longer correct to choose the collision point with this criterion. However, if
we use a window size of one, the time base is no longer a prerequisite for the collision pruning to be successful.

5-18

Table 5.1 Table depicting allowable combinations (•) and disallowed combinations (o) of
processing options for raw data.

1st Operation -^- Mag.
Normalize

Low-pass
Filter

Velocity
Prune

Hemisph.
Prune

Lipschitz
Clip

Collision
Prune

Sub-
Sample 2nd Operation ^

Mag. Normalize N/A • • • • • •

Low-pass Filter • N/A o o o • o
Velocity Prune o • N/A • • • •

Hemisph. Prune • • • N/A • • •

Lipschitz Clip • • • • N/A • •

Collision Prune o • o o o N/A •

Sub-sample • • • • • • N/A

5.3.1 ANN Structure. The architecture consisted of a fully-connected, two-layer

MLP using the sigmoid nonlinear squashing function (shown in Figure A. 1 of Appendix A) on

the output of the hidden layer nodes. Because the ANN was being used to learn a functional

mapping, output layer nodes did not have a nonlinear squashing function applied to their

values. Some of the early work maintained five nodes in the hidden layer. However, virtually

all of the later simulation work used 10 nodes in the hidden layer.

Every node in the MLP had a bias input as described in Appendix A. The bias nodes

allow the ANN to adjust the location of the central region of the sigmoid nonlinearity to suite

the magnitude of the data set. This is important for data sets that may have large mag-

nitudes, because it prevents the data from being summarily "squashed" by the asymptotic

tails of the sigmoid function. The bias also means that the sigmoid function does not have

to be explicitly offset to provide both positive and negative outputs.

5.3.2 ANN Training Algorithm. The algorithm used for training was a form of

back-propagation for a MLP. Recently many approaches to MLP back-propagation training

have been developed to improve convergence. [28] provides a good summary of some of those

approaches. The specific algorithm used in this research to train the ANN is described in

5-19

detail in Appendix A. Although the algorithm is simple, it has many parameters that can be

varied to affect the learning performance. For this research effort, only a few of the possible

parameters were varied because the ANN was not the central theme of this research.

The training rate, rj, and the training momentum, a, were held fixed for large groups

of runs that were to be compared. Over the course of the research, a few different values

were used, but comparisons between the results from using different values were not made.

Some ANN training programs reserve part of the training exemplars for testing after

training is finished. The programs used for the present work did not reserve any training

exemplars from the training set; all of the data were used in training.

Based on the information in [29], the initial random weights were all set to values

between -0.1 and 0.1 to enhance the convergence of the back-propagation algorithm. This

technique is usual practice to start the training in a relatively "safe" place on a multi-

dimensional error surface that is less likely to contain a local minima.

For each set of training data, at least four attempts to train were made. The procedures

were identical except for the random seed used to initialize the random weights. The same

random seed was never used twice in any of the training. This is particularly significant

because the UNIX® implementation of the "random number" generating subroutine will

generate the exact same sequence of pseudo-random numbers every time it is given the

same random seed.

As previously mentioned, the large number of training data configurations precluded

extensive manual tuning of the training parameters to achieve success in all cases. The

paradigm developed in this research is that the ANN is given an equal opportunity to learn

from each set of training data, and its ability to learn each set is used to determine the

suitability ofthat data set. In an effort to provide an even footing to all the training data set

configurations, the total number of training vectors presented to the ANN was held constant.

This consistent exposure of the ANN to training was used as the basis for comparisons

concerning the ease of learning. Under these criteria, training was terminated based on the

number of exposures rather than the minimum of the total squared-error curve or any of the

5-20

other popular termination criteria that are mentioned in [28]. The total number of training

vectors presented was maintained at 3,000,000 for all the simulation results presented.

5.4 ANN Training Evaluation.

Once the ANN was adequately trained using the criteria of the total RMS error for

the entire data set, it was tested using one or more of three techniques. One technique

simply confirmed that the computed output errors of the ANN were small, while the other

two techniques interrogated the ANN to determine what kind of ACC matrix it emulated.

Each of these is discussed below.

5.4.1 ANN Error Tracking. The first technique was to simply apply the training

input feature vectors, F*, one at a time and plot the computed ANN output, V, against the

training output, V . This test simply determined how well the training data set had been

learned. Viewing it as a tracking error for the training data trajectory was a more relevant

means of evaluating whether training was complete enough. It is important to note that

the test data were identical to the training data for this test. Therefore, the data did not

evaluate the ability of the ANN to generalize or interpolate, they merely indicated how well

the ANN had learned the training data set and served to validate the training software.

5.4.2 ANN Interrogation by Unit-Vector Probing. The second technique for testing

was called Unit-Vector Probing (UVP) the ANN to determine the Aa it had learned to

emulate. Using the UVP method, the simple linear relationship of Eq (3.1) was used as a

model. If one assumes that the ANN mapping is a direct replacement for the Aa of Eq (3.1),

then one can extract the columns of the pseudo-accommodation matrix, Aa*, by sequentially

applying unit vectors along each of the coordinate axes to the ANN. The computed outputs

are then taken as the columns of Aa*. For example, to extract the first column of Aa*, the

vector F = (1,0,0)T is presented to the ANN. The second column is produced by applying

F = (0,1,0)T, and the third column is extracted using F = (0,0,1)T. Due to the nonlinearity

in the hidden layer of the ANN, for a given set of trained weights it is possible to derive

significantly different Aa* for relatively small variations of the input vectors. This means

5-21

that the sensitivity of the Aa* to variations from the unit vectors may be large for some

mappings.

5.4.3 ANN Interrogation by LSMK. The final testing technique was called the

LSMF method of extracting the Aa learned by the ANN. This technique takes advantage of

using the right pseudo inverse to determine the best fit matrix, Aa'. In this case, Aa is a

best fit to the data set in a total least-squares sense. For the relationship of Eq (3.1), one

can gather N samples of the input vector, F, and the output vector, V. If all TV samples of

each are concatenated into new matrix variables, T having size (k X N) and V having size

(n x N), the relationship is:

V = AJ T (5.36)

Since the T and V are given, we want to find Aa' which represents the best fit of the data

set. In the least-squares error sense, Aa' is given by

Aa' = V T* (5.37)

where T* is the right pseudo inverse of T and is given by [38] as

T*=TT(TTTY (5.38)

For the remainder of the present work, references to Aa' or the LSMF technique are directed

towards the method of using the relationship of Eq (5.37).

In practice, the T and V can be produced from either the original training data set,

or from presenting a series of F to the trained ANN and computing the series of V. Using

training data does not provide any insight into the mapping that an ANN has learned;

however, it is useful for validating the method and for checking the consistency and content

of the training data. When using the LSMF to evaluate a trained set of ANN weights, the

I/O mapping was created using the original training data inputs for T and computing the

ANN outputs as the V.

5-22

5.4.4 Matrix Similarity Indexes. Once the ANN had been interrogated using the

UVP technique described in Section 5.4.2 or the LSMF method as described in Section 5.4.3,

the resulting matrices were compared with Aa. Because both the form and the magnitude of

Aa were important to its function, the comparison for similarity was difficult to do manually.

Therefore, indexes of similarity were developed which captured the important features of

similarity desired. Given a desired Aa depicted as

A

and a matrix to be compared for similarity as

K

we define the structural similarity index, Ys, as:

0 0 0

0 «22 0

0 0 0-33

Ml &12 fcl3

hi &22 &23

&31 &32 ^33 _

(5.39)

(5.40)

Tj = {kn + k12 + fc13 + K21 + ^23 + ""31 "t" "-32J (5.41)

T, is a measure of how closely the off-diagonal terms and the kn term are to their desired

values of zero. T, increases as the errors get larger. A similar, but separate, measure of the

error in the (2,2) and (3,3) elements of K is the gain similarity index, Tg, which is defined

as:

T, = ((*„ - a22f + (k33 - a33f) (5.42)

Tg makes a direct magnitude comparison between the only two non-zero elements of Aa and

their corresponding elements in K. As an indicator of correct sign in the (2,2) and (3,3)

elements, a sign similarity index, T±, is defined as:

T± = (|sign(a22) - sign(fc22)| + 2 |sign(a33) - sign(fc33)|) (5.43)

5-23

Figure 5.6 Illustration of the coordinate system used to describe the position of the peg.

where | * | indicates the absolute value operator and sign(*) is the sign operator which returns

+1 if its argument is positive or zero and -1 if its argument is negative. T± checks the signs

of the individual elements against what is desired for them. If both of the signs are the

same, Y±=0. If the fc22-element has the wrong sign, 2 is added to T±, while 4 is added if the

&33-element has the wrong sign. Thus there are discrete increments of T± which reveal the

pattern of sign matching.

The final similarity index is called the ratio similarity index, Tr. It is defined as:

T„ = &33

&22
- 0-33

«22
(5.44)

Tr provides a measure of the error in the magnitude of the ratio between the two non-zero

diagonal elements of K as compared to those of Aa. The ratio is crucial to achieving the

proper system sensitivity to moments as compared to forces.

5.5 Controller Implementations.

The controllers were implemented in both simulation and hardware. In both cases, a

common set of cartesian coordinates was used to describe the position of the peg. Figure 5.6

5-24

illustrates the coordinate system used to describe the position of the peg. The specifics of

each implementation are now presented in detail. They are followed by a brief discussion

about the integration algorithm which was used in both implementations.

5.5.1 Implementation via Simulation. The simulation software enabled rapid and

safe evaluation of the many different ANN controllers that were trained in the course of

this research. It was intended to use the same ANN controller software subroutines for the

simulation as were used on the software controlling the robot. Because of the revised focus of

this research effort, this capability was never fully realized. However, it is entirely possible

to do this in a follow-on effort.

Figure 5.7 shows a complete kinematic block diagram modeling the controller, the

robot, and the interaction between the robot and the environment. The interaction between

the robot and the environment is embodied in the propagation of the cartesian position

error through the manipulator Jacobian to get joint position errors that, in turn, are input

to a PID feedback controller that attempts to eliminate them. The torques produced by

the PID controller can then be conceptually transformed into cartesian forces via the same

manipulator Jacobian matrix used to transform the position errors. An assumption that

must be true for this model to be valid is that the manipulator motion between servo samples

must be very small so as to allow the approximation of a fixed Jacobian during the servo loop

period. In addition, using the Jacobian to transform errors assumes that those errors are

differentially small or can be approximated as such. For most robotic control systems, both

of these assumptions are valid when manipulator speeds are in the low range typically used

during parts mating.

It is worth noting that the model depicted in Figure 5.7 does not include any dynamic

properties such as inertia, damping, joint friction, etc. The effects were ignored for this

research because they typically have little influence when the manipulator is moving slowly.

The real PUMA manipulator obviously has all of these dynamic properties, but they are

unimportant during the slow motion of parts mating.

In an effort to distill the problem down to its essential components, the simulation

model was simplified to the form shown in Figure 5.8. In the simplified form, the robot is

5-25

Joint Space
V:x

f
Inverse
Kinematics

-L.*. ;[j^-1] 3 PID
FBcntrlr

T ^_ f*i?£
T-

F

) i [V- 9

Robot Model -

T"w
T»n* I S

'.■ J-'Wr. -A *•

u^i

r T.

T , ^ TF

T-
T+ 1

i
¥

_ Contact m

Constraint

w V 1
*d|

M X ^_4-^|i-s(ß)h*^- ANN or Ace.
Controller

^

World-F •rame Cartesia n Tool-Frame Cartesian

Figure 5.7 Controller block diagram for complete simulation model.

modeled as a perfect plant which has no dynamics and introduces no errors into the sys-

tem. Therefore, it can be represented by a unity transfer function and does not appear

in Figure 5.8. Although one can argue that no robot is perfect, a typical state-of-the-art,

high-performance, direct-drive manipulator is close enough to perfect to validate this as-

sumption at slow velocities. The interaction forces between the robot and the environment

are generated by the PID controller's stiffness in Figure 5.7 while for the simplified model of

Figure 5.8, an environmental stiffness matrix, wKe, determines the contact forces. There is a

subtle, but possibly significant, difference between these approaches. In the complete model,

the cartesian stiffness realized at the tip of the peg is a configuration-dependent relation-

ship. This is because the controller stiffness is a joint-space entity and it is transformed into

cartesian space by the configuration-dependent Jacobian matrix. In the simplified model,

the Ke is invariant for all configurations.

The world-frame superblock on the left of Figure 5.8 reflects all the simulation com-

ponents that model the interaction of the peg with the environment. All of the vectors

in that superblock are expressed in world-frame cartesian coordinates as indicated by the
T W

'W-superscript preceding each variable. The Rw and the RT are matrices that transform

5-26

/ T-

Cö'rrtfollef

\\\\ \\ \ \\ \\\
\ OWorlä^FramB-Cartesian \\ N Tpo'I^Fätiie Cjarteslö>

Figure 5.8 Controller block diagram for simplified simulation model.

vectors from world-frame to tool-frame and from tool-frame to world-frame, respectively. The

world-frame desired velocity vector, TVd, is integrated to yield the desired position, Xd. The

contact constraint block in Figure 5.8 models the position-based constraint between the peg

and the table surface. It examines WXd and computes the constrained position of the peg

tip as a "measured" position vector, WXm. The first step ofthat computation is to determine

which corner of the peg is closer to the table. Referring to Figure 5.6, the coordinates for

corner 1, Xx, and for corner 2, X2, are given by:

VX1 = (^Xp + rp cos 6P J i + ("VP + rp sin 6P j j

yx, C >0P)l+(V
rfp)j

(5.45)

(5.46)

where i and j are unit vectors along the X and Y axes in the world-frame coordinates and

rp is the radius4 of the peg.

The algorithm used to compute A m depends on the friction model or coefficient of

friction, //, used. For the frictionless model (i.e. n=0), if Xd = (xd, yd,6d), Xm =

("xm, wym, 6m) and the height of the table is yt, the contact constraint model can be described

by the following pseudo-code which is illustrated in Figure 5.9:

4 For the rectangular peg used, the "radius" is equal to one-half the peg width.

5-27

Motion
Direction

<*■»<_!> Vi*
Table Surface

(xdt'y«i)

Figure 5.9 Illustration of frictionless constraint model used in the simulation.

if (Vd < Vt)

then
w

Vm = Vt

else
w w

Vm = Vd

endif
w w

%m — % d

For the case of ß » 1 (i.e. no sliding), Figure 5.10 illustrates the no-sliding algorithm

which is described by the following pseudo-code:

if (Vd < Vt)

then
w

Vm - Vt

else
w w

Vm = Vd

endif
w ,w w N ,W W , ,,W W \ i w

Xm = { Vm- %.,))*(Xit- aJm«.!,)/! Vdt ~ ym(t_1)j+ In,,.,,

6 m — 6 A

which is a simple linear interpolation of the x-coordinates to find xm where the path crosses
wyt. Note that the evaluations expressed in the pseudo-code must be applied to the corner of

the peg that is closest to the table surface. Therefore, the coordinates for both corners must

5-28

Motion
Direction

Table Surface
^■WVi*

(xdt'yd^

Figure 5.10 Illustration of no-sliding constraint model used in the simulation.

be computed to determine which one, if any, is to be constrained by the table surface. In this

model, wXm is the interpolated value between the two wXd which bracket the collision with

the table. Note that only the height of the peg is constrained by the frictionless model.

Referring back to Figure 5.8, the difference of Xd and Xm is computed as a virtual
\XT —* W

surface deflection, Xe, which is multiplied by the environmental stiffness matrix, Ke to

produce a "measured" contact force, wFr expressed in the world-frame coordinates.

The superblock on the right of Figure 5.8 contains the description of the controller.

The tool-frame vector of measure forces, Tf is fed into either the ANN or the ACC controller,

whichever is present. For the controller to generate a non-zero commanded velocity, it must

have a non-zero measured force vector. When the peg is in free-space motion, the force

measurements differ from zero only by some magnitude of noise caused by the inertial forces

of the peg end-effector and the electronics noise of the sensor itself. If the free-space motion is

slow, so as to make it easier to deal with a rigid environment, then the force sensor readings

will also be small. Thus, if the peg starts off in free-space, it may never move because

the controller output may generate joint torque commands that are below the threshold of

stiction in the joints. To ensure that a fixed free-space command is generated, a nominal

5-29

1 1

0.8 0.8

3 °-6

CO

0.4

I 0.6
CO

C 0.4

0.2 0.2

0
(

/

u ' ■
0 epsilon 2*epsilon) epsilon 2*epsilon

Beta Beta

a) b)

Figure 5.11 Plot of the blending function showing: a) S(ß) which turns off the Vn as ß
increases, and b) (1 - S(ß)) which turns on the Vc.

velocity, TVn, is superimposed on the controller command, Vc. After the peg contacts the

surface, however, it is undesirable to superimpose TVn because it may prevent the controller

from recovering from jamming or wedging during execution of a peg-in-hole task. In addition,
—* f -* T —*

the DIDO data exemplifies a mapping from F to Vd, so it already implicitly includes V„.

Thus, continually superimposing TVn with TVe to get TVd, would only serve to increase the

contact force between the peg and the table.

A nonlinear blending function, S(ß), was used to "turn off" the nominal velocity as the

peg contacted the surface. As S(ß) turns off Vn, (1 - S(ß)) gradually turns on Vc. The

function S(ß) is shown in Figure 5.11 and defined as:

S(ß) =
i[cos(f|) + l] VO</3<2e

0 V/3 > 2e
(5.47)

Returning to Figure 5.8, when the measured force magnitude is computed, it is assigned

to ß which is used as an argument to the blending function, S(/3), described above which

controls the blending of the nominal velocity, TV„, and the commanded velocity from the

controller, Vc. After the blending function has operated on Vn and Vc to produce Vn

and Vc respectively, they are superimposed to give the desired velocity, Vd.

5-30

Table 5.2 Summary of parameters used for the simulations.

Parameter
Nominal Values

SISO RISO & DISO DIDO

1,000

" lON/m 0 0 "
0 lON/m 0
0 0 10N-m/rad

' 50N/m 0 0 "
0 200N/m 0
0 0 10N-m/rad

V 0.05 m/s 0.0125 m/s

T 1 ms 28.8 ms

€ 0.2 0.2

Because the parameters controlling the servo rate and the contact model were so

important to the overall performance and stability of the simulated controller, they were

carefully selected. Table 5.2 summarizes the parameters used for the SISO, RISO, DISO,

and DIDO simulations. The differences between the parameters for the SISO/RISO/DISO

simulations as compared to those for the DIDO simulations are largely due to the mismatch

in the servo rate which occurred due to a lack of foresight about its importance. Section 6.1.3

gives a more detailed explanation of the parameter selection.

5.5.2 Implementation on Robot Testbed. Figure 5.12 depicts the block diagram of

the implementation of the ANN controller on the robot. The superblock labeled "PUMA"

contains all the components that were internal to the PUMA and its low-level controller. As

indicated in Figure 5.12, a low-level PID controller servoed the manipulator to the desired

joint positions, qd. The superblock identified as "Env." is a model of the interaction between

the robot and the environment which created the contact forces measured by the UFS.

Note that the forward kinematics of the PUMA and the Ke transformation shown in the

"Env." block were not explicitly computed, but rather implemented as hardware. When

the measured forces were presented to the ANN controller, it computed the commanded

velocity which was superimposed with the nominal velocity to create the desired velocity

vector. The inverse Jacobian matrix transformed the desired cartesian velocity into a vector

of desired joint velocities which were then integrated to yield the desired joint angles that

are commanded to the low-level servo of the PUMA robot.

5-31

Figure 5.12 Detailed block diagram of the scheme used to implement controllers on the
PUMA manipulator.

The expression for the tool-frame inverse Jacobian matrix, J(q)~ , for the PUMA

robot as a planar manipulator is:

Tm~l =
«in ij 12 Ü13

ij 21 iJ22 ^23

Ü31 Ü32 Ü33 _

(5.48)

where the individual components are given by:

sin #5
*Ju

A2 cos 03 - A3 sin Ö3

Ul2 =
— COS 05

A2 cos #3 — A3 sin #3

Ü'l3 =
-iT sin #5

A2 cos #3 - A3 sin 03

=
A2 cos 035 - A3 sin 035 - Di sin 05

U21
D4(A2 cos 03 - A3 sin 03)

Ü'22 =
A3 cos 035 + D4 cos 05 + A2 sin 035

D4(A2 cos 03 - A3 sin 03)

Ü23 =
LT(-A2 cos 035 + A3 sin 035 + DA sin 05)

D4(A2 cos 03 - A3 sin 03)

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

5-32

-A2 COS 035 + A3sm035

D4(A2 cos 03 - A3sm03)
A3 cos 035 + A2 sin 035

D4(-A2 cos 03 + A3 sin 03)
A2LT cos 035 + A2D4 cos 03 - A3LT sin 035 - A3D4 sin 03

^33 = FT71 a A—r-^ (5-57)

D4{A2 cos 03 — A3 sin 03)

The low-level servo loop on the PUMA updated 32 times as fast as the trajectory

updates were sent down to it. The trajectory updates were computed every 28.8 milliseconds

(ms). The low-level servo loop was accessed via the ALTER mode of the PUMA controller.

The PID gains of the low-level servo loop were the factory preset gains.

5.5.3 Velocity Integration. This section describes how the velocity signals generated

by the controllers were integrated to generate position trajectories. The method of integration

is important because small differences in the algorithm can have significant effects on the

results. The method of integration was the simple trapezoidal approximation described by:

£
-.NT >=N T

f(t)dt « £ - [f(iT) + /((» - 1)T)] (5.58)
4=0 I=i 2

For the implementation in simulation, the integration was not complicated by the

presence of the inverse of the Jacobian matrix in the controller. Since all the simulation

computations were done in cartesian space, Eq (5.58) was applied to the Vd to produce

Xd. For the PUMA implementation, however, the desired cartesian velocity output of the

ANN controller is multiplied by the inverse Jacobian matrix, J(q)~ , and integrated to

generate a desired joint position trajectory. Since J(q)~ is a function of joint position,

instantaneous velocities are produced when it is multiplied with a desired cartesian velocity.

If the robot's joint angles change very much during the integration interval, error will be

introduced by the variation of J{q)~ . Consequently, it is important to keep the period of

integration sufficiently small so that the change in J(q)~ will likewise be small. This is

accomplished by subdividing the position update period into smaller integration intervals

over which J{q)~ does not change significantly. For the workspace region of interest and

the magnitude of commanded velocities, subdividing the position update interval into two

subintervals has proven sufficient.

5-33

Another important consideration in the velocity integration was whether to use a ref-

erence trajectory or not. The difference is that, for a reference trajectory, the previous com-

manded position, cfd^y is used as the starting point for each integration period, whereas

one would otherwise use the current measured position, qm. The significance of using a

reference trajectory is that position errors are accumulated so that the PID servo controller

can continue to work on them during subsequent servo intervals. In contrast, if qm is used as

the starting point for each integration period, any error in position left by the PUMA's PID

servo controller at the beginning of the next servo interval is forever forgotten. This lack

of memory can lead to end-point drift due to measurement noise and quantization error on

a manipulator. Therefore, the reference trajectory was used for the PUMA implementation

of the various controllers. For the simulation, however, the measured position, Xm, was

used in the integration. This is because for the simulation, we are assuming that the robot

is perfect so the measured and desired positions are identical.

5.6 Timing Considerations.

The task at hand is to train an ANN controller to mimic the performance of an existing

controller system. This task has been referred to as a system identification [39] because

we are using the ANN to identify the characteristics of the controller system. For this

discussion, we make the following assumptions about the controller:

• it is a "black-box" for which we can only observe the I/O-mapping

• the controller exhibits desireable system performance5 when implemented with the
plant of interest,

• the processing time delay is unknown and may vary

Because it is a "black-box" we do not have access to the inner workings of the controller

so we must examine samples of its inputs and outputs to ascertain its behavior. Thus, we

seek to learn the input-output mapping that the controller performs as it controls a plant of

interest.

5 Desireable performance characteristics include stability, quick settling time, minimal overshoot, and good
tracking.

5-34

5.6.1 Processing Delay Time. Since the controlled system is stable, we infer that

the "black-box" controller has an acceptable processing delay. For digital control systems

running on a single microprocessor, the processing delay of the controller is necessarily less

than the time between servo updates. As long as the control algorithm can be computed in

time to send the resulting controller command down at each servo period, it doesn't matter

how short the actual processing delay of the control law is. The actual processing delay of

the ANN control law is likewise unimportant as long as its output can be computed in time

to be available for the controller updates at the servo rate. However, even with the apparent

room for error, there are several possible problems that can occur if timing is not carefully

considered when training the ANN.

The first problem has to do with the computational burden of the ANN. If the servo

rate has to be reduced to allow time for the ANN to compute its output, then performance

equivalent to that of the "black-box" controller cannot be expected. Although the difference

may be insignificant, increasing the sampling period always carries a cost penalty in system

performance [27]. The time it takes to compute the ANN output is a function of the micro-

processor speed and the architecture of the network itself. As the number of inputs nodes,

output nodes, or hidden layer nodes increases, the number of multiplies and adds required

for the feedforward computations goes up rapidly due to the massively interconnected nature

of the network. Consequently, smaller networks can be run at a higher servo rate on a given

microprocessor platform.

A second timing problem is that the processing delay of the "black-box" controller may

actually be a multiple of the apparent servo rate of the controller. This can occur when there

are nested control loops running on separate microprocessors in the system. For example,

Figure 5.13 shows the block diagram of a system designed to track a moving target with the

end-effector of a robot using a vision system for feedback. The inner loop of such a system

might be a low-level position servo loop that is running at a very high servo rate, T,, with a

PID feedback control law to provide accurate tracking of position commands. Surrounding

this control loop may be a feedback controller commanding positions to the inner loop based

on signals from the camera. The imaging system may take a much longer time, kTs, to

process the camera data even though it runs on a faster microprocessor. As a result, the

5-35

position
command

Image
Processor

Camera

kAt

Point
Interpolator ■*o*

position
feedback

PID
Controller Robot

end-effector \
position
—►•

Figure 5.13 Block diagram of a system designed to track a moving target with the end-
effector of a robot using a vision system for feedback.

inner servo loop may be interpolating between the camera-generated position commands in

order to provide a continuous trajectory to track.

In a system such as this, the problem occurs when we want to identify the outer control

system but we do not know that it is operating with a longer delay. In our ignorance, we

may sample the input to the camera and the output of the image processor at the inner loop

servo rate. As a result, the output data we capture will appear discretized since it changes

only every kT„ while the input data changes every T,. The problem is not severe, however,

since examination of the data will reveal its true nature and it can be solved by sampling

the data every kT, and associating the n + 1 output sample with the nth input sample to

account for the one cycle processing delay.

A third possible problem is that the outer controller may be able to process data at

the same rate as the inner servo loop but it has a startup delay. This problem can occur

even when both control loops are being computed on a single microprocessor. Multistep

integrations and differentiations in discrete controller require some startup delay until the

proper number of input samples have been accumulated. Once the requisite number of

samples are available, the algorithm can output a result every time step. In this case, there

5-36

Sampling
Period

• • • t-1 t t+1 • • • /-^-s

♦ * ♦ ♦ « * * ♦ ♦ *

V ♦ *

* ♦ ♦ ♦ ♦ * ♦ *
♦ ♦♦♦♦♦♦♦
♦ :-.!■:,♦ ♦ ♦*♦**

♦♦♦♦♦
♦ ■■: ♦ ♦ ♦ * * *v

Wuteljme Shift» \ *\ %

5 \ \ *(§Sämpl!pgP£riöds)'» \ \
> v «.♦♦♦♦♦♦* *

» VN *.♦♦*♦♦♦* ♦
* > *v * * ♦ * * * *

*. * Nv *. ♦ ♦ ♦ * ♦ * *

♦ ♦**♦♦.

• m #V Ävf? Mr & #? & & .OUTPUT

••• t-1 t" t+1 ••• t+4 t+5 t+6
Time

I I I I I I I I I I 1U"'

Correlated Output

Figure 5.14 Illustration of causal time shift between captured input and output data for an
example case of a controller having a processing delay of five sampling periods.

is simply a time shift in the data that must be accounted for when examining the input-

output data captured at each servo period. If the startup delay was five servo periods, then

the sampled output data stream must be shifted back in time five servo periods when it is

correlated with the sampled input data stream.

Finally, the fourth and most dreaded possible problem is that the processing delay of

the controller may not be constant. This is difficult because it defeats any efforts to simply

time shift the data to account for the delay. Researchers in speech recognition have developed

a method called dynamic time warping to account for the effect of variable duration in speech

signals [40:p297]. It is possible that such a method could be adapted to solve the variable

time delay problem.

5.6.2 Causality. According to Payandeh [41], causality is defined as "the property

of a linear system (operator) when its output at time t is dependent on its input up to the

time t." This gives us a basis to discuss the Causal Time Shifl below.

Figure 5.14 illustrates sampled input and output data streams as two series of parallel

dots running horizontally with increasing time to the right. These sampled data are to

5-37

be used to construct input-output data pairs for training an ANN controller to imitate the

controller. At each sampling interval, an instantaneous snapshot is taken of the input data

and output data. If a controller having a processing time delay equal to 5 sampling periods

has generated the output data stream in response to the input data stream, it is clear that

the output at time t is not a function of the input at time t. Rather, the output at time t+5

corresponds to the input at time t and, for the purpose of this discussion, that output (at

t+5) will be referred to as the correlated output. The processing time delay can alternatively

be called a Causal Time Shift because it is the time shift required for there to be a causal

relationship between the input-output data pairs. Since the controller in Figure 5.14 has a

5 sample period processing delay, it could not have possibly produced the output at time t+4

in response to the input at time t because the input did not have time to propagate through

the controller. Similarly, the output at time t+6 was generated by the input at time t+1.

