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Preface 

This meeting was the most recent in a series of International Seminars which have 

been held in the University of Strathclyde since 1975. The primary aim of the meet- 

ings has been to discuss problems which still stubbornly resisted solutions rather than 

problems which had been solved. 

Understandably, since the first of these meetings, their scope has broadened. Cer- 

tainly their topics remain very finely focussed but they have become increasingly more 

multidisciplinary both in emphasis and appeal. Consequently, it was decided to make 

the work of these meetings more readily available by publishing proceedings. This vol- 

ume comprises contributions from the meeting held at the University of Strathclyde from 

25-29 July, 1994. We are most grateful to Longman Scientific and Technical for agreeing 

to publish these Proceedings. 

Meetings such as this could not take place without a considerable amount of support 

and assistance from a number of sources. In this connection we are most grateful to 

The British Council 

The City of Glasgow (Lord Provost) 

The Edinburgh Mathematical Society (EMS) 

The Royal Bank of Scotland 

The Soros Foundation 

The University of Strathclyde 

for their financial support. We are particularly grateful to the EMS for endowing one of 

the Plenary Lectures and for allowing us to name it accordingly. 

Thanks are due to our many friends who, as Advisory Editors, gave so much of 

their time for refereeing and selecting the contributions to this volume. Last but by no 

means least we record our appreciation of the work done by Drs. Bill Anderson, Wilson 

Lamb and Des McGhee, by the postgraduate students and by the secretarial staff of 

the Department of Mathematics in the University of Strathclyde, especially Mrs. Mary 

Sergeant whose quiet efficiency helped in so many ways to ensure the smooth running of 

the Conference. 

A. C. McBride University of Strathclyde 

G. F. Roach Glasgow Gl 1XH 

August 1994 
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J A GOLDSTEIN AND G SHI 

Obstacle scattering for elastic waves 

§1. Introduction 

We present a new approach to scattering theory for equations that are of 

order N in time. The main application will be to elastic waves in exterior 

domains, but acoustic waves, the wave equation with a potential, and other 

cases are covered by this approach. 

Here is an outline of this paper. Section 2 gives a short description 

of (one and two space) scattering theory. Section 3 treats the d' Alembert 

formula for factored equations. Section 4 introduces the elastic wave equa- 

tion. Section 5 deals with obstacle scattering. Section 6 treats the inverse 

problem. 

§2. Scattering Theory 

For j = 0,1, let Hj be a selfadjoint operator on a Hilbert space rlj. The 

abstract Schrödinger equation ij% = HjU is governed by the (C0) unitary 

group { e~xtHi : t £ IR \ ; the unique solution u of the Schrödinger equation 

with initial data u(0) = / is given by u(t) = e~ltHif. (Cf. e.g. [5].) 

One is to think of the subscript 1 (resp. 0) as describing "perturbed" 

(resp. "free") motion, and in some sense, the two groups are expected to be 

equivalent at t = ±oo. For definiteness, suppose Hi — Tio — %■ We suppose 
that the perturbed solution e~ttHi f looks like a free solution e~ztHo f± as 

t -» ±oo in the sense that e~ltHi f - e~ltHo f± -> 0 as t -> ±oo. Then the 

wave operators 

W±g= lim      eltHie-itH0g 
t—>±oo 

exist (for g = f±). Here all limits are in the norm topology of H. 

Let Pj be the orthogonal projection onto the absolutely continuous sub- 

space riac{Hj) for Hj. { Thus Hj = J^XdEjiX) by the spectral theorem. 

Say that / <= Hac(H3) (resp.   / e US{H3)) iff A - \\Ej(X)f\\2 is absolutely 



(resp. singular) continuous on IR; here Pj is the (orthogonal) projection onto 

the closed subspace Hac{Hj). } 

Now suppose that the wave operators W± exist on all of PQH 

— Kac(Ho). Then their ranges satisfy Ran (W±) C Hac(Hi). The wave 

operators are called complete if Ran (W±) = Hac(Hi). The scattering oper- 

ator S = W+W- = T^^T1 W_ is then a unitary operator from Hac(Ho) to 

Hac(Hi,) sending /_ to /+; /_ describes how the perturbed motion e~ltHi f 

looks like a free motion near t = -co. Thus /_ is the incoming data. Sim- 

ilarly, /+ is the outgoing data; it describes how the perturbed motion looks 

free near t = +00. The scattering operator S maps /_ to /+; this describes 

the result of a scattering experiment which "sees" the incoming and outgoing 
solutions. 

When Ho and Hi are» different spaces, one needs an identification op- 

erator J : Ho —> Hi. J is to be a bounded linear operator. Then e~ltHif± 

should approximately equal Je~ltH° f as t —> ±00. The wave operators are 

W±g = W±{HuHQ;J)g 

= lim      eltHiJe-itH0g 
t-¥±CX> 

(for g = /±). Suppose W± exist on Ho,ac(Ho). Call W± complete if Ran(W-t) 

= Ui,ac(Hi) and W± is injective on Ho,ac(Ho). Then, as before, the scatter- 

ing operator S = W±W_ is unitary from HQ^C{HO) to Ho,ac(Hi), provided 

W± are isometric on Ho,ac{Ho). 

As an example consider the wave equation with a potential 

vtt = Av — V(x)v 

where x e Hn and 0 < V G L°°(lRn). (The hypothesis on V can be greatly 

relaxed.) For the free equation, rewrite vtt = Av as 

= —ZHQU. 

ll(-A)i/i||i + ||/2||l<oo|, 

which is a Hilbert space in the obvious way; here || • ||2 refers to the L2(IRn) 

norm.  Similarly, Hi = I      _ j is selfadjoint on H2, which is normed 



by ,   . l 

\={\\{-A+v)hi\\i+w\iy 

"Ho and Hi are equal as sets but they have different (but equivalent) norms. 

Let J : "Ho -»• "Hi be the identity operator from V.Q to HI. J is bounded but 

not unitary. This J is appropriate for scattering theory in this context. 

For obstacle scattering by sound waves, let O be, say, a smooth star 

shaped bounded region in IRn. The free group is as above. The perturbed 

group governs 
vtt = Aw for x e TRn\ö. 

Here associate either Dirichlet or Neumann conditions with A, acting on 

L2(IRn\0). Then 

fl^% = \\(-A)hi\\l + \\f2\\22 h 

where II • ||2 refers to the L2{TRn\0) norm.  Here J ( fA = ( fl^n\° ) 

has norm one.  But J is not injective.  Nonethless, e~ttHo f is transporting 

the wave (described by /) out to infinity since 

/ \(eitH0f)(x)\2dx^0 
J\x\ <R 

as t -> ±00 for each   R > 0 (local energy decay.)   Thus J "acts like the 

identity" on e~itHo f for \t\ large. In this sense, J is "morally" injective. 

Note that J can be replaced by any bounded linear operator K : V.Q -> 

Tii satisfying 
||(J-.fiQe-itH°/o||-+0 

as t ->■ ±00 for any /0 G "Ho- In this sense, J is not uniquely determined. 

For more details about scattering theory, see the books and papers listed 

in the Reference section. Scattering theory has a very substantial literature; 

we only list a few of the basic references. 



§3. D' Alembert's Formula 

Let Aj = A* be selfadjoint on H for 1 < j < N and suppose that A\,..., AN 

commute in the sense that [etAi, eisAk] = 0 for all s,t,j,k. If also Aj - Ak 

is injective for j j^ k, then every mild solution * of 

N   f d \ 

is of the form 
N 

u(t) = J{e-itAifj (3.2) 
3 = 1 

(where fj <E H). This is called dAlembert's formula. Of course d'Alembert 

showed that utt = uxx implies u = F(x + t) + G'(x - i), which corresponds 

to Ax = -A2 = i£ on U = L2(IR). 

Note that the injectivity of Aj - Ak is a necessary condition, since if 

(Aj - Ak)f = 0 ( for j ^ k and / ^ 0), then u(t) = te~ltAi f is a solution of 
(3.1) which is not fo the form (3.2). 

The d'Alembert formula was proved in the context of (Co) semigroups 

on a Banach space by Goldstein and Sandefur [7] under the additional as- 

sumption that Ran (Aj - Ak) is sufficiently large for j z£ k. In our special 

case here involving unitary groups no additional assumption of this nature 
is required. 

Here is the proof of d'Alembert's formula. By the spectral theorem 

for commuting selfadjoint operators, there is a unitary operator U from 

K to some L2(Q,£,//) and real E-measurable functions aj on Q such that 

UAjU^1 is multiplication by aj (with maximal domain) on L2(fl, E,/i) for 

j = 1,... , N. Moreover, by the injectivity hypothesis, Njk = {w £ fi; aj(cu) ^ 
ak(u))} is a //-null set whenever j ^ k. 

* eltAf is a strong solution of u' + iAu = 0 if / e 3)(A). It is a mild 
solution if / e £>(A) = K. Similarly for higher order equations. 



In the representation in L2(fi,£,/i), (3.1) becomes 

N   ( d \ 
\[ l — + iaj(uj)j v(t,u) = 0,        wen. 
3 = 1  ^ ' 

The general solution is given by 

N 

3 = 1 

N 

for all t G IR and u G Ü\N0, N0 =   |J   Njk. Here ^ G L2(fi, S, /i). 

This is because for u G fi\NQ , this iVth order constant coefficient ODE 

has distinct roots. Translating back to u(t) in H yields (3.2) (where fj = 

U-X9j). 

§4. The Elastic Wave Equation 

Let x G IRn; usually n = 3, but we allow n to be arbitrary. Let u — 

(ui,... ,un) represent the displacement vector for an elastic wave in IRn; 

here u — u{t,x) with t G TR and x G Kn. Let A, \x be the Lame parameters 

and p the density of the medium; these we take to be three positive constants. 

Then for i — 1,..., n, Ui satisfies 

d2u- d 
P-QtT=^Ui + (^ + v)-Q^(div(ui)). (4.1) 

This is a coupled system of second order (in t) equations. Each component 

v = ui satisfies 
2 

n(s*-"'A)"=° 
3 = 1 

where 0 < [i\ = ^ < /J.2 = (A + 2/i)/p (see [8]).  Thus, we take as our basic 

equation 

n(! + ^-A(fc)W) = 0 (4.2) 
7 = 1   ^ ' 



where 

ci = -c2 = y/JH, c3 = -c4 = y/JI^, 

A(0) = (-A)2 onL2(IRn), 

^> = (-A)i onL2(BB\0). 

The superscript 0 (resp. 1) refers to the free [resp. perturbed] elastic wave 

equation. The obstacle Ö is assumed to be bounded and smooth (as in 

Section 2). Thus we view (4.1) (with superscripts (0),(1)) as our given pair 

of equations which we replace by (4.2). As in Section 2, suitable boundary 

conditions (e.g. Dirichlet or Neumann) must be assigned to A on Hn\ö, i.e. 

to -(A^)2. 

Lax and Phillips [10] made the first study of obstacle scattering for the 

(Dirichlet) wave equation (with Ö star-shaped* and n odd). They also con- 

sidered general symmetric hyperbolic systems, which include the elastic wave 

equation. This is sketched in [10]. Wilcox [19] studied obstacle scattering for 

acoustic waves with the Neumann boundary condition. This work spurred 

much additional research, a sampling of which is covered by [12], [17]. 

Our approach here, based on d'Alembert's formula, is new and enables 
us to recover and unify old results as well as obtain new results. 

§5. A Framework for Scattering 

Let Ax , • ■ • , AN be selfadjoint operators on Hk such that they all commute 

(i.e. [exp(itAf),exp(isA[k))] = 0 tor <dlt,s,j,£) and A{V - A{
e
k) is injective 

for j ^ k; here k = 0,1. Of concern is 

N  ( d \ 
Ii[dt+iA^)u{t) = ° W 

for k = 0,1. Let J3 e ß(ft0,fti), 1 < j < N, and let Pkj be the orthogonal 

projection onto Ukj := ?4,ac(A(fc)) for all j,k. Define 

* Star shaped means, that for x G dö and v the unit outer normal to dö 

'at x, then v ■ x > 0. 



Mt)f :=J]exp(-^1))/i, 

Thus 

B(t) : W$ -> 'Hi 

are bounded linear operators (uniformly in < 6 E). Here we have used such 

obvious notations as / = (/i, • • •, fn) £ %i ? etc- Let 

.4± = {/ G /Ci := 0Wy : JimJ|i4(t)/|| =0}, 
i=i °° 

TV 

fl± = {5 G /C0 := 0-Hoi : ft M^ ||5(*)p|| = 0}. (5.3) 

i=i °° 

/^(l)   _>(0)   -\ 
We say that the system S — ( A    ,A    ; J ) 

(=41>,...,A^,^,...,^;J1,...,J.r) 

has the wave operator existence property [WOEP] iff for all g G K.Q there is 

an f± G K,\* such that 

\\A(t)f± - B{t)g\\ -> 0 

as t -> ±oo. The twawe operator existence and uniqueness property [WOEUP] 

for S means that, in addition, f± are unique. Similarly S has the wave 

operator semi-completeness property [WOSCP] means for all / G /Ci, there 

exist g± G /C0 such that ||A(*)/ - B(t)g±\\ -> 0 as t -) ±oo. The wave 
operator completeness property [WOCP] means that, in addition to the above, 

g± are unique. 

* /CQ,/CI are defined in (5.3). 



It is easy to see that 

(i) WOEUP <=> WOEP and A± = {0}; 

(ii) WOCP <=> WOSCP and B± = {0}. 

The vector wave operators W± : KQ —> )C\ are denned by 

\\A(t)W±g-B(t)g\\^0 

as t -> ±00 for g 6 /C0. Note that W± exist and are unique iff S has the 

WOEP, in which case  Ran (W±) C A±. 

Prior to stating the main theorem, we define the Riemann-Lebesgue 

class. Let A = A* on U. Then A is in the Riemann-Lebesgue class iff 

eltA ->• 0 as t -> ±00 in the weak operator topology (see [6]). Writing ,4 

as A = J_oo\dE(\), then yl is in the Riemann-Lebesgue class iff for all 

f,g EH, J^ ettXdx(E(\)f,g) -> 0 as t -»• ±00. By the Riemann-Legesgue 

lemma, this holds provided Hac(^4) = H. (But the converse is not true.) 

Main Theorem. For k = 0,1, let A[k\ ■■■, A(£] be commuting self adjoint 

operators on Hk such that A^ - A^ is injective for j ^ £ and each A{k) 

is in the Riemann-Lebesgue class. Let Jj <E #(%(), %i) and suppose the wave 

operators W±J = W±(A{/], Af]- Jj) exist for j = 1, • • •, N. Then 

(i) S = f A    ,A    ; J j has the WOEP; 

(ii) A± = {0}; this implies that the vector wave operators W± exist and 

W±g =   Diag (W±d)g for all g G /C0, where   Diag (W±j) is the 
matrix (a^) with aij = SijW±j; 

(iii)  W is isometric iff each W± j is partially isometric, in which case 

B± = {0}. 

(iv)  W±j is complete for each j implies that S has the WOSCP; 
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(v) Each W±j is partially isometric and complete implies that W± : 
K.Q —> K.\ are unitary. 

The proof is too long to give here (see [15]), but we will disciiss some of 
the key ideas. Let the hypothesis on Aj hold. Then by unitarity and the 
law of cosines, 

llf^xpH^M2 

3 = 1 

N 

= Yl UM
2+2Re 5^^exp(~**i4i1)^j'exp(~**^1)^^ 

N 

= ]T INI2 + 2Re ^(expi-itiA^ - A^h^hi) -> \\hf 
3=1 3<t 

as t —> ±oo by the Riemann-Lebesgue property. This implies that A± = {0}. 

If W± are partially isometric, we can easily show that B± = {0}. 

Basically the main theorem reduces scattering theory for (5.1) to scat- 
tering theory for the pair (Aj,Aj) for 1 < j < N. In the context of our 

applications, A^ is of the form c(—A) 2 for c > 0. The invariance principle 
of scattering theory says that W±(<ß(Si),<f>(So); J) exists and is indepen- 
dent of </> provided <f> is continuous and increasing on aac(So) — cr(So,ac) = 
&(So \y_0 ac (So)) (assuming it exists for <f> = id)- This result has been proved 
in various contexts; the original results are due to Birman and Kato. See 
e.g. [2], [9]. In our application, (p(r) = y/r on [0, oo). The idea behind the 
invariance principle is simple. Let tp '• IR -> JR. be continuous and piecewise 
linear with positive slope away from the corners. Then 

exp(—itip(Si))J exp(itip(So)) 

— exp(—irS\)J exp(irSo) 
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for a suitable r = r(t), where r —> ±00 as t -> ±00. So the invariance 

principle holds for such -0- The general </? can be approximated by these T/>'S; 

thus the invariance principle is clearly plausible (even if the rigorous proof 

is nontrivial). 

Let Ö C IRn be smooth and bounded. The Dirichlet Laplacian Aß on 

L2(Rn\0) has domain H2 (Ü) H HQ
1
 (ft), fl = Hn\0. (For Sobolev spaces, see 

[1], [8]). The domain of the Neumann Laplacian Ajv is all u 6 Hl{Q) such 

that Au e L2(Q) and for all v <E ^(fi), 

/1 
Jn 

{(Au)v + Au ■ Av}dx - 0. 

Let B0 = -A on L2(IRn) and let Bx = -AD or -AN on L2(IRn\0). The 

acoustic wave equation utt + c2BkU = 0 takes the form (5.1) with N = 

2, k e {0,1}, A(k) = cBjj = -A(
2
k) with J : L2(Rn) -> L2{Rn\0) defined 

by Jf = f |iRn\o= /XiRn\e>- The existence and completeness of W±j follows 
from Lax and Phillips [10] or Wilcox [19] according as whether A = AD or 

AN (For more recent results, see e.g. [20], [17].) 

§6. Inverse Problems And Final Remarks 

Using the above notation, let v(t) = _ / iA[k)u(t) 
u'(t) 

Then the acoustic wave 

equation utt + czB^u = 0 is equivalent to 

d_ 

dt 
v(t) 

0 
(fc) 

A\' 0 

(fc) 

v(t) (6.1) 

on 
_    L2(Hn)2 

Hk ~ L2(Mn\ö)2 

Define a unitary operator Qx on Hi by Q 

if k = 0, 
if k = 1. 

-1 
2^" Then 

Qi 
i(fc) 

■A 
(fc) Qi 4* (fc) 0 

(fc) 

J    0 
and for Jf = fxm."\o and J = ( Q    ^ J , using Q1 JQ\ = J,Aj = A\3), 
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we have 

exp it 

= Q*i exp 

0     Ai 

AT      0 

Ai 

J exp -it 
0 

it 

= Q*i 
eitAx 

0 

0 

0 
e-itAi 

0 
-Ai 

Ao     0 

Qi J Q*i exp -it 0 

eiMl Je~itAQ 

J    0 
0    J 

0 

e-itA0 o 
0        eitv4o 

N Qi 

0 
QI 

Qi l Q g-ityixjgitylo 

-> Q*i^li±Qi strongly as t -> ±oo, where 

0     _(W±(AUA0;J) 0 
SZl±"V ° WT(Ai,A0;J). 

Let W± =  Q\£li±Qi-   Then the corresponding (acoustic) scattering 
operator satisfies 

5la = w;w- = Qini+QiQini_Qi 

= Q;(fit+fti-)Qi 

where Si = f^fti-. Since Qi is known explicitly, Sia and S"i determine one 
another; similarly for Q.± and W±. Thus with J fixed, the inverse problem 
is solvable for the pair Ai,A0 iff it is solvable for the pair 

0     Ai\   ( 0     A0 

Ai     0 J ' I A0     0 

The latter pair corresponds to the equations 

u" + A2
ku = f[(^ + ii-iyAk] u = 0, k = 0,1. 
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Similarly the fourth order equation 

3 = 1   V 

(6.2) 

is equivalent to -^v(t) = iHkv(t) where 

/ 

Hk = 
(Cl + 02)Bjj 

(ci + c2)Bl 

(ci - <*)£* 

(ci-<*)£* 

(ci-c2)B?\ 

(ci+c2)ß 

\(Cl-C2)Sf 0 (ci+c2)Bi 

l 

0 / 

fc = 0,l. (Cf. [14].) 

Let J =  Diag4x4(J) and Q2 = \ (®*    _^   J . Then W± 

= VT±(ITi,J?o; J) is the limit of 

exp(itHi)J exp(-itHo) 

W1± 

W1T 0 
W2± 

\ 

= Qt Q2 

0 WW 2T 

_^Qt^i±Qi o 
0 QJ^iQi 

where W-i± = W±(Cfc^,Cfcßi;J),j = 1,2, fi2±=rW'2±
()    ^   ) and 

Qi,fii± are defined as before. 

Thus the elastic scattering operator Se of the pair of the fourth order 
equation is given by 

S  =W*W   - fQiSiaQi ° 
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Hence the scattering operator for the pair (6.2) can be expressed in terms of 

the scattering operator for the pair (6.1) (For details see [14], [16].) 

Thus if the map O -> Sa from the obstacle (modulo congruence) to 

the scattering operator for the acoustic wave equation is injective, then so 

is the map Ö -» Se, where Se is the scattering operator for the elastic wave 

equation (with the same boundary condition). 

For more general domains the inverse problem for obstacle scattering by 

sound waves was solved by the efforts of many. Principal contributors were 

A. Majda, R. Melrose and M. Taylor. 

After this paper was completed we learned from Rainer Picard and 

Albert Milani about the recent PhD Thesis of Rainer Picard's PhD stu- 

dent, Nikos Kondoyannidis [21]. Kondoyannidis treats factored problems 

with commuting normal operators in a general context, using multiparame- 

ter spectral theory and distribution theory as in Picard [22]. He also develops 

a Birman-type trace class scattering theory for these higher order equations. 

Thus [21] is a valuable contribution to the theory of well-posedness and 

asymptotics for higher ordered factored equations in Hilbert space. 
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Y SAITO 

Radiation condition method in spectral and 
scattering theory 

1. Introduction 

In this article we would like to present and review a method in spectral and 
time-independent scattering theory which has been successful for treating some 
Schrödinger-type operators in the framework of spectral and scattering theory. 
The method may be called the radiation condition method, since its starting point 
is a priori estimates for the radiation term and most of the important results are 
obtained through these estimates. 

In §2 we shall explain the radiation condition method by using a very simple 
operator. The 2-body Schrödinger operators with short-range or long-range po- 
tentials will be discussed in §3. We could say that the radiation condition method 
made some contribution for studying these operators. Next in §4 we shall review 
several results related to the modified radiation condition which appears when we 
try to study the Schrödinger-type operators which is too singular at infinity to be 
controlled by the ordinary Sommerfeld radiation condition. As an application, we 
shall present some results on the inverse scattering problem for Schrödinger oper- 
ators in §5. In the following two sections we shall review two new results on Dirac 
operators and the reduced wave operator with two unbounded media. Concluding 
remarks will be given in §8. 

2. An Example 

In this section we are going to give a brief explanation on the radiation condition 
method by looking at a very simple example of an ordinary differential operator 

(2.1) H = -^ + q(r) (r>0) 

in L2((0,oo)), where q is a real-valued, measurable function on [0, oo) satisfying 

(2-2) \q(r)\ < C(l + r)-1-' (r > 0) 
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with positive constants C and e. Define the domain D(h) as the set of all u such 
that 

f «GL2((0,oo)), 

u(0) = 0, 

w   is locally absolutely continuous on [0,oo),cmd 

d2 

(2-3) 

dr2 + q(r)ueL2((0,oo)). 

Then iJ is a selfadjoint operator. We denote the resolvent of H by R(z), 
i.e., R(z) = (H — a;)-1. Let f G R. Then define the weighted Hubert space 
L2,t((0,oo)) by 

(2.4) L2it((0, oo)) = {/ : (1 + rf f G L2((0, oo))}. 

The norm of L2,t((0, oo)) will be denoted by  || \\t, i.e., 

1/2 
/•OO 

H«=[/     (l + rfXr)!2^]^ 
Jo 

(2.5) 

Let 8 be a constant such that 

(2.6) S > 1/2. 

Let  K be a bounded set of 

(2.7) C+ = {k = h+ik2 :h ^0, fc2 >0}, 

and set u = u(-,k,f) = R(k2)f, k G A'. Then u satisfies the equation 

(2.8) -u" + qu-k2u = /, 

which can be rewritten as 

(2.9) - (u' - iku)' - ik(u' - iku) = f. 

Let p(r) = </>(r)(l + r)2 , where <^(r) is a real-valued, continuous, piecewise 
smooth and bounded function. Multiply (1.8) by p{u' — iku), integrate over (r, R) 
and take the real part. Then we have 
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(2.10) 

/ 

1 
(bp + —p') \u' — iku\2 dr 

rR   fR 
Re  /     pf{u'—iku)dr +   I    pq\u  — iku\2 dr + 

1 i R 

-p\u  — iku £„.12 

It follows from the above equality that we obtain the following a priori estimate 
on the radiation condition term u' — iku: 

(2.11) \\u'- ikuWs-! <C{||«||_6+ 11/11«} 

(u = u(., k, /), keK, fe L2I6((O, ao)), p > o) 

with a positive constant C = C(K) depending only on K. Another important 
fact is the uniqueness of the equation, i.e., if u satisfies the homogeneous equation 
—u"+qu — k2u = 0, the boundary condition u(0) = 0, and the radiation condition 

(2.12) \u' — iku\\$^i < oo, 

then u is identically zero. At the same time it follows from (2.11) and the equation 
(2.8) itself that 

(2.13) 

{u = u(-, k, /), k e K, f 6 i2,«((0, oo)), p>0) 

with a positive constant C = C(K) depending only on K, where 

(2-14) IM|
2

-*,(P,OO) =  /     (l+r)-26\u(r)\2dr. 
Jr>p 

Then we can prove the limiting absorption principle; there exists the limits 

(2.15) hm u(-,k±iej) = u±(-,kj) (k > 0) 

in L2-s({0,oo)).  Furthermore u = u±(-,k,f) satisfy the radiation condition 

(2-16) Wu'^ikuWs-! < oo, 

Also the resolvent R{z),   z = X + irj G C - R; has the boundary value  i?±(A), 
which is called the extended resolvent, i.e.. 

(2.17) lim      R(\ + irj) = Ä±(A). 
J7^0, ±77>0 ' v    ' 
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The simplest topology for the convergence of the limits (2.17) is the operator norm 
topology in B(£2,«((0, oo)),L2,-«((0,oo)). 

The radiation condition method is also useful to discuss the asymptotic behavior 
of u = u±(-,k,f) at oo (or, in our example, as r —* oo). In fact, it follows from 
(1.13) that Wrp(r) = u±(r,k,f) satiny 

(2.18) u±^iku(r) = small (r —> oo) 

==►   (e*ikru±)' = small (r -> oo) 

=>•  u± ~ c±e     T (r —> oo) 

with constants c±, although there are several technical difficulties and the proof of 
(2.18) is not very straightforward. The asymptotic limit of u± is the central ingre- 
dient of the spectral and scattering theory. It is well-known that the S matrix for 
the Schrödinger operator is obtained using the generalized eigenfunction. Also we 
can construct the spectral representation for the operator H from the asymptotic 
limit of u±(-,k,f) (see §3). Thus the radiation condition method can cover most 
of the issues in spectral theory and stationary scattering theory. 

Eidus [4] seems to be among early work to discuss the limiting absorption prin- 
ciple. The idea of radiation condition method including the spectral representation 
theory can be found in Jäger [12]. Through the 70's it was shown that the radi- 
ation condition method is succesfully applied to two body Schrödinger operators 
with short-range or long-range potentials, which we shall discuss in the following 
section. 

3.   2-body Schrödinger Operators in R™ 
Consider the Schrödinger operator 

(3.1) H = -A + Q(x) (i£R"). 

Here a real-valued function Q(x) is either short-range 

(3.2) |Q(x)|<C(l + |a:|)-1-e {x € Rn), 

or long-range 

(3.3) \DaQ(x)\<C(l + \x\)-^-e 

(x eRn>| = 0,l,2,---), 

e and C being positive constants, and 

' Da =d°1d%2---d%N, 

(3.4) }dj = d/dxj (j = l,2,---,N), 

\a\ = aj + a2 H h aN. 
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The Schrödinger operator H with its domain if2(R"), the second order Sobolev 
space, is a selfadjoint operator in L2(R

n)- When the radiation condition method 
is applied to the Schrödinger operator H, one way is to look at if as a second 
order ordinary differential operator with operator-valued coefficients. Let U be a 
unitary operator from L2(K

n) onto L2((0,oo),L2(S
n~1),dr) given by 

(3.5) U : L2(Rn) 3 f{x) ,—► r^"1)/2/^) G L2{Sn~l), dr), 

where r = \x\ and to — x/\x\ G 5"_1. Then we have 

(3.6) L = UHU-1 = - -^ + B(r) + C(r) 

with 

f 5(r) = r-2{ - A„ + („ - 1)(„ - 3)/4}, 

\C(r) = Q(ru)x, 

where An is the Laplace-Beltrami operator on 5n_1. [12] started the study of 
the operator L and his work was extended by [25] and [26] to be applied to the 
Schrödinger operator with a short-range potential. Later the theory was further 
extended to discuss the Schrödinger operator with a long-range potential ([29], 
[30], [31], [32], [33]). 

Another direction to study the Schrödinger operator H is to start with the 
n-dimensional versions of the formulas of (2.10) and (2.11). We are going to define 
the radiation condition terms: Let G C — R. We set 

(1) k = k(z) = y/z, where the branch is taken so that Im k > 0; 
(2) b = b(z) = hak(z); 
(3) T)JU = dju + {(n — l)/(2r)}xju — ik(x)xju, where Xj = Xj/r, r = \x\, 

j = 1,2,-•• ,n; 
(4) T)u = Vu + {(n — l)/(2r)}xu — ikxu, where x = x/r; 
(5) Dru = T>u ■ x = du/dr + {(n - l)/(2r)}u - iku. 

Also we introduce the weighted Hubert space Z/2,<(Rn) which is given by (2.4) 
with (0, oo) replaced by R". 

Let u = R(z)f = (H - z)-lf with / G £2(R"). Then the n-dimensional 
version of (2.10) has the form 

n — 1 
(3.8) -Y/dJT)ju + {^—^-ik}Vru + ^u = f 

i=i 

with c„ = (n — l)(n — 3)/4. Suppose that the potential Q is a sum of a long- 
range potential Qx and a short-range potential Q2, i.e., Q = Q\ + Q2. Then the 
n-dimensional version of (2.11) is written as 
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(3.9) 

+ /     (*-^)(\Vu\2-\Vru\2)dx 

= Re     /      <pfDru dx 

I -I J Sfi */Sr 

9r \r2 

-Re 
JBrR 

uT>ru dx 

Qi+V 
dQi 

— btpQi >\u\   dx 

J \T)u\2 - 2\T>ru\2 + {Ql + -£ dS 

where 0 < r < R < oo, 

(3.10) 
#rfi = {x eRn   :   r < |a:| < Ä}, 

St = {z 6R"   :   \x\ = *}, 

and y>(x) = ¥>(|z|) is a real-valued, C1 function on Rn. By starting with the 
identity (3.10), Ikebe-Saiö [10] proved the limiting absorption principle for the 
Schrödinger operator H when the potential is a sum of a long-range potential 
and a short-range potential. [27] and [28] discussed the case where the potential 
is complex-valued and showed an asymptotic estimate for the extended resolvent 

Ä±(A) 

(3.11) |Ä±(A)|| 
(0,-6) 
(0,6) 0(i/VX) (A oo 

|(0.<) where 6 > 1/2 and || ||^{ means the operator norm in B(L2,s(Rn),L2,t(R-n))- 

This estimate was later used when we discussed the inverse scattering problem for 
Schrödinger operators with short-range potential by the high-energy method (see 

§5). 

For  A > 0  and  / e £2,«(Rn)  let  u±(k,f) = u±(-,k,f),   k = y/X, be the 
solution of the equation with radiation condition 

(3.12) \Vu± =f ikxu±\\s-i < oo. 

As was mentioned in §2, the asymptotic behavior of u±(x,k,f) as x —» oo is 
obtained ([12], [26], [31], [33]). In the short-range case the asymptotic formula is 
as follows: 
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(3.13) u±(ru;,k,f)~c±(uJ,kJ)r-(n-1V2e±>rk        (r-► oo), 

where to G Sn~l (for the long-range case, see the following section). The coeffi- 
cient C±((AJ, k, f) is important in spectral representation theory for the Schrödinger 
operator. Consider the free Schrödinger operator H0 = — A in R3. Then it is 
well-known that u±(x, k, /) has the form 

r      e±ik\x-y\ 
(3.14) u±(x,k,f) = const.   / rf(y)dy, 

JR*   \x-y\ 

and it is easy to see that we have the asymptotic formula 

(3.15) w±(ru;,fc,/)~const.r-1   /    e±lkuiy f{y) dy 

as r —> oo, i.e., the coefficient c±(uj,k,f) in this case is essentially the Fourier 
transform of /. This is generally true for the 2-body Schrödinger operator H with 

a short-range potential in Rn, and we can develop spectral representation theory 
by defining the generalized Fourier transform by the asymptotic coefficients c± 
([12], [26]). We can develop a similar theory for the long-range case. However 
the situation is more complicated ([32], [33]), which we shall discuss in the next 
section. 

The 2-body Schrödinger operator has been studied by more traditional method 
which comes from theory of liner partial differential equations. Here we refer to 
the celebrated work by S. Agmon (Agmon[l]). 

4.  Modified Radiation Conditions 

The classical form of the radiation condition (3.12) works only when the potential 
decays sufficiently fast and uniformly at infinity. Even when the long-range case, 
although the radiation condition (3.12) is sufficient to obtain the limiting absorp- 
tion principle, it is not the "right" radiation condition to obtain the asymptotic 
formula for the solution u±(-, k, f). In fact, we have the following ([31], [33]): Let 
H be the Schrödinger operator with the potential Q = Q1 + Q2, where Qi and 
Q2 are long-range and short-range, respectively. Then there exists a real-valued 
function a(x, k),  x € Rn, k > 0, such that 

(4.1) u+(x,k,f) - c+iaj^jy-^V^e1^-^"^ (r -► 00), 

(a similar asymptotic formula holds for u_(-, k.f)). For each k > 0, the (station- 
ary) modifier a(x, k) is obtained as a solution or an approximate solution of the 
equation 
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(4.2) \Va\2=2k^-Q1(x). 
o\x\ 

As for the (time-dependent or stationary) modifiers for Schrödinger operators with 
long-range potentials, cf., e.g., [8], [9]. The starting point of the proof of the 
asymptotic formula (4.1) is the estimate 

(4.3) ||Vu+ - i{k - Va)u\\ß < C||/||i+/j, 

where ß is a nonnegative constant and C is independent of /. Thus the modified 
radiation condition is naturally introduced. Proceeding as in the preceding section, 

we can construct the generalized Fourier transform from the asymptotic coefficients 
c± to develop spectral representation theory. As an application we can express 
the 5-matrix of the Schrödinger operator with a long-range potential by using 
the eigenoperator and the potential ([34]). This is an extension of the well-known 
formula for the 5-matrix for the Schrödinger operator with a short-range potential. 

Suppose that the potential decays slower than a long-range potential or the 
potential does not decay at all. There a few example has been known in which we 
need modified radiation conditions even to prove the limiting absorption principle. 
Among others, one example is oscillating long-range potentials such as 

~/   v      cos la; I 
(4.4) Q(x) = -p|i. 

As for Schrödinger operators with oscillatory long-range potentials, see Mochizuki- 
Uchiyama[14], [15], [16]. Also cf. [3]. Another example is potentials which satisfy 
(3.3) with e = 0, i.e., 

(4.5) \DaQ(x)\ <C(1 + |z|)-H 

(a: eR">| = 0,l,2,---), 

such as 

(4.6) Q(x) = cos(x1/\x\)        (x — (xx,x2,- ■ • xn)). 

For this type of potentials see [39], especially for the homogeneous potential see 

[7]- 
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5. Inverse Scattering Problem 

As an application of the radiation condition method, we studied the inverse scat- 
tering problem for Schrödinger equations and plasma wave equations with short- 
range potentials. Let S(k) be the S'-matrix for the Schrödinger operator with a 
short-range potential Q, and set 

(5.1) F(k) = - 2mk-(-n-2\S(k) -I)        (k> 0). 

For each k > 0, F(k), which is called the scattering amplitude, is a bounded 
operator on L2(S

n~1). Let cf>kiX(u>) G L2(S
n~1) be defined by 

(5.2) ^)X(W) = e-ik*-", 

where k > 0 and x G Rn are parameters. Then our fundamental relationship 
between the S'-matrix S(k) and the potential Q is given by 

(5.3) lim(F(k)<l>kiX,<l>kiX)Sn-i = -2TT   f Q^      dy 

for any k > 0 and x G Rn, where ( )s»-i is the inner product of 5n_1 ([35], 
[37]). The inequality (3.11) played an important role to obtain (5.3). Staring with 
the asymptotic formula (5.3), we can show the uniquness of the inverse scatterin 
problem. We also presented formulas to reconstruct the potential from the scatter- 
ing data and discussed how the formula approximates the potential as the energy 
parameter k increases ([36], [38], [40]). 

Recently V. Enss and R. Weder [6] has shown the uniquness and presented a 
reconstruction formula for the short-ramge potential of a JV~body Schrödinger 
operator where the potential of the JV-body Schrödinger opertor is a sum of a 
short-range potential and a long-range potential and the long-range potential is 
assumed to be known. Their method is the high energy method, too, and first 
they gave an asymptotic formula similar to (5.3). Obviously the inverse scattering 
problem for long-range potential seems to be an interesting problem. 

6. Resolvent of Dirac Operators 

In this and the following sections we shall discuss some rore recents results. First 
consider the Dirac operator 

3 „ 

(6.1) H = -lJ2aJ— + ß + Q(x) 
3 = 1 J 

in  [L2(R
3)]   , where 
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' x = (x1,x2,x3) £ R3, 

oij (j = 1,2,3,4, a4 = ß) : 4 x 4 constant Hermitian symmetric matrices 

satisfying the anticommutation relations 

oijak + oik(Xj = 2SjkI, (j, k = 1,2,3,4), 

_ Q{x) = (qjk(x)) : 4 x 4 Hermitian matrix-valued function on R3. 

Let R{z) be the resolvent of H and let R±(\), |A| > 1, be the extended 
resolvent of H (as for the spectral and scattering theory for Dirac operators 
see, e.g., Yamada[44], [45]). The work [19] ~ [21] studied the extended resolvent 
R±(\) under the assumption that the potential Q(x) is short-range, we proved 
that, among others, the operator norm ||i?±(A)|| bounded as |A| —> oo, where 
||i2±(A)|| is the operator norm in 13(1*2,«, £2,-«)- This is the best possible result 
since Yamada [46] has recently proved that the operator norm of the extended 
resolvent of the Dirac operator cannot decay, although (3.11) shows that the op- 
erator norm of the extended resolvent of the Schrödinger operator does decay as 
the energy parameter A increases. Also we proved the formulas for the extended 
resolvent by the use of the extended resolvent of — A (cf. [2] where similar idea 
is developed). In the case of the extended resolvent R0±(X) of the free Dirac 
operator H0, for example, we have, for A > 1, 

(6.2) R0±(\) = T0±(\2-1)AX + BX, 

where To± is the extended resolvent of the free Schrödinger operator — A, and 
the operators Ax and B\ are explicitly given. These formulas show the strong 
relationship between the Dirac operator and the Schrödinger operator, and we 
could prove that R±(\) satisfies the radiation condition. We have used the the- 
ory of pseudodifferential operators. After these works, using the Mourre method 
(Mourre [18]), H. Ito[ll] showed that the boundedness of ||i?-t(A)|| hold even for 
the Dirac operator with a long-range potential (cf. [17]). These results may enable 
us to investigate the inverse scattering problem for Dirac operators by using the 
known methods and results for Schrödinger operators. 

7. Reduced Wave Operator in Two Unbounded Media 

Let 

(7.1) H = -n{x)~1A. 

in R". Here fi(x) is a positive, simple function on R" given by 

(7.2) KX) = N (xeSlj, j = 1,2), 

where fJ.1,1^2 > 0, /^i 7^ 1^2, and fl(, £ = 1,2, are open sets of Rn such that 
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f^nfiz = 0, 

First D. Eidus [5] proved the limiting absorption principle for the case that the 
separating surface 

(7.4) S = dÜ! = dtt2 

has a cone-like shape. His results was improved by [41]. Then in the papers [22] 
~ [24], G. Roach and B. Zhang, under the same assumption on the separating 
surface 5, showed that the modified radiation condition 

(7.5) lim R-1   /        \Vu-i^\ji(x)u\2 dx = 0. 
R^°° J\x\<R 

does guarantee the uniqueness, and they developed spectral and scattering the- 
ory for the operator H. Recently Jäger-Saitö [13] proved the limiting absorption 
principle for the case that S can have a cylinder-like shape or a plane-like shape. 
This result has been obtained by the radiation condition method. Also we can 
give another proof of the results in [22] ~ [24] in quite a similar manner. Thus we 
are now able to treat the both cases by the radiation condition method. 

8.  Concluding remarks 
We have seen that the radiation condition method can handle various Schröding- 
er-type operators in the framework of spectral and scattering theory. It seems 
that the "reasonable" solutions of Schrödinger-type equations satisfy a kind of 
radiation condition at infinity. Further it seems that, if we can find the "right" 
radiation condition for a given Schrödinger-type operator, we can get very useful 
information on the operator through the radiation condition term. 

Another powerful method in spectral theory is the Mourre method (E. Mourre 
[18]). One of the strong points of Mourre method is that it can be applied to the 
many-body Schrödinger operator. So far the radiation condition method has not 
been successfully applied to the many-body Schrödinger operator. However, the 
recent work of D. Yafaev [42], [43] may give a good starting point when we try to 
apply the radiation condition method to the many-body Schrödinger operator. 
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N SAUER 

Implicit evolution equations and empathy 
theory 

1. Introduction 
Evolution equations of the form 

y[Bu(t)} = Au(t) 
dt (!) 

lim Bu(t) = y <E F 

with A, B : 2) C X —*■ Y unbounded linear operators defined on a domain D in a 
Banach space X with values in a Banach space Y often occur in applications such 
as non-Newtonian fluid mechanics (with nonlinear terms omitted) and dynamical 
boundary conditions. It frequently turns out that the operator B is not closeable 
so that it becomes impossible to transform the equations in (1) in such a way that 
u{t) appears explicitly. For that reason it is virtuous to study (1) as it is [Showal- 
ter (1988)]. Study of abstract evolution equations in the form (1) have also been 
studied by [Sauer (1983), Sauer & Singleton (1987)] with the aid of the concept of 
B-evolution. That concept was applied to problems of 'parabolic' type by [Sauer 
(1983), Grobbelaar & Sauer (1989, 1993), Van der Merwe (1988)], but applications 
to wave-like phenomena seem to be extremely tedious. The notion of empathy was 
introduced by [Sauer & Singleton (1989)] as a generalization of B-evolution and stud- 
ied by [Conradie & Sauer (1994)] in a restricted setting. In this paper a much more 
general approach to the notion of empathy will be put forth. The results obtained 
make applications to wave problems quite straightforward. 

2. Heuristics 

Since the state u{t) is in a different space (X) than the data (y 6 Y), we must 
imagine a system in which cause (data) and effect (solution) 'live in different worlds'. 
In order to obtain a progression in time, it becomes necessary to think of a curve 
v : t —> v(t); t > 0 in the space Y, emanating from the initial state y which is such that 
every point v(t) on this curve becomes a 'cause' for subsequent effects u(t + s) € X. 
This framework is best explained graphically as in Figure 1. Let us represent the 
points u(t) and v(t) on the two curves by means of two families of linear operators 
S(t) : Y —> X and E(t) : Y —> Y which relate the initial state y to the points on 
the curves according to u(t) = S(t)y and v(t) = E(t)y. Suppose that the family 
{S(t) : t > 0} has the evolution property u(t + s) = S(s)v(t) = S(s)E(t)y. Then the 
empathy relation S(t + s) = S(s)E(t) = S(t)E(s) becomes a natural property. 
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_ - - - -    v(s) 

Figure 1. Heuristic setting 

If we suppose, in addition, that u(t) and v(t) depend continuously on the initial 
state y, we must assume that the operators S(t) and E(t) are bounded. Additionally, 
we are interested in obtaining the operators A and B in (1) as a 'generator' of the 
'double family' (S(t),E(t)), the possibility of defining an infinitesimal generator 
in accordance with (1) appears to be somewhat artificial. Instead, we shall use a 
Laplace transform approach, which gives with (1) in mind, the Laplace transform of 
S(t) as the inverse of the operator XB - A. 

3. Empathy theory 
Let X and Y be Banach spaces and £ = {E(t) : t > 0} and S = {S{t) : t > 0} be 
two families of bounded linear operators such that E(t) : Y —> Y and S(t) :Y ^ X. 
We shall assume that for every y <EY and A > 0 the Laplace transforms 

/•OO /»oo 

R(\)y±  /     e-xtE(t)ydt;     P(X)y =  /     e-
XtS(t)ydt 

Jo Jo 

exist as Lebesgue integrals. {£, S) is called an empathy if the following conditions 
hold: 

S(t + s) = S(t)E(s) 

The operators R(X) and P(X) are bounded 

For some £ > 0, P(f) is invertible. 

(2) 

(3) 

(4) 

Note that there are no requirements on the behaviour of E(t)y or S(t)y as t —> 0+. 

PROPOSITION 3.1. The family £ is a semigroup. 

Proof. From (2) we see that for every y G Y, S(t)[E{r + s)y - E(r)E(s)y] = 0. 
According to (4), E(r + s)y = E(r)E(s)y for positive r and s. U 
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PROPOSITION 3.2. The norms \\E(t)\\ and \\S(t)\\ are uniformly bounded on compact 
intervals I C (0, oo) and £ and S are strongly continuous on (0, oo). 

Proof. Since E(t) is a semigroup and t —> E(t)y is strongly measurable, the state- 
ment regarding E(t) is well-known [Miyadera (1951), Hille-Phillips (1957)]. Strong 
continuity of S(t) now follows from the empathy relation (2) and the boundedness 
of S(t). Having proved strong continuity, the local boundedness of \\S(t)\\ follows 
from the uniform boundedness principle. [] 

The following result is proved by taking Laplace transforms in the empathy 
relation and the semigroup relation: 

PROPOSITION 3.3. (The pseudo-resolvent equations). For all positive X,ß 

R(X) - R(ß) = in - X)R(X)R(ß) (5) 

P(X)-P(ß) = (ß-X)P(X)R(ß). (6) 

From (5) and (6) it is a simple matter to derive the following: 

PROPOSITION 3.4. For any positive X, ß it is true that R(\)[Y] = R{ß)[Y] = $)E 

and P(X)[Y] = P(ß)[Y] = 2). Moreover, E(t)[S)E] C S)E and S(t)[®E] C 2). 

The proof of the inclusions is based on the expressions 

R(X)E(t) = E{t)R{X) (7) 

P(X)E(t) = S(t)R(X) (8) 

which are derived from the identities E(t)E(s) = E(s)E{t) and S{t)E{s) = S(s)E(t). 

PROPOSITION 3.5. For any X > 0 the operator P(X) is invertible. 

Proof. Since R(X) is a pseudo-resolvent, it is well-known that NE = Ker P(A) is 
independent of A. It is easily proved, making use of (6), that NE fl Ker P(X) - 
NE n Ker P(/x) for any positive X, ß. Suppose that y e Ker P(A). Then, from (6), 
P(£)y = (x-Op(0RWy- Since P(f) is invertible, it follows that y = (X-£)R(X)y. 
Therefore, R(£)y = (A - ()R(£)R(\)y. Comparison with (5) gives R(X)y = 0 which 
implies that y € NE (1 Ker P(X) = NE n Ker P(£)y = {0}. Thus y = 0. D 

We now proceed to define the concept of generator of an empathy by introducing 
the operators Ax = (XR(X) - ^P-^X) : £> -> Y and Bx = R(X)P~1(X) :S-^DE. 

PROPOSITION 3.6. The operators Ax and Bx do not depend on X. 

Proof. This follows from the inversion 

P^(ß) - P-\X) = (ß- X)R(ß)p-l(ß) = (ß- X)R(X)P-\X) (9) 

proving the statement first for Bx. rj 

In accordance with this result we set A = Ax and B = Bx. The operator pair 
(A,B) will be called the generator of the empathy (£,S). We collect a number of 
important properties in the following result. 
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PROPOSITION 3.7. Let (A,B) be the generator of an empathy (E,S). Then P(X) = 
(XB - A)-1, B[D] = ®E, E(t)y = BS(t)y for every y G DE and S(t + s)y = 
S(t)BS(s)y for ye13E 

The proof follows directly from the definitions of A and B and equations (7) and 
(8). 

Next we obtain some representations with important consequences. If y G DE, 
we may write y = R(X)yx for some y\ G Y. 

LEMMA 3.8. Ifye DE then 

E(t)y = ext{y-  f e-XsE(s)yxds] (10) 
Jo 

S(t)y = ext[P(X)yx - / e-x'S(s)yxds]. (11) 

For any y£Y, J* e-
XsS(s)yds G 2) and 

E(t)y = ext[y-P-1(X) f e~XsS{s)yds\. (12) 
./o 

(10) and (11) are obtained by direct calculation. (12) may obtained in a similar way, 
making use of (8). 

COROLLARY 3.9. For y e T)E, limt_0+ E(t)y = y. There exists a linear operator 
C : 13E —>• ® such that 

Cy =  lun+S(t)y = P(X)yx. (13) 

We are now set to obtain the relationship between the generator of an empathy 
and the Cauchy-problem (1): 

THEOREM 3.10. Let (A,B) be the generator of an empathy (S,S). For y e DE, 

u(t) — S(t)y solves the Cauchy-problem (1). 

