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AFIT/DS/AA/95-01 

Abstract 

A simple edge-mating task, performed automatically by accommodation control, was 

used to study the feasibility of using data collected during a human demonstration to train an 

artificial neural network (ANN) to control a common robot manipulator to complete similar 

tasks. The 2-dimensional (planar) edge-mating task which aligns a peg normal to a flat table 

served as the basis for the investigation. A simple multi-layered perceptron (MLP) ANN 

with a single hidden layer and linear output nodes was trained using the back-propagation 

algorithm with momentum. The inputs to the ANN were the planar components of the 

contact force between the peg and the table. The outputs from the ANN were the planar 

components of a commanded velocity. The controller was architected so the ANN could 

learn a configuration-independent solution by operating in the tool-frame coordinates. As 

a baseline of performance, a simple accommodation matrix capable of completing the edge- 

mating task was determined and implemented in simulation and on the PUMA manipulator. 

The accommodation matrix was also used to synthesize various forms of training data which 

were used to gain insights into the function and vulnerabilities of the proposed control 

scheme. 

Human demonstration data were collected using a gravity-compensated PUMA 562 

manipulator and using a custom-built planar, low-impedance motion measurement system 

(PLIMMS). The raw demonstration data collected using both systems were found to be poor 

examples of accommodation mappings for reasons that are discussed. In addition to the 

problem of the existence of the desired mapping in the demonstration data, the sensitivity of 

the ANN paradigm to the richness of the training data was also determined. For the proposed 

controller training method, a key problem is one of matching the distribution statistics 

(mean and standard deviation) between the training data and what is to be encountered 

in the measurement stream when the trained ANN controller is implemented. Seven data 

processing algorithms were investigated independently and in combinations to determine if 

they could improve the quality of the demonstration data. None were found to produce very 

xxx 



robust results, although mirroring the raw data about all the axes to force a zero mean upon 

the training data set was found to improve controller performance significantly. 
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Teaching Accommodation Task Skills: 

From Human Demonstration 

to Robot Control Via 

Artificial Neural Networks 

7. Introduction. 

The mission of the US Air Force (USAF) is to fly and fight. To be an effective part 

of the United States' capability to deter war, the USAF must be capable of conducting its 

mission in a broad spectrum of environmental conditions. From the biting sub-zero temper- 

atures of Thule, Greenland to the intense heat of the Saudi Arabian desert, mission sorties 

must be flown and flightline operations must continue. Several war scenarios predict even 

more hazardous environments for mission operations than temperature extremes. Prolifer- 

ation of ballistic missile technology and chemical weapons indicates a real possibility that 

future conflicts will require the USAF to operate in a chemicaVbiological/radioactive (CBR) 

environment. 

During an active air campaign, military aircraft will often undergo a process called 

/ioi-aircraft turnaround between mission sorties. They land at their airbase and taxi to a 

hot ramp where they are simultaneously refueled and reloaded with munitions so they can 

immediately be launched for another sortie. This whole operation occurs while the plane's 

engines are running, hence the term hot. In some cases, minor repairs such as modular 

component replacements can also be made on the hot ramp. 

The threat of a war involving CBR weapons is not new to the USAF. In such a war 

the entire flightline may be contaminated with chemical or biological agents making it much 

more difficult to perform routine aircraft maintenance, let alone hot-aircraft turnarounds. 

Consequently, CBR defensive procedures and equipment have been under development for 

decades. However, despite the great improvements that have been made, contemporary 

protective garments are still bulky, lack adequate ventilation, and seriously degrade the 
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dexterity of the wearer. As a result, even simple aircraft maintenance and hot-aircraft 

turnaround procedures can become very difficult to perform. The added time it takes for 

an airman to connect arming lanyards or mate cannon plugs extends his/her exposure time 

to the hazardous environment and increases the hot-turnaround time of the aircraft being 

serviced. Increased turnaround time ultimately results in reduced mission capability. 

Mission capability in a protracted war is often drastically affected by the efficiency of 

the logistics support. The logistics support of the USAF is provided by the Air Force Materiel 

Command (AFMC). Besides making sure that the "beans and bullets" are placed where they 

are needed, when they are needed, the AFMC is responsible for refurbishing and renovating 

aircraft, missile, propulsion, and munition systems. Since some of the weapon systems are 

very old, the AFMC also manufactures and assembles replacement parts for older systems at 

various Air Logistics Center (ALC) throughout the nation when the replacement parts are no 

longer available commercially. Thus, these ALC function as military manufacturing plants 

operating similar to those in civilian industry except that they often produce low volumes 

of a high variety of products. Consequently, flexible manufacturing and assembly systems 

potentially offer premium payoffs for the AFMC. 

1.1   Motivation. 

Robotic systems promise to be a very beneficial part of the future USAF. Robotic 

systems can reduce the exposure of airmen to CBR environments and streamline the hot- 

aircraft turnaround process in hazardous environments. In addition, robotic manufacturing 

and assembly systems can help the ALC with their missions. 

The process of turning a hot aircraft for another sortie involves three steps: fueling, 

loading munitions, and possibly making simple, module-replacement type repairs. Funda- 

mental to all three of these steps is the ability to mate parts. In the case of fueling, the nozzle 

of the hose from the fuel truck must be inserted into the aircraft's fueling receptacle. In the 

case of munitions loading, the bomb lugs must be aligned with the bomb rack and the bomb 

jammed into place prior to latching the rack. In the case of the module-replacement repairs, 

one component is removed and another inserted in its place. Robots capable of performing 

these tasks with total autonomy are considered a distant reality.   However, Man-In-The- 
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Figure 1.1    The spectrum of MITL robotic systems showing tradeoffs between local auton- 
omy and operator control [47] 

Loop (MITL) robotic systems, also known as telerobotic systems, are a viable, near-term 

alternative. 

In the MITL scenario, a human operates a master unit to provide the high level of 

intelligence and experience required to perform complex tasks and a robotic system acts as 

a slave to the master unit's commands. Depending on the balance between control guidance 

provided by the human operator and autonomous control of the slave, an MITL robotic 

system can be categorized on a spectrum between telepresence and autonomous as shown in 

Figure 1.1. Although one may imagine that telerobotic systems are simpler to build than 

autonomous robots and require very little autonomous capability, they actually demand a 

fairly high degree of local autonomy in the slave robot unit. Local autonomy is encouraged 

by at least four important benefits. 

• It requires less information to be sent back to the operator thereby lowering the trans- 
mission bandwidth requirements. 

• Operator fatigue from concentrating on the task and trying to process the sensory 
feedback information is reduced so his/her efficiency is enhanced. 
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• For the autonomous functions, it eliminates delays in the control loop caused by com- 
munication and operator-induced time delays, both of which cause instability in the 
control system. 

• Local autonomy can allow a simple operator command set to perform a large variety of 
relatively complex tasks by taking care of the details of task execution automatically 

Increased local autonomy in the slave unit means increased intelligence. Because 

parts mating is fundamental to aircraft turnaround operations, a robotic control system 

capable of intelligently mating parts would constitute a foundation on which an MITL robotic 

system could be developed to replace airmen on the flightline in hazardous environments. 

A robotic system capable of mating parts would also be useful in assembly and module- 

replacement repairs at the ALC since many of their operations also share the fundamental 

characteristics of parts mating. In the ALC the main motivation for implementing robotic 

systems would be increased efficiency rather than increased safety as in the case of flightline 

operations. A further beneficiary from intelligent parts mating technology would be the 

space industry. The National Aeronautics and Space Administration (NASA) determined 

that it needed telerobotic systems to help build and maintain the proposed space station 

Freedom because of the enormous number of extravehicular activity (EVA) hours required. 

Consequently, they began development of a telerobotic system called the Flight Telerobotic 

Servicer (FTS) which was intended to perform assembly and repair EVA tasks under the 

supervision of an astronaut. The functional requirements for the FTS were fairly similar 

to those of the proposed flightline robotic system. Unfortunately, cost overruns and budget 

cuts have essentially halted development of the FTS and the USAF has yet to embrace the 

concept of telerobotic systems on the flightline. Very recently, however, a feasibility study has 

begun to determine whether telerobotics technology can improve existing munitions loading 

equipment and operations. This program, called the next-generation munitions handler 

(NGMH) project, may field one of the first systems employing telerobotics technology in a 

combat operations application. 

1.2   Problem Statement. 

This dissertation explored a method of increasing the level of local autonomy available 

for robots that perform parts mating tasks under teleoperator control. The principle of the 
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method was to have a person physically demonstrate the task or skill to be learned and have 

the robotic system monitor and analyze the resulting data to extract the abihty to perform 

similar kinds of tasks autonomously. The acquired skill would then be a part of the local 

autonomy toolbox for the telerobotic system. 

1.3 Objective. 

The specific objective of this dissertation was to determine the feasibility of using a 

limited set of demonstrations by a human operator to teach a robot how to insert a chamferless 

peg in a chamferless hole by feel alone. The implication of doing the peg-in-hole (PIH) task by 

feel alone is that the robot has no prior knowledge of the table's precise location or orientation 

and no camera vision data are available to extract estimates of the table's location. Thus, 

only limited sensory data are available for the controller. Our objective to use a limited set 

of demonstrations implies that only a small portion of the total reachable workspace will be 

included in the demonstration data. Thus, the controller must be able to somehow generalize 

from the demonstration data so it can perform the task anywhere in the reachable workspace 

of the manipulator regardless of the joint configuration. This trait is commonly referred to 

as a configuration-independent solution. 

1.4 Assumptions. 

The geometry of the grasped peg is assumed to be known and the table is stationary 

relative to the robot during the operation. All parts are taken to be rigid bodies, though the 

methods presented are robust to small deformations. It is also assumed that the collected 

demonstration data have been filtered to prevent aliasing. We assume that the kinematic 

structure of the manipulator is known and it's Jacobian transformation matrix is available. 

For the edge-mating task, which is described in Section 1.5, another assumption is that the 

peg initially contacts the table such that the total of the normal and tangential contact forces 

produces a vector pointing so as to cause a moment that tends to align the peg normal to 

the surface. In practice, this restriction is a function of the coefficient of friction, the radius 

of the peg, and the direction of the nominal free-space velocity relative to the table surface. 
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Figure 1.2   Motion associated with the edge-mating task 

For the edge-mating task, if the free-space velocity is outward along the axis of the peg, this 

restriction is always met. 

A final assumption is that the only sensor data available during operation are: 

• the net 6-axis contact force between the robot and the environment, and 

• the robot's internally-measured joint angles. 

1.5   Approach. 

In pursuit of the final objective mentioned above, we began with simpler tasks that 

would validate the technique, equipment, and software. The progressively-more-difficult 

tasks identified were: 

• to align the flat end of a rectangular peg with the flat surface of a table by feel alone. 
This alignment task has recently been referred to as an edge-mating task [31] and is 
shown in Figure 1.2. 

• to insert a rectangular peg into a chamfered slot; this is a planar projection of the 
general cylindrical peg insertion problem. 

• to insert a rectangular peg into a chamferless slot. 

• to insert a chamferless cylindrical peg into a round, chamferless hole. 
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All of these tasks were to be performed by artificial neural network (ANN) controllers 

trained on data collected from observing a human perform the same task. Beginning with 

the edge-mating task, alternative sources of training data were to be used to test our under- 

standing of the task. Since the edge-mating task can be accomplished by an accommodation 

matrix controller, the matrix controller was used as a baseline for performance measure- 

ment and a source for gaining insights into the functions and characteristics of the trained 

ANN controllers. In addition, the accommodation control law commands velocities which, if 

expressed relative to a coordinate frame attached to the peg, will provide the configuration- 

independent capability that is a critical part of our objective. Another positive feature of the 

accommodation control law is that it requires no sensing of the environment; only the direct 

interaction forces between the peg and the environment need to be measured. 

In the interim testing, training data were synthesized from observing the matrix 

controller in action. The results of those tests were then used in our attempts to train an 

ANN controller to perform the edge-mating task using human demonstration data. Because 

of the complexities and risks inherently involved in implementing a new control strategy 

on a robot manipulator, a simplified computer simulation of the manipulator, the controller, 

and the task environment was used initially. However, to collect the human demonstration 

data, the inevitable transition to experimental hardware was made early in the effort. At 

that early phase of testing, the human demonstration data was collected and used to verify 

the function of the matrix controller on the manipulator. In addition, the ability of some 

ANN controllers to complete the edge-mating task after being trained on data collected 

from observing the matrix controllers was verified. An extensive phase of investigations 

based on the simulation model was then entered which lasted to the conclusion of the effort. 

These investigations explored the sensitivity of the success of the ANN controllers to various 

characteristics of the data presented during the off-line supervisory training of the ANN. The 

simulations were also used to evaluate several techniques that were proposed to enhance 

the quality of the training data. 
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1.6   Contributions. 

Although this effort never attempted to complete the PIH task with an ANN con- 

troller, most of the understandings gained in the investigation of the edge mating task are 

fundamental to the proposed technique, regardless of the task. As such, those insights are as 

applicable to the PIH task as they are to the edge-mating task examined. The tests conducted 

proved that an ANN controller could be trained to perform a simple accommodation task if 

the off-line, supervisory training data were carefully formulated from a specific control strat- 

egy. In the case of the edge-mating task, an accommodation matrix control law was used to 

prove that the ANN could learn to control a common manipulator to perform the task. Thus, 

the feasibility of the concept was established. In the process of this investigation, the critical 

features of the control architecture and training data were identified. Human demonstration 

of the simple edge-mating task was found to contain several degrading characteristics which 

were analyzed in detail. The analysis revealed that human demonstration will inherently 

lead to problematic training data for the controller architecture used. Corrective measures 

were proposed for several of the detrimental characteristics and their efficacies were demon- 

strated. In addition, the desirable characteristics of demonstration data collection systems 

were identified. 
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//. Related Research 

The topic of this dissertation spans several fields which, until recently, were unrelated, 

specifically the fields of artificial neural networks, robotic part mating, and human skill 

transfer to robots. Since this dissertation uses only well established ANN techniques and 

there is a plethora of literature on ANNs, this chapter will not attempt to detail works in that 

field. The reader can refer to [35], [44], [54] or [28] for general introductions to a variety of 

ANN methodologies and techniques. In particular, [28] gives a good comprehensive overview 

of the latest techniques and insights about parameter interactions. References to specific 

works of interest will be included as required in the remaining text, and Appendix A provides 

a brief introduction to the ANN methodology used in this dissertation. 

The field of robotic part mating is enormous, and a multitude of researchers have tried 

many different techniques. We quickly draw our attention to only those works that are 

applicable to the classic part mating tasks of inserting a peg into a hole and edge-mating1. 

Numerous researchers have attacked the PIH task directly, and the most recent and related 

works are summarized in Section 2.1. Because of its classic simplicity, there are very few 

works in the literature that discuss the edge-mating task. Therefore, we will draw heavily 

upon the literature for the PIH task and apply the insights to our simpler edge-mating task. 

The final important related field of research has to do with transferring human skills 

to robots. Section 2.2 identifies previous research that is relevant to the work presented in 

this dissertation. 

2.1   Peg Insertion Research. 

The work done directly on the PIH task can be categorized into classical analysis, 

logic-branching control, and learning control. 

2.1.1 Classical Analysis Works. Whitney has been one of the trail blazers in in- 

creasing our analytic understanding of part mating for assembly. He has done several classic 

analyses of the peg insertion task. In [56] he examined general quasi-static interactions dur- 

1See Section 1.5 for a description of the edge-mating task. 
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ing part mating during the assembly of compliantly-supported rigid parts. In [60] he did a 

detailed analysis of peg interaction with chamfered holes, and detailed the geometric rela- 

tionships that designers should use to select chamfer shapes that reduce the peak insertion 

forces required. It was in this work that the terms jamming 2 and wedging 3 were first 

defined, and geometric relationships were derived that predict the occurrence of jamming 

and wedging. In addition to developing methodologies for designing chamfer shapes that 

minimize insertion forces, Whitney was involved at Draper Lab in the design of the remote 

center of compliance (RCC) device which allowed chamfered insertions to be accomplished 

passively. With this device, chamfered parts could be aligned and mated without exact fix- 

turing of the pieces or explicit force control of the assembly robot. He also was involved 

in development of an instrumented RCC [16] which expanded the capability of insertion by 

robots. Probably the best technical overviews of part mating and assembly can be found in 

[59] and [57]. As a point of interest, in [59] Whitney mentions that Gustavson patented in 

1982 a passive device that could accomplish chamferless insertions within a limited range of 

angular offsets. 

Caine [11,12] utilized insights gained from Whitney's analyses to treat the chamferless 

insertion problem. He showed that when the peg encounters two-point contact without both 

corners entering the hole, a strategy based on applying an arbitrary force independent of the 

direction of tilt will not succeed. To solve the problem, he proposed constraining the allowable 

set of contacts to eliminate any ambiguity about the direction that the peg may be tilted. 

Given foreknowledge about the direction of tilt, he showed that if you simply rotate the peg 

while maintaining contact, the critical angle will be reached and the peg will slide into the 

hole. Although Caine gives expressions for the force and moment required to rotate the peg, 

they have little practical value for an unstructured task in an unstructured environment, 

since you cannot ensure the direction of tilt without additional sensory information such as 

a vision system. 

2 Jamming is defined by Whitney as the condition that exists when the insertion force points too far off the 
axis of the hole for the peg to advance into the hole. 

3Wedging is defined by Whitney as an event in which the contact forces between the peg and hole fall within 
their respective friction cones, thereby preventing the peg from advancing into the hole. 
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Shahinpoor and Zohoor [46] present an elaborate dynamic analysis and arrive at some 

constraints to prevent jamming and wedging while performing dynamic PIH insertions. They 

only present equations for the two-dimensional problem, but they derive dynamic equations 

for six distinct cases and develop three inequality constraints that must be held to avoid 

jamming under all possible geometrical situations as well as one inequality constraint to 

avoid wedging. They assume that all the peg and hole descriptions are available a priori and 

that precise, noise-free sensor data are also available. Both of these assumptions make it 

difficult to implement their results in a real system. 

Besides the simple mechanical RCC devices used commonly in industrial robots to 

insert pegs [16, 58, 61], there are analytic methods which utilize either programmable com- 

pliant motion control [42] or accommodation control. In Peshkin's work [42] the goal is to 

develop a method which specifies a single compliance matrix that will guarantee that an 

insertion task will succeed. The matrix must be "error-corrective" and must be consistent 

with every contact configuration that may possibly occur. For a structured task, the tech- 

nique can work, although Peshkin does not say anything about how one enumerates all the 

possible contact configurations nor how one can sense what contact configuration exists with 

real sensors. These difficulties make it virtually impractical for general applications. 

2.1.2 Logic-Branching Works. Handelmanetal. have tried combining a knowledge- 

based system with a Neural Network-based Reflex Modulator to have a manipulator learn 

a skill [25]. As an example, Handelman et al. taught a two-link manipulator how to make a 

"tennis-like" swing. They came up with the rules through trial-and-error in LISP and then 

translated them automatically from LISP to Pascal. For the network, they used Cerebellar 

Model Articulation Controller (CMAC) network modules as described by Albus [1]. Their 

rule-based Execution Monitor decides how to make a successful swing using rules only. Then 

it teaches the CMAC by presenting examples. Following the training, the Execution Monitor 

continuously watches the CMAC performance and re-engages rule-based control if the CMAC 

performance is below par. 

Asada has used Petri nets to control a robot for assembly [36, 37]. He argues that a 

discrete event approach to assembly is required because, unlike most force-feedback appli- 
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cations, the state of contact changes during an assembly process. The changes in contact 

result in different constraint equations, which, in turn, result in varying numbers of motion 

degrees of freedom and equations of motion. His implementation is similar to the controller 

configuration of the present work. His discrete event controller (DEC) and process monitor 

together can be thought of as a real-time trajectory generator which is equivalent to the ANN 

in the controller of this dissertation. The similarities of the systems include off-line training 

and the use of a continuous controller to track the commands of the real-time trajectory 

generator. The off-line training for his system consists of the analysis required to construct 

the Petri net model for the task. 

Buckley proposed an iterative learning method of teaching compliant strategies to a 

robot which is based on a search tree and a lookup table [9]. The system graphically displays 

the start and goal regions; the user inputs a commanded position that is used to compute 

a set of robot configurations that keep the robot in contact with the environment and from 

which the goal region can be reached via the commanded position. These "solved" robot 

configurations are then stored in an appropriate lookup table and subtracted out of the start 

region. If there is any remaining unsolved area of the start region, the process repeats until 

the start region is consumed by the solved robot configurations. The iterative nature of 

this method resembles the iteration required by the method proposed in this dissertation. 

However, Buckley's method uses explicit geometric models of the robot and its environment 

which are not generally available for an unstructured task. 

Another logic-branching or rule-based method of automated assembly was proposed 

by Vaaler and Seering in [51]. Their machine learning algorithm is a "production system" 

that automatically generates "production rules." They attack a planar peg-in-hole problem 

using a gantry-type Cartesian robot called the MIT Precision Assembly Robot (MITPAR). 

They gather six different state variables as data inputs and discretize them into six levels 

each. They chose only six levels of discretization on the basis that people do assembly well 

and do not appear to be capable of resolving forces to more than 5-10 distinct levels in the 

range of forces used during assembly. The ranges of each of Vaaler and Seering's state 

variables are determined experimentally. One of the problems with the approach is that the 

time required to visit all of the states during the learning phase of the algorithm is by far 
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the largest part of the learning process. Even with the coarse discretization into six levels, 

there are nearly 280,000 possible states. Since only about 300 of them are really feasible 

for the particular system, they reduced the search space considerably. The algorithm moves 

the peg a set distance for correction, and the if-then production rules decide which way to 

move. Vaaler and Seeringhad a problem with the dynamics of the robot because they say that 

essentially all of the time required to assemble a peg and hole was spent waiting for the robot 

system to settle. This is unexpected because they used a relatively stiff Cartesian gantry 

robot. Convergence of the learning algorithm took about 20-50 assembly trials starting from 

random corrections. The algorithm took about 10-20 seconds to complete assemblies after it 

had learned. They used a soda can as a peg (2.6-inch diameter) and a 1-inch diameter steel 

peg in a 1.010-inch diameter aluminum hole. Clearance ratios of 3% to 5% were used on the 

soda can experiments. 

2.1.3 Learning Control Works. Perhaps the work most similar to this dissertation 

is by Benady et al. in [8]. They design and implement a learning control scheme for an 

impedance-controlled robot performing a contact task. They assume that a high-gain posi- 

tion control inner loop will exactly follow the commanded positions generated by an outer 

impedance control loop. This form of impedance control actually imitates true impedance 

control by modifying the desired reference trajectory of the robot to achieve the compliance 

effect of the impedance control law. The learning part of this work is an Associative Search 

Network (ASN) that learns the optimal impedance parameters on-line. The ASN was orig- 

inally developed by Barto et al. [7]. The ASN is similar to the network of perceptrons used 

in this dissertation4, but uses different output equations and has a different training algo- 

rithm. Its structure is equivalent to a MLP with no hidden layer and linear outputs from 

the output layer. In addition, the ASN has a zero-mean random noise superimposed on the 

output of each node rather than an adapting offset or bias as the MLP does, and the weight 

update rule is somewhat different. A scalar reinforcement or reward signal is fed back from 

the controlled system and is used in a nonlinear weight update rule. The reward signal is a 

4The reader is encouraged to refer to Appendix A at this time for an explanation of the structure and 
terminology of the network of perceptrons used in this dissertation. This review will be helpful for those readers 
not already familiar with ANN s and is essential for the comparison between the Multi-layered Perceptron (MLP) 
and the ASN to be understood. 
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weighted sum of the relative deviations of the actual manipulator tip velocity and interaction 

force from their desired values. The weight update rule is similar to the back-propagation 

training rule of the MLP, but instead of a simple adaptation coefficient, a, it uses a decaying 

exponential function of the scalar payoff signal. The weight update rule is: 

w (t + 1) = w(t) + g (z(t) - z(t - 1)) [u(t - 1) - u{t - 2)] x(t - 1) (2.1) 

where w(t) is the weight at time t, z is the scalar reward signal, u is the output of the ASN, 

x is the input to the ASN, and g(x) is given by: 

g(x) = < 
1 - exp(-z/A) ifz > 0 

^     '   ' - (2.2) 
-(l-exp(-|a;|/A))   ifx < 0 

where A is a learning parameter. This function is similar in shape to a sigmoid activation 

function which is biased to run from -1 to +1 and is symmetric about the origin. 

Barto et al. implemented the system on an Adept One^robot with a Lord^ force/torque 

sensor to follow both a flat and a curved surface. They had to manually select the stiffness, 

viscosity, and mass parameters to give stable tracking; then they let the system adapt. There 

were also many other parameters that required specification such as the contact stiffness, 

learning parameter (A), initial variance of the random noise function, etc. 

The Barto et al. system does not attempt to learn the motion strategy of any given 

task, but instead learns how to formulate its own impedance parameters and then maintains 

system performance by continuing on-line adaptation of the parameters. As such, it cannot 

be categorized as a skill-acquisition method. 

Gullapalli et al. [23, 22, 24] approached the PIH problem using a special form of an 

ANN to learn an admittance mapping. The controller consisted of two nonlinear hidden 

layers and a stochastic real-valued (SRV) output layer which is described more completely 

in [21]. All of the nodes were fully connected. The admittance mapping performed by 

the controller took positions and forces as input features and mapped those to commanded 

output velocities. Similar to the controller proposed in the present work, the Gullapalli et 

al.   controller was a reactive controller which modified the end-effector trajectory in real 
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time based on the sensor measurements. The nonlinear admittance mapping was learned 

through repeated attempts at the PIH task. The controller was demonstrated with a Zebra 

Zero robot inserting a chamferless peg into a chamferless hole. The strength of the system 

is the SRV output layer which allows the system to train in an un-supervised mode of 

iterative operation. In addition, the SRV allows the controller to handle some measurement 

uncertainties which often occur in the joint sensor readings and can additionally be caused 

by unknown manipulator dynamics and motion of the peg relative to the robot gripper. 

The Gullapalli et al. system demonstrated that the controller could be trained to insert 

the peg in less than 100 time steps after training for about 150 runs. In addition, the amount 

of excessive contact force generated during the insertions continued to decline for up to 500 

training runs. The decreased contact forces are indicative of increased task skill. 

Although these results are impressive, we seek a controller and training method that 

do not have to use the manipulator during a lengthy training session where the learning 

transients might cause damage to the manipulator or its sensors. In addition, we seek a 

method of utilizing any available a priori information about the controller's mapping rather 

than starting the controller from an initial random state. Since the Gullapalli network 

uses position measurements as part of the input feature vector, the mapping it learns is 

inherently position-dependent. This means that the trained controller can only be imple- 

mented in the part of the workspace in which it was trained. If we want a controller that 

can operate anywhere within the workspace of the manipulator, then samples across the 

entire workspace must be included in the training data set. We seek a method that will be 

able to learn a globally-applicable mapping from data collected in a small sub-space of the 

entire manipulator workspace. This implies that we want a controller that will operate in 

tool-frame coordinates as opposed to the Gullapalli controller which operates in world-frame 

coordinates. 

A final observation about the controller proposed in Gullapalli's work is that it requires 

a priori knowledge of the hole location so that the evaluation criteria can be computed during 

training. Recognizing that the Gullapalli et al. method is fairly robust to uncertainty, one 

must still have reasonable estimates of the hole location and orientation in order for the 

training to take place.  When this restriction is combined with the position-dependency of 
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the learned mapping, it means that we must have prior knowledge of the location of every 

hole into which we want to insert a peg. We seek a method that does not require prior 

knowledge of the hole location or orientation. 

In [5] Asada proposes using an ANN to perform the pattern recognition task in his 

deburring system. He also points out that inconsistent data5 can hinder the learning and 

performance of a trained ANN. Therefore, he comes up with a criterion to prune out the bad 

data points. The criterion is Lipschitz's condition for continuity in a data set. By throwing 

out the pairs of training exemplars that have an output-distance-over-input-distance ratio 

in excess of a particular cutoff value, the continuity of the data is enhanced. The more 

continuous the data were, the better the learning and performance of the ANN system he 

implemented on his robotic deburring task. The concept of using the Lipschitz ratio for 

clipping out training exemplars is further evaluated in this dissertation. 

The piece of research that motivated this dissertation was by Asada [2]. In this paper he 

proposed using an ANN to recognize the different force patterns associated with a particular 

condition in a contact task and then provide the proper velocity commands to complete the 

task all in one network. Since an ANN can perform a nonlinear mapping, the network could 

handle the problem of nonlinear compliance, i.e. the condition of multiple contacts where 

the simple combination of the appropriate response for each contact alone is inappropriate. 

An example of this situation is insertion of a chamferless peg into a chamferless hole. Asada 

simulated the training and testing of a network to perform a chamferless peg insertion as a 

two dimensional problem. However, his work suffers from the following two limitations: 

• He proposed no general method of obtaining the exemplar vectors used for supervised 

training. He generated his training exemplars by a detailed theoretical analysis which 

assumed a simplified contact model (i.e. no friction, rigid bodies, etc.) Obtaining 

training data is often the hardest part of implementing a neural network solution. 

Therefore, a simple way of generating training exemplars is needed. 

5 Inconsistent data are defined by Asada to be pairs of training exemplars which are close together in the 
input space but far from each other in the output space. The distance between the exemplars is computed using 
the root-mean-square norm. 
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• The input features for his ANN required measuring the location, magnitude, and 

direction of the contact forces between the peg and the environment. Such data would 

only be available if the peg were fully instrumented with an array of contact sensors. 

Typical implementations will have no more than a single six-axis force/torque sensor 

which will not be able to discern single-point contact from two-point contact. Therefore, 

a different set of input features is needed. 

2.2   Research on Transferring Human Skills to Robots. 

In [62], Yang et al. present a good introduction to the characteristics of a human 

controller attempting to demonstrate a skill and the challenges of skill learning. A skill 

is described as a mapping from stimuli onto responses. The characteristics of the human 

controller are presented in [62] as: 

• In general, it is nonlinear, that is, there is no linear relationship between 
the stimuli and responses. 

• It is time-variant, that is, the skill depends upon the environmental condi- 
tions from time to time. 

• It is non-deterministic, that is, the skill is of inherently stochastic property, 
and thus it can only be measured in the statistical sense. For example, 
even the most skillful artist cannot draw identical lines without the aid of 
a ruler. 

• It is generalizable, that is, it can be generalized through a learning process. 

• It is decomposable, that is, it can be decomposed into a number of low-level 
subsystems. 

We pay particular attention to the first two of these characteristics, since they are 

significant to the method proposed and the results presented in the present work. The 

nonlinear nature of the stimuli-to-responses mapping requires a system that can capture 

nonlinearities. For the work of Yang et al., a hidden Markov model (HMM) is used to repre- 

sent the human skill as a parametric model. The skill learned was to remove a mockup of an 

Orbit Replaceable Unit (ORU) from its dock using the 7-degree-of-freedom (DoF) self-mobile 

space manipulator (SM2) designed and built at Carnegie Mellon University. No discussion 

of the tolerances is presented, but Yang et al. do mention using 100 demonstrations by the 

operator as the basis for their training set.  [62] states that "skill learning is, to a certain 
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extent, the problem of uncovering the characteristics from recording data which represents 

the nature of the skill." Thus, modeling human skill and transferring the skill to robots are 

two separate issues. In both our ANN approach and their HMM approach, however, we 

attempt to treat both issues simultaneously using a single controller. [62] further asserts 

that "HMM is a doubly stochastic model which is appropriate for the two stochastic processes 

that skill learning must deal with, i.e., the mental state (or intention) which is hidden, and 

the resultant action which can be measured." In the present work, we will rely on the ANN 

to provide access to the hidden mental state through the inherent averaging which occurs 

with repeated looks at the same data during training. In addition, the nonlinearity of the 

ANN will be our tool to properly model the nonlinear stimuli-to-responses mapping of the 

human controller. 

As far back as 1979, Asada has been interested in work which has evolved into skill 

transfer. His early work amounted to recording and playback of force trajectories [3, 4]. 

Eventually Asada advocated using pattern recognition techniques to select the proper tool 

commands from a set of sensor measurements [6]. Asada applied the technique to a robotic 

deburring task which included a direct-drive selective compliant articulated robot for assem- 

bly (SCARA) robot with the electric grinding tool. This technique involved interviewing a 

human expert to identify some global rules of operation for the process to be learned. Then 

the operator and task were monitored as the operator demonstrated the task and various 

data were gathered. For the task of deburring, collected data were the position trajectory 

of the tool along and normal to the workpiece surface, the force normal and tangential to 

the workpiece, the angular velocity of the grinding wheel, and the armature current of the 

grinding tool as an indicator of the load torque. Some set of features were then extracted 

from the data set and used to form a pattern vector which was normalized by the standard 

deviation. For the case of deburring, Asada used the mean value, the peak value, and the 

root" mean square as the feature set. Finally, discriminate functions were identified to clas- 

sify the sensor patterns into the control actions that the human expert identified during 

his/her interrogation. The control actions for deburring were things like increase/decrease 

force, how many times the motion should be repeated, etc. The selection of the proper control 
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action based on the extracted sensor features (pattern recognition) is a perfect application 

for an ANN, and is probably what prompted Asada to propose just such a scheme in [5]. 

2.3   Summary. 

Several benchmark articles have been used to provide a background on the PIH and 

edge-mating tasks which we seek to address in this dissertation. Although very little lit- 

erature was found for the edge-mating task, the PIH research will serve well to prepare 

one for the edge-mating task because the PIH task is more difficult and edge-mating can be 

considered as a possible phase of the PIH task. Although many researchers have analyzed 

and attacked the PIH problem with numerous techniques, none have presented general so- 

lutions for the nonlinear chamferless PIH task which are invariant to the hole's location in 

the manipulator workspace and can be implemented with the limited amount of sensor data 

we have assumed will be available. We will attempt to extend the ideas of several of these 

works as we strive for our stated objective. 
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III. Overview of Concept and Nomenclature. 

This chapter will present a quick overall view of how the proposed controller is intended 

to work. It begins with a block diagram that describes the entire process at a very high level 

followed by a snapshot of how an ANN controller would be used in an operational system 

after training had already been completed. Then the specific concepts and nomenclature 

associated with each segment of the process from raw data collection through ANN training 

and finally to controller operation are presented. 

Figure 3.1 depicts the entire proposed process for learning a new accommodation 

(ACC) task. Initially the raw data are collected by observing a human demonstrating the 

task. Then the data are processed in some way to transform them into a suitable set of ANN 

training exemplars and the off-line training is conducted. Finally, the new set of learned 

ANN weights are implemented into the operational configuration on a robot and tested. 

The complete system concept consists of an operational configuration, raw data collection, 

training data preparation, the off-line training of the ANN, implementation of the controller, 

and the evaluation of the controller's performance. Each of these facets will be discussed in 

turn. 

3.1    Operational Configuration. 

The proposed operational control system consists of an inner feedback control loop and 

an outer reactive control loop as shown in Figure 3.2. The inner loop is a stiff position- 

integral-derivative (PID) control servo that would run at a much higher rate than the outer 
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Figure 3.1   Proposed process used to learn an ACC task 
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Figure 3.2   Simplified block diagram of operational system configuration 

loop so that the inner loop performance can be idealized. The outer loop has an ANN 

controller which approximates an accommodation control law. Accommodation is the inverse 

relationship to mechanical impedance[48] and is genetically given by 

V = AF (3.1) 

where F is a vector offerees, V is a vector of velocities, and A is the accommodation matrix. 

An accommodation control law was selected because it commands manipulator trajectory 

changes that are relative to the current position. When the commanded velocities are 

expressed in a coordinate frame that is attached to the peg, the accommodation controller 

provides commands that are independent of the joint configuration or location of the peg in 

the workspace of the manipulator. This is a characteristic called configuration-independence 

and is a major goal of this dissertation effort. As the robot interacts with the environment, 

it generates interface forces between the end-effector and the environment. A universal 

force-moment sensor (UFS) measures the interface forces of the environment on the peg and 

presents them to the ANN controller. The ANN maps those measured interface forces into 

desired velocities which the inner servo loop follows. The ANN can thus be described as a 

real-time trajectory generator for the low-level cartesian velocity servo loop. 
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The force vector presented to the ANN and the velocity it produces are both cartesian 

vectors expressed in the tool-frame. Thus, the ANN has no knowledge of where the end- 

effector is in the workspace or any knowledge of how the arm is configured. The effect of 

the peg's weight is removed from the measured force vector prior to its presentation to the 

ANN. The resulting controller is insensitive to both the location of the workpiece and its 

orientation with respect to gravity. 