If one knows the processing time delay and knows that it is a constant, then the captured

data can simply be time shifted by the causal time shift to restore the causal relationship

between the input-output pairs.

Output data that occur earlier than, or later than, the correlated output may or may

not be strongly related to the input in terms of cause-effect. For example, in Figure 5.14

the output at times t+4 and t+6 may or may not be strongly related to the input at time t.

If the data in the neighborhood of the correlated output are very similar, then the observed

input-output mapping is relatively insensitive to accurately identifying the correct causal

time shift. On the other hand, under some conditions the observed mapping may be very

sensitive to the causal time shift.

Two factors affect how sensitive the observed input-output mapping is to the causal

time shift; the dynamic bandwidth of the controller and the frequency content of the input

signal. Figure 5.15 attempts to depict the general relationships between the input signal

frequency content, the controller bandwidth, and the sensitivity of the input-output mapping

to variations in the causal time shift.

Higher input-output mapping sensitivity is indicated by a darker shading in Fig-

ure 5.15. If the controller has a high bandwidth and the frequency content of the input is

low, then output data in the region of the correlated output will relate fairly strongly to the

5-38

In
pu

t F
re

qu
en

cy
 C

on
te

nt

ST

ff

i

laulty More Sensitive
Design

 "".' LM
^" ■".-

|j|fe< ■\:.:i$»»: fe::-ST'

Less Sensitive

Lower Higher

Controller Bandwidth

Figure 5.15 Illustration of the general relationships between the input signal frequency
content, the controller bandwidth, and the sensitivity of the input-output map-
ping to variations in the causal time shift.

input sample because the output will vary slowly and there will be little difference between

neighboring output samples. If the neighboring output samples are strongly related to the

input, then only a small error will be introduced by associating the input with the wrong out-

put sample. Consequently, the mapping will have a low sensitivity to incorrectly specifying

the causal time shift as shown in the lower right quadrant of Figure 5.15.

If, on the other hand, the output is rapidly changing in response to a rapidly changing

input, the output data in the region of the correlated output will not relate strongly to the

input sample. Since the neighboring output samples vary considerably, a larger error will

be introduced by associating the input with the wrong output sample. Consequently, the

mapping will have a high sensitivity to incorrectly specifying the causal time shift as shown

in the upper right quadrant of Figure 5.15. This discussion thus encourages one to sample

quickly so as to have slowly varying data from one output sample to the next. Shannon's

sampling theorem also encourages one to sample as quickly as possible to prevent aliasing

in the data. However, reality has a way of constraining the upper limits of sampling speed.

5-39

The upper left region in the figure is labeled "faulty design" because one would not

want to use a low bandwidth controller to control a high bandwidth system. In addition, if

the physical characteristics of the system cause it to respond slowly to input changes, then

the output data will be a weak function of the input even when properly time shifted. A large

inertia is one possible cause of slow response which essentially low-pass filters the input.

This could lead to problems during ANN training because a weak functional mapping implies

that there could be inconsistent input-output pairs contained in the data. Inconsistent data

would, in turn, slow down the progress of training.

5.6.3 The Human Factor. When a human operator is introduced into a control

system, there are always inconsistencies in the exact control response that will be measured

for a given stimulus input. Even if the person responds in the same way every time he

receives a given stimulus, his reaction time may be substantially different for two different

instances. A person's reaction time is a direct function of his alertness, which, in turn, is a

function of many things such as his level of concentration and how rested he is. [62] also

presents these concerns for transferring human skills to robots via analysis of demonstration

data. Owing to these factors, it is clear that a person's reaction time can vary significantly

during the course of even a brief task. In terms of control system analysis, reaction time

represents a processing time delay so we are faced with a variable processing time delay.

5.7 Controller Performance Evaluation.

To make an objective comparison of the performance quality for the many trained

ANN controllers, a performance metric was derived. The purpose of the metric is to provide

a single scalar index of performance that reflects the quality of how well the ANN performs

the edge-mating task. The desired metric has the following features:

• penalizes for spurious motion during the alignment task

• penalizes for slow execution of the alignment task

• penalizes for instabilities or divergence away from the aligned position once alignment
is achieved

• penalizes for excessive contact force magnitudes between the peg and the table surface

5-40

• grades the performance relative to the performance of the "best" accommodation matrix
controller's performance

The expression for the performance metric, (, is given by:

C = - (5.59)
X

where x is the composite performance index for a given run and x is the composite per-

formance index for the "best" accommodation controller. The values for these composite

performance indices are computed from:

X = pV + ßAt + 7|AP|max + ei^lavg + <^lmax (5.60)

where />,/?, 7, £ and <j> are positive-valued weighting factors, V is the root-mean-squared path

length traversed from impact to first crossing of the aligned position, Ai is the amount of time

elapsed between impact and first crossing of 180-degrees, | AP|max is the maximum position

amplitude away from the aligned position after first alignment, |-Flavg is the average of the

absolute values of the forces measured after the first alignment, and |P|max is the maximum

(peak) RMS force amplitude after alignment. The weighting factors were heuristically chosen

as:

p = 2.0 (5.61)

ß = 1.0 (5.62)

7 = 5.0 (5.63)

£ = 2.0 (5.64)

<j> = 5.0 (5.65)

One can see that the first term in Eq (5.60) includes the performance cost for spurious

motion while the second term penalizes for lethargic motion. The third term includes a

measure of post-alignment stability by penalizing for position deviations, either positive or

negative, from the aligned position. The fourth term provides a penalty based on the average

force magnitude after the peg has been aligned. This term captures a sense of how hard the

5-41

peg is being pressed against the table once the task is completed. Its presence in the metric

assures that controllers which jam the peg hard will not go unpunished. The final term of

Eq (5.60) captures any transient force spikes that may occur after the peg has been aligned.

During early testing, several controllers which would unexpectedly pulse the peg against the

table were noted. The fifth term is intended to capture the behavior of those controllers.

5.8 Summary.

This chapter has presented the mechanics of the algorithms which were applied during

this research effort. It is a toolbox from which techniques were drawn as needed to unfold

the characteristics of the proposed control method. Our toolbox contains the procedures

used to collect the various raw data types (SISO, RISO, DISO, and DIDO) as well as the

seven data processing options that were available to convert the raw data to training data.

Two data processing options, the magnitude normalization and the Lipschitz clipping, were

immediately discarded because of revealed weaknesses.

The structure of the MLP ANN and the back-propagation training algorithm were also

presented, along with descriptions of how the efficacy of the training could be evaluated.

Among the methods used to evaluate the success of training were the simple error tracking

and network interrogation by way of both the UVP and the LSMF techniques. The interroga-

tion techniques were designed to extract the matrix that the ANN is most closely emulating

in operation. Four different matrix similarity indexes were also presented which are used to

determine how the structure, gain, sign, and ratio characteristics of the extracted matrices

compared with a given objective matrix.

The particular details of the simulation code and PUMA robot control code were also

derived. The details presented included derivations of the required coordinate system trans-

formations and Jacobian matrices. In addition, the frictionless and unity friction contact

models used in simulation were presented in detail.

In the last sections of this chapter, timing considerations that may have affected

the success of the ANN controllers were discussed and the metric used to evaluate the

performance of the controllers was presented. The metric is designed to reward the controller

5-42

for directness of motion, conservative use of contact force, and stability after the peg has

reached alignment. These tools will provide a solid foundation from which to conduct our

investigation.

5-43

VI. Results

This chapter presents all of the data and analysis conducted during this research

effort. It is organized to present a developing story from baseline information, through

intermediate investigations to the final tests of the overall conceptualized control paradigm.

We start by describing the system-verifying baseline experiments using the accommodation

matrix controller. This is followed by the various observations and investigations of SISO,

RISO and DISO training data. Finally, the efforts to utilize DIDO training data are presented

with a short summary at the end.

6.1 Baseline Accommodation Matrix Controller.

To validate the software and to establish a baseline of performance, a "best" ACC

matrix, A, was empirically derived. For tasks in planar coordinates, the A is a 3x3 matrix.

Peshkin [42] shows that if the origin of the coordinates is at the center of the mating surface

of the peg tip and the task is planar, then A is a sparsely populated accommodation matrix

having non-zero values only in the (2,2) and (3,3) position. This configuration of A provides

for accommodation in the tool-frame Y-axis as well as angular accommodation.

6.1.1 Nominal Task Execution. It is useful to examine plots representing the

nominal (typical) execution of the edge-mating task as a reference for our future discussions.

Figure 6.1 shows the positions ((a)-(c)), measured forces ((d), (f), and (h)), and commanded

velocities ((e) and (g)) for an idealized case of task execution. The position data shown

in Figure 6.1 ((a)-(c)) are measured in the world-frame coordinate system while the other

data are shown in the tool-frame coordinates. We see that upon initial contact, the angular

alignment error is corrected linearly with respect to time, as shown in Figure 6.1(c), and

the curvature in the X-axis position shown in Figure 6.1(a) is caused by the translation of

the point at the center of the peg tip due to constant angular rotation about the corner of

the peg in contact with the table and some sliding allowed by the frictionless contact model

used for this example. The Y-axis position plot is nearly linear due to the constant peg

rotation rate, but is slightly curved because of the peg bouncing slightly against the table

top. Once the peg reaches its first alignment with the table, as indicated by 6P = 180°,

6-1

Measured Cartesian Position Measured Cartesian Position

2

0.007 0.168

0.166

0.164

0.162

0.16

0.158

0.156

0.154

0.152

0.006

0.005

0.004

0.003

0.002

0.001

0
() 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (sees)
(a)

Measured Cartesian Position

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (sees)

(b)

Tool-frame Force

g

0
-0.02
-0.04
-0.06
-0.08

-0.1
-0.12
-0.14
-0.16
-0.18

-0.2
(

0

-0.05

-0.1

-0.15
-0.2

-0.25

-0.3
-0.35

-0.4

-0.45

-0.5

0.02

0.015

0.01

0.005

0

-0.005

-0.01

-0.015

-0.02

205

200

195

190

185

180

L//
) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (sees)
(c)

Tool-Frame Desired Cartesian Velocity

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (sees)

(d)

Tool-frame Force

0.04

0.02

0

-0.02

-0.04

-0.06 III
2

:
-0.08

D 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (sees)

(e)

Tool-Frame Desired Cartesian Velocity

E

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (sees)

(0

Tool-frame Force

3

2

1

■

-1

-2

-3

-4

■

-
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (sees)
(g)

D 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (sees)

(h)

Figure 6.1 Idealized results of a nominal ACC controller performing the edge-mating task
from a CCW initial misalignment angle. Time histories of position ((a)-(c)),
commanded velocities ((e),(g)), and measured forces ((d),(f),(h)) are shown. Note
that Vx = 0.

6-2

it begins a small-magnitude rocking or osculation about the aligned position, as the trace

of Mz shown in Figure 6.1(h) best indicates. The rocking is caused by the stiffness of the

environment interaction model interplaying with the controller servo rate and the fact that

there are no dynamics in our simulation model to damp out the oscillations. The tool-frame

Fx shows a linear decrease to zero as the table contact force, which is always normal to the

table for the frictionless contact model shown, points more and more along the tool-frame

Y-axis as the peg is stood up into alignment. It should be clearly understood that the data

presented in Figure 6.1 were fabricated for the purpose of this explanation to orient the

reader. Under close scrutiny, the data shown for the position history and the commanded

velocity history will certainly be found to lack consistency in the figure. For example, if the

peg was constantly moved in the -Y-axis direction as shown by the constant negative region

of Figure 6.1(e) with the angles shown in Figure 6.1(c), then the measured Y-axis position

shown in Figure 6.1(b) would not have been manifested since the peg would have been rising

from the table rather than falling. Despite these subtle details, the author hopes that the

description of the nominal task will serve well to orient the reader to the data presented in

subsequent simulation plots.

6.1.2 Experimental Tests. Through experimental trial-and-error, the Aa yielding

the best qualitative performance on the robot was found to be:

J^-a

0 0 0

0 0.0007 0

0 0 0.2

(6.1)

The criteria used to make the qualitative judgement of best performance were the same

criteria that are included in the expression for the performance metric, (, presented in

Section 5.7. Naturally, these Aa values are affected by the controller gains, the hardness of

the peg and table, the inertia of the robot, and the magnitude of the nominal velocity, Vn,

used to move into contact with the table. Figures 6.2 and 6.3 show sample runs of data with

the Aa controlling the robot. Notice that the system behaves significantly differently when

the initial misalignment angle is clockwise (CW) (ref. Figure 6.2) as compared to when it

6-3

is counter-clockwise (CCW) (ref. Figure 6.3). This is due primarily to the configuration-

dependent nature of the manipulability for the robot. When the peg is initially misaligned

CCW with the wrist bent inward (pointing towards the base of the robot), the peg tends to

stay in contact with the table and displays a higher inertia. When the peg is CW, the wrist

is pointing outward and the peg comes out of contact with the table more readily in response

to the commanded velocities. This behavior was universal in the experiments on the robot.

6.1.3 Simulation Tests. For the simulation, the Aa was significantly different than

for the experimental work on the robot. The Aa selected for the simulation was:

Aa =

0 0 0

0 0.2 0

0 0 200.0

(6.2)

Figure 6.4 shows the simulation results of the ACC controller performing the edge-

mating task from a CCW initial misalignment angle. The position vector components of the

peg, given in the world-frame cartesian coordinates, are shown in Figures 6.4(a)-(c). The

commanded velocity vector components of the ACC controller expressed in the tool-frame

cartesian coordinates are depicted in Figures 6.4(e) and (g). Note that the Vx component of

the commanded velocity is identically zero for all time and is not shown in Figure 6.4 or any

of the subsequent simulation result plots. Figures 6.4(d), (f), and (h) show the contact force

history between the peg and the table expressed in the tool-frame. Because the simulation is

based purely on kinematics and contains no dynamic properties such as manipulator inertia,

the limit-cycle motion of the peg in contact with the table is exaggerated. The contact force

history shows the peg bouncing out of contact nearly 50% of the time when it is "touching"

the table. No attempt was made to introduce dynamic properties into the simulation model.

The kinematic model is considered satisfactory for the purposes of this research.

Although the form of Aa for the simulation was identical to that of Aa used in the

experimental work, the values for the (2,2) and (3,3) elements were quite different. This is

due to several factors including:

6-4

0 200 400 600 800 1000
Samples

(»>

0 200 400 600 800 1000 1200 1400
Samples

(d)

0 200 400 600 800 1000
Samples

(b)

0 200 400 600 800 1000 1200 1400
Samples

(e)

0 200 400 600 800 1000 1200 1400
Samples

(c)

0 200 400 600 800 1000 1200 1400
Samples

m

Figure 6.2 Force and commanded velocity time histories of an ACC controller performing
the edge-mating task from a CW initial misalignment angle on the PUMA robot.

6-5

400 600 800 1000
Samples

(a)

400 600 800
Samples

(d)

1000

400 600 800
Samples

(b)

400 600 800
Samples

(e)

0 200 400 600 800 1000
Samples

(c)

-0.05
0 200 400 600 800 1000

Samples
(0

Figure 6.3 Force and commanded velocity time histories of an ACC controller performing
the edge-mating task from a CCW initial misalignment angle on the PUMA
robot.

6-6

Measured Cartesian Position Measured Cartesian Position

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (sees)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (sees)

(b)

Measured Cartesian Position Tool-frame Force

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (sees)

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (sees)

(d)

Tool-Frame Desired Cartesian Velocity Tool-frame Force

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (sees)

(e)

2

°l -0.05 |
-0.1

-0.15 I
-0.2

-0.25
-0.3

-0.35
-0.4

-0.45
-0.5

11 11 in II
i P : fl| 1 1

 ", IIP,iiiinn nil i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (sees)
(f)

Tool-Frame Desired Cartesian Velocity Tool-frame Force

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (sees)

(g)

a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (sees)

(h)

Figure 6.4 Simulation results of the ACC controller performing the edge-mating task from
a CCW initial misalignment angle. Time histories of position ((a)-(c)), com-
manded velocities ((e),(g)), and measured forces ((d),(f],(h)) are shown when the
Aa, given in Eq (6.2), is implemented. Note that Vx — 0.

6-7

• The difference between the sampling rate used for the robot (28.8 ms) and that used

for the simulation (1.0 ms).

• The difference between the environmental interaction stiffness of the robot and that

used in the simulation. For the robot, the stiffness stems from the hardness of the

peg, the hardness of the table, and the stiffness of the PID controller gains. For the

simulation, the environmental stiffness, Ke, was entirely based on a cartesian spring

model.

• The difference between the nominal velocity, Vn, used to approach the table when

the peg is in freespace motion: for the robot, V^O.0125 meter/second as compared to

0.05 meter/second for the simulation.

Although these parameters are easily controllable in the simulation, matching them to

the actual values of the robot experiments had only limited success in replicating the output

of the experimental system. The result of tuning the simulation to match the experiments is

reflected under the DIDO heading in Table 5.2 in Section 5.5.1. The Vn and T were selected
W

to exactly match those used on the PUMA hardware. The Ke was tuned to give roughly

the same performance in simulation as the robot demonstrated in hardware. The simulation

results of the Aa given in Eq (6.1) using the parameters shown in Table 5.2 are presented in

Figure 6.5.

The difference between the interaction stiffnesses was the key obstacle since the robot

stiffness was a position-dependent, nonlinear relationship based on the manipulator Jaco-

bian matrix, and the simulation was a simple, constant linear relationship.

A final detail worth noting in Figure 6.4 is that it reflects the case with // = 0 between

the peg and the table. When friction is modeled such that no sliding is allowed (fj, = 1),

the results look identical except for the X-axis position trace. Figure 6.6 shows a detailed

comparison between examples of \i = 0 and \i — 1 at the contact interface when starting

from the same initial conditions. Note that the sliding of about 0.6 mm adds to the X-axis

displacement that is always present due to the rotation of the peg about the corner in contact

with the table.

6-8

Measured Cartesian Position Measured Cartesian Position

a.
x

Measured Cartesian Position Tool-frame Force

3
a,

4 5 6 7
Time (sees)

(d)

Tool-Frame Desired Cartesian Velocity Tool-frame Force

■D

-10

-20

-30

-40

-50

-60

-70
4 5 6 7
Time (sees)

(f)

Tool-Frame Desired Cartesian Velocity Tool-frame Force

■8 E

0 12 3 4 5 6 7
Time (sees)

(h)

Figure 6.5 Simulation results of ACC controller modeling the PUMA robot environment.

6-9

o

43

o

si

348
100 200 300 400 500 600 700 800 900

Samples

Figure 6.6 Effect of turning the modeled friction on and off in the simulation software on
the X-axis position trace.

6.2 SISO Observations.

This section will describe the results of investigations into the characteristics of the

proposed controller that were conducted using SISO training data. The SISO training data

provided a well-conditioned, fully-tractable set of data from which the analysis could begin.

The analysis focuses on how the training data were distributed across the input vector space

since that was found to be an important factor. The SISO data were also the ideal reference

from which the reliability and usefulness of the proposed matrix interrogation techniques

could be determined. The points of interest are now presented.

6.2.1 Factors Related to Training Data Distribution. When obtaining training

data for an ANN, a fundamental consideration is that the data must properly represent the

relationship to be learned. There are several factors which affect how well the training data

represent the relationship. ANN s are known to be poor at extrapolating outside of the range

of data with which they were trained. To ensure the ANN will only perform interpolation

when implemented, the training data must cover the proper range of the input and output

spaces. Another important characteristic of similarity that should be maintained between

6-10

the training data and the measurement stream of realtime data when the ANN controller

is implemented is the distribution of the data. This essentially means that the training

data should be statistically similar to the stream of data expected in the application of

the controller. To gain an understanding of the effect of different distributions of data on

the performance of the ANN controller, a series of tests were done with SISO data. The

statistics were indirectly controlled by varying the range, the number, and the spacing of

training vectors.

The range of data is simply described by the maximum and minimum values of each

component of the input and output vectors. The number of training vectors is a function

of the number of distinctly different vectors within the range as well as the frequency of

repeated vectors. Repeating vectors gives the ANN multiple looks at the same data, which

tends to emphasize it as the I/O mapping is created during training. Therefore, one can

consider artificially emphasizing a particular training vector or region by simply repeating

it in the training data set. Although this technique was considered, it's investigation was

outside of the scope of this research project.

The spacing of training vectors refers to how they are distributed in the input feature

space between the maximum and minimum values. For example, evenly distributed data

would have equal spacing between each of the training vectors. The spacing function, S(x),

is the analytic expression chosen to map an evenly incremented distribution within a given

range into an arbitrary distribution within that same range. The spacing function is applied

individually to each component of the input feature vector of the SISO data. Each of the

spacing functions was chosen to have two particular characteristics:

• The output must be continuously defined over the range of [—1,1]

t The output must cover the full range of [-1,1] for the range of the input

The transformation process is best described by example. Suppose we choose <S(a;) =

sin(cc) and want the input to cover the range x G [-5,5] with 10 increments between points

for a total of 11 points. Here are the steps taken to obtain the desired spacing:

• The original input range, [-5,5], is subdivided evenly to create the desired number of

input vectors, in this case 11 points located at (-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5).

6-11

• The input points are transformed into the input range of the desired spacing function.

In our example, we desire the input to range from —7r/2 to 7r/2, SO we multiply each

point by ir/10.

• S(x) is applied to each point to yield a new set of points that are spaced according to

S(x) and range from -1 to 1. In the example, we get (-1, -0.951, -0.809, -0.588, -0.309,

0, 0.309, 0.588, 0.809, 0.951, 1).

• These outputs are rescaled to fill the original desired input range. In our example they

are each multiplied by 5 and we get (-5, -4.76, -4.04, -2.94, -1.55, 0, 1.55, 2.94, 4.04,

4.76, 5).

Thus, we have transformed an evenly-spaced set of data ranging from -5 to +5 into a sine-

spaced set having the same range.

To investigate the effect of spacing on the training and performance of the ANN con-

troller, four different spacing functions were used on SISO data. In particular, the chosen

functions were:

• even: y = x

• sine: y = sin(a:)

• cubic: y = x3

• complex: y = 0.88 [(sin x + 0.3) cos 10a; tan x + 0.46]

Figures 6.7 through 6.10 depict data in two variables based on the four spacing func-

tions described. Note that the complex spacing function is the only one that generates data

sets having a mean value, w, which is non-zero.

If the mean, w, and standard deviation, a, of the measurement stream are appreciably

different than that of the training data set, then the ANN controller may be operating in

an input region with which it is only sparsely, or not at all, familiar. This can be especially

true if one introduces a large non-zero offset (bias) to the training data set and then places

the trained ANN into a small-valued, zero-mean measurement stream. If the training

data still bound the range of the measurement stream, the ANN will properly interpolate

rather than extrapolate the data. However, the mapping functional approximation may be

6-12

E
Z

o
H
N

-4

. o 0 0 o 0 o o 0 o

o o o 0 o o 0 o o

0 0 0 o o o 0 o o

0 0 0 -> 0 0 0 0 0

0 0 0 o o 0 0 o o

0 0 O 0 0 0 o 0 o

0 0 0 o 0 0 0 0 o

00000OGOO'

000O000O0'

0OOO00000'

,, 0 0 0 0 o 0 0 o 0

-4 -2
Y Force (N)

Figure 6.7 Two-dimensional projection of data distributed according to the even spacing
function (y = x).

s
55

b

s S s s 0
0 s 1 t 0 .

0 .

4' >-o O 0 0 0 0 0 0 0

0 o 0 0 0 0 0 0 0

2
0 0 0 0 0 0 0 0 0 •

0 .0 0 0 0 0 0 0 0 0 '

-2
■ 0 0 0 0 0 0 . 0 0

, 0 0 0 0 0 0 0 0 0

-4 r-0 0 0 0 0 0 0 0 0

<
:$ s s s t

1

s
1

s s
1

g:

-2 0
Y Force (N)

Figure 6.8 Two-dimensional projection of data distributed according to the sine spacing
function (y = sin(a:)).

6-13

e

E2
N

i

4

■< » » .^».,.0 o 0

3 -
0 0 <• m o 0 0

2 -

i L 0 0 0 4» C 0 0

0
0

0

0

0

<• 4» 0

* • ♦
0 m o

0

0

0

0

1 " 0 o 0 4» O o 0

2 -
0 0 0 4» 0 o 0

3 '

4

S 1 1—, 1 ♦!_ ■ »'<!>'♦ _J«J _l—«—1 1

-1 0 1
Y Force (N)

Figure 6.9 Two-dimensional projection of data distributed according to the cubic spacing
function (y = x3).

N

. 00 0»4> O

■ 0 00 oo&o O

I n «8w 1
: S n 88* s

■ 0 <>«• o»o 0

0
1 1 1 1 1

00 0GO4>

 1 , ,

0

1 t

-1 0 1
Y Force (N)

Figure 6.10 Two-dimensional projection of data distributed according to the complex spac-
ing function (y = 0.88 [(sin x + 0.3) cos 10z tan x + 0.46]).

6-14

RAW
SPACE

ANN

ÜNNQRMAI/IZED

Figure 6.11 Illustration of modified input and output spaces resulting from using gaussian
normalization on the training data.

underdeveloped in the important region near zero, which might yield poor results. In the

worst case, the bias might cause the training data to exclude the region of operation and

the ANN will attempt extrapolation when implemented as a controller. Note that this is a

concern that is particularly evident with training data generated with the 'complex' spacing

function as shown in Figure 6.10.

Another possible problem that can occur when the w and a of the measurement stream

are appreciably different than that of the training data set is exacerbated when gaussian

normalization is used during training. The convergence of the back-propagation training

algorithm is significantly enhanced when each component of the input and output feature

vectors is gaussian normalized over the entire training data set. The effect of the normaliza-

tion is to group the data near zero where the sigmoid function is most linear. This expedites

the error convergence and improves the robustness of training. However, if training is con-

ducted with normalized data, then the resulting ANN has learned a modified mapping from

a normalized input space to a normalized output space, as depicted in Figure 6.11.

This requires the measurement stream of data to be transformed into the normalized

input space before presentation to the ANN, and the output must be un-normalized to

6-15

bring it out of the normalized output space. These transformations are done using the

same ws and as that were derived for the training data. The problem arises when the

normalization statistics of the training data are incorrect for the measurement stream that

the ANN controller encounters when implemented. A particular problem occurs for the

edge-mating task when the training data have a large non-zero w. For the typical successful

controller performing the edge-mating task, the measured forces are small-valued, which

can be approximated as a zero w. When the large non-zero w of a biased training data

set is subtracted from the force measurements to normalize the data for presentation to

the ANN, it can throw the input value out of the range occupied by the training data and

thereby cause the ANN to attempt extrapolation instead of interpolation. Since the statistics

of the measurement stream cannot be known with certainty prior to the implementation, it

is difficult to ensure that the training data will match the measurement stream in terms of

those statistics. This is a serious limitation of applying an ANN controller in the architecture

used for this research and it remains a difficult problem with which to cope.

6.2.2 SISO Training Data Distribution Investigation. The results of exploring

the effects of the various distribution parameters on the best obtained performance metric

are summarized in Figures 6.12 through 6.16. These surface plots depict the best metric

obtained from four or more attempts at training on the data. The horizontal axes describe

the combination of parameters used to generate the training data, and the vertical axis

reflects the best performance metric value obtained from among all the ANN controllers

trained on a given combination of parameters. Since all the metrics are measures of the

controller's performance relative to the accommodation matrix controller, exact reproduction

of the accommodation matrix controller's performance would yield a (=1. Thus, if all the

controller configurations were able to learn the task as well as the original matrix controller

from which they were trained, the surface depicted in these figures would be flat sheets

at C=l- In some cases that the reader will encounter later, none of the controllers were

able to successfully complete the task when trained on a particular set of training data.

For these cases, a value of (=0 was artificially assigned to the controller since that is the

only unique value which can be assigned as a flag for failure. As a consequence, however,

these failed cases show up as large dips in the shape of the surface plot which go well

6-16

Best Metric

3

2.5

2

1.5 ^
1

0.5
5

10

Range
15

Figure 6.12 Performance metrics of controllers trained on evenly-spaced SISO data as a
function of the range and number of divisions.

below 0=1. Although there were some controllers that succeeded in bettering the baseline

matrix controller by some margin, no controller ever achieved (<0.7. Therefore, small dips

below C=l are representative of very successful controllers while valleys in the surface which

approach C=0 are indicative of failed controllers. Failed controllers will be emphasized in

the text when they appear in the forthcoming figures.

Figure 6.12 shows that controllers trained on evenly spaced SISO data had little trouble

learning the task, even when there were only a small set of training vectors used. In the

minimum case of two divisions, only 125 training vectors were in the training data set. The

small 'bump' in the surface plot where the range is five and the number of divisions is five is

not considered indicative of a significant trend.

The results of training the ANN controller using a sparse data population in the region

of controller operation (near zero) are depicted in Figure 6.13. When the sine spacing function

is used, the training data population is pushed to the outer edges of the given range for the

data, as shown in Figure 6.8. This causes the ANN to interpolate across larger point spacings

in the region of small magnitude vectors, which happens to be its typical operating region.

Figure 6.13 indicates that the ANN was fully capable of learning the mapping from these

6-17

Best Metric

3

2.5

2 •

1.5

1

0.5
5

10

Range
15

Figure 6.13 Performance metrics of controllers trained on sine-spaced SISO data as a func-
tion of the range and number of divisions.

data. Not shown in the figure is the fact that it took more and more attempts to properly train

the ANN as the range of the training data got larger. In fact, even the intermediate metric

results from the intermediate attempts at training the controller had generally increasing

values in correlation with the range. This reflects the fact that the interpolation becomes

more and more approximate in the region near zero as the points are spread out to cover a

larger and larger range. When the training data are clustered with the range of [-0.5,0.5],

even a small number of training vectors were sufficient for the ANN to learn the mapping

with only a few tries.

