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ABSTRACT 

Fundamental results developed by Wiener in the 1950's are combined with new 

work in the area of higher-order statistics to develop and explore a general model for 

nonlinear stochastic processes. The Wiener model is developed for discrete nonlin- 

ear systems and its orthogonality properties are analyzed to characterize its output 

statistics. An efficient structured procedure for computing the fcth-order statistics of 

the model output is formulated in both the time and frequency domains. Explicit 

formulas that exploit the structure of the Wiener model are given for computing the 

cumulants and polyspectra. A necessary condition for a discrete random process to 

be representable by the Wiener model is discussed. A computationally efficient pro- 

cedure is given for matching the model output cumulants to estimated cumulants 

for a given process by minimizing the squared magnitude of the error. Examples of 

applying this procedure to given sets of data are presented. 
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I.  INTRODUCTION 

In the field of signals and systems, as in other scientific areas, we often have 

measured data that we wish to explain. This data is considered to be explained 

when we are able to develop an appropriate mathematical model which can produce 

data "statistically similar" to the data that has been originally measured. Another 

criterion for "goodness of modeling" could be prediction. When the detailed variation 

of the data is sufficiently complicated, or when we want to to model an entire class of 

data with different detailed characteristics, a stochastic model is often appropriate. 

The work in this dissertation develops and explores a general stochastic model for 

data which combines fundamental results developed by Wiener in the 1950's with 

new work in the area of higher order statistics. The latter work was brought about 

by a desire on the part of researchers to move beyond linear Gaussian models and has 

been bolstered by new developments in high speed computation and digital signal 

processing. 

Although a significant amount of work has already been done, there are still 

many areas where researchers continue to work on building models to characterize 

stochastic processes. It is appropriate to cite some of this work (as well as some of 

the limitations) here. 

The stationary linear Gaussian model has dominated work on time series anal- 

ysis for a large number of years. In this model a time series (or discrete time random 

process) is represented as the output of a linear time-invariant system driven by 

zero-mean white Gaussian noise. The two basic assumptions of this model, namely 

the Gaussianity of the input process and the linearity of the system, has enabled 

researchers to develop a large number of procedures to identify the system param- 

1 



eters such that the model output dependably represents the data. When the linear 

system is represented by a difference equation of finite order, the model is called a 

linear Gaussian ARMA (AutoRegressive Moving Average) model of the stochastic 

processes. 

Among engineers, some of the most recognizable contributions to linear Gaussian 

modeling are due to Wiener [1]. While Wiener concentrated primarily on continuous 

time processes because of the need to process signals with analog electronic devices, 

others, such as Wold [2] and Kolmogorov [3] had similar results for discrete time 

processes. Wiener showed how the second-order statistics of the modeled process 

can be used to identify the linear system to within a complex scale factor. He 

showed conditions for which the complex power spectral function of the process can 

be factored to determine the transfer function of the linear system. In this case, 

if the modeled process is assumed Gaussian, the model is called the innovations 

representation of the linear Gaussian process. 

The class of linear Gaussian ARMA models has considerable limitations in rep- 

resenting stochastic processes. Among these limitations are the following [4, 5]: 

1. Linear difference equations do not allow stable periodic solutions independent 

of the initial state. 

2. The models are not suited for modeling data exhibiting sudden bursts of very 

large amplitude at irregular time epochs. 

3. The models are not suitable for data exhibiting a strong asymmetry (about the 

mean). 

4. The models may not be best for data exhibiting strong cyclicity.   Nonlinear 

approximation for the regression functions may be more appropriate in these 



cases, while the regression functions for linear Gaussian models are inherently 

linear. 

5. Since linear Gaussian models are inherently time-reversible, these models are 

not suitable if the data exhibits time irreversibility. 

It can therefore be seen that the linear Gaussian model is incapable of represent- 

ing a significantly wide class of processes. Since only Gaussian processes are com- 

pletely characterized by their second-order statistics, the higher-order statistics of 

non-Gaussian processes provide information that can be used to build an adequately 

dependable model. Recently the problem of modeling non-Gaussian processes has 

been closely associated with the higher-order statistical analysis of random processes. 

If the modeled process is far from Gaussian a number of approaches have been fol- 

lowed in attempting to build a reliable model. Among these approaches are "local 

linear''. Multi Variate Adaptive Regression Splines (MARS) and neural nets. In one 

general approach the model consists of a white non-Gaussian process driving a linear 

system, while in another approach the model is comprised of a white Gaussian or 

non-Gaussian process driving a nonlinear system. In addition, there are a whole host 

a methods that focus on non-Gaussian and or nonlinear processes of one form or 

another but are specific in the types of processes that they seek to represent. It is 

safe to say that none of the "general" and none of the specific methods overcomes all 

of the limitations enumerated above. We can however review some of these methods 

briefly. 

A considerable amount of work has been done in building linear non-Gaussian 

models for stochastic processes, mainly due to the availability of both analytical and 

computational tools for higher-order statistics and the relative simplicity of results 

that arise from the linear model. In such models the process is assumed to be rep- 

resentable as the output of a linear system driven by a kth-ordev stationary white 



non-Gaussian process with known statistics. For such a process the mean is constant 

and the other moments up to kth-OTder exist and are functions of only the lag differ- 

ences. Cumulants and polyspectra of the modeled process are fairly easy to compute 

and can be used to identify the transfer function of the linear system to within a gain 

and phase ambiguity. The methods that have been proposed to identify the linear 

system in this type of models include both parametric and non-parametric methods. 

In the parametric methods the system is characterized by its ARMA parameters and 

the transfer function is expressed in terms of these parameters. Then matching a 

set of the model output statistics to those of the modeled processs enables one to 

construct a set of equations solvable for the system parameters. In [6, 7] Tugnait 

uses both the second- and fourth-order statistics to recover the poles and zeros of the 

linear system transfer functions. Giannakis and Mendel use the output cumulants 

to determine the AR and the MA orders of the system [8]. Fonollosa and Vidal use 

a linear combination of the output cumulants to identify the linear system in such 

models [9]. Several others have also made significant contributions. 

Non-parametric methods for identifying the transfer function of the linear sys- 

tem are also used. Lii and Rosenblatt [10] provide a method to estimate the amplitude 

of the transfer function from the power spectral density function of the process and 

then show how to estimate the phase from a Ä^-order polyspectrum. Nikias [11] 

shows how to estimate both maximum-phase and minimum-phase transfer functions 

by applying a convolution between the third-order cumulant of the modeled process 

and the same order complex cepstrum. 

Although linear models for non-Gaussian processes have a significant analytical 

support, they are incapable of representing a large class of non-Gaussian processes. 

In fact, recent analyses have shown that at least from a theoretical point of view, the 

set of linear non-Gaussian processes is vanishingly small [12]. From a practical point 



of view however it is advisable before modeling a process to test for its linearity. 

Tong [4] presents linearity tests of stochastic processes in both time and frequency 

domains. Tekalp [13, 12] establishes the necessary and sufficient conditions for a 

non-Gaussian process to be representable by a linear non-Gaussian model. 

A class of linear and nonlinear stochastic processes can be specified by the dy- 

namics of a system the output of which represents the modeled process. A significant 

amount of work has been done to specify such dynamic systems. For nonlinear pro- 

cesses the system dynamic representation (e.g., the difference equation) has a kind of 

nonlinearity according to which different classes of the stochastic outputs can be dis- 

criminated. In his book [4], Tong presents some examples of threshold models based 

on piecewise linearity. He also presents different types of autoregressive models with 

nonlinear autoregression and other types of specific models. Recent work by Stevens 

[14], Lewis and Stevens [15] and Lewis , Ray and Stevens [16] has applied Friedman's 

MARS methodology to give a practical way of applying threshold models. 

Another broad class of nonlinear random processes can be represented as the 

output of a nonlinear system driven by a white random process. The input-output 

relations of the nonlinear system are described in the Taylor series-like representation 

with memory known as the Volterra series [17. 18]. The model is completely known 

when the kernels of this representation are identified. Powers et al. present appli- 

cations of using a finite-order Volterra representation to identify nonlinear systems 

[19, 20]. In these applications both the input and the output sequences are accessi- 

ble; therefore different order cross-moments between the input and the output can 

be estimated and used to obtain the kernels of the representation. In this application 

the Volterra representation must be finite. Other similar work can be found in [21] 

and references therein. 

The Volterra series representation is limited in its application because a rather 



severe condition is imposed on the magnitude of the input process to guarantee 

convergence of the series. Further the individual kernels cannot be identified sep- 

arately unless the representation is assumed finite. To overcome these limitations 

Wiener proposed a model of nonlinear systems which is associated with an orthog- 

onal functional representation of random processes. He called this the G-functional 

representation because the functionals are orthogonal when the input process is white 

Gaussian [22, 17]. In the literature the structure and analysis of this model is based 

upon second-order statistics of the model output. The model kernels are identified 

via different order cross-correlations between the input and the output. So far, no 

one has proposed a method for determining the model parameters from output mea- 

surements alone as is the case when we try to fit a stochastic model to measured data. 

However, the use of higher-order statistics of the output suggests the possibility of a 

new approach where this could be done. 

In this dissertation we introduce the Wiener model for nonlinear systems as a 

general model for a class of nonlinear processes that are necessarily neither periodic 

nor bandlimited. We also develop the complete details of the representation in dis- 

crete time. Wiener's original development of nonlinear systems was for continuous 

time and there are a few significant differences. Following this we provide a complete 

statistical analysis of the model. In particular, we develop expressions for the higher- 

order statistics of the model output in the time and frequency domains as functions 

of the model parameters. Finally we use these developments in an algorithm to iden- 

tify the model parameters such that the model output statistics match those of a 

measured data sequence. 

The remainder of the thesis is organized as follows. In Chapter II we summa- 

rize the properties of higher-order statistics of discrete random processes that are 

useful to our application.   New methods for finding cumulants and polyspectra of 



linear and nonlinear functionals of Gaussian random processes are also formulated 

in this chapter. In Chapter III we describe the Wiener model of discrete nonlinear 

systems. The orthogonality of the discrete G-functionals is used to specify the model 

structure and an analysis of this structure is performed. In Chapter IV we formulate 

the model output cumulants and polyspectra and develop an efficient procedure to 

compute them. This comprises the main body of the work. The Wiener model has 

unique structure that simplifies the computation and which has not heretofore been 

exploited. In Chapter V we consider the problem of modeling a discrete random 

process using the Wiener model. We present the test of linearity and provide a def- 

inition of the class of discrete random processes that can be represented using the 

nonlinear model. We then give two examples of nonlinear processes resulting from 

the discrete Wiener model that match estimated cumulants of some measured data. 

The nonlinear equations resulting from this modeling problem are solved using the 

Extended Kaiman filter technique. Finally, in Chapter VI, we present conclusions 

and recommendations for future continuation of this research. 





II.  HIGHER-ORDER MOMENTS, 
CUMULANTS AND POLYSPECTRA 

Higher-order statistics and polyspectra can be applied in a wide variety of prob- 

lems in signal processing and system theory. By "higher-order" we mean the statistics 

of orders more than the second. Among higher-order statistics applications are the 

problems where either non-Gaussianity, nonminimum phase, colored noise, or non- 

linearity are of substantial interest [23]. In the theory of nonlinear systems, a system 

output can be modeled by defining the input-output relation using a Taylor series-like 

representation. Thus, computing an output statistic of any order involves the com- 

putation of higher order statistics of the input. Moreover, the output of a nonlinear 

system is in general non-Gaussian even if the input is Gaussian. 

A. HIGHER-ORDER MOMENTS AND CUMULANTS 

This section begins with a general set of definitions for moments and cumulants 

and then proceeds to discuss properties of special interest in this thesis. 

1.  Definitions of Moments and Cumulants 

The ^-dimensional vector x = [xi,X2-- • • ,Xk]T is used here to denote a 

collection of real-valued random variables X{ for which the joint moments up to a 

sufficient order exist. Let u = \u\, u-i- • • •. Ufc]r denote a set of real variables (i.e., 

u £ 7tfc); then the moment generating function is defined by 

<p?(u) = e{e*T*} (2.1; 



where S denotes statistical expectation. The kth order moment 

Mf' = f{i,i,-u} (2.2) 

is the coefficient of the term jku\U2 • • • u* in the Taylor series expansion of 0™(u). In 

general the moment of order m = vx + r/2 + h f*, namely 

M^+U2+...+Uk) = £{x^x^...x
v

k
k} (2.3) 

is the coefficient of the term 

•l>l+l>j+••• + !/* 

iiul   u2 V? vfr • • • UL* 

in the same expansion. 

The cumulant generating function is defined by 

£(u) = ln^(u) (2-4) 

and the kth order cumulant denoted by 

C4fc) = cum{xaa-2 ■••:!•*} (2.5) 

is the coefficient of the term jkU\U2-- • u* in the Taylor series expansion of 0*(u). 