3.2   Raw Data Collection. 

Before one can implement a multi-layered perceptron ANN, it must be trained. The 

simple back-propagation training algorithm was used for this dissertation. Back-propagation 

training is described in Appendix A. It is a supervised training method, which means that 

the network must be presented with training data representing the desired input-output 

relationship in order to adjust itself to achieve that relationship as the repeated 'looks' are 

made. 

The mapping performed by the ANN controller is 

TVd(t) = g(F(t)) (3.2) 

where TVd is the desired velocity vector, F is a feature vector based on measured forces, 

and </(•) is, in general, some nonlinear vector function. For the simple edge-mating task 

which is to align a square-tipped peg normal to a rigid, flat surface, Peshkin [42] shows that 

the function g(-) can be a linear operator representing a generalized damper. In this case, 

Eq (3.2) becomes 
TVd(t) = TVn + A F(t) (3.3) 

where Vn is a nominal free-space trajectory velocity that dictates the motion of the peg when 

it is not in contact with the environment and Aa is an accommodation matrix which is the 

inverse of a damping matrix, and characterizes a generalized damper. For later reference, 

we find it convenient to define a commanded velocity,   Vc, as 

TVe(t) = A F(t) (3.4) 
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which, of course implies that 
TVd(t) = TVn + TVc(t) (3.5) 

In Peshkin's work, TVn was taken as a simple vector which is superimposed with the com- 

manded velocity. For the present work, TVn will be modulated according to whether the 

peg is in contact with the environment or not. The function used for modulation is given 

in Eq (5.47) in Section 5.5.1. An additional difference between the simple accommodation 

controller and the controller of the present work is that Vc is also modulated out of phase 

to that of TVn for the present controller. Thus, when TVn is turned on, Vc is turned off, and 

vice versa. The modulating function (referred to as the blending function in later sections) 

is a continuous function that gradually switches Vn off as the contact force magnitude in- 

creases from zero while simultaneously switching TVc on. The prime motives for introducing 

the modulating function are to prevent noisy force data encountered during free-space mo- 

tion from influencing the nominal free-space commanded velocites and, more importantly, to 

allow for the fact that TVn is already implicitly contained in the human demonstration data 

on which the ANN is trained. 

The choice of coordinate frames can greatly simplify the form of Aa in Eq (3.3). Peshkin 

[42:pp. 480] shows that if the origin of the coordinates is at the center of the peg tip and 

the task is planar, then Aa is a sparsely populated accommodation matrix having non-zero 

values only in the (2,2) and (3,3) positions. The precise values for these two non-zero 

elements can be found either analytically or by empirically tuning the matrix while running 

the controller. The simple linear mapping of Eq (3.3) can readily be learned by an ANN, so it 

serves as a good starting point for controller development. To teach an ANN the mapping of 

Eq (3.2) using the back-propagation training method, one must create input-output training 

pairs that are consistent with the relationship. The starting point for creating those training 

pairs is to collect raw data. 

3.2.1 Sources of Raw Data. Three types of raw data were collected: synthetic, 

real, and demonstration. The synthetic raw data were generated by a computer algorithm 

that systematically populated the entire range of the input space with input vectors. The 

distribution of the vector samples within the range of the input space could be algorithmi- 
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cally controlled. For the planar problem, the input space is 3-dimensional so that evenly 

distributed vectors can be depicted as an evenly-spaced, 3-dimensional volume grid of coor- 

dinate points. 

To collect 'real' data, an ACC matrix controller was implemented either on the robot or 

in simulation to perform the task. The explicit accommodation control law, given by the ACC 

matrix, provided the trajectory generation commands in response to the interaction forces 

measured by the UFS. As the accommodation controller performed the task, the measured 

forces and commanded velocities were recorded as 'real' raw data. Thus, the 'real' raw data 

represent the behavior of the robot under the command of the explicit accommodation control 

law. 

Demonstration raw data were collected from observation of a human operator per- 

forming the desired task. In this case, the operator controlled the motion of the peg which 

was attached to some mechanism for recording the interaction forces and peg motion. Two 

different mechanisms were used to collect demonstration raw data during the course of this 

research: the PUMA robot and the PLIMMS. These mechanisms are described in detail in 

Section rV. 

3.3   Configurations of Raw Data. 

Once the raw data are collected, they must be configured to create raw input-output 

training pairs. Figure 3.3 depicts the four different configurations used. 

3.3.1 SISO Data. The first configuration is termed SISO because it amounts to 

configuring synthetic input data with synthetic output data. Creating SISO data involves 

systematically fabricating input vectors, F , that span the entire input space of F as depicted 

in Figure 3.4(a). 

The actual spacing of the F can be varied as desired, but for this discussion assume 

the F are evenly spaced along all input feature axes. Each of the F are then multiplied by 

an accommodation matrix, Aa, to produce a desired output, V . SISO data can be generated 

completely off-line, and they reflect a noise-free, consistent mapping from F   to V .   By 
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consistent, we mean that all the F   are all related to all of their corresponding V   by the 

exact same mapping matrix. 

3.3.2 RISO Data. A second method, called RISO, requires implementing the linear 

feedback accommodation control law of Eq (3.4) on a robot or in simulation and letting it 

perform the task. With the control law implemented and running, the measured force data, 

Fr, are captured while the robot interacts with the environment to complete the task. The 

captured Fr data are then propagated through Eq (3.4) to obtain desired V . The RISO data 

are noise-free and consistent like the SISO data, but they are unevenly distributed across 

the input space as illustrated in Figure 3.4(b). An ANN trained from RISO data should learn 

the same linear accommodation relationship of Eq (3.4) that the SISO data produced. By 

virtue of how the input vectors were generated, they are clustered in a region of operation 

that is a subset of the entire input space. One might expect that the concentration of input 

vectors in the region of operation would provide higher resolution in the training data where 

the controller is likely to operate. 

3.3.3 DISO Data. A third method of configuring the input-output training pairs is 

called DISO because it pairs demonstration input data with synthetically generated output 

data. The main difference between DISO data and RISO data is that a human is controlling 

the robot or other similar demonstration device when DISO data are collected. Gravity 

compensation of the device can relieve the human operator from carrying its weight as the 

task is demonstrated, but the operator may still have to overcome the friction and inertia of 

the device, especially if the joints are actuated and high gear ratios are used. The captured Fr 

data are then propagated through Eq (3.4) to obtain the desired V . As a result, the mapping 

from F to V is still noise-free and consistent for DISO data. However, the distribution 

of the input vectors is naturally different from that of the RISO data because the feedback 

controller has changed from an explicit accommodation control law to a human controller. 

Since the characteristics of the controller are very different, one would expect a markedly 

different clustering of the F in the input space as Figure 3.4(c) attempts to illustrate. As 

in the case of SISO and RISO data, an ANN trained from DISO data should learn the linear 

accommodation relationship of Eq (3.4). 
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3.3.4 DIDO Data. The final method of configuring input-output training pairs is 

called DIDO because it pairs demonstration input and output data together. The demon- 

stration device is controlled the same as it is for DISO data collection, but the output vector 

for each training pair is the measured velocity, Vm, rather than the velocity produced by 

Eq (3.4). This small change in procedure represents a vast change in principle. A fundamen- 

tal difference between DIDO data and any of the previous three types described is that an 

ANN trained from DIDO data may learn some nonlinear relationship as shown in Eq (3.2) 

rather than necessarily learning the linear relationship in Eq (3.3). Although the clustering 

of the input feature data for DIDO training data is the same as for DISO, one would expect 

the output training vectors to differ significantly. Besides the possibility that the human 

may use a different accommodation matrix mapping, DIDO data can contain several other 

corrupting factors such as: 

• Noise in the output vector data due to measurement noise on the joint angle sen- 
sors, differentiation noise, and numerical errors generated while transforming joint 
velocities to cartesian velocities. 

• Inconsistencies in the output vector data due to poor task performance by the human 
operator. 

• The mapping relationship observed by the human operator may vary as a function of 
time. 

• Possible mismatching of input and output vectors due to causal time delay imposed by 
the human operator. 

• DIDO data depict a mapping from F to TVd, which means they include the operator's 
rendition of Vn in accordance with Eq (3.3). 

All of these factors substantiate our expectation that DIDO data will not exhibit the 

same function mapping as the sparsely populated, decoupled accommodation matrix which 

is derived by Peshkin in [42]. It is very likely that the DIDO data will exemplify a mapping 

matrix that is fully populated which introduces coupling influences between the axes of the 

task. However, the simple accommodation matrix form presented by Peshkin for the edge- 

mating task is not the only matrix form which can perform the task, so there is adequate 

reason to believe that with careful controller design and the nonlinear mapping capability of 

the ANN, there is a good possibility that the proposed ANN controller can learn to accomplish 

the desired task in the presence of all the complications mentioned above. 
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3.4 Training Data Preparation. 

The raw input-output pairs of data might undergo one or more processing steps in 

preparation for training. Examples of the data processing steps include low-pass filtering, 

velocity pruning, collision pruning, etc. These steps are described in detail in Section 5.2. 

3.5 ANN Architecture and Training. 

Figure 3.5 shows a simple schematic of the MLP ANN used for this dissertation. It 

is a fully-connected, two-layer ANN. Fully-connected means that all of the input nodes are 

connected to each of the hidden nodes, and all of the hidden nodes are connected to each of 

the output nodes. Although at first glance it may appear to have three layers, it is called a 

two-layer ANN because the input nodes are simply connections for the input features to be 

applied and do not perform any transformation on the data. So, the hidden layer and the 

output layer are the only layers that count. 

The algorithm used to train the ANN s is backward error propagation with momentum. 

Appendix A presents a brief summary of the basic equations relating to ANN s. It includes 
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the equations for computing the ANN output vector for a given input vector as well as the 

equations used to implement the back error propagation algorithm. 

3.6 ANN Training Evaluation. 

When a particular ANN structure had been trained, it was evaluated to determine the 

success of the training session. In its simplest form, the evaluation consisted of examining 

the shape of the total squared error curve during training, the tracking error between the 

computed ANN output with the trained weights, V , and the desired output identified by 

the training data set, V. Where appropriate, additional evaluations were made by using 

various techniques to extract the mapping matrix that the ANN appeared to be emulating. 

These techniques are described in detail in Section 5.4. 

3.7 Controller Implementation. 

Once training is complete, the weights and biases are implemented in the ANN con- 

troller. This amounts to simply capturing the saved weights and biases from the training 

and plugging them into the ANN feed-forward calculations. The resulting controller is then 

incorporated into the robot control structure as depicted in Figure 3.2. In the cases where 

the controller was implemented via simulation, the software was configured to support the 

block diagram described in Figure 5.8 of Section 5.5.1. 

3.8 Controller Performance Evaluation. 

Since the final total squared error documented during training cannot be related di- 

rectly to how well the controller will work, a method had to be developed to evaluate the 

controller's performance when the weights and biases were implemented. The goal was to 

have a performance metric that could be used to identify improvements or degradations in 

the effectiveness of the controller as different sets of weight and bias data were run on the 

PUMA. With this metric in hand, one could then argue about the effects of varying different 

ANN architecture and training parameters. The metric is computed after a run is complete 

to assess the results. 
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A scalar performance metric, (, was developed which is a function of the path length 

traversed during the task, the stability of the motion, and the ease of the motion. The metric 

is a dimensionless parameter which reflects the performance of the controller of interest 

relative to the performance of the "best" accommodation matrix controller run under the 

same conditions. Poor performance results in higher £ values, so the goal is to minimize (. 

Thus, the value of C reflects the economy of motion or directness of the controller's solution. 

The details of how ( is derived and computed are given in Section 5.7. 

3.9   Summary 

This section has presented the general scheme of how the proposed ANN accommo- 

dation controller is to be trained, implemented, and tested. The three types of raw data 

(synthetic, real, and demonstration) which were used in this research were described, and 

the reader was introduced to the four acronyms used to describe how the raw data can be 

configured into input/output (I/O) data pairs. These four configurations (SISO, RISO, DISO 

and DIDO) will be referred to extensively in the remainder of this document, so the reader 

should be familiar with them before reading ahead. After the data are configured into I/O 

pairs, they can then be processed in one or more ways to produce the actual training data 

feature vectors which are presented to the ANN during its off-line, supervised training ses- 

sion. Following training, the ANN is implemented as a controller and its performance is 

evaluated. This is the overall scheme of the proposed controller approach. The following 

chapters will detail the mechanics of the method and present the results of the investigation 

into its feasibility. 
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TV. Hardware Description. 

There were four types of custom-built hardware for this dissertation: the end-effector 

that was mounted on the last link of the robot and the DIDO data collection mechanisms, 

the training handles that offered the human operator a place to grasp the robot while 

demonstrating tasks, the PLIMMS used to collect raw DIDO data, and the PUMA robot. 

Each of these will be discussed in turn. 

4.1 End-Effector Design. 

The end-effector was simply a rectangular peg fabricated from solid T6016 aluminum 

stock. The peg had a cross section 75 millimeter (mm) by 35 mm with an overall length of 

317.5 mm, as shown in Figure 4.1. The mass of the peg was 0.6947 kilogram (Kg) while its 

center of gravity (CG) was 176 mm from the face of the mounting flange not including the 

alignment button. The stiffness of the peg was far greater than that of the robot or either of 

the data collection mechanisms. 

4.2 Training Handle Design. 

A training handle was designed to provide a handgrip for a person to backdrive the 

PUMA robot during collection of DISO and DIDO training data. The handle was designed 

to mount on the flange of the PUMA's sixth link as shown in Figure 4.2. The screws of the 

UFS pass through clearance holes in the training handle mounting plate and thread into the 

flange of link six, thereby sandwiching the training handle in place. The handle grips are 

made from thin-wall, stainless steel tubing, while the mounting plate is made from stainless 

steel plate. The curvature of the handles is such that lines extending from the open ends 

of the handle grips will pass through a point at the tip of the peg. This design feature was 

intended to enhance the user's ability to make rotation motions about the tip of the peg. 

4.3 PLIMMS Design. 

A three-link planar mechanism was designed as a light-weight, easily backdriveable 

device to collect demonstration data. Figure 4.3 shows the basic structure of the device. 
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Figure 4.1   Illustration of the end-effector peg showing its dimensions 

PUMA Joint 6. 
Mounting Flange 

Figure 4.2    Training handles used to backdrive the PUMA robot during demonstration 
training data collection 
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Figure 4.3    Basic structure of the PLIMMS showing the encoder locations and end-effector 
configuration 

Optical encoders were mounted on each of the three revolute joints to measure the 

linkage joint angles. The 12-bit encoders provided for high accuracy in the position mea- 

surement. The links were made of 0.125-inch thick wall aluminum box channel while the 

dog-ears of the joints were machined from solid aluminum blocks. Ball bearings were used 

in the joints to minimize the friction and make it easily backdriveable. The forward kine- 

matics for the linkage were used to transform the measured joint positions/velocities to peg 

tip cartesian positions/velocities. The UFS was mounted on the end-effector flange of link 

three. The peg was then mounted to the UFS. To operate the device, the user grasped the 

tubular part of link 3 just above the UFS with one hand and moved the peg as desired. The 

output of the UFS was recorded on an IBM®-compatible personal computer (PC) along with 

the joint encoder outputs. 

The software used to control the PLIMMS data collection system was written mostly 

in C with only a few low-level communication routines coded in assembly language. The 

software for the PLIMMS ran on a PC 386/33 computer. It was compiled using the Borland 

Corporation TurboC® compiler. The UFS was interfaced to the PC via a parallel I/O card. 

4-3 



Figure 4.4   Kinematic description of the PLIMMS 

Figure 4.4 shows the kinematic layout of the PLIMMS. The as-built dimensions of the 

PLIMMS were: 

Li = 417.5 mm 

L2 
= 417.5 mm 

L^x = 40.0 mm 

Lav = 145.7 mm 

The end plate of link 3 was machined to receive the same UFS that was used on the PUMA 

robot. 

4.4   Robot Testbed Description. 

The Unimate PUMA 562 robot served as the testbed for all of the experimental work. 

The PUMA is a 6-DoF, vertically-articulated, industrial (V-AI) manipulator. The six revolute 

joints of the PUMA are driven by DC servo motors via geared transmissions. Figure 4.5 shows 

the basic layout of the PUMA robot. 
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Figure 4.5   The PUMA 562 robot structure 

The PUMA robot is a common university research tool, and there are many references 

that describe its characteristics in detail [14, 20, 34, 49, 50]. The experiments were done 

using the Air Force Institute of Technology (AFIT) Robotic Control Algorithm Development 

and Evaluation (ARCADE) operating system which provides the capability to experimentally 

evaluate a wide range of digital control algorithms [33]. The ARCADE system bypasses the 

standard Unimate controller and VAL control language so that torques can be commanded 

directly to each of the joint motors. The commanded torques, fc, were computed by software 

running on a Digital Equipment Corporation® (DEC) VAXStationlll host computer (VMS 

host computer) which is interfaced to the PDP 11/73 that provided low-level control of the 

PUMA. When the controller was operating, the desired joint velocity vectors, q, were inte- 

grated and fed as desired joint angles, qd, to the ALTER mode of the PUMA's VAL controller. 

The PUMA ALTER mode used a low-level, high-speed PID control loop to servo to the qd. 

A six-axis (3 forces, 3 moments) UFS (model number UFS-3012A25-U560) manufac- 

tured by JR3, Incorporated was attached between the last link of the PUMA and the peg to 

provide force feedback measurements. The UFS comes with its own local power supply, pro- 
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cessor electronics and operating system [30]. The UFS samples the forces and moments at a 

rate controlled by its own operating system and makes that data available asynchronously 

via a parallel connection. This digital input-output (DIO) interface was connected to a DEC 

DRV-11J digital input-output (DIO) card in the PDP's QBus when ARCADE controlled the 

robot. The UFS sample rate was set at 300 Hz for the experiments conducted in this research. 

Two footswitches were interfaced into the system to control operation. The first 

footswitch (colored red) was wired in series with the kill switch on the PUMA controller 

as a safety feature. This footswitch was a normally-closed, momentary contact switch; it 

gave the operator ready access to disable the PUMA during data collection or operation with- 

out having to use his hands or reach for the switch. The second footswitch (colored green) 

was interfaced into the analog-to-digital converter (ADC) to provide a begin or end signal 

for the control software. This footswitch was a normally-open, momentary contact switch; 

it enabled the operator to signal that he was ready to proceed and indicate when a data 

run was over without having to use his hands or a keyboard interface. An example of how 

the green footswitch was used occurred during the positioning of the PUMA for the start of 

a test run. Upon pressing the green footswitch, the PUMA was gravity compensated and 

backdriveable so the operator could maneuver it to the desired starting position manually. 

As was mentioned above, the computing hardware for operating the robot was a VMS 

host computer with a PDP 11/73 providing the low-level control interface to the PUMA robot 

under the ARCADE environment. Because the ARCADE environment was evolving, the 

control software was written in a mix of FORTRAN, C, and assembly languages. Since the 

original ARCADE system was developed in FORTRAN, all of the communication protocols 

were based on calls to FORTRAN and VAXLab subroutines. In addition, the VMS host 

computer was running the VMS operating system which was written in FORTRAN, so all 

of the routines that interfaced with the operating system or communicated with the robot 

via the PDP 11/73 were written in FORTRAN. This included routines to read and write 

data across the serial and parallel connections, data plotting routines, etc. The PDP 11/73 

was running the assembly code to provide the low-level serial and parallel communications 

between the VMS host computer and the robot. That code essentially wrote the torques out 
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to the PUMA as motor currents and read in the joint positions from the PUMA's joint angle 

encoders. 

4.5   Summary. 

This chapter has presented the two main pieces of equipment that were used to collect 

demonstration training data. The PLIMMS was designed to be a light-weight, low-friction 

motion measurement system that was easily back-driveable for collecting demonstration 

data. The PUMA manipulator was used for both data collection and controller implementa- 

tion and testing. The special training handles were attached to the PUMA manipulator to 

provide a comfortable handhold when demonstration data were collected. The peg used for 

all the testing was also described. These tools were critical to the success of this research 

effort. 
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V. Methodology 

This chapter describes the methods and algorithms that were used to conduct this 

research. It is organized as follows: Section 5.1 details the raw data collection procedure, 

Section 5.2 describes the data processing algorithms available, Section 5.3 explains the ANN 

architecture and training technique, Section 5.5 describes the implementation of the trained 

ANN controller, and finally, Section 5.7 identifies how the controller was evaluated. 

5.1   Raw Data Collection. 

5.1.1 SISO Data Collection. To collect SISO data, a custom program was written 

which allowed the user to select the spacing function, the range between the maximum 

and minimum value on each axis, and how many subdivisions of those ranges to use. The 

ranges were specified by a single parameter, ß, for each axis which identified the minimum 

as -ß and the maximum as +ß for that axis. The parameter, a, specifying the number of 

subdivisions to use actually specified how many subdivisions to use between the minimum 

value and zero. If a was given as n, then the number of discrete values for that axis was 

2n + 1. The program then systematically generated the input vectors, F, by starting with 

all the components at their minimum values and proceeding to increment each component, 

in turn, according to the prescribed spacing function until the maximum values for all three 

components were reached. These F were then propagated through the desired Aa to get the 

Fas per Eq (3.1). 

5.1.2 RISO Data Collection. RISO data were collected from two different sources 

during this research: from the simulation and from the robot manipulator. When the 

simulation was used to collect RISO data, a desired Aa was implemented in a controller 

simulation to produce a recorded stream of F and V data. To ensure proper time sequence 

alignment of the data, the recorded F from the simulation were subsequently propagated 

through the desired Aa to produce the synthetic V vectors. The matching set of recorded F 

and V constituted the desired RISO training data set. 

To collect RISO data from the PUMA manipulator, the control block diagram shown in 

Figure 5.1 was implemented. The explicit accommodation control law, given by an accommo- 
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Figure 5.1    PUMA control system block diagram with accommodation controller running 
during collection of RISO data 

dation matrix, provided the trajectory generation commands in response to the interaction 

forces measured by the UFS. As the accommodation controller performed the task, the mea- 

sured forces, Fm, and commanded velocities, TVe, were recorded. The nominal velocity, V„, 

was maintained at a fixed value throughout the task execution. The desired planar com- 

ponents of the Fm were extracted to form the F which was then propagated through the 

desired Aa to yield the desired outputs, V. Thus, the "real" inputs were used to determine 

the distribution of the data set while Eq (3.1) ensured that a perfectly consistent mapping 

was synthetically generated. The result, of course, was RISO training data. 

5.1.3 DISO Data Collection. As mentioned in Section 3.3, DISO data are a hybrid 

form of the DIDO and SISO data types. The procedure for collecting DISO data was simply 

to use the demonstration inputs from a DIDO data set and propagate them through a 

desired Aa to compute matching synthetic output vectors. There was no special equipment 

or algorithms unique to the DISO data collection. 

5.1.4 DIDO Data Collection. DIDO data were collected from two different exper- 

imental platforms during the course of this research: the PUMA robot and the PLIMMS. 
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Each device will be discussed in turn, followed by the method of differentiation which was 

common to both. 

5.1.4.1 PUMA DIDO Data Collection. When the PUMA was used to collect 

data, the controller was configured to provide gravity compensation of the arm's weight while 

the operator manually moved the peg using the training handles described in Section 4.2 as 

their interface. In this scenario, the human is providing the trajectory generation commands 

in response to the interaction forces he/she feels. As compared to the "real" data collection 

system, the accommodation feedback control loop that controls the robot during "real" data 

collection disappears and the inner PID feedback loop is replaced with a model-based feed- 

forward gravity compensation loop as shown in Figure 5.2. For the planar edge-mating 

task studied herein, the PUMA joints that did not contribute to motion in the vertical plane 

(joints 1,4, and 6) were servoed to their zero positions with a PID feedback control law. Thus, 

the motion of the robot was restricted to he in the vertical plane. The coordinate system 

describing the PUMA as a planar manipulator is presented in Figure 5.3. Note that, in the 

PUMA coordinates, the vertical plane is the X-Z plane which contrasts with the X-Y plane 

description used for the simulation work described in Section 5.5.1. 

To use the DIDO data for training required the velocities to be expressed as cartesian 

vectors in the tool-frame. The vector of measured robot joint angles, q, was differentiated to 

produce a vector of joint velocities, q. The manipulator Jacobian,   J(q), converted q to  Vp. 

TVP = TJ(q) 'q (5.1) 

It is important to realize that TJ(q) must be derived specifically for transforming joint 

velocities to a tool-frame cartesian velocity of the point at the origin of the peg coordinate 

frame in the center of the peg tip. We now derive the TJ(q) for this purpose by differentiating 

the kinematic equations in the world-frame coordinates and then transforming the result to 

the tool-frame. There are other methods [20] for deriving the Jacobian, but the differentiation 

method was deemed easiest for the planar configuration of the PUMA. 
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Figure 5.2   PUMA control system block diagram during DIDO data collection 

Figure 5.3    Coordinates used to describe the PUMA robot as a planar manipulator operating 
in the vertical plane 
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Using Figure 5.3 as a guide, the forward kinematic equations for the position of the 
w~ (w        w        w     \T 

peg,   X = |  xp,   zp,   0pj   are 

xp    =    A2 cos 02 + ^3 sin #2 + I>4 sin 023 + LT sin 0235 

zD   =   h0- A2 sin 02 + A3 cos 02 + DA cos 023 + LT cos 0235 

T6L #235 

(5.2) 

(5.3) 

(5.4) 

where A2 and D4 are the Denavit-Hartenburg parameters [20] that represent the lengths of 

links 2 and 3, respectively, of the PUMA, A3 is the offset in joint 2, h0 is the height of the 

joint 2 axis above the ground, LT is the total distance from the axis of joint 5 rotation to the 

tip of the peg, 023 = (02 + 03), and 0235 = (023 + 05). Note that 6P is measured about the 

positive Y0 axis from the positive X0 axis. Taking the time derivative of these equations, we 

get 

Xn — 

z„   = 

ve„  = 

-A2 sin 02 (e2) + A3 cos 02 (e2) + DA cos 023 (02 + 9a) + LT cos 0235 (o2 + 03 + 05) 

-A2 cos 02 (02) - A3 sin 02 (02) - D4 sin 023 (ö2 + 03) - LT sin 0235 {o2 + 03 + 05) 

02 + 03 + 05 (5-5> 

which can be written in the form of 

vv, = wmt (5.6) 

where the cartesian velocity vector is denned as WVP = j  ip,   ip,   0P|  . The manipulator 

Jacobian matrix expressed in world-frame coordinates is given by 

rm = 
(- A2 sin 02 + A3 cos 02 + D4 cos 023 + IT cos 0235) 

(-A2 cos 02 - A3 sin02 - D4 sin023 - IT sin0235) 

(JD4 COS 023 + IT COS 023S)      (IT cos 023s) 

(- D4 sin 023 - IT sin 0235)   (- LT sin 0235) 

1 1 

(5.7) 
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and the vector of joint velocities, q, is denned as <f = j02,03,05 j 

Eq (5.7) expresses the velocity of the point at the center of the peg tip as a function 

of the manipulator joint velocities and expressed in the world-frame cartesian coordinates. 

For the ANN controller, we require the velocity to be expressed in the tool-frame coordinates 

that are attached to the peg. To change the frame of reference of the world-frame Jacobian to 

the tool-frame, the following relationship out of [14:p.l72] is used for the full 6-DoF problem: 

J(Q) 
Rw     o 

0      TR„ 

vm (5.8) 

where TRW is the rotation matrix that transforms a velocity in the world-frame to one in the 

tool-frame, and 0 is a 3x3 zero matrix. For the planar problem at hand, 

R„ 

cos(02 + 03 + 05)    -sin(02 + 03 + 05)   0 

sin(02 + 03 + 05)     cos(02 + 03 + 05)     0 (5.9) 

and Eq (5.8) reduces to just the upper three rows of Eq (5.8) and can, therefore, be written 

as: 
TJ(q) = TRW 

WJ{q) (5.10) 

Applying Eq (5.10) to the expressions for the world-frame Jacobian given in Eq (5.7), 

the manipulator Jacobian matrix expressed in tool-frame coordinates is found to be 

Tm 
(LT + A2 sin 035 + A3 cos 035 + D4cos05)   (LT + D4cos05)   (LT) 

(-A2 cos 035 + A3 sin 035 + Z)4sin05) (D4sin05) 0 

1 1 1 

(5.11) 

In summary, to collect the DIDO output data on the PUMA robot, the recorded time 

history of q is differentiated to yield q which is then premultiplied by J(q) given in Eq (5.11) 

to yield the desired Vp as desired output data. The planar components of the recorded time 

history of force data, Fm, are used as the input data without transformation. 
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Figure 5.4   PLIMMS controller block diagram during demonstration data collection 

5.1.4.2 PLIMMS DIDO Data Collection. Since the PLIMMS was not an 

actuated system, it did not have any feedback control embedded in the block diagram as 

shown in Figure 5.4. The PLIMMS was designed to be lightweight, low-friction, and easily 

backdriveable. Section 4.3 gives a more detailed description of the PLIMMS hardware and 

control software. The joint encoders and the UFS were calibrated prior to each session of 

DIDO data collection with the PLIMMS. 

In a fashion equivalent to that used for the PUMA when collecting DIDO data, the 

PLIMMS provides measurements of joint positions, q, rather than joint velocities, q. There- 

fore, we must use the same procedure to differentiate the q and transform the resulting q 

into TVp using the Jacobian matrix, TJ{q), describing the PLIMMS structure. We now derive 

the desired J(q) in the same way it was done in Section 5.1.4.1 for the PUMA. 

Figure 5.5 shows the coordinates used to describe the position of the peg expressed in 

world-frame coordinates. The forward kinematics of the PLIMMS express the position of 

the point at the center of the peg tip in world-frame coordinates, X, as a function of the 

PLIMMS joint angles. They are given by 

xp    =   Li cos 6X + L2 cos 9U +L3x cos 6123 +(L3y + LJXS-\-Lp) sin 9123      (5.12) 
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Figure 5.5    Coordinates used to describe the position of the peg on the PLIMMS during 
demonstration data collection 

VP 
=   X1sinöi + I2sinöi2 + l3ä:Sinöi23-(i3!/ + ijE3 + ip)cosöi23       (5.13) 

9p   =   0m-90° (5.14) 

where #12 = 0i + 02 and Ö123 = #12 + 03- 

The simple time derivative of the kinematics yields 

w. 
VP 

-Li sin0i (0\) - £2sin012 (^ + 02) 

- [L3x Sin 0123 - (L3y + LJ-RS + Lp) COS 0123] (#1 + 02 + 03 

Ly COS 0! (0\) + L2 COS 012 (Öy + 02) 

+ [La, cos 0123 + (X3y + ijR3 + ip) sin 0123] (öi + 02 + 03) 

01 + 02 + 03 

(5.15) 

(5.16) 

(5.17) 
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Rearranging this into the matrix form of Eq (5.6) produces the following world-frame 

Jacobian matrix 

rm = 
—Li sin 61 - L2 sin 0i2 - [L3x sin 6123 - (L3y + ZJR3 + Lp) cos Ö123] 

Lx cos0! + L2 COSÖ12 + [£32: cos #123 + (L3y + -^JR3 + Lp)sm$i23\ 

1 

-L2 sin 012 - [L3x sin 0123 - (L3y + £JR3 + Lp) cos 0123] 

i2 cos 012 + [L3x cos 0i23 + (L3y + ZJR3 + Lp) sin 0123] 

1 

[L3x Sin 0123 - (i3y + £jK3 + ip) COS 0123] 

[L3x cos 0123 + (£3y + ijR3 + iP) sin 0i23] (5-18) 

1 

To transform Eq (5.18) from the world-frame to the tool-frame, we use Eq (5.10) where 

R,„ for the PLIMMS coordinates is 

R„ 

COS 0123       Sin 0123     0 

— Sin 0123     COS 0123     0 

0 0 1 

(5.19) 

For brevity, the final expression for the tool-frame Jacobian matrix is not given here explicitly, 

though it is simply the product of Rw in Eq (5.19) premultiplying   J(q) given in Eq (5.18). 

5.1.5 Differentiation. When collecting the DIDO data, both the PLIMMS and the 

PUMA robot measured the joint positions rather than joint velocities. Consequently, the 

positions were differentiated to produce the measured velocities. To perform the differenti- 

ation, the 3-point backwards difference formula [10:p.l40] was used: 

J;«^[3/(*)-4/(*-T) + /(z-2T)] (5.20) 

where T is the time, in seconds, between samples. 
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5.2   Training Data Generation Procedures. 

Once the raw data were collected and configured as a suitable I/O pair, one or more 

steps of data processing transformed it into suitable training vectors for presentation to the 

ANN. There were seven possible data processing options that could be applied to the data. 

These seven options are explained in the following sections followed by a discussion of when 

and in what combinations they might be applied. 

5.2.1 Magnitude Normalization. All of the training data are expressed in the tool- 

frame cartesian coordinate system because that is the task coordinate system in which the 

accommodation or ANN controller operates. For the planar problem, the input force vector 

of the controller, F, has three components (fx, fy, mz) and the output velocity vector, V, 

has three components (vx, vy, u2). These vectors contain two DoF of direction information 

and one DoF of magnitude information. By normalizing the magnitude of the vectors, the 

magnitude DoF is lost. The resulting unit magnitude vector simply identifies the direction 

of the original vector. The normalized force vector, F, is given by 

F=[^WWr] <5'21) 

where Mj is given by 

M/ = J(/.)2 + a)a + (^,a 

and r is a characteristic radius taken as the radius (or half width) of the peg. The normalized 

velocity vector, V, is given by 

" = <£•£■*' 
where Mv is given by 

Mv = y/(vx)
2 + (vsf + (u,r? 

It is important to note that after normalization, the number of independent parameters 

contained in the normalized vectors is reduced by one. 

When magnitude normalization is applied to the I/O features of a training data set, the 

result is a set of unit-length vectors which identify the vector directions of the commanded 
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velocities in response to the measured force directions. Since the magnitude information is 

lost, the number of independent DoF in the mapping is reduced by one. This has both good 

and bad implications on the success of the ANN controller trained from these data. Having 

one less DoF to learn can theoretically mitigate the burden of learning for the ANN. However, 

since the stability of the robot controller is inherently sensitive to the gains of the system, the 

I/O gain of the mapping from force to velocity is important. One must reconstruct a proper 

gain to apply to the controller output after it has mapped the direction for the commanded 

velocity. The question then becomes, "what gain should be applied to the controller output?" 

In an attempt to answer this question, we first look at the gains contained in the 

original training data before they were magnitude normalized. One quickly finds that, even 

for SISO data generated using a constant Aa, the ratio of the velocity magnitude over the 

force magnitude, i.e. the I/O gain, varies considerably. This can be explained by considering 

the results of taking any two vectors, multiplying them by the same matrix, and then 

computing the magnitude of the resulting vector divided by the input vector. Even if the 

matrix is diagonal with equal elements along the diagonal, the only way to get the same I/O 

magnitude ratio is to have the two input vectors linearly dependent (i.e. /i = kf2.) The 

point is, we have no single I/O gain that we can capture from the original training data 

and use to reconstruct the sensitivity of the mapping when implemented as a controller. 

Unsuccessful attempts were made to use the average I/O magnitude ratio of the training 

data in the implemented controller. Although this is a serious problem when one considers 

that it destroys the original integrity of SISO data, it is possible that it could be used to treat 

DIDO data which may originally contain an undesirable I/O gain. This possibility was not 

investigated. 

5.2.2   Low-Pass Filtering. The low-pass filtering of the raw force and velocity 

data was done using custom-written software which made calls to C-language routines from 

"Numerical Recipes in C" [43]. The algorithmic kernel of lpfilter. c was the "Recipe's" sub- 

routine called smoof t () which first removed any linear trend, applied a Fast Fourier Trans- 

form (FFT) to low-pass filter the data, and then reinserted the linear trend. In smoof t () 

the amount of smoothing is specified as the number of points in the series over which the 
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smoothing should occur. The number is not constrained to be an integer, and specifying zero 

results in no filtering at all. Since smoof t () does not accommodate directly specifying a 

cutoff frequency or roll-off rate, the resulting filtered data were examined to determine the 

effective cutoff frequency. To approximate the cutoff frequency, the power spectral density 

(PSD) of the filtered data was examined using DADiSP®, developed by DSP Development 

Corporation [18, 19]. 

The difficulty with determining the corresponding cutoff frequency using smoof t() 

eventually led to the use of a separate computer program that would do the low-pass filtering 

in the time domain. The program was written in C-language by the author and a colleague. 