The cubic spacing results shown in Figure 6.14 further reinforce our understanding

of how a coarse interpolation grid can affect controller performance. In contrast to the sine

spacing function, the cubic spacing function concentrates the training vectors near zero,

which provides a higher density interpolating grid in the region of operation. Consequently,

we do not experience the trend of increased training difficulty with increasing range as was

observed in the sine spacing results. Instead, the results were essentially the same as those

for the evenly-spaced data.

6-18

Best Metric

3 -

2.5 -

2 •

1.5 ^
1 "*^sH

0.5
5

10

Range

Figure 6.14 Performance metrics of controllers trained on cubic-spaced SISO data as a
function of the range and number of divisions.

Perhaps the most difficult SISO data for the ANN to learn the ACC mapping matrix

from was the training data generated using the complex spacing function. In Figure 6.15

we observe that the trained controller consistently failed to complete the task properly

when it was trained on complex data having a small number of training vectors. Failures

are indicated by performance metrics of zero which appear as large dips below £=1 on the

surface plot in Figure 6.15. The "humps" along the divisions=2 edge of Figure 6.15 are

artifacts of the surface fitting routine used to plot the data. In fact, there were no controllers

trained on data having a range other than at 0.5, 5, 10, 15, and 20. Therefore, we determine

that only in the case where the range of the data was very small (i.e. ±0.5) did the controller

properly learn the task from a limited number of training vectors. This again reinforces the

conclusion that training data must not only reflect the proper I/O mapping (i.e. consistent

matrix), but it must also properly cover the input space (i.e. correct distribution).

In the case of the complex-spaced data, they are not only unevenly spaced, as indicated

in Figure 6.10, but they also have a non-zero mean, w, value for each vector component.

The significance of non-zero w was mentioned in Section 6.2.1. The non-zero w becomes

a problem because the measured forces for the edge-mating task are inherently small and

6-19

Best Metric

3

2.5

2

1.5 •

1 -^^

0.5
~5~ ̂ 2

10

Range

»A—

15

Figure 6.15 Performance metrics of controllers trained on complex-spaced SISO data as a
function of the range and number of divisions.

centered near zero. Normalizing those small readings with an improper w that is relatively-

large causes the readings to be skewed off into the less developed part of the I/O mapping

learned by the ANN. As Figure 6.15 shows, a large number of training vectors can be used to

overcome this problem by making sure that even the less-developed parts of the I/O mapping

have sufficient samples to construct the relationship.

Another approach for utilizing training data that have a non-zero w is to augment the

data set so as to force a zero w. A simple way of augmenting the data set is to mirror the

original training vectors about all the axes. Specifically, each component of each original

training input vector is negated, one at a time, along with its corresponding output vector

component. This causes the number of training vectors to increase by a factor of eight, but

the range of maximum to minimum values on each axis is unchanged. Several of the SISO

complex-spacing training data sets were mirrored, trained and tested. Figure 6.16 shows

the resulting improvement as compared with Figure 6.15. Note that there were no mirrored

data tested for any combinations with a range of 0.5, and those combinations were assigned

zero performance metrics to complete the surface plot of Figure 6.16 in a manner consistent

with Figures 6.12 through 6.15. It is also important to remember that, although the number

6-20

Best Metric

Divisions

Range

Figure 6.16 Performance metrics of controllers trained on complex-spaced SISO data after
being mirrored about all axes as a function of the range and number of divi-
sions. Note that no controllers were trained on data with a range of 0.5, so
they are artificially assigned zero performance metrics.

of training vectors in the data set was larger by a factor of eight for the mirrored data, the

number of training iterations through the data set was reduced by a factor of eight so as to

maintain a constant number of total training vector exposures for the ANN.

To be sure that the additional number of training vectors was not the reason for the

good performance for controllers trained on mirrored data, the mirrored data sets were sub-

sampled to reduce their sizes by a factor of eight. These subsampled, mirrored training data

files were the same size as the original complex training data files before they were mirrored.

Figure 6.17 shows the results for the ANN controllers trained on those smaller data files. The

results are essentially identical to those for data prior to subsampling, which shows that it is

not the added number of exemplar vectors that improved the performance of the controllers.

The improved performance in Figures 6.16 and 6.17 confirms the mirroring technique as a

valid way of modifying the training data statistics without collecting any additional data.

The success of mirroring on the SISO data is a prelude of the significant success it will

demonstrate when used with the DIDO data, as will be discussed in Section 6.5.2 later.

6-21

Best Metric

3

2.5

2

1.5

1 ^j^n

0.5
^5"*—~—-

10

Range
15

1.06
0.796

0.53
0.265

Divisions

Figure 6.17 Performance metrics of controllers trained on complex-spaced SISO data after
being mirrored about all axes and subsampled back to their original size. The
results are plotted as a function of the range and number of divisions.

6.2.2.1 LSMF Technique. As was described in Section 5.4.3, the LSMF

technique is intended to extract the best-fit matrix that a set of trained ANN weights has

learned to emulate. To check the technique's validity, it was first applied to I/O pairs of

training data. Since the training data were perfect examples of the Aa mapping, there

should be little, if any, difference between the fitted matrix, Aa', and the original Aa. This

was, in fact, found to be universally true for SISO training data. All four similarity indexes

described in Section 5.4.4 were identically zero when fitted to the SISO training data.

Having used the SISO training data to validate the method, the LSMF technique was

then applied to the weights from several ANN controllers trained on evenly-spaced SISO

data sets. An example of the results is shown in Figure 6.18 for an LSMF fitting window

size of 200 samples. Although Figure 6.18(a) and (c-d) shows that the ANN learned the

structure of the Aa including the ratio between the non-zero elements, it did not properly

learn their overall magnitudes. This is indicated by Figure 6.18(b) and was a common result

when interrogating SISO-trained ANN controllers.

6-22

■ Ulf m 1 11
i

600

(d)

Figure 6.18 Matrix similarity indexes for a series of Aa' fitted to the mapping from the
weights trained on evenly-spaced SISO data. Shown is (a) structural similar-
ity, (b) gain similarity, (c) sign similarity, and (d) ratio similarity. Window size
of fitting was 200 samples.

It is important to note that the results in Figure 6.18 can be a function of several param-

eters including the window size for the LSMF routine. Figure 6.19 shows how the similarity

indexes differed when using a fitting window of 600 as compared to Figure 6.18 which used

200. Note that the shape of the structural similarity index, T,, curve is significantly differ-

ent in Figure 6.18(a) and that the peak value of the Ts is slightly less. Figure 6.18(d) also

shows considerable variability in the ratio similarity index, Tr. The sign similarity index,

T±, and the gain similarity index, Tg, were mostly unaffected by the window size used for

the LSMF technique, as shown by comparing Figures 6.18(b) and (c) with Figures 6.19(b)

and (c), respectively. This was found to be true for all of the ANN controllers trained on SISO

data which were evaluated.

It is worth noting that when fitting the original training data, the window size depen-

dency does not exist because all of the data reflect a perfect mapping; constant similarity

indexes result regardless of the window size used. When fitting I/O data taken via the

trained ANN controller, however, the mapping may not be perfectly linear, and it affects

the LSMF results as shown. Although one might be concerned about the task of choosing

6-23

= 0.25

j 0.2
? 0.15

0.1

0.05

0.8

0.6

0.4

0.2

0

-0.2

-0.4

■0.6

-0.8

18.84

18.82

18.8

1
b 18.78

5 18.76

| ""«
& A | 18.72 w \ ä f \ \ ° 18.7

\ ß J v ^~- ~"V 18.68
1 V v^- 18.66

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

(a)

0.00022

0.0002

(b)

,
. 0.00018

' & 0.00016

I 0.00014

J 0.00012
| 0.0001

" 8e-05

6e-05

4e-05

2e-05
0 100 200 300 400 500 600 700) 100 200 300 400 500 600 700

<c> 0»

Figure 6.19 Matrix similarity indexes for the same data as in Figure 6.18, but fit with a
window size of 600 samples.

a proper window size, in the context of SISO data it is difficult to imagine a criterion for

choosing anything less than the full data set available. There are at least two reasons for

this: 1) since the ANN was trained from a static matrix relationship, there is no reason to

look for trends indicating changes of strategy; and 2) the more samples included in T and V,

the better the fit1.

The reason for highlighting this window-size dependency is to illuminate the fact that,

if the mapping is linearly inconsistent, the results of the LSMF technique are affected by the

size of the window. Window-size dependency is a common feature of many signal processing

techniques such as a short-time Fourier transform. It is not considered to be a problem, but,

rather, just another parameter of control when evaluating the trained ANN s. In fact, we

hope to use it to identify a shift in the accommodation strategy during a particular execution

of a task. This will require the data to have a valid time base (or causality) to them, which

is the case only for the RISO, DISO and DIDO data. Therefore, we will investigate its use

1This assumes that all the samples represent a consistent mapping with only small errors. If the data are not
consistent, then increasing the window size may simply add to the confusion, thereby yielding no improvement.

6-24

as a means to evaluate DIDO training data sets for consistency prior to ANN training in a

later section.

As was mentioned in Section 6.2.1, matching the normalization statistics of the mea-

surement data when the controller is implemented to the statistics of the data used for

training is important. For the same reasons, matching statistics is also important for get-

ting a good Aa' when interrogating a trained ANN because the V contained in V of Eq (5.37)

are, in fact, computed outputs. All the considerations presented in Section 6.2.1 therefore

apply to finding a good Aa'. For the ANN to interpolate well requires a well-developed

mapping, and that results from exposing it to a sufficiently rich set of training data. If the

ANN is well-trained with a sufficiently rich set of data, then the LSMF technique will yield

a good Aa' for any representative set of T and V. Fortunately, this limitation does not reflect

badly on the LSMF technique, but, instead, reiterates a known limitation of the ANN due to

training data normalization.

The next investigative step in exercising the LSMF technique was to apply it to the

whole SISO data set to get an overall Aa' which could then be implemented as an ACC matrix

controller. For evaluating the success of this approach, the performance of the trained ANN

controller was used as a comparative benchmark. The hope was that the extracted ACC

matrix controller would behave similarly to the trained ANN controller. For the example

shown in Figure 6.18, the ANN controller achieved a performance metric, (, of 0.985 and

the simulation plots looked almost indistinguishable from those of the original Aa shown in

Figure 6.4. When the LSMF technique was applied to the whole data set, the overall Aa'

extracted was:
0.0000 0.0000 0.0000

Aa' = 0.0000 0.6327 -0.0003 (6.3)

-0.2656 0.0415 632.83

which has a structural similarity index of T,= 0.0723, a gain similarity index of Tg=

187,342.2, a sign similarity index of T±= 0.0, and a ratio similarity index of Tr= 0.0422.

We observe that the magnitudes of the (2,2) and (3,3) elements of this Aa' were 3.16

times larger than in the original Aa. That higher overall gain caused a noisier position

trace, force spikes as shown in Figure 6.20, and a performance metric, C, of 3.584. Thus, we

6-25

see the direct influence of having too large a controller gain on the performance. This was

further validated by setting all the off-diagonal elements of Aa' to zero and confirming that

the controller performance was essentially unchanged. The results shown in Figure 6.20

indicate that the extracted Aa' is not necessarily equivalent to the ANN as a controller.

Additional tests indicated that Aa' was always similar in performance, but never quite as

good as the ANN controller. However, it is important to note that this Aa' was able to

successfully substitute as an ACC controller.

Given that Aa' seems to be an approximate representation of the strategy learned'by

the ANN, it seems reasonable to expect that accommodation matrix controllers using the Aa'

might have the same trends in £ as the ANN controllers from which they are extracted. If

this were true, it would imply that the nonlinearities contained in the ANN are not utilized

when the ANN is controlling the peg. To investigate this, the Aa' extracted from the various

ANN controllers were implemented and their performances were compared to those of their

respective controller using £.

Owing to the fact that the performance metrics for the trained ANN controllers were

quite good, the original performance metric plots shown in Figures 6.12 through 6.14 were

essentially featureless. In comparison, Figures 6.21 through 6.23 show that the perfor-

mance of the Ad degrades tragically as the range increases among the values tested. Even

the distinct performance trend shown for controllers trained on the complex-spaced data in

Figure 6.15 is not recreated by their corresponding Aa' ACC controllers, as shown in Fig-

ure 6.24. We further observe from comparing Figure 6.25 to Figure 6.24 that mirroring the

complex data only makes the robustness of the extracted Aa' worse.

Overall, we conclude that the £ for the Aj do not have the same trends as the original

ANN controllers when examined in terms of data range and the number of subdivisions

within the range. If there is any consistency, it is that the C, for the Aa' are affected oppositely

by the range when compared to the C for the ANN controllers. The most robust Aa' controllers

were those extracted from ANN controllers trained on complex-spaced data. Therefore, we

conclude that we cannot use the performance of the extracted Aa' as a prediction of the

performance of a given ANN controller.

6-26

B,
X

Measured Cartesian Position Measured Cartesian Position

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (sees)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (sees)

(b)

Measured Cartesian Position Tool-frame Force

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (sees)

(c)

nil""'!'"!"

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (sees)

(d)

»1 >

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

Tool-Frame Desired Cartesian Velocity Tool-frame Force

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (sees)

(e)

0

-0.2

-0.4

g -0.6

iD -0.8

-1

-1.2

-1.4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (sees)
(f)

&

30

20

10

0

-10

-20

-30

Tool-Frame Desired Cartesian Velocity Tool-frame Force

fPIffl

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (sees)

(g)

0.05
0.04
0.03
0.02

? 0.01

? ° 5 -0.01
-0.02
-0.03
-0.04
-0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (sees)

(h)

Figure 6.20 Simulation results from implementing the ACC matrix controller derived from
the same weights interrogated using the LSMF technique in Figure 6.18. The
matrix was derived using the LSMF technique on the entire data set.

6-27

Divisions

Figure 6.21 Performance metrics achieved by Aj extracted from ANN controllers trained
oneue/i-distributed SISO data using the LSMF technique. Data are plotted as
a function of range and divisions for comparison to Figure 6.12. Note, however,
the difference in the scale of the Best Metric axis.

Best Metric

200

150

100

50 ^
0 tskssgi

0.5
5

10

Range

§r-

Figure 6.22 Performance metrics achieved by Aa' extracted from ANN controllers trained
on sine-distributed SISO data using the LSMF technique. Data are plotted as
a function of range and divisions for comparison to Figure 6.13. Note, however,
the difference in the scale of the Best Metric axis.

6-28

Best Metric

200

150

100

50

0 -"^äl§

0.5
5

10

Range

83.2
62.7
42.2
21.7

Figure 6.23 Performance metrics achieved by AJ extracted from ANN controllers trained
oncu&ic-distributed SISO data using the LSMF technique. Data are plotted as
a function of range and divisions for comparison to Figure 6.14. Note, however,
the difference in the scale of the Best Metric axis.

Best Metric

200

150 •
100 •
50 - ^g
0 -«§ü

0.5
5

10

Range

27
20.6
14.1
7.67 —-

^

Figure 6.24 Performance metrics achieved by Aj extracted from ANN controllers trained
on compZex-distributed SISO data using the LSMF technique. Data are plotted
as a function of range and divisions for comparison to Figure 6.15. Note,
however, the difference in the scale of the Best Metric axis.

6-29

Best Metric

200

150 -
100 •
50 ■ ^

0 ■<ssä3*

0.5
5

10

Range

Divisions

Figure 6.25 Performance metrics achieved by Aa' extracted using the LSMF technique
from ANN controllers trained on comptet-distributed SISO data after they
were mirrored about all axes. Data are plotted as a function of range and
divisions for comparison to Figure 6.16. Note, however, the difference in the
scale of the Best Metric axis.

We are also interested in whether any of the matrix similarity indexes are well corre-

lated to the performance metric, C, for SISO data. If so, they could be used to predict the

controller performance without actually implementing the controller. It would also provide

insight about the sensitivity of C to variations in Aa. To investigate this, we extract Aa' from

some of the ANN controllers whose performances have been presented, compute their simi-

larity indexes, and plot them. For the evenly distributed training data, whose £ trends are

shown in Figure 6.12, the surface plots of the similarity indexes are shown in Figures 6.26

through 6.28. The sign similarity index, T±, was identically zero for all combinations, so

it is not plotted as a figure. Ts in Figure 6.26 is roughly similar to £ in Figure 6.12, but

the location of the only significant feature is at the wrong combination of range and number

of divisions. In Figure 6.27, Tg is unaffected by subsampling and varies inversely to the

range of data covered. In comparison, the best metric plotted in Figure 6.12 does not vary

significantly with either subsampling or range, so no good correlation is revealed. However,

comparing Figure 6.28 to Figure 6.12 reveals that Tr is highly correlated to the performance

metric for evenly-spaced, SISO-trained ANN controllers.

6-30

Structural Similarity

2.74
2.05
1.37

0.685

Figure 6.26 Matrix structural similarity index, T„ of Aa' extracted from ANN controllers
trained on euen-distributed SISO data using the LSMF technique. Data are
plotted as a function of range and divisions for comparison to Figure 6.12.

Gain Similarity

800

558
419
280
141

Divisions

Figure 6.27 Matrix gain similarity index, Tg, of A' extracted from ANN controllers trained
on eue/i-distributed SISO data using the LSMF technique. Data are plotted as
a function of range and divisions for comparison to Figure 6.12.

6-31

Ratio Similarity

0.0005

7.37e-05
5.53e-05
3.69e-05
1.85e-05

Divisions

Figure 6.28 Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers
trained on even-distributed SISO data using the LSMF technique. Data are
plotted as a function of range and divisions for comparison to Figure 6.12.

The Tr results for ANN controllers trained on the sine spacing function are shown in

Figure 6.31, which should be compared to Figure 6.13. The high correlation between Tr

and C that was evident in the controller trained on evenly-spaced data is not as strong for

the case of sine-spaced data. None of the matrix similarity indexes are well-correlated with

£ for sine-spaced data. Further, when we examine the remaining matrix similarity plots

presented in Figures 6.32 through 6.40, we find no consistent relationship between any of

the matrix similarity indexes and £ for the controllers trained on SISO data.

There are at least two possible explanations for the lack of correlation between the

matrix similarity indexes and £ for the controllers trained on SISO data. First, if there is a

measure of similarity that is consistently correlated to the metric, it may be a combination

of the separate indexes presented. There may be some appropriately weighted sum of T5,

Tg, T±, and Tr which would yield a consistent correlation when plotted beside the metric.

Secondly, it is very possible that the Aa' approximation of the ANN is too rough to yield a

consistent correlation. We certainly know that the ANN has nonlinear mapping capability

at its disposal, and using the linear mapping of Aa' to represent the ANN controller cannot

6-32

Structural Similarity

30
25
20
15 -
10 -

5
0

0.5
5

10

Range
15

Figure 6.29 Matrix structural similarity index, Y„ of Aj extracted from ANN controllers
trained on sme-distributed SISO data using the LSMF technique. Data are
plotted as a function of range and divisions for comparison to Figure 6.13.

Gain Similarity

800

Divisions

Figure 6.30 Matrix gain similarity index, Tg, of A' extracted from ANN controllers trained
on sine-distributed SISO data using the LSMF technique. Data are plotted as
a function of range and divisions for comparison to Figure 6.13.

6-33

Ratio Similarity

0.0005 r

0.000278
0.000209
0.000139
6.95e-05

Divisions

Figure 6.31 Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers
trained on sme-distributed SISO data using the LSMF technique. Data are
plotted as a function of range and divisions for comparison to Figure 6.13.

Structural Similarity

0.503
0.377
0.252
0.126

Divisions

Figure 6.32 Matrix structural similarity index, Ts, of Aa' extracted from ANN controllers
trained on cufeic-distributed SISO data using the LSMF technique. Data are
plotted as a function of range and divisions for comparison to Figure 6.14.

6-34

Gain Similarity

800

446
335
224
113

Divisions

Figure 6.33 Matrix gain similarity index, T«,, of A' extracted from ANN controllers trained
on CK&fc-distributed SISO data using the LSMF technique. Data are plotted
as a function of range and divisions for comparison to Figure 6.14.

Ratio Similarity

0.0005 r

2.26e-06
1.69e-06
1.13e-06
5.64e-07

Divisions

Figure 6.34 Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers
trained on cufeic-distributed SISO data using the LSMF technique. Data are
plotted as a function of range and divisions for comparison to Figure 6.14.

6-35

Structural Similarity

Figure 6.35 Matrix structural similarity index, Ts, of Aa' extracted from ANN controllers
trained on compZes-distributed SISO data using the LSMF technique. Data
are plotted as a function of range and divisions for comparison to Figure 6.15.

Gain Similarity

800 r

350
263
176

89.1

Divisions

Figure 6.36 Matrix gain similarity index, Tg, ofAa' extracted from ANN controllers trained
on compZex-distributed SISO data using the LSMF technique. Data are plotted
as a function of range and divisions for comparison to Figure 6.15.

6-36

0.00036
0.00027
0.00018
9.02e-05

Ratio Similarity

0.0005

0.0004

0.0003

0.0002

0.0001
0 ^

-^ .-■'''

0.5
5

ST/
10

Range

/...
Divisions

Figure 6.37 Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers
trained on compZex-distributed SISO data using the LSMF technique. Data
are plotted as a function of range and divisions for comparison to Figure 6.15.

9.61
7.21
4.81
2.4

Structural Similarity

30
25
20
15
10
5
0

0.5
5

10

Range

Z- -

Figure 6.38 Matrix structural similarity index, Tä, of Aa' extracted using the LSMF tech-
nique from ANN controllers trained on compZex-distributed SISO data after
they were mirrored about all axes. Data are plotted as a function of range and
divisions for comparison to Figure 6.16.

6-37

Divisions

Figure 6.39 Matrix gain similarity index, Tg, of Aj extracted using the LSMF technique
from ANN controllers trained on complex-distributed SISO data after they
were mirrored about all axes. Data are plotted as a function of range and
divisions for comparison to Figure 6.16.

5.5e-05
4.13e-05
2.75e-05
1.38e-05

Ratio Similarity

0.0005

0.0004
0.0003

0.0002

0.0001

0

0.5
5 4?

10~*"~

Range

Divisions

20

Figure 6.40 Matrix ratio similarity index, Tr, of Aa' extracted using the LSMF technique
from ANN controllers trained on compZex-distributed SISO data after they
were mirrored about all axes. Data are plotted as a function of range and
divisions for comparison to Figure 6.16.

6-38

capture the nonlinear behavior. If the ANN is utilizing its nonlinear capability to perform

the task, then its performance may well exceed that of a constant, linear, mapping matrix

and the two will never be in full agreement.

Overall, these LSMF results confirm the value of using the LSMF technique to under-

stand how well the ANN has learned to approximate the ACC matrix controller. We pointed

out that the testing data used must have normalization statistics which match those of the

training data, but recognize this as a universal requirement for ANN s. We have shown that

a single LSMF matrix, Aa', taken from the entire testing data set is only an approximation

of what the ANN controller has learned, since the ANN controller is often capable of bet-

ter performance than the Aj. We were unsuccessful in our efforts to correlate indexes of

similarity between the Aj and the original Aa with the performance metrics of the ANN

controllers from which the Aa' were extracted. However, we demonstrated that the LSMF

technique may be used on subsets of a data set. The similarity of the extracted Aa' might

reveal inconsistency in the mapping of the data set before training is attempted. This idea

cannot be fully tested using SISO data because there is not time base to these data, so it will

be investigated further in a later section.

6.2.2.2 UVP Technique. After an ANN completed training, the UVP tech-

nique described in Section 5.4.2 was used to extract an accommodation matrix approxima-

tion, Aa*, to the mapping learned by the ANN. The matrix similarity indexes were then

used to compare A*to the original Aa. As it turns out, the UVP technique was found to be

a very poor method to determine the learned mapping. When applied to the same trained

ANN weights that were interrogated using the LSMF technique to yield the Aa' shown in

Eq (6.3), the UVP technique yielded an Aa* of:

A * =

0.0000 0.0000 0.0000

-0.3643 0.7317 -0.3654

-365.36 -365.09 731.05

(6.4)

which has a structural similarity index of Ts= 266,779, a gain similarity index of Tg=

282,014, a sign similarity index of T±= 0, and a ratio similarity index of Tr= 0.7892.

6-39

This Aa* fails miserably as an ACC controller when implemented. Given the success of

the ANN as a controller and the Aa' of Eq (6.3) as an ACC controller, this indicates that the

UVP technique is not well-suited to interrogating a network to determine its ACC strategy.

Some insight into the failure of the UVP method can be gained by comparing the results

of two ANN s trained on the same set of training data. In one case, the training data are

normalized prior to presentation to the ANN, whereas, with the other case, no normalization

is performed. Upon normalizing for training, the normalization statistics become part of the

ANN controller, as was discussed in Section 6.2.1. As a feature vector is presented to such

an ANN, it is first pre-normalized using the saved statistics from training. This transforms

the vector into a normalized input space as illustrated in Figure 6.11. This transformation

highlights the inappropriateness of using UVP to extract the emulated matrix from an ANN

controller because the original unit vectors are no longer unit length or pointing along the

feature axes. Thus, the premise of the UVP method is compromised.

When the training data are not normalized prior to training, the UVP method may yield

a better match between the Aa* and the original Aa, but it is very difficult to successfully

train an ANN on un-normalized data. Although they usually converged to some set of

weights, they were rarely ever successful as controllers for the edge-mating task.

The poor performance of the UVP method of interrogation is also credited to the fact

that it is only a three-point estimate of a high-dimensional, nonlinear mapping function. It

is probably unrealistic to expect such a simple, sparsely-sampled approach to yield a mean-

ingful insight to the complicated mapping functional used by the ANN. Thus, we conclude

that the UVP method is unsatisfactory for interrogating an ANN, whether it was trained

using normalized training data or not.

6.2.3 SISO Summary. The SISO data has been used to explore the effects of varying

the distribution of the training data on the potential peformance of the ANN controller. The

mean value of the input feature vector components was found to have a significant bearing

on the success of the trained controllers. This was found to be caused by the mismatch

between the normalization statistics which were computed for the training data and those

for the stream of measured forces encountered when the ANN controller was implemented,

6-40

especially the mean of the data. Because the same normalization statistics are used to

pre-normalize the measurement stream as were used with the training data, it is extremely

important that the actual statistics are similar. Otherwise, the ANN may be forced to

attempt to map from an underdeveloped area of the input space, which can lead to poor

results. The mirroring technique was found to significantly mitigate the non-zero mean

problem which most affected the controller performance. This was determined to be feasible

because the input force magnitude for the measurement stream is characteristically low for

the edge mating task.

The LSMF technique for interrogating the ANN did not yield a very reliable estimate

of the performance potential of the controller. The validity of the technique for extracting an

equivalent accommodation matrix was proven by applying it to SISO training data. However,

when interrogating I/O pairs generated by testing an ANN controller, the results were

significantly different. The UVP interrogation technique was found to be less informative

that the LSMF technique and it was summarily abandoned as a result.

6.3 RISO Observations.

As mentioned in Section 5.1.2, there were two sources for collecting the RISO data, the

PUMA manipulator and the simulation. Figure 6.41 shows a typical-looking RISO raw data

file collected via simulation. ANN controllers trained on either simulated or PUMA-based

RISO data had little difficulty in completing the edge-mating task. Figures 6.42 and 6.43

show data captured on the PUMA manipulator while it was under the control of a RISO-

trained ANN controller. The performance is very similar to that of the accommodation matrix

controller on the PUMA, as was depicted in Figures 6.3 and 6.2. These results decisively

prove the capability of the ANN controller to operate on real hardware when trained on RISO

data, but it does not give us much insight about the sensitivity of the controller performance

to the various data processing options that are under consideration. To gain further insight,

the RISO results presented in the following sections were based on raw training data collected

via simulation. In the sections that follow, we will examine the influence of various data

processing methods on the performance of the RISO-trained ANN controllers and continue

our evaluation of the merits and liabilities of the LSMF interrogation technique.

6-41

0 100 200 300 400 500 600 700 800 900
Samples

(a)

0 100 200 300 400 500 600 700 800 900
Samples

(b)

0 100 200 300 400 500 600 700 800 900
Samples

(c)

1

0 100 200 300 400 500 600 700 800 900
Samples

(d)

0 100 200 300 400 500 600 700 800 900
Samples

(e)

fi.

0 100 200 300 400 500 600 700 800 900
Samples

(Ö

Figure 6.41 Sample of raw RISO force and velocity training data collected via simulation.

6-42

0.0025

200 300 400
Samples

(a)

-0.0005
200 300 400

Samples
(d)

3

200 300 400
Samples

(b)

200 300 400
Samples

(e)

S

200 300 400
Samples

(c)

0.01

0

-0.01

-0.02

g -0.03

•§- -0.04

ä -0.05 u

<§ -0.06

-0.07

-0.08

-0.09

-0.1
100

HIT

200 300 400
Samples

(6

500

Figure 6.42 PUMA manipulator completing the edge-mating task under the control of an
ANN controller trained on RISO data starting from a CCW misalignment
angle.

6-43

0 100 200 300 400 500 600
Samples

(a)

0 100 200 300 400 500 600
Samples

(b)

0 100 200 300 400 500
Samples

(e)

600

S

0 100 200 300 4O0 500 600
Samples

(0

0 100 200 300 400 500
Samples

(f)

600

Figure 6.43 PUMA manipulator completing the edge-mating task under the control of an
ANN controller trained on RISO data starting from a CW misalignment angle.