Proof. According to Proposition 3.4, u(t) G D. Let v(t) = Bu{t) = BS(t)y = 
E(t)y (Proposition 3.7). By (10) and Proposition 3.2, v(t) is differentiable. Indeed, 
differentiation of (10) gives 

jt[Bu(t)] = jtE(t)y = \v(t)-E(t)yx 

= (XE(t)R(X)yx - E{t)yx 

= (XR(X)-I)p-\X)P(X)E(t)yx 

= AP(X)E(t)yx = AS(t)R(X)yx = AS(t)y = Au(t). 

That the initial condition is satisfied, follows from Corollary 3.9. D 
REMARK 3.11.    It is seen from Lemma 3.8 that u(t) itself is differentiable, but 
differentiation of it, does not lead to any particularly interesting equation. 

Finally, we investigate the relationship between the operators B and C. 
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THEOREM 3.12. C[£>£] = £>. C is invertible with inverse B. The operators R(X) 
are resolvents of A = AC : T>E —► Y. 

Proof. If x = P(X)zx e 2), then for y = R(X)zx, Cy = P(X)zx = x. Next, if 
y = R(X)yx, then BCy = R(X)P-\X)P(X)yx = R(X)yx = y. Thus C is invertible 
with inverse B. Once this is known, it follows from the expression R{\) = BP(X) that 
the R(X) are invertible, and are therefore resolvent operators. The same expression 
implies that R(X) = B(XB - A)-1 = (X - AC)'1. □ 

4. Uniformly bounded empathies. 
If for all t > 0, there exist M > 0 and iV > 0 such that ||^(i)|| < M and ||5(f)|| < N 
the empathy {£, S) is said to be uniformly bounded. For such empathies it is not 
necessary to require that the resolvents R(X) and P(X) be bounded. Indeed, we have 

THEOREM 4.1. If{£,S) is a bounded empathy, then 

pfc(A)||<^;     £>0 

\\P(X)RkW\\ < 3^1;    ^>o. 

Moreover, the operator C is bounded. 

Proof. These inequalities follow from the identities 

(14) 

1    f°° 1     f°° 
Rk+1{x)y = I\]Q   

e~XHkE^)yd^   PWRkWy=^J    e-xHkS(t)y dt 

which are derived by making use of the convolution theorem for the Laplace trans- 
form. The boundedness of C follows from Corollary 3.9 and the Banach-Steinhaus 
theorem. [] 

Next we consider the Widder operators associated with R(X) and P(X).  First 
we define the symbols of these operators as 

£kR(X) = tl)lxk+iR(k)W.    £fcP(A) = (z22!Afc+ip(fc)(A) 

for k = 0,1, 2 .... The Widder operators Lk are then defined as 

LkR{t)y = CkR(k/t)y;     LkP(t)y = CkP(k/t)y 

for t > 0. Differentiation of the resolvents are carried out with the resolvent equa- 
tions (5) and (6) in mind.   We obtain JR(fc)(A) = (-l)kk\Rk+1(X) and P(k\X) = 
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(-l)kk\P(X)Rk(X), with the derivatives converging in the strong operator topology. 
The symbols may now be expressed differently: 

LkR(X) = Afe+1i?fe+1(A);    CkP(X) = XP(X)XkRk(X) (15) 

Theorem 4.1 may be interpreted in terms of the Widder operators: 

\\LkR(t)y\\ < M\\y\\ 

\\Lknt)y\\ < N\\v\\ 

for every y £ Y. The Post-Widder inversion theorem [Widder (1946), Theorem 6a., 
p.288] which is true in Banach spaces [Miyadera (1956)], claims that \\LkR(t)y - 
E(t)y\\ -> 0 as k -> oo, and the same holds for LkP(t)y which converges to S(t)y on 
the Lebesgue sets of E(t)y and S(t)y respectively. 

We now turn to the problem of constructing an empathy with a given operator 
pair as generator. Let A and B be given linear operators defined on a common 
domain £> C X with ranges in Y. Suppose that for all positive A, XB - A has a 
bounded inverse P(X) = (XB - A)-1 : Y -> 5). Set R{X) = BP(X) and £>E = B[®]. 
It follows that R(X)[Y] = £>E for every positive A. It is a simple matter to prove 
that the pseudo-resolvent equations (5) and (6) hold. The following result gives a 
condition under which the operator B, and consequently the R(X), will be invertible. 

LEMMA 4.2. Suppose that for every y G Y, P(X)y -> 0 as A -► oo. Then B is 
invertible. If\\XP(X)\\ < N as X -+ oo, then the inverse of B is bounded. 

Proof. Let y £ S)E be represented in the form y = R(ß)yß with j/M £ Y. Then, by 

(6), 
XP(X)y = P(n)yp + P(X)[ßy - yj. 

From the hypothesis it is clear that the limit 

Cy =  lim AP(A)y = P{ß)y„. (16) 
A—»oo 

exists. We show that the range of the linear operator C defined by (16) is £>£. Indeed, 
if x = P(ß)z)1 £ 2) for some z^ £ Y, and y = R{ß)zß £ S)E, then Cy = P(/x)^ = x- 
Now, if y = R(fi)yp € S)s, then BCy = BP(fi)yß = R{ii)y^ = y. Hence C is the 
inverse of B. The statement on the boundedness of C follows from the Banach- 
Steinhaus theorem applied to the closure YE of 2) E in Y. D 

THEOREM 4.3. Suppose that the spaces X and Y have the Radon-Nikodym property. 
If there exist positive constants M and N such that 

l|AP(A)|| < N 

\\{XR(X)]k\\<M 
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for A > 0 and k = 1,2..., then there exist for every t > 0 bounded linear operators 
E(t) : Y -> Y and S(t) : Y -> X such that R(X)y and P(X)y are the Laplace 
transforms of E(t)y and S(t)y respectively. It is also true that 

\\E(t)\\ < M and \\S(t)\\ < MN. 

For given y e Y there exists a set Ny of measure zero such that for s,t £ Ny, 
S(t + s)y = S(t)E(s)y. 

Proof. From (17) it follows that Widder's theorem [Widder (1946), Theorem 16a, 
p.315] holds and the first statement is proved [Arendt (1987)]. The second statement 
follows from (5) and (6) by applying the uniqeness theorem for Laplace transforms 
[Arendt (1987)]. □ 

If it could be proved that the empathy relation holds for all s and t, the charac- 
terization of the generator of a uniformly bounded empathy would be over. It turns 
out that we have to settle for somewhat less as the discussion in the rest of the paper 
will indicate. 

PROPOSITION 4.4. Ift is in the Lebesgue set ofE(t)y, then then E(t)y e YE. 

Proof. It is a straightforward (but not simple) matter to show that the Post-Widder 
inversion theorem [Widder (1946), Theorem 6a, p.288] holds in Banach spaces [Miya- 
dera (1956)]. Thereby, E(t)y is the limit as k -* oo of LkR(t)y and the result follows. 

D 
It turns out that the space YE = Cl S)E is central in the analysis of the situation. 

The following result is used to show that strong continuity of E(t) and S{t) holds 
on the space YE- 

LEMMA 4.5. For y e T>E and any A > 0 

e-XsS(s)yds£®;      /     e~XsE(s)y ds € 2)E 

and 

E{t)y = ext[y - P-\X) J   e~XsS(s)yds} = eXt        e~XsE(s)R-1(X)yds.      (18) 

The proof which makes essential use of the Post-Widder inversion theorem, the Wid- 
der representation theorem [Widder (1946), Theorem 11a, p.303] and the identities 
P-\X)R(H) = [I - (p - X)R(ß)} = R-1(X)R(p), is too long and detailed to be 
presented here and will be given in a forthcoming publication. 

From this result, by making use of the identity S(t)R(X)y = P(X)E(t)y which 
holds almost everywhere, we can prove 
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THEOREM 4.6. For y e YE the mappings t -> E(t)y and t -> S(t)y; t > 0 are 
continuous and consequently the empathy relation holds. 

It is now a simple matter to show that the Cauchy problem (1) can be solved for 

y€S)1
E = R{X)[YE]. 
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G F WEBB 

Periodic and chaotic behavior in structured 
models of cell population dynamics 

1. Introduction 

In this paper we demonstrate how periodic and chaotic behavior arise in maturity- 

structured models of cell population growth. The models we consider describe the 

changing structure of a proliferating cell population in which individual cells are 

distinguished by a maturity structure variable. The equations for these models 

are linear first order partial differential equations of transport form. The solutions 

of these equations yield semigroups of linear operators in function spaces of the 

maturity variable. We will show that the behavior of the solutions is connected to 

the spectrum of the infinitesimal generator of the semigroup of operators. 

2. Exponentially Periodic Behavior 

The maturity structured model of cell population dynamics was proposed by Ru- 

binow in 1973 [15]. In the Rubinow model the maturity x of a cell corresponds 

to various physical properties associated with progress through the cell cycle. The 

values of maturity satisfy 0 < x0 < x < 1. Cell mitosis occurs at 1, whereupon a 

mother cell divides to produce two new daughter cells which enter the population 

with maturity xo- All cells transport through the cell cycle with the same veloc- 

ity v(x), where fx 
2 l/v(x)dx is the time required to mature from x\ to x-i- The 

equations of the model are 

wt{x, i) + (v(x)w(x, t))x = 0 (2.1) 

v(x0)w(x0,t) = 2v{l)w{l,t),t > 0 (2.2) 

w{x,0) =ip(x),x0<x<l (2.3) 

The balance law (2.1) accounts for transport of maturity. For simplicity we 

assume no mortality of cells (it could easily be incorporated into the analysis). The 

boundary condition (2.2) accounts for the mitotic process and the initial condition 

(2.3) accounts for the initial maturity distribution of cells. We specialize the problem 
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to the case that v(x) — x. We simplify the analysis by transforming the independent 

variable x —>■ -Inx. The resulting equations are 

ut{x,t) = ux{x,t) - u{x,t) (2.4) 

u{b,t)=cu{0,t),t>0 (2.5) 

u{x,0) = (f>{x),0<x<b (2.6) 

where c = 2/x0, b = -inx0, 4>{x) = ^(e-x),w{x,t) = u(-lnx,t). 

The problem (2.4)-(2.6) is easily solved by the method of characteristics. The 

solutions may be represented as u(x,t) = £(x+*)e-* for an appropriately prescribed 

scalar function B. Define the Banach space X = {<f> G C[0,6] : <f>{b) = ccf>(0)}. Define 

B{t) = <f>{t),0 <t <b, B{t) = ccj>{t -b),b<t < 2b, B{t) = c24>{t - 26), 2b < 

t < 3b,---. It is easily seen that u(x,t) = B(x + ^e-4 satisfies (2.4)-(2.6) for <j> 

continuously differentiable. For <f> e X define {T{t)(f>){x) = ck<j>{x +1 - A6)e-*,0 < 

x<b, kb<t< (k + l)b,k = 0,l,---. 

Proposition 2.1. T{t),t > 0 is a strongly continuous semigroup in X. 

The infinitesimal generator is A<f> = <f>' - 4>,D{A) = {<f> G X : <j)' E X} and 

a{A) = Pa{A) = {A G C : A = {tnc)/b - 1 ± 2nm/b,n = 0,1,---}. T{t),t > 0 

is exponentially periodic in the sense that e
t(1-(^c/6)T(i) is periodic in t with 

period b. 

Proof. The first claims of the proposition are proved in [17]. To prove 

the exponential periodicity it suffices to show eh~tncT{b) = I. For cf> G X,x G 

[0,6], {eb/c){T{b)cf>){x) = {eb/c)[c<j>(x + b - b)]e-
b = </>{x). a 

The solution to (2.1)-(2.3) is w{x,t) - [T{t)<f>){-lnx), x0 < x < 1, where 

4>{x) = ^{e~x), 0 < x < -enx0,<f> G D{A). Since (£nc)/6 - 1 = -tn2/tnx0 > 0, 

the solution grows exponentially in time. The exponential periodic behavior of the 

model (2.l)-(2.3) is accurate only for a few generations. It is commonly observed 

that proliferating cell populations grow asynchronously in that their initially syn- 

chronized structure is dispersed as the total population grows exponentially in time. 

The model (2.l)-(2.3) allows no mechanism for structure dispersion and the initial 

structure is effectively doubled again and again through the overlapping genera- 

tions. More realistic maturity structured models which do exhibit asynchronous 

exponential growth have been treated in [l], [5], [7], and [17]. 
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3. Extinction in Finite Time 

Another version of a maturity structured model of cell population dynamics allows 

cells to enter the population with maturity at any value x, 0 < xo < x < 1. The 

maturity variable x distinguishes primitive cell types and mature cell types.  The 

division process is not modeled directly, but new cells enter the population at a rate 

proportional to the structure density of existing cells. The equations of the model 

are 

wt{x,t) + (v(x)w(x,t))x = ßw(x,t) (3.1) 

wx{x0,t) =0, t>0 (3.2) 

w(x,0) = ij){x), XQ <X< 1 (3.3) 

where v(x) is the maturation velocity and ß > 1.   We again take v(x) — x and 

x —> —tnx. The new equations are 

ut {x, t) = ux (x, t) + au(x, t) (3.4) 

ux(b,t)=0, t>0 (3.5) 

u(x,0) =4>{x), 0<x<6 (3.6) 

where b = ~lnx0, a = ß - 1 > 0, <f>{x) = ^(e-*), and w(x,t) = u(-£nx,t). 

Let X = C[Q, b\. For <j> e X, 0 < x < b, and t > 0 define 

{ eatMx + t), x + t<b 

[eat<p(b), x + t>b 

The following proposition is easily proved: 

Proposition 3.1.  T(t),t > 0 is a strongly continuous semigroup in X.  The 

infinitesimal generator is A<f> = <f>' + acf>,  D(A)  = {<j> E X : 4>'~{b)  = 0} and 

a{A) = Po(A) = {a}. T{b)<j> = 0 for cf> e X such that <f>{b) = 0. 

The solution of (3.l)-(3.3) in the case v[x) = x is 

w(x,t) — <    , 
le^VOro), xe-Uxo 

for if}' E C[x0,l].   The ultimate behavior of the cell population depends on the 

initial maturity distribution of cells.   If cells of the most primitive type x0 are 
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present initially, then the population grows exponentially in time. If no cells of the 

most primitive type x0 are present initially, then the population extinguishes by 

time t = -lnx0. A sufficient supply of primitive cells must be present initially to 

sustain population growth. An imbalance in the initial maturity distribution results 

in collapse of the population. 

4. Chaotic Behavior 
A maturity structured model of the blood cell production system has been studied 

by Lasota [9], Brunovsky [3], Brunovsky and Komornik [4], Lasota and Mackey 

[10], [11], Rudnicki [16], and Rey and Mackey [13]. In this model the maturity 

variable distinguishes primitive and mature cell types. The maturity values x satisfy 

0 < x < 1 and the maturation velocity is v(x) = x. The division process is not 

modeled directly, but there is a proportional production of new cells of all maturity 

values. The equations are 

wt{x,t) + [xw{x,t))x=ßw{x,t) (4.1) 

w(x,0)=ip{x),0<x<l (4.2) 

where ß > 1. 
The behavior of the solutions has been analyzed in [3], [4], [9], [10], [11], [13], 

[16] (even in some more general nonlinear cases). If ^(0) > 0, then limt_oo e(1-^4 

w(x,t) = V>(0) > 0. If V(0) = 0, then the solution exhibits chaotic behavior. We 

will show that this chaotic behavior is connected to the spectrum of the infinitesimal 

generator of the associated semigroup. We again make the substitution x -> -Inx 

to obtain 

ut (x, t) = ux (x, t) + au{x, t) (4.3) 

u(x,0) =4>(x), 0<x< oo (4.4) 

where a = ß - 1 > 0, <f>{x) = ^e-2), and w{x,t) = u{-lnx,t). 

Let X = {<f> E C[0, oo) : lim^oo <£(s) exists} with supremum norm and let 

Xo = {<t> e X : lim^oo 4>{x) = 0}. For a > 0, <f> E X define 

(T{t)<j>){x) = eat<i>{x + t), x>0,t>0 (4.5) 
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The following proposition is easily proved: 

Proposition 4.1. T(t),t > 0 is a strongly continuous semigroup in X and in 

XQ. The infinitesimal generator in X is A<f> — <f>' + acj>,D(A) = {<j> E X : <f>' £ X} 

with a(A) = Po{A) = {A E C : ReA < a}. For A £ (C with ReA < a, A<f>x = \</>x, 

where 4>\{x) = exp[(ReA - a)x + i(ImX)x], x > 0. The infinitesimal generator in 

XQ is the same except that {A G C : ReA = a} lies in its continuous spectrum. 

The solution of (4.1), (4.2) is w{x,t) = e^-1)*^«-*) for x0'(x) £ C[0,l}. If 

0(0) > 0, then lim^oo e^1_'/3)iu;(x,f) = 0(0) > 0 uniformly in x, which corresponds 

to a normal blood production system. If 0(0) = 0, then the solutions of (4.1), (4.2) 

are chaotic in the space C0[0, l] = {0 E C[0,1] : 0(0) = 0}, which corresponds to 

an aplastic anemia (see [9], [10], [11], [12], [13]). The following definition of linear 

chaos is based on the definition of nonlinear chaos due to Auslander and Yorke [2] 

and Knudsen [8]: 

Definition 4.1. The strongly continuous semigroup of bounded linear opera- 

tors T(t),t > 0 in the Banach space X is chaotic provided there exists (f> £ X such 

that {T(t)<t> : t > 0} is dense in X. 

It is possible to show that the semigroup T(t),t > 0 of Proposition 4.1 is chaotic 

in X0 by direct construction of a dense orbit (see [3], [4], [9], [10], [11], [16]). We 

will show this chaotic behavior by using a general result in [18], which provides 

sufficient conditions for chaos in terms of cr(A). 

Let T(t),t > 0 be a strongly continuous semigroup of bounded linear opera- 

tors in the Banach space with infinitesimal generator A. We require the following 

hypotheses: 

(H.l) There exists an increasing sequence of positive numbers {-)m}m=i sucn 

that 7m + iß E P<r{A) for ß E IR. 

For 7m + iß E Po{A) let A<f>lm+ili = (im + iß)<f>lfn+iß, where ||<£7m+,>|| = 1. 

For positive integers m and k let Xmtk = span{^7m+nff,/it : n = 0, ±1,±2, ■••} 

(where span means all finite linear combinations). For (f> E Xmik, exp[—^mt]T(t)<f> is 

periodic in t with period 2k, since T{t)(f>lmjl.nKi/k = exp[7mi] exp[n7r<i/A;]^7ni+nT,yfc. 

(H.2) Let 0 E X, let m be a positive integer, and let 6> 0. There exists 

a positive integer A;' such that if k > k', then there exists <j> E Xm>k such that 

11^-011 <e. 
(H.3) Let mi,m,2, and k\, be positive integers with mi < m,2, let <j>i E Xmitk1, 

and let £> 0. There exists a positive integer k such that if k± > k, then there exists 
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<t>2 £ Xm2iklk2 such that ||<?!>i - <£2|| <£ exp[--7mifclA;2]. 
Hypothesis (H.l) requires that Pa{A) contains an infinite number of vertical 

lines in the right half complex plane. Hypothesis (H.2) requires that for any one of 

these vertical lines {^m + »> : ß € IR} the subspaces Xm,fc fill out X as A; increases. 

Hypothesis (H.3) requires that two such sets of subspaces Xmi,i, and Xm2tkk1 get 

sufficiently close as k increases. (Note that Xmijfc1 f~l Xm2,kk2 = {°} for mi < m2, 

since the eigenvectors are linearly independent). The following proposition is proved 

in [18]: 
Proposition 4.2. Let T(i),t > 0 be a strongly continuous semigroup in the 

separable Banach space X and let (H.l), (H.2), (H.3) hold. Then T(t),t > 0 is 

chaotic in X. 
Proposition 4.3.  The strongly continuous semigroup T(t),t > 0 defined by 

(4.5) is chaotic in XQ>. 

Proof. Let {7m}m=i be an increasing sequence of positive numbers in (0, a/2). 

By virtue of Proposition 4.1 this sequence satisfies (H.l), where <j>nm+iß(x) = 

exp[(7m - a)x + ifj.x}. To prove (H.2) let $ G X0 such that $ has compact support, 

let m be a positive integer, and let G> 0. Choose k" such that supp^ C [0,k"\. 

Choose k' > k" such that for k > k'. 

exv[(lm-a)(k-k")]\m<e/2 (4.6) 

Let k > k'. Let 4>{x) be the restriction of exp[(a - im)x]il)(x) to [0,k] and let 

rjj{x) be the even 2k- periodic continuous extension of 4>(x) to IR. (Note that ip is 

real-valued if I/J is real-valued). Observe that 

sup|^(x)|=   sup   \$[x)\<exp[{a-im)k"]\\il>\\ (4.7) 
ieiR 0<x<k 

(since suppV* C [0,fc"]). Choose a positive integer N and Fourier coefficients 

Cn, —N <n<N, such that 
N 

|   ^2   c» exp[»wrts/*] - V»(*)l <€ /2 for x > 0 (4.8) 

Define <j> = E?=_iv cn^+n^/km & Xm,k. (Note that <f> is real-valued if V is real- 

valued). For 0 < x < k, (4.8) implies 

N 

\</>{x) - 1/{x)\ = exp[(7m - ")x]|   X)   c»«P[nW*l - VK*)! <G (4-9) 
n=-JV 
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For x > *, (4.6), (4.7), and (4.8) imply 

\4>{x) - 4>{x)\ (4.10) 
AT 

= exp[(7m -a)x]\   ^   cnexp[nirix/k]\ 
n=-N 

<exp[(7m-a)*](|^(x)|+e/2) 

< exp[(7m - a)*](exp(a - lm)k"}U\\+ G /2) 

<G 

Then, (H.2) follows from (4.9) and (4.10). 

To prove (H.3) let m\,m2, and *i be positive integers with mi < m2, let 

«^le-X'tm,*!, and let 0 <G< 1. Since <f>i G Xmi,ki, there exist coefficients cln, 
-iVi < n < Ni, such that for x > 0 

«M*) =    Yl   cinexp[(7mi - a)x]exp[n7rz'/A;i] 

Observe that exp[(a - ^mi)x]<pi(x), x > 0, is continuous and periodic with period 

2*i. Thus, there exists a constant M such that 

\<j>i{x)\ < exp[(7mi - a)x}M,x > 0 (4.11) 

Let * be sufficiently large such that if k2 > k, then 

exp[(7mi + lm2 ~ a)*i*2] < e/{M + 1) (4.12) 

(recall 7mi < 7m2 < a/2). Let «^(z) be the restriction of exp[(a - 7mJ:c]<£i(x) to 

[0,*i*2] and let <f>i(x) be the even 2*!*2-periodic continuous extension of (j>i(x) to 

IR. (Note that <j>i is real-valued if <f>i real-valued). For 0 < x < ktk2, (4.11) implies 

\4>i{x)\ =exp[(a-7m9)s]|^i(s)| (4.13) 

< exp[(a - 7mJx] exp[(7mi - a)x}M 

<M 

For k\k2 < x < 2*i*2, (4.11) implies 

|^i(x)| = 1^(2^*2-1)1 (4.14) 

= exp[(a - 7mJ(2A;1A;2 - x)]\<t>i{2kxk2 - x)\ 

< exp[(a - 7mJ(2*1*2 - x)] exp[(7mi - a)(2*i*2 - x)]M 

<M 
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Choose a positive integer N2 and Fourier coefficients c2n, -N2 < n < N2, such that 

for x > 0 

N* ~ e 
|    Y2   c2nexp[n7rix/kik2}-<t>i{x)\<-exp[--imikik2} (4.15) 

n=-N2 

Define(j>2{x) = T,n=-N2 C2ntf<yma+»"™/*i*2 e Xm2iklk2- Let<£2(x) = En=-iv2 
c2n 

exp[»7r*x/ifeiJfc2] = exp[(a-7m2)z]<Mz),x > °- (Note that <^ is real-valued if fa is 
real-valued). Let M2 = supE>0 \4>2{x)\ = sup0<I<2fclfc2 \fa{x)\. For 0 < x < 2kxk2, 

(4.13), (4.14), and (4.15) imply \fa{x)\ < \MX)\ + ? exp[--ymi*i*2] < M+l. Thus, 

M2 < M + 1 and 

\cj>2(x)| < exp[(7m2 - a)x](M + l),x > 0 (4.16) 

For 0 < x < kj_k2, (4.15) implies 

|<£i(x) - 4>2[*)\ = exp[(7m2 - a)x]|<^i(x) - ~4>2{x)\ (4.17) 

< -exp[-7mifcifc2] 
It 

For x > feifc2, (4.11) and (4.12) imply 

^(x^expK^-a)^] (4.18) 

= exp[(27mi - a)kik2] exp[-7mifciA;2]M 

<Gexp[-7mi^ifc2] 

For x > hk2, (4.12) and (4.16) imply 

\M*)\ < exp[(7m2 - a)k1k2](M + 1) (4-19) 

= exp[(fmi +7m2 -a)fcifc2]exp[-Tfmx*iA;2](A!f+ 1) 

<G exp[-7miA;ifc2] 

Then, (H.3) follows from (4.17), (4.18), and (4.19). □ 
The chaotic behavior demonstrated in Proposition 4.3 means that the solu- 

tion u{x,t) = eat<j>{x + t) of (4.3), (4.4) depends sensitively on the initial con- 

dition 4>{x), when limI_00^(x)  = 0.    For the model (4.1),  (4.2) the solution 
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w(x,t) = e<-ß-1^t^(xe-t) = u(-lnx,t),if>(x) = <f>(-tnx), exhibits chaotic behav- 

ior in the space {4> G C[0,1] : ip(0) = 0}. The sensitivity of the solutions to the 

initial values when ^(0) = 0 corresponds to aplastic anemia. If ^(0) = 0, then 

there is an insufficient supply of the most primitive cell types. If ^(0) > 0, then 

limt_oo e^1~^tw(x,t) = ^(O) > 0 uniformly for x in [0,1], which corresponds to a 

sufficient supply of primitive cell types and to a normal blood production system. 

In [6] a nonlinear maturity structured model of the blood cell production system 

due to Rey and Mackey [13] is analyzed and abnormal behavior is associated with 

instability of initial values. 
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Lectures 



J BANASIAK 

Singular perturbations of resonance type 
with applications to the kinetic theory 

1     Introduction 
The main topic of this paper is an asymptotic analysis of singularly perturbed equa- 
tions of resonance type, especially of the type appearing in the transport theory. In 
particular, we are interested in procedures which, roughly speaking, show that the so- 
lution to such an evolution equation can be approximated by the solution to a suitable 
equation of the diffusion type. 

A model for our considerations is offered by equations of the kinetic theory which 
can be written in an abstract form as 

0tue   =   t~lCut + <Su£, 

u(0)    =   u, (1.1) 

where C and S denote the collision and streaming operators, respectively, and e_1 is, 
roughly speaking, proportional to the mean free path of particles. In this paper we 
assume that the operator C is linear and has A = 0 as a semi-simple eigenvalue. This 
excludes both the full nonlinear Boltzmann equation and the linearized Boltzmann 
equation [5] but a large class of linear Boltzmann equations and linear equations of 
the Fokker-Plank type with the collision operator given by second order differential 
operators are covered by our theory. 

From the physics of the problem it follows that if e is close to zero, then the so-called 
hydrodynamic part of the solution u should be close to a solution of some diffusion 
equation. 

The approximation to the solution of (1.1) is usually sought in the form of a 
truncated power series in e. The series is then inserted into (1.1) and by equating 
coefficients at the same powers of e to zero we obtain a hierarchy of equations for the 
coefficients of the expansion. Unfortunately, such a straightforward method which can 
be dated back to Hubert, does not provide a diffusion equation but instead it gives an 
open hierarchy of non-homogeneous equations [5]. 

There were various attempts to overcome this difficulty [7, 4, 9, 12, 13]. We present 
here the so-called compressed asymptotic procedure which is a modification of the old 
Chapman-Enskog method [5] and which was proposed in [8]. This method gives, in 
a systematic way, the diffusion equation on the first level of asymptotic expansion for 
a large class of singularly perturbed equations of the form (1.1). Moreover, at the 
same time it yields an initial value corrector and initial layer terms which improve the 
accuracy of the approximation. It follows also that under suitable assumptions the 
error of this approximation is of order of e2. 
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In this paper we show that all assumptions of the developed theory are satisfied 
when (1.1) is the linear Boltzmann equation. In [1] a similar analysis is performed for 
kinetic equations of the Fokker-Planck type. 

2    Basic notions 

In this section we introduce basic notation and assumptions which will make our 
asymptotic analysis possible. 

To avoid additional difficulties related to a possible occurrence of a boundary layer 
we confine ourselves to two particular types of the problem. We assume that, with 
respect to x, we are either dealing with the free space or with the so-called periodic 
boundary conditions. The periodic boundary conditions mean that we require that 
the boundary values of the solution (and its derivatives, if necessary) are equal on the 
opposite faces of the unit cube of E". In other words we have 

U(Xi, . . . , Xk, ■ ■ • , Xn) = U(Xi, . . . , Xk + 1, • • •, xn) 

for k =  1,2, ...,n.   In that case the domain of x is commonly identified with n- 
dimensional torus. 

In what follows £(X, Y) will denote the space of linear, bounded operators between 
X, Y . By Lin{ei,..., ek) we will denote the linear envelope of elements ei,. .., e^. 
With some abuse of notation, the function (/,a\£) —> u(t,x,£) will be treated as a 
function {t,x) —> u(t,x) with values in some Hilbert space H (a space of functions 
of velocity variable) and for every t the value u(t) itself will be an element of ri = 
L2(il) •:<> H = L2(tt,H), where iX) denotes the tensor product of Hilbert spaces [14]. 
The set il = Rn in a free space case and 0 = [0, l]n in the periodic case. We assume 
that C is independent of x, and replacing S with a generalized streaming operator, we 
can write (1.1) as 

dtu = (C®I)u-(±S(k)®dXk)u, (2.1) 
k=\ 

where x = [x\,.. ., xn) € ^- The operators C and S(k) are now acting in the space H. 
Let us introduce the space H = L2(P

n,H), where P = E in the free space case and 
P = Z in the periodic case. Precisely, in the latter case the space L2 reduces itself to 
the space l2 of square-summable, ^-valued, multi-indexed sequences. As this will not 
lead to any misunderstanding, we shall use the same labels, P and L2, for both sets 
of parameters and both spaces, respectively. Also, in what follows, the phrase "for 
every p 6 P"", when referred to the first case, is to be understood as "for almost every 
|)£ E"". 

Applying the Fourier transformation with respect to x, u —> it, we obtain the 
unitarily equivalent problem 

dtü = (C 0 /)« + (£ ipkSlk) )u (2.2) 
k=l 
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in L2(P
n,H). It follows (Theorem 2.1) that under certain assumptions the equation 

(2.2) can be analyzed with p = (pi,... ,pn) treated as a parameter. This will allow to 
discard restrictions caused by an unboundedness of the differential operators dXk. 

Since from now on we shall work only with the transformed equation (2.2), in what 
follows we shall drop "hat" in the notation of the solution to (2.2). 

Now we introduce basic assumptions which will be used throughout this paper. 
Let (A,D{A)) denote an unbounded operator in H with domain D(A) and let P" 
equal either Rn or Zn. We consider an operator (C,D(C)) and a family of operators 
{{SpjD(Sp)}pep„ and we assume that for p € P'\ p ^ 0 we have D{SP) = Ds, Ds 

independent of p. Bearing in mind applications we assume that p —»■ Sp is a linear 
mapping of Pn into the set of closed operators in H, so that 

.%=tpk>%), (2-3) 

where all S\k) are closed linear operator on Ds. Let these operators have the following 
properties. 

PI. C is a self-adjoint operator, generating a semigroup of contractions, Tc, in H. 
Zero is a semisimple isolated eigenvalue of C with the eigenfunction m and 

supJRe{<j(C)\{0}} = -7<0. 

P2. For every p € Pn, Sp generates a semigroup of isometries Tsp- 

P3. D(C) n Ds is dense in H and 

meßsn D(C). (2.4) 

The operator (C + SP,D(C) n Ds) is dissipative and, having dense domain, it is 
closable [11]. We define 

(Kp, D{KP)) := (C + Sp, D(C) n D(SP)). (2.5) 

We postulate that 

P.4 Kp generates a strongly continuous semigroup in H, denoted by Tfcp. 

The Trotter product formula [11] implies that TKp is a contraction semigroup. 
We also require that 

P.5 for p e P'\ p ^ 0 
DK:=D{Kv) = D{C)C\Ds. (2.6) 

We equip Ds with the norm of graph of arbitrary operator S(k) which appears in 
(2.3) and in the same way we introduce a norm || ■ \\DK in DK- 
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In what follows we quote several theorems which are similar to theorems proved in 
[1,2]. Let us recall that H = L2{Pn, H). We have C = C ®I with the domain 

D{C) = D(C C§ /) = D(C) ® L2(P
n) 

and (Su)(p) = Spu(p), treated as an operator in 7i, with the domain 

D(S) = {u£H; u(p) £ D{SP) for p £ Pn, Su £ H} (2.7) 

By P.l (C, D{C)) generates in H a semigroup of contractions and, since C = C ® /, 
we have by [14] that C also generates a semigroup of contractions. It follows [1] that 
the operator (<S, D(S)) generates a semigroup of isometries in 7i, say Ts, such that for 
every p £ P" and «GWwe have 

(Tsu)(p) = TSpu(p). (2.8) 

Let us define the operator (fC,D(fC) by the formula (fCu)(p) = Kpu(p) with 

D(K) = {ueH; u{P) £ D{KP) for p £ P", K.u £ H}. 

We have the following theorem: 

Theorem 2.1 Operator (AJ, Z?(AC)) generates a semigroup of contractions in 7i, say 
TAJ, given by the Trotter formula 

TK{t)u = ■Moa'- u£H. (2.9) 

This semigroup satisfies 
(Tfcu){p) = TKpu(p). (2.10) 

for every u £ 7i. 

With that result we can carry out the asymptotic analysis in the space H, ensuring 
that the estimates are in suitable sense uniform in p. The main role in the modified 
Chapman-Enskog (compressed) asymptotic procedure [8, 9] is played by a decomposi- 
tion of H into two subspaces and splitting (1.1) accordingly. One of these spaces is the 
eigenspace of C corresponding to the zero eigenvalue and the other is its orthogonal 
complement. 

Let us consider the following family of evolution equations in H 

dtu = Cu + Spu. (2.11) 

We define P to be the operator of the orthogonal projection onto the kernel of C, 
PH = N(C) = V,<mdQ = I-P,QH = V± = W. We denote 

v = Pu,      w = Qu. (2.12) 
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It is easy to see that the projection operators commute with dt, so applying P and Q 
to both sides of (2.11) and, taking into account that PC = 0 and CP = 0, we obtain 
formally the following system of equations: 

dtv   =   PSpPv + PSpQw 

dtw   =   (QCQ + QSpQ)w + QSpPv, (2.13) 

where we have left spurious notation for the projection operators for the sake of sym- 
metry. Thanks to the assumptions P.l - P.3 and P.5 we can prove [2] 

Proposition 2.1 A pair (v,w) € V x (DK D W) solves (2.13) if and only if u = 

v + w e DK solves (2.11). 

To perform the asymptotic analysis we will have to solve certain equations in the 
subspace W. To cater for that we have the following general theorem [1]. 

Theorem 2.2 If A is an m-dissipative operator in a Hubert space H, Hi is a subspace 
of H of finite codimension andQ is the orthogonal projection onto Hi, them the operator 
QAQ generates a semigroup of contractions in Hi. 

Let us return to the particular situation which is considered in this paper. Since 
all operators Kp, C, Sp are m-dissipative and W has codimension one, we can apply 
this theorem to each of them, obtaining the following corollary. 

Corollary 2.1 Let KtiP = ClC + Sp. The operator QKf%pQ generates a semigroup of 
contractions in W, say Gt,p(t), which satisfies for t>0 

||&\P(*)lk < e-7i/e, (2.14) 

where 7 is defined in P.l. 

3    Formal perturbation procedure for the operator 

The full formal compressed (or modified ChapmanTEnskog) perturbation procedure for 
the equation of the form (1.1) can be found in [8, 2]. Here we shall quote, for further 
reference, equations satisfied by the terms of expansion. Let us consider the singularly 
perturbed system (2.13) with initial data v = Pv, and w = Qu, where u e H. 

dtv   =   PSpPv + PSpQw 

edtw   =   QCQw + eQSpQw + tQSpPv 

v{0)   =   v 

w(0)   =   w. (3.1) 
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The solution of (3.1) is looked for in the form 

V(t)     =     V(t) + V{T) 

w(t)   =   w{t) + w(T), (8.2) 

where r = t/e. Terms v, w are referred to as the bulk part of the solution and should 
give a good approximation to v, w for large time. Terms t\ iv are called the initial 
layer part and are expected to improve accuracy of approximation lor small t. The 
bulk part and the initial layer part are sought independently. 

The formal compressed asymptotic expansion shows that the approximation of the 
solution u = v + w to (3.1) should take the form 

u(t) = b(t) + edl(t/e) + w0{t/e) + e^t) + ^(//e)) (3.3) 

where the particular terms of the expansion satisfy the following equations: 

The bulk part. 

dto   =   PSpPv-ePSpQ(QCQ)-1QSpPb 

0(0)   =   v-cPSvQ{QCQ)-lw (3.4) 

and 

The initial layer part 

wo   =   0 (3.5) 

wi   =   -(QCQYlQSpPv. (3.6) 

üo(r)   =   0 (3.7) 

WO(T)   =   TQCQ(T)W (3.8) 

üi(r)    =   PS.QiQCQr'Mr) (3.9) 

and 

dTwx   =   QCQWY + QSpQwo 

MO)   =   (QCQ)-lQSpP°v (3.10) 

In the next section we shall see that the terms of the asymptotic expansion are well 
defined by (3.4) - (3.10) and that u, defined by (3.3), approximates u with an error of 
order of e2. It follows that the error of the approximation given by 

y(t)     =     „(*)-[ö(*) + «>!(*/<:)] (3.11) 

z{t)   =   u,(<)-[Äo(<A) + e(«*i(<) + ^i(*/f))] (3-12) 
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satisfies (formally) the system 

dty   =   PSpPy + PSpQz + ePSpPvi + PSPQwi, 

dtz   =   QSpPy + QSpQz + -QCQz + eQSpQw1 + eQSpPv1 + eQSpQw1-edtw1, 

2/(0)    =   0, 

z(0)   =   e\QCQ)-lQSpPPSpQ{QCQ)-lw. (3.13) 

4    Properties of the terms of the expansion 

Let us recall that PH = V = Lin{m} and Q = I - P. The operator Sp is in general 
unbounded but it follows that PSP and QSP, being defined on a one-dimensional 
space, are continuous. It can be checked that PSPQ is closable and therefore bounded 
[6]. Moreover, a simple calculation shows that it can be extended by continuity onto 
H. We shall use the same symbol for the continuous extension of PSQ. As in [1] we 
can prove that (3.4)'is indeed a diffusion equation. Precisely, we have 

Proposition 4.1   There exist functions p -> uj(p), satisfying 

Reto = 0, (4.1) 

and p —► fl(p) with 
Refl{p)>uj1\\QSpP\\2H (4.2) 

and 
Mp)\ < UQCQ^WHUQSPPWH\\PSPQ\\H < ^\p[2 (4-3) 

for some positive constants u>i, UJ2, independent of p, such that the solution 0(0 to 

(3.4) is given by the formula 

b(t) = e(ü;-£")tö(0). (4.4) 

The formal analysis of Section 3 shows that we must ensure that the initial layer 
terms decay exponentially. The exponential decay of TQCQ in H is ensured by assump- 
tion P.l of Section 2. However, equations (3.9)-(3.10) which define the initial layer 
terms ii,w0 and wi involve superpositions of (usually) unbounded operators and we 
shall need stronger estimates so that we shall require additional assumptions. Let us 

denote 
DS2 := {u € Ds\ SPou € Ds for some 0 ^ p0 G Pn} (4.5) 

Using the same notation for the restriction of TQCQ to both Ds and DS2, we assume 

that 

P.6 TQCQ is a semigroup of negative type in both Ds and DS2. 
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In other words we have 

\\QSPQTQCQ(t)w\\H < «Zie-^HH^IIß, (4.6) 

and 
\\QSpQTQCQ(t)w\\Ds < q-ie-^MwllD^, (4.7) 

where q^ and q-i are constants and where for the further applications we put 7 > 70 > 0 
(see assumption P.l of Section 2). 

We assume also that 
meDS2. (4.8) 

Now we can turn to the question of existence and regularity of the solution vbi of 
(3.10). To this end we have the following result. 

Proposition 4.2 If the assumption P.6 is satisfied and QCQw £ Ds, then (3.10) has 
a unique classical solution satisfying 

\\WI(T)\\H < A'e-^lpuHi,., (4.9) 

for some constant K. 

5    Estimates of the error of asymptotic expansion 

This Section is concerned with the estimate of the error of the asymptotic expansion 
(3.3). The following main theorem is proved in [2]. 

Theorem 5.1 If assumptions P.l - P.5, (4-6)-(4-7) arid (4-8) are satisfied, then for 
any T, 0 < T < 00, there is a constant M independent of p such that the error of the 
asymptotic expansion given by (3.11)-(3.12) satisfies 

\\y{t) + z(t)\\H < e2M max {||pfc«||^} . (5.1) 

uniformly for 0 < t < T. 

As an immediate consequence we obtain the estimate for the error of the approxi- 
mation in 7i (and, equivalently,in L2(ft,ff)). 

Theorem 5.2 If assumptions P.l - P.5, (4-o')-(4-7) and (4-8) are satisfied, u 6 D{C) 
and 

{1 
IP" 

max <  / lip u\rn   dp} < +00 (5.2) 
0<k<3 '  '   "       "u"2      ' 

(that is u is a Fourier transform of a function from the Sobolev space W.ffäjDsi)), 
then for any T, 0 < T < 00 there is a constant C such that 

\\y(t) + z(t)\\n<Ce2. (5.3) 

uniformly for Ü < t < T. 
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The assumption that C is a self-adjoint operator, appearing in P.l, often turns out 
to be too restrictive. A closer look at the proofs of the discussed results [1, 2] shows 
that the self-adjointness of C was used first, in Corollary 2.1 to prove the existence 
and estimates of the semigroup Ge,p which helped to obtain estimates for the bulk part 
of the error in Theorem 5.1 and second, in Proposition 4.1 to prove the positivity of 
the diffusion coefficent fi. 

In many cases it is possible to establish the positivity of the diffusion coefficent by 
other means (see for instance Proposition 6.1). In general, it is impossible, however, 
to obtain the estimate (2.14) for non self-adjoint C and we need some additional 
assumptions to obtain a counterpart of Theorem 5.1. 

If we replace the assumption P.l by 

P.l' C is the generator of a semigroup of contractions, Tc, in H. Zero is a semisimple 
isolated eigenvalue of C with the eigenfunction m and sup Re{a(C) \ {0}} = 
—7 < 0. Moreover, the spectral projections P and Q, corresponding to the 
eigenvalue A = 0 are orthogonal and the semigroup TQCQ is of negative type in 

H. 

and additionally assume that 
QSpmeDS2, (5.4) 

then the following theorem is true [2]. 

Theorem 5.3 If assumptions P.l', P.2 - P.5, (4.6)-(4.7), (5.4) are satisfied, and if 
the diffusion coefficent fi satisfies (4.2), then for any T. 0 < T < 00 there is a constant 
M independent of p such that 

\\yp(t) + zp(t)\\H<e2Mm^{\\pku\\Ds2}. (5.5) 

uniformly for 0 < t < T. 

Theorem 5.2 has to be modified in obvious way. 

6    Diffusion approximation of the linear Boltzmann 
equation 

In this Section we shall apply the theory which was developed in the previous sections 
to a class of kinetic equations with bounded collision operators. To this class belong 
linear Boltzmann equations, arising in low density approximations to the full Boltz- 
mann equation. We shall consider only operators with unbounded velocities, since in 
case of bounded velocities most assumptions of the theory are trivially satisfied. In 
Propositions 6.1 - 6.3 we collected in a unified mathematical setting the required prop- 
erties of the collision and transport operators. Some of them, in one form or another, 
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belong to the folklore of the transport theory and can be found in e.g. [5, 12, 15]. The 
full proofs of these propositions can be found in [2]. 

The results of the Theorem 6.f are new. We note only that the corrector of the ini- 
tial value for the diffusion equation appeared in [15] where the diffusion approximation 
of the transport equation with bounded velocity range was analysed. 

Let us consider the following initial value poblem for a transport equation: 

dtu(t.x,0   =   -Zdxu(t, x,0 - is(Ou(t, x,o + J k(£,£>(*• x,0<%' 

u(0,x,O   =   u(x,{). (6.1) 

We assume that we deal either with the free space case and then x £ Q = R'\ or with 
periodic boundary conditions, in which case x £ 0 = [0, l]3 The variable £ £ R'3 is the 
velocity and u is the particle distribution function in the phase space. The collision 
frequency ;/ and the scattering kernel k are known functions which are assumed to be 
independent of x. 

The whole analysis is performed in the Hilbert space 

H = L2(R
3

X,H) = LaO^.m-^OdW, 

where m is the normalized Maxwellian distribution in a given temperature 0 

m(0 = (27r0)-3/2exp(-C2/20). (6.2) 

Hence, we consider equation (6.1) as an evolution equation in the space 7i and, 
following the results of Section 2, we apply to it the Fourier transform with respect to 
x to obtain the equivalent problem in L2{P'\H^), given by 

R3 

u(p,t,0)   =   ü(p,f). (6.3) 

As in Section 2, P = En in the free space case and P = Z" in the periodic case. Thanks 
to Theorem 2.1 we can analyze problem (6.3) in H, treating p as a parameter. 

Also as before we denote by C. S ..., the collision, streaming, etc. operators, 
respectively, acting in H and by C, S .. ., their H counterparts. 

Let us introduce assumptions necessary to analyze (6.3). The scattering kernel k 
is usually written in the following form: 

Ht,n = m(0<l>(Z,a (6-4) 
where </> is called collision cross-section. We assume that: 
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A.l for almost all £',£ G K3 and some constant a 

0<HZ,O<Ci. 

Our analysis does not require 4> to be a symmetric function. However, in realistic cases 

the so-called principle of detailed balance [5] asserts that 

fc(^')m(0 = *tfU)mtf') (6-5) 

and that yields 

Another assumption taken from the transport theory is that the operator C is conser- 

vative, that is for every v G Li(Rn) we have 

[Cvd£ = 0. (6.7) 

At this stage we introduce another technical assumption, namely we postulate that: 

A.2 for every (£l3 and some constants c2,c3 

0 < C-2  < 1/(0  < C3. 

Proposition 6.1 If the assumptions A.l, A.2, (6.7) and (6.6) are satisfied, then the 

operator C has property P.l of Section 2. 
If instead of (6.6) we have, for some constant c4, 

^,O>c4>0   (,('eK3, (6.8) 

then C has property P.l' Section 5. 

The operator Sp formally is given by the formula: 

A.—1 

where £ = (6,6,6), P = {Pi,P2,Ps) € K3- The space Ds, discussed in Section 2, is 

given by 
Ds = L2(R\(l + \t\)m-1(0d0 (6.10) 

The semigroup generated by .S'p is given by the formula: 

TSp(t)u = e'pit. (6.11) 

This semigroup is clearly conservative so that assumption P.2 is satisfied. 
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Since D(C) = H, we have D{C) n Ds = Ds = L2{R\{1 + |£|)m-x(0<*0 which 
is dense in H, as C^{R3) C L2(K

3,(1 + l^m-1^)^) and C?{R3) is dense in H. 
Clearly, m satisfies all assumptions (2.4), (4.8) and (5.4). 

The operator Kv generates a semigroup by the bounded perturbation theorem [11]. 
However, the Trotter product formula gives a better estimate of its growth. We obtain 
in particular that TKP is a contraction semigroup. The bounded perturbation theorem 
also shows that D{KV) = D(SP) so that assumptions P.4 and P.5 are satisfied. 

Next we have to turn to assumptions of Section 4. The operator QCQ is defined in 
a natural way in a subspace W C H. We denote by (QCQ)r its restriction to W(~)Hr, 
where 

HT := L2{Rn,{\ + \Z\ym-l(OdO 

and 7- € N0. We have 

Proposition 6.2 Under assumptions of this Section, for any r G N0 the operator 
(QCQ)r generates uniformly continuous semigroup in Hr of (negative) type which is 
independent of r. 

Moreover, since m is the Maxwellian defined in (6.2), we see that the assumption 
(5.4) is satisfied (yielding of course (2.4) and (4.8)). Therefore all assumptions of The- 
orems 5.1 and 5.2 (or Theorem 5.3) are satisfied and the general theory is applicable. 

Before we formulate the main theorem we translate some abstract formulae of the 
previous sections into the language of this section. We start with the coefficients of the 
diffusion operator defined in (3.4). From the previous considerations it follows that 
PSQ{QCQ)~lQSP operates in the space L2{R") <%>Lin{m) that is it acts on functions 
of the form u(x,£) = p(x)m(£) in the following way 

PSQiQCQ^QSPipm) = {Dp)m (6.12) 

for some operator D.   It can be proved [2] (see also [12]) that D has the properties 
listed in the proposition below. 

Proposition 6.3  Operator D is a second order elliptic differential operator 

(Dp){x) =   E dkld
2

XkiXlp(x), (6.13) 

with real coefficients d-u, k = 1,2,3 given by the formula 

dkl = Jdk(a^', (6.14) 

where dk is the unique function in W satisfying 

(C4)(0 = 6m(0,    A = 1,2,3. (6.15) 
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// operator C is self-adjoint, then D is formally self-adjoint, that is 

dki = dik- 

If the collision frequency (f> satisfies the following assumption: for any linear isometric 
mapping r of R3 we have 

<Krt,r?) = ttte'),    U'elS3. (6-16) 

then 
dkl = dSkl (6.17) 

for some d > 0, where bkl is the Kronecker delta. 