Using that new program, a clear relationship between signal bandwidth and the program 

arguments was possible. The argument to the program reflected the fraction of bandwidth 

of the sample frequency to pass so it was much simpler to use. 

5.2.3 Velocity Pruning. When a person is demonstrating an accommodation task, 

it is possible that they will generate bad examples of behavior as well as good. A particularly 

troublesome instance of a bad behavior is when the demonstrated velocity is zero while the 

contact force is not zero and the alignment task is incomplete. In such a case, the contact 

force vector can vary widely in both magnitude and direction within the bounds of friction1. 

Consequently, raw data which reflect mapping from a non-zero force vector to a zero velocity 

vector is deemed counter-productive. The process of excluding these counter-productive 

vectors is termed velocity pruning. 

To perform velocity pruning, the raw velocity vectors are each examined to determine 

if the magnitude of the velocity vector exceeds a given threshold. If a velocity is encountered 

which does not exceed the threshold, both the velocity and force samples are discarded for 

that sample point. If the threshold, Vu is exceeded, then the force/velocity sample pair is 

*It is important to note that the contact force vector may vary widely for any velocity state when the human 
is in charge. This is indicative that the mapping may not be one-to-one. The goal of the post-collection data 
processing is to make the data reflect a subjective mapping where every velocity vector is the image of at least 
one force vector. 
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passed without modification. The algorithm to perform velocity pruning is described by: 

Keep: if V > Vt (5.23) 

Discard: if   V   < Vt (5.24) 

For an accommodation matrix controller, the mapping from non-zero forces to a zero 

velocity would only occur in two situations. The first case is when the peg is stuck in a friction 

cone and it cannot move. However, because we have chosen the tool-frame coordinate system 

origin to be a the center of the peg tip and contact must occur at the peg corners, there is 

almost always going to be a moment component to the force measurement which will have a 

corresponding non-zero desired angular velocity component. Therefore, we should rarely, if 

ever, see V=0 due to the first case. 

The second possibility for observing V=0 is upon completion of the edge mating task 

when the peg has been aligned and motion has stopped. In the latter case, it is a desired 

behavior and we want to include it in the training data set or the ANN may never learn to 

stop motion upon alignment. We will demonstrate this behavior in the results to follow by 

experimenting with two different Vt on some sets of training data. In the end, we will find 

that we must use caution with velocity pruning so as to only prune exemplar vectors prior 

to the peg being aligned. 

5.2.4   Hemisphere Pruning. This method of pruning the data excludes all the 

measured force/velocity vector pairs which have an included angle, $, greater than a specified 

threshold, $t. The idea behind hemisphere pruning is that if F and V point in roughly the 

same hemisphere of space, then it is likely that V will be moving the peg so as to comply 

with F, and, therefore, reduce the contact force. If V points in the opposite direction to F, 

then the contact force will increase. The included angle is computed using 

/   F»V 
$ = arccos    — — I (5.25) 

F V 
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where • indicates the dot product operator and ||*|| indicates the root-mean-squared (RMS) 

magnitude of the vector argument. Using Eq (5.25) to compute \P, the rule for hemisphere 

pruning can be written as: 

Keep: if * < % (5.26) 

Discard: if * > ft (5.27) 

If we choose to simply prune out the vector pairs that indicate F and V are separated 

by more than 90-degrees, then we can reduce Eq (5.25) and the criterion for pruning to 

simply 

Keep: ifF»V>0 (5.28) 

Discard: ifF*V<0 (5.29) 

When the two vectors have a positive dot product the velocity vector points within the same 

hemisphere as the force vector which is a prerequisite for a controller to reduce contact force 

magnitudes. 

5.2.5 Lipschitz Clipping. Asada [5] has suggested that Lipschitz's condition for 

continuity of a function can be used to ensure that the training data are consistent before 

they are presented to an ANN for training. Such a screening process is said to improve the 

efficiency of training and is also said to allow the training to reach a global minimum2. The 

Lipschitz condition ensures that two points which are close together in the input space will 

map to two points in the output space which are also close together. Mathematically, the 

Lipschitz ratio, £tj, is expressed as: 

£ij = j1-"^11   Vi,j    e(0<i<N),(0<j<N),i?j (5.30) 
11/«' — /jll 

2This author does not accept Asada's statement that a neural network converges to a global minimum when 
the teaching data satisfying the Lipschitz condition are used as training samples. 
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where N is the total number of force/velocity vectors. Note that the Lipschitz ratio, £i;, 

must be computed for all combinations of i and j in the data set except for the cases when 

i = j. This means Eq (5.30) must be computed N2 - N times. For the present work, the 

root-mean-squared norm was used to compute the distances in Eq (5.30). 

The Lipschitz clipping criterion is given by: 

Keep: if >C,j < £' 

Discard: if £{j > £' (5.31) 

When a pair of vectors is encountered that fails to meet the criterion given in Eq (5.31), 

both of the potential training vectors are discarded since the blame for failure cannot be 

associated with either of them individually. It is the relationship between the two vectors 

that is the target of this examination. 

There are two significant shortcomings of using Lipschitz clipping to process the train- 

ing data. First, there are no sound criteria for choosing the value for £' as a function of any 

system parameters. In practice, it might be chosen rather arbitrarily based on a qualitative 

examination of a histogram plot of £tj population for all potential training vectors. This 

examination would consider the percent of the vectors that a given £' would discard and the 

£' might be chosen so as not to discard more than about 20 percent of the potential training 

vectors. Because we have no method for relating £{j to the resulting ANN controller's per- 

formance, we would be forced to rely on an iterative approach to selecting a "proper" value 

for £'. 

The second problem stems from the expectation that SISO data should pass unchanged 

through all the processing steps, since it is perfectly consistent and accurate data. With the 

Lipschitz ratio clipping, however, we find that, even though there may be a constant linear 

analytic mapping from the input space to the output space, the Lipschitz ratio will not 

necessarily be a constant. The implication is that if the ratio is not a constant for a perfect 

mapping, then selecting a cutoff ratio, £', which excludes any of the vectors, may exclude 

'good' vectors as well as 'bad' vectors.   The only time that the Lipschitz ratio will be a 
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constant is if the mapping matrix is diagonal and all the elements are identical. Otherwise, 

the mapping matrix warps the input space as it maps it onto the output space. 

To understand how the Lipschitz ratio can vary for a constant mapping matrix, consider 

a two-dimensional example. The Lipschitz ratio takes the ratio of the distance between two 

points in the output space over the distance between their corresponding two points in the 

input space. If we have two input points in the two-dimensional input space which are 

separated by a distance of one in the x-axis direction and one in the y-axis direction (i.e. 

their difference is (1,1)), we can picture a right triangle whose hypotenuse connects the two 

points in the input space. If we have the following mapping matrix: 

1    0 

0   2 
(5.32) 

then the two corresponding output points will be likewise connected by the hypotenuse of a 

right triangle whose sides measure (1,2). The Lipschitz ratio between the two input/output 

pairs is V5/V% = 1-58. If, on the other hand, we had two input points separated by 

coordinates (1,2), the input triangle hypotenuse would be y/E in length while that of the 

output triangle would be vTr, SO the Lipschitz ratio would be 1.84. Thus, we have shown 

that for a constant linear mapping matrix, the Lipschitz ratio is a function of the distance 

between the input vectors, and is NOT a constant when the mapping matrix has unequal 

diagonal elements. If the mapping matrix has equal diagonal elements, such as: 

2    0 

0    2 
(5.33) 

then the Lipschitz ratio is preserved as a constant all across the input space for all distances 

between input points. In the example given above, the ratio for the (1,1) input vector would 

be 2, as it would also be for the (1,2) input vector. 

It is important to note that, although using the Lipschitz ratio as a criterion to exclude 

training vectors is not compatible with our objective of excluding only 'bad' vectors, the 

vectors which are not excluded will be passed unchanged by the examination. This means 
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that Lipschitz clipping will not distort the I/O mapping of any vectors which meet the criterion 

expressed in Eq (5.31). Despite the fact that it will not distort the mapping, however, we 

discard Lipschitz clipping as a useful technique for data processing and will not investigate 

it further in the present work. 

5.2.6 Collision Pruning. In free-space motion, the force measurement, Fr, is iden- 

tically zero, which generates a zero output from either the ACC or the ANN controller. This 

essentially turns off the controller until the peg contacts the table surface. Consequently, we 

defined a nominal behavior for the controller that would command the peg motion when there 

were no sensed forces. That behavior consisted of a constant nominal velocity, Vn, which 

was chosen as a pure translational velocity in the direction the axis of the peg pointed (y-axis 

in the planar tool-frame coordinates.) This nominal commanded velocity was assumed to 

be capable of bringing the peg into contact with the table. Upon contact, the Fr becomes 

non-zero in magnitude and the nominal velocity is turned off according to Eq (5.47) that 

follows. Since neither the accommodation matrix controller nor the ANN controller had any 

authority in free-space motion, provisions were made to exclude that data from the training 

data sets. This process of exclusion was called collision pruning. The intent of collision 

pruning was to remove all of the F and V pairs which represented data taken prior to the 

initial contact of the peg with the table surface. To accomplish this, the original training 

data force vector, F, was scanned until a consecutive series of N points was found which all 

exceeded the desired threshold RMS force magnitude, Ft. The value of N was specified by 

the user. Upon finding N points that exceeded Ft, the index of the first point in the N -length 

window was identified as k. Having thus identified the index of the first data point believed 

to be taken after contact between the peg and the table, the algorithm to perform collision 

pruning is described by: 

Keep: Fi,Vi      Vi>k (5.34) 

Discard: FuVi      Vi<fc (5.35) 

where i is the counting index of data vectors. 
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5.2.7 Subsampling. In some cases, it was desirable to see if fewer data points 

could be used to train the ANN. In these cases, one approach was to simply extract every 

nth vector from the original training data file. The algorithm to extract the desired subset 

of vectors simply used the modulo operator to determine whether to keep a vector with a 

particular index. Any leftover vectors after the last vector matching the modulo criterion 

were also discarded. 

5.2.8 Allowable Data Processing Combinations. Although one may apply more than 

one processing option to a particular raw training data file in succession, not all combinations 

of the possible processing options make sense. Table 5.1 shows which processing options can 

be combined together in sequence and which cannot. Note that the table is interpreted by 

assuming that the option listed across the top of the table is executed before the option listed 

along the left side of the table. For instance, one cannot velocity prune vectors after they have 

been magnitude normalized because all of the vectors will already have the same magnitude 

(unity) and would be pruned or kept as a whole set. On the other hand, velocity pruning 

can be applied before magnitude normalization. The primary reason for the disallowed 

combinations is that the first operation destroys the integrity of the time sequence for the 

data set and the second operation requires that sequence to be intact. This is the case for 

the velocity pruning, hemisphere pruning, and Lipschitz clipping which all destroy the time 

base, thereby preventing one from subsequently low-pass filtering or collision pruning3 the 

data. 

5.3   ANN Training. 

To completely describe the ANN training requires mention of the structure of the ANN 

and the training algorithm. Since development of the ANN was not the central theme of this 

research, a specific structure and a specific training algorithm were selected early and held 

constant throughout. Both the structure and the training algorithm are simple. 

3The reason we cannot collision prune data after the time base is corrupted is that our collision pruning 
criterion looks for a consecutive sequence of points that exceed a given value. If the sequence is corrupted by 
pruning out data points, then it is no longer correct to choose the collision point with this criterion. However, if 
we use a window size of one, the time base is no longer a prerequisite for the collision pruning to be successful. 
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Table 5.1    Table depicting allowable combinations (•) and disallowed combinations (o) of 
processing options for raw data. 

1st Operation -^- Mag. 
Normalize 

Low-pass 
Filter 

Velocity 
Prune 

Hemisph. 
Prune 

Lipschitz 
Clip 

Collision 
Prune 

Sub- 
Sample 2nd Operation ^ 

Mag. Normalize N/A • • • • • • 

Low-pass Filter • N/A o o o • o 
Velocity Prune o • N/A • • • • 

Hemisph. Prune • • • N/A • • • 

Lipschitz Clip • • • • N/A • • 

Collision Prune o • o o o N/A • 

Sub-sample • • • • • • N/A 

5.3.1 ANN Structure. The architecture consisted of a fully-connected, two-layer 

MLP using the sigmoid nonlinear squashing function (shown in Figure A. 1 of Appendix A) on 

the output of the hidden layer nodes. Because the ANN was being used to learn a functional 

mapping, output layer nodes did not have a nonlinear squashing function applied to their 

values. Some of the early work maintained five nodes in the hidden layer. However, virtually 

all of the later simulation work used 10 nodes in the hidden layer. 

Every node in the MLP had a bias input as described in Appendix A. The bias nodes 

allow the ANN to adjust the location of the central region of the sigmoid nonlinearity to suite 

the magnitude of the data set. This is important for data sets that may have large mag- 

nitudes, because it prevents the data from being summarily "squashed" by the asymptotic 

tails of the sigmoid function. The bias also means that the sigmoid function does not have 

to be explicitly offset to provide both positive and negative outputs. 

5.3.2 ANN Training Algorithm. The algorithm used for training was a form of 

back-propagation for a MLP. Recently many approaches to MLP back-propagation training 

have been developed to improve convergence. [28] provides a good summary of some of those 

approaches. The specific algorithm used in this research to train the ANN is described in 
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detail in Appendix A. Although the algorithm is simple, it has many parameters that can be 

varied to affect the learning performance. For this research effort, only a few of the possible 

parameters were varied because the ANN was not the central theme of this research. 

The training rate, rj, and the training momentum, a, were held fixed for large groups 

of runs that were to be compared. Over the course of the research, a few different values 

were used, but comparisons between the results from using different values were not made. 

Some ANN training programs reserve part of the training exemplars for testing after 

training is finished. The programs used for the present work did not reserve any training 

exemplars from the training set; all of the data were used in training. 

Based on the information in [29], the initial random weights were all set to values 

between -0.1 and 0.1 to enhance the convergence of the back-propagation algorithm. This 

technique is usual practice to start the training in a relatively "safe" place on a multi- 

dimensional error surface that is less likely to contain a local minima. 

For each set of training data, at least four attempts to train were made. The procedures 

were identical except for the random seed used to initialize the random weights. The same 

random seed was never used twice in any of the training. This is particularly significant 

because the UNIX® implementation of the "random number" generating subroutine will 

generate the exact same sequence of pseudo-random numbers every time it is given the 

same random seed. 

As previously mentioned, the large number of training data configurations precluded 

extensive manual tuning of the training parameters to achieve success in all cases. The 

paradigm developed in this research is that the ANN is given an equal opportunity to learn 

from each set of training data, and its ability to learn each set is used to determine the 

suitability ofthat data set. In an effort to provide an even footing to all the training data set 

configurations, the total number of training vectors presented to the ANN was held constant. 

This consistent exposure of the ANN to training was used as the basis for comparisons 

concerning the ease of learning. Under these criteria, training was terminated based on the 

number of exposures rather than the minimum of the total squared-error curve or any of the 
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other popular termination criteria that are mentioned in [28]. The total number of training 

vectors presented was maintained at 3,000,000 for all the simulation results presented. 

5.4   ANN Training Evaluation. 

Once the ANN was adequately trained using the criteria of the total RMS error for 

the entire data set, it was tested using one or more of three techniques. One technique 

simply confirmed that the computed output errors of the ANN were small, while the other 

two techniques interrogated the ANN to determine what kind of ACC matrix it emulated. 

Each of these is discussed below. 

5.4.1 ANN Error Tracking. The first technique was to simply apply the training 

input feature vectors, F*, one at a time and plot the computed ANN output, V, against the 

training output, V . This test simply determined how well the training data set had been 

learned. Viewing it as a tracking error for the training data trajectory was a more relevant 

means of evaluating whether training was complete enough. It is important to note that 

the test data were identical to the training data for this test. Therefore, the data did not 

evaluate the ability of the ANN to generalize or interpolate, they merely indicated how well 

the ANN had learned the training data set and served to validate the training software. 

5.4.2 ANN Interrogation by Unit-Vector Probing. The second technique for testing 

was called Unit-Vector Probing (UVP) the ANN to determine the Aa it had learned to 

emulate. Using the UVP method, the simple linear relationship of Eq (3.1) was used as a 

model. If one assumes that the ANN mapping is a direct replacement for the Aa of Eq (3.1), 

then one can extract the columns of the pseudo-accommodation matrix, Aa*, by sequentially 

applying unit vectors along each of the coordinate axes to the ANN. The computed outputs 

are then taken as the columns of Aa*. For example, to extract the first column of Aa*, the 

vector F = (1,0,0)T is presented to the ANN. The second column is produced by applying 

F = (0,1,0)T, and the third column is extracted using F = (0,0,1)T. Due to the nonlinearity 

in the hidden layer of the ANN, for a given set of trained weights it is possible to derive 

significantly different Aa* for relatively small variations of the input vectors. This means 
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that the sensitivity of the Aa* to variations from the unit vectors may be large for some 

mappings. 

5.4.3 ANN Interrogation by LSMK. The final testing technique was called the 

LSMF method of extracting the Aa learned by the ANN. This technique takes advantage of 

using the right pseudo inverse to determine the best fit matrix, Aa'. In this case, Aa is a 

best fit to the data set in a total least-squares sense. For the relationship of Eq (3.1), one 

can gather N samples of the input vector, F, and the output vector, V. If all TV samples of 

each are concatenated into new matrix variables, T having size (k X N) and V having size 

(n x N), the relationship is: 

V = AJ T (5.36) 

Since the T and V are given, we want to find Aa' which represents the best fit of the data 

set. In the least-squares error sense, Aa' is given by 

Aa' = V T* (5.37) 

where T* is the right pseudo inverse of T and is given by [38] as 

T*=TT(TTTY (5.38) 

For the remainder of the present work, references to Aa' or the LSMF technique are directed 

towards the method of using the relationship of Eq (5.37). 

In practice, the T and V can be produced from either the original training data set, 

or from presenting a series of F to the trained ANN and computing the series of V. Using 

training data does not provide any insight into the mapping that an ANN has learned; 

however, it is useful for validating the method and for checking the consistency and content 

of the training data. When using the LSMF to evaluate a trained set of ANN weights, the 

I/O mapping was created using the original training data inputs for T and computing the 

ANN outputs as the V. 
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5.4.4 Matrix Similarity Indexes. Once the ANN had been interrogated using the 

UVP technique described in Section 5.4.2 or the LSMF method as described in Section 5.4.3, 

the resulting matrices were compared with Aa. Because both the form and the magnitude of 

Aa were important to its function, the comparison for similarity was difficult to do manually. 

Therefore, indexes of similarity were developed which captured the important features of 

similarity desired. Given a desired Aa depicted as 

A 

and a matrix to be compared for similarity as 

K 

we define the structural similarity index, Ys, as: 

0 0 0 

0 «22 0 

0 0 0-33 

Ml &12 fcl3 

hi &22 &23 

&31 &32 ^33  _ 

(5.39) 

(5.40) 

Tj  =  {kn + k12 + fc13 + K21 + ^23 + ""31 "t" "-32J (5.41) 

T, is a measure of how closely the off-diagonal terms and the kn term are to their desired 

values of zero. T, increases as the errors get larger. A similar, but separate, measure of the 

error in the (2,2) and (3,3) elements of K is the gain similarity index, Tg, which is defined 

as: 

T, = ((*„ - a22f + (k33 - a33f) (5.42) 

Tg makes a direct magnitude comparison between the only two non-zero elements of Aa and 

their corresponding elements in K. As an indicator of correct sign in the (2,2) and (3,3) 

elements, a sign similarity index, T±, is defined as: 

T± = (|sign(a22) - sign(fc22)| + 2 |sign(a33) - sign(fc33)|) (5.43) 
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Figure 5.6   Illustration of the coordinate system used to describe the position of the peg. 

where | * | indicates the absolute value operator and sign(*) is the sign operator which returns 

+1 if its argument is positive or zero and -1 if its argument is negative. T± checks the signs 

of the individual elements against what is desired for them. If both of the signs are the 

same, Y±=0. If the fc22-element has the wrong sign, 2 is added to T±, while 4 is added if the 

&33-element has the wrong sign. Thus there are discrete increments of T± which reveal the 

pattern of sign matching. 

The final similarity index is called the ratio similarity index, Tr. It is defined as: 

T„ = &33 

&22 
- 0-33 

«22 
(5.44) 

Tr provides a measure of the error in the magnitude of the ratio between the two non-zero 

diagonal elements of K as compared to those of Aa. The ratio is crucial to achieving the 

proper system sensitivity to moments as compared to forces. 

5.5   Controller Implementations. 

The controllers were implemented in both simulation and hardware. In both cases, a 

common set of cartesian coordinates was used to describe the position of the peg. Figure 5.6 
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illustrates the coordinate system used to describe the position of the peg. The specifics of 

each implementation are now presented in detail. They are followed by a brief discussion 

about the integration algorithm which was used in both implementations. 

5.5.1 Implementation via Simulation. The simulation software enabled rapid and 

safe evaluation of the many different ANN controllers that were trained in the course of 

this research. It was intended to use the same ANN controller software subroutines for the 

simulation as were used on the software controlling the robot. Because of the revised focus of 

this research effort, this capability was never fully realized. However, it is entirely possible 

to do this in a follow-on effort. 

Figure 5.7 shows a complete kinematic block diagram modeling the controller, the 

robot, and the interaction between the robot and the environment. The interaction between 

the robot and the environment is embodied in the propagation of the cartesian position 

error through the manipulator Jacobian to get joint position errors that, in turn, are input 

to a PID feedback controller that attempts to eliminate them. The torques produced by 

the PID controller can then be conceptually transformed into cartesian forces via the same 

manipulator Jacobian matrix used to transform the position errors. An assumption that 

must be true for this model to be valid is that the manipulator motion between servo samples 

must be very small so as to allow the approximation of a fixed Jacobian during the servo loop 

period. In addition, using the Jacobian to transform errors assumes that those errors are 

differentially small or can be approximated as such. For most robotic control systems, both 

of these assumptions are valid when manipulator speeds are in the low range typically used 

during parts mating. 

It is worth noting that the model depicted in Figure 5.7 does not include any dynamic 

properties such as inertia, damping, joint friction, etc. The effects were ignored for this 

research because they typically have little influence when the manipulator is moving slowly. 

The real PUMA manipulator obviously has all of these dynamic properties, but they are 

unimportant during the slow motion of parts mating. 

In an effort to distill the problem down to its essential components, the simulation 

model was simplified to the form shown in Figure 5.8. In the simplified form, the robot is 
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Figure 5.7   Controller block diagram for complete simulation model. 

modeled as a perfect plant which has no dynamics and introduces no errors into the sys- 

tem. Therefore, it can be represented by a unity transfer function and does not appear 

in Figure 5.8. Although one can argue that no robot is perfect, a typical state-of-the-art, 

high-performance, direct-drive manipulator is close enough to perfect to validate this as- 

sumption at slow velocities. The interaction forces between the robot and the environment 

are generated by the PID controller's stiffness in Figure 5.7 while for the simplified model of 

Figure 5.8, an environmental stiffness matrix, wKe, determines the contact forces. There is a 

subtle, but possibly significant, difference between these approaches. In the complete model, 

the cartesian stiffness realized at the tip of the peg is a configuration-dependent relation- 

ship. This is because the controller stiffness is a joint-space entity and it is transformed into 

cartesian space by the configuration-dependent Jacobian matrix. In the simplified model, 

the   Ke is invariant for all configurations. 

The world-frame superblock on the left of Figure 5.8 reflects all the simulation com- 

ponents that model the interaction of the peg with the environment. All of the vectors 

in that superblock are expressed in world-frame cartesian coordinates as indicated by the 
T W 

'W-superscript preceding each variable. The  Rw and the   RT are matrices that transform 
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Figure 5.8   Controller block diagram for simplified simulation model. 

vectors from world-frame to tool-frame and from tool-frame to world-frame, respectively. The 

world-frame desired velocity vector, TVd, is integrated to yield the desired position, Xd. The 

contact constraint block in Figure 5.8 models the position-based constraint between the peg 

and the table surface. It examines WXd and computes the constrained position of the peg 

tip as a "measured" position vector, WXm. The first step ofthat computation is to determine 

which corner of the peg is closer to the table. Referring to Figure 5.6, the coordinates for 

corner 1,   Xx, and for corner 2,   X2, are given by: 

VX1    =    (^Xp + rp cos 6P J i + ("VP + rp sin 6P j j 

yx, C >0P)l+(V 
rfp)j 

(5.45) 

(5.46) 

where i and j are unit vectors along the X and Y axes in the world-frame coordinates and 

rp is the radius4 of the peg. 

The algorithm used to compute A m depends on the friction model or coefficient of 

friction, //, used. For the frictionless model (i.e. n=0), if Xd = ( xd, yd,6d), Xm = 

("xm, wym, 6m) and the height of the table is yt, the contact constraint model can be described 

by the following pseudo-code which is illustrated in Figure 5.9: 

4 For the rectangular peg used, the "radius" is equal to one-half the peg width. 
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Figure 5.9   Illustration of frictionless constraint model used in the simulation. 

if ( Vd <   Vt) 

then 
w 

Vm  = Vt 

else 
w w 

Vm  = Vd 

endif 
w w 

%m  — % d 

For the case of ß » 1 (i.e. no sliding), Figure 5.10 illustrates the no-sliding algorithm 

which is described by the following pseudo-code: 

if (  Vd <   Vt) 

then 
w 

Vm  - Vt 

else 
w w 

Vm =     Vd 

endif 
w ,w w N       ,W W ,   ,,W W \    i    w 

Xm = {   Vm-     %.,))*(    Xit-     aJm«.!,)/!   Vdt ~     ym(t_1)j+     In,,.,, 

6 m   —  6 A 

which is a simple linear interpolation of the x-coordinates to find xm where the path crosses 
wyt. Note that the evaluations expressed in the pseudo-code must be applied to the corner of 

the peg that is closest to the table surface. Therefore, the coordinates for both corners must 
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Figure 5.10   Illustration of no-sliding constraint model used in the simulation. 

be computed to determine which one, if any, is to be constrained by the table surface. In this 

model, wXm is the interpolated value between the two wXd which bracket the collision with 

the table. Note that only the height of the peg is constrained by the frictionless model. 

Referring back to Figure 5.8, the difference of  Xd and   Xm is computed as a virtual 
\XT    —* W 

surface deflection, Xe, which is multiplied by the environmental stiffness matrix, Ke to 

produce a "measured" contact force, wFr expressed in the world-frame coordinates. 

The superblock on the right of Figure 5.8 contains the description of the controller. 

The tool-frame vector of measure forces, Tf is fed into either the ANN or the ACC controller, 

whichever is present. For the controller to generate a non-zero commanded velocity, it must 

have a non-zero measured force vector. When the peg is in free-space motion, the force 

measurements differ from zero only by some magnitude of noise caused by the inertial forces 

of the peg end-effector and the electronics noise of the sensor itself. If the free-space motion is 

slow, so as to make it easier to deal with a rigid environment, then the force sensor readings 

will also be small. Thus, if the peg starts off in free-space, it may never move because 

the controller output may generate joint torque commands that are below the threshold of 

stiction in the joints. To ensure that a fixed free-space command is generated, a nominal 
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Figure 5.11    Plot of the blending function showing: a) S(ß) which turns off the  Vn as ß 
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velocity, TVn, is superimposed on the controller command, Vc. After the peg contacts the 

surface, however, it is undesirable to superimpose TVn because it may prevent the controller 

from recovering from jamming or wedging during execution of a peg-in-hole task. In addition, 
—* f -* T —* 

the DIDO data exemplifies a mapping from F to Vd, so it already implicitly includes V„. 

Thus, continually superimposing TVn with TVe to get TVd, would only serve to increase the 

contact force between the peg and the table. 

A nonlinear blending function, S(ß), was used to "turn off" the nominal velocity as the 

peg contacted the surface. As S(ß) turns off Vn, (1 - S(ß)) gradually turns on Vc. The 

function S(ß) is shown in Figure 5.11 and defined as: 

S(ß) = 
i[cos(f|) + l]    VO</3<2e 

0 V/3 > 2e 
(5.47) 

Returning to Figure 5.8, when the measured force magnitude is computed, it is assigned 

to ß which is used as an argument to the blending function, S(/3), described above which 

controls the blending of the nominal velocity, TV„, and the commanded velocity from the 

controller,   Vc. After the blending function has operated on  Vn and  Vc to produce  Vn 

and  Vc   respectively, they are superimposed to give the desired velocity,  Vd. 
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Table 5.2   Summary of parameters used for the simulations. 

Parameter 
Nominal Values 

SISO RISO & DISO DIDO 

1,000 

" lON/m             0                    0 " 
0   lON/m                  0 
0            0    10N-m/rad 

' 50N/m              0                   0 " 
0   200N/m                   0 
0              0   10N-m/rad 

V 0.05 m/s 0.0125 m/s 

T 1 ms 28.8 ms 

€ 0.2 0.2 

Because the parameters controlling the servo rate and the contact model were so 

important to the overall performance and stability of the simulated controller, they were 

carefully selected. Table 5.2 summarizes the parameters used for the SISO, RISO, DISO, 

and DIDO simulations. The differences between the parameters for the SISO/RISO/DISO 

simulations as compared to those for the DIDO simulations are largely due to the mismatch 

in the servo rate which occurred due to a lack of foresight about its importance. Section 6.1.3 

gives a more detailed explanation of the parameter selection. 

5.5.2 Implementation on Robot Testbed. Figure 5.12 depicts the block diagram of 

the implementation of the ANN controller on the robot. The superblock labeled "PUMA" 

contains all the components that were internal to the PUMA and its low-level controller. As 

indicated in Figure 5.12, a low-level PID controller servoed the manipulator to the desired 

joint positions, qd. The superblock identified as "Env." is a model of the interaction between 

the robot and the environment which created the contact forces measured by the UFS. 

Note that the forward kinematics of the PUMA and the Ke transformation shown in the 

"Env." block were not explicitly computed, but rather implemented as hardware. When 

the measured forces were presented to the ANN controller, it computed the commanded 

velocity which was superimposed with the nominal velocity to create the desired velocity 

vector. The inverse Jacobian matrix transformed the desired cartesian velocity into a vector 

of desired joint velocities which were then integrated to yield the desired joint angles that 

are commanded to the low-level servo of the PUMA robot. 
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Figure 5.12    Detailed block diagram of the scheme used to implement controllers on the 
PUMA manipulator. 

The expression for the tool-frame inverse Jacobian matrix,   J(q)~ , for the PUMA 

robot as a planar manipulator is: 

Tm~l = 
«in ij 12 Ü13 

ij 21 iJ22 ^23 

Ü31 Ü32 Ü33   _ 

(5.48) 

where the individual components are given by: 

sin #5 
*Ju 

A2 cos 03 - A3 sin Ö3 

Ul2 = 
— COS 05 

A2 cos #3 — A3 sin #3 

Ü'l3 = 
-iT sin #5 

A2 cos #3 - A3 sin 03 

= 
A2 cos 035 - A3 sin 035 - Di sin 05 

U21 
D4(A2 cos 03 - A3 sin 03) 

Ü'22 = 
A3 cos 035 + D4 cos 05 + A2 sin 035 

D4(A2 cos 03 - A3 sin 03) 

Ü23 = 
LT(-A2 cos 035 + A3 sin 035 + DA sin 05) 

D4(A2 cos 03 - A3 sin 03) 

(5.49) 

(5.50) 

(5.51) 

(5.52) 

(5.53) 

(5.54) 
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-A2 COS 035 + A3sm035 

D4(A2 cos 03 - A3sm03) 
A3 cos 035 + A2 sin 035 

D4(-A2 cos 03 + A3 sin 03) 
A2LT cos 035 + A2D4 cos 03 - A3LT sin 035 - A3D4 sin 03 

^33   =     FT71 a A—r-^ (5-57) 

D4{A2 cos 03 — A3 sin 03) 

The low-level servo loop on the PUMA updated 32 times as fast as the trajectory 

updates were sent down to it. The trajectory updates were computed every 28.8 milliseconds 

(ms). The low-level servo loop was accessed via the ALTER mode of the PUMA controller. 

The PID gains of the low-level servo loop were the factory preset gains. 

5.5.3 Velocity Integration. This section describes how the velocity signals generated 

by the controllers were integrated to generate position trajectories. The method of integration 

is important because small differences in the algorithm can have significant effects on the 

results. The method of integration was the simple trapezoidal approximation described by: 

£ 
-.NT >=N T 

f(t)dt « £ - [f(iT) + /((» - 1)T)] (5.58) 
4=0 I=i 2 

For the implementation in simulation, the integration was not complicated by the 

presence of the inverse of the Jacobian matrix in the controller. Since all the simulation 

computations were done in cartesian space, Eq (5.58) was applied to the Vd to produce 

Xd. For the PUMA implementation, however, the desired cartesian velocity output of the 

ANN controller is multiplied by the inverse Jacobian matrix, J(q)~ , and integrated to 

generate a desired joint position trajectory. Since J(q)~ is a function of joint position, 

instantaneous velocities are produced when it is multiplied with a desired cartesian velocity. 

If the robot's joint angles change very much during the integration interval, error will be 

introduced by the variation of J{q)~ . Consequently, it is important to keep the period of 

integration sufficiently small so that the change in J(q)~ will likewise be small. This is 

accomplished by subdividing the position update period into smaller integration intervals 

over which J{q)~ does not change significantly. For the workspace region of interest and 

the magnitude of commanded velocities, subdividing the position update interval into two 

subintervals has proven sufficient. 
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Another important consideration in the velocity integration was whether to use a ref- 

erence trajectory or not. The difference is that, for a reference trajectory, the previous com- 

manded position, cfd^y is used as the starting point for each integration period, whereas 

one would otherwise use the current measured position, qm. The significance of using a 

reference trajectory is that position errors are accumulated so that the PID servo controller 

can continue to work on them during subsequent servo intervals. In contrast, if qm is used as 

the starting point for each integration period, any error in position left by the PUMA's PID 

servo controller at the beginning of the next servo interval is forever forgotten. This lack 

of memory can lead to end-point drift due to measurement noise and quantization error on 

a manipulator. Therefore, the reference trajectory was used for the PUMA implementation 

of the various controllers. For the simulation, however, the measured position, Xm, was 

used in the integration. This is because for the simulation, we are assuming that the robot 

is perfect so the measured and desired positions are identical. 

5.6   Timing Considerations. 

The task at hand is to train an ANN controller to mimic the performance of an existing 

controller system. This task has been referred to as a system identification [39] because 

we are using the ANN to identify the characteristics of the controller system. For this 

discussion, we make the following assumptions about the controller: 

• it is a "black-box" for which we can only observe the I/O-mapping 

• the controller exhibits desireable system performance5 when implemented with the 
plant of interest, 

• the processing time delay is unknown and may vary 

Because it is a "black-box" we do not have access to the inner workings of the controller 

so we must examine samples of its inputs and outputs to ascertain its behavior. Thus, we 

seek to learn the input-output mapping that the controller performs as it controls a plant of 

interest. 

5 Desireable performance characteristics include stability, quick settling time, minimal overshoot, and good 
tracking. 
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5.6.1 Processing Delay Time. Since the controlled system is stable, we infer that 

the "black-box" controller has an acceptable processing delay. For digital control systems 

running on a single microprocessor, the processing delay of the controller is necessarily less 

than the time between servo updates. As long as the control algorithm can be computed in 

time to send the resulting controller command down at each servo period, it doesn't matter 

how short the actual processing delay of the control law is. The actual processing delay of 

the ANN control law is likewise unimportant as long as its output can be computed in time 

to be available for the controller updates at the servo rate. However, even with the apparent 

room for error, there are several possible problems that can occur if timing is not carefully 

considered when training the ANN. 

The first problem has to do with the computational burden of the ANN. If the servo 

rate has to be reduced to allow time for the ANN to compute its output, then performance 

equivalent to that of the "black-box" controller cannot be expected. Although the difference 

may be insignificant, increasing the sampling period always carries a cost penalty in system 

performance [27]. The time it takes to compute the ANN output is a function of the micro- 

processor speed and the architecture of the network itself. As the number of inputs nodes, 

output nodes, or hidden layer nodes increases, the number of multiplies and adds required 

for the feedforward computations goes up rapidly due to the massively interconnected nature 

of the network. Consequently, smaller networks can be run at a higher servo rate on a given 

microprocessor platform. 