6-44

6.3.1 Effects of Data Processing on RISO controllers. Investigation of the RISO

training gave additional insights about how the distribution of the training data affected

performance and revealed some of the characteristics of several training data generation

procedures described in Section 5.2. After low-pass filtering the data, they look as shown

in Figure 6.44. The input clustering of the RISO data was predictably different than that

of the SISO data sets. Figure 6.45 shows how a raw set of RISO input data looked as a

phase-volume plot. Note that it is remarkably different than the SISO distributions shown

in Figures 6.7 through 6.10. The primary difference is that it is clustered in a sub-region

of the overall input space that was populated in the SISO data sets. We also note that the

character of the RISO data changes when it is low-pass filtered as shown in Figure 6.46,

which, of course, affects the distribution statistics. The distribution statistics, in turn, affect

the performance of the controller in that they should resemble the statistics of the measured

data stream.

6.3.1.1 Low-pass Filtering and Subsampling. In contrast to SISO data vec-

tors, which were arbitrarily ordered as the input space was scanned, the RISO data vectors

were sequentially related by causality. Thus, they contained a time base and it made sense

to attempt some of the time-based data processing steps outlined in Section 5.2. Figure 6.47

shows how subsampling and low-pass filtering affected the controller performance metric, (,

for RISO data. One immediately notices that the best performance (lowest () occurs when

the data are not filtered at all. Before the data are filtered, all of the I/O pairs represent a

desired ACC mapping from F to V. When they are low-pass filtered, the individual vector

components are modified separately, and this modification corrupts the original ACC map-

ping contained in the data. Therefore, it is not surprising that the filtered data generated

a controller which did worse than before. On the other hand, subsampling had no effect on

controller performance. This makes sense in light of the fact that the mapping is unchanged

by processing steps that simply decimate the original data file by dropping vectors rather

than modifying them. Presumably there is an upper bound to subsampling which would start

to cause deteriorative effects if it were exceeded. The bound may have more to do with the

total number of vectors passed through than with the frequency of sampling. Determination

ofthat envelope was outside of the scope of the present work.

6-45

0 100 200 300 400 500 600 700 800 900
Samples

(a)

0 100 200 300 400 500 600 700 800 900
Samples

(b)

0 100 200 300 400 500 600 700 800 900
Samples

(c)

0 100 200 300 400 500 600 700 800 900
Samples

(d)

0 100 200 300 400 500 600 700 800 900
Samples

(e)

I

0 100 200 300 400 500 600 700 800 900
Samples

00

Figure 6.44 RISO data from Figure 6.41 after low-pass filtering it to l/20th of its original
bandwidth.

6-46

Z Torque (Nm)

0.1
X Force (N)

0.1
-0.2

■0.3 Y Force (N)

Figure 6.45 Phase-volume diagram showing distribution of the same raw RISO data pre-
sented in Figure 6.41.

Z Torque (Nm)

0.02

0.1
X Force (N) 0.15

0
■0.1

-0.2
■0.3 Y Force (N)

Figure 6.46 Phase-volume diagram showing distribution of the same filtered RISO data
presented in Figure 6.44.

6-47

Best Metric

Low-pass Cutoff Frequency (Hz) None
Subsampling Pts Skipped

Figure 6.47 Performance metrics of ANN controllers trained on RISO data as a function of
the low-pass cutoff frequency and number of points skipped between subsam-
pling intervals.

6.3.1.2 Velocity Pruning. As described in Section 5.2.3, velocity pruning was

designed to eliminate all I/O pairs in the training data which had ||V|| < Vt. When applied

to the RISO data with VJ=0.05 meter/second, it had little effect on the performance metric as

shown in Figure 6.48, which is consistent with the theory that decimation of a RISO data file

does not corrupt the Aa it presents to the ANN for training. However, if we raise Vt to 0.1

meter/second, the decimation to the RISO data becomes more severe, and it has an impact

on the results as shown in Figure 6.49. The increase of Vt introduces the task termination

problem mentioned in Section 5.2.3. The higher Vt does this by removing enough samples

of low-magnitude output from the RISO data sets that many of the ANN controllers failed

to properly learn how to complete the task. The common mode of failure for those cases

was controller overshoot of the final aligned position. This was particularly evident when

the data had previously been low-pass filtered with a low cutoff frequency. For the data

that had been filtered down to 25 hertz (Hz) in Figure 6.49, the controllers failed to properly

complete the edge-mating task, and were consequently assigned (=0. The failed cases shown

in Figure 6.49 were the result of controllers that never learned to halt motion upon alignment

and, consequently, they overshot the desired position.

6-48

Best Metric

Low-pass Cutoff Frequency (Hz) None Subsampling Pts Skipped

Figure 6.48 Performance metrics of ANN controllers trained on RISO data after velocity
pruning with a threshold of 0.05 m/s. Plotted as a function of the low-pass
cutoff frequency and number of points skipped between subsampling intervals.

Subsampling Pts Skipped

Figure 6.49 Performance metrics of ANN controllers trained on RISO data after velocity
pruning with a threshold of 0.1 m/s. Plotted as a function of the low-pass cutoff
frequency and number of points skipped between subsampling intervals.

6-49

From these data, we conclude that velocity pruning is not very useful if the I/O mapping

is of high quality, as is the case for SISO, RISO, and DISO data sets. We will investigate its

usefulness for processing DIDO data in Section 6.5.2.

6.3.1.3 Hemisphere Pruning. Figure 6.50 shows how the results of Fig-

ure 6.47 are changed after each of the training data sets is hemisphere pruned with a cutoff,

*t, of 86.5 degrees. There is little change in the best metric obtained for each combination of

low-pass filtering and subsampling tested. This indicates that the hemisphere pruning did

nothing to enhance or degrade the usefulness of the data sets. Choosing *t=86.5 degrees

was determined by iteration to be a "crisp" dividing line between excluding just a few vectors

and excluding nearly all of the vectors in the training data. As it turns out, the RISO data

have a very consistent included angle, $, between the F and the V of each sample. This

phenomenon is discussed further in Section 6.3.2 below. The angle is a function of the ratio

between the (2,2) element and the (3,3) element of the Aa used to compute the V from the

F. Therefore, for SISO, RISO, or DISO training data, hemisphere pruning has no beneficial

effect because the data are already consistent from the start.

It is interesting to note that, if one uses TVd rather than Vc as shown in Figure 5.8

for the output for RISO training data, the blended superpositioning of Vn with Vc upon

contact will severely corrupt the crispness of the * and the consistency of the I/O mapping

in the data set. Prior to contact, ^ is undefined because F=0. Once F=2e is exceeded, the

I/O mapping obeys Aa. For the range between F=0 and F=2e, however, the superpositioning

of TVn and TVC to generate TVd could produce I/O pairs having far different $ than those

generated by Aa. Thus, it is not by accident that we have defined our RISO and DISO

outputs to be Vc.

6.3.1.4 Collision Pruning. Collision pruning was applied to each of the RISO

data sets to determine if it offered any potential to repair the deleterious effects of low-pass

filtering. Figure 6.51 shows the results of applying collision pruning with ^=0.05 newtons.

There is no significant difference between the performance of the controllers before and after

collision pruning. This is not unexpected in light of the fact that collision pruning does not

modify the data, but simply removes from the training data file exemplars showing free-

6-50

Low-pass Cutoff Frequency (Hz) None
Subsampling Pts Skipped

Figure 6.50 Performance metrics of ANN controllers trained on RISO data after hemi-
sphere pruning with a threshold of 86.5 degrees. Plotted as a function of the
low-pass cutoff frequency and number of points skipped between subsampling
intervals.

space motion which might reflect a different controller strategy. In the case of the original

RISO data, the free-space motion is a mapping from F=0 to V=0, so the ANN has no problem

coping with it. Thus, no benefit is gained from collision pruning RISO data, though it may

still prove useful for DIDO data.

6.3.2 Included Angle Statistics. The experience with the crisp *t for hemisphere

pruning RISO data described above revealed the fact that most of the raw RISO data had

nearly the same $. The consistency of the $ was a product of the constant Aa and the

narrow range of F in RISO data used to generate the I/O pairs. Given the tight clustering

of the $ for the raw RISO data, the effect of low-pass filtering on the clustering of * was

investigated. The standard deviation of \P, ay, for each training data set was used as a

measure of how tightly clustered the * were. Figure 6.52 shows how the a^ varied as a

function of low-pass filtering cutoff frequency and the number of points skipped between

subsampling intervals. Comparing Figure 6.52 to Figure 6.47 reveals a high degree of

correlation between the performance metric, £, and the a^. In its original raw form (no

6-51

Low-pass Cutoff Frequency (Hz) None
Subsampling Pts Skipped

Figure 6.51 Performance metrics of ANN controllers trained on RISO data after collision
pruning with a threshold of 0.05 and a window size of 1. Plotted as a func-
tion of the low-pass cutoff frequency and number of points skipped between
subsampling intervals.

filtering), the consistency of the Aa mapping is the highest and the a is consequently lowest.

As the degree of filtering increases (i.e. lower cutoff frequency), the ay increases. This

suggests that low-pass filtering injects a form of noise into the originally-clean mapping

between JP and V. This noise, in turn, leads to worse performance for the ANN controller

trained on that data. This trend continues to hold true for RISO data which is velocity

pruned, hemisphere pruned, or collision pruned as shown in Figures 6.53 through 6.56.

Figures 6.52 through 6.56 confirm our expectation that decimation of a data file by

subsampling does not change the ay, significantly. In addition, they show that decimation by

velocity pruning, hemisphere pruning, or collision pruning does not influence the a^ either.

We determine, then, that these data processing steps have no effect on the consistency of the

Aa mapping between the F and the V.

Although the uniformity of the RISO results shown indicates promise for using ay

as a measure of consistency in the Aa mapping for RISO data, we realize that the included

angle is dependent on the input vector as well as the mapping matrix. If we use a perfectly

6-52

Standard Deviation
15-

200 z —-r o
Low-pass Cutoff Frequency (Hz) None

Subsampling Pts Skipped

Figure 6.52 Standard deviation of included angle between F and V in RISO data as a
function of low-pass cutoff frequency and number of points skipped between
subsampling intervals.

Standard Deviation 2.77
2.09
1.42

0.748

Low-pass Cutoff Frequency (Hz) None Subsampling Pts Skipped

Figure 6.53 Standard deviation of included angle between F and V in RISO data as a
function of low-pass cutoff frequency and number of points skipped between
subsampling intervals after velocity pruning with a threshold of 0.05 m/s.

6-53

Low-pass Cutoff Frequency (Hz) None
Subsampling Pts Skipped

Figure 6.54 Standard deviation of included angle between F and V in RISO data as a
function of low-pass cutoff frequency and number of points skipped between
subsampling intervals after velocity pruning with a threshold of 0.1 m/s.

10.7
8.04
5.38
2.72

Low-pass Cutoff Frequency (Hz) None
Subsampling Pts Skipped

Figure 6.55 Standard deviation of included angle between F and V in RISO data as a func-
tion of low-pass cutoff frequency and number of points skipped between sub-
sampling intervals after hemisphere pruning with a threshold of 86.5 degrees.

6-54

Standard Deviation

15-

200
Low-pass Cutoff Frequency (Hz) None

Subsampling Pts Skipped

Figure 6.56 Standard deviation of included angle between F and V in RISO data as a
function of low-pass cutoff frequency and number of points skipped between
subsampling intervals after collision pruning with a threshold of 0.05 using a
window size of 1.

consistent mapping matrix (as is the case for SISO, RISO and DISO data) and compute *

for a whole range of F, we will find that * varies, albeit not enormously. The small range of

F in the RISO data, therefore, enhances the tight clustering of \P for RISO data as compared

to SISO data. This variability with the applied F can mask the perfect consistency of the

underlying mapping matrix. Depending on the F we choose, we can cause the ay to reflect

a poor consistency when, in fact, the mapping is perfect. Therefore, we discard the standard

deviation of the included angle, ay, between F and V as a measure of mapping consistency.

6.3.3 Matrix Similarity Indexes. When applied to RISO training data, the LSMF

technique of interrogating reveals nearly perfect matches between Aa' and Aa. This is

consistent with our experience with SISO training data, confirming that the LSMF technique

is valid for extracting a consistent linear mapping. When LSMF is applied to interrogate

the trained weights of an ANN controller, the similarity of the resulting Aa' is not nearly so

impressive, which is also consistent with our SISO experience. Although the sign similarity

index, T±, was consistently zero, the other indexes were not. This confirms that the ANN is

6-55

Structural Similarity

0.00815
0.00611
0.00407
0.00204

Low-pass Cutoff Frequency (Hz) None

1 Subsampling Pts Skipped

Figure 6.57 Matrix structural similarity index, T,, of Aa' extracted from ANN controllers
trained on RISO data using the LSMF technique. Data are plotted as a func-
tion of low-pass cutoff frequency and number of points skipped between sub-
sampling intervals after velocity pruning with a threshold of 0.05 m/s.

not adhering to a single linear mapping from F to V and the Aa' is only an approximation

of the ANN mapping.

To further reinforce the results obtained with the SISO data, we compute the four

matrix similarity indexes for the Aa' extracted from each of the ANN controllers trained on

RISO data and evaluate their correlation with the performance metric, £• After processing

nearly all of the previously presented RISO-trained controllers, we find that none of the

matrix similarity indexes are well correlated to the performance metric, (, for RISO data, as

shown by comparing Figures 6.57 through 6.65 with Figures 6.48,6.50, and 6.51, respectively.

This lack of correlation confirms our disillusion for using the similarity indexes of Aa' to

predict the performance potential of the ANN controllers without actually implementing

them.

6.3.4 RISO Summary. The RISO data have reinforced the results obtained with

the SISO data. Any of the data processing steps that distorted the originally perfect mapping

of F to V via the Aa of RISO data was found to corrupt the chances of training successful

ANN controllers. Low-pass filtering was determined to be the main culprit in this regard.

6-56

Gain Similarity

Subsampling Pts Skipped

Low-pass Cutoff Frequency (Hz) None

Figure 6.58 Matrix gain similarity index, Tg, of A' extracted from ANN controllers trained
on RISO data using the LSMF technique. Data are plotted as a function of
low-pass cutoff frequency and number of points skipped between subsampling
intervals after velocity pruning with a threshold of 0.05 m/s.

Ratio Similarity

9.11
9.03
8.94
8.86

1 Subsampling Pts Skipped

Low-pass Cutoff Frequency (Hz) None

Figure 6.59 Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers
trained on RISO data using the LSMF technique. Data are plotted as a
function of low-pass cutoff frequency and number of points skipped between
subsampling intervals after velocity pruning with a threshold of 0.05 m/s.

6-57

Structural Similarity

Subsampling Pts Skipped

Low-pass Cutoff Frequency (Hz) None

Figure 6.60 Matrix structural similarity index, Ts, of Aa' extracted from ANN controllers
trained on RISO data using the LSMF technique. Data are plotted as a func-
tion of low-pass cutoff frequency and number of points skipped between sub-
sampling intervals after hemisphere pruning with a threshold of 86.5 degrees.

Gain Similarity

Subsampling Pts Skipped

Low-pass Cutoff Frequency (Hz) None

Figure 6.61 Matrix gain similarity index, Ts, of Aa' extracted from ANN controllers trained
on RISO data using the LSMF technique. Data are plotted as a function of
low-pass cutoff frequency and number of points skipped between subsampling
intervals after hemisphere pruning with a threshold of 86.5 degrees.

6-58

Ratio Similarity

Subsampling Pts Skipped

Low-pass Cutoff Frequency (Hz) None

Figure 6.62 Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers
trained on RISO data using the LSMF technique. Data are plotted as a func-
tion of low-pass cutoff frequency and number of points skipped between sub-
sampling intervals after hemisphere pruning with a threshold of 86.5 degrees.

Structural Similarity

0.00145
0.00109
0.00073

0.000372

0.015

0.01

0.005

0

25

Subsampling Pts Skipped

Low-pass Cutoff Frequency (Hz) None

Figure 6.63 Matrix structural similarity index, Ts, of Aa' extracted from ANN controllers
trained on RISO data using the LSMF technique. Data are plotted as a func-
tion of low-pass cutoff frequency and number of points skipped between sub-
sampling intervals after collision pruning with a threshold of 0.05 N.

6-59

Gain Similarity

Subsampling Pts Skipped

Low-pass Cutoff Frequency (Hz) None

Figure 6.64 Matrix gain similarity index, T3, of Aa' extracted from ANN controllers trained
on RISO data using the LSMF technique. Data are plotted as a function of
low-pass cutoff frequency and number of points skipped between subsampling
intervals after collision pruning with a threshold of 0.05 N.

Ratio Similarity

9.5

9.25

9

8.75

8.5

25

9.15
9.04
8.93
8.82

Subsampling Pts Skipped

Low-pass Cutoff Frequency (Hz) None

Figure 6.65 Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers
trained on RISO data using the LSMF technique. Data are plotted as a
function of low-pass cutoff frequency and number of points skipped between
subsampling intervals after collision pruning with a threshold of 0.05 N.

6-60

The limits of velocity pruning were illustrated when Vt was set too large and the trained

controllers tended to overshoot the final desired alignment position because they had not

been trained on enough data samples to illustrate the terminating condition. During the

course of testing the merits of hemisphere pruning, the possibility of using the standard

deviation of the included angle, a^, appeared to show promise as a means of measuring

the consistency of the I/O mapping in a set of training data, thereby having the potential of

predicting the performance of trained controllers. However, in the end, it was shown that

ay varied as a function of the input vectors used to test a mapping matrix, and therefore

varied even though the matrix was perfectly consistent. None of the data processing steps

that simply removed "bad" data vectors from the data sets had any significant effect on the

trainability and performance of ANN controllers exposed to RISO training data. Since the

RISO data set is already nearly ideal for training an ANN, no improvements were expected.

However, we have also noted that no degradations were introduced, which was not the case

when the data were low-pass filtered. This indicates that simple decimation of a data file

does not corrupt the I/O mapping and the ANN can adequately learn from the data that

remained in the training data sets.

6.4 DISO Observations.

As was mentioned in Section 3.3, the DISO data have the input distribution of DIDO

data and the idealized I/O mapping of the SISO data. Therefore, DISO data is a good resource

for exploring the effect of distribution on the training and implementation of ANN controllers

for the edge-mating task. For the present work, DISO data were important in answering

two particular questions. First, at the outset of attempting to train an ANN controller to

emulate an accommodation matrix controller, one should first establish whether the DIDO

data contain an accommodation matrix control strategy. This question is equivalent to

asking, "Does the human operator use an accommodation strategy when demonstrating the

edge-mating task?" We will investigate this question by comparing the outputs of DISO and

DIDO training data.

The second question to be answered using the DISO data concerns whether the dis-

tribution of DIDO training data is suitable for teaching an ANN controller. As we have

6-61

discovered in the SISO training and testing activity of Section 6.2, the distribution of the

input feature vector, F, can affect the chance for success in training and implementing an

ANN controller even if the I/O mapping is perfect. Thus, by examining the success of DISO

training data, we can decouple the concerns of F distribution from the integrity of the I/O

mapping.

Figure 6.66 shows the difference between the time histories of output from demon-

stration number one of DIDO data collected on the PLIMMS and its corresponding DISO

output. Similar plots for all 10 of the PLIMMS DIDO demonstrations are found starting on

page C-22 in Appendix C.

The example shown in Figure 6.66 shows that both the gain and the strategy of the

human demonstration in the DIDO training data are different from those of the Aa explicitly

embedded in the DISO training data. Whereas the Aa identified an increasing need to recoil

the peg in the negative V-axis direction in response to the increasing magnitude of Fy, the

human simply maintained table contact. The result is a many-to-one mapping of a whole

range of Fy to a small group of Vy. This was also the case, but to a lesser degree, for the uz

component, as shown in Figure 6.66(c). We also note that the rocking of the peg at the end

of the task (indicated by the sign-changing deviations in the Mz curve of Figure Oil from

which Figure 6.66 was derived) passed by the human without response. This also causes a

many-to-one mapping and corrupts the consistency embodied in the DIDO data.

The characteristics described for the example shown in Figure 6.66 are typical of

all the other PLIMMS DIDO data as well. This shows that the human is not utilizing a

consistent accommodation control strategy when demonstrating the edge-mating task. The

author hypothesizes that the human is using additional sensory information, such as vision

and hearing, as well as a full mental model of the task to achieve success. In the DIDO

demonstrations recorded, the operator had full access to vision and hearing. In addition, he

knew by looking where the table surface was located.

Despite the obvious difference in the input distributions of the DISO and RISO training

data, ANN controllers trained on DISO data have no trouble learning the edge-mating task.

In fact, of the 66 ANN controllers trained, none of them failed to complete the task, and

6-62

80 100
Samples

(a)

20 40 60 80 100 120 140 160
Samples

(b)

80 100
Samples

(c)

Figure 6.66 Comparison of (a) Vx, (b) Vs, and (c) uz outputs for DISO and DIDO training
data originally collected as demonstration number 1 on the PLIMMS. See
Figure C.ll for the complete plot of the DIDO data.

6-63

•fi

12 3 4 5 6 7
Demonstration Number

Figure 6.67 Performance metrics of ANN controllers trained on DISO training data.

the worst performance metric was 1.666. Figure 6.67 shows the best performance metric for

each of the 10 DISO training data files transformed from PLIMMS DIDO data. The results

depicted in Figure 6.67 came from training on the raw DISO data with no processing actions

taken.

Figures 6.68 and 6.69 show force and velocity recordings of data taken while an ANN

trained on DISO data was controlling the PUMA manipulator. These plots are proof-positive

that, if the I/O mapping were exactly correct and consistent, an ANN controller could be

trained from DIDO data to perform the edge-mating task.

As another progressive step in understanding the usefulness of the matrix similarity

indexes in screening training data files for consistency prior to training, we apply the LSMF

technique to DISO training data and compute the indexes for various window sizes and

evaluate the results for insights. We start by examining the evolution of the four matrix

similarity indexes for Aj extracted from DISO training data using the LSMF technique,

since it has a perfectly consistent mapping between the input and output vectors. As expected

from our previous experience with SISO and RISO training data, the similarity indexes are

very good. Except for Ts, all the similarity indexes are identically zero regardless of the

6-64

0 50 100 150 200 250 300 350
Samples

(a)

0 50 100 150 200 250 300 350
Samples

(d)

■D

0.03

0 50 100 150 200 250 300 350
ample

(b)

50 100 150 200 250 300 350
Samples

(e)

e

-0.5
50 100 150 200 250 300 350

Samples
(c)

50 100 150 200 250 300 350
Samples

(6

Figure 6.68 Recordings of (a)-(c) forces and (d)-(f) velocities from ANN controllers trained
on DISO training data and implemented on the PUMA manipulator. Peg
rotation was counter-clockwise.

6-65

0 100 200 300 400 500 600 700 800 900
Samples

(a)

0 100 200 300 400 500 600 700 800 900
Samples

(d)

0 100 200 300 400 500 600 700 800 900
Samples

(b)

0.03

0.02

0.01

>
-0.01

-0.02

-0.03
0 100 200 300 400 500 600 700 800 900

Samples
(e)

0 100 200 300 400 500 600 700 800 900
Samples

(c)

0 100 200 300 400 500 600 700 800 900
Samples

Figure 6.69 Recordings of (a)-(c) forces and (d)-(fj velocities from ANN controllers trained
on DISO training data and implemented on the PUMA manipulator. Peg
rotation was clockwise.

6-66

0.012

0.01

0.008

2 0.006
s
a o 0.004
tzi

window=100
window=80
window=60

0 10 20 30 40 50 60 70 80 90
Matrix Samples

Figure 6.70 Matrix structural similarity index, T,, of Aa' extracted from DISO training
data using the LSMF technique. Data are plotted for 3 different fitting window
sizes to show variation.

fitting window size used. Even T, is very small, as shown in Figure 6.70 for a typical

set of DISO training data. The rather erratic shapes of the curves for each window size

in Figure 6.70 are unfortunate, since they jeopardize the chances that subtle changes in

accommodation matrix strategies (as embodied in changes of Aa) can be recognized in the

evolution of Ts. We know that the DISO training data contain no changes in Aa, so any

variations from a constant T, evidenced in DISO data are disruptive in our efforts to identify

Aa changes later in DIDO training data. However, we reserve judgment on the applicability

of the technique for screening DIDO training data until we investigate it fully.

As expected, the interrogation results are much worse for the Aa' extracted from the

ANN weights trained on DISO data. Figures 6.71 through 6.74 present the evolutions of Ts,

Tg, Y±, and Tr, respectively, for three different fitting window sizes ranging from 60 to 100

points for a typical DISO-trained ANN controller. These results are consistent with the poor

results obtained when interrogating ANN controllers trained on SISO and RISO data.

6.4.1 DISO Summary. The DISO data have shown that both the gain and the

strategy of the human demonstration in the DIDO training data are different from those of

6-67

400

1

3 o

C/3

I window=100
I window=80

window=60

0 10 20 30 40 50 60 70 80 90
Matrix Samples

Figure 6.71 Matrix structural similarity index, T,, of Aa' extracted from ANN controllers
trained on DISO data using the LSMF technique.

'S
B

GO

Ü

300

250
\ window-100

* ---] / \ window-80
^^^"~| ..■■'' \/ I window=60 -.-■•"■..

200 /

150 / / F%-- ..--•-•'''
100 \ .'.

50

n i' i i i till!

0 10 20 30 40 50 60 70 80 90
Matrix Samples

Figure 6.72 Matrix gain similarity index, Tg, of Aa' extracted from ANN controllers trained
on DISO data using the LSMF technique.

6-68

i 2

& i
CO

4

.5 r

3

.5

2

.5

1

.5

0
0

window=
window
window

100 —
=80
=60

1

1-

i

■ i i ..i tiii

10 20 30 40 50 60 70 80 90
Matrix Samples

Figure 6.73 Matrix sign similarity index, T±, of Aa' extracted from ANN controllers
trained on DISO data using the LSMF technique.

900

800

p 700

600

bo 500

400
Pi 300

200

100

0

\j i i window-100
jl window=80
;; window-60

■ ■
■
I

1 1 1 1 1 1 L

0 10 20 30 40 50 60 70 80 90
Matrix Samples

Figure 6.74 Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers
trained on DISO data using the LSMF technique.

6-69

the Aa explicitly embedded in the DISO training data. This is proof that the human has not

relied on an accommodation controller mapping to complete the task. Instead, we proposed

that a mental model and additional sensory information besides the sensed contact forces

were used to complete the task. This discovery casts a serious shadow over the feasibility of

using DIDO data for training an ANN to control an accommodation task. In addition, the

significant variability of the four matrix similarity indexes as a function of the matrix fitting

window-size has been found to preclude any chance of using them to evaluate the consistency

of an I/O mapping. When applied to DISO training data, the indexes were expected to be

constant since the mapping matrix never changed. However, this was not found to be the

case.

On the bright side, the DISO results demonstrated that an ANN controller could

overcome any undesireable characteristics of the input feature vector distribution and learn

to successfully perform the edge-mating task if the I/O mapping was perfectly consistent.

This was derived from the successes in both simulation and on the PUMA manipulator

of ANN controllers trained with DISO data. In the next section, the DIDO data will be

investigated to determine if the predictions we have made based on the SISO, RISO, and

DISO data will hold true.

6.5 DIDO Observations.

DIDO data were collected from two different physical systems. The PUMA DIDO data

collection system is described in Section 5.1.4.1 while the PLIMMS DIDO data collection

system is described in Section 4.3. The need for the PLIMMS system arose from the results

obtained using the PUMA system as described below.

6.5.1 DIDO Data Collected From PUMA Manipulator. The original DIDO data

were collected using the PUMA manipulator with the training handles as described in Sec-

tion 5.1.4.1. Ten edge-mating demonstrations were performed, and the force and velocity

data were collected. The raw form of these data is shown in Figures C.l through C.10 start-

ing on page C-2 of Appendix C. For convenience, a plot of demonstration number three is

shown in Figure 6.75. Several attempts were made to process the PUMA DIDO data and

6-70

then train an ANN controller. Groups of six or more of the individual task demonstrations

were combined together into training data files after being individually processed by collision

pruning using a threshold of 1.0 with a window size of 5 points and velocity pruning with

a threshold of 0.20 meters/sec. The resulting controllers were implemented on the PUMA

robot for evaluation. Prior to allowing the manipulator to touch the peg to the rigid table,

the response of the controller was tested in free-space motion by manually applying forces

and torques to the peg. The results of the free-space tests precluded allowing the peg to

contact the table because the ANN controller insisted on rotating the peg, regardless of the

force/torque pair applied. In addition, the ANN controller did not show any tendency to

accommodate the y-axis force at the tip of the peg.

After repeated attempts to retrain and retest the controllers, it was concluded that

the controller may have been doing precisely what it had been shown in the collected data.

When DIDO data were collected on the PUMA, the robot was gravity-compensated to ease

the operator's task. However, despite the compensation, it was still difficult to back-drive

the PUMA through its high-ratio, geared transmission and slow controller servo update rate.

As a result of the effort required to move the PUMA, virtually no sensation of peg-to-table

contact force could be felt. Undeterred, however, the goal-oriented operator still completed

the edge-mating task demonstration based on visual and auditory cues. The measured

velocities demonstrated by the human controller were an end unto themselves rather than

a reaction to a perceived contact force. Regardless of what force existed, the demonstrated

velocity was a rotation of the peg about its contacting corner. Thus, virtually all F mapped

to roughly the same V, which was a rotation about the contacting corner. This is precisely

the behavior of the trained ANN controllers.

