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Abstract 

The general mixed-norm optimal control problem for discrete-time linear systems is 

considered. The approach taken is to minimize the H2 norm of a transfer function, while 

constraining the l\ and/or H.^, norms of dissimilar transfer functions associated with the 

same underlying system. Analytical results for the optimal (free-order) problem are pre- 

sented for both the H2/i\ and H2/H(X> problems. Two numerical methods are presented 

for solving the free-order H2/t\ control problem, and the second method is extended to 

accommodate an H^ constraint. The free-order methods yield convex optimization prob- 

lems with unique optimal solutions, but the high controller order makes them impractical 

for anything but a limits-of-performance type analysis. In order to obtain implementable 

controllers, a fixed-order method is developed for solving the H2/£i/Hoc problem with an 

arbitrary number and variety of constraints. The controller order is fixed to that of an 

initial stabilizing controller. The resulting optimization problem is non-convex, but can be 

solved efficiently using gradient-based nonlinear programming methods. The fixed-order 

numerical method is demonstrated using several SISO and MIMO examples. The discrete- 

time, fixed-order method is then combined with existing continuous-time algorithms to 

provide a single MATLAB toolbox for synthesis of mixed-norm controllers. 
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Optimal Mixed-Norm Control Synthesis for 

Discrete-Time Linear Systems 

/.   Introduction 

1.1    Overview 

The primary requirement for almost every control system is that it must stabilize 

the plant for which it is designed. This objective is referred to as nominal stability, and 

it is guaranteed by virtually all modern control synthesis techniques. Further, the Youla 

parametrization [1] provides a convenient representation of all compensators which achieve 

nominal stability. Besides stability concerns, we typically have performance specifications 

which must be met. Whereas nominal stability is a clear-cut characteristic, nominal per- 

formance specifications are often in a form which cannot be applied directly to a given 

synthesis technique. For example, time domain specifications are often difficult to incorpo- 

rate into frequency domain synthesis techniques. Often the performance specifications are 

not representable as hard constraints; instead, they are expressed in terms such as "get as 

much of this characteristic as you can". This latter type of requirement often lends itself 

to optimal control methods whereby a performance measure is expressed as a functional, 

and the functional is minimized over all compensators providing nominal stability. 

Consider the linear system shown in Figure 1.1, where w is an exogenous input, and 

z is an output we wish to control. The requirements on the compensator, K, are that it 

stabilizes the closed loop system and provides for some measure of performance as defined 

by the control engineer. Linear Quadratic Gaussian (LQG) methods [2, 3], for example, 

take a stochastic approach by assuming all disturbances can be modeled as the outputs of 

shaping filters driven by zero-mean, white, Gaussian noise. They then combine a minimum 

error covariance state estimator (Kaiman filter) with a regulator designed to minimize a 

weighted sum of the squares of control usage and output signals. H2 optimization [4], 

which can be seen as a generalization of steady-state LQG, minimizes the energy of the 
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Figure 1.1    Feedback System 

output signals while still assuming white noise inputs. For cases where the inputs to the 

system are not modeled accurately as white noise, other techniques are required. The 

H^ methodology [4] allows us to minimize the energy of the output response to a worst 

case set of unknown but bounded energy inputs. H^, methods are often used for model 

matching and/or minimization of a weighted sensitivity function. The minimization of the 

maximum magnitude of the response to a worst case set of bounded magnitude inputs is 

termed tx optimization [5]. While LQG and H2 design methods date back to the 1960's, 

Hoc methods were developed in the 1980's, and £x theory and methodology (1986-present) 

is considered by most to be not yet fully mature. H2 and H^ are primarily frequency 

domain methods. The tx method, however, is inherently a time domain technique, and it 

is a natural setting for problems where tight tracking (terrain following) or hard control 

surface limits (positions and/or rates) are important performance measures. 

The nominal performance problem admits unknown disturbances, but it assumes the 

plant is precisely known. Realistically, this is never possible. Usually the plant model 

is a greatly simplified representation of a system which is generally nonlinear and/or of 

significantly higher dimension than our design model. Once plant uncertainties (or vari- 

ations with time) are admitted to the problem, our first concern must be whether or not 

closed-loop stability is preserved in the presence of admissible plant variations. This now 

becomes a robust stability problem. LQG/LTR was an attempt to provide stability margins 

without leaving the realm of H2 optimization. Generally, however, H2 has been shown to 

be ill equipped to handle robustness problems [6]. One way to consider the robust stability 
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Figure 1.2    Feedback System with Plant Uncertainty 

problem is to combine all allowable perturbations to the plant into a single unstructured 

perturbation, A, which interacts with the plant as shown in Figure 1.2. We will refer to 

the compensated plant (closed P-K loop) from d to e as Ted. Robust stability requires that 

K stabilize the plant for all allowable A. Under this concept, the Small Gain Theorem 

can be used to quantify robust stability. 

Theorem 1.1.1 (Small Gain Theorem) Let Ted 6 H^. Assume A G H^ is connected 

from e to d as shown in Figure 1.2.  Then the closed-loop system is internally stable if 

||TedA| oc   <   \\Tet <  1 (1.1) 

Proof:     See [7]. a 

A second version of the Small Gain Theorem which uses the tx norm instead of the H^ 

norm can be defined [5]. Clearly, progressively minimizing either the co-norm or 1-norm 

of Ted will make the system robustly stable to increasingly larger plant perturbations as 

quantified by the co-norm or 1-norm of A, respectively. This implies that either H^ or £x 

methods are applicable to the robust stability problem. Which of these methods is more 

applicable depends on whether the plant uncertainty is best modeled as having bounded 

energy or bounded magnitude. 

While the three methods mentioned above are by no means an exhaustive list of 

the design methods available to the controls engineer, among the three of them, a wide 
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variety of problems can be addressed. A realistic application, however, may require com- 

bined results from each of these methodologies. For instance, using an aircraft example, 

we are concerned with rejecting disturbances due to wind gusts which often are modeled 

as white noise inputs (via shaping filters). We are also interested in limiting the energy of 

certain outputs in response to inputs which are best described as having bounded energy, 

and tracking concerns dictate that we limit or minimize the maximum magnitude of cer- 

tain responses. Control surfaces have finite limits which must be taken into account, and 

guaranteed stability margins are typically required to meet handling quality specifications. 

Finally, the detrimental effects of plant uncertainty (from modeling approximations and 

time variations) must be minimized. The combination of all these different and often com- 

peting requirements suggests that a synthesis technique capable of combining the H2, -Boo 

and £i methodologies might be desirable. This is the motivation behind this dissertation. 

In general, the mixed-norm control problem can be viewed in terms of finding a 

desired point (or compensator) on a Pareto-optimal surface (or hypersurface), whereby 

the respective norms of the individual transfer functions define the axes of the space. 

Viewed in this context, any one of the norms could be used as an objective, with all others 

applied as constraints. By varying the constraints, you change your operating location on 

the surface. This dissertation will use the H2 norm as the objective function for several 

reasons. First, previous results by other researchers [8, 9] make this an attractive choice. 

Second, it is often easier to view robust stability, acceptable tracking error or actuator 

limits as constraints on the system, and these concerns will usually be addressed using 

Hoc or l\ constraints. Along this line, noise effects (which are best handled by H2) are 

typically something you wish to minimize, rather than constrain the value of. Finally, 

the free-order H2/i\ problem addressed in this dissertation is well suited to quadratic 

or sequential quadratic programming methods [10] if the H2 subproblem is used for the 

objective function. Thus, the problem to be addressed in this dissertation is: Find an 

internally stabilizing compensator K that achieves 

inf.    {||r,„||2   :   ||Ted|U < 7} (1.2) 
K stabilizing 
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where x = {1 or 00} and 7 is fixed a priori based on the desired level of robustness 

and/or nominal performance. There are a wide variety of methods available for solving 

this mathematical programming problem numerically. 

In addition to choosing an overall design method, a controls engineer often faces a 

decision on whether to work with continuous-time or discrete-time systems. While most 

physical systems to be controlled are continuous-time in nature, the majority of the con- 

trollers are implemented digitally. Historically, most engineers design in continuous-time 

and then discretize the resulting controller. The primary drawback with this approach is 

that the effects of sampling rate on performance cannot be investigated until the design is 

discretized. Also, while the transfer function co-norm is invariant under the bilinear trans- 

formation used to discretize a controller [11], the same cannot be said about the 2-norm 

or 1-norm. Lastly, there is no direct continuous-time analog to the present £1 synthesis 

method. An alternative approach to design allows the engineer to develop a discrete-time 

controller directly using a discretized version of the plant model. Although final simula- 

tions must still be run with the continuous-time plant, most of the stability concerns due 

to sampling rate are directly incorporated into the controller design. For these reasons, 

the approach used in this research is entirely discrete-time. Where appropriate, important 

differences between the continuous-time and discrete-time results will be highlighted, but 

the existing theory and results for continuous-time methods will not be presented. 

1.2    Review of Related Work 

While as yet there axe no published results combining all three norms (H2 , H^, 

and £1 ) into a single synthesis technique, several researchers have combined them in pairs 

(once again we primarily will be discussing results for discrete-time systems). The mixed 

-H2/-Ö00 problem has been very active since about 1989, and much of the work which was 

originally developed for continuous-time systems has been re-derived for discrete-time. 

Haddad, Bernstein and Mustafa [12] present a method whereby an upper bound to the 

transfer function 2-norm is minimized subject to a constraint on the oo-norm. Limitations 

of their results are that they only allow for one distinct set of outputs, and do not allow for 

dynamic measurement feedback. Also, there is no measure of how conservative the upper 
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bound is. Kaminer, Khargonekar and Rotea [13] address an R^jHoo problem with two sets 

of outputs but only one set of inputs, and they transform the problem into one of convex 

optimization. The objective function they use is still only an upper bound to the 2-norm; 

in fact, it is the same auxiliary functional used by [12]. The approach in [13] does allow for 

dynamic measurement feedback. Iglesias, Mustafa, and Glover [14, 15] solve the minimum 

entropy control problem, which also minimizes an upper bound to the 2-norm. In both of 

these papers, the authors assume one set of inputs and one set of outputs, which means 

that the co-norm constraint is on the same transfer function on which they to minimize 

the 2-norm. For the case where entropy is evaluated at the origin, this corresponds to the 

central H^ controller [14, 15]. 

All of the methods mentioned above result in a fixed order controller (order equal to 

that of the weighted plant) which minimizes an upper bound to the 2-norm. For continuous- 

time systems, Ridgely and Walker [8, 9] have developed a method which also results in a 

fixed-order controller, but the resulting controller order can be increased or decreased as 

a design option. The Ridgely/Walker approach also allows for two or more distinct sets of 

outputs and two or more distinct sets of inputs. Further, Walker extended the problem to 

include singular and multiple H^ constraints. Ly and Schomig[16] also addressed a very 

general #2/-Hoc. problem by casting the H^ constraints as a scalar function of symmet- 

ric matrix inequalities. As in Walker's method, Ly and Schomig's method is capable of 

finding reduced and/or increased order compensators with both singular and multiple H^ 

constraints. 

A significant finding of Walker's work is that the optimal mixed #2/-Hoc. solution over 

all compensators is non-rational or infinite order in at least one class of problems. Megretski 

[17] found a similar result for a more general #2/.Hoc. problem, and his work covers both the 

continuous-time and discrete-time cases. Sznaier [18, 19] presented a method for solving 

the discrete-time mixed if2/^oo control problem over arbitrary order compensators. While 

his method does not solve the problem exactly, a compensator (generally of very high order) 

can be found which meets the H^ constraint and minimizes the 2-norm to within arbitrary 

accuracy using a finite horizon approach. 
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Helton and Sideris [20] developed algorithms for the inclusion of time domain con- 

straints (response to a fixed input) in an H^, problem, and these algorithms are further 

developed and applied by Sideris and Rotstein [21, 22]. The time-domain constraints are 

imposed over a finite time, and a controller is found which minimizes the H^ cost over ar- 

bitrary order compensators. A problem which is somewhat equivalent to this is addressed 

by Sznaier [23]. Sznaier's problem is to minimize the magnitude of a specific response to 

a fixed input while constraining the infinity norm of some transfer function (lx /-Hoc )• 

The approach taken by Sznaier is similar to that of his mixed H2IH00 problem mentioned 

above. 

Relatively few results have been published which combine the £i jiorm in a mixed- 

norm problem. Dahleh and Diaz-Bobillo [5] present a method whereby a linear approxi- 

mation to an Hoc constraint is appended to an £x optimization problem, but it requires the 

.ffoo constraint to be on the same transfer function as is used for the £x problem. They also 

present ways in which time domain constraints such as overshoot, rise time and settling 

time can be added to the tx problem. Voulgaris [24] considered a limited H2/£\ problem 

whereby the objective and constraint transfer functions are the same. He was able to show 

that the true optimal solution to this problem could be found using a truncated problem 

and quadratic programming methods. 

1.3    Research Contributions 

The purpose of this research is first to explore the nature of the optimal solution 

to the H2/£i, H2/Hoo, and H2/£1/Hoc control problems for discrete-time linear systems. 

Next, numerical methods will be developed for solving the optimal H2/£i and H2/ti/H00 

problems, and a general numerical approach will be developed for finding fixed-order so- 

lutions to a constrained H2 problem with an arbitrary combination of transfer function 

constraints. Finally, the fixed-order discrete-time method will be combined with existing 

continuous-time algorithms to produce a single, comprehensive and cohesive toolbox for 

solving mixed-norm control problems. The specific contributions of this research are as 

follows: 
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i. The research will characterize the optimal solution to the H2ß\ control problem. It 

will be conjectured that the optimal solution to the SISO and one-block MIMO B.2jt\ 

control problem will consist of a Finite Impulse Response (FIR) constraint transfer 

function, but non-FIR objective transfer function. This will stand in contrast to 

Voulgaris' results, which show that, if the objective and constraint transfer functions 

are the same, they will be FIR. It will be shown that Voulgaris' results do not extend 

to the more general case where the objective and constraint transfer functions are 

different, and supporting evidence for the conjecture regarding the nature of the more 

general solution will be provided. 

ii. Two numerical methods for solving the optimal H2/ii control problem will be devel- 

oped. Based on the conjecture regarding the nature of the optimal solution, the first 

method will be capable of solving exactly the SISO and one-block MIMO H2/£i prob- 

lem. This method will also be capable of approximating the optimal solution to the 

general multi-block MIMO problem. A second numerical method will be developed 

which will guarantee convergence within an arbitrary epsilon for a finite truncation 

level. Further, this second method will be extended to include an H^ constraint in 

the problem. 

iii. The nature and existence of the optimal and full-order solutions to the discrete-time 

Hz/HQC problem will be characterized. Most of these results are well established for 

continuous-time systems, but a complete investigation has not been published for 

discrete-time. 

iv. A completely general method for solving the fixed-order mixed-norm control problem 

for discrete linear systems will be developed. The method will accommodate an 

arbitrary collection of transfer function constraints, and will allow easy problem 

setup and modification. Examples shown using this method will comprise the first 

published results combining the 1-norm, 2-norm, and co-norm of dissimilar transfer 

functions into a single constrained optimization problem. 

v. The fixed-order discrete-time methods will be combined with existing continuous-time 

algorithms to produce a single toolbox for solving mixed-norm control problems. A 
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common interface for both continuous-time and discrete-time systems will be pro- 

vided. 

vi. An extension to the fixed-order method will make it possible to address the multi- 

plant problem whereby the underlying dynamics associated with objective and con- 

straint transfer function no longer must be the same. This will allow the incorporation 

of robust stability concerns at off-design conditions. 

1.4    Dissertation Outline 

This dissertation consists of 8 chapters including this introduction. Chapter 2 will 

present a review of preliminary mathematics, including a discussion of vector spaces, oper- 

ators, linear systems, Lyapunov and Riccati equations, system norms, convex programming 

and minimum norm duality theory. Chapter 3 will review H2 and 4 control theory. 

Chapter 4 will begin to explore the mixed-norm problem by considering the optimal 

H2/i\ control problem. The uniqueness of the optimal compensator will be shown, and 

an important conjecture regarding the nature of the optimal solution will be developed. 

Following this, two numerical methods will be developed for solving the optimal H2/£i 

control problem, and the second method will be extended to include an H^ constraint. 

The first numerical method will be demonstrated using a SISO F-16 longitudinal flight 

controller. 

Chapter 5 will explore the optimal and full-order H2/HO0 control problem. The 

results in this chapter will parallel those found by Ridgely [8] and Walker [9] for continuous- 

time systems. The optimal solution to a special case will be shown to be a non-rational 

H2 function. A Lagrange multiplier approach to the full-order problem will be taken by 

appending a Lyapunov equation associated with the H2 problem and a Riccati equation 

associated with the H^ constraint. Conclusions regarding the existence of the solution vs. 

controller order will be made. 

Chapter 6 will develop the numerical method for the fixed-order solution of the 

general H2/£i/H<x problem. It will be demonstrated that the problem is non-convex, and 

the issue of convexity vs. controller order will be explored. The SISO F-16 problem will 
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be used to demonstrate a fixed-order H2/l\ solution, and it will be compared to the free- 

order solution of Chapter 4. The example will also be extended to an H2/^i/Hoc problem 

by appending an additional H^ constraint. Chapter 7 will consist of two examples of 

fixed-order mixed-norm control. The first example will be a MIMO model of an A-4 

aircraft. A longitudinal controller will be designed for terrain following applications. The 

second example will demonstrate a SISO multi-plant example using the American Control 

Conference benchmark robust stability problem [25]. 

Chapter 8 will present some recommendations and conclusions from this research. 

Finally, a description and brief user's manual for the Mixed-Norm Toolbox for MATLAB 

will be provided as an Appendix to this dissertation. 
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II.   Preliminary Mathematics 

This chapter provides a review of the mathematics and terminology involved in this 

dissertation. Much of the presentation for the first half of this chapter is taken from the 

recent book by Dahleh and Diaz-Bobillo[5]. 

2.1    Signals, Sequences, and Linear Spaces 

We will denote by £%(Z), sometimes dropping both the argument and superscript, 

the space of all n-vector valued sequences with integer index k such that 

oo        n \ 1/P 

x(k)   €   lP=>\\x\\p   :=   (   £   $><(*)I" <   °° (2-1) 
Kk= — oo t=l 

The cases which we are interested in are p = 1,2, oo. The norms for p = 1,2 are obvious 

from the definition above, while the signal oo-norm is defined as 

Ha:!!«»   :=  supmax|xj(Ä;)| (2.2) 
k      « 

The signal co-norm represents the maximum magnitude over all time, while the 2-norm 

represents the energy of the signal, and the 1-norm is simply a summation of the absolute 

value. With these definitions for the signal norms, the spaces associated with them can be 

viewed as nested sets; lx C £2 C 4»- In the case of real bounded energy signals (£2) we 

can define an inner product on the space as 

00 

(x,y):=    £  yTWx(k) (2.3) 

With this definition, the signal space £2 can be shown to be a Hilbert space. There is no 

inner product for the spaces tx and ^00; these spaces come under the more general definition 

of Banach spaces. 

2-1 



The Fourier Transform of a sequence can be defined as 

X(eje) :=    J2  x(J*)eike (2.4) 
k= — oo 

The space of Fourier Transforms of elements of £2 is also a Hilbert space (denoted by C2) 

with the inner product defined as 

(X,Y):=  ±- f"Y*{e>9W)dO (2.5) 
Z7T Jo 

A useful property of the Fourier Transform is that it preserves the norm, and in general 

(x,y) — {X, Y). The following example is taken from Dahleh and Diaz-J3obillo[5]. 

Example     It is quite common in the case of bounded energy signals to define complex- 

valued spaces.   Consider the space £2 of complex valued sequences, with the inner product 

defined as 
oo 

(x,y):=    £  y*(k)x(k) (2.6) 
k=—oo 

If x is in £2{Z), then X is in £2[0,27r]. The converse of this statement is also true, since 

the inverse Fourier Transform is defined for every element in C2. The space £2{Z) can be 

written as a direct sum of two spaces of one-sided sequences, namely t2{Z+) and £2{ZJ), 

where 0 is in Z+, i.e., 

£2(Z)=£2(Z+) © l2(ZJ) (2.7) 

Fourier Transforms of the elements of £2(Z+) have the property that they admit analytic 

continuation in the open unit disc. The space of all such functions is denoted by H2 , i.e., 

ifG(X) is in H2 , then G(e~ie) is in £2[0,27r], and G(X) is analytic in the open unit disc. 

Similarly, £2{ZJ) is transformed to functions that are analytic in the complement of the 

open unit disc. Such a space is denoted by H2. It follows that 

£2[0,27r] = tf2  © tf2
x (2.8) 
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A signal is said to be white (and of unit intensity) if 

1 ^ (I     T = 0 
lim — >    x(k)xT(k + r) = < 
"— N t0 I 0     r # 0 

(2.9) 

2.2    Operators 

Mathematically, systems can be viewed as operators between input and output signal 

spaces. The system may be described as an input-output map, or as a state space realiza- 

tion of this map. More will be said about state space realizations in the next section. 

Denote by Pk, the standard truncation operator on £p.   An operator T is causal 

(proper) if PkT = PkTPk for all k. Further, it is strictly causal if PkT = PkTPk^ for all 

k. Denote by 5, the standard unit shift operator on tv. An operator T is time-invariant if 

it commutes with the unit shift operator, i.e., ST = TS. 

Example     (Taken from [5]) A sequence h in £i defines an operator on tv as follows: 

hx(k) = h * x(k) = ^2 h{j)x{k — j) (2.10) 

This is easily recognized as the convolution operator, and it is linear, time-invariant, and 

causal. Now consider a more general function f defined on Z+ x Z+ which subsequently 

defines a linear operator on £p. 

y(k) = (fx)(k) = J2f(k,j)x(j) 
j=0 

This operator can be represented as an infinite matrix 

(2.11) 

/   ~ 

7(0,0) /(0,1) /(0,2) 

/(1,0) /(1,1) /(1,2) 

/(2,0)    /(2,1)    /(2,2) 
(2.12) 

The operator f is time invariant if and only if f(k,j) = f(k + r,j + r) for all r   >   0. 

Further, f is causal if and only if f(k,j)   —   0 for all j   >   k, and strictly causal if and 
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only if f(k,j)   =  0 for all j   >   k. 

Let T be a linear operator from X to Y, both normed linear spaces. T is a bounded 

operator (and continuous) if and only if its induced norm is finite, i.e., 

||T||   :=  supi^i   <  oo (2.13) 
x^O     \\X\\ 

We will usually deal with the case in which the input/output spaces are the same (but 

of possibly different dimension). We say a linear system is stable with respect to the 

input/output space X if it is bounded as a linear operator on X. Bounded linear operators 

share a sub-multiplicative property which states that if 7\ and T% are both bounded linear 

operators on X into X, then 

imr2|| < HUH ||r2|| (2.14) 

For the particular case in which R is a bounded, linear, causal, time-invariant operator 

from £^o to £™, we have 

n     oo n 

\\R\\   :=   majK^EM*)!  =   max X>«Hi (2.15) 
 }=1 fc=0  3 = 1 

th where r denotes the time domain representation of the operator R, and r^- is the ij 

element of a multiblock r.   This norm will be referred to as the system 1-norm, and 

transfer functions with bounded 1-norms are said to be in £i, with the norm denoted as 

For an element r in £1} we define the X-transform as 

oo 

R(X)   :=  Yt'iW (2-16) 
k=0 

R(X) is analytic on the open unit disc, and continuous on the boundary. The A-transform 

should not be confused with the usual z-transform, which uses a negative exponent in the 

summation. The space of all A-transforms of £i elements is denoted by A, and in fact A 

and £i are merely different representations of the same space. 
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For the particular case in which R is a bounded, linear, causal, time-invariant oper- 

ator from £2 to £™, we typically deal with multiplication operators via Fourier transforms. 

Denote by C^, the space of all complex-valued matrix functions that are bounded on the 

unit circle, i.e., 

ReCoo  ^   Halloo   :=  esssup[A(e'')]   <  00 (2.17) 
8 

The subspace of elements that are analytic in the unit disc and bounded on the unit circle 

is denoted by B.^. We can strengthen this development with the following theorem. 

Theorem 2.2.1 Every bounded linear time-invariant operator on £2[0)27r] is a multipli- 

cation operator by an element R in C^. The induced norm of this operator is ||-R||co- 

Further, every bounded, linear, time-invariant, causal operator on H2 is a multiplication 

operator by an element R in H^.  The induced norm of this operator is also given by WRW^. 

Proof:     See Dahleh and Diaz-Bobillo [5], Theorem 2.3.2. ■ 

In order to clarify the relation between members of H^ and .4, we can say 

jrnxn      c      jjrnxn ^g) 

\\R\\oo     <    V^\\R\\i (2.19) 

where m is the dimension of the output space. 

It is also important to know when an operator has a stable inverse. For this, we 

present the following theorem. 

Theorem 2.2.2 Let H be in A.  Then H~l is in A if and only if 

inf   |#(A)|   >  0 (2.20) 
|A|  < 1 

Further, the same can be said for H in H^. 

Proof:     See [5]. ■ 

The system 2-norm is not an operator norm on any space X into itself, and for this 

reason it does not have the sub-multiplicative property. The 2-norm is a measure of the 
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energy contained in the pulse response, and is given by 

\R\\l ■■■   2 

1     rT °° 
-/    tr[R(ejS)RT{e-j8)]dd =  Ttr [r{k)rT(k)] (2.21) 
}7r J-* k=0 

If the input of the system is assumed to be a white noise signal, then the root mean square 

(rms) power of the output is equal to ||Ä||2. More will be said concerning all the norms in 

a later section. 

2.3    Finite Dimensional, Linear, Time-Invariant Systems 

The state space form for finite dimensional, linear, time-invariant (FDLTI) systems 

is 

x(k + l)    =   Ax(k) + Bu(k) 

y(k)   =   Cx{k) + Du(k) (2.22) 

where the state vector x G R", the input vector u G Rm, the output vector y G Rp, and 

A, B, C, D are real coefficient matrices with appropriate dimensions. We will often use the 

shorthand notation to denote a system G; 

G = 
A B 

C D 
(2.23) 

The notation G = (A,B,C,D) will also be used to denote to same state space quadruple. 

The system is stable if and only if the eigenvalues of A lie in the open unit disc. Denoting 

by R-Hoo the space of all stable, finite-dimensional systems, we see that R-ffoo lies in the 

intersection of £i and H^. 

We denote the reachability subspace as 

Rt(A,B) = Image [B    AB    A2B A^B] (2.24) 
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Rt(A, B) is a subspace of Rn which consists of the states xt that can be reached in t time 

steps from the origin. (A, B) is said to be reachable if 

rank [B   AB   A2B A^B]  = n ,    (2.25) 

The controllability subspace is defined as 

Ct(A,B) = {x e Rn : A*x e Rt(A,B)} (2.26) 

which consists of the states x0 that can be steered to the origin in t time steps. The 

pair (A,B) is said to be controllable if Ct(A, B) = Rn. We note that reachability implies 

controllability, and if A is non-singular, controllability and reachability are equivalent. 

Using duality we can state that (C, A) is observable if (AT,CT) is reachable, and (C, A) 

is constructible if (AT,CT) is controllable. Finally, we note that observability implies 

constructibility, and the two are equivalent if A is non-singular. 

Given any real, rational, proper transfer function there exists a state space realization, 

but it is not unique. A realization (^4, B, C, D) is said to be minimal if A is of smallest 

dimension. It can be shown that a realization is minimal if (A, B) is reachable and (C, A) 

is observable [26]. The z-domain transfer function of G can be written as 

G(z)  =  C{zI-A)-lB + D (2.27) 

and the unit pulse response for G can be written as 

G(k) ■{ 
D 

CAk~1B 

k = 0 

k  >  0 
(2.28) 

The nominal feedback system considered in this dissertation is given in Figure 2.1. 

The system can be represented as a 2 x 2 block transfer function matrix mapping 

the inputs w and u to the outputs z and y: 

V. 

P       P 

P P . x yw      x yu . 

W 

U 

(2.29) 
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w z 

p 

y u 
K 

Figure 2.1    Nominal Feedback System 

The closed-loop transfer function from w to z can be determined from the lower fractional 

transformation (LFT) 

Ft(P,K)  = Pzw + PzuKil-PyuK)-1^ (2.30) 

The system is well posed if and only if (I — PyuK) is invertible for all z. The system is 

guaranteed to be well posed if Pyu or K is strictly causal. Well-posedness will be assumed 

in this dissertation. 

The system in Figure 2.1 can be written in state space form as 

P   = 

A Bw Bu 

cz Dzw Dzu 

_Cy •Lsyw Uyu 

K   = 
Ac Bc 

Cc Do 

(2.31) 

(2.32) 

Well-posedness can now be seen as (I — DcDyu) being invertible. Further, the closed loop 

transfer function from w to z can be written as 

T       = 
Ad Bd 

Cci Dd 
(2.33) 
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Ad   = 

Brl       = 

A-+ BuZiDcCy BuZiCc 

BcZ2Cy Ac + BcZ2DyuCc 

Bw -\- BuZ\DcDyw 

BcZ2Dyw 

Cd   —    [Cz + DzuZiDcCy    DZUZ\CC\ 

Dci   =   \Dzw + DzuZxDcDyw\ 

Zx    =    [I- DcDyu]  a , Z2    =    [I- DyuDc] 
-i 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

The closed loop system is said to be internally stable if Ac\ is stable. The pair (A,B) is said 

to be stabilizable if and only if there exists a constant matrix K such that (A—BK) is stable. 

Equivalently, (A, B) is stabilizable if and only if, for some non-singular transformation Tc, 

T~XATC = 
ACH    ACl2 

0 *C22 

,   T-'B 
BC1 

0 
(2.39) 

where (ACll,BCl) is reachable and ACi2 is stable. Likewise, (C, A) is said to be detectable 

if and only if there exists a constant matrix L such that (^4 — LC) is stable. Equivalently, 

for some non-singular transformation T0, 

T:
X
ATB = 

[A, Oil 

A 
[.■"■021 

0 
,   CT0 = [C01    0] (2.40) 

and (C0l,A0ll) is observable and A0ll is stable. Stabilizibility is not in general preserved 

under output injection (state estimation via output measurements), nor is detectability 

preserved under state feedback. To address the cases where these properties are preserved, 

we introduce stronger notions of these two properties. (A, B,C, D) is said to be strongly 

stabilizable if (A — LC, B — LD) is stabilizable for all L. {A, B, C, D) is said to be strongly 

detectable if (C - DK, A - BK) is detectable for all K. 

The following theorem gives some basic conditions for internal stability. 
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Figure 2.2    Internal Stability System 

Theorem 2.3.1 Assume the realization of P is minimal. Then there exists a causal K 

achieving internal stability in Figure 2.1 if and only if (A,BU) is stabilizable and (Cy,A) 

is detectable. 

Proof:     See Kwaakernak and Sivan[2], Theorem 6.4.6. ■ 

A controller K which achieves internal stability will be called a stabilizing, or admissible 

controller. If such a controller exists then P is said to be stabilizable. 

Theorem 2.3.2 K is a stabilizing controller for P if and only if K is a stabilizing con- 

troller for Pyu. 

Proof: The proof for continuous-time systems is found in [27], but it applies equally 

well for discrete-time systems. See also [5].    . ■ 

Theorem 2.3.2 says that only Pyu must be considered for analyzing internal stability for 

Figure 2.1. Now consider Figure 2.2 for which internal stability implies that, for all bounded 

inputs (ui,f2), the outputs (e1(e2) remain bounded. The system in figure 2.1 is internally 

stable if and only if the system in figure 2.2 is internally stable. Additionally, we can say 

the system in Figure 2.2 is internally stable if and only if (I — PyuK) is invertible and all 

four transfer functions in 

I       -K 

-P yu 

-1 
I  +   Kil-PyuK^Pyu K(l~PyuK)-' 

(I-PyuK)-'Py. {I-PyuK) 
(2.41) 

which maps (vi,v2) to (ei,e2), are causal and stable. See Chapter 4, [27]. 
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2.4    Lyapunov Equations 

The general form of the discrete-time Lyapunov equation is 

ATXA + CTC = X (2.42) 

Theorem 2.4.1  Consider (242); 

i. If A is stable, then (2-42) has a unique, positive semi-definite solution X for all C. 

Further, if (C, A) is observable, then X > 0. 

ii. Suppose (C, A) is detectable and X > 0 solves (2.4%); then A is stable. 

Proof:     See Theorems 2.15, 2.16, [28]. ■ 

If A is stable, then ATXA = X implies X = 0, which follows from the uniqueness of the 

solution in Theorem 2.4.1. 

2.5   Algebraic Riccati Equations 

The general algebraic Riccati equation for discrete-time problems is 

X = ATXA + Q-{S + BTXA)T {R + BTXB)_1 (S + BTXA) (2.43) 

where A, B, Q, C and R are real coefficient matrices, Q and R are symmetric, Q is positive 

semi-definite and R is positive definite. This equation naturally arises from the steady 

state control problem 

mm 
^£, \x(k) 

in J(u)    =    22 
fc=o [u(k). 

T  r Q   ST 

S    R 

x(k) 

u(fe). 

subject to  x(k + 1)    =   Ax{k) + Bu(k) ,      lim x(k) = 0 
k—>oo 

(2.44) 

(2.45) 

and hence the term Discrete-time Control Algebraic Riccati Equation (DCARE). We are 

primarily interested in the Hermitian (and more specifically, symmetric) solutions to (2.43). 

Note that, for X to be a solution to (2.43), (R + BTXB) must be invertible. The closest 

counterpart to this for the continuous-time case is that R must be positive definite, but 
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this does not involve the solution matrix, X.   For state feedback, u(k) = —Kx(k), the 

feedback gain can be expressed in terms of the solution to (2.43); 

K =  (R + BTXB)~1(S + BTXA) (2.46) 

Theorem 2.5.1 Assume (A,B) stabilizable, R > 0, and define 

M = {X | X = X*, R + BTXB  >  0, X solves (2.43)} (2.47) 

Further, assume M^fl. Then 

i. 3 X+ e M 3 X+ > X, V X G M 3 X ± X+ 

a. \\i (A-B{R + B
T
X + By1 (s + BT

X + AJ)\ < I, V i 

where X(A) denotes the set of eigenvalues of A. 

Proof:     See Theorem 3.1, [29]. The uniqueness of X+ comes from [30]. ■ 

Define the matrix [H J] such that 

H    jflH    J] = 
S     R 

(2.48) 

The following theorem shows equivalence of certain assumptions which will be used later 

in the development. 

Theorem 2.5.2 R + BTXB is non-singular if and only if (A, B, H, J) is left invertible. 

Proof:     See [28]. a 

Theorem 2.5.3 Assume (A,B) stabilizable, and the quadruple (A,B,H,J) is left invert- 

ible and strongly detectable. Then there exists a unique X  >  0 which solves (2.43) and 

A-B{R+BTX + B)~1(S + BTX + A) (2.49) 

is stable.  The matrix X is called the stabilizing solution. 
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Proof:     See Lemma 3.6, [28]. ■ 

Strong detectability of (A,B,H,J) is not necessary for the existence of a solution, 

but relaxation of this condition may result in either no solution or a non-unique positive 

semi-definite solution to (2.43). Further, given a solution X to (2.43), the gain K is unique 

if and only if (A, B, H, J) is left invertible. If we set S = 0, Q = HTH > 0, and R > 0, 

then (A, B) stabilizable and (H, A) detectable are necessary and sufficient conditions for 

the existence of a unique, positive semi-definite solution to (2.43). [31] 

A similar theory can be developed for the DARE of the estimation problem which is 

the dual of (2.43), i.e., 

Y = AYAT + Q- (AYCT + S)T(R+ CYCT)~\AYCT + S) (2.50) 

where R —  RT   >  0, and Q  =  QT   >   0. Its stabilizing solution has the property that 

the injection matrix 

L = (AYC
T
 + S)(k + CYC

T
) ~l (2.51) 

makes (A - LC) stable [28]. 

There are several ways of solving the DARE. Molinari [30], who has one of the earlier 

papers written on the DARE, used a factorization approach. For large problems, iterative 

techniques based on Newton's method have become popular. These methods, however, 

will not be discussed in this dissertation. The most popular methods for solving DARE's 

are those based on either Potter's or Laub's method. Potter's method for DARE's is based 

on finding the invariant subspaces of an associated symplectic matrix M. This symplectic 

matrix is the discrete-time counterpart of the Hamiltonian matrix used for continuous-time 

systems. It turns out that M has half its eigenvalues inside the unit circle (stable) and 

half its eigenvalues outside the unit circle (unstable). 

