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Preface

The ideas for this research were born out of the desire to be able to explain
the mechanics of neural networks mathematically. I first learned of neural networks
in 1989 in a Pattern Recognition class taught by Dr. Matt Kabrisky and Dr. Steve
Rogers at AFIT. They delivered the material in a way that tapped my curiosity to
discover what these things really were. I pursued this curiosity as a Ph.D. dissertation
topic with their encouragement, for which I am especially grateful. Hopefully, it has

resulted in useful research.

The task of guiding me through the research was taken on by Dr. Mark E.
Oxley. I want to express my deep appreciation for his investment in my entire Ph.D.
program. Dr. Oxley was a tremendous partner for this project. He willingly let me
lead the research beyond the scope of our expertise. This resulted in monumental
effort, on both our parts, to learn new mathematics and the intricacies of the field of
artificial neural networks. Dr. Oxley was tenacious and offered constant enthusiasm.
Moreover, he patiently taught me methods of research that I'm sure will prove useful

in the future.

I would also like to thank the rest of my committee Maj Greg Warhola, Dr.
Steve Rogers and Maj Dennis Ruck for serving as a great sounding board. Ad-
ditionally, I want to thank Dr. William Baker for being a thorough and patient
Dean’s Representative. Special thanks go to the National Air Intelligence Center for

supporting my desire to continue my education.

And finally, for his love, patience, understanding and encouragement, I am
most grateful and forever indebted to my best friend and husband, Doug Carter.

This could not have been done without him.

Martha Ayers Alvey Carter
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Abstract

Researchers rely on the mathematics of Vapnik and Chervonenkis to capture
quantitatively the capabilities of specific artificial neural network (ANN) architec-
tures. The quantifier is known as the V-C dimension, and is defined on functions or
sets. Its value is the largest cardinality [ of a set of vectors in R? such that there is
at least one set of vectors of cardinality [ such that all dichotomies of that set into
two sets can be implemented by the function or set. Stated another way, the V-C
dimension of a set of functions is the largest cardinality of a set, such that there
exists one set of that cardinality which can be shattered by the set of functions. A
set of functions is said to shatter a set if each dichotomy of that set can be imple-
mented by a function in the set. There is an abundance of research on determining
the value of V-C dimensions of ANNs. In this document, research on V-C dimension
is refined and extended yielding formulas for evaluating V-C dimension for the set
of functions representable by a feed-forward, single hidden-layer perceptron artificial

neural network.

The fundamental thesis of this research is that the V-C dimension is not an
appropriate quantifier of ANN capabilities. Consequently, the results of this research
provide a basis of mathematics on which to build quantifiers that address the specifics
of ANN’s ability based on invariant characterizations of signed sets. Specifically, the
lattice structure of ANNs is investigated. Moreover, a cut-intersection semi-lattice is
established upon which invariant analysis of an arrangement of hyperplanes can be
examined. As a consequence of the study of combinatorial geometry of hyperplane
arrangements, it is shown that solutions to the chamber counting problem that are
based on analysis of the Poincaré polynomial also provide a closed form relation for

determining the value of the V-C dimension of ANNs. This provides a relationship

X




between the study of combinatorial geometry of hyperplane arrangements and ANN

capability analysis.

In addition, a generalized framework in which to perform ANN capabilities
analysis is presented. The framework is based on invariant analysis. Moreover,
an invariant based on geometric complexity defined by concepts of combinatorial

geometry is presented and evaluated.

Finally, an instantiation of the framework is given. The quantifier is called
the Ox-Cart dimension. It is a function of an invariant called the geometric com-
plexity. This quantifier is directed at analysis of specific geometric arrangements of
signed sets. In other words, O-C dimension characterizes an ANN’s ability to solve
a particular classification problem where the problem is characterized by its geo-
metric complexity. This differs from V-C dimension which is about arbitrary sets.
V-C dimension characterizes an ANN’s ability to solve the worst case geometry and
dichotomy of a classification problem characterized only be cardinality. Using the
Ox-Cart dimension a lattice of feed-forward, single hidden-layer, perceptron artificial
neural network is defined. This structure is shown to facilitate ANN architecture

capabilities comparisons.




THE MATHEMATICS OF MEASURING CAPABILITIES OF
ARTIFICIAL NEURAL NETWORKS

I. Introduction

The research described in this document is dedicated to improving the meth-
ods and mathematics used to determine capabilities of feed-forward artificial neural
networks (ANNs). A generalized framework for deriving ANN capability quantifiers
is developed. In order to provide the framework, the mathematical structure of
the problem, generalized solution, and methods of analyzing both had to be clearly
defined and investigated. Invariant analysis is used extensively to define the gener-
alized framework. As a result, a capability quantifier called the Oz-Cart dimension
is defined which characterizes the adequacies of ANN solutions to the classification
problem. The Ox-Cart dimension is based on a geometric characterization of clas-
sification problems, called the geometric complerity. Both the Ox-Cart dimension
and the geometric complexity exemplify structures in the generalized framework and
exhibit desired invariant properties. The Ox-Cart dimension will be used to define a
partial ordering which will produce the lattice of feed-forward, single hidden-layer,
perceptron ANNs. The lattice structure facilitates comparisons of ANN architectures

based on their ability to solve classification problems.

The novelty of this approach to quantify ANNs’ capabilities is that it is de-
signed to be consistent with properties specific for analyzing neural network archi-
tectures and problem specific characteristics. This is different from current methods
based on the Vapnik-Chervonenkis (V-C) dimension which analyzes an ANN’s abil-
ity to solve arbitrary classification problems. However, in some aspects the Ox-Cart

dimension parallels V-C dimension. Hence, the repeated use of the term dimension.



(It should be noted that the term Ox-Cart dimension was created solely to parallel

V-C dimension. Neither quantifiers are dimensions in the traditional mathematical

sense, the cardinality of a basis set.)

Considerable background research on the V-C dimension approach led to sig-
nificant results in two general topics. The first result extended existing bounds and
precise values for V-C dimension and related mappings. This was accomplished by
analyzing and exploiting the algebraic and topological structures of the mappings.
The second result found that there is a strong connection between the study of
ANNSs’ capability and an area of mathematics that will be referred to as combi-
natorial geometry. In fact, it will be shown that the V-C dimension of an ANN
can be evaluated using combinatorial geometric methods for counting chambers of a

hyperplane arrangement.

Combinatorial geometry is a rich area of mathematics that relies heavily on
a lattice structure. When that structure is in place, much can be said about the
capacity of a system; specific to this research are the systems generated by ANNs.
In this document, the groundwork will be laid to make combinatorial geometry
available to the artificial neural network community of researchers. Specifically, the
cut-intersection semi-lattice of an ANN will be defined and used to obtain invariants
for capability analysis. Additionally a lattice of the chamber sets of ANNs will be
established.

This research relied heavily on previous work in the area of measuring ANN
capabilities. For example, extending the results of the significant 1957 work of Andrei
Kolmogorov, G. Cybenko showed that the set of functions that can be approximated
by a multi-layer perceptron network are dense in the set of continuous functions
defined on the n-dimensional cube (18). This result was extended further by A.
Ronald Gallant and Halbert White who showed that ANNs are dense in Sobolev

Spaces, suggesting that derivative information can be approximated (19).




What is not so clear about the capabilities of an ANN is what it takes to
learn these functions. What size ANN is required? How many training samples are
needed? Recent publications on this subject have borrowed from important works
by Cover and Vapnik-Chervonenkis. Baum used theorems of Cover to give bounds
on the required ANN size for certain problems. More recently, Eduardo Sontag pro-
posed mappings similar to V-C dimension for the specific purpose of analyzing ANN
capabilities. Sontag derived interesting results about sigmoidal transfer functions
and direct connections using his mappings (39). This dissertation extends these

ideas even further.

The following sections will explain the details of classification problems, ar-
tificial neural networks, and what is meant by the ability to generalize. With this

explanation, a common set of terminology will be established.
1.1 Problem: Generalization of Classification Data

In general, there are two distinct problems solved with artificial neural net-
works: function approximation (interpolation) and data classification. One can think
of both of these problems as function approximation, where interpolation approxi-

mates functions of the form
f:R% - R% dy, dy €N
and two-class classification problems approxifna,te functions of the form
f:R*—{0,1} d e N.

The distinction is made since analysis of complexity of the problems is different.
(Note that throughout this document R refers to d-dimensional Euclidean space.)
The research outlined by this document deals with the problem of classification of

data. The research will concentrate on the two-class problem.




The two-class problem (sometimes called the two-coloring problem which is
a special case of the n-coloring problem) refers to the problem of separating a set
of points, X C R into two pre-defined subsets, X*, X~ where X+ N X~ = 0,
and X+ U X~ = X. The two subsets, X* and X, together define a dichotomy or
partition on X. It is said that the solution to a classification problem is an function
f which implements the dichotomy, that is f(z) > 0 for all z € X* and f(z) < 0 for
all z € X~ for a given set X. The ordered pair (X*, X~) is referred to as a signed
set. Referring to (X*, X~) as an ordered pair is meaningful and accurate since (X¥,
X~) # (X~, X*). The space of signed sets is investigated in detail as part of the

new research presented in this dissertation.

1.2 Tools: Feed-Forward, Single Hidden-Layer, Perceptron Artificial Neural Net-

works

The research in this dissertation concerns feed-forward, single hidden-layer,
perceptron artificial neural networks. See Figure 1 for a graphical depiction. Feed-
forward refers to the upward direction of the graphical depiction in which the input
vectors are processed. Note that the picture shows three layers of processing units
referred to as nodes, units, or processors. The bottom layer is the input layer of
nodes. This is the starting point for the input data. The middle layer, is referred
to as the hidden-layer. The top layer is referred to as the output layer. Each layer
is connected by interconnections. Each interconnection has an assbciated weight.
Each node performs a process on incoming vectors or scalars and outputs vectors
or scalars. The process may differ depending on the layer. In a single hidden-layer
perceptron artificial neural network, the middle layer nodes are perceptron nodes.
In the case of a perceptron node, the input is usually the dot product of the input
vector and the node’s incoming weight vector. This dot product is compared to
the node’s threshold value, and based on the comparison a scalar is output. The

comparison is performed by a sigmoid function sometimes referred to as a threshold
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Figure 1. A feed-forward, single hidden-layer, perceptron ANN.

function or transfer function. In addition, a direct connection may be included. The
direct connection processes the input vector straight to the output layer bypassing

the middle layer and has no associated sigmoid function.
Now consider the mathematics of the ANN.

Definition. A function, 6 : R — R, will be called a sigmoid if

ty ;= lim 6(s) and t_ := Lim 0(s).

s—++00 §——00

The following are two examples of commonly used sigmoid functions. The first is

the standard sigmoid function

1)




The second is referred to as the hard-limiter or Heaviside function

0 if s<0
H(s) = (2)
1 if s>0.

The input into each perceptron node is the dot product of the input vector,
z € RY, and the node’s associated incoming interconnection weight vector, v; € R%.
Each node has an associated scalar threshold value, 7; € R. The threshold value is
subtracted from the dot product and the result is passed through a sigmoid. The
output of each perceptron can be defined as 6(v;-z —7;). Note that if f(z) = vi-z—m7,
then f(z) = 0 is the equation of a hyperplane in R¢. The function f is also referred

to as a separating surface.

Each of the k perceptron output values, which are scalar, are multiplied by
the perceptron’s associated outgoing interconnection weight, w;, which is a scalar.
These values are the input to the output layer where they are summed together to

produce
k
Ew,ﬂ(v,- ST = T;).
=1

Define the sigmoid function H to be

1 if s>0
H(s)=H(s)—H(-s)=4 0 if s=0
—1 if s<0.

Note that if § = H, then the value H(v; -z — 7;) can be interpreted as an indication of
the input vector, z, being on one side of the hyperplane, {z € R?: f(z) = vi-z—7; =

0}, or the other. Equivalently, it indicates if  is in the positive halfspace, b, where

bt = {z: f(z) > 0}




or the negative halfspace, h~, where
b~ ={z: f(z) < 0}.

Moreover, if the outgoing weights are binary, i.e. w; € {0,1}, then the value

k
> wib(vi -z — )

1=1

can distinguish between intersections of the halfspaces. Moreover, it completely

defines the function F of an ANN for any z€ R?. Specifically, define F as

k
F(z) =Y wil(vi-z — ), (3)

=1

where w; € {0,1}, § = H, v; € R, and 7; € Rfori=1,...,k. This is the equation
of the ANN which is the object of capability analysis of the new research in this

dissertation.

Equation 3 is not the most general definition of a feed-forward, single hidden-
layer, perceptron artificial neural network. The most general case requires the per-
ceptron’s outgoing interconnection weights to be any real value. Additionally, a

direct connection is included that is defined by
wo + vo - Z,

where wy € R and vy € R?. Combining yields the following function, G, that de-
fines a general feed-forward, single hidden-layer, perceptron artificial neural network.

Specifically,
k
Gz)=wo+wv-z+ Zw,—ﬂ(v,- -z — T, 4)

i=1
where 4 is any sigmoid function, v; € R?, w;,7; € R, for ¢ = 0,1,...,k. Note that
F=Gifw; €{0,1},0 ="H, wo =0, and vo = 0.




The parameters v;, w;, and 7;, for ¢ = 0,1,..., k are approximated to yield an
approximate function. The approximated function will be referred to as a solution
or an ANN solution to the classification problem described by a signed set. The
approximation process is referred to as learning or training and is accomplished with
the use of a training set of data which is a signed set. All possible such G’s will be

referred to as a family.

1.3 Analysis: Generalization

In this research, there are basically two questions being asked about an artificial
neural network’s ability to generalize about classification data. One is: What size net
is required to accomplish a given classification problem? That is, What is the value
of k2 The second question is: How large of a set of vectors can a given architecture
dichotomize?. This division of perspectives is evidenced in the literature described in
Chapter 2. Both of these questions and their relationship will be partially answered

in this research.

It is important to clarify the term generalization. In this document, for an
ANN to generalize a signed set, (X*, X ™), means that after training the ANN has
produced a function G that implements the dichotomies of the training set (which
is a signed set). Hence, the analysis of the capabilities of a family of functions, G,
would be an investigation of an arbitrary G’s ability to implement all dichotomies in
the training set. This is also referred to as the family’s separating capacity. It should
be noted that the term generalization is sometimes used differently in the literature.
The definition presented above could be referred to as memorization, in which case
the analysis of the performance of G to generalize would be an investigation of G’s

performance on data not used for training.




1.4 Synthesis: Achieving Generalization

Achieving generalization, i.e., approximating the parameters v;, w;, and 7, for
¢t =0,1,...,k is performed by the chosen learning algorithm. The performance of
learning algorithms is not addressed by this research. Rather, there is an assumption
that if a solution (best choice of parameters) exists, then it can be learned. This

assumption is supported by Kolmogorov, Hecht-Nielsen and Cybenko (24) (18).

1.5 Validation: Testing the Results

Validation is the portion of the problem solving process that deals with testing
the results and determining its validity. Validation is not addressed directly since
the scope of this research does not involve a particular application and its solution.
This should not be confused with validating the adequacy of the proposed ANN
capability quantifiers which will be addressed.

1.6 Conclusions

In summary, this chapter provided a basis of general knowledge about solving
classification (two-class) problems using ANNs. It also explained what portions of

the solution process are directly addressed as the new research in this dissertation.

The second chapter details relevant literature to motivate technically the new
research presented in the following chapters. Chapter III provides a re-evaluation
of existing results which motivated extensions of that work. The fourth chapter
discusses desired properties of capability quantifiers lacking in V-C based quantifiers.
Chapter V will introduce basics of lattice theory and combinatorial geometry, and
recast the mathematics of ANNs in the context of lattice theory. Chapter VI will
present a generalized framework in which ANN capability analysis can be performed.
Chapter VII will bring together the innovations of the generalized framework of

Chapter VI and the rich mathematics of Chapter V to define the Ox-Cart dimension




and the lattice of ANNs. Ideas for follow-on research will be enumerated in Chapter

VIII. A summary is provided in Chapter IX.
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II. Background

This chapter reviews research on the problem of determining capabilities of cer-
tain artificial neural networks (ANNs). In particular, the architectural requirements
for an ANN to have the capability to approximate arbitrary functions is addressed.
Included are methods to quantify the capability of a class of separating sets and
explanations on how these quantifiers direct the approach to solving classification
problems. The material presented in this chapter is included to motivate the research
presented in this dissertation. In particular, the material outlines a technical pro-
gression of research which serves as a catalyst for the results given in the following

chapters.