A second timing problem is that the processing delay of the "black-box" controller may 

actually be a multiple of the apparent servo rate of the controller. This can occur when there 

are nested control loops running on separate microprocessors in the system. For example, 

Figure 5.13 shows the block diagram of a system designed to track a moving target with the 

end-effector of a robot using a vision system for feedback. The inner loop of such a system 

might be a low-level position servo loop that is running at a very high servo rate, T,, with a 

PID feedback control law to provide accurate tracking of position commands. Surrounding 

this control loop may be a feedback controller commanding positions to the inner loop based 

on signals from the camera. The imaging system may take a much longer time, kTs, to 

process the camera data even though it runs on a faster microprocessor. As a result, the 
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Figure 5.13    Block diagram of a system designed to track a moving target with the end- 
effector of a robot using a vision system for feedback. 

inner servo loop may be interpolating between the camera-generated position commands in 

order to provide a continuous trajectory to track. 

In a system such as this, the problem occurs when we want to identify the outer control 

system but we do not know that it is operating with a longer delay. In our ignorance, we 

may sample the input to the camera and the output of the image processor at the inner loop 

servo rate. As a result, the output data we capture will appear discretized since it changes 

only every kT„ while the input data changes every T,. The problem is not severe, however, 

since examination of the data will reveal its true nature and it can be solved by sampling 

the data every kT, and associating the n + 1 output sample with the nth input sample to 

account for the one cycle processing delay. 

A third possible problem is that the outer controller may be able to process data at 

the same rate as the inner servo loop but it has a startup delay. This problem can occur 

even when both control loops are being computed on a single microprocessor. Multistep 

integrations and differentiations in discrete controller require some startup delay until the 

proper number of input samples have been accumulated. Once the requisite number of 

samples are available, the algorithm can output a result every time step. In this case, there 
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Figure 5.14    Illustration of causal time shift between captured input and output data for an 
example case of a controller having a processing delay of five sampling periods. 

is simply a time shift in the data that must be accounted for when examining the input- 

output data captured at each servo period. If the startup delay was five servo periods, then 

the sampled output data stream must be shifted back in time five servo periods when it is 

correlated with the sampled input data stream. 

Finally, the fourth and most dreaded possible problem is that the processing delay of 

the controller may not be constant. This is difficult because it defeats any efforts to simply 

time shift the data to account for the delay. Researchers in speech recognition have developed 

a method called dynamic time warping to account for the effect of variable duration in speech 

signals [40:p297]. It is possible that such a method could be adapted to solve the variable 

time delay problem. 

5.6.2 Causality. According to Payandeh [41], causality is defined as "the property 

of a linear system (operator) when its output at time t is dependent on its input up to the 

time t." This gives us a basis to discuss the Causal Time Shifl below. 

Figure 5.14 illustrates sampled input and output data streams as two series of parallel 

dots running horizontally with increasing time to the right.   These sampled data are to 
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be used to construct input-output data pairs for training an ANN controller to imitate the 

controller. At each sampling interval, an instantaneous snapshot is taken of the input data 

and output data. If a controller having a processing time delay equal to 5 sampling periods 

has generated the output data stream in response to the input data stream, it is clear that 

the output at time t is not a function of the input at time t. Rather, the output at time t+5 

corresponds to the input at time t and, for the purpose of this discussion, that output (at 

t+5) will be referred to as the correlated output. The processing time delay can alternatively 

be called a Causal Time Shift because it is the time shift required for there to be a causal 

relationship between the input-output data pairs. Since the controller in Figure 5.14 has a 

5 sample period processing delay, it could not have possibly produced the output at time t+4 

in response to the input at time t because the input did not have time to propagate through 

the controller. Similarly, the output at time t+6 was generated by the input at time t+1. 

If one knows the processing time delay and knows that it is a constant, then the captured 

data can simply be time shifted by the causal time shift to restore the causal relationship 

between the input-output pairs. 

Output data that occur earlier than, or later than, the correlated output may or may 

not be strongly related to the input in terms of cause-effect. For example, in Figure 5.14 

the output at times t+4 and t+6 may or may not be strongly related to the input at time t. 

If the data in the neighborhood of the correlated output are very similar, then the observed 

input-output mapping is relatively insensitive to accurately identifying the correct causal 

time shift. On the other hand, under some conditions the observed mapping may be very 

sensitive to the causal time shift. 

Two factors affect how sensitive the observed input-output mapping is to the causal 

time shift; the dynamic bandwidth of the controller and the frequency content of the input 

signal. Figure 5.15 attempts to depict the general relationships between the input signal 

frequency content, the controller bandwidth, and the sensitivity of the input-output mapping 

to variations in the causal time shift. 

Higher input-output mapping sensitivity is indicated by a darker shading in Fig- 

ure 5.15. If the controller has a high bandwidth and the frequency content of the input is 

low, then output data in the region of the correlated output will relate fairly strongly to the 
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Figure 5.15 Illustration of the general relationships between the input signal frequency 
content, the controller bandwidth, and the sensitivity of the input-output map- 
ping to variations in the causal time shift. 

input sample because the output will vary slowly and there will be little difference between 

neighboring output samples. If the neighboring output samples are strongly related to the 

input, then only a small error will be introduced by associating the input with the wrong out- 

put sample. Consequently, the mapping will have a low sensitivity to incorrectly specifying 

the causal time shift as shown in the lower right quadrant of Figure 5.15. 

If, on the other hand, the output is rapidly changing in response to a rapidly changing 

input, the output data in the region of the correlated output will not relate strongly to the 

input sample. Since the neighboring output samples vary considerably, a larger error will 

be introduced by associating the input with the wrong output sample. Consequently, the 

mapping will have a high sensitivity to incorrectly specifying the causal time shift as shown 

in the upper right quadrant of Figure 5.15. This discussion thus encourages one to sample 

quickly so as to have slowly varying data from one output sample to the next. Shannon's 

sampling theorem also encourages one to sample as quickly as possible to prevent aliasing 

in the data. However, reality has a way of constraining the upper limits of sampling speed. 
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The upper left region in the figure is labeled "faulty design" because one would not 

want to use a low bandwidth controller to control a high bandwidth system. In addition, if 

the physical characteristics of the system cause it to respond slowly to input changes, then 

the output data will be a weak function of the input even when properly time shifted. A large 

inertia is one possible cause of slow response which essentially low-pass filters the input. 

This could lead to problems during ANN training because a weak functional mapping implies 

that there could be inconsistent input-output pairs contained in the data. Inconsistent data 

would, in turn, slow down the progress of training. 

5.6.3 The Human Factor. When a human operator is introduced into a control 

system, there are always inconsistencies in the exact control response that will be measured 

for a given stimulus input. Even if the person responds in the same way every time he 

receives a given stimulus, his reaction time may be substantially different for two different 

instances. A person's reaction time is a direct function of his alertness, which, in turn, is a 

function of many things such as his level of concentration and how rested he is. [62] also 

presents these concerns for transferring human skills to robots via analysis of demonstration 

data. Owing to these factors, it is clear that a person's reaction time can vary significantly 

during the course of even a brief task. In terms of control system analysis, reaction time 

represents a processing time delay so we are faced with a variable processing time delay. 

5.7   Controller Performance Evaluation. 

To make an objective comparison of the performance quality for the many trained 

ANN controllers, a performance metric was derived. The purpose of the metric is to provide 

a single scalar index of performance that reflects the quality of how well the ANN performs 

the edge-mating task. The desired metric has the following features: 

• penalizes for spurious motion during the alignment task 

• penalizes for slow execution of the alignment task 

• penalizes for instabilities or divergence away from the aligned position once alignment 
is achieved 

• penalizes for excessive contact force magnitudes between the peg and the table surface 
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• grades the performance relative to the performance of the "best" accommodation matrix 
controller's performance 

The expression for the performance metric, (, is given by: 

C = - (5.59) 
X 

where x is the composite performance index for a given run and x is the composite per- 

formance index for the "best" accommodation controller. The values for these composite 

performance indices are computed from: 

X = pV + ßAt + 7|AP|max + ei^lavg + <^lmax (5.60) 

where />,/?, 7, £ and <j> are positive-valued weighting factors, V is the root-mean-squared path 

length traversed from impact to first crossing of the aligned position, Ai is the amount of time 

elapsed between impact and first crossing of 180-degrees, | AP|max is the maximum position 

amplitude away from the aligned position after first alignment, |-Flavg is the average of the 

absolute values of the forces measured after the first alignment, and |P|max is the maximum 

(peak) RMS force amplitude after alignment. The weighting factors were heuristically chosen 

as: 

p = 2.0 (5.61) 

ß = 1.0 (5.62) 

7 = 5.0 (5.63) 

£ = 2.0 (5.64) 

<j> = 5.0 (5.65) 

One can see that the first term in Eq (5.60) includes the performance cost for spurious 

motion while the second term penalizes for lethargic motion. The third term includes a 

measure of post-alignment stability by penalizing for position deviations, either positive or 

negative, from the aligned position. The fourth term provides a penalty based on the average 

force magnitude after the peg has been aligned. This term captures a sense of how hard the 

5-41 



peg is being pressed against the table once the task is completed. Its presence in the metric 

assures that controllers which jam the peg hard will not go unpunished. The final term of 

Eq (5.60) captures any transient force spikes that may occur after the peg has been aligned. 

During early testing, several controllers which would unexpectedly pulse the peg against the 

table were noted. The fifth term is intended to capture the behavior of those controllers. 

5.8   Summary. 

This chapter has presented the mechanics of the algorithms which were applied during 

this research effort. It is a toolbox from which techniques were drawn as needed to unfold 

the characteristics of the proposed control method. Our toolbox contains the procedures 

used to collect the various raw data types (SISO, RISO, DISO, and DIDO) as well as the 

seven data processing options that were available to convert the raw data to training data. 

Two data processing options, the magnitude normalization and the Lipschitz clipping, were 

immediately discarded because of revealed weaknesses. 

The structure of the MLP ANN and the back-propagation training algorithm were also 

presented, along with descriptions of how the efficacy of the training could be evaluated. 

Among the methods used to evaluate the success of training were the simple error tracking 

and network interrogation by way of both the UVP and the LSMF techniques. The interroga- 

tion techniques were designed to extract the matrix that the ANN is most closely emulating 

in operation. Four different matrix similarity indexes were also presented which are used to 

determine how the structure, gain, sign, and ratio characteristics of the extracted matrices 

compared with a given objective matrix. 

The particular details of the simulation code and PUMA robot control code were also 

derived. The details presented included derivations of the required coordinate system trans- 

formations and Jacobian matrices. In addition, the frictionless and unity friction contact 

models used in simulation were presented in detail. 

In the last sections of this chapter, timing considerations that may have affected 

the success of the ANN controllers were discussed and the metric used to evaluate the 

performance of the controllers was presented. The metric is designed to reward the controller 
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for directness of motion, conservative use of contact force, and stability after the peg has 

reached alignment. These tools will provide a solid foundation from which to conduct our 

investigation. 
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VI. Results 

This chapter presents all of the data and analysis conducted during this research 

effort. It is organized to present a developing story from baseline information, through 

intermediate investigations to the final tests of the overall conceptualized control paradigm. 

We start by describing the system-verifying baseline experiments using the accommodation 

matrix controller. This is followed by the various observations and investigations of SISO, 

RISO and DISO training data. Finally, the efforts to utilize DIDO training data are presented 

with a short summary at the end. 

6.1   Baseline Accommodation Matrix Controller. 

To validate the software and to establish a baseline of performance, a "best" ACC 

matrix, A, was empirically derived. For tasks in planar coordinates, the A is a 3x3 matrix. 

Peshkin [42] shows that if the origin of the coordinates is at the center of the mating surface 

of the peg tip and the task is planar, then A is a sparsely populated accommodation matrix 

having non-zero values only in the (2,2) and (3,3) position. This configuration of A provides 

for accommodation in the tool-frame Y-axis as well as angular accommodation. 

6.1.1   Nominal Task Execution. It is useful to examine plots representing the 

nominal (typical) execution of the edge-mating task as a reference for our future discussions. 

Figure 6.1 shows the positions ((a)-(c)), measured forces ((d), (f), and (h)), and commanded 

velocities ((e) and (g)) for an idealized case of task execution. The position data shown 

in Figure 6.1 ((a)-(c)) are measured in the world-frame coordinate system while the other 

data are shown in the tool-frame coordinates. We see that upon initial contact, the angular 

alignment error is corrected linearly with respect to time, as shown in Figure 6.1(c), and 

the curvature in the X-axis position shown in Figure 6.1(a) is caused by the translation of 

the point at the center of the peg tip due to constant angular rotation about the corner of 

the peg in contact with the table and some sliding allowed by the frictionless contact model 

used for this example. The Y-axis position plot is nearly linear due to the constant peg 

rotation rate, but is slightly curved because of the peg bouncing slightly against the table 

top.   Once the peg reaches its first alignment with the table, as indicated by 6P = 180°, 
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Figure 6.1 Idealized results of a nominal ACC controller performing the edge-mating task 
from a CCW initial misalignment angle. Time histories of position ((a)-(c)), 
commanded velocities ((e),(g)), and measured forces ((d),(f),(h)) are shown. Note 
that Vx = 0. 
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it begins a small-magnitude rocking or osculation about the aligned position, as the trace 

of Mz shown in Figure 6.1(h) best indicates. The rocking is caused by the stiffness of the 

environment interaction model interplaying with the controller servo rate and the fact that 

there are no dynamics in our simulation model to damp out the oscillations. The tool-frame 

Fx shows a linear decrease to zero as the table contact force, which is always normal to the 

table for the frictionless contact model shown, points more and more along the tool-frame 

Y-axis as the peg is stood up into alignment. It should be clearly understood that the data 

presented in Figure 6.1 were fabricated for the purpose of this explanation to orient the 

reader. Under close scrutiny, the data shown for the position history and the commanded 

velocity history will certainly be found to lack consistency in the figure. For example, if the 

peg was constantly moved in the -Y-axis direction as shown by the constant negative region 

of Figure 6.1(e) with the angles shown in Figure 6.1(c), then the measured Y-axis position 

shown in Figure 6.1(b) would not have been manifested since the peg would have been rising 

from the table rather than falling. Despite these subtle details, the author hopes that the 

description of the nominal task will serve well to orient the reader to the data presented in 

subsequent simulation plots. 

6.1.2   Experimental Tests.      Through experimental trial-and-error, the Aa yielding 

the best qualitative performance on the robot was found to be: 

J^-a 

0        0 0 

0   0.0007     0 

0        0        0.2 

(6.1) 

The criteria used to make the qualitative judgement of best performance were the same 

criteria that are included in the expression for the performance metric, (, presented in 

Section 5.7. Naturally, these Aa values are affected by the controller gains, the hardness of 

the peg and table, the inertia of the robot, and the magnitude of the nominal velocity, Vn, 

used to move into contact with the table. Figures 6.2 and 6.3 show sample runs of data with 

the Aa controlling the robot. Notice that the system behaves significantly differently when 

the initial misalignment angle is clockwise (CW) (ref. Figure 6.2) as compared to when it 
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is counter-clockwise (CCW) (ref. Figure 6.3). This is due primarily to the configuration- 

dependent nature of the manipulability for the robot. When the peg is initially misaligned 

CCW with the wrist bent inward (pointing towards the base of the robot), the peg tends to 

stay in contact with the table and displays a higher inertia. When the peg is CW, the wrist 

is pointing outward and the peg comes out of contact with the table more readily in response 

to the commanded velocities. This behavior was universal in the experiments on the robot. 

6.1.3   Simulation Tests.     For the simulation, the Aa was significantly different than 

for the experimental work on the robot. The Aa selected for the simulation was: 

Aa = 

0 0 0 

0 0.2 0 

0 0 200.0 

(6.2) 

Figure 6.4 shows the simulation results of the ACC controller performing the edge- 

mating task from a CCW initial misalignment angle. The position vector components of the 

peg, given in the world-frame cartesian coordinates, are shown in Figures 6.4(a)-(c). The 

commanded velocity vector components of the ACC controller expressed in the tool-frame 

cartesian coordinates are depicted in Figures 6.4(e) and (g). Note that the Vx component of 

the commanded velocity is identically zero for all time and is not shown in Figure 6.4 or any 

of the subsequent simulation result plots. Figures 6.4(d), (f), and (h) show the contact force 

history between the peg and the table expressed in the tool-frame. Because the simulation is 

based purely on kinematics and contains no dynamic properties such as manipulator inertia, 

the limit-cycle motion of the peg in contact with the table is exaggerated. The contact force 

history shows the peg bouncing out of contact nearly 50% of the time when it is "touching" 

the table. No attempt was made to introduce dynamic properties into the simulation model. 

The kinematic model is considered satisfactory for the purposes of this research. 

Although the form of Aa for the simulation was identical to that of Aa used in the 

experimental work, the values for the (2,2) and (3,3) elements were quite different. This is 

due to several factors including: 
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Figure 6.2    Force and commanded velocity time histories of an ACC controller performing 
the edge-mating task from a CW initial misalignment angle on the PUMA robot. 
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Figure 6.3 Force and commanded velocity time histories of an ACC controller performing 
the edge-mating task from a CCW initial misalignment angle on the PUMA 
robot. 
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Figure 6.4 Simulation results of the ACC controller performing the edge-mating task from 
a CCW initial misalignment angle. Time histories of position ((a)-(c)), com- 
manded velocities ((e),(g)), and measured forces ((d),(f],(h)) are shown when the 
Aa, given in Eq (6.2), is implemented. Note that Vx — 0. 
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• The difference between the sampling rate used for the robot (28.8 ms) and that used 

for the simulation (1.0 ms). 

• The difference between the environmental interaction stiffness of the robot and that 

used in the simulation. For the robot, the stiffness stems from the hardness of the 

peg, the hardness of the table, and the stiffness of the PID controller gains. For the 

simulation, the environmental stiffness, Ke, was entirely based on a cartesian spring 

model. 

• The difference between the nominal velocity, Vn, used to approach the table when 

the peg is in freespace motion: for the robot, V^O.0125 meter/second as compared to 

0.05 meter/second for the simulation. 

Although these parameters are easily controllable in the simulation, matching them to 

the actual values of the robot experiments had only limited success in replicating the output 

of the experimental system. The result of tuning the simulation to match the experiments is 

reflected under the DIDO heading in Table 5.2 in Section 5.5.1. The  Vn and T were selected 
W 

to exactly match those used on the PUMA hardware. The Ke was tuned to give roughly 

the same performance in simulation as the robot demonstrated in hardware. The simulation 

results of the Aa given in Eq (6.1) using the parameters shown in Table 5.2 are presented in 

Figure 6.5. 

The difference between the interaction stiffnesses was the key obstacle since the robot 

stiffness was a position-dependent, nonlinear relationship based on the manipulator Jaco- 

bian matrix, and the simulation was a simple, constant linear relationship. 

A final detail worth noting in Figure 6.4 is that it reflects the case with // = 0 between 

the peg and the table. When friction is modeled such that no sliding is allowed (fj, = 1), 

the results look identical except for the X-axis position trace. Figure 6.6 shows a detailed 

comparison between examples of \i = 0 and \i — 1 at the contact interface when starting 

from the same initial conditions. Note that the sliding of about 0.6 mm adds to the X-axis 

displacement that is always present due to the rotation of the peg about the corner in contact 

with the table. 
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Figure 6.5   Simulation results of ACC controller modeling the PUMA robot environment. 
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Figure 6.6    Effect of turning the modeled friction on and off in the simulation software on 
the X-axis position trace. 

6.2   SISO Observations. 

This section will describe the results of investigations into the characteristics of the 

proposed controller that were conducted using SISO training data. The SISO training data 

provided a well-conditioned, fully-tractable set of data from which the analysis could begin. 

The analysis focuses on how the training data were distributed across the input vector space 

since that was found to be an important factor. The SISO data were also the ideal reference 

from which the reliability and usefulness of the proposed matrix interrogation techniques 

could be determined. The points of interest are now presented. 

6.2.1 Factors Related to Training Data Distribution. When obtaining training 

data for an ANN, a fundamental consideration is that the data must properly represent the 

relationship to be learned. There are several factors which affect how well the training data 

represent the relationship. ANN s are known to be poor at extrapolating outside of the range 

of data with which they were trained. To ensure the ANN will only perform interpolation 

when implemented, the training data must cover the proper range of the input and output 

spaces. Another important characteristic of similarity that should be maintained between 
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the training data and the measurement stream of realtime data when the ANN controller 

is implemented is the distribution of the data. This essentially means that the training 

data should be statistically similar to the stream of data expected in the application of 

the controller. To gain an understanding of the effect of different distributions of data on 

the performance of the ANN controller, a series of tests were done with SISO data. The 

statistics were indirectly controlled by varying the range, the number, and the spacing of 

training vectors. 

The range of data is simply described by the maximum and minimum values of each 

component of the input and output vectors. The number of training vectors is a function 

of the number of distinctly different vectors within the range as well as the frequency of 

repeated vectors. Repeating vectors gives the ANN multiple looks at the same data, which 

tends to emphasize it as the I/O mapping is created during training. Therefore, one can 

consider artificially emphasizing a particular training vector or region by simply repeating 

it in the training data set. Although this technique was considered, it's investigation was 

outside of the scope of this research project. 

The spacing of training vectors refers to how they are distributed in the input feature 

space between the maximum and minimum values. For example, evenly distributed data 

would have equal spacing between each of the training vectors. The spacing function, S(x), 

is the analytic expression chosen to map an evenly incremented distribution within a given 

range into an arbitrary distribution within that same range. The spacing function is applied 

individually to each component of the input feature vector of the SISO data. Each of the 

spacing functions was chosen to have two particular characteristics: 

• The output must be continuously defined over the range of [—1,1] 

t The output must cover the full range of [-1,1] for the range of the input 

The transformation process is best described by example. Suppose we choose <S(a;) = 

sin(cc) and want the input to cover the range x G [-5,5] with 10 increments between points 

for a total of 11 points. Here are the steps taken to obtain the desired spacing: 

• The original input range, [-5,5], is subdivided evenly to create the desired number of 

input vectors, in this case 11 points located at (-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5). 
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• The input points are transformed into the input range of the desired spacing function. 

In our example, we desire the input to range from —7r/2 to 7r/2, SO we multiply each 

point by ir/10. 

• S(x) is applied to each point to yield a new set of points that are spaced according to 

S(x) and range from -1 to 1. In the example, we get (-1, -0.951, -0.809, -0.588, -0.309, 

0, 0.309, 0.588, 0.809, 0.951, 1). 

• These outputs are rescaled to fill the original desired input range. In our example they 

are each multiplied by 5 and we get (-5, -4.76, -4.04, -2.94, -1.55, 0, 1.55, 2.94, 4.04, 

4.76, 5). 

Thus, we have transformed an evenly-spaced set of data ranging from -5 to +5 into a sine- 

spaced set having the same range. 

To investigate the effect of spacing on the training and performance of the ANN con- 

troller, four different spacing functions were used on SISO data. In particular, the chosen 

functions were: 

• even: y = x 

• sine: y = sin(a:) 

• cubic: y = x3 

• complex: y = 0.88 [(sin x + 0.3) cos 10a; tan x + 0.46] 

Figures 6.7 through 6.10 depict data in two variables based on the four spacing func- 

tions described. Note that the complex spacing function is the only one that generates data 

sets having a mean value, w, which is non-zero. 

If the mean, w, and standard deviation, a, of the measurement stream are appreciably 

different than that of the training data set, then the ANN controller may be operating in 

an input region with which it is only sparsely, or not at all, familiar. This can be especially 

true if one introduces a large non-zero offset (bias) to the training data set and then places 

the trained ANN into a small-valued, zero-mean measurement stream. If the training 

data still bound the range of the measurement stream, the ANN will properly interpolate 

rather than extrapolate the data. However, the mapping functional approximation may be 
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Figure 6.7    Two-dimensional projection of data distributed according to the even spacing 
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Figure 6.11    Illustration of modified input and output spaces resulting from using gaussian 
normalization on the training data. 

underdeveloped in the important region near zero, which might yield poor results. In the 

worst case, the bias might cause the training data to exclude the region of operation and 

the ANN will attempt extrapolation when implemented as a controller. Note that this is a 

concern that is particularly evident with training data generated with the 'complex' spacing 

function as shown in Figure 6.10. 

Another possible problem that can occur when the w and a of the measurement stream 

are appreciably different than that of the training data set is exacerbated when gaussian 

normalization is used during training. The convergence of the back-propagation training 

algorithm is significantly enhanced when each component of the input and output feature 

vectors is gaussian normalized over the entire training data set. The effect of the normaliza- 

tion is to group the data near zero where the sigmoid function is most linear. This expedites 

the error convergence and improves the robustness of training. However, if training is con- 

ducted with normalized data, then the resulting ANN has learned a modified mapping from 

a normalized input space to a normalized output space, as depicted in Figure 6.11. 

This requires the measurement stream of data to be transformed into the normalized 

input space before presentation to the ANN, and the output must be un-normalized to 
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bring it out of the normalized output space. These transformations are done using the 

same ws and as that were derived for the training data. The problem arises when the 

normalization statistics of the training data are incorrect for the measurement stream that 

the ANN controller encounters when implemented. A particular problem occurs for the 

edge-mating task when the training data have a large non-zero w. For the typical successful 

controller performing the edge-mating task, the measured forces are small-valued, which 

can be approximated as a zero w. When the large non-zero w of a biased training data 

set is subtracted from the force measurements to normalize the data for presentation to 

the ANN, it can throw the input value out of the range occupied by the training data and 

thereby cause the ANN to attempt extrapolation instead of interpolation. Since the statistics 

of the measurement stream cannot be known with certainty prior to the implementation, it 

is difficult to ensure that the training data will match the measurement stream in terms of 

those statistics. This is a serious limitation of applying an ANN controller in the architecture 

used for this research and it remains a difficult problem with which to cope. 

6.2.2   SISO Training Data Distribution Investigation. The results of exploring 

the effects of the various distribution parameters on the best obtained performance metric 

are summarized in Figures 6.12 through 6.16. These surface plots depict the best metric 

obtained from four or more attempts at training on the data. The horizontal axes describe 

the combination of parameters used to generate the training data, and the vertical axis 

reflects the best performance metric value obtained from among all the ANN controllers 

trained on a given combination of parameters. Since all the metrics are measures of the 

controller's performance relative to the accommodation matrix controller, exact reproduction 

of the accommodation matrix controller's performance would yield a (=1. Thus, if all the 

controller configurations were able to learn the task as well as the original matrix controller 

from which they were trained, the surface depicted in these figures would be flat sheets 

at C=l- In some cases that the reader will encounter later, none of the controllers were 

able to successfully complete the task when trained on a particular set of training data. 

For these cases, a value of (=0 was artificially assigned to the controller since that is the 

only unique value which can be assigned as a flag for failure. As a consequence, however, 

these failed cases show up as large dips in the shape of the surface plot which go well 
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Figure 6.12    Performance metrics of controllers trained on evenly-spaced SISO data as a 
function of the range and number of divisions. 

below 0=1. Although there were some controllers that succeeded in bettering the baseline 

matrix controller by some margin, no controller ever achieved (<0.7. Therefore, small dips 

below C=l are representative of very successful controllers while valleys in the surface which 

approach C=0 are indicative of failed controllers. Failed controllers will be emphasized in 

the text when they appear in the forthcoming figures. 

Figure 6.12 shows that controllers trained on evenly spaced SISO data had little trouble 

learning the task, even when there were only a small set of training vectors used. In the 

minimum case of two divisions, only 125 training vectors were in the training data set. The 

small 'bump' in the surface plot where the range is five and the number of divisions is five is 

not considered indicative of a significant trend. 

The results of training the ANN controller using a sparse data population in the region 

of controller operation (near zero) are depicted in Figure 6.13. When the sine spacing function 

is used, the training data population is pushed to the outer edges of the given range for the 

data, as shown in Figure 6.8. This causes the ANN to interpolate across larger point spacings 

in the region of small magnitude vectors, which happens to be its typical operating region. 

Figure 6.13 indicates that the ANN was fully capable of learning the mapping from these 
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Figure 6.13    Performance metrics of controllers trained on sine-spaced SISO data as a func- 
tion of the range and number of divisions. 

data. Not shown in the figure is the fact that it took more and more attempts to properly train 

the ANN as the range of the training data got larger. In fact, even the intermediate metric 

results from the intermediate attempts at training the controller had generally increasing 

values in correlation with the range. This reflects the fact that the interpolation becomes 

more and more approximate in the region near zero as the points are spread out to cover a 

larger and larger range. When the training data are clustered with the range of [-0.5,0.5], 

even a small number of training vectors were sufficient for the ANN to learn the mapping 

with only a few tries. 

The cubic spacing results shown in Figure 6.14 further reinforce our understanding 

of how a coarse interpolation grid can affect controller performance. In contrast to the sine 

spacing function, the cubic spacing function concentrates the training vectors near zero, 

which provides a higher density interpolating grid in the region of operation. Consequently, 

we do not experience the trend of increased training difficulty with increasing range as was 

observed in the sine spacing results. Instead, the results were essentially the same as those 

for the evenly-spaced data. 
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Figure 6.14    Performance metrics of controllers trained on cubic-spaced SISO data as a 
function of the range and number of divisions. 

Perhaps the most difficult SISO data for the ANN to learn the ACC mapping matrix 

from was the training data generated using the complex spacing function. In Figure 6.15 

we observe that the trained controller consistently failed to complete the task properly 

when it was trained on complex data having a small number of training vectors. Failures 

are indicated by performance metrics of zero which appear as large dips below £=1 on the 

surface plot in Figure 6.15. The "humps" along the divisions=2 edge of Figure 6.15 are 

artifacts of the surface fitting routine used to plot the data. In fact, there were no controllers 

trained on data having a range other than at 0.5, 5, 10, 15, and 20. Therefore, we determine 

that only in the case where the range of the data was very small (i.e. ±0.5) did the controller 

properly learn the task from a limited number of training vectors. This again reinforces the 

conclusion that training data must not only reflect the proper I/O mapping (i.e. consistent 

matrix), but it must also properly cover the input space (i.e. correct distribution). 

In the case of the complex-spaced data, they are not only unevenly spaced, as indicated 

in Figure 6.10, but they also have a non-zero mean, w, value for each vector component. 

The significance of non-zero w was mentioned in Section 6.2.1. The non-zero w becomes 

a problem because the measured forces for the edge-mating task are inherently small and 
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Figure 6.15    Performance metrics of controllers trained on complex-spaced SISO data as a 
function of the range and number of divisions. 

centered near zero. Normalizing those small readings with an improper w that is relatively- 

large causes the readings to be skewed off into the less developed part of the I/O mapping 

learned by the ANN. As Figure 6.15 shows, a large number of training vectors can be used to 

overcome this problem by making sure that even the less-developed parts of the I/O mapping 

have sufficient samples to construct the relationship. 

Another approach for utilizing training data that have a non-zero w is to augment the 

data set so as to force a zero w. A simple way of augmenting the data set is to mirror the 

original training vectors about all the axes. Specifically, each component of each original 

training input vector is negated, one at a time, along with its corresponding output vector 

component. This causes the number of training vectors to increase by a factor of eight, but 

the range of maximum to minimum values on each axis is unchanged. Several of the SISO 

complex-spacing training data sets were mirrored, trained and tested. Figure 6.16 shows 

the resulting improvement as compared with Figure 6.15. Note that there were no mirrored 

data tested for any combinations with a range of 0.5, and those combinations were assigned 

zero performance metrics to complete the surface plot of Figure 6.16 in a manner consistent 

with Figures 6.12 through 6.15. It is also important to remember that, although the number 
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Figure 6.16 Performance metrics of controllers trained on complex-spaced SISO data after 
being mirrored about all axes as a function of the range and number of divi- 
sions. Note that no controllers were trained on data with a range of 0.5, so 
they are artificially assigned zero performance metrics. 

of training vectors in the data set was larger by a factor of eight for the mirrored data, the 

number of training iterations through the data set was reduced by a factor of eight so as to 

maintain a constant number of total training vector exposures for the ANN. 

To be sure that the additional number of training vectors was not the reason for the 

good performance for controllers trained on mirrored data, the mirrored data sets were sub- 

sampled to reduce their sizes by a factor of eight. These subsampled, mirrored training data 

files were the same size as the original complex training data files before they were mirrored. 

Figure 6.17 shows the results for the ANN controllers trained on those smaller data files. The 

results are essentially identical to those for data prior to subsampling, which shows that it is 

not the added number of exemplar vectors that improved the performance of the controllers. 

The improved performance in Figures 6.16 and 6.17 confirms the mirroring technique as a 

valid way of modifying the training data statistics without collecting any additional data. 

The success of mirroring on the SISO data is a prelude of the significant success it will 

demonstrate when used with the DIDO data, as will be discussed in Section 6.5.2 later. 
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Figure 6.17 Performance metrics of controllers trained on complex-spaced SISO data after 
being mirrored about all axes and subsampled back to their original size. The 
results are plotted as a function of the range and number of divisions. 

6.2.2.1   LSMF Technique. As was described in Section 5.4.3, the LSMF 

technique is intended to extract the best-fit matrix that a set of trained ANN weights has 

learned to emulate. To check the technique's validity, it was first applied to I/O pairs of 

training data. Since the training data were perfect examples of the Aa mapping, there 

should be little, if any, difference between the fitted matrix, Aa', and the original Aa. This 

was, in fact, found to be universally true for SISO training data. All four similarity indexes 

described in Section 5.4.4 were identically zero when fitted to the SISO training data. 

Having used the SISO training data to validate the method, the LSMF technique was 

then applied to the weights from several ANN controllers trained on evenly-spaced SISO 

data sets. An example of the results is shown in Figure 6.18 for an LSMF fitting window 

size of 200 samples. Although Figure 6.18(a) and (c-d) shows that the ANN learned the 

structure of the Aa including the ratio between the non-zero elements, it did not properly 

learn their overall magnitudes. This is indicated by Figure 6.18(b) and was a common result 

when interrogating SISO-trained ANN controllers. 
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Figure 6.18 Matrix similarity indexes for a series of Aa' fitted to the mapping from the 
weights trained on evenly-spaced SISO data. Shown is (a) structural similar- 
ity, (b) gain similarity, (c) sign similarity, and (d) ratio similarity. Window size 
of fitting was 200 samples. 

It is important to note that the results in Figure 6.18 can be a function of several param- 

eters including the window size for the LSMF routine. Figure 6.19 shows how the similarity 

indexes differed when using a fitting window of 600 as compared to Figure 6.18 which used 

200. Note that the shape of the structural similarity index, T,, curve is significantly differ- 

ent in Figure 6.18(a) and that the peak value of the Ts is slightly less. Figure 6.18(d) also 

shows considerable variability in the ratio similarity index, Tr. The sign similarity index, 

T±, and the gain similarity index, Tg, were mostly unaffected by the window size used for 

the LSMF technique, as shown by comparing Figures 6.18(b) and (c) with Figures 6.19(b) 

and (c), respectively. This was found to be true for all of the ANN controllers trained on SISO 

data which were evaluated. 

It is worth noting that when fitting the original training data, the window size depen- 

dency does not exist because all of the data reflect a perfect mapping; constant similarity 

indexes result regardless of the window size used. When fitting I/O data taken via the 

trained ANN controller, however, the mapping may not be perfectly linear, and it affects 

the LSMF results as shown. Although one might be concerned about the task of choosing 
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Figure 6.19    Matrix similarity indexes for the same data as in Figure 6.18, but fit with a 
window size of 600 samples. 

a proper window size, in the context of SISO data it is difficult to imagine a criterion for 

choosing anything less than the full data set available. There are at least two reasons for 

this: 1) since the ANN was trained from a static matrix relationship, there is no reason to 

look for trends indicating changes of strategy; and 2) the more samples included in T and V, 

the better the fit1. 

The reason for highlighting this window-size dependency is to illuminate the fact that, 

if the mapping is linearly inconsistent, the results of the LSMF technique are affected by the 

size of the window. Window-size dependency is a common feature of many signal processing 

techniques such as a short-time Fourier transform. It is not considered to be a problem, but, 

rather, just another parameter of control when evaluating the trained ANN s. In fact, we 

hope to use it to identify a shift in the accommodation strategy during a particular execution 

of a task. This will require the data to have a valid time base (or causality) to them, which 

is the case only for the RISO, DISO and DIDO data. Therefore, we will investigate its use 

1This assumes that all the samples represent a consistent mapping with only small errors. If the data are not 
consistent, then increasing the window size may simply add to the confusion, thereby yielding no improvement. 
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as a means to evaluate DIDO training data sets for consistency prior to ANN training in a 

later section. 