If we define A = A - BR^S and Q = Q - STR~1S, (2.43) can be written as 

X = ÄTXÄ + Q- ÄTXB {R + BTXB)_1 BTXA (2.52) 
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H is said to be symplectic if HJHT = J, where J is defined as 

(2.53) J = 
0     I 

-I    0 

and it is assumed that H is partitioned consistently with the identity matrices of J. If A 

is non-singular, we can define the symplectic matrix 

M = 
A + BR-1BTA~TQ     -BR-1BTA-T' 

(2.54) 
-A-TQ A-T 

The matrix M can be used to solve (2.52) in much the same way as the Hamiltonian 

matrix is used for continuous-time systems. The solution is obtained from a basis for 

the eigenvectors associated with the stable eigenspace of M. Notice, however, that the 

formulation of M requires the invertibility of A. Also note that if we set S = 0 (no cross- 

weights), we have A = A, Q = Q. This implies that our plant must be invertible to use 

this approach. This restriction is unique to discrete-time systems, and it can be especially 

troublesome for discretized plants with pure time delays (see Ch.7, [32]). To remove the 

restriction of plant invertibility, or improve the numerics if the plant is nearly singular, the 

generalized eigenvalue approach of Laub can be used [31]. 

A pair of matrices S = (Si,S2), where 5X, S2 € C2nx2n, are called symplectic (or 

a symplectic pair) if SiJSf = S2JS2, where J is as defined previously. These matrices 

are important when working with the matrix pencil 5i — A52- If <S2 
1S nonsingular we 

can define M = S^Si, and solving the resulting equation M — XI = 0 is now a familiar 

eigenvalue problem. The generalized eigenvalue problem is defined via 

S!V = \S2v (2.55) 

The generalized eigenvalues are the roots of det (Si — XS2) = 0, and with each generalized 

eigenvalue, A,, the non-zero vector 1^ satisfying (2.55) is called a generalized eigenvector. 

If A is a generalized eigenvalue of multiplicity r   >   1, then the set of vectors {i/1}..., v{\ 
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satisfying 

Si Vi    =   XS2 v\ 

(S1-XS3)vk   =   S2i>k-i , A = 2,3,...,Z  <  r (2.56) 

will be called a chain of generalized principal vectors. 

Consider (2.52) and define the symplectic pair 

Si 
A     01 [I   BR~lBT 

, s2 = 
-Q   l\ [o       iT (2.57) 

Theorem 2.5.4 Assume (A,B) stabilizable and (H,A) is detectable where HTH — Q, 

rank(H) = rank(Q). Then none of the eigenvalues of (2.55) lie on the unit circle. Fur- 

ther, A an eigenvalue of (2.55) implies A-1 is an eigenvalue of (2.55), further implying n 

eigenvalues inside the unit circle, and n eigenvalues outside the unit circle. 

Proof:     See Theorem 3,4 [31]. ■ 

[31] also shows that when A is non-singular, all of the eigenvalues of (2.55) are non-zero. 

Further, if A is singular, there must be at least one eigenvalue equal to zero. 

Theorem 2.5.5 Assumptions the same as for Theorem 2.5.4- If X = 0 is an eigenvalue 

with multiplicity r, then there are only 2n — r finite eigenvalues for (2.55). 

Proof:     See Theorem 5, [31]. ■ 

If we denote by V the 2n x n matrix of the generalized eigenvectors and principal vectors as- 

sociated with the n stable eigenvalues, then V is said to be a basis for the stable eigenspace 

SxV = S2VT, where T is the n x n upper left block of the Jordan form corresponding to 

all Xi 3 |A|   <  1. 

Lemma 2.5.1 Assumption same as Theorem 2.5.4- All solutions of (2.52) are of the 

form X = V2V]-1 where V = [VX
T V2

T] is a set ofn generalized eigenvectors and principal 

vectors of (2.55). 
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Proof:     See Lemma 1, [31]. ■ 

Lemma 2.5.2 Assume V = [Vf V^] is any set of generalized eigenvectors and principal 

vectors, and denote byT the corresponding n x n block in Jordan canonical form. Further, 

assume Vi is non-singular. Then 

i. If(R + BTXB) is invertible, then X = V^Vf1 solves (2.52). 

ii. IfT is stable, then X = XT. 

Proof:     See Lemma 2, [31]. a 

Theorem 2.5.6 Assumptions same as Theorem 2.5.4. Let V = [V? Vff be a basis for 

the stable eigenspace associated with (2.55). Then 

i. Ff1 exists andX = V2V{~1 solves (2.52) andX = XT  >  0. If(H,A) is observable, 

thenX  = XT   >  0. 

ii.  The closed loop spectrum, which lies inside the unit circle, is given by 

\(A-B{R + B
T
XB)'

1
B

T
XA) (2.58) 

Proof:     See Theorem 6, [31]. m 

Several comments are in order. First, if A is invertible, then S2 is invertible, and it can 

be shown that the matrix S2
1S1 is symplectic [5]. From here, we can use the method 

described earlier to solve (2.52), finding a basis for the invariant subspace associated with 

the standard eigenvalue problem. Second, to avoid possible numerical problems when 

forming the Jordan canonical form, a similar approach using generalized Schur vectors can 

be used to solve (2.52). It turns out that the generalized Schur vectors associated with the 

stable eigenvalues span the same subspace as the generalized eigenvectors and principal 

vectors. Schur methods are common in ARE solvers for continuous-time systems, and this 

method will not be described further in this dissertation. The interested reader should 

consult [32], Chapter 7, and the references therein. 
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Before moving on to discuss the specific DARE associated with the H^ problem, 

we need to define and discuss the Riccati operator for discrete-time systems. We once 

again refer to the symplectic pair S = (Si,S2), with Si,£2 defined as before. Assume no 

eigenvalues of (2.55) on the unit circle, and let V = [Vf V^] be a basis for the stable 

eigenspace associated with (2.55). If Vi is invertible (or, equivalently, Image \[V^ V2
T] j 

and Image |[0 I] j are complementary), we can define X = V2V1~
1. Since X is uniquely 

determined by S, we can define an operator Ric(S) such that X = Ric(S). The domain 

of Ric contains symplectic pairs such that the following conditions hold [11] : 

i. STABILITY: The eigenvalue problem (2.55) has no solutions on the unit circle. 

ii. COMPLEMENTARITY: Vl is invertible. 

iii. INVERTIBILITY: (I + BR~1BTX) is invertible. (By the Matrix Inversion Lemma, 

this is equivalent to R + BTXB being invertible.) 

If the symplectic pair meets these conditions, we say S  G Dom(Ric). 

Theorem 2.5.7 Suppose S  G Dom(Ric),X - Ric(S).  Then 

i. X = XT 

ii. (R + BTXB) and (I + BR~1BTX) are non-singular 

iii. X solves (2.52) 

iv.  The matrix A-B(R + BTXB) 1 BTXA = \{I + BR-lBTX)~1 A 

Proof:     See Lemma 2.1, [11], and Lemma 2.3, [33]. 

is stable. 

X is called the stabilizing solution of (2.52), and it is unique.   For the dual problem 

associated with the filter, see Remark 2.1, [33]. 

2.6    Calculating the System Norms 

In this dissertation, the 1, 2, and oo-norms will be considered. We already briefly 

discussed the interpretation of these norms in a previous section, but we will now discuss 

how the norms can be calculated. We begin with a method for calculating the 2-norm. 
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2.6.1 Calculating the 2-norm. Assume G = (A,B,C,D) is stable. The system 

2-norm can be calculated as 

||G||2 = yftr [DDT + CPCT] = sjtr [DTD + BTQB] (2.59) 

where P and Q are the reachability and observability grammians, which are the positive 

semi-definite solutions of the discrete-time Lyapunov equations 

APAT + BBT   =   P (2.60) 

ATQA + CTC   =   Q (2.61) 

Note that, unlike the case for continuous time, the 2-norm remains finite for D ^ 0 in 

discrete time. 

2.6.2 Calculating the oo-norm. The calculation of the oo-norm involves comput- 

ing the maximum singular value of the matrix transfer function over all frequencies. Recall 

the definition 

||G||oo :=esssup[Ä(e''')] (2.62) 
e 

A straightforward method of estimating this value is to evaluate the singular values at 

several points along the unit circle and take the maximum over all points. The accuracy 

of this method clearly depends on the number of points, and the value obtained will 

always be a lower bound for the actual oo-norm.   However, in cases where we are only 

interested in meeting a (possibly conservative) norm constraint, this may be the most 

efficient method.  A second approach, based on the Discrete Bounded Real Lemma [34], 

makes use of the generalized eigenvalue problem in (2.55) associated with a particular 

Riccati equation.  It yields a conservative upper bound which can be obtained with any 

degree of accuracy desired (with obvious limitations based on machine precision).  This 

method will be described subsequently. 
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Consider the system G = (A,B,C,D), and define the symplectic pair S = (S,
1,52), 

where 

Si    = 
Aa 0 

7_2cT5_lc    j 

R   =    (I-7-2DTD) 

, s2 
I   BR~1BT 

0       A/ 

S   =   (I-7-2DDT) 

As   =   A + j^BR^D'C 

(2.63) 

(2.64) 

(2.65) 

(2.66) 

5 is the symplectic pair associated with the Riccati equation 

X = ATXA + CTC - {DTC + BTXA)T {j2I - DTD - BTXB)~1 {DTC + BTXA) 

(2.67) 

Following are several theorems which are useful for calculating the oo-norm or checking to 

see if a constraint has been met. We will need a preliminary definition; X — XT > 0 is 

called a strong solution if j2I - DTD - BTXB > 0, X solves (2.67), and the eigenvalues 

of 

A + B (7
2I - DTD - BTXB)_1 (DTC + BTXA) (2.68) 

are in the closed unit disc. 

Theorem 2.6.1 (Discrete Bounded Real Lemma)   The following statements are equiv- 

alent. 

i. A is stable and WGW^   <   7 

ii. (C, A) has no unobservable modes on the unit circle and 3 a strong solution X   = 

XT   >  0 to (2.67) 9  72/ - DTD - BTXB  >  0 

Proof:     See Theorem 2.1 [34]. m 

Theorem 2.6.2 (Discrete Strict Bounded Real Lemma)  The following statements 

are equivalent. 
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i. A is stable and HGHoo   <  7 

ii. 3 a matrix X   =  XT satisfying 

ATXA -X + CTC- (D
T
C + BTXA)    (J2

I - DTD - BT
XB)     (pTC + BT

XA) < 0 

(2.69) 

such that j2I - DTD - BTXB  >  0 

in. 3 a stabilizing solution X  = XT  >  0 to (2.67) 3  fI-DTD-BTXB  >  0 

Further, X   <  X. 

Proof:     See Theorem 2.2, [34]. ■ 

Theorem 2.6.3 Suppose cr(D)   < 7 and A is stable, where cr(D) denotes the maximum 

singular value of D.  Then the following statements are equivalent. 

*• IIGIloo   <  7 

ii. S eDom(Ric),j2I-DTD-BTXB   >   0, X   =  Ric(S)   >   0.  (Ric(S)   >   0 if 

(C,A) is observable) 

Proof:     See [11]. ■ 

The following theorem is especially helpful for calculating the oo-norm. 

Theorem 2.6.4 Assume A is stable and 3 7  >  0 such that the following hold: 

i. 3 0O G   [0,2TT) with ä [G (eje°)}   < 7 

ii. 7 is not a singular value of D 

Then ||G||oo   <   7 if and only if S has no generalized eigenvalues on the unit circle. 

Proof:     See Theorem 4.4.1, [5]. ■ 

Theorems 2.6.3 and 2.6.4 can easily be used to define a bisection algorithm for calculating 

HGIloo, similar to what is done for the continuous-time case. This is done in [5]. 
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2.6.3 Calculating the 1-norm. Like the oo-norm, the system 1-norm must, in 

general, be approximated. Also like the oo-norm, the 1-norm can be approximated to 

within an arbitrarily small e. Assume G is a stable transfer function with state-space 

realization (A, B, C, D). The pulse response of the system G is given by 

G(k) = 
D 

CAk~1B 

k = 0 

k  > 0 
(2.70) 

If the system is stable, all the eigenvalues of A are inside the unit disc, and for all e > 0 

there exists N such that ||G||i — ||PATG||I < e, where PN is the truncation operator. 

The value of N, which will in general be conservative, can be estimated from the spectral 

radius of A. An alternative method for bounding the truncation error avoids some of the 

conservatism of the eigenvalue method [5], and this method will be described subsequently. 

For any system G, the l\ norm can be written as 

\\G\U  =  \\PNG\U + \\G\\X (2.71) 

where 

G = {0,CANB,CAN+1B,...} = 
A ANB 

C 0 

Further, it can be shown that 

(2.72) 

El. <  ||G||i   <  2V^ 1> 
t=i 

where p is the number of outputs, m is the number of inputs, 

äi =]J\i(QA»P(AnN) 

(2.73) 

(2.74) 

and P and Q are the reachability and observability grammians of G.   For stable G, &i 

approaches zero as N approaches infinity. Given e  >  0, define 

Nmin  '•= min < N | 2y/m V^äi -  —L  <  e 
I 7=i VP 

(2.75) 
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Then 

Il^-Gll!  + -^  <   ||G||a   <   \\PNntnG\\i  + 2v^ f> (2-76) 

where 
TO    iVmin 

\\PNminG\U  =   max J] X) MA)I (2-77) 
-*-pj=i fc=o 

5.7    Convex Optimization 

This section is an introduction into some key concepts of convex programming which 

will be necessary for this work. For a complete discussion of this topic, the reader is 

referred to [35, 36, 37, 38, 39, 40]. 

Let X be a vector space, xi,x2 G X, and a G (0,1). Then a convex combination of xx 

and x2 is axi + (1 — a)x2. A set C C X is said to be a convex set if, for every Xi, x2 G C, all 

convex combinations of xx and x2 are also contained in C. Defining a functional / : C —>R, 

f is said to be a convex functional if 

f[axj. + (1 - a)x2] < af(xi) + (1 - a)f(x2) (2.78) 

for all x-i, x2 £ C and all a G (0,1). Furthermore, f is said to be a strictly convex functional 

if strict inequality holds in (2.78), whenever xx ^ x2. 

Suppose f(x), gi(x),.. .,gm(x) are functional defined on some subset C of a vector 

space X. We are interested in the following program: 

V   < 

Minimize f{x) subject to 

9i(x) < 0 for all i (2.79) 

where x £ C C X 

The functional f(x) is called the objective, and the functional inequalities g^x) < 0 are 

called the constraints. A vector i € C is said to be an admissible point for V if it satisfies 

all the constraints in V. The set A of all admissible points is called the admissible region 

for V. If A is not empty, the V is said to be consistent, and if there exists aniGi such 

that gi(x) < 0 for all i, then V is said to be superconsistent. If V is a consistent program 
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and there exists an x* G A such that f(x*) < f(x) for all x £ A, then x* is a solution for 

V. Furthermore, if V is superconsistent, then the admissible region has an interior point. 

This is a necessary assumption for the main theorem of this section. 

If the objective f(x), the constraints gi(x), and the underlying set C are all convex, 

then V is called a convex program. In this case the admissible set A will always be convex. 

The Lagrangian C of the convex program V is defined as 

m 

£(s,A):=/(aO + 5>tfi(aO (2.80) 

where x G C, A := [Al5..., ATO]T G Rm, and Xi > 0 for all i. 

The following theorem is the central result of convex programming. 

Theorem 2.7.1 (Kuhn-Tucker Theorem — Saddle Point Form) Suppose V given 

in (2.79) is a superconsistent convex program. Then x* G C is a solution ofV if and only 

if there exists a A* G Rm such that: 

i. \*j >0  for all j 

ii. £(x*,A) < £(x*,A*) < C(x,A*) 

for all  x G C and all A G Rm such that  Xj > 0 for all j 

iii. Xjgj(x*) = 0 for all j 

Proof:     See [40], Theorem 5.2.13. ■ 

The above theorem is just one form of the famous group of related theorems called Kuhn- 

Tucker (KT) Theorems. For the convex analysis in this work, the saddle point form will 

be sufficient. For additional forms of the KT Theorem, see, for instance, [37, 39, 40]. The 

results of Theorem 2.7.1 are referred to as the Kuhn-Tucker conditions, or just the KT 

conditions. 

The next theorem deals with the uniqueness of the solution to a convex program. 

Theorem 2.7.2 Suppose V is the convex program given in (2.79) and x* G C satisfies the 

Kuhn-Tucker conditions. If f(x) is strictly convex, then x* is unique. 
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Proof:     See [38], Corollary to Theorem 9.4.1. ■ 

2.8    Duality in Minimum Norm Problems 

The final section of this chapter will discuss a dual approach for solving minimum 

norm problems. An excellent source for this subject is [39]. 

Let X be a normed, linear, vector space. A functional / : X —> R is a linear functional 

if 

f{ax, + ßx2) = af{Xl) + ßf{x2) (2.81) 

for all x1,x2 €. X and for all a,ß £ R. Further, / is a bounded linear functional if there is 

some M £ R such that 

\f(x)\ < M\\x\\ (2.82) 

for all x £ X. The infimum over all such M is called the norm of /, denoted ||/||.  The 

space of all bounded linear functionals on X is called the dual of X and is denoted X*. 

Given x* £ X*, then 

||aj*|| := sup \x*(x)\ (2.83) 
IMI<i 

The spaces under consideration in this work will be H2 and L2, which are Hilbert spaces, 

and as such have special properties which will simplify the dual problem.   Let X be a 

Hilbert space.   Then the following theorem provides a representation of bounded linear 

functionals on X. 

Theorem 2.8.1 (Riesz-Frechet) Assume X is a Hilbert space. If f is a bounded linear 

functional on X, then there exists a unique vector y £ X such that 

f(x) = (xty) (2.84) 

for all x & X. Furthermore, 

11/11 = llyll (2.85) 

and every y £ X determines a unique bounded linear functional in this way. 
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Proof:     See [39], Theorem 5.3.2. ■ 

Thus, linear functionals on a Hilbert space can be represented uniquely by a vector in 

the space. For the remainder of this work it will be assumed that [•]* is the vector which 

represents the actual functional in the dual space; while this is an abuse of notation, it will 

simplify the discussion. 

Another key concept in duality theory is alignment. A vector x* 6 X* is said to be 

aligned with a vector x € X if 

(a:,a;*) = ||a:*||||a:|| (2.86) 

Finally, let X be a normed vector space. Then the support functional of a convex set 

K C X is defined on X* as 

h(x*) :=sup(x,x*) (2.87) 
x€K 

The next theorem provides the main results from duality theory for the minimum norm 

problem. 

Theorem 2.8.2 (Minimum Norm Duality) Assume X is a real normed vector space. 

Let d > 0 denote the distance from a point X\ £ X to some convex set K C X having 

support functional h, then 

d = inf \\x - Xl || = max [(Xl, x*) - h(x*))] (2.88) 
x€K \\x *||<1 

where the maximum on the right is achieved by some XQ € X*. If the infimum on the left 

is achieved by some s0 € K, then —Xg is aligned with x0 — Xi. 

Proof:      See [39], Theorem 5.13.1. a 

Therefore, the primal problem (an infimization over elements in the primal space) can be 

transformed into a maximization problem over elements in the dual space. While this may 

not always provide a complete solution to the problem, when combined with the alignment 

condition, optimal solutions can often be found. 
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2.9    Summary 

This chapter introduced definitions and notations for signals, sequences and linear 

spaces. Further, we reviewed some operator theory, and introduced the special type of 

operators used to represent LTI systems. For LTI systems, we introduced definitions 

of stability, controllability, observability, and other related concepts. A brief review of 

Lyapunov equations and discrete algebraic Riccati equations was presented. This was 

followed by an introduction to the basic concepts of convex programming, including the 

Kuhn-Tucker Theorem. Finally, duality concepts were used to convert an infimization 

problem into a maximation problem in the dual space. 
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III.   Review of Related Control Theory 

This dissertation explores constrained optimization approaches to combining the H2, 

£i, and H^, norms of dissimilar but related transfer functions. This chapter will provide a 

review of some of the relevant theory associated with each of the individual methods. Al- 

though Linear Quadratic Gaussian (LQG) and H2 synthesis methods are well established, 

the review in this chapter will serve to clear up some common misconceptions regarding 

causality and optimality for the discrete-time problem. In contrast to H2, the £i control 

theory is relatively new, with £i synthesis methods only becoming available in the late 

1980's. Although the £i synthesis methods will not be used in this dissertation, the nature 

of the solution resulting from £i synthesis has some parallels in the mixed-norm problem. 

For this reason, and to acquaint the reader with this relatively new theory, the £x optimal 

control theory will be reviewed. 

Hx, control theory will not be covered in this chapter. The reason is that standard 

Hoc synthesis methods were not used in this research, and these methods are not necessary 

to understand how the Hoc constraints were applied in the mixed-norm setting. The 

most relevant portions of if^ theory for this work are the Bounded Real Lemma and the 

calculation of the oo-norm, which were covered in Chapter II. For present purposes, it 

suffices to say that H^ control synthesis has the effect of flattening over all frequencies the 

maximum singular-value of the closed-loop system with weights [4]. It is a minimization of 

the maximum gain over all frequency. A complete development of the state-space solution 

to the discrete-time Hoc problem is contained in [11]. An excellent review of discrete-time 

Hoc (as well as H2 and £i ) control synthesis is also contained in [5]. 

3.1    Parametrization of All Stabilizing Controllers 

Consider the feedback system given in Figure 3.1 where K G K, the set of all sta- 

bilizing controllers. K is not a convex set; thus, the tools of convex analysis can not be 

applied directly. However, a parametrization of all stabilizing controllers over a convex 

set has been developed from the work of Youla, et al [1]. A complete discussion of the 

parametrization can be found in [27, 5].  This will only be an introduction into the key 
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Figure 3.1    Feedback system 

ideas needed for this work. First we need to introduce the idea of a coprime factorization 

of a transfer function. 

3.1.1 Coprime Factorizations. Two stable, rational function matrices F, G are 

right-coprime with respect to the space of stable systems if they have an equal number of 

columns and there exist stable function matrices X, Y such that 

X   Y 
F 

G 
=XF+YG=I (3.1) 

Further, F and G are left-coprime with respect to the space of stable systems if they have 

an equal number of rows and there exist stable function matrices X, Y such that 

F   G 
X 

Y 
= FX + GY = I (3.2) 

Let G be a proper transfer function matrix. Then writing G = NM"1 where N and M 

are right-coprime is called a right-coprime factorization of G. Similarly, the factorization 

G = M~XN where N and M are left-coprime is called a left-coprime factorization of G. 

Finally, for each proper matrix G, there exist stable N,M,N,M,X,Y,X,Y such that 

G = NM' -i - »>-i M^N (3.3) 
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and 

X     -Y        MY 

-N    M 
= I (3-4) 

N   X 

Equations (3.3) and (3.4) constitute a doubly-coprime factorization of G. 

3.1.2    Parametrization.        The following presents a method of parametrizing all 

stabilizing controllers. 

Theorem 3.1.1 Assume G is a proper transfer function matrix with a doubly-coprime 

factorization given by (3.3) and (3.4)- Then the set of all controllers K which stabilize G 

is parametrized by 

K   =    {Y-MQ){X-NQ)~l (3.5) 

=    {X-QN)-\Y-QM) (3.6) 

where Q is stable. 

Proof:     See [5], Theorem 5.2.2. a 

Theorem 3.1.1 does not specify a space for Q. In fact, the space in which Q lies depends 

on the space in which stability is defined [5]. 

i. If the closed-loop transfer function must be LTI and £t stable (bounded 1-norm), 

then the parametrization is over Q £ lx ■ 

ii. If the closed-loop system must be finite-dimensional, LTI and lx stable, then the 

parametrization is over Q € R-Hoo (the real rational elements of -ffoo). 

iii. If the closed-loop system must be LTI and H^ stable (bounded oo-norm), then the 

parametrization is over Q € Hoc. 

iv. If the closed-loop system must be finite-dimensional, LTI and H^ stable, then the 

parametrization is over Q € HH^. 

Extensions can be made for time-varying and/or non-linear systems, and these extensions 

are discussed in [5]. 
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Recall that P in Figure 3.1 can be partitioned as 

P = 
P       P x ZVJ       *■ zu 

p      p x yw      ■*■ yu 

(3.7) 

Also, recall from Theorem 2.3.2 that a controller K stabilizes P if and only if it stabilizes 

Pyu. Using this, we can parametrize all internally stable closed-loop transfer functions Tzw. 

Theorem 3.1.2 Let the stable factors N, M, N, M, X, Y, X, Y represent a doubly-coprime 

factorization of Pyu, K be defined as in Theorem 3.1.1, and define 

T-i.    =   Pzw + PzuMYPy, 

T,   =   P„M 

MP, yw 

(3.8) 

(3.9) 

(3.10) 

Then Ti, T2, T3 are stable and 

Tzw —Ti— T2QTZ (3.11) 

Furthermore, spanning Q over all elements in its appropriate space generates all stabilizing 

K from equations 3.5 and 3.6. 

Proof:     See [27], Theorem 4.5.1, and [5], Chapter 5. ■ 

3.2    Steady-State Linear Quadratic Gaussian (LQG) Control Synthesis 

Consider the system 

x(k + l)    =   Ax{k) + Bu(k) + w{k) 

y{k)   =   Cx{k)+v(k) 

(3.12) 

(3.13) 
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where w, v are zero mean white Gaussian processes with covariance 

E [w{k)T    v(k)T] 
Si    Ri 

&jk (3.14) 

Note that we are assuming no direct feedforward of the control u in the measurement y 

{Dyu = 0). We wish to design a dynamic compensator which stabilizes the closed-loop 

system and minimizes the quadratic cost functional 

J(u) = E     £  M*)r   <k)T] 
< fc= —oo 

Q2 

S2    R •2 J 

x(k) 

u(k) 
(3.15) 

This is an infinite horizon problem which results in a constant-gain (but dynamic) com- 

pensator. Assuming the weighting and covariance matrices are positive semidefinite, we 

can express them in the form 

'Qi 5H "sr 
.S! Ri. .A. 

'Q2 s2' r<?n 
[si Ä2. [A

T
J 

[Bf   AT] 

[C2    D2] 

(3.16) 

(3.17) 

If we admit only strictly causal compensators, the optimal steady-state compensator for 

this system (under assumptions to be specified shortly) is well known to consist of a steady 

state Kaiman filter in cascade with a Linear Quadratic Regulator (LQR). This is referred 

to as a Linear Quadratic Gaussian (LQG) compensator. 

xc{k + l)   =   Axc{k) + Bu(k) - Kf (y(k) - Cxc(k)) 

u(k)    =   Kcxc(k) 

(3.18) 

(3.19) 

The certainty equivalence principle associated with LQG states that the filter gain (Kf) 

and regulator gain (Kc) are the same as those resulting from independent estimator and 

regulator designs [3]. Certainty equivalence, if it is a valid assumption, also holds for non- 

strictly causal compensators, but the final form is slightly different from that shown above. 

We now state the theorem describing strictly causal LQG synthesis. 
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Theorem 3.2.1 Assume 

i. (A,B) stabilizable, (C, A) detectable. 

ii.  (A,B1,C,Di) is strongly stabilizable and right invertible. 

iii. (A,B,C2,D2) is strongly detectable and left invertible. 

Then 

i. 3! X  = XT  >  0 such that 

X = ATXA + Q2- {ATXB + 52) (R2 + BTXB)_1 (BTXA + S2
T)          (3.20) 

ii. 3! Y  =  YT   >   0 such that 

Y = AYAT + Q1 - {AYCT + Sf) {R, + CYCT)_1 (CYAT + SJ           (3.21) 

iii.  The gains which stabilize A + BKC, A + KfC and minimize J are unique, where 

Kc   =   -{R2 + BTXB)~1{BTXA + SJ)                         (3.22) 

Kf   =   - {AYCT + Sf) {R1 + CYCT) ~l                          (3.23) 

iv.  The minimum cost realized is 

Jopt   =   tr[YK?(R2 + BTXB)Kc]+tr[XQ1]                      (3.24) 

=    tr[YQJ2] + tr XKf(CYCT + Ri)Kf]                    (3.25) 

Proof:     See Theorem 5.5, [28].                                                                                             u 

If we restrict the problem above to one in which measurement and process driving 

noise are uncorrelated and there are no state/control cross weights in the performance 

index, we can significantly reduce the number of assumptions required. 
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Theorem 3.2.2 Assume Si = 0, Q; > 0, Ri > 0,  i = 1,2.   Further, assume (A,B) 

stabilizable, and (C, A) detectable.  Then 

i. 3! X  =  XT  >  0 suc/i i/iai 

X = ATXA + Q2- ATXB {R2 + BTXB)_1 BTXA (3.26) 

it. 3! Y  = YT  >  0 SUCä f/iai 

y = AYA
T
 + Qi - ^ycT (Ä! + CYC

T
) 

_1 cy^T (3.27) 

MZ.  The gains which stabilize A + BKC, A + Ä"^C and minimize J are unique, where 

Kc   =   -(R2 + BTXB)~1BTXA (3.28) 

Kf   =   -AYCT {Ri + CYC7)"1 (3.29) 

iv.  The minimum cost realized is 

JoPt    =    tr [YKf(R2 + BTXB)KC] + tr[XQx] (3.30) 

=    tr[YQJ2] + tr[xKf(CYCT + Ri)Kf] (3.31) 

Proof:     See [28]. ■ 

Theorem 3.2.1 is not the most general theorem dealing with discrete-time LQG, 

because it allows only strictly causal (Dc = 0) compensators. Note that a feedforward 

term in the measurement could have been included without change to the assumptions of 

Theorem 3.2.1; only the final form of the filter and the final cost would change. To see 

this, we will first consider the simpler problem addressed by Theorem 3.2.2. Define the 

control and filter gains, respectively, as 

Kc   =   -(R2 + BTXB)~lBTXA (3.32) 
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kf   =   -YCT {R1 + CYCT)      ,   Kf = AKf (3.33) 

where X solves (3.26) and Y solves (3.27). We need to introduce x(k~) and x(k+) as the 

estimate of x(k) before and after, respectively, the incorporation of the kth measurement. 

Within the estimator, we have a propagation equation, 

x(k + l~) = Ax{k+) + Bu(k) (3.34) 

and an update equation 

x{k+) = x(k~) - Kf {y(k) - Cx{k~)) (3.35) 

Substituting (3.35) into (3.34), we obtain 

x(k + 1") = (A + AKfC) x{k~) - AKfy(k) + Bu{k) (3.36) 

Basing the control law on all information up to, but not including, the most recent 

measurement yields a control law 

u(k) = Kcx(k') (3.37) 

This amounts to a strict causality assumption. Substituting (3.37) into (3.36) results in a 

compensator of the form 

Kar    — 
A + BKC + AKfC -AKf 

Kc 0 

A + BKC + KfC -Kf 

Kc 0 

Note that Dac = 0, indicating a strictly causal compensator. 

(3.38) 

(3.39) 
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If we now allow our control law to be based on all information up to and including 

the most recent measurement, our control law will have the form 

u(k) = Kcx{k+) (3.40) 

Substituting (3.40) into (3.36) now yields a causal, but not strictly causal, compensator. 

-**■ nstr. 

A + BKC + AKfC + BKcKfC 

Kc + KcKfC 

-AKf - BKcKf 

-KcKf 

(3.41) 

For the case where A is invertible, equation (3.41) can be written as 

A + BKC + KtC + BKcA~lKfC 

Kc + KCA-XK}C 

-Kf - BKcA^Kf 

-KcA-'Kf 
(3.42) 

Knsc, if it can be implemented, will result in better 2-norm performance when compared 

to Ksc, because Knsc takes advantage of a more accurate estimate of the states x(k). A 

requirement for implementation is that the computational delay associated with incorpo- 

rating the latest measurement into the estimate must be negligible compared to the sample 

period. Implementation methods for ensuring this requirement is met, as well as a more 

complete discussion of the causality assumption, can be found in [41]. 

The previous results can be extended to the case where Si ^ 0, i = 1,2 by redefining 

the control and filter gains (3.33) as 

Kc   =   -{R2 + BTXB)~1{BTXA + Sl) (3-43) 

kf   =   - (YCT + Sf) (Ä! + CYCT + CS? + S^)_1 (3.44) 

where X solves (3.20) and Y solves (3.21). These gains can now be used directly in either 

(3.38) or (3.41) to form the desired compensator for this more general problem. 
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3.3   H2 Optimal Control Synthesis 

Now consider the H2 optimization problem where the system is given by 

G 

A Bw Bu 

cz U zw Dzu 

Cy UyW iJyU 

(3.45) 

Once again, it is not necessary to assume Dyu = 0, but it eases the notation. We wish to 

find a strictly causal, stabilizing compensator which minimizes the 2-norm of the closed 

loop transfer function. Let us also define 

. -*-^yw 
[ Bw       Dyw ]       = 

-iT n 

.DluJ 

D2 

'Qi sr 
.Si Ri. 

IQ2 s2' 

ßt Ri. 

>  0 

>  0 

(3.46) 

(3.47) 

With these definitions, Theorem 3.2.1 can be applied directly to solve the H2 optimization 

problem. If we make some common orthogonality assumptions, D^UCZ = 0 and BWD^W = 

0, and also assume Ri > 0,R2 > 0, then Theorem 3.2.2 can also be applied. The first two 

assumptions are equivalent to the LQG assumptions of having no cross weights between 

states and control, and uncorrelated measurement and plant driving noises, respectively. 

The third and fourth assumptions insure that the resulting control problem will be non- 

singular, and they are equivalent to the LQG assumptions of no perfect measurements or 

free control usage, respectively. 

We would now like to state the problem in a form consistent with the use of the 

Riccati operator. Define the symplectic pairs 

S   = 
" As     0- I   BUR2 Bu 

-Qs   I. 
> [0         AT

S      J 
■ Al     0" I    CJ ^i~ Cy 

-QT   I. 
> 

.0          AT 

(3.48) 

(3.49) 
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where 

As    =   A — BUR2  S2 

Qs   —   Q2 — S2R2 S2 

AT   =   A-S^R^Cy 

Qi Qi — Sx R-L Si 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

We can now apply Theorem 2.5.6 to this problem. 

Theorem 3.3.1 Assume (As,Bu) stabilizable, (CZ,AS) detectable, (AT,BW) stabilizable, 

and (CV,AT) detectable.  Then 

i. S   G   Dom(Ric), X   = XT   =  Ric(S)   >   0. 

ii. T  E  Dom(Ric), Y  = YT  =  Ric(T)   >  0. 

iii.  The unique minimizing gains are given by 

Kc   =   -(Rt + BZXBj-'iBZXA + S?) 

Kf   =   -(AYC^ + S^)(R1 + CyYC^y1 

(3.54) 

(3.55) 

Proof:     Follows directly from Theorem 2.5.6 and Theorem 3.2.1. ■ 

The resulting 2-norm can be calculated using (2.59), where the closed loop transfer func- 

tion, Tzw, can be obtained from a lower fractional transformation of G and K. 

Fi(G,K) 

K 
A + BUKC + KfCy -Kf 

Kc 0 

(3.56) 

(3.57) 
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T 

A 

-KfCy 

BUKC 

A + BUKC + KfCy 

Bw 

— KfDyyj 

cz DZUKC U zw 

(3.58) 

Often Dzw and Dc are assumed zero for the H2 development. Indeed, for the continuous- 

time case, 

(Dzw + DzuDcDyw) = 0 (3.59) 

is necessary for the 2-norm to be finite; therefore, if Dzw ^ 0, then Dc ^ 0 and is completely 

determined by (3.59) [42]. This is not the case for discrete-time. Dzw has no effect on the 

resulting compensator, and although it will affect the final cost, the 2-norm will remain 

finite for a non-zero feedforward term as defined by (3.59). 

If we admit compensators which are not strictly causal, we only need to redefine the 

filter gain 

kf = - (YCT
y + 5f) (äX + CYCT

y + CyS
T

x + S1C^) _1 (3.60) 

where Y = Ric(T). The optimal H2 compensator can now be written as 

Kr 

A + BUKC + AKfCy + BuKckfCy -AKf - BuKcKf 

Kc + KcKfCy -Kckf 

(3.61) 

Before we leave the H2 optimal control problem, we need to discuss the parametriza- 

tion of all H2 sub-optimal controllers. We will again consider the same plant, G, and 

we are assuming (A, Bu) stabilizable and (Cy,A) detectable as well as all other general 

assumptions made above. Further, we need to define 

Re   —   DZUDZU + Bu XBU 

Rf   = A/» A/«> + Cy^Cj/ 

(3.62) 

(3.63) 

where X and Y are the symmetric, positive semi-definite solutions to the control and filter 

DARE's, respectively.   For the control and filter gains, we will use the definitions from 
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(3.54) and (3.55). With these definitions and assumptions, we can now state the following 

theorem. 