Let K>{t,x,£) = p(t,x)m(£). The initial value for (3.4) is given by 

0(0) = v- ePSQiQCQ)'1™, 

where v(x,v) = m(£)kx) = m(0 I «(*, W and w = Qu = u - me. Here u is the 
E3 

initial value of the original equation (6.1). 

If we define d to be the unique solution in W to 

(Cd)(i,0 = «(*,£)-m(02(z) 

(such a solution exists as the left-hand side belongs to W) then it follows that 

{PSQ{QCQYlw){x,0 = m(£) £ U'dXkd{x,Oti! 
k=i J 

R3 

and consequently we obtain the following initial value problem for p: 

dtp{t,x)   =    £ dkld
2

XkiXlp(t,x) 

P(0)   =   e-el [t'kdXkd(x,Odt'- (6-18) 
k=l J 

R3 

Finally, the initial layer for the hydrodynamic part of the solution is given by 

v, (|:^)=m^(^)=m(aE/a^'(|-^j<. (6.19) 
R3 

where d is the unique solution in W to 

(Cd) Q, x, £) = w0 (^, x, {) = exp (UjCQ) w(x, 0- 
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Here, due to the boundedness of QCQ, expQCQ has the meaning of the standard 
exponent. 

Using these results we can write down the approximation u to    the solution u of 
(6.1) obtained by the compressed asymptotic method in the following form: 

u = pm -j- <i\ + wo + f(«'i + ii>i )■ (6.20) 

where p and the remaining terms of the expansion are defined by (6.18), (6.19) and 
counterparts of (3.8) and (3.10), respectively. 

Alternatively, if we are interested only in the approximation of the hydrodynamic 
part of the solution u, defined as 

g(t,x) = Ju(t,x,t')dt\ (6.21) 
K3 

then the approximation to g is given by 

g{t,x) = p(t,x) + ep{t/e,x) (6.22) 

where p was defined in (6.19). Theorem 5.2, specified to the linear Boltzmann equation, 
has the following form: 

Theorem 6.1  If assumptions A.I, A2,  (6.7) and either (6.6) or (6.8) are satisfied 
and 

J \\pkkH2
dp\ <+°° (6-23) max 

0<k<3 
lp.3 

(or, equivalently u belongs to the Sobolev space W.f(ü,H2)), then for any T, 0 < T < 
oo. there is a constant C such that for every t € [0, T] we have 

\W(t)-u(t)\\n<Ce2 (6.24) 

and 

\\p(t) - Q(t)\\L2m < Ce2 (6.25) 

where u and g were defined in (6.20) and (6.22), respectively. 
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C J K BATTY 

The spectral bound of Schrödinger operators 

1. Background 

A Schrödinger operator on KN is a partial differential operator of the form Hm = 

Ho + m, where H0 = |A = \ £\=1 d
2/dx2 and m : RN -> [-00, 00] is a measurable 

function. Under suitable assumptions on m, ifm can be defined as an upper-bounded 

self-adjoint operator on L2(RN) (or on L2(Zm) for some subset Zm of RN). If am 

is the supremum of the spectrum of Hm, then —am is the ground state energy. 

The Schrödinger semigroup etHm generated by Hm represents the flow of heat in the 

presence of a potential m, the positive part m+ of m corresponding to excitation and 

the negative part m_ to absorption. Other physical and mathematical reasons for 

studying the Schrödinger semigroup, the ground state energy and any eigenfunction 

of Hm with eigenvalue am are discussed in Section Al of the survey article by Simon 

[13], which includes many mathematical results on these topics. In this article, we 

report on some recent results concerning am. 

If m is bounded, there is no difficulty in interpreting Hm as an operator. In this 

case, m defines a bounded multiplication operator on LP(R.N) for each 1 < p < 00, 

so Hm is a bounded perturbation of the operator H0. In fact, it is possible to define 

Hm under much weaker assumptions on m. This is usually done by means of the 

associated quadratic form am: 

D(am)=LeW1'2(RN):   f 
I JjtN 

aro(u)=  /     |V«|2- j 

I 2i    _ mw    < 00 

m\u\2. 

We shall assume throughout that m+ is in the Kato class KN, the definition and 

properties of which are given in [13, Section A.2] (see [13, Section A.3] and [15, 

Section 5] for further possibilities). Then D(am) = L2(Zm) for some measurable 

subset Zm of KN (see [10] and [2]), am is associated with a lower-bounded self- 

adjoint operator -Hm on L2(Zm), and the semigroup {etH™ : t > 0} interpolates to 

provide a semigroup {SmtP(t) : t > 0} of operators on each Lp(Zm) (1 < p < 00), 
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which is strongly continuous for 1 < p < oo. Moreover, the semigroups are given by 

the Feynman-Kac formula: 

CWt)/)(s) = E* exp (j*m(B(s))ds^f(B(t)) 

Here, {B(t) : t > 0} is Brownian motion on RN and E1 denotes expectation with 

respect to Wiener measure Px corresponding to motion starting at x. If m_ is locally 

integrable, then Zm = RJV. If m_ is locally in Kato's class, then C~(RN) is a core 

for the form am. 

The spectral bound am can be defined from the quadratic form aTO: 

(Tm=-inf|am(u):ueö(am), /      \u\2 = 1 > , (1) I am(u) : u G D(am), /      |u|2 = 1 > 

so ||5m,2(<)llß(L2) = e*CTm- Simon [12, Theorem 1.3], [13, Theorem B.5.1] has shown 

that am is also the growth bound of Sm,P for any 1 < p < oo: 

am= lim - log ||5,
m)p(<)||B(z,p). 

t—»oo t 

In particular, taking p = oo and putting / = 1 in the Feynman-Kac formula, we 

obtain an alternative formula for am: 

lim -  sup logEx 

t^OO   t   xeRN a* exp I   /   m(B(s))ds (2) 

For a given potential m, neither (1) nor (2) is particularly easy to evaluate. However, 

it is possible in some cases to obtain either estimates or qualitative information 

about <7m. For example, Fefferman and Phong [7] and Schechter [11] have given 

some estimates when m > 0, and in Corollary 2 below we give a succinct criterion 

whether am < 0 when m < 0. If m takes both positive and negative values, the usual 

technique is to separate the effects of the positive and negative parts, so results when 

m has a particular sign are useful even for the general case. 

One way to study the spectral bound is to introduce a parameter A > 0 and 

to consider the spectral function sm(X) = a\m. Although this parameter may have 

no physical significance, it has mathematical advantages. Moreover, it arises in 

linearisations of non-linear problems [9] (including some arising in mathematical 

biology [8]), where the main interest is in finding values of A such that sm(X) = 0 

and a ground state exists. 
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It is easily seen that sm is convex, sm(0) = 0 and sm(X) -> oo as A -s- oo if 
m+ ¥" 0 (a.e.). We shall see that it is possible to determine the asymptotic behaviour 

of sm(X) for large A if m < 0, and for small A if m > 0. 

2. The case when m < 0 

When m < 0, sm is a non-increasing convex function. We shall see that the value of 

•Sm(oo) := limA^oo sm(X) can be given in terms of the integral of m over classes of 

subsets of Rw. 

For a Borel subset E of RN, let a^ be the spectral bound of ±AE, where A^ 

is the Dirichlet-Laplacian on E. Thus 

-infj /     \Vu\2:ueW1'2{RN),u=0q.e. mRN\E,  f \u\2 = l] 

1 
hm -  sup  {logP* [B(s) E E for all s < t)} . 

Here, u is a quasi-continuous version of u, and "q.e." represents "quasi-everywhere". 

In the case of an open set fi, this reduces to the more familiar formula 

-infj/ \Vu\2;ueC^(ü), [ <7n = -inf<  /   IVuriueCrfft), /   M2 = 1 

For a < 0, let JT^ be the class of all Borel sets such that aE > a, and let J" 

be the class of all Borel sets E such that aE = 0. Thus an open set tt belongs to 

T if and only if Poincare's inequality does not hold in fi, i.e. there does not exist a 

constant c > 0 such that Jn \Vu\2 > c JQ \u\2 for all u in Cc°°(fi). 

Theorem 1 [3, Theorem 4.9].  Suppose that m < 0.  Tien 

lim sm(X) =inf< a < 0 :   inf    /   |m| > 0 > . (3) 
A-oo [ EeT„JE< J V  ; 

Corollary 2 [5, Theorem 4.12].  Suppose inat m < 0. The following are equivalent: 

(1) <?m < 0; 

(2) JE \m\ = oo for all E in T; 

(3) There exist u < 0 and c > 0 surft that J£ \m\ > c for aii E in Jr
a. 
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Special cases. The following special cases are worthy of note. 

1. Suppose that N = 1. Then E G Ta if and only if E contains an interval of length 

7r(-2<7)-1/2. Hence if m < 0, 

where d = mf{8 > 0 : infieR/*+S |m| > 0} [3, Corollary 4.11]. 

2. Suppose that m € L1
1
oc(R

Af) and m < 0. Then Theorem 1 and Corollary 2 remain 

valid if J> and T are replaced by the classes F° and JF° of open sets in Ta and T 

respectively [3, Corollary 4.10], [5, Corollary 4.15]. 

3. Suppose that m <E ^(R^) + L^RA) and m < 0. Then the conditions (l)-(3) 

of Corollary 2 are equivalent to: 

(4) JF \m\ = oo whenever E contains arbitrarily large balls (i.e. whenever, for all 

r > 0, there exists x in RN such that B(x, r) := {y G RN : ||y-x|| < r} C E). 

(5) There exist r > 0 and c > 0 such that fg,    ^ |m| > c for all a; in Rw. 

[1, Theorem 1.2], [5, Proposition 4.19], [6, Theorem 5.1]. 

The proofs. Various proofs are known that the left-hand side of (3) is at least as 

great as the right-hand side (or of the corresponding implication (1) =^> (3) in 

Corollary 2). The proof in [5] uses probabilistic terminology, but only in a weak way 

(the strong Markov property of Brownian motion is not needed). It is therefore not 

surprising that it is possible to give analytic proofs, using either semigroup techniques 

or variational methods. Proofs of each of these types appear in [3]. 

The only known proof of the reverse inequality in (3) (or the reverse implication 

in Corollary 2) is strongly stochastic, using the strong Markov property. The sets E 

which arise in the argument are of the form 

£=    IER 
N I   \m(B(s))\ds <a 

Jo 
> 

for some a > 0 and r/ > 0. 

In the third special case above, a proof of the equivalence of condition (1) in 

Corollary 2 with (4) and (5) was given in [1], using variational methods. Another 

analytic proof was outlined in [5, p.488], and a similar proof has appeared in [6]. 
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Since the statements of Theorem 1 and Corollary 2 have no stochastic content, 

it must in principle be possible to find an analytic proof. This would be useful, since 

it would be accessible to many people working in this field who are not familiar 

with stochastic methods. On the other hand, the evident difficulty of finding such 

a proof for a known result illustrates the power of the insight which the strong 

Markov property can provide and the advantages which can accrue from having 

these techniques at hand. 

A supplementary question. Suppose that m < 0 and 0 > sm(cc) > —oo. One may 

ask whether sm is strictly decreasing (the alternative is that sm becomes constant 

for large A)? This question has been addressed in [3, Section 5], and the following 

partial answers have been obtained. 

1. There exists m in L^C(RN) with m < 0 and 0 > <sm(oo) > -co such that 

•Sm(A) = sm(oo) for all sufficiently large A. 

2. If N = 1, m G i°°(R), m < 0 and sm(X) < 0 for A > 0, then sm is strictly 

decreasing. 

3. If TV > 2 and m G L°°(RN) with m < 0, the question remains open. However, it 

is equivalent to another question as follows. 

For a < 0, let 

v(a) = inf {sinc(l) : Q, G J>,fi bounded open} , 

where IQC is the characteristic function of R7V\fi. It is easily seen that Si (1) > <jj} 

for each Q. It is shown in [3] that the following are equivalent: 

(1) For all m in I°°(RW) with m < 0 and sm(X) < 0 for A > 0, sm is strictly 

decreasing; 

(2) For all a < 0, v{a) > cr. 

Intuitively, there seem to be two possibilities—either i/(a) = a or v(a) = S-L C(1) 

where B is a ball of such a radius that GQ = a. 

3. The case when m > 0 

When 0 < m G KN, sm is a non-decreasing convex function, and sm(X) —> oo as 

A —> oo (unless m = 0 a.e.). It is possible to estimate sm in terms of ip-averages of 

m, and to find the value of the right-derivative of sm at A = 0. 

72 



Let CON be the volume of the unit ball in R^, and let 

I/P 

m p,r =   sup   ( w  I        mp) (1 < p < oo, 0 < r < oo). 
x£KN  \tx>Nr"   JB(x,r) I 

Let tpt(x) = C{2irs)~NI2e~\x\2l2s ds. Note that a non-negative function m belongs 

to KN if and only if ||m * Vt||oo -» 0 as < -> 0+ [15, Proposition 5.1]. 

Fefferman and Phong [7, Theorem 5, p.145] and Schechter [11, Corollary 3.3] 

used Fourier analysis and variational methods to show that there are positive con- 

stants ci and Cp (p > 1) (depending only on N and p) such that 

sup ( ciA||m||i?r  ) < sm(A) < sup ( CpA||m||p, r  1 
r>0   \ r   J r>0   \ T   J 

for any p > 1. The following upper bound involving the L1 -average of m and the 

formula in Theorem 4 for the right-derivative of sm at A = 0 can be obtained rather 

easily from (2), Khashmin'skii's Lemma [13, Lemma B.1.2], and Jensen's inequality. 

Theorem 3 [4]. Tnere are positive constants C\, C[ and 6 such that, for any 

0 < m G KN, 

(1) 5TO(A) < CiA||m||i>r whenever A||m * Vv21|oo < 1/2; 

(2) sm(A) < C{A||m||1>r whenever \JQ p\\m\\itPdp < 8. 

Theorem 4 [4].  Let 0 < m € KN. Then 

4n(0+)= bm -||m*^||oo. t^-oo t 

Moreover, s'm(0+) = 0 if and only if limr^oo ||m||ijr = 0. 

4. The case when m changes sign 

If m takes both positive and negative values (on sets of positive measure), then sm 

is convex and sm(X) —>• oo as A —► oo. Most techniques for estimating sm depend on 

separating the positive and negative parts of m and using the inequality 

Sm(A)<-(sm_(2A) + sm+(2A)). 

Hence 

s'm(0+)<s'm_(0+) + s'm+(0+). 
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Thus Theorem 3 and some upper bounds for s'm_ (0+) obtained in the proof of 

Theorem 1 give a sufficient condition that s'm(0+) < 0 and hence that there exists 

a unique Ai > 0 such that sm(Aa) = 0. The precise estimates are complicated [3, 

Remark 4.7], but we can read off the following special case from Corollary 2 and 

Theorem 4. 

Theorem 5 [4, Theorem 3.2].  Suppose that m £ ^(R^), 0 / m+ € KN, and 

(1) Jnm_=oo for all open sets fi in T; 

(2) lim ||m+||i r = 0. 
r—>oo 

Then there exists a unique Ai > 0 such that sm(Xi) = 0. 

5.  Some generalisations 

1. Elliptic operators. It is not important that H0 is |A; it is possible for H0 to be 

any symmetric, strongly elliptic, operator of the form E!^=I d/dxi(aij(x)d/dxj). 

The results are unchanged in nature; for a < 0, the class T„ depends on H0 {T 

does not); in the formula for xpt in Section 3, the Gaussian kernel is replaced by the 

appropriate kernel for H0. The role of Brownian motion is taken by the appropriate 

diffusion process. More details may be found in [2, Section 8] and [5, Section 6]. 

2. Singular potentials. In the case of a negative potential (Section 2), it is possibl 

to allow the potential to be very singular (see [14]). Thus m need not be a funct 

but may be of the form -fi, where \i is a positive (not necessarily cr-fmite) measure 

on the Borel subsets of RN such that ß(E) = 0 for all polar sets E. The quadratic 

form is given by: 

am(u) =   /      |Vu|2+  /      \u\2 d^. 

In Theorem 1 and Corollary 2, J£ \m\ is replaced by ß(E). 

If Q is an open set and m : tt -> [-co, 0] is measurable, we can put 

,„       f JF \m\    if E \ Q is polar 

(. oo otherwise. 

Then sm(A) is the spectral bound of the Schrödinger operator ~AQ + Am with 

Dirichlet boundary conditions on L2(ti). More details may be found in [5, Section 

6]. 
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3. Periodic time-dependent coefficients. Daners and Koch Medina [6] have extended 

one case of Corollary 2 to the case of a bounded negative potential m(x,t) which 

depends smoothly and periodically (with period T) on t, and is uniformly continuous 

in x. They show that the solutions of 

du      TT jN 
— = HQU + m{x,t)u 

converge to 0 at an exponential rate if and only if J0 JE \m(x, t)\ dx dt = oo whenever 

E contains arbitrarily large balls. 

REFERENCES 

1. W. Arendt and C.J.K. Batty,  Exponential stability of a diffusion equation with absorption, 

Diff. Integral Equations 6 (1993), 1009-1024. 
2. W. Arendt and C.J.K. Batty, Absorption semigroups and Dirichlet boundary conditions, Math. 

Ann. 295 (1993), 427-448. 
3. W. Arendt and C.J.K. Batty, The spectral bound of Schrödinger operators, Potential Anal, (to 

appear). 
4. W. Arendt and C.J.K. Batty, The spectral function and principal eigenvalues for Schrödinger 

operators, preprint. 
5. C.J.K. Batty, Asymptotic stability of Schrödinger semigroups:  path integral methods, Math. 

Ann. 292 (1992), 457-492. 
6. D. Daners and P. Koch Medina, Exponential stability, change of stability and eigenvalue prob- 

lems for linear time-periodic parabolic equations on M.N, Diff. Integral Equations (to appear). 
7. C.L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206. 
8. W.H. Fleming, A selection-migration problem in population genetics, J. Math. Biol. 2 (1975), 

219-233. 
9. P. Hess and T. Kato,  On some linear and nonlinear eigenvalue problems with an indefinite 

weight function, Comm. Partial Diff. Equations 5 (1980), 999-1030. 
10. H.P. McKean, -A plus a bad potential, J. Math. Phys. 18 (1977), 1277-1279. 
11. M. Schechter, The spectrum of the Schrödinger operator, Trans. Amer. Math. Soc. 312 (1989), 

115-128. 
12. B. Simon, Brownian motion, Lp properties of Schrödinger operators,  and the localization of 

binding, J. Funct. Anal. 35 (1980), 215-229. 
13. B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982), 447-526. 
14. P. Stollmann and J. Voigt, Perturbation of Dirichlet forms by measures, preprint (1992). 
15. J. Voigt, Absorption semigroups, their generators, and Schrödinger semigroups, J. Funct. Anal. 

67 (1986), 167-205. 

C.J.K. Batty 
St. John's College 
Oxford 0X1 3JP 
England 

75 



L BERLYAND* AND J XINf 

Renormalization group technique for 
asymptotic behavior of a thermal diffusive 
model with critical nonlinearity 

1     Introduction 

The familiar thermal diffusive model [15], describing a premixed flame from a one-step 

chemical reaction A —> B reads: 

ut   =   Axu + vf(u), 

vt   =   A-1Axv - vf{u), (1.1) 

where x G Rn, u is the temperature, v is the mass fraction of the reactant A; A is the 

Lewis number, strictly positive; f(u) is an Arrehnius reaction term of the form e~u, with 

E being the activation constant. 

There have been many studies on system (1.1) for front like L°° data. Existence, 

stability and instability of traveling waves can be found in [5], [15], [16] among others; and 

related Cauchy problem regarding decay and boundedness in [2], [3], [4], [12] and references 

therein. In [2], [3], [4] and elsewhere, results on decay of v typically assume strict positivity 

of initial temperature field at one end of the infinities in case n — 1. 

In this paper, we are interested in the decay of solutions for system like (1.1) when both 

initial data u0 and v0 are integrable and belong to the space V-(fi}) (~l L2(Rl) f) L^^R1). 

Since there is no positive constant lower bound for u, the function v will in general not 
decay exponentially. 

*Dept of Math k Material Research Lab, Penn State Univ, Univ Park, PA 16802. 
tDepartment of Mathematics, University of Arizona, Tucson, AZ 85721. 
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Notice that f(u) < cpu
p, for u > 0 and any p > 0, and some constant cp. By maximum 

principle, solution (u,v) of (1.1) is bounded from above by that of system (cp normalized 

to one): 

Ut   =   uxx + vup~1, 

vt   =   A_1vxx, (1.2) 

with the same inital data. When p > 3, by either an integral equation and contraction 

mapping argument or the recent RG method of Bricmont, Kupiainen, and Lin [7], we know 

that the solution of system (1.2) decays to zero with rate 0(t~2) if the initial data are 

small enough. This means that for small initial data the Arrhenius reaction e~ « or up , 

p — 1 > 2 is too weak so diffusion dominates and leads to decay. 

We are motivated to consider the following system instead: 

ut   =   uxx + vu"'1,    u{x,0) = uo(x) > 0, (1.3) 

Vt   =   A"1«« - üu"-\    ü(ar,0) = üo(x)>0, (1-4) 

where p £ (1,3]. Existence of globally bounded solutions to system (1.3)-(1.4) and its 

analogue in several space dimensions have been studied in [1], [10], [14] for bounded do- 

mains. Some of their arguments readily extend to R1 for spatially decaying initial data in 

Lp, 1 < p < oo, see [13]. However, whether or not the solutions on R1 decay to zero is not 

clear in general. 

On the other hand our study was motivated by the scalar semilinear diffusion problem 

ut = uxx±up,   u(x,0) = uo(x)>0. (1.5) 

It is well known that in case of small initial data p = 3 is the critical exponent, see [7], [9], 

[11] and references therein. This can be shown in various ways, but for our further needs 

we recall the renormalization group (RG) argument due to Bricmont, Kupiainen and Lin 

[7]. We pick a number L > 1 and observe that the rescaled solution 

u(L\x,t) = Lu{Lx,L2t) (1.6) 

satisfies the equation 

U[L) = «£> ± [u^n3-p. (i.7) 

After n iterations of the rescaling, we obtain the factor Ln(3~p'> in front of the nonlinearity. 

Because of (1.7), the nonlinear term has almost no effect for long times (weakly nonlinear 
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behavior) for p > 3, see [7] for the RG argument. It was also shown in [7] that if the critical 

nonlinear term (-Aw3) appears in (1.5), with A < 1 an additional small parameter, the 

long time behavior is that of the case p > 3 with a logarithmic correction. 

For the system (1.3)-(1.4) similar rescaling argument shows that weakly or strongly 

nonlinear behavior is determined by the critical exponent p = 3. For p = 3, small initial 

data, and the nonlinear terms not necessarily small, we obtain large time asymptotics of 

solutions of (1.3-1.4) with decay exponent for v different from the linear case. This is 

possible due to interaction between nonlinear terms which have different signs (source and 

sink). Our consideration is based on RG method analogous to [7]. However, a straight- 

forward attempt of using this method faces a serious difficulty. Namely, the method of [7] 

was essentially based on a self-similar solution. An easy calculation shows that the system 

(1.3)-(1.4) has no self similar solutions of the form 

'"•^H'fe)''""^))- M 
In fact, this is also true for 1 < p < 3 due to the sign difference. The key observation is 

that instead of finding exact asymptotics one can evaluate the rate of decay by employing 

super (sub) self-similar solutions. In brief, our argument goes as follows. First we observe 

that by maximum principle the solution of (1.1) is always above the solution u of the heat 

problem ut = uxx,u(x,0) = u0(x). Since u converges to a self similar solution, as t —» oo 

we obtain 

u > a~7=/o + h.o.t = —j=eT « + h.o.t (1.9) 
Vt V4x< 

for large enough t and some constant a depending only on the initial data.   Ignoring the 

higher order terms for the moment, we see that by maximum principle, v is bounded from 

above by v which solves the equation 
2 

vt = A-'vxx - j(fo)2v (1.10) 

for t > t* > 1, and v(x,t$) - v(x,t$). The equation (1.10) admits self-similar solutions 

of the form v = t~2f*(-^). The exponent a and the function /* are principal eigenvalue 

and eigenfunction of a Sturm Liouville problem. This allows us to find a lower bound for 

a of the form a = 1 + g(A, e) with g(A, e) > 0, which means that v decays faster than 

0{t~1/2), i.e. nonlinearity essentially affects the long time behavior. We further notice that 

for t > tg, u is bounded from above by ü, which satisfies the equation 

M( = uxx +vu2,t > to, 
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v(x,t*0) = u(x,t*0). (1.11) 

Since a > 1, the RG method applies and shows that ¥ decays to zero like 0(t~1/2). Further 

use of maximum principle and RG method gives lower bounds of decay of similar type. We 

denote ||u|| = supiefii(l + k2)(u(k)\ + |^w(fc)|), where u(k) is the Fourier transform of u. 

Our main result is 

Theorem 1.1 Consider the system (1.3-1.4) with p = 3 and nonnegative initial data such 

thatu0,v0 € L\R)nL2(R)nL°°{R),uo ^ 0,vo ^ 0 and |KI| + IM < e for some e > 0. Fix 

any S G (0, |). Then there exists an e0 G (0,1) such that if e <E (0,e0) there exist numbers 

a = a(e) > l,a' = a'(e) > a, ct'(e) —> 1 as e —» 0 and positive numbers A,A',B,B' which 

depend on e and initial data (uo,t>o) so that 

A'^(^)+0(s^)s"(l'():S^/o*(^) 

/or a// x e R1, ast—> oo. 77ie functions /Q(-) and /*(•) are strictly positive and exponen- 

tially decay at infinities. 

The rest of the paper is organized as follows. In section 2, we derive the spectral problem 

which determines the self-similar supersolution v, and show upper and lower bounds on the 

new exponent a. In section 3, we briefly describe the ideas of the renormalization method 

and outline how it is applied to our problem. We refer to [7] for more details of the method 

and [6] for the complete proof of the main theorem. 

We remark that if p € (1,3), the equation (1.10), with p- 1 in place of exponent 2, does 

not admit self-similar solutions of the form t~a/2f(x/y/i). So one has to come up with a 

different approach to investigate the long time behavior. 

2     Self-Similar Supersolutions 

In this section, we study the self-similar solutions of the equation (1.10). As it was mentioned 

in the Introduction there are no self-similar solutions to system (1.3) and (1.4) of the form 

79 



(1.8) with positive /j and /2 required by physical nature of the problem (see [6] for details). 

We look for a self-similar solution of the form -y/(£), £ = ^j, to equation (1.10).where 

£ = ^j. Upon substitution, we have: 

- f r-»/ - ir-f JL/'. A-.,-t r _ £.-*r*/. p.1) 
or 

- A"1/" - ^/' + ^e^/ = |/,   / € £'(#), / > 0. (2.2) 

We see that a and / are principal eigenvalue and eigenfunction of the elliptic operator 

in (2.2).  We also observe that if we had up~\ p ^ 3, in (1.3) and (1.4), the powers of t 

would not cancel in equation (2.1).   Suppose that (2.2) has desired solutions, integration 
over £ shows: 

\i fdt<U fdC + ff e-efifdt^l M, 2Jm 2JRI     "     Air JFP J
  

S
      2 JR>     

S 

or 

a > 1. (2.3) 

Let us analyze the problem (2.2). Making the change of variable, / = e-*2A/8V>, we get 

rid of the first derivative term: 

- A-v+(£*<■ + £,-* +!)* = !♦ (1U) 

and we require ij> € L2(R}). This is a standard eigenvalue problem and there exists a 

positive principal eigenfunction whose corresponding eigenvalue gives a. Using smallness 

of a and perturbation method, we have the bound: 

a > 1      a2 I a4 1 
+ 0(a6). (2.5) 

V4A-1 + 1     2A-X + 1_ 

An upper bound for a can be obtained by variational method for any a, and it reads: 

a      1 a2 

*9 +        A,..,        • (2-6) 4X1/2A-1 + 1 2-2 

We summarize our analysis into: 

Proposition 2.1 Equation (1.10) admits a unique self-similar solution of the form 

sucA that f > i sah'sfcs (2.5j, (2.ffj; /*(£) is pos^iwe and decays faster then 0(e-A?/8) at 

£ infinities.  Uniqueness is up to a constant multiple of /*. 
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3    RG Method and Large Time Asymptotics 

In this section, we use the self-similar supersolutions of section 2, the RG method [7], and 

the maximum principle to study the long time decay of solutions of system (1.3) and (1.4). 

This will allow us to show decay of solutions for a larger class of initial data than those by 

employing only the maximum principle. Recall the norm: 

\\u\\=snp(l + k2)(\Ü(k)\ + \ü'(k)\), (3.1) 
fce«1 

where u is the Fourier transform of u, and prime denotes the derivative in k. Define the 

Banach space B of functions / with / G C1^1) equipped with the norm (3.1).   It is 

straightforward to check that B is continuously imbedded into LX(RX) D L2{R2) D L^iR1). 

Now we review the basic ideas and procedures of the RG method on a formal level(see 

[7] for details). For this, we consider the scalar equation: 

ut   =   uxx + \u\p,   t>l 

u\t=i   =   u0(x). (3.2) 

Since we expect u to behave in a self-similar way as t —> oo, scale u with constant L > 1 

and consider: 

«i(x,t) = Lu(Lx,L2t). 

The function UL satisfies the equation: 

UL,t    —    «L,n + L3
~

P
\UL\

P 

Uiltei   =   Lu(Lx,L2) = RLu0(x), (3.3) 

where RL is called the renormalization group map. After n times of such rescaling, the 

function ujj% satisfies: 

ML",i     =     UL",xx + {Ln)  _P|wt»|P, 

«i»|t=i   =   iJi»oJJi»-io-"oiJiUo(i), (3.4) 

where RL* denotes the n-th RG map. Note that each time the nonlinear term changes, 

so RLrv depends also on the rescaled nonlinearity. We skip this dependence here for ease 

of presentation. If p > 3, and n —» oo, the rescaled nonlinearities go to zero, and i?/,» is 

approximately the RG map of the heat equation for large n. The product 

RLn o RLn-i • • • o RLu0(x) -* fo(x), 
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as n -» oo, where /* is a fixed point of the RG map of the heat equation. It follows that: 

Lnu{Lnx,L2n)^f*{x). 

Letting t = L2n, we have: 

t2u(t2X,t)-f*(x)^0, (3.5) 

as t —y oo, uniformly in x since the limit will be justified in our norm || • || that imbeds into 

L°°. Replacing t?x by x in (3.5), we get: 

u(x,*)-H/*(-^) = 0(H), 

as t —> oo. We will show below that up to a multiplicative constant 

1 x2 

fo(x) = -7=exp{- — }, 
V47T 4 

so what we just showed is simply the convergence of solutions to the fundamental solution 

of the heat equation for large time. 

To recover the functional form of f$ for the heat equation ut = uxx, we start with: 

Rau0{x) = Lu(Lx,L2), or Rou0 = u(|,L2). Recall that: 

u(|, L2) = exp{-(|)2(L2 - i)}w0(|) = exp{-A:2(l - i"2)}^). 

The fixed point f£ satisfies: 

fS(k)=exp{-k2(l-L-2)}f^), 

which implies when passing to the limit L —> oo that: f$(k) = e~*2/o(0)- Normalizing 

/o(0) to one and taking the inverse Fourier transform then gives the result. It is easy to 

check that if g(0) = 0,then 

||i?o<7||<CL-%||, 

for constant C independent of L,which provides the contractive property of RQ if we choose 

L > C.To show convergence of solutions of heat equations to /£, we decompose initial data 
as: 

u0(x) = d/* +g0(x), 

such that C! = wo(0), <7o(0) = 0. It follows that 

R%u0 = ClfS(x) + RZgo(x), 
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where 

\\B5go(x)\\<(CL-1r\\go\\-+0, 

as n —► oo. In the presence of nonlinearities, one has to analyze the product RL"0- ■ -oRL by 

iteration with more estimates, and update constant ct at each step of iteration. Eventually, 

the ci's converge and the second term in the decomposition decays to zero. 

Applying the RG method to our system, we analyze: 

vt   =   A-1»«-«^*)2,   t>t*0, 

v\t=tt   =   v(x,tt) = vZ(x). (3-6) 

where u* = aH/*(^j) - bt6'1^^), a and b two Positive constants, S G (0, §); ft is 

a smooth spatially decaying function; t% is roughly the time for the solution of the heat 

equation to approach its fundamental solution up to a higher order correction. Also we 

study the equation: 

Tit    =    Üxx + v u ,    t > to, 

«1«=**   =   u(x,t*0)=u*0(x). (3.7) 

The functions w and v bound u and v from above respectively. Based on our knowledge of 

self-similar solutions, we define the RG map: 

(uL(x, l),vL(x, 1)) = (Lu(Lx, L2), Lav(Lx, L2)). 

We have: 

Proposition 3.1 Let (u,v) be the supersolution defined by (3.6), (3.7).  Then 

n(x,t)   <   At-WfSi^ + Oit-f2) (3-8) 

v(x,t)  < i?rf/:(^) + 0(r<5-Ä)-f) (3.9) 

for some numbers A = A(u*), B = B(v*) and t > t*. Here 0 < 6 < \. 

By maximum principle, v > v, and v solves: 

vt = A_1i^x - mil, 

v\i=t* = v(x,t*), (3.10) 

83 



where w* denotes the right hand side of (3.8). Applying the same RG analysis shows that 

there exist constants B' = B'{e) and a'(e) > 1, /*, strictly positive such that 

v(x,t) >v = BT^fl,^) + 0(4-*^) 

as t —y oo with a < a'. Combining these upper and lower bounds for the solutions (u, v) 

completes the proof of Theorem 1.1. 
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I CIORANESCU AND G LUMER 

On ÄY/^-convoluted semigroups 

For problems of the type v! = Au, u(0) = a;, in a Banach space X, we consider the regu- 
larized problems v' = Av + K(t)x, v(0) = 0 (K being a scalar kernel) and study the evolution 
operators Sx(t) giving the (local mild) solutions; we obtain generation results generalizing 
and improving earlier Hille-Yosida type results and give an application to multiplication 
operators in IP—spaces. 

Let X be a Banach space, 0 < r < co, and A a closed linear operator with domain 
D(A) c X. We consider the problem 

(1) u' = Au, u(0) -x, 0 < i < T < oo, x eX 

to which we associate the if-regularized equation on [0, r) which is 

(2) v' = Av + K(t)x, v{0) = 0, 0 < £ < T < oo, xeX 

where K is a scalar function on [0, oo) with K(0) = 0. 

Definition. If there exists a strongly continuous operator family SK = {SK{t)}o<t<r such 
that jQSK(s)xds e D(A) and SK(t)x = AJ*SK(s)xds + K{t)x for all x e X and 0 < 
t < T, then we call SK a K(t)-convoluted semigroup if A satisfies the uniqueness condition, 
respectively a K(t)-convoluted semigroup in the extended sense, if no uniqueness condition 
is assumed. We briefly write K-c.s.g, respectively K-c.s.g.e. and we always say that A is 
the (respectively a) generator of SK- 

It is not difficult to prove that the problem (1) is well-posed if and only if A is the 
generator of a K-c.s.g. We also note that if K(t) = tk/k\ or K{t) = E(t) where E(t) is the 
fundamental solution of an ultradifferential operator of Gevrey type we reobtain the concepts 
of local fc-times integrated semigroups [1], [2], [12], [13] and local E-convoluted semigroups 
[7] respectively. 

Remark 1. Suppose that K{t) is C1 on [0, oo); then 
i) one can prove that the following functional equation is satisfied on [0, r) 

ft+S rt 
(3) SK(s)SK(t)= J      K'{t + s-r)SK(r)dr- j  K'(t + s - r)SK{r)dr. 

It follows in particular that 

SK{s)SK{t) = SK(t)SK(s), s,t€ [0, T). 

ii) one can extend SK'*K = K' *SK from [0, r) to [0, 2r) by the formula inspired by (3) 

(4) SK,*K{t) = SK(t)SK(t -s) + (K'_s * SK)(t -s) + (K'_(t_s) * SK)(s) 
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for s e [0, T'), 0 < T' < T and t € [r', 2T'). The result is also true for SK*K SO that, in 
particular, if A generates a K—c.s.g. on [0, r)then it generates a. K * K—c.s.g. on [0, 2r). 
We shall assume further that K{t) satisfies the following properties: 

K(0) = 0,    K(t) is C1 on [0,oo), \K'(t)\ < cewi for some c > 0,  w > 0 and that 
K(t) = /0°° e-tzK(t)dt ^ 0 , for #ez > w. 

In what follows we are interested in resolvent characterizations and generation results, 
i.e. in Hille-Yosida type theorems. 

We define the finite Laplace transform of SK as Lx(z,t) = /0
te~S25A-(s)ds , for 

z € C, 0 < t < r, and the approximate resolvent of A 

RK(z,t) = Kr\z)LK(z,t), Rez>u>, 0 < t < r. 

Lemma. For all x e X, Rx{z,t)x e D(A) and 

(5) (z - A)RK(z, t) = I - BK{z, t), 0<t<r, Rez>u 

where 
BK{z,t)=K>  \z) 

■OO 

e tz e-szK'(s)ds 

Proof. We can write 

LK{z, t) = e~tz f SK{r)dr + z J e~sz (j' SK(r)dr) ds. 

It follows that LK(Z, t) € D(A) for every x E X and 

(z - A)LK(z, t)   =   zLK(z, t) - e-tz(SK(t) - K(t)) - z f e-sz{SK{s) - K{s))ds 
Jo 

=   -e~tzSK(t) + e~tzK(t) + z f e~szK{s)ds 
Jo 

=   -e-tzSK(i) + ( e'szK'{s)ds 
Jo 

/OO 

e-szK'{s)ds 

We obtain (5) by multiplication with K'    (z). 
a 

Let $ be a real valued positive function on [ro, oo), ro > 0, of class C1 with $' > 0 and 
such that lim $(r) = oo. We introduce 

r—>oo 

$(r) 
x($) = x = Hm sup  

r—>oo r 

lnr 
cr($) = a = lim sup 

$(r) 

87 



and 

/z($) = ß = liminf 
*(r) 

For a, ß > 0 we denote 

rQ/3($) = rQ/3 = {* € C; Äe* > /?, flez > a$(|z|)}. 

Theorem I. Suppose that A is the generator of a K—c.s.g.e. on[0, T) and that \K~1(z)\ — 
0(e^(kl))) for some L > 0. T/ien V0 < (L - P)T~

1
 <a< x~\ there exists ß with [ß, oo) C 

rQ/3 C p(A) and M > 0 such that 

l**/1)ll£RMr°Hr)'*r "r* 
Proof. Let 0 < (L — /X)T     < a < X    ;there is ri > max(a;,ro) such that —— < — for 

r a 
r > ri and consequently, [n, oo) c FQri. Consider now z e rQri, r = \z\, 0 < t < T and 
estimate Bn{z,t) of the above lemma; we obtain: 

e
L*(M)   / D Ju-Rez)t 

(6) ||iMM) II <consL^—   6-^115^)11+C%  
|2|      y Rez — u 

<const.e{L-atWr)-]nr. 

Since L < ar + p, there are 0 < to < r and ßo < ß such that 

(7) L<crf0+/io- 

Moreover, there is f > n with 

(8) Mo^M - lnr < 0  for r > r. 

Then (6) and (8) yield 

\\BK{z,to)\\    <   COnsi.e(L-öt°-'io)*(r)+«',J,M-!nr 

<   constAL-at°-M)^r\ z e Ta¥. 

Since lim $(r) = oo, we can now choose ß > r such that by (7) 

\\BK(z,t0)\\<- for 2€rQ/3(crQFcrQri). 

Thus we can invert I - BK{z,t0) and ||(7 - BK{z,to))~l\\ < 1- Consequently, TQ/3 c p(A) 
and by formula (5) 

\\R(z,A)\\    =   \\RK(z,t0)(I - BK{z,t0))-'\\ 

11^(2,^)11 M n(e^\    . _ s -w^r-w^r°V^r) iorzeTaß- 
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where M =      sup   ||SK-(S)||   t0. 
\0<s<to J 

a 

We now get via Ljubich's uniqueness result the following 

Corollary. // in the context of Theorem I we have 

liminfÄ^O 
r—»oo f 

then the uniqueness property holds for A and SK is indeed a K—c.s.g. 

We also have the following generation result 

Theorem II. If for 0 < a < x_1,  ß > 0 and -1 < 7 < I - cr with I > 0 one has 
Ta/3 C p{A) and 

(9) \K{z)\ = O (e-;*^l>) ,   and  \\R(z, A)\\=0 (e"*^») , z e Taß, 

then A is a generator of a K\-c.s.g.e. on [0, r) with r = (/ -j-a)a~l and a K\-c.s.g. if 
X = 0 where Kx = D~XK = l*K. 

Proof.   Since  a < x_1   we can choose ß > max(w, r0) such that [ß, 00) C Taß 
(see the beginning of the proof of Theorem I) and we can now assume without loss of generality 
that this is the ß of our above statement.  Consequently Taß is a nonvoid region with C1 

boundary dTaß where for z — relB we have \dz\ < const.dr (for Rez > ß). 
For t > 0 we define 

(10) S(t) = ^-f      etzK(z)R(z,A)dz. 
2m Jdraß 

We have for z e dTaß 

(11) \\etzk(z)R(z,A)\\ <const.e(ta+T"Z)$(r). 

Let 0 < T' < T = (I - 7 - o)oTx; then r'a + 7-; + o-<Ta + 7-Z4-a = 0. We choose now 
a a such that a<W<a + (r- r')a\ there are e > 0 and r' > ß such that 

cr + (r — r')a      ,  lnr 
1 < 1 + e < — and —^T < W. 

a $(r) 
Then for t <r' and r > r' we obtain 

(to + 7-0$(r")   =   (Ta + 7-/ + a)$(r) - (a + (r - t)a)$(r) 

< —^ —lnr < -(l+e)lnr. 

It follows from (11) that 

— COT) sA 
\\euK(z)R{z,A)\\ < ^,     z e dTaß, \z\ > r' 
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uniformly for 0 < t < r' < r, so that the integral in (10) exists. 
We further have 

f S(s)ds   =    f ds  ^- f      eszK(z)R(z,A)dz 
JO JO \_2m JdFaß 

=   TT-. /        K(z)R(z,A)dz 
2m JdvaB     z 

and 

A f S(s)ds   =   -^ /      ——-K(z)(zR{z,A)-I)dz 
Jo 2m Jaraß     z 

=   W~- I      etzK(z)R(z,A)dz--^. f      etz^-dz 
2m Jdvaß 2m Javaß z 

=   S(t)-Ki(t). 

(By Cauchy's contour theorem, —-- /        -dz = 0 and   /       ——zR(z,A)dz = 0 
2m Jaraß    z 2m JdTaß    z 

J       rico _ If K(z) 
and by the Laplace inversion formula, K\(t) =  /      e%tzKi(z)dz =  /       etz——dz). 

2m J-ioo 2m Jdvaß z 
It is now clear that {S(t)}0<t<T is a Ki—c.s.g.e. generated by A. Finally, we note that for 
every e > 0 and r > r(s) 

\n\\R(r,A)\\      7<3>(r) + const      7(x + e)      const 
r — r —        r r 

so that hmsup—"   v      y" < X7- 
r—>oo T 

It follows that if x = 0, Ljubich's uniqueness condition works. 
□ 

Remark 2. Our results permit not only to unify earlier generation results but also to improve 
them. 

Indeed, in order to reobtain the results on local fc-times integrated semigroups, we take 
tk 

$(r) = lnr (r > r0 > 1); then x = 0 and a - ß = 1. With L = k + 1,  K(t) = — and 

a becoming a , Theorem I essentially gives Theorem 2.1 of [2]. If in Theorem II we take 
a,ß > 0, -1 < 7 = k < p-l &ndl =p where p e IN then r = (l-j-a)a^1 = (p-(fc+l))a_1, 
and ||.R(,Z,J4)|| = 0(\z\h). Hence we reobtain Theorem 2.2 from [2]. Similarly, one also finds 
earlier results of [7] on E—convoluted semigroups; we take in this case essentially $(r) = 
r°, 0 < a < 1. Then x = & = ß = 0, K(t) = E(t) the fundamental solution of some 
ultradifferential operator. 

If we take in Theorem II   a, ß, 7 > 0,   / being now la, $(r) — r°, we reobtain Theorem 

2.5 of [7]. With La for L, $(r) = ra + - In r(~ ra for large r) we reobtain Theorem 2.2 of [7] 
hi 

from Theorem I above. 

90 



We shall further show that the generation Theorem II contains and extends Chazarain's 
results on abstract Cauchy problems well-posed in the sense of ultradistributions [5], [6], as 
well as further generalizations due to Beals [3], [4], Emamirad [10] and Cioranescu-Zsido [9]. 

Let Mk, k = 0,1,2,... be a sequence of positive numbers satisfying the conditions 

„ ,   ^ Mfc_i 
(11) M0 = 1, Mi < MuMfc+i   and   ^ —^— < oo, 

and define the associated function Mir) = sup In-—. Then lim M(r) = oo, M is of class 
k Mk r^co 

C1 and M'(r) > 0 for large r and f™ ^-dr < oo. Moreover x = a = 0  (see [11]). 

Let mi. = —, k e IN; then V^ — < oo and we can define the following entire function 
Mk-i ^ mk 

z 
P{z) = U(l + —)- £=\    mk 

k
 - k   \z\ \z\k 

7 \Z\ \Z\ 
For Rez > 0 we have |P(z)| > sup TT |1 + —| > sup J] — = sup ^- so that \P{z)\ > 

k j=i        mi        k j=i mi       k      k 

eM(\z\) for Rez > Q Then we (jij-ggtiy obtain from Theorem II the 

Proposition. Suppose there are a, /?, 7 > 0 withTaß c p(A) and \\R(z,A)\\ = 0(eiM{^)), 
z G TQß(M); then A generates a Ki-c.s.g. on [0, r) with r = (I - i)a~l, I being an integer 

> 7 andK defined by K~l(z) = ni£i(l + ^Y f°r Rez > °- 

Under the conditions of this proposition but assuming A densely defined, J. Chazarain 
[5], [6] proved that A generates an ultradistribution semigroup of class (Mk). More generally 

Corollary. Let * : [0, 00) —> [0, 00) be increasing such that J™ ^-dr < 00 and suppose 

that there are a, ß, 7 > 0 with rQ/3(tf) C p(A) and \\R(z, A)\\ = O (e^'V) , z e IV Then 
there is a kernel K and r > 0 such that A generates a K\-c.s.g. on [0, r). 

For the proof, we note that under the conditions on the function * there is a sequence 
(Mk) satisfying (11) such that *(r) < const.M(r), r>0 (see Theorem 1.6 in [9]). 

Thus we can apply the above proposition. 

We note that the classes of densely defined operators such that Taß(^) C p(A) but 
with polynomial growth for \\R(z, A\\ were considered by Beals [3], Cioranescu-Zsidö [9] and 
Emamirad [10]. 

An application. Let Q be a c-finite measure space, m :  Q —► C a measurable function 
and define in X = L"(fi), 1 < p < 00 the operator A by Af = mf, with the usual domain. 

Let K and $ be as in Theorem II and suppose that Taß($) C p(A). We define 

(SK(t)) /(C) = (J*K(t - s)em^sds^ /(C), 0 < t < r, / e L*(n). 

Then one can prove that SK is a K-c.s.g.e. on [0, r) for ra < I whose generator is A. 
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Finally although we do not at all develop this matter here (it is announced also in [8] 
and will be included in a later joint paper) we briefly indicate that (and how) K -convoluted 
semigroups are a particular case of /f-evolution operators Sn{t) (K—e.o., whose theory was 
developed earlier for K(t) - tn/n\, n > 0, in [12], [13]). K{) can now have (bounded) linear 
operator values (i.e. in B(X)). While for general Sj<(t) we do not have generation results 
of Hille-Yosida type, other useful results-some mentioned above like the functional equations 
(3), (4), and the extension result from [0, r) to [0, 2r)-admit generalizations to the «S/<-(£) 
context. In that context K : [0,r) —> B(X); t H-> K(t) is C1 (strongly), the K{) commute 
and commute with A on D(A) (A having the uniqueness property), 

ZK = ZK{T) — {x e X; 3 a C1   solution VK — Vf((t,x) of the equation  (2) on   [0,r)} 

SK{t) is defined on ZK by SK{t)x = v'K{t,x). K-c.s.g. correspond to ZK — X. Set K(t) = 
C + Ko(t) where C = K(0) (this setup includes C-semigroups for K0Q = 0). As said many 
results are still true in this context. For instance, (3) still holds in some form on ZK(T) 

if C = 0, but also a generalized form holds when C^0; also approximate resolvents RK 

can be treated and the analogue of the lemma above is true ( see also Section 4, Part I of 
[13]). There are indeed many situations (for instance for certain multiplication operators on 
Lp(fl), normal operators on Hilbert spaces,...) where A does not generate a K-c.s.g. but 
does generate a K-e.o. (i.e. a family {SK(t)}0<t<r of /C-evolution operators SK{t)) with 
dense ZK spaces. 
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J COOPER AND H KOCH 

Remarks on the spectrum of a linear wave 
operator with time periodic boundary 
condition 

In a system of ordinary differential equations with periodic coefficients the evolution 
operator through one time period has eigenvalues and the corresponding eigenvectors 
can be used to construct Floquet type solutions of the form 

elptv(t) 

where v(t) is periodic. In some cases this can also be done for partial differential 
equations. A parabolic equation with a time periodic potential term was treated in 
[I] and a hyperbolic equation with a time periodic potential was discussed in [2]. In 
both cases it was found that Floquet type solutions existed. 