This chapter discusses published research on the Vapnik-Chervonenkis (V-C)
dimension of a set of separating surfaces. This quantifier or mapping (sometimes
inaccurately referred to as a measure in the literature), also known as the separating
capacity of a class of sets, directs the determination of the size of the ANN required to
solve a problem (9). Valiant’s work emphasizes the importance of an accurate ANN
capability quantifier by showing that the V-C dimension also directs the amount of
training data required for adequate learning (45). Learning is not discussed in detail
in this document. Hence, Valiant’s results are not presented in detail. However,
Valiant’s results are mentioned as testimony for the usefulness of research related
to refining the definition of V-C dimension and providing bounds or values for the

quantifier, given particular ANN architectures.

The technical review provided here, includes Cover’s work about a single sep-
arating surface which could be a hyperplane defined by a perceptron or a nonlinear
surface. Also included are Baum’s results about multiple separating hyperplanes de-
fined by multiple perceptrons in a feed-forward single hidden-layer perceptron ANN.
Additionally, Sontag’s results about alternative V-C based quantifiers for ANNs are

11




presented. Before the results are discussed, two concise definitions of V-C dimension

and how V-C dimension relates to ANNs are provided.

2.1 Vapnik-Chervonenkis Dimension

Vapnik-Chervonenkis (V-C) dimension is a mapping that describes the sepa-
rating capacity of a set of sets. Put another way, V-C dimension is a quantifier of
how well a set of sets can implement arbitrary dichotomies of a signed set. The
set of sets which are the domain of the V-C dimension can simply be an arbitrary
set of sets, or be derived from a set of functions. Since the set of sets can be de-
rived from functions, V-C dimension is a useful quantifier of classification capability
of ANNs. In particular, the set of sets generated by ANNs are the halfspaces and
their intersections generated from the separating surfaces, the hyperplanes defined

by perceptrons.

The following are two explicit definitions of V-C dimension. The first is a gen-
eral definition defined on a set of sets and is easy to work with mathematically. The
second is more specific since it is defined on a set of sets generated from separating

surfaces.

Consider the following general definition of V-C dimension outlined by Wenocur
and Dudley in (47). This definition is not as intuitive as the second, but will provide
the required flexibility for the new research in this dissertation. Given a nonempty
set, X C R4, a collection, 2, of subsets of X, and a finite set Y C X, let A%(Y)
denote the number of distinct sets O NY for O € ). That is

A%(Y) =card({ONY : 0 € N}) < 2™

Define
m®(n) = max{A?(Y):Y C X, card(Y) =n} <2".
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Notice that m®(n) is no larger than all possible dichotomies of Y, that is m®(n) < 27
for all n. Define VC(Q) as the V-C dimension of the set of sets {} given by

VC(Q) =inf{n : m%(n) < 2"}.

with
VC(Q) = +oo if m¥(n) = 2" for all n.

Now, we can make a second definition which is an instantiation of the first.

Consider the following preliminary definitions.

Definition. A dichotomy of a set, X C R?, is the partition of its elements into two
disjoint subsets X+ and X~ such that X* UX~ = X and X* N X~ = 0 and is
denoted by the ordered pair (X*,X~). (X, X ™) is referred to as a signed set. If

there are n elements in X, then there are 2" possible dichotomies of X.

Definition. A separating surface, f, on a set X C R is a function that maps X to
R.

Definition. A dichotomy, (X, X ™), of a set X C R? is implemented by a set, F,
of separating surfaces if there exists f € F such that f(z) > 0 for all z € X* and
f(z) <0 forall z€ X~.

Definition. A set of separating surfaces, F, shatters the set X if every possible

dichotomy of X can be implemented by a separating surface f € F.

Definition. The set of vectors X C R? are said to be in general position if every

subset Y C X of d or fewer vectors is a linearly independent set.
With the above definitions, V-C dimension can be defined as follows.

Definition. The Vapnik-Chervonenkis (V-C) Dimension of a set of surfaces, F, is
the largest integer n, such that there is at least one set in general position, X C R?

of cardinality n that can be shattered by F.
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In other words, V-C dimension of a set of functions representable by ANNs is the
largest set of data which can be guaranteed to be implemented regardless of the

classification of the points in the data set.

It is meaningful here to reiterate that when the set of surfaces, F, referred to
in the above definitions, is the set of hyperplanes defined by the perceptron nodes
in an ANN’s hidden layer, then the V-C dimension of F, is a quantifier about the
capability of that architecture to implement arbitrary dichotomies of a set of vectors.
The value of the V-C dimension indicates the cardinality of a set of training vectors
which can be guaranteed to be classified correctly by an ANN regardless of the

dichotomy.

As an example in R2, Choose § to be the set of halfspaces generated from
the hyperplane associated with a single perceptron node. The V-C dimension of the
set, F, comprised of the single line in two dimensions, or equivalently the set, €,
comprised of the two halfspaces generated by the line, is three. This is because there
is a set of three points in general position which can be implemented and there is no
set of four points in general position which can be shattered. Consequently, it can be
said that the V-C dimension of an ANN with a single perceptron with a hard-limiter

sigmoid, which takes as its input vectors in R? is three.

2.2 Cover: The Separating Capacity of a Surface

In this section, it will be established that the separating capacity, the number
of vectors that can be separated, of a certain set of nonlinear separating surfaces
having d degrees of freedom is 2d vectors (16). The separating capacity is another
term used to express the ability of separating surfaces to dichotomize signed sets.
Hence, Cover (16) equates separating capacity with the V-C dimension. That is, the
V-C dimension of a certain set of nonlinear separating surfaces with d parameters is
2d. The surfaces are derived from homogeneous functions, f,, : R? — {—1,0,1}. The

surface is defined as {z : fu(z) = 0}, where w is an arbitrary vector of parameters
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called the weight vector. The separating capacity of a set of surfaces as defined
by Cover is the number of vectors in a set whose dichotomies can be implemented
with a probability of 1/2. Probability concepts are introduced because the number
of random dichotomies of n points in d dimensions which can be implemented with

certainty is shown to have a cumulative binomial distribution.(16)

The vectors of X are assumed to be randomly distributed in a finite dimen-
sional space. The vectors are assumed to be in general position. A dichotomy of X,
(X+,X7), is said to be separable relative to a set of surfaces, F, if there exists a
surface, f € F, that separates the points in X+ from those in X~; i.e. there exists

fuw € F such that

1 if w-z2>0 VzeXt
fulz)={ 0 if w-z=0 | (5)
-1 if w-z<0 VzeX.

2.2.1 The Function Counting Theorem.  The Function Counting Theorem
answers the question: How many homogeneously, linearly separable dichotomies of n
points in d-dimensional space are there? (A set is said to be homogeneously, linearly
separable if there exists an f,, that satisfies Equation 5 and f,(0) = 0.) Consider

the following well-established theorem given here without proof.

Theorem 1 (The Function Counting Theorem) (16:326) There are C(n,d)
homogeneously, linearly separable dichotomies of n points in general position in d-

dimensional space where
-1 /1
C(n,d)y=2)" ( )
k=0 k

2.2.2 Generalizing to Arbitrary Surfaces.  Now, consider similar arguments
for arbitrary separating surfaces. Let F be a set of arbitrary separating surfaces.

Let (X*,X~) be a signed set of n points. Let ¢ be a vector-valued mapping
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d):Rd—)Rd,

where ¢(z) = (¢1(z), d2(z), ..., ¢a(z)) and z € R%. Assume that ¢ is dimension

preserving.
Definition. The set {z : w - ¢(z) = 0} is referred to as a ¢-surface.

Definition. A dichotomy of X, (X, X ™) is ¢-separable, if there exists w € R¢ such

that
w-¢(z) > 0 VzeXt

w-dlz) < 0 VzeX .

Definition. If ¢ is as defined above and for each X = {z1,23, ..., 2.} C R, then
X is said to be in ¢-general position if every k-element subset of the set #[X] =
{é(z1), ¢(x2), - .., B(zn)}, is linearly independent for all £ < d and X C R

The following lemma enables the Function Counting Theorem to extend to

arbitrary surfaces, and also to surfaces constrained to pass through a set of points.

Lemma 1 Let (Xt, X~) be a signed set of points in R? and let y ¢ X be a
point other than the origin in R®. Then, the dichotomies (X*U{y},X~) and
(X+,X"U{y}) are both homogeneously linearly separable if and only if (X*,X7)
are homogeneously linearly separable by a (d — 1)-dimensional subspace containing
y. (16:827)

Geometrically speaking, Lemma 1 provides that a new point can be adjoined to
either half of a linearly separable dichotomy to form two new separable dichotomies
if and only if there exists a separating hyperplane containing the new point that

separates the original dichotomy.

Sufficient background has been established to present Cover’s major result.

Theorem 2 If a ¢-surface, {z € X : w- §(z) = 0}, is constrained to contain the set
of points Y = {y1,¥2,- -, Yk}, where {d(y1), ¢(y2), ..., ¢(yx)} is linearly independent
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and where the projection of ¢(z1), ¢(x2), - .., ¢(zs) onto the orthogonal subspace to
the space spanned by {¢(y1), ¢(y2), ---, ¢(yx)} is in general position, then there are
C(n,d — k) ¢-separable dichotomies of X. (16:327).

2.2.8 Separability of Random Patterns.  There are two different notions of

randomness associated with the classification problem.

o The set X is fixed in position, but the vectors in X are classified independently

with equal probability into one of two classes.

o The set X, itself, is randomly distributed in space and the desired dichotomiza-
tion may be random or fixed.

Either way, the separability of the signed set becomes a random event indepen-

dent of the dichotomy and the geometric configuration. This leads to two questions:

What is the probability of being able to implement an arbitrary dichotomy? and What

is the mazimum number of points which can be separated by a family of ¢-surfaces?

Suppose that X = {z1,Z3,...,2,} is fixed and a dichotomy is chosen at random
with equal probability from the 2" possible dichotomies of- X. Let X be in ¢-
general position with probability 1, and let P(n,d) denote the probability that a
random dichotomy is ¢-separable. Again, d denotes the degrees of freedom of ¢ or
equivalently the dimension of the image space under ¢. Then, from Theorem 2, there

are C(n,d) ¢-separable dichotomies of the 2" total number of dichotomies. Hence,

P(n,d) = C(n d) = 2n_1 Z (” - 1) (6)

Equation (6) is the cumulative binomial distribution corresponding to d —1 or fewer
successes of n — 1 trials where the event space is binary. This answers the first

question.

The utility of Cover’s material actually lies in the second question which is

answered by Cover’s following results. What is the largest n such that P(n,d) =17
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(This is, in fact, the question also answered by the works of Baum and Sontag which
are explained in later sections of this chapter.) In other words, what is the largest
cardinality of a set such that any randomly selected dichotomy can be implemented

with probability 1 by a ¢-surface with d degrees of freedom.

Let {z,,22,...} be a set of random vectors in general position and define the
random variable, N, to be the largest integer such that {z1, zs,...,zn} is ¢-separable
where ¢ has d degrees of freedom. Then, since Equation (6) is the cumulative
binomial distribution, the probability that N = n is the difference in the probabilities
that N>nand N>n+1,or

P{N=n} = P(n,d)—P(n+1,d)
= (;)"(g:}), n=12,...
This is commonly known as the negative binomial distribution with probability of
failure equal to % In this scenario, n is the number of trials required before d failures

of a binary experiment are expected to be generated, and

E(n) = 2d
Median(n) = 2d.

Here E(-) is the expected value operator. If d is chosen carefully with respect to

n, then the asymptotic probability that n vectors are separable by a ¢-surface of d

degrees of freedom appears like the cumulative normal distribution. Specifically, let
n oz.

a be any real number then choose d approximately as follows: d ~ (5) + (5) Vn.
Then,

P (n,z + -O—l\/ﬁ) ~ ®(a),
2 2
as n — 0o, where ®(«) is the cumulative normal distribution

®(a) = -\/% /_ 1 e~€/24¢.
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In other words, % approaches 1 asymptotically as n grows large.

The most interesting observation about P(-,-) is that for 0 < € < 1 and for all
d €N,
P(2d(1+¢€),d = 0

P(2d,d) =
lim,_ P(2d(1 —¢),d) = L

- 0O

lim

d—o0

o=

This was shown by Winder (49). The threshold effect, where the number of vectors
equals twice the number of degrees of freedom of the separating surface, suggests that
2d is the separating capacity of a set of separating surfaces having d degrees of freedom
(16:331). Bringing this section together is the fact that this separating capacity, the
maximum cardinality of a set whose random dichotomies can be implemented with
probability 1 by a set of separating surfaces having d degrees of freedom, is the V-C

dimension of the set of separating surfaces.

An important caveat to remember about Cover’s work is that it is about the
abilities of one separating surface from a particular family to separate a dichotomy.
The next section will outline research that extended Cover’s work to multiple sepa-

rating surfaces for the purpose of quantifying artificial neural network capabilities.

2.8 Baum: Artificial Neural Network Architecture Size for Arbitrary Classification

In the last section, the separating ability of one surface was established. In this
section, the separating ability of multiple surfaces will be investigated. In particular,
the results of Baum (9) show that the V-C dimension of a feed-forward, single hidden-

layer, perceptron ANN is finite. Moreover,

92 livz_'J d < VC <2N,log,(eNn),
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where

N; = number of hidden-layer nodes
d = dimension of input space
N, = total number of weights in the ANN

Ny = total number of nodes in the ANN
e = FEuler’s number

VC = V-C dimension of the ANN.

Note that the lower bound is approximately equal to the number of weights con-
necting the input layer to the hidden layer of the ANN. The upper bound is not
much more than twice the number of weights in the ANN. Hence, a rough estimate
of the V-C dimension of the ANN could be the total number of weights in the ANN.
Vapnik and Chervonenkis’ results suggest that the number of vectors in the training
set required for learning is at least the value of the V-C dimension (46). The back-
ground of this result is what is pertinent to the research proposed in this document.
The extension of Cover’s work to feed-forward, single hidden-layer, perceptron ANNs

provides an interesting perspective on the capabilities of ANNs (9).

In the following lemma and theorem provided by Baum, the ANN is a feed-
forward, single hidden-layer, perceptron ANN where the perceptrons have hard-
limiters as the sigmoid function. The set to be shattered, X, has n points which
are in general position in Euclidean d-space. The lemma establishes, by counter-
example, that there must be n/d perceptron units in order to shatter the n points.
The theorem provides the sufficiency condition for an ANN to be able to shatter a

set of n points.

Lemma 2 Any net capable of arbitrary dichotomies of n points in d dimensions

must have at least n/d nodes in its hidden-layer. (9:198)

The next theorem proves that a single hidden-layer ANN can in fact achieve

arbitrary dichotomies with [%-l hidden-layer nodes.
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Theorem 3 A feed-forward, single hidden-layer, perceptron ANN with [%1 hidden-
layer units can compute an arbitrary dichotomy on n d-dimensional vectors in general

posttion. (9:199)

Through counting arguments, Baum also establishes lower bounds on the num-
ber of hidden-layer nodes and the number of connection weights. In other words,
the lower bounds are bounds under which there is no guarantee that an arbitrary
dichotomy can be separated. Additionally, Baum consistently uses the notion of a
worst-case geometric arrangement of a signed set to prove his results. The worst-case
arrangement can be described as an n-gon in R?, where the vertices are the points

in the signed set and have an alternating sign. (9:200-204)

In summary, Baum has specified the domain of V-C dimension to a set of
functions computable by artificial neural networks, specifically feed-forward, single
hidden-layer, perceptron ANNs with hard-limiters at each node. Moreover, he uses
this to answer the question: How many perceptron nodes are required to guarantee

shattering the sets and how many training samples are required for adequate learning?

2./ Sontag: Alternative Classification Capabilities Quantifiers

The research that is described in this section addresses two questions that
were begging to be answered in Baum’s work. One is: What if a standard sigmoid
function is used at each node instead of the Heaviside function? The other question
is: Is V-C dimension the appropriate measurement of ANN capability and if not,
what is? In fact, Sontag shows that using a continuous sigmoid instead of a hard-
limiter appears to double the neural network capabilities. A side result of Sontag’s
is that including a direct connection also improves the capability of an ANN if it is
solving a classification problem but not if it is solving an interpolation problem. The
theme here is to evaluate some of the nuances of certain artificial neural network
architectures in terms of V-C dimension. However, there is more. Sontag raises an

important point that is the basis of the new research described in this dissertation.
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Sontag’s point is that V-C dimension is not always the appropriate quantifier of

ANN capabilities. (All of the major results in this section are drawn from Sontag

(39).)

2.4.1 Sontag’s Notation and Definitions. Recall previous definitions of
dichotomy of a set X, shattering, and V-C dimension of a set of functions F (see
section 2.1). Consider the following definitions of other mappings of capability which

are based on V-C dimension.

Definition. Let F be a set of scalar-valued functions defined on R?. Define the
mapping 7i(F) to be the largest integer n > 1 (possibly oo) such that there is at
least one set X of cardinality » in R? which can be shattered by F.