Theorem 3.3.2 Let a0 denote the minimum obtainable 2-norm of the stable closed loop 

transfer function, Tzw. Fora > a0, all stabilizing controllers that guarantee \\TZW\\2 < a 

are given by 

K(Q) = Fl(J,Q)VQ 9  \\QWl   <   a2  -  a2
0 

and J is given by 

J  = 

A + BUKC + KfCy 

Kc 

Kf     °y 

-Kf    —BURC I 

R 
-1/2 

R71/2 

0 

(3.64) 

(3.65) 

Proof:     See Theorem 13.2.2, [5]. ■ 

3.4    ii Optimal Control Synthesis 

While the H^ problem can be viewed as a minimization of the maximum gain over 

all frequency, the t^ problem is a minimization of the maximum peak-to-peak gain over 

all time. Formally stated, we wish to minimize the oo-norm of the output sequence for an 

unknown but bounded amplitude input sequence. This problem was first introduced by 

Vidyasagar [43], but it was Dahleh and Pearson who were responsible for its more general 

solution [44, 45]. The majority of the work done on lx optimization has concentrated 

on discrete-time systems, where the full power of duality and linear programming can 

be brought to bear on the problem. Although results for continuous-time systems have 

appeared in the literature, they consist primarily of methods to convert the problem to an 

equivalent discrete-time system. The present discussion is drawn from [46, 5]. 

3.4.I    Problem Formulation.      Consider the system 

m 

. y 

p     p 

P P . ■*■ yr        •*■ yu 10 (3.66) 
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where r(k) G R"r is an input sequence of unknown but bounded magnitude, m(k) G R"m 

is the output sequence we wish to regulate, and nr,nm are the dimensions of the input 

vector r and output vector m, respectively. We seek a dynamic measurement feedback 

controller K, such that u = Ky. The closed loop system can be represented as 

* = Fi(P, K) = Tmr = Pmr + PmuK(I - PyuKy'Pyr (3.67) 

The ti optimization problem can be stated as follows: Among all internally stabilizing 

controllers, find the one that minimizes the maximum peak-to-peak gain of $ operating 

on the space of disturbances with magnitude bounded by 1, i.e., 

i/o   =        inf .    11*11! (3.68) 
Kstabilzzing 

Using the Youla parametrization from (3.11), we can express the closed loop transfer 

function as an affine expression over a subset in the £i operator space 

$ = H - UQV (3.69) 

where H,U,V G l\ of dimension (nm x nr), (nm x nu) and (ny x nr), respectively, and 

Q is a stable £i transfer function of dimension (nu xn,). When we refer to the A-domain 

representation of a transfer function (obtained via the A-transform), we will use a ? notation, 

e.g. $ is the A-domain representation of the £i transfer function $. Further, a lower case 

letter will be used for the sequence representation of the individual sequence components, 

e.g. <f>ij is the £i sequence representing the ijth block of $. 

If we define the set 

E =  {R e A \R = UQV for some Q  G £t } (3.70) 

then we can redefine the problem as 

"o  =   mf \\H-R\h (3.71) 
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From duality theory [39] we can pose the problem in the dual space (4o) as a maximization 

problem: 

i/0  = max        (H,G) (3.72) 
G6E-<-   ,  \\G\U<1 

where the the bounded linear functional G evaluated at H is defined as 

(H,G)  = EEEfti(A)^(*) (3-73) 
j=l j=l k=0 

and 

Sx = {G e tx \{R,G) = 0, VÄ € E } (3.74) 

The duality results can be strengthened by saying that if a solution to the primal problem 

exists, say *0, then it must be aligned with every solution G to the dual problem, i.e., 

<*o,G?o>  =  ||$o||i||Go||oo (3.75) 

A more useful form of the alignment conditions is 

i. If \g0ij(k)\ < ^axjtoojloo , then <f>0iJ(k) = 0 

ii. <fiOi.(k)g0i.(k)>0 

in. ||*oJli = v{h Vi = l,...,nm 3 G0i^0 

iv. If G0i = Othen *0j can be anything  9   ||*oJ|i < vü 

Items iii and iv state that each row sum of norms of * will be precisely active (i.e., equal 

to u0) if the corresponding row of the dual variables (G0) is non-zero. This is supported by 

the observation that the MIMO one-block problem tends to result in all row sums being 

active. The first item provides even more insight as to the nature of the solution. It 

states that, if the dual constraint is not precisely active for given time steps (k), then the 

primal variables (<f>0ij(k)) will be precisely zero for those time steps. The nature of the 

problem is such that the dual constraints will cease to be active beyond a certain time 

step, resulting in a finite time (support length) non-zero pulse response. Stated another 

way, the alignment conditions predict the FIR nature of the solution. These aspects of the 

solution will be explored further once the full £i problem has been formulated. 
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As mentioned earlier, the most general solution to the l\ problem uses linear pro- 

gramming to solve the constrained optimization problem. The constraints on the problem 

come from interpolation conditions, which are in fact conditions on the null space of the 

operator R. The complete development of the interpolation conditions goes beyond the 

scope of this dissertation and will not be discussed in entirety. The interested reader is re- 

ferred to Chapter 6 of [5]. It suffices to say that R must contain both the left unstable zero 

structure of U and the right unstable zero structure of V if R is to be equivalent to UQV 

for some stable Q. An additional set of conditions imposes the correct rank conditions on 

R. These are referred to as the zero and rank interpolation conditions, respectively. These 

conditions can be specified by Theorem 3.4.1, for which we will require a few definitions 

and a preliminary result from complex variable theory. 

Lemma 3.4.1   Given f : C —» C, where f is analytic in the open unit disc, then 

/<*>(A„)  =  0, fc = l,...,((7-l) (3.76) 

for A0 in the open unit disc if and only if 

/(A)  =  (A-Ao)^(A) (3.77) 

where g(X) is analytic in the open unit disc. (Note: /^'(A0) denotes the kth derivative of 

f at A0.) 

Proof:     This is a well known result from complex variable theory [46]. ■ 

We will assume, without loss of generality, that U(X) has full column rank and V"(A) 

has full row rank. We will define the Smith McMillan decompositions [47] of U and V as 

follows: 

Ü   =   LuMuRu (3.78) 

V   =   LVMVRV (3.79) 
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where Lv ,Ru ■X'v and Rv are unimodular matrices (their determinant is equal to a nonzero 

constant), and the first nu rows of Mv and the first ny columns of My are diagonal matrices 

(with the remaining entries being zero). For i G {1,2,..., nu}, we will denote by o~yi(A0) 

the algebraic multiplicity of the zero A0 for U(\), and similarly define ov,.(Ao) for V'(A). 

Denote by Auv the set of zeros of U and V in the unit disc. Note, we are using the 

A-transform instead of the z-transform, and for this discussion we are assuming Auv is in 

the open unit disc. 

We can now define the following polynomial row and column vectors: 

d,-(A)   =    (V).(A) 

A(A)   =    (V).(A) 

(3.80) 

(3.81) 

Theorem 3.4.1  Given R G 4, 3 Q  G lx  3  R=UQV  ifand only iffor all A0  G  Auv, 

the following conditions hold: 

i. Zero Interpolation: 

.(*) 
aiRßi)     (Ao) = 0, V < 

i = l,...,nu 

j = l,...,ny 

Ik = 0,...,<Tuj(A0) + ffvJ.(A0) - 1 

ii. Rank Interpolation: 

\6>iR) (A) = 0,   V   i = nu,..., 

(&fi)(A)  = 0,   V   j = ny,..., 

n„ 

nr 

(3.82) 

(3.83) 

(3.84) 

Proof:     See Theorem 3.1, [46]. ■ 

For the one-block problem (nr = ny, and nm = nu), only zero interpolation conditions 

must be considered; however, for general multi-block problems (nr > ny, and nm > nu) 

both rank and zero interpolation conditions must be considered. Theorem 3.4.1 completely 
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defines the set E. The remaining step in the problem formulation is to identify the subspace 

of ^oo which annihilates E. 

For all (i,j,k) in the ranges defined by Theorem 3.4.1, for Z = 0,1,...    , and all 

A0 € Auv, define the following sequences of matrices in i^ : 

[RFijkxB(l)]qp   :=    E E **(« " 0/W* - ') * [(A*)(fc) 

t=0  5=0 

CO     oo 

<=0 s=0 

A=A0 

A=A0 

(3.85) 

(3.86) 

It can be shown that R satisfies the zero interpolation conditions if and only if {R, RFijkx0) = 

0 and (R,IFijk\0) = 0. Further, the subspace spanned by the zero interpolation conditions 

is finite dimensional. For the rank interpolation conditions, define the following sequences 

of nm x nr matrices: 

-Xc«i?t(')     '• — 0    af(t-l)    0 (3.87) 

xlJ!)  ■■- o   ßf(t-l)   o (3.88) 

where af makes up the qth column and ßf makes up the pth row of Xaigt(l) and Xß.pt(l), 

respectively. Then the rank interpolation conditions are satisfied if and only if (R, Xaiqt) = 

0 and (R,Xßjpt) = 0 for t = 0,1, ... . In contrast with the zero interpolation sequences, 

the linear span of the rank interpolation conditions is infinite dimensional. 

We now state a theorem which specifies the existence of the optimal solution to the 

£i optimization problem. 

Theorem 3.4.2 If every A0 G Kuv is strictly inside the unit disc, then 3 R0 £ E such 

that 

i/o = ||fr-Äo||i = mf||fr-Ä||i (3.89) 
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Proof:     See Theorem 4.1, [46]. . 

3.4-2 The Linear Programming Problem. In order to solve either the primal or 

dual problem through linear programming, the nonlinearities associated with the lx norm 

calculation must be removed, and the interpolation conditions defining the feasible set 

must be specified in a more convenient notation. To express U^Un in linear form, redefine 

$ = $+ — 3>~, where $+ and 3>~ are both non-negative sequences. The 1-norm can now 

be expressed as 

11*11!   = max£;r;(^.(Ä)+ #;.(*)) (3.90) 
3=1 k=0 

This holds as long as, for each k, either <j>fj(k) or (f>~j(k) is zero. That this condition will 

always be satisfied can be seen by fixing $(&). The nature of the optimization problem 

is such that we are now minimizing the sum of non-negative variables (^>tj(k) and 4>~-(k)) 

whose difference is a given value <f>ij(k). It is now easily seen that either <j>fj{k) or &}(/c) 

will always be equal to zero. 

Each of the equations defining the zero and rank interpolation conditions can be 

viewed as a linear equality constraint on the sequence $. Define 

Mij : A -+ Rc*       where cz   :=     ^    £ £ (CT^(Ao) + ^(A0)) (3.91) 
Ao€Auv *=1 3 = 1 

Mi3- :£1-^£1 (3.92) 

where M^ and M^ are formed by taking the coefficients of the zero and rank interpolation 

conditions, respectively, that act on fcj. The set of feasible closed-loop transfer sequences 

can now be characterized by the set of equality constraints 

*m     "r 

J212Mi^a =   EE^i^i = h*ero e RCj (3.93) 
i=l 3=1 i=l j=l 

^y^Mij^ij =     Y,Y,MiihH   =   brank   G   k (3.94) 
t=l j=l i=l j=l 
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The Primal Linear Programming Problem (PLPP) can now be stated as, find 

v0 '■= minf (3.95) 

subject to 

f(*) + EE(^W + ^(*))    =   ".' = 1 «m (3-96) 
j=l fc=0 

££M«(^(*)+ ^(*))    =   bzero (3.97) 
»=1 3 = 1 

"m   nr 

EE^W'W+^W)       =      brank ' (3-98) 
«=1 J = l 

£(*), <^(*0, #}(*)    >   OV^ (3.99) 

where £ is a non-negative nm-vector of slack variables. For the dual problem, we define 

( 6 iK as the sequence of dual variables, and we partition ( accordingly with the set 

of equality constraints from the primal problem, i.e., ( = (-(0,(1,(2) where (0 G R"m, 

(1 G Rc*, and (0 € 4»• The Dua/ Linear Programming Problem (DLPP) can now be 

stated as, find 

subject to 

i/o  =   max ((6«PO,Ci)  +{^,(2) ) (3.100) 
CoiCliC2 

Co   >   0,  g(o(i)  <  1 (3.101) 
i=l 

-(oii)    <    (M£Ci  + MJ&) (k)   <  Co(0 (3.102) 

for 

% — l,...,nm 

j = l,...,nr 

I  A; = 0,1,... 

5.^.5    Solution Methods — SISO and One-Block Problems.      As mentioned in the 

previous section, there are no rank interpolation conditions for the one-block problem. The 
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resulting primal problem has an infinite number of variables and only a finite number of 

equality constraints. Equivalently, the dual problem has finitely many variables and an 

infinite number of constraints. With the assumption that Auv is in the open unit disc, 

however, it is possible to bound the index at which the oo-norm is achieved. 

Lemma 3.4.2 Let M be a full column rank infinite matrix mapping Rn to c0. Then there 

exists a positive integer N such that 

{{(I-P^MxWoo  <   HPjvAfslloo,    V x  €  R" , x  ± 0 (3.103) 

where PN is the truncation operator. 

Proof:     See Lemma 6.1, [46]. ■ 

Once the index is bounded, the alignment conditions dictate zero values for <j>ij(k), k > 

N. This results in finitely many variables for the PLPP or, equivalently, finitely many 

equations for the DLPP. Because of the resulting finite dimensional problem, the one-block 

t\ optimization problem can be solved exactly for the case where there are no unstable 

zeros of AyV on the unit circle. The method for handling unit circle zeros is covered in 

[5, 48], and will not be discussed further. 

3.4-4    -4 SISO Example. To demonstrate both the primal and dual problem 

approaches, consider a SISO example where we wish to minimize a weighted sensitivity 

function. Define (in the A-domain) 

**>  "   (,-TOK°-O.5) <""> 

Wm  -   (OT) <»05> 

We wish to minimize \\W(I — PK)'1]^ over all stabilizing K. Rearranging, we have 

$   =   H-UQ (3.106) 

H   -    (A-2.0)(A-0.5)(4.26A + 1) 
(1-0.6A) {6-1U7) 
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u (A-2.0)(A-0.5)(A-0.2)A 
(1 - 0.6A) 

(3.108) 

The unstable zeros of Ü are Ayy = Ay = 0.5,0.2,0. There are no rank interpolation 

conditions, and the zero interpolation conditions are given by -R(A) = 0 for all A G Ap. 

This implies 

V^(4>+-(f>-) = bzero (3.109) 

where 

F5 

"(0.5)° (0-5)1 (0.5)2 

(0.2)°    (0.2)1    (0.2)2 

- (0)°       (0)1       (0)2 

' fc(0.5) • '     0 

/i(0.2) »   =   < 0.8406 

.  h{0)  . .     1 

(3.110) 

(3.111) 

Because the zeros of U are purely real, there are no interpolation conditions due to 

(R,IFijkx0). 

We find that the upper bound on the length of <J>0 is N = 2, so our constraints are 

now specified as 

v2
T {<t>+ - 4>- (3.112) 

where 

VT  = 

-1 1 
2 

1 -, 
4 

1 1 
5 

1 
25 

.1 0 0 . 

PLPP can now be written as 

(3.113) 

z/0  =   mmJ2{<j>+(k) + 4>-(k)) 
CD"1" .(D 

fc=0 

(3.114) 
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subject to 

DLPP is written as 

subject to 

-1    I    _I 
5 5 

1 
4 

_1_ 
25 

_1 
~4 

_1_ 
"25 

-10     0      0 

</>+(0) 

r(o) 

r(i) 

U"(2)J 

i/0  = max aTbz 
o6R3 

IVio  I  <    1 

0 

0.8406 

1 

(3.115) 

(3.116) 

(3.117) 

where aT = [ai a2 a3] represents the dual variables. The solution to the problem is 

u0  =  12.41 ,$o  =  l + 2.47A - 8.94A2 (3.118) 

In solving DLPP, we find ajf = [—8.0 25.0   - 18.0], and the alignment conditions can be 

used to get $0 from a0. 

As a comparison, Table 3.1 shows the same problem being solved via H2 and H^ 

methods, and the resulting norm values. As expected, the 1-norm is always an upper 

bound to the oo-norm, and the gap between these norms is smallest for the case where the 

1-norm is being minimized. As a side note, we also see that the 2-norm maintains a finite 

value for the H^ problem, and in this case does not increase significantly from the optimal 

2-norm. Although not the subject of this chapter, this represents a significant difference 

from the continuous-time case. 

3.4-5 Solution Methods — General MIMO Multi-Block Problems. Unlike the 

one-block problem, the multi-block PLPP (and DLPP) has infinitely many variables and 

infinitely many constraints. For this reason, approximate methods must be used to solve 

the problem. The Finitely Many Variables (FMV) [5] approach truncates the number of 

variables (effectively imposing a finite pulse response) in the primal problem.  It can be 
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Table 3.1    Comparison of Norms for £i, H2, and H^ Synthesis 

\\WS\U    \\WS\\2    HW5IU 
Objective 

min||W5||i        12Ü        9~!33 10.75 
min||pr5||2       16.22        7.19 10.46 
minllWSlieo      14.42        7.75 8.27 

shown that assuming 4>ij(k) = 0 for k greater than some specified index Nv makes the 

product Mij(f>ij(k) vanish for k greater than Nv + constant, where the constant depends 

on the order of oij(A) and ßj(X). Note, however, that if the elements of brank are not zero 

at this point, then the equality constraints will be violated, indicating n© feasible solution. 

Theorem 3.4.3 Given a multi-block problem and a positive integer Nv, there exists a 

finitely supported feasible solution $ if and only if (c^ * H)(k) = 0 and (ßj * H)(k) = 0 for 

k greater than Nv + constant, i = nu + 1,..., ns , and j — ny + 1,..., nr . 

Proof:     See Theorem 7.1 and Corollary 7.1, [46]. ■ 

The FMV method results in additional constraints on the problem, and this produces a sub- 

optimal solution, if one exists. For the cases where the FMV method provides a solution, 

the optimal solution (u0) will be approached from above as Nv approaches infinity. By 

itself, the FMV method has marginal utility because it provides no information on how 

far away from optimal the approximation is, and the order of the resulting compensator 

increases with Ny The first of these drawbacks can be addressed through a dual method 

which will be described subsequently. 

Instead of truncating the number of variables, it is possible to approximate the prob- 

lem by truncating the number of constraints in PLPP. This method, termed the Finitely 

Many Equations method (FME) [5], simply ignores all but the first NE constraints, re- 

sulting in a less constrained problem and a super-optimal (infeasible) solution. Like the 

one-block problem, it can be shown that the resulting super-optimal problem is indeed 

finitely supported and finite dimensional. In addition to having better existence properties 

than the FMV method, the FME method produces a lower bound to the optimal 1-norm, 
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and it converges from below as NE approaches infinity. Assuming existence of FMV solu- 

tions, the two methods can be combined in an iterative manner to achieve a sub-optimal 

solution with any degree of accuracy desired; however, the resulting compensator will usu- 

ally be exceedingly large. The next method to be described was developed[46] specifically 

to address the problem of order inflation and existence of feasible solutions. 

The Delay Augmentation method (DA) approximates the optimal solution by em- 

bedding the problem in a larger one-block problem for which there is an exact solution. 

This is done by augmenting U and V with pure delays. For a general multi-block problem, 

partition the system as 

$11 $12" "#11 #12 ■£V 

$21 $22. .#21 #22. U2. 
Q [vx   v2] (3.119) 

We now augment U and V with Nth order shifts, and augment Q to the appropriate 

dimensions. 

"$11 $12" "#11 #12 "tfl 0 " 'Qn Q12' "Vi v2 

.$21 $22. .#21 #22. u2 SN . .Q21 Q22. .0 SN 
(3.120) 

or 

<PJV  —  H — UNQNRN =  # — RN 

By expanding the expression for Rjf , we can write 

(3.121) 

$N = H-UQ11V- SNRN (3.122) 

RN   — (3.123) 

where 
"    0 UXQ12 

.Q21V1    Q2iV2 + U2Q12 + SNQ22. 

Essentially what we have done is given the problem extra degrees of freedom (Qi2,Q2i,<?22) 

with which to work, resulting in a super-optimal (infeasible) solution which is a lower 

bound to the optimal solution. However, if we drop the last term in the expression for the 

optimal $jv, (SNRN), it can be shown that the resulting optimal closed loop norm for the 
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augmented problem 

\\H-UQ0llV\U (3.124) 

is an upper bound to the optimal solution. This means that by solving a single one-block 

problem, for which a solution is guaranteed to exist if there are no zeros on the unit circle, 

we can obtain both an upper and lower bound to the optimal solution. 

To understand how the DA algorithm attempts to prevent compensator order infla- 

tion, we need to discuss the support structure of the optimal £i solution. Most one-block 

problems have optimal solutions with all row norms equal to u0 and are characterized by 

a finite pulse response [46]. This generality does not hold for the multi-block case, but if 

the inputs and outputs are reordered such that the dominant block in the optimization 

occupies the 1-1 (upper left) partition, then the DA algorithm can "capture" the finite 

pulse response of the dominant block. The remaining rows will have a growing support 

length, but the compensator order will remain fixed based on the support length of the 

dominant block. For problems where the optimization problem is dominated by a block of 

nu or fewer rows, this can lead to compensator orders significantly less than those found 

using FMV and or FME approaches. Essentially what is occurring is that the remaining 

rows are being effectively ignored in the optimization problem. Note that, depending on 

the locations of the zeros, the DA algorithm can also suffer from order inflation problems; 

however, even in these cases the DA algorithm avoids the problem of existence in the 

FMV method, and it provides both an upper and lower bound to the optimal solution. 

Once again, the reader is referred to [46, 5] for details on the support structure of optimal 

solutions. 

3.5    Summary 

This chapter began with the Youla parametrization of all stabilizing controllers. This 

parametrization allows us to pose the control synthesis problem as a search over a convex 

set. Next, the LQG and regular H2 problems were developed, with and without a strict 

causality assumption being enforced. It was shown that the same Riccati equations can 

be used to solve both problems, but the final cost and form of the controller differed, 
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depending on whether the control law was based on all, or only past measurements. A 

parametrization of H2 suboptimal controllers was shown to be a an LFT of a particular 

matrix and a convex set in H2 . The ii control synthesis problem was introduced, and it 

was shown to be solvable using linear programming techniques. Further, it was shown that 

SISO and one-block MIMO problems could be solved exactly, and the resulting closed-loop 

transfer function is FIR. Methods for approximating the solution for multi-block MIMO 

problems were introduced. The next chapter will begin to explore the optimal mixed-norm 

problem, beginning with an H2/£i formulation. 
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IV.   The Optimal H.ijlL\ Control Problem 

4-1    Introduction 

Many researchers have studied the mixed-norm control synthesis problem, but most 

have been forced to be content with sets of coupled necessary conditions or numerical 

algorithms for their solution. Of these researchers, very few have been able to find analytic 

solutions to even the simplest of the mixed-norm problems. Walker [9] used the minimum- 

norm duality theorem to formulate and solve a special case of the SISO, continuous-time 

H2/H00 problem. He showed that the optimal solution to the H2/H00 problem can be a non- 

rational compensator, and Megretsky [17] showed a similar result for a more general E2jEao 

problem. The significance of these results is that the true optimal iT2/-^oo compensator 

cannot generally be attained using a fixed order or rational approach. 

A somewhat different result has been obtained for the H2/£-y problem. Voulgaris [24] 

investigated the SISO H2/£i problem for the case where Tzw = Tmr. He used the Lagrange 

duality theorem [39] to pose the dual problem, and showed that the optimal solution results 

in an FIR closed-loop system. Although at first glance these results appear surprising, we 

should note that the SISO and MIMO one-block £1 optimal compensators also result in 

FIR closed-loop systems. Failed attempts to extend Voulgaris' method to the case where 

Tzw 7^ Tmr have suggested that this more general problem does not necessarily have a FIR 

solution, and this chapter will demonstrate that this is in fact the case. 

This chapter will consider both analytical and numerical solutions to the optimal 

H2/£i control problem. A complete analytical solution to this problem has not yet been 

found, but the results presented in this chapter will provide valuable insight as to the 

nature of the solution. Based on this insight, two numerical methods for solving the 

optimal H2/£\ control problem will be developed. The first method will be based on a 

conjecture that the constraint transfer function will be FIR for SISO and one-block MIMO 

problems. Assuming the conjecture holds, we can then solve these problems exactly using 

finite truncation levels. This method will be demonstrated using a SISO F-16 aircraft 

example. A second method will be developed which guarantees convergence, regardless of 

whether or not the constraint transfer function is FIR. 
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w z 

P r m 
u y 

K 
Figure 4.1    General mixed H2/£i optimization problem 

4-2    Problem Setup 

The system considered for the H2/£i control problem is shown in Figure 4.1. It 

contains two sets of exogenous inputs and controlled outputs. In general, no relationship is 

assumed between r and w, or m and z, other than they include the same underlying system 

dynamics. The input r is assumed to be a signal of unknown but bounded magnitude with 

Iklloo < 1) and the input w is assumed to be the discrete-time equivalent of zero-mean 

white Gaussian noise (WGN) of unit intensity. Note that, unlike the continuous-time 

case, the discrete-time equivalent of WGN has finite covariance. The plant P(z) is formed 

by augmenting the system dynamics with stable weighting functions on the inputs and 

outputs. These weighting functions are typically chosen according to standard H2 and/or 

Hoc synthesis methods [3, 4]. Since we are interested in the closed-loop transfer functions 

from w to z and r to m, the system can be broken down into an H2 problem and an ti 

problem. Using transfer function notation, we write 

Pi    := 

Pi    := 

p p ■* zu 

p P x yu 

p P J mu 

P x yr P 1 yu 

(4.1) 

(4.2) 

The objective of mixed H2/li control is to minimize the 2-norm of the closed loop 

transfer function Txw, while constraining the 1-norm of the closed loop transfer function 
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Tmr to be less than some specified level.   Mathematically, the problem can be stated as 

follows: 

For the system shown in Figure 4.1, find an admissible controller K(z) that achieves 

a*=       inf. .    \\TZW\\2 (4.3) 
K stabilizing 

subject to the constraint ||TTOr||i <  u, where 

-L zw -*zu» ~i   -'zu-"-  \1        *■ yu-L*-)       *yw \^*^/ 

J-mr      —      -*TTir   '   ±mu**- I.-*        -*j/u-"-/       -* yr ^ \*'™) 

Walker [9] has shown that, if Pyu is detectable and stabilizable, and only stable weighting 

functions are used at the inputs and outputs, then the following are equivalent: 

i. K stabilizes Pyu 

ii. K stabilizes P2 

iii. K stabilizes Pi 

iv. K stabilizes P 

Throughout this chapter we will be assuming that Pyu is detectable and stabilizable. Fur- 

ther, we will assume both Pyw and Pzu are non-zero, thus ensuring ||T2t„||2 is affected by K. 

Finally, we will assume that there is at most one compensator such that ||TZ„,||2 = 0. This 

is not a physically restrictive assumption, since it applies to the unrealistic case where 

the input has no effect on the output of the closed-loop system. This last assumption 

is there for mathematical purposes only; it will be used to show that the general H2/ii 

compensator is unique, as will be done in the next section. 

To simplify the discussion, we make the following definitions: 

v    := inf      lir^ll! (4.6) 
K admissible 

a    := inf       \\TZW\\2 (4.7) 
Kadmissible 
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K^opt    :=   the unique K(z) that makes ||r2U)||2 = a 

ir^ld when K(z) = K2op 

Kmix    '■=   a solution to the B.ijt\ problem for some v > y_ 

v*    :=    Hr^ll! when £■(*) = #„ 

a*    :=    ||TZJ|2 when K(z) = K„ 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

We will first make some statements regarding existence and uniqueness of the optimal 

compensator analogous to that by Walker[9]. Once that is complete, we«will then pose the 

dual problem in order to gain additional insight into the nature of the solution. 

4-3   Existence and Uniqueness of the Optimal Compensator 

We can pose the H2/£i problem as one of optimizing a functional over a convex set 

by making use of the Youla parametrization of all stabilizing compensators for Pyu. First, 

define a doubly-coprime factorization of Pyu 

Pyu = NM~l = M-*N (4.13) 

and 

Y     -X 

-N    M 

M   X 

N    Y 
= 1 (4.14) 

The set of all K which stabilize Pyu (in the £x sense) is parametrized over Q £ £i by 

If we define 

K(Q)   =   (X + MQ^Y + NQ)-1 

(Y + QN)-\X + QM) 

K0 := K(Q = 0) = XY-1 = Y~lX 

(4.15) 

(4.16) 

(4.17) 
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J 
--1 K0      -Y- 

y-i    -y-ijv 
(4.18) 

then all stabilizing K can be formed as a lower fractional transformation [5] of J and Q 

K = Ft(J,Q) 

With these definitions we can now rewrite the closed loop transfer functions as 

TZW{Q)   =   Tl2+T22QT32 

Tmr(Q)   =   Tu+T2lQT3l 

where 

T\2    —   Pzw — PZUX M P, yw 

T22    =   -PZUM 

T32    =   MP„ yw 

and 

Tli      —     P-mr — PmUXMP% yr 

T2l      =      -PmuM 

T3,    =   MR yr 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

If we assume, without loss of generality, that the doubly-coprime factorization was chosen 

such that KQ = K2o t, then 

TZW(Q = 0) = Tl2 \Ti2h = QL (4.28) 
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We are also assuming that the doubly-coprime factorization of Pyu is determined from an 

n2-order realization of Pyu, where n2 is the minimal order of P2. Specifically, if we define 

a minimal order realization of P2 

then Pyu can be written as 

A = 

A2 Bw    BU2 

cz ■*-Szw        DZU 

■Uyw      ■L-'yu 

(4.29) 

Pyu = Cy2(zI-A2)-
1BU2+D: yu (4.30) 

Although it is not necessary, we will assume Dyu = 0 in order to satisfy the requirement for 

well-posedness of the problem. This is usually an easy condition to meet in practice, since 

any dynamic lag associated with either the sensors or actuators will ensure it is satisfied. 

This assumption will be removed in Chapter VI, and it will be replaced by the more general 

restriction on well-posedness of the problem. We can now adapt a lemma from Walker's 

work [9] to our discrete-time problem. 

Lemma 4.3.1 IfQ£.£i, then \\TZW(Q)\\2 is a strictly convex real functional of Q on ix. 

Proof: Let Qi,Q2 G A and let a G (0,1). By assumption, both Qa and Q2 cannot 

result in ||rz„||2 = 0 unless Qx = Q2, which is a trivial case. Eliminating this trivial case, 

we can proceed as follows: 

\Tl2+T22[<*Qi + (l-a)Q2}T32\\2 

=    \\aTl2 + aT^QxT^ + (1 - a)Tu + (1 - a)T22Q2T321|2 

=    \\a[Tl2 + T22QXT32] + (1 - a)[Tl2 + T22Q2T, 32   112 

<    a||Tla +31,^3,112 + (1 - a)||Tl2 +T22Q2r3J2 

(4.31) 

(4.32) 

(4.33) 
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where equality holds if and only if the vectors in (4.33) are colinear. However, colinearity 

implies 3 ß 6 R such that 

Tl2+T22Q1T32    =   ß(Tl2+T22Q2T32) (4.34) 

=>T22QiT32   =   [ß - 1)TU + ßT22Q2T32 (4.35) 

=*Qi    =    {ß-l)T^lTl2Tz-2
l+ßQ2 (4.36) 

and, since T2~
1Ti2T3~

1 0 t\ [18], this implies Qi & £\, which contradicts the initial assump- 

tion. This implies the two-norm is a strictly convex functional. ■ 

Using the same argument, it is easy to show that the 1-norm constraint is convex. We can 

now state that the optimal H2jt\ controller is unique. 

Theorem 4.3.1 Let v > y_ be given.   Then the controller which satisfies the H.2jl\ opti- 

mization problem is unique. Furthermore, the following hold: 

i- If V>v, then the resulting controller is K2opt 

ii. If v < v < v, then v* = v at the optimal (i.e., the solution will satisfy the £i 

constraint with equality). 

Proof:     This is a trivial extension of Walker[9], Theorem 4.2.1. ■ 

The preceding development is based on an operator theoretic approach, which leaves 

the compensator free to take on any order. This is necessary for several reasons. First, 

the l\ optimal compensator must be found with a free-order approach, and in some cases 

the li optimal compensator may be non-rational and/or infinite-order. Even for SISO or 

one-block MIMO problems which result in a finite order £i optimal controller, the order of 

the optimal controller is not known a priori. Second, even with the H^ problem in which 

the optimal controller order is known a priori, it has been shown that the optimal mixed 

-H2/-H00 compensator can be non-rational [9]. For these reasons, a non-rational or infinite 

order optimal compensator is conjectured for the most general H2/£\ problem. However, 

recent results suggest that a finite order optimal solution, as opposed to a fixed-order 
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solution, may exist for the SISO or one-block MIMO H2/i\ problem, and these results will 

be discussed later in this chapter. 

44    The H2/li Dual Problem 

The problem we wish to solve can be restated as: Find an admissible controller K{z) 

that achieves 

a*= inf ||rl2+T22Qr3J2 (4.37) 

subject to the constraint 

||Tai + T2lQT3l\\i <  v ,where v G {v,V). ~ (4.38) 

For the case of nonsingular SISO or one block MIMO constraints, we can expand this to 
v £ [hLiv). In order to pose the dual problem, we will consider the SISO case, with all 

other assumptions the same as those in the previous sections. For the SISO case, we can 

now define 

Tzw   =   Tl2+T232Q (4.39) 

Tmr   =   Tu+T23lQ (4.40) 

where T2z2 = T22T32 and T23l = T2lT3l. We will make use of an inner-outer factorization 

to transform the H2 objective as follows: Let T232 = T232,T23i , where T23l. is a unitary 

inner function and T23io is a stable and minimum phase outer function. Then, 

l|rl2+r232Q||2    =    \\T2-3lTl2+T232oQ\\2 (4.41) 

=    l|Ä-*l|2 (4-42) 

where R := T2~3]Tl2, S = -T232o, and X := SQ. Noting that lx C H2, Tzw will be stable 

for all Q 6 t\. Further, since we demonstrated that both ||rztB||2 and HT^rll! are convex 

on Q € l\, this can be seen as a convex parametrization. 
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The H2/ii problem as stated meets all the necessary assumptions to apply the Min- 

imum Norm Duality Theorem (Theorem 2.8.2), but to date no clean expression for the 

support functional has been obtained. However, if we consider a more restrictive prob- 

lem whereby Til = 0 and T23l — I, we will be able to define the support functional and 

proceed with posing the dual problem. It must be noted that the resulting optimization 

problem will now be implicitly dependent on the parametrization used for the objective 

transfer function, and we will be assuming that this parametrization will not result in 

K2oPt = K(Q = 0). Because the parametrization is no longer arbitrary, this results in an 

artificial problem which may have no physical significance; it will be used only to illustrate 

the mathematical nature of the optimal solution. (Note: a less restrictive problem whereby 

T\x 7^ 0 can be posed, and the support functional can be found. However, it provides no 

further insight into the solution of the problem and it is notationally more cumbersome.) 

Our problem is now to find Q G l\ which achieves 

a*=inf ||Ä-X||2 (4.43) 
A cA 

where the set K is defined as 

K = {X = SQ G H2 | Q G lu \\Qh < u} (4.44) 

Applying the Minimum Norm Duality Theorem we get 

a*=   max   [(R, X*) - h(X*)] (4.45) 
II**I|2<1 

where X* G L\. Since L2 is a Hubert Space, we note that L2 = L\ and functionals can be 

defined as inner products. 

In order to proceed with the definition of the support functional, we will define an 

equivalent problem using time-domain sequences. We note that a stable, discrete transfer 

function can be represented by its causal unit pulse response sequence. Notationally, 

T(z) will be represented by the sequence t(k),k = 0,1,2,.... Similarly, an unstable, 

discrete transfer function will have a sequence representation consisting of both causal and 
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anticausal parts. Where we have multiplication in the 2-domain, we have convolution in 

the time domain, which will be represented using an infinite matrix notation [18]. For 

example, considering stable S and Q, X = SQ will have sequence representation 

where 

x    =   Tsq 

:(k)    =    £>(*-i)9(Z) 
1=0 

(4.46) 

S(z)   =   J2s(k)z-\ Q{z) = Y,q{k)z 
fc=0 fc=0 

s(0)       0 0 0 

s(l)    *(0)       0 0 

«(2)    s(l) s(0)       0 

s(3)    s(2) s(l)    s(0) 

-k (4.47) 

(4.48) 

Using this notation we can define an equivalent convex set where our solution sequence 

must lie 

k = {x = rsq £ £2(Z+) | q € h(Z+), \\q\U < v} (4.49) 

Our problem is now stated as 

a* = inf \\r - x\\2 =   max  [(r,x*) - h(x*)] 
xEk j|ac* ||2 <1 

(4.50) 

We now need to define the support functional. 

h(x*)    :—   sup(a;,x*) 
x€k 

=      sup (r3q,x*) 

=      sup (q,Ts
Tx*) 

(4.51) 

(4.52) 

(4.53) 
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<      sup   IMIxllr.Vll 
Il9lli<" 

(4.54) 

We can create a tighter upper bound for h(x*) by noting that any negative time elements of 

the sequence TS
T

X*, which is generally non-causal, will be eliminated in the inner product 

by the associated elements of q, which is restricted to causal sequences. With this, we can 

state 

T„*| h(x*)    <     sup   ||g,||i||Pc
Ts % 

lli<" 

T„*|| <    uWPcT/x 

(4.55) 

(4.56) 

where Pc represents an anticausal truncation operator, i.e., for a non-causal sequence m, 

Pcm = {..., 0,0,m(0),m(l),m(2),...} (4.57) 

Since TS
T

X* G t2, elementwise it must approach 0 as A; —> oo. This implies that ||PcTg
Ta;*||00 

will be achieved for some positive finite value of k, say k = N. For the case where 

q(k) = 0 for all k ^ N, \q(N)\ = u, we see that the upper bound is actually achievable. 