In this note we summarize some of the important points of [3] which treats the 
following example of a hyperbolic partial differential equation with a time periodic 
boundary condition. We have found a situation where the usual Floquet theory is 
not possible because the evolution operator has no eigenvalues. The boundary value 
problem is for the linear wave equation in one space dimension. Let s(t) be a smooth 
function of period T such that s(t) > 0 and \s'(t)\ < 1 for all t. Let Q be the region 
in (x,t) space 

Q={(x,t):0<x<s(t),     teR}. 

We assume that s(0) = I. The boundary value problem is 

utt ~ Uxx = 0 in Q (1) 

u(0,t) = u{s(t),t) = 0 for all * G R (2) 

u(x, 0) = u0(x), ut{x, 0) = u^x)     for 0 < x < 1. (3) 

The hypothesis \s'(t)\ < 1 implies that the initial boundary value problem is well posed 
in the following sense:  If u0 G H£(0,1) and Uj € L2(0,1), then there exists a unique 
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weak solution u(x,t) of (1), (2), (3), such that t -> u{.,t) is continuous with values in 
^(R) x L2(R) when u is extended by zero outside Q. One can also demonstrate well 
posedness for initial data in closed subspaces Xm C Hm(0,1) x iT71"1^, 1) where Xm 

incorporates appropriate compatibilty conditions of the initial data with the boundary 

conditions. 
We want to study the spectrum of the evolution operator 

Um(Q,T) : Xm -> Xm 

which takes the initial data (u0,«i) at time zero into (u(.,T),ut(.,T)). The spec- 
tral properties of Um{0,T) are determined by the manner in which characteristics are 
affected by reflection at the moving boundary. Instead of considering the two charac- 
teristics through each point (x,t) we construct a problem in a symmetrized domain Q 
where we need deal with only one characteristic through each point. Specifically, let 

Q = {(x,t) :-s(t) < x < s(t),    teR}. 

Q is an unfolding of the two sheeted covering over Q. Characteristics with slope +1 are 
left in the right half of Q, while characteristics with slope -1 become characteristics 
with slope +1 in the left half of Q. With a solution of (1), (2), (3), we wish to associate 

a function ü(x,t) in Q that solves 

üt + üx = 0 in Q (4) 

by writing u(x,t) = ü(x,t) -u(-x,t). Then the equations 

u0(x) = u(x,0) = u(a:,0) - u(-x,0) 

ui(x) = ut(x,0) = üt(x,0) -ut(-x,0) 

= -^(a;^) + ux(-x,0). 

determine u(x,0), and hence u(x,t) up to a constant.  The boundary condition for u 

ü{-s(t),t) = Ü{s(t),t). (5) 

ü is uniquely determined by u modulo constants.   Let Hp  be the quotient space of 
functions with period 2 on R modulo constants with norm 

ll/lltf? = ll/'llff—M-i.i)- 

Then the mapping (u0,"i) ^ u(x,0) = / is one to one and onto from Xm to Hp. 

Note that the energy of u at t = 0 

/:\{u0f + u\]dx = J1 |ti(a;,0)|2da;. 
l  r1 

2 
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Then with the operator Um(0,T) we associate the operator 

Am : H? -> H? 

which takes u(x,0) into u(x,T). 

Next we define the mapping of the interval [-1,1] onto itself associated with the 
characteristic flow. If x0 <E [-1,1) we follow the characteristic x = xQ + t until it 
intersects the line [-1,1] x {T} at the point (y0,T), or meets the right boundary of 
Q at the point (S(T),T). In the former case we set ip(x0) = y0. In the latter case 
we follow the characteristic x = -S(T) + (t - T) and repeat the process. We call the 
characteristic follwed in this manner a 'broken' characteristic. In this way we define a 
continuous, piecewise smooth, mapping p : [-1,1] -> [-1,1] which is one to one and 
onto. Because ü solves (4), ü is constant on the 'broken' characteristics. Consequently 

{Amf){x) = fo<p-1. (6) 

Now extend <p to all of R by the rule 

ip(x + 2) = p(x). 

We can think of ip as a mapping of S onto S where S is the circle of circumference 
2. In the proper coordinates on S, ip is a diffeomorphism of S. Let Hm(S) be Hm(S) 
modulo constants. Then Am can be thought of as a mapping of Hm(S) onto Hm(S) 
and the spectrum of Um(T, 0) is the same as the spectrum of Am. We have reduced our 
original problem to that of determining the spectrum of a mapping given by (6). In 
[4] Lopes made a similar reduction for a wave equation with time periodic coefficients 
and obtained results similar to our, but less complete. 

With a diffeomorphism p : S —> S we can associate a rotation number and we 
state our results in two cases, depending on whether the rotation number is rational 
or irrational. 

Theorem 1      If the rotation number of ip is irrational, the spectrum 

cr(Am) = {A : |A| = 1}      for all m > 1. 

Next suppose that the rotation number of ip is rational in which case ip has periodic 
points. We replace tp by a sufficiently high iterate ip3 such that ipJ has only fixed 
points. For simplicity of exposition we assume that ip has a finite number of fixed 
points pu...,pn and we set E = {<p'(pi),i = l,...,n}. Let 

/'- = raaxH and p+ = minS. 

Clearly fi+ < 1 < /*_. 
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Theorem 2      If ip has only a finite number of fixed points 

a) Am — XI is one to one for all A € C 

b) The closure of the range has infinite codimension if and only if //_     m < |A| < 
l/2-m i\| ■■ 

\x+        or \X\ = 1. 

c) The range of Am - XI is closed if and only if |A| <£ E. 

d) The range of Am - XI is dense, if |A| ^ 1 and |A| < fi]/2'"1 or |A| > ^/2_m. 

The fact that Am has no eigenvalues precludes the existence of any Floquet type 

solutions. 

One of the key ideas here is that oscillations in the initial data / become compressed 
around the attracting fixed points of (p. We give an indication of the methods used in 
the proof of Theorem 2. Consider the case m = 1, and suppose that ip : [0,1] -+ [0,1] 
with the only fixed points being x = 0 and x - 1, and that </?'(0) = a < 1 and 
tp'(l) = b > 1. Then 

lim||AVH^(0ii) = fl"1/2 . (7) 

for all nontrivial initial data /. First we can make a change of coordinates so that 
ip(x) = ax for 0 < x < 1/3 and <p(x) = 1 + b{x - 1) for 2/3 < x < 1. Now from (6) we 
see that 

Akf = fo<p-k 

so that 

dy 
iKf ll^o.i) = £ l/'(^(^))l2l(^)'Wr^ = £ \f'(y)\: 

{vk)'(y)' 

Furthermore 

Wk)'{y) = ^(pk-\y))p'Wk-2{y))--^'{y). 

Hence there is a constant C > 0 such that 

Wk)'{y) > C-'ak 

for all y,0 < y < 1 and all k sufficiently large. Therefore 

\\Akf\\lH0A) < Ca-fc||/||^I(0il). 

On the other hand, if / is not constant, then /' must differ from zero on the interval 

[0,^-*0(l/3)] for some k0 > 0. Then 

W+kof\\6lo.i) = £\(f°fp-ho) 
fcoV|2 dy 
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which establishes (7). 
We illustrate these results with a simple example.   Suppose sit) = 1 + esin(7ri), 

£7r < 1, so that T = 2. The fixed points of ip are x = 0 and x = ±1. Then 

,.„.       1 — eir 
ft+ = a = <p(0) = — < 1, 

1 + eir 

V- =y(±i) = ; = -• 
1 — £7T a 

The spectrum of Am is a(Am) = {a™-1'2 < |A| < a1/2'"1}. The circles |A| = am~ll2 

and |A| = a1'2'771 are continuous spectrum and for A between the two circles, Am — XI 
has closed range with infinite codimension. 

As a further application of our results consider the damped equation 

utt — Mn + 2dut + d2u = 0 

with the same boundary conditions. The function v = exp(dt)u satisfies vu — vxx = 0 
in Q and we have 

||«Wlk™ + ll^(*)llff—«a1(1/2"m)/2 

so that 

\Ht)\\nm + \\ut(t)\\Hm-r « [e^W2-)/2]'. 

Thus if 
eda(X,2-m)l2 >  ^ 

then u(t) grows in the Hm norm, but if 

eda(l/2-m)/2 < ^ 

then u(t) decays in the Hm norm. 
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R DE LAUBENFELS 

Entire vectors and entire existence families 

I. INTRODUCTION AND SOME GENERAL THEORY. Most of this 
section, and Example 2.1, are in [4, chapters VII and VIII]. Example 2.3 will appear 
in [6]. Example 2.2 is new. 

I will give at most outlines of proofs. 

I will be discussing the many physical problems that may be modelled as an 
abstract Cauchy problem 

-fiu(t,x) = A(u(t,x)) (t > 0),  u(0,x) = x. (1.1) 

By a solution I will mean a strong solution, that is, t K-> u(t,x) £ C([0, oo), [X>(A)])n 
Cl([0,oo),X), and u satisfies (1.1). 

Throughout, A is a closed linear operator on a Banach space X, with domain 
V(A), spectrum <r(A), resolvent set p(A). I will write B(X) for the space of bounded 
linear operators from X to itself. 

I will attack the abstract Cauchy problem with what is known as an entire vector. 

Definition 1.2. I will write C°°(A) for P^LQV{Ak). By an entire vector for A I 
mean x 6 C°°(A) such that 

00   sk 

^2y\\Akx\\<oo, V.S>0. (1.3) 
k=0 

I will write £{A) for the set of all entire vectors for A. 

This is a very old idea (see [10]). An analytic vector is one where the series in 
(1.3) converges for some s > 0. 

One may write down simple characterizations of generators of groups and suffi- 
cient conditions for generating a semigroup, in terms of analytic or entire vectors 
(see [10], [2], [8], [3] and their references). 

Example 1.4. Let A be -£ on X = {/ 6 C[0, oo) | /(0) = 0 = Hm,^ f(s)}, the 
generator of right translation, 

{etAf)(s) = f(s-t)(s,t>0), 
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where /(s) = 0, when s < 0. 
Then it is not hard to see that A has no nontrivial analytic vectors, although A 

generates a bounded strongly continuous semigroup. 

Remarks 1.5.   It may be shown that a generator of a strongly continuous group 
has a core of entire vectors (see [3]; compare this with Example 1.4). 

In [1] it is shown that, if -A generates a strongly continuous holomorphic semi- 
group and u is a solution of (1.1), then u has an entire extension. In other words, 
the set of all x for which (1.1) has a solution equals £(A). 

In order that £{A) — X, A must be bounded. 

Definitions 1.6. It is clear that the definition of an entire vector is exactly what 
we need to define, for any complex z, x € £(A), 

k = 0 

When A G B(X), this is the way we define the group {ez4}z£c generated by A. 
The map t H-> etAx, from (1.7), is a solution of the abstract Cauchy problem. 

In fact, £{A) consists precisely of those initial data x for which (1.1) has an entire 
solution, and that solution will then be given by (1.7) (see [1, Theorem 1]). 

Note that I have not mentioned uniqueness of the solution. Although we may 
not have uniqueness, it is the case that (1.7) will be the unique analytic solution of 

(1.1), when x £ £(A). 
We may make £(A) into a Frechet space, using ezA, as follows (this is a slight 

variation of the seminorms in [9]). For any nonnegative integer n, x G £(A), define 

||a:||„ =  sup \\ez   x\\. (1-8) 
\z\<n 

We topologize £(A) with the seminorms {|| ||n|n = 0,1,2,...}. Convergence of 
a sequence {xk}k, with respect to this topology, is uniform convergence of the 
functions {z i—> ezAXk}k^ on compact subsets of the complex plane. 

Let me summarize the properties of £(A) and ez   . 

Proposition 1.9. 

(1) £(A) is a Frechet space. 

(2) Both A and ezA, for any complex z, map £(A) to itself, and are bounded on 

£(A). 

(3) {ezA}zec is an entire group generated by A. 
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I would like to discuss estimating £(A) by finding bounded operators C such that 
Im{C) C £{A). 

Throughout, C G B(X), and I will write [Im(C)] for the Banach space Im(C), 
with the norm 

||y||[/m(C)] = mi{\\x\\\Cx=y}. (1.10) 

Definition 1.11. An entire C-existence family for A is a family {W(z)}zeo Q 
B(X) such that, for any t/Cl, the map t i-» W(t)y is an entire solution of (1.1), 
with x = Cy. 

Note that z >—> W(z) is an entire map into B(X). 

When C is injective and W(z) commutes with W(w), for all complex z and w, an 
algebraic definition is possible; it may be shown that the entire family of bounded 
operators {W(z)}z£C is an entire C-existence family for some closed operator if 
and only if W{z)W(w) = CW(z + w), for all complex z, w, and W(0) = C. This is 
an (entire) C-regularized semigroup. 

When A has an entire C-existence family, then we have the following analogue 
of well-posedness. When yn —> y in X, as n —> oo, then u(z,Cyn) = W{z)yn ~^> 
u(z, Cy) = W(z)y, uniformly for z in compact subsets of the complex plane. 

When C is injective and commutes with A, this may be expressed as follows. If 
Un}^=0 is in the image of C, and C~lxn -» C~1x0l as n -> oo, then u(z,xn) -+ 
u(z,x0), as n —> oo, uniformly for z in compact subsets of the complex plane. 

This is continuous dependence of the solutions on the initial data, except that we 
have different topologies on the initial data than on the solutions. We are putting 
a stronger topology on the initial data. 

The choice of C measures how far from bonafide well-posedness we are; we'd like 
the image of C to be as large as possible. 

Similarly, a C-existence family for A, and a C-regularized semigroup generated 
by A, have been defined. For basic material on the subject, including references, 
and the precise relationships between these concepts and (1.1), see [4] and [5]. 

In the following, I am writing 'W to mean "is continuously embedded in." 

Proposition 1.12.   The following are equivalent. 

(a) Im{C) C £{A). 

(b) Im(C) C C°°{A) and 

00      k 

^^||AfcC|| <oo, \/s>0. 
k=0     ' 
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(c) There exists an entire C'-existence family for A, {W(z)}z^c- 

(d) [Im{C)] - £(A). 

Then 
OO f. 

W(z) = e*AC = Y,TiAkC> k\ 
k=0 

for all complex z. 

Thus I give you a choice. One can have something analogous to well-posedness, 
on the original space, or one can go down to the continuously embedded subspace 
£(A), where A generates a strongly continuous group; this is a common definition 
of (1.1) being well-posed. The disadvantage in the second choice is that £{A) is a 
Frechet space, rather than a Banach space. 

II. EXAMPLES. I would like to give three examples of choices of C, whose image 
can be placed inside £(A), in ill-posed problems. In all these examples, Im(C) is 
dense, thus we are obtaining entire solutions of (1.1), for all initial data a: in a dense 
set. 

Example 2.1: Reversibility of parabolic problems. By a "parabolic prob- 
lem," I mean (1.1) with A generating a strongly continuous holomorphic semigroup; 
for example, the heat equation. By "reversibility" I mean letting t assume negative 
values in (1.1); for example, the backwards heat equation; we are letting time run 
backwards. An equivalent way to run time backwards in (1.1) is to have —A, rather 
than A, generate a strongly continuous holomorphic semigroup. 

Proposition 2.1(1). Suppose —A generates a strongly continuous holomorphic 
semigroup.  Then there exists a > 1 and real to such that 

Im(e-{A+")a) C £(A). 

Let me make it clear what I mean by eB. This means that B generates a strongly 
continuous semigroup {e's}«>0, and eB is the member of that semigroup when 
t = 1. 
Outline of Proof: There exists real u> and positive 6 < ^ so that —(A + w) 
generates an exponentially decaying strongly continuous holomorphic semigroup 
|e-t(A+w) jt>o 0£ angie ß For (j) between ^ and f — 0, this semigroup may be 

represented with an unbounded analogue of the Riesz-Dunford functional calculus, 

=  /   e-'^-CA + u,))-1 

Jr., 
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where F^  is  defined to be the boundary of {re1^ | |?/>|   <   (j)},  oriented counter- 
clockwise. 

This representation may also be used for fractional powers. For any positive a 
such that a(f — 6) < 1~, —(A + to)01 generates a strongly continuous holomorphic 
semigroup {e~'(A+w)  }(>0 given by 

e-t(A^r= f e-w{2_{A + u))-i^ (2.1(2)) 

where <j> is now chosen so that <j> > j — 0 and a(f> < ^. 
It may be shown that, for any nonnegative integer k, 

Ake-(A+*r= j iz_u)ke-z-{z_{A + u}))-idz_m 

The intuition here is that, as with the Cauchy integral formula, just replace z by 
A + uj, everywhere in the integrand besides the (z — (A + w))_1. Thus, for any s > 0, 

letting C = e-^A+^\ 

— <k- r   —  *k _lHdz 
E ^rll^ll < /  E FI(Z

 " "?<-'*I ^ "iA + -))" 
k=0 JT<P A:=0 

<  /   e^z-^\\e-z\\\{z-{A + u}))-1\\—. 
JTj, 2TT 

By choosing a > 1, with acj) < f, as in (2.1(2)), this integral will converge for all 
s > 0, as desired. | 

Example 2.1(3): Backwards heat equation. Suppose 9, is a bounded open 
set in Rn, with smooth boundary. Let w(s,t) be the temperature at time t and 
position s, and consider 

-^■(s,t) + Aw(s,t) = 0    (s£Q,t>0) 

w(s,t) = 0    (s e du, t > 0) 

w(s,o) = f(s)   (sen), 

where A is the Laplacian in Rn. 

We may apply Proposition 2.2(1), since, if 1 < p < oo, and A = -A, V(A) = 

W 'P(Q) n W0'
P(Q), then -A generates a strongly continuous holomorphic semi- 

group on X = LP(Ü). Thus the map t ^ w(-,t), from [0,oo) into X, extends to an 
entire function, for / in a dense subspace of X. 
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This is saying that the heat equation is reversible on a dense set. 

Example 2.2: An ill-posed heat equation. Time will run forward here, but 
we will still be ill-posed. Take the usual heat equation in one dimension; we let 
w(t,s) be the temperature of something long and skinny, at time t and position s; 
but instead of having initial data, that is, the temperature at t = 0, we will specify 
the temperature and heat flux at one end. 

at 
9-w(t,s) = (^-)2w(t,s) (s,t > 0), u>(i,0) = (/!(*), ^-w(t,0) = g2(t) (t > 0). 

(2.2(1)) 
So we know everything at one end (s = 0), and we want to predict what's happening 

everywhere else. 
To write (2.2(1)) as an abstract Cauchy problem, we must interchange the role 

of s and t, so that we will have t replaced by s in (1.1). This may cause confusion, 
but it's unavoidable, given the axiom that time must be represented by t. 

So define, for any s > 0, the function v(s) by 

[v(s)](t) = w(t,s)(t>0). 

Letting B = ^, we may then write (2.2(1)) as 

(^)2t>00 = B(v(s)) (s > 0), v(0) = <7i,^(0) = 92- (2.2(2)) 

More precisely, let's choose v{s) G C0([0,oo)) = {/ G C[0, oo) | limt^oo /(<) = 0}, 
and B will be the generator of left translation on Co([0, oo)), 

(e^f)(t) = f(s + t)(S,t>0). 

(2.2(2)) is a second order abstract  Cauchy problem;   we do the usual matrix 
reduction to a first order problem, by defining A on X = (Co([0, oo)))   to be 

A = 
0     / 
B    0 

, V(A) = V(B)xC0([0,oo)), 

u(s,g) 
v(s) 

TA*) 
(s > 0). 

Then (2.2(1)) becomes 

d_ 

ds 
{s,g) = A(u(s,g))(s>0), u(0,g) (2.2(3)) 
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Formally, the solution of (2.2(3)) is given by 

[u(s,g)] = eaAg; 

but this is only formal, because A does not generate a strongly continuous semi- 
group. However, we can choose C, with dense image, such that Im(C) C S(A). 

Let's write I2 for the 2x2 identity matrix. 

Proposition 2.2(4).  For \ < 7 < 1, 7m(e-«-B)i+/)21I2) C £{A), 

Outline of Proof:   This follows fairly quickly from the previous example, when 
one notes that 

A2 = BI2, 

thus, letting C = e^«-ß)i+/)2V2, 

oo       k °° 2n °° 2n+l 

E y\^n = E (ky.m-^^n + E ItTf)-lu(~B>if-ACl 
A:=0 n = 0 v       y n=0 

so that, since —(—B)? generates a bounded strongly continuous holomorphic semi- 
group of angle j, Proposition 2.1(1) implies that this series converges. | 

See [7] for more results about this sort of ill-posed heat equation. 

It is clear from the proof of Proposition 2.2(4) that the only relevant property of 
B was that it generated a bounded strongly continuous semigroup. More generally, 
to deal with (2.2(2)) as we did in Proposition 2.2(4), all we need is to have -{aB)'1 

defined, and generating a strongly continuous holomorphic semigroup, for some 
7 > |, complex a. For this, it is sufficient to have aB be what is sometimes called 
a positive operator. This means that (-oo,0) C p(aB) and there exists a constant 
M so that 

Wrir + aBy^W < M, Vr > 0. 

Thus Proposition 2.2(4) could also be applied to the Cauchy problem for the 
Laplace equation; see [4, chapter IX], for details. 

Example 2.3: Adjoints of symmetric operators. For this example only, 
I will have X_equal to a Hilbert space. Note that, if B is symmetric and densely 
defined, then BB* is positive self-adjoint^thus -BB* generates a bounded strongly 
continuous holomorphic semigroup {e~tBB*}t>0. 

In the following, I must emphasize that B may not have a self-adjoint extension 
on X, thus the spectral theorem is not available. We could, for example, choose 
5^,onL2([0,co)). 
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Proposition 2.3(1).   If B is symmetric and densely defined, then 

Im(e^ß*)C£(F). 

Outline of Proof: Without loss of generality, we may assume B is closed. We use 
two facts. First, since B C B*, it follows that C^iBB*) C C°°(J3*). Second, since 
{e~tBB*}t>o is a bounded strongly continuous holomorphic semigroup, there exists 

a constant~M, so that, for any x £ X, t > 0, e-tBB* x e C°°(£5*), with 

\\BB*e~tBB x\\ < —\\x\\. 

Thus, for any nonnegative integer n, 

||(5*)2"e-ßß*|| = \\(BB*)ne-BB'\\ = \\{BB*e~^BB')n\\ < (Mn)n. 

A little more calculation with the inner product gives us 

||(£*)2n+1e-BB*||<Mn+1(n+l)n+\ 

for any nonnegative n. This implies that 

OO fc 

J]^||(i?*)fce-ßßl<oo, V5>0, 
fc=o 

as desired. | 

Example 2.3(2).   Symmetric differential operators, especially if they are defined 
only on a bounded set, generally have boundary conditions. Obtaining a self-adjoint 
extension, when this is possible, often involves a very careful choice of boundary 

conditions. 
Passing to the adjoint of a symmetric operator, as in Proposition 2.3(1), causes 

us to remove all or some of the boundary conditions. Proposition 2.3(1) asserts 
that we are still guaranteed entire solutions of the corresponding abstract Cauchy 

problem, after this removal. 
In the following example, we will put strong boundary conditions on5, so that 

B* will have no boundary conditions. 
On X = L2(R"), define 

WM " E £:(ai>iW^W) (se R"), 
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with V(B) = Cc°°(Rn), where, for 1 < i,j < n, ahJ and its first order partial 
derivatives are real-valued functions in L^C(R"), and for each s 6 R", ahJ(.s) — 
ahl{s). 

Then B is symmetric, and B* is also given by 

(**/)(*) = E |"K^lf (•?)) (se R»), 

but now £>(£*) equals {/ 6 L2(R") | 5*/ G L2(R")}. 

Thus Proposition 2.3(1) asserts that Im(e~^B') C 5(5*). 

We should comment that vectors in the deficiency subspaces of B*, when B 
is symmetric, are clearly contained in £(B*), since they are eigenvectors for B*. 

However, the span of these subspaces, unlike Im(e~BB*), may not be dense. 
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J R DORROH 

Continuous dependence of nonnegative 
solutions of the heat equation on 
noncharacteristic Cauchy data 

The sideways Cauchy problem for the one-dimensional heat equation , in which the solution 

and its first-order spatial derivative are specified on an interval of the time axis, is well known to 

be ill-posed. Nevertheless, we establish continuous dependence on the Cauchy data of nonnegative 

solutions satisfying the extra smoothness requirement that the time derivative is continuous on the 

initial manifold. This is done by first establishing explicit bounds for such solutions and certain 

of their derivatives and then applying a result of J. Cannon. Most of the estimates, which may 

be of interest in themselves, do not depend on the extra smoothness assumption. In spite of the 

fact that the admissible Cauchy data is highly non-arbitrary, our results include the fact that the 

set of admissible Cauchy data is closed under uniform convergence of the data and one first-order 

derivative of the data. 

Let a,T > 0, and let f,g e C(0,T). We consider the following Cauchy problem for the 

one-dimensional heat equation. 

(PDE) ut(x,t)=uxx(x,t), 0<x<a,0<t<T, 

(IC) u(0+,t) = /(0, 0<t<T, 
(IC) ux(0+,t) = g(t), 0<t<T. 

This is the problem one must consider if one boundary is all that is accessible. We require that 

the solution u and its derivative ux be continuous on [0,o) x (0,T). We denote this problem by 

V{a,TJ,g). For /,</ € C[0,T], we denote by V*(a,T,f,g) the problem V(a,T,f,g) with the 

added restriction that u and ux be continuous on [0,a] x [0,T]. This is only a technical distinction; 

any solution of P(a,T,f,g) is also a solution of V(a*,T*J,g) for 0 < a* < a, 0 < T* < T after 

a change of variable t -» t - 6, 0 < 5 < T - T*. If / G C(1)(0, T), then we denote by V'(a, T, f,g) 

the problem P(a, T, /, g) with the additional restriction the u( is continuous on [0, a) x (0, T). This 

amounts to an extra smoothness assumption for the solution. 

This problem is well known to be ill-posed. By taking f{t) = r~3 cos{2r2t) and g(t) = 

r_2[cos(2r2t) - sin(2r2*)], where r > 0, one easily sees that solutions do not depend continuously 

on the Cauchy data, for the solution is given by u(x,t) = r~3 exp(rx) cos(rx + 2r2t). Since 

solutions typically represent temperature or density of a diffusing substance, it is quite reasonable 

to consider nonnegative solutions, and we are able to give some some fairly simple explicit estimates 

and establish continuous dependence on Cauchy data for nonnegative solutions of V(a,T,f,g). 

Even here, the situation is delicate; consider the example f(t) = exp(-rb + r2{t - T)), g(t) - 

-rexp(-rfe + r2(t-T)), where r > 0 and 0 < b < a. The solution u of V{a,TJ,g) is then given 

by u(x, t) = exp(r(x - b) + r2{t - T)). This example will also suffice to show that our estimates 

cannot be easily strengthened. The following is our main result; at present we are unable to 

eliminate the extra smoothness assumption, but it may be possible to do this. 
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Theorem. Let a,T > 0. Suppose that /„ € C^{0,T), gn £ C(0,T), and V'(a,T,f„,gn) has a 

nonnegative solution un for each n. Suppose further that {/„}, {f'n}, {gn} converge uniformly on 

each closed suhinterval of (0,T) to f,f',g. Then V{a,T,f,g) has a nonnegative solution u, and 

{un} converges to u uniformly on each set [0,6] x [TUT2] with 0 < 6 < a and 0 < Tx < T2 < T. 

The first example shows that nothing of the kind is true if one omits the assumption of existence 

of nonnegative solutions. The result is especially surprising when one considers the highly non- 

arbitrary nature of those /,g for which V(a,T, f,g) has any kind of solution whatsoever, much less 

a nonnegative one. For example, in order that V*{a,T,f,g) have a solution, it is necessary and 
sufficient that the function £ defined by 

VT Jo   y/t-T 

be infinitely differentiate on (0,T), with derivatives satisfying 

on each closed subinterval of (0, T) for some M, R > 0. This may be seen as follows. Let 

v(x,t) = -2 I   g(T)k(x,t-T)dr, 
Jo 

where k is the fundamental solution of the heat equation, and let w = u - v. Then wx(Q+, t) = 0, 

[7, Thm. 7.3, p 72], and wx has a continuous extension to [0,a] x [0,T]. Therefore, by the Schwarz 

reflection principle, [7, Thm. 7, p. 115], the odd extension of wx satisfies the heat equation on 

(-a, a) x (0,T). Therefore, the even extension of w satisfies the heat equation on (-a,a) x (0,T). 

Since ((t) = w(0,t), the assertion follows; see [7, Thm. 13, p. 84]. 

Conditions equivalent to this were established by Holmgren in [4]. Sufficient conditions on 

/ and g in order that the solution of V be nonnegative or satisfy a given bound are much more 

elusive. In spite of this subtlety, it is true that the set of all (f,g) in C(1)(0,1) x C(0,1) such that 

~P{a;T,f,g) has a nonnegative solution is a closed set in the natural metric of this space; namely 

uniform convergence of /, f',g on closed subintervals of (0,T). 

For earlier results on nonnegative solutions, see Pucci [7]. For similar results for solutions 

satisfying a prescribed bound, see Cannon ([1], [2]), F. John [5], and Lavrent'ev [6]. 

Even though we establish continuous dependence on the Cauchy data, this does not solve 

the problem of producing an approximate solution from approximate Cauchy data, because ap- 

proximately known functions f,g will almost certainly lack the property that V(a,T,f,g) has a 

nonnegative solution, and it is not at all clear how to find nearby data that does have this property. 

Cannon does address this problem for solutions satisfying a prescribed bound, and we show that 

his results can be applied to our problem; see our concluding remark. 

The proof of the main theorem requires two lemmas. These are of some interest and potential 

further use in themselves, especially the second lemma, which gives estimates for a nonnegative 

solution of V* (a, T, f, g) and some of its derivatives. 
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Lemma 1. Suppose (p is a nonnegative function in Cl[Q,a\ D C2(0,a), that A > 0, and that 

\<p"(x)\ < \2ip(x) for0<x<a. Then 

.. . sinh \x 
ip(x) < <^(0)coshAx + v (0)—T—, 

and 

\<p'(x)\ < ^(0)(AsinhAx) + |</(0)|coshAx 

for 0 < x < a. 

In order to state the second lemma, we need some notation. Let k denote the source solution 

of the heat equation, h the derived source solution, and erfc the complimentary error function; 

that is, 

*<*•t] = imexp (IT) 'h{x' °= Tibexp U")'erfcW = ^ L e'y2 dy- 
Also, || • || will denote the supremum norm on [0,T], and || ■ ||i will denote the L1 norm on [0,T]. 

The following theorem gives estimates for nonnegative solutions that are needed for the proof of 

Theorem 1 and are of interest and potential further use themselves. 

Lemma 2. Let a,T > 0, and f,g 6 C[0,T]. IfV*(a,T,f,g) has a nonnegative solution u, then 

u = U(D + u<2> + u<3\ where u^(x,t) = 

/"' ([h(z,t - T) - h(2a -x,t-r)]^-- [k(x, t - r) - fc(2a - *,t - r)] fl(r))dT 

for ail (x,t) e (0,a] x [0,T], and u(2) and u'3» are nonnegative. Furthermore, 

«<'W)< (1MI + 2/7IW1) (co*A.+ (£ + i)=^), 

k2)(*.oi< (11/11+2/fNij (AsinhAa;+(^+^)coshAa;)' 
and 

k2iOM)i<*2«(2)(*.o 
for 0 < to < * < T, 0 < x < a, where A = [(a2/4t2,) + (3/2t0)]1/2- Furthermore, 

k»C.)l < (11/11. + .^w.) ^-0=^^. 
/ ff       \ 1 3v

/6/7re3 + 25x/l0/7re5 

and 
( [T       \ 1 75yi0/7re5 + 73v/l4/7re7 
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for 0 < x < a and 0 < t < T. Of course, we have the trivial estimate 

W(l)(*,t)\<\\f\\ + 2^\\gl 

and this estimate holds on all of [0,a] x [0,T], whether or not V(a,T,f,g) has a nonnegative 

solution, or any solution at all, for that matter. Furtermore, if f 6 C(1)[0,T], then u(1) can be 

rewritten as 

u{1){x,t) = f(0)er{c(x/\/Äi) 

+ J   [erfc (x/v/4(t-r)) - erfc ((2a - x)/y/4(t - r))] £& dr 

[k(x, t - T) - k(2a -x,t- r)] g(r) dr. 

This gives 

I 
Jo 

u^(x,t) = -2f(0)k{x,t)- /   [k{x,t-r) + k(2a-x,t-T)]f'{T)dT 
Jo 

1 /•' 
+ 2 /   lh(x' t~T) + h(2a -x,t- r)] g{r) dr. 

This yields the estimate 

MX    - -   l    ~ IT. I^(M)|<—/(0) + 2^/-||/'|| + y| 

for t0 < t < T, 0 < x < a. 

The proofs will appear in [3]. 
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J R DORROH AND J W NEUBERGER 

A theory of strongly continuous semigroups 
in terms of Lie generators 

Let X denote a complete separable metric space, and let C(X) denote the linear space of 

all bounded continuous real-valued functions on X. The Lie generator of a strongly continuous 

semigroup T of continuous transformations in X is the linear operator in C{X) consisting of all 

ordered pairs (/,</) such that f,g £ C(X), and for each x £ X, g(x) is the derivative at 0 of 

f(T(-)x). We completely characterize such Lie generators and establish the canonical exponential 

formula for the original semigroup in terms of powers of resolvents of its Lie generator. The 

only topological notions needed in the characterization are two notions of sequential convergence, 

pointwise and strict. A sequence in C(X) converges strictly if the sequence is uniformly bounded 

in the supremum norm and converges uniformly on compact subsets of X. Our sufficient conditions 

do not involve powers of the resolvent higher than the first power. 

Let F(X) denote the collection of all continuous transformations from X into X. A strongly 

continuous semigroup of continuous transformations in X is a function T from [0, oo) into F(X) 

such that T(0) is the identity transformation on X, T{t)T(s) = T{t + s) for s,t > 0, and for 

each x in X, the function T(-)x is continuous from [0,co) to X. The semigroup T is commonly 

denoted by {T{t)}t>0. Denote the collection of all strongly continuous semigroups of continuous 

transformations in X by S(X), and let C(X) denote the linear space of all bounded continuous 

real-valued functions on X. We need to mention that if T € S(X), then the transformation 

(t, x) -> T(t)x is jointly continuous from [0, oo) x X into X; see [2, Theorem 4]. If T £ S(X), then 

the Lie generator of T is the linear operator A in C(X) consisting of all ordered pairs (f,g) such 

that f,geC(X) and 

g(x) = lim i [f(T(t)x) - /(*)] 

for all x £ X.   A linear operator A in C(X) with domain V(A) is said to be a derivation if 

f,g £ V(A) implies that fg £ V(A) and 

A(fg) = fAg + gAf. 

It is easy to see that the Lie generator of a semigroup T £ S{X) is a derivation. A sequence 

{/„}£°=1 in C(X) is said to converge strictly to a function / £ C(X), and we say that / is the 

strict limit of {/„}~ P if {/»}S°=i is uniformly bounded in the supremum norm and {/„}~=1 

converges to / uniformly on compact subsets of X. We will see later that strict convergence is 

convergence in a topology on C{X). This topology is called the strict topology; see [11]. We say that 

linear operator Q from C(X) into C{X) is strictly sequentially continuous if Q transforms strictly 

convergent sequences to strictly convergent sequences, and that a collection Q of such operators 

is strictly sequentially equicontinuous if whenever {/n}£°=i C C{X) converges strictly to / £ C(X), 

then the collection {Qfn ■ n £ IN, Q £ 0] is bounded in the supremum norm, {[Q/„](x)}£Li 

converges to \Qf](x) for each Q £ Q and x £ X, and this convergence is uniform for Q £ Q and x 
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in compact subsets of A'. A subset F of C(X) is said to be strictly sequentially dense in C(X) if 

each / £ C(X) is the strict limit of a sequence of functions belonging to F. We can now state our 
main theorem. 

Theorem. Let A be a linear operator in C(X), that is, with domain and range contained in C(X). 

Then A is the Lie generator of a semigroup T € S(X) if and only if 

(i) A is a derivation, 

(ii) the domain of A is strictly sequentially dense in C(X), 

(Hi) for each X > 0, I - \A has a norm nonexpansive and strictly sequentially continuous inverse 

defined on all of'C(X) (I denotes the identity transformation in C(X)), and 

(iv) ifn > 0, then the collection {(I - XA)'1 : 0 < X < n} is strictly sequentially equicontinuous. 

Furthermore, if A is the Lie generator ofT e S(X), then 

foT(t)=  lim (I-{t/n)A)-" f 
TJ-+00 

for t > 0 and / e C{X), where the limit is the strict limit. 

The main theorem characterizes Lie generators and establishes the canonical exponential for- 

mula. [6] characterized Lie generators, but the characterization here is much simpler in that it only 

involves pointwisc and strict sequential convergence, whereas the characterization in [6] involved a 

locally convex topology on C(X). Also, the sufficient conditions in [6] included an equicontinuity 

assumption on (7 - A.4)"" for n > 1, whereas this result does not. The proofs, which will appear 

elsewhere, are more nearly "self-contained" in that they do not appeal to any theory of strongly 

continuous semigroups in topological vector spaces, whereas [6] did. Furthermore, [6] did not es- 

tablish the exponential formula. A theory like that in [6] is given in [4] in the case A is a locally 

compact Hausdorff space, not necessarily metric. The paper [5] contains a relevant result on the 

strict topology. In [9], it was proved that if A is the Lie generator of T 6 S(X), then 

f(T(t)x) = Jura  [(/- (t/n)A)-"f] (x) 

for alU > 0, / 6 C{X), and x e A. 
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G FERREYRA AND O HIJAB 

Smooth fit for some Bellman equations 

ABSTRACT. TWO linear-convex deterministic singular control problems in dimensions 
one and two axe considered in this paper. They are solved using the dynamic pro- 
gramming method. The interest here is the explicitness of the results and the relation 
between the geometry of the drift along the free boundary of these problems and the 
principle of smooth fit. 

0. INTRODUCTION 

The method of dynamic programming reduces the study of an optimal control 
problem to the study of a nonlinear partial differential equation, the Hamilton- 
Jacobi-Bellman equation (see [6]). The value function for the optimal control prob- 
lem is a solution of this equation. Singular optimal control problems generally give 
rise to a free boundary problem for said p.d.e. A basic step in solving the p.d.e. then 
is that of finding the free boundary. In the problems we consider here, convexity 
leads to the value function being C1'1 (Lipschitz first partial derivatives) across the 
free bounday. Then a central issue is to determine whether or not the value function 
is C2 across the free boundary. The C2 case is referred to as satisfying the smooth 
fit principle. In stochastic control problems, smooth fit occurs in the case of the 
linear-quadratic-Gaussian problem and it is also known to occur in other examples 
with nondegenerate diffusion (see [8] and its references). In fact, the property of 
smooth fit was instrumental in solving the celebrated monotone follower problem 
[1]. On the other hand [8] gives an example where smooth fit does not occur. 

In this paper we present problems in one and two dimensions having no diffusion 
at all; i.e., deterministic problems. These problems have linear dynamics and a 
nonnegative control. Other work dealing with problems with nonnegative control 
appear in [2]-[5],[7],[9],[10]. Because of the singular nature of our variational prob- 
lems, we expect the optimal control to be extreme or to be singular. Since our 
controls are nonnegative this implies that we expect optimal controls to equal zero, 
infinity, or to be singular. The free boundary separates the null region (where the 

1991 Mathematics Subject Classification. 35F30; 49L20; 49L25. 
Key words and phrases.  Singular Control, Free Boundary Problem, Bellman Equation. 
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optimal control is zero) and the jump region (where the optimal control is impul- 
sive). We find that in the one dimensional case the free boundary is just one point 
and smooth fit is a property that depends on the parameters of the problem. In the 
two dimensional case we find that smooth fit and non C2-fit coexist (on different 
pieces of the free boundary). Our examples lead us to conjecture that generally 
smooth fit occurs if and only if in the optimal synthesis the zero control flow along 
the free boundary leads away from the null region (as opposed to leading into the 
null region). 

1.   A ONE DIMENSIONAL PROBLEM. 

We consider the scalar control system 

x = b(x) + u,        x(0) = x0 G R (1.1) 

where u is a nonnegative measurable function of time. We define 

/•OO 

vu(x)=        e-*[/(s(t)) + u(t))dt, (1.2) 
Jo 

and we set 
v(s) = inf{t;u(x):«(-)>0}. (1.3) 

Our main assumption is linearity of 6 and convexity of /. These assumptions imply 
the convexity of v, which enables us to present a complete analysis of the control 
problem (1.1), (1.2), (1.3). 

We assume the following: 

(1) / is C2 and f(x) > 0, 
(2) |/'(z)|<Ca(l+ /(*)), 
(3) 0<fi<f"(x)<C2(l + f(x)), 
(4) b(x) is linear and b'(x) < 0. 

Theorem 1.  The function v is a classical C1 solution of the Bellman equation 

max(v— bv'— f,—v'— 1) = 0,        — oo < x < oo, (1.4) 

and there is a point a G R such that v — bv' — f — 0 on N = [a, oo) and —v' — 1 = 0 
on J = (-oo,a]. Moreover v G C2(R \ {a}) and v G C2(R) iff 6(a) points strictly- 
outward from N, i.e. b(a) < 0. The quantity a can be computed in terms of the 
data of the problem. Even if f is C°°, v is never C3 at a. 

We note that assumption (3) implies / is strictly convex and assumptions (2),(3) 
hold for example when /" is a strictly positive polynomial. Although b'(x) is a 
constant, we find it helpful not to show this in the notation. Let f*(x) denote the 
maximum of / over the line segment joining x and the origin. Since / is convex 
/*(*) = max(/(x),/(0)). 
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Lemma. The value function v is convex, C1, and satisfies (1.4). Moreover v" exists 
almost everywhere and 

(1) 0<v(x)<f*(x)} 

(2) It/OrJI^dCl+ /*(*)), 
(3) 0<v"(x)<C2(l + /*(x))a.e. 

Proof. Clearly v(x) > 0. Let Ui be controls satisfying vUi (xl
0) < v(xl

0) + e, i = 0,1. 
For s G [0,1] let xo = (1 — s)x® + SXQ, U = (1 — S)UQ + stti. Then the corresponding 
solutions of (1.1) satisfy x(t) = (1 — s)xo(*) + sxi(t), t > 0, and the convexity of / 
implies 

V(X0) < VU(X0) < (1 - SK°(X[>) + SVUl (xj) < (1 - S)V(X°0) + 5V(XJ) + 6. 

This shows v is convex. 
Since b' < 0, x(f) lies on the line segment joining x to 0 when u = 0; this implies 

v(x) < v°(x) < f*(x). Hence we need only consider controls u in (1.3) satisfying 
vu{x) < f*(x). 

Now 
roo 

|W0OI < /     \VfMt))\dt<C1(l + v"(x))<C1(l + r(x)) 
Jo 

and similarly 
W(x)<c2(i+r(x)). 

Since the right side of this last inequality is bounded on every compact interval, we 
conclude for each a < b there is a k(a, b) > 0 such that k(a, b)x2 - vu(x) is convex 
on [a, b]. Taking the supremum over all u we obtain k(a, b)x2 — v(x) is convex on 
[a, b]. Thus v is semi-concave; since v is also convex then v is C1 and v" exists 
almost everywhere. Finally the estimates on v', v" follow from the above estimates 
for Vuu, V2vu. The fact that v solves the Bellman equation (1.4) is a standard 
consequence of dynamic programming (see, for example, [4] or [6]).    D 

Let w(x) = v°(x) be the cost corresponding to the zero control. Then by differ- 
entiation under the integral sign it follows that w is C2, strictly convex, and 

(1) 0 <«/(*)</*(*), 
(2) K(x)|<d(l + r(a:)), 
(3) 0 < AX <«>"(*) <C2(1+ /•(*)), 
(4) w-bw'-f = 0,x£ R. 

Since w' : R -» R is increasing and onto we can define a by w'(a) — — 1. 
Similarly since /' - V is increasing and onto we can define ß by /'(/?) - b'(ß) = -1. 

We turn to the definition of the free boundary. Let a = inf {x : —v'(x) — 1 < 0}. 
If —v' — 1 = 0 on R then v is affine hence not bounded below; thus a < oo. If 
a - -oo then v - bv' - / = 0 on R. Differentiating e~*v(a:(t)) with x - b(x) yields 

w(s0) = e~Tv{x(T)) +  f   e"*/(a:(*))*- 
Jo 
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Letting T -* oo yields v(x0) = w(xo) for all XQ hence v'(a) = w'(a) = —1 hence 
a < a contradicting a = —oo. Hence a is finite. By definition of a and (1.4) 
v — bv' — f = 0 for x > a. By convexity and (1.4) —v'(x) — 1 = 0 for x < a. In 
particular at a both equalities hold and we obtain v(a) = f(a) — 6(a). 

Proposition 1. a = min(a,ß) and v 6 C2(R x {a}). Moreover v € C2(R) iff 
6(a) <0iffa = /?<a. 

Proof. Assume first 6(a) > 0. Then for the control u(-) = 0 and initial XQ > a, we 
have x(t) > a for all t > 0; let e(T) = /~ e~*/'(x(t))dt; then e(T) -> 0 as T -> oo. 
Differentiating e~tv(x(t)) yields 

«"(so) = -e~Tv{x(T)) + v(x0) 
rp 

+ I   e-*[(/(a;(t)) + 6(x(i))U'(x(t)) - v(x(t))]dt + e(T) 

= -e-Tv(a:(T)) + t/(x0) + e(T). 

Letting T —> oo shows that u = 0 is optimal at XQ for all XQ > a which yields 
v = w for x > a. This implies —1 = v'(a) = w'(a) hence a = a. Also since 
«; is strictly convex and v is affine to the left of a, v is in C2(R \ {a}) but not 
in C2(R). Now differentiating w — bw' — f = 0 and inserting x = a = a yields 
/'(a)-6'(a) = -l-b(a)w"(a) < -1 = f'(ß)-b'(ß). Thus /? > a. This completes 
the proof if 6(a) > 0. 

Assume now 6(a) < 0. Then u(t) = —6(a), t > 0, is a control that is optimal 
at a since we know v(a) = f(a) — 6(a). But this optimal control is in the interior 
of the control set [0, oo) and hence we can perform a first variation. Specifically 
for any bounded control u let u€(t) = —6(a) + tu(t), t > 0, and let ve(a) be the 
corresponding cost starting from a. Then ve(a) > v°(a) for all small real e and 
hence (d/de)ve(a) = 0 at e = 0. The result of this computation is 

0=  f°°e-* (f'(a) f e-b'^t-^u(s)ds + u(t)\dt 

which implies 

/'w  ,,n _-.. °-l.r^w + 1>' e um'' 
thus f'(a) - 6'(a) = -1, a = ß, and b(ß) < 0. Now differentiating w — bw' - / = 0 
and inserting x = ß = a yields (l + w'{ß))(l-b'(ß)) = w"(ß)b(ß) < 0. Thus ß < a. 
Now differentiating v — bv' — f — 0 at x = a+ yields v"(a+) — 0. Since v"(a—) — 0 
we obtain v in C2(R).    D 
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2.   A TWO DIMENSIONAL PROBLEM. 

In the previous section we have seen that in the one dimensional situation the 
property of smooth fit can be characterized by the geometry of the drift along the 
free boundary. In fact, we have shown that v is C2 at the free boundary iff in 
the optimal synthesis the integral curves of the zero control flow along the free 
boundary lead away from the null region (and this depends on the parameters of 
the problem). 

In this section we describe the solution of a prototype problem in two dimensions 
(for more details, see [5]). We find that in this case both smooth fit and non-C2 

fit coexist (along different pieces of the free boundary). Moreover, the geometric 
characterization previously described concerning smooth fit along the free boundary 
is still valid. 

Consider the two dimensional linear system in canonical controllable form 

x = y,        x(0) = x (2.1) 

y = u,        y{0) = y (2.2) 

where the control u is a nonnegative measurable function of time. We define 

poo 

vu(x,y) = e-*[«(t) + /(a:(*),j/(i))]dt, (2.3) 
Jo 

where f(x, y) = x2 + y2 + y. We set 

v(x, y) = inf{vu{x, y): u(-) > 0}. (2.4) 

It turns out that v, the value function, is a classical solution of the free boundary 
problem 

max{V-yVx-f,-Vy-l) = 0,        (x,y)eR2. (2.5) 

Because of the singular nature of the above variational problem, one expects 
the optimal control u(-) to be extreme , i.e., to equal zero or infinity, or to be 
singular. The free boundary - the curve where both terms in (2.5) equal zero - is 
a connected union of two half lines S0 and Sx. This free boundary S0 U Si is the 
switching curve of the optimal synthesis and it divides the plane into two regions. 
Below the free boundary lays the jump region, i.e., where the optimal control is 
impulsive, and above it lays the zero-control region. The jump region is the open 
set where vy = —1, and the zero-control region is the set where v = yvx + f. 
In the jump region the optimal control causes an instantaneous jump of the state 
in the direction of the vector (0,1) sending a state (x,y) to the point of the free 
boundary directly above it. The optimal control is zero on S0 and it is singular 
(u(x,y) = x + y + 1) on Si. In the optimal synthesis the zero-flow along So leads 
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into the null region while along Si it leads away from the null region. The curve 
Si has the additional property of being an optimal singular trajectory. The value 
function turns out to be a classical C1'1 solution of the Bellman equation. It is 
C2 along Si and it fails to be C2 along S0. To present the optimal synthesis, we 
introduce the following subsets of R2. Let 

S0 = 

Si = 

Jo = 

{{x,-(x + l)/3):x<-l}, 

{(x,A(x + l)) :x > -1}, 

{{x,y):y>0,y>-(x + l)/3}, 

{(x,y) :X(x + l) <y<0}, 

{(x,y) : x < -l,y < -(x + l)/3}, 

{(x,y) :x > -1,2/ < A(z + 1)}, 

N = N0UNU 

J = J0U Ji, 

where A = (1 — \/5)/2. Then the optimal feedback control and the value function 
are given as follows. Let U(x,y) = 0 on N, U(x,y) = x + y + 1 on Si, and 
U(x,y) = a(x,y)6o on J, where So is the Dirac impulse at time zero and a(x,y) is 
the direction and intensity of the impulse with a(x,y) = (0, — (x + l)/3 — y) in Jo 
and a(x,y) = (0, A(a; + 1) — y) in J\. The value function is v = vu , the cost for 
the control U. It is given by 

2rrt2 

v(x, y) = x2 + 2xy + 3y2 + y 

v(x, y) = {x2 + 3y2 + 2yx + y)(l - e~T) - [2yT(x + y) + yzT 

+ 2/2(l + A2)/(A2(2A - 1)) + 2/(2 + A)/A - l)e-q 

where   T = 1/A — 1/y — x/y, 

v(x,y) = 2{x2-x)/3-y-l/3 

v(x, y) = l-y-2(x + l)-(x + 1)2(1 + A2)/(2A - 1) 

onJVo, 

oniVi, 

on J0, 

on Ji. 