Definition. Let F be a set of scalar-valued functions defined on R?. Define the
mapping p(F) to be the largest integer n > 1 (possibly oo) such that every set X

of cardinality n can be shattered.

The utility of both of these quantifiers should be evident. Note that the first
mapping is the V-C dimension less one, that is 7(F) = VC(F) — 1 for any F. The
second mapping appears like a more appropriate quantifier for determining ANN
capability since it is the cardinality of sets in which all sets are guaranteed to be
“shatterable”, not just one set. Both of these mappings are fairly extreme, however.

Hence, Sontag suggests another quantifier which is a more robust version of p.

Definition. Let F be a set of scalar-valued functions defined on R?. Define the
mapping, u(F), to be the largest integer n > 1 (possibly oo) for which the set of
sets that can be shattered by F is dense, in the sense that given every n-element set
X = {z1,z2,...,z,}, there are points z; arbitrarily close to their respective z; such

that X = {Z7,73,...,4} can be shattered by F.

Note that this is a topological method of assuring data points are in general

position. Also, note that u(F) < u(F) < E(F).
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As an example, let F be the set of affine functions on R?: f(z) = az1+bz2+c,
le.,

F={f:R*>R!'| f(z) =azx, + bzy+ ¢, a,b,ce R}.

Any dichotomy of a set of three points, which are not collinear in R?, can be separated
by a line. Hence, 3 < u(F). However, the famous XOR problem is an example of a
case of 4 points which can not be shattered. Hence, u(F) = 3. In fact, there is no
set of 4 points which can be shattered which implies z(F) = 3. Finally, if there is a
set of 3 points which cannot be shattered (3 collinear points), then u(F) = 2.

2.4.2 Sontag’s Classification Results. Given an artificial neural network
with d-dimensional inputs, & hidden nodes with sigmoid functions, 8, on each hidden
node, then F is specifically defined as described by Equation 3. Let u(k,8,d) denote
p(F), where F is the set of all (k, 8)-ANNs defined by F. Similar notation will be used
for p and 7. If direct connections are included, the notation will be u%(k,8,d). The
superscript d denotes the existence of a direct connection. Again, similar notation

will be used for y and 7.

The main results of classification capabilities in terms of established bounds
on the three quantifiers will be presented here. First, consider the following two
lemmas that will ease notation and provide immediate evidence of the main results.

The proofs of these lemmas can be found in the reference (39:26).

Lemma 3 For each k, 9, d, p(k,0,d) = p(k,0,1) and pi(k,0,d) = p(k,0,1).

Lemma 3 provides the independence of input dimension in the results in The-

orem 4 below. That is u(k,0,d) = u(k,0) and pi(k,0,d) = p?(k,0)
Lemma 4 For any sigmoid 6, and for each k and d,

p(k +1,0,d) > p*(k,H, d)
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and similarly for y and 7.

The main results are given in Theorems 4, 5, and 6 below. These theorems
establish bounds on each of Sontag’s V-C based mappings. Each result and proof
can be found in (39).

Theorem 4 For any sigmoid 6, and for each k,

skH) = k+1
pi(k,H) = 2k+2
w(k,0) > 2k

Theorem 5 For each k,

|t < ukH2) < 2%+1
p(k,M,2) < 4k+3.

The first inequality in Theorem 5 follows from Baum (9). Actually, the bound
established by Baum is for u(k, H,d) (and, therefore, for 7 also) for all d.

Theorem 6 For any sigmoid 0, and for each k,

2k+1 < 7k, H,2)
4k +3 < @ik, H,2)
4k -1 < 7(k,9,2).

Because of Lemma 4, the last statements of Theorems 4 and 6 are consequences
of the previous two.

There are two interesting behaviors discovered by Sontag. Notice the apparent
effect of a direct connection on the value of all of the mappings. In each case,
the upper bounds approximately doubles. With the use of a standard sigmoid, the

mappings exhibit ‘similar behavior.
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2.5 QOther Relevant Research

This section is included to emphasize the on-going struggle to capture the
essence of artificial neural network capabilities through the Vapnik-Chervonenkis di-
mension. These efforts are produced for the purposes of getting a handle on required
amounts of training data and the size of the net, which appear to be intricately
related. Moreover, with evolving research, a new technique is born for establish-
ing bounds. Studying these techniques will prove useful for answering questions that
arise from the ideas proposed in this dissertation. Consider the following testimonies

of continued V-C dimension research.

2.5.1 V-C Dimension of Multi-Hidden-Layer ANNs.  Peter L. Bartlett, has
recently attacked the problem of finding lower bounds of V-C dimension for “multi-
hidden-layer” ANNs (8). His results apply to the feed-forward architecture with the
Heaviside function as the sigmoid function for each node and the final output of
the ANN being binary. For a two hidden-layer ANN, the V-C dimension is at least

equivalent to the number of connections from the input layer to other units plus one.

For a three hidden-layer ANN, the results are given in the following theorem.

Theorem 7 (8) Let M denote the set of functions represented by a three-layer,
completely connected architecture with ko > 0 input units, ky > 0 first hidden-layer

units, ko > 0 second hidden-layer units, and a single output unit where ko, ky, ko € N.

(a) If ko > ky, and ky < 2% /(k2/2+ k1 /2 + 1), then

VC(M) > koky + k1(k2 — 1) + 1.

(b) [fl < k() < kl, kz S kl, then

VCO(M) > koky + ky(ky — 1)/2 + 1.
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The proof of this theorem was not included in that paper. However, an expla-
nation of his counting arguments was included. Bartlett’s reasoning is based on a

defining set for a unit, u.

Definition. A set X = {z,29,...,2,} C R® is a defining set for a unit, u, in a
feed-forward, multi-hidden-layer, perceptron ANN with ko-dimensional, real-valued

inputs if;

e The points in X can be classified in each of 2card(X) distinct ways by slightly

perturbing the weights and threshold of unit w.

e Slightly perturbing the weights and threshold of units other than u will not

affect the classification of the points in X.

Definition. A point z € R* is an oblivious point for the network if the classification

of z is unaffected by sufficiently small perturbations of the network weights.

The next theorem lays the ground work for Bartlett’s main results. It is im-
portant to note that this theorem is based on the existence of defining sets and an

oblivious point.

Theorem 8 Let M be the set of functions represented by a feed-forward, multi-
hidden-layer, perceptron ANN. Consider a set of processing units U in this architec-
ture and assume M has an oblivious point. If there is a finite defining set S, for

each unit u in U, then

VC(M) > Y card (S.) + 1.

uelU

Bartlett notes that the result implies that the sample size must increase at least
linearly with the number of weights to guarantee the data set can be implemented.
He also notes that these lower bounds hold for architectures with sigmoids. However,
based on Sontag’s work, there is a good chance that this lower bound for sigmoids

could be tightened.
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2.5.2 Hints and the V-C Dimension. In May 1993, Abu-Mostafa published
a paper that used V-C dimension analysis to prove the benefits of incorporating hints
into the learning process (2). Hints are known properties about the function that is
being approximated by the artificial neural network. Hints reduce the class of pos-
sible functions that match the known examples. When using hints, it is appropriate
to include the information in the analysis of training data requirements and ANN

architecture size through V-C dimension.

The major result of this paper is that the introduction of hints does affect the V-
C dimension. To show this, Abu-Mostafa defines a new quantity to represent the V-C
dimension of a hint. In actuality, this is research written from the learnability side of
the capabilities of ANNs, and, although it is related to the subjects in this document,
the details are not directly related. The point of including the paper here is that it is
yet another example of researchers using the well-established tool (V-C dimension) to
show the capability benefits of a customized feature of an architecture. An additional,
interesting point of Abu-Mostafa’s work is that it required the customization of the

definition of V-C dimension.

Abu-Mostafa’s research lays additional groundwork for considering more rad-
ical alterations of the mappings to serve the purpose of customizing the capability
quantifiers for specific problem sets. This is the central premise of this research

outlined by this dissertation.

2.6 Conclusions

In summary, this chapter has provided enough literature review to put into
perspective the problems associated with quantifying capabilities of artificial neural
networks to generalize about classification data. In particular, this chapter concen-
trated on the feed-forward, single hidden-layer, perceptron artificial neural network.
The background material was presented specifically to technically motivate the ap-

proach used in the new research in Chapters IV, V, VI and VII.
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III. A Formula for Evaluating the V-C Dimension of Artificial
Neural Networks

In this chapter, there is an in-depth investigation of existing proofs of eval-
uations of the Vapnik-Chervonenkis (V-C) dimension as stated by Baum (9) and
Sontag (40). Proofs of stronger results will be given. Moreover, for fixed cardinality
of a signed set, a formula for determining the required number of perceptron nodes

in the hidden-layer of a feed-forward, single hidden-layer perceptron ANN is given.

Additionally, new insight into the duality of answering ANN capability ques-
tions are presented. The primal problem can be stated as follows: Given an ANN
architecture, what is the mazimum cardinality of the classification problem which can
be shattered with that architecture? The dual problem can be stated as follows: Given
a classification problem, what is required of an ANN architecture in order to provide
an implementation? Intuitively, there would appear to be an inverse relationship.

The details of this relationship are also stated in this chapter.

3.1 Clarifications and Fxtensions of Baum’s Research

3.1.1 Baum’s research revised. An unstated assumption of Baum’s work
(outlined in Section 2.3), is that the chambers of the space, R¢, that are created
by the hyperplanes associated with each hidden node can be represented by a feed-
forward, single hidden-layer, perceptron ANN. Consider the function

k
F(z) = ;wi'H(v; - T—T;).

If w; € {0,1}, then these weights are thought of as logic variables, i.e., they indicate
one side of a hyperplane or the other. Hence, every point in R% (not on a hyperplane)

can be identified with a unique chamber by the set of values {w;, wa,...,wk }-
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Additionally, Baum’s work, related to the primal problem, assumes the “worst
case” arrangement of signed sets, geometrically, in order to prove Lemma 3. By
refining “worst case” logic, stronger formulas for evaluating the V-C dimension can
be achieved. Consider the following new refinement to Lemma 2 and Theorem 3.
Let P(n,H,d) denote the minimum number of ANN hidden-layer nodes, with the
Heaviside function, H, as the sigmoid, required to guarantee that the ANN can

correctly classify an arbitrary arrangement and coloring of n vectors in R¢.

Theorem 9 Given n vectors in R¢ which are in general position, then

P(n,H,d) =

[3] for n even
n—1

[ = ] for n odd.

Proof. Let X be a finite set in R? with card(X) = n. Let
(X*,X") be a dichotomy of X. Form line segments that connect each point in
X7t with its nearest neighbor in X~ and vice versa. Note that a “worst case”
arrangement of (X, X~) would result in n line segments if n is even. If n is odd,
then the “worst case” arrangement would result in only n—1 such line segments. This
is due to card(X*) < card(X~) or card(X~) < card(X*) resulting in a redundant

line segment.

The problem of implementing the dichotomy of the signed set is reduced to
placing hyperplanes in the space so that each line segment is intersected. In d
dimensions, a hyperplane can not be guaranteed to cut more than d line segments.
Therefore, in the case n even, [%] hyperplanes are required to intersect these line
segments. In the case of n odd, [-”;—1] hyperplanes are required. This provides
the necessary condition. Theorem 3 gives the sufficient condition. In other words,
[’i] hyperplanes are sufficient to implement the dichotomy for even n, and ["le}

hyperplanes are sufficient for odd n. O
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n - even n - odd

Figure 2. Even and odd ngons.

This proof is a slight modification of Baum’s proof of Lemma 2 (9). See Figure
2 for a graphical view of the proof for d = 2. Figure 2 illustrates the difference in

ANN requirements given an odd number of points versus an even number of points.

Theorem 9 has provided a closed form relation between the cardinality of signed
sets to be separated and the number of processors in an ANN hidden-layer required
to perform the separation. Without breaking the cases into even and odd n, equality
could not be established. This seems to be a small improvement to Baum’s work.
However, it provided an opportunity to investigate a formula for evaluating V-C

dimension.

3.1.2 FEzact Values for V-C Dimension. Theorem 9 provides a value for
the number of ANN processors required to solve an arbitrary two-class classification
problem. The dual issue would be: What is the capability of an ANN with a fized
number of hidden-layer nodes to solve two-class classification problems? Alterna-
tively, the question asks: What is the value of the V-C dimension of a feed-forward,
single hidden-layer, perceptron ANN? This issue can now be addressed directly with

a formula.
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Let N(p,H,d) denote the maximum cardinality of a signed set in R? inde-
pendent of coloring which can be guaranteed to be separated by p processors (with
associated Heaviside functions as the sigmoid) in the hidden-layer of a feed-forward,
single hidden-layer, perceptron ANN. Note that N(p, H,d) is the V-C dimension of

fg, where

.7"; ={F:F(z)= ‘Lp:wiH(vi -1}

=1

for w; € {0,1}, v;, € R, and 7; € R.

Theorem 10 Given p processors in the hidden-layer of a feed-forward, single hidden-
layer, perceptron ANN, then

pd+1 forpeven,deN
N(p,H,d) =4 pd+1 forp odd, d even
pd  for p odd, d odd.

Proof. The proof requires to simply appeal to Theorem 9 to

confirm that the values can, in fact, be achieved.

Case 1 (p even, d even): Is P(pd + 1,H,d) = p? Note that p even and d even
implies that pd is even. Hence, pd + 1 is odd. Therefore,

P(pd+1,H,d) = [ldti=t]

Case 2 (p even, d odd): Is P(pd + 1,H,d) = p? Note that p even and d odd
implies that pd is even. Hence, pd + 1 is odd. Therefore,

P(pd+1,H,d) = [&sD=1]

= p.
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Case 3 (p odd, d even): Is P(pd + 1,H,d) = p? Note that p odd and d even
implies that pd is even. Hence, pd + 1 is odd. Therefore,

P(pd+1,H,d) = [&2h=1]

= p.

Case 4 (p odd, d odd): Is P(pd,H,d) = p? Note that p odd and d odd implies
that pd is odd. Hence, pd + 1 is even. Therefore,

P(pd,H,d) = [42]

Note that, for the particular set of ANN architectures described by fg, N(p,H,d)
is the value of the V-C dimension of the ANN.

3.2 The Relationship of P(n,H,d) and N(p,H,d)

The results given in Theorem 9 and Theorem 10 appear to present solutions
to questions that are duals of each other, i.e., the results are inverses of each other.
If this were the case, there would be a direct relationship between the maximum
cardinality of a classification problem that can be implemented by a given number
of processors and the number of processors required to guarantee the implementa-
tion of a given cardinality of an arbitrary arrangement of points. Intuitively, this
makes sense and could be valuable when actually applying ANNs to solve a problem.

However, guaranteeing a solution of an arbitrary set inhibits the relationship.

Consider the following. Clearly, P(N(p,H,d),H,d) = p since this is how the
results in Theorem 10 were derived. In other words, P(n,H,d) was evaluated at

n = N(p,H,d). However, N(P(n,H,d), H,d) # n necessarily. Consider n = 4 and
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d = 2. By Theorem 9,

[SIEN

P(4,H,2) = |[4]

However, by Theorem 10,

N(P(4,H,2),H,2) = N(2,H,2)
= 2:2+1
= 5#4.

This shows that P and N are not inverses as would be expected. In particular, P is
the left inverse of N, i.e., Po N = I. However, N o P # I; i.e. P is not the right
inverse of N. This conuﬁdrum originates in the semantics of the definitions of N and
P. Neither of the values in the above example are incorrect. They are simply results
obtained due to approaching the problem slightly differently, albeit appropriately
for their purposes. Had P and N been inverses, there would have been a stronger
mathematical relationship between the number of hyperplanes required to guarantee
© the implementation of a dichotomy and the quantified notion of ANN’s capability to
generalize about classification data. Consequently, the goal to build a relationship
between the two questions of capability and requirements goes awry. The blame
belongs to centering-the quantifiers around the notion of arbitrary dichotomies of
~ arbitrary arrangements. Hence, the stage is, once again, set to investigate a radically

different approach to measuring the capabilities of ANNs.

3.3 Conclusions

In summary, this chapter has presented strengthened results of Baum’s work
which lead to a formula for the V-C dimension of feed-forward, single hidden-layer,
perceptron artificial neural networks. Additionally, there was a discussion of the
duality of ANN capability analysis and how it relates to a possible inverse relation-

ship of the solutions. The fact that there is no complete inverse relationship serves
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as additional motivation for the requirement of an approach to measuring ANNs
capability to generalize about classification data other than V-C dimension based

approaches.
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IV. New Approach to Determining Artificial Neural Network
Capabilities

There are two issues addressed in this chapter. Both are integral to the design
and proper implementation of certain artificial neural network (ANN) architectures
to solve classification problems. The first is an investigation of how ANN capabilities
should be assessed. Note that the emphasis is not on what the capabilities are,
although there should be some interesting results, but rather on designing a mapping
with the specific characteristics of ANNs considered. The second issue follows from
the first. Once a more informative mapping has been established, how can that
mapping help determine the efficient use of ANNs to solve classification problems.
In other words: Is there any utility in using an ANN to provide a solution or does it

require too many parameters to be learned from a finite training set?