As was mentioned in Section 6.2.1, matching the normalization statistics of the mea- 

surement data when the controller is implemented to the statistics of the data used for 

training is important. For the same reasons, matching statistics is also important for get- 

ting a good Aa' when interrogating a trained ANN because the V contained in V of Eq (5.37) 

are, in fact, computed outputs. All the considerations presented in Section 6.2.1 therefore 

apply to finding a good Aa'. For the ANN to interpolate well requires a well-developed 

mapping, and that results from exposing it to a sufficiently rich set of training data. If the 

ANN is well-trained with a sufficiently rich set of data, then the LSMF technique will yield 

a good Aa' for any representative set of T and V. Fortunately, this limitation does not reflect 

badly on the LSMF technique, but, instead, reiterates a known limitation of the ANN due to 

training data normalization. 

The next investigative step in exercising the LSMF technique was to apply it to the 

whole SISO data set to get an overall Aa' which could then be implemented as an ACC matrix 

controller. For evaluating the success of this approach, the performance of the trained ANN 

controller was used as a comparative benchmark.   The hope was that the extracted ACC 

matrix controller would behave similarly to the trained ANN controller. For the example 

shown in Figure 6.18, the ANN controller achieved a performance metric, (, of 0.985 and 

the simulation plots looked almost indistinguishable from those of the original Aa shown in 

Figure 6.4. When the LSMF technique was applied to the whole data set, the overall Aa' 

extracted was: 
0.0000   0.0000      0.0000 

Aa' =        0.0000   0.6327   -0.0003 (6.3) 

-0.2656   0.0415      632.83 

which has a structural similarity index of T,= 0.0723, a gain similarity index of Tg= 

187,342.2, a sign similarity index of T±= 0.0, and a ratio similarity index of Tr= 0.0422. 

We observe that the magnitudes of the (2,2) and (3,3) elements of this Aa' were 3.16 

times larger than in the original Aa. That higher overall gain caused a noisier position 

trace, force spikes as shown in Figure 6.20, and a performance metric, C, of 3.584. Thus, we 
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see the direct influence of having too large a controller gain on the performance. This was 

further validated by setting all the off-diagonal elements of Aa' to zero and confirming that 

the controller performance was essentially unchanged. The results shown in Figure 6.20 

indicate that the extracted Aa' is not necessarily equivalent to the ANN as a controller. 

Additional tests indicated that Aa' was always similar in performance, but never quite as 

good as the ANN controller. However, it is important to note that this Aa' was able to 

successfully substitute as an ACC controller. 

Given that Aa' seems to be an approximate representation of the strategy learned'by 

the ANN, it seems reasonable to expect that accommodation matrix controllers using the Aa' 

might have the same trends in £ as the ANN controllers from which they are extracted. If 

this were true, it would imply that the nonlinearities contained in the ANN are not utilized 

when the ANN is controlling the peg. To investigate this, the Aa' extracted from the various 

ANN controllers were implemented and their performances were compared to those of their 

respective controller using £. 

Owing to the fact that the performance metrics for the trained ANN controllers were 

quite good, the original performance metric plots shown in Figures 6.12 through 6.14 were 

essentially featureless. In comparison, Figures 6.21 through 6.23 show that the perfor- 

mance of the Ad degrades tragically as the range increases among the values tested. Even 

the distinct performance trend shown for controllers trained on the complex-spaced data in 

Figure 6.15 is not recreated by their corresponding Aa' ACC controllers, as shown in Fig- 

ure 6.24. We further observe from comparing Figure 6.25 to Figure 6.24 that mirroring the 

complex data only makes the robustness of the extracted Aa' worse. 

Overall, we conclude that the £ for the Aj do not have the same trends as the original 

ANN controllers when examined in terms of data range and the number of subdivisions 

within the range. If there is any consistency, it is that the C, for the Aa' are affected oppositely 

by the range when compared to the C for the ANN controllers. The most robust Aa' controllers 

were those extracted from ANN controllers trained on complex-spaced data. Therefore, we 

conclude that we cannot use the performance of the extracted Aa' as a prediction of the 

performance of a given ANN controller. 
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Figure 6.20 Simulation results from implementing the ACC matrix controller derived from 
the same weights interrogated using the LSMF technique in Figure 6.18. The 
matrix was derived using the LSMF technique on the entire data set. 
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Figure 6.21 Performance metrics achieved by Aj extracted from ANN controllers trained 
oneue/i-distributed SISO data using the LSMF technique. Data are plotted as 
a function of range and divisions for comparison to Figure 6.12. Note, however, 
the difference in the scale of the Best Metric axis. 
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Figure 6.22 Performance metrics achieved by Aa' extracted from ANN controllers trained 
on sine-distributed SISO data using the LSMF technique. Data are plotted as 
a function of range and divisions for comparison to Figure 6.13. Note, however, 
the difference in the scale of the Best Metric axis. 
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Figure 6.23 Performance metrics achieved by AJ extracted from ANN controllers trained 
oncu&ic-distributed SISO data using the LSMF technique. Data are plotted as 
a function of range and divisions for comparison to Figure 6.14. Note, however, 
the difference in the scale of the Best Metric axis. 
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Figure 6.24 Performance metrics achieved by Aj extracted from ANN controllers trained 
on compZex-distributed SISO data using the LSMF technique. Data are plotted 
as a function of range and divisions for comparison to Figure 6.15. Note, 
however, the difference in the scale of the Best Metric axis. 
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Figure 6.25 Performance metrics achieved by Aa' extracted using the LSMF technique 
from ANN controllers trained on comptet-distributed SISO data after they 
were mirrored about all axes. Data are plotted as a function of range and 
divisions for comparison to Figure 6.16. Note, however, the difference in the 
scale of the Best Metric axis. 

We are also interested in whether any of the matrix similarity indexes are well corre- 

lated to the performance metric, C, for SISO data. If so, they could be used to predict the 

controller performance without actually implementing the controller. It would also provide 

insight about the sensitivity of C to variations in Aa. To investigate this, we extract Aa' from 

some of the ANN controllers whose performances have been presented, compute their simi- 

larity indexes, and plot them. For the evenly distributed training data, whose £ trends are 

shown in Figure 6.12, the surface plots of the similarity indexes are shown in Figures 6.26 

through 6.28. The sign similarity index, T±, was identically zero for all combinations, so 

it is not plotted as a figure. Ts in Figure 6.26 is roughly similar to £ in Figure 6.12, but 

the location of the only significant feature is at the wrong combination of range and number 

of divisions. In Figure 6.27, Tg is unaffected by subsampling and varies inversely to the 

range of data covered. In comparison, the best metric plotted in Figure 6.12 does not vary 

significantly with either subsampling or range, so no good correlation is revealed. However, 

comparing Figure 6.28 to Figure 6.12 reveals that Tr is highly correlated to the performance 

metric for evenly-spaced, SISO-trained ANN controllers. 
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Figure 6.26 Matrix structural similarity index, T„ of Aa' extracted from ANN controllers 
trained on euen-distributed SISO data using the LSMF technique. Data are 
plotted as a function of range and divisions for comparison to Figure 6.12. 
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Figure 6.27 Matrix gain similarity index, Tg, of A' extracted from ANN controllers trained 
on eue/i-distributed SISO data using the LSMF technique. Data are plotted as 
a function of range and divisions for comparison to Figure 6.12. 
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Figure 6.28 Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers 
trained on even-distributed SISO data using the LSMF technique. Data are 
plotted as a function of range and divisions for comparison to Figure 6.12. 

The Tr results for ANN controllers trained on the sine spacing function are shown in 

Figure 6.31, which should be compared to Figure 6.13. The high correlation between Tr 

and C that was evident in the controller trained on evenly-spaced data is not as strong for 

the case of sine-spaced data. None of the matrix similarity indexes are well-correlated with 

£ for sine-spaced data. Further, when we examine the remaining matrix similarity plots 

presented in Figures 6.32 through 6.40, we find no consistent relationship between any of 

the matrix similarity indexes and £ for the controllers trained on SISO data. 

There are at least two possible explanations for the lack of correlation between the 

matrix similarity indexes and £ for the controllers trained on SISO data. First, if there is a 

measure of similarity that is consistently correlated to the metric, it may be a combination 

of the separate indexes presented. There may be some appropriately weighted sum of T5, 

Tg, T±, and Tr which would yield a consistent correlation when plotted beside the metric. 

Secondly, it is very possible that the Aa' approximation of the ANN is too rough to yield a 

consistent correlation. We certainly know that the ANN has nonlinear mapping capability 

at its disposal, and using the linear mapping of Aa' to represent the ANN controller cannot 
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Figure 6.29 Matrix structural similarity index, Y„ of Aj extracted from ANN controllers 
trained on sme-distributed SISO data using the LSMF technique. Data are 
plotted as a function of range and divisions for comparison to Figure 6.13. 
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Figure 6.30 Matrix gain similarity index, Tg, of A' extracted from ANN controllers trained 
on sine-distributed SISO data using the LSMF technique. Data are plotted as 
a function of range and divisions for comparison to Figure 6.13. 
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Figure 6.31 Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers 
trained on sme-distributed SISO data using the LSMF technique. Data are 
plotted as a function of range and divisions for comparison to Figure 6.13. 
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Figure 6.32 Matrix structural similarity index, Ts, of Aa' extracted from ANN controllers 
trained on cufeic-distributed SISO data using the LSMF technique. Data are 
plotted as a function of range and divisions for comparison to Figure 6.14. 
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Figure 6.33 Matrix gain similarity index, T«,, of A' extracted from ANN controllers trained 
on CK&fc-distributed SISO data using the LSMF technique. Data are plotted 
as a function of range and divisions for comparison to Figure 6.14. 
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Figure 6.34 Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers 
trained on cufeic-distributed SISO data using the LSMF technique. Data are 
plotted as a function of range and divisions for comparison to Figure 6.14. 
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Structural Similarity 

Figure 6.35 Matrix structural similarity index, Ts, of Aa' extracted from ANN controllers 
trained on compZes-distributed SISO data using the LSMF technique. Data 
are plotted as a function of range and divisions for comparison to Figure 6.15. 
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Figure 6.36 Matrix gain similarity index, Tg, ofAa' extracted from ANN controllers trained 
on compZex-distributed SISO data using the LSMF technique. Data are plotted 
as a function of range and divisions for comparison to Figure 6.15. 
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Figure 6.37 Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers 
trained on compZex-distributed SISO data using the LSMF technique. Data 
are plotted as a function of range and divisions for comparison to Figure 6.15. 
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Figure 6.38 Matrix structural similarity index, Tä, of Aa' extracted using the LSMF tech- 
nique from ANN controllers trained on compZex-distributed SISO data after 
they were mirrored about all axes. Data are plotted as a function of range and 
divisions for comparison to Figure 6.16. 
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Figure 6.39 Matrix gain similarity index, Tg, of Aj extracted using the LSMF technique 
from ANN controllers trained on complex-distributed SISO data after they 
were mirrored about all axes. Data are plotted as a function of range and 
divisions for comparison to Figure 6.16. 
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Figure 6.40 Matrix ratio similarity index, Tr, of Aa' extracted using the LSMF technique 
from ANN controllers trained on compZex-distributed SISO data after they 
were mirrored about all axes. Data are plotted as a function of range and 
divisions for comparison to Figure 6.16. 
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capture the nonlinear behavior. If the ANN is utilizing its nonlinear capability to perform 

the task, then its performance may well exceed that of a constant, linear, mapping matrix 

and the two will never be in full agreement. 

Overall, these LSMF results confirm the value of using the LSMF technique to under- 

stand how well the ANN has learned to approximate the ACC matrix controller. We pointed 

out that the testing data used must have normalization statistics which match those of the 

training data, but recognize this as a universal requirement for ANN s. We have shown that 

a single LSMF matrix, Aa', taken from the entire testing data set is only an approximation 

of what the ANN controller has learned, since the ANN controller is often capable of bet- 

ter performance than the Aj. We were unsuccessful in our efforts to correlate indexes of 

similarity between the Aj and the original Aa with the performance metrics of the ANN 

controllers from which the Aa' were extracted. However, we demonstrated that the LSMF 

technique may be used on subsets of a data set. The similarity of the extracted Aa' might 

reveal inconsistency in the mapping of the data set before training is attempted. This idea 

cannot be fully tested using SISO data because there is not time base to these data, so it will 

be investigated further in a later section. 

6.2.2.2 UVP Technique. After an ANN completed training, the UVP tech- 

nique described in Section 5.4.2 was used to extract an accommodation matrix approxima- 

tion, Aa*, to the mapping learned by the ANN. The matrix similarity indexes were then 

used to compare A*to the original Aa. As it turns out, the UVP technique was found to be 

a very poor method to determine the learned mapping. When applied to the same trained 

ANN weights that were interrogated using the LSMF technique to yield the Aa' shown in 

Eq (6.3), the UVP technique yielded an Aa* of: 

A * = 

0.0000 0.0000 0.0000 

-0.3643 0.7317 -0.3654 

-365.36 -365.09  731.05 

(6.4) 

which has a structural similarity index of Ts= 266,779, a gain similarity index of Tg= 

282,014, a sign similarity index of T±= 0, and a ratio similarity index of Tr= 0.7892. 
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This Aa* fails miserably as an ACC controller when implemented. Given the success of 

the ANN as a controller and the Aa' of Eq (6.3) as an ACC controller, this indicates that the 

UVP technique is not well-suited to interrogating a network to determine its ACC strategy. 

Some insight into the failure of the UVP method can be gained by comparing the results 

of two ANN s trained on the same set of training data. In one case, the training data are 

normalized prior to presentation to the ANN, whereas, with the other case, no normalization 

is performed. Upon normalizing for training, the normalization statistics become part of the 

ANN controller, as was discussed in Section 6.2.1. As a feature vector is presented to such 

an ANN, it is first pre-normalized using the saved statistics from training. This transforms 

the vector into a normalized input space as illustrated in Figure 6.11. This transformation 

highlights the inappropriateness of using UVP to extract the emulated matrix from an ANN 

controller because the original unit vectors are no longer unit length or pointing along the 

feature axes. Thus, the premise of the UVP method is compromised. 

When the training data are not normalized prior to training, the UVP method may yield 

a better match between the Aa* and the original Aa, but it is very difficult to successfully 

train an ANN on un-normalized data. Although they usually converged to some set of 

weights, they were rarely ever successful as controllers for the edge-mating task. 

The poor performance of the UVP method of interrogation is also credited to the fact 

that it is only a three-point estimate of a high-dimensional, nonlinear mapping function. It 

is probably unrealistic to expect such a simple, sparsely-sampled approach to yield a mean- 

ingful insight to the complicated mapping functional used by the ANN. Thus, we conclude 

that the UVP method is unsatisfactory for interrogating an ANN, whether it was trained 

using normalized training data or not. 

6.2.3 SISO Summary. The SISO data has been used to explore the effects of varying 

the distribution of the training data on the potential peformance of the ANN controller. The 

mean value of the input feature vector components was found to have a significant bearing 

on the success of the trained controllers. This was found to be caused by the mismatch 

between the normalization statistics which were computed for the training data and those 

for the stream of measured forces encountered when the ANN controller was implemented, 
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especially the mean of the data. Because the same normalization statistics are used to 

pre-normalize the measurement stream as were used with the training data, it is extremely 

important that the actual statistics are similar. Otherwise, the ANN may be forced to 

attempt to map from an underdeveloped area of the input space, which can lead to poor 

results. The mirroring technique was found to significantly mitigate the non-zero mean 

problem which most affected the controller performance. This was determined to be feasible 

because the input force magnitude for the measurement stream is characteristically low for 

the edge mating task. 

The LSMF technique for interrogating the ANN did not yield a very reliable estimate 

of the performance potential of the controller. The validity of the technique for extracting an 

equivalent accommodation matrix was proven by applying it to SISO training data. However, 

when interrogating I/O pairs generated by testing an ANN controller, the results were 

significantly different. The UVP interrogation technique was found to be less informative 

that the LSMF technique and it was summarily abandoned as a result. 

6.3   RISO Observations. 

As mentioned in Section 5.1.2, there were two sources for collecting the RISO data, the 

PUMA manipulator and the simulation. Figure 6.41 shows a typical-looking RISO raw data 

file collected via simulation. ANN controllers trained on either simulated or PUMA-based 

RISO data had little difficulty in completing the edge-mating task. Figures 6.42 and 6.43 

show data captured on the PUMA manipulator while it was under the control of a RISO- 

trained ANN controller. The performance is very similar to that of the accommodation matrix 

controller on the PUMA, as was depicted in Figures 6.3 and 6.2. These results decisively 

prove the capability of the ANN controller to operate on real hardware when trained on RISO 

data, but it does not give us much insight about the sensitivity of the controller performance 

to the various data processing options that are under consideration. To gain further insight, 

the RISO results presented in the following sections were based on raw training data collected 

via simulation. In the sections that follow, we will examine the influence of various data 

processing methods on the performance of the RISO-trained ANN controllers and continue 

our evaluation of the merits and liabilities of the LSMF interrogation technique. 
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Figure 6.41   Sample of raw RISO force and velocity training data collected via simulation. 
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Figure 6.42 PUMA manipulator completing the edge-mating task under the control of an 
ANN controller trained on RISO data starting from a CCW misalignment 
angle. 
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Figure 6.43    PUMA manipulator completing the edge-mating task under the control of an 
ANN controller trained on RISO data starting from a CW misalignment angle. 

6-44 



6.3.1 Effects of Data Processing on RISO controllers. Investigation of the RISO 

training gave additional insights about how the distribution of the training data affected 

performance and revealed some of the characteristics of several training data generation 

procedures described in Section 5.2. After low-pass filtering the data, they look as shown 

in Figure 6.44. The input clustering of the RISO data was predictably different than that 

of the SISO data sets. Figure 6.45 shows how a raw set of RISO input data looked as a 

phase-volume plot. Note that it is remarkably different than the SISO distributions shown 

in Figures 6.7 through 6.10. The primary difference is that it is clustered in a sub-region 

of the overall input space that was populated in the SISO data sets. We also note that the 

character of the RISO data changes when it is low-pass filtered as shown in Figure 6.46, 

which, of course, affects the distribution statistics. The distribution statistics, in turn, affect 

the performance of the controller in that they should resemble the statistics of the measured 

data stream. 

6.3.1.1 Low-pass Filtering and Subsampling. In contrast to SISO data vec- 

tors, which were arbitrarily ordered as the input space was scanned, the RISO data vectors 

were sequentially related by causality. Thus, they contained a time base and it made sense 

to attempt some of the time-based data processing steps outlined in Section 5.2. Figure 6.47 

shows how subsampling and low-pass filtering affected the controller performance metric, (, 

for RISO data. One immediately notices that the best performance (lowest () occurs when 

the data are not filtered at all. Before the data are filtered, all of the I/O pairs represent a 

desired ACC mapping from F to V. When they are low-pass filtered, the individual vector 

components are modified separately, and this modification corrupts the original ACC map- 

ping contained in the data. Therefore, it is not surprising that the filtered data generated 

a controller which did worse than before. On the other hand, subsampling had no effect on 

controller performance. This makes sense in light of the fact that the mapping is unchanged 

by processing steps that simply decimate the original data file by dropping vectors rather 

than modifying them. Presumably there is an upper bound to subsampling which would start 

to cause deteriorative effects if it were exceeded. The bound may have more to do with the 

total number of vectors passed through than with the frequency of sampling. Determination 

ofthat envelope was outside of the scope of the present work. 
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Figure 6.44    RISO data from Figure 6.41 after low-pass filtering it to l/20th of its original 
bandwidth. 
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Figure 6.45    Phase-volume diagram showing distribution of the same raw RISO data pre- 
sented in Figure 6.41. 
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Figure 6.46    Phase-volume diagram showing distribution of the same filtered RISO data 
presented in Figure 6.44. 
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Figure 6.47 Performance metrics of ANN controllers trained on RISO data as a function of 
the low-pass cutoff frequency and number of points skipped between subsam- 
pling intervals. 

6.3.1.2 Velocity Pruning. As described in Section 5.2.3, velocity pruning was 

designed to eliminate all I/O pairs in the training data which had ||V|| < Vt. When applied 

to the RISO data with VJ=0.05 meter/second, it had little effect on the performance metric as 

shown in Figure 6.48, which is consistent with the theory that decimation of a RISO data file 

does not corrupt the Aa it presents to the ANN for training. However, if we raise Vt to 0.1 

meter/second, the decimation to the RISO data becomes more severe, and it has an impact 

on the results as shown in Figure 6.49. The increase of Vt introduces the task termination 

problem mentioned in Section 5.2.3. The higher Vt does this by removing enough samples 

of low-magnitude output from the RISO data sets that many of the ANN controllers failed 

to properly learn how to complete the task. The common mode of failure for those cases 

was controller overshoot of the final aligned position. This was particularly evident when 

the data had previously been low-pass filtered with a low cutoff frequency. For the data 

that had been filtered down to 25 hertz (Hz) in Figure 6.49, the controllers failed to properly 

complete the edge-mating task, and were consequently assigned (=0. The failed cases shown 

in Figure 6.49 were the result of controllers that never learned to halt motion upon alignment 

and, consequently, they overshot the desired position. 

6-48 



Best Metric 

Low-pass Cutoff Frequency (Hz) None Subsampling Pts Skipped 

Figure 6.48 Performance metrics of ANN controllers trained on RISO data after velocity 
pruning with a threshold of 0.05 m/s. Plotted as a function of the low-pass 
cutoff frequency and number of points skipped between subsampling intervals. 

Subsampling Pts Skipped 

Figure 6.49 Performance metrics of ANN controllers trained on RISO data after velocity 
pruning with a threshold of 0.1 m/s. Plotted as a function of the low-pass cutoff 
frequency and number of points skipped between subsampling intervals. 
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From these data, we conclude that velocity pruning is not very useful if the I/O mapping 

is of high quality, as is the case for SISO, RISO, and DISO data sets. We will investigate its 

usefulness for processing DIDO data in Section 6.5.2. 

6.3.1.3 Hemisphere Pruning. Figure 6.50 shows how the results of Fig- 

ure 6.47 are changed after each of the training data sets is hemisphere pruned with a cutoff, 

*t, of 86.5 degrees. There is little change in the best metric obtained for each combination of 

low-pass filtering and subsampling tested. This indicates that the hemisphere pruning did 

nothing to enhance or degrade the usefulness of the data sets. Choosing *t=86.5 degrees 

was determined by iteration to be a "crisp" dividing line between excluding just a few vectors 

and excluding nearly all of the vectors in the training data. As it turns out, the RISO data 

have a very consistent included angle, $, between the F and the V of each sample. This 

phenomenon is discussed further in Section 6.3.2 below. The angle is a function of the ratio 

between the (2,2) element and the (3,3) element of the Aa used to compute the V from the 

F. Therefore, for SISO, RISO, or DISO training data, hemisphere pruning has no beneficial 

effect because the data are already consistent from the start. 

It is interesting to note that, if one uses TVd rather than Vc as shown in Figure 5.8 

for the output for RISO training data, the blended superpositioning of Vn with Vc upon 

contact will severely corrupt the crispness of the * and the consistency of the I/O mapping 

in the data set. Prior to contact, ^ is undefined because F=0. Once F=2e is exceeded, the 

I/O mapping obeys Aa. For the range between F=0 and F=2e, however, the superpositioning 

of TVn and TVC to generate TVd could produce I/O pairs having far different $ than those 

generated by Aa. Thus, it is not by accident that we have defined our RISO and DISO 

outputs to be  Vc. 

6.3.1.4 Collision Pruning. Collision pruning was applied to each of the RISO 

data sets to determine if it offered any potential to repair the deleterious effects of low-pass 

filtering. Figure 6.51 shows the results of applying collision pruning with ^=0.05 newtons. 

There is no significant difference between the performance of the controllers before and after 

collision pruning. This is not unexpected in light of the fact that collision pruning does not 

modify the data, but simply removes from the training data file exemplars showing free- 
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Low-pass Cutoff Frequency (Hz)       None 
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Figure 6.50 Performance metrics of ANN controllers trained on RISO data after hemi- 
sphere pruning with a threshold of 86.5 degrees. Plotted as a function of the 
low-pass cutoff frequency and number of points skipped between subsampling 
intervals. 

space motion which might reflect a different controller strategy. In the case of the original 

RISO data, the free-space motion is a mapping from F=0 to V=0, so the ANN has no problem 

coping with it. Thus, no benefit is gained from collision pruning RISO data, though it may 

still prove useful for DIDO data. 

6.3.2 Included Angle Statistics. The experience with the crisp *t for hemisphere 

pruning RISO data described above revealed the fact that most of the raw RISO data had 

nearly the same $. The consistency of the $ was a product of the constant Aa and the 

narrow range of F in RISO data used to generate the I/O pairs. Given the tight clustering 

of the $ for the raw RISO data, the effect of low-pass filtering on the clustering of * was 

investigated. The standard deviation of \P, ay, for each training data set was used as a 

measure of how tightly clustered the * were. Figure 6.52 shows how the a^ varied as a 

function of low-pass filtering cutoff frequency and the number of points skipped between 

subsampling intervals. Comparing Figure 6.52 to Figure 6.47 reveals a high degree of 

correlation between the performance metric, £, and the a^.  In its original raw form (no 
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Figure 6.51 Performance metrics of ANN controllers trained on RISO data after collision 
pruning with a threshold of 0.05 and a window size of 1. Plotted as a func- 
tion of the low-pass cutoff frequency and number of points skipped between 
subsampling intervals. 

filtering), the consistency of the Aa mapping is the highest and the a is consequently lowest. 

As the degree of filtering increases (i.e. lower cutoff frequency), the ay increases. This 

suggests that low-pass filtering injects a form of noise into the originally-clean mapping 

between JP and V. This noise, in turn, leads to worse performance for the ANN controller 

trained on that data. This trend continues to hold true for RISO data which is velocity 

pruned, hemisphere pruned, or collision pruned as shown in Figures 6.53 through 6.56. 

Figures 6.52 through 6.56 confirm our expectation that decimation of a data file by 

subsampling does not change the ay, significantly. In addition, they show that decimation by 

velocity pruning, hemisphere pruning, or collision pruning does not influence the a^ either. 

We determine, then, that these data processing steps have no effect on the consistency of the 

Aa mapping between the F and the V. 

Although the uniformity of the RISO results shown indicates promise for using ay 

as a measure of consistency in the Aa mapping for RISO data, we realize that the included 

angle is dependent on the input vector as well as the mapping matrix. If we use a perfectly 
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Figure 6.52 Standard deviation of included angle between F and V in RISO data as a 
function of low-pass cutoff frequency and number of points skipped between 
subsampling intervals. 
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Figure 6.53 Standard deviation of included angle between F and V in RISO data as a 
function of low-pass cutoff frequency and number of points skipped between 
subsampling intervals after velocity pruning with a threshold of 0.05 m/s. 
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Figure 6.54 Standard deviation of included angle between F and V in RISO data as a 
function of low-pass cutoff frequency and number of points skipped between 
subsampling intervals after velocity pruning with a threshold of 0.1 m/s. 
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Figure 6.55 Standard deviation of included angle between F and V in RISO data as a func- 
tion of low-pass cutoff frequency and number of points skipped between sub- 
sampling intervals after hemisphere pruning with a threshold of 86.5 degrees. 
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Figure 6.56 Standard deviation of included angle between F and V in RISO data as a 
function of low-pass cutoff frequency and number of points skipped between 
subsampling intervals after collision pruning with a threshold of 0.05 using a 
window size of 1. 

consistent mapping matrix (as is the case for SISO, RISO and DISO data) and compute * 

for a whole range of F, we will find that * varies, albeit not enormously. The small range of 

F in the RISO data, therefore, enhances the tight clustering of \P for RISO data as compared 

to SISO data. This variability with the applied F can mask the perfect consistency of the 

underlying mapping matrix. Depending on the F we choose, we can cause the ay to reflect 

a poor consistency when, in fact, the mapping is perfect. Therefore, we discard the standard 

deviation of the included angle, ay, between F and V as a measure of mapping consistency. 

6.3.3 Matrix Similarity Indexes. When applied to RISO training data, the LSMF 

technique of interrogating reveals nearly perfect matches between Aa' and Aa. This is 

consistent with our experience with SISO training data, confirming that the LSMF technique 

is valid for extracting a consistent linear mapping. When LSMF is applied to interrogate 

the trained weights of an ANN controller, the similarity of the resulting Aa' is not nearly so 

impressive, which is also consistent with our SISO experience. Although the sign similarity 

index, T±, was consistently zero, the other indexes were not. This confirms that the ANN is 
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Figure 6.57 Matrix structural similarity index, T,, of Aa' extracted from ANN controllers 
trained on RISO data using the LSMF technique. Data are plotted as a func- 
tion of low-pass cutoff frequency and number of points skipped between sub- 
sampling intervals after velocity pruning with a threshold of 0.05 m/s. 

not adhering to a single linear mapping from F to V and the Aa' is only an approximation 

of the ANN mapping. 

To further reinforce the results obtained with the SISO data, we compute the four 

matrix similarity indexes for the Aa' extracted from each of the ANN controllers trained on 

RISO data and evaluate their correlation with the performance metric, £• After processing 

nearly all of the previously presented RISO-trained controllers, we find that none of the 

matrix similarity indexes are well correlated to the performance metric, (, for RISO data, as 

shown by comparing Figures 6.57 through 6.65 with Figures 6.48,6.50, and 6.51, respectively. 

This lack of correlation confirms our disillusion for using the similarity indexes of Aa' to 

predict the performance potential of the ANN controllers without actually implementing 

them. 

6.3.4 RISO Summary. The RISO data have reinforced the results obtained with 

the SISO data. Any of the data processing steps that distorted the originally perfect mapping 

of F to V via the Aa of RISO data was found to corrupt the chances of training successful 

ANN controllers. Low-pass filtering was determined to be the main culprit in this regard. 
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Figure 6.58 Matrix gain similarity index, Tg, of A' extracted from ANN controllers trained 
on RISO data using the LSMF technique. Data are plotted as a function of 
low-pass cutoff frequency and number of points skipped between subsampling 
intervals after velocity pruning with a threshold of 0.05 m/s. 
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Figure 6.59 Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers 
trained on RISO data using the LSMF technique. Data are plotted as a 
function of low-pass cutoff frequency and number of points skipped between 
subsampling intervals after velocity pruning with a threshold of 0.05 m/s. 
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Figure 6.60 Matrix structural similarity index, Ts, of Aa' extracted from ANN controllers 
trained on RISO data using the LSMF technique. Data are plotted as a func- 
tion of low-pass cutoff frequency and number of points skipped between sub- 
sampling intervals after hemisphere pruning with a threshold of 86.5 degrees. 
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Figure 6.61 Matrix gain similarity index, Ts, of Aa' extracted from ANN controllers trained 
on RISO data using the LSMF technique. Data are plotted as a function of 
low-pass cutoff frequency and number of points skipped between subsampling 
intervals after hemisphere pruning with a threshold of 86.5 degrees. 
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Figure 6.62 Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers 
trained on RISO data using the LSMF technique. Data are plotted as a func- 
tion of low-pass cutoff frequency and number of points skipped between sub- 
sampling intervals after hemisphere pruning with a threshold of 86.5 degrees. 
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Figure 6.63 Matrix structural similarity index, Ts, of Aa' extracted from ANN controllers 
trained on RISO data using the LSMF technique. Data are plotted as a func- 
tion of low-pass cutoff frequency and number of points skipped between sub- 
sampling intervals after collision pruning with a threshold of 0.05 N. 
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Figure 6.64 Matrix gain similarity index, T3, of Aa' extracted from ANN controllers trained 
on RISO data using the LSMF technique. Data are plotted as a function of 
low-pass cutoff frequency and number of points skipped between subsampling 
intervals after collision pruning with a threshold of 0.05 N. 
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Figure 6.65 Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers 
trained on RISO data using the LSMF technique. Data are plotted as a 
function of low-pass cutoff frequency and number of points skipped between 
subsampling intervals after collision pruning with a threshold of 0.05 N. 
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The limits of velocity pruning were illustrated when Vt was set too large and the trained 

controllers tended to overshoot the final desired alignment position because they had not 

been trained on enough data samples to illustrate the terminating condition. During the 

course of testing the merits of hemisphere pruning, the possibility of using the standard 

deviation of the included angle, a^, appeared to show promise as a means of measuring 

the consistency of the I/O mapping in a set of training data, thereby having the potential of 

predicting the performance of trained controllers. However, in the end, it was shown that 

ay varied as a function of the input vectors used to test a mapping matrix, and therefore 

varied even though the matrix was perfectly consistent. None of the data processing steps 

that simply removed "bad" data vectors from the data sets had any significant effect on the 

trainability and performance of ANN controllers exposed to RISO training data. Since the 

RISO data set is already nearly ideal for training an ANN, no improvements were expected. 

However, we have also noted that no degradations were introduced, which was not the case 

when the data were low-pass filtered. This indicates that simple decimation of a data file 

does not corrupt the I/O mapping and the ANN can adequately learn from the data that 

remained in the training data sets. 

6.4   DISO Observations. 

As was mentioned in Section 3.3, the DISO data have the input distribution of DIDO 

data and the idealized I/O mapping of the SISO data. Therefore, DISO data is a good resource 

for exploring the effect of distribution on the training and implementation of ANN controllers 

for the edge-mating task. For the present work, DISO data were important in answering 

two particular questions. First, at the outset of attempting to train an ANN controller to 

emulate an accommodation matrix controller, one should first establish whether the DIDO 

data contain an accommodation matrix control strategy. This question is equivalent to 

asking, "Does the human operator use an accommodation strategy when demonstrating the 

edge-mating task?" We will investigate this question by comparing the outputs of DISO and 

DIDO training data. 

The second question to be answered using the DISO data concerns whether the dis- 

tribution of DIDO training data is suitable for teaching an ANN controller.   As we have 
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discovered in the SISO training and testing activity of Section 6.2, the distribution of the 

input feature vector, F, can affect the chance for success in training and implementing an 

ANN controller even if the I/O mapping is perfect. Thus, by examining the success of DISO 

training data, we can decouple the concerns of F distribution from the integrity of the I/O 

mapping. 

Figure 6.66 shows the difference between the time histories of output from demon- 

stration number one of DIDO data collected on the PLIMMS and its corresponding DISO 

output. Similar plots for all 10 of the PLIMMS DIDO demonstrations are found starting on 

page C-22 in Appendix C. 

The example shown in Figure 6.66 shows that both the gain and the strategy of the 

human demonstration in the DIDO training data are different from those of the Aa explicitly 

embedded in the DISO training data. Whereas the Aa identified an increasing need to recoil 

the peg in the negative V-axis direction in response to the increasing magnitude of Fy, the 

human simply maintained table contact. The result is a many-to-one mapping of a whole 

range of Fy to a small group of Vy. This was also the case, but to a lesser degree, for the uz 

component, as shown in Figure 6.66(c). We also note that the rocking of the peg at the end 

of the task (indicated by the sign-changing deviations in the Mz curve of Figure Oil from 

which Figure 6.66 was derived) passed by the human without response. This also causes a 

many-to-one mapping and corrupts the consistency embodied in the DIDO data. 

The characteristics described for the example shown in Figure 6.66 are typical of 

all the other PLIMMS DIDO data as well. This shows that the human is not utilizing a 

consistent accommodation control strategy when demonstrating the edge-mating task. The 

author hypothesizes that the human is using additional sensory information, such as vision 

and hearing, as well as a full mental model of the task to achieve success. In the DIDO 

demonstrations recorded, the operator had full access to vision and hearing. In addition, he 

knew by looking where the table surface was located. 

Despite the obvious difference in the input distributions of the DISO and RISO training 

data, ANN controllers trained on DISO data have no trouble learning the edge-mating task. 

In fact, of the 66 ANN controllers trained, none of them failed to complete the task, and 
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Figure 6.66 Comparison of (a) Vx, (b) Vs, and (c) uz outputs for DISO and DIDO training 
data originally collected as demonstration number 1 on the PLIMMS. See 
Figure C.ll for the complete plot of the DIDO data. 
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Figure 6.67   Performance metrics of ANN controllers trained on DISO training data. 

the worst performance metric was 1.666. Figure 6.67 shows the best performance metric for 

each of the 10 DISO training data files transformed from PLIMMS DIDO data. The results 

depicted in Figure 6.67 came from training on the raw DISO data with no processing actions 

taken. 

Figures 6.68 and 6.69 show force and velocity recordings of data taken while an ANN 

trained on DISO data was controlling the PUMA manipulator. These plots are proof-positive 

that, if the I/O mapping were exactly correct and consistent, an ANN controller could be 

trained from DIDO data to perform the edge-mating task. 