It is simple, although tedious, to check that v is C1'1 in R2, that it is not C2 

along So, and that it satisfies the Bellman equation (2.5) in the classical sense. 
Once this is done, a verification theorem implies that the optimal synthesis has 
been found. 
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W E FITZGIBBON AND M E PARROTT 

Approximation of strongly damped string 
equations by strongly damped beam 
equations 

1    Introduction 

In this paper we discuss the beginning of a project which examines the validity of approxi- 

mating the strongly damped string equation 

u(0,t) = u(e,t) = 0,    i>0 (1.1b) 

u (x, 0) — u\ (x),   ut (x, 0) = «2 (x),   x e (0, £) (1-lc) 

by the strongly damped beam equation 

W + cft? ~ a8xWt = [ß + 7 {9u/dy) dy) dx-»t>0 (L2a) 

u(0,t) = u(£,t) = uxx(0,t) = uxx(£,t),   t>0 (1.2b) 

u (x, 0) — u\ (x), ut (x, 0) = U2 {x), x e (0,£). (l-2c) 

Equation (1.2a), without the damping term —ad3u/dx2dt, is the model introduced by 

Woinowsky-Krieger [33] to describe the transverse deflection u (x, t) of an elastic, or extensible, 

beam of reference, stress-free length £, whose ends are then fixed at x — 0 and x = £+A. Since 
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the beam is constrained to lie on the x-axis, an axial force and bending moment are induced. 

The coefficients e, ß and k have the following physical definitions: e = EI/ p, ß = H/ p, 

k = EA/2pl, where H = EAA/£, E is Young's modulus, / is the cross-sectional second 

moment of area, p is the density, and A is the cross-sectional area. The constants e, k, and a 

(the damping coefficient) are positive. It can be seen that if the beam is very thin, then the 

coefficient e will be small. The constant ß is, in general, unrestricted in sign (since H has that 

property); if ß (i.e. H) is positive, it represents a tensile force. The nonlinear term in (1.2a) 

(i.e. the right hand side of the equation) represents the change in tension of the beam due to 

its extensibility. 

The term — ad3u /dx2dt represents a strong, structural (internal) type of damping. An- 

other type of damping which is often included in beam and string equations is a weak aerody- 

namic (external) type of damping, modeled by the term ödu /dt (where 6 is usually, but not 

always, positive). Various other types of viscoelastic and structural damping terms have also 

been studied in beam and string equations. 

The boundary conditions (1.2b) represent hinged, or simply supported, conditions. An- 

other common type of boundary conditions are the clamped conditions 

u{0,t) = u {£, t) = ux (0, t) = ux (£, t) = 0,   t > 0. 

Other types of boundary conditions, for example, cantilevered boundary conditions, can be 

important in applications, but present more mathematical difficulties. 

The basic questions of existence and uniqueness of solutions of damped or undamped beam 

equations, and stability of equilibrium solutions of damped beam equations, with various 

boundary and initial conditions, have been considered by many authors; see, for example, Ball 

[1], [2], Eisley [11], Reiss and Matkowsky [28], Dickey [7], [8], Holmes and Marsden [20], Pereira 

[27], De Brito [5], Biler [3], Fitzgibbon [12], and references therein. Most of these stability 

results for damped beam equations are obtained under the assumption that ß > — Aj, where 

Aj is the least positive eigenvalue of the problem 

tuf + A,< = 0, where W\T3lan = - (ß + Xj)/k 
Ls(0,<) 
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If ß > -Ai, then (cf. Ball [2]) the only equilibrium position is the trivial one. (If 0 < -Aj, 

there exist nontrivial equilibrium positions, the so-called buckled states.) The long-term, 

global behavior of solutions of damped beam equations for a general 0 has been considered by 

Hale [17], Taboada and You [31], and Sevcovic [29], [30]. 

If e = 0 in equation (1.2a), then the resulting equation (1.1a) is widely considered to model 

the deflection of a vibrating string. Here, the constants of a, 0 and k are positive, and have 

the same physical meaning as described above for the beam equation. 

Global existence and uniqueness for the strongly damped string equation has been obtained 

by Nishihara [23] and Matos and Pereira [22]. In contrast to the beam equation, existence 

results for the string equation are more sensitive to the presence and type of damping terms 

included in the equation. For the string equation with weak damping term 5ut {6 > 0), it is 

known that if the initial conditions are sufficiently smooth and sufficiently small, then there 

exists a unique, global, classical, exponentially decaying solution (cf. [6], [3], [24] and references 

therein). For the string equation without damping it is known only that if the initial conditions 

are sufficiently smooth, then there exists a unique local classical solution (cf. [9], [10], [25]). 

In the next section we show that solutions of the strongly damped beam equation (1.2a-c) 

(with e, a, 0, k> 0) converge on finite time intervals, as e -» 0+, to solutions of the strongly 

damped string equation (l.la-c). 

2    Convergence of Solutions 

We first formulate equations (l.la-c) and (1.2a-c) as abstract Cauchy initial value problems 

in an appropriate function space. 

Let H = L2(0,£), with norm ||-||. We define A : D(A) C H -> H pointwise for a.e. 

xeMby 

{Au) {x) = -u" (x) (2.1a) 

with 

D(A) = {u\ueH2(0,£)nH^(0,e)}. (2.1b) 
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Here, Z/J (0,^) and H2 (0,£) are the usual Hilbert Sobolev spaces. It is well-known that A so 

defined is a strictly positive definite, self-adjoint operator on H, and positive powers of A, A7 

for 7 > 0, may be computed. By imposing a graph norm, D (A7) can be made into a Hilbert 

space HAt, and 

\\u\\Al = P7w|| for u G D (A"). (2.2) 

The damped beam equation (1.2a) can now be written as the abstract second-order evolu- 

tion equation 

ü(t) + eA2u(t) + aAü(t) = -ßAu(t)-k\\A1/2u{t)fAu(t),   t >0 (2.3a) 

u (0) = %    ü (0) = u2. (2.3b) 

To convert (2.3a-b) to a first-order evolution equation, we let X = D (A) x H, and define 

an operator matrix At by 

A=U   «I1 (24a) 

D (Ät) = D (A2) x D (A) := Dt. (2.4b) 

Proposition 2.1 —A( is the infinitesimal generator of an analytic semigroup lf( (t) \t > 0 } G 

X. |T£ (t)| zs an analytic semigroup of contractions in Xt — H^A x H. 

Proof. The proof of the first statement follows from results of Chen and Triggiani [4]. A 

direct calculation shows that At is m-accretive in X( and hence -A,, generates a semigroup of 

contractions in Xe. 

If we define a nonlinear operator F : X —> X by 

F(^)=l I „2 I (2-5) 
\   -ßAu-k\\Al/2u\\ Au   ' 

for [7e = (u,Ut)   G X, then (2.3a-b) can be written as 
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d^l = -Ä(Ut + F(Ue),t>0 (2.6a) 
dt 

Ut (0) = U0 = lUl     . (2.6b) 

The proof of the following theorem follows from the existence results of the various authors 

listed in the Introduction; the regularity follows, in particular, from [20, Proposition 2.6]. 

Theorem 2.2 If U0 = (ui,u2)
T e Di then there exists a strong, continuously differentiable 

solution to (2.6a-b) on [0, oo) which has variation of parameters representation 

t 

Ue (t) = ft (i) U0 + Jft(t-s)F (Uf (a)) ds. 
o 

Moreover, ifn€Z+ and U0 6 D (Ä1?), then Uf (t) e D (Äfj. 

We note that, while [f( (t)\ t > o} is an analytic semigroup in X (cf. Proposition 2.1), we 

can no longer claim that it is a contraction semigroup in X. In fact, due to the singularity 

imposed by the factor e, one would expect the norm of f£ (t) in X to blow up as e | 0. For this 

reason, we choose to convert the second-order evolution equation (2.3a-b) into a first-order 

evolution equation in an alternate manner. We define an operator matrix A by 

(2.7a) 

D(A)=D(A)XD(A). (2.7b) 

Using results of Webb [32, Prop. 2.2], one can show that -Ä is the infinitesimal generator of 

an analytic semigroup of contractions {T(t)\t> 0} on X. By defining a new nonlinearity F( 

by 

u 

we can merely regroup terms to write (2.3a-b) as: 

(2-8) 
k\\All2u\\ Au-eA2u 
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^^ = -AUt (t) + Fe (Ut (t)) ,* >0 (2.9a) 

U( (0) = I/o = |  Ul   | (2.9b) 

for f/e = (u,ut)   G X. By applying the theory of inhomogeneous Cauchy initial value problems 

(cf. [26]), we have the following: 

Proposition 2.3 IfU0 e Di then the strong solution o/(2.6a-b) may be represented as 

t 

Ue (t) = T(t)U0 + JT(t-s) Ft (Ue (s)) ds. 
o 

With the operator A as defined by (2.1a-b), the damped string equation (l.la-c) may be 

written as the second-order evolution equation 

ü{t) + aAü{t) = -ßAu{t)-k\Al/2u{t)f Au(t),    t>0 (2.10a) 

u(0) = uu    u{0)=u2. (2.10b) 

With the operator matrix Ä defined by (2.7a-b), and a nonlinear operator F0 defined by 

. .   (       o 
II ,|2 

-k L41/2u    Au 

(2.10a-b) may be written as the first-order evolution equation 

(2.11) 

^p- = -AU(t) + F0(U(t)),   i>0 (2.12a) 

U(0) = Uo=\   Ul   |. (2.12b) 
u2 

By the results of Matos and Pereira [22], we have 
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Proposition 2.4 IfU0 = (ui,u2)
T € D [A1'2) X H, then the strong solution to (l.la-c) (re- 

spectively (2.12a-b)) exists on [0,oo), and has abstract variation of parameters representation 

t 
U (t) = T (t)U0 + J T (t - s) F (U (s)) ds. 

o 

The key to showing convergence of solutions of (1.2a-c) to solutions of (l.la-c) lies in 

establishing a priori bounds for solutions of (1.2a-c). We state the following two propositions, 

whose proofs are given in [13]. 

Proposition 2.5 // (u1,u2)
T G Dx then there exists a positive constant Mx, which does not 

depend on e, so that 

supJHtiWIl'.l^tiWf.ePuWfl^Mx. 

Proposition 2.6 IfneZ+,T>0 and {ui,u2)
T G D(A2n) x D(An), then there exists a 

positive constant Mn (T), which does not depend on e, so that 

sup {|U»/2« (t)l|2, lU^1)/2« (t)f , e |U<«+a>/2« (*)f) < Af„ (T). 
te[o,T] l" ■ "    " " ' 

Using an Arzela-Ascoli argument, along with the bounds of Propositions 2.5 and 2.6 and 

results of Kato [21], we obtain our main convergence result, whose proof is given in [13]. In 

the theorem below, IHI^ denotes the supremum norm. 

Theorem 2.7 // U0 - («i, u2f G D (A4) x D (A2) and T > 0, then 

lim (sup ||«£(-,t)-«(-,t)IL]=0> 
«-♦0+ \*e[o,T] / 

where u( and u are strong solutions o/(1.2a-c) and (l.la-c) respectively. 

3    Future Research 

The results contained herein may be viewed as the initiation of a larger project which examines 

the relationship between the dynamics of solutions of (1.2a-c) and (l.la-c). We shall apply 

techniques of Taboada and You [31], and [14], to establish the existence of global attractors At 
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and A corresponding to both (1.2a-c) and (l.la-c) respectively. The next question becomes: 

Does A( converge (in some appropriate sense) to A as e j 0? If so, then the validity of 

viewing the strongly damped beam equation as an approximation of the strongly damped 

string equation is further verified. In seeking to answer this question, we are motivated by 

results of Hale and Raugel [18], [19], and our recent work on global attractors for singularly 

perturbed Hodgkin-Huxley equations [15], [16]. 

Another project of interest involves the convergence of solutions of weakly damped beam 

equations to weakly damped string equations; that is, the term 6 du/ dt, 8 > 0, replaces 

the term -a d3u/ dx2dt in equations (1.2a) and (1.1a). A result of this type could possibly 

improve known existence results for weakly damped string equations. 
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G R GOLDSTEIN, J A GOLDSTEIN AND S OHARU 

The Favard class for a nonlinear parabolic 
problem 

ABSTRACT 

The parabolic partial differential equation 

du/dt = <p(x, du/dx)d'2u/dx2 

is considered for 0 < x < 1 and t > 0. A variety of boundary conditions x = 0,1 

are allowed. The function ip - (p(x, £) is allowed to vanish at x = 0,1. The problem 
(under some assumptions on </? and the boundary conditions) is governed by an m- 

dissipative operator A and a corresponding contraction semigroup {T(t) : t > 0} on 
C[0,1]. The Favard class £(A) is explicitly calculated. It follows that if the initial 
data for u at t = 0 is in 2)(A) (or I)(A)), then u(t) is in $)(A) for all * > 0. This 
implies some spatial regularity since 55(A) C W2'l(0,1). 

§1. Introduction 

We are interested in questions of spatial regularity   Consider an autonomous 

partial differential equation which can be written in the form 

du(t)/dt = A(u(t)) (l.i) 

in some Banach space X; A maps its domain D(A) C X to X. In many situations, 

(1.1) is governed by a strongly continuous semigroup T = {T(t) : t > 0} acting on 

D = T> (A). Thus u(t) = T(t)uQ is the unique (mild) solution corresponding to the 

initial condition u(0) = u0. To illustrate the following ideas, let us first consider the 

case X = LP(fi) (where Ü C ET) and D = X. 

An invariant set is a set Dx C D such that T{t)(D{) C Dx for all * > 0. (Maybe 

£>i = 2)(A), maybe not.) We wish to focus on the fact that Dx contains information 

on spatial regularity. For example if we could show WQ
IP

(Q) C DX C Wk>p(tt), then 

the statement that Dx is an invariant set implies that the solution u(i) has spatial 

derivatives up to order k in Lp(ü), for all * > 0, whenever the initial data u0 G 
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Di. (A precise description of D\ requires consideration of the boundary conditions 

associated with A.) 

For simplicity suppose that A (which may be multivalued) is m-dissipative on 

X. Thus for all A > 0 and / € X, there is a u € £>(A) such that u - XAu 3 f. 

Moreover, tiui-XAui 3 fi, i = 1,2, then \\ui—u2\\ < ||/i-/2||- Phrased differently, 

the statement that A is m-dissipative is equivalent to the statements 

&(I -XA) = X and ||(7 - AA)_1||Lip < 1, for all A > 0. 

Then (by the Crandall-Liggett theorem [7], [1], [2], [13]), A determines semigroup 

T by the formula 

T{t)f =  lim (J - -A)~nf    t>0,     f£D = ®{A). 
n—>oo n 

This semigroup gives the unique mild solution of (1.1) provided that u(0) = / is 

specified and u(t) is defined to be u(t) = T(t)f. 

A natural candidate for an invariant set D\ is 2) (A). In the linear case, where 

A is single valued and 2) (A) is dense, 2) (A) is always invariant (see e.g. [4], [12]). 

But this is false in general in the nonlinear case (see e.g. [7]). ( It is true when X 

is reflexive.) 

An important example of a nonlinear operator on a nonreflexive space is a 

(single) conservation law 

du/dt + d{ip(u))/dx = 0 (1.2) 

where ip £ C2(1R), ip > 0. This is governed by an m-dissipative operator on LX(IR,) 

by Crandall [5]. Let the initial data / be in C£°(1R). Then by the classical theory 

(of Lax, Oleinik, ...), a shock will develop and for some to > 0, u(to) = u(to,-) 

will have (at least) one downward jump as a function of x & IR. An useful lead in 

finding an invariant set for (1.2) may be obtained by using a result of Burch [3]. 

Let F e C2(MN),   F(0) = 0, and suppose 

A d2F(x) 
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holds for all x, £ G ]R   . Consider the Hamilton - Jacobi equation 

ut + F(Vxu) = 0,        u{0) = g (1.3) 

in X — BUC(JRN), the bounded uniformly continuous real functions on EW. This 

is of the form (1.1) with A defined by Au = —F(Vxu)) m-dissipative on X (by 

[3]). For k > 0 define 

Bk = {ueX :  for a\lx,yeJRN, 

\u(x)\ < k,    \u(x) — u(y)\ < k\x — y\, 

u(x + y) + u(x — y) — 2u(x) < &|y|2} . 

Thus u G Bk implies that u satisfies a semiconcavity condition, incorporating a one 

sided bound on the second order difference quotient. Burch proved that 

T{t){Bk) c Bk for alii, k > 0. 

Here T is the semigroup determined by A via the Crandall-Liggett theorem. For 

N = 1 and u the solution of (1.3), v = ux satisfies (1.2) with (p = F and v(0,x) - 

g'(x) = f(x). If / G C~(1R), then f f = g G Bk for some k > 0. Hence, by Burch's 

result, u(t) G Bk for all t > 0. Thus, for all t > 0, v{t,-), the solution of the 

conservation law (1.2), remains bounded (in x) with no discontinuities other than 

downward jumps. 

The preceding discussion leads naturally to the Favard class. Again, let A be m- 

dissipative on X, so that A determines a contraction semigroup T on D = T>(A) (as 

before). The Yosida approximation A\ of A is defined to be A\ = X~1(I — (I — 

XA)-1) for A > 0. (See, e.g. [1], [2], [13].) The Favard Class ( or generalized 

domain), £>(A), of A, was introduced by U. Westphal [17] and later independently 

by M. Crandall [6]. There are three equivalent ways to define it, namely 

®(A) = {/ G V(A) : ljm\\Axf\\ < oo} 

= {/ G S3(A) : \\T(t)f - f\\ < Mft for some Mf > 0 and 0 < t < l\ 

— {/ G 5)(A) :  for some sequence fn G T){A) and gn G Af, gn -+ f 

and Afn is bounded (as n —> oo)}. 
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The theory of the Favard class is summarized by the following three facts: 

i)   3(i)c3(i)c2(4 

ii)     $)(A) = 2)(A) if X is reflexive, 

ii)     T(t)($)(A)) C 2)(A) for each t > 0. 

Thus $)(A) is the invariant set which can be used to explain relevant spatial 

regularity of a problem. The problem with this method is that 'S (A) is very difficult 

to compute explicitly. Of course, $)(A) gives less regularity than £> (A) does, but 

it gives useful information whenever one can calculate it. 

We illustrate these concepts in the simple case A = d/dx, (T(t)f)(x) = f(x + 

t)), and X = BUC(M). Then 

T)(A) = {u(EX:ue C^M), vl € X}, 

$)(A) = {«£!:  for some M > 0, 

\u(x) — u(y)\ < M\x — y\ for all x,y E IR} 

= Lip (H) n BUC{JR). 

In the case of the single conservation law (1.2), $)(A) is not known. Similarly T)(A) 

is now known for the Hamilton-Jacobi equation (1.3), although it is conjectured 

that $)(A) =  U Bk is this case. From Burch's results,  ID (A) D  U Bk follows. 
fc>0 fc>o 

Our purpose in this paper is to characterize £>(^4) precisely in a nontrivial 

case. This will be the first such result in the literature. Of concern is a nonlinear 

parabolic equation with degeneracy at the spatial boundary. A variety of boundary 

conditions is allowed. 

The main result is Theorem 1. It is stated in Section 2 and proved in Section 

3. Section 4 contains some remarks and extensions. 

§1. A Nonlinear Parabolic Problem 

The equation of concern is 

du/dt = ip{x,du/dx)d'2u/dx2 
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for t > 0 and 0 < x < 1; and initial condition and various boundary conditions will 

be imposed at x = j for j = 0,1. Let X be the real space C[0,1]. The Dirichlet and 

nonlinear boundary conditions at j = 0,1 are 

(BCf) u(j) = 0, 

(BC,) {-iyu'{j)Eß3{u{J))- 

Here ßj is a strictly increasing maximal monotone graph in El2 containing the origin. 

Thus 0 G ßj(0), and y{ G ßj(xi),   i = 1,2, and xi < x2 implies yx < y2. 

Let YBC be C^O, 1] [resp. X; C^O, 1] n X; C^O, 1) n X] when the boundary 

conditions are (BC0),   (BC,) [resp. {BCJ>\{BC?); (BC?),(BCX); (BC0), 

(BCy)\. YBc will be incorporated into the definition of the domain of A. 

Let ip G C([0,1] x IR) satisfy (p(x,£) > 0 for all (x,£) G (0,1) x IR, <^(.r,0 > 

<po(x) for all (a:,£) G (0,1) x IR. Here tp0 G C[0,1], y)0(a:) > 0 for x G [0,1] and 

-f- 6^(0,1). Define 

Au(:r) = ^(x, u'(x))u"(x) 

for u in 2)(A) = {v G C2(0,1) n YBC : u satisfies the boundary conditions ( one 

specified at x = 0, one at x = 1) and Au G X}. 

Theorem 1:     A is m-dissipative on X. 

This result is due to J. A. Goldstein and C.-Y. Lin [16] in the special case when 

<Po > 0 on (0,1) and ^ G L2(0,1). G.R. Goldstein [10] extended [16] to the present 

case (and in various other directions as well). 

Before stating our main result we introduce one additional hypothesis. 

[H]      There exist e0 > 0, C0 > 0 such that 

<p(x,£ + a) < C0<p(x,£) 

for all x G [0,1] and all(eJR and all a with \a\ < e0. 
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This hypothesis is not very restrictive. A special case in which [H] holds is 

where ip0 vanishes only at 0,1 and ip is bounded away from 0. Another example is 

1 
X~2 

2/3 

+ (£2 + ir1}^ <p(x,£) = [x(l-x)]a{ 

for 0 < a,ß < 1 and (x, f) G [0,1] X IR. Here 

<p0(x) = [x(l-x)]a\x-±f. 

Noting that 

T<^(X, 0 < (p{x, £ + a) < 5ip{x, Z) 
5 

for \a\ < 1 and all (x,£) G [0,1] X IR, we see that [H] holds with C0 = 5 and e0 = 1. 

In this case cpo necessarily vanishes at an interior point. 

The following theorem is the main result. (But see also Section 4.) 

Theorem 2.        Define A,   2) (A) as above and suppose that [HJ holds.  Then the 

Favard class of A is 

5(A) = {ue C^O, 1) n YBC : u' G AC[0,1], <p(x, u')u" G L°°(0,1) 

and u satisfies the boundary conditions associated with A}. 

§3. Proof of Theorem 2 

Let Z be the set defined in the statement of the theorem. We must show 

i) V(A) C Z, 

ii) ©(A) D Z. 

Proof of i).    Let u G S(A). Choose vn G 2){A) such that \\vn - u\\ -> 0 and 

\\Avn\\ < Mi, for some Mi > 0 and all n = 1,2,3, Here || • || is the norm in X, 

i.e. the supremum norm. 
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Let M0 = llv^Hi (the L1 norm). Then 

for all n > 1. Using the estimate 

IKII^iKii + Kii! 

(See Dorroh and Rieder [8]), it follows that {vn} is a bounded sequence in the 

Sobolev space W2^(0,1). Moreover, an oscillation argument gives a relative com- 

pactness result for the sequence {vn}. 

Define two moduli of continuity, U>L,CüC by 

WL(/; S) = sup{ /   \f(x)\dx : E is a subinterval of [0,1),    |£| =  / dx < 6}; 
JE JE 

uc(f, 5) = sup{|/(x) - f(y)\ :x,ye [0,1), \x - y\ < 6}. 

Let {/„} be a sequence of integrable functions on [0,1]. Notice that the statement 

that for each e > 0 there is a 8 > 0 such that wL(/n, 6) < e (resp. ujc(fn) < e) for 

all n is equivalent to the statement that {/„} is uniformly integrable (resp. {/„} 

is equicontinuous) on [0,1]. Dorroh and Rieder [8] proved that for 0 < 5 < \ and 

/ € YBC n C2(0,1) with /" G ^(0, 1), 

Il/'||< ~\\f\\ +VL(f",6). (3.1) 

It follows that, given e > 0, we have 

uM,5)<MlLüL(ipäl,5)<£ (3.2) 

for some 5 = 5(e) > 0 sufficently small since y^1 is integrable an [0,1]. Moreover, 

uc(v'n,5) < ujL(vl5) < IK'Hi < M0Mx 

for all S G (0, |] and 

"c(v'n,S)<E (3.3) 
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for S = 6(e) > 0 sufficiently small by (3.2). Hence {v'J is a pointwise bounded 

equicontinuous sequence in C[0,1], so by the Arzela-Ascoli theorem, there is a sub- 

sequence, which we again denote by {v'n}, which converges uniformly to a continu- 

ous function w. Using the boundedness of {Avn} it follows that (at least for some 

subsequence) 
vn -> u in X, 

v'n -> u' in X, 

v'n -> u" a.e., 

WL(«",<5I) < MQMX for 0 < *i < -, 

and 

UJL(U",5) < e 

for some S sufficiently small. It also follows that 

H^s, u'Vlloo <Mi <oo. 

It remains to show that u satisfies the boundary conditions. For the (BCf) case, 

this follows from the uniform convergence of vn to u. In the case (BCj), we have 

(-l)''<(j)€ßK(j)), 

and vn(J) -»• u(j),   v'n(j) -»• u'(j). Hence 

(-l)J'u'(i) G /3(u(j)) 

since the graph ßj is closed. This completes the proof of i). 

We note that hypothesis [H] was not needed in the proof of i).  However it is 

required for ii). 

Proof of ii).       Let u € Z. By standard density results of real analysis, one may 

choose /„ in C[0,1] such that 

a)  fn ->■ u" a.e. and in L1^, 1), 
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b) \fn(x)\ < 2\u"(x)\ + 1 a.e. for all n > 1, 

c) sup ||<p(a:, u^Xlloo < M < oo. 

To see this, define 

l(x) = an + bnx+ /   fn(s)dsdy; (3.4) 
Jo   Jo 

then 

u'n = bn+ /   fn(s)ds, for all x € (0,1), 
Jo 

un(x) = fn{x)    a.e. 

There are uniquely determined a, b G IR such that 

u(x) =a + bx+ I   u"(s)dsdy. 
Jo  Jo 

(Namely, a = u(0),    b = u'(0).) In the definition of fn above, choose an, bn in (3.4) 

so that 

an -> a, bn -» b 

as n -> oo. Part c) (i.e. 

SUplMzXXHoo <00) 
n 

follows from hypothesis [H] together with the assumption that u E Z. 

To show that uETl(A) it remains to check that the boundary conditions hold 

so that fn e X)(A) for all n. 

Case 1:        (BC0),   (Bd). 

Under these nonlinear boundary condtions, b G ß0(a) must hold as must 

~(b+c) eßxia + b + d), 

where 

We want 
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Jo Jo  Jo 

bneßo(an),   -(bn + cn)eß1(an + bn + dn) (3.5) 



to hold for all n, where 

Cn=   f  fn(s)ds,   dn=  I    r fn(s)dsdy. (3.6) 
Jo Jo   Jo 

If both boundary conditions (BCj) holds, then -cn G Jn{an) where 

1n{s)~ßi((I + ßo)(s) + dn) + ß0(s). 

Let also 

j(s) := ß1((I + ß0)(s) + d) + ßo(s). 

By the strict monotonicity of ß0 and ß\ the maximal monotone graphs 7„,7 

have the property that   Range (7) =  Ranged) = J, where J is the open interval 

J = (inf/?i + inf/?o,   sup/?i + sup/?0). 
H IR. JR. Et 

Note that J is independent of n. Since c € J and cn ->■ c, it follows that cn G J for 

sufficiently large n. For such n, an exists and is uniquely determined by the strict 

monotonicity of ß0 and ßx. Next for these n there is a bn G ßo(an) such that (see 

(3.5)) 

-cn G ßi{an + bn + dn) + bn. 

This gives the construction of the desired pair (an, bn) for n large enough. As noted 

above, an is uniquely determined. Also, bn is uniquely determined provided ßi is 

single-valued. But even if this is not the case, from bn G ßo{an) and on ->• a, 6 G 

/30(a), we may choose bn G A)(an) for large enough n such that (3.5)and (3.6) hold, 

and bn -» 6 as n —> 00. 

Case 2:      (5C0
D), (£Cf). 

Since u„(0) = an,  K„(1) = an + bn + dn must hold, simply take an = 0 = 

fl,   ^n = —dn —l —d = b. 

Case 3:      (BC^),(BCi). 

Case 4:      (5C0), (#Cf). 
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These are handled in a similar manner. Actually, Case 1 is the hardest to 

prove. 

This completes the proof. . 

§4. Concluding Remarks and Further Results 

For J an interval, let C0(J) be the closure of the space of continuous functions 

which are compactly supported in J. Then 

C0([0,1]) = C[0,1], 

Co(0,l] = {«€C[0,l]:u(0) = 0}, 

C0[0,l) = {ueC[0,l]:u(l) = 0}, 

C0(0,1) = {u G C[0,1] : u(0) = u(l) = 0}. 

The closure D of 9(A) is C[0,1] [resp. C0(0,1]; C0[0,1); C0(0,1)] when the boundary 

conditions are (BC0), (Bd) [resp. (BC?), (Bd); (BC0), (BCf>); (5C0
D), {BC[>)]. 

It is of course of great interest to extend the idea of this paper to more general 

contraction semigroups. A specific candidate for extension is the n-dimensional 

extension of the one dimensional operator considered in this paper. 

Now let Y = L°°(0,1) and define 

(Au)(x) = tp{x, u'{x))u"(x)   (x G (0,1)) 

for u G 9(A) := 2 (A) = {u G ^(0,1) HYBC : u' G AC[0,l],Au G Y}. In other 

words A is the natural extension of A from C[0,1] to L°°(0,1), and the natural 

maximal domain given to A is the Favard class $) (A) of A. 

Theorem 3. The operator A satisfies the hijpotheses of the Crandall-Liggett theo- 

rem. 

Thus A is dissipative and satisfies M (I - XA) D 2)(A) for all A > 0, whence A 

determines a contraction semigroup 

T = {T(t) : t > 0} on Y0 = 2) (A) c C*[0,1], 
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since 2> (Ä) = 2) (A); this is the set D computed in the first paragraph of this 

section. The semigroup f gives unique mild solutions to 

du/dt = (p(x,du/dx)d2u/dx2, 

u(x,0) = f{x) 

together with the boundary conditions at x = 0,1 for / G 2) (A) = D. For A > 0 

ig   (/ - XÄ) D &   (I- XA) = C[0,1] D 2) (A), 

and so the range condition holds (by Theorem 1). The main point of Theorem 

3 is that A is dissipative on Y. The proof depends on a careful examination of 

the duality map of Y. This involves using finitely (but not countably) additive set 

functions defined on the Borel sets of [0,1] and with values in [0,1]. The relevant 

ideas in the case of £°°(= L°°(1N)) are explained in [14]; see [15] for the case of 

L°°(0,1). A full proof of Theorem 3 will be given in [11]. 

Theorem 3 is not only of intrinsic interest; it paves the way for Theorem 4. Thus 

far we have emphasized spatial regularity. The following result gives additional 

regularity in time. 

Theorem 4. Let A, 2) (A) be as in Theorems 2,3. Then for all f € 2> (A), the 

unique mild solution u(t) = f(t)f of u' = Au,u(0) = / satisfies 

weak*—u(t) = A{u(t)) 

for t > 0. 

The weak* derivative assertion means that for all h £ L1(0,1), 

t -» (u(t),h) = /   u(t,x)h(x)dx 
Jo 

is locally absolutely continuous on [0, oo) to IR and satisfies 

±{u(t),h) = (A(u(t)),h)z.e. 
at 
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The proof of Theorem 4 will also be given in [11]. Note that result makes sense 

since L°°(0,1) is a dual space whereas C[0,1] is not. It also requires the extension 

A of Theorem 3. 
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S HEIKKILÄ 

On first order discontinuous scalar 
differential equations 

0. Introduction 

We shall first describe how existence, uniqueness, extremality and comparison results 

derived for a Caratheodory type differential equations (cf. [2,4,6,8,9,10]) can be 

generalized to the initial value problem (IVP) 

*' = «(*M*> x), x(0) = c, (1) 

where q is positive-valued, measurable and essentially bounded, - is locally essen- 

tially bounded, g(-,x) is measurable, g(t, •) is right-continuous and upper semicon- 

tinuous, and g is bounded by a Lebesgue integrable function of t. Modification and 

generalization of the approach used in [1] when q(z) = 1, combined with methods 

and results developed in [5,6] makes possible to treat the IVP (1) under the above 

hypotheses. 

The so obtained results and a generalized monotone iterative method developed 

in [6] are then applied to show that the IVP 

x' = q(x)f(t,x,x), x(0) = c, (2) 

has extremal solutions which are increasing in c and in qf, when the functions 

involved in the differential equation admit different types of discontinuities in each 

of their variables. Measurability is assumed in the independent variable t. With 

respect to x we allow X°°-type of discontinuity in q, left-discontinuity (as above 

for g(t, •)) in the second variable of /, and monotonizable discontinuity in the last 

variable of /. Complete proofs of the results described in this paper are to be found 

in [3, 5, 6, 7]. 

1. On solvability of the IVP (1) 

In this chapter we shall consider existence of unique or extremal solutions to the 

IVP (1) on an interval J = [0, T],   T > 0, and their dependence on data. 
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1.1 Hypotheses and preliminaries.  In the following Z denotes a null-set in J. 

Let AC(J) denote the space of all absolutely continuous functions x: J -»■ R, and 

L+(J) the space of Lebesgue integrable functions x: J -» R+. 

A function x € AC( J) is said to be a solution of (1) if 

x'(t) = q(x(t))g(t,x(t)) for almost all (a.a.) t € J, and  x(0) = c. 

Assume that q: R -> (0, oo) has property 

(Q) q is measurable and essentially bounded, and i is locally essentially bounded, 

and that g: JxR-^R satisfies conditions 

(A) g(-,z) is measurable for each z € R and #(<,•) right-continuous and upper 

semi continuous for all r € J \ £; 

(B) there is m G L+( J) such that \g(t, z)\ < m(t) for all z S R and < € J \ Z. 

Applying a "partial separation of variables" the IVP (1) can be converted to an 

integral equation (cf. [3]). 

Lemma 1.1. If the hypotheses (Q), (A) and (B) hold and c G R, then x is a solution 

of the IVP (1) if and only if x is a solution of the integral equation 

/x(t)     J ft 
-g- = y  g(s,x(s))ds,    teJ, (LI) 

on the set 

C?(J) = {xe AC(J) | x(0) = c, \x(t) - x(t)\ < \w(t) - w(t)\, i-,t 6 J},      (1-2) 

where 

w(i) = \c\+ f HglloomOOds,     t € J. (1.3) 
Jo 

The following result is proved in [3] by modifying the method used in [1] when 

q(z) = 1 to fit in this more general situation. 

Lemma 1.2. Assume that conditions (Q), (A) and (B) hold, and let c € R be given. 

Then for each n = 1,2,... there is a partition Pn = {<"}[LO 
oi J so that P» c ^»»+i> 

<•+! - *" < T2~n+1, i = 0,..., /„ - 1 and /„ < 4n, and a function x„ € Cc
tu( J) such 

that 
fXnW    J,, ft 
I      -^L = / 9n(s)ds, t e J, (1.4) 

Jc      q.(v)    Jo 
149 



where 

gn(s) = Sup{g(s,x) \ \x - xn(t?)\ < w(s) - w(t?)}, s € [CT+i] \ Z, 0 < i < ln - 1, 

(1.5) 

xn{t) < xn-x(t),    teJ, n = 2,3,.... (1.6) 

and that 

1.2. Existence of extremal solutions. Assume now that AC(J) is ordered point- 

wise. A solution y E AC(J) of (1) is called maximal if x < y for each solution x of 

(1), and minimal if the reverse inequality holds. If both these solutions exist we call 

them extremal solutions. 

Theorem 1.1. If conditions (Q), (A) and (B) hold, then the TVP (1) has for each 

c G R extremal solutions. 

Proof. In view of lemma 1.2 the sequence (xn)™=1, defined by (1.4), (1.5), is con- 

tained in the set C™(J), which is uniformly bounded and equicontinuous. Thus 

(ZfO^Li has by Ascoli-Arzela theorem a subsequence which converges uniformly on 

J. Because (in)^L1 is by (1.6) decreasing, this entire sequence converges uniformly 

on J. Denote 

x(t) =  lim xn(t),    t G /. (a) 
n—>oo v   ' 

Because each xn belongs to C™(J), then also x belongs to C™(J). By using the 

given hypotheses and the properties listed in lemma 1.2 it can be shown (cf. [3]) 

that 

Kmogn(t) = g(t,x(t)), (b) 

where gn is defined by (1.5). From (1.4) it then follows, as n -> oo, applying (b) and 

the dominated convergence theorem to the right hand side, and (a) and absolute 

continuity of x i-> f* -^ to the left hand side of (1.4), that x is a solution of the 

integral equation (1.1). This implies by lemma 1.1 that x is a solution of the IVP 

(1). Moreover, it can be shown (cf. [3]) that x is the maximal solution of (1). 

Denote by S the set of all the solutions of (1). Since S C C™(J) by lemma 

1.1, then S is equicontinuous and uniformly bounded, whence one can construct a 

decreasing sequence (yn)%Li in 5 which converges on a dense subset of J to the 

function 

x(t) = int{x(t) \x<ES},        t£J. (a) 
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Because each y„ satisfies by lemma 1.1 the integral equation 

ri»»<*)   dz /y"(t}   dz f 
-73 = / 9(s,yn(s))ds-   <e J, 

this implies that the limit function x of (yn)^=i is a solution of the integral equation 

(1.1). Each y„ belongs to C?(J), whence also x G C?(J), so that x is a solution 

of (1) by lemma 1.1. Since x equals to x on a dense subset of J, the definition (a) 

of x implies that x is the minimal solution of (1) in C?(J), and that x = x. But 

C?(J) contains by lemma 1.1 all the solutions of (1), whence x is the least of all the 

solutions of (1). 0 

1.3. Comparison and uniqueness results. A function y G AC(J) is said to be 

a lower solution of (1) if y'(t) < q(y(t))g(t,y(t)) for a.a. t G J, and  y(0) < c, and 

an upper solution if the reversed inequalities are satisfied. 

The following result is proved in [3]. 

Lemma 1.3. Assume that conditions (Q), (A) and (B) are valid. 

a) Ify is a lower solution and x the maximal solution of (1), then y < x. 

b)Ify is an upper solution and x the minimal solution of (1), then x<y. 

Applying the results of lemma 1.3 it is easy to prove (cf. [3]) that under the 

hypotheses (Q), (A) and (B) the extremal solutions of the IVP (1) are increasing 

with respect to c and qg.  As for the uniqueness of the solution of (1) we have (cf. 

[3]) 

Proposition 1.1. The IVP (1) has for each c € R a unique solution if conditions 

(Q) and (A) and (B) are valid, and if 

(C) g(t,z) - g(t,y) < h(t,z - y) for all t G J \ Z and y, z € R, y < z, where 

h: J x R+ —► R+ is a Caratheodory function, h(t,-) is increasing for all 

t E J\Z, and the IVP u' = HgH«,/^*,«), u(0) = u0 has upper solutions 

when u0 > 0, and zero-function is its only solution when u0 = 0. 

Remarks 1.1. If the IVP (1) has lower and upper solutions a, ß, if (A), (B) hold 

in 9, = {(t,z) e J x R I a(<) < z < ß(t)}, and if (Q) is valid, then the results of 

theorem 1.1 and lemma 1.3 hold for solutions of (1) in the order interval [a,ß] = 

{x G AC(J) I a < x < ß} (cf. [3]). 
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Condition (C) holds if there is p £ L+(J) such that g(t,y + z) — g(t,y) < p(t)z 

for a.a. t £ J and for all y, z £ R, and in particular, if g(t, •) is decreasing for a.a. 

te J. 

2. General discontinuous ODE 

We shall consider in this section the existence of extremal solutions to 

x' = q(x)f(t,x,x), x(0) = c, (2) 

on an interval J = [0, T],  T > 0, and their dependence on data. 

2.1. Hypotheses and preliminaries. In the following Z denotes a null set in J. 

Assume that /: JxRxR^R satisfies conditions 

(fO) /(•, x, y(-)) is measurable for all x G R and y £ AC(J); 

(ft) limsupz_>I_/(<,z,y) < f(t,x,y) = hmz^x+f(t,z,y) for all < € J \ Z and 

x, y £ R; 

(f2) there is y>: J x R -> R such that <£>(•, x) is Lebesgue integrable, <p(tr) is 

increasing and continuous and f(t, x, •) + cp(t, •) is increasing for all* £ J \ Z 

and x £ R, 

(f3)  |/(*,x,y)| < p(t)h(\x\, \y\) for all < £ J \ Z and x, y G R, where p G X+(J), 

/i: R^_ —> (0, oo) is increasing in both of its arguments and /o°° ft(^*    = c». 

These hypotheses and condition (Q) imply that the IVP (2) has for each c G R the 

extremal solutions. In the proof of this result we need 

Lemma 2.1. Given an order interval [a,ß] in AC(J) and an increasing mapping 

G: [<x,ß] -> [a,/?], assume there is 7 G L+(J) such that \(Gx)'(t)\ < j(t) for all 

x £ [a,ß] and for a.a. t £ J. Then G has the least ßxed point x» and the greatest 

£xed point x*, and 

x* = min{x | Gx < x},     x* = max{x | x < Gx}. (2.1) 

Proof. The assertions can be proved by using a generalized monotone iteration 

method developed in [6]. For instance, x» is obtained as the supremum of a count- 

able well-ordered chain in [a,ß], which equals to the iteration sequence (Gna)%L0 if 

G is left-continuous. □ 
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2.2. Existence of extremal solutions. Our main result is 

Theorem 2.1. Given f: J x R2 -> R, q: R -»(0, oo) and a nuli set Z of J, assume 

that conditions (f0)-(f3) and (Q) hold. Then for each fixed c € R the IVP (2) has 

the extremal solutions, and all the solutions of (2) belong to the order interval [a, ß], 

given by 
a(t) = c + \c\ - v(t), ß(t) = c-\c\ + v(t), t G J, (2.2) 

where v € AC(J) is the solution of the IVP 

v' = \\q\\ooP(t)h(v,v), v(0) = \c\. (2.3) 

Proof. Let c e R be given. Condition (f3) implies by lemma 1.5.3 of [6] an existence 

and uniqueness of v. From (f3) it follows that a and ß are lower and upper solutions 

of (2). Let y € [a, ß] be given. Conditions (f0)-(f3) imply that the function g(t, z) = 

f(t,z,y(t)) + (<p(t,y(t)) - <p(t,z)) satisfies conditions (A) and (B) in Q = {(t,z) £ 

J x R | a(t) <z< ß(t)}. Hence, by theorem 1.1 and remarks 1.1 the IVP 

x' = q(x)[f(t,x,y(t)) + <P(t,v(t)) ~ ?(*>*)]»     <°) = c> (2-4) 

has the extremal solutions in [a,ß]. 

We now define a map G: [a, ß] —> [a, ß] by 

Gy = x,    ye[a,ß], (2.5) 

where x is the maximal solution of (2.4) in [a,/3]. Applying lemma 1.2 and remarks 

1.1 it is easy to show (cf. [7]) that G satisfies the hypotheses of lemma 2.1. Thus G 

has the greatest fixed point of x*. From (2.4) and (2.5) it follows that x* is also a 

solution of the IVP (2) in [a,ß]. 
If x is any solution of (2) in [a, ß], then it satisfies also the IVP (2.4) with y = x. 

But Gx is the maximal solution of (2.4) with y = x, whence x < Gx. This and 

(2.1) imply that x < x*. Thus x* is the maximal solution of (2) in [a,ß]. Similar 

reasoning shows that the IVP (2) has the minimal solution x» in [a,ß]. 

If x is a solution of (2), then it satisfies also the integral equation 

x(t) = c +  I q(x{s))f{s, x(s), x{s))ds,     t € J. (2.6) 
Jo 

Applying this, (f3) and lemma 1.5.3 of [6] it can be shown (cf. [7]) that x G [a,ß]. 

Thus x* and x* are the extremal solutions of (2). 0 

As for the dependence on data we have the following result, which is proved in 

[7]- 
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Proposition 2.1. If conditions (Q) and (f0)-(f3) hold, then the extremal solutions 

of the TVP (2) axe increasing with respect to c and to qf. 

Example 2.1. Define 

<p{z) = sgn(z)\z\\n(\z\ + l), zeR, 

let D be the Dirichlet function 

„. .       ( 1  if z is irrational, 
D(z) = { 

(. 0  if z is rational, 

and denote by [z] the greatest integer < z. It is easy to show that the hypotheses of 

theorem 2.1 hold for the IVP 

x' = D(t)(l + D(x))[([x] - x)v(x + [t + x]) - D(t)x],    x(0) = c,        (2.7) 

when J = [0,1]. Thus (2.7) has for each c E R the extremal solutions, which are 

increasing with respect to c. 

Remarks 2.1. If the IVP (2) has lower and upper solutions a, ß, and (f3) is replaced 

by |/(<,y,*)| < N(t) for all < € / \ Z and x, y € [a(t),ß(t)], then then the results 

of theorem 2.1 and proposition 2.1 hold for solutions of (2) in the order interval 

[a,ß] = {xe AC(J) | a < x < ß} (cf. [7]). 

If / in above theorem 2.1 and proposition 2.1 is nonnegative-valued, then local 

essential boundedness of i in condition (Q) can be weakened to its local Lebesgue 

integrability.   On the other hand, if q(z) = \    ' '   it can be shown (see [61, 
I 0,    z^O, v       L J. 

example 2.1.2) that the IVP 

x' = q(x),        x(0) = 0 

has no solution on any interval J = [0, T],  T > 0. 
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M HIEBER 

Heat kernel estimates and analytic 
semigroups on L1 spaces 

1 Introduction 

Let Q C IR" be an open set and let Tp = (Tp(i))>0 be a family of consistent semigroups on LP(Q), 

1 < p < oo. Suppose that TPo is an analytic semigroup on LPo(Q) of angle <p for some p0 G (1, co). 

We are interested in finding conditions under which the semigroups Tp are analytic too. In order 

to convey the basic phenomena, assume, for the time being, that TPl and TP2 are contraction 

semigroups for given p\,p2 G [1, 00) and that TPo is an analytic semigroup of contractions for some 

Po G (pi,P2)- Then, by standard arguments, Tp is analytic for all p £ {p\,P2}- Notice, however, that 

TP1 is not analytic, in general. The aim of this note is twofold: first we present a result saying that 

the "endpoint" semigroup TPl is analytic provided TPo satisfies an upper Gaussian estimate of order 

m. The case pi = 1 is of course of particular interest and has received recently some attention. In 

this context we refer to the papers [Ou], [A-E] and [Da], 

Our approach applies in particular to the semigroups generated by elliptic differential operators 

of order m on Et" or by second order elliptic differential operators A subject to rather general 

boundary conditions. In fact, a famous result of Agmon, Douglis and Nirenberg [A-D-N] combined 

with Agmon's trick [Ag] implies that, in the latter case, the Lp realization of such a boundary value 

problem generates an analytic semigroup on LP(Q), 1 < p < 00, provided the top-order coefficients 

of A belong to BUC(Q). Observe that their method does not extend to the space L^fi). Assuming 

slightly more regularity on the coefficients of A, namely Holder continuity, our result implies that 

the solutions of this kind of problems are governed by analytic semigroups also on i1(Q). 

Gaussian estimates for semigroups are, generally speaking, rather difficult to obtain. We there- 

fore present as a second aim of this paper a characterization of analytic semigroups admitting a 

Gaussian estimate in terms of pointwise upper bounds on the kernel of a certain power of the re- 

solvent. For detailed proofs of the results presented below we refer to [Hi2]. Finally, we note that 

further applications of Gaussian estimates to evolution equations may be found in [Are], [Da], [Hil] 

and [H-K-M]. 

2 Main results 

Let Q C IRn be an open set, p0 e [1, 00) and let T be a Co-semigroup on LPo(Q) with generator A. 

In the following we always identify £Po(Q) with a subspace of LPo(lRn) by extending functions by 

156 



zero. Let n £ IN, m G 1N\{1} and define a constant cmn > 0 such that -^ JRn exp( *x\ ' )dx = 1. 

Moreover, define the family (Gpo(t));>o of operators on IP°(IRn) by GPo(i)/ := kt * f, where 

*,(*):=- ^-exp("|a|r')        (*>0,xGlRn). 

Generalizing a notation of Arendt [Are] we introduce the following definition. We say that the 

semigroup T satisfies an upper Gaussian estimate of order m if there exist constants a > 0, M, b > 0 

such that 
\T{t)f\ < MeatGPo(bt)\f\        (t > 0) 

for all / G IPo(fi). Notice that GPo coincides with the Gaussian semigroup on Lp°(Wln) provided 

m = 2. Furthermore, we assume that E and F are Banach spaces and that there exists a topological 

vector space G such that E <-► G and F ^ G. Then two operators SB G £(£) and SF G £(F) are 

called consistent if 5Bx = SFz for all x G £ f~l F. We call two semigroups TE and T> on E and F 

consistent if TE(t) and 7>(i) are consistent for all t > 0. 