This chapter will motivate why capabilities analysis should be directed at a
particular classification problem. Specifically, the quantifiers will be defined that
have properties required to determine ANN capabilities. In order to evaluate these
quantifiers, the complexity of the problem must be characterized along with a char-
acterization of the capability of the sets generated from the ANN. This motivates
the research given in following chapters. Ultimately, the ANN capability quantifier
should be about colored arrangements of data instead of arbitrary arrangements like
V-C based quantifiers. In the end, this required a complete abandonment of the V-C
approach.

4.1 V-C Based Quantifiers Defined

Before defining new quantifiers, the V-C dimension based quantifiers will be
defined in the new notation. This will facilitate the analysis of the pitfalls of V-C
based quantifiers. Recall the following notation. Let X C R%, Y a finite subset of
X, and  a collection of subsets of X. Let A%(Y) be the number of distinct sets
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O NY for all O € Q. That is,
A% (Y) = card({ONY : 0 € Q}).
Also let S; denote the set of all subsets of X with cardinality I. That is, given [ € N

Si={Y CX:card(Y) =1}

Now, V-C dimension and Sontag’s mappings will be defined using the above

notation.

Definition. Given ! € N and  defined above, let
m (1) = sup{A%(Y): Y € §}.

Note that the set {A%(Y) : Y € S} is finite for each I € N. Hence, for all Y € &,
AR(Y) is bounded above by 2! and below by 0. Therefore, the supremum and infimum

exist (are finite).

Definition. Given 2, define

VC(Q) =inf{l € N:m%() = 2}
Definition. Given (2, define

A(Q) = sup{l € N :m"(l) = 2}

Note that VC(Q) = f(Q) = +oo if m(l) = 2! for all I € N. Note that the V-C
dimension and T are not equal. In fact, Z(2) = VC(Q2) — 1 for an arbitrary set of
sets . Figure 3 shows graphically the relationship between V-C dimension and 7.
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Similarly, under bar symbols can be defined to yield equivalent definitions of

Sontag’s .

Definition. Given ! € N and ) defined above, let

m?(l) = inf{A%(Y): Y € §}.

Definition. Given {2 defined above, define
#(Q) = sup{l € N : m®(I) = 2'}

Again, p(2) = 400 if m?(l) = 2 for all I € N.
Now, with even more notation, a mathematical definition of u can be stated.
In order to provide this definition, it was determined that Sontag’s definition of sets

being close was actually appealing to the Hausdorff metric. The Hausdorff metric of

two finite subsets of X, A and B, is defined by
h(A, B) = max{d(B, A),d(4, B)},

where

d(A, B) = max{min || - b]}.(7:34)

Consider the following decomposition of &; into disjoint subsets by defining
M to be the set of subsets of X with cardinality ! which can be shattered by Q,
and N to be the set of subsets of X with cardinality ! which cannot be shattered
by Q. Specifically,
M ={Y € 8:A%Y) =2}

and

N ={Y € 8:A%Y) <2}
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Then, S; = M UNE and M UN? = for each [ € N.

Definition. Given 2, define

1(Q) = max{l € N: M} is dense in S},

where M$ is dense in S, if given € > 0 and S € &, there exists S € M$ such that
h(S,5) < e

4.2 New Quantifiers Based on V-C Dimension

4.2.1 o« Shattering. One attempt to “weaken” V-C based quantifiers (g,
4, and TI) is to change how shattering is addressed. The first alteration to be made
deals with the fact that all of the previous quantifiers are based on achieving every
dichotomy. This is fairly restrictive. It is not always necessary to achieve every
dichotomy. In this sense, the new quantifiers should require only a portion, a € [0,1],

of the dichotomies of a set to be achieved. Let a € [0,1] and define

+00 if Tlela,1]VIEN
7a(9) = § inf{l e N: Z0 € [0,0]} (7)
0 if T0el0,0)VIeN
and
+00 if 220 ¢la,1]VIEN
vo(Q) =1 sup{l e N: 2 ¢ [o,1]} (8)
0 it 20 e0,a) VIeN.

Theorem 11 The following properties are true for any Q and o, 01,05 € [0,1).




6. If a1 < aj, then Vo, < Uy, and Yoy S Vg,

Proof. Let €2 be a collection of subsets of X ¢ R<.
1. If @ =1, then

if O _1v[eN
71(9):{+°° b

inf{leN:i;@e[O,l]}

which is 7z(f2).

2. Since
inf{leN: W c oot > le N :m%l) = o
inf{l € N: —~ € [0,a} 2 sup{l € N : m"(1) = 2}
then 7, > 7.

3. Follows similarly to .
4. Follows similarly to .
5. By definition of m®(l) and m®(l).

6. Let oy < a3, then [0, ;] C [0, ap). Hence,

. (1 ) m(l
inf{le N : mTz() €[0,4]} <inf{le N : mT() € [0, az]}.
Therefore, 74, < 7,,. Proof of Vo, < Vg, is similar. O

See Figures 3 and 4. These figures illustrate the relationship between V-C

based quantifiers and the new quantifiers.

For the “v,-equivalent” to y, more notation is needed.
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Figure 4. Relationship of y and v,.
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Definition. Given ! € N and ¢ > 0, define the e-ball centered at the set § € §; as
Bi(S,e) ={T € & : h(T,S) < €}.

Hence, B;(S,€) is the set of sets of cardinality / that are within € to S with respect
to the Hausdorff metric. Now the definition of 7, () can be defined.

Definition. Given ! € N and Q, Bi(S, €) defined above, let
m(l) = inf{A%(T) : T € Bi(S,¢€)}.

€

Now, given € and « € [0,1], define

+oo it 220 ¢a,1]VIeN
Pea(®) = 4 inf {1 € N: 50 € [0,0]} (9)
0 it 20 c0,a)VIieN

4.2.2 Between “At Least One” and “Every” Set.  Another deviation from
the base set of quantifiers should be about the rigid difference between y and 7 and,
likewise, between v, and 7,. For v, to have the value [, it is required that every set
of cardinality { must satisfy the conditions prescribed. For 7, to have the value [, it
is required that only one set of cardinality [ must satisfy the prescribed conditions.
This is an extreme difference. In an attempt to “weaken” the mapping, another
parameter is incorporated. Define S as some “reduced portion” of S}, i.e., Sf C S..

Then, redefine () and 7, on the reduced set SP. Consider
mg(l) = sup{A%(Y):Y € sHy
and

m(l) = inf{A%(Y) : Y € S}
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Now, define
o0 it 20 ¢la,1]VIeN
Vap(2) = { inf {l eN: mg,(l) € [O,a]} (10)
0 it 20 c0,a)VIeN
and
o my(l)
+o0 if =6~ ¢€[a,1] VIEN
mg ()
Va5(Q) = sup{l € N: == € [0, 1]} (11)
0 it 229 ¢0,0) VIEN.

Note that, in a sense, # and 7 already have this feature since sets not in general
position are not considered. So, the S parameter just extends that freedom to
sets with no particular characteristics and, hence, a version of ¥ incorporating S is

redundant.

4.2.8 Inadequacies of Vo and v, 5. The above attempts to customize V-
C based quantifiers for ANN capabilities analysis were attempts to incorporate the
desired properties at the wrong point of analysis. They are attempts to characterize
separating surfaces when, in fact, this customization needs to be transferred to the

problem set.

Additionally, it is clear that there are two distinct, but obviously related, ques-
tions to be answered: What are the particular requirements of an ANN architecture
in order to solve a given classification problem? and How do different ANN archi-
tectures compare in capability? Consider the V-C based quantifiers. Theoretically,
they provide worst case notions of capabilities. Chapter III provided theorems for
inverting these concepts to get worst case requirements. How useful is this since it is

the worst case arrangements of data being considered? The crux of the new research
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in this dissertation is that it would be helpful to perform similar analysis on the

colored arrangements in a way that is accessible directly for implementation.

4.8 Conclusions

In summary, it has been shown that the difficulty of measuring ANNs’ capa-
bility is partially because each approach discussed here has sought to assign a value
to the capability. Alternatively, consider ordering a set of ANNs based on capabil-
ity. This would provide a means of comparing ANNs based on capability without
having to assign a value. Additionally, it should be clear that the comparison should
be based on an ANNs’ ability to solve specific classification problems not arbitrary

classification problems.
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V. Artificial Neural Networks, Combinatorial Geometry, and
Lattice Theory

This chapter introduces concepts of combinatorial geometry of hyperplane ar-
rangements and lattice theory that are relevant to studying capabilities of artificial
neural networks (ANNs). These concepts provide the basis for a generalized ap-
proach (derived in Chapter VI) to quantifying ANNs’ capabilities based on invari-
ants. Roughly speaking, invariants are mathematical objects which do not change
given certain prescribed transformations of their domain. These invariants impinge
upon many aspects of the geometry of the arrangement. Borrowing from these ideas,
ANN capability quantifiers will be constructed in Chapter VIL. To analyze some in-
variants an underlying lattice structure is required. Therefore the lattice structures
of ANNs will be defined in this chapter. Finally, it will be shown that the V-C
dimension of a feed-forward, single hidden-layer, perceptron ANN is equivalent to

the number of chambers of the hyperplane arrangement defined by the ANN.

A majority of the results of combinatorial geometry relies on a lattice struc-
ture. Hence, this chapter will investigate the lattice structures of feed-forward, single
hidden-layer, perceptron artificial neural networks. Additionally, lattice theory pro-
vides a mechanism for comparing sets. Hence, establishing a lattice on sets generated

ANNs will give insight into how architectures compare in their ability to generalize.

Although the study of hyperplane arrangements is a relatively young field of
mathematics (important works by B. Griinbaum published in 1971 (21) and by Za-
slavsky in 1975 (50)), there is a wealth of theorems and algorithms answering current
applied mathematics problems. In particular, methods for counting geometric struc-
tures of an arrangement such as edges, faces, and chambers have been established
(3). The importance of these counting algorithms for measuring ANN capabilities is

discussed in this chapter.
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The link between the study of arrangements of hyperplanes and the Vapnik-
Chervonenkis (V-C) dimension relies on chamber counting. Chamber counting is a
basic objective of many combinatorial geometric algorithms. One example of count-
ing is based upon the method of deletion-restriction which relies on the Poincaré
polynomial of an arrangement of hyperplanes (36). This notion is intricately related

to quantifying the capabilities of ANNs.

It is important to note that results obtained here are exclusive to the ANN
architecture described in Chapter I. Also, all combinatorial geometric results in this
chapter are based on the assumption that the arrangement of hyperplanes is in
general position. That is, if any two planes have a common line, then the line is

distinct, and if any three planes have a common point, then the point is distinct.

5.1 Combinatorial Geometry - The Basics

In a broad sense, combinatorial geometry is the theory of arithmetic invariants
of finite sets of points in projective space (50). Some important invariants depend
upon the lattice structure of the subspaces formed by a point set. Of particular
importance to ANN research, are point sets which are the duals of an arrangement
of hyperplanes. Fortunately, lattice structures can be defined for arrangements of
hyperplanes (50), making the rich results about geometric lattices available for ANN
analysis. Geometric lattices are lattices that satisfy additional conditions requiring
that the arrangement be central, that is, each hyperplane contains a point common

to all of the hyperplanes in the arrangement (1).

5.1.1 Lattice Structures.  Lattice theory is required to exploit the results
of combinatorial geometry for ANN analysis. Lattice theory, in general, is the study
of orderings. An ordering is a binary relation, <, which can be read as “is contained

»

in”, “is a part of”, or “is less than or equal”. The purpose of an ordering is to be

able to compare elements of a set. To make meaningful comparisons, an ordering is
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required to satisfy certain properties. The number and type of properties required

dictates directly what can be ascertained from the comparison of elements in the set.
The most basic properties define a partially ordered set.

Definition. A partially ordered set is a set, P, together with a binary relation, =<,
which satisfies, for all z,y,z € P, the following properties:

1. ¢ X z. (Reflexive)
2. If z <y and y < z, then z = y. (Antisymmetry)
3. If z <y and y < z, then = < 2. (Transitive)

If z < y and = # y, then we write z < y. Note that the term partially is used to
indicate that the relation =< is not necessarily closed. In other words, not all elements
of the set are required to be comparable. Hence, there may be z,y € P for which
z#y,z Ay, y A . Additionally, y is said to cover z if ¢ < y and thereisno z € P
such that z < z < y. Also, if there is a unique element z € P such that z < z for all

z € P, then z is called the zero element of P.

Definition. Let (P, <X) be a partially ordered set. A lower bound (upper bound) of
a subset X of P, is an element a € P (b€ P)suchthat a <z forallz € X (z X b
for all z € X).

Definition. Let (P, <) be a partially ordered set. A greatest lower bound (least
upper bound) of X is an lower bound, @ € P, (upper bound be P) such that a < @
( 5 < b) for all lower bounds (upper bounds) of X.

Definition. Let (P, <) be a partially ordered set. Let z;,z2,...,z, € P such that
Ty < Ty < ... < T,, then 77 < 75 < ... < z, is said to be a chain. A saturated chain
is a chain, z; < 73 < ... < z,, such that z,;; covers z; for all ¢ < n. The length of a

chain is defined as one less than its cardinality.(5:14)
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Definition. Let (P, <) be a partially ordered set. The rank function of an element
z € P, r(z) is defined as the maximum length of all saturated chains from z to z

where z = glb(P).(5:14)

Definition. Let (P, <) be a partially ordered set. The meet of any two elements
z,y € P, denoted by = Ay, is defined as the greatest lower bound of the set {z,y}.
That is

z ANy = glb{z,y}.

The join, denoted by = V y, as the least upper bound of the set {z,y}. That is

zVy =lub{z,y}.

Note that the definitions of the meet and join are inherently dependent on the

ordering. In other words, the ordering defines the meet and join.

Definition. A partially ordered set, (P, <), with operations meet, A, and join, V,
such that P is closed with respect to A and V is called a lattice and is denoted
(P, =,A, V).

One should note that it is not always the case that the set, P, is closed with

respect to the meet and join operations. Hence, we have the following definitions.

Definition. A partially ordered set, (P, <), with the operation meet, A, such that

P is closed with respect to A is called a meet semi-lattice and is denoted (P, <X, A).

Definition. A partially ordered set, (P, <), with the operation join, V, such that
P is closed with respect to V is called a join semi-lattice and is denoted (P, =<, V).

The term semi-lattice will be used to refer to a join semi-lattice or a meet semi-lattice.

Now, consider the properties of a lattice as presented by the following lemma.

Lemma 5 Let (P,=,A,V) be a lattice, then, for all z,y,z € P, the following laws
hold true:
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(1) z Az =z, 2V z=z. (Idempotent)

(2)zANy=yAz, zVy=yVa (Commutative)
(3)zA(yNz)=(xAy)Az, aV(yVz)=(zVy)Vz (Associative)
(4)zA(zVy)==zV(zAy)==z. (Absorption)

Moreover,

(5)zXy<=zAy=zandz Sy <>z Vy=y. (Consistency) (12)

With the structures described above, a large variety of combinatorial problems,
such as the chamber counting problem, can be addressed. Combinatorial problems
can often be restated as critical problems (17). Critical problems bridge lattice
theory to combinatorial geometry of hyperplane arrangements. Critical problems
can be solved by analyzing the characteristic polynomial, also known as the Poincaré

polynomial, of a lattice or semi-lattice.

It will be shown by the new research in this dissertation that hyperplane ar-
rangements can have a lattice structure and, in general, have a semi-lattice structure.
Moreover, the number of chambers created by an arrangement can be ascertained
from the characteristic polynomial defined on the lattice (or semi-lattice) of the
hyperplane arrangement. The novelty of this approach to solving geometric prob-
lems is that the solutions are arithmetic invariants described by the characteristic

polynomial and depend only on the geometry of the original point set (17).

5.2 The Theory of Arrangements of Hyperplanes

Of particular interest to the research in this dissertation are the results of
combinatorial geometry applied to arrangements of hyperplanes. This is yet another

relatively new area of rich mathematics that is pertinent to the study of ANNs.