As another progressive step in understanding the usefulness of the matrix similarity 

indexes in screening training data files for consistency prior to training, we apply the LSMF 

technique to DISO training data and compute the indexes for various window sizes and 

evaluate the results for insights. We start by examining the evolution of the four matrix 

similarity indexes for Aj extracted from DISO training data using the LSMF technique, 

since it has a perfectly consistent mapping between the input and output vectors. As expected 

from our previous experience with SISO and RISO training data, the similarity indexes are 

very good.  Except for Ts, all the similarity indexes are identically zero regardless of the 
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Figure 6.68 Recordings of (a)-(c) forces and (d)-(f) velocities from ANN controllers trained 
on DISO training data and implemented on the PUMA manipulator. Peg 
rotation was counter-clockwise. 
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Figure 6.69 Recordings of (a)-(c) forces and (d)-(fj velocities from ANN controllers trained 
on DISO training data and implemented on the PUMA manipulator. Peg 
rotation was clockwise. 
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Figure 6.70 Matrix structural similarity index, T,, of Aa' extracted from DISO training 
data using the LSMF technique. Data are plotted for 3 different fitting window 
sizes to show variation. 

fitting window size used. Even T, is very small, as shown in Figure 6.70 for a typical 

set of DISO training data. The rather erratic shapes of the curves for each window size 

in Figure 6.70 are unfortunate, since they jeopardize the chances that subtle changes in 

accommodation matrix strategies (as embodied in changes of Aa) can be recognized in the 

evolution of Ts. We know that the DISO training data contain no changes in Aa, so any 

variations from a constant T, evidenced in DISO data are disruptive in our efforts to identify 

Aa changes later in DIDO training data. However, we reserve judgment on the applicability 

of the technique for screening DIDO training data until we investigate it fully. 

As expected, the interrogation results are much worse for the Aa' extracted from the 

ANN weights trained on DISO data. Figures 6.71 through 6.74 present the evolutions of Ts, 

Tg, Y±, and Tr, respectively, for three different fitting window sizes ranging from 60 to 100 

points for a typical DISO-trained ANN controller. These results are consistent with the poor 

results obtained when interrogating ANN controllers trained on SISO and RISO data. 

6.4.1 DISO Summary. The DISO data have shown that both the gain and the 

strategy of the human demonstration in the DIDO training data are different from those of 
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Figure 6.71    Matrix structural similarity index, T,, of Aa' extracted from ANN controllers 
trained on DISO data using the LSMF technique. 
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Figure 6.72    Matrix gain similarity index, Tg, of Aa' extracted from ANN controllers trained 
on DISO data using the LSMF technique. 
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Figure 6.73    Matrix sign similarity index, T±, of Aa' extracted from ANN controllers 
trained on DISO data using the LSMF technique. 
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Figure 6.74    Matrix ratio similarity index, Tr, of Aa' extracted from ANN controllers 
trained on DISO data using the LSMF technique. 
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the Aa explicitly embedded in the DISO training data. This is proof that the human has not 

relied on an accommodation controller mapping to complete the task. Instead, we proposed 

that a mental model and additional sensory information besides the sensed contact forces 

were used to complete the task. This discovery casts a serious shadow over the feasibility of 

using DIDO data for training an ANN to control an accommodation task. In addition, the 

significant variability of the four matrix similarity indexes as a function of the matrix fitting 

window-size has been found to preclude any chance of using them to evaluate the consistency 

of an I/O mapping. When applied to DISO training data, the indexes were expected to be 

constant since the mapping matrix never changed. However, this was not found to be the 

case. 

On the bright side, the DISO results demonstrated that an ANN controller could 

overcome any undesireable characteristics of the input feature vector distribution and learn 

to successfully perform the edge-mating task if the I/O mapping was perfectly consistent. 

This was derived from the successes in both simulation and on the PUMA manipulator 

of ANN controllers trained with DISO data. In the next section, the DIDO data will be 

investigated to determine if the predictions we have made based on the SISO, RISO, and 

DISO data will hold true. 

6.5   DIDO Observations. 

DIDO data were collected from two different physical systems. The PUMA DIDO data 

collection system is described in Section 5.1.4.1 while the PLIMMS DIDO data collection 

system is described in Section 4.3. The need for the PLIMMS system arose from the results 

obtained using the PUMA system as described below. 

6.5.1 DIDO Data Collected From PUMA Manipulator. The original DIDO data 

were collected using the PUMA manipulator with the training handles as described in Sec- 

tion 5.1.4.1. Ten edge-mating demonstrations were performed, and the force and velocity 

data were collected. The raw form of these data is shown in Figures C.l through C.10 start- 

ing on page C-2 of Appendix C. For convenience, a plot of demonstration number three is 

shown in Figure 6.75. Several attempts were made to process the PUMA DIDO data and 
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then train an ANN controller. Groups of six or more of the individual task demonstrations 

were combined together into training data files after being individually processed by collision 

pruning using a threshold of 1.0 with a window size of 5 points and velocity pruning with 

a threshold of 0.20 meters/sec. The resulting controllers were implemented on the PUMA 

robot for evaluation. Prior to allowing the manipulator to touch the peg to the rigid table, 

the response of the controller was tested in free-space motion by manually applying forces 

and torques to the peg. The results of the free-space tests precluded allowing the peg to 

contact the table because the ANN controller insisted on rotating the peg, regardless of the 

force/torque pair applied. In addition, the ANN controller did not show any tendency to 

accommodate the y-axis force at the tip of the peg. 

After repeated attempts to retrain and retest the controllers, it was concluded that 

the controller may have been doing precisely what it had been shown in the collected data. 

When DIDO data were collected on the PUMA, the robot was gravity-compensated to ease 

the operator's task. However, despite the compensation, it was still difficult to back-drive 

the PUMA through its high-ratio, geared transmission and slow controller servo update rate. 

As a result of the effort required to move the PUMA, virtually no sensation of peg-to-table 

contact force could be felt. Undeterred, however, the goal-oriented operator still completed 

the edge-mating task demonstration based on visual and auditory cues. The measured 

velocities demonstrated by the human controller were an end unto themselves rather than 

a reaction to a perceived contact force. Regardless of what force existed, the demonstrated 

velocity was a rotation of the peg about its contacting corner. Thus, virtually all F mapped 

to roughly the same V, which was a rotation about the contacting corner. This is precisely 

the behavior of the trained ANN controllers. 

To determine whether the matrix similarity indexes can distinguish poor training 

data, we interrogated all the PUMA DIDO training data sets to extract a single Aa' from 

each. Then the similarity indexes were computed for each Aa' as compared to the Aa given 

in Eq (6.1), which was considered representative of a good accommodation matrix for the 

PUMA robot controller. The results, shown in Figure 6.76, indicate that demonstration 7 was 

the worst match and that demonstration 1, 3, or 4 may be the best. No further testing was 

performed on the PUMA DIDO data because it was thought to have more corruptions than 
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Figure 6.75    Demonstration number 3 of DIDO training data collected on the PUMA 
manipulator. 
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Figure 6.76 Matrix similarity indexes of Aa' extracted using the LSMF technique from 
DIDO training data collected on the PUMA manipulator showing (a) structural 
similarity, (b) gain similarity, (c) sign similarity, and (d) ratio similarity. 

the PLIMMS DIDO data discussed in the next section. The results shown in Figure 6.76 will 

be compared with similar results for the PLIMMS DIDO training data sets that are presented 

in the next section to determine which best represented the desired accommodation mapping. 

As a point of comparison with the PLIMMS DIDO training data, the mean values for 

each component of F collected on the PUMA were computed and are plotted in Figure 6.77. 

Notice that there is a significant bias to the mean values, which was shown in the SISO 

data investigation to cause difficulty when used as training data. We note, however, that 

these DIDO data could be mirrored to correct the bias in the mean values as we will explore 

further in the next section. 

6.5.2 DIDO Data Collected From PLIMMS.. Based on the hypothesis that the effort 

to back-drive the PUMA was corrupting the task demonstration, the PLIMMS mechanism 

was designed and built to be a lighter and more easily back-drivable DIDO data collection 

system. The system is fully described in Section 4.3. There were 10 sets of DIDO data 

collected on the PLIMMS which were studied in detail. Appendix C contains a catalog of 
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Figure 6.77    Mean values for the (a) Fx, (b) Fy, and (c) Mz components of F of the DIDO 
data collected on the PUMA manipulator. 
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plots showing all 10 of the demonstrations (Figures C. 11 through C.20 starting on page C-12). 

For convenience, sample one of the PLIMMS DIDO data is shown in Figure 6.78. 

Examination of the PLIMMS DIDO data reveals that it does not reflect proper accom- 

modation in the y-axis direction. To display an accommodation relationship, a negative Vy 

component would be present when a negative Fy was sensed. The data plots in Figures C.ll 

through C.20 do not contain such a relationship. The operator continued to move the peg 

into the aligned position using a positive Vy despite the rather large Fy component. The 

small magnitude of the Vy component identifies it as the y-axis motion in the tool-frame 

coordinates due primarily to the coupling of the translational motion of the peg tip to the 

rotation of the peg about its corner in contact with the table. Thus the Vy demonstrated 

motion, although it does not depict an accommodation mapping, is inevitable for the task 

and the coordinates. The fact that the Fy was large and had no apparent Vy response is 

indicative of a controller with a very sluggish response or a large deadband. Either of these 

characteristics makes the training data very difficult to learn from. 

6.5.2.1 LSMF Investigation. We begin our investigation of the PLIMMS 

DIDO data by applying the LSMF matrix interrogation technique to extract Aa' from the 

training data and examining the similarity indexes of those Aa'. This was accomplished for 

all the DIDO training data configurations described in Table 6.1. The resulting similarity 

indexes for the original (raw) PLIMMS DIDO data are shown in Figure 6.79 for comparison 

with Figure 6.76. The similarity indexes were computed relative to the Aa given in Eq (6.1) 

for the robot accommodation matrix controller. Comparing the results to those shown for 

the PUMA DIDO data-in Figure 6.76 indicates the PUMA data has lower (better) values in 

general for all four similarity indexes. This indicates that our effort to enable the human op- 

erator to better feel the interaction forces during the task may have been counter-productive 

in the sense of similarity to the Aa given in Eq (6.1). It is not clear, however, that better sim- 

ilarity to the accommodation of Eq (6.1) is a guarantee that better controllers can be trained 

from these data. It is an interesting point of comparison, however, and will be discussed 

further in Section VII. 
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Figure 6.78   Demonstration number 1 of DIDO training data collected on the PLIMMS. 
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Figure 6.79 Matrix similarity indexes of Aa' extracted using the LSMF technique from 
DIDO training data collected on the PLIMMS showing (a) structural similarity, 
(b) gain similarity, (c) sign similarity, and (d) ratio similarity. 

The similarity data for all the configurations are plotted in Figures 6.80 through 6.83. 

These data indicate that demonstration number 5 is the least similar and demonstration 

number 7 is the most similar for the majority of the configurations examined. Further, 

we observe that the T,, Tg, and T± were essentially unchanged by the 13 different data 

processing combinations applied to the data sets. In some of the configurations for demon- 

stration numbers 2 and 10, there were sign changes in one element or the other, but we can 

distinguish no consistent pattern relating to the usefulness of any single processing step. 

When we examine Figure 6.83 in conjunction with the tabulated values of Tr presented 

in Table B.16 of Appendix B, we note that the hemisphere pruning at 90-degrees threshold, 

$t, caused detrimental effects on demonstrations 8 and 9, while pruning with **= 95 degrees 

did not. This is an unexpected effect which we will evaluate further when examining the 

performance metrics resulting from implementing the ANN controllers trained on these 

data. 

The big spike in Figure 6.83 for configuration 6 of demonstration number 2 indicates 

that low-pass filtering with too low a cut-off frequency can affect the Aa' extracted from some 
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Table 6.1    Key to configuration codes of DIDO training data listed in Figures 6.80 through 
6.83. 

Code 
Coll. Pruned Vel. Pruned Low-pass filtered Hem. Pruned 

varied @0.05 m/s @5pts @ lOpts @90° @95° 

1 
2 X 

3 X 

4 X 

5 X 

6 X 

7 X 

8 X X 

9 X X 

10 X X 

11 X X 

12 X X 

13 X X 

14 X X X 

Structural Similarity 

0.14 
0.106 

0.0711 
0.0365 

Configuration Code 
11 12 

10 

3     Training Data Sample 

13 14       » 

Figure 6.80 Matrix structural similarity index, T,, for DIDO training data collected on 
PLIMMS. Ten different demonstration files are examined as a function of the 
data processing steps applied. 
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Gain Similarity 

4.03e+04 
4.02e+04 
4.01e+04 

4e+04 

10 

3     Training Data Sample 

Configuration Code 

Figure 6.81 Matrix^ain similarity index, Tg, for DIDO training data collected onPLIMMS. 
Ten different demonstration files are examined as a function of the data pro- 
cessing steps applied. 

Sign Similarity 

3     Training Data Sample 

Configuration Code 

Figure 6.82 Matrix sign similarity index, T±, for DIDO training data collected on PLIMMS. 
Ten different demonstration files are examined as a function of the data pro- 
cessing steps applied. 
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Ratio Similarity 

5.97e+08 
4.48e+08 
2.99e+08 
1.49e+08 

10 

Training Data Sample 

Configuration Code 

Figure 6.83 Matrix ratio similarity index, Tr, for DIDO training data collected on 
PLIMMS. Ten different demonstration files are examined as a function of 
the data processing steps applied. 

data files. Examining the original data for demonstration number 2 shown in Figure C.12 

reveals nothing unusual to distinguish it from the other DIDO data. 

With the matrix similarity indexes of the DIDO training data presented, the results 

of training and testing the ANN controllers was investigated to determine if the similarity 

indexes provide any insight about preferred training demonstrations. When the PLIMMS 

DIDO data sets described by the configuration codes in Table 6.1 were presented for training 

and the resulting ANN controllers were implemented in simulation using the DIDO parame- 

ters listed in Table 5.2, very few of the controllers could complete the task. Even fewer could 

do it with a reasonably stable termination state. Table 6.2 summarizes the results of these 

tests. 

These performance metric data were too sparse to plot, but Figures 6.84 through 6.87 

show the simulation results of the most successful controllers for configurations 3, 10, 11, 

and 12, respectively. The plots display acceptable goal positions, but generally contain some 

erratic behavior during the task. Each of the controllers was tested from a variety of initial 

positions to ensure they had not learned just a single solution for the task. Many of the other 
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Table 6.2    Summary of the simulation results for testing the ANN controllers trained on 
PLIMMS DIDO data. 

Config. Code No. of successes Best Metric 

1 0 — 

2 0 — 

3 1 18.380 

4 0 — 

5 0 — 

6 0 — 

7 0 — 

8 0 — 

9 0 — 

10 1 4.175 

11 1 4.145 
12 2 9.179 

13 0 — 

14 0 — 

controllers that were tested and failed did so because they could only complete the task from 

an initial position having a CCW angular position error. 

A comparison between the trends of success in Table 6.2 and the plots of the four 

similarity indexes presented in Figures 6.80 through 6.83 reveals no apparent correlation 

between any of the similarity indexes and the ANN controller successes. Identification of a 

correlation is precluded by the fact that there were so few successes with which to correlate. 

Even if we had a significant number of successes to work with, we would have to make 

the comparisons on a demonstration-by-demonstration basis, i.e. the number of successes 

achieved by controllers trained on demonstration 3 compared to the similarity index data of 

demonstration 3. In the present case, however, there are too few successes for it to matter. 

The erratic motions depicted in Figures 6.86 and 6.87 illustrate motion histories that 

would not be possible with a linear accommodation matrix controller. The big jumps can only 

be the result of nonlinearities in the controller mapping. Therefore, we consider whether 

linear controllers might do a better overall job. To examine this possibility, we used the LSMF 
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Figure 6.84 Simulation results from the ANN controller trained on PLIMMS DIDO train- 
ing data after hemisphere pruning with a threshold of 90 degrees (configura- 
tion code 3). 
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Figure 6.85 Simulation results from the ANN controller trained on PLIMMS DIDO train- 
ing data after collision pruning with a threshold of 0.05 and low-pass filtering 
using 5.0 points (configuration code 10). 
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Simulation results from the ANN controller trained on PLIMMS DIDO train- 
ing data after collision pruning with a threshold of 0.05 and low-pass filtering 
using 10.0 points (configuration code 11). 
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Figure 6.87 Simulation results from the ANN controller trained on PLIMMS DIDO train- 
ing data after collision pruning with a threshold of 0.05 and velocity pruning 
at 0.05 m/s (configuration code 12). 
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Table 6.3    Summary of the simulation results for testing the accommodation matrix con- 
trollers using the Aa' extracted from PLIMMS DIDO training data 

Config. Code No. of successes Best Metric 

1 3 1.059 

2 2 1.065 

3 1 0.753 

4 1 1.041 

5 3 1.042 

6 2 3.558 

7 1 0.748 

8 1 0.648 

9 1 1.051 

10 1 1.052 

11 2 2.764 

12 1 0.793 

13 2 0.740 

14 1 0.637 

interrogation technique to extract the Aj from each ANN controller and implemented them 

as accommodation matrix controllers. The results are presented in Table 6.3. 

The performance data in Table 6.3 for the Aj controllers represent a significant im- 

provement over that of Table 6.2 for the ANN controller. However, these successes were 

still difficult to obtain, as evidenced by the small number of controllers which succeeded 

as compared to the 10 controllers tried for each configuration. The fact that the results in 

Table 6.3 are overall better than those of Table 6.2 shows that the nonlinear capability of 

the ANN controllers is more of a liability than an asset if the training data are not carefully 

composed. The fact that the results of Table 6.3 are poor indicates that the DIDO training 

data are inadequate representations of the skill needed to complete the task. Based on 

our experience with Aa' extracted from SISO, RISO, and DISO data, we know that if the 

DIDO data were better representations, more of the Aa' matrices would have succeeded as 

accommodation matrix controllers. 

The DIDO training and testing results presented also substantiate the conclusion that 

velocity pruning is not a helpful data processing step. We observe that configuration codes 7 
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Table 6.4   Means and standard deviations for F components of RISO training data. 

Component Mean value Std. Dev. 

Fx 0.01572 0.03631 

Fy -0.07964 0.14555 

Mz -0.00260 0.00565 

and 12-14 used velocity pruning as one of the processing steps and find the performance of 

those controllers are not significantly improved over any of the other controllers. Recalling 

the hazard of decimating the exemplar vectors depicting the proper task termination which 

was discussed in Section 6.3.1.2, we conclude that velocity pruning is not a viable technique 

for improving the performance of controllers trained on DIDO data. 

The SISO and RISO controllers identified concerns for both the consistency of the 

mapping in the training data and the input feature vector distribution. Although the DISO 

results clearly indicated that the input distribution alone could not cause the DIDO-trained 

controllers to fail, the possibility of improving the DIDO controllers leads us to try correcting 

for any problems in the input distributions of the DIDO training data. 

We use the mean and standard deviation of the raw RISO data F as our model with 

which to match the DIDO data because we know the RISO data represent our best estimate 

of what the input vectors will look like for a successful controller in operation. We are 

presently only interested in the means which are presented in Table 6.4 along with the 

standard deviations for the RISO data. 

These means are very nearly zero, especially when compared to the means of the DIDO 

data which are showtrin Figures 6.88 through 6.90 for Fx, Fy, and Mz, respectively. The 

tabulated values for these data plots are presented in Table B.15 in Appendix B starting on 

page B-15. We conclude that the means of the DIDO training data do not approximate those 

expected in the force measurement stream when the controllers are implemented. Especially 

the Fy mean values for the DIDO data are much higher than for the RISO data. To address 

this condition, we apply the data mirroring technique to force the DIDO training data to 

have a zero mean for each component of F. 
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Figure 6.88 Mean values for the Fx components of F for DIDO data collected on the 
PLIMMS manipulator. Ten different demonstration files are examined as 
a function of the data processing steps applied. 
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Figure 6.89 Mean values for the Fy components of F for DIDO data collected on the 
PLIMMS manipulator. Ten different demonstration files are examined as 
a function of the data processing steps applied. 
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Figure 6.90 Mean values for the Mz components of F for DIDO data collected on the 
PLIMMS manipulator. Ten different demonstration files are examined as a 
function of the data processing steps applied. 

Figure 6.91 shows the resulting performance metrics of the ANN controllers that were 

training on mirrored DIDO data. The erratic shape of the plot surface conveys no trends 

between the configuration of the data tested and the performance metrics. Note that only 

configurations 1-6 and 10 were mirrored and tested. The salient feature to note from the 

mirroring results is that there were far more successful controllers for each of the seven 

tested configurations after mirroring the data than there were prior to mirroring it. In fact, 

whereas there were at most two successful controllers resulting from any given configura- 

tion prior to mirroring, there were 10-17 successful controllers for each configuration after 

mirroring. This indicates that the mirroring technique can indeed have a beneficial effect on 

the robustness of training even when we know the mapping itself is poor. We conclude that 

the poor results of the original DIDO-trained controllers were a product of both bad input 

distribution (large mean values) and the bad I/O-mapping. Data mirroring has resolved at 

least part of the detrimental effects of a biased DIDO data set. 

6.5.3 DIDO Summary. The DIDO training and testing was not nearly as successful 

as SISO, RISO, or DISO. Initial attempts to collect DIDO data using the PUMA manipulator 
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Figure 6.91 Best performance metric, C, achieved for ANN controllers trained on DIDO 
data after they were mirrored. Ten different demonstration files are examined 
as a function of the data processing steps applied. Table 6.1 provides the 
translations for the configuration codes used. Note that only configuration 
codes 1-6 and 10 were mirrored and tested. Other codes are set to zero and 
included to enhance plot labeling uniformity. 
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resulted in trained ANN controllers which were determined to rotate the peg irregardless 

of the contact force state. Attributing this behavior to the fact that the operator could not 

really feel the contact forces during demonstration because of the difficulty in back-driving 

the PUMA, the PLIMMS was designed and built. The relative ease with which the PLIMMS 

could be moved allowed the operator to feel the contact forces and perform the demonstrations 

much better. However, even the PLIMMS data does not correctly depict an accommodation 

mapping in all the axes required. In particular, the y-axis data was conspicuously lacking 

any indication of a compliant response to measured forces. This is a concern that would most 

likely be addressed by a change in the controller architecture in future work. 

After trying to use the LSMF interrogation technique in concert with the four matrix 

similarity indexes to predict the performance potential of the ANN controllers or to evaluate 

the quality of the DIDO training data, no confidence was gained in its feasibility. Though 

the matrix similarity evaluation of the training data implied that some of the demonstration 

samples should be better or worse than others, only a few of the ANN controllers trained 

on any of the DIDO data were able to complete the task well enough to earn a performance 

metric. The five successful controllers out of the 560 that were trained were not significant 

enough to draw any correlations, since they were spread among four different training data 

configurations. 

Though the ANN controllers were generally impotent, the Aa' extracted from them 

were moderately successful. There were 22 successful Aa' controllers for the 140 tested. 

This implies that the nonlinearity of the ANN may be degrading its performance in this 

linear edge mating task, since the best-fit linear mapping approximation of the Aa' did 

better. However, even the performance of the Aa' controllers pale when compared to that of 

the ANN controllers trained on mirrored DIDO data. For the mirrored DIDO data, 108 out 

of 280 controllers were able to complete the task. This is an order of magnitude improvement 

over the results obtained for the original DIDO data. Two corrupting characteristics of the 

training data have been shown to have a deleterious effect on training: a biased input vector 

distribution and an inconsistent or incorrect I/O mapping. However, the DISO results proved 

that a biased input vector distribution can be easily overcome if the I/O mapping is very good. 

When compared to the very successful DISO results, the moderate improvement obtained by 
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mirroring the DIDO data indicates that the integrity of the I/O mapping is more important 

to controller success than the input feature vector distribution. Thus, future effort should 

concentrate on establishing the integrity of the I/O mapping in preference to correcting input 

bias. 
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VII. Conclusions 

Although considerable insight has been gained into the difficulties associated with 

transferring human skills to robots, our proposed scheme of using an ANN to learn accom- 

modation tasks which can be added to a "toolbox" of local autonomy was not found to be 

robust. The ANN controllers trained on SISO, RISO, and DISO data had little trouble learn- 

ing to complete the edge-mating task in either the simulation or on the actual PUMA robot 

manipulator. Despite these successes, in the best case fewer than half of the trained ANN 

controllers could perform the task successfully when trained on the DIDO data collected. 

Part of the problem was due to the poor quality of demonstration exhibited by the DIDO 

data, and part was attributed to characteristics of the ANN architecture used. These defi- 

ciencies are detailed below followed by conclusions concerning several of the data processing 

options and the results of efforts to use matrix interrogation to screen training data and 

predict controller performance. 

7.1   Demonstration Data Quality. 

The main problem with training ANN controllers from human demonstration is the 

poor quality of the required information in the demonstration data. Initial experience with 

collecting training data using the PUMA manipulator identified the need for the data collec- 

tion system to be as transparent to the operator as possible because difficulty in back-driving 

the PUMA completely corrupted the operator's ability to sense the contact forces between 

the peg and the table...the very forces to which he was supposed to respond. As a result, 

the controller performed in the same way as the human did by rotating the peg regardless 

of what force vector was measured. To cope with this problem, the PLIMMS was designed 

and built to back-drive more easily and to be lighter so the operator could feel the contact 

forces. Though the collected data from the PLIMMS seemed better, there were still several 

concerns about the demonstration data which were anticipated in Section 3.3.4. An addi- 

tional problem, however, is that additional sensory information beyond the sensed force is 

typically used in determining the commanded velocity. This is partly due to the availability 
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of Visual and auditory information1. For this simple edge-mating task, the mental model of 

the task goal combined with the visual information was enough to completely determine the 

motion required. 

7.2   Effectiveness of Data Processing Options. 

Although clipping training vectors out of a data set using the Lipschitz ratio as a 

criterion may improve trainability, Lipschitz clipping is not useful as a criterion for pruning 

out training I/O pairs that depict an inconsistent I/O mapping. Consistency in the I/O 

mapping was found to be a far more critical feature of the training data than the simple 

continuity of the mapping, but since the Lipschitz ratio varies over the input range even 

when the I/O mapping is perfectly consistent, there is no benefit from using the Lipschitz 

ratio to precondition the training data. In none of the cases tested did Lipschitz clipping 

significantly change the success of the trained controller. 

Velocity pruning is a technique to reduce the number of training exemplar vectors 

which mapped to small magnitude velocities. This technique can prevent the inclusion of 

training vectors depicting a many-to-one mapping from F to V. However, choosing the 

threshold, Vu is a sensitive decision because too large a Vt can cause all the training vectors 

depicting the desired terminal state for the edge-mating task to be lost. ANN controllers 

trained on such decimated data files will commonly overshoot the aligned position and fail 

to properly complete the task. Thus, velocity pruning is not worthwhile in the form used 

for the present work. An enhancement to the velocity pruning algorithm that may make it 

more useful would be to prune only the vectors prior to the first alignment of the peg in the 

training data file. Detection of alignment might require some innovative technique without 

additional sensor data, but the advantage would be that one would no longer have to be 

concerned about deleting all the examples of how to terminate the task. Another possible fix 

would be to simply reinsert some examples of the terminal condition after velocity pruning 

was applied to a training data file. Neither of these ideas was investigated in the present 

work. 

1 Visual and auditory information could easily be denied the person performing the task when the DIDO data 
are collected. See Section VIII for ideas on how this could be accomplished. 
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Training normalization allows the ANN to train well, but introduces a significant 

problem of matching the training and implementation statistics for the input feature vectors. 

This stems from the fact that the same component-wise normalization statistics (mean and 

standard deviation) are used to prenormalize the input measurement stream of force data 

when the controller is implemented as were computed for the training data. If those statistics 

are not proper for the measurement stream, they could force the ANN into an underdeveloped 

or never-before-seen region of the input space. Consequently, erratic outputs may occur 

which would defeat the performance of the implemented ANN controller. The goal is to 

make the training data as similar to (or as representative of) the expected measurement 

stream of data as possible. Since the magnitude of the forces proves to be relatively small 

for the accommodation matrix controller when implemented, we can approximate the mean 

for our measurement stream as zero for the edge-mating task. 

Mirroring training data vectors originally having a non-zero mean about all the axes 

was shown to improve the performance potential of controllers. This was determined by ex- 

ploring the effects of introducing a bias to SISO training data and then mirroring those data, 

thereby forcing them to have a zero mean without modifying the mapping. The resulting 

ANN controllers trained on these mirrored SISO data were shown to have more successes 

and generally better performance metrics than controllers trained on the original biased 

data. 

The benefits of mirroring was also evaluated for DIDO training data. The original 

DIDO training data had significant biases for all the axes of input and output. After mirroring 

the data, the number of ANN controllers which could successfully complete the edge-mating 

task increased dramatically. This showed that mismatched training and implementation 

statistics for the input feature vectors was at least partly to blame for the dismal DIDO 

training results. It was not fully to blame, however, because all of the ANN controllers 

trained on DISO data sets were able to successfully complete the task. This indicates that 

if the I/O mapping of the DIDO data were as consistent and correct as that of the DISO, the 

DIDO data would also work well. 
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7.3   Matrix Interrogation Investigations. 

The ideal scenario of operation presented in Section 1.2 depicted training an ANN 

controller using just a few examples of a human demonstration with some appropriate data 

preprocessing to ensure the data would result in a successful controller. If we concede that 

success cannot necessarily be assured, another possible approach is to handle the uncertainty 

by evaluating each trained controller off-line to determine if it will work. Several alternatives 

were investigated towards this end. They were based on interrogating the ANN to determine 

what kind of accommodation matrix it had learned to emulate. Unfortunately, the ANN 

performance could not be fully predicted with either method. 

The first method of interrogation, called UVP, was found to be a poor indicator because 

it relied on only a 3-point sample of the ANN's I/O mapping to derive the equivalent matrix, 

Aa*. In addition, it attempted to use a linear relationship to extract information from a 

nonlinear ANN with just those three data points. The problem was further complicated by 

the fact that the desired Aa was known to lack full rank. Overall, the UVP method was 

useless. 

The second matrix interrogation method, called LSMF, was found to work well if 

the data it was interrogating represented a consistent linear relationship. It was used to 

verify the perfect linear mapping of training data which were synthesized using a given 

Aa. However, when applied to I/O pairs generated by testing a trained ANN, the LSMF 

method had difficulties. Even if the ANN had been trained on SISO data generated with a 

perfectly consistent Aa mapping, the extracted Aa' matrices were not found to be consistently 

similar to the original Aa. The similarity of the matrices was judged using four indexes of 

similarity we developed which measured the structural similarity, the gain similarity, the 

sign similarity, and the ratio similarity2. The results were found to be an intractable function 

of the number of I/O pairs taken for each matrix sample fitted as well as a function of the 

particular input vectors selected to generate the I/O pairs. The latter dependency was found 

to be equivalent to the problem of matching the training data statistics which was mentioned 

above. 

2See Section 5.4.4 for explanations of the four similarity indexes. 
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Given these two observations, synthetic data were used to investigate the potential 

of using A a to predict the controller performance of an ANN. This was done by extracting 

a single Aa' from an entire set of I/O pairs generated by using the same data used for 

training and implementing it as an accommodation matrix controller. The resulting Aa' 

could sometimes resemble the performance of the ANN controller, but it could never match 

the ANN controller's performance. In most cases, the overall gain of the Aa' was wrong, 

even though it was otherwise similar to Aa. In numerous cases, the ANN controllers trained 

on synthetic data outperformed even the original Aa used to generate its training data. This 

indicated that the ANN controllers were making use of their nonlinear mapping capabilities. 

Therefore, the performance of the Aa' is not a reliable prediction of the performance potential 

of the ANN controller from which the Aa' was interrogated. 

After finding that the Aa' did not reproduce the behavior of the ANN controllers, the 

four measures of similarity were examined to see if any of them could predict the perfor- 

mance potential of the ANN controller by revealing how close the ANN mapping resembled 

Aa. Unfortunately, none of them was shown to have a consistent correlation to the perfor- 

mance metric. This is most likely due to the nonlinearity of the ANN which allows it to 

maintain a performance edge over the accommodation matrix controllers but complicates 

the determination of any consistent correlation. 

When combined with the similarity indexes, the LSMF matrix interrogation technique 

could not reliably screen training data for I/O mapping consistency either. It was anticipated 

that a small matrix fitting window could be used for the interrogation and trends in the 

indexes could be evaluated over a particular task demonstration to see if the mapping matrix 

approximating the data was consistent. However, the similarity indexes varied considerably 

even when applied to DISO data which had a perfectly consistent mapping. Part of the 

problem was that fitting window size dependency could not be resolved into a rationale for 

selection of the window size. 

7.4   ANN Training Difficulties. 

Since the ANN architecture and training algorithm were not the focus of this research, 

a very simple structure and training method was used. Of course, when using a simple train- 
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ing algorithm, one may encounter difficulties in getting the desired training accomplished. 

Ultimately, one would like the ANN off-line training to be as rapid and robust as possible 

so task skills could be rapidly added to the teleoperator toolbox mentioned in Section 1.2. 

The present back-propagation training algorithm is relatively slow and could be improved3. 

Part of the difficulty encountered when interrogating trained ANN controllers was that the 

results were found to be dependent on the input feature vectors applied to the ANN when 

generation the I/O pairs of data to which the LSMF technique was applied. When the input 

vectors from the training data were used to generate the I/O pairs, the results were markedly 

better than when some other input vectors were used. This indicates that the ANN was not 

doing a very good job of generalizing away from the data set it had been trained on. This 

is typically a result which stems from either overtraining or too many nodes in the hidden 

layer (or both). The possibility of overtraining the ANN was significant since the training 

termination criteria was unsophisticated. Each of the controllers were trained for the same 

total number of training vector exposures (3,000,000) so for some cases it was probably too 

few and for some it may have been too many. In many cases, the results of training were 

evaluated using the techniques mentioned in Section 5.4 to ensure quality. However, there 

is not doubt room for improvement which could be obtained by using training techniques 

which are faster and more robust. 

7.5   Summary. 

Formulating a simple ANN controller which can watch a typical human perform an 

accommodation task a few times and thereby acquire that skill for a robot remains an 

elusive goal. This is especially true if we want the trained controller to be able to perform 

the demonstrated task at any reachable position in the manipulator's workspace. The desire 

for configuration-invariance and generalizability were major criteria for our selection of the 

I/O features, the ANN architecture, and the controller configuration. In the end, it appears 

that the combination is not able to reliably produce a working controller, though it may 

produce some successes. The analysis showed that if the training data faithfully depicted 

an accommodation mapping, as is the case for DISO data, then the ANN could be easily 

3 See Section VIII for some ideas on how to improve the training speed and reliability. 
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trained to successfully control the manipulator, regardless of the input distribution problems 

identified for the DIDO data. However, the observable quantities which can be measured 

during a human demonstration of the edge-mating task appeared to lack some of the basic 

accommodation information that the ANN needs to learn to be successful. Techniques that 

reinforce or restore a consistent and correct accommodation mapping to DIDO data will 

significantly benefit the feasibility of using the proposed controller development scheme. 

Without such a technique, however, the DIDO results showed that simply correcting the 

input distribution problem will improve the training and testing performance moderately. 

The mirroring technique is a simple way to obtain improved performance without collecting 

any additional data. 

The analysis presented in this dissertation has identified characteristics of human 

demonstration data for accommodation tasks and determined several data processing options 

that can improve the chances of success in using an ANN controller to acquire demonstrated 

human skills. The ANN controller was shown to work robustly in both simulation and on a 

PUMA 562 manipulator when the ANN was trained on synthesized data sets. In addition, 

the most profitable future refinements have been identified as those which address improving 

the integrity of the I/O mapping exhibited by the training data. With these insights we are 

now one step closer to the goal of having an easy technique to transfer human skills to robots 

in support of increasing the level of local autonomy for telerobotic systems. 
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VIII. Recommendations 

The results of this dissertation have shown that more work remains before an ANN con- 

troller can reliably acquire even simple accommodation skills from human demonstrations 

of a task. Though the road to success seems arduous, the most promising directions of travel 

have been identified in the feasibility studies of the present work. This chapter delineates 

the first few steps along each path which should be taken to further our understanding. 

Alternative controller architectures should be explored within the present ANN paradigm. 

Our selection of F as the input and V as the output and expressing those vectors in tool- 

frame coordinates was motivated by a desire to have the ANN controller capable of operating 

at any point in the workspace. That selection of variables made all the force measurements 

and motion commands relative to the current position of the peg and dictated much of the 

remaining architecture and methodology explored in the present work. Section VII identi- 

fied several problems with DIDO training data that hindered the success of ANN controllers 

trained on that data. One of the key faults identified was the lack of accommodation ex- 

hibited in the Y-axis. One possible way to cope with the lack of Y-axis accommodation is 

to modify the controller architecture to decouple the motion commands that are learned for 

each axis and thereby decompose the overall task into smaller subtasks. The outputs of the 

subtask controllers could then be superimposed to generate the overall controller command. 