Assume now that T is a Go-semigroup on LPo(ft) which satisfies an upper Gaussian estimate of 

order m ^ 1. Then it is not difficult to verify that there exist consistent semigroups Tp on LP{Q), 

(1 < p < oo), such that T = Tpo and 

(2.1) |TP(0/| < MeatGp(bt)\f\        (f €L"(Q),t> 0). 

Considering e~atT{t) instead of T(t), we may always assume that (2.1) is satisfied with a = 0. Our 

first result deals in particular with the L^analyticity of the consistent semigroup 7\ on L^Q). More 

precisely, the following holds. 

Theorem 2.1. Suppose that Tisaa bounded analytic Co-semigroup on U"> (Q) of angie y? satisfying 

a Gaussian estimate of order m. Then Tp is an analytic Co-semigroup of angle <p on L?(Q) for all 

p£ [l,oo). 

For a proof we refer to [Hi2;Thm.2.3]. We remark that the above Theorem 2.1 generalizes in 

particular a recent result of Ouhabaz [Ou] saying that Tp is an analytic semigroup of angle w/2 on 

Lp{Q) for p G [l,oo) whenever A2 is self-adjoint and T admits an upper Gaussian estimate of order 

2. 

In the following we give two examples to which our theorem applies. 

Example 2.2.  Elliptic boundary value problems on L^fi) 

Let 0 be a bounded domain in H" such that 9Q G C2+" for some p G (0,1). Consider a differential 

operator A of the form 

A(x,d):=-    53    aij(x)didj+   Yl   ai(x)di + a0{x) 
l<i,j<N 1<»<W 
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where aij,ai,a0 g BUC(Q) and 

l<i,j<N 

for all x g MN, £ = (£i, . . ., £N) g IR^ and some constant c > 0. Let 5(x, <9) := 6(2:) • V + b0(x) be 

boundary operators such that b = (bu ..., 6„), &;, 60 g C"(ß) and 6(2:) ■ i/(a;) > c0 > 0, where i/(r) 

is the unit outward normal vector to dQ at the point x g dQ. Given p g (1, oo), the operator 

D(Ap) := {u g %2 (ft); Bu = 0}        >tpu := Au 

is called the Lp-realization of the boundary value problem (A,B). Set 

\ImaT(x,£)\ 
ipA :=      max      arctg— 7—rf, 

senses — 1 KeaT(x,£) 

where a^ denotes the symbol of the principal part of A. Let p g (<pA,Tr/2). Then a famous result 

of Agmon, Douglis and Nirenberg [A-D-N] combined with Agmon's trick [Ag] yields that -Ap 

generates an analytic semigroup Tp on LP(Q), 1 < p < 00 of angle TT/2 - tp. For details we refer to 

[Am]. Furthermore, it is shown in [Iv] and [So] that the semigroup Tp generated by -Ap satisfies 

an upper Gaussian estimate of order 2. Denote by T\ the consistent semigroup on LX(Q.). Then 

Theorem 2.1 implies the following result. 

Proposition 2.3. Let 1 < p < 00 and let Tp be the analytic Co-semigroup on LP(Q) of angle 

TT/2 — ip defined as above. Then T\ is an analytic semigroup on Lx(fi) of angle w/2 — p. 

Example 2.4.  Elliptic operators on LP(JR") with Holder continuous coefficients 

Let A = T.[a\<m
ac{x)Da and assume that aa g BUCp(Rn, (C) for some p g (0, 1) and all a with 

|a| < m. Suppose that there exists a constant 6 > 0 such that 

sup Re  ^2  aa(x)(it)a < -8        for all    x g IRn. 
I?l = 1 \a\=m 

Given p g (1, 00), we define the Lp-realization Ap of A by 

D(A„) := Wm(m 
(2.2) 

D(Ap) := W™(mn) 

Apf:=Af        for all    / g D(AP). 

Then it follows from [A-H-S;Cor.9.5] that Ap generates an analytic Co-semigroup Tp on Zp(IRn) 

(1 < p < 00) of some angle ip g (0,7r/2]. Furthermore, it was shown by Friedman [Fr;Thm.9.4.2] 

that Tp satisfies an upper Gaussian estimate of order m. Denote by T\ the consistent semigroup on 

i:(IRn). Then by Theorem 2.1 the following holds. 

Proposition 2.5.  The semigroup 7\ is an analytic Co-semigroup on L1(Mn) of angle p. 
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Considering powers of the resolvent rather than the resolvent itself in Theorem 2.1 we are able to 

characterize analytic semigroups admitting a Gaussian bound in terms of a pointwise upper bound 

on the kernel of a certain power of the resolvent.   More specifically, we introduce the following 

notation. We call an operator S G £(Lp(fi), L?(Q)), (1 < p, q < oo), an integral operator, if there 

exists a measurable function K : Q x fi -+ (C such that for all / G LP(Q), K(x, •)/(•) G L^ß) x-a.e. 

and 

(Sf)(x) =  / K(x,y)f{y)dy        x-a.e. 
Jil 

In that case S is represented by the kernel A' and we write S ~ K. If in addition |A'| defines also 

an integral operator in £(LP(Q), Lq(Q)), then 5 is called a regular integral operator. It follows by 

standard arguments (cf.   [Sch]) that Tp(t) is an integral operator provided Tp satisfies an upper 

Gaussian estimate of order m. 

Theorem 2.6. Let T be a bounded analytic Co-semigroup on LPo(Q) of angle <p with generator A. 

Then the following assertions are equivalent. 

a) T satisfies an upper Gaussian estimate of order m with a = 0. 

b) There exist an even integer I > ^ + 1 and constants C, c> 0 such that (A - A)~l is a regular 

integral operator whose kernel K'R(X, ■, •) satisfies 

\K'R(\,x,y)\<C\\\*-'e-<M^x-ri 

for all x, y€fl and all A G {z G (C\{0}; \argz\ < 0), where 6 G (TT/2, <p + TT/2). 

For a proof of Theroem 2.6 we refer to [Hi2;Thm.2.5]. We remark that the above condition b) 

can be verified for certain classes of operators such as uniformly elliptic differential operators A in 

divergence form with L00-coefficients acting in I2(HT), where n > 3. Hence, via Theorem 2.6, one 

obtains an alternative proof of a classical result due to Aronson [Aro] saying that the semigroup T 

on L2(IR") generated by A satisfies an upper Gaussian estimate of order 2. 
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O HIJAB 

Range characterization, hyper-Markov 
semigroups and Hermite polynomials 

Let L2(R) denote the complex Hilbert space of functions on R that are square- 

integrable against Lebesgue measure dx. Let 

Pt(x) 

be the Gaussian of variance t > 0 and let L2(R,pt) denote the complex Hilbert 
space of functions on R that are square-integrable against the probability measure 

pt(x)dx. 
A well-known fact, at least one hundred years old, is that the Hermite polyno- 

mials provide an orthogonal basis for L2(R,pt). Here we present a new proof of 
this result — the Hermite Theorem — and in the process present a range charac- 
terization and an identity for the heat semigroup on R that are also apparently 

new. 
These results were obtained in seeking an analytic proof of Leonard Gross's 

extension [Gl] of the Hermite theorem to Lie groups G of compact type. Gross's 
original proof was probabilistic; subsequently the author [Hil] obtained a mostly 
analytic proof of Gross's theorem. However a portion of the proof in [Hil] relied on 
results in [Gl] and hence was not completely analytic. After this B. K. Driver [Dr], 
building on results of B. C. Hall [Ha], succeeded in obtaining a "complex-variable" 
proof of Gross's theorem. Recently [Hi2] the author has incorporated Driver's ideas 
into the setting of [Hil] to obtain a completely analytic "real-variable" proof of 

Gross's theorem. 
In this paper we will not discuss the Lie Group case and instead generalize 

aspects of the proof in [Hi2] to an abstract semigroup setting. In §1 we give a 
range characterization for a contraction semigroup on a Hilbert space H in terms 
of a simple identity. In §2 we introduce a new class of contraction semigroups on 
H = L2, the hyper-Markov semigroups, and derive an identity for them which 
implies the identity in §1. In §3 we use the identity in §2 to derive the Hermite 

theorem. 

Supported by NSF Grant #DMS-9121317.   To appear in the proceedings of the "International 
Conference on Evolution Equations", held at the University of Strathclyde, Glasgow, July 1994 
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§1.  Range Characterization of Semigroups in Hubert Space 

Let {Pt : t > 0} be a continuous contraction semigroup of self-adjoint operators 
on a complex Hubert space H and let A denote its infinitesimal generator. Then A 
is a nonpositive self-adjoint operator, A < 0, and Pt = etA for each t > 0. 

We seek to characterize the range of Pt for each t > 0 fixed. As a warm-up, 
let us first derive the well-known fact that each operator Pt is necessarily injective. 

Indeed if Ptx = 0 then 0 = (Ptx,x) = (Pt/2Pt/2x,x) = \\Pt/2x\\2 hence Pt/2x = 0. 
Iterating yields Pt2-nx = 0 for n > 1; sending n->oowe obtain x = 0. 

Denote the intersection of the domains of An, n > 1, by C°°. Then for each 
t > 0 the range of Pt is contained in C00. We say {xn} C C°° converges in C°° 
to x G C°° if Akxn -> Akx as n -> oo for all k > 0. For example if x G C°° then 
(Ptz - z)/i -> Ax in C°° as i j 0. 

Proposition.  Let D = y/-2A and fixt>0. If x G H then y = Ptx G C°° and 

M\1 = T.-,Wvf- (i) 
n=0 

Conversely, if y G C°° and the series in (1) is finite, then there is a unique x G H 
satisfying y = Ptx. 

Proof.  Let {E(X) : A > 0} denote a spectral resolution of -A and suppose y = Ptx. 
Then A = -D2/2 and hence 

oo 

=E£«-2A)BIM'> n! 
n=0 

= T,^((-2ATPt*,Ptx) 
n=0 
-    <n 

n=0 
00    y.n     yoo 

= £^/    (2\Te-™d(\\EWx\\ 
n = 0 U- Jo V 

/•OO 

Conversely, suppose the series is finite and for each N > 1 set xN = ß^r/ where 

BN = <PN(-A) and VTV(A) = y/^2n=o(2tX)nlnl Since 2/ G C00, the sequence 
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{xN} is well-defined. Then ||;riv||2 = (BNy,BNy) = (B2
Ny,y) which equals the 

JV-th partial sum of the series in (1). Thus {xN} is bounded in H hence {xN} 
subconverges weakly to a limit x. Since Pt is linear, {PtXN} subconverges weakly 
to Ptx. On the other hand {e~tX^N(X)} increases to 1 as N -> oo for all A > 0 
hence PtxN = etAißN(-A)y -> y weakly as N -> oo. Thus j/ = Pta\    D 

Example (Heat Semigroup). Take H = L2(R) and Af = f"/2 for / € C0°°(R). 
Then the closure of A is the infinitesimal generator of a continuous contraction 
semigroup of self-adjoint operators on H and C°° consists of the L2 functions / 
whose Fourier transform / is rapidly decreasing. In fact the semigroup is Ptf = 
Pt * f, f € L2(R), where * denotes convolution. Hence we obtain the result that 
a function g € L2(R) is a convolution of the form g — pt * f for / € L2(K) iff 
g e C°°(R) and 

n=0 

is in JL
1(R). Moreover we obtain the identity 

= EM^*^    ■ (2) 
n! 

n=0 

Of course using the Fourier transform g H-> ^, the identity (2) falls out as an imme- 
diate consequence of the MacLaurin expansion of t H-> \pt\

2. 

§2. Hyper-Markov Semigroups on L2 

Let (X, F, /i) be a measure space. In this section by "a semigroup" we shall mean 
a continuous contraction semigroup of self-adjoint operators on H = ^(X,^,^). 
Below f > g means f > g a.e.-ß and IP = Lp(X,!F,fJ,). 

A semigroup is Markov if for all t > 0 

• / € L2 and / > 0 imply Ptf > 0 and Jx Ptfdfi = Jx fdfi. 

Thus a semigroup is Markov if it preserves positivity and total mass. 
Let {Pt : t > 0} be a semigroup. We wish to associate to each function / 

functions rn(/), n > 0, depending quadratically on /, in such a way that the 
identity 

^(l/l2) = £-r»(iVf),*>o, (3) L—' n! 

holds. 
For each n > 0 let (z = \/—l) 

r„(/, ff) = i (r„(/ + 5) - rn(/ - ff) + *rn(/ + ig) - ivn{f - ig)), 

rn(/,ff) = rfl(<7,/), 
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denote the bilinear form associated to the quadratic form Tn(f). Then formal 
differentiation of (3) with respect to t without regard to rigor shows that (3) holds 
iff 

W) = l/l2 

r„+1(/) = A(Tn(f)) - rn(/, Af) - Tn(Af, /), n > 0. 

Let {Pt : t > 0} be a semigroup. An algebra core is a linear subspace V C C^TiL1 

such that 

• T> is dense in L2; 
• V is closed under pointwise multiplication of functions; 
• fn,9n,f,g G V and fn -> /, gn -^ g, in C°° implies fngn -^ /# in C°°; 
• A(D) C V and Pt(D) C V for t > 0. 

Then Tn(f) e X> is well-defined for / G 2? and n > 0. 

Example. Let X = {-1,+1}, /u(±l) = f, and A/(±l) = ±(/(-l) - /( + !)) for 
f E L2. Then A is the infinitesimal generator of a Markov semigroup, V = C°° = L2 

is an algebra core, and 

r„(/)(±l)=4"-1|/(+l)-/(-l)|2,n>l. 

Example. The heat semigroup is Markov, the Schwartz space V = 5(R) is an 
algebra core, and 

Tn(f) = \fin)\2,feV,n>0. 

Example (Hermite Semigroup). Let X = R, d/i = p1/2dx, and Af = f"/2 - 
xf for / in the space of polynomials V(R). Then the closure of A is the infinitesimal 
generator of a Markov semigroup, V = V(R) is an algebra core, and 

W) = l/l2 

r!(/) = |/'|2 

r2(/) = |/"|2 + 2|/'|2 

r3(/) = |/'"r + 6|/"|2 + 4|/'|2 

etc. 

If A is bounded on L2 then one can easily majorize the series in (3) to conclude 
that for / G V (3) does in fact hold rigorously. If A is unbounded then there is 
no reason for (3) to hold: We need additional information. This is provided by the 
following idea. 
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Definition.  The semigroup {Pt : t > 0} is hyper-Markov if 

• the semigroup is Markov, 
• there is an algebra core V, 
• r„(/) > 0 for all n > 0, / G V. 

The above examples are all hyper-Markov. So is the heat semigroup on a compact 

Lie group [G1],[G2], [Hl], [H2]. 
Let {Pt : t > 0} be a Markov semigroup with an algebra core V. Then one always 

has r0(/) > 0, Ti(/) > 0 for / G V. The operator T2 has deeper significance: 
Its sign controls the behavior of the semigroup on Lp. For example, in certain 
situations, P. A. Meyer [M] and D. Bakry [Ba] have shown that the nonnegativity 
of T2 implies the boundedness of the associated Riesz transform on Lp, 1 < p < 
oo. Moreover D. Bakry and M. Emery [BE] have shown that a strong positivity 
condition on T2 implies the hypercontractivity of the semigroup i.e. a logarithmic 

Sobolev inequality [G3] holds for A. 
Here is an example of a Markov semigroup with an algebra core that is not 

hyper-Markov. 

Example. Consider X = R, d/i = e-2Vdx, and Af = f"/2 - V'(x)f for / G 
Co°(R), where V G C°°(R) is an even monic polynomial of degree at least 2. 
Then the closure of A is the infinitesimal generator of a Markov semigroup. Let 
T(R) denote the space of infinitely differentiable functions / such that /(n) has 
polynomial growth for all n > 0. Then T(R) is an algebra core. Here 

r„(/) = I/I2 

r2(/) = |/"|2 + 2F"(3;)|/'|2 

etc. 

We conclude that if V is not convex, then the semigroup is not hyper-Markov. 

Lemma.  Suppose {Pt : t > 0} is a Markov semigroup with an aigebra core V. 

Then 
f rn(/)^ = <(-2A)"/,/> = \\Dnf\\2J G V,n > 0. (4) 

Jx 

Proof. It follows [Da] from the Markov property that /, Af, A2 f in L2 n L1 imply 
Jx Afd/i = 0. In particular this holds for / G V. Then (4) follows by induction on 

n > 0 using Jx A(Tn(f))dp = 0.    D 

Theorem. If f G V and the semigroup is hyper-Markov, then (3) holds. 

Proof.  First by induction on n > 0 one shows that 

Tn(Ptf)- r„(/) ^ w Af) + Tn{Af^ /}) n > 0) 
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in C°° as t -4 0. Hence (d/dt)Tn(Ptf) = Tn(APtf,Ptf) + Tn(Ptf,APtf), n > 0. 
Now let uN(t) £ V denote the N-th. partial sum of the series in (3). Then uN(0) = 
|/|2 and differentiation yields 

d        \ tN 

Q-t-Aj uN(t) = -—rN+1(ptf) < o. 

Since the semigroup is Markov, it follows that uN(t) < Pi(|/|2). Sending N -> oo, 
we obtain that the right side in (3) is less than or equal to the left side in (3). But 
now integrate both sides in (3) over X. By the Lemma and the Proposition we 
have equality. The result follows.    D 

In fact the method of proof yields a hierarchy of identities of which (3) is the 
first. 

Theorem.  If f e V and the semigroup is hyper-Markov, then 

Pt(rN(f)) = J2-irn+N(Ptf),t>o, 
nl 

n=0 

for all N > 0. 

Proof.  The proof is almost identical to the above.    D 

Since we now know (3) holds for the heat semigroup, we obtain 

°°  tn 

Pt(\f\2)(x) = 52-\(PtrfaHx)\* (5) 
nl 

n=0 

a.e. for / G 5(R). In fact a little more work shows that (5) holds for all / <E 'P(R) 
and for all x 6 R. 

§3.  The Hermite Theorem 

For each n > 0 the n-th Hermite polynomial Hn is given by 

p(
t
n\x)=(-l)nHn(x)Pt(x),xeR. 

Actually these are the Hermite polynomials "of variance t".   The usual ones are 
obtained by setting t = 1. 

The Fock space exp(iC) over C is similar to the usual Hubert space P but has 
a different norm. Let exp(tC) denote the set of sequences a = (a!,a2,...) of 
complex numbers satisfying 

oo      . 
.,   M2      v^ nl.      2 

IHI   =Z^I«»I  <°°- (6) 
n=0 
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Then exp(iC) is a complex Hilbert space in a natural way whose corresponding 
norm is displayed in (6). If a has finitely many nonzero terms we say a is a finite 

sequence. 
In quantum mechanics the state of a system can be described in two ways: As a 

particle i.e. as an element of exp(iC) and as a wave i.e. as an element of L2(R,pt). 
The wave-particle duality of quantum mechanics states that these descriptions are 
equivalent. The Hermite theorem is a precise mathematical interpretation of this 

fact. See [BSZ]. 
Given a finite sequence a G exp(iC), set 

oo 

Ha(x) = ^2anHn(x). 
n=0 

Then Ha is a polynomial. 

Hermite Theorem. The Hermite map a t-> Ha extends to a linear isometry of 

exp(iC) onto L2(R,pt). 

There are many ways of verifying this; the method we describe here will use the 

identity (5). 
To begin instead of working with the Hermite map, we work with its adjoint 

K : L2(R,pt) -+ exp(iC). Given / G P(R) define a = Kf by setting 

an = ^(f{n),Pt)LHR),n>0. 

Then a is a finite sequence. 

Lemma.  For any f G V(R) and finite sequence ß G exp(iC), 
/oo   

f(x)Hß(x)pt{x)da 
-oo 

Proof.  Integration by parts.    D 

If we establish the isometry of K, then by the Lemma we obtain the isometry of H 
hence the Hermite theorem. But by (6) K is an isometry from V(R) C L2(R,ptdx) 

into exp(iC) iff 
oo      „ ^oo 

£ -\(f{n\pt)mn)\2 = /     \f(x)\*pt{x)dx (7) 
n=0 U- J-°° 

and (7) is obtained from (5) by inserting x = 0 since P((/
(n)) = (P*/)(n). This 

establishes the isometry of K on polynomials; hence K extends to an isometry of 
L2(R,pt) intoexp(iC). 

The final step is to show K is onto exp(tC). For this it is enough to show K is 
onto a dense subset of exp(iC). But this is immediate since for / a polynomial of 
degree N > 0 the sequence a = Kf G exp(iC) satisfies an = 0 for n > N + 1 and 
ajv ^ 0. Thus the range of K includes all finite sequences in exp(tC). Since we 
now know K is an isometry, the Lemma implies H extends to an isometry.    D 
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S JIANG 

Exponential stability of spherically 
symmetric solutions to the equations of a 
viscous polytropic ideal gas 

1     Introduction 

The motion of a viscous polytropic ideal gas (in Rn, n = 2,3) is described by the 

following equations in Eulerian coordinates (cf. [2, 12]) 

dp 

dt 
dv 

dt 

+ div(/9v)     =     0, 

+ (v • V)v 

cvP _ + (vV)0 

=   fxAv + (X + ix)V{dwv)-RV(P9), 

=   KA9-Rpe(d\vv) + \{divv)2 + 2pD-D.       (1.1) 

Here p, 6, and v = (Wl, ■ • • ,vn)T {n = 2,3) are the density, the absolute temperature 

and the velocity respectively, R, cy and K are positive constants; A and p are the 

constant viscosity coefficients, p > 0, A + 2p/n > 0; D = D(v) is the deformation 

tensor 

D,:=l    ^ + 2 \dxj     dxi 
and 

Let Q, := {x G Rn \ a < \x\ < b} {b,a > 0) denote an annular domain in R" 

(n = 2,3). We shall consider the initial boundary value problem of (1.1) in the region 

{t > 0, x £ Cl} with the following initial and boundary conditions 

p(x,0) = p*(x),    v{x,0) = y°(x),    6(x,0) = e°(x),     xeCl, (1.2) 

"      =0, t>0, (1-3) 
an 

v|9fi = 0, 
dv 

where v denotes the exterior normal vector. 
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The global existence and asymptotic behavior of smooth solutions to initial boun- 

dary value problems and the Cauchy problem of (1.1) have been investigated by many 

authors. In one dimension, it is well known that global smooth solutions exist for 

smooth (large) initial data, and converge to a (constant) steady state in the case of 

bounded domains as t ->■ oo. In more than one dimension the global existence and the 

asymptotic behavior of smooth soltuions have been investigated for general domains 

only in the case of sufficiently small initial data (see [8, 13], [3]-[4] for initial boundary 

value problems, [7] for the Cauchy problem; also see [9, 11] and the references cited 

therein). 

For large initial data the global existence of solutions to (1.1) has been studied 

in the case of a bounded annular domain. Nikolaev [10] in 1983 considered the initial 

boundary value problem of (1.1) with vanishing velocity and constant temperature 

on the boundary and proved that for (smooth) spherically symmetric initial data a 

(smooth) spherically symmetric solution exists globally in time if the initial density 

and temperature are strictly positive. Recently, Yashima and Benabidallah [14]-[15] 

dealt with the case of non-negative initial density and temperature. They showed the 

global existence of spherically symmetric solutions to (1.1). The asymptotic behavior 

of the (spherically symmetric) solutions, however, is not discussed in [10], [14]-[15]. 

The aim of the present work is to study the asymptotic behavior of the spheri- 

cally symmetric solutions to (1.1)-(1.3). We will show that the spherically symmetric 

solutions of (1.1)-(1.3) decay to a constant state exponentially as time goes to infinity. 

2    Exponential decay 

We first derive the spherically symmetric form of (1.1). Spherically symmetric solutions 

to (1.1) have the form 

Vi(x,t) =-+v(r,t),   i = l,---,n, p(x,t) = p(r,t), 0(x,t) = 8(r,t),       (2.1) 

where x = (Xl,---,xn)T e 1" (n = 2,3), r := \x\. Assuming that p°(x) = p0(r), 

v°(x) = xv0(r)/r and 0°(x) = 0o(r), we thus reduce the system (1.1)-(1.3) to the 

following equations for p(r,t), v(r,t) and 6(r,t) of the form 

Pt + (pv)r + ~ LPV = 0, 
r 
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p (vt + vvr) = (A + 2/x)   vrr + 
(n-1) (n-1 

vr — v I - R(pv)r, 

CvP {Ot + V6r) = K6„ + K^- %r - RpO [Vr + — "1 

+A   vr + (»-!). v)   +2pv2
r+2fi (»-!). 

with the initial and boundary conditions 

p{r,0)   =   p0{r),    v{r,0) = v0(r),    0(r,O) = 90(r), re[a,b], 

v(a,t)   =   v{b,t) = 0,      er(a,t) = 6r(b,t) = 0,        i>0. 

(2.2) 

(2-3) 

To show the time-asymptotic behavior it is convenient to transform the system (2.2) 

to that in Lagrangian coordinates. Let 

rb 
L:=  f sn-1p0{s)ds > 0. 

Ja 
(2.4) 

We denote the Lagrangian mass coordinates by (x,t) and the specific volume by u :- 

l/p. Then (2.2)-(2.3) in the new variables (x,.t) read: 

ut - (-""'").• 

vt   —   r 

CyVt = K 

u u 
„2n-2/ 

(2.5) 

xe{0,L),t>0, (2.6) 

+ 1 [(A + 2p){rn-xv)x - RO] {rn~lv)x 

-2n(n-l)(rn-2v2)x (2-7) 

with the initial and boundary conditions 

u{x, 0) = uoOc),    v{x, 0) = v0(x),    9(x, 0) = 90{x),        x e [0, L], (2.8) 

v(0,t) = v{L,t) = 0,    6x(0,t) = ex(L,t) = 0,    t>0. (2.9) 

Here u0 = l//>o, r = r(x,t) is defined by 

r(x,t):=r0{x) + Jtv(x,T)dT,    r0(x) := [an + n J* u0(y)dy}      ,    n = 2,3;   (2.10) 

and (without danger of confusion) we have still used {u(x,t),v(x,t),6(x,t)} to denote 

{«(Ki.i),*),»^,*),*),^,!),*)}. 
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As mentioned in the introduction Nikolaev [10], Yashima and Benabidallah [13, 

Proposition 1] established the existence of global solutions to (2.5)-(2.9). It is proved 

in [9, 13-14] that if 

«o, «o, v0, v'0, <, 0O, 9'0, 0£ e Ca[0,L] for some a e (0,1), 

u0(x), e0(x) >0on [0,L], (2.11) 

and the initial data are compatible with the boundary conditions (2.9), then there 

exists a unique solution {u(x,t),v(x,t),0(x,t)} with positive u and 9 to (2.5)-(2.9) on 

[0,L] x [0, oo) such that for every T > 0 

u, «*, «*, «xt, u, vx, vt, vxx, e, ex, et, exx e ca'a/2(QT), 

utt, vxh ext e L2{QT). (2.12) 

Here Ca[0,L] stands for the Banach space of functions on [0, L] which are uniformly 

Holder continuous with exponent a and Ca'a^(QT) for the Banach space of functions 

on QT := [0, L] X [0, T] which are uniformly Holder continuous with exponent a in x 
and a/2 in t. 

Denote 

-2'. 
■(x)dx; u*:=lLu0(x)dx, r:=-L/{^0 + f 

r*(x):=(an + nu*x)1/n,    x€[0,L}. (2.13) 

We assume that A and ß satisfy 

n\ + 2fi>0. (2.14) 

Then our main result reads: 

Theorem 2.1 Assume that (2.11) and (2.14) are satisfied. Let {u(x, t), v{x, t), 9(x, t)} 

be a solution of (2.5)-(2.9) in the function class indicated in (2.12). Then {u(x,t) - 

u*, v(x, t), 0(x, t) - 0*} and r(x, t) - r*(x) converge to zero in #J(0, L) and H2(0, L) 

respectively as t -> c». Moreover, there are positive constants 7, T0, C, independent of 
t, such that 

IN«) - u\\m + \\v(t)\\m + \\9(t) - 9*\\Hi + \\r(t) - r*\\H2 < Ce^     for any t > T0. 
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Remark 2.1 An analogous theorem holds when (1.3) is replaced by the following boun- 

dary conditions: 

vU = o,    *|80 = 1,      t>o. 

Remark 2.2 Theorem 2.1 remains valid for any n > 3 or/and for the case when 

(2.11) is replaced by 

«o, «o. «o, «o, Öo, ^ e L2(0,L),      uo(x), 0O(*) > 0 on [0,L]. 

The decay constant 7 may depend on the initial data, X, fi, R, cy, K, n, a and b. 

The proof of Theorem 2.1 is essentially based on a careful examination of a priori 

estimates which are shown to be independent of t. The difficulties arise from the 

dependence on the time and spatial variables of the coefficients in the the equations 

(2.5)-(2.7), but can be overcome in our approach by modifying an idea of Kazhikhov 

[6, 1] for the one-dimensional case and establishing an additional estimate embodying 

the dissipative effects of viscosity and thermal diffusion. The proof is rather long and 

technical; see [5] for the details. 
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MJUNG 

Functional calculi in semigroup theory 

Multiplicative perturbations were considered in semigroup theory by many au- 
thors who used various techniques in their approach (see the references for a list). 
Results were also extended to the field of integrated semigroups. Some techniques 
involve the use of functional calculi, and this article will present an excerpt of these. 
Most proofs may be found elsewhere and are omitted in that case. Theorem 1 may 
be found in [9] by A. Holderrieth and Theorems 2, 5, and 7 and its related corollaries 
may be found in [10] or [11] by the author. 

Let X be a Banach space. A (strongly continuous) semigroup will always be 
understood to act on this space. Bounded, linear operators are understood to be 
defined everywhere. We denote the spectrum of an operator B with a(B) := {A G 
C: (XI - B) is not a bijection}. S(a) := {z £ C : z = re'V > 0,4> € (-a, a)} is 
called a sector of the complex plane with angle a. 

The first calculus presented is actually not a functional calculus in the true sense, 
it is just an extension of the Laplace transform to operator valued functions, of which 
we consider only consider one case. However, it nicely shows the spirit of arguments 
that are also used later. Let A generate the semigroup T(-) and B be continuous 
and commuting with T(-). By making, formally, the substitution A i-> XB we gain 
by the well known resolvent equation for semigroups: 

(XI - BAY1 = B-\XB - A)-1 = B-1 J    e~tXB~ T(t)dt. 

One then tries to find sufficient conditions for this integral to converge. Since a 
similar Laplace formula holds for integrated semigroups one may prove theorems of 

the following sort. 

Theorem 1 Let A generate an integrated semigroup T(-) and let B be a bounded, 
linear operator that commutes with T(-), such that ||eiiS-1|| = 0(tn) for some n € N. 
Then BA generates an integrated semigroup. 

The second calculus to be reviewed is used with holomorphic semigroups. The 
functional calculus available for such semigroups was used for instance by R. De- 
Laubenfels and F. Neubrander (private communication) in the commuting case. 

There one uses 

(XI - BA)-1 = J (XI - LOB)-\UJI - A)'1 duj 
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where T is a suitable curve (see [1]). But the standard calculus available for all 
bounded operators may also be used. With it one can achieve results even for the 
non-commuting case. In contrast with the previous results, the semigroup itself is 
"constructed" as opposed to its resolvent. In the commuting case this is easy, while 
in the non-commuting case a Trotter-Kato approximation may be used to obtain 
the result. 

Theorem 2 Let A be the generator of a semigroup T(-) bounded holomorphic in 
the sector S(a). Let B be a bounded, linear operator with a(B) C S(a) and T a 
curve around cr(B) inside S(a). If C+ is not a subset ofcr(AB) and there exists an 
M > 1, such that all powers of 

F(t) = Jj(\t)(\I-B)-ld\ (1) 

are bounded in norm by M for all t > 0, then AB generates a bounded semigroup. 

Note, that in case that T(-) and B commute, F(t) already presents the semigroup. 
The following theorem requires more assumptions on the'semigroup, but gives a 
result not requiring the technical condition of the above theorem on F(t). It shows, 
that the condition is in fact not too hard to check in certain examples. It also 
generalizes Theorem 7 (s. b.) for the special case a = n/2. However, we emphasize, 
that the boundedness condition on F(t) above cannot be omitted altogether as there 
are counterexamples to the resulting theorem (see [9]). 

Proposition 3 Let A generate a holomorphic semigroup T(-) of angle TT/2 that is 
bounded in the right half plane. If B is a bounded, linear operator with a(B) C S(a), 
then BA and AB will also generate bounded analytic semigroups, which are both of 
(at least) angle TT/2 — a. 

Proof: Suppose ||T(A)|| < M for M > 1. We consider As := A - 61 as generator of 
Ts(-) for S > 0. We shall prove that the assumption of Theorem 2 is fulfilled. For 
each r > 0 and with |A - r\ < r the power series 

Ts(Xt) = ± ^=f^M£ -tnAn
sTs{rt) 

n=0 

converges uniformly, since ^g^(r) = tnA$Ts(rt). Choose r > 0 and T to be a 
curve in such a manner, that T lies inside the circle with radius r and around the 
spectrum a(B). Applying this to Formula 1 yields 

ftW = E^ 
„=o       n- 

tnA?Ts(rt) 
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for alU > 0 and sufficiently large r > 0. We now use the estimate 

II^TK*)II < (
Ce"*y, 

n! t 

which holds for these holomorphic semigroups (see [13]), to get 

oo (~i p—Srt 

II^WII <EP-Hin(——r 
n=0 

<   ^CV^'ll-r-'ßl 
n=0 

-    \-Ce-Srt\\\-r-lB\\' 

Here C is independent of r and t, and ?• is chosen large enough so the series converges 
uniformly. The last term tends to 1 as r ->• oo. We conclude that \\Fs(t)\\ < 1, since 
Fs{t) is independent of r. But F4(i) obviously converges to F(t), uniformly on 
compact intervals, as 8 ->■ 0. Therefore ||F(f)|| < 1 and the premises of Theorem 2 
holds. But this is not only true for B itself, but also for all e^B with <j> <E (-TT/2 + 
a,7r/2 - a). Thus the semigroup generated by BA is holomorphic as claimed. To 
see that AB also generates a semigroup use [3], Theorem 1. That this semigroup 
is also holomorphic in the desired sector is easy to see by applying the theorem to 
e'^AB and observing the bounds obtained. 

Corollary 4 Consider the Laplacian A in L2(R
n). Then for any h € L^R") with 

essential range in S(a) that is bounded away from zero, the operators MkA and 
AMh generate contraction semigroups holomorphic in S(n/2 — a). (Mh denotes the 

multiplication operator associated with h.) 

We now turn to a special functional calculus for the perturbing operator B. It is 
the most prominent one and used widely for self-adjoint operators. One can see, that 
it is mostly useful in the case where B and the semigroup commute. If {E\}\e[a,b] 
is the spectral measure associated with B, then we use 

F(t)= fbT{\t)dE>. (2) 
Ja 

Theorem 5 Let A be the generator of a semigroup T(-) in the Hubert space H. 
Let B be a bounded, linear, positive semi-definite Operator (in H), such that B 
commutes with T(-). BA then generates a semigroup. 

Corollary 6 (a) If A generates a contraction semigroup, then BA generates a con- 

traction semigroup. 
(b) If A generates a group and B is just self-adjoint (not necessarily positive 

semidefinite), then BA generates a group. 
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Another theorem that is closely related to the spectral schemes used above, but 
does not use functional calculi is the following. It improves a result found in [9] 
giving less cumbersome bounds about the sector, in which the perturbed semigroup 
is holomorphic. 

Theorem 7 Let A be normal in the Hubert space H and the generator of a bounded 
semigroup, holomorphic in S(a). Let B be a bounded, linear operator with \\B\\ < 
sin/? with a > ß > 0, then (I + B)A and A(I + B) generate semigroups, holomorphic 
in S(a — ß). 

This theorem can be generalized to include generators A in arbitrary Banach 
spaces, for which ||,4(A/ — ^l)-11[ = sup{|/*| : fi G a(A(\I - A)-1)}. This is the case 
e. g. for multiplication operators that generate semigroups in Lp spaces. 
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R M KAUFFMAN 

Functional analysis and spherical functions 

The theory of generalized eigenfunction expansions for a single operator 
is well-established. For a recent paper giving a simple formulation of the 
abstract theory, as well as some applications to Schrödinger operators, see 
Poerschke-Stolz-Weidmann [7]; for another exposition concentrating par- 
ticularly on Schrödinger operators see Simon [8]. For many applications, 
however, one studies simultaneous generalized eigenfunction expansions for 
a family of commuting operators. A general theory of these expansions is 
given in [6]. In this note, we discuss a celebrated eigenfunction expansion in 
geometry, the spherical function expansion of Harish-Chandra, to analyze 
which portion of the theory of that expansion is geometry, and which follows 
from general functional-analytic principles, in particular the general theory 
of eigenfunction expansions given in [6]. As an illustration of these ideas we 
analyze the Bessel function expansion in R2. For the proofs of these results, 
the reader is referred to [6], which also contains a good deal of additional 
material. 

A modern exposition of the spherical function expansion is given in the 
book by Helgason [3], which, along with his classic book [2], gives a self- 
contained exposition of all the necessary background material. A general- 
ization of this expansion is given in the well-known paper of Helgason [4]. 
The relation of that expansion theory to the expansion given in [6] is a 
subject for future research. 

Theorem 25, for eigenfunctions of a single operator, first appeared in 
Edmunds and Kauffman [1]. 

Definition 1 A locally convex topological vector space is said to be a nu- 
clear space if, for any convex balanced neighborhood V of 0, there exists 
another convex balanced neighborhood U C V of 0 such that the canonical 
mapping T : Xv —> Xv is nuclear. A nuclear operator from a locally 
convex topological vector space X into a Banach space Y is an operator of 
the form 

n 

Tx = s-}}siY,cjfj(x)yj + CO 

3- 
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where {/,} is an equicontinuous sequence of continuous linear functionals 
on X, {y0} is a bounded sequence of elements ofY, and {c3} is a sequence of 

non-negative real numbers such that Y^Li Cj < °°. The spaces Xu and Xv 

are defined as follows: let U be a convex balanced neighborhood ofO in X. Let 
KU be the Minkowski functional on U. Let Nu = {x G X : Ax € U V A > 0}. 
Then Nu is a closed subspace of X, and the quotient space ^ is a normed 

linear space Xu under the norm induced by KV ■ Xu is the completion of 

Xu. 

Theorem 2 A locally convex topological vector space X is nuclear if and 
only if for any convex balanced neighborhood V of 0, the natural mapping Iv 

from X into Xy is nuclear. 

Lemma 3 Letuj be a trace class operator in a Hubert space h, such that the 
null space of u is trivial. Let X = fl~=1 range (üün). Give X the seminorms 
pn(x) = ||(a;n)-1x||. Then X is nuclear. 

Definition 4 Let A be a von Neumann algebra; that is, an algebra of op- 
erators on a Hilbert space h which is closed under adjoint, and which is 
complete in the strong operator topology. A normal operator A is said to be 
affiliated with A if the spectral projections for A all lie in A. (This is an 
equivalent form of the usual definition; see [5].) 

Remark: An operator is normal if and only if it is affiliated with a com- 
mutative von Neumann algebra; this is a theorem which is apparently 

due to Murray and is discussed in [5]. 

Definition 5 A differential expression is defined to be a continuous lin- 
ear operator on C™ (M) which does not increase supports. 

Definition 6 Let D be a family of differential expressions on a Riemannian 

manifold Q. D is called a regular family if: 

1. D = {Ti}i=1 is a family of formally commuting differential expressions 
on Q, such that the closure (T,-)0 of the restriction of r,- to C~ (Q) is 

normal; 

2. for any T; G D, the formal adjoint expression rf G D; (recall that T
+ 

is defined by the relation [rf,g] = [f,r+g] for all f,g G C£° (Q)); 
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3. the smallest von Neumann algebra A with which each operator (r,-)0 is 
affiliated is commutative; 

4- there is an elliptic differential expression t, such that the closure l0 

of the restriction of £ to C£° (Q) is affiliated with A (and is therefore 
normal). 

Definition 7 A strict inductive limit V of a sequence {Vn} of locally 
convex topological vector spaces, where Vn C K+i and the containment is 
algebraic and topological, is the topological vector space formed by giving 
U^K the topology such that a set is open if and only if its intersection 
with each Vn is open. 

Definition 8 Let T be a family of normal operators on a Hubert space 
h. Suppose that W is a nuclear space which is a strict inductive limit of 
separable Frechet spaces, and that W is contained in the domain of every 
element of T. Further suppose that W C h C W, where the containment is 
algebraic and topological, so that the embedding ofW into W uses the inner 
product ofh. Finally suppose that W is dense in h. Then we say that W is a 
space of attainable states for T. (In this note, the main example given 
will be C£°(M), where M is a complete Riemannian manifold, but other 
examples, analogous to the rapidly decreasing functions on Rn, may also be 
shown to exist in geometry; see [6].) 

Definition 9 Suppose W is a Montel space, in the sense that closed and 
bounded subsets are compact (the above W is such a space). The space 
C (W, W) is defined as follows: give W the topology of uniform convergence 
on bounded subsets of W; and give the continuous linear transformations 
from W into W the topology defined by the set of all seminorms KAJB, where 
A,B are bounded convex balanced subsets ofW, and 

KA<B(T)=    sup    \T(x)(y)\. 
x£A,yeB 

Definition 10 Let D be a regular family of differential expressions on a 
Riemannian manifold Q. A space of regular attainable states for D is a 
topological vector space W with the following properties: 
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1. W is a space of attainable states for {(r,)0}t=1; 

2. W CC°°(Q); 

3. C£° (Q) is topologically contained in W. 

Definition 11 (This is an informal definition; for a formal treatment see 
Helgason [2].) Riemannian globally symmetric spaces are connected 
Riemannian manifolds M where for any point p <E M there is a global isom- 
etry of M (for which p is a necessarily isolated fixed point) which when 
restricted to a neighborhood of p reverses the direction of all the geodesies 
through p; in other words, the geodesic with tangent vector X at p goes to the 
geodesic with tangent vector -X at p. Such spaces have many interesting 
properties; for example, they are complete, and for any two points x and y 
of M, there is an isometry of M taking x toy. (This property is one of the 
reasons why these spaces have physical interest.) However, the curvature of 
M need not be constant, because the sectional curvatures for different tan- 
gent planes through p may be unequal. If M is globally symmetric, then M 
is diffeomorphic to G/K, where G is the identity component of the isome- 
try group of M, and K is the subgroup fixing p. K is necessarily compact. 
If G is semisimple (which means that it is naturally a semi-Riemannian 
manifold with metric arising from the Killing form) and K is a maximal 
compact subgroup, then M is said to be of noncompact type. These spaces 
have nonpositive sectional curvature, and have the interesting property that 
a geometric property, the maximum dimension of any flat totally geodesic 
submanifold of M, called the rank of M, is the number of generators of the 
ring of all differential expressions T on M which commute formally with G, 
in the sense that for any g eG, and any C°° function f, rf og = r (/ og). 

Definition 12 Let M be a Riemannian globally symmetric space. The fam- 
ily of C°° differential expressions r such that for any g € G, and f G 
C°° (M), T (/ o g) = T (/) o g, will be called the family of invariant differ- 
ential expressions, and denoted by D (G/K). 

Remark: In the language of this note, we use the phrase "differential ex- 
pression" instead of the more usual phrase "differential operator" to 
highlight the fact that in general there are many Hilbert or Banach 
space operators associated with a given differential expression. How- 
ever, for an invariant differential expression r on a Riemannian globally 
symmetric space M, there is in general only one reasonable operator r0 
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in L2 (M); this is the closure of the restriction of r to C™ (M), which 
is shown in [6] to be a normal operator in L2 (M). This is part of the 
assertion of the following theorem. 

Theorem 13 C%° (M) is a space of regular attainable states for D {G/K). 

Definition 14 The extended Gelfand transform GT is a ring homo- 
morphism between the operators affiliated with a commutative von Neumann 
algebra A and the normal functions on the maximal ideal space of A. A 
real valued function on an extremely disconnected compact Hausdorff space 
X (this means that X has the property that the closure of every open set is 
open; the maximal ideal space of A has this property) is said to be normal if 
it is either continuous at a point x or converges to oo or -oo at x, for each 
point x of X, and if furthermore the set of discontinuities is a meager set. 
(Thus bounded normal functions are continuous). It not so obvious how to 
multiply two normal functions, or to multiply two unbounded operators affil- 
iated with A, but this can nevertheless be done (See Kadison and Ringrose 

[5]). When the transform GT is restricted to A, it is the usual Gelfand 
transform, denoted by GT, taking A isometrically onto C (X), where X is 
the maximal ideal space of A. 

Definition 15 Let A be a commutative von Neumann algebra with identity, 
of operators on h. By the Gelfand representation theorem, A is isometric 
to C(X), where X is the maximal ideal space of A. For any e e h, we 
define the measure /j,e on X as the linear functional J on C (X) such that 
J (GT(A)) = [Ae,e], where [ , ] denotes the inner product ofh. 

Theorem 16 Let W be a space of regular attainable states for D(G/K). 
Let e be a cyclic vector for the restriction of A (D (G/K)) to the subspace 
of L2(M) which is invariant under the action of K. Then there exists a 
meager subset A of the maximal ideal space X of A = A(D (G/K)), and 
a continuous mapping A -» Px from X\A into C (W, W) such that the 
following holds: 

1. for Ae A, 

A = Jx{A)GfjÄ)(X)Pxd^(X) 
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where the integral converges in the sense that for any continuous semi- 
norm a ofC(W,W'), GT(A)a(Px) is in Lx (//e); (since GT(A) is 
bounded and continuous, this is an assertion only about P\; 

2. for all A in the complement of A, the net {P(A)} converges to P\ in 
C (W, W) as A takes on all values of the directed set of open sets about 

A in X (A); 

3. Any F 6 range (P\) is an element of C°° (M) and satisfies the equa- 

tion rf = GT{N)J\)F for all A G A"\A and all N = r0, with T G 
D(G/K); where GT(N)(X) is the extended Gelfand transform of N 
evaluated at A, which is finite and well-defined at all points of X\A; 

4. For any bounded subset B of A, and any neighborhood T of 0 in 
C(W,W) there exists a finite partition {A,-}f=1 of X\A, such that 

for any elements At € A,-, and any A € B, 

A-^GT(A)(A)PA^e(At)er. 

Definition 17 Let Q be a Riemannian manifold, p be the natural measure 
on Q, D = {r,-}f=1 be a regular family of differential expressions on Q, and 
W a set of regular attainable states for D. We further suppose that K is 
a subgroup of the group of unitary operators in L2 (Q,p) equipped with the 

strong operator topology such that K is compact, and such that ifU^n then 
U takes W continuously into W, and the mapping U —> U(f> is a continuous 
function from K into W, for any <j> e W, and that this is also true when 
W = C~ (Q). (Note that these hypotheses imply that the strong and weak 
operator topologies on K are the same, since a 1-1 continuous mapping on 
a compact space is a homeomorphism. Hence, in particular, the mapping 
taking U to U~l is continuous on n.) In addition, we suppose: 

1. if £ is as in Definition 6, then any f in the domain of £0 = H is in 

Loo (Q); 

2. K C A', the set of all bounded operators commuting with A; 
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3. if F and G are elements of C°° (Q) n W such that for all U e it, if W 
is the transpose ofU considered as a continuous linear transformation 
from W into W, Ul (F) = F, Ul (G) = G, and rxF = \{F and rtG = 
XiG for all Ti £ D, where each A,- is a complex number, then F and G 
are linearly dependent. 

Example 18 If N > n/A, where n is the dimension of the Riemannian 
globally symmetric space M, and C is the Laplacian on M, and He is the 
closure of the restriction of C to CQ° (M), then any f G D ((He)) is in 

loo (M). Hence if {r,}f=1 generate the ring D (G/K) , and W = C0°° (M), 
and A is the smallest von Neumann algebra with which each (r,-)0 is affiliated, 
and D = {(r,)0}, and K is {Ug : g G K}, then the hypotheses of the previous 
definition are satisfied with £ = £N. 

Definition 19 An invariant eigenfunction expansion on a Borel subset 
A C Rk associated with the regular family of differential expressions {r,-}*=1 

on the Riemannian manifold Q with a space W of regular attainable states 
is defined to be a complete positive Borel measure fj, on A together with an 
almost everywhere (with respect to //) defined mapping ß —> Gß from the 
subset A of Rk into {G € W' n C°° (Q) : Ul (G) = G V U e «}, such that 
(i (C) is finite for any compact subset C of A, and such that the following 
hold: 

1. the mapping taking ß to Gß is scalarwise measurable from A into 
W, in the sense that for any element <j> e W, c^ (ß) = Gß ((f)) = 
fM (j) (x) Gß (x) dfi(x) is a Borel measurable function of ß; 

2. the mapping V from § to c^ is an isometry from Wi, with the norm 
of L2(Q), onto a dense subspace of L2(A,p); V therefore extends to 
a unitary operator, also denoted by V, from L2j onto L2 (A, fi); 

3. for almost every ß =< ßu...,ßk >e A with respect to n, there exists 
an element F of C°° (Q) l~l W such that rtF = ßtF. 

Definition 20 Let M = G/K be a Riemannian globally symmetric space. 
A spherical function F is an element ofC°° (M) which satisfies TF = X (r) F 
for all T G D (G/K), where the mapping T —> A (r) is a ring homomorphism 
from D (G/K) to the complex numbers, and which is invariant under K in 
the sense that F o g = F for all g £ K. 

186 



Theorem 21 Let M be a Riemannian globally symmetric space, and X —> 
Px be as in Theorem 16. Let the sequence </>n € C£° (M) converge to 9 £ 
L2 (M). 77ien, /or all n £ X in the complement of a meager set, where X 
is the maximal ideal space of A(D (G/K)), P^n converges in W to a limit 
which is independent of the approximating sequence <j>n, depending only on 

9. 