Consider a finite set of hyperplanes (translated subspaces with dimension d—1)
of a Euclidean or projective d-dimensional space which will be referred to as an

arrangement. When these hyperplanes are removed, the remainder of the space

48




is partitioned into disjoint subsets known as chambers, each one a d-dimensional
polyhedron (not necessarily bounded). The arrangement is said to partition the
space by hyperplanes. How many chambers are created by the partition? How many
vertices result from the hyperplane intersections? Are two arrangements equivalent
geometrically? These are some of the questions that the theory of arrangements of
hyperplanes seeks to answer and will be a central concept in the development of

geometric measures of ANN capabilities.

5.2.1 The Cut-Intersection Semi-Lattice. — Let A denote an arrangement of
hyperplanes (so | € A is a particular hyperplane). The cut-intersection semi-lattice

of an arrangement is actually defined on the intersections of the hyperplanes and is

denoted L(A). That is,

leT leT

L(A):{ﬂl:ﬂl%@foralngA}.

An element, z € L(A), could be any k-dimensional translated subspace, for k €
{0,1,2,...,d — 1}, contained in some hyperplane a € A. The partial ordering, =, is
chosen to be reverse set containment. That is, for z,y € L(A), write z < y if and

only if D y. Then, (L(A), <) is a partially ordered set. (50)

The ordering is chosen so that the minimal element of L(A) is the entire space
containing the hyperplanes. The existence of this minimal element is important for
following results. Note that there is no guarantee of the existence of a mazimal
element which is expected to be the empty set. Recall that § ¢ L(A). However, with
stronger conditions on the arrangement A, the existence of an maximal element can

be guaranteed.

Now, consider the definitions of meet and join for L(A). since the ordering is
reverse set inclusion, the definitions are not intuitive. In fact, the meet operation,

as prescribed by the definitions in Section 5.1.1, is not a closed operation. Hence,
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L(A) will be called a semi-lattice. A modified definition of the meet is given so that
the set is closed with respect to the meet. Define the modified meet operation of
z,y € L(A) by

zAy=glb{z,y}=n{l€ A: 1Dz Uy}

The join operation (as defined by the definition in Section 5.1.1) of z,y € L(A)
becomes

zVy=lub{z,y} =znNy.

Note that £ Ny is not necessarily in L(A), since Ny could be empty. Hence L(A) is
not closed with respect to the join operation. It has been shown that (L(A), X, A, V)
satisfies all of the properties of Lemma 5 (50). Hence, (L(A), X, A, V) will be referred
to as the cut-intersection semi-lattice of an arrangement A. Note that it is a semi-

lattice since L(A) is not closed with respect to the join operation.

Finally, consider the lattice structure of an arrangement that is said to be

centered.
Definition. An arrangement, A, is centered if

N1#0.

leA

Note that L(A) defined on a central arrangement, A, is assured to have maximal
element. In fact, (L(A), <X, A, V), is a lattice (with the prescribed meet operation, not

the modified meet operation) and is often referred to as a geometric lattice. (36:24)

5.3 Chamber Counting and the Poincaré Polynomial

Chamber counting is a fundamental combinatorial geometry problem. Not only
does chamber counting provide valuable insight into arrangements (for the purposes
of this research) of hyperplanes, but it also serves as a benchmark problem for

testing algorithms or methods much like the map coloring problem. In fact, there is
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a significant amount of research dedicated to counting methods for many geometric

entities such as chambers, faces, vertices, and edges.

In 1889, S. Roberts published breakthrough research that included a very sim-
ple formula for counting chambers. According to Roberts, the number of regions
formed by an arbitrary arrangement of n lines in the Euclidean plane is equal to the
number of regions formed by n lines in general position, minus the number of regions
lost because of multiple points, minus the number of regions lost because of parallel
lines. This formula led to various algorithms for determining actual counts, one of
which was proposed by T. Zaslavsky (50) in 1975. Zaslavsky’s approach is known
as the method of deletion and restriction. In addition, he showed that the recursive
formula used for the method of deletion and restriction produces the same result for

counting chambers as the characteristic polynomial evaluated at one.

5.3.1 The Method of Deletion and Restriction.  Let A be an arrangement

in the Euclidean d-dimensional space, and let [ € A be a hyperplane.

Definition. The deleted arrangement about [, is defined as A’ = A\{l}. The re-
stricted arrangement about [ is defined as A” = {K NIl | K € A'}.

The triple (A, A’, A”) can be used to solve the problem of counting chambers.
Let C(A) denote the set of chambers formed by A. Zaslavsky showed that

card(C(A)) = card(C(A")) + card(C(A")).

To prove this recursion, let P be the set of chambers in C(A’) that intersects the
distinguished hyperplane, [, and let @ be the set of chambers in C'(A’) thafc does not
intersect I. Obviously, card(C(A’)) = card(P) + card(Q). Note that the hyperplane
[ divides each chamber of P into 2 chambers and does not intersect the chambers of

Q. Hence, card(C(A)) = 2card(P) + card(Q). In fact, there is a bijection between P
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and C(A") given by C — CNI. Therefore, card(C(A”)) = card(P), which provides
the recursion. (50) (36)

5.3.2 The Poincaré Polynomial. Zaslavsky also showed that a similar
recursion holds for the characteristic polynomial. The characteristic polynomial is a
specific instantiation of the Poincaré polynomial, which is a polynomial defined on
the geometric structure of an arrangement and is used for the analysis of invariants
about the cut-intersection semi-lattice, L(A). The Poincaré polynomial is one of the
most important combinatorial invariants of an arrangement. Its properties provide
insight into the structures of an arrangement. The Poincaré polynomial is defined
based on the Mobius function and a rank function.

The Mobius function, defined on L(A), is a binary mapping g : L(A) X L(A) —
Z. It provides a characterization for arrangement density, by characterizing the re-
lationships of the subsets based on the partial ordering defined for L(A). In general,
there is not an explicit formula for y. However, for fixed z, the values of u(z,y) may

be computed recursively as follows. For z,y,2z € L(A),

1 if z=y
P’(xa y) = —z‘<§<z /‘(w7z) if ==Xy (12)
0 else.

Note that if a function, ¥, satisfies the above properties, then ¥ = u. (36:33). That
is, yt is uniquely defined. The rank function, defined on L(A), is as defined in Section
5.1.1. Note that in the case of L(A), the rank function on z € L(A) can be defined
as r(z) = codim(z) (36:24).

With the Mobius function and the rank function, the characteristic polynomial,
7, can be defined. Let A be an arrangement, and let L(A) be the cut-intersection
semi-lattice defined on A. Define p(z) = u(V, z), where V represents the entire space

and, hence, is the g].:eatest lower bound of L(A) since L(A) is ordered by reverse
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inclusion. Then, the characteristic polynomial of A is defined in (36) as

") = Y ule)(-tr®. (13)

z€L(A)
Note that for the special empty arrangement, A = @, then, by definition,
7(A,t) = 1. Zaslavsky also showed that given an arrangement A and a € A, then

the following recursion formula for the characteristic polynomial holds:
m(A,t) = n(A, 1) + tr (A" 1).

Then, since card(C(A)) and 7(A,1) have the same value for A = § and satisfy the

same recursion for deletion and restriction, it is true, by uniqueness, that
card(C(A)) = (A, 1).

This is an important result that led to more analytical approaches for counting

chambers and other geometric entities. (50) (36)

5.4 The Lattice Structure and Combinatorial Geometry of Artificial Neural Net-

works

Sections 5.1-5.3 defined a lattice, the specifics of the cut-intersection semi-
lattice defined on the set of intersections of hyperplanes, and the analysis that can
be accomplished through the Poincaré Polynomial. In parallel, this section provides
the details of the same structures defined on the set of sets derived from a feed-

forward, single hidden-layer, perceptron artificial neural network.

The reason for establishing a lattice structure on which to perform ANN capa-
bility analysis is two-fold. The first is the general notion that, ultimately, an ordering
on ANN architectures is sought which is based on capability defined on invariants.

Well-behaved orderings are one of the outcomes of lattice theory along with provid-
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ing a basis from which invariants can be extracted. Obtaining those invariants is
the second reason a lattice is sought since invariants will be used to characterize the

complezity of signed sets.

5.4.1 The Cut-Intersection Semi-Lattice of ANNs. Given a fixed feed-
forward, single hidden-layer, perceptron ANN, there is an implied arrangement of
hyperplanes which directly establishes a finite set of half-spaces. The intersection of
the half-spaces is accomplished through the logic layer of the network. The result
is a set of sets. Therefore, with set containment providing an ordering (by reverse
inclusion), intersection as the meet operation and union as the join, this is a specific

example of the cut-intersection semi-lattice defined in Section 5.2.

First, notation will be established. Consider the fixed ANN, (w;, v;, 74, k fixed),

k
F(z) =Y wH(vi-z—7), (14)

=1
where z € R%is the input vector, H is the Heaviside function, v; € R%fori =1,...,k
are the weight vectors, ; € R for ¢ = 1,2,...,k are the threshold values at each
of the k nodes and w; € {0,1} for ¢ = 1,...,k are known values. This defines
an instantiation of an architecture, which corresponds to a finite arrangement of

hyperplanes, A = {ly, I3, I3, ..., [y}, where
Li={zeR?: Liz)=v;-z—7; = 0}

and L; defines an affine mapping R? — R.. That is, each L; corresponds to a (d—1)-
dimensional hyperplane, I; = {z € R? : L;(z) = 0}. Assume that each of the &
hyperplanes are distinct. Since each hyperplane naturally divides R? in half, define
the corresponding set of half-spaces H = {hq, h, hs, ..., hi} as

h,-={:1:|v,--:c—T;>O}CRd.
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Note that by switching the sign of v; and 7;, h; represents the “other half” of the

space or the interior of the complement of the half-space. Define
hf= {.’L’ ‘ v,'~x—7'i<0} CRd.

Note that this is the interior of the complement of k;, not exactly the complement.

Additionally, consider the set of all possible arrangements of hyperplanes in

RY. Define

At = {A={lL,ly,..., i} : k€N, ;= {z: Li(z) = 0} for each i = 1,2, ..., k}.

Note that by definition, any A € A¢ can be defined by equation 14. Also, define the

corresponding set of sets of half-spaces, H?
H? = {H = {hi,hs,h3,...,h} : k € N}.

Note that, A? and H? can be partitioned dependent on the type of architectures
that are being investigated for capability analysis. For example, a partition based
on the number of hyperplanes, k, in an arrangement gives a simple organization of

all architectures. Specifically, for each & € N, let
Fé={A={l,lyls,..,1} € A}

Note that F2 can be thought of as the set of k hyperplane arrangements gener-
ated from a feed-forward, single hidden-layer, perceptron ANN with « nodes in the
hidden-layer and d-dimensional input since each node corresponds to a hyperplane.

Moreover,

Al= | 7L
reN
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Hence, A¢ is the set of all feed-forward, single hidden-layer, perceptron ANN with

an arbitrary set of nodes in the hidden-layer and d-dimensional input.

Now, consider the finite set of all intersections of the hyperplanes in an ar-

rangement, A

CAE{ﬂl: ﬂl#@foralngA}.

leT leT
Define the partial ordering on C4, <, as reverse set inclusion. In other words, let z,

y € Cy, then z <y, if and only if y C z.

Theorem 12 Given an arrangement, A € A%, corresponding cut-intersection set,

Ca, and ordering, <, then (Ca, =) is a partially ordered set.

Proof. Let z, y, z € C4. Clearly, for all z € C4, z < z since
z C z. Hence, < is reflexive. Assume z < y and y < z. This implies that z C y and
y C z. Hence, z = y. Therefore, < is antisymmetric. Assume z < y and y < z. This
implies that z C y and y C z, which implies 2 C z. Hence, z < z implying that < is
transitive.

Therefore, combining implies (C4, <) is a partially ordered set. o

Now, define the join as
zVy=lub{z,y} =znNy

and the meet as

zAhy=glb{z,y}=n{le A: 1D zUy}.

Theorem 13 Given an arrangement, A € A?, the set Cy4, the ordering <, and the

operations V, and A, then (C4,=,V, ) is a cut-intersection semi-lattice.

Proof. (Ca,=,V, A) is a specific example of the cut-intersection

semi-lattice defined in general in Section 4.2. O

56




From here, refer to (C4,=,V,A) as the cut-intersection semi-lattice of a feed-

forward, single hidden-layer, perceptron artificial neural network.

5.4.2 The Characteristic Polynomial of (Ca,=,V,A).  With the cut-intersection

semi-lattice, (C4, <, V, A), defined, the combinatorial geometry of the hyperplane ar-
rangement can be investigated. In particular, the characteristic polynomial can be

defined.

Consider the Mobius function defined as

1 if z=yand z €Cy
plz,y) =9 — HZz;y p(z,z) if z,y,2€Chpandz Xy (15)
0 else.

Again, for convenience, define u(z) = u(V, z), where V is the greatest lower bound
of C4 which would be R?. Let r(z) = codim(z). Then, the characteristic polynomial
of any A € A? can be defined as

(A1) = ple)(—t)®. (16)

z€C 4y

Now, structure is in place to analytically and deterministically evaluate certain in-

variants about an ANN architecture.

5.4.83 The Relationship Between the Poincaré Polynomial and the Vapnik-
Chervonenkis Dimension. What does the Poincaré polynomial have to do with
artificial neural networks? First, the fact that Zaslavsky introduced an analytical
method for determining the value of card(C(A)) has made the venture into the study
of combinatorial geometry of arrangements of hyperplanes worthwhile. Chamber
cardinality, through Zaslavsky’s work, is now an accessible geometric invariant. In

fact, it is now pertinent to consider the relationship of combinatorial geometry and
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the arrangement of hyperplanes that result from the ANN architecture discussed in

Chapter 1.

By Zaslavsky’s result described above, for each A € F¢, there is a lattice L(A)
and corresponding Mébius and rank function to define the characteristic polynomial,

7. Moreover, for each A € F2, card(C(4)) = 7(4,1).

Let A* € F¢ be an arrangement of hyperplanes such that the maximum number
of chambers is achieved. This happens when the arrangement is in general position
and card(A*) = k. (Recall that an arrangement is in general position if, when any
two planes have a common line, the line is distinct; and when any three planes have

a common point, the point is distinct.) More formally,
card(C(A*)) = sup {card(C(A)) tAE€ f;‘} :

Define L(A*) as before with the reverse set inclusion ordering. Note that since A*
is just an instance of an arbitrary arrangement of hyperplanes, then L(A*) is a cut-
intersection semi-lattice. Therefore, it can substantiate the Mobius function, p, the

rank function, r, and the characteristic polynomial, =.

Theorem 14 Let A* € F2, be an arrangement of hyperplanes defined by a trained
ANN architecture such that card(C(A*)) = sup {card(C’(A)) tA€ fg} = k. As-

sume A* is in general position. Then,

VO(FY) = card(C(A*)).

Proof. Let n = card(C(A*)). Choose a set, X € R, such that
card(X) = n and each z € X lies in a different chamber of A*. Note, since the points
are all separated from each other in the chambers, then the hyperplanes of A* that

form the chambers can implement any dichotomy of X. This demonstrates a set of
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n points which can be shattered by the arrangement, A*, and since A* € F¢, then
VC(Fd) 2 n.

In order to show that VC(F?) is no bigger than n, choose any signed set of
points ¥ = (Y*,Y~) such that card(Y) > n. Since the chambers of A* form a
partition of R¢, then the maximum number of chambers possible is n (since A* is in
general position and card(A*) = ). There are more than n points, and regardless
of the arrangement of points, at least one chamber will have more than one point in
it. Therefore, for each set Y of greater than n points, one of the dichotomies will

result in a y* € Y+ and a y~ € Y~ existing in the same chamber. In other words,

A* fails to shatter any set of n + 1 points. So, VC(F?) < n + 1.
Combining yields VC(F?) = n = card(C(A*)). ]

While it is true that a fixed ANN may define a set of hyperplanes that are
not in general position (it is possible that there will be redundant processors or
processors that yield parallel hyperplanes), the more meaningful situation is one
where an ANN architecture is pushed to its capacity resulting in an arrangement
of hyperplanes with maximal chambers. Hence, Theorem 14 describes a technique
for evaluating the V-C dimension for a set of ANN architectures based purely on
geometric properties of the hyperplanes. In the case Wilere an arrangement is not in
general position, the capacity of that ANN would be less than the V-C dimension of
.

5.4.4 Duality of Points and Hyperplanes. The reformulation of the V-
C dimension falls out cleanly because a relationship exists naturally between the
arrangement of the hyperplanes and the arbitrary (an unsigned) set of points in R¥.
For V-C dimension, the fact that only one set of points that is shatterable must exist
in order to value the V-C dimension as that set’s cardinality also contributes to the

unique relationship. The proof essentially equates a chamber with a point, allowing
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for the tie between cardinality of a set of chambers and the cardinality of the set of

points.