To determine whether the matrix similarity indexes can distinguish poor training

data, we interrogated all the PUMA DIDO training data sets to extract a single Aa' from

each. Then the similarity indexes were computed for each Aa' as compared to the Aa given

in Eq (6.1), which was considered representative of a good accommodation matrix for the

PUMA robot controller. The results, shown in Figure 6.76, indicate that demonstration 7 was

the worst match and that demonstration 1, 3, or 4 may be the best. No further testing was

performed on the PUMA DIDO data because it was thought to have more corruptions than

6-71

0.05

0 20 40 60 80 100 120 140
Samples

(a)

0 20 40 60 80 100 120 140
Samples

(d)

■D

0 20 40 60 80 100 120 140
Samples

(b)

0 20 40 60 80 100 120 140
Samples

(e)

E

0.05

0 20 40 60 80 100 120 140
Samples

(c)

0 20 40 60 80 100 120 140
Samples

©

Figure 6.75 Demonstration number 3 of DIDO training data collected on the PUMA
manipulator.

6-72

0,0003

0.00025

2 3 4 5 6 7
Demonstration Number

(»)
3 4 5 6 7

Demonstration Number
(b)

3 4 5 6 7
Demonstration Number

(c)

3 4 5 6 7
Demonstration Number

W)

Figure 6.76 Matrix similarity indexes of Aa' extracted using the LSMF technique from
DIDO training data collected on the PUMA manipulator showing (a) structural
similarity, (b) gain similarity, (c) sign similarity, and (d) ratio similarity.

the PLIMMS DIDO data discussed in the next section. The results shown in Figure 6.76 will

be compared with similar results for the PLIMMS DIDO training data sets that are presented

in the next section to determine which best represented the desired accommodation mapping.

As a point of comparison with the PLIMMS DIDO training data, the mean values for

each component of F collected on the PUMA were computed and are plotted in Figure 6.77.

Notice that there is a significant bias to the mean values, which was shown in the SISO

data investigation to cause difficulty when used as training data. We note, however, that

these DIDO data could be mirrored to correct the bias in the mean values as we will explore

further in the next section.

6.5.2 DIDO Data Collected From PLIMMS.. Based on the hypothesis that the effort

to back-drive the PUMA was corrupting the task demonstration, the PLIMMS mechanism

was designed and built to be a lighter and more easily back-drivable DIDO data collection

system. The system is fully described in Section 4.3. There were 10 sets of DIDO data

collected on the PLIMMS which were studied in detail. Appendix C contains a catalog of

6-73

s
■3

2 3 4 5 6 7
Demonstration Number

10

(a)

3

4 5 6 7
Demonstration Number

(b)

4 5 6 7
Demonstration Number

(c)

Figure 6.77 Mean values for the (a) Fx, (b) Fy, and (c) Mz components of F of the DIDO
data collected on the PUMA manipulator.

6-74

plots showing all 10 of the demonstrations (Figures C. 11 through C.20 starting on page C-12).

For convenience, sample one of the PLIMMS DIDO data is shown in Figure 6.78.

Examination of the PLIMMS DIDO data reveals that it does not reflect proper accom-

modation in the y-axis direction. To display an accommodation relationship, a negative Vy

component would be present when a negative Fy was sensed. The data plots in Figures C.ll

through C.20 do not contain such a relationship. The operator continued to move the peg

into the aligned position using a positive Vy despite the rather large Fy component. The

small magnitude of the Vy component identifies it as the y-axis motion in the tool-frame

coordinates due primarily to the coupling of the translational motion of the peg tip to the

rotation of the peg about its corner in contact with the table. Thus the Vy demonstrated

motion, although it does not depict an accommodation mapping, is inevitable for the task

and the coordinates. The fact that the Fy was large and had no apparent Vy response is

indicative of a controller with a very sluggish response or a large deadband. Either of these

characteristics makes the training data very difficult to learn from.

6.5.2.1 LSMF Investigation. We begin our investigation of the PLIMMS

DIDO data by applying the LSMF matrix interrogation technique to extract Aa' from the

training data and examining the similarity indexes of those Aa'. This was accomplished for

all the DIDO training data configurations described in Table 6.1. The resulting similarity

indexes for the original (raw) PLIMMS DIDO data are shown in Figure 6.79 for comparison

with Figure 6.76. The similarity indexes were computed relative to the Aa given in Eq (6.1)

for the robot accommodation matrix controller. Comparing the results to those shown for

the PUMA DIDO data-in Figure 6.76 indicates the PUMA data has lower (better) values in

general for all four similarity indexes. This indicates that our effort to enable the human op-

erator to better feel the interaction forces during the task may have been counter-productive

in the sense of similarity to the Aa given in Eq (6.1). It is not clear, however, that better sim-

ilarity to the accommodation of Eq (6.1) is a guarantee that better controllers can be trained

from these data. It is an interesting point of comparison, however, and will be discussed

further in Section VII.

6-75

0 20 40 60 80 100 120 140 160
Samples

(a)

0 20 40 60 80 100 120 140 160
Samples
«0

0 20 40 60 80 100 120 140 160
Samples

(b)

-0.04
0 20 40 60 80 100 120 140 160

Samples
(e)

2

1.5

1

0.5

0

-0.5

-1.5

A
\

h^

0 20 40 60 80 100 120 140 160
Samples

(0

0 20 40 60 80 100 120 140 160
Samples

Figure 6.78 Demonstration number 1 of DIDO training data collected on the PLIMMS.

6-76

2 3 4 5 6 7
Demonstration Number

(a)

2 3 4 5 6 7
Demonstration Number

(b)

3 4 5 6 7
Demonstration Number

(e)

3 4 5 6 7
Demonstration Number

(d)

Figure 6.79 Matrix similarity indexes of Aa' extracted using the LSMF technique from
DIDO training data collected on the PLIMMS showing (a) structural similarity,
(b) gain similarity, (c) sign similarity, and (d) ratio similarity.

The similarity data for all the configurations are plotted in Figures 6.80 through 6.83.

These data indicate that demonstration number 5 is the least similar and demonstration

number 7 is the most similar for the majority of the configurations examined. Further,

we observe that the T,, Tg, and T± were essentially unchanged by the 13 different data

processing combinations applied to the data sets. In some of the configurations for demon-

stration numbers 2 and 10, there were sign changes in one element or the other, but we can

distinguish no consistent pattern relating to the usefulness of any single processing step.

When we examine Figure 6.83 in conjunction with the tabulated values of Tr presented

in Table B.16 of Appendix B, we note that the hemisphere pruning at 90-degrees threshold,

$t, caused detrimental effects on demonstrations 8 and 9, while pruning with **= 95 degrees

did not. This is an unexpected effect which we will evaluate further when examining the

performance metrics resulting from implementing the ANN controllers trained on these

data.

The big spike in Figure 6.83 for configuration 6 of demonstration number 2 indicates

that low-pass filtering with too low a cut-off frequency can affect the Aa' extracted from some

6-77

Table 6.1 Key to configuration codes of DIDO training data listed in Figures 6.80 through
6.83.

Code
Coll. Pruned Vel. Pruned Low-pass filtered Hem. Pruned

varied @0.05 m/s @5pts @ lOpts @90° @95°

1
2 X

3 X

4 X

5 X

6 X

7 X

8 X X

9 X X

10 X X

11 X X

12 X X

13 X X

14 X X X

Structural Similarity

0.14
0.106

0.0711
0.0365

Configuration Code
11 12

10

3 Training Data Sample

13 14 »

Figure 6.80 Matrix structural similarity index, T,, for DIDO training data collected on
PLIMMS. Ten different demonstration files are examined as a function of the
data processing steps applied.

6-78

Gain Similarity

4.03e+04
4.02e+04
4.01e+04

4e+04

10

3 Training Data Sample

Configuration Code

Figure 6.81 Matrix^ain similarity index, Tg, for DIDO training data collected onPLIMMS.
Ten different demonstration files are examined as a function of the data pro-
cessing steps applied.

Sign Similarity

3 Training Data Sample

Configuration Code

Figure 6.82 Matrix sign similarity index, T±, for DIDO training data collected on PLIMMS.
Ten different demonstration files are examined as a function of the data pro-
cessing steps applied.

6-79

Ratio Similarity

5.97e+08
4.48e+08
2.99e+08
1.49e+08

10

Training Data Sample

Configuration Code

Figure 6.83 Matrix ratio similarity index, Tr, for DIDO training data collected on
PLIMMS. Ten different demonstration files are examined as a function of
the data processing steps applied.

data files. Examining the original data for demonstration number 2 shown in Figure C.12

reveals nothing unusual to distinguish it from the other DIDO data.

With the matrix similarity indexes of the DIDO training data presented, the results

of training and testing the ANN controllers was investigated to determine if the similarity

indexes provide any insight about preferred training demonstrations. When the PLIMMS

DIDO data sets described by the configuration codes in Table 6.1 were presented for training

and the resulting ANN controllers were implemented in simulation using the DIDO parame-

ters listed in Table 5.2, very few of the controllers could complete the task. Even fewer could

do it with a reasonably stable termination state. Table 6.2 summarizes the results of these

tests.

These performance metric data were too sparse to plot, but Figures 6.84 through 6.87

show the simulation results of the most successful controllers for configurations 3, 10, 11,

and 12, respectively. The plots display acceptable goal positions, but generally contain some

erratic behavior during the task. Each of the controllers was tested from a variety of initial

positions to ensure they had not learned just a single solution for the task. Many of the other

6-80

Table 6.2 Summary of the simulation results for testing the ANN controllers trained on
PLIMMS DIDO data.

Config. Code No. of successes Best Metric

1 0 —

2 0 —

3 1 18.380

4 0 —

5 0 —

6 0 —

7 0 —

8 0 —

9 0 —

10 1 4.175

11 1 4.145
12 2 9.179

13 0 —

14 0 —

controllers that were tested and failed did so because they could only complete the task from

an initial position having a CCW angular position error.

A comparison between the trends of success in Table 6.2 and the plots of the four

similarity indexes presented in Figures 6.80 through 6.83 reveals no apparent correlation

between any of the similarity indexes and the ANN controller successes. Identification of a

correlation is precluded by the fact that there were so few successes with which to correlate.

Even if we had a significant number of successes to work with, we would have to make

the comparisons on a demonstration-by-demonstration basis, i.e. the number of successes

achieved by controllers trained on demonstration 3 compared to the similarity index data of

demonstration 3. In the present case, however, there are too few successes for it to matter.

The erratic motions depicted in Figures 6.86 and 6.87 illustrate motion histories that

would not be possible with a linear accommodation matrix controller. The big jumps can only

be the result of nonlinearities in the controller mapping. Therefore, we consider whether

linear controllers might do a better overall job. To examine this possibility, we used the LSMF

6-81

Measured Cartesian Position Measured Cartesian Position

totMWtirt^^
4 5 6
Time (sees)

(b)

Measured Cartesian Position Tool-frame Force

a

o 1 2 3 4 5 6 7
Time (sees)

(c)

140

120

100

80

60

40

20

0

-20

-40

4 5 6 7
Time (sees)

(d)

i
mmm

Tool-Frame Desired Cartesian Velocity Tool-frame Force

2

2 3 4 5 6 7
Time (sees)

(e)

2

Tool-Frame Desired Cartesian Velocity Tool-frame Force

"St

2 3 4 5 6
Time (sees)

(g)

E

Figure 6.84 Simulation results from the ANN controller trained on PLIMMS DIDO train-
ing data after hemisphere pruning with a threshold of 90 degrees (configura-
tion code 3).

6-82

Measured Cartesian Position

e.
x

Measured Cartesian Position

2 3 4 5 6
Time (sees)

(a)

4 5 6
Time (sees)

(b)

Measured Cartesian Position

3

2

"a

Tool-frame Force

0.03

0.02

0.01

0

-0.01

-0.02

-0.03

-0.04

-0.05

Tool-Frame Desired Cartesian Velocity

1 1 1 1 1 ■ 1 ■

4 5 6
Time (sees)

(e)

Tool-Frame Desired Cartesian Velocity

4 5 6 7
Time (sees)

(g)

s

E
S

2 3 4 5 6
Time (sees)

(d)

0

-50

Tool-frame Force
Ml||[||lffl||

%
-100 1
150

200

250

300 .
4 5 6
Time (sees)

Tool-frame Force

3 4 5 6 7
Time (sees)

(h)

Figure 6.85 Simulation results from the ANN controller trained on PLIMMS DIDO train-
ing data after collision pruning with a threshold of 0.05 and low-pass filtering
using 5.0 points (configuration code 10).

6-83

Measured Cartesian Position Measured Cartesian Position
0.016

4 5 6
Time (sees)

(b)

Measured Cartesian Position Tool-frame Force

12 3 4 5 6 7
Time (sees)

(d)

Tool-Frame Desired Cartesian Velocity Tool-frame Force
0.045
0.04

0.035
0.03

-^ 0.025
ft 0.02

*r 0.015
> 0.01

0.005
0

-0.005
-0.01

it»!
IH||HI

■ ^^
j IliyittiUCBliil'tfHWBLl

11 1
4 5 6
Time (sees)

(e)

-200

-250
4 5 6 7
Time (sees)

(f)

0.4

0.3

0.2

Tool-Frame Desired Cartesian Velocity Tool-frame Force

OS 0.1

0

-0.1

I -0.2

-0.3

-0.4

-0.5

Figure 6.86

Time (sees)
(g)

im ||i||k||
BHHI

.lf)nJ^ 1
4 5 6
Time (sees)

(h)

Simulation results from the ANN controller trained on PLIMMS DIDO train-
ing data after collision pruning with a threshold of 0.05 and low-pass filtering
using 10.0 points (configuration code 11).

6-84

Measured Cartesian Position Measured Cartesian Position

4 5 6 7
Time (sees)

(a)

4 5 6 7
Time (sees)

(b)

Measured Cartesian Position Tool-frame Force

■

\j ■' MI'' mil v

2 3 4 5 6 7
Time (sees)

(d)

2

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

Tool-Frame Desired Cartesian Velocity Tool-frame Force

] iffl J_JI lffplli l^

3 4 5 6 7
Time (sees)

(e)

100

0

-100 r

~ -200

% -300
fc -400

-500

-600

-700

vopfWTFiT^^^ imrow

4 5 6
Time (sees)

(f)

Tool-Frame Desired Cartesian Velocity

4 5 6 7
Time (sees)

(g)

E

25
Tool-frame Force

20

15

10

5

0

-5
vonn -Wimiirrmrmmm vitm mim

-10

-15 •

4 5 6 7
Time (sees)

00

Figure 6.87 Simulation results from the ANN controller trained on PLIMMS DIDO train-
ing data after collision pruning with a threshold of 0.05 and velocity pruning
at 0.05 m/s (configuration code 12).

6-85

Table 6.3 Summary of the simulation results for testing the accommodation matrix con-
trollers using the Aa' extracted from PLIMMS DIDO training data

Config. Code No. of successes Best Metric

1 3 1.059

2 2 1.065

3 1 0.753

4 1 1.041

5 3 1.042

6 2 3.558

7 1 0.748

8 1 0.648

9 1 1.051

10 1 1.052

11 2 2.764

12 1 0.793

13 2 0.740

14 1 0.637

interrogation technique to extract the Aj from each ANN controller and implemented them

as accommodation matrix controllers. The results are presented in Table 6.3.

The performance data in Table 6.3 for the Aj controllers represent a significant im-

provement over that of Table 6.2 for the ANN controller. However, these successes were

still difficult to obtain, as evidenced by the small number of controllers which succeeded

as compared to the 10 controllers tried for each configuration. The fact that the results in

Table 6.3 are overall better than those of Table 6.2 shows that the nonlinear capability of

the ANN controllers is more of a liability than an asset if the training data are not carefully

composed. The fact that the results of Table 6.3 are poor indicates that the DIDO training

data are inadequate representations of the skill needed to complete the task. Based on

our experience with Aa' extracted from SISO, RISO, and DISO data, we know that if the

DIDO data were better representations, more of the Aa' matrices would have succeeded as

accommodation matrix controllers.

The DIDO training and testing results presented also substantiate the conclusion that

velocity pruning is not a helpful data processing step. We observe that configuration codes 7

6-86

Table 6.4 Means and standard deviations for F components of RISO training data.

Component Mean value Std. Dev.

Fx 0.01572 0.03631

Fy -0.07964 0.14555

Mz -0.00260 0.00565

and 12-14 used velocity pruning as one of the processing steps and find the performance of

those controllers are not significantly improved over any of the other controllers. Recalling

the hazard of decimating the exemplar vectors depicting the proper task termination which

was discussed in Section 6.3.1.2, we conclude that velocity pruning is not a viable technique

for improving the performance of controllers trained on DIDO data.

The SISO and RISO controllers identified concerns for both the consistency of the

mapping in the training data and the input feature vector distribution. Although the DISO

results clearly indicated that the input distribution alone could not cause the DIDO-trained

controllers to fail, the possibility of improving the DIDO controllers leads us to try correcting

for any problems in the input distributions of the DIDO training data.

We use the mean and standard deviation of the raw RISO data F as our model with

which to match the DIDO data because we know the RISO data represent our best estimate

of what the input vectors will look like for a successful controller in operation. We are

presently only interested in the means which are presented in Table 6.4 along with the

standard deviations for the RISO data.

These means are very nearly zero, especially when compared to the means of the DIDO

data which are showtrin Figures 6.88 through 6.90 for Fx, Fy, and Mz, respectively. The

tabulated values for these data plots are presented in Table B.15 in Appendix B starting on

page B-15. We conclude that the means of the DIDO training data do not approximate those

expected in the force measurement stream when the controllers are implemented. Especially

the Fy mean values for the DIDO data are much higher than for the RISO data. To address

this condition, we apply the data mirroring technique to force the DIDO training data to

have a zero mean for each component of F.

6-87

F xMean

1 2
° 7 8 o"72r~t^c2~J!Z'J -~ '^P*Z 3 ^Demonstration Number i0iM2^7^r2

Configuration Code 14

Figure 6.88 Mean values for the Fx components of F for DIDO data collected on the
PLIMMS manipulator. Ten different demonstration files are examined as
a function of the data processing steps applied.

F_y Mean

Demonstration Number

Configuration Code
13 14

Figure 6.89 Mean values for the Fy components of F for DIDO data collected on the
PLIMMS manipulator. Ten different demonstration files are examined as
a function of the data processing steps applied.

6-88

0.704
0.219

■0.267
•0.752

10

Demonstration Number

Configuration Code 13 14

Figure 6.90 Mean values for the Mz components of F for DIDO data collected on the
PLIMMS manipulator. Ten different demonstration files are examined as a
function of the data processing steps applied.

Figure 6.91 shows the resulting performance metrics of the ANN controllers that were

training on mirrored DIDO data. The erratic shape of the plot surface conveys no trends

between the configuration of the data tested and the performance metrics. Note that only

configurations 1-6 and 10 were mirrored and tested. The salient feature to note from the

mirroring results is that there were far more successful controllers for each of the seven

tested configurations after mirroring the data than there were prior to mirroring it. In fact,

whereas there were at most two successful controllers resulting from any given configura-

tion prior to mirroring, there were 10-17 successful controllers for each configuration after

mirroring. This indicates that the mirroring technique can indeed have a beneficial effect on

the robustness of training even when we know the mapping itself is poor. We conclude that

the poor results of the original DIDO-trained controllers were a product of both bad input

distribution (large mean values) and the bad I/O-mapping. Data mirroring has resolved at

least part of the detrimental effects of a biased DIDO data set.

6.5.3 DIDO Summary. The DIDO training and testing was not nearly as successful

as SISO, RISO, or DISO. Initial attempts to collect DIDO data using the PUMA manipulator

6-89

14.5
10.9
7.26
3.63

1 ^r^^^^1oiri2iM4-
Configuration Code

Demonstration Number

Figure 6.91 Best performance metric, C, achieved for ANN controllers trained on DIDO
data after they were mirrored. Ten different demonstration files are examined
as a function of the data processing steps applied. Table 6.1 provides the
translations for the configuration codes used. Note that only configuration
codes 1-6 and 10 were mirrored and tested. Other codes are set to zero and
included to enhance plot labeling uniformity.

6-90

resulted in trained ANN controllers which were determined to rotate the peg irregardless

of the contact force state. Attributing this behavior to the fact that the operator could not

really feel the contact forces during demonstration because of the difficulty in back-driving

the PUMA, the PLIMMS was designed and built. The relative ease with which the PLIMMS

could be moved allowed the operator to feel the contact forces and perform the demonstrations

much better. However, even the PLIMMS data does not correctly depict an accommodation

mapping in all the axes required. In particular, the y-axis data was conspicuously lacking

any indication of a compliant response to measured forces. This is a concern that would most

likely be addressed by a change in the controller architecture in future work.

After trying to use the LSMF interrogation technique in concert with the four matrix

similarity indexes to predict the performance potential of the ANN controllers or to evaluate

the quality of the DIDO training data, no confidence was gained in its feasibility. Though

the matrix similarity evaluation of the training data implied that some of the demonstration

samples should be better or worse than others, only a few of the ANN controllers trained

on any of the DIDO data were able to complete the task well enough to earn a performance

metric. The five successful controllers out of the 560 that were trained were not significant

enough to draw any correlations, since they were spread among four different training data

configurations.

Though the ANN controllers were generally impotent, the Aa' extracted from them

were moderately successful. There were 22 successful Aa' controllers for the 140 tested.

This implies that the nonlinearity of the ANN may be degrading its performance in this

linear edge mating task, since the best-fit linear mapping approximation of the Aa' did

better. However, even the performance of the Aa' controllers pale when compared to that of

the ANN controllers trained on mirrored DIDO data. For the mirrored DIDO data, 108 out

of 280 controllers were able to complete the task. This is an order of magnitude improvement

over the results obtained for the original DIDO data. Two corrupting characteristics of the

training data have been shown to have a deleterious effect on training: a biased input vector

distribution and an inconsistent or incorrect I/O mapping. However, the DISO results proved

that a biased input vector distribution can be easily overcome if the I/O mapping is very good.

When compared to the very successful DISO results, the moderate improvement obtained by

6-91

mirroring the DIDO data indicates that the integrity of the I/O mapping is more important

to controller success than the input feature vector distribution. Thus, future effort should

concentrate on establishing the integrity of the I/O mapping in preference to correcting input

bias.

6-92

VII. Conclusions

Although considerable insight has been gained into the difficulties associated with

transferring human skills to robots, our proposed scheme of using an ANN to learn accom-

modation tasks which can be added to a "toolbox" of local autonomy was not found to be

robust. The ANN controllers trained on SISO, RISO, and DISO data had little trouble learn-

ing to complete the edge-mating task in either the simulation or on the actual PUMA robot

manipulator. Despite these successes, in the best case fewer than half of the trained ANN

controllers could perform the task successfully when trained on the DIDO data collected.

Part of the problem was due to the poor quality of demonstration exhibited by the DIDO

data, and part was attributed to characteristics of the ANN architecture used. These defi-

ciencies are detailed below followed by conclusions concerning several of the data processing

options and the results of efforts to use matrix interrogation to screen training data and

predict controller performance.

7.1 Demonstration Data Quality.

The main problem with training ANN controllers from human demonstration is the

poor quality of the required information in the demonstration data. Initial experience with

collecting training data using the PUMA manipulator identified the need for the data collec-

tion system to be as transparent to the operator as possible because difficulty in back-driving

the PUMA completely corrupted the operator's ability to sense the contact forces between

the peg and the table...the very forces to which he was supposed to respond. As a result,

the controller performed in the same way as the human did by rotating the peg regardless

of what force vector was measured. To cope with this problem, the PLIMMS was designed

and built to back-drive more easily and to be lighter so the operator could feel the contact

forces. Though the collected data from the PLIMMS seemed better, there were still several

concerns about the demonstration data which were anticipated in Section 3.3.4. An addi-

tional problem, however, is that additional sensory information beyond the sensed force is

typically used in determining the commanded velocity. This is partly due to the availability

7-1

of Visual and auditory information1. For this simple edge-mating task, the mental model of

the task goal combined with the visual information was enough to completely determine the

motion required.

7.2 Effectiveness of Data Processing Options.

Although clipping training vectors out of a data set using the Lipschitz ratio as a

criterion may improve trainability, Lipschitz clipping is not useful as a criterion for pruning

out training I/O pairs that depict an inconsistent I/O mapping. Consistency in the I/O

mapping was found to be a far more critical feature of the training data than the simple

continuity of the mapping, but since the Lipschitz ratio varies over the input range even

when the I/O mapping is perfectly consistent, there is no benefit from using the Lipschitz

ratio to precondition the training data. In none of the cases tested did Lipschitz clipping

significantly change the success of the trained controller.

Velocity pruning is a technique to reduce the number of training exemplar vectors

which mapped to small magnitude velocities. This technique can prevent the inclusion of

training vectors depicting a many-to-one mapping from F to V. However, choosing the

threshold, Vu is a sensitive decision because too large a Vt can cause all the training vectors

depicting the desired terminal state for the edge-mating task to be lost. ANN controllers

trained on such decimated data files will commonly overshoot the aligned position and fail

to properly complete the task. Thus, velocity pruning is not worthwhile in the form used

for the present work. An enhancement to the velocity pruning algorithm that may make it

more useful would be to prune only the vectors prior to the first alignment of the peg in the

training data file. Detection of alignment might require some innovative technique without

additional sensor data, but the advantage would be that one would no longer have to be

concerned about deleting all the examples of how to terminate the task. Another possible fix

would be to simply reinsert some examples of the terminal condition after velocity pruning

was applied to a training data file. Neither of these ideas was investigated in the present

work.

1 Visual and auditory information could easily be denied the person performing the task when the DIDO data
are collected. See Section VIII for ideas on how this could be accomplished.

7-2

Training normalization allows the ANN to train well, but introduces a significant

problem of matching the training and implementation statistics for the input feature vectors.

This stems from the fact that the same component-wise normalization statistics (mean and

standard deviation) are used to prenormalize the input measurement stream of force data

when the controller is implemented as were computed for the training data. If those statistics

are not proper for the measurement stream, they could force the ANN into an underdeveloped

or never-before-seen region of the input space. Consequently, erratic outputs may occur

which would defeat the performance of the implemented ANN controller. The goal is to

make the training data as similar to (or as representative of) the expected measurement

stream of data as possible. Since the magnitude of the forces proves to be relatively small

for the accommodation matrix controller when implemented, we can approximate the mean

for our measurement stream as zero for the edge-mating task.

Mirroring training data vectors originally having a non-zero mean about all the axes

was shown to improve the performance potential of controllers. This was determined by ex-

ploring the effects of introducing a bias to SISO training data and then mirroring those data,

thereby forcing them to have a zero mean without modifying the mapping. The resulting

ANN controllers trained on these mirrored SISO data were shown to have more successes

and generally better performance metrics than controllers trained on the original biased

data.

The benefits of mirroring was also evaluated for DIDO training data. The original

DIDO training data had significant biases for all the axes of input and output. After mirroring

the data, the number of ANN controllers which could successfully complete the edge-mating

task increased dramatically. This showed that mismatched training and implementation

statistics for the input feature vectors was at least partly to blame for the dismal DIDO

training results. It was not fully to blame, however, because all of the ANN controllers

trained on DISO data sets were able to successfully complete the task. This indicates that

if the I/O mapping of the DIDO data were as consistent and correct as that of the DISO, the

DIDO data would also work well.

7-3

7.3 Matrix Interrogation Investigations.

The ideal scenario of operation presented in Section 1.2 depicted training an ANN

controller using just a few examples of a human demonstration with some appropriate data

preprocessing to ensure the data would result in a successful controller. If we concede that

success cannot necessarily be assured, another possible approach is to handle the uncertainty

by evaluating each trained controller off-line to determine if it will work. Several alternatives

were investigated towards this end. They were based on interrogating the ANN to determine

what kind of accommodation matrix it had learned to emulate. Unfortunately, the ANN

performance could not be fully predicted with either method.

The first method of interrogation, called UVP, was found to be a poor indicator because

it relied on only a 3-point sample of the ANN's I/O mapping to derive the equivalent matrix,

Aa*. In addition, it attempted to use a linear relationship to extract information from a

nonlinear ANN with just those three data points. The problem was further complicated by

the fact that the desired Aa was known to lack full rank. Overall, the UVP method was

useless.

The second matrix interrogation method, called LSMF, was found to work well if

the data it was interrogating represented a consistent linear relationship. It was used to

verify the perfect linear mapping of training data which were synthesized using a given

Aa. However, when applied to I/O pairs generated by testing a trained ANN, the LSMF

method had difficulties. Even if the ANN had been trained on SISO data generated with a

perfectly consistent Aa mapping, the extracted Aa' matrices were not found to be consistently

similar to the original Aa. The similarity of the matrices was judged using four indexes of

similarity we developed which measured the structural similarity, the gain similarity, the

sign similarity, and the ratio similarity2. The results were found to be an intractable function

of the number of I/O pairs taken for each matrix sample fitted as well as a function of the

particular input vectors selected to generate the I/O pairs. The latter dependency was found

to be equivalent to the problem of matching the training data statistics which was mentioned

above.

2See Section 5.4.4 for explanations of the four similarity indexes.

7-4

Given these two observations, synthetic data were used to investigate the potential

of using A a to predict the controller performance of an ANN. This was done by extracting

a single Aa' from an entire set of I/O pairs generated by using the same data used for

training and implementing it as an accommodation matrix controller. The resulting Aa'

could sometimes resemble the performance of the ANN controller, but it could never match

the ANN controller's performance. In most cases, the overall gain of the Aa' was wrong,

even though it was otherwise similar to Aa. In numerous cases, the ANN controllers trained

on synthetic data outperformed even the original Aa used to generate its training data. This

indicated that the ANN controllers were making use of their nonlinear mapping capabilities.

Therefore, the performance of the Aa' is not a reliable prediction of the performance potential

of the ANN controller from which the Aa' was interrogated.

After finding that the Aa' did not reproduce the behavior of the ANN controllers, the

four measures of similarity were examined to see if any of them could predict the perfor-

mance potential of the ANN controller by revealing how close the ANN mapping resembled

Aa. Unfortunately, none of them was shown to have a consistent correlation to the perfor-

mance metric. This is most likely due to the nonlinearity of the ANN which allows it to

maintain a performance edge over the accommodation matrix controllers but complicates

the determination of any consistent correlation.