This implies 

h{x*) = HliV/a^lU (4.58) 

The dual problem can now be stated as 

a     =     max 
l|x*||2<l 

max 
Hx*|U<l 

T„*\ {T,X*)-V\\PCTS
T

X 

Y,  r(k)x*{k)\ -vlm&xj^s(k)x*(k + l) (4.59) 

Ideally, we would like to find an algorithm which defines x*(k) in terms of r(k), s(k) and 

preceding elements of r, s and a;*. This would constitute a causal construction algorithm. 

However, an algorithm such as this has yet to be found, and remains a topic of current 

research. 
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For cases where the dual solution can be found and the infimum in (4.50) is achieved 

for some q G £i, the primal solution, q„, can be constructed using the alignment condition 

(r - rsq0,x0*) = \\r - r3g0||2||a;0*||2 (4.60) 

which can be expressed as 

r{k) -Y,s(k- l)q0(l) = Cx*(k) V k (4.61) 
1=0 

where C is a constant used to satisfy \\q\\i < 1. For the case where s(0) / 0, an explicit 

algorithm for constructing q0 is 

Qo(k) 

k*(r(p)-Cz*(o)) if   k = 0 s(o) v K»J    ~~ \~jj "j    - - « 

^(r(k)-Cx*(k)-J2s(k-l)q(l)]    if    k>l 
< \ i=o ) 

(4.62) 

A similar algorithm can be constructed for the case where s(0) = 0. 

4-5   Insights From a Specific Example 

Considerable insight into the nature of the optimal H2/ii problem can be gained 

by examining the exact solution to a specific example. Specifically, we claim that the 

general solution to the H2/£i optimization problem is not necessarily FIR in the closed- 

loop transfer function Tzw. We will prove this by showing an example in which the optimal 

closed loop Tzw is not FIR. The significance of this claim is that it shows Voulgaris' [24] 

results do not extend to the more general case where Tzw ^ Tmr. 

Consider the problem where 

r(k)   =    < 

s(k)    =    * 

0       if   k < 0 

^   if   k>0 

0 if   k^0 

1 */    k = 0 
(4.63) 
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The primal problem we are considering is 

a* =   inf   \\r - q\\2 
Wi<i 

(4.64) 

which corresponds to T3 = I and x = q. We note that this particular problem has an 

unconstrained (H2 optimal) solution of q = r, where we note that q € £2 but q 0 £\ , i.e. 

\\q\\i = 00 . Further, note that the unconstrained q is not FIR. The £1 optimal solution for 

this example is easily seen to be q = 0 since r is already stable. For the constrained case, 

the dual problem (4.59) reduces to 

a max  a(x*) 
ll**|i2<i 

a(x*)    = J2r(k)x*(k)-\\Pcx*\\ 
U=o 

We will define a pair of sequences in £2 as follows: 

(4.65) 

(4.66) 

s'(Jfe)   =    < 

x"(k)   = 

s_ 
18 

0        if   k < 0 

if   A €{0,1,2} 

^fc+1    if   
k > 3 

x'(k) 

Il*'ll2 

(4.67) 

(4.68) 

where both x' and x" are in the dual space X*. We now make the following claim. 

Claim    a(x*)   <   \\x'\\2  for all \\x*\\2   <  1. Further, a(x")  =  \\x'\\2   and thus x" solves 

(4-65). 

Proof:      First we will show that a(x")   =   ||a;'||2 • 

a (*")      =     E |^ - H^lco 
fc=0 

= x"(0) + ^ + ^ + jr±r £ Ak? - x"(0) 
«' 2tr fc=3 

2     +     3     + IMIa^-    C  J 

(4.69) 

(4.70) 

(4.71) 
fc=3 
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\\x'\\2 \2      37      \\x'\\2 ~ 
(4.72) 

^(x'(0) + x'(l) +»'(2)) + ^!; *'(*)» 
IF II2                                                             IF l|2 k=3 

(4.73) 

M,,£*W (4.74) 

\\x lb (4.75) 

Now fix x* € £2 3 \\x*h < 1 • Since x* G £2, \x*(k)\ < 00 for all k, and \x*(k)\ —> 

0 as A; —► 00 . This implies there exists a finite N € Z+ 3 |a;*(iV)| = HPcS*^ . In order 

to show a(x*) < \\x'\\2 , we will need to examine separately the case where N = 0, N = 1, 

A^ = 2or3<iV<oo. In the interest of continuity, the proof for these cases appears in 

Appendix A, thus proving a(x*)   <   \\x'\\2 ■ m 

The primal solution q0 for the constrained case can be constructed as follows: 

q0(k) = r{k) - Cx*{k) (4.76) 

and C — \\x'\\2 is the required constant in order to insure \\q\\i < 1 . With this, we can 

write 

«•"{s-s-s-0-0--} (4T7) 

which is FIR. However, the sequence representation of the resulting closed-loop Tzw is given 

by 
f 5      5      5     1    1    1        I , 

*-=r-«- = (l8'  18'  18'  4'  5'  6'-) (4-?8) 

which is not FIR! Although this is the only problem to date that has been solved exactly, 

numerical results for several other restricted problems have also resulted in FIR g's but 

non-FIR TZTO's. This seems to support the observation that SISO synthesis problems, 

in which ||Tmr||i is constrained or minimized, tend to result in FIR solutions for Tmr. 

This is true for the £1 synthesis problem and the special case B.2j£\ problem considered 

by Voulgaris[24]. When combined with the present results, this observation leads to the 
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following (unproven) conjecture. 

Conjecture The solution to the SISO constraint H2ßi optimal control problem for the 

case where Tzw ^ Tmr will result in a FIR sequence representation for Tmr, and, in general, 

a non-FIR sequence representation for Tzw. Further, if this holds for the SISO constraint 

case, it will also hold for one-block MIMO constraints. 

That Tzw can be non-FIR for the SISO constraint case has been proven by example. The 

conjecture is not that Tzw must always be non-FIR, rather it has been shown that the 

FIR solutions to the SISO t\ optimal and Tzw = Tmr mixed cases do not extend to the 

more general mixed case where Tzw ^ Tmr . Recent results (as yet unpublished) by other 

researchers support this conjecture based on a related problem [49], and they have also 

shown that the mixed H2/£i problem considered in this chapter can be approximated to 

within arbitrary accuracy using what they call a "combination" problem. Assuming that 

this conjecture holds for the mixed H2/£i problem, straightforward numerical techniques 

can be defined to solve exactly the SISO and one-block MIMO constraint H2/t1 problem. 

These techniques are the topic of discussion in the next section. 

4-6   A Numerical Approach to the Optimal H2/'lx Problem 

Only the SISO constraint case is developed in this section; however, it will be shown 

that the results extend to one-block MIMO constraints. We will allow general MIMO 

transfer functions for the H2 objective. Using sequence representation for the transfer 

functions, the E2jtx problem is as follows: 

«* = i£f H*i,+f2aT,t3j2 (4.79) 

such that 

Pu+Tiglli <v (4.80) 

where T1} T2I and rq are the matrix representations of the convolution operators resulting 

from t23l, <22 and q, respectively. For finite truncation levels, this problem can be solved 

as a quadratic programming (QP) problem. However, this requires the definition of a 

new set of variables in order to obtain linear expressions for the constraint.  This is the 
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same transformation used by Voulgaris [24] and earlier by Dahleh [5] for the li problem. 

Although this allows a QP formulation, it triples the number of design variables for the 

numerical optimization. Further, the quadratic term in the objective function will only be 

positive semidefmite, with at least two thirds of the eigenvalues being identically zero. 

A more straightforward formulation is to use q{k),k = 0,1,2,...,N as the design 

variables and accept the fact that the constraints will no longer be linear. Mathematically, 

we can express a problem equivalent to the truncated (4.79) as 

minimize ( -t32
T Tq

T T22
T

 T22Tqt32 + U2
T Tq

T T22
T

 tu ) (4.81) 
qeRNi     \t J 

subject to the constraint 

X>i(*0|-"<0 (4-82) 
k=0 

where 

Mk)=tll(k) + [Tlq](k) (4.83) 

Although this can no longer be solved directly as a QP problem, it remains convex. Fur- 

ther, analytic gradient expressions are easily defined, and it can be solved efficiently using 

Sequential Quadratic Programming (SQP) algorithms. 

One problem that still needs to be addressed is how to choose an appropriate trun- 

cation level for a problem which is generally infinite dimensional. As a minimum, we need 

to find a truncation which will result in a suboptimal but feasible solution. The conjecture 

from the preceding section, if it holds, has important implications for this problem. First, 

we can expect that only a finite number of terms in the constraint summation, say N of 

them, will be non-zero. Second, in order for <j>x to be FIR, the elements of q beyond k = N 

will be defined precisely by the first N elements of q, and the need for [riq](k) to cancel 

tu(k) for all k > N. For each q(k), k > N, a single additional equation can be solved 

exactly to determine its value. Likewise, for an n x n one-block MIMO constraint problem, 

there will be n2 equations which can be solved for n2 variables for each k > N. This 

suggests that an identical solution (within numerical precision) to the truncated problem 

will result for all truncation levels (Nq,N^,) greater than N. Although an FIR <j>i does not 
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imply an FIR q, all the information required to construct the remaining elements of q will 

be available from the truncated problem. 

As an initial test of the conjecture and the proposed numerical method, a SISO F-16 

problem was formulated as a mixed-norm problem. The plant includes a short period 

approximation of the longitudinal dynamics, the objective transfer function is based on 

a standard LQG problem, and the constraint transfer function is a weighted sensitivity 

problem. The complete set of plant equations appear in Appendix B, and a more complete 

analysis of this example will be presented in Chapter VI. The objective of this section is to 

characterize the optimal solution; thus the complete design problem will not be presented 

in this chapter. Figure 4.2 shows the Pareto curve generated using a truncation level 

of Nq = N$ = 100, resulting in a controller order of 106. In order to demonstrate the 

FIR nature of the constraint transfer function, we will examine a single constraint level, 

arbitrarily chosen at v = 2.5. Figure 4.3 shows a plot of the vectors fa and fa, which are 

the discrete pulse responses of Tzw and Tmr, respectively (although Tmr is SISO, Tzw for this 

problem has two exogenous inputs and two exogenous outputs). The FIR nature of Tmr is 

clearly evident from the plots, yet Tzw shows more of an asymptotic decay as opposed to 

an FIR behavior. This is consistent with the conjecture that the optimal H2/£i solution 

generally will result in an FIR constraint transfer function (Tmr), but not necessarily so 

for the objective transfer function (Tzw). We also notice in Figure 4.4 that plots of fa and 

q are virtually identical for truncation levels of Nq = N^ =100, 200, and 500 (the three 

plots are indistinguishable in Figure 4.4). 

Although the tendency might be to truncate the problem close to the finite support 

length of fa (JV) in order to improve efficiency, higher truncation levels are often necessary 

in order to capture this finite support length successfully. A prematurely truncated problem 

will result in a low level but non-zero impulse response beyond where the finite support 

length should end. At a minimum, this means that the 1-norm constraint level is probably 

not being met. In order to prevent this, truncation levels significantly higher than the 

final support length of fa are often required for numerical solution of the problem. One 

way of reducing the problem size, while still allowing for high truncation levels, involves 

truncating q at a significantly lower level than fa is truncated. Although this results in 
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Pulse Response of Tmr for Nq=100,200,500 

0.5 

-0.5 

0.2 

0.15 

0.1 

0.05 

-0.05 

10 15 20 25 30 

Pulse Response of Q for Nq=100,200,500 

35 40 

10 15 20 25 
Time Steps: 1 step = .05 sec 

30 35 40 

Figure 4.4    Pulse Response of Tmr and Q for Varying Truncation Levels 

a suboptimal solution to the problem, the distance between this and the optimal solution 

can be made arbitrarily small simply by increasing the order of q. Figure 4.5 shows the 

results of different q truncation levels (Nq), while the truncation level of <j>i was held 

constant at Nj, = 500. For Nq = 60 and above, there is almost no difference between the 

resulting compensators (outside of compensator order), and resulting 2-norms are identical 

to within numerical error for truncation levels of Nq = 100 and above. For many problems, 

the high truncation levels required for (j>i may make it prohibitive in terms of problem size 

to truncate q at the same level. This will be especially true for problems with widely 

separated dynamics, because the sample rate will be driven by the fast dynamics of the 

system, and the truncation level will be driven by the slow dynamics. Indeed, an example 

to be shown in Chapter VII will demonstrate that there are many practical problems where 

truncation levels of 5000-10000 are required. 
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4-7   An Alternate Method for Optimal H^/t-y Control Synthesis 

The numerical method presented in the preceding section is based on the conjec- 

ture that the SISO or one-block MIMO problem will result in an FIR constraint transfer 

function. For multi-block problems, it is anticipated that the constraint transfer function 

will no longer be FIR in all blocks. Although the numerical method can be used to ap- 

proximate the solution to multi-block problems, there are no guarantees of accuracy for a 

given truncation level. In order to address this problem, a second numerical method was 

developed which approximates the optimal solution to within a specifiable e. Although 

the development in this section will be for SISO systems, the development is based on an 

existing method which has been extended to multi-block problems [18, 19]. This method 

also allows for the addition of an H^ constraint to the problem, as will be shown later in 

this section. 

For a SISO problem, the Youla-parametrizations for the closed-loop transfer func- 

tions are expressed in Equations (4.39) and (4.40). For this development, we will need 

to assume the l\ constraint is nonsingular. Without further loss of generality, the Youla 
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parametrizations can be selected such that r23l is an inner function [18], i.e. T^T^ = I, 

where T£i (z) — (T23l (z
-1)) . The reason for this form of the parametrization will become 

clear later in the development. The SISO problem (SP) can be stated as, find 

a*=    inf    ||rl2+T232Q||2 (4.84) 
Veit-« oo 

subject to 

ll^i, H-^23lQ||i   <  v (4.85) 

The restriction of Q G K~Hoo can be used, since all real rational elements of l\ have a 

representation in *BiE.OQ [5]. Although the operator theoretic problem does not assume a 

real rational compensator, we will be attempting to find a finite order approximation; thus, 

we can restrict the search to Q £ RiZoo • 

Using time domain expressions of the transfer functions, we obtain (4.79), which is 

an infinite dimensional optimization problem. Because we seek a finite-dimensional ap- 

proximation to the solution, we need to be able to truncate the problem with a predictable 

truncation error. The conjecture made earlier in this chapter implies that this can be 

done with zero error as long as the constraint transfer function is FIR. However, for multi- 

block problems it is anticipated that the constraint transfer functions will not be FIR, so 

a different method for choosing a truncation level is necessary. For this, we will consider 

a radius constraint first suggested by Sideris and Rotstein [22] as a means to deal with 

finite horizon constraints, and later used by Sznaier [18] to truncate a free-order if2/-^oo 

problem. The remainder of this section will follow the same line of development as in [18] 

with modifications necessary to apply it to the H2/£i problem. 

Consider a modified problem, where the closed loop poles are constrained to lie within 

a disc of radius 6 < 1. Define 

RH6    =    {Q 6 RfZ^ | Q is analytic in |JZ| > 6} (4.86) 

IIQIU   =    sup|Q(z)| (4.87) 
\z\=6 
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For a given transfer function T(z), we will use the notation 

f = f(z = ^\= T{8z) (4.88) 

Using this notation, we can write ||T||« = \\TWoo . A modified SISO problem (MSP) can 

now be stated as 

a"s = .inf    ||fl2+r232Q||2 (4.89) 
Q€RHX 

subject to 

llTi.+r^Qlli   <  v (4.90) 

A supporting lemma will demonstrate that the MSP can be used to approximate the SP. 

Lemma 4.7.1 Any solution to MSP is an admissible solution to SP. Further, for an 

increasing sequence 6» —»• 1, the sequence aj   converges to a*. 

Proof:     Suppose Q € Ri?« is a solution to MSP. Then, 

\\fmr(z)h   <  v (4.91) 

where 
oo 

fmr(z) = Y,imr(k)z-k (4.92) 
fc=0 

This implies 
oo 

£ |*mr(fe)|    <    V (4.93) 
fc=0 

Using the transformation z = z/S, 0 < 6 < 1, we have 

Tmr(z) = y£imr(k)Skz-k (4.94) 
fc=0 

Thus 

||rmr(z)||i   =   J2\Lr(k)Sk (4.95) 
fc=0 
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=   f^6k\imr(k)\ (4.96) 
fc=0 

oo 

fc=0 

=    l|rm,(i)||i   <  v (4.98) 

and since the closed loop poles were constrained to lie within the circle of radius 6 < 1, 

Tzw and Tmr will be stable. This implies that Q is an admissible solution to SP and a*6 

is an upper bound to a*. Now consider an increasing sequence <5; —+ 1. Any solution Qi 

to MSP with 6i < 1 will be admissible for MSP with 6i+i > <5,. This implies that a^_ is 

a non-increasing sequence, and it is bounded below by a, the minimum value of ||TZIU||2. 

Following the procedure of Lemma 1 [18], we can complete the proof to show that 

aj. -> a*. m 

A parametrization of all achievable closed loop transfer functions such that Tzw and Tmr 

satisfy the radius constraint can be obtained from (4.39) and (4.40) by performing the 

transformation z = 8z prior to the factorizations. Furthermore, by combining the trans- 

formation with the inner-outer factorization, the resulting T2zt (z) satisfies 

T23l(J^T23l(6z) = I (4.99) 

The next theorem will show how MSP can be approximated with arbitrary accuracy. 

Theorem 4.7.1 Given e > 0, there exists N(e,6) such that if Q G TLHS (Q € Rfiooj 

satisfies (4-90), then it satifies the following expression: 

oo 

£lta+r2?K*)l2 < e2 (4.100) 
k=N 

Proof:     Let tzw denote the time domain representation of Tzw. Using Cauchy's formula, 

we can write 

**«,(*) = TT^ /      Tzw{z)zk-ldz ,  j = v^ (4.101) 
2,-KJ J\z\=6 
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Therefore, 

tzw(k) < \\Tzw\\68k (4.102) 

Using an equivalent expression for an infinite series, we can write 

CO OO -I £|^ = £(0* = _I_5 0<5<1 (4.103) 
fc=0 k=0 

Further, 

c2iV 

£(*T    =    TTT, (4-104) 
1 " 62 

°° llT-i     112 C2JV - 

implies   X>-(*0|2    <        1 _ g2 (4-105) 
fc=JV 

We need to bound the term ||Tzt(,||^ 

\\Tzw\\s <\\Tu\\s + \\T23i\\s\\Q\\t (4-106) 

All terms on the right side of (4.106) are known except Q, but \\Q\\s can be bounded using 

the 1-norm constraint 

\\Tmr\U = \\TU + T23lQ\\s < \\Tmr\\! < u (4.107) 

Using the invariance of the oo-norm under multiplication by an inner function 

l|2"UU = \\T2~3TU +Q\\S < WT-T^IU + \\Q\U (4.108) 

which implies 

IIÖll«<"+ll^iri1||6 (4.109) 

Substituting (4.109) into (4.106), we can now define 

g -.= imji. + ii^Jl.^ + iir^r^ii,) >\\TZW\\S (4.110) 
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If we choose 
llog(e'(l-«2))-log(9') 

N * 2 logW f«11' 

then (4.100) is satisfied. 

We now state the SISO finite-dimensional problem (SFDP). 

For        e>0,0<<5<l,JV = iV(e,<S) 

minimize f £ \[tu + r2q] (k)\2) (4.112) 
q€R       \k=o I 

N-l 

subject to  ^2 \[tu + nq] (k)\ < v (4.113) 
fc=0 

The following theorem and lemma complete the H2/£i development for this section. 

Theorem 4.7.2 Let Q6i  be a solution to SFDP, as defined by equations (4-112) and 

(4-113). Then Qs,e is an admissible solution to SP and 

o?s < ||Tla + T232QsJ2 <a*s+e (4.114) 

where a} is the optimal value of MSP for the given 6. 

Proof:     Let Q6,e be a solution to SFDP. Then QSit G RHS C R#oo and 

lir^ll! < llf^Hi < v (4.115) 

which simply restates that Q6<€ is admissible for SP. 

(a'sf    <    \\Tu+T232QsJl (4.116) 

oo 

= Ei[*i.+T»ff«.«K*)ia (4-117) 

N-l oo 

= Ei[<ia+
T^.«](fc)i2 + Ei[*i» + T^](fc)i2 (4-118) 

fc=0 k=N 
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JV —1 

< El[^+^](fc)|2 + 62 (4.119) 

<x> 

< 52\[tu+T2qs](k)\2 + e2 (4.120) 
fc=o 

\2    ,    ,2 

and this implies 

=    («4T + e2 (4.121) 

<    K + e)2 (4.122) 

a} < \\Tl3 + r23aQ«,,||2 < a* + e (4.123) 

Lemma 4.7.2 Consider an increasing sequence Si —»• 1, and let a* and a*s e denote solu- 

tions to SP and SFDP, respectively. Then the sequence a}. e has an accumulation point a* 

such that a* < a* < a* + e. 

Proof:     This follows from Lemma 4.7.1, Theorem 4.7.1 and Theorem 4.7.2. ■ 

For a SISO problem, SFDP will have N variables, and it is anticipated that required 

values of N will be on the order of 100-500. This should be sufficient to ensure that the 

finite support structure of the £i response is captured for systems with closely spaced poles 

and sampling frequencies approximately 5-10 times the fastest pole. Despite this high 

number of variables, the problem should be well behaved numerically due to convexity. 

Two comments are in order before we leave this topic. First, in order to ensure that the 

constraint is met, the summation for the constraint will require an index limit higher than 

the number of variables. In practice, the constraint level can be set at v — e1? ex > 0, a 

separate summation limit can be used for the constraint, and the tolerance of the constraint 

(for the given truncation level) can be checked using the Hankel singular value method of 

[5]. Second, there is a considerable amount of conservatism built into the calculation of 

N for a desired level of accuracy as specified by e (i.e., the truncation level is significantly 

higher than it needs to be for a given e). Further, a different method of finding N may 
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allow the removal of the regularity assumption on the l\ constraint. Methods for reducing 

this conservatism, thus reducing the value of N, are a topic for future research. 

4-7.1    Adding an Approximate Hoc  Constraint. In [5], the authors present a 

method whereby an approximate (SISO) Hoc constraint can be appended to a free-order 

£i problem. The development will be repeated here, and applied to the free-order H2/t\ 

problem. 

Let T(z) = J2T=o t(k)z~k be a SISO transfer function with impulse response {t(k)}. 

Define 

TRM    :=    »(r(e*"»)) - (4.124) 

T,K)    :=   3(T(e''w»)) (4.125) 

where un G [0,2n) are samples on the unit circle. A set of linear constraints that approxi- 

mate an He-, constraint are 

TR(un) cos(0m) + TJK) sin(0m) < 7 (4.126) 

where 

un   €    [0,27T),   n = l,...,N00 (4.127) 

6m    G    [0,2TT),   m = l,...,Moc (4.128) 

For given values of un and 0m, this is a linear operation on T. Further, since T is affine in 

Q, it will be a linear operation on Q. Specifically 

TR(un)    =   J^t(k)cos{ka;n) (4.129) 

oo 

Tj(w„)    =   5Z*(fc)sin(fcwn) (4.130) 
ifc=0 
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where 

t(jfe) = -L /      T(z)zk~1dz (4.131) 
27TJ ,/|z|=1 

and, using the Youla parametrization, 

r(z) = rloo(z) + r23oo(2)g(2) (4.132) 

The full set of constraints can be written as 

00 

Y, t(k) cos (kojn - 6m)    <   7 (4.133) 
fc=0 

un G [0, 2TT) n = 1,..., Noo - (4.134) 

0mG[O,27r) «1 = 1,...,^«, (4.135) 

Naturally, the infinite summations would be approximated using the same finite truncations 

discussed above. This adds a total of N^M^ linear constraints to the problem, but it 

maintains convexity. 

This method requires a finite number of frequencies and phase angles to be specified 

prior to the numerical optimization. A practical method of implementing this technique 

would be to perform the H2/£i optimization first, and then check where the dominant 

singular value peaks occur. Initially, a relatively small number of constraints should be 

sufficient to reduce the dominant peaks, gradually decrementing 7. The further 7 is decre- 

mented, the more likely it will be that additional peaks will require constraints, thus 

increasing the overall number of constraints required to constrain the oo-norm effectively. 

However, if 7 is decremented gradually using this method, it should be possible to keep the 

total number of required constraints down to a minimum in order to achieve the desired 

level of robustness or performance as specified by 7. Note that, because the constraint 

is being approximated, this method offers no guarantees that the exact constraint will be 

met. 
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4-7.2 Adding an Exact H,*, Constraint. Sznaier [18, 19] addressed the H2/Hoc 

problem where the H2 and H^ subproblems share common states. Adapting Sznaier's 

approach to the H-z/li/H^ problem, the system now being considered has a state space 

representation 

Pi = 

A2 Bw Br Bd Bu 

cz Dzw 0 0 Dzu 

Cm 0 -*-^mr 0 ■U-mu 

ce 0 0 Ded Deu 

Cy XJyyy Dyr Dyd Dyu 

(4.136) 

Once again we will restrict ourselves to the SISO problem. Using the Youla parametrization 

we can express the individual transfer functions as 

TU+T232Q 

Tmr     —     Ti1+T23lQ 

Ted   —   Tlos+T23^Q 

(4.137) 

(4.138) 

(4.139) 

Without loss of generality, the parametrization can be done such that T23ao is inner, which 

allows us to write 

\\Ted\\oc = \\R + Q\\0O (4.140) 

where 

The SISO problem can now be written as 

(4.141) 

subject to 

(4.142) 

llTi.+T^QHi    <   v (4.143) 
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IIÄ + QII«,    <    7 (4-144) 

This represents a convex, infinite dimensional optimization problem. We will again consider 

a modified SISO problem using the same radius constraint as considered previously in 

Section 4.7. 

a}=   inf   ||rl2+r232Q||2 (4.145) 

subject to 

\\fu+f23lQ\\i    <   v (4.146) 

IIÄ + QIU    <   7 * (4-147) 

Lemma 4.7.1 holds as before, and Theorem 4.7.1 can be replaced with the following: 

Theorem 4.7.3 Let positive numbers e^ and e2 be given. There exists N(ei,e2,6) such 

that, ifQE R-Hoo satisfies the constraint \\R + Q\\s < j, then the following conditions are 

satisfied: 

k=N 
Elk» + r'9](*)i2 ^ £2 (4-148) 

oo 

EI^+^KAOI ^ £i (4-149) 
k=N 

Proof:     Using some of the results from Theorem 4.7.1, 

\\Tzw\\s   <   ||Tla|U + ||r23a||4||Q||« (4.150) 

< l|riJ« + ||r23J6(7+||Ä|U) := 52                       (4.151) 

||Tmr||4    <    11^,11, +||r23l||Ä||Q||Ä (4.152) 

< WT^Ws + WT^lUd+WRWs) ~ 9i                        (4.153) 
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Choose 

llog(ei(l-52))-log(o2
2) 

N2    >    -    S V 2 V   ,      '[ ^2/ (4.154) 
2 log(<5) 

Ni    >    l^fad-^-logfa) 
2 log(o) 

JV    >    max^J^) (4.156) 

For this value of JV, constraints (4.148) and (4.149) will be met. ■ 

The SISO finite dimensional problem can now be defined as 

For positive numbers        e1,e2,7)'
/, with 8 < l,v > ea and N = JV(e1,e2,<5) 

(N-l \    2 

£|[*i3+*2?](A0n (4-157) 
fc=o / 

JV —1 

subject to        53 l['ii + Ti?] (fc)l < ^ - £i (4.158) 
fc=o 

l|£ + Q||«<7 (4.159) 

Theorem 4.7.2 and Lemma 4.7.2 apply to this problem with little or no modification. What 

remains to be shown for this problem is how the oo-norm constraint can be handled. This 

follows without modification from [18], and is repeated here for the sake of completeness. 

Theorem 4.7.4 Let QF := Y^k=o q(k)z~k be given. Then the condition that there exist 

QR € RH6 such that \\R + Q\\S < 7 where Q = QF + Z~
N

QR and R has all its poles outside 

the disk of radius 6, is equivalent to a convex constraint of the form HQII2 < 7 where Q is 

a symmetric matrix that is a linear function of the coefficients ofQF. 

Proof:     The proof, as well as the expression for Q, can be found in [18]. ■ 
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Theorem 4.7.5 A solution to the SISO finite dimensional approximation to the mixed 

^f2/^i/-ffoo control problem, with cost 

«;<lir;10,||2<aj + €2 (4.160) 

is given by 

where q = [q(0), q{l),.. 

mization problem: 

subject to 

Q* = Q*F + z~»QR (4.161) 

, q(N — 1)]    solves the following finite dimensional convex opti- 

arg 
JV-l 

9£ fc=0 

JV-l 

k=0 

IIQII2    <    7 

(4.162) 

(4.163) 

(4.164) 

and Q*R solves the unconstrained Nehari approximation problem 

QR = arg min   IIÄ + QII« (4.165) 

Proof:     See Theorem 2, [18]. ■ 

For this H2ßi/H00 problem, the index limit on the £Y constraint is the same as is 

used for the H2 objective because the Hoc constraint can be used to truncate the problem. 

Also, the use of the H^ constraint to truncate the problem is less conservative than using 

the l\ constraint, because we no longer have to use the 1-norm as an upper bound to the 

oo-norm. This removes some, but not all, of the conservatism associated with choosing N, 

and methods of further reducing the conservatism are a topic for future research. 
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4.8    Summary 

This chapter made an important conjecture regarding the solution to the general 

H2/£i optimization problem. It is possible that a proof for the special case (minimize 

ll^wlb subject to a constraint on ||Q||i) can be constructed, but this would only provide 

further supporting arguments as opposed to a complete mathematical proof. Based on 

the conjecture, a straightforward numerical method has been formulated. Assuming the 

conjecture holds, this method is capable of solving the H2/£i control problem exactly. The 

numerical method was successfully demonstrated on a longitudinal controller design for an 

F-16 aircraft, to be discussed more fully in Chapter VI. Although the conjecture applies 

only to SISO and one-block MIMO problems, there is nothing inherent to the numerical 

method which prevents it from being applied to multi-block problems. All blocks of Tmr 

will most likely not be FIR in this case, but a suboptimal solution should be attainable 

using this method. Although the accuracy of the multi-block solution can be improved by 

increasing the truncation level, the accuracy is not quantifiable for a given truncation level 

using this method. A second numerical method was developed which solves the optimal 

H2/£i control problem to within a specifiable e, and this method can be extended to 

multi-block H2/£\ and H2/£i/H00 problems. 
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V.   The Optimal and Full-Order i72/Äco Control Problem 

When compared to the H2/ti problem discussed in the previous chapter, the H2/Hco 

problem development is much more mature. For continuous-time systems, Walker [9] posed 

the general H2/Hoc control problem in an operator-theoretical framework and characterized 

the optimal controller using convex analysis. While a complete analytical solution was 

not found using this method, the formulation of the problem in this framework provided 

considerable insight into the nature of the solution. Megretsky [17] was able to construct an 

optimizing sequence for the general H2/Hoc control problem, and, as in Walker's work, he 

was able to show that the optimal solution can be a non-rational (or infinite-order) transfer 

function. As an alternative to the optimal (free-order) problem, Ridgely [8] and Walker [9] 

also investigated sub-optimal fixed-order solutions to the continuous-time H2/H00 control 

problem. A portion of their fixed-order investigation centered around what will be referred 

to as the full-order H2/H!XJ control problem. The full-order problem is one in which the 

compensator order is assumed to be the same as the underlying H2 subproblem. Although 

this problem has yet to admit an analytical solution, significant insight can be gained into 

the nature of the H2/Hoc control problem by studying this special case. 

All of the work by Ridgely and Walker has been for continuous-time systems, and very 

few analytical results have been published for the discrete-time H2/Hoc control problem. 

This chapter will reformulate the iJ2/-öoo problem for discrete-time systems, and reproduce 

the analytical results of Ridgely and Walker. While there are no surprising differences 

between the continuous-time and discrete-time results, this chapter serves to formalize the 

long-standing assumptions that the continuous-time Hi/H^, results would apply equally 

well to discrete-time systems. 

5.1    The Optimal H2/Htx, Control Problem 

5.1.1 Problem Setup and Uniqueness of the Solution. The system considered 

for the H2/H00 control problem is shown in Figure 5.1. It contains two sets of exogenous 

inputs and controlled outputs. In general, no relationship is assumed between d and w, 

or e and z, other than they include the same underlying system dynamics. The input d is 
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w z 

P d e 
u y 

K 
Figure 5.1    General mixed H2lH!x, optimization problem 

assumed to be a signal of unknown but bounded energy with ||d||2 < 1, and the input w 

is assumed to be the discrete-time equivalent of zero-mean white Gaussian noise (WGN) 

of unit intensity. As in the previous chapter, the plant P(z) is formed by augmenting the 

system dynamics with stable weighting functions on the inputs and outputs. Since we are 

interested in the closed-loop transfer functions from w to z and d to e, the system can be 

broken down into an H2 problem and an H^ problem. Using transfer function notation, 

we write 

Pi    := 

Poo    := 

r -1 

p x zw p ■* zu 

p x yw P -I yu 

Ped P 

Pyd p 1 yu 

(5.1) 

(5.2) 

The objective of mixed #2/-Soo control is to minimize the 2-norm of the closed loop 

transfer function Tzw, while constraining the oo-norm of the closed loop transfer function 

Ted to be less than some specified level. Mathematically, the problem can be stated as 

follows: 

For the system shown in Figure 5.1, find an admissible controller K(z) that achieves 

a* =       inf. .    ||r,„||a 
K stabilizing 

(5.3) 
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subject to the constraint HT^Hc» <  7, where 

Tzw   =   Pzw + PzuK{I-PyuKY1Pyw (5.4) 

Ted   —   Ped + PeuK (I — PyuK)    Pyd (5-5) 

As in the previous chapter, we will be assuming that Pyu is detectable and stabilizable. 

Further, we will assume both Pyw and Pzu are non-zero, thus ensuring ||r2u,||2 is affected by 

K. Finally, we will assume that there is at most one compensator such that HT^I^ = 0. 

To simplify the discussion, we make the following definitions: 

7    := inf .    llTeJ«, (5.6) 
— K stabilizing 

a    := inf .    \\TZW\\2 (5.7) 
K stabilizing 

K2opt 
:— the unique K{z) that makes ||Tzti,||2 = a (5-8) 

7 := Halloo when K{z) = K2opt (5.9) 

Kmix '•= a solution to the H2/Hoc problem for some 7 > 7 (5.10) 

7* := WTedWoo when K(z) = Kmix (5.11) 

a* := \\TZW\\2 when K(z) = Kmix (5.12) 

The parametrization from Section 4.3 can be used here by simply replacing Pmr with 

Ped- This results in the convex optimization problem 

«* = jnf ||rl2+r22Qr32||2 (5.13) 

subject to 

Pi. + r2ooQr3 JL < 7 (5.14) 
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Since we have already shown ||r2W||2 to be strictly convex in Q, we can immediately state 

the following. 

Theorem 5.1.1 Let 7 > 7 be given. Then the controller which satisfies the H-^/H^, 

optimization problem is unique. Furthermore, the following hold: 

i- If 7 ^ 7i then the resulting controller is K2opt 

ii. 7/7 < 7 < 7, then 7* = 7 at the optimal solution (i.e., the solution will satisfy the 

Hoc constraint with equality). 