Decoupling the motion commands would enable one to implement certain subtasks 

as hard-coded controllers if enough a priori information existed about the subtasks. For 

instance, the troubling Y-axis accommodation that was not learned from the DIDO data 

could be hard-coded as an accommodation, while the Z-axis angular compliance could be 

learned for the edge-mating task. This would provide a degree of assured safety in the 

requisite compliant behavior of the manipulator while the ANN subtask was simply to 

determine the necessary angular alignment motions. For tasks other than edge-mating, 

some analysis of the task would be required to determine the proper decomposition such 

that only subtasks that are exhibited in the DIDO data were assigned to the ANN controller. 

Another suggestion is to leave the nominal velocity, Vn, on during the entire contact 

phase of the task rather than turning it off via the blending function presented in Eq (5.47). 
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From the DIDO data collected, the ANN controllers were trained to produce small magnitude 

velocity components in the Y-axis direction which would tend to stop peg motion. Referencing 

Figure 5.8, we note that keeping TVn turned on during contact would be equivalent to 

commanding a moderate constant bias force for the terminal state as opposed to the present 

controller configuration which tends to have a lower bias force upon task completion. Another 

byproduct of this configuration of the controller is that it might tend to keep the peg in contact 

with the table surface better during the alignment process, whereas the present controller 

typically allows the peg to bounce in and out of contact. 

Another quality concern for the DIDO data that was identified in Section VII was that 

the human operator was probably using sensory information and a mental model which 

are unavailable to the ANN controller. This means that the DIDO data may not contain 

enough information for the ANN controller to complete the task, since it was presumably 

insufficient for the human. To increase the accommodation fidelity in the DIDO data, a 

better system should be configured to collect the DIDO training data. A device such as the 

PHANToM™ (built by SensAble Devices, Inc., Vanceburg, KY) should be used to interface 

the operator with a computer model of the peg and the task environment. The low-mass and 

easy back-driveability of the PHANToM™ would ensure that higher-fidelity force information 

was available to the operator when demonstrating the task. Using this system, the operator 

would be blindfolded to deny visual feedback and wear headphones emitting masking noise 

to deny auditory information. Further, the position and orientation of the table surface 

could be randomly varied to deny the operator the benefit of working from a mental model 

of where the table was located. This system would then be used to conduct a study to 

conclusively determine how much effect the additional sensory information and mental model 

had on the quality of the DIDO data. In addition, the computer model of the task would 

simplify parameter matching between DIDO data collection and controller implementation 

and testing in simulation. 

Some of the data integrity concerns that were mentioned in Section 5.6 may be ap- 

proached by applying the time shifting and time-delayed inputs feature vectors as mentioned 

in Section 5.6 and described in detail in Appendix D. It is possible that the time shifting tech- 

nique can improve the integrity of the I/O mapping in the DIDO data by ensuring that the 
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proper cause-effect relationship is restored. To properly apply time shifting, one would first 

have to determine the correct number of data samples to shift the data. This is a nontrivial 

parameter to determine since there are many factors that can affect the signal propagation 

and mental processing delay of the human while completing even the simple edge-mating 

task. As a first-order approximation, one can assume that the causal time delay is constant 

throughout the task execution. If the inertia of the demonstration collection system is small, 

then one could begin testing by using the average human choice reaction time to tactile 

stimulation, which is approximately 300-400 milliseconds [55]. The time-delayed inputs are 

a significant modification to the control algorithm which might preserve the context of the 

input force vectors and provide information about the change in the force as well as the cur- 

rent force vector. The current results give no particular reason that the context of the force is 

important for the edge-mating task, but it may become important for other tasks such as the 

chamferless peg insertion which can transition from single-point contact to multiple-point 

contact during insertion. 

Some difficulty was encountered when training the ANN controllers. This was largely 

due to the simplicity of the ANN architecture and training algorithm. The back-propagation 

training algorithm used in this work is among the simplest approaches to ANN training in 

existence. As a result, it is not a very robust algorithm as compared with some enhanced 

back-propagation training techniques which are available. One particular algorithm that 

offers much more rapid training is Levenberg-Marquardt optimization which is available as 

a function in the Neural Network Toolbox [17] that is part of MATLAB®. It offers much more 

rapid training convergence than the gradient decent of back-propagation at the expense of 

large memory consumption for large network architectures. For the ANN architecture used 

in this research, the network size should not challenge the memory capacity of most common 

workstations. In addition to using Levenberg-Marquardt optimization for training, other 

methods of terminating the training session should be explored. The present work simply 

used a certain total number of training exposures1 which could prematurely end training 

1A training exposure is defined here as the presentation of a single I/O pair of data vectors and the corre- 
sponding adjustment of ANN weights based on the output error. Thus, 100 training vectors, each seen 200 times 
would constitute 20,000 training exposures. 
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or, just as likely over train a network. The combination of these two enhancements could 

significantly ease the task of training successful controllers. 

The ideas presented here represent several avenues of future exploration and en- 

hancement of the present algorithm. They could be pursued individually, or one might be 

so ambitious as to attempt them all in concert. The probability that the DIDO-trained ANN 

controllers resulting from these enhancements will be more successful than those trained 

and tested in this dissertation is very good. 

8-4 



Bibliography 

1. Albus, J. "A New Approach to Manipulator Control: The Cerebellar Model Articula- 
tion Controller," ASME J. of Dynamic Systems, Measurement and Control, 97:270-277 
(1975). 

2. Asada, H. "Teaching and Learning of Compliance Using Neural Nets: Representation 
and Generation of Nonlinear Compliance." Proc. of the IEEE Int. Conf. on Robotics and 
Automation. 1237-1244. May 1990. 

3. Asada, H. and H. Hanahusa. "Playback Control of Force Teachable Robots," Trans, of 
Society of Instrument and Control Engineers, 15-3 (1979). 

4. Asada, H. and H. Izumi. "Direct Teaching and Automatic Program Generation for the 
Hybrid Control of Robot Manipulators." Proc. of the IEEE Int. Conf. on Robotics and 
Automation. 1401-1406. 1987. 

5. Asada, H. and S. Liu. "Transfer of Human Skills to Neural Net Robot Controllers." 
Proc. of the IEEE Int. Conf. on Robotics and Automation. 2442-2448. 1991. 

6. Asada, H. and B.-H. Yang. "Skill Acquisition From Human Experts Through Pattern 
Processing of Teaching Data." Proc. of the IEEE Int. Conf. on Robotics and Automation. 
1302-1307. 1989. 

7. Barto, A. G., et al. "Associative Search Networks: A Reinforcement Learning Associa- 
tive Memory," Biological Cybernetics, 40:201-211 (1981). 

8. Benady, M., et al. "Robot Learning of Contact Tasks." Robotic Systems and AMD 
Proceedings of the Int. Conf. on CAD/CAM and AMT, edited by G. Halevi. 147-159. 
Dec 1990. NTIS Accession No: N93-15303/9/XAB. 

9. Buckley, S. J. "Teaching Compliant Motion Strategies," IEEE Trans, on Robotics and 
Automation, 5(1):112-118 (February 1989). 

10. Burden, R. L. and J. D. Faires. Numerical Analysis (3rd Edition).  Boston: Prindle, 
Weber, & Schmidt, 1985. 

11. Caine, M. E. Chamferless Assembly of Rectangular Parts in Two and Three Dimensions. 
MS thesis, Massachussetts Inst. of Tech., 1985. Dept. of Mech. Eng. 

12. Caine, M. E., et al. "Assembly Strategies for Chamferless Parts." Proc. of the IEEE Int. 
Conf. on Robotics and Automation. 472-477. 1989. 

13. Chan, L.-W. and F. Fallside.  "An Adaptive Training Algorithm for Back Propagation 
Networks," Computer Speech and Language, 2:205-218 (1987). 

14. Craig, J. J. Introduction to Robotics: Mechanics and Control (2nd Edition). Addison- 
Wesley, 1989. 

15. Cybenko, G. "Approximations by Superpositions of a Sigmoidal Function," J. on Math- 
ematics of Control, Signals, and Systems, 2:303-313 (1989). 

16. De Fazio, T. L., et al. "The Instrumented Remote Center Compliance," The Industrial 
Robot, ll(4):238-242 (1984). 

BIB-1 



17. Demuth, H. and M. Beale. Neural Network TOOLBOX User's Guide. Natick, MA: The 
MathWorks, Inc., 1994. 

18. DSP Development Corp., One Kendall Square, Cambridge MA 02139. The DADiSP 
Worksheet Reference Manual, November 1991. 

19. DSP Development Corp., One Kendall Square, Cambridge MA 02139. The DADiSP 
Worksheet Workstation User Manual, July 1992. 

20. Fu, K. S., et al. Robotics: Control, Sensing, Vision, and Intelligence. McGraw-Hill, 
1987. 

21. Gullapalli, V. "A Stochastic Reinforcement Algorithm for Learning Real-Valued Func- 
tions," Neural Networks, 3:671-692 (1990). 

22. Gullapalli, V. "Learning Control Under Extreme Uncertainty." Advances in Neural 
Information Processing Systems 5. San Mateo, CA: Morgan Kaufmann, 1993. 

23. Gullapalli, V., et al. "Learning Admittance Mappings for Force-Guided Assembly." Proc. 
of the IEEE Int. Conf. on Robotics and Automation. 2633-2638. May 1994. 

24. Gullapalli, V., et al. "Learning Reactive Admittance Control." Proc. of the IEEE Int. 
Conf. on Robotics and Automation. 1475-1480. May 1992. 

25. Handelman, D. A., et al. "Integrating Neural Networks and Knowledge-Based Systems 
for Robotic Control." Proc. of the IEEE Int. Conf. on Robotics and Automation. 1454- 
1460. 1989. 

26. Hecht-Nielson, R. Neurocomputing. Addison-Wesley, 1990. 

27. Houpis, C. H. and G. B. Lamont. Digital Control Systems: Theory, Hardware, Soßware. 
New York: McGraw-Hill, 1985. 

28. Hush, D. R. and B. G. Home. "Progress in Supervised Neural Networks: What's New 
Since Lippmann," IEEE Signal Processing Magazine, 10(l):8-39 (January 1993). 

29. Hush, D. R., et al. "Error Surfaces for Multi-Layer Perceptrons," IEEE Trans, on 
Systems, Man and Cybernetics, 22(5) (1992). 

30. JR3, Inc., Woodland, CA. JR.3 Universal Force-Moment Sensor System Operation Man- 
ual, August 1989. 

31. Kitagaki, K, et al. "Methods to Detect Contact State by Force Sensing in an Edge 
Mating Task." Proc. of the IEEE Int. Conf. on Robotics and Automation. 701-706. 1993. 

32. Lang, K.J., et al. "A Time Delay Neural Network Architecture for Isolated Word Recog- 
nition," Neural Networks, 3:23-43 (1990). 

33. Leahy, Jr., M. B. ARCADE Users Guide: Version 2.0. Technical Report ARSL-89-4, Air 
Force Inst. of Tech., August 1989. Dept. of Elect, and Comp. Eng. 

34. Leahy, Jr., M.B., et al. "Evaluation of Dynamic Models for PUMA Robot Control," IEEE 
Trans, on Robotics and Automation, 5(2):242-244 (April 1989). 

35. Lippmann, R. "An Introduction to Computing with Neural Nets," IEEE Acoustics, 
Speech, and Signal Processing Magazine, 4(2):4-22 (April 1987). 

BIB-2 



36. McCarragher, B. J. and H. Asada. "A Discrete Event Controller Using Petri Nets 
Applied to Robotic Assembly: The Desired Velocity Commands." Proc. of the American 
Controls Conf.. 2473-2478. 1992. 

37. McCarragher, B. J. and H. Asada. "A Discrete Event Approach to the Control of Robotic 
Assembly Tasks." Proc. of the IEEE Int. Conf. on Robotics and Automation 1. 331-336. 
1993. 

38. Nakamura, Y. Theoretical Robotics: Redundancy and Optimization. Addison-Wesley, 
1991. 

39. Narendra, K. S. and K. Parthasarathy. "Identification and Control of Dynamical Sys- 
tems Using Neural Networks," IEEE Trans, on Neural Networks, i(l):4-27 (March 
1990). 

40. Parsons, T W. Voice and Speech Processing. New York, NY: McGraw-Hill, 1987. 

41. Payandeh, S. "Causality and Robotic Contact Tasks Problem," IEEE Trans, on Systems, 
Man, and Cybernetics, 22(5):1210-1214 (Sept/Oct 1992). 

42. Peshkin, M. A. "Programmed Compliance for Error Corrective Assembly," IEEE Trans, 
on Robotics and Automation, 6(4):473-482 (August 1990). 

43. Press, W. H., et al. Numerical Recipes in C: The Art of Scientific Computing. Cambridge 
Univ. Press, 1988. 

44. Rogers, S. K. and M. Kabrisky. An Introduction to Biological and Artificial Neural 
Networks for Pattern Recognition, TT 4. SPIE Optical Engineering Press, 1991. 

45. Rummelhart, D. E. and J. L. McClelland, editors. Parallel Distributed Processing: 
Explorations in the Microstructure of Cognition. MIT Press, 1986. 

46. Shahinpoor, M. and H. Zohoor. "Analysis of Dynamic Insertion-Type Assembly for 
Manufacturing Automation." Proc. of the IEEE Int. Conf. on Robotics and Automation. 
2458-2464. 1991. 

47. Sheridan, T. B. Telerobotics, Automation, and Human Supervisory Control. MIT Press, 
1992. 

48. Spong, M. W. and M. Vidyasagar. Robot Dynamics and Control. John Wiley & Sons, 
1989. 

49. Tarn, T.J. and A.K. Bejczy. Dynamic Equations for PUMA-560 Robot Arm. Technical 
Report SSM-RL-85-02, Washington Univ., St. Louis, MO, July 1985. Dept. of Syst. Sei. 
and Math. 

50. Unimation Inc. PUMA Mark II Robot 500 Series Equipment Manual, March 1985. 

51. Vaaler, E. G. and W. P. Seering. "A Machine Learning Algorithm for Automated Assem- 
bly." Proc. of the IEEE Int. Conf. on Robotics and Automation. 2231-2237. 1991. 

52. Waibel, A. "Consonant Recognition by Modular Construction of Large Phonemic Time- 
Delay Networks." Proc. of IEEE Conf. on Neural Information Processing Systems. 1988. 

53. Waibel, A. "Modular Construction of Time-Delay Neural Networks for Speech Recogni- 
tion," Neural Computation, 2(l):39-46 (Spring 1989). 

BIB-3 



54. Wasserman, P. D. Neural Computing: Theory and Practice. Van Nostrand Reinhold, 
1989. 

55. Whitlow, J. W., et al. "Operator Motor Control." Engineering Data Compendium: Hu- 
man Perception and Performance edited by K. R. Boff and J. E. Lincoln, 1841-2011, 
Wiley & Sons, 1988. 

56. Whitney, D. E. "Quasi-static Assembly of Compliantly Supported Rigid Parts," ASME 
J. of Dynamic Systems, Measurement, and Control, 104(3):65-77 (1982). 

57. Whitney, D. E. "Part Mating in Assembly." Handbook of Industrial Robots edited by 
S. Y. Nof, 1084-1116, Wiley & Sons, 1985. 

58. Whitney, D. E. "The Remote Center Compliance." The Encyclopedia of Robotics edited 
by S. Y. Nof, New York: John Wiley and Sons, 1988. 

59. Whitney, D. E. "A Survey of Manipulation and Assembly." Robotics Science edited by 
M. Brady, chapter 8, 291-348, MIT Press, 1989. 

60. Whitney, D. E., et al. "Designing Chamfers," Int. J. of Robotics Research, 2(4):3-18 
(1983). 

61. Whitney, D. E. and J. M. Rourke. "Mechanical Behavior and Design Equations for 
Elastomer Shear Pad Remote Center Compliances," ASME J. of Dynamic Systems, 
Measurement, and Control, 20S(3):223-232 (1986). 

62. Yang, J., et al. Hidden Markov Model Approach to Skill Learning and Its Application to 
Telerobotics. Technical Report CMU-RI-TR-93-01, Robotics Institute, Carnegie Mellon 
Univ., January 1993. Available via DTIC as A266-989. 

BIB-4 



Vita 

Captain Paul V. Whalen was born on 30 July 1962 in Louisville, Kentucky. In 1980 

he graduated as Salutatorian from Jesse Stuart High School in Louisville. In that same 

year he entered Purdue University's School of Engineering in West Lafayette, Indiana on 

a four-year Air Force ROTC scholarship. While attending Purdue, he was initiated into 

the mechanical engineering honorary fraternity, Pi Tau Sigma. He received the degree of 

Bachelor of Science in Mechanical Engineering from Purdue in May 1984. Upon graduation 

he was designated a distinguished ROTC graduate and received a Regular Air Force com- 

mission. His first assignment was to Eglin AFB, Florida in July 1984 where he served as a 

Research and Development Test Engineer in the Terminal Effects Branch of the Munitions 

Test Division under the 3246th Test Wing. While stationed at Eglin he was awarded the AF 

Commendation Medal and the AF Achievement Medal for outstanding service. After three 

years of service at Eglin AFB, Capt Whalen was selected to enter the masters degree program 

at the Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH. He received the 

master of science degree in aeronautical engineering in December 1988 and immediately 

entered the doctoral degree program at AFIT. In January 1992 Capt Whalen was assigned 

to the Bioacoustics and Biocommunications Division of the Crew Systems Directorate at the 

Armstrong Laboratory located at Wright-Patterson AFB. While at Armstrong Laboratory, 

he directed the Human Sensory Feedback for Telepresence program conducting research 

into the man-machine interface issues of providing force and tactile feedback information 

to operators of telerobotic systems and users of virtual reality systems. Capt Whalen is a 

registered Professional Engineer in the state of Ohio. 

Permanent address:   575 Milan Road 
Payneville, KY 40157 

VITA-1 



Appendix A. Artificial Neural Network Computations. 

This appendix will present the feedforward calculations one uses to compute the out- 

puts of a MLP ANN and the backward error propagation algorithm used for training the 

ANN. The algorithms are presented here in summary form. For a more detailed explanation 

of how ANN s operate and explanations of other training algorithms, see [54], [35], [44] or 

[28]. 

Figure 3.5 shows a simple schematic of the MLP ANN used for this dissertation. It 

is a fully-connected, two-layer ANN. Fully-connected means that all of the input nodes are 

connected to each of the hidden nodes, and all of the hidden nodes are connected to each 

of the output nodes. Some authors might call the network depicted in Figure 3.5 a three- 

layer ANN. However, this author refers to it as a two-layer ANN because only two of the 

three "apparent" layers perform transformations on the data. The input nodes are simply 

connections for the input features to be applied and do not perform any transformations on 

the data. Networks with additional hidden layers are possible, and in some cases desirable, 

but Cybenko showed that any nonlinear mapping can be approximated to an arbitrary 

accuracy by choosing enough hidden layer nodes in a simple two-layer network [15]. With 

this in mind, we have chosen to limit the architecture of the present network to two layers. 

A. 1   Feedforward Computations. 

When a vector of input features is presented to the ANN, simple feedforward equations 

are used to compute the network output. Since the layers of the network are cascaded, the 

computations of each layer can be considered one at a time in turn. Consequently, for the 

two-layer network under discussion, the hidden layer computations will be described first 

and then those of the output layer will follow. 

A. 1.1   Hidden Layer Computations. Each neuron in the hidden layer forms a 

weighted sum of the inputs to the neural network. The vector of inputs, F, has k components, 

{/i ihihi"--, /*}• For each input, /,, to the jth hidden layer node there is a weight, w,-,-, 

that is multiplied by /, and added to a sum for the jth node. If there are m hidden nodes 

and k input nodes, the weights can be assembled into a weight matrix, Wh, with m rows 
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and k columns while the inputs can be concatenated into a vector, F, of length k. Then the 

m-length vector of weighted sums, s, can be written as 

s = WhF (A.1) 

An m-length vector of bias or offset values, iph, is then added to s to get a new s*. Finally, 

in order for Cybenko's theorem mentioned above to be true, at least one layer of the network 

must have a nonlinear transfer function applied to its output. For the hidden layer, a 

nonlinear activation function, <7/,(-)> operates on each element of s* to generate the n-length 

vector of hidden layer outputs, C Mathematically, the output of the hidden layer is 

?=gH(?) = 9h(WhF + $h) (A.2) 

The nonlinear activation function used for the hidden layer is the sigmoid function1 which 

can be expressed as 

^ W = TTe^ = l{1 + tanh \x) (A'3) 

and is shown in Figure A.l. This nonlinear function is selected because it has a continuous 

derivative with a simple expression and it has been used successfully in many applications. 

A. 1.2 Output Layer Computations. The computations for the output layer nodes 

differ in two ways from those of the hidden layer. First, the dimensions of the output weight 

matrix, W0, and the output bias vector, i>0, differ from those of the corresponding variables 

for the hidden layer. If there are n output nodes, then the output weight matrix, W0, is 

n rows by m columns while the length of the output layer bias vector, ip0, is n. Thus, the 

n-length vector of output layer outputs, V, is 

V = W0 f + $0 (A4) 

Comparing Eqs (A.2) and (A.4), we note that <T, rather than F, is the input for the output 

layer. 

1 Sometimes the sigmoid function is incorrectly called a logistic function. 
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Figure A.1   Plot of the nonlinear sigmoid activation function 

The second difference in the output layer computations is that the nonlinear activation 

function used on the hidden layer is replaced with a unity gain. Networks which try to 

classify the input features into one of several discrete output classes commonly use nonlinear 

activation functions on the output layer to squash the output and improve class separation. 

A unity gain (which is a form of linear activation function) is used on the output of our 

network because we want a continuously variable output which is not distorted across its 

range of values. Consequently, Eq (A.4), without modification, reflects the final output of the 

output layer. 

A simple mathematical manipulation can combine Eqs (A.2) and (A.4) to get 

V = W0   gh(WhF + i>h) + ^>0 (A.5) 

which is the overall vector equation for computing the output of the two-layered network. 

A.2   Back Error Propagation Training Algorithm. 

Before an ANN controller can be implemented, the weights and biases must be deter- 

mined. The process of determining the weights and biases which provide the best input- 

output mapping is called training.   Training algorithms fall into one of two categories; 
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unsupervised and supervised. Unsupervised training does not require apriori knowledge of 

the correct network output for each input. Input vectors are presented to the network, and 

the network self-organizes by adjusting its weights and biases according to a well-defined 

algorithm. For more information on unsupervised training algorithms see [54] or [35]. 

For supervised training, the correct output vector must be known apriori for each input 

feature vector used during training. All supervised training algorithms follow the same basic 

process: 

• a sample input feature vector is presented to the ANN 

• the ANN output is computed with the current weights and biases 

■ the computed output is compared to the known correct output 

• the weights and biases are then adjusted in such a way as to reduce the difference 
between the computed and correct outputs 

Prior to beginning the actual training session, training data must be generated. The 
-** 

training data is generated in the form of input training vectors, F , and their corresponding 

output training vectors, V . An input training vector and its corresponding output training 

vector concatenated together constitute an exemplar vector, fa, which has a length of (k+ n) 

elements. 

fa=(F    ,V   J (A.6) 

Note that the T superscript indicates the transpose operator. If there are p training exem- 

plars available, then the training data matrix, $, can be formed which has p rows and (k+ 

n) columns. 

' fa 

$ = 
fa 

(A.7) 

Once the training data have been generated and assembled into the training data 

matrix, one can begin the supervised training session. For a fully-connected multi-layered 

perceptron network, there are several supervised training algorithms available. The su- 

pervised training algorithm chosen for this research is called back error propagation; or 
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backprop for short. The backprop algorithm is the most commonly used and the best char- 

acterized algorithm. The backprop training algorithm begins by setting all the weights and 

biases to random initial values ranging from -1 to +1. Each exemplar vector, fa, is then 

presented to the network one at a time. When each fa is presented, Eq (A.5) is used to 

compute V. The output error vector, 60, is then computed as 

60 = V  -V (A.8) 

At each training iteration, the interconnecting weights must be adjusted to reduce error. At 

the nth training iteration, the relationship used to adjust the weights to the jth node of the 

output layer is 

~T 
W ij(n + 1) = Wj(n) + rj60   0 <f+ a [wj(n) - Wj{n - 1)] (A.9) 

where 77 is the training rate coefficient, a is the training momentum coefficient, j takes 

on index values from zero to n, and 0 operator represents an element-by-element vector 

multiplication exemplified by 

'                               1 

«1 
f                          \ 

a2 
< ,0  < 

02 
> =  < 

a\ 

On .   an   , X  - 
The value of 77 controls how quickly the network will adjust its weights at each iteration 

while the value of a controls the network's tendency to continue adjusting the weights in 

the same direction. The values for 77 and a are typically between zero and one. Guidance on 

choosing good values for r? and a can be found in [13] or [45]. The bias update relationship 

for the output layer is 

i£0(n + 1) = -tf0(n) + r]S0 + a {rf0{n) - $0(n - 1)J (A. 10) 
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As with the feedforward computations, the weight and bias adjustment equations for 

the hidden layer differ from those of the output layer. For the hidden layer, the error-related 

term, 6h, is computed by 

6h = äol60
TW0\ (A.11) 

where 

O = (f-f©0 (A. 12) 

The weights connecting the inputs to the jth node of the hidden layer are then updated 

according to 

Wj(n + 1) = wj(n) + rjSh   QF + a [wj(n) - to,-(n - 1)] (A. 13) 

while the bias update relationship for all the nodes of the hidden layer is 

$h(n + 1) = tfh(n) + r]6h + a [&(n) - $h(n - 1)] (A.14) 

To train the ANN, then, one must use the feedforward calculations in Eq (A. 5) to 

compute the output for each training vector input. The output error is then computed 

using Eq (A.8) and the output layer weights and biases are updated according to Eqs (A.9) 

and (A. 10), respectively. Finally, the hidden layer weights and biases are updated using 

Eqs (A. 13) and (A.14), respectively. 
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Appendix B. Data Tables 

This appendix contains the tabulated values for many of the data plots presented in 

the body of this dissertation. They are included for completeness of the results. 
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Table B.l Implementation results (best metric) of various distributions of SISO training 
data after ensuring a consistent training data exposure was maintained between 
the data sets 

Ranges 
(x,y,z) 

Divisions 
(x,y,z) 

Spacing Function 
Even Sine Cubic Complex Mirrored 

Figure Ni amber =>■ 6.12 6.13 6.14 6.15 6.16 

.5,.5,.5 5,5,5 0.999 0.994 0.999 1.000 N/A 

.5,.5,.5 4,4,4 0.994 0.981 0.992 0.995 N/A 

.5,.5,.5 3,3,3 0.994 0.986 0.995 0.995 N/A 

.5,.5,.5 2,2,2 0.990 0.990 0.982 1.022 N/A 

5,5,5 5,5,5 1.345 0.995 1.049 0.983 0.984 

5,5,5 4,4,4 1.011 0.975 0.988 1.074 1.010 

5,5,5 3,3,3 0.982 0.997 0.991 0.987 0.988 

5,5,5 2,2,2 1.027 0.983 0.980 0.0 0.996 

10,10,10 5,5,5 0.971 0.991 1.006 1.350 0.986 

10,10,10 4,4,4 0.982 0.984 1.054 1.308 1.104 

10,10,10 3,3,3 0.994 0.988 0.982 1.014 0.994 

10,10,10 2,2,2 1.008 0.993 0.994 0.0 0.987 

15,15,15 5,5,5 1.046 1.010 1.115 1.994 0.989 

15,15,15 4,4,4 0.985 0.983 1.077 1.071 1.014 

15,15,15 3,3,3 0.975 0.986 1.016 1.003 0.984 

15,15,15 2,2,2 1.032 0.982 0.973 0.0 1.422 

20,20,20 5,5,5 1.023 0.978 1.329 1.180 1.030 

20,20,20 4,4,4 1.011 1.088 1.005 0.999 0.990 

20,20,20 3,3,3 1.068 0.978 1.116 0.994 0.996 

20,20,20 2,2,2 1.276 0.982 0.978 0.0 1.052 
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Table B.2    Matrix structural similarity indexes of Aa' extracted from ANN controllers 
trained on various distributions of SISO training data. 

Ranges 
(x,y,z) 

Divisions 
(x,y,z) 

Spacing Function 
Even Sine Cubic Complex Mirrored 

Figure Number =>- 6.26 6.29 6.32 6.35 6.38 

.5,.5,.5 5,5,5 0.002 0.001 0.001 0.003 0.000 

.5,.5,.5 4,4,4 0.001 0.005 0.001 0.019 0.000 

.5,.5,.5 3,3,3 0.002 0.000 0.000 0.032 0.000 

.5,.5,.5 2,2,2 0.003 0.000 0.000 0.006 0.000 

5,5,5 5,5,5 0.098 0.052 0.002 1.032 0.094 

5,5,5 4,4,4 0.003 0.023 0.001 0.656 0.102 

5,5,5 3,3,3 0.106 0.019 0.000 3.707 0.024 

5,5,5 2,2,2 0.003 0.015 0.005 0.399 0.068 
10,10,10 5,5,5 0.354 25.478 0.042 5.651 1.205 
10,10,10 4,4,4 0.156 0.320 0.069 0.979 0.559 
10,10,10 3,3,3 0.057 0.043 0.011 11.196 0.211 
10,10,10 2,2,2 0.012 0.000 0.107 2.167 0.112 

15,15,15 5,5,5 3.885 0.214 0.024 5.794 13.558 

15,15,15 4,4,4 0.010 0.166 0.024 12.162 0.508 
15,15,15 3,3,3 0.310 0.100 0.005 17.138 1.683 
15,15,15 2,2,2 0.065 0.057 0.007 4.336 1.222 

20,20,20 5,5,5 0.145 2.480 0.109 10.076 7.890 
20,20,20 4,4,4 0.004 0.030 0.380 12.079 0.500 
20,20,20 3,3,3 0.184 0.075 0.630 48.649 0.333 
20,20,20 2,2,2 0.022 0.014 0.127 7.975 0.018 
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Table B.3    Matrixgam similarity indexes of Aa' extracted from ANN controllers trained on 
various distributions of SISO training data. 

Ranges 
(x,y,z) 

Divisions 
(x,y,z) 

Spacing Function 
Even Sine Cubic Complex Mirrored 

Figure Number =>■ 6.27 6.30 6.33 6.36 6.39 

.5,.5,.5 5,5,5 1.870 1.591 2.284 2.417 0.000 

.5,.5,.5 4,4,4 1.834 1.577 2.204 2.342 0.000 

.5,.5,.5 3,3,3 1.775 1.548 2.077 2.033 0.000 

.5,.5,.5 2,2,2 1.666 1.495 1.850 2.114 0.000 

5,5,5 5,5,5 18.735 29.044 8.339 6.046 9.693 

5,5,5 4,4,4 19.867 29.776 9.952 7.245 10.483 

5,5,5 3,3,3 21.863 31.026 12.864 13.941 16.774 

5,5,5 2,2,2 26.006 33.378 19.352 12.016 11.847 

10,10,10 5,5,5 113.444 163.124 60.471 47.672 67.585 

10,10,10 4,4,4 119.181 166.772 69.040 54.594 72.029 

10,10,10 3,3,3 128.868 172.686 84.144 89.586 103.897 

10,10,10 2,2,2 148.816 183.711 116.554 79.745 78.979 

15,15,15 5,5,5 288.389 406.587 160.377 129.095 339.555 

15,15,15 4,4,4 301.960 415.100 181.280 145.830 359.823 

15,15,15 3,3,3 324.973 428.904 217.858 230.888 501.178 

15,15,15 2,2,2 372.413 455.055 295.772 207.072 390.656 

20,20,20 5,5,5 543.030 758.838 308.108 250.178 178.570 

20,20,20 4,4,4 568.155 774.343 346.630 281.904 189.173 

20,20,20 3,3,3 610.338 799.816 414.082 437.940 265.332 

20,20,20 2,2,2 696.750 847.335 556.866 394.777 205.578 
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Table B.4    Matrix ratio similarity indexes of Aa' extracted from ANN controllers trained 
on various distributions of SISO training data. 

Ranges 
(x,y,z) 

Divisions 
(x,y,z) 

Sp acing Function 
Even Sine Cubic Complex Mirrored 

Figure Ni umber =>• 6.28 6.31 6.34 6.37 6.40 

.5,.5,.5 5,5,5 2.873e-05 2.358e-04 1.071e-06 7.659e-06 0.000e+00 

.5,.5,.5 4,4,4 9.600e-09 1.924e-04 9.632e-07 1.124e-04 0.000e+00 

.5,.5,.5 3,3,3 2.022e-06 7.186e-06 8.015e-08 3.998e-05 0.000e+00 

.5,.5,.5 2,2,2 2.867e-06 4.311e-06 2.822e-06 7.308e-05 0.000e+00 

5,5,5 5,5,5 9.851e-05 2.357e-04 3.766e-08 5.032e-07 1.382e-06 

5,5,5 4,4,4 8.663e-07 2.037e-04 3.766e-09 4.090e-04 7.621e-05 

5,5,5 3,3,3 8.092e-06 3.145e-05 1.284e-08 1.488e-04 2.266e-06 

5,5,5 2,2,2 4.972e-08 1.489e-06 1.978e-07 1.010e-05 7.133e-06 

10,10,10 5,5,5 5.628e-07 3.510e-04 2.616e-08 1.996e-05 3.450e-06 

10,10,10 4,4,4 2.159e-06 1.043e-04 9.422e-08 4.584e-04 2.936e-05 

10,10,10 3,3,3 2.243e-07 4.357e-08 8.007e-08 1.462e-04 1.077e-06 

10,10,10 2,2,2 4.951e-08 4.132e-08 1.526e-06 1.203e-05 3.035e-06 

15,15,15 5,5,5 2.852e-05 1.518e-15 4.650e-08 5.600e-08 2.296e-05 

15,15,15 4,4,4 2.667e-08 1.798e-07 3.766e-07 2.049e-04 3.103e-05 

15,15,15 3,3,3 1.822e-05 1.746e-07 3.559e-08 3.377e-08 1.363e-06 

15,15,15 2,2,2 1.081e-06 2.941e-07 4.337e-07 3.797e-05 4.132e-06 

20,20,20 5,5,5 6.237e-08 9.284e-07 2.855e-14 2.836e-07 2.248e-05 

20,20,20 4,4,4 1.215e-06 1.227e-05 2.344e-08 3.700e-04 3.630e-07 

20,20,20 3,3,3 5.610e-08 4.358e-08 7.712e-15 9.190e-06 1.077e-06 

20,20,20 2,2,2 4.469e-07 4.133e-08 2.440e-07 5.345e-06 3.375e-07 
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Table B.5    Performance metrics of Aa' extracted using the LSMF method from ANN con- 
trollers trained on various distributions of SISO training data. 