Likewise 

c(^+^+-+^) = cum{^^...^} (2.6) 

is the coefficient of the term 

i      i |U1   u2 ufc 

in the same expansion.   The A^-order cumulant can be expressed in terms of the 

moments up to the kth order by the moment-cumulant relation 

C(*>= V (~1)(9"1} - lW*w) (°7) x ^ n ^(1)17,(2)1 . . . ^(g)l  11       x [~-'> 

10 



(2.8) 

where the summation is over all the possible values of q.   Similarly the cumulant- 

moment relation is 

M*) = £    fl    JibW!^)!'...^)!]?!0^ 
In particular, if the exponents are such that vx = u2 = • • • = »k = 1 then from (2.7) 

we have ( } ( \ 

c«=E(-i)(9_l)(? -1)! * I n ^ | • • • £ n *|       (2-g) 
where «i, K2, • • ■ and *c, are partitions of the set of integers {1,2, • • •, k} and q is the 

number of partitions. Further, from (2.8) it follows that 

S {XU X2, • • • , Xk} = 53 Aci ^«, • • • D*i 

where 

D*, = cum(xil,xj2,---,xjm)      p= 1,2,3, •••,9 

where the j; are the elements in the partition KP and the summation in (2.10) is over 

all the possible partitions. Tables (2.1-2.3) show the moment-cumulant relations for 

orders 2. 3 and 4. The moment is the sum of all cumulant terms in the same column. 

Likewise the cumulant is the sum of all moment terms in its same column. The value 

of q and the corresponding partitions are also shown. 

(2.10) 

(2.11) 

partitions moment cumulant 

d2) 
q Ki «2 

1 1,2 CW(zlX2) S{xix2} 

2 1 2 CW(«i)CW(*a) -€{Xl}S{x2} 

TABLE 2.1: Cumulants and moments for order k = 2. 

as 

Let us denote a discrete random process defined on the integers -oo < n < oo 

{x(n)} or simply as x{n) when there is no possibility of confusion. Unless otherwise 
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partitions 

1,2,3 
«2 

2,3 
1,3 
1,2 

«3 

moment 

M<3> 

cwfoic^fcisiy 
CW(x3)CW(*i*i) 
C^^arQC^^aez)^1^" 

cumulant 

Cg  
£{xix2x3) 
-6{x1}e{x2x3} 
-£{x2}£{xlX3} 
-e{xz}s{x1x2} 
e{xi}e{x2}£{x3} 

TABLE 2.2: Cumulants and moments for order k = 3. 

partitions moment 

ML4) 
cumulant 

cL4) 
q Kl K2 «3 K4 

1 1,2,3,4 CW(ziir2Z3Z4) £{x1x2x3xA) 

2 1,2 3,4 CW(iiir2)CW(a53*4) -£{xix2}£{x3x4} 

2 1,3 2,4 CW(*l*8)CW(*2*4) -£{xix3}£{x2xi} 

2 1,4 2,3 CW(*i*4)CW(*2*3) -£{xixA}£{x2x3} 

2 1 2,3,4 C^(zi)CW(*2*3*4) -£{xi}£{x2x3x4} 

2 2 1,3,4 CW(*2)CW(*i*s*4) -£{x2}£{xiX3xA} 

2 3 1,2,4 C^MC^zi*^) -£{x3}£{x].x2xA} 

2 4 1,2,3 C^(x4)0
3KxiX2X3) -£{xA)£{x1x2x3) 

3 1,2 3 4 CW(*1*2)CW(*3)C[1K*4) -£{xlx2}£{x3}£{x4) 

3 1,3 2 4 CW(*i*s)CW(za)CllJ(*4) 2£{Xlx3}£{x3}£{x4} 

3 1,4 2 3 C(2HllX4)C^^(X2)C^^(X3) 2£{Xlx4}£{x2}£{x4} 

3 2,3 1 4 C<2>(«2*s)CW(*l)CW(*s) 2£{x2x3}£{x1}£{x4} 

3 2,4 1 3 CW(z2*4)C^(zi)C^0c3) 2£{x2x4}£{Xl}£{x3} 

3 3,4 1 2 ci2W4)cw(*i)cw(*2) 2£{x3x4}£{x1}£{x2\ 

4 1 2 3 4 CW(*i)CW(*2)CW(ss)CW(*4) -6£{Xl}£{x2}£{x3}£{x4} 

TABLE 2.3: Cumulants and moments for order k = 4. 
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specified, the random process will be assumed to take on real values, i.e., x(n) € H. 

A random process {x(n)} is defined to be mth-order stationary if for each k <m the 

cumulant of order k for samples of the random process x(uo), x(nj), • • •, x(nk-i) is a 

function of only the lag differences lx = m — no, h = n2 — no, - • •, /*_i = nt_i — n0. 

For an m'^-order stationary random process, its kth-oTder moment and cumulant 

functions are denoted by 

Afc)(/i,/2,---,/fc-i) = 5{(a-(n),x(n + /a),x(n + /2),...,x(n + /*-a))} 
(2.12) 

k < m 

and 

Cx(/i,/a, •••,/*_!) = cum(x(n),T(r7 + /i).x(r? + /2). • • • .x(n + h-i)) 
(2.13) 

k< w 

For brevity, we will also use the notation fix\l) and c£\l) where / is the vector 

argument 

* = [/i,/a,---,/*-i]r 

The size of the vector / is implicit with the order of the moment or the cumulant. 

When there is no ambiguity it is common to refer to the moment and cumu- 

lant functions as simply "moments'* or "cumulants"" of the process. For a zero-mean 

random process the second, third and fourth-order cumulants are given by 
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C£2>(/)   =   e{x(n)x(n + l)} = ß\l) (a) 

Ci3\lul2)   =   S{x(n)x(n + l1)x(n + l2)} = ß)(h,h) (b) 

Cl?\h,l2,h)   =   S{x(n)x(n + h)x(n + l2)x(n + h)}-CP(h)CW(l2-h) 

-cgXh)cg\u - h) - cgXwSXh - l2) 

= £Hh, /., h) - ßXh)ß\h - h) - &Xh)\%Xh - h) 

(2.14) 

These formulas follow directly from the corresponding formulas in Tables 2.1-2.3 for 

random variables. 

2.  Properties of the Cumulant 

Cumulants have properties that follow from the cumulant definition and 

are important for their application in digital signal processing and system theory. 

Among these properties are the following [24]: 

1. If x(n) is a Gaussian random process its cumulants of orders higher than second 

are zero. Since the moment generating function of jointly Gaussian random 

variables with mean vector ft and covariance matrix C is given by 

<^(u) = e''uT'i-JuTCu (2.15) 

the natural logarithm of this function (the cumulant generating function) can 

be considered as a power series with zero coefficients for terms corresponding 

to powers greater than 2. Thus the cumulants of all orders greater than second 

are zero. This is a property of any Gaussian process, white or colored. 
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2. For a zero-mean random process, the third and fourth-order cumulants can be 

defined as 

= Mik\l1J2,...,lk_1)-£{g(n + h)g(n + l2).-.g(n + lk-1)} 

for fc = 3or4 (2.16) 

where g(n) is a Gaussian process with the same second-order statistics as x(n) 

[23]. (This does not apply to cumulants of orders higher than fourth). There- 

fore, the cumulant can provide a measure of the process "difference from Gaus- 

sianity." In general, if x(n) is a stationary random process with variance a2, 

the coefficient of Kurtosis is given by: 

£ {(x(n) - £ {x(n)})<} 

_ cum(j(w), J(T?),J(W), j(n)) + 3-cum(j(n), j(n)) • cum(j(n),i(u)) _ 3 

CX
4)(0,0,0) + 3(CX

2)(0))2     , 
= ~* --* (2-17) 

which equals zero for Gaussian processes because in this case 6x^(0,0,0) = 0 

and Cx2)(0) = a2. 

3. If a random process consisting of independent identically-distributed (i.i.d) ran- 

dom variables has a symmetric distribution (such as Laplace. Uniform. Gaus- 

sian and Bernoulli-Gaussian) its third-order cumulant is zero. This is not true 

for non-symmetrically distributed processes (such as exponential, Rayleigh and 

K-distributions). The coefficient of skewness is 

£ {(x{n) - £ {x(n)})3}      cum(x{n).x(n),x(n))      Cx
3)(0.0) 

(2.18) 

which is zero for symmetrically distributed processes. 
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4. If each of the random variables x{, i = 1,2, • • •, k is scaled by a constant a,- the 

cumulant becomes 

cum(aia;i,02X2,-",flfc^)= (fla<) cum(xi,x2,••-,**) (2-19) 

5. Cumulants are symmetric with respect to their arguments, i.e., 

\(xi, x2, • • •, xfc) = cum(xil, x<3, • • •, xik) (2.20) cum 

where {iu i2, • • ■, ik) is any permutation of the indices {1,2, • • •, k}. This implies 

for example that the third order cumulant of a stationary real random process 

has six regions of symmetry in the /i,/2 plane such that 

C«(/i,/a) = C^(h.h) = C<?\-hJ2 -h) = 

C(3)(/2 _ ^ _/l} = C£H-l* h - /,) = CW(/i - /2- ~h)      (2.21) 

The principal region for which h > l2 > 0 is called the non-redundant region 

of support, of CJt\h-k)- If the value of the cumulant at any point (/a,/2) in 

this region is known, the values of the cumulant at corresponding points in the 

five other regions of support defined by (2.21) are also known (see Fig.2.1). 

The number of regions of symmetry increases rapidly with the order of the 

cumulant. The fourth order cumulant of a real random process has 24 regions 

of symmetry in the space of l\. /2, /3 • 

6. Cumulants are additive with respect to their arguments, i.e., 

cum(x0 + xi, x2. ■ • ■, xjt) = cum(x0, x2. • • •, xk) + cum(xi, x2, • • ■, xfc)    (2.22) 

Therefore the cumulants of sums of random variables are equal to the sums of 

their cumulants. 
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Non-redundant region 
0 < /2 < /i < oo 

ci3)(-/i./2-/i 

(3)/ Figure 2.1: Regions of symmetry of C% {h-h 



7. If constants are added to the values of the random variables the cumulant does 

not change its value, i.e., 

cum(ai + xi, a2 + x2, • • •, ak + xk) = cum(xi, x2, • • •, xk) (2.23) 

where cti,a2, • • •,ak are constants. 

8. If the sets of random variables {x<} and {y<} are statistically independent then 

cum(xi + yu x2 + y2, • • •, x* + yk) = cum(xa, x2, • • •, xk) + cum(«/i, y2, • • •, yu) 

(2.24) 

9. If a subset of the random variables {x<} for i = 1,2, ■ • •, Ä; is independent of the 

rest, then 

cum(xi,x2.- ••, Xfc) = 0 (2.25) 

This implies that for a sequence w{n) of independent identically-distributed 

(i.i.d.) random variables, the cumulant of any order is the multi-dimensional 

delta function, i.e., 

C£\lul2,---Jk-i) = -(lk)Hh)S(h)---Hlk-iY.       for w(n) i.i.d.        (2.26) 

where 7^ is a real-valued constant and 6(1) is the unit sample function, i.e., 

r,,.       [ 1    for / = 0 ,0 0„x 

^ = {0   for/^0 (2-2/) 

Such a process is referred to as higher-order white noise process. 

3.  Advantages of the Application of Higher-Order 
Cumulant s 

Cumulants and their Fourier transforms (the polyspectra) have recently 

gained increasing interest in many diverse fields of application. However for decades. 
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due to the lack of analytical and computational tools for the higher-order statistics 

applications, only the statistics up to the second order (correlation and power spec- 

trum) were used to any significant extent in signal and system analysis. Although 

the application of higher-order statistics involves an extensive amount of computation 

and requires a much larger set of data compared to the second-order approach, there 

exist applications for which the second-order methods cannot serve appropriately 

[23]. 

The second-order statistics are "blind" to the phase of a random process 

while the higher-order statistics reveal both amplitude and phase information. In the 

fields of linear system identification and process modeling, the solution of a problem 

is not unique if only second-order statistics are applied. The system that results 

from this approach can be either minimum-phase or one of many possible associated 

nonminimum-phase systems, because in any of these solutions the underlying second- 

order statistics are the same. When higher-order statistics are applied to the same 

problem the phase information that is revealed from the data can serve to determine 

which of these systems is the required solution. 

Cumulants, on the other hand, are "blind" to Gaussian processes. There- 

fore, cumulant applications are insensitive to any additive independent measurement 

noise if it is Gaussian. Thus cumulant-based methods can boost the signal-to-noise 

ratio when signals are (at least partially) corrupted with Gaussian noise. 