When combined with the similarity indexes, the LSMF matrix interrogation technique

could not reliably screen training data for I/O mapping consistency either. It was anticipated

that a small matrix fitting window could be used for the interrogation and trends in the

indexes could be evaluated over a particular task demonstration to see if the mapping matrix

approximating the data was consistent. However, the similarity indexes varied considerably

even when applied to DISO data which had a perfectly consistent mapping. Part of the

problem was that fitting window size dependency could not be resolved into a rationale for

selection of the window size.

7.4 ANN Training Difficulties.

Since the ANN architecture and training algorithm were not the focus of this research,

a very simple structure and training method was used. Of course, when using a simple train-

7-5

ing algorithm, one may encounter difficulties in getting the desired training accomplished.

Ultimately, one would like the ANN off-line training to be as rapid and robust as possible

so task skills could be rapidly added to the teleoperator toolbox mentioned in Section 1.2.

The present back-propagation training algorithm is relatively slow and could be improved3.

Part of the difficulty encountered when interrogating trained ANN controllers was that the

results were found to be dependent on the input feature vectors applied to the ANN when

generation the I/O pairs of data to which the LSMF technique was applied. When the input

vectors from the training data were used to generate the I/O pairs, the results were markedly

better than when some other input vectors were used. This indicates that the ANN was not

doing a very good job of generalizing away from the data set it had been trained on. This

is typically a result which stems from either overtraining or too many nodes in the hidden

layer (or both). The possibility of overtraining the ANN was significant since the training

termination criteria was unsophisticated. Each of the controllers were trained for the same

total number of training vector exposures (3,000,000) so for some cases it was probably too

few and for some it may have been too many. In many cases, the results of training were

evaluated using the techniques mentioned in Section 5.4 to ensure quality. However, there

is not doubt room for improvement which could be obtained by using training techniques

which are faster and more robust.

7.5 Summary.

Formulating a simple ANN controller which can watch a typical human perform an

accommodation task a few times and thereby acquire that skill for a robot remains an

elusive goal. This is especially true if we want the trained controller to be able to perform

the demonstrated task at any reachable position in the manipulator's workspace. The desire

for configuration-invariance and generalizability were major criteria for our selection of the

I/O features, the ANN architecture, and the controller configuration. In the end, it appears

that the combination is not able to reliably produce a working controller, though it may

produce some successes. The analysis showed that if the training data faithfully depicted

an accommodation mapping, as is the case for DISO data, then the ANN could be easily

3 See Section VIII for some ideas on how to improve the training speed and reliability.

7-6

trained to successfully control the manipulator, regardless of the input distribution problems

identified for the DIDO data. However, the observable quantities which can be measured

during a human demonstration of the edge-mating task appeared to lack some of the basic

accommodation information that the ANN needs to learn to be successful. Techniques that

reinforce or restore a consistent and correct accommodation mapping to DIDO data will

significantly benefit the feasibility of using the proposed controller development scheme.

Without such a technique, however, the DIDO results showed that simply correcting the

input distribution problem will improve the training and testing performance moderately.

The mirroring technique is a simple way to obtain improved performance without collecting

any additional data.

The analysis presented in this dissertation has identified characteristics of human

demonstration data for accommodation tasks and determined several data processing options

that can improve the chances of success in using an ANN controller to acquire demonstrated

human skills. The ANN controller was shown to work robustly in both simulation and on a

PUMA 562 manipulator when the ANN was trained on synthesized data sets. In addition,

the most profitable future refinements have been identified as those which address improving

the integrity of the I/O mapping exhibited by the training data. With these insights we are

now one step closer to the goal of having an easy technique to transfer human skills to robots

in support of increasing the level of local autonomy for telerobotic systems.

7-7

VIII. Recommendations

The results of this dissertation have shown that more work remains before an ANN con-

troller can reliably acquire even simple accommodation skills from human demonstrations

of a task. Though the road to success seems arduous, the most promising directions of travel

have been identified in the feasibility studies of the present work. This chapter delineates

the first few steps along each path which should be taken to further our understanding.

Alternative controller architectures should be explored within the present ANN paradigm.

Our selection of F as the input and V as the output and expressing those vectors in tool-

frame coordinates was motivated by a desire to have the ANN controller capable of operating

at any point in the workspace. That selection of variables made all the force measurements

and motion commands relative to the current position of the peg and dictated much of the

remaining architecture and methodology explored in the present work. Section VII identi-

fied several problems with DIDO training data that hindered the success of ANN controllers

trained on that data. One of the key faults identified was the lack of accommodation ex-

hibited in the Y-axis. One possible way to cope with the lack of Y-axis accommodation is

to modify the controller architecture to decouple the motion commands that are learned for

each axis and thereby decompose the overall task into smaller subtasks. The outputs of the

subtask controllers could then be superimposed to generate the overall controller command.

Decoupling the motion commands would enable one to implement certain subtasks

as hard-coded controllers if enough a priori information existed about the subtasks. For

instance, the troubling Y-axis accommodation that was not learned from the DIDO data

could be hard-coded as an accommodation, while the Z-axis angular compliance could be

learned for the edge-mating task. This would provide a degree of assured safety in the

requisite compliant behavior of the manipulator while the ANN subtask was simply to

determine the necessary angular alignment motions. For tasks other than edge-mating,

some analysis of the task would be required to determine the proper decomposition such

that only subtasks that are exhibited in the DIDO data were assigned to the ANN controller.

Another suggestion is to leave the nominal velocity, Vn, on during the entire contact

phase of the task rather than turning it off via the blending function presented in Eq (5.47).

8-1

From the DIDO data collected, the ANN controllers were trained to produce small magnitude

velocity components in the Y-axis direction which would tend to stop peg motion. Referencing

Figure 5.8, we note that keeping TVn turned on during contact would be equivalent to

commanding a moderate constant bias force for the terminal state as opposed to the present

controller configuration which tends to have a lower bias force upon task completion. Another

byproduct of this configuration of the controller is that it might tend to keep the peg in contact

with the table surface better during the alignment process, whereas the present controller

typically allows the peg to bounce in and out of contact.

Another quality concern for the DIDO data that was identified in Section VII was that

the human operator was probably using sensory information and a mental model which

are unavailable to the ANN controller. This means that the DIDO data may not contain

enough information for the ANN controller to complete the task, since it was presumably

insufficient for the human. To increase the accommodation fidelity in the DIDO data, a

better system should be configured to collect the DIDO training data. A device such as the

PHANToM™ (built by SensAble Devices, Inc., Vanceburg, KY) should be used to interface

the operator with a computer model of the peg and the task environment. The low-mass and

easy back-driveability of the PHANToM™ would ensure that higher-fidelity force information

was available to the operator when demonstrating the task. Using this system, the operator

would be blindfolded to deny visual feedback and wear headphones emitting masking noise

to deny auditory information. Further, the position and orientation of the table surface

could be randomly varied to deny the operator the benefit of working from a mental model

of where the table was located. This system would then be used to conduct a study to

conclusively determine how much effect the additional sensory information and mental model

had on the quality of the DIDO data. In addition, the computer model of the task would

simplify parameter matching between DIDO data collection and controller implementation

and testing in simulation.

Some of the data integrity concerns that were mentioned in Section 5.6 may be ap-

proached by applying the time shifting and time-delayed inputs feature vectors as mentioned

in Section 5.6 and described in detail in Appendix D. It is possible that the time shifting tech-

nique can improve the integrity of the I/O mapping in the DIDO data by ensuring that the

8-2

proper cause-effect relationship is restored. To properly apply time shifting, one would first

have to determine the correct number of data samples to shift the data. This is a nontrivial

parameter to determine since there are many factors that can affect the signal propagation

and mental processing delay of the human while completing even the simple edge-mating

task. As a first-order approximation, one can assume that the causal time delay is constant

throughout the task execution. If the inertia of the demonstration collection system is small,

then one could begin testing by using the average human choice reaction time to tactile

stimulation, which is approximately 300-400 milliseconds [55]. The time-delayed inputs are

a significant modification to the control algorithm which might preserve the context of the

input force vectors and provide information about the change in the force as well as the cur-

rent force vector. The current results give no particular reason that the context of the force is

important for the edge-mating task, but it may become important for other tasks such as the

chamferless peg insertion which can transition from single-point contact to multiple-point

contact during insertion.

Some difficulty was encountered when training the ANN controllers. This was largely

due to the simplicity of the ANN architecture and training algorithm. The back-propagation

training algorithm used in this work is among the simplest approaches to ANN training in

existence. As a result, it is not a very robust algorithm as compared with some enhanced

back-propagation training techniques which are available. One particular algorithm that

offers much more rapid training is Levenberg-Marquardt optimization which is available as

a function in the Neural Network Toolbox [17] that is part of MATLAB®. It offers much more

rapid training convergence than the gradient decent of back-propagation at the expense of

large memory consumption for large network architectures. For the ANN architecture used

in this research, the network size should not challenge the memory capacity of most common

workstations. In addition to using Levenberg-Marquardt optimization for training, other

methods of terminating the training session should be explored. The present work simply

used a certain total number of training exposures1 which could prematurely end training

1A training exposure is defined here as the presentation of a single I/O pair of data vectors and the corre-
sponding adjustment of ANN weights based on the output error. Thus, 100 training vectors, each seen 200 times
would constitute 20,000 training exposures.

8-3

or, just as likely over train a network. The combination of these two enhancements could

significantly ease the task of training successful controllers.

The ideas presented here represent several avenues of future exploration and en-

hancement of the present algorithm. They could be pursued individually, or one might be

so ambitious as to attempt them all in concert. The probability that the DIDO-trained ANN

controllers resulting from these enhancements will be more successful than those trained

and tested in this dissertation is very good.

8-4

Bibliography

1. Albus, J. "A New Approach to Manipulator Control: The Cerebellar Model Articula-
tion Controller," ASME J. of Dynamic Systems, Measurement and Control, 97:270-277
(1975).

2. Asada, H. "Teaching and Learning of Compliance Using Neural Nets: Representation
and Generation of Nonlinear Compliance." Proc. of the IEEE Int. Conf. on Robotics and
Automation. 1237-1244. May 1990.

3. Asada, H. and H. Hanahusa. "Playback Control of Force Teachable Robots," Trans, of
Society of Instrument and Control Engineers, 15-3 (1979).

4. Asada, H. and H. Izumi. "Direct Teaching and Automatic Program Generation for the
Hybrid Control of Robot Manipulators." Proc. of the IEEE Int. Conf. on Robotics and
Automation. 1401-1406. 1987.

5. Asada, H. and S. Liu. "Transfer of Human Skills to Neural Net Robot Controllers."
Proc. of the IEEE Int. Conf. on Robotics and Automation. 2442-2448. 1991.

6. Asada, H. and B.-H. Yang. "Skill Acquisition From Human Experts Through Pattern
Processing of Teaching Data." Proc. of the IEEE Int. Conf. on Robotics and Automation.
1302-1307. 1989.

7. Barto, A. G., et al. "Associative Search Networks: A Reinforcement Learning Associa-
tive Memory," Biological Cybernetics, 40:201-211 (1981).

8. Benady, M., et al. "Robot Learning of Contact Tasks." Robotic Systems and AMD
Proceedings of the Int. Conf. on CAD/CAM and AMT, edited by G. Halevi. 147-159.
Dec 1990. NTIS Accession No: N93-15303/9/XAB.

9. Buckley, S. J. "Teaching Compliant Motion Strategies," IEEE Trans, on Robotics and
Automation, 5(1):112-118 (February 1989).

10. Burden, R. L. and J. D. Faires. Numerical Analysis (3rd Edition). Boston: Prindle,
Weber, & Schmidt, 1985.

11. Caine, M. E. Chamferless Assembly of Rectangular Parts in Two and Three Dimensions.
MS thesis, Massachussetts Inst. of Tech., 1985. Dept. of Mech. Eng.

12. Caine, M. E., et al. "Assembly Strategies for Chamferless Parts." Proc. of the IEEE Int.
Conf. on Robotics and Automation. 472-477. 1989.

13. Chan, L.-W. and F. Fallside. "An Adaptive Training Algorithm for Back Propagation
Networks," Computer Speech and Language, 2:205-218 (1987).

14. Craig, J. J. Introduction to Robotics: Mechanics and Control (2nd Edition). Addison-
Wesley, 1989.

15. Cybenko, G. "Approximations by Superpositions of a Sigmoidal Function," J. on Math-
ematics of Control, Signals, and Systems, 2:303-313 (1989).

16. De Fazio, T. L., et al. "The Instrumented Remote Center Compliance," The Industrial
Robot, ll(4):238-242 (1984).

BIB-1

17. Demuth, H. and M. Beale. Neural Network TOOLBOX User's Guide. Natick, MA: The
MathWorks, Inc., 1994.

18. DSP Development Corp., One Kendall Square, Cambridge MA 02139. The DADiSP
Worksheet Reference Manual, November 1991.

19. DSP Development Corp., One Kendall Square, Cambridge MA 02139. The DADiSP
Worksheet Workstation User Manual, July 1992.

20. Fu, K. S., et al. Robotics: Control, Sensing, Vision, and Intelligence. McGraw-Hill,
1987.

21. Gullapalli, V. "A Stochastic Reinforcement Algorithm for Learning Real-Valued Func-
tions," Neural Networks, 3:671-692 (1990).

22. Gullapalli, V. "Learning Control Under Extreme Uncertainty." Advances in Neural
Information Processing Systems 5. San Mateo, CA: Morgan Kaufmann, 1993.

23. Gullapalli, V., et al. "Learning Admittance Mappings for Force-Guided Assembly." Proc.
of the IEEE Int. Conf. on Robotics and Automation. 2633-2638. May 1994.

24. Gullapalli, V., et al. "Learning Reactive Admittance Control." Proc. of the IEEE Int.
Conf. on Robotics and Automation. 1475-1480. May 1992.

25. Handelman, D. A., et al. "Integrating Neural Networks and Knowledge-Based Systems
for Robotic Control." Proc. of the IEEE Int. Conf. on Robotics and Automation. 1454-
1460. 1989.

26. Hecht-Nielson, R. Neurocomputing. Addison-Wesley, 1990.

27. Houpis, C. H. and G. B. Lamont. Digital Control Systems: Theory, Hardware, Soßware.
New York: McGraw-Hill, 1985.

28. Hush, D. R. and B. G. Home. "Progress in Supervised Neural Networks: What's New
Since Lippmann," IEEE Signal Processing Magazine, 10(l):8-39 (January 1993).

29. Hush, D. R., et al. "Error Surfaces for Multi-Layer Perceptrons," IEEE Trans, on
Systems, Man and Cybernetics, 22(5) (1992).

30. JR3, Inc., Woodland, CA. JR.3 Universal Force-Moment Sensor System Operation Man-
ual, August 1989.

31. Kitagaki, K, et al. "Methods to Detect Contact State by Force Sensing in an Edge
Mating Task." Proc. of the IEEE Int. Conf. on Robotics and Automation. 701-706. 1993.

32. Lang, K.J., et al. "A Time Delay Neural Network Architecture for Isolated Word Recog-
nition," Neural Networks, 3:23-43 (1990).

33. Leahy, Jr., M. B. ARCADE Users Guide: Version 2.0. Technical Report ARSL-89-4, Air
Force Inst. of Tech., August 1989. Dept. of Elect, and Comp. Eng.

34. Leahy, Jr., M.B., et al. "Evaluation of Dynamic Models for PUMA Robot Control," IEEE
Trans, on Robotics and Automation, 5(2):242-244 (April 1989).

35. Lippmann, R. "An Introduction to Computing with Neural Nets," IEEE Acoustics,
Speech, and Signal Processing Magazine, 4(2):4-22 (April 1987).

BIB-2

36. McCarragher, B. J. and H. Asada. "A Discrete Event Controller Using Petri Nets
Applied to Robotic Assembly: The Desired Velocity Commands." Proc. of the American
Controls Conf.. 2473-2478. 1992.

37. McCarragher, B. J. and H. Asada. "A Discrete Event Approach to the Control of Robotic
Assembly Tasks." Proc. of the IEEE Int. Conf. on Robotics and Automation 1. 331-336.
1993.

38. Nakamura, Y. Theoretical Robotics: Redundancy and Optimization. Addison-Wesley,
1991.

39. Narendra, K. S. and K. Parthasarathy. "Identification and Control of Dynamical Sys-
tems Using Neural Networks," IEEE Trans, on Neural Networks, i(l):4-27 (March
1990).

40. Parsons, T W. Voice and Speech Processing. New York, NY: McGraw-Hill, 1987.

41. Payandeh, S. "Causality and Robotic Contact Tasks Problem," IEEE Trans, on Systems,
Man, and Cybernetics, 22(5):1210-1214 (Sept/Oct 1992).

42. Peshkin, M. A. "Programmed Compliance for Error Corrective Assembly," IEEE Trans,
on Robotics and Automation, 6(4):473-482 (August 1990).

43. Press, W. H., et al. Numerical Recipes in C: The Art of Scientific Computing. Cambridge
Univ. Press, 1988.

44. Rogers, S. K. and M. Kabrisky. An Introduction to Biological and Artificial Neural
Networks for Pattern Recognition, TT 4. SPIE Optical Engineering Press, 1991.

45. Rummelhart, D. E. and J. L. McClelland, editors. Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. MIT Press, 1986.

46. Shahinpoor, M. and H. Zohoor. "Analysis of Dynamic Insertion-Type Assembly for
Manufacturing Automation." Proc. of the IEEE Int. Conf. on Robotics and Automation.
2458-2464. 1991.

47. Sheridan, T. B. Telerobotics, Automation, and Human Supervisory Control. MIT Press,
1992.

48. Spong, M. W. and M. Vidyasagar. Robot Dynamics and Control. John Wiley & Sons,
1989.

49. Tarn, T.J. and A.K. Bejczy. Dynamic Equations for PUMA-560 Robot Arm. Technical
Report SSM-RL-85-02, Washington Univ., St. Louis, MO, July 1985. Dept. of Syst. Sei.
and Math.

50. Unimation Inc. PUMA Mark II Robot 500 Series Equipment Manual, March 1985.

51. Vaaler, E. G. and W. P. Seering. "A Machine Learning Algorithm for Automated Assem-
bly." Proc. of the IEEE Int. Conf. on Robotics and Automation. 2231-2237. 1991.

52. Waibel, A. "Consonant Recognition by Modular Construction of Large Phonemic Time-
Delay Networks." Proc. of IEEE Conf. on Neural Information Processing Systems. 1988.

53. Waibel, A. "Modular Construction of Time-Delay Neural Networks for Speech Recogni-
tion," Neural Computation, 2(l):39-46 (Spring 1989).

BIB-3

54. Wasserman, P. D. Neural Computing: Theory and Practice. Van Nostrand Reinhold,
1989.

55. Whitlow, J. W., et al. "Operator Motor Control." Engineering Data Compendium: Hu-
man Perception and Performance edited by K. R. Boff and J. E. Lincoln, 1841-2011,
Wiley & Sons, 1988.

56. Whitney, D. E. "Quasi-static Assembly of Compliantly Supported Rigid Parts," ASME
J. of Dynamic Systems, Measurement, and Control, 104(3):65-77 (1982).

57. Whitney, D. E. "Part Mating in Assembly." Handbook of Industrial Robots edited by
S. Y. Nof, 1084-1116, Wiley & Sons, 1985.

58. Whitney, D. E. "The Remote Center Compliance." The Encyclopedia of Robotics edited
by S. Y. Nof, New York: John Wiley and Sons, 1988.

59. Whitney, D. E. "A Survey of Manipulation and Assembly." Robotics Science edited by
M. Brady, chapter 8, 291-348, MIT Press, 1989.

60. Whitney, D. E., et al. "Designing Chamfers," Int. J. of Robotics Research, 2(4):3-18
(1983).

61. Whitney, D. E. and J. M. Rourke. "Mechanical Behavior and Design Equations for
Elastomer Shear Pad Remote Center Compliances," ASME J. of Dynamic Systems,
Measurement, and Control, 20S(3):223-232 (1986).

62. Yang, J., et al. Hidden Markov Model Approach to Skill Learning and Its Application to
Telerobotics. Technical Report CMU-RI-TR-93-01, Robotics Institute, Carnegie Mellon
Univ., January 1993. Available via DTIC as A266-989.

BIB-4

Vita

Captain Paul V. Whalen was born on 30 July 1962 in Louisville, Kentucky. In 1980

he graduated as Salutatorian from Jesse Stuart High School in Louisville. In that same

year he entered Purdue University's School of Engineering in West Lafayette, Indiana on

a four-year Air Force ROTC scholarship. While attending Purdue, he was initiated into

the mechanical engineering honorary fraternity, Pi Tau Sigma. He received the degree of

Bachelor of Science in Mechanical Engineering from Purdue in May 1984. Upon graduation

he was designated a distinguished ROTC graduate and received a Regular Air Force com-

mission. His first assignment was to Eglin AFB, Florida in July 1984 where he served as a

Research and Development Test Engineer in the Terminal Effects Branch of the Munitions

Test Division under the 3246th Test Wing. While stationed at Eglin he was awarded the AF

Commendation Medal and the AF Achievement Medal for outstanding service. After three

years of service at Eglin AFB, Capt Whalen was selected to enter the masters degree program

at the Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH. He received the

master of science degree in aeronautical engineering in December 1988 and immediately

entered the doctoral degree program at AFIT. In January 1992 Capt Whalen was assigned

to the Bioacoustics and Biocommunications Division of the Crew Systems Directorate at the

Armstrong Laboratory located at Wright-Patterson AFB. While at Armstrong Laboratory,

he directed the Human Sensory Feedback for Telepresence program conducting research

into the man-machine interface issues of providing force and tactile feedback information

to operators of telerobotic systems and users of virtual reality systems. Capt Whalen is a

registered Professional Engineer in the state of Ohio.

Permanent address: 575 Milan Road
Payneville, KY 40157

VITA-1

Appendix A. Artificial Neural Network Computations.

This appendix will present the feedforward calculations one uses to compute the out-

puts of a MLP ANN and the backward error propagation algorithm used for training the

ANN. The algorithms are presented here in summary form. For a more detailed explanation

of how ANN s operate and explanations of other training algorithms, see [54], [35], [44] or

[28].

Figure 3.5 shows a simple schematic of the MLP ANN used for this dissertation. It

is a fully-connected, two-layer ANN. Fully-connected means that all of the input nodes are

connected to each of the hidden nodes, and all of the hidden nodes are connected to each

of the output nodes. Some authors might call the network depicted in Figure 3.5 a three-

layer ANN. However, this author refers to it as a two-layer ANN because only two of the

three "apparent" layers perform transformations on the data. The input nodes are simply

connections for the input features to be applied and do not perform any transformations on

the data. Networks with additional hidden layers are possible, and in some cases desirable,

but Cybenko showed that any nonlinear mapping can be approximated to an arbitrary

accuracy by choosing enough hidden layer nodes in a simple two-layer network [15]. With

this in mind, we have chosen to limit the architecture of the present network to two layers.

A. 1 Feedforward Computations.

When a vector of input features is presented to the ANN, simple feedforward equations

are used to compute the network output. Since the layers of the network are cascaded, the

computations of each layer can be considered one at a time in turn. Consequently, for the

two-layer network under discussion, the hidden layer computations will be described first

and then those of the output layer will follow.

A. 1.1 Hidden Layer Computations. Each neuron in the hidden layer forms a

weighted sum of the inputs to the neural network. The vector of inputs, F, has k components,

{/i ihihi"--, /*}• For each input, /,, to the jth hidden layer node there is a weight, w,-,-,

that is multiplied by /, and added to a sum for the jth node. If there are m hidden nodes

and k input nodes, the weights can be assembled into a weight matrix, Wh, with m rows

A-l

and k columns while the inputs can be concatenated into a vector, F, of length k. Then the

m-length vector of weighted sums, s, can be written as

s = WhF (A.1)

An m-length vector of bias or offset values, iph, is then added to s to get a new s*. Finally,

in order for Cybenko's theorem mentioned above to be true, at least one layer of the network

must have a nonlinear transfer function applied to its output. For the hidden layer, a

nonlinear activation function, <7/,(-)> operates on each element of s* to generate the n-length

vector of hidden layer outputs, C Mathematically, the output of the hidden layer is

?=gH(?) = 9h(WhF + $h) (A.2)

The nonlinear activation function used for the hidden layer is the sigmoid function1 which

can be expressed as

^ W = TTe^ = l{1 + tanh \x) (A'3)

and is shown in Figure A.l. This nonlinear function is selected because it has a continuous

derivative with a simple expression and it has been used successfully in many applications.

A. 1.2 Output Layer Computations. The computations for the output layer nodes

differ in two ways from those of the hidden layer. First, the dimensions of the output weight

matrix, W0, and the output bias vector, i>0, differ from those of the corresponding variables

for the hidden layer. If there are n output nodes, then the output weight matrix, W0, is

n rows by m columns while the length of the output layer bias vector, ip0, is n. Thus, the

n-length vector of output layer outputs, V, is

V = W0 f + $0 (A4)

Comparing Eqs (A.2) and (A.4), we note that <T, rather than F, is the input for the output

layer.

1 Sometimes the sigmoid function is incorrectly called a logistic function.

A-2

0.75 -

X
$ 0.5

0.25 -

-10 10

Figure A.1 Plot of the nonlinear sigmoid activation function

The second difference in the output layer computations is that the nonlinear activation

function used on the hidden layer is replaced with a unity gain. Networks which try to

classify the input features into one of several discrete output classes commonly use nonlinear

activation functions on the output layer to squash the output and improve class separation.

A unity gain (which is a form of linear activation function) is used on the output of our

network because we want a continuously variable output which is not distorted across its

range of values. Consequently, Eq (A.4), without modification, reflects the final output of the

output layer.

A simple mathematical manipulation can combine Eqs (A.2) and (A.4) to get

V = W0 gh(WhF + i>h) + ^>0 (A.5)

which is the overall vector equation for computing the output of the two-layered network.

A.2 Back Error Propagation Training Algorithm.

Before an ANN controller can be implemented, the weights and biases must be deter-

mined. The process of determining the weights and biases which provide the best input-

output mapping is called training. Training algorithms fall into one of two categories;

A-3

unsupervised and supervised. Unsupervised training does not require apriori knowledge of

the correct network output for each input. Input vectors are presented to the network, and

the network self-organizes by adjusting its weights and biases according to a well-defined

algorithm. For more information on unsupervised training algorithms see [54] or [35].

For supervised training, the correct output vector must be known apriori for each input

feature vector used during training. All supervised training algorithms follow the same basic

process:

• a sample input feature vector is presented to the ANN

• the ANN output is computed with the current weights and biases

■ the computed output is compared to the known correct output

• the weights and biases are then adjusted in such a way as to reduce the difference
between the computed and correct outputs

Prior to beginning the actual training session, training data must be generated. The
-**

training data is generated in the form of input training vectors, F , and their corresponding

output training vectors, V . An input training vector and its corresponding output training

vector concatenated together constitute an exemplar vector, fa, which has a length of (k+ n)

elements.

fa=(F ,V J (A.6)

Note that the T superscript indicates the transpose operator. If there are p training exem-

plars available, then the training data matrix, $, can be formed which has p rows and (k+

n) columns.

' fa

$ =
fa

(A.7)

Once the training data have been generated and assembled into the training data

matrix, one can begin the supervised training session. For a fully-connected multi-layered

perceptron network, there are several supervised training algorithms available. The su-

pervised training algorithm chosen for this research is called back error propagation; or

A-4

backprop for short. The backprop algorithm is the most commonly used and the best char-

acterized algorithm. The backprop training algorithm begins by setting all the weights and

biases to random initial values ranging from -1 to +1. Each exemplar vector, fa, is then

presented to the network one at a time. When each fa is presented, Eq (A.5) is used to

compute V. The output error vector, 60, is then computed as

60 = V -V (A.8)

At each training iteration, the interconnecting weights must be adjusted to reduce error. At

the nth training iteration, the relationship used to adjust the weights to the jth node of the

output layer is

~T
W ij(n + 1) = Wj(n) + rj60 0 <f+ a [wj(n) - Wj{n - 1)] (A.9)

where 77 is the training rate coefficient, a is the training momentum coefficient, j takes

on index values from zero to n, and 0 operator represents an element-by-element vector

multiplication exemplified by

' 1

«1
f \

a2
< ,0 <

02
> = <

a\

On . an , X -
The value of 77 controls how quickly the network will adjust its weights at each iteration

while the value of a controls the network's tendency to continue adjusting the weights in

the same direction. The values for 77 and a are typically between zero and one. Guidance on

choosing good values for r? and a can be found in [13] or [45]. The bias update relationship

for the output layer is

i£0(n + 1) = -tf0(n) + r]S0 + a {rf0{n) - $0(n - 1)J (A. 10)

A-5

As with the feedforward computations, the weight and bias adjustment equations for

the hidden layer differ from those of the output layer. For the hidden layer, the error-related

term, 6h, is computed by

6h = äol60
TW0\ (A.11)

where

O = (f-f©0 (A. 12)

The weights connecting the inputs to the jth node of the hidden layer are then updated

according to

Wj(n + 1) = wj(n) + rjSh QF + a [wj(n) - to,-(n - 1)] (A. 13)

while the bias update relationship for all the nodes of the hidden layer is

$h(n + 1) = tfh(n) + r]6h + a [&(n) - $h(n - 1)] (A.14)

To train the ANN, then, one must use the feedforward calculations in Eq (A. 5) to

compute the output for each training vector input. The output error is then computed

using Eq (A.8) and the output layer weights and biases are updated according to Eqs (A.9)

and (A. 10), respectively. Finally, the hidden layer weights and biases are updated using

Eqs (A. 13) and (A.14), respectively.