Proof:     This is a trivial extension of Walker[9], Theorem 4.2.1. ■ 

5.1.2 Dual Approach to the Optimal H2/Hco Control Problem. Walker [9] showed 

that the solution to the optimal H2/Hao control problem for continuous-time systems can 

be a non-rational element of H2 ■ This was shown through the application of the Minimum 

Norm Duality Theorem to a restricted SISO problem. This section will directly parallel 

the development in [9], and in so doing will demonstrate that a similar result holds for 

discrete-time. All of the previous assumptions on the system hold. In addition, for this 

section only, the system is assumed to be a SISO H2/H00 control problem. The special 

case to be considered is the same as was examined in Section 4.4, with the exception 

that the oo-norm replaces the 1-norm. As in Section 4.4, the optimization problem is 

implicitly dependent on the Youla parametrization of the objective transfer function, so 

the parametrization is no longer arbitrary for this special case. The problem is to find a 

K{z) which satisfies the following: 

i. K(z) is internally stabilizing 

ii- ll^xwlh is minimized 

hi- IIQIloo < 7 where 7 G (7,7) 

This problem will be solved using minimum norm duality. Furthermore, the problem is 

related to the mixed norm problem and gives some insight into techniques which might 

be applied to find a solution to the general problem. To date, however, the full mixed 

problem has not been solved through this approach. 
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For the SISO case, we can define 

Tzw   =   Tl2+T232Q (5.15) 

Ted = rloo+r23oog (s.ie) 

where T2z2 = T22T32 and T23co = T2ooT3oo. We will again make use of an inner-outer 

factorization to transform the H2 objective as follows: Let T232 = T232.T232o, where T23, is 

a unitary inner function and T232o is a stable and minimum phase outer function. Then, 

||Tl2+T232Q||2   =   ||T2-3iTl2+r232oC?||2 (5.17) 

=    \\R~X\\2 (5.18) 

where R := T2%2 Tl2, S = —T232o, and X := SQ. Noting that (for discrete-time only) 

Hoc C H2, Tzw will be stable for all Q G H^. Further, since both ||T2W||2 and HTe^H^ are 

convex in Q, this can be seen as a convex parametrization. 

Thus, our problem is to find the minimum distance between a point, R, and a convex 

set in L2, where the convex set is defined by the continuous mapping S : iloo -* H2 of an 

infinity-norm ball. Our problem is now to find Q G Hx which achieves 

a*=MK\\R-X\\2 (5.19) 

where the set K is defined as 

K = {SQ e H21 Q 6 ffoo, HQIloo < 7} (5.20) 

From Theorem 2.8.2 we get 

a*=   mas■   [(R, X*) - h(X*)] (5.21) 
ll-x II2S1 
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where X* £ L2, which is the dual of L2, (■, •) denotes an inner product, and h(X*) is the 

support functional for the set K defined by 

h(X*)= sup(X,X*} (5.22) 
xeK 

The first step in solving the minimum distance problem is to determine the support 

functional h(X*) of the set K. Since L2 is a Hubert space, L2 = L2 and functional can be 

defined from Theorem 2.8.1 as inner products. With some abuse of notation, the support 

functional can be written as 

h(X*)    :=    sup(X,X*)=sup^- /'l'fe^lf^ (5.23) 
X£K X€K l-K Jo 

<    sup ilQHoo fT \S*{e>9)X*{e>9)\M (5.24) 
xeK w Jo 

■ [W\S*(eje)X*(eje)\d6 (5.25) 
Jo 2ir. 

Thus, (5.25) is an upper bound on the supremum. To determine if it is actually the desired 

supremum, we will develop a sequence and see if it approaches the upper bound as its index 

approaches infinity. Let 

{(X,X*)} = {(Xn,X*)} (5.26) 

where Xn = SQn and 

Q. -<   T SS"(S'X']    if«£K'2*-M ,5.27) 
0 otherwise 

Then 

(Xn,X*)   =   ±~r~   nQ*n(e^)S*(e^)X*(e^)d9 (5.28) 
-47T Jl/n 

=    ±- r~1/n J sgn[S*(e^)X*(e^))S'(e^)X*(e^)de (5.29) 
^7T Jx/n 
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/•2TT-1/TI 

^- / '    '    \S*(eje)X*(eje)\d6 
27T ^i/„ 

(5.30) 

which approaches (5.25) as n approaches infinity. Thus, h(X*) is defined by (5.25). With 

this definition the problem becomes 

a max 
II** 

=      max   . 
Il**ll2<l  L27T 

nax   \(R,X*) - f / * \£T(e")X*(ei')\M 
*ll2<i I 2n Jo 

[ * R*(eje)X*{eje)d6 - -1. [ * \S*{eje)X*{eje)\de 
Jo 27T Jo 

<    ||^<J^jT*(|Ä(c->')|-7|S(c-'')|)|A'V')l^ 

=    ,,^Xofi/   (\R(e-Je)\-l\S(e-j*)\)\X*(e^ ||x*||2<i   2ir JE 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

where E^ is defined as 

£7 = {0e[O,27r)|   |Ä(e-")|>7|S(e-")|} (5.35) 

Notice, (5.34) will be maximized when X* is colinear with (\R(—ju>)\ — J\S(—JUJ)\); there- 

fore, X* has the form 

X* 

0 if   u G Ey 

c[|Ä(e->')|-7|5(e-^)|]       if   R(e^) > j\S(e-^)\ 

-c[|JJ(c-i»)|-7|5(e-^)|]    */    -Ä(e-^)>7|5(c-^)| 

(5.36) 

where c := || \R(e~^)\ - 7|S(e-''*)| HJ1 to make \\X*\\2 = 1. Thus, we get 

a*    =    ±- [   c(|Ä(e-^)|-7|S(e-^)|)2 

2-Tt JE-, 

 IEj[\R(e-^\-7\S(e-^)\}2  

{2icS^[(\R(e-i»)\-y\S{e-i»)\y(\Re-i')\-1\S(e-i»)\)]y 

(5.37) 

(5.38) 
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Equation (5.38) gives a method of determining the optimal two-norm of a mixed 

control problem for a given 7. However, it does not provide a direct method for determining 

the optimal controller. If the infimum in (5.13) is achieved for some Q0 G -Hoo, we can use 

the alignment condition in Theorem 2.8.2 to determine the unique Q0- In this case, 

((R- X0),XZ) = \\R- XohWXXh (5.39) 

where X0 = SQo. However, from the definition of X*, it can been seen that the align- 

ment condition will force Q0 to be a piecewise continuous function. This implies that the 

controller which minimizes the two-norm of Tzw and satisfies the .Hoo constraint will be 

piecewise continuous and not an RiZoo function. However, it will be the iimit of a sequence 

of R-ffoo functions since H^ is the closure of R-ff^ . 

The above derivation is based on the assumptions Tloo = 0 and T2ooT3ao = I. Relaxing 

these conditions, we return to the original SISO mixed #2/-Hoo problem, but this problem 

has yet to be solved using min-norm duality. Megretsky [17] was able to solve this problem 

(for both continuous and discrete-time systems) by constructing an optimizing sequence 

of functions, and his results also show the optimal H2IH00 controller has infinite order. 

Although Megretsky provides a method for constructing an optimizing sequence for the 

-H2/-Ö00 problem, his method is such that it can only be applied (realistically) to small, 

academic problems. Even for the cases where it can be applied, the resulting solutions will 

be of such high order that they are only useful as a limit of performance. For this reason, 

a more practical solution will be sought. 

5.2    The Full-Order H2/Hrx Control Problem 

The previous section has shown that the optimal H2/Hoo controller can, in general, 

be a non-rational function. Although finite order rational approximations to the optimal 

controller exist, even these may be of such a high order that they cannot be practically 

implemented in most cases. One approach to the problem involves finding the high-order 

approximations using a free-order approach, and then performing model order reduction 

on the controller to obtain an implementable controller.   Although this allows a convex 
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programming approach to the initial optimization problem, there are no guarantees that 

the reduced order controller will be optimal over other compensators of the same order. 

Further, the order-reduced controller may no longer be feasible in terms of satisfying the 

constraints, and it may not even be stabilizing. An alternative approach is to fix the order 

of the controller at some desired level prior to solving the optimization problem. Although 

this results in a non-convex problem, there is no further need for model reduction once the 

compensator has been found. 

This section will begin to explore the fixed-order problem by looking at the full- 

order H-z/H^, control problem. By full-order, we are referring to the case whereby the 

order of the controller is fixed at the order of the H2 subproblem. Although this problem 

has yet to be solved analytically, the analytical formulation can be pursued further than 

most fixed-order problems, and significant insights as to the nature of the solution can 

be gained without actually solving the problem. This same problem was considered by 

Ridgely [8] and Walker [9] for continuous-time systems, but only special case problems 

have been previously considered in discrete-time (see Section 1.2). 

5.2.1 State Space Formulation. We will again consider the system shown in Fig- 

ure 5.1, with the same assumptions regarding the inputs, outputs and states of the system. 

The transfer function P is formed by augmenting stable weighting transfer functions from 

an H2 problem (w to z) and an ff«, problem (d to e) around the original system G(z), 

resulting in the state space form 

P = 

' Ä Bd Bw Bu 

ce Ded J-^ew Deu 

cz Dzd •Lszw U ZU 

Cy Dyd -*-Syw •LJyu 

(5.40) 

where (•) are the matrices associated with the system augmented by the H2 and H^ 

weights. The order of the individual H2 and H^ problems will usually be less than that 
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of P. An expanded state space realization for the system can be written as 

x2(k + l) = A2x2(k) + Bww(k) + BU3u(k) 

z{k) = Czx2(k) + Dzww(k) + Dzuu(k) (5.41) 

y(k) = Cy2x2(k) 4- Dyww(k) + Dyuu(k) 

Xoo(k + l) = A^x^ik) + Bdd(k) + BUoou(k) 

e(k) = Cexx(k) + Dedd{k) + Deuu(k) (5.42) 

y(k) = Cy^x^k) + Dydd{k) + Dyuu{k) 

where x2 is the state vector for the underlying H2 problem, x^ is the state vector for the 

underlying H^ problem and n2 is the dimension of x2. 

The ff2/-ffoo control probl em is now that of finding K(z) which satisfies 

inf       \\TZW\\2 subject to HT^H^ < 7 
Kadmissible 

where Tzw and Ted are the closed-loop transfer functions for the H2 and Hoo subproblems, 

respectively. If we assume a finite, fixed order for the compensator, we can use a state 

space form of K; namely 

xc(k + 1)   =   Acxc(k) + Bcy{k) 

u{k)   =   Ccxc{k) + Dcy{k) (5.43) 

This imposes an additional restriction on the problem, because the admissible set of com- 

pensators is now restricted to those stabilizing compensators with state dimension equal 

to that of xc, defined as nc. It must be noted that 7 as defined previously may not be 

achievable by compensators of this order. For this reason, we now redefine 7 as 

—        K admissible 
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where the admissible set consists of those stabilizing compensators with the specified order. 

If we assume the H^ constraint is non-singular, the infimization problem above becomes 

a minimization problem due to the finite dimension of the problem. 

We will make the following assumptions regarding the H2 and H^ subproblems: 

i.  (A2,BU2) stabilizable, (CV2,A2) detectable 

ii. BT
ZUDZU full rank, DywD^w full rank 

A2 - jul   BU2 
in. 

IV. 

C, Dz 

A2 - jwl    Bu 

a V2 

V.       DyU    =    0 

D. yw 

has full column rank for all w 

has full row rank for all w 

Assumptions (i)-(iv) assure a non-singular solution to the H2 subproblem. Assumption 

(v) is not necessary, but it satisfies the requirement for well-posedness of the problem. As 

stated earlier, this is usually an easy condition to meet in practice, since any dynamic lag 

associated with either the sensors or actuators will ensure it is satisfied. The next chapter 

will specifically address easing assumption (v) for the fixed-order, mixed-norm problem. As 

in Walker's continuous-time problem, no assumptions are being made regarding regularity 

of the Ho-, subproblem. Unlike the continuous-time problem, however, it is not necessary to 

assume (Dzw + DzuDcDyw) = 0, since ||riTO||2 remains finite for non-strictly causal systems. 

For this reason, we can allow Dzw ^ 0 and still treat Dc as an independent design variable 

(see section 3.3 and the reference therein). 

Using (5.43), the closed-loop state space equations can be written as 

x2(fc + l)    =   A2x2{k)    +     Bww(k) 

z(k)   =    Czx2{k)   +   Vzww(k) 
(5.45) 

Xoo(fc + l)    =    AooXooik)   +     Bdd{k) 

e(k)   =      Cex0O(fc)   +   Vedd(k) 
(5.46) 
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where 

x2 

«no 

x2 

A2 

A      = 

BCCy2 

(A2 + BU2 DcCy2)    BU2 Cc 

Ac 

(Aoe + BUoo DcCVoo)   BUgo C, 

BcCy<so Ac 

B,„   = 

Bd   = 

(Bw + BU2DCD U2 J-y c-*-^ yw } 

■LSc-LJyw 

(Bd + BU^DCD. yd) 

BCDyd 

Cz   = 

Ce   = 

(Cz + DzuDcCy2)   DZUCC 

(Ce-\- DeuDcCVca)    DeuCc 

Vzw   = 

ved  = DeuDcDyd + Ded 

(5.47) 

(5.48) 

(5.49) 

(5.50) 

(5.51) 

5.2.2    The Lagrangian and Necessary Conditions.       The full-order mixed H2/H(X> 

problem is now to determine a K{z) such that: 

i. A2 and A<x, are stable 

ii. 11 Ted | |oo < 7 for some given 7 > 7 , (7 > 7 if the constraint is nonsingular) 

iii. ||rzTO||2 is minimized. 

The following theorem will help focus the development of the full-order H2/H!X problem. 

Theorem 5.2.1 Let K = (AC,BC,CC,DC) be given such that A2 is stable, and assume 

(Ce,Aoo) has no unobservable modes on the unit circle.   Further, assume there exists a 
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strong solution Qx = Q^ > 0 to the DARE 

suc/i that 

(7
2I - ©fped - ßjQoo^r1 > 0 (5.53) 

TTien the following are true: 

i. Aoo is stable and \\Ted\\oo < 7- 

M. ||rz„||2   = tr \PlwVzw + CzQ2Cf] where Q2 = Q2 > 0 is the solution to the Lyapunov 

equation 

A2Q2A
T

2 + BWBT
W = Q2 (5.54) 

iii.  There exists a unique minimal solution to (5.52) in the class of real symmetric solu- 

tions. 

iv. <5oo is the minimal solution to (5.52) if and only if 

\^i(A00 + Bd(l
2I--DL'Deä-ß^QooBär1(V^Ce + B'SQ<xA00))\  <  1,  Vt 

(5.55) 

«•  ll^edlloo   <  7 if and only if 

\K(Ax> + Bdtfl-V?dVed-B%QoeBd)-
1(V&e + l%Q00A<30))\  <  1,  V» 

(5.56) 

Proof: Part (i) follows directly from Theorem 2.6.1, and, since A2 is stable, part (ii) 

follows from the discussion on calculating the 2-norm. Parts (iii) and (iv) follow from 

Theorem 2.5.1, and part (v) is a restatement of Theorem 2.6.2. a 
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As in the continuous-time case [9], the key result of the preceding theorem is that, given a 

stabilizing controller for the H2 subproblem, we can determine the minimum level of the 

ifoo constraint by determining the minimum value of 7 for which a positive semi-definite 

solution to (5.52) exists. 

Using Theorem 5.2.1, we can now restate the full-order mixed H2/Hx control prob- 

lem: Determine K = (AC,BC,CC,DC) which minimizes 

J(A„Be,Cc,Dc) = tr [VT
ZWVZW + CZQ2CT

Z] (5.57) 

where Q2 = Q2 > 0 is the solution to the Lyapunov equation 

A2Q2A\ + BwBl -Q2 = 0 (5.58) 

such that there exists a real, positive semi-definite solution to the DARE 

A^QocAoc - Qoc + CjCe (5.59) 

-  [VT
edCe + BlQ^Aoof (7

2I - VT
edVed - ßjQooß,) -1 {VT

edCe + B^Q^A^) = 0 

such that 

(7
2/ - VT

edVed - ßjQoA)_1 > 0 (5.60) 

This is similar to the continuous-time problem formulated by Ridgely [8], with one sig- 

nificant exception. The final term in (5.60), which must be positive definite, explicitly 

depends on the solution to (5.59). This prevents us from casting this directly as a La- 

grange multiplier problem, as was done by both Ridgely and Walker. The continuous-time 

problem has an analogous term which must be positive-definite, but it depends only on 7 

and the fixed plant matrices; the Riccati solution does not appear explicitly in the positive 

definite constraint for the continuous-time case. Despite these differences, we can show 

that the same basic necessary conditions hold for both continuous and discrete-time, with 

one additional constraint for the discrete-time case. 
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To proceed, we will fix a small e > 0 and positive definite matrix P 6 ~RJldXnd 

where nd is the dimension of input vector for Ped. We will also need to introduce a slack 

variable ß. We can now write the constraint as 

72 J _ eI _ ß*p _ VTdVed _ BTQocBd = 0 (5.61) 

We can state the Lagrange multiplier problem as follows: Assuming Q2, Qco are symmetric 

and positive semi-definite, find a stationary point of the Lagrangian 

C   =   C(Ac,Bc,Cc,Dc,Q2,Q00,ß,X,Y,Z) 

=   tr [DT
ZWVZW + CZQ2CT

Z] + tr [{A2Q2A
T

2 + BWBT
W - Q2) X] 

+tr [{J&QooAoo -Qoo + CT
eCe 

- (VT
edCe + B^Q^A^f (7

2/ - VT
edVed - BjQ^B,)-1 {VT

edCe + E^Q^Ajj) Y] 

+tr [{y2I -el- ß2P - VT
edVed - BT

dQxBd) Z] (5.62) 

where X, Y and Z are matrix Lagrange multipliers. X, Y, Q2 and Q^ can be partitioned 

as follows: 

X   = 

Y   = 

Q2    = 

Qoo    = 

. x2i  x22 _ 

lYn    Y22_ 

Qlu      Q212 

.Q2l2   Qi22 

y»!]   V0012 

■^OOi2 *4oCi2, 

A partial list of the first order necessary conditions can now be stated as 

(5.63) 

(5.64) 

(5.65) 

(5.66) 

dC 
dX 

A2Q2A
T

2 + BWBT
W - Q2 = 0 (5.67) 
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dC 
dY 

de 

=   AlQooAoo-Qoo + CjCe (5-68) 

-   (VT
edCe + BlQ^f (7

2/ - VT
edVed - BT

dQxBd)-
l {VT

edCe + BT
dQ^A^) = 0 

2t   =   ^I-tI-ß2P-VT
edVed-BT

dQosBd^Q (5.69) 

dc 
dß 

dC 

dQ2 

dC 

dQoo 

where 

=    -2ßPZ = Q (5-7°) 

=   AlXA2+C*Cz-X = 0 (5-71) 

=   AYAT - BdZBT
d - Y = 0 (5-72) 

A = Ac + Bd (7
2/ - PÄd - ßjQooß,)_1 (I>e

T
dCe + BjQooA») (5-73) 

is the matrix which is stabilized by the solution to the Riccati equation (5.59). Conditions 

(5.67-5.69) are simply the original constraints which must be satisfied. Condition (5.70) 

can be written in the form 

ßZ = 0 (5.74) 

since ß is a scalar and P is positive definite. In this form, condition (5.70) can now be 

seen as a statement that either ß or Z must be zero. If ß = 0, constraint (5.61) is active 

which is inadmissible for the real problem (e = 0) we are trying to solve. If this occurs, 

we need to reduce e and try again. E the constraint remains active (ß = 0) in the limit 

as € _> o, then there is no solution to the mixed problem. If, however, for some small 

e > 0, the solution yields ß ^ 0 and Z = 0, then constraint (5.61) is not active. Although 

this constraint will need to be enforced for a numerical solution to the problem, for the 

remainder of this discussion we will assume that the strong or stabilizing solution to (5.59) 

satisfies (5.60). 

Condition (5.71) is a Lyapunov equation. Since A2 must be stable, the solution 

to (5.71) will be positive semi-definite and symmetric, i.e., X12 = X^, Xu = Xu and 

X22 = Xl2.  Condition (5.72) is also a Lyapunov equation and, for Z = 0 and A strictly 
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stable, the only solution to (5.72) is Y = 0. This is the case when Q^, is a stabilizing 

solution to (5.59), and it indicates that the H^ constraint is not active. For this case, the 

Lagrange multiplier problem can be written as 

C   =   £(AC,BC,CC,DC,Q2,X) 

=   tr[VT
zwVzw + CzQ2CT

z]+tr[{A2Q2^ + BwBT
w-Q2)X] (5.75) 

which is simply the unconstrained H2 problem for which there is a unique solution. How- 

ever, if Qoo is a strong solution to (5.59), but not a stabilizing solution, then A will be 

neutrally stable and there will be a symmetric solution Y ^ 0 to (5.72). This indicates 

the HQO constraint is precisely active and ||Ted||oo = 7- The remainder of the first-order 

necessary conditions can be derived by taking the partial derivatives of (5.62) with respect 

to the compensator state-space matrices Ac, Bc, Cc and Dc. These remaining equations 

provide no further insight into the full-order solution, and since the full set of necessary 

conditions can not be solved analytically, these remaining equations will not be derived for 

the full-order H2/Hoo problem. 

5.2.3 Existence and Uniqueness vs. Compensator Order. Ridgely [8] and Walker 

[9] have accomplished a considerable amount of work examining existence and uniqueness 

vs. compensator order for the continuous-time case, and all of their findings will apply 

in a similar fashion for the discrete-time case. If the order of the solution is fixed to the 

order of the underlying H2 problem or greater (nc > n2), the optimal solution to the H2 

subproblem is unique, and the H^ subproblem will have HT^Hcc = j for this compensator. 

With this in mind, if 7 > 7 the optimal controller will exist, and it is in fact the unique 

K2opt. This is the special case discussed at the end of the previous section whereby the 

Lagrange multiplier Y associated with the H^, problem is identically zero. Because this is 

nothing but the H2 optimization problem, we can strengthen this to say that no controller 

of any order exists which can reduce ||rzu,||2 any further. Similarly, if 7 < 7, there is no 

compensator of any order which can meet this constraint, implying there is no solution to 

the mixed iJ2/.Hoo problem. This leaves only the region where 7 < 7 < 7. 

5-17 



Consider the case where 7 < 7 < 7. The necessary condition (5.72), with Z = 0, 

implies that either A is neutrally stable (an active constraint) or Y = 0 (an inactive 

constraint), with the latter condition resulting in the Lagrangian associated with the H2 

optimization problem. We can eliminate this second possibility with the following theorem. 

Theorem 5.2.2 Assume nc > n2 and 7 < 7 < 7. Then the solution to the mixed H2/Hoc 

problem lies on the boundary of the H^, constraint. 

Proof: Assume the solution is off the boundary. This implies Y = 0 and the Lagrangian 

reduces to 

£   =   £(AC,BC,CC,DC,Q2>X) 

=   tr [DT
ZWVZW + CzQtC

T
z] + tr {{A2Q2A

T
2 + BWBT

W - Q2) X] (5.76) 

The solution to this optimization problem is the unique K2opt, but for the closed-loop 

system with this controller, ||Ted||oo = 7 > 7) which is a violation of the constraint. Thus 

the optimal solution must lie on the boundary of the H^ constraint. ■ 

For the case where nc > n2 and 7 < 7 < 7, the solution to (5.59) must be the 

neutrally stabilizing solution. This is stated formally in the following theorem. 

Theorem 5.2.3 Assume Aoo is stable. If there exists Qco = Q& ^ 0 satisfying (5.59) and 

(5.60), then the following are equivalent: 

i. 11^11^ = 7 

ii. A is neutrally stable 

Furthermore, in this case Q^ is unique. 

Proof:     This is the discrete equivalent of Theorem 4.2.4 of [8]. ■ 

It is now a trivial extension of these results to state that a* is a monotonically decreasing 

function of 7, and the proof of this statement will be omitted. For the case where 7 = 7 

and the Hx constraint is singular, the solution is not guaranteed to exist since the infimum 
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7 may not be achievable. For 7 = 7 and a nonsingular constraint, we have a minimization 

problem where the solution exists and the constraint necessarily will be active. 

5.3    Summary 

In this chapter the mixed if2/ifoo optimal control problem was set up and parametrized 

over a convex set Q 6 H^. Using this parametrization, we were able to show that the 

optimal controller for a given 7 is unique. The optimal solution was shown to be K2opt if 

7 > 7. Furthermore, the optimal solution must satisfy the H^ constraint with equality 

if 7 < 7 < 7. For the SISO mixed problem, the special case Ti^ = 0 and r2ooT3oo = I 

was investigated using a minimum-norm duality approach. It was shown that the optimal 

controller in this case is piecewise continuous and cannot be represented by a rational func- 

tion. Finally, we investigated the full-order if2/-Soo control problem. As in the free-order 

case, the solution was shown to be K2opt if 7 > 7, and the solution must satisfy the H^ 

constraint with equality if 7 < 7 < 7. Further, we were able to show that the solution to 

the full-order problem results in a neutrally stabilizing solution to an associated Riccati 

equation. Although these results have been shown previously for continuous-time systems 

[8, 9], this chapter showed they apply equally well for discrete-time. Although the optimal 

(free-order) mixed-norm problem is easily cast as a convex programming problem, it often 

results in compensators which cannot be implemented. The next chapter will consider a 

suboptimal fixed-order approach to the general mixed-norm problem. Although the result- 

ing optimization problem will be non-convex, the solutions have a controller order chosen 

by the designer, thus eliminating the need for order reduction. 
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VI.   The General Fixed-Order, Mixed-Norm Control Problem 

6.1    Introduction 

Chapters IV and V investigated analytical and/or numerical solutions to various 

optimal mixed-norm control problems. The results presented so far provide considerable 

insight as to the nature of the solution to these problems, and, in the case of the free- 

order numerical solutions, they allow us to find the limits of performance for mixed-norm 

controllers. The drawback with all the results discussed so far is that, even when a com- 

pensator can be found, it is usually of such high order that it cannot be implemented 

without substantial order reduction. Further, the order reduced compensator is no longer 

optimal, it may no longer meet the constraints, and there may in fact be compensators 

of the same order which outperform the order reduced "optimal" compensator in terms 

of 2-norm performance. An alternative approach is to design directly for a given fixed 

order, and to iterate for increasing orders. Chapter V discussed the analytical formulation 

for a full-order H2/'H^ problem, but it could not be solved analytically, it does not allow 

for l± constraints, and it does not allow for compensator orders less than that of the H2 

subproblem. Clearly, a more general formulation which overcomes these restrictions would 

be highly desirable. 

Several investigators have looked at direct fixed-order design for mixed-norm con- 

trol problems. Of these, there are only two known methods which address the general 

output-feedback problem, allow multiple constraints, and allow the order of the compen- 

sator to be specified by the designer. Walker and Ridgely [50] developed algorithms for the 

continuous-time H2/II00 control problem. Their method used the elements of the compen- 

sator state-space as design variables, thus allowing for increased or decreased compensator 

orders simply by varying the number of design variables. Their method was completely 

general in that the H^ constraints could be singular, and there were no inherent re- 

strictions as to how many constraints could be added to the problem. Walker [9] posed 

the problem with the addition of an L\ (continuous-time analog for £i) constraint, and 

this problem was then solved numerically (with modifications) by Spillman [51]. Ly and 

Schomig [16] also developed a general method for the continuous-time if2/-flroo problem, 
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and their method also uses the compensator state-space as design variables. However, Ly 

and Schomig's method uses symmetric matrix inequalities to represent the H^ constraints, 

and this requires that the solutions to these inequalities be carried as additional design 

variables. Although it is possible that Ly and Schomig's method is better conditioned than 

Walker and Ridgely's (neither method results in a convex problem for the general output 

feedback case), it is likely any perceived benefits will be countered by the increased size 

and complexity of the problem. 

As stated in the introduction to this dissertation, the mixed-norm control problem 

can be viewed in terms of finding a desired point (or compensator) on a Pareto-optimal 

surface (or hypersurface), whereby the respective norms of the individual transfer functions 

define the axes of the space. Viewed in this context, any one of the norms could be used 

as an objective, with all others applied as constraints. By varying the constraints, the 

operating location on the surface is changed. For reasons stated in the introduction, this 

dissertation uses the H2 norm as the objective function, with the tx and E^ norms of 

dissimilar transfer functions being applied as constraints to the problem. This results in a 

mathematical programming problem for which there is a wide variety of methods available 

for solving it numerically. 

This chapter develops a numerical method for solving the general fixed-order, mixed- 

norm control problem for discrete-time, linear systems. The method allows the control sys- 

tem designer to combine the H2 , H^ , and lx norms of dissimilar transfer functions into 

a single H2/£i/Hoc control problem. It extends the Walker/Ridgely method for H2/Hoc 

optimization in that it applies to discrete-time systems, and it accommodates l\ norm 

constraints. As in the work by Walker, the method allows any number of transfer function 

norms to be minimized or constrained directly, as opposed to limiting conservative upper 

bounds or approximations to the norms. Further, the constraint transfer functions can be 

singular, thus allowing the designer to isolate constraints such as sensitivity or control us- 

age. In order to classify the nature of the solution, the theory assumes a unique optimal H2 

solution to the unconstrained problem. This serves to anchor the Pareto-optimal surface, 

and it also provides a starting point for numerically solving the problem. Although the 

method will be demonstrated with the compensator order equal to that of the underlying 
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Figure 6.1    General Mixed-Norm Optimization Problem 

H2 problem, the method can be applied without modification to develop either higher or 

lower order compensators for the same problem. The method carries no claim of unique- 

ness or global optimality over all compensators; however, it has proven to be effective in 

balancing performance and robustness design constraints for a wide variety of problems 

tested to date. 

6.2   Problem Setup 

The system considered for the general mixed-norm control problem is shown in 

Figure 6.1. It contains three sets of exogenous inputs and controlled outputs. In gen- 

eral, no relationship is assumed between r, d and w, or m, e and z. The input d is assumed 

to be a signal of unknown but bounded energy with \\d\\2 < 1, and the input r is assumed 

to be a signal of unknown but bounded magnitude with ||r||oo < 1- The input w is assumed 

to be the discrete-time equivalent of zero-mean white Gaussian noise of unit intensity. The 

state space of P is formed by wrapping the stable weights of an H2 problem from w to z, 

the stable weights of an £x problem from r to m and the stable weights of an H^ problem 

from d to e around the original plant. The problem setup and weighting strategies will be 

discussed further in the examples found later in this chapter and in Chapter VII. Once 

again, the order of the individual problems will in general be less than the order of P. An 
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expanded state space realization of P can be written as 

x2(k + l)    =     A2x2(k)    +     Bww(k)    +    BU2u(k) 

z(k)    =     Czx2(k)    +    Dzww{k)    +    Dzuu{k) (6.1) 

y(k)    =   Cy2x2{k)    +   Dyww(k)   +    Dyuu(k) 

xi{k + l)   =    i4isi(fc)   +      Brr(k)   +     BUlu(k) 

m(k)    =    Cman(fc)    +    Dmrr(k)   +    Dmuu(k) (6.2) 

y(k)    =   CyiaJi(fe)    +     Dyrr{k)    +     Dyuu(k) 

Xoo(k + l)   =    A^x^k)   +     Bdd(k)   +   BUoou{k) 

e(k)   =      CeXoc{k)   +   Dedd(k)   +    Deuu(k) (6-3) 

y(k)   =   Cy^x^ik)   +   Dydd{k)   +    Dyuu{k) 

where x2, xi and x^ may have some or all states in common. 

The objective of mixed H2/^i/Hoc control is to minimize the 2-norm of the closed- 

loop transfer function Tzw, while constraining the 1-norm of the transfer function Tmr 

and the oo-norm of the transfer function Ted to be less than some specified levels. A 

practical application might be to use the oo-norm constraint to guarantee a certain level of 

stability robustness, while acceptable tracking error could be assured by enforcing a 1-norm 

constraint on the sensitivity, and the 2-norm could be used to optimize noise rejection while 

still meeting the other constraints. Mathematically, the problem can be stated as follows: 

For the system shown in Figure 6.1, find an admissible controller K{z) that achieves 

inf       \\TZW\\2 (6.4) 
K admissible 

subject to 

\\Tmr\\i    <    v 

IML    <    7 
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The following discussion will assume a fixed controller order equal to or greater than 

the minimal order of the H2 subproblem; however, extensions of the method for reduced 

order design will be presented. The following assumptions will be made: 

i. (A2,BU2) stabilizable, (Cy2,A2) detectable 

ii. (Ai,BUl) stabilizable, (Cyi,Ai) detectable 

iii. (Aoo,BUca) stabilizable, (Cyoo,^4oo) detectable 

iv. BT
ZUDZU full rank, DywD^w full rank 

v. 

VI. 

'yw-^yW 

A2 - <?*I   BU2 "" 

<?*I    Bn 

c n ^V2 Uyw 

full column rank V 9 G [0, 2TT) 

full row rank V 9 G [0, 2TT) 

vii. Dyu = 0 

Conditions (i)-(iii) ensure the existence of stabilizing controllers, and if only stable weight- 

ing functions are used, the existence of a if which stabilizes the H2 problem was shown 

to be necessary and sufficient for K stabilizing the H^ and £i problems [9]. Conditions 

(iv)-(vi) ensure that the H2 problem considered separately has a non-singular solution. A 

non-singular H2 subproblem will not be necessary for the numerical solution, but it provides 

a convenient starting location and an easily defined anchor point for the Pareto-optimal 

surface. Numerically it will only be necessary that the overall mixed-norm problem be non- 

singular, so as to avoid solutions which require infinite control power or result in open-loop 

response characteristics. Condition (vii) is also not necessary, but a strictly causal Pyu or 

K is sufficient for well-posedness of the problem. As stated in previous chapters, a strictly 

causal Pyu is often a mild assumption when actuator dynamics are considered. Further, it 

frees us from making a similar assumption on the compensator, and it eases the notation 

required for this development. The relaxation of this final assumption will be discussed at 

the end of this section. 

Under certain conditions, the numerical method presented in this chapter will be 

applicable to reduced-order control synthesis problems. Specifically, we need to add the as- 
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sumption that there exist reduced order stabilizing controllers which satisfy the constraints. 

The difficulty that this presents is that we must be able to find an initial stabilizing con- 

troller with the desired order. It should also be noted that the regularity assumptions on 

the H2 subproblem are no longer appropriate for reduced order controllers. This second 

concern is not a problem for the numerical solution because, as stated above, it is only 

necessary that the overall mixed-norm problem be nonsingular. 

The desired compensator (K) can be written in the form 

xc(k + l)    =    Acxc(k)    +    Bcy{k) 
(6.5) 

u(fc)    =    Ccxc(k)    +   Dcy{k) 

where Ac, Bc, Cc and Dc are to be determined from the optimization problem. Note that 

for the continuous-time problem, Dc cannot be used as a design variable. This is because 

it is uniquely determined by 

Dzw + DzuDcDyw = 0 (6.6) 

which is necessary in order for ||rzw||2 to be finite [42]. This is not the case for discrete-time. 

Using (6.5), the closed-loop state space equations can be written as 

x2(A + l) = Ai*i{k)    +     Bww(k) 

z{k) = Czx2(k)   +   Vzww(k) 

xx(fe + l) = Axi(fc)    +       Brr(k) 

m(k) = CmXi{k)    +   Vmrr(k) 

x00(fc + l) = AooXooik)   +     Bdd(k) 

e(k) = Cex00(Ä:)   +   Vedd(k) 

(6.7) 

(6.8) 

(6.9) 
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where 

x2    = 

Xl     = 

x 

X2 

xc 

xc 

X, 

A2 

A1 

*^-oo 

Bw   = 

Br   = 

(A2 + BU3DcCy2)   BU2CC 

Ac 

(Ai + BUl DcCVl)   BUl Cc 

Ac 

(Aoo + BUaa DcCyx)    BUoo C, 

BcCVoa Ac 

(Bw + BU2DcDyw) 

BCGV2 

BcCVi 

Bd 

Cz   = 

C      = 

a = 

■&c-*-'yw 

(Br + BUlDcDyr) 

BcDyr 

(Bd + Bu<x> DcDyd 

BcDyd 

{Cz + DzuDcCy2)   DZUCC 

(Gm + DmuDcGyi)   DmuG, 

(Ge + DeuDcGyao)    DeuGc 

£>       = 

V       = 

ved  = 

*-^zu-*-^c-*-*vw   i   Uz ' zu*** c*^ yw 

DeuDcDyd 4- Ded 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 
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The assumption of Dyu — 0 can be relaxed via a simple change of variables [52]. 

Define 

y =y- Dyuu =» y = y' + Dyuu (6.15) 

Using this substitution, we can obtain an expression for the internal transfer function 

Pyiu which is now strictly causal (Dy>u = 0). All other portions of the open-loop transfer 

functions will remain unchanged. We can now find a controller K' = (A'c, B'c, C'c, D'c) using 

the modified measurement vector y'. Once this compensator has been found, the initial 

transformation needs to be absorbed into the final compensator K = (AC,BC,CC,DC) as 

follows: 

Ac = Äc-B'cDyu{I + D'cDvuy
xC'c (6.16) 

Bc = B'c-B'^il + D'M-'D'c (6.17) 

Cc = (I + D'cDyuy
l C'c (6.18) 

Dc = (I + D'cDyuy
l D'c (6.19) 

The remaining assumption is one of well-posedness, namely (/ + D'cDyu) must be invertible. 