When the processes are non-Gaussian or nonlinear (i.e., generated from a 

nonlinear mechanism) higher-order statistics are essential in most cases. In real- 

world applications, processes which are truly non-Gaussian have traditionally been 

dealt with as though they were Gaussian due to the lack of appropriate mathematical 

tools. Similarly, nonlinear systems and models are frequently analyzed after being 

linearized in the vicinity of an operating point. In this case the solution is reliable only 
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within a range that ensures its stability (i.e., the region of convergence of the linear 

representation). The development of higher-order statistics tools, both analytical and 

computational, can and has provided solutions that are free from both Gaussianity 

and linearity limitations. 

When higher-order statistics are applied to problems in signal and system 

analysis, cumulants, instead of moments, are used for many mathematical and prac- 

tical reasons. Among these reasons are: 

1. For higher-order (non-Gaussian) white noise cumulants of any order (not mo- 

ments) are multi-dimensional delta functions (see (2.26)) and their Fourier 

transforms are multi-dimensional constant functions in the frequency domain. 

This has an enormous effect on the simplicity of the computation of system 

output statistics when the input is white noise. Moments do not share this 

property, in general. 

2. The cumulant of a sum of independent random processes is the sum of their 

cumulants (see (2.24)). The same is not true for moments. This enables working 

with cumulants as operators. 

Although the above applies to all higher-order cumulants, in many cases the 

third-order cumulant may not serve the purpose of the application and one may need 

to work with fourth-order cumulants. This is clear in the case of white symmetrically- 

distributed processes, for which the third-order cumulant is identically zero. The 

fourth-order cumulant is also used in cases of processes that have a relatively small 

third-order cumulant and a much larger fourth-order cumulant. 
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4. Moments of Jointly Gaussian Random Variables 

Let y = [j/i, 2/2, • • •, Vk]T be a vector of real-valued zero-mean jointly Gaus- 

sian random variables. Their joint probability density function is thus given by 

f(y) = J—^-fcr'c-, (2.28) 

where C is the covariance matrix with entries 

Cij = Cji = e{yiyj} = S{yjyi} (2-29) 

From the definition of the moment generating function (2.1) it is easy to show that 

*«(u) = e-^uTCu (2.30) 

Expanding this in a power series yields 

m=0 

=    ^ft^!V   2~J 

-Vcu 
9 

m=0 

oo       1 

= £ 
m=0 m! 

oo       I    ,2m 

y —— 
m=0 TO: /" 

fc        fc 

J1=1J2=1 

' fc     fc 

fc     fc 

9 

(2.3i; 

To find the value of the moment E {yiy2 • • • Vk). the expansion (2.31) is compared to 

the Taylor series expansion of the moment generating function and the required value 

of the moment is found as the coefficient of the term jkulu2 •■•uk. This comparison 

reveals the following properties [24]: 

1. The sum of the exponents of the u/s in (2.31) is always even and equals 2m, 

for m _ 0.1.2, ••• . Therefore, in the Taylor series expansion, the coefficients 

are equal to zero if the sum of the exponents in t^u? ■■•uk
k is odd or if the 
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number of variables k in Uiu2 • • -u* is odd. Thus the moments of the product 

of jointly Gaussian random variables is zero if their number is odd. 

2. If the number of random variables is even and equals 2p, where p is a positive 

integer, the required average of their product is the coefficient of uiu2 • • • u2p in 

the term 
1     [ k     k 

Y, Y,£{yjiVh} U
M (2-32) 

l 
p!2" 

The required coefficient thus takes the form 

£ bh Vh-~ J/2p> = ^F EII£ {Vix Vh } (2-33) 

where the sum of products is such that such that none of the subscripts appears 

more than once in the product of the p pairs of the form £{y^y^} and the 

summation is done over all the possible pairing permutations. 

To simplify the expression (2.33) we first notice that £{y^y»} = S{yj,yh}- This 

means that every 2P of the terms under the summation are equal and can be replaced 

by just one term multiplied by the factor 2P. Also, since the order of the terms 

in the product has no significance, there are p\ identical terms for the same pairing 

configuration. As a result of these considerations, the required expectation of product 

of Gaussian variables in its simplest form is 

£{vhv» — v*p} = EUs{y»y»} (2-34) 

where the summation here is over all the possible distinct pairing permutations. The 

number of these distinct permutations equals 

(2p)\ 
Aperm = ^r (2.35) 

As discussed in Chapter III. the output of a '•well-behaved'' nonlinear system 

can be described by a series-like representation with or without memory. This series 
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can be considered as a multinomial of functionals of the input. When a moment 

(cumulant) of the output is computed, the average of the product of these functionals 

raised to some powers is encountered. As shown in Chapter IV, the output cumulant 

computation involves the expectation of the product of Gaussian variables raised to 

some powers in the form 

^+^+--H») = 5{yjiy?...yp} (2.36) 

The value of this moment is zero if the sum of the exponents ]|T) v{ is odd. As 

explained in Appendix A, when the sum of the exponents in (A.l) is even the value 

of the moment can be computed by first constructing the k x k correlation matrix 

C = 

C(l,l) C(l,2) C(l,3) ••• C(l,k) 
C(2,l) C(2,2) C(2,3) ••• C(2,fc) 
C(3,l) C(3,2) C(3,3) ••• C(3,fc) 

C(fc, 1) C(fc,2) C(fr.3) ••• C(M) 

(2.37) 

w here 

C{i.j) = £{yiVi} 

and the same size matrix M of non-negative integer entries such that 

M = 

(2.38) 

2h ?2 «3 ••       Ik 

h+i 2?fc+2 «fc+3 •■       l2k 

«2fc+l ?2fc+2 2?2fc+3 ■■      ?3fc (2.39) 

i{k-l)k+l     2(fc-l)fc+2     ?(fc-l)fc+3     •••     2?fc2 

The matrix will be called the multiplicity matrix. Note that for clarity it is prefered 

to use k2 linearly indexed variables ij to represent the entries of M rather than 

variables with dual (column.row) index. We also force the diagonal entries to assume 

even values for reasons that are explained in Appendix A. The value of the moment 

is then given by 
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*w • • • *i E ?¥r n   (M^j),   n  (Mo,,,,»'   (2-40) 

where the summation is over all the possible configurations of the matrix M such 

that the sum of its entries along the rows and the columns satisfy the condition 

This means that the sum of the matrix entries in the ith row and column equals 

the exponent of yi in (A.l). The first product corresponds to the product of the 

diagonal entries of the correlation matrix C (the autocorrelation) while the second 

corresponds to that of the off-diagonal ones (the cross-correlation). 

B. POLYSPECTRA OF RANDOM PROCESS 

Moment and cumulant functions provide information about the different order 

correlations among the components of random processes. They demonstrate the de- 

pendence of these correlations on the values of the time lag differences among these 

components. In many applications information about the frequency content of the 

process, the power distribution over the frequency components, and the coupling 

between the different frequency components are of significant interest. This infor- 

mation can be obtained from the frequency functions known as the polyspectra. In 

this section we introduce the definitions of the polyspectra, their properties, and the 

spectral representation of a random process that leads to the procedure of computing 

the polyspectra. 
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1.  Definitions and Properties of Polyspectra 

The multi-dimensional ^-transform of the frth-order cumulant of a random 

process x(n) is defined as the kth-ordeT complex cross-polyspectrum 

S?W„...,**-i) =   £   •••    £    CS^-.U^^-ir    (2-42) 

where 21,22,-" aQd zk-i are complex-valued variables in the region of convergence 

of 5Jtfc). The Fourier transform of the cumulant will be called the fcth-order cross- 

polyspectrum and is obtained by letting Z{ = e3"\ namely * 

^W^.-.^H   £   ...     £     CW(!1,-,lM)e-^+-+'—' 

(2.43) 

A sufficient condition for the existence of this quantity is 

E   •••    E     |CW(/i.-,/fc-i)l<oo (2.44) 

The polyspectra are defined for all real values of the frequency variables u,\ but are 

periodic in each variable with a period 2z. For the third-order case this quantity is 

called the bispectrum and for the fourth-order case it is called the trispectrum. As in 

the case of moments and cumulants we shall sometimes use the notation Sx {z) to 

denote s£\zi.z2. • • ■, ~*-i) and s£\v) to denote Sx
k)(^^2. ■ ■ ■ ,wfc_i) where 

Z = [Zi. Z2. • ■ ■ , Zk-l] 

and 

The properties of cumulants discussed in Section A.2. lead to corresponding 

properties of the polyspectra, namely: 

xThe notation s£\ui,U2, • • -.Wk-i) rather than s£\e>Ul,e>u>,-■■,e>u'-1) is slightly abusive 
but will be used for notational simplicity. The meaning will be clear from the context. 
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Non-redundant region 

S(LL>Uiü2) 

Figure 2.2: Regions of symmetry of the Bispectrum of a real random process. 

1. The bispectrum, trispectrum and all higher-order polyspectra are zero for Gaus- 

sian processes. 

2. The bispectrum is zero for symmetrically-distributed processes which are i.i.d. 

3. When the random variables are scaled, their cross-polyspectrum is scaled by a 

factor that equals the product of the individual scaling factors. 

4. Polyspectra have symmetry properties similar to those of cumulants. For exam- 

ple, the bispectrum of a real random process has the twelve regions of symmetry 

shown in Fig. 2.2. 
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5. Polyspectra are additive with respect to their arguments 

s&«~~>> - #!*■*><"> + SS-»...)(W»     (2-45) 

6. Polyspectra are insensitive to the addition of constants to the random variables. 

7. The polyspectra of the sum of independent random variables equals the sum of 

their individual polyspectra. 

8. If a subset of a collection of the random variables is independent of the rest, 

their joint polyspectra are zero. 

9. For processes consisting of i.i.d.   samples, the polyspectra are constant, i.e., 

independent of frequency. 

Similar properties also apply to the complex cross-polyspectrum Sx {z) 

2.  Spectral Representation of a Stationary Random 
Process 

The second-order statistics of a random process are fully described by the 

covariance function and its Fourier transform, the power spectral density function. 

These two quantities, are related by the Fourier transform pair 

SSH*>) =   £  Ci2\l)e-'ul (2.46) 
1=-<X> 

The power spectral distribution function tfx(u-') is a nondecreasing function of u> 

that equals zero at w = -7r and is obtained by integrating the power spectral density 

function 

*x(a..) = J" Sg\*<)d^ (2.47) 



The covariance function can then be described as the Stieltjes integral 

<#>(/) = i- f e"<Mx(u,) (2.48) 

since 

d*x(w) = 5x
2)(a;)^ (2-49) 

The representation is embodied in the "Wiener-Khintchine" theorem [18].  The in- 

version of (2.48) gives 

t.M = "V + ,) + t e-^CP(!) + ± ^CPO) (2.50) 
-oo    ~Jl 1 J 

Similar to this representation there exists a spectral representation of the 

zero-mean random process x(n). The development of this representation starts with 

denning the complex-valued random process Zx(u>) with orthogonal increments such 

that 

£{dZx(->)} = 0 («) 

E{dZx(^)dZ^2)} = 8u,U2d^x{^) {*>) (2-51) 

where 
_ f 1     for Wl = u;2 (252] 

0Wla,2   -  S    Q     othenvise 

Then the zero-mean random process can be represented as 

X(n) = ±- r e>™dZx^) (2.53) 
Z7T J--K 

The interpretation of (2.53) is that the process x(n) is represented as a sum of com- 

plex exponentials in the continuous range [—7r, 7r) with random amplitude \dZx{u>)\ 

and random phase LdZx{^). In this case, rf*x(o;) represents the mean-square am- 

plitude of the component of x(n) at frequency u). The value of \M*") is the average 

total process power and 5x(jo.-)eL; is the contribution to the total process power from 
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the components in the frequency range between u; and u + du. The spectral repre- 

sentation of the random process is therefore related to the spectral representation of 

its covariance function (the power spectral density function). 

