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It is well known that Jacobi polynomials P„ form complete orthogonal systems in the 
weighted space X^^[—1,1] whenever a,ß > —1. On the other hand, in certain physical 
applications, (for example, in the angular momentum calculations in quantum mechanics), 
there naturally occur polynomials Pn~ with integer a and k. We show that for any 
a > — 1 and integer k > 1 the Jacobi polynomials P„ '~ ' (n = k, k + 1, • • •) form complete 
orthogonal systems in L^ _k[—1,1] with the weight wa,-k{%) = (1 — %)a • (1 + x)~k. In 
addition, for a > 0 and n > 1 we obtain an upper bound on [—1,1] for the function 
((1 - x)/2)a'2 • P^Q''~1^(a;), which is similar to the well known bound for the function 
((l-x)/2)a/2+1/4-P^'°)(x). 
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Introduction 

Jacobi polynomials Pr[
a,/3) play an important role in pure and applied mathematics, 

numerical analysis, physics, and engineering. It is well known that all other classi- 

cal polynomials orthogonal on [-1,1] with appropriately chosen weights (Legendre, 

Chebyshev, Gegenbaurer), as well as certain combinations of elementary functions, 

are particular cases of Jacobi polynomials (see, for example, Askey [2]). 

Normally one assumes that a,ß > -1, in part due to the well known facts (see, 

for example Chapts. 3 and 4 of Szegö [6], Lecture 2 of Askey [2]) summarized in 

Theorems 1.1 and 1.2 below. In Theorem 1.2 and elsewhere in the paper Llß[-l,l] 

denotes the weighted space with the weight function wQß : [-1,1] —>• IR defined by 

the formula 

waAx) = (i-xni+xf. (i) 

Theorem 1.1. For any integer n,m > 0 and arbitrary real a,ß> — I, 

£ wa,ß{x) ■ P^\x) ■ P£'ß\x)dx = 8nmhlß, (2) 

where 6nm is Kroneker's delta, and 

hn   dg        2a+ß+1 T(n + a + l)T(n + ß+l) 
a'ß      2n + a + ß + l'       T(n + a + ß+ l)n!      '* ^ 

Theorem  1.2.    Let a, ß  >  —1  and suppose,  that for an arbitrary function f G 

Ll,p[~ 1>1] the coefficients fn are defined by the formula 

fn = £ Wa,ß{x)P^\x)f{x)dx. (4) 

Then in £^[-1,1], 
OO f 

f=£ T^e-".. (5) 
71=0 ua,ß 

On the other hand, polynomials pK-*) (for integer a and k) occur naturally 

in certain physical applications (see, for example, Chapts. 3 and 5 of Biedenharn 

and Louck [3] and references herein), which stimulates interest in this type of Jacobi 

polynomials. 



In this paper we generalize Theorems 1.1 and 1.2 for the case of negative integer 

ß. Namely we show that for all k > 1 and a > -1 any sequence {P}?•"*>} (n = k,k + 

l,.--) forms an orthogonal complete system in L2
a_k[-l,l] (see Theorems 1.4 and 

1.5 below). This property is a consequence of the observation that the polynomials 

{P(a ~k]} for all n > k have a zero of exactly fc-th order at x = -1 (see Theorem 

1.3 and Corollary 1.1 below), so that the relevant inner products involving wa,-k and 

p(°<-k) (i_ e   analogues of integrals (2) and (4)) exist. 

In addition, we obtain a uniform upper bound for the function ((1 - x)/2)a/2 ■ 

p(a"1)(a;) on [-1,1] (see Theorem 1.6 below). This bound is similar to the well 

known Szegö's bound for the function ((1 - :r)/2)ö/2+1/4 • Pia'0){x) (see formula (23) 

below). Upper bounds for Jacobi polynomials are of significant interest in certain 

applications (see, for example, Chap. 7 of Szegö [6], Nevai, Erdelyi, and Magnus [5], 

Elbert and Laforgia [4], and references herein). Note that most upper bounds for the 

polynomials P!f'ß) have been derived for the case a,ß > -1/2. 

The plan and main results of the paper are as follows. 

Section 2 contains relevant mathematical facts to be used in the remainder of the 

paper. 

In Section 3 we establish a formula connecting the polynomials P!f~k) and Pn
a_k , 

and prove the completeness of the system {Pt'~k)}- The main results of this section 

are Theorems 1.3, 1.4 and 1.5, and Corollary 1.1 below. 