With this relaxation, the only remaining restrictions for numerical solution of the full-order 

problem will be stabilizability, detect ability, well posedness, and an overall mixed-problem 

which is non-singular. This is a minimal set of assumptions which will be met easily in any 

meaningful control problem. Note that, if we wish to solve for reduced-order controllers, 

we must also assume the existence of reduced-order stabilizing controllers. This may turn 

out to be a difficult assumption to verify. 

6.3    The Nature of the Solution 

The mixed-norm control problem is now to find a controller K(z) such that: 

i. A2, Ai and Aoo are stable 

ii.  ||Tmr||i < v for some specified v > 0 
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iii. ||red||oo < 7 for some specified 7 > 0 

iv. The performance index J = \\TZW\\2 is minimized. 

In order to discuss the solution, we need to make the following definitions. 

inf     ||Tmr||i 
inadmissible 

— iCadmissible 

QL   ■=        inf     ||TZ„||2 K admissible 

K2opt := the K(z) that makes ||Tz„,||2 = a 

v := lir^Hi when K{z) = K2opt 

7 := Moo when JC(z) = K2opt 

Kmix '•= a solution to the mixed-norm problem for some 7, v 

v* := ||Tmr||i when K{z) = Kmix 

7* := UTedlloo when K(z) = Kmix 

a* := \\TZW\\2 when K{z) = Kmix 

6.20) 

6.21) 

6.22) 

6.23) 

6.24) 

6.25) 

6.26) 

6.27) 

6.28) 

6.29) 

If we had not assumed a fixed-order compensator, we could state that, for v_ < 1/ < v 

and/or 7 < 7 < 7, if a solution to the H2/£i/Hco control problem exists, it is unique, and 

lies on the boundary of one or both of the constraints. This follows from the convexity of 

||rmr||i and HTedHoo and the strict convexity of ||T2U,||2 when expressed in terms of the Youla 

parameter Q. A similar result was shown by Walker for the multiply-constrained Hi/H^ 

problem [9]. Once we fix the order of the compensator, however, we can no longer cast the 

problem in terms of the Youla parameter. Further, the criteria for admissible controllers 

now requires that they be of the chosen fixed order. For the constraints, this means that y_ 

will generally be higher than the 1-norm associated with the optimal l\ compensator, and 

7 will generally be higher than the oo-norm associated with the optimal R^ compensator. 
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Once again, if we restrict ourselves to nonsingular constraints, the infimization problems 

above become minimization problems due to their finite dimension. We will now examine 

the existence of fixed-order solutions for given constraint levels. 

It was shown in Chapter V that for compensator orders greater than or equal to that 

of the H2 plant, the optimal full-order H2/H00 solution will lie on the constraint boundary 

(7* = 7) when 7<7<7- If 7 > 7, the solution is K2opt, and it is unique. For the more 

general if2/-^i/-ffoo problem, we can characterize the nature of the solution using the Kuhn- 

Tucker necessary conditions [38]. When a solution exists, assuming linear independence of 

the active constraint gradients evaluated at the solution, the following conditions must be 

satisfied: 

i. K must be feasible, i.e., it must stabilize the closed loop map from u to y and satisfy 

the constraints. 

ii. V||TZ„||2 + AiVHT^IIi + A^VHTedlU = 0,  \t > 0, A^ > 0. 

iii. Ax (llT^ll! - u) = 0, \x (HTedHoo - 7) = 0,  Ai > 0, A^ > 0. 

The first condition is merely the feasibility condition, and Walker [9] showed that, if only 

stable weights were used, stabilizing Pyu was sufficient to ensure the stability of Tzw, Tmr, 

and Tzw. The second condition states that the gradient of the objective function must 

be balanced by the scaled gradients of the constraints. The third condition provides the 

most insight into the solution. It states that if either of the constraints is not satisfied 

with equality, then the Lagrange multiplier (A-value) associated with that constraint must 

be equal to zero. This leads us to the conclusion that the optimal fixed-order solution (if 

it exists) will he on one or both of the constraints for the case where y_ < v < V and/or 

7 < 7 < 7. Once again, for a full-order solution, if v > v and 7 > 7, then the solution to 

the problem is the unique K2opt; a lower-order solution (if it exists) will still be an optimal 

H2 solution for this case, but we can no longer claim existence or uniqueness. Cases where 

either v > v or 7 > 7 (but not both) can result in solutions in the interior of the Pareto 

optimal surface; however, these cases can also result in solutions on the H2/H00 Pareto 

optimal curve, or the H2/£-i Pareto optimal curve, respectively. These curves define part 
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of the boundary for the overall Pareto optimal surface. The location of solutions on the 

Pareto optimal surface will be discussed in detail using a specific example in Chapter VII. 

6.4    A Numerical Approach to the Solution 

The approach taken by Ridgely and Walker [50] to solve the E2jB.(X> control problem 

was to define the scalar objective and constraint functions, derive analytic gradients for 

all functions, and solve the problem numerically using nonlinear programming methods. 

Early attempts on problems with a single E.^ constraint forced the constraint to be ac- 

tive by appending it to the scalar cost function using Lagrange multipliers. The resulting 

minimization problem was then solved using the Davidon-Fletcher-Powell method [38] for 

unconstrained nonlinear programming. For problems with multiple constraints, it can no 

longer be assumed that all constraints will be active, thus motivating methods which make 

it easier to accommodate inequality constraints. Walker et.al. [9, 53, 54] achieved better 

performance on both single and multiple constraint problems using Sequential Quadratic 

Programming (SQP) methods [55, 38], which solve the constrained nonlinear programming 

problem by converting it to, and sequentially solving, a series of Quadratic Programming 

(QP) problems. Although SQP convergence to a global minimum can be guaranteed only 

for convex problems, the method performs remarkably well on many non-convex problems, 

and alternate starting conditions can be used to reduce the likelihood of convergence to 

local minima that are not global minima. Note that the potential convergence to local 

minima is due to the non-convexity of the problem, and cannot be avoided by simply 

changing to a different mathematical-programming technique. The problem of local min- 

ima can only be avoided by implementing global search techniques which tend to be very 

inefficient. 

As in Walker's work, constrained nonlinear programming techniques will be used to 

solve the general if2/^i/-ffoo control problem. The resulting numerical optimization is cum- 

bersome, but the efficiency of the method is greatly improved by providing relatively clean 

function and analytic gradient expressions for all aspects of the problem. The objective / 
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and constraints g are as follows: 

/(*)    :=   &\\Tzw\\l (6.30) 

9I(K)    :=   MWTnrh-u) (6.31) 

«7oo(«)    :=   too(\\Ted\\oo -1) (6-32) 

where K represents a vectorized compensator and the £'s are scaling parameters. A modal 

form is assumed for the compensator in order to reduce the number of variables. Although 

this method does not allow repeated eigenvalues in the compensator, in practice it has 

shown itself to be sufficient. If it is deemed necessary to allow for repeated eigenvalues, a 

block-Jordan form or fully populated state-space could be used instead. Finally, because 

SQP searches over both feasible and infeasible solutions, a stability constraint and exterior 

penalty function were added to keep the algorithm from getting lost in an unstable region. 

The stability constraint is stated as 

9S(K) = ^(maxjlA^)!2} - 1) (6.33) 

where Ai(^t2) denotes the ith eigenvalue of the closed-loop system, and gs(X) is constrained 

to be less than zero. The penalty function added to the objective function is simply the 

square of the stability constraint, thus providing continuous derivatives at the stability 

boundary. 

6.4-1 Computing Gradients of the Two-Norm. We begin by defining n2 as the 

number of states, nw as the number of exogenous inputs, and nz as the number of controlled 

outputs of the H2 subproblem, and nc as the number of states of the compensator. The 

square of the 2-norm for stable discrete-time systems can be calculated as 

\\TZW\\22 =  trace [VT
ZWVZW + CzQ2Cj] (6.34) 
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where Q2 is a solution to the Lyapunov equation 

A2Q2A
T

2 + BJBl = Q2 (6.35) 

Introducing an equivalent expression for the Lyapunov constraint, 

A2Q2A
T

2 + BwBl = Q2 <=» trace [{A2Q2A
T

2 + BWBT
W - Q2) X2] = 0,   V X2 e R

2"2 x2"2 

(6.36) 

we can now define 

J(Ac,Bc,Cc,De,Q2,X2) = trace [VT
ZWVZW + CZQ2CT

Z) + trace [{A2Q2Al + BWBT
W - Q2) X2] 

(6.37) 

which is equivalent to (6.34) due to (6.36). Further, once the Lyapunov constraint is 

satisfied, the value of X2 is arbitrary and does not affect the value of J. In order to obtain 

gradients of J, define x as a vector consisting of the components of the matrix X2. We 

can define an expression equivalent to (6.37) 

J(K,X) = J (AC(K),BC(K),CC(K),DC(K),Q2(K),X2(X)) (6.38) 

The differential of J can be written as 

"* 8 7 "x 8 7 
6J = 6J(K, X) = £ f-tKt + £ -±6Xi (6.39) 

However, 
9J A   ^     A   T       n   n   T       ^ ^.     9J 
av       A2Q2A21 +BwBw

l -Q2=0 =► ^- = 0,  Vt (6.40) 
0X2 dxi 

Further, we can write 

dj    =    yy   dJ   da2pq    y ^   dJ   8bWpq 

^y dJ dcZvq   ^^   dJ    dd2Wpq   yy dJ dq2pq 

-f,      1   dc,     OK; ,     ,  ddzw       ÖKi ,        ,   dq2     8K,I = 1    g=l ZPI l        p=l q=l ZWPI l p=l       q=l        «p,    *""» 
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Concentrating on the last term of (6.41), we note 

8J 

dQ2 

= A2
TX2A2+CZ

TCZ-X2 (6.42) 

Since X2 is arbitrary, we can choose it such that 

A2
TX2A2 + CZ

TCZ -X2 = 0 (6.43) 

With this choice of X2, the last term of (6.41) is identically zero. Such an X2 always 

exists as can be seen by noting that (6.43) is a Lyapunov equation and we are choosing a 

compensator such that A2 is stable. Under these conditions, a real, symmetric, positive 

semi-definite X2 which solves (6.43) is guaranteed to exist. With this we can define 

X2 = 
Xn   -X12I \Qu   Q12 

1X12   x22 j 

The remainder of the gradients can now be expressed as 

Ql2   Q22\ 
(6.44) 

dj 
dAc 

dj 
dBc 

8J 
dCc 

—   2 [Xl2A2Qi2 + X12BU2CCQ22 

+X22BcCy2Qi2 + X22ACQ22 + X12BU2DcCy2Qi2] 

(6.45) 

X^A.Q^Cl + X^2BU2CcQ
T

l2Cl + X23BeCy2Q11C%3 + X22AcQ
T

12Cl       (6.46) 

+Xl2BwD    + X22BcDywD    + X12BU2DcCy2QuC   + X12BU2DcDywD, )T 
yw 

=   2 [D*uCzQi2 + DT
ZUDZUCCQ22 + BT

uXxlA2Ql2 + BT
UXX1BU2CCQ22 (6.47) 

+BlX12BcCy2Q12 + BlXl2AcQ22 + DT
ZUDZUDCCV2Q12 + Bl2X11BU2DcCV2Q12] 
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dj 
dDc 

2 [DT
zuDzwDT

yw + DT
zuDzuDcDywDT

yw + DT
zJ3zQxxCl + DT

zuDzuDcCy,QlxC
T

y2 

+DT
zuDzuCcQ

T
l2Cl + BT

uXuA2QnCT
y2 + BT

uXnBU2DcCy2QxlC
T

y2 

+BU XuBU2CcQ12C   + B  X12BcCy2QnC   + BU2X12AcQl2C, 2/2 

+BU XnBwD    + Bu^XuBU2DcDywD    + B   Xi2BcDywD, 'yw-LSyW (6.48) 

The method for actually computing the gradient V||TZU,||2 at some vectorized compensator 

K is as follows: 

i. Solve the Lyapunov equations for X2 and Q2. 

ii. Compute the partials with respect to the compensator state space as shown above, 

iii. Compute the gradient with respect to K as 

dj 
8K, 

dJ 
dA 

dJ 

c/ diag   \®**c/ superjsubdiag   \^-^c/ 1 

dJ dJ 
dBc 

dJ 
dC, c/ 1 

dJ 
dCcJnc \dDc 

dJ Y-(—)T 
A        \dDcJnv 

(6.49) 

where the individual vectors represent the columns (or the diagonals in the case of 

Ac) of the partial derivative matrices, nc is the number of compensator states and ny 

is the number of measurements. Since we are assuming the subdiagonal of Ac is the 

negative of the superdiagonal, the elements of the second vector in (6.49) are formed 

from the difference of the super- and subdiagonal elements. 

The penalty function associated with the objective makes it unlikely that a 2-norm 

gradient calculation for an unstable system will be necessary. However, in the event that 

it is required, the algorithm detects the unstable closed-loop system and switches to a 

finite-difference calculation for the gradient of the stable and antistable projections of the 

objective transfer function. 

6-15 



6-4-2    Computing Gradients of the One-Norm.      The state space expression for the 

1-norm of a SISO transfer function is 

\\T   II   = Y^ If  AkB I -I- YD \\J-mr\\\ —  /  j |*-'m'Avit-'r|    '    \Lyn (6.50) 
fc=0 

The partial derivatives with respect to the closed-loop state space can be expressed as 

d\m mr Hi 

8Ä! E 
k=0  L 

k-\ 

sgn (CmAkBr) £ [{AD1 CT
mB

T
r (Alt'1-1 

1=0 

8Br 
£sgn {CmAkBr)\(A^)kC, ■'m 

fc=0 

9||rmr111    =   f>gn(fm.4*£g[ßr
T (A^f 

dCn fc=0 

a||rT mr ||i         
sgn (Vmr) 

(6.51) 

(6.52) 

(6.53) 

(6.54) 

where sgn(-) is 1, -1 or 0 depending on the sign of the argument.   From these, we can 

express the gradients with respect to the compensator state space as 

dACi, 

d\\Tmr\\, 

dAx 

d\\T7 
nc    ri\ 

dB, 

Ö 1121 

P=I «=i 

Til       "c 

dCc 

d\\T„, 

~ = H2 Yl 6hiB^P, 
p=l 8=1 

7li       Tlj 

"1+P,9        p=l 8=1 

röllrmrll! 
Ößr 

(6.55) 

(6.56) 
«i+p,8 

*m      "c 

+ ]L ]C 6J,gDmuPii 
P,"i+8       p=l 8=1 

9 iir mr Ml 

dC 
(6.57) 

P,«l + 8 

ÖX>e 
~  -  2ZzlB^P,iCv^,q 

p=l 8=1 

diir mr || i 

+      7 ./^Drnup,jC, 
p=l 8=1 

vi,- 

dA1 Pi«       p=l 8=1 

dCn 

*m     "r 

J P>9       p=l 8=1 

<9 II^ZTJT.^- II x 

dBr 

&Dmr 
(6.58) 
P.9 

where r^ is the number of states, nr is the number of exogenous inputs, and nm is the 

number of controlled outputs for the £i sub-problem. Naturally, the infinite summations 

cannot be carried out; the current implementation truncates the summation at some spec- 
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ified number of time steps. Values for this truncation level vary from 100-500 for systems 

with closely spaced modes, and 5000-10000 for sytems with widely spaced modes. Once a 

solution is found for a given truncation level, the tolerance for the 1-norm is checked using 

either a Hankel singular value method (as defined by Dahleh and Diaz-Bobillo[5]), or by 

simply recalculating the norm using a significantly higher truncation level. If the error is 

greater than a specified tolerance, the truncation level is increased and the optimization 

repeated starting with the last computed compensator. 

For MIMO transfer functions, the 1-norm is determined by the maximum row sum 

of SISO transfer function norms. To implement this, the row where the maximum occurs 

can be determined first, and SISO norms can be computed for each transfer function in 

the row. However, the nature of the t\ optimal solution is such that the max row sum 

may occur over more than one row, leading to discontinuous derivatives. For this reason, 

the current implementation is to append each row sum as a separate multi-input single- 

output transfer function constraint, with the same constraint level used for each row sum. 

If implemented with an algorithm which uses only active constraints to determine search 

directions, the inactive row sums will have no effect on the convergence of the problem. The 

only drawback to this approach is the additional computation time required to compute 

all the row sums and their gradients. Many optimization subroutines have the capability 

to limit the gradient calls to active constraints, and this is an application in which that 

capability would be beneficial. The norms of the inactive rows still need to be checked, 

but some of the computationally expensive gradient calculations can be eliminated. The 

active constraint set has not yet been implemented with the current algorithms, but it is 

recommended as a future enhancement. 

The method above works well (albeit slowly) for truncation levels up to approximately 

1000, which is often more than sufficient for systems with closely spaced modes and sample 

rates set at 5-10 times the highest mode. For systems with widely separated poles, it was 

found that a sampling rate fast enough for the highest mode often resulted in truncation 

levels of 5,000-10,000 in order to capture the lower modes. These truncation levels resulted 

in prohibitively high run times and/or numerical instability. For systems such as this, a 
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modification to the subroutines providing l\ norm and gradient information was developed 

by Spillman [51], and is described subsequently. 

For now, we limit the discussion to SISO systems. If A\ is non-defective, and denoting 

the ith left and right eigenvector as Li and Ä;, respectively, then the partial of A\ with 

respect to any element of Ai is given by 

M = ^^ = |*A'ir> + ÄrVM^ (6.59) 
ddpq oapq oapq oapq oapq 

where A is a diagonal matrix of eigenvalues, 

—^   =      V   ajRi + ciRi = Vi + ciRi - (6.60) 
davq . ^rJ... 

f±   =   -R->^R-> (6.6!) 
oapq oapq 

LJ •""* dava da     ■"-» Mpq Wpq 

A,- — Ai 
,   *#J (6-62) 

Q   =   -K^M^-i^ff^ (6.63) 
Z OCLpq 

dAk Ä ÖAfc ÖA, 
= E«r^r (6-64) öaP9 f^ d\i dap 

d\i TT dAi 
dapq ' dapq 

Lf^Ri (6.65) 

and M is a scaling matrix defined by 

RiHMRi = 1 (6.66) 

Typically the scaling matrix is chosen to be an identity matrix, thus eliminating the partial 

derivative with respect to M from the gradient expression. Note that the partial of Ak with 

respect to A» is an almost trivial calculation due to the diagonal form of A.  The partial 
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derivative of the 1-norm with respect to Ai can now be found element-wise from 

d\\T N 

o ,— = E s§n (Cm^Br) Cm^Br (6.67) 
dA^    t^> dap* 

The sign of CmA\Br can be stored as part of the norm calculation. This eliminates a costly 

part of the gradient calculation because this factor no longer needs to be recomputed for 

k — 0,..., Ntrunc. With this, the only remaining part which requires evaluation is the 

diagonal matrix Ak, at each index k, and this only requires the calculation of the diagonal 

elements. Once these terms have been calculated, the expressions in equations (6.52-6.58) 

can be quickly evaluated. 

One-norm gradients for MIMO systems are caclulated for each output by summing 

the gradients of the individual SISO transfer functions between each of the outputs and 

the separate inputs. The same method of defining MIMO constraints using multiple multi- 

input single-output constraints, as described previously, is then used. 

Currently, the new method is limited to non-defective matrices with no repeated 

eigenvalues in the closed loop A\ matrix. If the repeated roots stem from weighting func- 

tions, it is usually possible to perturb these functions to avoid repeated roots without any 

adverse affects on the overall design. To a lesser degree, it is also possible to perturb 

the plant model to avoid having repeated roots. While possible extensions for the case of 

repeated eigenvalues are currently under investigation, the current method switches to a 

finite difference calculation in the event they occur. Although this involves a degradation 

in the efficiency of the gradient algorithm, the accuracy of the finite difference gradient is 

sufficient to maintain numerical stability and convergence. 

6.4-3 Computing Gradients of the Infinity-Norm. The approach for taking gra- 

dients of the co-norm is based on the singular value sensitivity analysis of Giesy and Lim 

[56], with some modification required to apply it to a discrete-time problem. If we assume 

the maximum singular value of Tej evaluated at K has a single peak for 6 € [0,27r), the 
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derivative of H^Hoo can be written as 

d\\Tt ed||oo 

dKi 
= 3? H dTed (e J?»o 

dKi 
Vl (6.68) 

where Ui and v^ are the singular vectors associated with the maximum singular value of 

Ted, 00 is the phase angle where the singular value reaches its maximum, and Knom is the 

nominal (vectorized) compensator. The derivative of Ted can be determined from 

dTed (e^° 

dKi 

dCe 

dKi 
(e>*>! - A*)"1 Bd + Ce (e^I - A^y1 ^ 

dA0 

dKi 

dVed" 
+    Ce(e^I-Aooy

1^{e^I-Aocy
lBd+    , 

dKi dKi 
(6.69) 

The actual implementation of this method uses a banded search to locate any number 

of singular value peaks. Each peak is then treated as a separate constraint with the 

same constraint value. Although this may result in carrying inactive constraints in the 

optimization problem, it avoids the problem of discontinuous derivatives which can occur 

if gradient information is obtained from a single peak. There are some subtleties associated 

with the multi-peak method in that a new peak may develop while solving the optimization 

problem. In this case, the new peak is detected and the problem is restarted with a 

composite of new and old frequency bands, thus avoiding the problem of bouncing back and 

forth between two different peaks. A balance between old peak locations and duplication of 

the frequency bands must be maintained, and this has been implemented using a minimum 

bandwidth and logic for deciding when a peak has simply moved, as opposed to identifying 

it as a new peak. The algorithm has proven to be reliable for a wide variety of problems, 

and it allows for mixed-norm solutions much closer to H^ optimal than was possible using 

either single peak or eigenvalue methods to solve for Hx gradients [57]. 

6-4-4    Computing Stability Gradients. 

(6.33). Define 

The stability constraint was defined by 

Am    =    <?m + jum = arg (max |Ai(^2)|) 
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|Am|2    =   o>m + v3
m (6.70) 

With this, we can now write the gradient expression as 

d^- = 26 [am~d^~ + Um~d^ ' (6J1) 

where 

'En  =  K(IT^T \ 
*,        * Km dm Tm) 

lm and rm denote the left and right eigenvectors, respectively, associated with the maximum 

eigenvalue, and the partial of A2 with respect to n, can be easily evaluated componentwise. 

6.4-5 Implementation Features. The method has been implemented in MATLAB 

[58] using a modular collection of norm and gradient subroutines for each of the different 

norms. With this approach, any number or combination of different constraints can be 

added to the problem without modification to the code. The input to the problem is a 

stack of transfer functions in state space form, with a second parameter matrix identifying 

which transfer function should be used as the objective function, and which norm and 

gradient should be evaluated for each of the different transfer functions. Most of the 

early example runs were performed using the MATLAB SQP routine (constr.m) [59]. The 

MATLAB routine converges for most of the smaller problems (50-60 design variables or 

fewer); however, for larger problems constr.m has problems maintaining a positive definite 

approximation to the Lagrangian Hessian. FORTRAN shells have been built to incorporate 

the ADS [60] collection of optimization subroutines and the IMSL implementation of SQP 

(DNCONG) [61]. Both the IMSL and ADS subroutines have the ability to call for gradients 

of only the active constraints, and the ADS collection allows the user to experiment with all 

the different optimization strategies and line search methods. Of these, the IMSL algorithm 

seems to be the most efficient, and it has converged successfully for the larger problems 

(approximately 100 design variables).   A limitation of the IMSL subroutine is that the 
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fixed convergence and line search criteria are so strict that they sometimes fail to solve 

problems which are solvable using more relaxed criteria. A version of SQP (sqp.m) based 

on Schittkowski's method [55] (essentially what has been coded for IMSL) has recently 

been coded for MATLAB[62]. This version allows the Hessian to be saved and passed as 

a variable when sequentially solving for several points on a Pareto optimal curve. This 

capability results in much greater efficiency on problems in which varying constraint levels 

must be investigated and has been implemented as the default solver for the mixed-norm 

algorithm. 

One of the more critical decisions associated with the numerical method is that of 

choosing an initial compensator. The default mode of operation solves the H2 subproblem 

for the full-order optimal compensator and uses this as the starting point. This requires 

that the H2 subproblem be nonsingular. A singular H2 subproblem is permissible with 

the method, but an initial compensator must be provided to start the algorithm, and 

the overall mixed-norm control problem should be nonsingular. It is important to note 

that the order of the solution will always be fixed at the order of the initial compensator. 

Therefore, if a higher or lower order solution is desired, an initial compensator with that 

order must be provided as the starting point. There are no restrictions as to how these 

initial compensators may be found. Successful approaches include model order reduction or 

state augmentation of full-order compensators, and H2, H^, or ^ synthesis of controllers 

for reduced or expanded order plants. Once a single stabilizing controller is found with 

the desired order, successful results from the mixed-norm problem will then provide the 

necessary compensators for starting the algorithm with new constraint levels. 

Although this dissertation deals only with the discrete-time algorithms, the discrete- 

time algorithms were combined with those for continuous-time [9, 50, 57, 51] to provide 

a single program capable of solving fixed-order, mixed-norm control problems for both 

continuous-time and discrete-time systems. A common data structure, naming convention, 

and calling sequence was developed for all subroutines, and a single shell was created 

which is capable of running both continuous and discrete-time problems. A more complete 

description of the Mixed-Norm Toolbox for MATLAB [62] can be found in Appendix C. 

6-22 



6.5   A SISO F-16 Example 

Consider a simple longitudinal controller design for a short period approximation of 

an F-16. The linear, time-invariant, continuous-time model includes second order dynamics 

with a first order pre-filter to model servo dynamics. The plant states are the angle of 

attack (a) and pitch rate (q). The control input to the system is a commanded stabilator 

deflection (6e), and the output is a measured normal acceleration (az). The plant model 

is discussed in more detail in Appendix B. The objective is to design a controller which 

provides good noise rejection as well as acceptable tracking and robust stability. The 

approach to the problem will be to first investigate the tradeoff between tracking and 

noise rejection using an H2/£i approach. Once an acceptable level of tracking is found (as 

defined by a 1-norm constraint level for weighted sensitivity), the stability robustness will 

be improved by adding an oo-norm constraint on the complementary sensitivity, resulting 

in an H2/£i/Hoc optimization problem. 

The intent of the individual subproblems is to design them for the type of control 

problem handled best by the particular norm being used. Specifically, while H2 methods 

can provide tracking performance, their particular strength seems to be for disturbance 

and noise rejection (regulator problems). Tracking problems which require fast response 

often exhibit large overshoot when solved with H2 methods. The .Hoc method is capable 

of providing good tracking, but it tends to produce high bandwidth controllers which 

have poor noise performance. The H^, method, however, is very well suited to handling 

the robust stability problem [4]. The tx method, while it is relatively untested as far as 

applications are concerned, appears to hold great promise for tracking problems. Limited 

trials with l\ designs have shown better tracking performance than H^ methods, and less 

of a degradation in terms of noise rejection. 

The transfer functions will be provided in continuous-time for ease of interpretation; 

however, they were discretized using a zero-order hold and sample rate of 20 Hz prior to 

solving the control problem. The sample rate was chosen to be fast enough to capture the 

servo dynamics (20 rad/sec), but not so fast as to necessitate large truncation levels for 

the £i subproblem. 
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6.5.1 H2 Subproblem. The H2 problem is to find a stabilizing controller which 

minimizes the response of the normal acceleration and weighted control due to wind dis- 

turbance and measurement noise (a standard steady-state LQG problem). The wind gust 

is assumed to be white Gaussian noise (WGN) of strength 5 x 10~4 rad2-sec, and it enters 

the plant as an angle of attack disturbance. Because we are interested in controlling the 

g-levels, the state weighting matrix is identical to the system C matrix, and a control 

weight of 10.0 was chosen (after several interations) to ensure reasonable control usage. 

The control weighting penalizes the energy of control usage but establishes no explicit 

constraints on actuator limits or rates. Although it would be possible to constrain specific 

limits and/or rates using an tx constraint [5], this will not be done for this problem. A 

further check on control usage will be made during the closed loop simulation, and a later 

example will illustrate the importance of constraining the magnitude of control usage. The 

measurement noise is modeled as WGN with a strength of 1.6 x 10-6 rad2-sec. There was 

no attempt to achieve good reference tracking in the H2 problem, only noise and distur- 

bance rejection. Tracking considerations will be taken care of by the l\ constraint. The 

resulting continuous-time state space matrices for the H2 sub-problem are 

A2    = 

Cz   = 

-1.491 0.996 -0.188 

9.753 -0.96 -19.04 

0 0 -20.0 J 
-35.264 0.334 4.366 

Bm   = 

a V2 

0 0 0. 

=    [-35.264    0.334    4.366] 

D 

D. yw 

■-0.03334 o- ■  0 

0.21808 0 >    BU2    — 0 

0 
0    0" 

.0   o. 

0. 

)      U zu 

.20.0 
'   0 

.10.0 

0    0.004] ,   Dyu   =   [0] 

(6.73) 

Figure 6.2 shows the H2 optimal system response to an initial 5 degree angle of attack 

disturbance, and Figure 6.3 shows the response to a 1-g step acceleration command. The 

system does a good job of disturbance rejection, but control usage is relatively high in 

accomplishing the task. The high control usage is mainly attributed to the impulsive 

nature in which the disturbance enters the system, which is not entirely realistic. For this 

reason, and since a control limit of 30 degrees is not exceeded, the control weight will be 

left as is. As expected, the system has very poor performance in tracking, and this shows 

up in the high steady-state error to the step command. Once again, the non-zero steady 
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state error is not meant to be indicative of H2 designs. The H2 subproblem was designed 

for disturbance and noise rejection only; the tracking problem will be addressed by the l\ 

constraint. 

6.5.2 £i Subproblem. The £\ problem is set up to constrain the weighted sen- 

sitivity (WSS) to ensure a certain level of tracking performance. For a SISO problem, 

the sensitivity minimization problem is equivalent to a reference tracking problem. A 

frequency-dependent weight will be used to facilitate the tradeoff between low frequency 

tracking and susceptibility to high frequency measurement noise. Typically, a weight on 

sensitivity for an H^ problem would be the inverse of the desired sensitivity [4]. We want 

to attenuate system response to sensor noise and unmodeled dynamics at higher frequen- 

cies, while maintaining sufficient gain at low frequencies for good tracking and disturbance 

rejection. This calls for a weight which has high gain at low frequencies and low gain at 

high frequencies. The £i problem doesn't shape singular value plots directly, as in H^, but 

the frequency domain weight works well for this problem due to the low frequency nature 

of the pilot commands we are interested in tracking. The sensitivity weight used for this 

example is 

W. = -^±^ (6.74) 
s + 0.0001 

and the resulting continuous-time state space matrices for the £i sub-problem are 

A,    = 

-1.491 0.996 -0.188 

9.753 -0.96 -19.04 

0 0 -20.0 

-35.264 0.334 4.366 

0 

0 

0 

-0.0001 

"   0   ' 

Br   = 
0 

0 

.1-0. 

)     -Bui = 
2 

Dmr   =    [ 1.0] 3      Umu =  [o] 

Dyr     =      [ 1.0] >       Dyu = [ 
(6.7 

0] 
5) 

0   ' 

0 

20.0 

0 

Cm   =    [-35.264    0.334    4.366    1.0] 

Cyi    =    [-35.264    0.334    4.366    0] 

The truncation used for the £i constraint was 500 time steps (25 seconds), which was 

sufficient to ensure the finite support length of Tmr was captured. The H2/£i cases close to 

£i optimal could be solved using a truncation of 100 time steps, but as the constraint level 

backed away from £i optimal a higher truncation level was necessary. The reason for this 

6-26 



is again the fact that the H2 subproblem was not set up to track a reference command, 

thus resulting in a very large value of ||Tmr||i evaluated using K2opt. 

6.5.3 Hoc Subproblem. The H^ problem is used to constrain the complementary 

sensitivity, thus achieving a certain level of stability robustness to unstructured multiplica- 

tive uncertainty [4]. Most plant uncertainty effects are at higher frequencies which, for this 

example, lie beyond the Nyquist frequency. For this reason an unweighted complementary 

sensitivity was used for the co-norm constraint. If more specific structures for the plant 

uncertainty were available, a less conservative way to handle this constraint would be to 

apply /x-synthesis [63] to obtain the weighting functions for the H^ constraint. An H2/fi 

problem such as this was formulated and solved by Walker [64] for a continuous-time ex- 

ample, but it could be applied equally well for discrete-time problems. Since a specific 

structure for the uncertainty is not known for this problem (or will not be assumed), the 

unweighted complementary sensitivity will be used to address the robust stability concerns. 

The continuous-time state space matrices for the H^ problem are 

-Aoo       — 

ce  = 

--1.491    0.996 -0.188- ■ 0 ■ ■  0 

9.753      -0.96 -19.04 ,        Bd     — 0 »         ^«oc          — 0 

.     0             0 -20.0 . .20.0. .20.0 

0    0    0] ,    Ded   =   { 0] 3          -*-^€U                  [ 1.0] 

-35.264    0.334 4.366] ,   Dyd   =   [ 0] .       Dyu      =      [0] 
(6.76) 

6.5.4 The H2/£i Results. Table 6.1 lists the resulting norm values for the H2/£i 

compensated systems, and Figure 6.4 shows a comparison of the noise-free step responses. 

Note that, although HTgdHoo levels appear in Table 6.1, there was no attempt to constrain 

them for Cases 1-8. The very large value of HT™,-!!! (unmeasurable for truncation levels 

up to 50,000) for the H2 optimal design is indicative of a controller which cannot track 

a reference with zero steady-state error. With the exception of the H2 optimal design, 

all the mixed controllers have zero steady-state error, and the overshoot and settling time 

decrease with the level of v. Figure 6.5 shows the singular value plots of the loop transfer 

function {GK), and Figure 6.6 shows the sensitivity for the H2 and H2/£i designs. With 
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the exception of the H2 optimal design (Case 1), all the mixed controllers give adequate 

low-frequency response, and the sensitivity improves with decreasing levels of v. The 

higher gain for GK at low frequency corresponds to the improved step tracking for these 

systems. 

Table 6.1    Mixed E2j£x Control Results 

NT"    II NT     II IIT   II H-^zwIU M-1 mr Ml ||-terf||oo 

Case #                      a v                 7 

1 (H2 optimal)     0.171 Very Large       1.43 
2 0.176 2.70 1.60 
3 0.178 2.60 1.59 
4 0.187 2.50 1.51 
5 0.240 2.40 1.37 
6 0.279 2.30 1.29 
7 0.335 2.20 1.20 
8 (A optimal) 0.400 2.13 1.16 

Figure 6.7 shows the complementary sensitivity plots, which indicate that weighted 

sensitivity and complementary sensitivity are not actually competing objectives for the 

controllers shown. Note that the controller which yields the lowest sensitivity (£j optimal) 

also has the lowest complementary sensitivity of all the mixed H2/ti controllers. The low 

frequency weight is what allows us to have non-competing constraints in this case, but 

in general sensitivity and complementary sensitivity constraints can compete with each 

other. An example where they do compete will be shown in the next chapter. Although 

the complementary nature of the two constraints for this problem would seem to suggest 

that the £1 optimal controller is the best choice, Figures 6.8 and 6.9 show that the price 

of £1 optimality for this particular plant is poor high frequency noise rejection and high 

control usage. These properties of the system are clearly improved by blending H2 features 

with those of £1. 

6.5.5    The H2/£i/H^ Results. The second part of this example involved im- 

proving the complementary sensitivity (as measured by the oo-norm) for a given level of 

tracking performance (as measured by the 1-norm on weighted sensitivity). The cases 

shown in Table 6.2 held a 1-norm constraint level of 2.5, and Figure 6.10 shows the com- 
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plementary sensitivity plots for these cases. As shown in the plots, the method effectively 

reduced the singular value peak by decreasing 7, while maintaining a desired level of track- 

ing performance. Figure 6.11 shows step responses and control usage for Cases 1, 4 and 

13. These particular cases were chosen to make a performance comparison between the 

H2 regulator, an H2/£i controller which includes tracking, and an H2/£i/H00 design which 

includes tracking and improved stability robustness. For this particular problem, the H^, 

constraint imposed on Case 13 actually improved the tracking, but this generally will not 

be true for more complex MIMO systems. Both Cases 4 and 13 again show that the penalty 

for improved tracking and robust stability is increased control usage and susceptibility to 

noise. 