By inverting (2.43), the fcth-order cumulant is given by 

(Z7T)*   X J—K J-ir 

(2.54) 

As an example, the third-order cumulant for the zero-mean process is given by 

(2.14.b); so substituting (2.53) we have 

C$?\h, h) = € {x(n)x(n + h)x(n + l2)} 

=e\?t?F eMn^(^)//jw2(n+ii)^^'2)£eJW3(n+'j)(iZx^3)} 
= -i- r r r eM«i+"2+»>)ei(">h+»3h)£{dZxMdZxi^dZxM} 

(27r)3 J--K J--K J-r 

(2.55) 

Since the process is assumed stationary, the cumulant value must be independent of 

77. Since this can only be true if u,\ + UJ2 + u;3 = 0, it follows that 

Cx
3\hJ2) = T^r f f ej^+Uih)£{dZx(u2)dZxMdZx(-u2 - «*)}    (2.56) 

(27T)2 J-T J-X 

Comparing this result with (2.54) we find that 

43)(u>a, U.-2)<L}1 du2 = E {dZx(a* )dZx(u;2 )dZx(-W! - u>2)} (2.57) 

By a similar analysis it can be shown that the cross-bispectrum satisfies 

Sgl(«.V^)<ki<k'2 = S{dZxi^dZyi^dZJ-^ - u.-2)} (2.58) 
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For the fourth-order cumulant we can write 

CltXh, /„ /,) = MP(h, /„ /,) - MV(h)M?\l2 - /,) 

_    i   /* /* r r ejn('>i+<"3+'>'*+u*)ei(u'iii+'*'i*+uili) 
{2Tr)*J-*J-*J-*J-* 

xe{dZx(ul)dZx{u2)dZx(u3)dZx(ui)} 

(2TT)2 J-H J-TT 

XJ— f r ert^h'^-^SidZzMdZ^)} 
(2x)2 i-ri-r 

 L_ T  r ein^+u*)ei^hy>S{dZxMdZxM)} 
(2X)2   J-T J--K 

(2n)2J-*J-* 
— r  r eTt'v+^efteUeidZxMdZxM)} 
In)2 J-ir J-K (27 

X_J_ r  f ei»("»+"»)e^^-'>)f {rfZx(w1)dZx(ü;2)}(2.59) 
(2Tr)2J-*J-* 

In this case also to satisfy the stationary condition (2.59) becomes 

4<><M,<3> = ^/:/_;/_;/>i<"'"w'+",',) 

S{dZx{^)dZx{Lj2)dZx{u}Z)dZx{-^ -u>2 - u*)} 

f {rfZxpiJrfZxf-u;!)}^ {rfZx(u;2)(/Zx(-u;2)}6(a^ + u;s) 

_ ■*■ iff      eJ(ulh+">2l2+V3h) 
{2li)Z J-KJ-KJ-K 

£{dZxMdZx{-^2)}£{dZx{^)dZx{-^)}8{^ + ^) 

(2TT)
3
 J-*J-*J-* 

€{dZx(u:s)dZx(-^)}e{dZxMdZx(-u!1)}6(u1+^) 

(2.60) 

Comparing this result with the definition of the trispectrum by letting k = 4 in (2.54) 
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yields the relation 

SX
A)'(wi,wj,ü*)dwidwj<Lfr = £{dZx(wi)dZx(e>2)dZx(wi)dZx{-ui - u2 - u3)} 

-£{dZx(u1)dZx(-u1)}£{dZx(u>2)dZx(-u2)}6(u2+u3) 

-£ {dZx(u2)dZx(-u2)} £ {dZx(u3)dZx(-u>3)} %! + us) 

-£{dZx(u3)dZx(-u;3)}£{dZx(u1)dZx(-u;1)}6(uJl+u2) (2.61) 

Similarly we can show that the cross-trispectrum of the processes x,y,w and v is 

given by 

SL*Jwv (wi ^2 • w3) duii (L)2 du3 - 

£{dZx{^)dZy{u2)dZw{u3)dZv{-ux-u2-u3)\ 

-£{dZx(u:1)dZy(-u:l)}6(u;l+uj2)£{dZw(u;3)dZv(-u3)} 

-£{dZx(u>1)dZw(-u:1)}6(u;1+u>3)£{dZy(u:2)dZv(-u2)} 

-£{dZx(ujl)dZv(-u;1)}£{dZy(^2)dZw(-u:2)}6(u,<2 + u3) (2.62) 

Now let us specialize these relations to the case of a zero-mean Gaussian 

process g{n). Since for this process the cumulants of orders higher than the second 

are identically zero, the left hand sides of (2.57) and (2.61) are identically zero. Thus 

for this process 

£{dZg(^)dZg{u2)dZg{-u:l - w2)} = 0 (2.63) 

for all u>i and u>2, and 

£{dZg{-uJl)dZg{u2)dZg{U3)dZg{-U:1    ~UJ2    -<jJ3)}    = 

£{dZg(u.-1)dZg(-u;1)}6(u1+u2)£{dZg(u3)dZg(-u:3)} 

+£{dZBMdZg{-u1)}6{a>l+u*)£{dZg{u2)dZg(-«,2)} 

+£{dZg(ul)dZg(-u1)}£{dZg(u2)dZg(-u2)} (2.64) 
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This means that for the Gaussian process the value of 

S {(LZgMdZgMdZgMdZgM} 

is nonzero on the manifold defined by <* + wj + u* + u;4 = 0.   Moreover on this 

manifold it is nonzero only on the three proper submanifolds defined by 

• (Ui + U>2 = 0) n (U>3 + U>4 = 0) 

• (wi + u;3 = 0) n (wa + ^4 = 0) 

• (wj + u;4 = 0) n (W2 + w3 = 0) 

The value is given by 

€ {dZgMdZB{u3)dZa{u3)dZgM} = 

SgMSg{ua)6{u}i + u2)H^3 + u}i)dui<L*<L;sdu;i 

+ Sg{u>l)Sg{uJ2)8{üJ1 + u*)6[u2 + u>A)du}i<L>2dwsdu;4 

+Sg{u;1)Sg{u;2)6(*j1 + U:4)6{LJ2 + ^3)^i<^2<W^4 (2-65) 

which has a three-dimensional region of support defined by ^, u;2 and u;3; we use 

four frequency arguments for clarity however and the condition 

a»i -f i02 + ^3 + ^'4 = 0 

to make the notation correct. 

Now assume we have a Gaussian process that is also white.   Denote this 

process by w{n). In this case the right hand side of (2.65) becomes 

E {dZw{ui)dZw(u>2)dZvlMdZv,M} = 

^[^(ua + UJ2)S
C
{U:3 + u>4) + 6c{^i + üJ3)6

c{uJ2 + u.-4) + <5c(^i + u>4)<5c(u;2 + Ws)] 

Ow^'i du,y
2 duJs UU/'4 

(2.66) 
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where 6'(u) is the continuous time unit impulse function, not to be confused with 

the dirac delta 6^ defined in (2.52) or the (discrete time) unit sample function 6(1) 

defined in (2.27). In general since the process w(n) is zero-mean white Gaussian, all 

the cumulants except the second-order cumulant (the covariance) and the associated 

power spectral density function are equal to zero. Therefore when we apply this char- 

acteristic to any order polyspectra expressions similar to (2.57) and (2.61), equations 

(2.63) and (2.65) can be generalized as follows: 

{0 for odd k ,<-. gy\ 
ak6kdu>   for even Jfc { '    ' 

O     It) 

where we use the notation 

du) = düJi cL.'i • • • cL>k 

*i=sn^+wi) (2-68) 

and where the product is over the | pairs of -* and ^ and the summation is over all 

possible pairing permutations. 

C. MOMENTS AND SPECTRA OF FUNCTIONALS OF 
A WHITE GAUSSIAN PROCESS 

1.  Moments and Spectra of Linear Functional 

For a zero-mean white Gaussian process u?(n), the power spectral density 

function S<?>(«;) has the same value a\ for all frequencies; this is the average process 

power. Therefore the spectral representation of w is given by 

w{n) = i- T e»"dZw(,-) (2-69) 
2/T J—* 

where 

€{dZw{u:)} = 0 

EidZ^WJiCi)} = rf*x(wi)6WlWj (2-70) 
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and 

d*w(w) = Sw(w)<L> = oldu (2.71) 

If this process drives a linear system with transfer function H(UJ) then the output 

y(n) is another zero-mean Gaussian process that also has a spectral representation 

in the continuous region [—T, -K) in the form of 

y(n) = £- f ejundZy(uj) (2.72) 

The components of the input random process that comprise its spectral represen- 

tation are modified by the magnitude and phase of the transfer function to give 

the components of the output process with random magnitude \H(ju;)\\dZw(u>)\ and 

random phase LH{LC) + LdZw(uj). In general 

dZy(ui) = H(^)dZw(^) (2.73) 

Which satisfies conditions similar to (2.51) because 

E{dZy(u)}   =   H(^)£{dZw(u:)} = 0 

£{dZy(^)dZ*(^2)}   =   HMH'i^SidZJ^dZ:^)} 

=   SUiU2\H{^)\2o-20d^ (2.74) 

The output power spectral density function has the value 

S$\*) = o\\H^)\* (2.75) 

If the system impulse response is denoted by h(n) then the output autocorrelation 

function is given by 

Ry(l) = £{y(n)y(n + /)} = a\rh{l) (2.76) 

where r/,(/) is the system correlation sequence given by 

oo 

rh(l)=   £   Hri + l)h(n) (2.77) 
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which is the Fourier inverse of \H(u)\2- 

If a set of linear systems with transfer functions *(«), A(u,), • • •.*»<<*) 

and corresponding impulse responses *,(»), M-). •' ■. W») « *i~ by the ^ 

zero-mean white Gaussian process w(n) with variance «J, the outputs *,*,-,» 

are zero-mean Gaussian and have the spectral representations 

y*«) = hLe*"dZ"M j = l,2,---,* (2-78> 

for which 

dZy,(u;) = HiU^dZM (2-79) 

In this case the cross-correlation function is then given by 

ÄKSi(/) = f{w(n)w(n + 0} = ^«(/) (2-80) 

where 

ry(/)=   £   Mn + OM") (2-81) 

n=-oo 

The quantity r«(Z) will be called the system cross-correlation seance.  The cross- 

spectral density function is then given by 

S^-Md-,   =   SidZy^dZ;^)} 

(2.82) 

where 

Si.(u;)  = 4(u,')  =  Hii^Hi*^) 

We refer to the last quantity as the system cross-spectral function. 
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2.  Moments for Nonlinear Functional of a White 
Gaussian Process 

A set of nonlinear processes u,(n) can be formed by multiplying the outputs 

of the linear systems raised to some integer powers Vij to give 

U:{n) = y?(n)y?{n)..-yv»{n) (2.84) 

The Uj are functionals of the white Gaussian process w(n) because each of the y, is 

given by 

Vi(n)=   £  löi(n-t)M') (2-85) 
i=—oo 

The value of the mth-order cross-moment function 

^m)(/) = £{u^{n)u2{n + /i) • • • um{n + /TO_X)} 

= S{y?1(n)y?*(ri)--.y?,>(n)y?*(n + h)y?>(n + h)--.y?>(n + l1)-.- 

xy^1(n + L-Mm3(n + lm^)---y^(n + lm^)} (2.86) 

is zero if the sum of the exponents is odd. For an even sum of exponents the procedure 

explained in the Subsection A.4. is followed: the mkxmk matrix C^ is constructed 

as 

C(m) = 

R(0) R(h) R(/2) 
RT(h)      R(0) R(/2-/i; 
RT(/2)        R

r(/2-/i)        R(0) 

Rr(/m.,)   R
T(/m-i-/i)   RT(/m-a-/2) 

where the k x k matrix R(n) is given by 

Rdm-l) 
R(/m_i-/i) 

R(0) 

(2.87) 

R(n) = 

rn(n) ri2(") riz{nt 

r21(n) r22{n) r23(n] 
rz\{n)   r32[n)   r33{n) 

rik(n) 
r2k{n) 

rjki(n)    rk2(n)   rk3(n)    •••   rkk(n] 

(2.88) 
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and ra(n) are the system cross-correlation sequences (see (2.81)).   A multiplicity 

matrix M of size corresponding to C^ is defined as 

M(0) M(/i) M(/2) •'•   M(/m_i) 

M = 

Mr(/i)       M(0) 
MT(/2)       M

r(/2 - h) 

M(/2 - h) 
M(0) 

M(/m_i - h) 
R(/m-i - '2) (2.89) 

_Mr(/m-0   Mr(/m-a-/i)   »^(^-1-/1)   •••   M(0) 

where each block M(/) represents the multiplicities of the ry(n) in the block R(/). Al- 

though equation (A.15) is still applicable, we can benefit from the fact that C(iJ) = 

C(j,i) to save computations in this case and in similar cases where the matrix C^ 

is symmetric.  The multiplicity matrix M can be modified because the two entries 

M(iJ) and M(j,i) result in pairing M(i,j) + M(j,i) elements from both y{ and Vj 

to give C{i,j){M{iJ)+M{i'j))/2- Therefore we let both entries of M be equal such that 

each of them equals the value that their sum would have if the notation in (A.15) 

is used.   The diagonal elements are not changed because they still have the same 

meaning. Subsequently the off-diagonal elements need to be examined in the upper 

triangle only, and the condition on the sum of the elements along the columns and 

the rows becomes that the sum of the tkmtnis of the jth row equals the sum of the 

elements of the jth column and each equals VJ. 