Theorem 1.3. For any integer n and k such that n>k, and arbitrary real a > -I, 

{a,_k)       _ T(n + a + inn-k + l)    n_+x\"   p^k) (ß) 

Corollary 1.1. For all a > -1 and k < n, P^a~k) has the zero of k-th order at 

x = -1. The remaining n - k zeroes of P^a~k) are located in the interior of the 

interval [—1,1]. • 

Remark 1.1. The formula (6) for integer a is known and widely used in the rotation 

group computations in quantum mechanics (see, for example, Chap. 3 of Biedenharn 

and Louck [3]) •. 

Remark 1.2. Combining (6) with the formula (21) below we can rewrite the relation 



(6) in the form 

^,(x)= (! + £)'. gg.iö>(,).. (7) 

Theorem 1.4.   For any integer k, n, and m such that n,m > k, and arbitrary 

a > -I, 

J\ wa,.k(x) ■ Pia>-k\x) ■ /*"-*>(*) = Snmhl_k, (8) 

where the function wa,ß is defined in (1), and 

in _   in 
na,-k -   na,ß 

2a-fc+i Y(n + a + l)(n-k)\ 
 w (9) 

ß=-k      2n + a-k + l     T{n - k + a + l)n! ' 

Theorem 1.5. Let n and k be integers such that n > k, and suppose that a > -1. 

Suppose further, that for an arbitrary function f <E L2
a_k[-l,l] the coefficients fn are 

defined by the formula 

fn Hf £ wa^k{x)P^-k\x)f{x)dx. (10) 

Then in L2
a_k[-l,l], 

CO f 

n=k aa,-k 

In Section 4 we obtain an upper bound for the function ((1 - x)/2)a/2 • Pjö'_1)(z) 

on [-1,1]. The main result of this section is Theorem 1.6 below. 

Theorem 1.6. For all a > 0 and integer n>\, 

max   , 
*e[-i,i] V    2 

1-xW2 e 1/2 

Pf'-^*) <*[£;)   •• (12) 
Remark 1.3. Substituting x = cos0 we can rewrite (12) in the form 

max (sinff Prices 6)  < 8 (f V" ■• (13) 
0€[O,7r] \ 2) V37T/ 

2      Relevant Mathematical Facts 

All formulae of this section that are given without a reference can be found in Chapts. 

6 and 22 of Abramowitz and Stegun [1]. 



2.1 The Gamma Function 

The gamma function T: C —* C is an analytic function for all arguments x € C, 

save for the points x — 0, —1, —2, • • •, where it has simple poles. The function 1/T: 

(D —> (D is an analytic function for all arguments x G C, and 

l/r(-n) = 0    for alln = 0,l,---. (14) 

For all x > 0 the function T can be written in the form 

r(l + x) = (27T)1/2 • xx+1?2 exp(-x + tf/z), (15) 

where 0 < i? < 1/12. 

On [1,2] the function T has the unique minimum 

7o d= min T(x) = 0.8856031 ••■ . (16) 
*€[1,2]    v   ! 

2.2 Jacobi Polynomials 

Jacobi polynomials P^a'^ can be defined by the Rodrigues formula 

p^(x) = i^(i - z)-^1 + x)-ß£; (C1 - *)a+BU + *)0+n) >      (17) 

and for a,ß > — 1 they have the following explicit form: 

x-l\n 

^W = (V)    X 

" r(n + a + l)r(n + ß + l) (x + l\m 

^or(n + a-m + l)T(m + ß+l)ml(n-m)\\x-l)    ' {    ' 

Below we give certain relevant well known equalities for Jacobi polynomials. 

(2n + a + ß)P^ß-l\x) = (n + a + ß)P^'ß\x) + (n + a)P^\x\        (19) 

^ ((1 - x)°(l + xfP^\x)) = -2(n + 1)(1 - ^(l + x^P^-^x), (20) 
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p(^)(l) = (-l)-PB^)(_i) = 
T§ + ° + V. (21) 

Finally we cite three inequalities for the polynomials P^a,^\ they are valid for all 

integer n > 0, a, ß > —1/2, and — 1 < x < 1. 

P^ß\x)\<m^\P^\l) ,P}?*\-1) (22) 

l-i\a/2+^ 
i*""0^*)  < 1, (23) 

(1 - x)°/2+1/4(l + x)^2+1/4 P^x) < 

'2e\a/2 iM1/2 

(f)"'(2+(^ + ^)"2)'(^),/2. (24) 

where h™ ß is defined in (3). The inequality (22) is standard (see, for example, Chap. 

22 of Abramowitz and Stegun [1]), the inequality (23) can be found in Chap. 7 

of Szegö [6], and the inequality (24) was recently obtained by Nevai, Erdelyi, and 

Magnus [5]. 