It is not always the case that there exists a relationship between an invariant
of the arrangement and the signed set. Other examples require a little finesse by
appealing to the duality of hyperplanes and points. Zaslavsky uses this duality
often to achieve many of the results of his counting arguments (50:4). Hence, where
invariant analysis, thus far, has been about the structure of the arrangement of
hyperplanes, by duality, it can also be about a set of points. This is accomplished
through a mapping that equates hyperplanes in a d — 1 dimensional subspace to
points in a d dimensional vector space. This is an important tie because the new
research presented in Chapter VI and Chapter VII is based on invariant analysis of

signed sets of points.

5.4.5 The Lattice of the ANN Chamber Set. Recall that Theorem 14
establishes a relationship between the chambers and ANN capability analysis based
on V-C dimension. Note that while a set of chambers is referred to as an invariant
in the literature, it also possesses a lattice structure. The set of chambers produced

by an ANN can be defined in this context.

Let H*(A) = {h1, hz, ha, ..., hi, hS, BS, hS, ..., AL}, where h¢ denotes the interior
of the complement of k;. Then, the set of chambers of an arrangement, A, is defined
by

C(A)E{ Nr: N h*#@foralngH*(A)}.

h*eT h*eT
Define < as set inclusion. That is, for z,y € C(A), z <y if and only if z C y. Then,
the meet, A, is defined as

zAy=glb{z,y} =zNy.
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E

Figure 5. Chambers x and y.

By definition of C(A), the meet operation is a closed operation on C(A). The join,
V, is defined as

zVy=lub{z,y} =z Uy.

Note that the set C(A) is not closed with respect to the join operation as demon-
strated in Figure 5. In the figure, the set £ U y is not contained in C(A). Note that
the chamber z = h{ N hy N A%, and the chamber y = h§ N AS N hs.

Theorem 15 Let A be an arrangement of hyperplanes generated by an ANN. Let
=< be set inclusion and A and V as defined above. Then, (C(A),=X,A,V) is a meet

semi-lattice.

Proof. First, show (C(A), X) is a partially ordered set. Let

z,y,z € C(A). Since z C z, then z < z. Hence, X is reflexive.

Assume z < y and y < z. This implies z C y and y C z, which implies z = y.

Hence, < is antisymmetric.

Assume r < y and y < 2. This implies z C y and y C z, which implies = C 2.

Hence z < z, i.e. < is transitive.
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Since < is reflexive, antisymmetric, and transitive for all z,y,2 € C(A), then
(C(A), =) is a partially ordered set. Moreover, C(A) is, closed with respect to the

meet operation, A, which implies (C(A), <X, A, V) is a meet semi-lattice. 0

Note that (C(A), =<, A, V) is not a lattice since the join is not closed. However,
it is possible to produce a lattice on the chambers produced by the hyperplane
arrangement of an ANN. Consider an architecture with an additional hidden-layer
such that the interconnection weights are binary. This produces an additional logic
operation. With the additional hidden-layer, the set of sets represented includes
C(A) and the union of all the elements of C'(A) which, by definition, is the power
set of C(A), denoted P(C(A)).

Theorem 16 Given an arrangement A € A?, corresponding set, C(A), ordering,

=, and meet and join operations as defined above, (P(C(A)),=,A,V) is a lattice.

Proof. First, show (P(C(A)), =) is a partially ordered set.
Let z,y,z € P(C(A)). Since ¢ C z, then z <X z. Hence, =X is reflexive. Assume
z <y and y < z. This implies ¢ C y and y C z, which implies z = y. Hence, <
is antisymmetric. Assume z < y and y < z. This implies  C y and y C #z, which

implies z C z. Hence = <X z, i.e. < is transitive.

Since < is reflexive, antisymmetric, and transitive for all z,y,2z € P(C(A)),

then (P(C(A)), X) is a partially ordered set.

Moreover, by definition, P(C(A)) is, closed with respect to the meet and the
join operations, which implies (P(C(A)), X, A, V) is a lattice. O

5.5 Conclusions

In summary, this chapter described the required concepts of lattice theory and

combinatorial geometry that facilitated an investigation of the lattice structures of

feed-forward, single hidden-layer, perceptron artificial neural networks. This carved




the way for establishing that V-C dimension can be equated with the invariant cham-
ber cardinality. Additionally, the cut-intersection semi-lattice of feed-forward, single
hidden-layer, perceptron artificial neural networks was defined which facilitated the
definition of the characteristic polynomial. Moreover, the set of chambers produced

by an ANN was also found to be a semi-lattice.
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VI. Generalized Invariant Analysis Applied to Artifictal Neural
Network Capability Analysis

This chapter pulls together the concepts of lattice theory and combinatorial
geometry outlined in Chapter V and the desired properties of a quantifier .of ANN
capabilities outlined in Chapter IV. A framework will be built that generalizes meth-
ods used to determine ANN capabilities. The purpose of deriving the generalized
framework is to build a method for comparing alternative architectures for their par-
simonious solutions to the classification problem. In other words, a partial ordering
of sets of sets derived from different architectures is sought. The ordering, to be
presented, is determined by the complexity of signed sets for which an architecture
can provide a solution. Hence, the crux of ANN capability analysis is reduced to
characterizing this notion of complexity about signed sets. This is achieved through

invariant analysis.

This view of capabilities analysis is consistent with V-C dimension. In other
words, V-C dimension analysis can be posed as a specific instantiation of the general-
ized framework where cardinality is the invariant and V-C dimension is the function.
However, the premise of this work is that V-C dimension has significant faults and,
with the proper mathematics, more appropriate quantifiers can be designed. Specif-
ically, the Ox-Cart dimension will be defined in Chapter VII which is based on an

invariant called the geometric complexity.

Before any of the ANN capabilities analysis can be attempted, it is necessary
to have a clear and concise definition of the problem space. Therefore, the definition .

and properties of the set of signed sets is investigated thoroughly.

6.1 Generalizing the Problem Space

In this section, the mathematical structure of the set of signed sets will be

presented. In addition, the desired invariant properties about signed sets will be
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defined. Moreover, these properties will be used to show the invariant nature of the

mapping, geometric complexity.

6.1.1 The Collection of Signed Sets. The domain of the mappings that
will define the set of invariants in the generalized framework is the set of signed sets.
Recall that an ordered pair, (z,y), is a set of sets {{z}, {z,y}} and (z,y) # (y,z)

unless £ = y. Now, consider the following definition of a signed set.

Definition. A signed set, X°, on R is an ordered pair of sets, (X+, X~) € P(R?) x
P(R?) such that X* N X~ = 0. The corresponding unsigned set of X* is X =
XtuX-.

Note that since X* = (X*,X~) is an ordered pair and X* N X~ = 0,
(X+,X7) # (X, X?) unless X* is the signed empty set (which is just the empty
set and will be denoted #*). Hence, consider the rigorous definition of an ordered

pair to establish signed set equality, denoted =. The ordered pair (X*,X~) can be
uniquely defined by {{X*+},{X*, X" }}.

Definition. Two signed sets, X§ and X3, are said to be equal, written, X7 = X3 if

and only if X; = X3 and X7 = X5 .

Let X denote the set of all signed sets on R%, i.e., X = {X*® : X* is a signed
set}. Define the zero signed element in X as §° = (0, 0).

Consider the following definition of scalar multiplication on X'.

Definition. Signed set scalar multiplication is defined as
aX® 2 (aXt,aX")

for all @ € R, o # 0 and X{, X5 € X. Recall that X = {az : z € X} for all
X C R4

Lemma 6 The set X' is closed with respect to scalar multiplication.
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Proof. Assume not. That is, without loss of generality assume
aXt NaX~ # 0 for some a € R, @ # 0 and X* € X. This implies that there
exists £, € aXt and z, € aX~. This implies there exists = such that z, = az
and, moreover, that z € X+ and z € X~. This implies X* N X~ # § which is a
contradiction. Hence, a X+t NaX~ = (). Therefore, X is closed with respect to scalar

multiplication. O

6.1.2 Invariant Properties for Operations on Signed Sets.  The generalized
framework for determining ANN capabilities will be centered on invariance. The
following transformations, defined on X, will help formalize mathematically the in-
variance desired of a mapping. Specifically, it is desired that the mappings that
characterize signed sets will be invariant to dilation, translation, or rotation of the

signed sets.

Let ) be the collection of finite sets Y such that Y C R? that is

Y ={Y C R*: card(Y) is finite}.

Definition. Let v € Rt. Define D, : P(R?) —» P(RY) as
D,(Y)={yy€eR*:y €Y}
for all Y € P(R?). Then, the dilation operator, D, : X — &, is defined as

D,(X?) = (Dy(X™), Dy(X7)),

for all X° € X.

Definition. Let zo € R%. Define Ty, : P(R?) — P(RY) as

Teo(Y) = {(zo+y) ER*:y € Y}
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for all Y € P(R?). Then, the translation operator, Ty, : X — X, is defined as
T (X*) = (Tao (XT), T (X7)),

for all X € X.

Definition. Let A € R%-1. Define W, : P(R?) — P(R?) as
Wi(Y) = {r(y) eR*:y €Y},

for all Y € P(R?) where r) : R? — R is a vector rotation operator that can be rep-
resented by an orthogonal matrix multiplication with the angle A = (A1, Az, ...Aa—1).

Then, the rotation operator, Wy : X — &, is defined as
W/\(Xs) = (W/\(X+)) W/\(X_))7

for all X* € X.
Note that both D., and W are linear. However, T, is affine.
Convex hulls of sets will also be required.

Definition. Let a3, as, ..., a, € R*, such that

zn:a,' = 1.

=1

The convex hull of a set Y € Y, denoted co(Y'), is the set

co(Y) = {Z oiyi €ER?: {y1,y2,-.4n} CY, nEN, Y ai=1, s 2 0}-

=1 i=1

Let X/ denote the set of finite signed sets in X.

Definition. Define the convex hull of a signed set X* = (X*,X~) € X/ to be
co(X?®) = (co(Xt),co(X7)).
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mations above to preserve convexity. Hence, consider the following lemmas.

Lemma 7 Let v € R*. Then, for each X* € X7, D,(co(X*)) & co(D,(X?)).

Proof. Let v € RY, Y € Y with card(Y) = n. First, show

It will be important for each of the desired invariant properties defined as transfor-
D.(Y) preserves convexity, i.e. D,(co(Y)) = co(D,(Y)).

D,(co(Y)) Dy({Ziiawi:yi €Y Yijai=1, a; > 0})
= {yYhiayi:yi €Y Yai=1, o5 >0}}
= {Shyavyiiy €Y Yo =1, o > 0}}

= co(D,(Y)).

Therefore, for each X* € X¥

D,(co(X*)) = Dy(co(X*),co(X7))
(D4(co(X+)), Dy(co(X7)))
(o Dy (X+), co(Dy(X-))
co(D,(X*)). ]

IR

R

Lemma 8 Let zo € R Then, for each X* € X7, Ty (co(X?)) = co(Tq (X?)).

Proof. Let zo € R%, Y € Y with card(Y) = n. First, show
T.,(Y) preserves convexity, i.e. Tyo(co(Y)) = co(T5,(Y)). Consider

Too(co(Y)) = T,({Thioyiiw €Y Yo =1, o 2 0})
= {zo+ T 0y €Y T =1, o; > 0}}
= {Thiaze+ T ety €Y Y =1, o 2 0}}
= {Thia(zoty) €Y Yo ai=1, o; 20}}
= co(Tz(Y)).
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Therefofe, for each X* € X¢

Too(co(X?)) = Tyy(co(XF),co(X7))

= (T (co(X ), Too(co(X 7))
(co(Tao (X)), co(Teo (X))
co(T 4 (X?)).

1R

O

1%

Lemma 9 Let A € R%1. Then, for each X* € X, W) (co(X?)) = co(Wr(X?)).

Proof. Let A € R¥-1 Y € Y with card(Y) = n. First, show
Wi (Y') preserves convexity, i.e. Wi(co(Y)) = co(W(Y)). Consider

Wi(eo(Y)) = Wi{Th iy €Y Tihai =1, a; > 0})
= Moy keY Sr,ai=1, a; >0}}
= Yriom(y): €Y Y =1, o; 20}}
= co(W\(Y)).

Therefore, for each X* € Xf

Wi(co(X?®)) & Wi(co(Xt),co(X7))

> (Wi(co(XH)), Wa(co(X7)))
= (coWr(X*),colWr(X"))

IR

co(W(X*)). O

This section has established a basic knowledge of signed sets which represent

the classification problem.

6.2 Generalizing Artificial Neural Network Capability Quantifiers

Measurements of capability about ANNs can be viewed as functions of invari-
ants about an arrangement A. The point is to broaden the understanding of how

to characterize the strength of an arrangement which corresponds to an ANN ar-
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chitecture. The goal is to identify mathematical entities that vary as the systems
complexity varies and are invariant to characterizations of a system which do not
contribute to an accurate description of an ANN’s ability to solve classification prob-

lems.

Continuously throughout the literature (and in this dissertation), reference is
made to the goal of measuring ANN capabilities. Also, V-C based functions are
sometimes referred to as measures. Each of these terms is used loosely. In fact,
V-C based quantifiers are not measures in the mathematical sense. Moreover, the
quantifiers that will be defined by the general framework define a function of some
invariant. As it turns out, the invariants are semi-measures. Consider the definition

of a measure and a semi-measure.

Definition. Let 7 be a collection of sets Y such that Y C R¢. A mapping, m,
defined on a set Y € T such that m(Y) € R is a measure if it has the following

properties:

1. m(@) = 0 (where 0 is the empty set).
2. m(Y) > 0 for all nonempty Y € 7.
3. For any finite set of finite disjoint sets, {Y1,Y2,..Yo,} C 7T,

m (0 K-) - Z;m(Y)

1=1

Definition. A semi-measure is a mapping m defined on a set ¥ such that m(Y) € R

and has Properties 1 and 2 defined in above definition.

V-C dimension is not a measure since it fails to satisfy Property 3. In fact,
this is a property that is undesirable for ANN capability quantifiers. As an example,
consider two identical ANNs, each with only one perceptron that corresponds to the

z-axis in R2. The addition of the two nets produces the same set of hyperplanes,
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namely, the z-axis and the V-C dimension is the same. Hence the V-C dimension is

not additive.

6.2.1 The Set of Invariants.  In this section, the notion of invariants will
be formalized. A set of invariants will be defined. Consider the following definition

of an invariant. (Note that this definition is specific to this dissertation.)

Let Z = {I : S — R | I(§) = 0} where S is a nonempty set. Then Z is a linear
space over R with point-wise addition and scalar multiplication. Let Z = {I € Z |

I(S) > 0for all S € S}.

Lemma 10 7 is a convez cone in Z.

Proof. Convexity: Let a € [0,1] and I,I; € Z, then by

linearity of Z,

el + (1 — a)I3] (S) = ali(S) + (1 — a)Io(S) > 0

for all S € S. Therefore al; + (1 — )l € T.

Cone: Let o > 0, I € 7, then [al](S) = al(S) > 0. So af € T. Hence, 7 is a

convex cone in 2. O

Definition. An element I € Z, is said to be an tnvariant with respect to a family,

M, of mappings M, M : T — T if M(I) = I for all M € M. That is

[M(D)](S) = I(S) for all S € S.

Consider the following example. Recall the definition of the transformation

operator T, .

Example. Let the invariant, I € Z, be defined as, I = 7, where m; = n(L(A), 1),

the characteristic polynomial evaluated at ¢ = 1 defined on a cut-intersection semi-
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lattice of an arrangement of hyperplanes, L(A). Hence, § = L(A). Define M € M

as

M(ﬂ'l) =710 T:Eo-

Define Ty, (L(A)) = {Tx,(a) : @ € L(A)}. The claim is that for some fixed zo € R?,
M(7) = = for all L(A). Given L(A), consider

[M(r)|(L(A) = [m o T5)(L(A))
= m(Ta(L(4)))
= (T (L(A),1)
= card(C(F(L(A)))
= card(C(L(A4)))
= m(L(4))

Hence, M(m;) = =y, for all L(A). Therefore, 7 is an invariant with respect to Tx,.

Note that this invariant maps arrangements to real numbers, i.e. 7y : L(A) = R.

Consider another example of an invariant which does not rely on the existence
of a cut-intersection semi-lattice or any other lattice. Instead it maps sets to real

numbers.

Definition. Given M : S — S, define MT : T — T as the transpose of M written

MT(I)=ToM forall I € 1.

Example. Let S = T, a collection of finite subsets of R%. Let the invariant, I € Z,
on an unsigned set, X € T be defined as, I = card(-). Let

M={Wf:/\eRd-l}u{DEf:yeRJf}u{Tg):zoeRd}.
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The claim is that M7 (card(-)) = card(-) for all MT € M. Consider M = Ty,

[MT (card(-)))(X) = [card(") o Txy](X)
= card(T,, (X))
= card(X).