Before proceeding, let us define some notation that will be useful in the 

remainder of this discussion. For a ^-dimensional vector v with elements I/I,I/2,--- 

and i/fc, we dfine the additive reduction or simply the reduction of v as the sum of its 

components. If we denote this by S[i/] we have the definition 

(2.90) Uu\ 
k 

i=l 

For a k x / matrix M, with elements M{iJ) we define the reduction as a vector with 

elements equal to the sum of the rows of M. Thus 

S[M] = m where mi = J]M(?.j) (2.91) 
i=i 
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Now since each of the cross-correlation functions equals the corresponding 

system cross-correlation sequence multiplied by the input variance c\, and since the 

total number of the cross-correlation functions is always equal to half the total sum 

of exponents, then each term in the expression of the moment has the value {a\) » 

multiplied by the product of the system cross-correlation sequences Tj that result from 

each pairing permutation. Therefore the moment in this case is given by substituting 

in (A.15) 

^"0(1) = e{Ul{n)u2{n + /i) • • • um{n + /m_i)} 

= M 
j n^o! L 3ii—(MUu^u— 

t=l S[M]=I/ 2    *     «=i v      2       >• 

- (drHhj,))"**) (2<92) 
,2if+1 A/0-i.ia)! 

The condition E[M] = 1/ in the subscript of the summation means that the summa- 

tion is done over all the possible values of the matrix M that satisfy the condition. 

3. Spectra of Nonlinear Functional of a White Gaussian 
Process 

In the frequency domain the (m - l)-dimensional moment cross-spectral 

function is defined as 

s£m)(*i. <^2- ' ' * i^'m-l, u 
oo oo 

=    !]•••     £     ti^n)(hJ2,---Jm-i)e~i{uill+U2h+'"+Um-lU-l)    (2.93) 

with inverse transform relation 

/ii,m)(/l^2, •••./»-!) 

_  /   ■*■   \ra-l    / /       c(m)/   ,     . , , \,i(oii/i+u>2/2H |-wm_ilm_i) 

-£7T J-ir J-r > v ' 
m-1 

(/^^■•■(/u-'n,.! (2.94; 
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Equating the right hand side of this equation and (2.86) yields 

+—+ü>m-l'm-l) 

TTl-l 

= £{ui(n)u8(n + /i) • • • um(" + /„,_!)} 

= ^W1(n)yr,(n)---yrt(n)yr,(n + /i)yr,(n + /1)...y^(n + /1)-.. 

xyrml(« + /m-i)y2^
J(n + /m-i) • • • j£""(n + /m_!)} (2.95) 

Now substituting each y(n) with its spectral representation in (2.78) we obtain 

-—I—v ^ 
V 

= (^r r ••• r //(-•i)//(a.-2)-..//(^)ej'n(wi+wi+-+^) 
Ll\ J— It J — T 

V „ ' 

dZw(^)dZw(^2) • • -dZ^v)      (2.96) 

Let us define o;tll2tJ as new variables of integration that are necessary when we sub- 

stitute (2.96) into (2.95). Then the right hand side of (2.95) takes the form 

(^) J_w-J  nnn^,K^)^«,(-WJ 

^(E:=1 EU, E:;L? «.,.,.,) ci(E-_, EU E:3'L? ^^,) 
>    (2.97) 

where P equals the sum of all the exponents in (2.95). i.e.. 

P = E[„] (2.98) 
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and must be even so that the expression is not equal to zero. The stationary 

condition implies that 
m      k    "M'a 

EEE -W, = 0 (2.99) 
ti=i ij=i ij=i 

Now interchanging the order of the integration and expectation in (2.97) produces 

r>p/*•••/* (n ^K.,.,)y(E"-'E''E-''••-'" 'M n «.K«)} 
(2.100) 

where the integration is taken over the manifold defined by (2.99) and the product 

notation used here is equivalent to the triple product expression in (2.97). By substi- 

tuting the expectation in the integrand with its value given by (2.67). the expression 

becomes 

<s 

<«?>*<£ 
(2.101) 

Since 6£ makes this expression equal to zero outside the manifolds defined by the 

/>!/((f)!2?) permutations of the product of delta-dirac functions S^i + uij); the ex- 

pression (2.101) is a sum of terms represented by f multiple integrations. Each term 

corresponds to a certain submanifold ofthat defined by (2.99) and it is multiplied by 

the number of permutations that result in the same integrand. The product of the P 

transfer functions H{uj) is replaced by the product of f system spectral density func- 

tions 5jj(o.') and the sum of lag-frequency products ltuL in the complex exponential 

is reduced correspondingly because 

Z7T       J--K J-it 

= l~r saMe*«Vi-Wd^ (2.102) 
ZTT J-* 

When this result is applied to (2.101) we can develop a procedure to calculate the 

value of 5£m)(u:i.u;2. • • • -u-'m-i) given the linear system transfer functions (or the sys- 
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tern cross-spectral density functions) and the input variance aa. 

4.  Second-Order Cross-Spectral Function of Functionals 
of a White Gaussian Process 

Let us continue to consider the functionals Ui[w{n)} of the zero-mean white 

Gaussian process w(n) defined by (2.84) and (2.85). Note that in general these func- 

tionals do not have zero mean. The cross-correlation for any two of these functionals 

is given by 

^2)(/) = 5{u1(n)u2(n + /)} 

= £{y?nn)y?i(n)---yllk(r>)y?l(n + l)y?2(n + l)---ykk(n + 0X2.103) 

and its frequency transform (the cross-power spectral density function) is defined as 

i=-oo 

If the sum of exponents in (2.103) has an even value P then the expectation is not 

identically zero and we can compute the value of the moment as described in (2.92). 

The right hand side of (2.95) is obtained as a sum of terms each corresponding to a 

possible permutation pairs of frequencies resulting in the expression (2.101). We start 

the procedure by constructing the 2k x 2k matrix of system cross-spectral functions 

*?> sV) 
(STT( 

s-V) (2.105) 

where each term S°(u?) or Sw{ui) is of the form 

S(-;) = 

sn{u)    -S12(^')    Si3(a:) 

^2l(^)     ^(u')     S23(^') 

53l(^')     «32 (w)     533(^') 

SfclU")     5fe2(^')     5fc3(o;)     •• 

S2fcM 
(2.106) 
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with the system cross-spectral function Si, defined in (2.83). The significance of the 

superscript (0 or u) is explained below. A 2k x 2k multiplicity matrix M is also 

constructed in the same way as for the moment computation procedure. 

Let us now assume that the zth frequency pairing permutation in (2.101) re- 

sults in a component S£2)*(u>) of Si2\u) which is obtained by summing all the possible 

components. In this component the frequency pairing is over all transfer functions 

that comprise the functional ux and u2. Those transfer functions of ux do not have 

their frequency argument appearing in the lag-frequency product of the complex ex- 

ponential. Therefore if the frequency arguments of two such transfer functions are 

paired together they do not affect the lag-frequency exponent and do not have their 

system cross-spectral function multiplied by a complex exponential of its frequency 

argument. This spectral function is an entry of the upper left diagonal block S° of 

S^\ If the frequency arguments of two transfer functions that come from u2 are 

paired together then the sum of these two arguments is zero and they therefore dis- 

appear from the lag-frequency complex exponential. The resulting spectral function 

is an entry of the lower right diagonal block S°. On the other hand if a frequency 

argument of a transfer function of ux is paired with one of u2 , this frequency argu- 

ment appears in the lag-frequency product in the complex exponential. This spectral 

function is located in Su. 

For a specific configuration of the frequency pairing let us assume that px 

system cross-spectral functions lie in the upper triangles of the two diagonal blocks 

denoted S°: and p2 are entries of S" such that pl + p2 = f. Then from (2.104) and 

(2.101) 
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Si2)V)=   £ e-^l\al)T(^)TJ\..j\1(u;1)S2(u;2)---sPl(u;Pl) 

p 
2 

2 

(2.107) 

(Here we used a single digit in the subscript of the spectral functions for simplicity; 

they are actually indexed with two digits according to the indices of the correlated 

system outputs). Since each of the first px spectral functions can be integrated 

separately, the result of this integration is a constant multiplying the rest of the 

integrals. The value of this constant is given by 

-L f syMeL; = ry(0) (2.108) 
Z7T J--K 

where r^ is the system cross-correlation sequence defined in (2.81). Therefore (2.107) 

reduces to 

^2)i(^) = K2)f^(0)r2(0)---rPl(0)   £  e-^i^rf •••f 
. Ll\ J — IT J—It l=-oo 

P2 

/ \ I        \   J'(U'PI+I+U;PI+2 + '"+U'£) J J 
sPl+i(u;p1+i)Sp1+a(u;Pl+a)---S£(-;£)£ * GLJPI+1 • • ■ du>£ 

(2.109) 

Now interchanging the order of the summation and integration we obtain 

SWi(^ = (al)Tr1(0)r2(0).-.rPl(0)(±r f •" f 
IT J--K J-Tt 

Pi 
oo 

5pi+1(a.>1+1)5pi+2(^pi+2)---5£(^p)   X.   e * du>Pl+i ••■&*;£ 
J=-oo 

(2.110) 

where we have used the fact that formally the Fourier transform of t~iuV> results in 

an impulse 2TTS
C
(U:) in frequency.  The summation in the integrand equals 2~S(u: — 
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u3  ^ -u  J.-> UP) which reduces the number of integrations to p2 - 1 over the "■"Pi +i       "Ti T* Y ' 

manifold denned by 

uPl+i+uPl+2 + -'- + up_=u (2.111) 

In other words we can conclude this development by the expression 

£i2)V) = (al)TS°^conv^(Su(u)) (2.112) 

where S°W represents the product of the system cross-correlation sequences rhia(0) 

that are located in the diagonal blocks and included in the ith permutation. The 

value of convW(Su(u)) is obtained by performing multiple convolution on the system 

cross-spectral functions located in the off-diagonal block Sw and included in the ith 

permutation. Specifically, for p spectral functions $x. s2, • • •, sp of S" included in the 

permutation this operation is defined as 

convW(Sw(w)) = 

(_L)p-i r ... r Sl(u-e1)s3{e1 -e2)• ■ • sp.i(dp-2-Op-i)sp{oP-i) 
27T J-tr J-it < „ ' 

p-1 
de1(w2 ■ ■ • dep^ (2.H3) 

Finally, we obtain an expression similar to the expression of the value of the moment 

2fc C(2)»/, ,\    2fc i 2fc j 

»=i r[M]=l/   2    »       ji=l (      2      )-»=J»+i JW^1^2' 

where v is the vector of exponents appearing in (2.103). 

5.  Higher-Order Cross-Spectral Density Functions of 
Functional of a White Gaussian Process 

By generalizing the procedure developed above, a procedure can be de- 

veloped to find an expression for the value of third, fourth and other higher-order 

44 



cross-spectral density functions.  The third order cross-spectral density function is 

defined as 

We start the procedure by constructing the 3k x U matrix of system cross-spectral 

functions g0 ^ §U7 

5(3) =     (s»iyT   so s"1"^ (2.116) 

(SW*YT   (S"1-1*^)*1,   S° 

where each of the k x k matrices is defined as in (2.106).  The associated Zk x U 

multiplicity matrix M is also constructed. We assume that for a specific frequency 

argument permutation (specific configuration of the matrix M) in the expression 

(2.101) some system cross-spectral functions are entries of the diagonal blocks de- 

noted S°.   The result of these functions is a constant value taken out of the inte- 

grations.   The rest of the functions are divided into three groups.   The first group 

consists of Pl functions that are entries of the block Sw». The second group consists 

of p2 functions that are entries of the block S*". while the third group consists of p3 

functions in the block S^-"2.  Each of the associated frequency arguments appear 

in the lag-frequency product of the complex exponential.   If the sum of the expo- 

nents of the Gaussian functions yt in the moment expression has an even value p, the 

corresponding component S^1 takes the form 
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D-j(,Ulll+ü>3lj)/ \Pl+P2+PS 

27T 
>=-oo 

f "• J     SU(un) • • • Slpi(uipi )s«(wai) • • • *|p,(w?paW(Wsi) ' ' * «Spi (<**») 
^~*    V ^ 

Pi +P3 +PS 

=(^)f(n^o(0)(^)pi+p2+ps 

x /    ••• /   5ii(wii)---5ip1(wip1)s2i(wai)-,,'8api('^2pa)ssi(«^8i),---s?ps(waM 

Pl+pj+pj 
oo 

-j/l(u»i-u<ii u>ipj -uiji aijpj ] 

x   £   e~i'2(ü'2~u':!1_'""W:"'J+u'sl+'"+u'3M)^ii^i2 du3p3 

(2.117) 

where U;;J are the new variables of integration that are needed when we substitute 

(2.102) into (2.101). After substituting the two summations with the values <!>c(E[u;]), 

this expression equals zero outside the manifold defined by the two relations 

u,'i   = u,'n + • • • + ^'lpi  + («^31 + - " * + "-'3p3 ) 