A-6

Appendix B. Data Tables

This appendix contains the tabulated values for many of the data plots presented in

the body of this dissertation. They are included for completeness of the results.

B-l

Table B.l Implementation results (best metric) of various distributions of SISO training
data after ensuring a consistent training data exposure was maintained between
the data sets

Ranges
(x,y,z)

Divisions
(x,y,z)

Spacing Function
Even Sine Cubic Complex Mirrored

Figure Ni amber =>■ 6.12 6.13 6.14 6.15 6.16

.5,.5,.5 5,5,5 0.999 0.994 0.999 1.000 N/A

.5,.5,.5 4,4,4 0.994 0.981 0.992 0.995 N/A

.5,.5,.5 3,3,3 0.994 0.986 0.995 0.995 N/A

.5,.5,.5 2,2,2 0.990 0.990 0.982 1.022 N/A

5,5,5 5,5,5 1.345 0.995 1.049 0.983 0.984

5,5,5 4,4,4 1.011 0.975 0.988 1.074 1.010

5,5,5 3,3,3 0.982 0.997 0.991 0.987 0.988

5,5,5 2,2,2 1.027 0.983 0.980 0.0 0.996

10,10,10 5,5,5 0.971 0.991 1.006 1.350 0.986

10,10,10 4,4,4 0.982 0.984 1.054 1.308 1.104

10,10,10 3,3,3 0.994 0.988 0.982 1.014 0.994

10,10,10 2,2,2 1.008 0.993 0.994 0.0 0.987

15,15,15 5,5,5 1.046 1.010 1.115 1.994 0.989

15,15,15 4,4,4 0.985 0.983 1.077 1.071 1.014

15,15,15 3,3,3 0.975 0.986 1.016 1.003 0.984

15,15,15 2,2,2 1.032 0.982 0.973 0.0 1.422

20,20,20 5,5,5 1.023 0.978 1.329 1.180 1.030

20,20,20 4,4,4 1.011 1.088 1.005 0.999 0.990

20,20,20 3,3,3 1.068 0.978 1.116 0.994 0.996

20,20,20 2,2,2 1.276 0.982 0.978 0.0 1.052

B-2

Table B.2 Matrix structural similarity indexes of Aa' extracted from ANN controllers
trained on various distributions of SISO training data.

Ranges
(x,y,z)

Divisions
(x,y,z)

Spacing Function
Even Sine Cubic Complex Mirrored

Figure Number =>- 6.26 6.29 6.32 6.35 6.38

.5,.5,.5 5,5,5 0.002 0.001 0.001 0.003 0.000

.5,.5,.5 4,4,4 0.001 0.005 0.001 0.019 0.000

.5,.5,.5 3,3,3 0.002 0.000 0.000 0.032 0.000

.5,.5,.5 2,2,2 0.003 0.000 0.000 0.006 0.000

5,5,5 5,5,5 0.098 0.052 0.002 1.032 0.094

5,5,5 4,4,4 0.003 0.023 0.001 0.656 0.102

5,5,5 3,3,3 0.106 0.019 0.000 3.707 0.024

5,5,5 2,2,2 0.003 0.015 0.005 0.399 0.068
10,10,10 5,5,5 0.354 25.478 0.042 5.651 1.205
10,10,10 4,4,4 0.156 0.320 0.069 0.979 0.559
10,10,10 3,3,3 0.057 0.043 0.011 11.196 0.211
10,10,10 2,2,2 0.012 0.000 0.107 2.167 0.112

15,15,15 5,5,5 3.885 0.214 0.024 5.794 13.558

15,15,15 4,4,4 0.010 0.166 0.024 12.162 0.508
15,15,15 3,3,3 0.310 0.100 0.005 17.138 1.683
15,15,15 2,2,2 0.065 0.057 0.007 4.336 1.222

20,20,20 5,5,5 0.145 2.480 0.109 10.076 7.890
20,20,20 4,4,4 0.004 0.030 0.380 12.079 0.500
20,20,20 3,3,3 0.184 0.075 0.630 48.649 0.333
20,20,20 2,2,2 0.022 0.014 0.127 7.975 0.018

B-3

Table B.3 Matrixgam similarity indexes of Aa' extracted from ANN controllers trained on
various distributions of SISO training data.

Ranges
(x,y,z)

Divisions
(x,y,z)

Spacing Function
Even Sine Cubic Complex Mirrored

Figure Number =>■ 6.27 6.30 6.33 6.36 6.39

.5,.5,.5 5,5,5 1.870 1.591 2.284 2.417 0.000

.5,.5,.5 4,4,4 1.834 1.577 2.204 2.342 0.000

.5,.5,.5 3,3,3 1.775 1.548 2.077 2.033 0.000

.5,.5,.5 2,2,2 1.666 1.495 1.850 2.114 0.000

5,5,5 5,5,5 18.735 29.044 8.339 6.046 9.693

5,5,5 4,4,4 19.867 29.776 9.952 7.245 10.483

5,5,5 3,3,3 21.863 31.026 12.864 13.941 16.774

5,5,5 2,2,2 26.006 33.378 19.352 12.016 11.847

10,10,10 5,5,5 113.444 163.124 60.471 47.672 67.585

10,10,10 4,4,4 119.181 166.772 69.040 54.594 72.029

10,10,10 3,3,3 128.868 172.686 84.144 89.586 103.897

10,10,10 2,2,2 148.816 183.711 116.554 79.745 78.979

15,15,15 5,5,5 288.389 406.587 160.377 129.095 339.555

15,15,15 4,4,4 301.960 415.100 181.280 145.830 359.823

15,15,15 3,3,3 324.973 428.904 217.858 230.888 501.178

15,15,15 2,2,2 372.413 455.055 295.772 207.072 390.656

20,20,20 5,5,5 543.030 758.838 308.108 250.178 178.570

20,20,20 4,4,4 568.155 774.343 346.630 281.904 189.173

20,20,20 3,3,3 610.338 799.816 414.082 437.940 265.332

20,20,20 2,2,2 696.750 847.335 556.866 394.777 205.578

B-4

Table B.4 Matrix ratio similarity indexes of Aa' extracted from ANN controllers trained
on various distributions of SISO training data.

Ranges
(x,y,z)

Divisions
(x,y,z)

Sp acing Function
Even Sine Cubic Complex Mirrored

Figure Ni umber =>• 6.28 6.31 6.34 6.37 6.40

.5,.5,.5 5,5,5 2.873e-05 2.358e-04 1.071e-06 7.659e-06 0.000e+00

.5,.5,.5 4,4,4 9.600e-09 1.924e-04 9.632e-07 1.124e-04 0.000e+00

.5,.5,.5 3,3,3 2.022e-06 7.186e-06 8.015e-08 3.998e-05 0.000e+00

.5,.5,.5 2,2,2 2.867e-06 4.311e-06 2.822e-06 7.308e-05 0.000e+00

5,5,5 5,5,5 9.851e-05 2.357e-04 3.766e-08 5.032e-07 1.382e-06

5,5,5 4,4,4 8.663e-07 2.037e-04 3.766e-09 4.090e-04 7.621e-05

5,5,5 3,3,3 8.092e-06 3.145e-05 1.284e-08 1.488e-04 2.266e-06

5,5,5 2,2,2 4.972e-08 1.489e-06 1.978e-07 1.010e-05 7.133e-06

10,10,10 5,5,5 5.628e-07 3.510e-04 2.616e-08 1.996e-05 3.450e-06

10,10,10 4,4,4 2.159e-06 1.043e-04 9.422e-08 4.584e-04 2.936e-05

10,10,10 3,3,3 2.243e-07 4.357e-08 8.007e-08 1.462e-04 1.077e-06

10,10,10 2,2,2 4.951e-08 4.132e-08 1.526e-06 1.203e-05 3.035e-06

15,15,15 5,5,5 2.852e-05 1.518e-15 4.650e-08 5.600e-08 2.296e-05

15,15,15 4,4,4 2.667e-08 1.798e-07 3.766e-07 2.049e-04 3.103e-05

15,15,15 3,3,3 1.822e-05 1.746e-07 3.559e-08 3.377e-08 1.363e-06

15,15,15 2,2,2 1.081e-06 2.941e-07 4.337e-07 3.797e-05 4.132e-06

20,20,20 5,5,5 6.237e-08 9.284e-07 2.855e-14 2.836e-07 2.248e-05

20,20,20 4,4,4 1.215e-06 1.227e-05 2.344e-08 3.700e-04 3.630e-07

20,20,20 3,3,3 5.610e-08 4.358e-08 7.712e-15 9.190e-06 1.077e-06

20,20,20 2,2,2 4.469e-07 4.133e-08 2.440e-07 5.345e-06 3.375e-07

B-5

Table B.5 Performance metrics of Aa' extracted using the LSMF method from ANN con-
trollers trained on various distributions of SISO training data.

Ranges
(x,y,z)

Divisions
(x,y,z)

Spacing Function
Even Sine Cubic Complex Mirrored

Figure Ni umber =J- 6.21 6.22 6.23 6.24 6.25

.5,.5,.5 5,5,5 1.206 1.176 1.255 1.275 0.000

.5,.5,.5 4,4,4 1.203 1.172 1.246 1.234 0.000

.5,.5,.5 3,3,3 1.190 1.173 1.227 1.216 0.000

.5,.5,.5 2,2,2 1.194 1.169 1.200 1.232 0.000

5,5,5 5,5,5 3.544 5.110 2.498 2.024 3.067

5,5,5 4,4,4 4.258 6.105 3.135 2.732 2.714

5,5,5 3,3,3 3.527 5.796 3.049 3.774 3.406

5,5,5 2,2,2 4.418 6.271 4.409 3.222 2.947

10,10,10 5,5,5 17.191 30.145 8.410 7.814 10.937

10,10,10 4,4,4 16.343 14.979 8.461 10.207 11.646

10,10,10 3,3,3 7.513 17.760 9.565 15.944 7.947

10,10,10 2,2,2 16.150 16.614 12.476 9.626 11.504

15,15,15 5,5,5 29.093 33.445 15.616 21.830 18.550

15,15,15 4,4,4 15.747 73.018 17.980 20.599 25.033

15,15,15 3,3,3 33.454 84.674 31.700 21.427 28.282

15,15,15 2,2,2 69.851 14.172 28.491 15.027 27.858

20,20,20 5,5,5 139.331 586.678 36.162 17.180 37.454

20,20,20 4,4,4 136.517 33.944 17.942 25.266 38.968

20,20,20 3,3,3 222.767 122.624 17.052 30.068 235.405

20,20,20 2,2,2 441.046 557.987 103.667 33.499 74.757

B-6

Table B.6 Implementation results (best metric) of various configurations of RISO training
data after ensuring a consistent training data exposure was maintained between
the data sets

LP cut-off
Freq. (Hz)

Subsample
Pts. Skipped

Raw
Data

Vel. Pruned Hem. Pruned
@ 86.5 deg

Coll. Pruned
@ 0.05 N @ 0.05 m/s @ 0.1 m/s

Figure]S umber =>■ 6.47 6.48 6.49 6.50 6.51

None None 0.997 0.996 0.997 0.999 0.997

200. None 1.046 1.043 1.046 1.043 1.048

100. None 1.199 1.212 1.090 1.198 1.129

50. None 1.208 1.207 1.355 1.132 1.206

25. None 1.220 1.257 0.0 1.195 1.289

None 1. 1.000 0.997 0.998 0.999 0.998

200. 1. 1.049 1.043 1.051 1.040 1.044

100. 1. 1.129 1.246 1.109 1.124 1.162

50. 1. 1.154 1.199 1.197 1.115 1.143

25. 1. 1.236 1.261 0.0 1.290 1.333

None 2. 0.998 0.999 1.000 1.000 0.998

200. 2. 1.055 1.044 1.051 1.050 1.053

100. 2. 1.131 1.169 1.206 1.111 1.172

50. 2. 1.212 1.303 1.214 1.167 1.282

25. 2. 1.170 1.155 1.402 1.434 1.214

None 3. 0.998 0.999 0.997 0.998 1.001

200. 3. 1.038 1.041 1.034 1.042 1.040

100. 3. 1.145 1.188 1.182 1.137 1.174

50. 3. 1.184 1.211 1.233 1.278 1.452

25. 3. 1.168 1.257 1.214 1.237 1.316

None 4. 1.003 1.002 1.001 1.000 0.998

200. 4. 1.041 1.048 1.043 1.036 1.043

100. 4. 1.126 1.139 1.134 1.118 1.151

50. 4. 1.155 1.167 1.167 1.297 1.311

25. 4. 1.273 1.328 1.230 1.276 1.330

B-7

Table B.7 Included angle standard deviations of various distributions of RISO training
data

LP cut-off
Freq. (Hz)

Subsample
Pts. Skipped

Raw
Data

Vel. Pruned Hem. Pruned
@ 86.5 deg

Coll. Pruned
@ 0.05 N @ 0.05 m/s @ 0.1 m/s

Figure Number =$■ 6.52 6.53 6.54 6.55 6.56

None None 0.162 0.170 0.169 0.159 0.105

200. None 1.137 1.112 0.915 1.310 1.105

100. None 8.400 3.010 1.321 9.784 8.523

50. None 8.019 3.560 1.318 9.516 8.198

25. None 11.204 3.150 0.517 13.275 11.471

None 1. 0.081 0.074 0.072 0.052 0.102

200. 1. 0.998 0.990 1.001 1.151 0.993

100. 1. 8.686 2.896 1.241 10.106 8.884

50. 1. 8.283 3.519 1.271 9.841 8.469

25. 1. 11.285 3.055 0.588 13.370 11.559

None 2. 0.072 0.083 0.083 0.094 0.107

200. 2. 1.025 0.962 0.970 1.182 0.962

100. 2. 8.977 2.628 1.390 10.445 9.192

50. 2. 7.819 3.432 1.210 9.293 8.002

25. 2. 11.226 3.145 0.393 13.307 11.505

None 3. 0.111 0.109 0.109 0.086 0.104

200. 3. 1.037 1.028 1.037 1.196 1.032

100. 3. 7.873 3.184 1.273 9.162 8.061

50. 3. 7.600 3.167 1.104 9.023 7.777

25. 3. 10.767 3.018 0.685 12.774 11.040

None 4. 0.117 0.117 0.117 0.093 0.106

200. 4. 1.672 1.684 0.903 1.949 1.684

100. 4. 7.612 3.046 1.326 8.868 7.806

50. 4. . 7.154 2.873 1.350 8.498 7.327

25. 4. 10.683 3.076 0.459 12.694 10.943

B-8

Table B.8 Matrix structural similarity indexes, Ts, of Aa' extracted from ANN controllers
trained on various distributions of RISO training data

LP cut-off
Freq. (Hz)

Subsample
Pts. Skipped

Vel. Pruned
@ 0.05 m/s

Hem. Pruned
@ 86.5 deg

Coll. Pruned
@ 0.05 N

Figure Number => 6.57 6.60 6.63

None None 0.0016 0.0000 0.0001

200 None 0.0000 0.0000 0.0000

100 None 0.0000 0.0000 0.0000

50 None 0.0000 0.0000 0.0000

25 None 0.0000 0.0003 0.0001

None 0.0003 0.0000 0.0000

200 0.0000 0.0000 0.0000

100 0.0000 0.0000 0.0000

50 0.0000 0.0002 0.0001

25 0.0000 0.0008 0.0003

None 2 0.0007 0.0001 0.0001

200 2 0.0002 0.0002 0.0002

100 2 0.0001 0.0000 0.0000

50 2 0.0000 0.0003 0.0001

25 2 0.0000 0.0028 0.0008

None 3 0.0013 0.0000 0.0000

200 3 0.0003 0.0004 0.0003

100 3 0.0000 0.0001 0.0001

50 3 0.0000 0.0006 0.0002

25 3 0.0000 0.0042 0.0018

None 4 0.0102 0.0009 0.0011

200 4 0.0004 0.0005 0.0004

100 4 0.0001 0.0001 0.0001

50 4 0.0000 0.0006 0.0002

25 4 0.0000 0.0066 0.0018

B-9

Table B.9 Matrix gain similarity indexes, Tg, of Aj extracted from ANN controllers
trained on various distributions of RISO training data

LP cut-off
Freq. (Hz)

Subsample
Pts. Skipped

Vel. Pruned
@ 0.05 m/s

Hem. Pruned
@ 86.5 deg

Coll. Pruned
@ 0.05 N

Figure Number =>• 6.58 6.61 6.64

None None 3.9395 3.9578 3.9542

200 None 3.9859 3.9839 3.9859

100 None 3.9929 3.9905 3.9924

50 None 3.9935 3.9916 3.9928

25 None 3.9946 3.9918 3.9932

None 1 3.9416 3.9550 3.9513

200 1 3.9857 3.9837 3.9857

100 1 3.9928 3.9903 3.9922

50 1 3.9934 3.9911 3.9926

25 1 3.9944 3.9912 3.9927

None 2 3.9405 3.9568 3.9524

200 2 3.9854 3.9837 3.9855

100 2 3.9929 3.9903 3.9923

50 2 3.9934 3.9911 3.9926

25 2 3.9943 3.9906 3.9924

None 3 3.9401 3.9576 3.9535

200 3 3.9863 3.9845 3.9863

100 3 3.9926 3.9901 3.9922

50 3 3.9935 3.9907 3.9923

25 3 3.9942 3.9898 3.9920

None 4 3.9553 3.9556 3.9528

200 4 3.9857 3.9836 3.9856
100 4 3.9926 3.9899 3.9922
50 4 3.9934 3.9906 3.9922
25 4 3.9941 3.9891 3.9919

B-10

Table B.10 Matrix ratio similarity indexes, Tr, of Aa' extracted from ANN controllers
trained on various distributions of RISO training data

LP cut-off
Freq. (Hz)

Subsample
Pts. Skipped

Vel. Pruned
@ 0.05 m/s

Hem. Pruned
@ 86.5 deg

Coll. Pruned
@ 0.05 N

Figure Number =>• 6.59 6.62 6.65

None None 8.9437 9.2398 9.2373

200 None 9.0715 9.0830 9.0753

100 None 8.8768 9.0335 8.8514

50 None 8.8115 8.7052 8.7759

25 None 8.8618 8.6438 8.7068

None 1 9.0180 9.2395 9.2392

200 1 9.0553 9.0698 9.0561

100 1 8.8758 9.0316 8.8511

50 1 8.8217 8.7628 8.8046

25 1 8.8659 8.7567 8.7574

None 2 9.0018 9.2317 9.2274

200 2 9.0205 9.0351 9.0175

100 2 8.8138 9.0106 8.8048

50 2 8.8182 8.7799 8.8154

25 2 8.8481 8.8458 8.8433

None 3 8.9835 9.2347 9.2299

200 3 9.0189 9.0405 9.0128

100 3 8.8115 8.9977 8.7680

50 3 8.8028 8.8016 8.8205

25 3 8.7791 8.9110 8.8940

None 4 9.1936 9.2578 9.2575

200 4 9.0177 9.0404 9.0138

100 4 8.7442 8.9603 . 8.7323

50 4 8.7485 8.7859 8.8051

25 4 8.7861 8.9535 8.9088

B-ll

Table B.ll Overall AJ extracted from each of the PUMA DIDO raw training data files
using the LSMF interrogation technique

Demo. No. A:

1
-0.00057 -0.00030 -0.00082 "

0.00023 -0.00005 -0.00004

-0.00209 0.00136 0.00224

2

0.00044 0.00015 -0.00725 "

-0.00011 -0.00002 0.00105

0.00037 -0.00086 0.03444

3
0.00007 -0.00029 -0.00392 '

0.00089 -0.00003 0.00072

-0.00766 0.00147 0.00985

4
0.00103 0.00068 -0.00344 "

-0.00018 -0.00010 0.00065

-0.00263 -0.00286 0.02196

5
" -0.00266 0.00008 -0.00185 "
-0.00046 0.00012 -0.00043

0.00665 0.00043 -0.01454

6
0.00106 0.00021 -0.00655 "

-0.00017 -0.00003 0.00104

-0.00351 -0.00069 0.02422

7
0.00317 -0.00026 0.00496 "

0.00054 -0.00006 0.00095

-0.01561 0.00136 -0.02451

8
' -0.00013 0.00018 -0.00743 "

0.00000 -0.00002 0.00119

0.00470 -0.00093 0.04162

9
" 0.00100 -0.00028 -0.00414 "

0.00005 -0.00004 -0.00093

0.00359 0.00126 0.03123

-

10
0.00032 0.00009 -0.00426 "

-0.00005 -0.00001 0.00077

0.00025 -0.00053 0.02483

B-12

Table B. 12 Overall Aa' extracted from each of the PLIMMS DIDO training data files using
the LSMF interrogation technique

Demo. No. A '

1

' -0.00135 0.00005 0.00142 "

0.00736 -0.00027 -0.00980

0.15067 -0.00627 -0.16557

2

" -0.00369 0.00008 0.00769 "

-0.00319 -0.00001 0.00269

0.10864 -0.00047 -0.11291

3
" -0.00518 0.00015 0.01520 "

0.01120 -0.00035 -0.02568

0.15823 -0.00544 -0.26036

4

0.00225 0.00011 -0.00840 '

-0.00964 -0.00047 0.02196

0.13838 0.00707 -0.20568

5

" -0.00989 0.00039 0.02243 '

0.02134 -0.00100 -0.04684

0.41555 -0.02037 -0.83286

6
' -0.00061 -0.00005 0.00159 "

-0.00416 -0.00033 0.00639
0.12793 0.00984 -0.20883

7
" 0.00072 -0.00007 -0.00506 "

0.00215 0.00006 0.00284

0.04073 -0.00025 0.05430

8

0.00116 0.00004 -0.00445 "

-0.00487 -0.00017 0.01092

0.10292 0.00274 -0.13587

9
' -0.00080 0.00002 0.00213 "

0.00604 -0.00014 -0.01278

0.11712 -0.00281 -0.22897

10
0.00054 0.00012 -0.00473 "

-0.00219 -0.00017 0.00435

0.04856 0.00193 -0.02489

B-13

Table B. 13 Matrix similarity index data for PUMA DIDO training data files

Config.
Code

Demo.
Number

Structural
Index (Ts)

Gain
Index (Tg)

Sign
Index (Y±)

Ratio
Index (Tr)

Figure > [umber => 6.76(a) 6.76(b) 6.76(c) 6.76(d)

N/A 1 7.385e-06 3.911e-02 2 5.746e+04

N/A 2 5.482e-05 2.741e-02 2 2.727e+06

N/A 3 7.754e-05 3.616e-02 2 4.350e+02

N/A 4 2.891e-05 3.170e-02 2 3.787e+03

N/A 5 5.529e-05 4.603e-02 4 2.699e+04

N/A 6 5.797e-05 3.090e-02 2 3.767e+05

N/A 7 2.814e-04 5.041e-02 6 2.316e+04

N/A 8 7.970e-05 2.508e-02 2 2.041e+06

N/A 9 3.358e-05 2.848e-02 2 1.995e+05

N/A 10 1.922e-05 3.068e-02 2 2.750e+06

Table B. 14 Matrix similarity index data for PLIMMS DIDO training data files

Config.
Code

Demo.
Number

Structural
Index (T3)

Gain
Index (Tg)

Sign
Index (T±)

Ratio
Index (Tr)

Figure Number =$■ 6.79(a) 6.79(b) 6.79(c) 6.79(d)

N/A 1 2.289e-02 1.336e-01 6 1.115e+05

N/A 2 1.189e-02 9.791e-02 6 2.218e+08

N/A 3 2.611e-02 2.119e-01 6 2.035e+05

N/A 4 1.985e-02 1.646e-01 6 2.334e+04

N/A 5 1.763e-01 1.067e+00 6 3.006e+05

N/A 6 1.652e-02 1.671e-01 6 1.254e+05

N/A 7 1.698e-03 2.123e-02 0 3.338e+05

N/A 8 1.076e-02 1.128e-01 6 2.648e+05

N/A 9 1.392e-02 1.840e-01 6 1.814e+06

N/A 10 2.409e-03 5.058e-02 6 1.957e+04

B-14

Table B. 15 Mean values for PLIMMS DIDO training data files
Config. | Demo. Fx Fy Mz

Figure Number => 6.88 6.89 6.90

1 0.41511 -23.91887 0.26592

2 -1.13065 -22.29583 -0.19077

3 0.90491 -31.77127 0.60192

4 -0.20284 -23.78240 -0.38983

5 -0.15275 -23.13363 0.34250

6 -0.16093 -23.00774 -0.64685

7 2.43631 -25.26437 0.75924

8 -1.27663 -23.74945 -0.43093

9 1.74000 -30.15075 0.74141

10 -2.83249 -26.65357 -0.86312

2 1 0.59802 -34.01005 0.38317

2 2 -1.65727 -33.60800 -0.27252

2 3 1.08509 -38.24192 0.72456

2 4 -0.26466 -37.08613 -0.59360

2 5 -0.28003 -38.45847 0.56232

2 6 -0.22083 -32.23373 -0.90160

2 7 3.26566 -33.94432 1.01528

2 8 -1.87447 -34.49514 -0.62658

2 9 2.22526 -39.12806 0.95782

2 10 -3.63958 -34.30371 -1.10854

3 1 -0.26479 -28.40546 0.10227

3 2 -1.29116 -29.11979 -0.20550

3 3 0.54646 -38.95196 0.58512

3 4 -0.04887 -28.41571 -0.43518

3 5 -0.39217 -24.39460 0.28984

3 6 0.12399 -28.84749 -0.71108

3 7 2.23139 -27.37019 0.75396

3 8 -1.33185 -34.54142 -0.57732

3 9 1.32059 -34.70308 0.69860

3 10 -2.82659 -31.74863 -1.01372

4 1 0.51298 -29.04021 0.33549

4 2 -1.59568 -28.21244 -0.29492

4 3 1.14438 -37.81334 0.75337

4 4 -0.33245 -28.64749 -0.50662

4 5 -0.11132 -25.72684 0.40784

4 6 -0.19389 -28.96230 -0.80904

4 7 2.86399 -30.13680 0.90176

4 8 -1.92670 -32.68736 -0.64270

4 9 1.93027 -34.25500 0.81459

4 10 -3.73715 -32.09216 -1.07557

5 1 0.41506 -23.91890 0.26590

5 2 -1.13059 -22.29588 -0.19075

5 3 0.90485 -31.77125 0.60191

5 4 -0.20289 -23.78226 -0.38984

5 5 -0.15280 -23.13343 0.34248

5 6 -0.16088 -23.00774 -0.64683

5 7 2.43629 -25.26432 0.75924

5 8 -1.27658 -23.74955 -0.43092

5 9 1.73999 -30.15069 0.74141

5 10 -2.83286 -26.65369 -0.86328

B-15

Table B.15 Mean values for PLIMMS DIDO training data files (continued)
Config. | Demo. Fx Fy Mz

Figure Number =$> 6.88 6.89 6.90

6 1 0.41516 -23.91957 0.26591

6 2 -1.13005 -22.29626 -0.19050

6 3 0.90486 -31.77098 0.60192

6 4 -0.20312 -23.78230 -0.38987

6 5 -0.15260 -23.13105 0.34244

6 6 -0.16102 -23.00813 -0.64686

6 7 2.43709 -25.26409 0.75950

6 8 -1.27602 -23.75022 -0.43076

6 9 1.74044 -30.15007 0.74157

6 10 -2.83193 -26.65486 -0.86288

7 1 1.53921 -19.34545 0.59258

7 2 -1.41774 -14.41531 -0.35631

7 3 1.80048 -29.75069 0.85656

7 4 -0.89790 -20.76633 -0.60062

7 5 0.27738 -20.69675 0.46187

7 6 -0.71260 -22.05044 -0.79852

7 7 2.94967 -24.88305 0.87424

7 8 -1.84113 -19.41758 -0.53055

7 9 2.77545 -28.55056 1.01424

7 10 -3.40058 -27.63096 -0.92933

8 1 -0.31903 -36.43895 0.13540

8 2 -1.57819 -36.45421 -0.24682

8 3 0.58999 -42.08617 0.63190

8 4 -0.04836 -39.41137 -0.59491

8 5 -0.63347 -39.83915 0.46793

8 6 0.15173 -33.48775 -0.82200

8 7 2.74584 -33.85761 0.92673

8 8 -1.52687 -39.60338 -0.66148

8 9 1.61940 -43.52693 0.87076

8 10 -3.30047 -37.16550 -1.18462

9 1 0.64047 -35.41785 0.41224

9 2 -1.93346 -34.70420 -0.35417

9 3 1.20972 -39.98307 0.79638

9 4 -0.41706 -37.56630 -0.65702

9 5 -0.16442 -39.11510 0.61528

9 6 -0.21725 -33.37898 -0.92938
9 7 3.31867 -35.03005 1.04404

9 8 -2.15755 -36.54513 -0.71877

9 9 2.25847 -40.53931 0.96035

9 10 -4.11287 -35.36126 -1.18391

10 1 0.59779 -34.00834 0.38308
10 2 -1.65716 -33.60705 -0.27248
10 3 1.08499 -38.24069 0.72452

10 4 -0.26442 -37.08355 -0.59353
10 5 -0.28014 -38.45724 0.56228

10 6 -0.22051 -32.23217 -0.90150

10 7 3.26549 -33.94335 1.01525
10 8 -1.87405 -34.49213 -0.62647
10 9 2.22508 -39.12643 0.95777
10 10 -3.63997 -34.30289 -1.10878

B-16

Table B. 15 Mean values for PLIMMS DIDO training data files (concluded)
Conflg. | Demo. Fx Fy Mz

Figure Number =*■ 6.88 6.89 6.90

11 i 0.59699 -34.00050 0.38283

11 2 -1.65566 -33.60176 -0.27193

11 3 1.08489 -38.23153 0.72431

11 4 -0.26329 -37.07680 -0.59321

11 5 -0.28114 -38.43648 0.56142

11 6 -0.21814 -32.21921 -0.90090

11 7 3.26477 -33.92800 1.01512

11 8 -1.87131 -34.48117 -0.62584

11 9 2.22458 -39.12154 0.95778

11 10 -3.63792 -34.30177 -1.10825

12 1 2.46812 -30.93132 0.95416

12 2 -2.54148 -26.58026 -0.63502

12 3 2.20582 -36.55795 1.05274

12 4 -1.45613 -34.89838 -0.99354

12 5 0.46441 -36.50570 0.80799

12 6 -1.04094 -32.18103 -1.16179

12 7 4.28875 -36.25613 1.26795

12 8 -2.88041 -30.05200 -0.82339

12 9 3.49099 -36.23822 1.28390

12 10 -4.03741 -32.78540 -1.10218

13 1 1.74056 -20.77117 0.66804

13 2 -1.48372 -14.76277 -0.37369

13 3 1.85057 -29.50552 0.86942

13 4 -0.88980 -22.03649 -0.62205

13 5 0.44153 -22.55467 0.56118

13 6 -0.87821 -20.97415 -0.82756

13 7 3.02808 -25.31989 0.86814

13 8 -1.81273 -19.03978 -0.52125

13 9 2.87309 -30.48693 1.03728

13 10 -3.69419 -28.89049 -0.98126

14 1 2.71362 -32.26109 1.04398

14 2 -2.62367 -26.82959 -0.65765

14 3 2.31684 -37.04186 1.09192

14 4 -1.43244 -36.55409 -1.01699
14 5 0.71072 -37.26303 0.92286

14 6 -1.33547 -31.86502 -1.25342
14 7 4.38530 -36.70755 1.25319
14 8 -2.86427 -29.75610 -0.81681

14 9 3.42328 -36.57929 1.24239

LiL 10 -4.44194 -34.71557 -1.17878

B-17

Table B. 16 Matrix similarity index data for PLIMMS DIDO training data files
Config. 1

Code |

Demo.