Hence, T2 (card(-)) = card(-) for all 2o € R¢. Similarly, W{ (card(-)) = card(-) for
all A € R%*1! and for all v € R*, DT(card(-)) = card(-). Additionally, note that

card(-) is a semi-measure. Therefore, cardinality is an invariant with respect to M.

Because, an ANN capability quantifier should be about signed sets, what is
sought is a set of invariants and a family of mappings that are defined on signed
sets. Hence, consider the following definition for a set of invariants on signed sets,
Z°, which will be used to define the geometric complexity and the Ox-Cart dimension

in Chapter VII

Definition. Let S = X, the set of signed sets on R%. Given X® € X, define the
invariant on signed sets, I € I°, as, [ : X — Z*. Let M* = {Wf,D?;,Tfo where
) e R¥-1 4 € Rt, and zo € R?%. That is, for MT € M®

MT(I) =IoM
for all X € X.

6.2.2 The Generalized Capability Quantifier. Now that the generalized
set of invariants on unsigned sets, Z, and on signed sets, Z°, has been defined, the
generalized quantifier of ANN capabilities can be defined. However, first recall the
definition of a family, F¢, of ANNs

Fi={A={l,ll,.. 1L} C A%.
where A? is the set of all arrangements in d dimensions.
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Definition. Given d € N. Let J C T be a subset of invariants. The generalized

quantifier of ANN capabilities with respect to J, vz, is a mapping

vy : P(AY) - Z.

Definition. Given d € N. Let J* C Z* be a subset of invariants defined on signed
sets. The generalized quantifier of ANN capabilities with respect to J°, v%, is a

mapping
v : P(AY) = Z.

Note that it also makes sense to require that v and v* be semi-measures. In
fact, since the invariants are semi-measures, one can expect that if F¢ is empty, then
v(F?) = 0. Additionally, it will be required that »(F2) > 0 for all ¢ C A? for any

d. (Where it is clear the subscript on v will be dropped.)

Consider the reformulation of the V-C dimension of F2. It has already been
established that the V-C dimension of a set of hyperplane arrangements is the
invariant card(C(A)), cardinality of the number of chambers of the arrangement
A* € F¢,

mial as the 7(A,1). In the context of the generalization, card(C(A)) € Z and
v(F2) = max{card(C(A)) : A € F¢} = VC(F?). It is important to recall at this

which can be analytically determined from the characteristic polyno-

point that the objective of this dissertation is to characterize v*, since it will be
shown that the analysis of capabilities is more appropriately defined about signed

sets instead of arbitrary sets.

6.2.3 The Generalized Partial Ordering and Resulting Lattice of ANNs.
Given the generalized capability quantifiers, v and v* define the ordering, <,, and
<, on A¢ as follows.

Definition. Given A;, A; € A% A; <,: A, if and only if v*(4;) < v3(4,).

(Similarly, for <, .)
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Note that these are not, in general, partial orderings since they are not anti-
symmetric. However, it is possible to produce a partial ordering using equivalence

classes of hyperplane arrangements.

Definition. Given A € F¢, define the equivalence class of A,ndenoted [A], as

[A] = {B € F2:v°(A) = v*(B)}.

Definition. Given F¢, define the collection of equivalence classes of F¢, denoted
E(FY), as

E(FY ={1A]: Ae F}.
Now the ordering, <,s, (and <,) can be defined on the collection of equivalence
classes, £(F2).
Definition. Given £(F?), then [A] <,. [B] if and only if v*([A]) < »*([B]). (Simi-
larly, for <,).

Lemma 11 Given d,x € N, (£(F%),<,s) is a partially ordered set.

Proof. Let d,x € N. Let [A], [B], [C] € E(F?%). Note that
v*([A]) = v*([A]) for all [A] € E(F?). Hence, [A] <,¢ [A]. In other words, <,. is
reflexive.

Assume [A] <, [B] and [B] <,s [A]. This implies v*([A]) < »*([B]) and
v*([B]) < v*([A]) implying that v*([A]) = v*([B]). Hence, [A] = [B]. In other words,
<,s is antisymmetric.

Assume [A] <,s [B] and [B] <,s [C]. This implies v([4]) < v([B]) and
v*([B]) < v*(|C]) implying that v*([4]) < »*([C]). Hence, [A] <,: [C]. In other
words, <,s 1s transitive.

Since <, is reflexive, antisymmetric, and transitive, then, (£(F¢),<,,) is a

partially ordered set. 0O
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Note that (S(]:i), <,) is also a partially ordered set.

Now, enough structure has been put into place to define the lattice of feed-
forward, single hidden-layer, perceptron artificial neural networks. This is the crux
of the generalization theory that allows analysis of ANN capabilities based on invari-
ants. The lattice structure provides evidence that the generalized approach provides
a well-structured, well-behaved environment in which to couch capability quantifiers.
Consider the following definitions of meet and join on £(F2). Let [A], [B] € E(F2).

Then,
[4] if
[B] if

fo]

vi([A vs
[A]/\[B]=glb{[A],[B]}={ s([ D)S (IBI)

((B]) < v((4))

IA

and

[4] if v ((B]) < v*([A4))

[A]V [B] = lub{[A], [B]} = :
{[B] if v*([A]) < v*([B])

Theorem 17 For each k,d € N, (E(F2),<,s,A,V) is a lattice.

Proof. Note that (£(F%),<,s) is a partially ordered set by
Lemma 11. By construction of A and V, £(F2) is closed with respect to A and V.
Hence (E(F%), <,s,A,V) is a lattice for all k,d € N. .o

Note that, again, a similar lattice can be defined based on analysis of unsigned
sets. That is (£(F2),<,,A,V) is also a lattice. However, to emphasize the point,

the lattice based on signed sets is the one of interest in this dissertation.

6.3 Conclusions

In summary, what has been provided is a method for characterizing ANN
capabilities that will allow comparisons of architectures based on their ability tb
implement the dichotomies of signed sets. This is formalized by the lattice of ANN’s
based on a generalized capability quantifier and partial ordering. To facilitate this,

a generalized framework has been presented that characterizes the invariance of

76




signed sets. V-C dimension was posed as an instantiation of the generalization, and

in Chapter VII is another instantiation: the Ox-Cart dimension.

7




VII. The Oz-Cart Dimension and the Lattice of Artificial Neural

Networks

This chapter presents a means of determining the capability of feed-forward,
single hidden-layer, perceptron, artificial neural networks to solve classification prob-
lems based on the complexity of a signed set, X*. By example, the approach presented
here demonstrates the usefulness of the generalized approach defined in Chapter VI
This notion of complexity is encased in a mapping called the geometric complezity,
denoted GC. The capability quantifier is called the Ox-Cart dimension, denoted
OC(A). It is defined on an arrangement, A, and on a set of arrangements of hyper-
planes generated from an ANN. A partial ordering of ANNs will be defined using the
Ox-Cart dimension. The ordering provides a comparison of ANNs based on their
ability to solve classification problems determined by the complexity of the problem.

Moreover, that ordering will result in a lattice defined on ANNs.

Since the ordering is determined by the complezity of signed sets for which an
architecture can provide a solution, the crux of ANN capability analysis is reduced to
characterizing this notion of complexity about signed sets. This is achieved through
invariant analysis. In particular, GC will be posed as an invariant in the general-
ized framework defined in Chapter VI and OC as the function which operates on
that invariant. Hence, GC is a mapping on signed sets and OC is a mapping on

arrangements.

It should be noted that defining the Ox-Cart dimension within the generalized
framework directs the capabilities analysis at specific geometric characterizations of
classification problems, not the cardinality of arbitrary classification problems. The
specificity is determined by the geometric complexity mapping GC'. This distinction

is the major difference in the Ox-Cart dimension and the V-C dimension.

The geometric complexity mapping is centered around the notion that the

iterative intersections of the signed sets’ convex hulls are an appropriate indicator of
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the difficulty of the classification problem. It should be emphasized that the Ox-Cart
dimension ultimately appeals to the analysis of a particular problem. This differs
from V-C dimension based methods which are based on arbitrary arra,ngemeﬂts of
sets (not signed sets). By moving the analysis to signed sets from unsigned sets, the
methods become more useful in applications, since they provides a tool for directly
analyzing an ANN’s requirements for solving a classification problem. Moreover, the
sophistication of algorithms for deriving the geometric invariants used to determine

the Ox-Cart dimension makes evaluating the function accessible. (36)

The structure of this chapter parallels that of Chapter VI. Where Chapter VI
was general, this chapter will provide an instantiation. First, there will be a discus-
sion of geometric complexity as an invariant and its properties will be investigated.
Then, the Ox-Cart dimension will be defined as a particular ANN capability quan-
tifier, v. A partial ordering about the Ox-Cart dimension will be defined and the
lattice that it produces will be established. An example is also presented. Finally, a

comparison of the V-C dimension and the Ox-Cart dimension is presented.

7.1 The Geometric Complexity Mapping

This section will provide a definition of geometric complexity, examples, the

discontinuity of GC, and its invariant properties.

7.1.1 Definition of GC. The geometric complexity is a mapping from the

set of finite signed sets, X7, to a nonnegative integer. That is,
GC: xf - Z%.

The value of GC(X?) is indicative of how “mixed up” the dichotomy of X* is, which
should correlate with the difficulty of separating the two sets, X+, X~ with hyper-
pl.ames (difficulty being defined as the number of hyperplanes required to separate
the sets). For the purpose of defining GC(X*), “being mixed up” is mathematically
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described by evaluating the intersections of the convex hulls of X* and X~ denoted
co(X ™) and co(X ™), respectively. This is done iteratively, breaking the classification
problem, i.e. the signed set, down starting on the outside and moving inward. The

higher the value of GC, the more difficult the problem.
The mapping, GC, is constructed from three mappings, S, h, and H.

Define the mapping S : X/ — {0,1,2} as

0 if X°=90
S(X?)=491 if Xt=0xor X~ =0
2 if Xt#£0and X~ #0.

S(X*) mathematically clarifies if one or both of the sets, X+, X~ are empty. If
S(X*) = 0, then there is no hyperplane required to separate the empty set. If
S(X*) = 1, then no hyperplane is required to implement the dichotomy on X*.
However, if S(X*) = 2, more analysis is required to determine complexity. So, form
the convex hulls of X* and X~ that is co(X*) and co(X ™). If co(X+)Nco(X™) =0,
then, by the Hahn-Banach Theorem, the set is separable by one hyperplane (31). If
co(X+) N eco(X™) # 0, then analysis of the convex hulls must continue in order to
determine the complexity within co(X*) N co(X ™). To express this mathematically,

a binary mapping b : X — {0,1} is required. For X* € X/, define

0 if co(Xt)Neco(X~)=10

h(X?) ={
1 if eco(X*t)Nco(X™)#0

To reduce X* to the portion that has not been analyzed define H : X/ — X/ as

H(X®) = (X*neo(X*)Neo(X7)], X~ N[co(X+) N co(X™))).

If X* = (0,0), then, H(X®) & H(0,0) = (08,0). Also, since H : X¥ — X/, the

composition, H o H, is well-defined. For clarity, let H* denote H composed k& times.
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Theorem 18 Let X° € X7, then there exists a k € N such that H*(X®) = (0,0).

Proof. This proof will be by contradiction. That is, for
X* € X7, assume H¥(X®) # (§,0) for all k € N. Since X* is finite, this implies that
HF(X?®) = H*1(X?) for some k = ko. Let Z = H*~1(X*). Then, H(Z) = Z. This

implies
Ztn[co(Zt)Neo(Z7)) = Zt and Z-N[co(Zt)Neco(Z7)] = Z~.

Hence,

co(Zt)Neco(Z7) 2 Z* and co(Zt)Nco(Z™) 2 Z~.

So that
co(co(Z¥)Neco(Z7)) 2 co(Z*) and co(co(Z+)Neco(Z7)) D co(Z7).
Therefore
co(Z*)Neo(Z=) 2 co(Z*) and co(Z*+)Nco(Z7) D co(Z7),

which implies co(Z%) = co(Z ™), implying that Z+* N Z~ # (. This is a contradiction.
Hence, there must exist k* € N such that H*"(X*) = (0,0). O

H(X?) reduces the domain of the analysis to the portion of the problem that
has not been characterized for complexity. In this manner, the problem would be

picked apart and values of S(X*) and A(X®) would be accumulated until X* is
reduced to (0, 8). This process is housed in the function for GC(X*).

Finally, the geometric complezity of a finite signed set X* can be defined.
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Definition. The geometric complezity of a finite signed set X*, GC : Xf — Z7*, is
defined as

GO(X?) = [S(X*)+h(X*)] + [S(H(X*)) + h(H(X*))]+
[S(H(H(X*))) + h(H(H(X*)))] + .- (17)
S50 [S(HH(X?)) + h(H*(X?))] .

Theorem 19 For each X°* € Xf, GC(X?®) < co. Hence, GC is defined on all of
X7,

Proof. By Theorem 18, GC(X?#) is a finite sum of integers and
is, therefore, finite for all X* € &X/. O

7.1.2 FEzamples of GC. Consider the following examples which demon-
strate the sensitivity of GC to different geometric situations. The first set of examples
demonstrates that GC(X?) increases, as does the required number of hyperplanes

to implement the dichotomy irrespective of the cardinality of X°.

Example 1. For X* = (*,

GO(X*) = S(X°)+ h(X?)
= 040
= 0,

since H(0,0) = (0,0).

Example 2. For X* = (X+,0), or X* = (0,X),

GO(X®) = S(X*)+ h(X?)
= 140
= 1,

again since H(0,0) = (0,0).
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Figure 6. Example 4, GC(X)=3.

Example 3. For X°* = (X*,X~), where X* # 0 and X~ # 0, but co(X*) N
co(X~) =0, then
GC(X?®) = S(X°)+ h(X?)
= 2490
= 2,
and again H(0,0) = (0,0).

These three examples demonstrate in a very simple way how the geometric

complexity of sets is determined.

The following examples will help explore the more interesting aspects of the

mapping. Consider the sets and GC evaluation pictured in Figures 6 thru 9.

Example 4. For X?, as shown in Figure 6,

GO(X®) = S(X°)+ h(X?)
= 241

= 3.
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Figure 7. Example 5, GC(X)=4.

Example 5. For X*, as shown in Figure 7,

GC(X*) = S(X°)+h(X*)+ S(H(X?)) + h(H(X?))
= 2414140
= 4.

Example 6. For X*, as shown in Figure 8,

GO(X?*) = S(X*)+h(X*) + S(H(X®)) + h(H(X?))
= 2414240
= 5.

Example 7. For X*, as shown in Figure 9,

GC(X®) = Thoo [S(H*X*)+ h(H¥(X?))]
= 24+1424+142+1
= 9.
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These examples demonstrate sets of increasing difficulty for ANN implemen-
tation that is represented in the increased valuesvof GC. Once again, note that, in
these examples, V-C dimension based quantifiers would grow disproportionately to
the number of hyperplanes required to separate the points. This is simply because
V-C analysis would be completed on the 2" colored sets. Moreover, since O-C will be
defined on signed sets, a comparison of the values of V-C dimension and the Ox-Cart
dimension is meaningless. However, a comparison of the mappings of V-C dimension
and the Ox-Cart dimension will be given in the chapter summary. This really just
establishes that, in order to get an accurate picture of what is required of an ANN
to solve a problem, V-C based quantifiers may be ambiguous. An approach, such
as GC, may be more indicative of the true hyperplane arrangement requirements to

implement the dichotomy of a signed set.

From these examples, it can be seen that, in some aspects, GC is cardinality
insensitive. For instance, the value of GC for Examples 1 and 2 would not change
if the cardinality of X* changed. This is also true in the other examples unless
the set X°® was changed so that there were an increased number of convex hull
decomposition iterations, then GC would also change. Also, note that the function
GC can theoretically be applied regardless of dimension. However, dimension affects

the algorithms used to compute convex hulls and intersections.

7.1.8 Further Analysis of GC. It would seem intuitive that another map-
ping similar to GC' could be derived mimicking Sontag’s use of the Hausdorff metric
to introduce continuity. However, continuity with respect to the Hausdorff metric
represents a function’s sensitivity to changes in the distance between the points in
the signed sef. This is inappropriate for GC since it is valued on geometrical concepts
of signed sets. That is, a finite signed set’s geometric complexity is not inherently

dependent on the points’ distances between each other.
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Figure 10. Example 8, the XOR problem.

Now, consider three examples (illustrated in Figures 10, 11 and 12) that demon-
strate the sensitivity of GC with respect to changes in the geometry of the signed

sets. GC gives ambiguous results for Examples 8 and 9.