U/'i  = u,'2l + • • • + a-'2P2 — (^'31 + • • • + ^'3p3 ) (2.118) 

If we now define the argument 

0 = ^'3i + --- + ^3P3 (2-119) 

we have 

^n + --- + -'lpi=-'i-0 (2-120) 

and 

->21 + ' ' • + "2»  = ->2 + 0 (2-121) 
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and the number of integrations is reduced to pi + P2 + Pa - 2. This can be repeated 

successively as follows. The first group of functions is integrated px - 1 times over 

the manifold defined by (2.120) to give 

(J_)PI-I T ... T Sn(u>l-0-01)s12(81-02)---slpi(6Pl-1)d61d92-'-depi-i 
lit J-T J-T 

(2.122) 

The second group is then integrated p2 -1 times over the manifold defined by (2.121) 

to give 

(-L)»-1 r ■■ r s21{uji + e-el)s22{el-92)"-s2Pt(0P2-i)de1de3--'depa-1 

P2-1 

(2.123) 

and the third group is integrated on the manifold defined by (2.119) to give 

(i-)»-1 r ■■■ r s31(e-6i)$32(01-e2)---sSpi(eP3-1)de1de2---doP3„1 
 „ y 

PJ-1 

(2.124) 

The last integral gives us the value of the required component 

5W(W1.wa) = (a»)f(n^>) 

x(^-) f S£L(-1 - 0)S{lv2(^2 + 6)S{±a(6)d9 (2.125) 

and the total value of the third-order cross-spectral density function is therefore 

3k SWl'A    3fe i 3fc i 

5?w^)=n"to! E TiMr n 7M5STT n Jfur]^ &-m 
i=\ £[M]=I/   2"V^   ji=l I       2       )•»=*+! JJU1,-/2;" 



Finally an analogous procedure can be explained to compute the fourth- 

order cross-spectral density function 

S<4>(u*,a*,ü*)=   EEL   rf)(/)e-^'1+^+^'') 
l\ = — 00 /j =—OO /j =—oo 

(2.127) 

The 4k x 4k matrix of system cross-spectral functions is defined as 

r go g«, 
(S"")*r   go 

S"* S"3 

Cu>i— ii>2 C<"1— <*>j 

/C«2\»r       /Cull— U>2\»T       CO gWj-Wj 

/gu>s\»r   /gu>i-<tfj\»r   /gwj-wj^r go 

(2.128) 

and the same size multiplicity matrix is constructed to compute all the distinct 

permutations of frequency pairing and the number of their occurances. In this case 

we get six groups of the product of the system cross-spectral functions located in 

the upper off-diagonal blocks. Let us assume that the number of spectral functions 

in the jth group is pj and their sum is P. The frequency arguments are denoted 

by Wji,Wj2,- • • i^jpj- In this case three intermediate frequency arguments #i,#2,#3 

corresponding to the fourth, fifth and sixth groups located in S""1 ~Ui. S4"1 ~Ui and 

gw2-w3 respectively are defined such that 

Vl = U,'4i + u,'42 -f • • • + U.'4p4 

02 — <^51 + <^'52 + • ■ * + ^'5p6 

#3 = ^'61 + "-'62 + • • • + ^6p6 

(2.129) 

(2.130) 

(2.131) 

By procedures similar to those described for the third order polyspectrum the compo- 

nent Sl4^(u!i,u>2,^2) is obtained by performing the following multiple convolutions: 
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(^)P1_1 /' • • • £ suim -61-62- 0 0*12(1? 1 - r?2) • • • 5lpi (r?Pl_1)^1^2 • • • ^Pl_a 

P1-1 

^»2(^2 + ^-03) = 

i^-1/^ '--J^ S2i(^ + ei-9S-^1)33%(d1-^)'^S^(dn.1)dd1dd3-..ddn^ 
-IT <l -IT 

P2-1 

S£L(<* + *» + *a) = 

-ir rf —»r 

P3-1 

•5'«mv4(^l- 
1 »ir fit 
1    \P4-1 

2TT 
£---£sA1(61-d1)sA2(ti1-d2)..-Sto(tipt-i)dd1d#2---dtiPt-1 

P4-1 

SconvsiQi) — 

(^-)PB_1   /'•"/'  *5l(#2 - l?l)Ä52(»?l  - l>2) • • • S5pt(0pb.1)ddldd2 ■ ■ ■ ddpi_x 
ZTT •/—■ir J—ir -IT J —IT 

P5-1 

•?«mt.6(^3)  — 

(^"'/"•'•f^^-tfiW^-^-^JViHWr^Vi     (2-132) 
P6-1 

Finally the spectral function component S^
X
(U;-I.U!2,UJZ) is obtained by performing 

the triple integration 

X 5^.2(^2 + 61 - 03)5<1,3P3 + ö2 + 03)5^.4(01)5^(^)5^(03)^^^3 

(2.133) 
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and the expression for the fourth-order cross-spectral function becomes 

ssv^^n-t.)! E SHTSEKF fi why <2-134> 
In the same way cross-spectral density functions of any order for the functionals of a 

white Gaussian process can be obtained through a procedure of successive convolu- 

tions. 
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III.  THE WIENER MODEL FOR A 
DISCRETE NONLINEAR PROCESS 

A discrete time random process can be modeled as the output of a discrete 

system driven by another discrete time random process whose statistics are known 

up to a sufficient order. This system is generally specified by a set of parameters that 

can be of either finite or infinite size. The model is successfully constructed when the 

system parameters are chosen such that the statistics of the system output match the 

statistics of the modeled process up to a required order. Here the underlying system, 

although nonlinear, is assumed to be stable and causal (non-anticipative). This 

assumption satisfies the realizability requirement of the model and (as shown later) 

generates a structured system architecture. In this chapter we present the Volterra 

series representation of discrete nonlinear systems and then develop the Wiener model 

of discrete nonlinear systems and their associated random processes. Although most 

of the published work on the Wiener model is formulated for continuous time, we 

adapt the theory in this dissertation to the discrete time case. Consequently, there 

are several extensions and new results that are developed in this chapter prior to the 

main results of this dissertation which are presented in the later chapters. 

A. THE VOLTERRA SERIES REPRESENTATION OF 
NONLINEAR SYSTEMS 

The output {a"(??)} of certain "well-behaved" nonlinear systems can be related 

to the input sequence {«'(")} by a Taylor series-like representation developed by the 

mathematician Vito Volterra and first applied to the study of nonlinear systems by 
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Norbert Wiener [22].  The details of this series representation of nonlinear systems 

can be found in several places [18, 22, 17]. We give a brief outline of the theory here. 

1.  Higher-Order Volterra Kernels and Operators 

The Volterra series representation for a causal nonlinear system with input 

w(n) and output x(n) can be written as 

oo oo      oo 

x(n) = h0 + ^2 hi(k)w(n — k) + J^ J^ ^2(^1, k2)w{n — ki)w(n — k2) 
k=0 *i=0*j=0 

00 00 

+ \- Yl •■' ]C M^i'-- -ik^win - ki)---w(n - kp) H        (3.1) 
fc1=0 kf=0 

where hp(ki,..., kp) is called the pth-order Volterra kernel which is identically zero 

for any of the ki < 0. An equivalent way of representing the system is by a series of 

operators 

x(n) = 7io[w(n)] + Hi[uin)] + H2[w(n)} + ■■■ + Wp^n)] + • • • (3.2) 

where 

WpM")] =E-EM*i kp)w(n -h)..- w(n - kp) (3.3) 
fci=0 kp=0 

is the /border Volterra operator or functional. In this respect the following is worth 

noting: 

• The Volterra series is a power series with memory. If the input is scaled by a 

factor a the new output is given by 

x(n) = Ho[w(n)} + aWi[u-(n)] + a2H2[w(n)] + • • • + apHp[w(n)} + • • •     (3.4) 

Thus it is inherently nonlinear. 

• There is no loss of generality if the Volterra kernels are considered to be sym- 

metric with respect to their arguments because, if they are not. there exists a 



procedure by which any asymmetric kernel can be made symmetric. In par- 

ticular, for any asymmetric kernel Aj(fci,.. .,kp) the symmetric one is given 

by 

where the summation is taken over all the p! possible arrangements of the fo's . 

Any system constructed using asymmetric kernels can also be constructed with 

the symmetric one [17]. 

• The individual Volterra functionals are homogeneous since 

Wp[au>(n)] = a'TUWn)} (3.6) 

That is, a change in the input magnitude results in a change of the output 

magnitude but not a change of the output waveform. 

To discuss the Volterra system in the frequency domain let A'(u>) and W{u:) 

be the Fourier transforms of x(n) and w{n) respectively.1 Thus X{uj) and x(n) are 

related by the Fourier transform pair 

A(u,-) =   53   x(n)t jnw 

i  r 
Xlui^du} 

and W(u)) and w(n) are related similarly. Further, let the generalized transfer func- 

tions be defined as the multidimensional Fourier transforms of the kernels 

00 oo 

i/p(^,....u,p)= E ••• E M*i kp)e-^
+-+k*^ (3.7) 

fc1=0 fc,=0 

xFor the present discussion ii)(n) and x(n) are assumed to be deterministic and the corresponding 
Fourier transforms are assumed to exist. 
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which are symmetric functions of the frequency arguments ut if the kernels hp are 

symmetric. The response of the pth order Volterra operator 

xp(n) = TifMn)] (3-8) 

can be obtained by first defining the associated (artificial) functional 

oo oo 

xM(n1,n7r--,np)*E''-Eh,(kir--,k,)w(ni-kl)---w(nr-k,)      (3.9) 

and its p-dimensional Fourier transform given by 

XM(u>l^r--^) = Hr(^utr--,uj,)WMWM---WM (3.10) 

Then the response of the pth-ordeT Volterra operator is given in the frequency domain 

by [17, 18] 

A'p(u;) = _L_^ [*... r x{p){u;-e1.e1-e3,---,ep.1)de1dd2---dep-1   (3.ii) 

which is a (p - l)-dimensional convolution, generally not simple to evaluate.   The 

system output in the frequency domain is then given as the sum of the terms 

X(u) = Ä'oM + XiM + • • • + Xp{u) + •■■ (3.12) 

2.  Limitations of the Volterra Representation of 
Nonlinear Systems 

The practical application of Volterra series in nonlinear system theory has 

two main difficulties. One concerns the measurements of the Volterra kernels and 

the second concerns the convergence of the Volterra series. 

The measurement of a general system's Volterra kernel is possible only if 

the contribution of each of the Volterra operators can be separated from the total 

system response.   For the work done in this direction, the nonlinear system to be 
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identified is assumed to be representable by a finite order Volterra series and each 

kernel is obtained by isolating the higher order operators. There is no exact method 

to isolate an individual Volterra operator for a system that is not of finite order unless 

approximations are assumed possible. 

The problem of convergence of the Volterra series representation of a non- 

linear system is similar to that encountered in the Taylor series representation of a 

function. This is evident from equation (3.4). This representation is expected to 

converge only for a limited range of the magnitude of the system input. Moreover, 

nonlinear memoryless systems that include saturating elements cannot be character- 

ized by a Volterra series that converges for all magnitudes of the input [17]. 

The limitations of the power series representation of functions are circum- 

vented by using orthogonal functions. In power series representation of functions the 

value of the series expansion of the function is strictly convergent for the values of 

the argument; therefore a region of convergence must be defined. In orthogonal func- 

tion representation, the functions are required to converge in the mean square sense: 

therefore the convergence requirement is not imposed on the argument value but on 

the average of a product of functions. Wiener extended the notion of orthogonality 

to functionals and built a canonical model for nonlinear systems. This extension, 

known as the Wiener model, is discussed next. 

B. THE WIENER MODEL FOR A DISCRETE TIME 
NONLINEAR SYSTEM 

Weiner defined a class of systems suitable for his representation which has been 

called the Wiener class. A system that is a member of the Wiener class has the 

following properties: 
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1. The system is not "explosive." For a finite variance random input the system 

output also has finite variance. 

2. The system does not have infinite memory. The present value of the system 

output must become asymptotically independent of the past values of the input. 