Table 6.2    Mixed #2/4/#oc Control Results 

IMzu>||2       IMmrlll       [Medlloo 

Case # a v 7 

9 0.192 2.50 1.45 

10 0.202 2.50 1.40 

11 0.217 2.50 1.35 

12 0.237 2.50 1.30 

13 0.259 2.50 1.25 
14 0.287 2.50 1.20 

15 0.325 2.50 1.15 

A final note is in order concerning the F-16 example. This example did not demon- 

strate a compelling need for a full mixed-norm approach to controller design. Although 

the H2ß\ problem clearly demonstrated the competing objectives of tracking, noise rejec- 

tion and control usage, the stability margins were good enough that a separate constraint 

for stability robustness was probably not necessary. As an additional measure of robust 

stability, the independent gain and phase margins (IGM and IPM, respectively) are shown 

in Table 6.3. These margins represent the largest independent variation in either gain or 

phase for which the system remains stable. For a SISO system, the gain margin is the 

union of the complementary sensitivity gain margin and the sensitivity gain margin. How- 

ever, for MIMO systems, this is not the case; in general both forms of the gain margins 

should be considered [65].  As shown, gain margins are [—10   6] dB or better and phase 
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Table 6.3    Mixed Optimal Independent Gain/Phase Margins 

Case #     ||Ted||oo IGM(dB) IPM{deg) 

1 1.43 Very Large    [ -10.38 10.76 ]          41.6 
2 1.60 2.70 -8.55 10.89 41.8 
3 1.59 2.60 -8.57 11.49 43.0 
4 1.51 2.50 -9.48 10.61 41.3 
5 1.37 2.40 -11.42 9.18 42.9 
6 1.29 2.30 -12.91 8.39 45.5 
7 1.20 2.20 -15.47 5.93 49.1 

8 1.16 2.13 -16.99 5.44 50.8 
9 1.45 2.50 -10.16 8.96 40.3 
10 1.40 2.50 -10.88 8.43 41.8 
11 1.35 2.50 -11.73 7.64 43.5 
12 1.30 2.50 -12.74 7.02 45.2 
13 1.25 2.50 -13.98 6.59 47.2 
14 1.20 2.50 -15.56 6.25 49.3 
15 1.15 2.50 -17.69 5.93 51.5 

margins are 40 deg or better for almost all cases. A worthwhile addition to this problem 

might be to add l\ constraints for control usage and/or control rate. As a proof of concept, 

however, it has been demonstrated that the present method can effectively combine the 

three different norms in a single constrained optimization problem. 

6.6    Convexity vs.  Controller Order 

Although it is well known that the general output feedback problem is non-convex 

when the compensator order is fixed, few researchers have explored this potential problem 

area. In fact, most published results for E^lB.^ tend to show smooth convex Pareto 

curves demonstrating the tradeoffs between the norms. Although a first glance at these 

results might suggest that the non-convexity of the problem is a theoretical concern only, 

there are more than enough ill-behaved examples to convince any researcher otherwise. 

Furthermore, experience with several examples has shown that non-convexity is even more 

of a problem for H.ijL\ than it is for if2/-ffoo- 
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The primary numerical difficulty with non-convex problems is that an optimization 

algorithm can get stuck at a local minimum which may actually be suboptimal or even 

infeasible (i.e., it doesn't satisfy the constraints). Further, if the desired result is to define 

the Pareto curve or surface, a non-convex problem may not allow free movement along the 

curve or surface, thus requiring the algorithm be reinitialized repeatedly. Curves which 

appear monotonically decreasing may actually be masking discontinuities in the design 

space. Figure 6.12 shows the Pareto curve for the SISO F-16 aircraft problem considered 

in the previous section. The curve clearly shows two distinct segments: one segment is for 

v < 2.43, and the second segment is for v > 2.43. The two segments actually represent 

two local "valleys" in the parameter space. Further, it requires a discontinuous jump in 

the design variables to move from one valley to the next, which is evident in the movement 

of the compensator eigenvalues (see Figure 6.13). Numerically, this discontinuity makes 

it necessary to define the two portions of the curve seperately. An unaided optimization 

algorithm may be unable to transition from one valley to the next when progressing along 

the curve, making it necessary to restart the optimization algorithm from a new location 

in the parameter space. Also, the fact that the dicontinuity occurs in the compensator 

eigenvalues suggests that this problem cannot be avoided simply by choosing a different 

state space formulation. 

Figure 6.14 superimposes the Pareto curves for third, fifth, and tenth order compen- 

sators, along with the curve for the optimal compensator. The optimal compensator was 

found using the free order method from Section 4.6, and it was 10Qth order without any 

attempted order reduction. As shown, the apparent non-convexity disappears as the com- 

pensator order is increased. This is not surprising, since the free-order problem discussed 

in Chapter rV was shown to be convex. However, the higher order curves can be deceiving. 

Despite the convex appearance of the fifth order curve, Figure 6.15 clearly shows that there 

is still a discontinuity in the movement of the eigenvalues. As in the third order curve, this 

discontinuity makes it difficult for the unaided algorithm to traverse the entire curve. It 

becomes necessary to restart the algorithm using a compensator from a different location 

in the parameter space. 
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In addition to demonstrating the non-convexity of the fixed-order problem, Figure 

6.14 also highlights an important consideration when choosing a controller order. If, for 

this problem, a 1-norm constraint level of 2.5 was chosen, very little is sacrificed in terms 

of 2-norm performance in order to obtain a third-order controller (see Figure 6.16). The 

curves for third, fifth and tenth-order controllers are almost indistinguishable in terms of 

step response, noise rejection and control usage. However, a 1-norm constraint level of 2.4 

shows a different result (see Figure 6.17). Here we see a slight penalty in terms of control 

usage for the third-order compensator, and a higher order compensator might be justified 

by the improvement in performance offered in this case. Issues such as this need to be 

closely examined prior to selecting an arbitrarily low-order compensator. 

A final point should be made regarding the non-convexity of the fixed-order, mixed- 

norm control synthesis problem. Just as the convexity of the problem may change with 

controller order, it also changes with the norm used to define the constraint. For example, 

the F-16 example behaves quite differently when the oo-norm is used to constrain the 

weighted sensitivity.   (As stated earlier, H^ constraints can be used to provide tracking, 
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but they tend to be even more susceptible to high frequency noise than an equivalent 

£i constraint.) Figure 6.18 shows the third order Pareto curve for an H2/Hoc problem 

using the same transfer functions as the H2/£i problem shown earlier. The curve appears 

convex, and Figure 6.19 reveals no discontinuities in the eigenvalue traces. It is not being 

suggested that all fixed-order H2/Hoo problems will behave like this; indeed, part of this 

smoothness can be explained by where on the H2/£\ curve the H-^/H^ results would fall. 

The value of ||Tmr||i varies from 3.5 to 3.1 as ||Tmt.||oo varies from 1.5 to 1.1 for the H2/Hac 

results. This is well clear of the discontinuity in the B.2jt\ curve, which occurs around 

ll^mrlli = 2.4. Despite this partial explanation, however, experience with other examples 

suggests that H2/£i problems are more likely to have problems with local minima and 

non-convex regions than equivalent H2/H<x problems. This is an area of research which 

should be pursued further. 
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6.7   Summary 

This chapter developed a numerical method for solving the general fixed-order, 

mixed-norm control problem for discrete-time linear systems. The method will minimize 

the 2-norm of a transfer function, while constraining the 1-norms and/or co-norms of an 

arbitrary number of dissimilar but related transfer functions. The method can be used 

without modification to design controllers of higher or lower order than any of the indi- 

vidual transfer functions. The problem is solved numerically using gradient-based, con- 

strained, nonlinear programming methods. Overall efficiency has been greatly improved 

by providing analytic gradients for virtually all aspects of the problem, and the discrete- 

time algorithms have been combined with similar continuous-time algorithms to provide 

a single Mixed-Norm Toolbox for use with MATLAB. The next chapter will demonstrate 

two examples of mixed-norm control synthesis, including an example which extends the 

current method to include the multi-plant problem. 
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VII.   Examples of Fixed-Order, Mixed-Norm Control Synthesis 

This chapter provides two examples of fixed-order, mixed-norm control synthesis. 

The first of these examples is a MIMO longitudinal controller design for an A-4 aircraft in 

terrain following mode. The purpose of this first example is to explore the application of £i 

constraints for regulating altitude error in terrain following. It has often been postulated 

that £i methods are natural for terrain following due to the need for tight constraints on the 

absolute magnitude of tracking error. Although this example will demonstrate the benefits 

of using £i constraints for tracking error, it will also show that the actual value of the tx 

norm as a measure of allowable error is too conservative to be used explicitly. This terrain 

following example also represents one of the most numerically challenging design problems 

attempted to date using mixed-norm control methods. It is a general multi-block problem, 

it has widely separated open-loop poles, and the full-order controller design results in a 

ninth-order compensator with 90 design variables in the optimization problem. 

The second example in this chapter extends the fixed-order, mixed-norm method 

to include multi-plant problems whereby the underlying plant dynamics associated with 

each of the subproblems are no longer required to be identical. The example chosen to 

demonstrate this is the 1992 American Control Conference benchmark problem for robust 

stability [25]. The H2 and £i subproblems will be used to obtain nominal performance for 

the nominal plant condition, while the H^ subproblem will be used to establish robust sta- 

bility centered about an off-design plant condition. Specifically, the H2 and £x subproblems 

will be set up to examine root mean square control weighting via an LQG design, versus 

bounding the worst case magnitude on control usage via an l\ constraint. This example 

will highlight the importance of targeting specific constraints, as well as showing an appli- 

cation of the Small Gain Theorem for ensuring robust stability in a mixed-norm design. 

The Hoc norm will be used to apply the Small Gain Theorem in this example because it 

results in a less conservative (less restrictive) constraint on the problem. As a followup 

to the discussion in the previous chapter concerning the existence of optimal mixed-norm 

controllers, this example also will be used to define the location of mixed-norm controllers 

on a Pareto optimal surface of stabilizing controllers. 
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7.1    MIMO Aircraft Terrain Following Example 

7.1.1 Problem Overview. This section will demonstrate if2/^i/I?co control syn- 

thesis for a general multi-block plant. The example used will be a longitudinal controller 

design for a fighter aircraft in a terrain following mode. It has often been speculated that £j 

optimization might be well suited to terrain following applications because of its ability to 

place upper bounds on the error magnitude for unknown but bounded magnitude inputs; 

this example will investigate the applicability of lx constraints for this purpose. 

The objective for this example is to design a controller which has satisfactory perfor- 

mance in the presence of wind gusts and measurement noise, while achieving acceptable 

error bounds on the magnitude of the altitude error for bounded magnitude command 

inputs. The aircraft is an A-4 operating at sea level, Mach 0.85 [66]. There are five states 

in the basic plant: vertical velocity in the aircraft axes (w, meters/sec), altitude perturba- 

tion (h, meters), pitch rate (q, radians/sec), pitch angle (6, radians) and forward velocity 

perturbation in the aircraft axes (u, meters/sec). The control inputs are elevator deflection 

(6e, radians) and throttle (6T). A throttle control was specifically included in this example 

to help maintain forward velocity during a commanded change in altitude. The throttle 

repsonse was assumed to be more sluggish than that of the elevator, and this makes it less 

attractive for controlling the states which vary quickly. However, natural forward velocity 

variations are mainly due to the slowly varying phugoid mode, and the throttle provides 

excellent control authority over this state. Measurements are assumed available from a 

combination of air data and some type of inertial measurement unit, and measurements 

consist of altitude rate, altitude, normal acceleration felt by the pilot (nz), pitch angle, and 

forward velocity perturbation. Commanded inputs will be a combination of flight path an- 

gle (or altitude rate) and altitude. Controlled outputs will be various combinations of the 

measurements. The goal is to enable the aircraft to follow flight path angle and altitude 

commands quickly and accurately, maintain low overshoot and reasonable settling times, 

keep control usage and pilot g-levels within reasonable bounds, and have the steady state 

flight be relatively insensitive to wind gusts and measurement noise. The continuous-time 
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plant is given by 
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Actuator dynamics are assumed for both the elevator and the thrust, and are modelled as 

follows: 

6e(s)   = 

6T(s)   = 

20 
s + 20 U*) 

s + 5 
6Tc{s) (7.3) 

As mentioned previously, the throttle was assumed to be more sluggish than the elevator 

in order to discourage its use for controlling the faster varying modes of the system. 

The basic plant includes the short period mode (wsp = 7.35 rad/sec), phugoid mode 

(ujp = 0.0696 rad/sec), and an additional pole at the origin resulting from the altitude state. 

The wide separation in frequency between the modes presents a challenging problem; a 

sample rate fast enough to accommodate the short period and actuator modes will result 

in high truncation levels in order to capture the phugoid and integrator state. A sample 
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Figure 7.1    Command Generator Used for Simulation 

rate of 20 Hz was chosen based on the actuator modes (6.3 x u;$e), and a zero-order hold 

was used for discretization of the transfer functions. Simulations of the various closed-loop 

systems used a continuous-time plant and discrete-time compensators. Further, in order to 

provide a more realistic reference command (as opposed to a discrete step input) with which 

to evaluate the controllers, a command generator was used in the closed-loop simulations 

(see Figure 7.1). The command generator provides a commanded increase in altitude of 

120 meters which takes place over 3 seconds. The command filter with uc = 5 rad/sec 

was chosen to model either pilot lag or command smoothing on the part of an automatic 

terrain following mode. As a pilot model, the command filter represents a "fast" pilot, 

thus presenting a more challenging design problem. 

7.1.2 H2 Subproblem. The H2 subproblem is based on a steady state Linear 

Quadratic Gaussian (LQG) design. A wind disturbance, which enters the plant as an 

angle of attack disturbance, is modelled as the output of a first-order shaping filter driven 

by zero-mean white Gaussian noise, and is included in both the design model and the 

simulation model. Intensity levels and time constants are chosen for sea level flight in 

cumulus clouds as used for the control designs on the NASA F-8C [67]. The wind gust 

state and the input vector describing how it enters the plant are as follows: 

wg     =     —9.486 Wg + W (7.4) 

By,     =   [-7.713 xlO-3    3.459 x lO"3    -5.365 x 10"4    0    -9.807 f       (7.5) 
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Controlled outputs consist of the measurements with weightings of 10, 1000, 1000, 

10 and 1 on h, h, nz, 6 and u, respectively. To enable non-zero set point tracking, a 

pseudo-integral state on altitude error was added to the plant as follows: 

i(s) =     100°      (h(s)  - hc(s)) (7.6) 
v '      s + 0.001   v w K " 

and a weight of 0.1 was used for the output of the pseudo-integral state. Control weights of 

0.1 and 1 were used for 6e and 6T, respectively. All of the weights were chosen subjectively 

and iteratively based on closed-loop simulations, with a goal of maintaining steady for- 

ward velocity during a commanded change in altitude, maintaining g-levels below 4 g's for 

simulated commands, and accurately tracking altitude and altitude rate commands. The 

most difficult of these design goals was the maintainance of g-levels, but this was partially 

due to the "fast" pilot model being used for evaluation. Naturally, for any given controller, 

a slower command will result in a lower g-level and a more sluggish response. The higher 

weight on 6? as opposed to that on 6e is again meant to discourage the use of thrust over 

elevator commands. Thrust is primarily intended to maintain forward velocity. 

The measurements are assumed corrupted by zero-mean, white Gaussian noises with 

the strength initially set to 10~4 rad2-sec. This noise level was chosen somewhat arbitrarily, 

but it represents a higher noise level than was used for the F-16 problem in Chapter VI, 

which used a measurement noise level of 10-6 rad2-sec. After several iterations, the noise 

strength on the 9 measurement was dropped to 10-5 to reflect the smaller unit dimensions 

(radians, as compared to meters, and meters/sec). The H2 solution was found to be very 

sensitive to the value of the noise strength placed on the altitude measurements, and this 

is shown in Figure 7.2 for noise strengths of 10-4 and 10-5. As shown, the 10~5 setting 

results in a much quicker response at the expense of higher g-loading (not shown) and 

much wider fluctuations in pitch response. The final design opted for the quicker tracking 

associated with a noise strength of 10-4 rad2-sec. It was decided to allow for the high 

overshoot and large pitch variations in the H2 portion of the problem in hopes that it 

could be significantly reduced using an t\ constraint. Overall, the H2 subproblem provides 

quick response to altitude and altitude rate errors, and is generally unaffected by wind 
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Figure 7.2    Sensitivity of H2 Performance to Altitude Noise Strength 

gusts and measurement noise. The noise levels used for the simulation were generally 

higher than those used to synthesize the controller. This was done in order to highlight 

differences between the controllers; the presence of the measurement noise was not always 

readily apparent in the simulations, with the exception of normal acceleration and control 

usage. 

The final H2 plant for this example is ninth order, which will also be the order 

of the H2 optimal compensator. This example will not attempt to examine reduced- 

order compensators, so the mixed-norm compensators will also be ninth order. With a 

ninth-order compensator, the total number of design variables for this example will be 

90, of which 45 will be in the compensator B matrix. This represents one of the most 

challenging examples tried to date (discrete-time or continuous-time) using mixed-norm 

control synthesis. 

7.1.3 l\ Subproblem. The £i subproblem was used to reduce the maximum mag- 

nitude of the altitude error, thereby reducing the large overshoot resulting from the H2 

subproblem. The bounded magnitude inputs were taken as the wind gust and commanded 
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altitude and altitude rate (or flight path angle). We wish to be able to reject the wind 

gust while tracking the altitude and altitude rate commands. A more general sensitivity 

constraint could have been used as an alternative, but the H2 subproblem provided ade- 

quate state regulation, and we were exclusively interested in constraining altitude error. 

The controlled altitude error was band limited in order to reduce the susceptibility to 

measurement noise, 

h0(s) = -±- (h(s)  - hc(s)) (7.7) 
s + 4 

and a weight of 1 was used. The value of the weight for the £t constraint is unimportant 

for this problem because it is a single output constraint. Any scalar weighting factor would 

simply result in a scaled constraint value with no effect on the solution to the mixed-norm 

problem. Specifically, a unity weight with a constraint value of v would be the same 

as a weight of c and a constraint value of cv. The bandwidth of the frequency weight 

was based on the pilot model, and could have been set to 5 rad/sec to coincide with the 

command filter used for simulation. However, since the ix gradient algorithm switches to 

finite difference methods for the case of repeated roots, the bandwidth was dropped to 4 

rad/sec so as not to coincide with the open-loop pole from the throttle dynamics. This 

still represents relatively fast pilot commands for the design model, and it allows the £\ 

gradient algorithm to take advantage of the analytic formulations. 

Another consideration in deciding how and when to use £-y constraints is the high 

numerical overhead associated with £x subproblems. By far, the £\ function and gradient 

calculations are the most costly portion of the numerical optimization problem, and each 

additional £i constraint adds to the computational burden. For this reason, it pays to 

be selective on which outputs £i constraints are applied to. The £x constraint for this 

problem had no weights at all on control usage, thus the constraint is singular. Further, 

no additional £i constraints were used to weight either control usage or control rate. The 

control weights in the H2 subproblem ensure that the overall synthesis problem will be 

non-singular, and it will be shown in the next section that the particular flight condition 

chosen for this example resulted in more than adequate control authority for all of the 

mixed-norm controllers. 
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Table 7.1    Mixed H2/£l Control Results 

IIZU2 \\Tmr\\l 
Case # a V 

1 (if2 optimal) 0.15840 3.086 
2 0.15840 2.800 
3 0.15841 2.600 
4 0.15844 2.400 
5 0.15851 2.200 
6 0.15861 2.000 
7 0.15907 1.800 
8 0.16164 1.600 

7.1.4 H2/£i Results. Table 7.1 shows norm values for several of the H2/£i com- 

pensators, and Figure 7.3 shows the corresponding simulation results for a 40 m/sec climb 

held for 3 sec. As shown, the t\ constraint can significantly reduce the overshoot without 

sacrificing rise time and overall speed of response. The large overshoot associated with 

the higher levels of the 1-norm constraint is especially troublesome, because it represents 

increased vulnerability of the aircraft. It also represents a potentially hazardous situation 

for the pilot if a decrease in altitude were commanded in low level flight. 
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Figure 7.3    Response to Altitude Change for R2jl\ Designs, Cases 1-8 
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The settling time for the #2/^1 systems could be improved by using several methods. 

In addition to the pseudo-integral state added to the H2 subproblem, a similar weight on 

altitude error could have been added to the £x subproblem. A second method, which would 

have required only minor modification to the algorithms, would be to add a decaying ex- 

ponential (time-domain) weight on the £1 transfer function. For this example, the decision 

was to leave the £\ subproblem as is, in order to see if there was any physical significance 

of the 1-norm value in terms of maximum peak-to-peak gain. As it turned out, the value 

of ||Tmr||i is so conservative that the physical significance is almost meaningless. For in- 

stance, ||Tmr||i = 2 indicates that there could be a worst case altitude error of 200 meters 

resulting from some combination of a 100 m/sec (or less) altitude rate command and 100 

m (or less) altitude command. Although this sounds extremely bad, the associated time 

response for Case 6 shows a relatively good response to a combined altitude and altitude 

rate command in the presence of wind gusts and measurement noise. For this reason, the 

actual values of the £1 norm should probably be used only for comparison purposes in 

most problems. This has always been the case with the 2-norm and co-norm of a transfer 

function, and it appears to apply to the 1-norm as well. 

An additional drawback of the large overshoot associated with the H2 solution is 

evident in the pitch angle response shown in Figure 7.4. Neglecting angle of attack, a 40 

m/sec climb represents an 8 deg pitch angle. Note that the H2 solution (Case 1) has a 

pitch response which peaks at close to 15 deg, while the H2/£i solutions all peak closer 

to 10 deg. Also, a large negative pitch angle (-7 deg) in Case 1 results from the rapid 

decrease in altitude as the compensator attempts to damp out the large error associated 

with the overshoot. The H2/£\ systems show negative pitch angles of only -2.5 deg or 

less for the same commanded inputs. These are clearly desirable features of the H2/£\ 

systems. Drawbacks of the E.2j£\ systems are increased g-loading on the pilot and greater 

susceptibility to measurement noise as shown in Figures 7.5 and 7.6. Although all of 

the systems demonstrate relatively high g levels associated with the command response, 

the desired g-limit of 4 for the simulated command has been met for v = 2.0 or higher. 

Further, a slightly reduced bandwidth on the simulation command filter (down to 2-3 

rad/sec) decreases the peak g-level to below 3.  Although this results in a slightly more 
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Figure 7.4    Pitch Angle Response for H^/i-i Designs, Cases 1-8 

sluggish response, 2-3 rad/sec is a more realistic a pilot model. The steady state portion 

of the responses shown in Figure 7.5 show that the pilot gets an increasingly bumpy ride 

due to measurement noise as the t\ constraint level is decreased, and this also shows up 

in the commanded elevator levels shown in Figure 7.6. Note that the commanded elevator 

deflection due to the command input is actually lower for the H2/ii systems. It is also 

apparent that the modelled flight condition results in sufficient actuator authority, with 

the peak commanded actuator deflection being less than 5 deg for all cases. Actuator rates 

were not measured, but it is believed that the achieved rates are within allowable levels. 

A final observation should be made regarding the 2-norms of the H2/ii compensated 

systems. Note that a 48% decrease in the value ||Tmr||i results in only a 2% increase 

in the value of ||TzW||2 (Case 1 vs. Case 8), and the two cases represent very different 

performance on the part of the closed-loop system. This has been found to be somewhat 

typical of discrete-time systems. The implication of this is that an accurate optimization 

algorithm, with relatively tight convergence criteria, is necessary in order to stay close to 

the true optimal H2/£i compensator. If convergence criteria are too loose, the resulting 

compensator may satisfy the constraints but result in an objective value (HT^HI) higher 
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than the minimum attainable for the fixed-order problem. Further, we have shown that 

even small variations in ||T2l0||2 for this problem can represent significant differences in 

closed-loop performance. 

7.1.5   if2/^i/-ffoo  Results. For the H2/£i cases discussed above, no attempt 

was made to monitor or improve robust stability levels for the closed-loop system; these 

concerns were temporarily set aside for the H^ subproblem. Figure 7.7 shows the H2/li 

Pareto optimal curve and the resulting co-norms of the output complementary sensitivity 

(Ted), used here as a measure of robust stability in the presence of output multiplicative 

uncertainty [65]. The co-norm and 1-norm constraints are not competing until ||Tmr||i is 

pushed well below 2.0, after which the value of HTe^H» increases significantly. Based on 

these curves, and the time responses shown previously, a 1-norm constraint level of v = 2.0 

was chosen as the desired level of tracking. Holding this 1-norm constraint level, ||red||oo 

was then reduced using H2/£i/Hoc optimization, and the resulting Pareto optimal curve 

is shown in Figure 7.8. An unweighted complementary sensitivity was used for Ted, since 

the typical high frequency weight for unmodeled dynamics would take effect beyond the 

Nyquist sampling frequency for this system. As shown, ||Ted||oo can be reduced further 

without a significant increase in ||rzw||2 until 7 is pushed below 1.6. The effect of reducing 

the singular value peaks of Ted can clearly be seen in Figure 7.9, and the appearance of 

multiple active peaks for the lower 7 levels is evident. 

As a second measure of robust stability, the independent gain and phase margins are 

shown in Table 7.2. The gain margins for MIMO systems can not be taken as the union of 

the sensitivity (IGMS) and complementary sensitivity (IGMT) gain margins (as discussed 

in Section 6.5.5); therefore, both limits are shown. Modest improvements can be made in 

the gain and phase margins with only slight increases in ||TZ1/;||2. Acceleration (g) levels 

and control usage for Cases 9-12 are shown in Figure 7.10 and Figure 7.11, respectively. 

An unexpected bonus of improving the robust stability for this particular problem is that 

g-levels and control usage actually decreased. The target level of 4-g's has been met, and 

elevator commands are very low (2 — Zdeg) for the simulated commands. 
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Table 7.2    Mixed Optimal Control Margins 

Case #     ||r„ Halloo       IGMs(dB) IGMT{dB)       IPM(deg) 

1 0.15840 3.207 -2.07 2.74] -3.26 2.36] 18.0 
2 0.15840 2.741 -2.31 3.15] -3.96 2.71] 21.1 
3 0.15841 2.526 -2.43 3.38] -4.39 2.90] 22.9 
4 0.15844 2.379 -2.53 3.58] -4.75 3.05] 24.3 
5 0.15851 2.224 -2.64 3.81] -5.20 3.23] 26.0 
6 0.15861 2.140 -2.73 4.01] -5.49 3.34] 27.1 
7 0.15907 2.843 -2.63 3.79] -4.96 3.14] 25.1 
8 0.16164 12.942 -1.67 2.08] -2.19 1.75] 12.8 
9 0.15864 2.000 -2.85 4.26] -6.04 3.53] 29.0 
10 0.15879 1.800 -3.02 4.68] -7.07 3.85] 32.3 
11 0.15906 1.600 -3.23 5.19] -8.56 4.23] 36.5 
12 0.16507 1.400 -3.46 5.84]    [ -10.96 4.70] 42.0 
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7.2   American Control Conference Benchmark Problem for Robust Stability 

7.2.1 Problem Setup. This section will consider the design of a controller to 

meet nominal performance with robust stability. It will extend the fixed-order method to 

include slightly different plant dynamics within the individual subproblems, and it will also 

highlight the importance of targeting specific concerns when choosing the subproblems for 

the constraints. The example used will be the spring-mass cart example shown in Figure 

7.12. This was used as a benchmark problem for robust control at the 1992 American 

Control Conference [25], and has also appeared in the MATLAB Robust Control Toolbox 

[68] and a recent paper by Sznaier demonstrating a robust stability problem using a free- 

order H2/H<x> method [18]. The nominal values of the two masses and the spring constant 

are all assumed equal to 1, but the actual spring constant is treated as uncertain between 

the limits of 0.5 and 2.0. Measurement feedback is available on the position of Mass #2, 

and disturbances enter the system as uncertain forces (w) acting at this same point. The 

objective is to design a controller which achieves some level of nominal performance (to be 

defined shortly) while assuring the system remains stable for the specified variations in the 

spring constant. The double-integrator plant (from the undamped spring-mass interaction) 

and non-collocated sensor and actuator represent a challenging design problem because of 

the open loop poles at the origin (for continuous-time). Many methods require an initial 

shift of the stability axis in order to solve the problem; this will not be necessary using the' 

present mixed-norm method. 
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The continuous-time plant is given by 

#2 

I ^2 J 

0 10 0 

—k/m1 0     fc/ma 0 

0 0 0 1 

k/m2 0    —k/m2 0 

a;2 

1*2 j 

> + 

"    0 0    " 

0 1/mi 

0 0 

\jm2 0 

(7.8) 

y   =   [0   0    1    0]< 
a;2 

(x2 ) 

(7.9) 

For a discrete-time implementation, a sample rate of 10 Hz and a zero-order hold will be 

used for discretization, thus introducing additional phase lag to that already present due 

to the non-collated sensor and actuator. 

A block diagram which incorporates all the inputs and outputs for the system is 

shown in Figure 7.13. In addition to the force disturbance w acting on Mass #2, we have 

sensor noise (v), a control weighting (p) and an output weighting (£) on x2. The output 

weighting on x2 will be used to attain the desired cart position, and the control weight will 

ensure the compensator does not assume unreasonable control power. The uncertain spring 

constant has been pulled out as a A-uncertainty block in anticipation of using the Small 

Gain Theorem to pose the robust stability problem. For a nominal spring constant of k0 = 

1, the Small Gain Theorem states ||Ted||oo < 1 will guarantee the system remains stable for 

llAlloo < 1, which encompasses the possible range of uncertainty (0.5 < k < 2.0). Other 

researchers [68, 18] have modified the problem by displacing the nominal spring constant 

to k0 = 1.25, thus establishing a constraint of HTe^H^ < 1.33 whereby the system remains 

stable for || A||oo < 0.75. Although this creates a less stringent co-norm constraint, it entails 

designing the controller for nominal performance and robust stability at an off design 

condition, possibly sacrificing performance (unnecessarily) under nominal conditions. The 

approach taken here will be that of a multi-plant design problem [16]. Specifically, the 

robust stability problem will make use of the shifted spring constant (k0ri! = 1.25) to 

create a less stringent co-norm constraint, but the nominal performance problem will use 
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the "true" nominal spring constant of k0 = 1. This requires a slight extension of the 

problem setup, because we can no longer assume that a controller which stabilizes Pyu 

will stabilize all of the subproblem plants. Because of this, a stability constraint for each 

different set of plant dynamics is required. With this exception, the fixed-order method 

described in this dissertation can be used as is for the multi-plant problem. The continuous- 

time state space matrices for the .Hoc subproblem are as follows: 
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"0100' 
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(7.10) 

The nominal performance problem will be addressed by the H2 and ix subprob- 

lems. The H2 subproblem will use static weights on control usage and the position of 

Mass #2 (x2), and will assume unit strength, zero-mean white Gaussian noise inputs at 

w and v. Static weights have been chosen because no assumptions are being made on the 

frequency content of either the disturbances or the reference commands. A control weight 
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of p2 = 0.01 and output weight of £ = 1.0 were chosen because they result in a reason- 

able step response and control usage. The lx subproblem will weight control magnitude 

(pi = 1.0) for unknown but bounded magnitude inputs w and v, which will be considered 

together as the input vector r. This is being done to ensure not only reasonable control 

power (addressed by the H2 subproblem), but reasonable magnitudes for control usage in 

the presence of disturbances and measurement noise. Another important contribution of 

the £i constraint for this example is that it will highlight what can happen when control 

usage is lumped into a scalar cost functional along with controlled outputs. By maintaining 

control magnitude as a separate constraint we will be able to see explicitly the effects of 

the constraint. 

The focus of this example will be to show how a robust stability constraint can be 

met using a multi-plant, mixed-norm approach, and to show how explicit constraints on 

control usage can affect the final results in a mixed-norm problem. Although the quality 

of response as measured by rise time, settling time, etc., is important, it is not the focus of 

this example. As such, the step response for some of the closed-loop systems will be less 

than enviable. 

The continuous-time state space matrices for the H2 and £i subproblems are as 

follows: 
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7.2.2 Location of Mixed-Norm Controllers on the Pareto Optimal Surface. Figure 

7.14 shows the Pareto optimal curve for the H2jl\ problem which was used to determine an 

acceptable constraint level. The value of HTedUoo for each of these controllers is computed 

and plotted versus ||Tmr||i in Figure 7.15. Unlike the F-16 example from Chapter VI, 

ll^mrlli are II^Hoo are directly competing constraints in this example. With the exception 

of a few bumps (probably due to numerics), we see that HT^Hec increases monotonically as 

||rmr||i decreases for the H2/£1 problem. Figure 7.16 shows several Pareto optimal curves 

for varying levels of ||Tmr||i (H2/£i/H00 problems), as well as the case where ||Tmr||i was 

unconstrained (an H2/H00 problem). The small variation of ||rzu,||2 with ||Tmr||i can be 

seen by the close proximity of the H2/£i/Hoc curves; however, the offset of the _ff2/-öoo 

curve from the fT2/4/-ffoo curves suggests that ||Tmr||i may take on significantly different 

values if left unconstrained. This insight is confirmed by Figure 7.17, which shows the 

unconstrained values of ||Tmr||i resulting from the H-^/H^ control problem. This indicates 

that, although the H2 subproblem includes a weight on control for both the iT2/-H"oo and 

H2/iilHoc control problems, significantly higher magnitudes of control usage will result 

unless it is explicitly constrained. This observation will be discussed in more detail later 

in the example. 

If we project the Pareto optimal curves onto the v — 7 plane we can start to get 

a better picture of where the mixed-norm solutions must lie. Figure 7.18 shows these 

projections, along with the location of the H2 optimal controller. Constraint levels of 

7 > 7 and v > v lie in Region rV, and any problem with constraint levels in this region 

will have the H2 optimal controller as its solution. Neither of the constraints will be active 

for constraint levels in Region rV, except for cases on the boundary of the region. Region 

III encompasses constraint levels of 7 > 7, and v between V and the H2 /£i curve for the 
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specified level of 7. Any problem with constraint levels in Region III will have a solution 

on the #2/^1 curve at the specified level of v. The B.^ constraint will be inactive for 

problems in this region. The dual of Region III is Region II, where v > v and 7 lies 

between 7 and the H2/H(X, curve for the specified level of v. Problems with constraint 

levels in Region II will have a solution on the if2/-ffoo curve at the specified level of 7, and 

the t\ constraint will be inactive. An ill-defined region exists whereby one or both of the 

constraints is so tight that no solutions exist for the mixed-norm problem. The precise 

boundary of this region usually cannot be defined except for isolated points representing 

the .Hoo or L\ optimal controllers. 

Region I is the projection of the Pareto optimal surface whereby both constraints will 

generally be active. A portion of this surface representing 35 < v < 160 and 2.0 < 7 < 5.8 

is shown in Figure 7.19. The surface was generated by plotting the resulting norms from 

approximately 400 mixed-norm controllers. For constraint levels anywere within these 

limits, the resulting value of ||TZW||2 appears as the height (z-axis) of the surface. The 

lower right edge of the surface is the #2/-Hoo Pareto optimal curve which defines the 
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boundary between Regions I and II. Note that, for a 1-norm constraint level of 100, as we 

increase 7 for the co-norm constraint, the 1-norm constraint ceases to be active for 7 > 3.2. 

As we further increase 7 beyond this level, the solution to the mixed-norm problem will 

he on the H^/Hoc curve, with u* < v. Additional controllers could have been found to 

define larger portions of the Pareto optimal surface, but it was not necessary for purposes 

of this discussion. As a final note on the Pareto optimal surface, this example showed no 

evidence of local minima on the surface; however, as discussed in the previous chapter, the 

existence of local minima cannot be ruled out for the fixed-order, mixed-norm problem. 

7.2.3 ACC Benchmark Problem Results. For comparing system performance, 

5 controllers were selected from the full range of possible controllers as discussed in the 

previous section. Table 7.3 shows the resulting norm values for these controllers. Case 

1 is the H2 optimal controller, Case 2 and Case 3 are #2/A/-Hoo controllers, and Case 4 

and Case 5 are -ff2/-ffoo controllers for which HTm^l! was left unconstrained. The choice 

of v = 50 for the 1-norm constraint level was arbitrary, since the mass, spring constant, 

and force values for this example are not tied to any specific units or physical limits. For 

this reason, the achieved values of ||TZU,||2 and ||Tmr||i are only important for comparison 
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Table 7.3    ACC Benchmark Problem Hz/li/H^ Control Results 

ll^ztulh lir„,r||i ll^edlloo 
Case # a V 7 

1 0.5527 72.80 5.862 
2 0.8664 50.00 2.000 
3 2.2218 50.00 1.300 
4 0.7309 160.87 2.000 
5 1.4714 353.95 1.300 

purposes. The same will not be true for H^Hoo because it is tied to the specific robust 

stability constraint via the Small Gain Theorem. Of the five cases, only Case 3 and Case 

5 are guaranteed to stabilize the system for the full range of uncertainty in the spring 

constant, since HTedHoo < 1-33 insures a stable closed-loop system for HAHoo < 0.75. 