Definition 22 Let 9 G L2 (M). For all X in the complement of a meager 

set, define F\j to be the above limit. 

Theorem 23 Let X be as above. Let S be a meager subset of X, with 

closure S. Let 9 G h.  Then //e (SJ = 0. 

Remark: We now use the above formalism to construct an eigenfunction 
expansion in terms of spherical functions for any Riemannian globally 
symmetric space. The following theorem also states that any other 
method of constructing such an expansion yields essentially the same 
result. Finally, it gives the conclusion that any such expansion con- 
verges in a sense which corresponds to absolute and uniform conver- 

gence in the case of a series. 

Theorem 24 Let M be an n-dimensional Riemannian globally symmetric 
space M = G/K, where as usual G is the identity component of the isometry 
group of M and K is the subgroup of G fixing a given point. Let K = 
{Ug:ge K], where Ug (/) = / o g. Let L2,i be the subset of L2 (M) of 

functions which are invariant under K. Let {T;}J=1 be a set of generators of 
the ring D (G/K). Let Ai be the smallest von Neumann algebra in L2 (M) 
containing A (D (G/K)) and Pi, the orthogonal projection onto I. Let vi be 
the clopen (closed and open) subset of the maximal ideal space of Ai such 
that the Gelfand transform of Pi is the characteristic function of' vi\ define 
X on vi byxW=<GT((T1)Q)(X),...,GT((Tk)0)(X)>. Let A be the range 

of x-  Then: 

1. For any positive integer m, L2j has a cyclic vector e £ D ((Hc)m), 
where He is the self adjoint operator corresponding to the Laplacian; 

2. A is a countable union of compact sets; 

3. A is the spectrum of the restriction of He to L2j; 
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4- if FXW 
zs defined to be F\i6 (this is defined using Definition 

and (j, is defined to be the positive measure on A such that fi (S) = 
fie (x~r {S)), with fxe defined as above on the maximal ideal space of 
A, then Fx(\) is a spherical function for almost every ß £ A with 
respect to fi; 

5. the mapping ß -+ Fß is an invariant eigenfundion expansion on A; 

6. Let ß —> Gß be an invariant eigenfundion expansion for TI, ...,r^,A^ 
on the Borel subset T of Rk, with an associated measure 7 on T, such 
that under the associated unitary transformation from L2j to L2 (T, 7), 
(r;)0 is unitarily equivalent to multiplication by /?,-. Then fi and 7 are 
mutually absolutely continuous onTC\A, which is a set of full measure 
with respect to each; 

7. the Gß are spherical functions for almost every ß with respect to 7 and 
Gß = a(ß) Fß for a Borel measurable function a such that |a(/3)|2 J7 = 
du; 

8. for any g g Lx (M), 7 ({/? : gGB £ Lr (Af)}) = 0; (this follows from 
the known fact that for almost every ß the spherical function Gß is 
actually bounded, but it is also a consequence of the general theory of 
[6]. 

9. for any f  e   D([HC)
N
),   where N   >  n/4,   fA \cf (ß)\ Gß (x) d1   G 

Remark The last conclusion is true for any invariant eigenfunction ex- 
pansion, as the following theorem states (see [6] for the proof in this 
context, which imitates the proof of the corresponding assertion for a 
single operator in [1]). 

Theorem 25 Suppose ß —> Fß is an invariant eigenfunction expansion on 
A. LetfeDi^n^iQ^p). The function h:h(x) = fA\cf(ß)Fß(x)\df, 
is in Loo (Q,p)- 

• To see what the theory says in a well known situation, we use it to 
study the generalized eigenfunction expansion for the polar coordinate 
Laplacian in R2. 
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Let h = L2 (R
2), and let D = Hc, where Hc is the closure in L2 (R

2) 
of the restriction of the Laplacian to C£° (-R2). R2 is a symmetric space. 
Let K be the unitary group of rotations. Let W be the rapidly decreasing 
functions on R2. It clear that W is a space of regular attainable states for 
D. Hence, Theorem 24 guarantees an invariant eigenfunction expansion in 
terms of spherical functions. What are these? The functional calculus for 
operators affiliated with a von Neumann algebra guarantees that except for 
a meager set the range of GT (Hc) is contained in the spectrum of Hc. 
By direct calculation, one can see that the generalized eigenfunctions of 
He which are invariant under K, and which correspond to A < 0, are all 
multiples of J0 (\/-Är), where J0 is the Bessel function of order 0 of the 
first kind. In fact, since the generalized eigenfunctions must be C°°, they are 
well-behaved at the origin; one can either observe that the second solution 
to Bessel's equation is unbounded, by calculating it, or more simply one can 
calculate the Wronskian of any two linearly independent solutions and show 
that it blows up at the origin, so that Bessel functions of the first kind are 
the only solutions which can show up in our theory. The subspace L2j is 
just the functions of r alone. We obtain from Theorem 25 the conclusion 
that for any f E D (H?), where a > §, its Bessel expansion in terms of the 
above eigenfunctions converges absolutely and uniformly, no matter what 
spectral measure is used. From Theorem 16 and a simple limiting process, 
we see that the expansion converges to /. Let e be a cyclic vector for L2,i, 
which exists by Theorem 24. With respect to the measure, using Theorem 
24, we see that for any g € L\ (R2) the measure of the set of all A such that 

j0 ryZXr) / is not in Li (R?) is a set of measure 0; hence, in particular, 

there must be some A < 0 such that J0 (v^Är) / G Lx (R
2). From this, 

we easily see that J0 (r) / £ Lx (R
2) for all / G 2a (R2)- This implies the 

well-known fact that J0 G £«> (R2)- 

Remark: The Fourier-Bessel expansion in Ä2, which expands non-radial 
functions, is also an invariant eigenfunction expansion, but to treat 
this expansion goes beyond the scope of this note. It is treated as part 
of the theory of invariant eigenfunction expansions in [6]. 
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V KHATSKEVICH, S REICH AND D SHOIKHET 

Ergodic type theorems for nonlinear 
semigroups with holomorphic generators 

1. INTRODUCTION. Let X be a reflexive Banach space and let T : X ■) X be a 

linear operator all the powers of which are uniformly bounded. By the Mean 

Ergodic Theorem [Y] the Cesaro means of the powers of T converge strongly, 

pointwise on X , to a linear projection of X onto the fixed point set of 

T. An analogous result, where the Cesaro means are replaced by the 

corresponding integral, holds in the continuous semigroup case [HP]. In recent 

years it has turned out that there are nonlinear mean ergodic theorems for 

nonexpansive mappings and semigroups in Hubert and in "nice" Banach spaces 

(see, for example, [P],[R2],[GR], and the references mentioned there). 

However, in the nonlinear case only weak convergence of the Cesaro means can 

be established in general. In both the linear and the nonlinear cases, strong 

convergence can be obtained for the resolvents of the generators of the 

semigroups. In the linear case this is, in fact, a consequence of the mean 

ergodic theorem (cf.[Sl), while in the nonlinear case a completely different 

argument is required [Rl]. 

Our intention in this paper is to study the corresponding questions for 

discrete and continuous semigroups of holomorphic mappings in reflexive Banach 

spaces. Our first main result (Theorem 1 below) is a continuous analogue of 

the Mazet-Vigue discrete ergodic theorem [MV]. Our second main result (Theorem 

2) is a convergence theorem for the resolvents of generators. It has precisely 

the same form both in the discrete and in the continuous cases. 

2. NONLINEAR SEMIGROUPS. Let D be a subset of a Banach space X. 

A family S=<F }, where either teR+(=[o,oo)) or teN (={0,1,2,...», of 

self mappings F   of D is called a (one parameter) semigroup if 

and 

F      = F   o F   , s,teR+ (s.teN), (D 
s+t s t 

F   = II (2) 
0       'D , 
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where    I    is the identity mapping on   X. 

A   semigroup     S={Ft>,   t€R ,   is   said  to   be   continuous   if   the   vector-valued 

function    F x: R   -)D    is continuous in    t    for each x€D. 

If     teN     we  say  that   the  semigroup     S     is  discrete.   In  other   words,   a 

discrete   semigroup      S={Ft>,   teN,   is   the   family   of   iterates   of   a   self-mapping 

F=F : D -> D. 
l 

Definition 1.    Let S={F }, teR , be a continuous semigroup on    D. If the 

strong limit 

x-F (x) 

f(x)    = lim     (3) 
t-»o+        t 

exists for each    xeD, then it will be called the generator of the semigroup S. 

It  follows  by  the  semigroup  properties     (1)  and   (2)     that  in     this  case 

F     is a solution of the right hand Cauchy problem 

9 FJx) 

at 
+ f(Ft(x)) = 0, F (x)=x . (4) 

Let    D and D    be domains in    X.  We shall denote by    Hol(D.D)    the set of 

holomorphic   mappings   from      D      into      D      and   by Lip(D.D)       the   set   of 

Lipshitzian    mappings   from       D,    the    closure    of D,    into        D.    The    set 

Hol(D,D)f)Lip(D,D) will be denoted by HL(D.D). 

Definition 2.  A mapping feHoKD.X) is said to be a semi-plus complete 

vector field if the Cauchy problem 

8 F (x) 
    + f(F (x)) = 0, F(x)=x , (5) 

at * ° 

has a solution   {F (x)} c D,   teO,   xeD. 

The semigroup properties (1) and (2) imply the following fact. 
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Proposition 1. Let feHoKD.X) be the generator of a continuous 

semigroup, and assume that the convergence in (3) is uniform on each compact 

subset of D. Then   f    is a semi-plus complete vector field. 

It is clear that a semi-plus complete vector field is the 

generator of a continuous semigroup. Moreover, if it is bounded we have 

additional information on the convergence in formula (3). 

Proposition 2. Let D and D be bounded domains in X, and let 

feHol(D,D)   be a semi-plus complete vector field. Then the net 

x-F  (x) 

f (x) =      
t 

in   (3) converges to   f   in the topology   of local uniform convergence on   D. 

The   topology  of   local   uniform  convergence   is   discussed,   for   example,   in 

[IS]. 

Proof. Let U be an arbitrary closed subset of D. Since f is 

bounded on D, it follows by the Cauchy inequalities that feLip(U.D). Hence 

on some disk ficC centered at OeC, there is a unique solution *(t,x) of 

the Cauchy problem 

8 *(t,x) 
    + f(*(t,x)) = 0, *(0,x)=x , (6) 

at 

(t,x)efixU,  which is holomorphic and bounded on    Qxll. Moreover,     *(t,x) = Fjx) 

on    (fif)R+)xU. Thus we have 

$(t,x)=x+tf(x)+w(t,x) 

for     (t.x)enxU,  where     w(t,x)     is holomorphic  in    t€fi     and bounded for each 

xeU. By the Schwarz lemma we obtain 

llu(t,x)ll s   It|2 sup llw(t,x)ll e"2 , 
(t, x)e£2xU 

where    e    is the radius of   £2. Then for   ten(")R+    we have the    inequality 
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IIf (x)-f(x)ll £ t sup llu(t,x)ll e 2 , 
(t, xjefixU 

which proves the proposition. 

Now we consider the stationary point set g of a semigroup S=<F } 

with a holomorphic generator. This set is defined as the common fixed point 

set of    <Ft>    for all t,  i.e. g =f)FixF , t€R+ (teN). 

If the generator f is semi-plus complete, then it follows from the 

uniqueness of the Cauchy problem solutions that the stationary point set of S 

coincides with the null point set of    f,    i.e. 

SD = Nuiy (7) 

(see,    for   example,    [A]).    Note   that   actually   this    also   holds   for   the   more 

general case, when    f    is a generator in the sense of Definition 1. 

The following example shows that formula (7) is no longer true for the 

closure of    D    even in the case when    f    is continuous on    D. 

Example.  Let     D     be the unit  disk  in the  complex  plane     C,   i.e.   D={x€(D: 

|x|<l>.   Consider      f(x)=x-l+Vl-x.   It   is   clear   that      feHol(D,C)   and   that   it 

is continuous on    D.  In addition, Null f={0,l}. 

However, the Cauchy problem (5) has the solution F : D -* D, taO, defined 

by the formula: 

Ftx = l-[l-e~'2 + z       vT=x"]2, 

and for all    t>0    we have 

Ft(l) = l-[l-e '2 f < l. 

Thus    g- * Null- f. 
D D 

3. ERGODIC TYPE THEOREMS. In order to formulate our main results we need some 

additional notions. 
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Definition 3. Let    D    be a domain in    X. We shall say that the sequence 

{g f        (respectively,   the  curve   {g },   teO  ),   g e   Hol(D.X)   (g e   Hol(D,X)), 
n n=l # t n 

* -converges ($ -converges) to    g e Hol(D.X)    with respect to a point    a e. D, 
a a 3, 

i/   the      sequence   (curve)   of   linear   operators      ^'Ja^l=1      dg'^h   t*0) 
00 

strongly  converges  to     g'(a)     and  there  is  a  subsequence   {g^ }       (Ygt )), 

which converges (weakly converges) to   g   pointwise in   D. 
k  k=l 

We   write   in   this   case   that      g      is   a   $ -(weak   <S>^-)   limit   of   <gn>n=1» 

(of gt) or 

g = * -lim g ( $ -lim g    ) 
a    n n an n 

( g = $ -lim g ( * -lim g   )). 
t-»co t-»oo 

Definition 4. A mapping   II e Hol(D.D)   with    gD=Fixn * a    is said to be 

a quasi-retraction of    D    onto g    if the sequence of iterates 0InJn=1 strongly 

converges in    D    to some retraction    *    of    D        onto    $^,    i.e.    * =lim II , 
n   oo 

*2= * e Hol(D.D). 

Theorem 1. Let D be a bounded convex domain in a reflexive Banach space 

X. Let S={F }, te R+, be a continuous one-parameter semigroup of holomorphic 

self-mappings of D , whose generator exists and is a semi-plus complete 

vector field. Suppose that the stationary point set g of S in D is not 

empty. Then 

1) g    is   a complex analytic connected submanifold ofD ; 

2) For each    a e g   , there exists 
D 

n = **-lim    -  [F dx (8) 
t->oo    t 

o 

which  is a  quasi-retr action  of     D     onto     g .  Furthermore,     Tl'(a)=P     is a 
D 

linear projection of X onto the tangent subspace to gD    at the point a. 
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Remark 2. This theorem is a continuous analogue of the Mazet-Vigue 

discrete ergodic theorem [MV] for a semigroup S = { F }, teN, defined by the 

iterates <Fn} of a self mapping F =F which belongs to Hol(D.D). Instead of 

formula (8) they consider 

*a-lim-   I     Fk. (8') 
n 

k=0 

However, in spite of the analogy we cannot consider the formula (8') as 

a special case of (8), because it is not clear whether there is a continuous 

semigroup {FJ, t€R+, such that F =Fn. It seems that this question goes back 

to G.Koenigs (see, for example, [H]). 

Nevertheless, using relation (7) we are able to establish another 

ergodic type theorem in terms of the null-point set of generators which has 

precisely the same form both in the discrete and in the continuous cases. In 

addition, we use this assertion to prove Theorem 1. We need another 

definition. 

Definition 5. We say that f € Hol(D.X) belongs to the class GH(D) if f 

is bounded and either f is a semi-plus complete vector field, or F = I-f 

is a self-mapping of D. In other words, f generates a continuous or a 

discrete semigroup on D (or both). 

Theorem 2. Let D be a bounded convex domain in a reflexive Banach space 

X, and let    f € GH(D).    Suppose that    Null f    *    z.    Then 

1) Nuiy     is a  complex analytic  connected  submanifold  of  D  which   is 

tangent to ker f (a); 

2) For each    r^O    there exists a single-valued resolvent 

J =(I + rf)_1€ Hol(D.D),    and    Fix J    = Null f,    for all r>0; 
r D  r D 

3) If    a e Null f, then there exists a mapping 

J = $*-lim    J 
a r 

r-»oo 

which is a quasi-retraction of    D    onto    Null f . 
D 
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Proof of Theorem 2. Step 1. First we consider assertions 1) and 2) for 

the discrete case. 

Let    f e Hol(D.X)    and assume that    F=I-f    is a self mapping of D. 

Assertion 1) was proved by Mazet and Vigue [MV]. As a matter of fact, 

it   also  follows   immediately  from   assertion  3)   and   a  property  of   holomorphic 

retracts [C]. 
Turning to assertion 2), we fix   y e D, r>0, and consider the equation 

(I + rf)x = y . (9) 

Setting   t=r/(r+l)   we can rewrite (9) in the equivalent form 

x = (l-t)y + tFx . (10) 

Since t e (0,1) and D is convex, the mapping x i—> (l-t)y + tFx maps D 

"strictly inside" (see, for example, [EH]) D. By the Earle-Hamilton fixed 

point theorem [EH], the equation (10) has a unique solution x = Gty, which 

holomorphically depends on y € D. Returning to r = t/(l-t) and setting 

J =   G we   have   that      J e   Hol(D.D)      and   that      x   =   J y      is   the   unique 
r r/(l+r) r r 

solution of (9).    It    is    easy to see that 

Fix J   = Null f (ID 
D r D 

for    r>0. 

Step 2. Here we establish that assertion 2) holds for the continuous case 

too. 

Let      f   e   Hol(D.X)   be   a   semi-plus   complete   vector   field,   and   let   {FJ, 

teR+,   be   the   semigroup   generated   by      f.   Setting      ft=(I-Ft)/t   we   have   by 

Proposition 2 that  {f } converges to     f     as     t     tends to  0+  in the  topology of 

local uniform convergence over    D.  Since    F e HoKD.D),  by step 1 we have that 
-l -l 

for   each      r>0      there   exists   the   resolvent      5^ =   (I   +   rft)   =   (I   +   r^) , 

where    r = r/t.  In addition, it follows by (11) and (7) that for each    r>0, 
l 

Null f £ Fix F   = Fix J      . (12) 
D D   t D r,t 

Now choose any sequence  t -» 0+  and denote  T = I + rf . For this 
n n 

sequence of mappings we have the following properties: 
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(i) If    a € Null f, then    T (a)=a ; 
D n 

(ii)    <Tn* C Hol(D'X)        converges   to       T=I+rf    in    the    topology    of    local 
uniform convergence on    D ; 

(iii) For each    n    there exists    T"1 = J     € Hol(D.D) 
r,t 

n 
We     want     to     show    that     {T_1>     converges     to     T"1 € Hol(D,D),     where 

T = (I + rf).    Indeed,    let       A=   (T)'(a)    and       A   =   T'(a).        It   follows   bv 
n n J 

(i),(ii)    and    the    Cauchy    inequalities    that    {A }    converges    to        A        in    the 
n 

operator   topology.    In   addition,    because       T (a)=a    ,    by   the    chain   rule   we 
-l      -l n 

obtain    that    A^ =(Tn )'(a).    Once    again,    using    the    Cauchy    inequalities    and 

(iii),    we   have   that    II   A" II       is   uniformly   bounded.    Therefore      the       linear 

operator       A       is   invertible,   and   hence      T      is   locally   invertible   in   some 

neighborhood     U     of  the  point  a  .Thus  there  is  a  neighborhood     V=T(U)cD     of 

the   point  a,   such  that     T_1€   Hol(V.U).   Take  an  arbitrary     yeV.   Then  there   is 

x e U    such that y = Tx =  lim T x .    Setting    T x = y ,  we have  II y -y  II H> 0 
n-^oo      " n n n 

as    n -> oo , and x = T-1 y = T_1y . Hence, n    V 
T y 

n    n 
II T" y - T" y II = II T   y   - T   y II    <    K  II y - y  II -» 0 

n n     n n r,      ^ 

where    K = supII   (T~V (z)  II  < eo,  because    D    is bounded.  By the Vitali theorem 
Z6V 

we  obtain that T"1  =  J^    converges to     T"1  =  (I  + rf)"1  on the  whole of     D  , 
n 

and T-1€ Hol(D,D). But T_1(a) = a e D, and T"1 is biholomorphic on D. Hence 

T (D)cD. By the way we note that formula (11) holds for the continuous case, 

too. Again using the Mazet-Vigue theorem we obtain assertion 1) also for the 

continuous case. 

Step 3. Now we prove the last assertion for both cases. We have now, if 

f € GH(D), that for each r>0 the mapping J = (I + rf J"1 exists, belongs to 

HoHD.D), and Fix^ Nul^f. Since X is reflexive there is a sequence r 

-> oo     such  that     the  sequence     {J   >     weakly  converges  to     J  e   Hol(D,D).   But 
n 

for     aeNuiy     we have     J(a)=a,   and hence     J €  Hol(D,D).   Let now     B =  f'(a). 

It is easy to see that 

etB= (Ft)'(a), (13) 
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tB 
and thus B generates a uniformly continuous semigroup e because of the 

Cauchy inequalities and the boundedness of D. In addition, by the chain rule 

J'(a)   =   (I   +  rB)"1.   It  is  known   (see,   for  example,   Shaw   [S])   that  for   all  x  € 
r 

X    the strong limit 

P = lim    - f eTB dr = lim (I + rB)"1 (14) 
t-»oo      t  J r->co 

exists and is a projection onto kerB. It is clear that J'(a)=P and thus 

J=$*-lim  J .   It  follows  from  Vesentini's  theorem   (   see   [VI],   [V2])   that     J     is 
a r 

a quasi-retraction onto Fix J. But Nul^f £ FixoJ are complex analytic 

connected manifolds with the same tangent space PX = kerB at a. 

Therefore they are identical. This concludes the proof of Theorem 2. 

Note that the last considerations, including (14), prove also Theorem 1. 
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T MANDAI 

Asymptotic solutions for exceptional cases 
of characteristic Cauchy problems to 
Fuchsian partial differential equations 

We construct asymptotic solutions of characteristic Cauchy problems to Fuchsian 

partial differential equations when some characteristic indices become exceptional. 

1. Introduction 

M.S.Baouendi and C.Goulaouic ([1]) considered a Fuchsian partial differential 

operator with weight m — k 

P = tkdr+J2bm-i(x)tk-ldrl+  E  t^-m+k+ifihha(t,x)did», (i.i) 
l—l j + \a\<m,j<m 

where m is a positive integer, k is a non-negative integer such that 0 < k < m, bm^i(x) 

are holomorphic in a neighborhood of x = 0 G Cn and cha(t,x) are holomorphic in a 

neighborhood of (t, x) = (0,0) G C x C". In the category of holomorphic functions, 

they showed the unique solvability of the characteristic Cauchy problem 

j Pu   =   f{x,t), 
(CP)      \diu\t=0   =   Sj(x)    (j = 0,l,...,m-fc-l). 

under the condition 

(A)      C(p)(0;A)^0     for     A G (m - k) + N := { m - k,m - k + 1,... }, 

where C^(x;X) := (A)m + Etibm-i(x)(\)m-i with (A), := nCo(A - /)• The 

polynomial C(p)(x;A) of A is called the indicial polynomial of P, and a root of 

C{p){x;X) = 0 is called a characteristic index of P at x. A characteristic index 

A is called to be exceptional, if A e(m-k) + N. If the condition (A) is not satisfied, 

that is, if some characteristic indices are exceptional, then it is called the exceptional 

case, and the Cauchy problem does not necessarily have holomorphic solutions for 

every holomorphic Cauchy data. 

The research was supported in part by Grant-in-Aid for Scientific Research (No.05640168, 

No.06640222), Ministry of Education, Science and Culture (Japan). 
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H. Tahara ([3],[4] etc.) also considered the characteristic Cauchy problems for 

Fuchsian hyperbolic equations in the category of C°° functions on real domains under 

the same condition (A). 

In this talk, we consider the case when this condition (A) is not satisfied 

(Exceptional Case), and construct asymptotic solutions. We can easily get "exact" 

solutions from these asymptotic solutions, using already known results. 

For simplicity, we concentrate on Fuchsian operators, though the construction of 

these asymptotic solutions can be applied to a class of operators wider than that of 

Fuchsian operators. 

NOTATIONS : 

i The set of all nonnegative integers is denoted by TV. Put / + N := { j e N : 

j > I} for / G N. 

(ii)    The real part of a complex number z is denoted by Rez. 

(iii)   Put d := tdt. 

(iv) For a bounded domain fi in Cn, we denote by 0{fl) the set of all holomorphic 

functions on Q. 

(v)   TZ(C") denotes the universal covering of C* :— C \ {0}. 

(vi) For a commutative ring R, the ring of polynomials of A with the coefficients 

belonging to R is denoted by R[X\. The order of a(X) e R[X] is denoted by 

ordA a. Also, the ring of formal power series of t with the coefficients belonging 

to R is denoted by R[[t]]. 

2. Main Result 

Let fl be a bounded domain in Cn that contains the origin 0. Let T be a positive 

real number. Consider a linear partial differential operator (1.1). For simplicity, we 

assume that 

UeO(fl),   c]t„er([0,r];O((i)). 

As for formal solutions when the condition (A) is satisfied, it is easy to prove the 
following. 

Proposition 1.      Assum.e 
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(A)      C^{0;X)^0     for     \e(m-k) + N. 

Take a subdomain fi0 of Q that includes 0 and that satisfies 

(A)0o      C^{x; A) + 0  on O0     /or     A G (m - &) + iV. 

T/ien, for every f(x,t) G O(fi0)[[<]] and every g3(x) G 0(fio) (0 < j < m - k - 1), 

tÄere exists a unique formal solution u(t, x) G 0(fto)[[*]] of the characteristic Cauchy 

problem (CP). 

Remark 2. The condition (A)n0 may look like a collection of infinite number of 

conditions. But, since C(p){x; A) is a polynomial of A, this is a collection of a finite 

number of conditions on x, and hence, if (A) is satisfied then we can always take fi0- 

In this talk, we assume the following condition on C(p)(x; A). 

(E)       C^{x; A) = n;=i(A - X^x)) • V^(X] A), 

where 

(a) A, £ O(fi),.    XjiO) e {m - k) + N     (l<j<r), 

(b) V^(0, A) ^ 0 for every A G (m - k) + N. 

In [2], the author considered the restricted case when Xj are all constant. In this 

restricted case, we can give a formal solution in the form of 

oo r 

« = E^E";.'^)^*)'.   UJ,I e o(fio) (o < j;0 < / < r). 
j=o    ;=o 

In general case, we can not expect to have a formal solution of this form. We shall 

give formal solutions in a more complicated form. 

In order to see what kind of functions we need, let us consider the following simple 

example. 

Example 3. P := tdt - X{x): where X{x) G 0(0,) and A(0) = p G N. By freezing 

x, we can easily solve the equation Pu = tp in K(C*) : 

u = < 

-I 
-tv   +   CjW      if A(a:) ^ p, 

X(x)-p 

(logi)f      +   CjW      if \(x)=p, 

where C,; is an arbitrary constant that may depend on x. This is not a good 

representation since we want solutions that is holomorphic with respect to x. A 

good one is 
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tHx)-p _ i 
tp   +    C{x)tx^      if \(x) ^ p, 

X(x)-p 

{logt)P       +   C(x)tx^      if \{x)=p, 

where C(x) G 0(0) is arbitrary. 

This example suggests that we need a family of functions such as 

u(t, x) = 
if fi(x) ^ 0 

H{x) 

logt if n(x) = 0 

where \i G 0(tt). 

Definition 4.      (1)   Put 

tZl - 1 

F^iz^t) := J       2i 

(2.2) 

(zi ^ 0) 

log/        (*i=0) P=I     ^- 
(2.3) 

i^fo, . . . , *,■-!,*,•+!;*) - F^(2l, . . .,Z3_uZ]] t) 

dZjF^(Zl,...,Zj;t) 

(log^)P y 

* 

(zj+l — z] 

(2.4) 

E 
P=j+i   p h+...+kJ + 1=p~j-l 

7*1 _N'+i 

Also put F(°)(;i) := 1. 

It  is  easy to  see that  F(j%,...,^;i)  is holomorphic on  Cj x K(C*)  and 

symmetric in (^,...,2^) £ C1. Further, FW(0,...,0;t) = -?-(logi)j. 

(2)  The function u given by (2.2) can be written as F^(/i(x); t). Thus, we define 

the following function spaces. 

For fi^x), ..., fir(x) G 0(ü) and p G AT, put 

P 

4P)k,-..,^]    :=    (E       E      «/(^V'aO*),.•■,/*,,(*);*) 
/=o/=(.-,,..,■,) 

:  1 < ii < • • • < ii < r,   Vl(x) G 0(fl) } K     > 

C    0(Ü x K(C*)). 
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Note that ^0)[/ii> • • ■ ,A*r] = 0{Vl) (constant functions with respect to t). Further, if 

p < q, then ^[fiu ...,fir]C F{n%u ■■■, l*r]- 

Remark 5.      If Hj{x) = 0 (1 < j < r), then 

4P)[0] = ©?=<Aft)(logt)' == {«(*>*) = X>(*)(log*)' : «J e 0(«) }• 
(=o 

By the following proposition, a formal series of the form 

J2tpvp(t,x),   vp(t,x)eJf0
p)[iiu...,iir]   (NPeN) 

p=0 

can be considered as an asymptotic series that is an extension of a formal power 

series E~0 *%(*),   vp(x) & O{tt0). 

Proposition 6.      If s > 0 and Re fn{x) + s > 0 on ft (1 < I < j), then for every 

g(t,x) G ^{Mi,...,^], there holds 

t'g(t,x)-+0    (*-0). 

This convergence is considered in an arbitrary sector of t G K(C*), and is uniform 

on an arbitrary compact set K CC fi. 

Now, the following is the main theorem. 

Main Theorem.       Assume the condition (E). Put (ij{x) := Xj(x) - A;(0) (j = 

1,2,    . ,r), and put u0(x) = 0.   Take a subdomain tt0 of CL that includes 0 and that 

satisfies the following three conditions. 

(a) V(p\x;ix3(x)+q) ^0 on ü0 for every q £ {m-k) + N and j = 0,1,2,... ,r. 

(b) If j ± I, then fij(x) - mix) $ Z \ {0} on ü0. 

(c) Re/z/(a:) + l >0 on Sl0 (1 < / < r). 

T/iew, /or every / G O(fio)[[*]] *«<* ewery # € O(ft0) (0 < j < m - fc - 1), i/icre 

ern'sis an asymptotic solution of the Cauchy problem (CP) in the form 

j=o      3 ■ P=O 

to/iere vp G ^ mp [/xi,..., /^r]• 

If Xj  are all constants in addition,   then we can take vp   G   J7^ [0],  that is, 

vp(t,x) = EUMl^Oog')'. where vv,i G O(n0)   (P > 0;0 < / < r). 
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Remark 7.        (1)    We can always take 00 satisfying (a)-(c), since ^(0)  =  0 

(1 < j < r) and since V^ is a polynomial of A. 

(2) This formal solution is not unique in general. 

(3) Using already known results, we can easily get an exact solution u of (CP) 

m C"71~'"1([0,ro];C
,(fi[))) of which the asymptotic expansion is the formal solution 

given in the theorem above. When m - k = 0, we consider C_1([0,To]; 0{%)) as 

{/(*,*) £ C°((0,r0];O(^)) : tf(t,x) e C°([0,T0}:O (%))}. 

(4) We can obtain a similar theorem for C°°(U) instead of 0(0). We omit the 

detail since the proof is almost the same. We can obtain exact solutions also for 

Fuchsian hyperbolic operarors considered by H. Tahara. 

3. Sketch of the Proof of Main Theorem 

We give a sketch of the proof of Main Theorem after some preliminaries. 

3.1. Basic Properties of ^p)[//x,..., /jr]. The following is the basic properties 

°f FQ  [^l; • ■ • • i"r] that is used in the proof of Main Theorem. 

Proposition 8.      Let fj,1,...,fir e ö(tt). 

(1) ^k-^rDC^k-Mfr]. 

(2) 0(fl)-A ^cA-^r]. 
(3) 3Ii(A,-,fr])crtiv,/'f]      (l<i<n). 

If fii(x),... ,fj,r(x) are all constants, in addition, then 

3J;,(4
P
VI,---,^J)C4

P
VI,■••,/;,]     (l<i<n). 

3.2. Key Equation. In the proof of Main Theorem, it is the key part to solve 

the following ordinary differential equation with holomorphic parameter x. 

C(x;ti)v = g(t,x), (3j) 

where C(x; A) € 0(fi)[A] and g € 4")[/u1,...,/*,.]. 

Proposition 9.      Let ^, ...,//„.€ ö{tt) and let p E N.  Put ^{x) = 0.   Assume 

that 

i=i 

where 
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(i)  {ji,---,jr-} C{l,...,r}, 

(ii) V{x;\)eO(ü){\], 

(iii) V{x; tn(x)) ^ 0 onSl(0<l<r). 

Then,  for every g(t,x)   G   J$Vi, • ■ • ,Hr],   there  exists  a solution v(t,x)   G 

J%+r,)[Hu...,/*r] of the equation (3.7). 
771 — k— 1 

9j\.x) 3.3.   Sketch of the Proof. Put G(t,x) :=    £   ^r^', u =: G(t,x) + 
j=0 

tm-k~ f ■- f - P(G), and P{u) := P{tm-ku). Then, we have 

Pu = f      <=^       Pu = f. 

Since P has the same form as (1.1) with k = m, and since C{p)(x; A) = C(p)(z; A + 

m _ fc), we may assume fc = m without loss of generality. 

If k = m, then we can expand P with respect to i formally as 

CO 

where 

' r(p)r„. „ 1^ r- ^ip+ri 

i?,(M.;i»)M?W--'^ c^rmVi,■■■,/* 

By substituting / = E£o*p/P(*) and u = Z%0t
pvp(t,x) into Pu = /, we get 

the following recursive equations. 

(R) p     c
(p)(*; ^ + PK(*> *) = /p(^) - E #'(*>ö*^ + P - 0«P-K*, x) 

(p = 0,1,...). (Note that tf(t"w) = ip(i? + p)w.) 

Put rp := #{j'e{l,...,r}: Aj(0) = p }, where #A denotes the cardinal of a set 

A, and put Rp : = EP=or' ^ r- 
By   the   repeated   use   of   Proposition   9,   we   can   get   solutions   vp(t,x)    G 

4^mpW--.^](peJV). 

If Aj(a;) are all constants, then we have fij(x) = 0, and we can take vv G J7^" [0]. 
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S PISKAREV AND S-Y SHAW 

Perturbation of cosine operator functions by 
step response and cumulative output1 

1. Introduction 

Recently, in [10] we introduced two operator families, namely cosine step response 

and cosine cumulative output, and discussed some properties of them. In [9] we have 

established some multiplicative perturbation theorems for cosine operator functions, 

which also contain the classical additive perturbation theorems as corollaries. The 

purpose of this paper is to discuss how some mixed-type perturbations are caused by 

those cosine step responses and cosine cumulative outputs whose local semivariations 

vanish at zero. The results obtained in [9], [10], and the present paper constitute 

a theory of cosine step response and cosine cumulative output, which is in many 

respects parallel to the corresponding theory of step response and cumulative output 

for semigroups (cf. [7], [8], [12]). 

We first recall some definitions and basic properties. Let X be a Banach space, 

and B(X) denote the space of all bounded linear operators on X. Throughout this 

paper, {C(t);t G (-00,00)} is a strongly continuous cosine operator function on X. 

By definition, it is a family of operators in B(X) satisfying 

(a) C(0) = J; 

(b) C(t + s) + C(t -s) = 2C(t)C(s) for t, s G (-00,00); 

(c) the function C(-)x is continuous on (-00,00) for every x £ X. 

The associated sine operator function S(-) is defined by S(t) = J* C(s)ds for all t G 

(-00,00). It is well known that C(-) is exponentially bounded, i.e. ||C(t)|| < Me"* 

for some M > l,u> G (-00, 00) and all* > 0. We may assume that such choice of 

constants M and u also satisfy ||S(*)|| < Meui for t G (-00,00). The infinitesimal 

generator A of C(-) is defined as Ax = limt_02(C(i) - I)x/t2, with the natural 

domain (see [2], [4], [14]). It is a densely defined closed operator, and if A > w, then 

A2 G p{A) and 

/•OO 

(1.1) A(A2 - A)"1* =   /     e-utC(t)xdt, xeX. 
J 0 
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It is known ([11, Theorem 2.3], [6, Proposition 2], or [5]) that an exponentially 

bounded, strongly continuous operator function C(-) is a cosine operator function 

with generator A if and only if there is u such that A2 <E p(A) and (1.1) hold for all 

X > üj. 

A strongly continuous family {F(t); -co < t < oo) of operators in B(X) is 

called a C0-cosine step response for the cosine function C(-) if F(0) = 0 and 

(1.2) F{t + s)~ 2F(t) + F(t -s) = 2C(t)F(s)   for  t, s G (-co, co). 

A strongly continuous family {<?(*); -co < t < oo} in B{X) is called a C0-cosine 

cumulative output  for C(-) if G(0) = 0 and 

(1.3) G(i + s) - 2G(<) + G(t -s) = 2G(s)C(t)  for  t, s 6 (-co, oo). 

The infinitesimal operator A3 of the pair (C(-), F(-)) is defined as 

with the natural domain. The infinitesimal operator Ac of the pair (G(-), C{-)) is 
defined as 

These are respective analogues of step response and cumulative output for Co- 

semigroups, the latter being studied in [1], [7], [8], and [12]. 

Section 2 consists of some preliminary results. Section 3 is concerned with 

perturbation which is caused by a C0-cosine step response F(-), and Section 4 is 

concerned with perturbation which is caused by a Co-cosine cumulative output G(-). 

The existence of the perturbed cosine functions depends on the behavior of the 

local semivariation or variation of F(-) or G(-) at 0. An.operator-valued function 

F(-) is said to be locally of bounded semivariation if for some t > 0 

n 

SV(F(.),t) := sup{|| 5>(*,-) - Fitj^xjW ; Xj 6 X, \\Xj\\ < 1} < oo, 

where the supremum is taken over all subdivisions of [0, t]. The function F(-) is said 

to be locally of bounded strong variation if for some t > 0 and all x 6 X 

n 

Vai(F(.)s, t) := sup{£ \\{F{ij) - F^-O)^ ; 0 = t0 < t, < • • • < tn = t, n > 1} 
j=\ 
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is finite, and is said to be locally of bounded uniform variation if for some t > 0 

n 

Var(F(-), t) := sup{J] IK^O-i^-i))!! ; 0 = U < h < ■ ■ ■ < tn = t,n> 1} < cc. 

2. Preliminary results 

In this section we collect some basic properties of C0-cosine step response F(-) and 

Co-cosine cumulative output G(-) (see [10]), and two multiplicative perturbation 

theorems (see [9]). 

Proposition 2.1 ([10, Proposition 3.1]).  The following properties are satisfied: 

(i) (C(t)-I)F(s) = (C(s)-I)F(t) and G(s)(C{t)-I) = G(t)(C(s)-I) for t,s>0. 

(ii)  The functions F(-) and G(-) are exponentially bounded. 

(iii)  j^[X(X2-A)-1F(t)x] = C(t)X2F(X)x and 

j^[G{t)X{X2 - A)~lx] = X2G{X)C{t)x   for  xeX,X> u, and t > 0. 

(iv) F(t)x = (A2 - A) J* S(s)XF(X)x ds 

= /„* S(s)X3F(X)x ds - (C(t) - I)XF(X)x  forxeX,t> 0. 

(v) G{t)x = AG(A)(A2 - A) /„* S(s)x ds 

= X3G(X)f*S(s)xds-XG(X)(C(t)-I)x  for x e X, t > 0. 

Proposition 2.2 (from [10, Propositions 3.3, 3.4]).   (i)  The infinitesimal operator 

As of the pair (G(-), ^(0) " closed and A° = A(T ~ Ai^A)) + A3
*"(

A
) for Re X > UJ' 

(ii) The infinitesimal operator Ac of the pair (G(-), G(-)) satisfies D(A) C D(AC) 

and Acx = (I - XG(X))Ax + X3G(X)x for x e D(A). Moreover, if G(t) is uniformly 

continuous in t, then Ac is closed, D(AC) = D(A), and Ac = (I-AG(A))A+A3G(A) 

for large X. 

Theorem 2.3 ([9, Theorem 2.3]).  Let A be the infinitesimal generator of a cosine 

operator function G(-) on X. Suppose an operator B satisfies the condition: 

(*) For all continuous functions f 6 C{[0,t],X), J* S(t - s)B f(s)ds G D(A) and 

\\A J*S(t - s)Bf(s)ds\\  < 7B(*)II/II[O,<]> 
where 7B(0 " *ome locally bounded 

function with  lim 7s(t) < 1. 

211 



Then both A(I + B) and (I+B)A are generators of cosine operator functions. More- 

over, the cosine operator function Ci(-) generated by A(I + B) satisfies \\Ci(t) - 

C(*)II=O(7B(*))(*-0+). 

Theorem 2.4 ([9, Theorem 2.6]).  Let A be the infinitesimal generator of a cosine 

operator function C(-) on X. Suppose an operator B satisfies the condition: 

(**) Suit) := sup{£ \\BS(s)Ax\\ds; x € D(A), \\x\\ < 1} < 1 for some t > 0. 

Then both (I+B)A and A(I + B) are generators of cosine operator functions. More- 

over,  the cosine operator function C2{-) generated by (I + B)A satisfies \\C2(t) - 

C(t)\\=O(SB(t))(t^0+). 

3. Perturbation caused by a C0-cosine Step Response 

Let F(-) be a C0-step response for a cosine operator function C(-) with generator A. 

In this section we study conditions under which the infinitesimal operator As of the 

pair (C(-), F(-)) generates a cosine operator function Cs(-), and also the infinitesimal 

difference between C3(-) and C(-). 

Theorem 3.1. Let F(-) be a C0-cosine step response.  The following assertions hold: 

(i) If SV(F(-),t) = o(l)(i -* 0+),  then the infinitesimal operator As = A(I - 

AF(A)) + A F(X) of the pair (C(-), F(-)) generates a cosine operator function 

C.(-).   Moreover,  if SV(F(-),t) = 0(7(t))(t -* 0+),  then \\C.(t) - C(t)\\ = 

O(7(<))(*->0+). 

(ii)   The perturbed semigroup Cs(-) satisfies the equation: 

(3.1)        Cs{t) = C(t) + (dF * Ca)(t) = C(t) + f F{dT)Ca(t -r),t> 0. 
Jo 

Proof. It is proved in [9, Theorem 3.2] that SV{F(-),t) = o(l) (t -> 0+) if and 

only if 7(_AF(A))(^) 
= °(1) (* ~^ 0+), and they have the same order of convergence. 

Hence (i) follows from Theorem 2.3. To prove (ii) let Q(-) denote the function on 

the right hand side of (3.1). Then, taking Laplace transform, we have ß(A) = 

A(A2 - A)-1 + AF(A)A(A2 - A,)"1, so that for x e D{AS) 

-Q(A)(A2 - As)x = (A2 - A)-\\2 - As)x+ \F(\)x 

= (A2 - A)-1 [A2 - A(I - AF(A)) - A3F(A)]a: + XF(X)x 

= (A2 - A)~\X2 - A)(I - XF(X))x + XF(X)x = x. 
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Hence Q(A) = A(A2 - As)
_1, and it follows that Q(-) is a cosine operator function 

with generator As. Thus Q(-) = Cs(-), that is, (3.1) holds. 

In particular, SV(F(-),t) = 0{ta)(t -> 0+) implies lJC7s(t) - C(*)|| = 0{ta){t -> 

0+). Clearly, the converse of this statement is true for a > 2 because ||CS(<)-C(<)|| = 

o(i2)(* _> o+) implies Ca(') = C(-), which then implies A2 - A = A2 - As = 

(A2 - A)(J - AF(A)), and consequently F(-) = I and 5V(F(-),*) = 0- The rest of 

this section is to show that this is also true for the case a = 2. 

We need the notion of Favard class 

Favc{.) := {x £ X; \\C(t)x - x\\ = 0(t2) as t -> 0}, 

which, equipped with the norm 

INIFC(O
:
=W+ 

SU
P hw)x~xW 

0«<1 ' 

becomes a Banach space. 

Theorem 3.2. Let F(-) be a CQ-cosine step response for a cosine operator function 

C{-), and let As be the infinitesimal operator of the pair (C(-),F(-))-   The following 

statements are equivalent. 

(i)  F(-) is locally of bounded uniform variation and 

Var(F(-),t) = 0(t2), (i-0+). 

(ii) F(-) is locally of bounded strong variation and 

sup{Var{F{-)x,t); x£X, \\x\\ < 1} = 0{t2) (t -> 0+). 

(iii) F(-) is locally of bounded semivariation and 

SV(F(-),t) = O(t2)(t->0+). 

(iv)  \\F{t)x\\ = 0{t2){t -* 0+) for all x G X. 

(v)  \\F(t)\\=O(t2)(t-.0+). 

(vi) R(F(\)) C Favc{.). 

(vii)  As generates a cosine operator function Cs{-) such that 

\\C.{t) - C{t)\\ = 0{t2) (t ^ 0+). 

Proof. The implications "(i)=> (ii)+(iii)," "(ii)=* (iv)," and "(iii)=> (iv)" are direct 

consequences of the definitions of Var(F(-), t), Var{F{-)x, t) and SV(F(-), t). "(iv)«- 

(v)" holds because of the uniform boundedness principle. 
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To show "(v) => (i)", suppose ||F(s)|| < Ks2 for 0 < s < T. For any subdivision 

{0 = t0, ti, ■ ■ ■, tn = t} of [0, t] C [0,1] with hi =ti-ti-1 < T, one has 

F(U) - F(t,^) = F^-O - F(<i_! - (<i - *,-_!)) + 2C(*,-_1)F(fi - *,-_!) 

and so 

\\F(U) - F^-OH < 2KMeu mtf, 

where m,- is such that (m; — 2)h{ < tt < (m2- — l)hz. Therefore 

" n n n 

J2\\nU)-F(ti-1)\\<2KMe»J2mih*<2KMeUTl(tn-   E  h]+2hl)hl 
i=l i=l i=l j=z+l 

< 2KMeUJ^Ztnhl = 6KMewt2. 
i=i 

(iv) <£> (vi).   Using the first identity in (i) of Proposition 2.1 one has for any 

x ex 
/»CO 

A-2(C(/i)-/)F(A)x=  /     e-A(/t-
2(C(/i) - I)F{t)xdt 

Jo 
poo 

„-\t(r<(,\ ni-2 (C(i)-/)A"^(/i)i(it 
o 

= A(A2 - A)-1/i-2F(/l)a: - \-lh~2F(h)x. 

As was shown in Proposition 2.1 (iii), A(A2 - A)~lh~2F(h)x converges to |A2F(A)z. 

Hence \\F{h)x\\ = 0(h2)(h -> 0) if and only if \\(C(h) - F)F(X)x\\ = 0{h2)(h -> 0), 

i.e. F(\)x G FavC(.)- 

"(hi) =» (vii)" follows from Theorem 3.1(i), and "(vii) => (vi)" is proved in "(i) 

=► (ii)" of Theorem 5.1 in [9]. 

In particular, Theorem 3.2 shows that if an operator A\ is the infinitesimal 

operator As of the pair (C(-),F(-)) for some locally square Lipschitz continuous 

step response F(-) for C(-), then Aj generates a cosine operator function Ci(-) that 

satisfies ||C1(i) - C(t)|| = 0(t2)(t -> 0+). That the converse of the above statement 

is also true is contained in the following theorem from [9, Theorem 5.1]. 

Theorem 3.3. Let C(-) be a cosine operator function with generator A, and let Ai 

be a linear operator.   The following statements are equivalent. 
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(i)  Ai generates a cosine operator function Ci(-) that satisfies 

\\C1(t)-C(t)\\=0(t*)(t^O+). 

(ii)  For some (each) X > to there exists a Bx £ B(X,FavC(.)) such that AY  = 

A(I-BX) + X2BX. 

(iii) Ai = A(I - XF(X)) + A3F(A) for some square Lipschitz continuous Co-cosine 

step response F(-). 

(iv) Ai generates a cosine operator function Ci(-), D{A\) — D(A*), and A\ —A* is 

a bounded operator from D{A*) to X*. 

(v) Ai generates a cosine operator function C\{-) and 

||(A2 - Ai)'1 - (A2 - A)"11| = 0(A-4) (A -> oo). 

4. Perturbation caused by a G0-cosine Cumulative Output 

In this section we give a condition on the variation of a cumulative output G(-) 

for G(-) which ensures that the infinitesimal operator Ac of the pair (G(-),C(-)) 

generates some cosine operator function. Let us denote 

(4.1) ß(G(-),t) := sup{Var{G(-)x,t); x e X,\\x\\ < 1}. 

Theorem 4.1.    Let G(-)  be a C0-cosine  cumulative output for a cosine operator 

function C(-) with generator A.   The following statements hold. 

(i)  ß(G(-),t) = o(l)(t  ->  0+)  if and only if S(_xö{x))(t)  = o(l) (t -> 0+),   and 

ß(G(-),t) = 0(ta)(t -> 0+) if and only if 6{_xö(x)){t) = 0(ta)(t -> 0+), where 

(0 < a < 2). 

(ii) Ifß(G(-),t) = o(l)(< -> 0+); <Aen Ac = (7- AG(A))A + A3G(A) (/or a// large X) 

generates a cosine operator function Cc(-). Moreover, we have \\Cc(t) - C(t)\\ = 

O(ß(G(-),t))(t-*0+). 

(iii)   The cosine operator function Gc(-) satisfies the equation: 

(4.2) Cc(t)x = C(t)x +  / Cc(t - T)G'{T)XO!T 
Jo 

= C(t)x + [ Cc(t - r)AG(A)5(r)(A2 - A)xdr, x G D(A), t > 0. 
Jo 

Proof, (i) With B\ = -AG(A), (v) of Proposition 2.1 becomes 

BxC(t)x = G(t)x + X2BX I S{s)x ds + Bxx. 
Jo 
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Since A||£A|| /„' \\S(s)x\\ds < X\\BX\\ Me^H2 \\x\\, which has order 0{t2) as t -+ 0, 

and since 

Var(BxC(-)x,t) = j  \\jLBxC(s)x\\ds=   f  \\BS(s)Ax\\ds, 

one sees that ß(G(-),t) and ^sA(i) have the same order of convergence as t —> 0. 