1.  G-Functional Representation of Nonlinear Systems 

From the Volterra functional, Wiener formed a set of orthogonal function- 

al which he called the G-functionals, since they are orthogonal if the input is a 

white Gaussian time function [22, 17]. The type of convergence of the orthogonal 

series is convergence in the mean. As a result, the class of nonlinear systems that 

can be represented by the Wiener G-functionals is larger than the class of systems 

describable by a Volterra series. Although Wiener developed and reported his results 

for continuous time, we shall state the results in discrete time as is more suitable to 

our purpose. Let us define the functional 

rp[V hP-i(ph /;
P-2(P)- • • • < ho(Py- «■•(")] = 

p 
ho(p) + £ 

t=i 

£ •" J2 hi{p)(k1.k2.---,ki)w{n - h)w{n -k2)---w(n - k\) 

(3.13 

as the pth degree non-homogeneous Volterra functional. Observe that Tp is a sum of 

homogeneous Volterra functional of the type defined by (3.3). The p in parenthesis in 

the subscript of a kernel indicates that it is a member of a pth degree non-homogeneous 

functional, and we define /ip(p) = hp. Wiener developed the set of the orthogonal G- 

functionals by requiring that1 

^^N«)]rp[VViwiHW'-io(PF'(")]} = 0        for m<p   (3-14) 
1 Although the original results were formulated using temporal averages we will restate the results 

in terms of ensemble averages. 
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when the input w(n) is white Gaussian noise with variance a\. In other words, Tp is 

orthogonal to any functional Tim of lower degree. The particular functional Tp sat- 

isfying these conditions are called G-functionals and are denoted by Gp[gp, w(n)]. The 

quantity gp is the leading kernel of the functional from which the kernels gp-\(p), gP-2(P), 

• • • ,9o(p) are derived. The symmetry properties of both the Volterra and the Wiener 

kernels and the average of the product of Gaussian processes result in the following 

properties: 

1. For the even order G-functionals, the derived kernels of odd order are zero and 

the functional expression in the form of (3.13) has only even order kernels. 

An analogous statement applies to the odd order G-functionals for which the 

even order derived kernels are zero. The general expression for the Wiener 

G-functional is then given by 

GP[gP:w(n)}= £ Gp_2m[u'(n)] (3.15) 
m=0 

where [f J represents the greatest integer less than or equal to \ and Gp_2mM")] 

is the (p — 2m)th degree homogeneous functional given by 

Gp-2m[w{n)} = 
oo oo 

X)   • • •       ]C      9p-2m(p)( h • h- • • • • kp-2m )tl'(M - kr )w{n - k3) • ■ • w(n ~ kp„2m ) 
fcl=0 fcp-2m=0 

(3.16) 

2. The kernels gp-2m(P) for m = 0.1.2,..., |_f J are derived from the leading kernel 

gp by the relation 

gP-2m(p){klik2. • • • , kp-2m) = 

(p-2m)!(r77)!2-,^r'0      J^0 

(3.17) 
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The coefficients of the integrals of the derived kernels of Qp are similar to the 

coefficients in the expression of the Hermite polynomial 

H W - V   l-Wir  ,(,-»») (3.18) 

Both of these properties are shown in Appendix B. 

In general, the Volterra functional 7^, and the Wiener functional Qp of the 

same system are different. The Volterra representation of a general nonlinear system 

is 

x{n) = Y,'HiMn)} (3-19) 

while the Wiener representation of the same system is 

x(n) = f:Gi[9i;w(n)} (3-20) 
i=o 

(In both cases the sum is possibly finite.) Since the Volterra functional are homo- 

geneous, the Volterra functional of some degree p in (3.19) is obtained by combining 

all the pth degree kernels in (3.20). For a finite order system the Volterra functional 

is obtained by summing the leading and the derived functional of the same degree 

along the columns of Table 1.1 while the G-functionals are formed by summing along 

the rows in the same table. The G-functional expansion of Hp is therefore 

oo 

np[uin)} =  £ Gp(p+2m)[$p(p+2n0; "'(")] ^^ 

and the kernels hp and gp{p+2m) are related in an analogous way. 

From the above considerations it is important to observe the following: 

1. The Wiener functional and kernels are functions of the power level of the input 

a\ while the Volterra functionals and kernels are invariant with the power level 

of the system input. Further, the Wiener G-functionals are not orthogonal 

unless the input is white Gaussian with variance a\. 
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G functional homogeneous functionals 

Go Go 
Gx G> 
Ql G0(2) G2 

G% Gi(s) G3 

Q4 Go(4) G2(4) G4 

05 G1(5) G3(5) G5 

Volterra fuctionals:    H0       H\       %       W3       ft4    %>    • • • 

TABLE 3.1: The relation between the Wiener and Volterra functionals 

2. The class of systems describable by the Volterra representation is a proper 

subset of the class of systems describable by the Wiener G-functionals. Since 

the Wiener G-functional series is an orthogonal series for the white Gaussian 

input, it does not require the restriction on the magnitude of the input to 

avoid the strict convergence problem as in the case of Volterra series. This 

means that a system may have a G-functional representation and not a Volterra 

series representation. Any system that can be represented by a Volterra series, 

however, can also have a G-functional representation.1 

Before continuing the development of the Wiener theory, it is necessary to 

point out two important additional properties of the G-functionals. First, it follows 

from the general form of the functional and (3.14)-(3.17) that the G-functional is 

linear with respect to its kernel, i.e.. 

6P[cigP + c2/P; w(n)} = ClGP[gP: w{n)] + c2Qp[fp; w(n)} (3.22) 

where d and c2 are any real or complex constants. Secondly, the expectation of the 

product of any two G-functionals (say for two different nonlinear systems) is given 

1See [17] for further discussion. 
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by 

where 

eiG^MnMnUH-Mn)]} = { ^(ffo)   for £ = ft (3'23) 

OO 00 

7pl(^o)=Pi!^Pl 5: ... £ fe(*i,fe,-,^)/ft(*i,^-i*»i) (3-24) 

The latter is equivalent to taking the expectation of the product of the two leading 

kernels only. The proof of these statements is also given in Appendix B. 

2.  Orthogonal Development of the G-Functional 

It is shown (in Section C of this chapter) that the Wiener kernel gp can be 

expanded in the p-dimensional discrete Laguerre series 

ft(*l,k, ■■-,**)=    E   •••   E   Cm,m,..^W*l)W*«) ••■-*«,(**) (3-25> 
mi=0 mT=0 

where Am(fc) is the mth degree discrete Laguerre function and that the G-functional 

of X^\k) can be correspondingly expanded in the form 

LfJ  /   ,uD,,.2u  roc i (*-*») 

QP[^Mn)} = E^^ L?oA,(Ä>(n " H (3'26) 

for white noise with variance a\. It is thus seen that Qv\gv: u\n)\ can be represented 

by sums of products of terms 

y<(n) = £>(*)"'("-*) (3-27) 
fc=0 

where y^n) is the output of a system whose impulse response is the iih degree La- 

guerre function A<(/?) and whose input is w{n). This output is also a zero-mean 

Gaussian process with variance a\. Thus from (3.26) it is seen that Qv can be rep- 

resented by a set of linear systems that provide all of the "memory" followed by a 

nonlinear system without memory that acts to form sums of products of the yi(n). 
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section 1 section 2 section 3 

w(n) 

N[0,a2 

Linear 
with 

memory 

Nonlinear 
with no 
memory 

Multiply 
and 
sum 

x(n) 

Figure 3.1: The Wiener model of nonlinear processes. 

Further, the coefficients in (3.26) can be identified as those of the Hermite polynomi- 

als. Therefore (using the linearity property (3.22)) the G-functional is simply given 

by the equation 

N 

(3.28) GP[gP\w{n)]=  Yl ••■ ]C Cmi-m, n^i^ym^n)) 
mi=0 mr=0 j=l 

in which m^  ^ rc?j2 for ji / j2 and Y?j=i Pi — V-   The Hermite polynomials are 

orthogonal and the expectation of the product of two polynomials is given by 

£{HPl(j/mi(n))HP2(ym2 (n))} = SPlP76TniTn2p1\alPl (3.29) 

Since the Wiener representation of a nonlinear system is the sum of G-functionals, 

it follows that the system has the same form of representation as the individual 

Gp[gp'-w(n)]. If the nonlinear system model is driven by the required white Gaus- 

sian noise, we have a rich representation for a large class of random processes. Fig. 

3.1 thus represents what will be referred to as Wiener model of nonlinear processes. 

This model consists of three sections. Section 1 is a single-input multi-output linear 
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system with memory that can be represented as a bank of linear filters driven by 

the same input w(n).  The input w(n) is a zero-mean white Gaussian process with 

variance c\. The impulse responses of the filters in section 1 are the discrete Laguerre 

functions; 

Fig.   3.2 shows the structure of this section which, in general, has infinite length. 

Section 2 is a multi-input multi-output system with no memory, which can be repre- 

Ao(n) 
yo(n 

Ai(n) 
yM 

w(n) A2(") 
yM 

• 

Ajv(n) 
ys{n 

Figure 3.2: Section 1 of the Wiener model 

sented by an infinite bank of identical memoryless nonlinear single-input multi-output 

blocks, each driven by one of the outputs of section 1. Each block of this section con- 

sists of parallel nonlinear functions described by the Hermite polynomials. Although 
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in the general model this section may also be infinite, processes with a finite degree 

of nonlinearity will require sections only up to some finite order NN- The structure 

of one of the nonlinear blocks is shown in Fig.     3.3.   Section 3 is a multi-input 

- » Ho(Vi(n))  ■..,..» 

 » Hi(yi(n)) ■■+» 

yd"', 

 «. H2(yi(n)) — ■  » 

• 

»' HNN{yi(n))  ». 

Figure 3.3: Section 2 of the general Wiener model. 

single-output memoryless system whose inputs are the outputs of section 2. The 

model output is the weighted sum of certain products of the inputs. The products 

are formed by taking one and only one output from each block in section 2. Sec- 

tions 1 and 2 are the same for all systems and therefore all processes in the Wiener 

class. The parameters, which are the weighting coefficients of section 3, characterize 

a particular process. In this case a stationary finite-moment random process can be 
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approximated by a finite size Wiener model [17]. The model size is given by : 

1. The highest order, NL, of the Laguerre functions in section 1. This section con- 

sists of the NL+1 systems with impulse responses given by A0(n), A^n), • • •, A*»- 

It will be seen shortly that the order NL roughly corresponds to the "length of 

memory" of the nonlinear system. 

2. The highest order, NN, of the Hermite polynomials in each of the nonlinear 

blocks of section 2. Therefore, each block consists of NN + 1 parallel nonlinear 

memoryless systems described by the Hermite polynomials H0(w(0), Hi(y<(0), 

• • • ,HwK(y*(<))- As mentioned earlier, this corresponds to the degree of non- 

linearity present in the process (quadratic, cubic, etc. ). 

Let us now consider a particular vector of indices a,  of size A'L + 1 defined as 

cti  = [cno-aii-,''- ,<*iNi.] 

with 

(3.30; 

ay €{0,L ■■-,**} for j = 0.1. • • •, SL (3.31! 

Then the model output is given by 
NN NL 

s[aj]=o       i=o 

(3.32) 

in which the summation is over all vectors a, such that the sum of the components 

is less than or equal to NN. For a particular a< the term 

Qoi(n) = nH-^w(")) (3-33) 

3=0 

is a multidimensional Hermite polynomial in the outputs of the linear section. We 

can refer to this multidimensional Hermite polynomial as the Q-polynomial. Thus 

the model output can be written more concisely as 
NN 

(n)=    £    cai<W") (3-34] 

s[a,-]=o 
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The quantity £[a<] is the order of the functional represented by the Q-polynomial 

Qa.(n). The Q-polynomials are zero mean except for the one with index a0 = 0 

where the mean equals one. Then 

5{x(n)} = co (3-35) 

C. DEVELOPMENT OF THE LINEAR SECTION OF THE 
DISCRETE WIENER MODEL 

A discrete nonlinear system that is a member of the Wiener class of nonlinear 

sytems can be represented using the G-functional representation. The kernels of the 

G-functional have the property 

OO OO 00 

£ £-"E#*i<*»--'**)<0° (3-36) 

fci=Ofc2=0 kj,=0 

Therefore these kernels can be expanded in terms of a complete set of orthonor- 

mal functions. In this section we derive the expression for these functions which 

were shown to be the transfer functions of the bank of the linear systems that rep- 

resent section 1 of the model. We also develop the orthogonal expansion of the 

G-functionals. 

1.  The Transfer Functions of the Linear Bank, the 
Discrete Laguerre Functions 

The single-sided discrete time function vm(n) of order m is defined as 

vm(n) =     „ n!      „Pw-m"(" - m) |i| < 1 (3.37) 
m\(n — my 

where u{n) is the unit step function. The r-transform of i.'m(") is easily shown to be 
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Since the functions vm(n) can be thought of as individual terms of a polynomial, it is 

resonable to expect that an arbitrary time function, say <£(n), could be represented 

in some way by a weighted sum of the vm(n). The problem is more tractable however 

if we instead use a set of orthonormal functions, derived from the vm(n), in the 

representation. These functions denoted by A<(n) can be derived as follows. 