Number

Structural

Index (T 3)

Gain

Index (Tg)

Sign

Index (T±)

Ratio

Index (Tr)

Figure Number => 6.80 6.81 6.82 6.83

1 0.023 40066 6 144632

2 0.012 40045 6 201076800

3 0.026 40104 6 69235

4 0.020 40082 6 315299

5 0.176 40334 6 27558

6 0.017 40084 6 129703

7 0.002 39978 0 18631

8 0.011 40054 6 39892

9 0.014 40092 6 400311

10 0.002 40010 6 729634

2 1 0.023 40066 6 128770

2 2 0.011 40042 4 23486470

2 3 0.026 40103 6 54661

2 4 0.020 40083 6 284697

2 5 0.179 40337 6 28694

2 6 0.017 40084 6 174542

2 7 0.002 39979 0 109435

2 8 0.011 40055 6 34884

2 9 0.014 40092 6 516554

2 10 0.002 40010 6 730552

3 1 0.017 40054 6 15890210

3 2 0.011 40044 4 3751

3 3 0.022 40098 6 7021267

3 4 0.024 40094 6 8839521

3 5 0.103 40237 4 332844

3 6 0.022 40095 6 4084057

3 7 0.002 39984 0 631947

3 8 0.013 40065 6 139824400

3 9 0.010 40077 6 12783970

3 10 0.003 40024 4 2943

4 1 0.023 40061 6 108674

4 2 0.012 40042 4 44292

4 3 0.026 40102 6 109

4 4 0.021 40085 6 223123

4 5 0.152 40295 6 177192

4 6 0.019 40085 6 14518

4 7 0.002 39982 0 226728

4 8 0.011 40052 6 8525

4 9 0.014 40090 6 486786

4 10 0.002 40013 6 131527

5 1 " 0.021 40051 6 254751

5 2 0.012 40044 6 203851600

5 3 0.023 40090 6 139773

5 4 0.019 40074 6 355185

5 5 0.171 40321 6 46237

5 6 0.016 40078 6 123921

5 7 0.002 39970 0 7288

5 8 0.010 40047 6 81084

5 9 0.014 40088 6 314833

5 10 0.002 40001 6 966912

B-18

Table B. 16 Matrix similarity index data for DIDO training data files (continued)
Config.

Code

Demo.

Number

Structural

Index (T s)

Gain

Index (T9)

Sign

Index (T±)

Ratio

Index (Tr)

Figure Number ==> 6.80 6.81 6.82 6.83

6 1 0.018 40031 6 479470

6 2 0.011 40042 6 831231800

6 3 0.018 40059 6 318147

6 4 0.017 40059 6 424839

6 5 0.160 40294 6 64698

6 6 0.016 40070 6 123001

6 7 0.001 39947 0 7030

6 8 0.010 40035 6 142178

6 9 0.013 40081 6 193570

6 10 0.002 39982 2 119159

7 1 0.019 40058 6 159618

7 2 0.007 40020 6 614347

7 3 0.023 40088 6 120399

7 4 0.020 40076 6 465965

7 5 0.159 40307 6 66366

7 6 0.017 40097 6 162819

7 7 0.002 39977 0 629040

7 8 0.010 40039 6 441468

7 9 0.013 40073 6 22615760

7 10 0.002 40000 6 993200

8 1 0.017 40058 6 2982878

8 2 0.011 40044 4 183

8 3 0.022 40098 6 6729135

8 4 0.025 40097 6 1578862

8 5 0.124 40266 6 202372

8 6 0.022 40096 6 1543526

8 7 0.002 39984 0 595311

8 8 0.013 40065 6 143805900

8 9 0.011 40078 6 21272100

8 10 0.003 40024 4 4019

9 1 0.024 40062 6 114428

9 2 0.012 40043 4 52350

9 3 0.026 40102 6 83

9 4 0.022 40087 6 240956

9 5 0.169 40313 6 39562

9 6 0.019 40086 6 35577

9 7 0.002 39983 0 104906

9 8 0.011 40052 6 10064

9 9 0.014 40090 6 539434

9 10 0.002 40013 6 86590

10 1 0.020 40050 6 237524

10 2 0.011 40040 4 20113810

10 3 0.023 40089 6 122843

10 4 0.019 40074 6 323543

10 5 0.173 40324 6 49866

10 6 0.016 40079 6 170925

10 7 0.002 39970 0 609751

10 8 0.010 40047 6 74724

10 9 0.014 40088 6 440862

10 10 0.002 40001 6 968060

B-19

Table B.16 Matrix similarity index data for DIDO training data files (concluded)
Conflg.

Code

Demo.

Number

Structural

Index (Tj)

Gain

Index (T9)

Sign

Index (T±)

Ratio

Index (TV)

Figure Number =>• 6.80 6.81 6.82 6.83

11 1 0.017 40030 6 467674

11 2 0.011 40038 4 12790180

11 3 0.017 40058 6 301678

11 4 0.017 40059 6 389109

11 5 0.162 40297 6 72904

11 6 0.016 40071 6 164792

11 7 0.001 39948 0 373805

11 8 0.010 40035 6 134994

11 9 0.013 40082 6 330879

11 10 0.002 39982 2 155536

12 1 0.019 40058 6 113142

12 2 0.006 40015 6 684125

12 3 0.022 40086 6 104337

12 4 0.020 40077 6 468748

12 5 0.160 40308 6 71357

12 6 0.018 40098 6 199204

12 7 0.002 39978 0 573320

12 8 0.010 40039 6 411195

12 9 0.013 40073 6 9181656

12 10 0.002 40000 6 992373

13 1 0.019 40064 6 199703

13 2 0.007 40019 6 505815

13 3 0.019 40071 6 215178

13 4 0.021 40088 6 361039

13 5 0.158 40301 6 90919

13 6 0.029 39989 0 983908

13 7 0.001 39967 0 270716

13 8 0.009 40039 6 357455

13 9 0.012 40080 6 240272

13 10 0.002 39995 2 880085

14 1 0.019 40063 6 154392

14 2 0.007 40015 6 590524

14 3 0.018 40069 6 199106

14 4 0.021 40087 6 370708

14 5 0.160 40304 6 100159

14 6 0.022 40011 6 938468

14 7 0.001 39968 0 22642390

14 8 0.009 40039 6 319979

14 9 0.012 40079 6 162615

14 10 0.002 39995 2 881359

B-20

Appendix C. Supplemental Data Plots

This appendix contains a catalog of supplemental data plots. Pages C-2 through

C-ll depict the ten sets of DIDO data collected on the PUMA manipulator. Pages C-12

through C-21 depict the ten sets of DIDO collected on the PLIMMS. Pages C-22 through

C-31 depict comparisons between the output vectors ,V, of the PLIMMS DIDO data shown

in Figures C.ll through C.20 and the corresponding computed DISO outputs for the same

input vectors.

C-l

20

-5 -

-10

■

AA,
. - JL.

V
V

50 100 150
Samples

(a)

200 100 150
Samples

(d)

u Tl

-10

-20

-30 ' L || 1 11,11 IIJUIJH U/

g -40

-50

Hl(fltf
-60

-70 /
-80 \Il

50 100 150
Samples

(b)

200

0.05

0.04 ■

0.03 -

2
0.02

0.01

-0.01
50 100 150 200

Samples
(e)

E
5.

3 ■

2 -

1 •

0 L—

1

50 100 150
Samples

(c)

200

Figured Demonstration number 1 of DIDO training data collected on the PUMA
manipulator

C-2

E

w ft/I
•

/r
50 100 150

Samples
(0

200 100 150
Samples

(0

Figure C.2 Demonstration number 2 of DIDO training data collected on the PUMA
manipulator

C-3

0 20 40 60 80 100 120 140
Samples

(a)

0 20 40 60 80 100 120 140
Samples

«ft

■D

0 20 40 60 80 100 120 140
Samples

(b)

0 20 40 60 80 100 120 140
Samples

(e)

3
M

/w^

• Awfl^

0.05

0 20 40 60 80 100 120 140
Samples

(c)

-0.2
0 20 40 60 80 100 120 140

Samples
(f)

Figure C.3 Demonstration number 3 of DIDO training data collected on the PUMA
manipulator

C-4

20

15

10

5

0

-5

-10

-15

-20

-25
20 40 60 80 100 120 140 160 180

Samples
(a)

-0.07
0 20 40 60 80 100 120 140 160 180

Samples
(d)

■D

20 40 60 80 100 120 140 160 180
Samples

(b)

-0.03
0 20 40 60 80 100 120 140 160 180

Samples
(e)

E

20 40 60 80 100 120 140 160 180
Samples

(c)

S

0.2

0.15 JW
0.1 " ßkJ W'Y

0.05

0 ,)■ ..._L.
V

-0.05

0 20 40 60 0 100 120 140 160 180
Samples

tf)

Figure C.4 Demonstration number 4 of DIDO training data collected on the PUMA
manipulator

C-5

0 20 40 «0* 80 100 120 140 160
Samples

(a)

0 20 40 60 80 100 120 140 160
Samples

(d)

0 20 40 60 80 100 120 140 160
Samples

(b)

0.015

0.01 ■

. 0.005 ■

>

-0.005

-0.01
0 20 40 60 80 100 120 140 160

Samples
(e)

0.05

0 20 40 60 80 100 120 140 160
Samples

(c)

-0.25
0 20 40 60 80 100 120 140 160

Samples
(f)

Figure C.5 Demonstration number 5 of DIDO training data collected on the PUMA
manipulator

C-6

■D

a
5.
™i -0.5

100 150
Samples

(b)

Figure C.6 Demonstration number 6 of DIDO training data collected on the PUMA
manipulator

C-7

0.06

0.04

0.02

-0.02

-0.04

-0.06
0 20 40 60 80 100 120

Samples
(a)

0 20 40 60 80 100 120 140
Samples

(d)

0 20 40 60 80 100 120
Samples

(b)

2

0.04

0.03

0.02

0.01 Mkk du I iJl
0

i / rw 'yyi f ILi^ 1 fr—

0 20 40 60 80 100 120 140
Samples

(e)

s

0 20 40 60 80 100 120
Samples

(c)

140 0 20 40 60 80 100 120 140
Samples

Figure C.7 Demonstration number 7 of DIDO training data collected on the PUMA
manipulator

C-8

0 20 60 80 100 120
Samples

(a)

-0.06
0 20 40 60 80 100 120

Samples
(d)

2

100 120
-0.02

0 20 40 60 80 100 120
Samples

(e)

3

2.5

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

1

Ar
20 40 60 80

Samples
(c)

100 120 0 20 40 60 80 100 120
Samples

Figure C.8 Demonstration number 8 of DIDO training data collected on the PUMA
manipulator

C-9

20 40 60 80 100 120 140
Samples

(a)

20 40 60 80 100 120 140
Samples

(d)

.1

20 40 60 80 100 120 140
Samples

(b)

60 80 100 120 140
Samples

(e)

E
5

20 40 60 80 100 120 140
Samples

(c)

0.05

~ -0.05

-0.15

-0.2

-0.25
0 20 40 60 80 100 120 140

Samples
(f)

Figure C.9 Demonstration number 9 of DIDO training data collected on the PUMA
manipulator

C-10

0 20 40 60 80 100 120 140
Samples

(a)

0 20 40 60 80 100 120 140
Samples

(d)

2

0 20 40 60 80 100 120 140
Samples

(b)

-0.02
0 20 40 60 80 100 120 140

Samples
(e)

6

0 20 40 60 80 100 120 140
Samples

(c)

-0.2
0 20 40 60 80 100 120 140

Samples
(f)

Figure CIO Demonstration number 10 of DIDO training data collected on the PUMA
manipulator

C-ll

20 40 60 80 100 120 140 160
Samples

(a)

0 20 40 60 80 100 120 140 160
Samples

«0

z

20 40 60 80 100 120 140 160
Samples

(b)

-0.04
0 20 40 60 80 100 120 140 160

Samples
(e)

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2
0 20 40 60 80 100 120 140 160

Samples
(0

~ 0.6 ■

E

0 20 40 60 80 100 120 140 160
Samples

(f)

Figure C.ll Demonstration number 1 of DIDO training data collected on the PLIMMS

C-12

Figure C. 12 Demonstration number 2 of DIDO training data collected on the PLIMMS

C-13

20 40 60 80 100 120 140 160
Samples

(a)

-0.08
0 20 40 60 80 100 120 140 160

Samples
(d)

0 20 40 60 80 100 120 140 160
Samples

(b)

-0.04
0 20 40 60 80 100 120 140 160

Samples

2

1.5 f/
a
s.

1

0.5

0 ■ J \r-—-'—

s
-0.5

-1.5 ■ P
0 20 40 60 80 100 120 140 160

Samples
(c)

1

0 20 40 60 80 100 120 140 160
Samples

(f)

Figure C. 13 Demonstration number 3 of DIDO training data collected on the PLIMMS

C-14

0.08

50 100 150
Samples

(d)

200

50 100 150 200
Samples

(b)

50 100 150
Samples

(e)

2.5

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

-2.5
50

■ f\

f^

' i
100 150

Samples
(c)

200 50 100 150
Samples

(f)

Figure C. 14 Demonstration number 4 of DIDO training data collected on the PLIMMS

C-15

0 20 40 60 80 100 120 140 160
Samples

(a)

-0.12
0 20 40 60 80 100 120 140 160

Samples
(d)

2

0 20 40 60 80 100 120 140 160
Samples

(b)

-0.06
0 20 40 60 80 100 120 140 160

Samples
(e)

2.5

2

1.5

1

t °
■* -0.5

-1

-1.5

-2

-2.5

A
V\

■

If K

0 20 40 60 80 100 120 140 160
Samples

(c)

0 20 40 60 80 100 120 140 160
Samples

(f>

Figure C.15 Demonstration number 5 of DIDO training data collected on the PLIMMS

C-16

lb

0 20 40 60 80 100 120 140 160
Samples

(a)

-0.05
0 20 40 60 80 100 120 140 160

Samples
(d)

2

0.12

0 20 40 60 80 100 120 140 160
Samples

(b)

2

-0.02
0 20 40 60 80 100 120 140 160

Samples
(e)

0 20 40 60 80 100 120 140 160
Samples

(c)

s

0 20 40 60 80 100 120 140 160
Samples

(0

Figure C.16 Demonstration number 6 of DIDO training data collected on the PLIMMS

C-17

20 40 60 80 100 120 140 160 180
Samples

(a)

0 20 40 60 80 100 120 140 160 180
Samples

(d)

2

20 40 60 80 100 120 140 160 180
Samples

(b)

0 20 40 60 80 100 120 140 160 180
Samples

(e)

I

2

1.5

1

0.5

0

-0.5 y

-1

-1.5

■ ^1
1

 1

20 40 60 80 100 120 140 160 180
Samples

(c)

E

20 40 60 80 100 120 140 160 180
Samples

(0

Figure C. 17 Demonstration number 7 of DIDO training data collected on the PLIMMS

C-18

f\
(AT

' V
/

0 20 40 60 80 100 120 140 160 180
Samples

(a)

0 20 40 60 80 100 120 140 160 180
Samples

(d)

0.12

0 20 40 60 80 100 120 140 160 180
Samples

(b)

0 20 40 60 80 100 120 140 160 180
Samples

(e)

2

1.5

1

0.5

: 0

!' -0.5

-1

-1.5

-2

-2.5

Wf

0 20 40 60 80 100 120 140 160 180
Samples

(0

1
N, -0.2

0 20 40 60 80 100 120 140 160 180
Samples

Figure C. 18 Demonstration number 8 of DIDO training data collected on the PLIMMS

C-19

0.06

0.04

0.02

-0.02 •

-0.04

-0.06
0 20 40 60 80 100 120 140

Samples
(a)

0 20 40 60 80 100 120 140
Samples

(d)

5.

0 20 40 60 80 100 120
Samples

(b)

-0.03
0 20 40 60 80 100 120 140

Samples
(e)

2.5

2

1.5

1

0.5

0

-0.5

-1

-1.5

-y\/

(1
L

0 20 40 60 80 100 120

Samples
(0

140

E

0 20 40 60 80 100 120 140
Samples

(0

Figure C. 19 Demonstration number 9 of DIDO training data collected on the PLIMMS

C-20

0 20 40 60 80 100 120 140 160
Samples

(a)

0 20 40 60 80 100
Samples

(d)

3

0 20 40 60 80 100 120 140 160
Samples

(b)

0 20 40 60 80 100
Samples

(e)

E

20 40 60 80 100 120 140 160
Samples

(c)

0 20 40 60 80 100
Samples

Figure C.20 Demonstration number 10 of DIDO training data collected on the PLIMMS

C-21

20 40 60 80 100
Samples

(a)

120

1 * DIDO
0.01 * DISO

20 40 60 80 100 120
Samples

(b)

140 160

<L>

E
O

4

3

2

1

0

-1

-2

-3

-4

«^n.iiTwff^aawssw^yi—■

1 * DIDO
* 0.01 * DISO

First Impact First Alignment

20 40 60 80 100
Samples

(c)

120 140 160

Figure C.21 Comparison of (a) Vx, (b) Vy, and (c) uz outputs for demonstration number 1 of
the PLIMMS DIDO training data (ref. Figure C.ll) and their corresponding
DISO outputs

C-22

50 100 150
Samples

(a)

200

>*>

100 150
Samples

(b)

1 A

E
O -1 ■

-2

First Impact First Alignment

0 «h^B^W»^a^^lrtift^

0 50

1 * DIDO
0.01 * DISO

A.

100 150
Samples

(c)

-Tt

200

Figure C.22 Comparison of (a) Vx, (b) Vy, and (c) wz outputs for demonstration number 2 of
the PLIMMS DIDO training data (ref. Figure C. 12) and their corresponding
DISO outputs

C-23

V '

X.

80 100
Samples

(a)

3
1 o

1 * DIDO
0.01 * DISO

20 40 60 80 100
Samples

(b)

120 140 160

80 100
Samples

(c)

Figure C.23 Comparison of (a) Vx, (b) Vy, and (c) u>z outputs for demonstration number 3 of
the PLIMMS DIDO training data (ref. Figure C. 13) and their corresponding
DISO outputs

C-24

50 100 150
Samples

(a)

200

2

-0.15

First Impact First Alignment

50 100 150
Samples

(b)

1 * DIDO
0.01 * DISO

200

&
N

o

100 150
Samples

(c)

Figure C.24 Comparison of (a) Vx, (b) Vy, and (c) u>2 outputs for demonstration number 4 of
the PLIMMS DIDO training data (ref. Figure C.14) and their corresponding
DISO outputs

C-25

80 100
Samples

(a)

.s
CO
60

5

4

3

2

1

0

-1

-2

-3

-4 r

-5

80 100
Samples

(b)

First Impact

0 20 40 60 80 100
Samples

(c)

Figure C.25 Comparison of (a) V„, (b) Vy, and (c) üJ2 outputs for demonstration number 5 of
the PLIMMS DIDO training data (ref. Figure C.15) and their corresponding
DISO outputs

C-26

20 40 60 80 100 120 140 160
Samples

(a)

0.15

?

First Impact

1 * DIDO
0.01 * DISO

First Alignment

0 20 40 60 80 100 120 140 160
Samples

(b)

1
OJO

0 20 40 60 80 100 120 140 160
Samples

(c)

Figure C.26 Comparison of (a) Vx, (b) Vy, and (c) u>z outputs for demonstration number 6 of
the PLIMMS DIDO training data (ref. Figure C.16) and their corresponding
DISO outputs

C-27

X.

20 40 60 80 100 120
Samples

(a)

2

0.15

0.1

0.05

-0.05

-0.1

First Impact First Alignment 1 * DIDO
0.01 * DISO

0 20 40 60 80 100 120 140 160 180
Samples

(b)

1

, 1 * DIDO
——-., $£i * DISO

80 100 120
Samples

(c)

Figure C.27 Comparison of (a) Vx, (b) Vy> and (c) u>z outputs for demonstration number 7 of
the PLIMMS DIDO training data (ref. Figure C.17) and their corresponding
DISO outputs

C-28

80 100 120
Samples

(a)

0.15

0.1

0.05

S o

-0.05

-0.1

First Impact First Alignment) 1 * DIDO
0.01 * DISO

0 20 40 60 80 100 120 140 160 180
Samples

(b)

4

3 h 1
I 10.01

*DIDO
JDISO •••♦

2 1
/—•.

1
+

2
0

-1

-2

^

3 60 u
£
O

'A/^ ~

T"L ^ **
-3 t

-4 First I mpact First Alignment
\j

-5 . .
0 20 40 60 80 100 120 140 160 180

Samples
(c)

Figure C.28 Comparison of (a) Vs, (b) Vy, and (c) uz outputs for demonstration number 8 of
the PLIMMS DIDO training data (ref. Figure C.18) and their corresponding
DISO outputs

C-29

60 80 100
Samples

(a)

140

2

0.08

0.06

0.04

0.02

0

-0.02

-0.04

-0.06

-0.08

-0.1

-0.12

A /I

1 * DIDO
0.01 * DISO ~-

/\ 11

' If
1 AhA wrti A/UrtAA^.nA <f'|. ■Jr *VI^ ?~ v ~ ~ * ^VU

■
\.

• First 1 mpact \^ First Alignment

■

. .

20 40 60 80 100
Samples

(b)

120 140

.2.

E
O

60 80 100
Samples

(c)

120 140

Figure C.29 Comparison of (a) Vx, (b) Vy, and (c) u>z outputs for demonstration number 9 of
the PLIMMS DIDO training data (ref. Figure C.19) and their corresponding
DISO outputs

C-30

80 100
Samples

(a)

120 140

0.06

0.04

0.02

^ 0

1 -0.02

*? -0.04

-0.06

-0.08

-0.1

-0.12

.s.

60

0

-1

-2

-3

-4

-5 I-
-6

0

80 100
Samples

(b)

120 140 160

1 * DIDO
0.01 * DISC)

First Impact First Alignment '

20 40 60 80 100
Samples

(c)

120 140 160

Figure C.30 Comparison of (a) Vx, (b) Vy, and (c) uz outputs for demonstration number 10
of the PLIMMS DIDO training data (ref. Figure C.20) and their corresponding
DISO outputs

C-31

Appendix D. Untried Processing Options.

This Appendix describes three data processing options which were conceived but not

investigated and evaluated within the scope of the present work. They are items for future

work.

D.l Time Shifting.

Time shifting is used to compensate for processing delay between measured force

and reaction-commanded velocity in the collected training data. For example, if the human

demonstrator takes one second to react to a feature in the force time history, then a processing

delay of one second exists. To capture the causal relationship in the data, the sampling

period must be equal to or less than the processing delay. When presenting the measured

pairs of desired input-output training vectors to a static ANN, one must then correct for

the processing time delay in order for the ANN to extract the desired command mapping

relationship. See Section 5.6.2 for a more detailed explanation of the causal time delay.

To correct for processing time delay, the raw measured data set is time shifted by an

amount equal to the processing delay of the controller in place during the collection of the

data. For a computed accommodation control law (as is the case when collecting RISO or

DISO data), the processing time delay is clearly constant and a multiple of (possibly equal

to one) the servo rate for the controller.

For data collected by observing a human controller, the processing time delay may not

be constant, as the alertness and attention may vary. In this case, the processing time delay

cannot be corrected by time shifting. As an approximation, however, it may be possible to

alleviate the effect of processing time delay in the training data samples if the variation of

the human processing time delay is small as compared to the sampling rate for the collected

data.

D.2 Time Delaying.

Since it is possible that the trends in the captured force/velocity data are important to

discerning the task, the ANN may be presented with several previous time input force and/or

D-l

FJ0 Km Mm Fjl-T)

INPUT LAYER

F}(l-T) Mzo-T) FJ'-2T> F(i-2T) Mjt-m Fjl-NT) F(I-NT) Mjl-NT)

OUTPUT LAYER

Figure D. 1 Illustration of time-delayed force vectors used in the input feature of the ANN.

output velocity vectors to incorporate the context of time as input features. Such an ANN

is called a time-delayed ANN (TDANN) [32, 52, 53]. In this case, the current components

of force and some number, N, of previous forces are included in the input feature vector as

shown in Figure D. 1.

Other than appending the previous force vectors together for a larger input feature

vector, the data vectors are not modified. Note that Figure D.l illustrates only applying

time-delayed forces to the input, while the input feature vector can also include previous

velocity output vectors. In such a case, the ANN adopts a recurrent architecture which is

discussed in [26].

D.3 Angle Features.

The angle features option can be considered an extension of the magnitude normaliza-

tion. If the raw vectors have been magnitude normalized, they no longer contain magnitude

information, so the three components can be thought of as the endpoint coordinates of a

unit-length vector in three-space. This unit-length vector can be described by two indepen-

dent parameters which are the angles formed between the vector and the coordinate axes.

D-2

Figure D.2 Vector diagram for derivation of angle feature parameters <pf and Xf from
normalized cartesian vector components.

If the raw vectors have not been normalized, the three-space vector will not be unit-length;

the resulting angle features are unaffected by the normalization, so the results are the same

either way. These desired angles are depicted in Figure D.2 as <pf and Xf.

Given a vector F which has components (fx, fy, mz), a new vector, Fa> composed of

angle features (<pf, \f) can be derived from the following expressions:

A/

= atan2

= atan
m,

V/y2 + /,2

(D.l)

(D.2)

One should note that if the vector F has been normalized, then Xf is simply asin(m^). The

range of <pf will be (o < <pf < 2TT), while the range of Xf will be (^ < A; < |). To prepare

data for training, the V must also be converted using Eqs (D. 1) and (D.2) to get (</?„, Xv).

When the ANN controller is implemented after being trained on angle features, its

computed output, V, is composed of (<pv, Xv) and must be converted back to a cartesian vector,

Vc, having components {\, \, 0p }. To do that conversion, the following relationships are

D-3

used:

xP = cos ipv cos A„

yp = sin<^ cosA„

Op = sin A„

(D.3)

(D.4)

(D.5)

D-4

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reportmq burden for this collection of information is estimated to average 1 hour per response, including the time tor reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headguarters Services. Directorate tor information Operations and Reports. 1215 Jefferson
Davis Highway Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1995
3. REPORT TYPE AND DATES COVERED

Doctoral Dissertation
4. TITLE AND SUBTITLE

Teaching Accommodation Task Skills: From Human Demonstration to
Robot Control Via Artificial Neural Networks

6. AUTHOR(S)

Paul V. Whalen, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology, WPAFB OH 45433-7765

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFTT/DS/AA/95-01

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The edge mating task was used to study the feasibility of using readily available force and velocity data
collected during a human demonstration to train an artifical neural network (ANN) to control a PUMA
robot for similar tasks. The planar edge mating task served as the basis for the investigation. A simple
multilayered perceptron ANN was trained using backpropagation mapped contact forces to commanded
velocities, all in the tool-frame for a configuration-independent solution. An accommodation matrix
controller provided a performance baseline for simulation and on the PUMA manipulator. The same matrix
was used to synthesize various forms of training data during an analysis of the function and vulnerabilities
of the proposed control scheme. ANN controllers trained on these synthesized data were shown to easily
complete the task in both simulation and on the PUMA. Human demonstration data collected using either
the PUMA robot or a custom-built system were found to be poor examples of accommodation mappings
for reasons that are discussed. Seven data processing algorithms were investigated independently and in
combinations for their ability to improve the usefulness of the demonstration data. None were found to
ensure controller success, although data mirroring improved controller performance significantly.

14. SUBJECT TERMS

robotics, artificial neural networks, skill acquisition, force control,
accommodation, telerobotics, edge mating, artificial intelligence

15. NUMBER OF PAGES
281

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified Unclassified

20. LIMITATION OF ABSTRACT !

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Prescribed by ANSI Std Z39-18
298-102