Example 8. The classic ezclusive or (XOR) problem (Figure 10) demonstrates that
as the cardinality of the set increases, GC will also increase. However, only two

hyperplanes will be required to separate the points.

Example 9. For Baum’s example of .the alternating n-gon problem (Figure 11),
regardless of the cardinality of the set, GC will always be 2. However, the required

number of lines increases as the cardinality of the set increases (see Theorem 10).

Example 10. The rings problem (Figure 12) shows that cardinality can be increased
and GC will remain constant. This is reflective of the fact that the number of

hyperplanes required will not grow with cardinality.

It would appear that changing GC to include a count of the vertices of the
convex hulls (the cardinality of the extremal sets) could make the value of GC more
in line with the solution to the n-gon problem. However, the GC value for the rings
example would be inappropriate. In conclusion, in order to build a GC mapping so
that it gives unambiguous results for all geometric situations, the algorithm would

in essence have to determine exactly how many lines are required and where to place
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Figure 11. Example 9, the n-gon problem.
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Figure 12. Example 10, the rings problem;
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Figure 13. Example 11, the checkerboard problem.

them, which is the job of the ANN in the first place. So, in essence, it would be

defeating the whole purpose not to mention being computationally unreasonable.
Consider one additional geometric situation, the checkerboard example.

Example 11. For the checkerboard problem, as shown in Figure 13, it is evident
once again how it is possible for GC to grow unreasonably as the cardinality of the

set grows.

7.1.4 GC is an Invariant. ~Mathematically, GC is a mapping from a signed
set X* 2 (X*, X~), to a nonnegative integer z € Z7,

GC : xf - 7%,

The claim is that GC € I° for any A € A?, for any d. To proves this, GC must be

shown to be a semi-measure and be invariant with respect to D.;, Tz, and W,.

Consider the following lemma which establishes that GC is a semi-measure.

Lemma 12 GC is a semi-measure, not a measure.
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Proof. By definition, GC(#*) = 0 and GC(X*) > 0 for all

X*® € X/. Hence, GC is a semi-measure.

However,

GCUX?®) # 3 GO(X?)

for a finite number of signed sets X* € X4. Consider two signed sets X and X3 in
R? such that both can be separated by the z-axes. Moreover, let X; and X3 be such
that X; and X lie above the z-axes and X7 and X lie below the z-axes. Then,
GC(X}) = GC(X3) = 2. However, GC(X; U X3) =2 (# 4). ]

GC is advertised as an invariant. What exactly is invariant about it? The
hope was that only changes in the complexity of the geometry of a signed set would
affect a change in the value of GC. Hence, it would be expected that the mapping
_would be invariant to translational, rotational, and scale variations to X*. Consider

the following lemmas.
Lemma 13 GC(X?®) = GC (T4 (X?®)) for all X* € X¥ and zo € R%.

Proof. Since GC is simply a sum of integers dictated by
the mappings S(X*) and h(X*), then the proof is reduced to showing that these
mappings are invariant for any signed set. Note that the results of H actually do

change. However, it is the effect on S and h that matter to the value of GC.

Hence, consider S(T,,(X?)). If X* = §, then S(X?) = 0. Clearly, T,,(0) =0
and S(T,,(0)) =0.

1%

Similarly, for X* € X/ such that S(X*) = 1, then X* & (X*,0) or X*
(@,X~). Then, S(T,(X?)) = S(Tao(XF),0) =1 or (T (X*)) = S(0, T (X7)) =
1.

Finally, for X* € Xf such that S(X?) = 2, then co(X*) N co(X~) # 0. There-
fore, co(Tzo(X+)) Nco(Tio (X)) # 0. Then, S(Tz(X?)) = S(Too(XF), T (X)) =
2. Hence, S(X?*) = S(T,,(X?)).
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Now consider h(T,(X®)). Then, h(T;(X®)) = h(Te(XT), T5 (X 7)). Notice

that
co(Tzo (XF)) Neo(Tze (X 7)) = Tao(co(XF)) N T(co(X 7))

= Tp(co(X+)Nco(X™))

by Lemma 8. If co(X*) N co(X~) = 0, then Tyo(co(X*) Nco(X™)) = 0, and if
co(X+t)Nco(X™) # 0, then Ty (co(Xt)Neco(X ™)) # 0. Hence, h(X?®) = h(T,, (X?)).

By combining, GC(X*) = GC(T,,(X?)). O
Lemma 14 GC(X?®) = GC(D,(X?)) for all X* € X/ and v € R*.

Proof. The proof follows similar to Lemma 13 relying on

Lemma 7. m]
Lemma 15 GC(X*®) = GC(W(X?)) for all X* € Xf and X € R4

Proof. The proof follows similarly as Lemma 13 relying on

Lemma 9. _ 0

Enough material has been given to claim that GC is truly an invariant. Con-

sider the following theorem.

Theorem 20 GC € I° with respect to the set of mappings M?.

Proof. By Lemmas 13, 14, and 15, GC € Z°. That is GC is an

invariant. O

7.2 Definition of the Oz-Cart Dimension

In this section, the Ox-Cart dimension will be defined along with the ordering
induced by the Ox-Cart dimension. It will be shown that each of these are instanti-
ations of the general framework. That is the Ox-Cart dimension is an instantiation

of v* and has the corresponding ordering facilitating the construction of a lattice.

91




Hence, through the Ox-Cart dimension, ANN architectures can be compared or or-

dered based on their ability to handle different levels of geometric complexity.

In accordance to the general framework defined in Chapter VI, the Ox-Cart
dimension will be defined as a function of the invariant GC. Let A € A for some d €
Z+. Then, the Ox-Cart dimension, OC, is a mapping from one specific arrangement

to a positive integer. That is,
OC: A% - 77,

Let X5 C X* be the collection of signed sets which can be dichotomized by A.
Definition. The OC dimension of A is defined by

0C(A) = sup{GC(X*) : X* € x§}. (18)

This is a quantifier on an arrangement of hyperplanes generated by an ANN. Define
the ordering, <o¢, of arrangements as follows. Let Ay, A; € A¢. Then, A; =oc
A, if and only if OC(A;) < OC(Az). Note that this is not antisymmetric. Hence,
<oc is not a partial ordering. However, in the following section a partial ordering

is defined using equivalence classes.

7.8 The Lattice of Feed-forward, Single Hidden-Layer, Perceptron Artificial Neural

Networks based on the Oz-Cart Dimension

Recall the definition of F¢,
fg = {A = {ll,lg,...,lk} € At k= /:;}_

Consider the following definitions of equivalence classes defined specifically about
the Ox-Cart dimension. (Boldface is used to annotate that the Ox-Cart dimension

is being defined on a set of arrangements.)
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Definition. Given A € F¢, define the equivalence class of A, denoted [A], as
[A] = {B € F¢:0C(A) = OC(B)}.

Definition. Given F¢, define the collection of equivalence classes of F2, denoted
E(FR), as
E(FH ={lA]: A€ F2}.

Let Xjfrd C X7 be the set of signed sets which can be implemented by some A € F¢.

Then, the O-C dimension on the collection of arrangements, F¢, can be defined by

OC(F?) = sup{GC(X?) : X* € X] for all A € F?}. (19)

The ordering, <oc, can be defined on the collection of equivalence classes of hyper-
planes, £(F?) as follows. Let [A], [B] € E(FY). Then, [A] 2oc [B] if and only if
OC([4]) < OC([B)).

Lemma 16 (£(F9),=0c) is a partially ordered set for all k,d € N.

Proof. By Lemma 11. m]

Structure has been put into place to define the lattice of feed-forward, single
hidden-layer, perceptron artificial neural networks based on the Ox-Cart dimension.
Consider the following definitions of meet and join on £(F2). Let [A], [B] € E(F2).

Then,
[4] if OC([4]) < OC([B])

[A] A [B] = glb{[A], [B]} = { .
[B] if OC([B]) < OC([A])

and
[4] if OC([B]) <0OC([4])

[A] v [B] = lub{[A], [B]} = :
{[B] if OC([A]) < OC([B])

Theorem 21 For each d,x € N, then (E(F?),=<0c,A,V) is a lattice.
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Proof. Let d,x € N, then (£(F¢), 2oc) is a partially ordered
set by Lemma 16. By the definition of A and V, £(F?) is closed with respect to A
and V. Hence, (£(F2),<0c, A, V) is a lattice. O

Consider the following theorem.

Theorem 22 Iff, g C A such that f C g, then f <oc g for all d € N.

Proof. Let f, g C A%, Assume f C g. Note that f C g implies
that Xff - ng . Hence

sup{GC(X*): X* € X}, VAef} <sup{GO(X*): X* € X], VAeg}.

Therefore, OC(f) < OC(g). In other words, f Xoc g for all d € N. ]

In summary, what has been provided is a method for characterizing ANN ca-
pabilities that will allow comparisons of architectures based on the geometric com-

plexity of signed sets.

7.3.1 An Ezample Using =<ocC. Consider the following example which
analyzes the difference in capability of ANNs that have nonzero valued thresholds

at each node in the hidden-layer and those that have zero valued thresholds.

Consider F2. Define the subsets fi, g« C F? by

fn={A€ff:A=Ul;whereli={x€R2:L,-(m)=v,--a;=0}}

=1

and

g,¢={Ae]’f:A:Ul,-wherel,-:{:ceRz:Li(:l:)=v,~-w—7',-=0}}.

1=1

Note that f.Ug, = F¢ and f, C g, for all . Therefore, by Theorem 22, f, =<oc 8k
for all k.
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Hence, for given &, the set of ANNs that have a nonzero threshold can solve
a classification problem with a higher GC value than the set of ANNs with zero
valued thresholds. This is an intuitive demonstration of the use of the ordering
<oc . Consider Examples 4-7 presented in Section 7.1.2. Note that as the GC
value increases from example to example, to implement the dichotomy requires an
increasing number of hyperplanes. In other words, £ must increase. Figures 14 and
15 demonstrate the required increase in hyperplanes as the geometry changes. The
conclusion would be that if the GC value of a signed set is large, it may be more
appropriate to use an ANN with threshold values at each node in the hidden-layer

even though thresholds are an additional parameter which must be learned.

7.4 A Comparison of the Oz-Cart Dimension and the V-C Dimension

As mentioned previously, it is not appropriate to compare the values of the Ox-
Cart Dimension and the V-C Dimension. However, the mappings can be compared
in the context of the general framework described in Chapter VI. Both mappings
are functions of invariants. Both quantifiers are defined based on invariants. V-C
dimension is defined on the cardinality invariant which is defined on unsigned sets.
The Ox-Cart dimension is defined on the invariant geometric complexity which is

defined on signed sets.

Since V-C dimension is defined on arbitrary arrangements of unsigned sets, V-
C dimension can only characterize the F%’s ability to solve the worst case geometric
arrangement. However, the Ox-Cart dimension is defined more specifically, charac-
terizing F2’s ability to solve any arrangement of signed sets with a given geometric
complexity. This is because the invariant, geometric complexity, is more specific

than cardinality.
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Figure 14. Example 4, solved using f, and g, .
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Figure 15. Example 7, solved using f, and g,.
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7.5 Conclusions

In summary, this chapter has defined an alternative view of capabilities analysis
on ANNs using the generalized framework of Chapter VI. The Ox-Cart dimension
was defined based on an invariant, geometric complexity. It was shown that the
Ox-Cart dimension induces an ordering that results in a lattice. This lattice is
defined as the lattice of feed-forward, single hidden-layer, perceptron, artificial neural

networks.
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VIII. Follow-On Resedrch

An obvious extension of this research is the investigation of other ANN archi-
tectures. Combinatorial Geometry does address arrangements of structures other
than hyperplanes. In fact, Griinbaum has provided mathematical background for
projecting arbitrary curves into a projective space where they behave as hyperplanes
(21). In addition, Zaslavsky defines the geometric lattice L(A) for arrangements of
hyperplanes in the projective space with the same ordering as for Euclidean space.
Hence, we have the same structure and results available to entities which can be
projected into the Euclidean space. Thus this makes the research in this dissertation

applicable in a more general setting.

Moreover, once the transformation is made into a projective space, a trade-off
analysis can be performed. Applying the quantifiers defined by v to direct learning
algorithms could be a great way to leverage this work. In particular, the quantifiers
could be used to compare the power of adding in more complex boundaries, i.e. non-
linear decision regions. In other words, the trade-off of additional ANN parameters
versus ANN capabilities could be investigated. This extension could lead to more
efficient architectures and learning algorithms by continuously evaluating the benefit

or need of increasing the complexity of the decision boundaries.

Also, since this research defined the cut-intersection semi-lattice for ANN,
much can be discovered about the behavior and structure of the beast. This research
addressed specifically the area of determining capabilities. Estimates of computa-

tional efficiency can also be derived in the framework of lattice theory.

Currently, the ANN weight space (the set of all vectors that can instantiate
a trained ANN) is theoretically assumed to be continuous. In reality, the weight
space should be dependent on the resolution of the data. By decreasing the search

space to a given resolution, the efficiency of the ANN should increase and this is
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something that should be reflected in the mapping that determines the capability.
Baum alludes to this fact in his 1987 work (9).
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IX. Summary

The intention of this research was to provide a broad base of mathematics on
which to study, measure, and improve the capabilities of artificial neural networks.
This was accomplished for a specific set of architectures: feed-forward, single hidden-
layer, perceptron ANNs. The approach taken for characterizing capabilities was very
different from any method described in current literature. The resultant method
exhibits new properties that the lack hereof has proved to be the downfall of other
methods. Along the way, interesting extensions of old methods were formalized and
important links were made between old methods and the new approach proposed in

this research.

The approach taken to accomplish the task was to:

1. Understand and clarify current methods;

9. Determine what mathematical structure an ANN exhibits, for example,

geometrically, a cut-intersection, semi-lattice was established;
3. Propose new methods and demonstrate their usefulness.

The premise was that measures based on V-C dimension concepts lacked prop-
erties that allowed for a meaningful assessment of capabilities. The notion of shat-
tering is a hard, strict requirement that actually only measures an ANN’s ability
to accomplish the absolute worst case of a geometric arrangement of data points.
Moreover, the requirement of there being only at least one arrangement which can
be shattered further limits the ability to generalize capabilities over all possible ge-
ometric situations. The reason for this limited approach was that there has been
little mathematical structure afforded to ANN architectures formally. When in fact
there is a Tich set of mathematics (specifically, lattice theory and invariant analysis
derived from combinatorial geometry) whose results could be applied directly, once

an ANN architecture structure is in place.
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The study of current attempts to measure capabilities (Cover, Baum and Son-
tag) resulted in important extensions to their work. By clarifying the underlying
mathematics of their approaches, closed form formulas were derived for evaluat-
ing their measures, where before there were only estimates. However, when these
concepts were attempted to be generalized, the whole premise of the approach was
found to be too limiting. Therefore, the search for an aiterﬁative view through com-
binatorial geometric ideas for measuring capabilities resulted. The following is a

compilation of the contributions made by this research.

1. In order to develop the alternative approach of measuring ANN capabilities, the
lattice structure of ANN’s was established. It was found that a cut-intersection
semi-lattice could be defined for ANN’s. This result is formalized in Theorem

12.

2. The set of chambers produced by ANNs was shown to be a semi-lattice. This

is detailed in Theorem 15.

3. Studying the combinatorial geometry of ANNs produced a formula for the V-C
dimension. It was established that the V-C dimension can be reformulated as
the well-known geometric invariant of a hyperplane arrangement, cardinality

of the set of chambers. This is detailed in Theorem 14.

4. Using the concepts of invariant analysis and lattice theory, a generalized frame-
work in which capability analysis can be performed was described. This re-
sulted in a generalized lattice structure established by Theorem 17. The gen-
eralized structure, based on invariant analysis includes a quantifier, partial

ordering, and resulting lattice.

5. A new quantifier of ANN capability is defined, called the Ox-Cart dimension.
Theorem 21 shows that the Ox-Cart dimension can be used to define the lattice
of ANNs.
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6. Moreover, the Ox-Cart dimension is based on geometric invariance which is
shown to be well-suited for ANN capability analysis since it is directed specif-

ically at signed sets which represent arbitrary classification problems.

9.1 Conclusions

In summary, this document presents an alternative perspective for analyzing
the capability of ANNs. The important points are that capability analysis should be
viewed through a generalized framework describing the invariant nature of specific
problems. That is, the nature of signed sets should be exploited to yield a character-
ization of separability which can readily be translated to characterize requirements
of an ANN architecture designed to separate the signed set. To facilitate this per-
spective, mathematical structure about ANNs is established. This structure is used
to define an invariant called the geometric complexity about signed sets. This is

used to define the new ANN capability quantifier called the Ox-Cart dimension.
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