Figure 7.20 shows a comparison of the unit step response (step applied at t=l sec) 

for the first three controllers with a nominal spring constant (k = 1). Although the price 

of robust stability for this example appears to be a decrease in nominal performance, some 

of this can be attributed to the constraint on the magnitude of control usage (Case 1 had 

no li constraint, whiles Cases 2 and 3 had a constraint of ||Tmr||i < 50). Both overshoot 

and settling time increase with decreasing 7 levels, and the system demonstrates a non- 

minimum phase response for Case 3. Figure 7.21 shows Cases 1-3 with disturbances and 

measurement noise added to the simulation. The control usage for both step response and 

disturbance rejection is less for the second and third cases, and this is consistent with the 

lower level of ||TTOr.||i. Future work with this example will examine methods for improving 

performance, and maintaining performance for increased levels of robust stability. 

Figures 7.22 and 7.23 show Cases 1-3 for non-nominal spring constants of 1.5 and 

0.75, respectively. All cases remain stable for k = 1.5, but Case 1 clearly demonstrates a 

higher level of oscillation not present in Case 2 or Case 3. For k — 0.75, the H2 optimal 

controller (Case 1) can no longer stabilize the system, and Case 2 also appears to be 

getting close to the stability boundary. The Small Gain Theorem states that both Case 

2 and Case 3 should remain stable for k = 0.75, since this represents an uncertainty level 

of HAHoo < 0.5 from fc0r, = 1.25. For a spring constant of k = 0.5, Case 1 and Case 2 are 
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unstable, but Case 3 remains stable as guaranteed by HI^Iloo < 1.33. Figure 7.24 shows 

the step response of Case 3 for the full uncertainty range of the spring constant. Clearly 

the system is close to instability for k = 0.5, but the robust stability constraint has been 

met. 

For small 7 values, an improved response can be obtained by removing the 1-norm 

constraint on the magnitude of control usage, but not without a dramatic change in control 

behavior. This can be seen in Figures 7.25 and 7.26 where the off-nominal performance 

is shown with and without the constraint on ||Tmr||i. Although the systems generally 

exhibit lower overshoot without the 1-norm constraint, rise time and settling time are not 

affected significantly. The benefit of the 1-norm constraint is a dramatic reduction in the 

control usage, especially in the presence of disturbances and sensor noise (see Figure 7.27). 

Bear in mind that all of these systems had the same penalty on control energy in the H2 

subproblem, but Case 2 and Case 3 constrained the worst case magnitude of control usage. 

An apparent contradiction is that Case 5, despite its very high control usage in the presence 

of noise, has a lower value of ||TZU,||2 than that of Case 3. The explanation for this is that, 
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despite the identical 2-norm cost functional for the two cases, the contribution toward this 

cost from control usage is minor compared to state deviations for Case 3 (and Case 2), and 

the opposite is true for Case 5 (and Case 4). This demonstrates how scalar functionals 

can mask the contributions of the individual components. For problems such as this, a 

mixed-norm approach can be used to establish more specific constraints which highlight 

the tradeoffs between the individual features of the problems. The mixed-norm approach 

by itself does not guarantee that these tradeoffs will become evident, because each of the 

constraints is a scalar functional in itself which can hide the individual components within 

it. The key appears to be in using the mixed-norm approach to constrain specific attributes 

which are important to the final design. The investigation of implementation strategies 

such as this is seen as a very fruitful area for future research. 

7.3    Summary 

This chapter demonstated several applications for mixed-norm control synthesis. The 

first example represented a challenging multi-block MIMO design problem for an aircraft 
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terrain following controller. Using an l\ norm constraint for altitude error shows great 

promise, as it significantly reduces the overshoot in the response to altitude commands. 

However, it should also be noted that the actual value of the 1-norm can be so conser- 

vative that its physical significance becomes meaningless. This is important because l\ 

optimization has often been mentioned as a method to put absolute bounds on errors, 

control usage, and control rates. While £i does an excellent job of limiting the magni- 

tude of controlled outputs, the achieved values of the outputs for actual inputs are usually 

far less than might be indicated by the value of the norm. The second example of this 

chapter extended the fixed-order, mixed-norm method to the multi-plant problem. The 

ACC benchmark problem was solved using an co-norm constraint on an off-design plant 

condition to guarantee stability for a specified range of uncertainty. Finally, this second 

example demonstrated the benefits of explicit constraints in understanding the tradeoffs 

between competing performance features. 
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VIII.   Conclusions and Recommendations 

8.1    Summary 

This dissertation has investigated the general mixed-norm control problem for discrete- 

time, linear systems. The particular approach taken was to minimize the 2-norm of a spec- 

ified transfer function, subject to constraints on the 1-norm and/or co-norm of dissimilar 

but related transfer functions. This was used to define Pareto optimal curves or surfaces 

of mixed-norm controllers. Several different problems were posed and solved using this 

same approach. The first problem was a free-order approach to H2 ßi using the Youla 

parametrization of all stabilizing controllers. The problem was shown to be convex with a 

unique solution. It was conjectured, with supporting evidence, that the optimal solution 

to the SISO and one-block MIMO H2/£1 control problem will result in a FIR constraint 

transfer function, but generally non-FIR objective transfer function. Based on this con- 

jecture, a numerical method was developed which is capable of solving exactly the B.2jl\ 

control problem for SISO and one-block MIMO problems. The resulting compensator is 

usually of such high order that it is impractical, at best, for implementation, but it pro- 

vides an important limit of performance for the H2/i\ control problem. Various methods 

for approximating the optimal solution were also explored, and it was shown how these 

methods could significantly reduce the size of the resulting optimization problem. A sec- 

ond free-order numerical method for the B.2jl\ control problem was developed, and this 

method was shown to be capable of approaching the optimal solution to within arbitrary 

precision using a radius constraint on the closed-loop poles. The important aspect of this 

second method is that it is readily extendable to general multi-block problems. Further, 

this second method can accommodate an H^ constraint for a full free-order H2/£i/Hoc 

control problem. 

A special case of the SISO .H2/-Ö00 optimal control problem was solved using minimum- 

norm duality, and it was shown that the optimal controller is non-rational or infinite-order. 

This was not a surprising result since it was the same special case considered by Walker [9] 

for continuous-time systems, but it had not been previously shown for discrete-time. Sim- 

ilarly, the analytical development of the full-order, discrete-time, H2/Hx control problem 
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was shown to have all the same features as the continuous-time problem investigated by 

Ridgely [8] and Walker [9]. The nature of the optimal full-order solution was characterized 

based on the desired level of the H^ constraint, and the solution was shown to depend on 

the neutrally stabilizing solution to an associated Riccati equation. 

Analytical development is important for characterizing the nature of the solution, and 

numerical methods for finding the true optimal compensator are important for providing 

limits of performance. However, if a synthesis method is to have practical applications, 

it must provide easily implementable controllers. Along these lines, a general fixed-order, 

discrete-time method was developed. This method minimizes the 2-norm of an objective 

transfer function, subject to an arbitrary combination of 1-norms and/or co-norms of 

dissimilar (but related) transfer functions. Further, the method can be used iteratively 

at increasing compensator orders to approach the same limits of performance that free- 

order methods provide. Using the elements of the compensator state-space as design 

variables, the method is capable of solving directly the reduced or expanded order mixed- 

norm control problem. Further, existing algorithms for continuous-time systems were 

incorporated into the program structure to provide a single MATLAB toolbox for mixed- 

norm control synthesis (see Appendix C), and the toolbox is being made publicly available 

throughout the controls community. 

Fixing the order of the compensator results in a non-convex program for the general 

output feedack problem, but it can be solved efficiently using gradient based nonlinear 

programming methods. The method was first demonstrated using a longitudinal controller 

design for a SISO model of an F-16 aircraft. An H2/t\ control problem demonstrated the 

tradeoffs between noise and disturbance rejection (the H2 subproblem) and tracking (the tx 

subproblem). An #2/A/-Hoo problem was then formulated to improve the robust stability 

as measured by the oo-norm on complementary sensitivity. For this example, specific non- 

convex areas of the design space were highlighted. It was shown that these areas resulted 

in discontinuous jumps in the compensator eigenvalues as the Pareto optimal curve was 

traversed. Convexity improved as controller order was increased, which is to be expected 

based on the convex free-order problem. 
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Besides the F-16 problem, two other design problems were used to demonstrate the 

new numerical method. The first of these was a terrain following controller for a MIMO 

longitudinal model of an A-4 aircraft. This was a challenging design problem due to 

widely separated poles from the short period and phugoid modes, and a high number of 

design variables (90). The H2 subproblem was again used to provide noise and disturbance 

rejection while regulating control usage. The t\ subproblem was used to limit the absolute 

magnitude of the altitude tracking error. While it was shown that the tx constraint did a 

good job of reducing the magnitude of the tracking error, it was also shown that the actual 

value of the norm was much too conservative to be used for specific error limits. An H^ 

constraint was again added to the problem to improve robust stability, while maintaining 

tracking and noise/disturbance rejection. 

The final example was the 1992 American Control Conference benchmark problem 

for robust stability. This was used to extend the fixed-order numerical method to the multi- 

plant problem, whereby the underlying dynamics associated with each of the subproblems 

are no longer required to be identical. The H^ subproblem was based on an off-design 

plant condition, and specific constraint levels were established for the oo-norm in order 

to guarantee stability for the full range of plant uncertainty. The H2 problem was set 

up as a regulator on states and control usage, and the £i subproblem was used to bound 

the magnitude of control usage. In addition to demonstrating the multi-plant approach to 

robust stability, this example demonstrated how the mixed-norm approach could be used 

to isolate specific constraints which are determined to be important to the design problem. 

Once isolated, the varying constraint level can be used to show design tradeoffs between 

specific features of the problem. 

8.2   Recommendations for Future Research 

While there is always more that can be done to develop the theory for the mixed- 

norm control problem, the theory has already far out-paced the ability of the controls 

engineer to implement it. For this reason, the recommendation for future research is to 

concentrate on the more practical aspects of the mixed-norm control problem. First, and 

foremost, determine when it makes sense to employ mixed-norm synthesis methods, and 
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what is the best way to formulate these problems. The limited results to date suggest 

that the synthesis problem is further complicated by mixed-norm methods, because each 

subproblem must be as well conceived as if it were the full problem. Although the shaping 

filters and weighting matrices from H2 and Hx synthesis methods are available for the 

subproblems, the question remains as to whether or not this is the best way to weight 

the subproblems within the mixed-norm context. The l\ synthesis method is open to both 

frequency and time-domain weighting functions, and these also need to be explored further 

within the mixed-norm context. The best results for the £i subproblems seem to occur 

when specific features of the problem are targeted for magnitude constraints. Certainly 

tracking error and control usage fit into this class of features, but control rates and robust 

stability for bounded magnitude disturbances are candidate features which have yet to 

be tried in a mixed-norm setting. The recommendation here is simple: examples, good 

examples, and more examples! 

The method, as is, is capable of solving the reduced-order design problem, but few 

examples have demonstrated this capability. The reduced-order problem adds another 

question to those above; namely, is it better to reduce the size of the weights, or to use 

higher-order weights (which more accurately describe either the uncertainty or the desired 

range for the controlled outputs) with a reduced-order compensator? An example of the 

latter is the mixed H2/[i> problem formulated and solved by Walker [9]. However, the H2/fi 

problem is one in which the high order weights are on the constraint transfer function. 

Examples should be tried where the weighted objective transfer function is of significantly 

higher order than the desired compensator. In order to simplify the process of starting a 

reduced-order design problem, the process of finding an initial stabilizing controller should 

be automated to whatever degree is possible for the reduced-order controller. Presently, 

the person operating the code must come up with an initial stabilizing controller (with the 

desired controller order) through whatever ad hoc means are available. Any automation 

added to this process would go a long way towards making the reduced-order synthesis 

problem much more palatable. Tangled up in this problem is the question of minimum 

order for a given system, but this remains a wide open theoretical problem in the controls 

community. 
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The non-convex nature of the design space for the general fixed-order problem is 

not a new finding, but this dissertation demonstrated that these non-convex regions ac- 

tually represent discontinuous "valleys" in the design space. Further, the fact that the 

discontinuity occurs in the compensator eigenvalues indicates that the discontinuity can 

not be avoided by using a different form of the compensator. The problem of convexity 

vs. compensator order needs to be explored further, and it should be tied together with 

the free-order limits of performance. For the Mixed-Norm Toolbox, methods of traversing 

the discontinuities should be examined. Along these lines, the possibility of wrapping a 

globally convergent method around the present nonlinear programming problem should be 

considered. The extra run times associated with globally convergent methods may not be 

warranted for many problems, but for cases where local minima are troublesome it would 

be useful. 

The Mixed-Norm Toolbox is relatively "canned" for combinations of transfer function 

norms. Although this covers a wide variety of problems with generally uncertain inputs, 

there are many problems of interest whereby the response to known inputs is very im- 

portant. For these problems, the Mixed-Norm Toolbox could be extended to incorporate 

both output norm constraints (^oo for example) and specific time domain constraints such 

as rise time, settling time and overshoot. A finite horizon approach would be necessary 

to enforce these constraints, but it should be relatively straightforward to accommodate 

them within the existing structure of the algorithms. 

A final recommendation is that the Mixed-Norm Toolbox be maintained by AFIT and 

distributed throughout the controls community. By allowing many diverse organizations 

to try (and sometimes break) the code, we will learn what it does best, where it falls short, 

and how it can be improved. Further, the many different examples and design approaches 

of other researchers will greatly aid in our understanding of how best to apply mixed-norm 

control methods. 
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Appendix A.   Proof of Claim from Chapter IV 

This appendix contains the remainder of the proof of the claim in Chapter IV, Section 

4.5. 

Claim    a(x*)   <   \\x'\\2 

Proof:        We will consider separately the cases where |x*(iV)| = UPcCC*^ occurs for 

iV = 0,l,2, andiV>3. 

Case 0. (N = 0) 

where 

a(x*) J2r(k)x*(k)-\\Pcx* 
,fc=0 

_      x*(l)      x*(2)      ^x*(k)      ,  ^ Xl 

fc=3 

< 
x*{l)      x*(2)     ^ x*(k) + 

fc=3 

=   x(x'(0) + x'(l) + x'(2)) + £ x*(k)x'(k) 

=   (x',g) 

Wh 
A 

3x2 + J3 a;*(A;)2 

fc=3 

3x*(l)      2CE*(2) 
a;    = 1  

5 5 

g   =   {x,x,x,x*(Z),x*(4),x*{5),...} 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

(A-5) 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

To show that 

3z2 < x*(0)2 + x*(l)2 + z*(2)2 
(A.10) 
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will be sufficient to prove Case 0, since ||x*||2  < 1 has been assumed.   Expanding the 

expression for 35F2, 

«•=.-(!)•+.w+*gr - ^+.-(IM«+^^§^    (A.11) 

Suppose |s*(2)| > |x*(l)|. 

3x2    <   x*(l)2 + x*(2)2 + £-\x*(l)x*(2)\ 

-ll\x*{l)x*{2)\ + |^(l)x*(2)| + ^1^(1)^(2)1 (A.12) 

=   x*(l)a + x*(2)2 + \x*(l)x*(2)\ (A.13) 

<    a;*(0)2 + a;*(l)2+x*(2)2 (A.14) 

Now suppose |a;*(l)| > |a;*(2)|. 

3x2   =   x*(l)2 + x*(2)2 + 4 (2s*(l)2 + 36a:*(l)aj*(2) - 13z*(2)2) (A.15) 
25 

<    x*(0)2 + x*{2)2 + -!- (2z*(l)2 + 36x*(l)a:*(2) - 13x*(2)2) (A.16) 
25 

We need to show that the last term in (A.16) is less than or equal to a:*(l)2. Define 

f(r = x*(2)/x*(l))    :=    ^-(2x*(l)2+ 36x*(l)x*(2)-13x*(2)2) 
lb 

-x\\)2 (A.17) 

=    -^7^ (I3r2 - 36r + 23) (A.18) 

Examining (A.18), we see that f(r) < 0 V r £ [—1,1], which is equivalent to all |a;*(l)| > 

|a;*(2)|. Thus, we have (A.10) for the case where N — 0. 

Case 1. {N = 1) 

«(**)    =    x^0) + ^- + ^p. + ±^l-\x*(l)\ (A.19) 
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< ,.(0)_£fi21 + *£)+ggÖ 

< 
s*(0)     s*(2)     A a*(fc) 

2 3        ^fc + 1 
fc=3 

fc=3 

=   ä(s'(0) + x'(l) + x'{2)) + JT,x*{k)x'{k) 

=   {x',g) 

<  IWhhh 

F     2 
A 

3x2 + J^x*(ky 
fc=3 

where we now define x as 

As in Case 1, to show that 

3a;*(0)      2a;*(2) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

35f2 < x*(0)2 + x*(l)2 + x*(2)2 (A.27) 

will be sufficient to prove Case 1.   This proof follows directly from that of Case 0 by 

switching the roles of x*(0) and x*(l). 

Case 2. {N = 2) 

„(.., . ..(„)+-3ü+*e>+£ga-TO, 
fc=3 

<    x*{0) + 
s*(l)      2|s*(2)|     ^s*(fe) 

^3fc + l 

z*(l)      **(0)     ^ x*(k) 

=    x (a:'(0) + x'(l) + x'(2)) + £ ar*(Ä)s'(Ä) 

=   (x',g) 

fc=3 

(A.28) 

(A.29) 

(A.30) 

(A.31) 

(A.32) 

A-3 



<   Hz'lhlMh 

=   IF   2 
A 

3x2 + J2 x*(k)2 

(A.33) 

(A.34) 
fc=3 

where we now define x as 
3z*(l)      2z*(0) 

x = —- h 
5 5 

This is easily seen to be equivalent to Case 0 by switching the roles of x*(0) and x*(2) 

Case 3. (N > 3) 

(A.35) 

Assume 

Then 

|s*(0)| = max{|z*(0)|, |**(1)|, |a*(2)|} < \x*(N)\     . 

a(x*)    =   x*(0) + ^ + ^ + ±£^-\x*(N)\ 
fc=3 

< 
x*(l)     x*(2)     ^ x*(k) + 

&* + ! 

ifc=3 

=   x (aj'(O) + aj'(l) + z'(2)) + ]£ a*(Jfe)x'(fe) 

=    <z',S> 

< ii^'iypib 

\X'\\2 A 
sx2 + J2x*(ky 

fc=3 

where 
3sr*(l)     2a;*(2) 

a; = —= h 
5 5 

The results of Case 0 apply directly. Similarly, if we assume 

|«*(1)| = maxil^CO)!, |**(1)|, |x*(2)|} < \x*(N)\ 

(A.36) 

(A.37) 

(A.38) 

(A.39) 

(A.40) 

(A.41) 

(A.42) 

(A.43) 

(A.44) 
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the results of Case 1 apply directly, and if we assume 

|3*(2)| = max{|z*(0)|, |z*(l)|, |z*(2)|} < \x*(N)\ (A.45) 

the results of Case 2 apply directly.  Thus, we have shown that a(a;*) <   \\x'\\2   for all 

ll**lla   <   1 • ■ 
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Appendix B.   SISO F-16 Short Period Model 

This appendix describes the evaluation model for the SISO F-16 problem used in this 

dissertation. It is the same model that was used by Walker [9], and this appendix itself was 

taken, with one modification, from Walker's dissertation. The only modification was to 

remove the Pade approximation of the sampling time delay. This was not necessary since 

the discrete-time controllers were implemented using a sample and hold arrangement. 

The F-16 normal acceleration command control system is modeled by a continuous, 

time-invariant linear system shown in Figure B.l. The system consists of a two-state short 

period approximation of the normal acceleration command system augmented with a pre- 

filter for the servo dynamics and a post-filter to model the control delay. The plant states 

are the angle of attack (a) and the pitch rate (q). The input is the stabilator deflection 

(6e) and the output is normal acceleration (az). The unweighted plant {Wp) is given by 

a 1.491 

9.753 

0.996 

-0.96 

a 

1 
+ 

-0.188 

-19.04 
Se 

35.264    -0.334 
a 

+ -4.367 

(B.l) 

The actuator dynamics (W3) are modeled as a first order relation between the com- 

manded stabilator deflection (<5<.com) and the actual deflection given by 

6e = -20.06e + 20.0<5e (B.2) 

A wind disturbance is modeled as an angle of attack perturbation by a zero-mean 

white Gaussian noise with a strength of 5.0 x 10-4 rad2-sec. The measurement is corrupted 

by zero-mean, white Gaussian noise of strength 1.6 x 10-5 g2-sec. The strength of the noises 

were determined by tuning a linear quadratic estimator. The truth model for the tuning 

and analysis includes a first order Von Karman wind model (Ww) for the low frequency 

process noise £, which enters the plant as an angle of attack perturbation (r), and a high- 
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Figure B.l    F-16 model block diagram 

pass filter (Wm) to model the measurement noise r\. These models are given, respectively, 

as 

x'w    =    -6.7a:«, + 0.0187u;i 

€    =    xv 

(B.3) 

(B.4) 

xm   =    -10sm + 0.004w2 

77   =    1.0a;m + 0.004u>2 

(B.5) 

(B.6) 

where Wi and w2 are unit strength white-Gaussian noises, xw is the wind state, xm is the 

measurement noise state, £ is the process noise, and 77 is the measurement noise. T is the 

B-2 



first column of the plant A matrix given in (B.l). Ws is a control weighting function which 

was set to unity for the examples in this dissertation. 
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Appendix C.   The Mixed-Norm Toolbox for MATLAB 

C. 1    Overview 

The Mixed-Norm Toolbox (MXTOOLS) for MATLAB solves the general fixed-order, 

mixed-norm control problem for both discrete-time and continuous-time linear systems. 

Specifically, it minimizes the H2 norm of a transfer function subject to constraints on the lx 

(Li for continuous-time) and/or H^ constraints on dissimilar transfer functions associated 

with the same underlying plant dynamics. Structured singular value (/x) constraints can 

be accommodated as a special case of H^, constraints [64]. Further, an arbitrary number 

and variety of constraints can be added to the problem without modification to the code. 

The resulting non-convex optimization problem is solved numerically using gradient-based, 

nonlinear programming methods. 

C.2    Mixed-Norm Toolbox Structure 

The Mixed-Norm Toolobox is made up of a modular collection of norm and gradient 

subroutines, bound together with calling shells and utility routines to facilitate easy prob- 

lem setup (see Figure C.l). With this approach, any number or combination of different 

constraints can be added to the problem without modification to the code. The overall 

structure is identical for both the continuous-time and discrete-time portions of the tool- 

box, with a "cc" or "c" prefix referring to a continuous-time routine, and a "dd" or "d" 

prefix referring to a discrete-time routine. Ordinarily, the user only needs to interact with 

the main shells (ccmxopt.m or ddmxopt.m). These shells determine which of the various 

subroutines need to be called, and they store this information in a parameter matrix which 

is passed to the appropriate subshells via the optimization solver. Besides the basic MAT- 

LAB [58] package, the Mixed-Norm Toolbox requires the pi-Analysis and Synthesis Toolbox 

[63] and the Optimization Toolbox [59]. Specifically, the transfer function storage scheme 

and star product subroutine are used from the fi-Toolbox, and several of the optimization 

routines from the Optimization Toolbox are used. 

The first of the inputs to the main shell consists of a stack of transfer functions, each 

of which is in the \i-Toolbox system matrix form. The objective function will be the 2-norm 
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Main Shells: 

ccmxopt.m 

ddmxopt.m 

(orFORTRAN shell) 

Utility Routines 

Optimization Solvers: 

sqp.m 

constr.m 

(IMSL, ADS, et.al.) 

Function Collection 

Subshells: 

cmxobj.m 

dmxobj.m 

1-norm: 

cmxlobj.m 

dmxlobj.m 

2-norm: 

cmxlobj.m 

dmxlobj.m 

1-norm gradient: 

cmxlgrd.m 

dmxlgrd.m 

inf-norm: 

cmxiobj.m 

dmxiobj.m 

inf-norm gradient: 

cmxigrd.m 

dmxigrd.m 

stability gradient: 

cmxsgrd.m 

dmxsgrd.m 

Figure C.l    Mixed-Norm Toolbox Structure 
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of the first transfer function in the stack. The second input is the parameter matrix which 

identifies the number of exogenous inputs and outputs for each of the transfer functions 

in the stack, and which norm (1, 2, or oo) is being constrained for each of the transfer 

functions. The third input is simply the name of the output file where the results will be 

written. The fourth (optional) input is an initial compensator used as a starting point. 

If the fourth input is not present, the objective transfer function must be non-singular so 

that the H2 optimal compensator can be computed as the starting point. Any or all of the 

constraint transfer functions may be singular. The order of the resulting compensator will 

be the same order as the starting compensator; therefore, if a compensator of higher or 

lower order than the objective transfer function is desired, an initial stabilizing compensator 

with the desired order must be provided as the third input. Although the data input 

format is documented within the routines, an interactive shell to format the inputs has 

been constructed (loader.m), and a brief user's manual will be provided as part of the 

Mixed-Norm Toolbox. The outputs of the main shell are the mixed-norm compensator 

and a matrix of transfer function norms which compare the specified constraint levels with 

the final achieved norms for the various transfer functions. The help file for the main 

shells list the complete set of inputs and outputs, and the help file for the discrete-time 

shell (ddmxopt.m) is listed here: 

DDMXOPT    Finds optimal mixed-norm solution using numerical optimization 

techniques. 

[Komp.normvec.xvecsave,H]=ddmxopt(TF.params,outfile,Kinit,H,options) 

This is a numerical optimization approach to finding the fixed order  (nsk), 

compensator which minimizes the 2-norm subject to infinity,  1-norm,  or 

2-norm constraints for a continuous linear system. 

INPUTS: 

TF     = [P1;P2;P3;...;Pn] where each Pi is in packed (musyn) format 

params = [nin_obj  nout_obj      2     opt       objexp      0 
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nin_conl nout_conl type_conl start_conl end_coni step_conl 

nin_con2 nout_con2 type_con2 start_con2 end_con2 step_con2 

nin_conn nout_conn type_conn start_conn end_conn step_corm 

Ntrunc   tol      fsamp 0       0       0   ] 

nin    = # exogenous inputs for each of the transfer functions 

nout   = # controlled outputs for each of the transfer functions 

type   = either 1, 2, or 3 for 1-norm, 2-norm, or inf-norm 

Note: OBJECTIVE MUST BE AN H2 PROBLEM 

start  = starting constraint level 

end    = ending constraint level 

step   = step size between the starting con level and ending con level 

Note: Each constraint interval is nested inside the next one 

(i.e. constraint i is nested inside constraint 2, etc.). 

To set a constant constraint, set start=end and step=0. 

opt    = Indicator for Optimization Algorithm 

0 - Will use sqp.m (default) 

1 - Will use constr.m (an SQP routine from Opt. Toolbox) 

objexp = Scaling exponent for objective fen.  Scale=10"(-objexp) 

Default = 0 

Ntrunc = truncation for 1-norm problems 

tol    = tolerance for 1-norm problems 

fsamp  = sampling frequency at which plants were discretized 

outfile = (optional) string name of outfile, must be in single quotes. 

normvec and xvecsave (see below) are saved in this file. 

Kinit  = (optional) initial controller. Must be put into packed, modal 

form (i.e. use canon then pek). Default=H2 optimal controller. 

Note: MUST REPRESENT A STABILIZING CONTROLLER. 

H     = (optional) intial positive definite approximation of the Hessian 

options = (optional) allows a vector of optimization parameters to be 

defined. For more information type HELP FOPTIONS. 

Note: to skip an optional input set it equal to []. 

C-4 



OUTPUTS: 

Komp        = optimal compensator in packed,  modal form 

normvec =   [nrmi nrm2 con2 nrm3 con3 nrmn conn] 

xvecsave=   [xvecl xvec2 xvec3   ...],  xvec is the vectorized compensator 

which corresponds to the points described in each row of normvec. 

dkvec2ss can be used to transform each vectorized compensator 

to musyn format. 

H = final positive definite  approximation of the Hessian 

Note:  n,   above,   is currently restricted to be <=10 

Created by: Capt.   Dave  Jacques 

AFIT/ENY 

Created: 4/94 

Last modified:  3/29/95 

In addition to the inputs and outputs, there are several features of the main shell 

with which the user should be familiar. Since the oo-norm subproblem constrains only 

the singular value peaks, it is possible that additional peaks will appear as the algorithm 

pushes down on the initial peaks. If this occurs, the new peak(s) will be detected, and 

the constrained optimization will be repeated with a new set of frequency bands. This 

ensures that the specified H^, constraint has been met. Similarly, the 1-norm subroutines 

depend on a specified truncation level to approximate the norm expressions. Following 

convergence, the truncation level is increased and the error between the two approxima- 

tions is compared to a specified threshold. If the threshold is exceeded, the constrained 

optimization is repeated with the higher truncation level. Default truncation levels and 

thresholds are provided in the main setup routine (loader.m). In addition to setting the 

default parameters, loader.m can be used to stack the transfer functions, establish the 

parameters input matrix and run the main shells using default values. If default values 

require modification prior to running the main shell, loader.m can be exited prior to en- 
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tering the optimization problem, and the appropriate elements of the parameters matrix 

can be modified at that time. 

A complete listing of the functions in MXTOOLS can be obtained from within MAT- 

LAB by typing 

help mxtools 

at the system prompt (>>). The main help help file for MXTOOLS is repeated here: 

Mixed-Norm Toolbox 

Version: Beta 0.91 3/95 

The Mixed-Norm Toolbox contains routines for the synthesis of 

fixed-order, mixed-norm compensators. The problem it seeks to solve 

is that of minimizing the 2-norm of a closed-loop transfer function, 

subject to constraints on the 1-norm, 2-norm, or infinity-norm of 

related, but generally different transfer functions. It attempts 

to do this using a gradient-based constrained numerical optimization. 

CONTROL SYNTHESIS ROUTINES 

loader An interactive script for running either ccmxopt or ddmxopt 

ccmxopt Main shell for continuous-time mixed-norm control synthesis 

ddmxopt Main shell for discrete-time mixed-norm control synthesis 

ddh.2 Discrete-time H2 solver - strictly causal compensator 

ddh2nc Discrete-time H2 solver - not strictly causal compensator 

ddlqr Discrete-time LQR solver 

SUBSHELLS 

cmxobj Function collection subshell for ccmxopt 

cmxgrd Gradient collection subshell for ccmxopt 

dmxobj Function collection subshell for ddmxopt 

dmxgrd Gradient collection subshell for ddmxopt 
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FUNCTION EVALUATION ROUTINES 

cmxlobj 

cmx2obj 

cmxiobj 

dmxiobj 

dmx2obj 

dmxiobj 

Continuous-time 1-norm for cmxobj 

Continuous-time 2-norm for cmxobj 

Continuous-time inf-norm for cmxobj 

Discrete-time 1-norm for dmxobj 

Discrete-time 2-norm for dmxobj 

Discrete-time inf-norm for dmxobj 

GRADIENT EVALUATION ROUTINES 

cmxlgrd Gradients of the continuous-time 1-norm for cmxgrd 

cmx2grd Gradients of the continuous-time 2-norm for cmxgrd 

cmxigrd Gradients of the continuous-time inf-norm for cmxgrd 

cmxsgrd Continuous-time stability gradients for cmxgrd 

dmxlgrd Gradients of the discrete-time 1-norm for dmxgrd 

dmx2grd Gradients of the discrete-time 2-norm for dmxgrd 

dmxigrd Gradients of the discrete-time inf-norm for dmxgrd 

dmxsgrd Discrete-time stability gradients for dmxgrd 

TRANSFER FUNCTION NORM ROUTINES 

cclnorm 1-norm of a continuous-time system 

ccinorm inf-norm of a continuous-time system using sv-search 

ddlnorm 1-norm of a discrete-time system 

dd2norm 2-norm of a discrete-time system 

ddinorm inf-norm of a discrete-time system using sv-search 

UTILITY ROUTINES 

care Solves continuous algebraic Riccati equation (A.J. Laub) 

dare Solves discrete algebraic Riccati equation (A.J. Laub) 

qzexch Performs unitary equivalence for care and dare (A.J. Laub) 

sqp Sequential quadratic programming algorithm 
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merit 

cpkfind 

cbands 

maxcsv 

dpkfind 

dbands 

maxdsv 

ckvec2ss 

ckss2vec 

dkvec2ss 

dkss2vec 

ftime 

blkrsch2 

dstabprj 

Evaluates merit function for sqp 

Finds singular value peaks for cmxigrd 

Establishes frequency bands around singular value peaks 

Used 1-D optimization to find location of sv peaks 

Finds singular value peaks for dmxigrd 

Establishes frequency bands around singular value peaks 

Used 1-D optimization to find location of sv peaks 

Converts vectorized compensator to musyn form (cont-time) 

Converts musyn compensator to vectorized form (cont-time) 

Converts vectorized compensator to musyn form (disc-time) 

Converts musyn compensator to vectorized form (disc-time) 

Evaluates final time for cclnorm 

EXAMPLES 

rundbr   A simple continuous-time H2/Hinf example 

runfi6   A SISO H2/ll/Hinf longitudinal controller 

for F16 aircraft using a discrete-time design 

The Mixed-Norm Toolbox is the result of work by several researchers 

at the Air Force Institute of Technology. 

The contributors are: 

Capt Dave Jacques 

Capt Mark Spillman 

Dr D. Brett Ridgely 

Maj Bob Canfield 

LtCol Dave Walker 

Capt Linda Smith 

The Mixed-Norm Toolbox is not copyrighted, and we encourage 
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users to freely distribute  it.     However,  we request that it 

be distributed intact,   and we also  (humbly)  request that this 

contents file and all acknowledgement banners be left as  is. 

We encourage feedback from all who might come across this toolbox. 

Feedback is best directed to: 

Dr D.  Brett Ridgely 

AFIT/ENY 

2950 P Street 

Wright Patterson AFB,  OH    45433-7765 

e-mail:  dridgelyOafit.af.mil 

C.3    Optimization Solvers 

The Mixed-Norm Toolbox has been designed to work with a variety of math program- 

ming algorithms. In fact, although main shells are provided for several specific solvers, it 

is relatively easy to adapt these main shells to almost any math programming algorithm 

capable of solving nonlinear constrained optimization problems. The experience of the 

AFIT research team has been that Sequential Quadratic Programming (SQP) methods 

provide the best overall performance in terms of efficiency and ability to handle a wide 

variety of problems. The Optimization Toolbox contains an SQP algorithm (constr.m) 

which has been used successfully, primarily for smaller problems (less than 40-50 design 

variables). For larger problems, constr.m has problems maintaining a positive definite 

approximation to the Lagrangian Hessian, and other solvers should be considered. For 

larger problems (presently as many as 100 design variables), the IMSL set of FORTRAN 

subroutines [61] contains an excellent SQP routine (DNCONG). Use of the IMSL routine 

requires a FORTRAN shell (provided as part of the toolbox) that calls the MATLAB 

computational engine (libmat.a) for function and gradient evaluations. A limitation of the 

IMSL subroutine is that the fixed convergence and line search criteria are so strict that 

they sometimes fail to solve problems which are solvable using more relaxed criteria.  A 
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new addition to the Mixed-Norm Toolbox is a MATLAB SQP routine (sqp.m) based on 

the work of Schittkowski [55]. Preliminary trials with this routine show performance on 

a par with the IMSL routine, and this routine is now the default solver for MXTOOLS. 

A very useful feature of sqp.m is that it allows the user to reuse the approximation to 

the Hessian, thus greatly improving the efficiency of the algorithm when moving between 

successive points on the Pareto optimal curve. 

In addition to SQP algorithms, the Method of Feasible Directions [10] has been suc- 

cessfully used for some problems, and FORTRAN shells have been constructed to interface 

the toolbox with the entire ADS [60] collection of optimization subroutines. Although 

performance is not necessarily improved with the ADS subroutines, they allow experimen- 

tation with a wide variety of optimization strategies and line search methods. As a side 

note, many of the optimization routines listed above use an active set method whereby only 

the active (or nearly active) constraints need to be calculated. Although not currently im- 

plemented, the capability to accommodate solvers using active set methods is being added 

to the code, and its use will be recommended for problems where all of the constraints are 

not expected to remain active. 

As with any non-convex optimization problem, convergence to the global minimum 

for any given set of constraint levels cannot be guaranteed with the Mixed-Norm Toolbox. 

Having said this, a standard set of guidelines for working with the toolbox should be con- 

sidered. First, convergence criteria will most likely require adjustment in order to trade off 

accuracy of the solution with time to achieve convergence. Second, since global convergence 

cannot be guaranteed, it is sometimes necessary to use several different starting controllers. 

This technique often can be used to provide evidence of (or avoid) local minima which may 

be present. Hx and/or l\ solvers can be very useful for providing compensators at dif- 

ferent locations on the Pareto surface. Third, small steps between successive constraint 

levels should be used when attempting to define a Pareto curve or surface, especially in 

regions of steep tradeoff between the objective and constraint(s). Along these lines, the 

algorithms seem to converge more quickly if only one constraint level is varied from one 

point to the next.   Fourth, although reduced-order controllers may be more susceptible 
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to local minima, the reduced number of design variables may produce an overall problem 

which is numerically easier to solve than the full-order design. 
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