3      Orthogonality and Completeness of Systems of 
Polynomials {i^0'-^} 

In this section we prove Theorems 1.3, 1.4, and 1.5. Note that Corollary 1.1 immedi- 

ately follows from (6) and Theorem 3.3.1 of Szegö [6]. 

Proof of Theorem 1.3. We begin with the observation that for any integer k and 

m such that k < n and m < k, 

T(n-k + l) 
0, (25) 

T(m - k + l)(n - m)\ 

which is an immediate consequence of (14). 

Next, an inspection of the formula (18) shows that for any fixed x € C and a > — 1, 

Jacobi polynomials are analytic functions of ß £ C.   Therefore by the principle of 



analytic continuation we can substitute ß = — k into (18) which in combination with 

(25) yields 

P^~k\x) = ( 
x-l\n 

X 

£?kT{n + a-m + l)T(m-k + l)m\(n-m)\\x-l)    ' { 

Substituting m = k + / into (26) we have 

/*""*>(*) = ( 
x-l\n-k /x + lx* 

2    7       V   2 

^ T(n + a + l)-T(n-k + l) /^_+_l\'        f27) 

|^r(n-ib + a-/+l)-r(/ + ib + l)-/!-(n-Ä;-/)! U-U  '      [    } 

Now (6) is an immediate consequence of (18) and (27). • 

Lemma 3.1 below can by easily proven by combining (3), (9), and (21); this result 

will be used in the proofs of Theorems 1.4 and 1.5. 

Lemma 3.1 For any k < n and a > —1, 

hn^=(Pl€}?L)   K,k.. (28) 

Proof of Theorem 1.4. Substituting (7) into the left hand side of (8) and using (2) 

we have 

£ *>»,-*(*) • Pia'-k)(x) ■ P^-k\X)dx = 

n [} » Ä#*„m. (29) 
2,p(^)(1) 

Combining (28) and (29) we immediately obtain (8). 
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Proof of Theorem 1.5. We begin with an observation that if / € L2
a_k[—\, 1] then 

/ € L2
a J-l, 1], where the function / is defined by the formula 

def _ f(x) 

"C 
By Theorem 1.2 we have in L2

Qk[-l, 1] 

f(x)=, JV  '   . (30) JK '      {l + x)k K    ' 

f = Ei^Pia'k), (31) 
n-0 aa,k 

where 

h = £ ^,,(x)Pi°^(x)/»^. (32) 

Combining (32) with (7) and (30) we obtain 

, P(a>k)(l)   /-i ,     .x .P^'^fl) 
/„ = 2*%^f   waM*)P&%)f(*)dx = 2fc-±4-{/n+fc. (33) 

Next, the substitution of (33) into (31) in combination with (7) and (30) yields 

-(2kP^(l)\2an+k(Q,_k) 

and now (11) immediately follows from (28) and (34). • 

4      An Upper Bound for Functions 
{{l-x)l2fl2P^-l\x) 

In this section we prove Theorem 1.6. It is carried out by means of considering 

five regions of parameters n, x, and a, obtaining an upper bound for each region 

separately, and finally choosing the largest such bound as a uniform upper bound for 

the function ((1 - x)/2)a?2 \Pi°''-1)(x)\ (a > 0, n > 1) on [-1,1]. Throughout the 

proof of the theorem we will use the notation 

def        (     2 + a     \2 

We begin with two preliminary results summarized in Lemmas 4.1 and 4.2. below. 

Their proofs are immediate consequences of (19) and (24), respectively. 



Lemma 4.1. For any x € C, n > 1 and a > — 1, 

n + a 
pi°<-i)(*)\ < ^ (|^'0)(-)|+|^-f(4 2n + 

Lemma 4.2. For any 0 < z < 1 and a > —1/2, 

1-zW2 

Pi-°)(x) <2 
7T 

/2/     2 +a     \a/2        1 
2n + a + iy      (1-rr)1/4 

Proof of Theorem 1.6. 

Region 1. We define this region by the inequalities 

(36) 

(37) 

a>0, 

n> 1, 

-1 <x <0. 

(38) 

(39) 

(40) 

From (23) and (40) we have 

•i _ T\"/2     ,     ^ /I _;j.s-i/4 

(T)>'"KT)    ^' 
which in combination with (36) yields 

C—^X 2 \P^-1](x)\ < 25/4 = 2.3784 ■ 

Region 2. We define this region by the inequalities 

(41) 

(42) 

a>0, 

n — 1, 

0 <x < 1. 