(ii) Since ||G(*)*|| < Var(G(-)x, t) < ß(G(-), t) for all x with ||a:|| < 1, ||G(i)|| < 

ß(G(-), t) -> 0 as t -> 0. It follows from Proposition 2.2(h) that Ac = (I + BX)A - 

XBX. Since, by (i), we have Var(BxC(-)x,t) < 6Bx(t)\\x\\, with 6Bx(t) -> 0, we 

can apply Theorem 2.4 to conclude that (I + BX)A is a generator of a cosine oper- 

ator function 7(-), and so its bounded perturbation Ac generates a cosine operator 

function Cc(-). 

Since 7(-) and C(-) are related by the equation (see [9, (2.3)]): 

%t)x = C(t)x + /   %t - s)BxS{s)Ax ds, x E D(A), 
Jo 

it follows that 

\\1[t)x - C(t)x\\ < M'eJt  f \\BxS(s)Ax\\ ds 
Jo 

= M'eJt Var(BxC(-)x,t) 

<Mle"'t ß(G(-),t)\\x\\ 

for all x e D(A).   Thus we have \\1[t) - C(t)\\ < Mxc
Jtß(G(-),t).   As a bounded 

perturbation of !{■), Cc{-) also satisfies ||Cc(i) - C(t)\\ = 0(ß(G(-), t)) (t -> 0+). 

To prove (iii) let T(-) denote the function on the right hand side of (4.2). Then, 

taking Laplace transform, we have f (A) = A(A2 - A)"1 + A(A2 - AC)-
1AG(A), so 

that 

(A2 - Ac)t(X) = A(A2 - AC)(X2 - A)"1 + X2G(X) 

= x[X2 - (/ - XG(X))A - A3G(A)](A2 - A)"1 + A2G(A) 

= A(7 - AG(A))(A2 - A)(A2 - A)"1 + A2G(A) = A. 

Hence T(A) = A(A2 - Ac)
_1, and it follows that T(-) is a cosine operator function 

with generator Ac. Thus T(-) = Cc(-), that is, (4.2) holds. 

Remark. The statement (i) for the case a > 2 is trivial because then G(-) = 0. 
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The next theorem is the counterpart of Theorem 3.2 for cosine cumulative out- 

puts. 

Theorem 4.2.    Let G(-)  be a C0-cosine cumulative output for a cosine operator 

function G(-), and let Ac be the infinitesimal operator of the pair ((?(•), C(-))-   The 

following conditions are equivalent. 

(i)  G(-) is locally of bounded uniform variation and 

Var(G(-),t) = O(t2)(t-^0+). 

(ii) G(-) is locally of bounded strong variation and 

sup{Var(G(-)x, t); x G X, \\x\\ < 1} = 0(t2)(t -> 0+). 

(iii) G(-) is locally of bounded semivariation and 

SV(G(-),i) = O(i2)(f->0+). 

(iv)  \\G(t)x\\ = 0(t2)(t -► 0+) /or a// x e X. 

(v)  ||G(*)|| = 0(f2)(i - 0+). 

(vi) i?(G*(A)) C Fc.(.). 

(vii) Ac generates a cosine operator function Gc(-) such that \\Cc(t)-C(t)\\ = 0(t ). 

Proof. The proof of the equivalence of conditions (i)-(v) is exactly the same as the 

proof in Theorem 3.2. 

(v) <S> (vi). Using the second identity in (i) of Proposition 2.1 one has for any 

xeX 

oo 

h-2G(\)(C(h) - I)x = /    t-Mh-2G(t){C{h)-I)xdt 
Jo 

/»OO 

=   /     e-Xth-2G(h){C(t)-I)xdt 
Jo 

= h~2G(h)X{X2 - A)~lx - X^h^G^x. 

Hence h~2(C*(h) - I*)G*(X)x* = [h-2G(h)X(X2 - A)-l)*x* - X'1 h~2G*(h)x* for 

all x* G X*. As was shown in Proposition 2.1(iii), /i_2G(/i)(A2 - A)'1 converges 

strongly to |AG(A). Hence it is uniformly bounded for h near 0, so that ||G*(/i)a;*|| = 

0(h2)(h -f 0) if and only if ||(C*(/») - 7*)G*(A)a:*|| = 0(h2)(h --> 0), i.e. G*(X)x* G 

Favc*(.). This being true for all x* G X*, we obtain the equivalence of (v) and (vi). 

The implication "(ii) =» (vii)" follows from (ii) of Theorem 4.1. To complete the 

proof we show "(vii) =>• (iv)". It follows from Proposition 2.2(h) that D(A) C D(AC) 
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and Acx = Ax + AG(A)(A2 - A)x for x G D(A), which together with Proposition 

2.1(v) shows that G(t)x = (Ac - A) f* S(s)x ds for all x G X. Now condition (vii) 

implies that ||(AC - A)x\\ < li^h^0+ ^\\(Cc(h) - C{h))x\\ < K\\x\\ for x G D(A), 

so that ||G(i)a:|| < ||(AC - A) £ S(s)x ds\\ < K \\ f< S(s)x ds\\ = 0(t2) for all x G X. 

Hence if an operator A2 is the infinitesimal operator Ac of the pair (G(-), C(-)) 

for some locally square Lipschitz continuous C0-cosine cumulative output G(-), then 

D(A2) contains D(A), and A2 generates a cosine operator function C2(-) that satisfies 

\\C2{t) - C{t)\\ = 0{t2) (t -> 0+). The next theorem tells that these two statements 

are actually equivalent, and this kind of perturbed cosine functions are just the 

additive perturbations by bounded operators. 

Theorem 4.3 ([9, Theorem 5.2]).   Let C(-) be a cosine operator function with the 

generator A.  For any operator A2, the following statements are equavalent. 

(i) Ai = A + Q for some Q G B(X). 

(ii)  D(A) C D(A2),  and A2 generates a cosine operator function C2(-) such that 

\\C2(t)-C(t)\\=O(S)(t^0+). 

(iii)   There exists an operator B G B{X) such that R(B*) C FC'(.) and 

A1 = (I+ B)A - \2B for some X > UJ. 

(iv)   There is a locally square Lipschitz continuous CQ-cosine cumulative output G(-) 

for C(-) such that A2 = (L - XG(X))A + A3G(A). 
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W M RUESS 

Asymptotic behavior of solutions to delay 
functional differential equations 

1    Statement of the problem 

The object of this paper is the study of solutions   x^ : R   -» X to the following partial 

functional differential equation with infinite delay: 

(FDE)   I *(*) + ("/+ 5M0 9 fX*«),   *^° 
[ x\R-=<p£E. 

Here, a is a real constant, X a Banach space, B C X x X a, (generally) nonlinear and 

multivalued accretive operator in X, E a "suitably" chosen Banach space of continuous 

initial history functions (p:R~ -^ X, and F : JS C £ -^ I a Lipschitz continuous mapping 

from a subset E of E into X with Lipschitz constant M > 0. As usual, for a function 

x : R -»I and i > 0, the function zt : R ~ -► X is defined by xt(s) := x(t + s) , s G R ~. 

The initial history spaces E will be restricted to the following class of weighted sup-norm 

spaces of continuous functions (spaces of fading memory type [1, 17]): 

E = Ev = {<p e C(R ~,X) | vip is bounded and uniformly continuous}, endowed with the 

norm   \\(p\\v = sup,<0 v(s) \\tp(s)\\. The function v : R ~ -> (0,1] is supposed to satisfy 

(vl)  v is continuous, nondecreasing, and v(0) = 1; 
,  -s   .. v(s + M) 
(v2)  bmu_0-  —-!- = 1  uniformly over s£R". 

v(s) 
The following problems will be addressed: Existence of global solutions to (FDE) (section 

3), and compactness, almost periodicity properties and asymptotic stability of solutions 

(section 4). 

Part of the results presented here is out of joint work with W.H. Summers [35, 36]. 

The bterature on (FDE) and its nonautonomous counterpart - with B and F depending 

on "time" t as well, is enormous; compare the survey articles [7] and [18]. There is a variety 

of papers on direct methods for proving existence of - at least local - solutions to (FDE) 
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for B single-valued but under less restrictive conditions on the history-controlling operator 

F (continuity as opposed to Lipschitz-continuity, for instance), cf. [19, 20, 21, 23, 24, 26]. 

In contrast, in this paper we take up the semigroup approach of associating with (FDE) 

in X a Cauchy problem in the initial history space E as developed for the case of globally 

Lipschitz-continuous operators F : E -* X (and, mainly, for B single-valued) in [2, 3, 4, 5, 

12, 13, 16, 22, 28, 29, 38, 39, 40], and extend it to the more general context as given above 

[35]. (For a local approach of a somewhat different kind, cf. [14, 15].) This approach can be 

structured into three steps: Associate with (FDE) an operator A in E by 

D{A) = {<peE\ v'e E,<rf0) G D(B), <p'(Q) € F{<p) - {al + B)<p(0)} 

A<p:=-<p' ,<peD(A), 

and consider the following statements: 

(51) -A generates a strongly continuous semigroup (S(t))t>0 on clD(A) C E of type 7, 

with 7 = max{0, M-a):   \\S{t)<p - S(t)1>\\ < ^ ||y> - V||, * > 0, <p, i> £ cl D(A). 

(52) If ip £ cl D(A), and x^ : R -► X is defined by 

,.      f V(«) * < 0 x<p(t) = < 
[ (S(t)vO(o) t > 0, 

then S(t)<p = ( x<p)t   (i.e., (S(t))t>0 acts as a translation). 

(53) For (p € clD(A), the function  xtp from (S2) solves (FDE). 

Obviously, once (SI) - (S3) hold for (possibly, a subset of) tp £ cl D(A), one not only 

is assured of global solutions to (FDE) but, at the same time, has the full machinery of 

semigroup theory at hand for a study of stability and further results on asymptotic behavior 

of solutions to (FDE). 

In this respect, the following result has been known for quite a while (though formulated 

mainly for the finite delay case, or simply for E = (BUC(R ~,X),sup - norm) in the 

infinite-delay case, and for B single-valued). 

Theorem 1.1 Assume that B C X X X is m-accretive and F : E -»• X is globally (defined 

and) Lipschitz continuous, i.e., E = E. Then we have: 

(a) (SI) and (S2) hold. 

(b) If, in addition, B : D(B) C X -> X is single-valued, X* is uniformly convex, and 
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<p G D(A) (the generalized domain of A [8]), then the function x^ from (S2) is the unique 

(strong) solution to (FDE): x^ is locally absolutely continuous on K +, differentiable a.e. 

and fulfills (FDE) a.e. onR+. 

Compare [2, 3, 4, 5, 16, 29, 38, 39, 40], and, for the nonautonomous analog, see [12,13, 22, 28]. 

Concrete model examples, however, indicate that the assumptions on the operators B (single- 

valued) and F (globally Lipschitz or Lipschitz on balls [5]) in proposition (b) of Theorem 1.1 

are far too restrictive for applications, see section 2. The main point of the results in section 

3 will be to show that this proposition actually holds in our original more general context 

and, most importantly, that, in the sense of integral solutions , the function Xtp from (S2) 

always is the unique solution to (FDE) for any ip G clD(A). 

2    Concrete model examples 

2.1 Thermostat problem 

One of the prototype examples of diffusion-absorption processes is the regulation of tem- 

perature through heat injection/extraction controlled by a thermostat. In the setting of 

a bounded open subset ft of R",n G {2,3}, this process is governed by the operator 

B c X2(ft) x Z2(ft), 

B = (-A + ß)       with       D{B) = W2'2(ft) n Wl\ü) n D(ß), 

where 

D0)    =    {u G Z2(ft) | 3v G Z2(ft) : V(UJ) G /?(u(w)) a.e. u e ft}, 

ß(u)     =    {v G i2(ft) | v(u) G ß(u(u)) a.e. u € ft},        u G D(ß), 

with /?CR  xE  a maximal monotone graph with 0 G /?(0). 

Specifically, the particular choice of 

(-oo,0]    ,    r = hi 

ß(r) = I 0    ,    hx < r < h2 

[0,oo)    ,    r = h2 

would correspond to the ideal case of keeping the temperature within the prescribed interval 

[huh2] at all times uniformly over ft. (For details and further examples, cf.  [6, 11].)  Spe- 

cialized to this particular m-accretive multivalued operator B, (FDE) would thus describe 
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temperature control for materials with a suitable thermal memory. 

2.2 Goodwin-oscillator with delay 

This model for biochemical reaction sequences with end product inhibition (cf.   [27]) is 

described by the system 

ii(t) + alXl(t) =   6x [l + (!"„ k(-s)xn(t + s) ds)m] 

Xi(t) + mxiit) =    b{ f°_^ *(-a)x<_i(t + s) ds,  i £ {2,..., n} 

where a;,6< > 0 for i € {l,...,n}, k € L\R +) with k > 0, and m € N. 

2.3 Spatially diffused population with delay in the birth process 

For x e [0,1] and t > 0, this process is modeled by the equation 

d2 f° 
u(t, x) - c-r-j«(i, x) = au(t, x)[l - bu(t, x) - I    u(t + r(s),x)dr]{s)], 

where a, b, c G R +, r\ € M+[-l, 0] and r : [-1,0] -*• K ~ is a continuous delay function (cf. 

[9, 25, 37]). 

While example 2.1 indicates the need for allowing the operator B in (FDE) to be multi- 

valued, restricting the domain of definition and of Lipschitz continuity, respectively, of the 

history-controlling operator F to proper subsets E of E is forced by example 2.2 (E = cone 

of rc-vectors of nonnegative functions on R ~) and example 2.3 (E = truncated cone of 

nonnegative functions bounded by an arbitrary, but fixed, positive constant), respectively. 

3    Existence of global solutions 

In the context of (FDE) as in section 1, the following assumptions make the "local approach" 

to global solutions work [35]. 

(Al) X C X and E C E are closed subsets of X and E, respectively, such that, for 

x € X, ip € E, and A > 0 with A7 < 1, if (px € E is the solution to 

(p-Xiff = i>, <p(0) = x, 
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then (px £ E. 

(A2) If iP g E and A > 0 with A7 < 1, then 

3^W°) + ^^.)) € (/ + ^ B) (D(B) n 1) 

for each a; g X. 

The subsequent results on (FDE) are all subject to assumptions (Al) and (A2) being in 

effect. 

Theorem 3.1 ([31, 32, 35])     (a) (SI) and (S2) hold. 

(b) If E is convex, and (i) if B C X X X is maximal accretive, and X is reflexive with its 

norm Frechet-differentiable on X \ {0} (for instance, if X* is uniformly convex), or 

(ii) if D(B) is closed, B : D(B) C X -*• X is continuous, and <p £ D(A), then the 

function  x<p from (S2) is the unique (strong) solution to (FDE). 

The analog of Theorem 3.1, (b) (i), for the nonautonomous case of time dependent operators 

B(t) and F(t), t > 0, is contained in [31, Thm. 3.1]. 

The method of proof of Theorem 3.1, (b) (i) ([31, 32, 35]) is built upon approximating the 

semigroup (5(i))/>o by the semigroups (SA(*))«>o, A > 0, generated by the Yosida approxi- 

mants Ax of A. (Recall that Ax = X'^I - Jx), with Jx = (I+XA)-\ A > 0.) This explains 

the particular assumptions on X in Theorem 3.1, (b) (i), typical for this approach. 

However, the problem of (global) solutions to (FDE) in our context can be resolved 

in complete generality by using the general Crandall-Liggett formula S(t)ip = limn^00(J + 

nA)~n<t>i and explicitly computing this limit (evaluated at 0 € R +) in the present particular 

context ([33]). 

Theorem 3.2 ([33]) For all <p g clD(A), the function x^ from (S2) is the unique integral 

solution to (FDE), i.e., 

|| X(p(t)-xf-   || Xip(r)-Xf    <    -2a J1  \\ X(P(T) - xf dr 

+2 jr (F(( Xip)T) - y, Xy(T)-x)sdT 
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for all [x,y] € B and all 0 <r <t. 

As a consequence, the following substantial extension of Theorem 3.1, (b) (i), on strong 

solutions can be achieved. 

Theorem 3.3 ([33]) IfBcXxXis maximal accretive in clD(B), andX has the Radon- 

Nikodym property, then, for every (p £ D{A), the function x^ from (S2) is the unique strong 

solution to (FDE). 

4    Asymptotic behavior of solutions to (FDE) 

We consider two questions directed by the following leitmotif. If, in (FDE), the damping 

dominates the influence of the history, i.e., if a > M = Lipschitz constant of F on E, then 

solutions to (FDE) qualitatively enjoy the same asymptotic properties as the solutions to its 

undelayed counterpart, namely, the Cauchy problem 

( x(t) + Bx(t) 9 0,   t > 0 
(CP)  {    w        v 

( x(0) = rtO). 

(Ql) Assume that the resolvents Jf = (/+ XB)'1, X > 0, are compact. Then bounded 

solutions to (CP) have relatively compact range and are asymptotically almost periodic (cf. 

[10, 34]). Does the same hold true for solutions to (FDE) if a > M? 

(Q2) If a is strictly larger than M, are solutions to (FDE) asymptotically stable or even 

exponentially asymptotically stable ? 

Concerning the initial history spaces Ev, in addition to the basic assumptions (vl) and 

(v2), the following special properties of the weight functions v will play a role in answering 

these questions. 

(v3)      lim   v(s) = 0; (t>3*)     lim sup     ^    = 0. 

Clearly, (v3*) implies (v3). If, for fi > 0, v^s) = e»3, andv2(s) = (1 + |s| )"", s < 0, then 

(a)   vl and   v2 fulfill (vl) and (v2), and (b)   if p > 0,    vx and   v2 both fulfill (v3),   vx 
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even fulfills (v3*), but   v2 fails to satisfy (v3*). 

As for (Ql), the answer is positive in complete generality. 

Theorem 4.1 ([32]) Assume that the resolvents /f of B are compact [respectively, weakly 

compact], and that a > M.   Then we have : 

(a) For cp € cl D(A), if X(p\™ + is bounded, it has relatively compact [respectively, weakly 

relatively compact] range. 

(h) If the resolvents J_f of B are compact and if, in addition, v satisfies (v3), then, for 

<p £ clD(A), if either lim^.^ »(s) ||v(s)|| = 0, or v satisfies (v3*), we have: If 

x<f\» + ?'s bounded, then Xtp\™ + '■ R + —»• X is asymptotically almost periodic, and 

there exists a unique element ip £ cl D(A) such that (i) x^ |R + is almost periodic, 

and (ii) lim^«,      Xtp{t) -  cc^(i)   = 0. Moreover, if <p £ D(A), then so is ip. 

As for (Q2), one has to find a way in between two extreme cases: 

1. For v(s) = 1, i.e., Ev = (BUC(R ~,X),sup- norm), a > M does not imply asymptotic 

stability for (FDE) [36, Example 4.1.A]. 

2. For v(s) = e>",fi > 0, and a > M, solutions to (FDE) are exponentially asymptotically 

stable [30, Cor. 4.1]. 

For weights v "reasonably" vanishing at -oo, problem (Q2) can be answered positively 

in full generality. 

Theorem 4.2 ([33]) Assume that v satisfies (v3), and that a> M, and let f,tß£ clD(A). 

If (i) lim3__00 v(s)ip(s) = 0 = limJ^_00 v(s)ip(s),  or (ii) v satisfies (vS*), then 

lim^oo      X(p(t) -  x^(t)\ = 0. 

As for Theorem 3.2 above, the proof of Theorem 4.2 requires explicit formulas for the 

(difference of the) ra-th powers J? (acting on <p, ip and evaluated at 0 <E R ") of the resol- 

vents JA = (7 + XA)-1 of A; for details, see [33]. 
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In closing this paper, we note that (a) conditions (Al) and (A2) are trivially fulfilled 

with X = X and E = E in case B cXxXis m-accretive and F : E -> X is globally (defined 

and) Lipschitz continuous, but that (b) "local" examples like those of section 2 above can 

as well be put in the setting of these basic assumptions, so that all results recorded in this 

paper may be applied accordingly. For a sample of applications, cf. [35, 36]. 
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K SAXTON 

Global existence for a quasilinear heat 
equation 

The aim of this paper is the analysis of global existence for a second order wave 

equation with first order dissipation. The equation describes the propagation of 

finite speed thermal waves. 

1. Introduction. The classical model of heat conduction fails to take into 

account that heat can propagate as a wave called second sound. Second sound 

was observed for the first time in superfluid helium II for very small temperatures, 

around one or two degrees Kelvin. Recently the same heat pulse phenomenon has 

been observed in high purity crystals of NaF and Bi at low temperature. The heat 

conductivity of these crystals peaks near fifteen degrees Kelvin, at which the second 

sound is most easily detectable. 
There are many theories dealing with finite speed of heat disturbances. In the 

present paper, the model of heat conduction replaces Fourier's law with a modifica- 

tion introduced by Kosinski [3], and physically motivated by Cimmelli and Kosinski 

[1]. The difference between this approach and others in the literature is that the 

heat flux becomes proportional to the gradient of a "new" so-called semi-empirical 

temperature ß. This temperature ß is related to the absolute temperature ti > 0 

by the initial-value problem 

ßt = mß) (L1) 
ß{0) = ßo    ,    /3G(0,oo). 

The heat flux q, is related to Vß by 

q = k0Vß , (1-2) 

where k0 represents the thermal conductivity at constant temperature. 

We employ the following constitutive equations for nonlinear heat conductors, 

Partially supported by LEQSF Grant (1991-94) RD-A-22. 
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and 

ri = -de$(4,Vß), (1.3) 

where ip is the Helmholtz free energy and 7/ the specific entropy. For an explicit 

function / in Eq. (1.1), the Maxwell-Cattaneo relation can be obtained: rq4 + q = 

-fcV$,with r the relaxation time depending on d and ß (cf. [3]). We will assume 
that the free energy xp is given by 

V^,V/3) = ^(tf) + i£2(V/3)2 (1.4) 

where e2 = k0To/(po^°), and T0, k0 are characteristic material constants represent- 

ing the relaxation time and thermal conductivity at constant reference temperature 
T?° , ß°. po is a mass density. 

From the energy balance law, one obtains a second order hyperbolic equation. 

In the case of a one-dimensional rigid body (cf. Kosinski and Saxton [4]) this becomes 

where 

-C(ß,ßt)ßtt + bßxßxt + aßxx + H(ß,ßt) = 0 (1.5) 

C(ß,ßt) = p0T0ticv(ti) 

n(ß,ßt) = po0cvWo(ß)ßt (1.6) 
fco i a = M° 

and 
Tof(#,ß) = ti°log(ti0ß) + f0(ß) 

fo(ß) = T0W°,ß). (L7) 

Here cv = ■dd^r] > 0 is the specific heat at constant volume, and the relations (1.7) 

are derived by Kosinski in [3]. Eq. (1.5) can be rewritten as a system of hyperbolic 

equations by introducing new dependent variables 

ßt = w 
(1.8) 

ßx=P , 
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-C(ß, w)wt + bpwx + apx + H(ß, w) = 0 

ßt-w = 0 (1-9) 

Pt - wx = 0 . 

Kosinski and Saxton [4] showed that the amplitude of acceleration waves satis- 

fied a Bernoulli type equation. As a consequence, a sufficiently large initial jump in 

the first order derivatives of the data leads to the finite time blow up of the resulting 

acceleration waves. 
In the following section we give an existence result for global in time, small 

amplitude solutions. 

2. Global smooth solution. We obtain sufficient conditions for global existence 

of small amplitude solutions of the Cauchy problem for Eq. (1.5). This equation is 

different from the equation considered by Nishida, [6], and Matsumara, [5], since the 

role of time and space variables are interchanged. 
To overcome this difficulty we assume that the function /0 in Eqs. (1.7) is linear, 

that is 

fo(ß) = -(ß-ß°)- (2-1) 

A local existence theorem was established by Cimmelli and Kosinski [2]. The initial 

conditions for the heat propagation (1.5) can be given physically for ß and ■d. Using 

the evolution equation (1.1), and (1.7) with (2.1), these can be obtained as: 

ß(0,x) = ßo(x) 
i9° i9° 1 n (2-2) 

We calculate ■& from Eq. (1.7), using (1.1) and (2.1), then 

where for convenience we introduce the variable £ defined by 

t = ßt + ~ß ■ (2-4) 
TO 

We express the coefficients in (1.6) in terms of f, so that 

C(ß,ßt) = r0g(O, 

H(ßtßt) = -g(Z)ßt (2-5) 
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and 

9(0 = A>0(O<v(tf(O) > 0 • 

Next we substitute these coefficients into the Eq. (1.5) and multiply by r0
_1, which 

gives 

-QiOßtt + hßxßxt + -2—ßxx - -g(Oßt = 0 . (2.6) 
TO T0 

If we define P(f) such that 

P'(O = 9(O>0, (2.7) 

then 

P(0t = 9(0tt- (2.8) 

On using (2.8), Eq. (2.6) can be written in the form 

(^€ß')r(p{0-^{ß'f),- (2-9) 

Let (f>(t, x) be a potential function, such that 

<Pt =  ßx  ■ 
TO 

Our next step is to obtain an equation for 4>(t,x).  First, on differentiating (2.10), 
we obtain 

*" " ^)*~ " MW){<t>t)l + ^ = ° (2-n) 
The variable f can be expressed in terms of <j>x, and <f>t from Eq. (2.10), namely, 

Z = P-\v) (2.12) 

where 

^^fcoOT^2' (2-13) 

since the function P is invertible (cf. (2.7)). 

We define a function a(v), satisfying the relation 

T0g(P  1(v)) v       ' 
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As a result, we have the following second order quasi-linear wave equation containing 

first order dissipation, 

<t>tt - °{v)x + -4>t = 0 (2.15) 
TO 

with the initial conditions 

<t>{0,x) = cf>0(x) ,    MQ>x) = Mz), 

where v is given by (2.13). 
The initial data for (f>(t,x) can be obtained from (2.2) via (2.10). 

This equation is now in the form analyzed by Nishida [6]. Eq. (2.15) will possess 

(cf. Nishida [6], Matsumara [5]), global smooth solutions <f>(t,x) £ C2(M+ x M) for 

\(f)0(-)\C2 + |$i(-)|c1 sufficiently small provided the function a satisfies the conditions 

(cf. (2.14)) 
ff(0) = 0 , v ' (2.16) 
a'(y) ><JQ= const > 0 ,     and  cr(-) € C4 . 

The solutions (f>(t, x) have the property 

|M<)||2 = m, -)\(p + \<t>t(t,Old + \Mt, Öle« < oo  for all t > 0 . (2.17) 

This result is obtained using energy estimates in spaces of L2 -function together with 

Sobolev's Lemma in one-space dimension. 

We next show that a solution of Eq. (1.5) (equivalently (2.6) with (2.4)) satisfies, 

similarly, 

\\ß(t)\\2 = \ß(t, -)\c7 + \ßt(t, -)\ci + \ßtt(t, -)\c° < oo  for all t> 0 . (2.18) 

Using (2.17), and Eq. (2.10)2 we have that ßx, ßxx, and ßxt are bounded in C°. 

Now we will see that ßt, and ßu are also bounded, which will give (2.18), under 

the additional assumption, 

P'(0 >Po = const > 0 . (2.19) 

Eq. (2.10)i implies P(£) is bounded, which in turn implies that £ is bounded, under 

the assumption (2.19). Thus there is a constant V for t € [0,T], T < oo, such that 

(cf. Definition (2.4)) 

-V<ßt + -ß<V. (2.20) 
TO 
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This implies the following inequality 

-Veh < (ßek\   < Ve^ . (2.21) 

By integration of (2.21) we obtain upper and lower bounds for ß, and by (2.20), for 

ßf 

Let us differentiate (2.10)i with respect to t, to give 

<t>*t = P'(06 - hßxßxt , 

which shows that in view of (2.19), and the boundedness of <f>xt, ßx, and ßxt, 

6 = ßtt + TQlßt is bounded. This together with our prior result gives the bounded- 

ness of ßu ■ 

Similar arguments can be applied to show that from the initial conditions, 

\ßo(-)\c* + |ßi(-)lc" is small if and only if |<£0(-)|c= + IMOIc1 is small. The above 
arguments imply the following: 

LEMMA: The Cauchy problem for Eq. (1.5) with (1.7) and (2.1) together with data 

(2.2) will have global smooth solutions ß(t,x) G C2(M+ xM) for \ßo(-)\c* + \ßi(-)\ci 
sufficiently small. Then 

\\0(t)\\2 = |/?(t,-)|c» + |A(V)|ci + \ßtt(t,-)\co < oo  for  * > 0 , 

provided that 

^o < 0(t)cv(0(O) < B0 ,   and  cv(-) € C3 , 

where 

A0 = const > 0  ,   B0 = const > 0 , 

and 7? is given by (2.3) with (2.4). 

The constants A0 and B0 are determined such that the assumptions (2.16)2 

and (2.19) are satisfied, 

A0 = P0/po 

BQ = fco^0/(T0CTopo) • 
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3.    Remarks on the breakdown of smooth solutions. 
The breakdown of smooth solutions under the assumption that the function 

5(£) = co = const was obtained by Saxton in [7]. Then the function o(v) defined by 

(2.14) with condition (2.16)i is linear, 

a(u) = a0u (3-1) 

and Eq. (2.15) takes the form 

**-U*. + p-ti)   +-U = 0, (3.2) 
\ 2a0      Jx       T0 

where the constants a0, and b0 are introduced for convenience, 

a0 = 

b0 = 

7"0 co 

k0 

co ' 

(3.3) 

The corresponding system of equations for w, and p (cf. (1.9)) can be reduced 

to 2 x 2 form 
1 

aoPx H  
TO 

wt - b0pwx - w = 0 
(3.4) 

Pt- wx = 0 , 

with initial data 
w(x,0) = w0(x) 

(3.5) 
p(x,0) =po(x) 

The above system is of nonconservative form and includes dissipation. By using 

Riemann invariants along characteristics, breakdown of solutions can be established 

for large initial data, [7]. 
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R SAXTON AND V VINOD 

Nonstrictly hyperbolic systems of partial 
differential equations 

We examine the influence of regions of nonstrict hyperbolicity on the Cauchy 
problem for two n x n systems of quasilinear, hyperbolic equations. The first of these 
systems takes the form 

ut + (x(|H»* = o, 
where x is a scalar-valued function. The second reads 

U; + A(u)uT = 0, 

where A is a diagonal matrix, A = diag{x\ ■ ■ ■ ,x"}, with *th entr^ X\ independent 
of ul. 

1    Introduction 

The system of first order partial differential equations 

u( + A{u)ux = 0, u G Rn, {t, x)eR+x R, (1.1) 

is hyperbolic if the eigenvalues, A;, of A are real. It is strictly hyperbolic at a point u 
if all the eigenvalues are distinct there and nonstricthj hyperbolic if any pair becomes 
equal. 

We consider two systems which become nonstrictly hyperbolic on some region in 
phase space and investigate how this can influence the formation of singularities. The 
first of these is a conservation law 

u( + 7;(u) = 0 (1.2) 

which has .F(u) = x(||u|2)u, where x is a scalar-valued function. We consider this in 
Section 2. 

In Section 3, we consider the second, diagonal, system 

ut + A(uK = 0. (1-3) 

Here A is a matrix-valued function of u, 

A = diag{X\...,Xn}, (I-4) 

where the entries, x\ of A will be assumed to be independent of the corresponding 
components, u', of u. _ 

Each system has n eigenvalues some of which become equal on a set S in phase 
space. They are therefore nonstrictly hyperbolic there.  The principal distinguishing 
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feature of the two systems turns out to be that, while in (1.2), finite time breakdown 
takes place offY, (an analogue of E which is identical in the 2x2 case), in (1.3) this 
can only take place on E. Furthermore, although the first system generally possesses 
a direction of genuine nonlinearity which dictates when breakdown can take place off 
E, the second system is linearly degenerate throughout phase space. 

The 2x2 counterpart of (1.2) has been examined earlier in [1], while that of (1.3) 
has been analysed from a different perspective in [2]. 

2    Formation of Singularities, I 

Consider the system of equations 

ut + ^(u) = 0, (2.1) 

where the flux function takes the form ^"(u) = x(||u|2)u, and assume 
X(z), x!(z)z, x"(z)z2 € C(M+-M). Setting A(u) = Vu(x(||u|2)u), gives 

A = x'u ® u + xl, (2.2) 

which has characteristic polynomial 

|AI-.4|   =   (A-xr^A-tx + xVI2)). (2.3) 

Labelling the characteristic speeds, 

*' = {*'+   <l   ,2     1^n-1' (2.4) 

means that the corresponding right eigenvectors, r*, satisfy 
(xl - A)T{ = -x'(u <g> u)r,- = -x'u(u-ri), 1 < i < n - 1, and 
((x + MV)I - -4K = x'(|u|2I - u ® u)r„ = x'(lu|2rn - u(u.rn)). Assuming u ^ 0, 
then for \' ¥" ° and 1 < i < n - 1, the r,-'s can therefore be chosen from a set, u-1, 
of mutually orthogonal vectors perpendicular to u. rn is then proportional to u. The 
left eigenvectors, 1;, 1 < i < n, are the same as the right. 

By (2.4), the set E where the system is nonstrictly hyperbolic consists of Rn if 
n > 2, or S = {u G M2, x>|2 = 0} if n = 2, ([1]). 

Let E = {u € Mn, X>|2 = 0}, n > 2. 
Since the first n-1 characteristic fields satisfy r^.V^A,- oc (u-L)i.ux' = 0, they are 

linearly degenerate, while the nth characteristic field satisfies r„.VuAn oc u.V„(x + 
X'|u|2). Setting T = {u G Rn, (3*' + x"|u|2)|u|2 = 0}, the nth characteristic field 
becomes genuinely nonlinear only outside of T. 

Lemma 2.1 Let u e C\[0,T}; C\1R)) be a solution to (2.1). Then given data 
u0(x) = u(0,x), llu^Hoo^) -*• oo occurs in finite time if x'|u0|

2 ^ 0 and (3x'+ 
X"|u0|

2)u0.u0x < 0. 
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Proof     Dotting (2.1) with u gives 

(^\u\2)t + uAux = 0. (2-5) 

Since u is proportional to 1„ , by (2.4) 

^|u|2)t + (x + x'H2)(^H2)^o, (2.6) 

and since x has dependence only on ||u|2, (2.6) shows that |u|2 is constant in the 
characteristic direction f = An = (x + X>|2)- Taking the partial derivative of (2.6) 
with respect to x and simplifying implies that in the same direction 

,1 ,   ,2N uo-uo*  (2 7) 
{2W )x ~ 1 + (3X' + X"|u0|

2)u0.u0ri 

unless x>|2 = 0 (u € S), in which case (||u|2)x = u0.u0x. For u ^ T, 
3X' + x"|u0|

2 + 0 and the result clearly follows if (3x' + x"K|2)u0.uox < 0. I 

Remark. Although the breakdown above takes place for data off E, it is possible to see 
that there exist situations in which no natural counterpart for E exists. For instance, 
the initial value problem for the system ut + x(||u|2H = 0 is everywhere nonstrictly 
hyperbolic for n > 1, S = Mn, but since the eigenvalues of A = xl are all identical, 
S cannot be defined as before. Indeed, singularity formation is controlled in this case 
simply by the data condition x'uo-u0x < 0, which requires only genuine nonlinearity, 
u £ T =  {u G BT, x'u = 0}. 

3    Formation of Singularities, II 

Next we examine a system for which it is only possible for breakdown to take place on 
E. Unlike the previous Section where the term ^|u|2 remains constant along charac- 
teristics, ensuring that E is invariant with respect to the Lagrangian flow, now the set 
E will be defined through the intersection of distinct characteristic fields. Given data 
off E, a singularity will form providing a time exists at which E becomes nonempty. 

Consider the system 
u( + A(u)ux = 0, (3.1) 

where 
A = diag{x\Pin),...,xn(PnVL)}, (3-2) 

and 
Piu={«1,...)u

,'-1,«,'+1,...,«n}, l<i<n. (3.3) 

We will make the hypothesis that there exist (^-functions x» 1 < « < «, such that 

X*'(P<u) = x(u)-X*(«i) (3-4) 
241 



where 
n 

x{n) = J2Xj(uj). (3.5) 
i=i 

The set E is defined by the equality in phase space of any pair of eigenvalues 
X!(-P,u), XJ(Pju), hence through the equality of x,-(«'') and Xj(uj). Since the right 
eigenvectors, r2- of A are the standard basis vectors for Mn, it follows immediately that 
ri-Vux'(-Piu) = 0, 1 < i < n. So the set T over which the system is linearly degenerate 
isiR". 

Lemma 3.1 Let A. : Rn -> if?"2 be a Cl-map. Suppose_u{t,x) e C\[0,t*); C1(Mn)) 
is a solution to (3.1), with u(0,x) = u0(x) G Mn \ E, x e M, defined for some 
maximal intervalJO.t*). Then, under hypothesis (3.4) with (3.5), t* < oo if and only 
if u : Mn \ E —> E as a map /rom u0 —> u(£,.). 

Proof Define the characteristic I\ by x!' = x'(t), ^~ = xl(-Ptu), x'(0) = a', 
1 < i < n. Differentiation along T,- will be written as D{ = d/dt + x^/dx, from which 
it is immediate by (3.1) that £>,-«•' = 0, 1 < i < n, i.e. ««'(*, a:*'^)) = «j(a*'), where 
u^(x) = u'(0,x). Differentiating (3.1) with respect to x implies 

*< + <t^4 = 0. (3.6) 

Also, for i 7^ j, 

DiU' = DjV> + (x' - xj)< = (X1 - XJH- (3.7) 

Consequently, unless x! = X]\ 

z?.< + u«E^7-r-^ = °- (3-8) 

By (3.4), (3.5), equation (3.8) reduces to 

implying 

A«; + tiiEftVy , ,?" ,,-, = o (3.9) 

A< + <A Ein |Xi(«J) - Xl(u')\ = 0 (3.10) 

or 

A(<nixJV)-x.-K')l) = o. (3.ii) 

As a result, the expression < n"^ |Xj(^) - X,-(u*')l remains constant along the ith 
characteristic, r\. This constant is nonzero by the assumption u0{x) G Rn \ E, which 
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leads to the desired result, using (3.4). ■ 

Remark. The previous result establishes necessary conditions on solutions for blow-up 
to take place in finite time. Sufficient conditions on the data can also be obtained in 

the 2 X 2 case. 
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R J WILTSHIRE 

Non-linear coupled diffusion and classical 
Lie symmetry 

The importance of the simultaneous flow of moisture and heat in a column of soil has been 

discussed by many soil scientists (for example, Philip & De Vries,1957; De Vries, 1958; 

Jackson, 1973) and has particular significance when applied to semi-arid climates where 

moisture transport occurs essentially in the vapour phase. In such conditions the one 

dimensional flow when applied to a homogeneous soil may be represented by a pure 

system of coupled diffusion equations (Jury et al, 1981) given as follows: 

dT 
at 

1=  &{DT(T,e)%+De{T,8)%}, (1) 

where T{z,t) and 9(z,t) are the respective soil temperature and moisture content at 

depth, z and time, t. It should also be noted that a straightforward extension would allow 
for the inclusion of solute flow. 

From a mathematical point of view it is the highly non-linear form of the diffusion 

coefficients, dependent on both T and 6, which is of particular interest, together with the 

requirement which many soil scientists have for analytic/semi-analytic and qualitative 

information concerning the transport properties of soil (Philip,'1988). 

Indeed it is the quest for analytic solutions which is of particular interest here. Such 

solutions will be found by means of the method of one parameter Lie point symmetries 

(Chester, 1977; Olver, 1986; Stephani, 1989; Bluman and Kumei, 1989). The approach, 

highly appropriate for this problem, is further motivated by Hill (1992) who discusses the 

need to study the symmetries of similar systems involving chemical reaction equations, 

even when in linear form. It is clear, that in such cases both the classical and the non- 

classical, sometimes called hidden symmetries, Guo and Shrauner (1993), are not well 
understood. 

In the following, the Lie approach will be applied to the system of equations written in 
the form: 

Z(X,t,Y,Y,Y>,Y") = §^fx{A(Y)%} = 0 (2) 
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where it will be supposed that t € R+ , x £ fi C R and also that Y(x,t) : Q x R+ -► Rn, 

with Y = (ya, 1/2» • • ■. 1/n)- In addition, A: Rn -+ Rnxn, is diagonally dominant and it is 

further assumed that Neumann, Dirichlet or Robin boundary conditions hold on the 

boundary dQ of ft. The particular aim will be to determine the constraints which need to 

be placed upon A(F) to enable Classical Lie point symmetries to be used in the 

determination of analytic solutions of (2). 

1. One Parameter Lie Groups 

In the following, it will be assumed that if H(x, t, Y, e) € R", is infinitely differentiable in 

R", with e e S C R, then the particular finite point transformation: 

Xl = f(x,t,Y,e);   b = g(x,t,Y,e);    Yx = H(x,t,Y,e) (3) 

is a one-parameter Lie group of transformations in which the infinitesimal form is: 

xt=x + e£(s, t, F) + 0(e2) = x + eCx + 0(e2) 

tl=t + er,(x,t,Y)+0{e2)=t + €Ct +0{e2) (4) 

Fl = Y+eiv(x,t,Y) + 0{e2) = Y+eCY +0(e2), 

where C is the infinitesimal generator defined by: 

£ = ^(x>i,r)fe+»7(x)i>y)|+7r(x,t,y).V   ; (5) 

_ (A-     d } 
~ V9yi'   'dynJ 

The link between the global and infinitesimal forms is defined by: 

f =«x1,tllF1);f=T/(x1,tllF1);   f = ^i,*!^!) (6) 

where, xa = x; *i = i and Yi = Ywhen e = 0. 
If the solution to the differential equation is given by F(Y,x,t) = 0 then this must 

remain invariant under the transformations (4) and so applying the infinitesimal generator, 
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this means that CF = 0. In the particular case when F(Y,x,t) = F- <ft(x,t) = 0 it is 
found that: 

CF=0     =>     Tv(x,t,Y)=Z(x,t,r)Y' + T](x,t,Y)Y . (7) 

2. Transformation Formulae 

Such expressions for first and second  partial derivatives of Fare easily computed using 
the inverse Lie transformation: 

x = x1-el;(xl,t1,Yx)+0(e2) 

t = t1-eV(x1,tuYl)+0{e2) (8) 
Y=Y1~e7r(x1,t1,Y1)+0{e2) 

Thus by defining the following operators: 

G' = Y'.V; G=Y.V;    Q" = Y".V\ 
V' = l+G';       V=§-t+0 (9) 

and using 

fe = l-^ + 0(e2)  ;        H=-eVt + 0(e>) 
ft = - eV'v + 0(e2)  ;      ft = 1 - &, + 0(e2) (10) 

it is easy to see that: 

= Y'+e-Kx+0{e2)  ;       f = F + e7rt + 0(e2) (11) 

where: 

vrx = P'TT - Y'VZ - TP'T? 

=* TTX = TT- - FT?' + F'.(VTT - O - y(y.VK - Y{Y'.V)r, ; (12) 

ail 
dx] 

izt=V-K- Y'V^ - YVV 

=>    ^ = *-y^ + y.(V7r-77)-r (F.v)e -r(r.v)?7        (i3) 

Similarly for the second derivatives: 

§ = Y" + e-Kxx + 0(e
2)   ; (14) 

with 
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=* 7Tra = V'{V'-K - rV£ - YV'r)} - Y'V'i - Y'V'rj 

=* *** = (P')\ - Y1 (2?')2C " YiV'frj - 1Y"V'i - 2Y'V^        (15) 

and 
(V')2q = q"+G"q + 2g'q' + (g')2q (16) 

for any q = q{x, t, Y). It therefore, follows that: 

TTXX = TT" + y.(2V^ - f) - Y77" + (Y.vfvr 

- 2Y' (Y'.V£') - 2Y(Y'Vr/) - Y' (Y.V)2£ - YiY'.vfr] 

+ Y". [VTT - V£Y' - V^Y - 2£' - 2Y'V£] - 2YV + Y'.Vr?) (17) 

Finally, the transformation rules for A (Y) and VA (Y) are: 

A (Y,) = A (Y) + e (TT.V)A (Y) = (1 + TT.V) A (Y) + 0(e2) 

VA (Y) = VA (Y) + e (Tr.V)VA (Y) = (1 + vr.V) VA (Y) + 0(e2)        (18) 

3. Equations Governing Invariance 

The Prolongation Operator and the Condition for Invariance: The prolongation 

operator may be written in the form: 

CP = ^ + T/| + Tr.Vr + 7rx.Vy + 7Tt.Vy + TTxx.Vr> 09) 

and hence the condition for invariance is: 
CPZ = 0 . (20) 

Thus applying (20) to (2) it may be shown that: 

■Kt = (TT.V).AY" + Y (TT.V)VAY' + A7TIX + (TT:C.V)AY' + (Y'.V)Airx       (23) 

and so: 
TT - Y'£ + Y.(V7r -ri)-Y' (Y.V)£ " Y(Y.V)T7 = 

{(7r.V)A}A~1 [Y- (Y'.VA)Y'] +y (Tr.V)VAY' 

+ A {TT" + Y.(2V7T' - f) - Yrf' + (Y.V)
2

TT 
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1) Constants: 

2) Y': 

3) Y: 

4) Y,Y': 

5) Y,Y: 

6) Y', Y': 

- 2Y' (F'.VO - 2Y(y.Vrf) - Y' (Y'.vfc - YiY'.vfn - 2Y'(rf + F'.Vr?)} 

+ [Y- (Y'.VA)Y'}. [VTT - V^Y' - VVY - 2£' - 2Y'V£] 
+ {{*,-Yvi + Y'.(y-K-0-Yi{Y>.V)Z -Y{Y'.V)TJ) .V}AF' 
+ (r'.v)A {* - Yrf + r'.(V7r - o - r(r'.v)c - nr.v)^} (22) 

Hence the Classical Lie point transformation symmetries may be obtained by equating 
coefficients in (22) as follows: 

7T = A7r" 

- Y't = AY*. [2 VTT
1
 - £"] + {^ .V)AY' + (y.V)Avr' 

-i]Y= (TT. VA)A-1y - AYT]" - 2gY 

- Y' (F.V)C = - 2AY{Y'.Vr1
l) - (Y.V)^Y' - 2Y(Y'.V)£ 

- Yrf.VAr - Y'VAYri' 
-Y(Y.V)r]= -Y.Vr]Y 

o= - (TT.VA)A^
1
 (y.v)Ar + y (Tr.v)vAy 

+ A (y.v)27T - 2Ay (y.v)C + (((y.v)7r).v)Ay 
Alternatively: 

0 =  ((y.V)[(vr.VA)A-1])Ay+A(y.V)27r 

- 2Ay (y.v)c' 
0= -Ay(y.v)27? + (y.v)Ayv7?y 

- Y(r.v)r]VAY' - y vAyy .V)T? 

o = - Ay(y.v)2^ + [(y v)Ay].{v^y + 2 (r.v)o 
- y (y .v)^vAy - (y.v)Ay (y.v)^ 
0 = - 2AYV 
0 = - 2Ayy VT? 

Evaluation of Group Invariants: It is easy to show that conditions 4,5,7,8,9, and 10 are 

automatically satisfied when 77 = 77(f) and £ = £(x,t). In addition, condition 3 may be 
substituted into 6 to give: 

A(y.v)27T = o 
7r.VA = A(2£'-r?). (23) 
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8) r, r, y: 

9) y: 
10) Y1 ,Y' : 



In cases when (2£' - ij) = 0, and for all A (Y) , condition 3 gives: 

TT(X, t,Y) = 0 

v = ri(x,t,Y) = 'yt + 6 (24) 

Alternatively when (2£' - 17) ^ 0 we find: 

7T=i-(y + /3) (25) 

where m and ß are independent of y, . Hence using condition 3 it is found that A has the 

particular form: 

where A is a constant matrix and 
Eft = ^(2^-*/)- (27> 

i 

In this case it may be shown conditions 1 and 2 will also be satisfied when: 

£ = £(x,t,Y) = XX + K 

r\ = r](x, t,Y) = ft + 8 
*=(Y + ß)^ (28) 

i 

4. Examples of Analytic Solutions of (2): 

(a) With 7 = 0 equation (24) gives TT = 0, £ = K and r? = 6. Hence by (7) a similarity 

variable can be defined through w = &r - K*, with the result that equation (2) may be 

integrated immediately with the result that: 

ATu + ±Y = a (29) 
o 

where a is an arbitrary constant. Although this result holds for any A, it is interesting to 

consider the particular case when Ais defined by (26) with # = 0, V* and a = 0. It is 

straigtforward to show that (29) has the solution. 

Y = (r + suj)gb (30) 

where r and s are constant, provided that: 
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£> = i;   (^II>N+ (£))* = <> (31) 

(b) In a similar way consider the source solution of: 

y=fx AII(V.O*£ 

so that 

Y(x,0) = Y08{x) 
where the Dirac delta function satisfies: 

6(Xx) = A_16(x) 

(32) 

(33) 

(34) 

Following Hill (1992), who considers non-linear scalar diffusion, it follows that these 
equations are invariant whenever: 

, (xRi+2\ 
xi = e(x ; t! = eV*       J t; Yi = e^Y" (35) 

Thus: 

^,i,Y) = x; V&t,Y)=h:Ri + 2)t; n = ~Y      (36) 

Hence from (7), the functional form of Y(x, t) and associated similarity variable UJ is: 

Y(x,t)=  ^; 

Equation (2) therefore becomes : 

tn> n l (37) 

i 

On setting a = 0 it may be shown that: 

<K« r + 
suP1 

(38) 

(39) 

is a solution of (37) provided that 

pJ2^ = v> Ajjb, s b % 

2 + E^ 
(40) 
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