Ranges 
(x,y,z) 

Divisions 
(x,y,z) 

Spacing Function 
Even Sine Cubic Complex Mirrored 

Figure Ni umber =J- 6.21 6.22 6.23 6.24 6.25 

.5,.5,.5 5,5,5 1.206 1.176 1.255 1.275 0.000 

.5,.5,.5 4,4,4 1.203 1.172 1.246 1.234 0.000 

.5,.5,.5 3,3,3 1.190 1.173 1.227 1.216 0.000 

.5,.5,.5 2,2,2 1.194 1.169 1.200 1.232 0.000 

5,5,5 5,5,5 3.544 5.110 2.498 2.024 3.067 

5,5,5 4,4,4 4.258 6.105 3.135 2.732 2.714 

5,5,5 3,3,3 3.527 5.796 3.049 3.774 3.406 

5,5,5 2,2,2 4.418 6.271 4.409 3.222 2.947 

10,10,10 5,5,5 17.191 30.145 8.410 7.814 10.937 

10,10,10 4,4,4 16.343 14.979 8.461 10.207 11.646 

10,10,10 3,3,3 7.513 17.760 9.565 15.944 7.947 

10,10,10 2,2,2 16.150 16.614 12.476 9.626 11.504 

15,15,15 5,5,5 29.093 33.445 15.616 21.830 18.550 

15,15,15 4,4,4 15.747 73.018 17.980 20.599 25.033 

15,15,15 3,3,3 33.454 84.674 31.700 21.427 28.282 

15,15,15 2,2,2 69.851 14.172 28.491 15.027 27.858 

20,20,20 5,5,5 139.331 586.678 36.162 17.180 37.454 

20,20,20 4,4,4 136.517 33.944 17.942 25.266 38.968 

20,20,20 3,3,3 222.767 122.624 17.052 30.068 235.405 

20,20,20 2,2,2 441.046 557.987 103.667 33.499 74.757 
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Table B.6 Implementation results (best metric) of various configurations of RISO training 
data after ensuring a consistent training data exposure was maintained between 
the data sets 

LP cut-off 
Freq. (Hz) 

Subsample 
Pts. Skipped 

Raw 
Data 

Vel. Pruned Hem. Pruned 
@ 86.5 deg 

Coll. Pruned 
@ 0.05 N @ 0.05 m/s @ 0.1 m/s 

Figure ]S umber =>■ 6.47 6.48 6.49 6.50 6.51 

None None 0.997 0.996 0.997 0.999 0.997 

200. None 1.046 1.043 1.046 1.043 1.048 

100. None 1.199 1.212 1.090 1.198 1.129 

50. None 1.208 1.207 1.355 1.132 1.206 

25. None 1.220 1.257 0.0 1.195 1.289 

None 1. 1.000 0.997 0.998 0.999 0.998 

200. 1. 1.049 1.043 1.051 1.040 1.044 

100. 1. 1.129 1.246 1.109 1.124 1.162 

50. 1. 1.154 1.199 1.197 1.115 1.143 

25. 1. 1.236 1.261 0.0 1.290 1.333 

None 2. 0.998 0.999 1.000 1.000 0.998 

200. 2. 1.055 1.044 1.051 1.050 1.053 

100. 2. 1.131 1.169 1.206 1.111 1.172 

50. 2. 1.212 1.303 1.214 1.167 1.282 

25. 2. 1.170 1.155 1.402 1.434 1.214 

None 3. 0.998 0.999 0.997 0.998 1.001 

200. 3. 1.038 1.041 1.034 1.042 1.040 

100. 3. 1.145 1.188 1.182 1.137 1.174 

50. 3. 1.184 1.211 1.233 1.278 1.452 

25. 3. 1.168 1.257 1.214 1.237 1.316 

None 4. 1.003 1.002 1.001 1.000 0.998 

200. 4. 1.041 1.048 1.043 1.036 1.043 

100. 4. 1.126 1.139 1.134 1.118 1.151 

50. 4. 1.155 1.167 1.167 1.297 1.311 

25. 4. 1.273 1.328 1.230 1.276 1.330 
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Table B.7    Included angle standard deviations of various distributions of RISO training 
data 

LP cut-off 
Freq. (Hz) 

Subsample 
Pts. Skipped 

Raw 
Data 

Vel. Pruned Hem. Pruned 
@ 86.5 deg 

Coll. Pruned 
@ 0.05 N @ 0.05 m/s @ 0.1 m/s 

Figure Number =$■ 6.52 6.53 6.54 6.55 6.56 

None None 0.162 0.170 0.169 0.159 0.105 

200. None 1.137 1.112 0.915 1.310 1.105 

100. None 8.400 3.010 1.321 9.784 8.523 

50. None 8.019 3.560 1.318 9.516 8.198 

25. None 11.204 3.150 0.517 13.275 11.471 

None 1. 0.081 0.074 0.072 0.052 0.102 

200. 1. 0.998 0.990 1.001 1.151 0.993 

100. 1. 8.686 2.896 1.241 10.106 8.884 

50. 1. 8.283 3.519 1.271 9.841 8.469 

25. 1. 11.285 3.055 0.588 13.370 11.559 

None 2. 0.072 0.083 0.083 0.094 0.107 

200. 2. 1.025 0.962 0.970 1.182 0.962 

100. 2. 8.977 2.628 1.390 10.445 9.192 

50. 2. 7.819 3.432 1.210 9.293 8.002 

25. 2. 11.226 3.145 0.393 13.307 11.505 

None 3. 0.111 0.109 0.109 0.086 0.104 

200. 3. 1.037 1.028 1.037 1.196 1.032 

100. 3. 7.873 3.184 1.273 9.162 8.061 

50. 3. 7.600 3.167 1.104 9.023 7.777 

25. 3. 10.767 3.018 0.685 12.774 11.040 

None 4. 0.117 0.117 0.117 0.093 0.106 

200. 4. 1.672 1.684 0.903 1.949 1.684 

100. 4. 7.612 3.046 1.326 8.868 7.806 

50. 4. . 7.154 2.873 1.350 8.498 7.327 

25. 4. 10.683 3.076 0.459 12.694 10.943 
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Table B.8    Matrix structural similarity indexes, Ts, of Aa' extracted from ANN controllers 
trained on various distributions of RISO training data 

LP cut-off 
Freq. (Hz) 

Subsample 
Pts. Skipped 

Vel. Pruned 
@ 0.05 m/s 

Hem. Pruned 
@ 86.5 deg 

Coll. Pruned 
@ 0.05 N 

Figure Number => 6.57 6.60 6.63 

None None 0.0016 0.0000 0.0001 

200 None 0.0000 0.0000 0.0000 

100 None 0.0000 0.0000 0.0000 

50 None 0.0000 0.0000 0.0000 

25 None 0.0000 0.0003 0.0001 

None 0.0003 0.0000 0.0000 

200 0.0000 0.0000 0.0000 

100 0.0000 0.0000 0.0000 

50 0.0000 0.0002 0.0001 

25 0.0000 0.0008 0.0003 

None 2 0.0007 0.0001 0.0001 

200 2 0.0002 0.0002 0.0002 

100 2 0.0001 0.0000 0.0000 

50 2 0.0000 0.0003 0.0001 

25 2 0.0000 0.0028 0.0008 

None 3 0.0013 0.0000 0.0000 

200 3 0.0003 0.0004 0.0003 

100 3 0.0000 0.0001 0.0001 

50 3 0.0000 0.0006 0.0002 

25 3 0.0000 0.0042 0.0018 

None 4 0.0102 0.0009 0.0011 

200 4 0.0004 0.0005 0.0004 

100 4 0.0001 0.0001 0.0001 

50 4 0.0000 0.0006 0.0002 

25 4 0.0000 0.0066 0.0018 
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Table B.9    Matrix gain similarity indexes, Tg, of Aj extracted from ANN controllers 
trained on various distributions of RISO training data 

LP cut-off 
Freq. (Hz) 

Subsample 
Pts. Skipped 

Vel. Pruned 
@ 0.05 m/s 

Hem. Pruned 
@ 86.5 deg 

Coll. Pruned 
@ 0.05 N 

Figure Number =>• 6.58 6.61 6.64 

None None 3.9395 3.9578 3.9542 

200 None 3.9859 3.9839 3.9859 

100 None 3.9929 3.9905 3.9924 

50 None 3.9935 3.9916 3.9928 

25 None 3.9946 3.9918 3.9932 

None 1 3.9416 3.9550 3.9513 

200 1 3.9857 3.9837 3.9857 

100 1 3.9928 3.9903 3.9922 

50 1 3.9934 3.9911 3.9926 

25 1 3.9944 3.9912 3.9927 

None 2 3.9405 3.9568 3.9524 

200 2 3.9854 3.9837 3.9855 

100 2 3.9929 3.9903 3.9923 

50 2 3.9934 3.9911 3.9926 

25 2 3.9943 3.9906 3.9924 

None 3 3.9401 3.9576 3.9535 

200 3 3.9863 3.9845 3.9863 

100 3 3.9926 3.9901 3.9922 

50 3 3.9935 3.9907 3.9923 

25 3 3.9942 3.9898 3.9920 

None 4 3.9553 3.9556 3.9528 

200 4 3.9857 3.9836 3.9856 
100 4 3.9926 3.9899 3.9922 
50 4 3.9934 3.9906 3.9922 
25 4 3.9941 3.9891 3.9919 
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Table B.10    Matrix ratio similarity indexes, Tr, of Aa' extracted from ANN controllers 
trained on various distributions of RISO training data 

LP cut-off 
Freq. (Hz) 

Subsample 
Pts. Skipped 

Vel. Pruned 
@ 0.05 m/s 

Hem. Pruned 
@ 86.5 deg 

Coll. Pruned 
@ 0.05 N 

Figure Number =>• 6.59 6.62 6.65 

None None 8.9437 9.2398 9.2373 

200 None 9.0715 9.0830 9.0753 

100 None 8.8768 9.0335 8.8514 

50 None 8.8115 8.7052 8.7759 

25 None 8.8618 8.6438 8.7068 

None 1 9.0180 9.2395 9.2392 

200 1 9.0553 9.0698 9.0561 

100 1 8.8758 9.0316 8.8511 

50 1 8.8217 8.7628 8.8046 

25 1 8.8659 8.7567 8.7574 

None 2 9.0018 9.2317 9.2274 

200 2 9.0205 9.0351 9.0175 

100 2 8.8138 9.0106 8.8048 

50 2 8.8182 8.7799 8.8154 

25 2 8.8481 8.8458 8.8433 

None 3 8.9835 9.2347 9.2299 

200 3 9.0189 9.0405 9.0128 

100 3 8.8115 8.9977 8.7680 

50 3 8.8028 8.8016 8.8205 

25 3 8.7791 8.9110 8.8940 

None 4 9.1936 9.2578 9.2575 

200 4 9.0177 9.0404 9.0138 

100 4 8.7442 8.9603 .    8.7323 

50 4 8.7485 8.7859 8.8051 

25 4 8.7861 8.9535 8.9088 
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Table B.ll    Overall AJ extracted from each of the PUMA DIDO raw training data files 
using the LSMF interrogation technique 

Demo. No. A: 

1 
-0.00057 -0.00030 -0.00082 " 

0.00023 -0.00005 -0.00004 

-0.00209  0.00136  0.00224 

2 

0.00044  0.00015 -0.00725 " 

-0.00011 -0.00002  0.00105 

0.00037 -0.00086  0.03444 

3 
0.00007 -0.00029 -0.00392 ' 

0.00089 -0.00003  0.00072 

-0.00766  0.00147  0.00985 

4 
0.00103  0.00068 -0.00344 " 

-0.00018 -0.00010  0.00065 

-0.00263 -0.00286  0.02196 

5 
" -0.00266 0.00008 -0.00185 " 
-0.00046 0.00012 -0.00043 

0.00665 0.00043 -0.01454 

6 
0.00106  0.00021 -0.00655 " 

-0.00017 -0.00003  0.00104 

-0.00351 -0.00069  0.02422 

7 
0.00317 -0.00026  0.00496 " 

0.00054 -0.00006  0.00095 

-0.01561  0.00136 -0.02451 

8 
' -0.00013  0.00018 -0.00743 " 

0.00000 -0.00002  0.00119 

0.00470 -0.00093  0.04162 

9 
" 0.00100 -0.00028 -0.00414 " 

0.00005 -0.00004 -0.00093 

0.00359  0.00126  0.03123 

- 

10 
0.00032  0.00009 -0.00426 " 

-0.00005 -0.00001  0.00077 

0.00025 -0.00053  0.02483 
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Table B. 12    Overall Aa' extracted from each of the PLIMMS DIDO training data files using 
the LSMF interrogation technique 

Demo. No. A ' 

1 

' -0.00135  0.00005  0.00142 " 

0.00736 -0.00027 -0.00980 

0.15067 -0.00627 -0.16557 

2 

" -0.00369  0.00008  0.00769 " 

-0.00319 -0.00001  0.00269 

0.10864 -0.00047 -0.11291 

3 
" -0.00518  0.00015  0.01520 " 

0.01120 -0.00035 -0.02568 

0.15823 -0.00544 -0.26036 

4 

0.00225  0.00011 -0.00840 ' 

-0.00964 -0.00047  0.02196 

0.13838  0.00707 -0.20568 

5 

" -0.00989  0.00039  0.02243 ' 

0.02134 -0.00100 -0.04684 

0.41555 -0.02037 -0.83286 

6 
' -0.00061 -0.00005  0.00159 " 

-0.00416 -0.00033  0.00639 
0.12793  0.00984 -0.20883 

7 
" 0.00072 -0.00007 -0.00506 " 

0.00215  0.00006  0.00284 

0.04073 -0.00025  0.05430 

8 

0.00116  0.00004 -0.00445 " 

-0.00487 -0.00017  0.01092 

0.10292  0.00274 -0.13587 

9 
' -0.00080  0.00002  0.00213 " 

0.00604 -0.00014 -0.01278 

0.11712 -0.00281 -0.22897 

10 
0.00054  0.00012 -0.00473 " 

-0.00219 -0.00017  0.00435 

0.04856  0.00193 -0.02489 
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Table B. 13   Matrix similarity index data for PUMA DIDO training data files 

Config. 
Code 

Demo. 
Number 

Structural 
Index (Ts) 

Gain 
Index (Tg) 

Sign 
Index (Y±) 

Ratio 
Index (Tr) 

Figure > [umber => 6.76(a) 6.76(b) 6.76(c) 6.76(d) 

N/A 1 7.385e-06 3.911e-02 2 5.746e+04 

N/A 2 5.482e-05 2.741e-02 2 2.727e+06 

N/A 3 7.754e-05 3.616e-02 2 4.350e+02 

N/A 4 2.891e-05 3.170e-02 2 3.787e+03 

N/A 5 5.529e-05 4.603e-02 4 2.699e+04 

N/A 6 5.797e-05 3.090e-02 2 3.767e+05 

N/A 7 2.814e-04 5.041e-02 6 2.316e+04 

N/A 8 7.970e-05 2.508e-02 2 2.041e+06 

N/A 9 3.358e-05 2.848e-02 2 1.995e+05 

N/A 10 1.922e-05 3.068e-02 2 2.750e+06 

Table B. 14   Matrix similarity index data for PLIMMS DIDO training data files 

Config. 
Code 

Demo. 
Number 

Structural 
Index (T3) 

Gain 
Index (Tg) 

Sign 
Index (T±) 

Ratio 
Index (Tr) 

Figure Number =$■ 6.79(a) 6.79(b) 6.79(c) 6.79(d) 

N/A 1 2.289e-02 1.336e-01 6 1.115e+05 

N/A 2 1.189e-02 9.791e-02 6 2.218e+08 

N/A 3 2.611e-02 2.119e-01 6 2.035e+05 

N/A 4 1.985e-02 1.646e-01 6 2.334e+04 

N/A 5 1.763e-01 1.067e+00 6 3.006e+05 

N/A 6 1.652e-02 1.671e-01 6 1.254e+05 

N/A 7 1.698e-03 2.123e-02 0 3.338e+05 

N/A 8 1.076e-02 1.128e-01 6 2.648e+05 

N/A 9 1.392e-02 1.840e-01 6 1.814e+06 

N/A 10 2.409e-03 5.058e-02 6 1.957e+04 
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Table B. 15   Mean values for PLIMMS DIDO training data files 
Config. |    Demo. Fx Fy Mz 

Figure Number => 6.88 6.89 6.90 

1 0.41511 -23.91887 0.26592 

2 -1.13065 -22.29583 -0.19077 

3 0.90491 -31.77127 0.60192 

4 -0.20284 -23.78240 -0.38983 

5 -0.15275 -23.13363 0.34250 

6 -0.16093 -23.00774 -0.64685 

7 2.43631 -25.26437 0.75924 

8 -1.27663 -23.74945 -0.43093 

9 1.74000 -30.15075 0.74141 

10 -2.83249 -26.65357 -0.86312 

2 1 0.59802 -34.01005 0.38317 

2 2 -1.65727 -33.60800 -0.27252 

2 3 1.08509 -38.24192 0.72456 

2 4 -0.26466 -37.08613 -0.59360 

2 5 -0.28003 -38.45847 0.56232 

2 6 -0.22083 -32.23373 -0.90160 

2 7 3.26566 -33.94432 1.01528 

2 8 -1.87447 -34.49514 -0.62658 

2 9 2.22526 -39.12806 0.95782 

2 10 -3.63958 -34.30371 -1.10854 

3 1 -0.26479 -28.40546 0.10227 

3 2 -1.29116 -29.11979 -0.20550 

3 3 0.54646 -38.95196 0.58512 

3 4 -0.04887 -28.41571 -0.43518 

3 5 -0.39217 -24.39460 0.28984 

3 6 0.12399 -28.84749 -0.71108 

3 7 2.23139 -27.37019 0.75396 

3 8 -1.33185 -34.54142 -0.57732 

3 9 1.32059 -34.70308 0.69860 

3 10 -2.82659 -31.74863 -1.01372 

4 1 0.51298 -29.04021 0.33549 

4 2 -1.59568 -28.21244 -0.29492 

4 3 1.14438 -37.81334 0.75337 

4 4 -0.33245 -28.64749 -0.50662 

4 5 -0.11132 -25.72684 0.40784 

4 6 -0.19389 -28.96230 -0.80904 

4 7 2.86399 -30.13680 0.90176 

4 8 -1.92670 -32.68736 -0.64270 

4 9 1.93027 -34.25500 0.81459 

4 10 -3.73715 -32.09216 -1.07557 

5 1 0.41506 -23.91890 0.26590 

5 2 -1.13059 -22.29588 -0.19075 

5 3 0.90485 -31.77125 0.60191 

5 4 -0.20289 -23.78226 -0.38984 

5 5 -0.15280 -23.13343 0.34248 

5 6 -0.16088 -23.00774 -0.64683 

5 7 2.43629 -25.26432 0.75924 

5 8 -1.27658 -23.74955 -0.43092 

5 9 1.73999 -30.15069 0.74141 

5 10 -2.83286 -26.65369 -0.86328 
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Table B.15   Mean values for PLIMMS DIDO training data files (continued) 
Config. |    Demo. Fx Fy Mz 

Figure Number =$> 6.88 6.89 6.90 

6 1 0.41516 -23.91957 0.26591 

6 2 -1.13005 -22.29626 -0.19050 

6 3 0.90486 -31.77098 0.60192 

6 4 -0.20312 -23.78230 -0.38987 

6 5 -0.15260 -23.13105 0.34244 

6 6 -0.16102 -23.00813 -0.64686 

6 7 2.43709 -25.26409 0.75950 

6 8 -1.27602 -23.75022 -0.43076 

6 9 1.74044 -30.15007 0.74157 

6 10 -2.83193 -26.65486 -0.86288 

7 1 1.53921 -19.34545 0.59258 

7 2 -1.41774 -14.41531 -0.35631 

7 3 1.80048 -29.75069 0.85656 

7 4 -0.89790 -20.76633 -0.60062 

7 5 0.27738 -20.69675 0.46187 

7 6 -0.71260 -22.05044 -0.79852 

7 7 2.94967 -24.88305 0.87424 

7 8 -1.84113 -19.41758 -0.53055 

7 9 2.77545 -28.55056 1.01424 

7 10 -3.40058 -27.63096 -0.92933 

8 1 -0.31903 -36.43895 0.13540 

8 2 -1.57819 -36.45421 -0.24682 

8 3 0.58999 -42.08617 0.63190 

8 4 -0.04836 -39.41137 -0.59491 

8 5 -0.63347 -39.83915 0.46793 

8 6 0.15173 -33.48775 -0.82200 

8 7 2.74584 -33.85761 0.92673 

8 8 -1.52687 -39.60338 -0.66148 

8 9 1.61940 -43.52693 0.87076 

8 10 -3.30047 -37.16550 -1.18462 

9 1 0.64047 -35.41785 0.41224 

9 2 -1.93346 -34.70420 -0.35417 

9 3 1.20972 -39.98307 0.79638 

9 4 -0.41706 -37.56630 -0.65702 

9 5 -0.16442 -39.11510 0.61528 

9 6 -0.21725 -33.37898 -0.92938 
9 7 3.31867 -35.03005 1.04404 

9 8 -2.15755 -36.54513 -0.71877 

9 9 2.25847 -40.53931 0.96035 

9 10 -4.11287 -35.36126 -1.18391 

10 1 0.59779 -34.00834 0.38308 
10 2 -1.65716 -33.60705 -0.27248 
10 3 1.08499 -38.24069 0.72452 

10 4 -0.26442 -37.08355 -0.59353 
10 5 -0.28014 -38.45724 0.56228 

10 6 -0.22051 -32.23217 -0.90150 

10 7 3.26549 -33.94335 1.01525 
10 8 -1.87405 -34.49213 -0.62647 
10 9 2.22508 -39.12643 0.95777 
10 10 -3.63997 -34.30289 -1.10878 
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Table B. 15   Mean values for PLIMMS DIDO training data files (concluded) 
Conflg. |    Demo. Fx Fy Mz 

Figure Number =*■ 6.88 6.89 6.90 

11 i 0.59699 -34.00050 0.38283 

11 2 -1.65566 -33.60176 -0.27193 

11 3 1.08489 -38.23153 0.72431 

11 4 -0.26329 -37.07680 -0.59321 

11 5 -0.28114 -38.43648 0.56142 

11 6 -0.21814 -32.21921 -0.90090 

11 7 3.26477 -33.92800 1.01512 

11 8 -1.87131 -34.48117 -0.62584 

11 9 2.22458 -39.12154 0.95778 

11 10 -3.63792 -34.30177 -1.10825 

12 1 2.46812 -30.93132 0.95416 

12 2 -2.54148 -26.58026 -0.63502 

12 3 2.20582 -36.55795 1.05274 

12 4 -1.45613 -34.89838 -0.99354 

12 5 0.46441 -36.50570 0.80799 

12 6 -1.04094 -32.18103 -1.16179 

12 7 4.28875 -36.25613 1.26795 

12 8 -2.88041 -30.05200 -0.82339 

12 9 3.49099 -36.23822 1.28390 

12 10 -4.03741 -32.78540 -1.10218 

13 1 1.74056 -20.77117 0.66804 

13 2 -1.48372 -14.76277 -0.37369 

13 3 1.85057 -29.50552 0.86942 

13 4 -0.88980 -22.03649 -0.62205 

13 5 0.44153 -22.55467 0.56118 

13 6 -0.87821 -20.97415 -0.82756 

13 7 3.02808 -25.31989 0.86814 

13 8 -1.81273 -19.03978 -0.52125 

13 9 2.87309 -30.48693 1.03728 

13 10 -3.69419 -28.89049 -0.98126 

14 1 2.71362 -32.26109 1.04398 

14 2 -2.62367 -26.82959 -0.65765 

14 3 2.31684 -37.04186 1.09192 

14 4 -1.43244 -36.55409 -1.01699 
14 5 0.71072 -37.26303 0.92286 

14 6 -1.33547 -31.86502 -1.25342 
14 7 4.38530 -36.70755 1.25319 
14 8 -2.86427 -29.75610 -0.81681 

14 9 3.42328 -36.57929 1.24239 

LiL 10 -4.44194 -34.71557 -1.17878 
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Table B. 16   Matrix similarity index data for PLIMMS DIDO training data files 
Config. 1 

Code | 

Demo. 

Number 

Structural 

Index (T 3) 

Gain 

Index (Tg) 

Sign 

Index (T±) 

Ratio 

Index (Tr) 

Figure Number => 6.80 6.81 6.82 6.83 

1 0.023 40066 6 144632 

2 0.012 40045 6 201076800 

3 0.026 40104 6 69235 

4 0.020 40082 6 315299 

5 0.176 40334 6 27558 

6 0.017 40084 6 129703 

7 0.002 39978 0 18631 

8 0.011 40054 6 39892 

9 0.014 40092 6 400311 

10 0.002 40010 6 729634 

2 1 0.023 40066 6 128770 

2 2 0.011 40042 4 23486470 

2 3 0.026 40103 6 54661 

2 4 0.020 40083 6 284697 

2 5 0.179 40337 6 28694 

2 6 0.017 40084 6 174542 

2 7 0.002 39979 0 109435 

2 8 0.011 40055 6 34884 

2 9 0.014 40092 6 516554 

2 10 0.002 40010 6 730552 

3 1 0.017 40054 6 15890210 

3 2 0.011 40044 4 3751 

3 3 0.022 40098 6 7021267 

3 4 0.024 40094 6 8839521 

3 5 0.103 40237 4 332844 

3 6 0.022 40095 6 4084057 

3 7 0.002 39984 0 631947 

3 8 0.013 40065 6 139824400 

3 9 0.010 40077 6 12783970 

3 10 0.003 40024 4 2943 

4 1 0.023 40061 6 108674 

4 2 0.012 40042 4 44292 

4 3 0.026 40102 6 109 

4 4 0.021 40085 6 223123 

4 5 0.152 40295 6 177192 

4 6 0.019 40085 6 14518 

4 7 0.002 39982 0 226728 

4 8 0.011 40052 6 8525 

4 9 0.014 40090 6 486786 

4 10 0.002 40013 6 131527 

5 1 " 0.021 40051 6 254751 

5 2 0.012 40044 6 203851600 

5 3 0.023 40090 6 139773 

5 4 0.019 40074 6 355185 

5 5 0.171 40321 6 46237 

5 6 0.016 40078 6 123921 

5 7 0.002 39970 0 7288 

5 8 0.010 40047 6 81084 

5 9 0.014 40088 6 314833 

5 10 0.002 40001 6 966912 

B-18 



Table B. 16   Matrix similarity index data for DIDO training data files (continued) 
Config. 

Code 

Demo. 

Number 

Structural 

Index (T s) 

Gain 

Index (T9) 

Sign 

Index (T±) 

Ratio 

Index (Tr) 

Figure Number ==> 6.80 6.81 6.82 6.83 

6 1 0.018 40031 6 479470 

6 2 0.011 40042 6 831231800 

6 3 0.018 40059 6 318147 

6 4 0.017 40059 6 424839 

6 5 0.160 40294 6 64698 

6 6 0.016 40070 6 123001 

6 7 0.001 39947 0 7030 

6 8 0.010 40035 6 142178 

6 9 0.013 40081 6 193570 

6 10 0.002 39982 2 119159 

7 1 0.019 40058 6 159618 

7 2 0.007 40020 6 614347 

7 3 0.023 40088 6 120399 

7 4 0.020 40076 6 465965 

7 5 0.159 40307 6 66366 

7 6 0.017 40097 6 162819 

7 7 0.002 39977 0 629040 

7 8 0.010 40039 6 441468 

7 9 0.013 40073 6 22615760 

7 10 0.002 40000 6 993200 

8 1 0.017 40058 6 2982878 

8 2 0.011 40044 4 183 

8 3 0.022 40098 6 6729135 

8 4 0.025 40097 6 1578862 

8 5 0.124 40266 6 202372 

8 6 0.022 40096 6 1543526 

8 7 0.002 39984 0 595311 

8 8 0.013 40065 6 143805900 

8 9 0.011 40078 6 21272100 

8 10 0.003 40024 4 4019 

9 1 0.024 40062 6 114428 

9 2 0.012 40043 4 52350 

9 3 0.026 40102 6 83 

9 4 0.022 40087 6 240956 

9 5 0.169 40313 6 39562 

9 6 0.019 40086 6 35577 

9 7 0.002 39983 0 104906 

9 8 0.011 40052 6 10064 

9 9 0.014 40090 6 539434 

9 10 0.002 40013 6 86590 

10 1 0.020 40050 6 237524 

10 2 0.011 40040 4 20113810 

10 3 0.023 40089 6 122843 

10 4 0.019 40074 6 323543 

10 5 0.173 40324 6 49866 

10 6 0.016 40079 6 170925 

10 7 0.002 39970 0 609751 

10 8 0.010 40047 6 74724 

10 9 0.014 40088 6 440862 

10 10 0.002 40001 6 968060 
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Table B.16   Matrix similarity index data for DIDO training data files (concluded) 
Conflg. 

Code 

Demo. 

Number 

Structural 

Index (Tj) 

Gain 

Index (T9) 

Sign 

Index (T±) 

Ratio 

Index (TV) 

Figure Number =>• 6.80 6.81 6.82 6.83 

11 1 0.017 40030 6 467674 

11 2 0.011 40038 4 12790180 

11 3 0.017 40058 6 301678 

11 4 0.017 40059 6 389109 

11 5 0.162 40297 6 72904 

11 6 0.016 40071 6 164792 

11 7 0.001 39948 0 373805 

11 8 0.010 40035 6 134994 

11 9 0.013 40082 6 330879 

11 10 0.002 39982 2 155536 

12 1 0.019 40058 6 113142 

12 2 0.006 40015 6 684125 

12 3 0.022 40086 6 104337 

12 4 0.020 40077 6 468748 

12 5 0.160 40308 6 71357 

12 6 0.018 40098 6 199204 

12 7 0.002 39978 0 573320 

12 8 0.010 40039 6 411195 

12 9 0.013 40073 6 9181656 

12 10 0.002 40000 6 992373 

13 1 0.019 40064 6 199703 

13 2 0.007 40019 6 505815 

13 3 0.019 40071 6 215178 

13 4 0.021 40088 6 361039 

13 5 0.158 40301 6 90919 

13 6 0.029 39989 0 983908 

13 7 0.001 39967 0 270716 

13 8 0.009 40039 6 357455 

13 9 0.012 40080 6 240272 

13 10 0.002 39995 2 880085 

14 1 0.019 40063 6 154392 

14 2 0.007 40015 6 590524 

14 3 0.018 40069 6 199106 

14 4 0.021 40087 6 370708 

14 5 0.160 40304 6 100159 

14 6 0.022 40011 6 938468 

14 7 0.001 39968 0 22642390 

14 8 0.009 40039 6 319979 

14 9 0.012 40079 6 162615 

14 10 0.002 39995 2 881359 
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Appendix C. Supplemental Data Plots 

This appendix contains a catalog of supplemental data plots. Pages C-2 through 

C-ll depict the ten sets of DIDO data collected on the PUMA manipulator. Pages C-12 

through C-21 depict the ten sets of DIDO collected on the PLIMMS. Pages C-22 through 

C-31 depict comparisons between the output vectors ,V, of the PLIMMS DIDO data shown 

in Figures C.ll through C.20 and the corresponding computed DISO outputs for the same 

input vectors. 
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Figured    Demonstration number 1 of DIDO training data collected on the PUMA 
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Figure C.2    Demonstration number 2 of DIDO training data collected on the PUMA 
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Figure C.3    Demonstration number 3 of DIDO training data collected on the PUMA 
manipulator 
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Figure C.4    Demonstration number 4 of DIDO training data collected on the PUMA 
manipulator 
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Figure C.5    Demonstration number 5 of DIDO training data collected on the PUMA 
manipulator 
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Figure C.6    Demonstration number 6 of DIDO training data collected on the PUMA 
manipulator 
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Figure C.7    Demonstration number 7 of DIDO training data collected on the PUMA 
manipulator 
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Figure C.8    Demonstration number 8 of DIDO training data collected on the PUMA 
manipulator 
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Figure C.9    Demonstration number 9 of DIDO training data collected on the PUMA 
manipulator 
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Figure CIO    Demonstration number 10 of DIDO training data collected on the PUMA 
manipulator 
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Figure C.ll   Demonstration number 1 of DIDO training data collected on the PLIMMS 

C-12 



Figure C. 12   Demonstration number 2 of DIDO training data collected on the PLIMMS 
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Figure C. 13   Demonstration number 3 of DIDO training data collected on the PLIMMS 

C-14 



0.08 

50 100 150 
Samples 

(d) 

200 

50 100 150 200 
Samples 

(b) 

50 100 150 
Samples 

(e) 

2.5 

2 

1.5 

1 

0.5 

0 

-0.5 

-1 

-1.5 

-2 

-2.5 
50 

■                f\ 

f^ 

' i 
100 150 

Samples 
(c) 

200 50 100 150 
Samples 

(f) 

Figure C. 14   Demonstration number 4 of DIDO training data collected on the PLIMMS 
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Figure C.15   Demonstration number 5 of DIDO training data collected on the PLIMMS 
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Figure C.16   Demonstration number 6 of DIDO training data collected on the PLIMMS 
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Figure C. 17   Demonstration number 7 of DIDO training data collected on the PLIMMS 
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Figure C. 18   Demonstration number 8 of DIDO training data collected on the PLIMMS 
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Figure C. 19   Demonstration number 9 of DIDO training data collected on the PLIMMS 
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Figure C.20   Demonstration number 10 of DIDO training data collected on the PLIMMS 
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the PLIMMS DIDO training data (ref. Figure C.ll) and their corresponding 
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Figure C.22 Comparison of (a) Vx, (b) Vy, and (c) wz outputs for demonstration number 2 of 
the PLIMMS DIDO training data (ref. Figure C. 12) and their corresponding 
DISO outputs 
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Figure C.24 Comparison of (a) Vx, (b) Vy, and (c) u>2 outputs for demonstration number 4 of 
the PLIMMS DIDO training data (ref. Figure C.14) and their corresponding 
DISO outputs 

C-25 



80        100 
Samples 

(a) 

.s 
CO 
60 

5 

4 

3 

2 

1 

0 

-1 

-2 

-3 

-4 r 

-5 

80 100 
Samples 

(b) 

First Impact 

0 20 40 60 80 100 
Samples 

(c) 
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Figure C.26 Comparison of (a) Vx, (b) Vy, and (c) u>z outputs for demonstration number 6 of 
the PLIMMS DIDO training data (ref. Figure C.16) and their corresponding 
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Figure C.28 Comparison of (a) Vs, (b) Vy, and (c) uz outputs for demonstration number 8 of 
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Appendix D.  Untried Processing Options. 

This Appendix describes three data processing options which were conceived but not 

investigated and evaluated within the scope of the present work. They are items for future 

work. 

D.l   Time Shifting. 

Time shifting is used to compensate for processing delay between measured force 

and reaction-commanded velocity in the collected training data. For example, if the human 

demonstrator takes one second to react to a feature in the force time history, then a processing 

delay of one second exists. To capture the causal relationship in the data, the sampling 

period must be equal to or less than the processing delay. When presenting the measured 

pairs of desired input-output training vectors to a static ANN, one must then correct for 

the processing time delay in order for the ANN to extract the desired command mapping 

relationship. See Section 5.6.2 for a more detailed explanation of the causal time delay. 

To correct for processing time delay, the raw measured data set is time shifted by an 

amount equal to the processing delay of the controller in place during the collection of the 

data. For a computed accommodation control law (as is the case when collecting RISO or 

DISO data), the processing time delay is clearly constant and a multiple of (possibly equal 

to one) the servo rate for the controller. 

For data collected by observing a human controller, the processing time delay may not 

be constant, as the alertness and attention may vary. In this case, the processing time delay 

cannot be corrected by time shifting. As an approximation, however, it may be possible to 

alleviate the effect of processing time delay in the training data samples if the variation of 

the human processing time delay is small as compared to the sampling rate for the collected 

data. 

D.2   Time Delaying. 

Since it is possible that the trends in the captured force/velocity data are important to 

discerning the task, the ANN may be presented with several previous time input force and/or 
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Figure D. 1    Illustration of time-delayed force vectors used in the input feature of the ANN. 

output velocity vectors to incorporate the context of time as input features. Such an ANN 

is called a time-delayed ANN (TDANN) [32, 52, 53]. In this case, the current components 

of force and some number, N, of previous forces are included in the input feature vector as 

shown in Figure D. 1. 

Other than appending the previous force vectors together for a larger input feature 

vector, the data vectors are not modified. Note that Figure D.l illustrates only applying 

time-delayed forces to the input, while the input feature vector can also include previous 

velocity output vectors. In such a case, the ANN adopts a recurrent architecture which is 

discussed in [26]. 

D.3   Angle Features. 

The angle features option can be considered an extension of the magnitude normaliza- 

tion. If the raw vectors have been magnitude normalized, they no longer contain magnitude 

information, so the three components can be thought of as the endpoint coordinates of a 

unit-length vector in three-space. This unit-length vector can be described by two indepen- 

dent parameters which are the angles formed between the vector and the coordinate axes. 
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Figure D.2    Vector diagram for derivation of angle feature parameters <pf and Xf from 
normalized cartesian vector components. 

If the raw vectors have not been normalized, the three-space vector will not be unit-length; 

the resulting angle features are unaffected by the normalization, so the results are the same 

either way. These desired angles are depicted in Figure D.2 as <pf and Xf. 

Given a vector F which has components (fx, fy, mz), a new vector, Fa> composed of 

angle features (<pf, \f) can be derived from the following expressions: 

A/ 

=   atan2 

=   atan 
m, 

V/y2 + /,2 

(D.l) 

(D.2) 

One should note that if the vector F has been normalized, then Xf is simply asin(m^). The 

range of <pf will be (o < <pf < 2TT), while the range of Xf will be (^ < A; < |). To prepare 

data for training, the V must also be converted using Eqs (D. 1) and (D.2) to get (</?„, Xv). 

When the ANN controller is implemented after being trained on angle features, its 

computed output, V, is composed of (<pv, Xv) and must be converted back to a cartesian vector, 

Vc, having components {\, \, 0p }. To do that conversion, the following relationships are 
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used: 

xP = cos ipv cos A„ 

yp = sin<^ cosA„ 

Op   =   sin A„ 

(D.3) 

(D.4) 

(D.5) 
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