(43) 

(44) 

(45) 



The formulae (6) and (18) yield 

1 + xN 

P<-"(x) -(!+«,) (1±£) #■»(,) = (1 + a) (i±^) , (46) 

and now combining (46) with (43) and (45) we have 

(47) 

Region 3. We define this region by the inequalities 

a>0, 

n > 2, 

0 < £ < XQ, 

(48) 

(49) 

(50) 

where XQ is defined in (35). 

Combining (37) and (50) we can write 

l-x\a'2 

P^\x) <2(£V/v 2+« y/2   i 
-     '.TT/      V2n + a + l7      (l-aro)1/4' 

and substituting (35) into (51) we have 

'1-zW2 

P^\x) £2';) 

Similarly, 
l-z\0/2   „(Q,o) ^-•rw <2 

7T 

1/2 

Now substituting (52) and (53) into (36) we obtain 

1-zW2 

Region 4- We define this region by the inequalities 

e\a/2 
<4(-J      =3.7207' 

(51) 

(52) 

(53) 

(54) 



0<a< 1, 

n>2, 

x0 < x < 1. 

(55) 

(56) 

(57) 

Combining (21), (22), and (57) we have 

1-x a/2 
< 

1 - xQ\
a'2     r(n + a + l) 

r(a + i)r(n + i)" p(°V(x) 

Substituting (15) and (35) into (58) and using (16) we have 

"1-xW2 

(58) 

/>M>(*) < i f2 + «Y7 a + n Yd i aY+1/\ 
-    7o V 21/2 y    \2n + a-lJ    V       nj 

exp(-a) exp(i?i/(a + n) - t?2/")> 

where 0<T?I,I?2 < 1/12. 

Next, one can easily verify that for all n > 2 and 0 < a < 1, 

2 + a\a<    3 
21/2' 

<1, 

and 

2^2 

a + n     x a 

2n + a - 1 

1 + - )    < exp(a), 
nj 

a\V*      /3\1/2 

1 + n)      ^(2)      ' 

exp(tfi/(a + n) - t?2/n) < exp(l/24), 

n + a       3 

(59) 

2n + a ~ 5 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 
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Now combining (36) with (59-65) we have 

1-xW2 o5/2 

Pia'~1](x) < —— exp(l/24) = 1.8350' 

Region 5. We define this region by the inequalities 

(66) 

a > 1, 

n > 2, 

£o < x < 1. 

(67) 

(68) 

(69) 

The formula (20) yields 

(1 - s)"(l + x)P£*»(x) = 2(n + 1) Al - tr-iP&^Wdt, 
J X 

while from (6) we have 

Combining (70) and (71) we obtain 

(1 - *)"J*"-1^) = (n + a) [\l - tr-"P^°\t)dt. 
J X 

Next, combining (37) and (72) we have 

'1-xW2 

P^~x\x) < 

2-W{l-x)-°»(n + a)£   (^-J   '     [i*-1^*) 
•1 _A"/2-l/2 

(70) 

(71) 

(72) 

(i _ tyi'i-^dt < 

1/2   /  J +a vl/2    ,1 

**(i-*>-*<»+«)(f)   (££)  /a-o-™* 
(73) 

11 



Integration in (73) in combination with (69) produces 

'i-^V,-^ < 2w*y/2 *+« fi±^y/2
(1_^< 

U;     a/2 + 1/4 V2n + a7     ^ °; 

(74) 

which after the substitution of x0 from (35) becomes 

1-zW2 

^•-1)W|<21/a(^)1 
V2    n + a     /l + «\a/V    2 + 

a/2 + 1/4 V2n + a)      \2n + a - 1 

a 1/2 

For all n > 2 and a > 1 we have 

(1 + q)V'(2 + a)1/2 < 4 1/2 

a/2 + 1/4 ~ 3 

and 
n + a 

(2n + a)1/2(2n + a-l)1/2 

Finally, substituting (76) and (77) into (75) we obtain 

'l-x\a'2 

< 1. 

P^'l\x) 
e \ll2 

<8[—        =4.2963 
37T/ 

(75) 

(76) 

(77) 

(78) 

Now the conclusion of the theorem is a consequence of (42), (47), (54), (66), and 

(78). . 

5      Conclusions and Generalizations 

We have proven the orthogonality and completeness of the system {P^~k)} and 

obtained an upper bound for the function ((1 - x)/2)a^2PJi
a ~l\x). These results can 

be extended in the following two directions. 

First, it appears that there exist analogues of Theorems 1.3, 1.4, and 1.5 for 

Laguerre polynomials L" with a = — 1, — 2, • • •. 

Second, one can try to obtain an inequality sharper than (12). Our numerical 

experiments indicate that the constant 8(e/37r)1/2 = 4.29 • • ■ in (12) is not optimal. 

This work is currently in progress and its results will be reported at a later date. 

12 
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