The functions Aj(n) are formed by a linear combination 

A;(n) = J2 ««-(«) (3-39) 
m=0 

with z-transform 

A*(r) = £ CmiVm(=) (3-40) 
m=0 

The coefficients cw for m = 0, L • • •, ? and i = 0,1.2.3, • • • need to be determined 

such that 

YlXil(n)Xl2(n) = 6iii2 (3.41) 
n=0 

which is equivalent to 

-L/   =-1Ail(z)Ai,(z-1)dz = 6ilia (3.42) 
Z7TJ JCl 

where the contour Cl is the unit circle in the complex 2-plane. 

To satisfy the conditions, we proceed as follows.    Substituting (3.38) in 

(3.40) we obtain 

Ai{Z)   =   So^(=-P)m+1 

CQjZJZ - pY + CUZ(Z - pY'1 + • • • + CjjZ 

(z-P)i+' 

Coi 
v~   - P)i+l 

where Pi{z) is an ith degree polynomial in z that can be factored as 

(3.43) 

Pi(z) = (z - zr)(z -z2)---(z- Zi) (3.44; 

66 



Then 

Ai{z) - cot {z _ py+1  (3.45) 

is a rational polynomial function which has one zero at the origin, i zeros at z1, z2,• • •, Z{, 

and (i -f 1) poles at p. Now since 

A,(.-)=-<*,-<*" (n *.) ''-^''igy*-*'1*    (3.46) 

it follows that 

2nj Jc\ (z - p)^+1{z- p-1)^1 

-1* 
XJ_/ (>-^i)(^-^)---(~-^)(g-^r1)(^^1)-u-gfa1

/l 

(3.47) 

which in general is not zero.   If the coefficients coi.cji.---.Cji in (3.43) are chosen 

however such that the zeros 

z\ = z2 = • • • = p 

then (3.45) becomes 

and (3.47) becomes 

^-i[z-^WAitiz-^dz^-coi^p-^-^f   {2~ P~[r~l~1 dz     (3.49) 2nj Jc\ 2TTJ JC\   {Z - /j)«!^4-1 v       ; 

If ?'i < i2 the integrand does not have any poles inside the unit circle, which means 

that the integral equals to zero. If ^ > i2 then it has ^ - i2 + 1 poles at p but the 

integral is also equal to zero since 

1        ^1_*'2 . ,  ■    •    , .p-iyi-*2-i = 0 

(?'i -^IcL^-'* 



Therefore the functions \i(n) whose transform is given by (3.48) satisfy the orthog- 

onality condition. 

To normalize this set of orthogonal functions, set h = «2 = * ™ (3-49) and 

equate to 1: 

i-/nr'A,(,)A*-')i = -^-"-'inLiz-Au- -dz 

"   ^(P-P-
1
: 

= 1 (3.50) 

Thus it follows that 

«* = A/i-7 (3'51) 

and 
-IN» 

M*) = v^7/ff^f        M > H (3-52) 

To obtain an expression for c^ in (3.39). equation (3.52) is put in the form 

Mz-p-'Y 
Hz)  =  x/wV (2_p)i+i 

=   0^^77zWt(c-p)-p"1(1"^ >-*>)* 

-2xm /    I 

{<■ ~ P)     m=o v 

3m-fl    I    I 

,;-PY 

m=0 v ' 

= £(-irv-m(i-?2) * I m  
v-(-~) 

m=0 V ' 

Equating the coefficients of Vm(z) in (3.40) and (3.53) we obtain 

(3.53) 

^m: , = (-i)V-"u-pam'm f3-54) 
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Then substituting (3.37) and (3.54) in (3.39) we arrive at the explicit expression 

M») = E(-i)V-"(i-^)^(:)^bj!^""(«--) 
m=0 \ / v > 

= \A^7 E(-l)m ( 'm ) ( I ) (1 - P2rpi+n-,m<n - m) (3.55) 

This is the discrete Laguerre function Aj(n) which describes the impulse response of 

the ith system in the bank of linear filters in the discrete Wiener model. The bank 

of linear filters comprising section 1 of the model is then represented by the impulse 

responses described by the discrete Laguerre functions. 

Basic results on the discrete Laguerre functions can be found in [25, 26, 27]. 

This complete set of orthonormal functions has recently gained considerable interest 

in linear system applications. Among these applications are the problem of iden- 

tification of causal stable systems [28. 29, 30], the design of adaptive filters [31] 

and the analysis and computation of local and running cross-correlation functions 

using Lagurre cross-correlation sequences [32, 31]. The expression (3.55), although 

formidable in the time domain, will be shown to have an exceptionally convenient 

interpretation in the transform domain which not only provides insight about prop- 

erties of the discrete Laguerre functions, but also leads to simple procedures for their 

computation. However, we first show that the Wiener G-functionals can indeed be 

expanded in terms of the discrete Laguerre functions and therefore that the structure 

shown in Fig. 3.1 is an appropriate one. 

2.  Orthogonal Expansion of the G-Functionals 

Given a set of orthogonal functions in one variable, a function of several 

variables can be expanded as a sum of products of these functions. Thus the Wiener 

kernel gp can be expanded in the p-dimensional series 
oo oo 

gP{ki<h'----.kp) =   ]C   ""   X]   Cmim2-mpAm1(^l)Amj(/r2)---Amj)(fcp) (3.56) 
mi—0 mp—0 
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where Xm(k) is the mth degree discrete Laguerre function and the coefficients cmim2..mp 

are given by 

OO 00 

Cmirn3.^f=E'--E9Ah,k2r--,kp)Xrnl(h)Xm3(k2)-'^rnt(kp) (3.57) 
fc,=0        k,=0 

In this expansion the kernels remain symmetric with respect to the time arguments 

since the indices mi through mp assume the same set of values from the the integers 

in the set [0,oo). By Applying the linearity property (3.22) and the expansion in 

(3.56), it can be seen that the pth degree G-functional has an expansion of the form 

OO OO 

gp[gp;w(n)]= X) ••• £ ^^...^^[A^A^ ••• Xmp;w(n)} (3.58) 
T7»l=0 T7lj, = 0 

where Q)L is a nonhomogeneous functional with leading kernel gp = Ami Am, • ■ • Xmp. 

The kernels of each term in this functional expansion may have the Laguerre functions 

repeated; therefore we write an individual kernel in the form 

ot = APl A"2 • • • \PN (3.59) 

such that 
N 

Y,Pi=V M = l,2.---or p (3.60) 

It is important to point out that this kernel gp is not symmetric with respect to its 

arguments; but the sum (3.56) or (3.58) produces a kernel gp which is symmetric. 

This happens because other kernels in the sum have time arguments that permute 

in the functions \[Pi\ To give an example, for N = 2 and pl + p2 = p the leading 

homogeneous functional Gp[gp: w{n)] can be written as 



GllX^h^; w(n)} = 

xw(n - h)w(n - k») • • • w{n - kp) 

= £••■ £ Ail(fc1)Ail(fc2)---Ail(fcPlHn-fc1H"-M--^("-^) 
*i=o     *,1=o 

xf>- E Ail(ifc1)Ail(ibJ)...Ail(^Mn-fciHn-^)-u,(n-^ 

= GPl[ASr^(n)]G^[ASr);-(n)] (3-61) 

To keep the symmetry property we could repeat the expansion terms (*+„)! times 

permuting the time arguments and divide their sum by (Pl + *)!• In this case 

however, each term would give us the same value, namely 

Then we would multiply again by (Pl + ft)! which leads to the same result if we 

assume that the kernels of the homogeneous functional are symmetric. In general 

for any value of A' 

Gt[A(pOA(p>)... A(-); t,(n)] = GPi[A^; rc(n))G^]: *'(")]''' ^PN[^ -(*)] 
P   H     *2 tN (3.62) 

The derived kernels of the G-functional are related to the leading kernel by (3.14)- 

(3.17) and the functions A* are orthogonal i.e. 

Y, *i(k)\j(k) = 6a (3-63) 
fc=o 

In the above example, the derived homogeneous functional are obtained by reducing 

the order of the kernel using (3.17). letting two time arguments be equal and summing 

over their value in the range [0. oo). Since the symmetry of the kernel includes terms 

of all possible permutations of the time arguments, we have three cases 
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• Summing the product Ai,(fc)Ai,(fc) which equals one; therefore the exponent pa 

is reduced to pi — 2 while pz remains the same. 

• Summing the product Aja(fc)A;,(fc) which equals one; therefore the exponent p2 

is reduced to P2 — 2 while p\ remains the same. 

• Summing the product Atl(fc)Aj2(fc) which equals zero from the orthogonality 

property. 

Thus the required functionals are obtained by just reducing the exponents two at a 

time and permuting all of these reductions among the A's. In this way we arrive at the 

results mentioned in (3.26) for the G-functional in which Qp[gp\w{n)) is represented 

by sums of products of terms t/;(rc) as given by (3.27). 

3.  Realization of Section 1 of the Wiener Model 

Having shown that the Wiener G-functionals can indeed be expanded in 

terms of the discrete Laguerre functions, let us return to the form of these functions 

and the corresponding realization of section 1 in Fig.  3.1.  Equation (3.52) can be 

put in the form 

(3.64) 
*<(--) = V^(7^j 

P(= - P 

or 

Hz) = Ac 

(* " P) 

P(z-P~1)' 

P) 
(3.65) 

for which 

A0(~~) = JV^?-^- (3.66) 
(z - P) 

Since for \p\ < 1 the term in brackets is the transfer function of an allpass causal 

stable linear filter 

Hap( = )=^:     ^' = JL-l— (3.67 P(z -p-1) P- _   - — l 

(z -p) 
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w(n) 

l-pz-i 

' 
Vo(n) 

■ ' yi(n Vi(n) 

Figure 3.4: Realization of section 1 of the model. 

it follows that Ai(z) can be written as 

A,-(r) = A,-_1(r)//, ap\ (3.68) 

or 

Hz) = A0(z)Hi opv (3.69) 

Since section 1 of the model required a bank of the A;(n) this means that section 1 

can be realized by a linear stable causal system with a single pole at p followed by a 

train of cascaded allpass filters each with a transfer function Hap{z) as shown in Fig. 

3.4. The frequency response of the leading Laguerre system Ao(eJIJ) is shown in Fig. 

3.5 for p — 0.5. while the frequency response of the allpass filter Hap(e^u) is shown 

in Fig. 3.6.    The impulse response of the allpass filter is given by 

hap{n) = p8(n)-{l-p2)p^-^u{n-r (3.70) 

Beginning with 

Ao(fr) = v/l - p2pku(k) 

the remaining functions can be computed by the convolution form 

(3.7i; 

A;(7?) = Xi-i(n) * hapin (3.72) 



0.5 

0 

-0.5 

-1 

w rad/sec 

Figure 3.5: The leading Laguerre function A0(eJ"") for p = 0.5. 

o 
w rad/sec 

w rad/sec 

Figure 3.6: The allpass filter transfer function Hap(eju) for p = 0.5. 
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Figure 3.7: Example of the discrete Laguerre functions for p = 0.5 

or by the recurrence relation 

\i(n) = p\i(n - 1) + p\-\{n) - Xi-i{n - 1) 

30 

(3.73) 

An example of four discrete Laguerre functions for p = 0.5 is shown in Fig. 3.7. Note 

how the energy in the sequence tends to move away further from the origin as the 

order increases. Thus when these functions are convolved with an input waveform 

the higher order Laguerre filters tend to bring in more of the "past history" of the 

waveform. 

D. CROSS-CORRELATION FUNCTIONS AND CROSS- 
SPECTRA OF THE OUTPUTS OF THE LAGUERRE 
SYSTEMS 

An important part of this dissertation is to derive expressions for the higher 

order statistics (moments, cumulants, polyspectra) of the output x(n) of the Wiener 

model. Given the structure of the model, these higher order statistics will involve 

cross-moments between the outputs of the linear systems comprising section 1. Since 
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these outputs are Gaussian and have zero mean, it is sufficient to describe their 

cross-correlation. It will be seen that because of the considerable structure brought 

to the problem by the use of the discrete Laguerre functions, these cross-correlation 

functions inherit a number of interesting properties. This in turn provides a basis for 

the organized computation of the Wiener model's higher-order statistics. 

1. The Laguerre Cross-Correlation Sequences and Their 
Transforms 

The cross-correlation function between the outputs y<, and yi3 of the linear 

section is given by 

=   M E K(h)w(n - h) f) Xi2(k2)w(n + 1 - k2) 
lfc1=0 k3=0 ) 

OO 00 

=    E  E kiihWiMSMn-hMn + l-h)} (3.74) 
fc1=0fc2=0 

since w(n) is white Gaussian with variance a\ 

£{w{n - h)w{n + / - k2)} = <T0
2
<5(/ + h - k2) (3.75) 

and (3.74) becomes 

=   ^1(0 (3-76) 
where 

r*lA(/) = f;Ail(A:)Aia(/ + fr) (3.77) 
fc=0 

The quantity riuil{l) will be called the Laguerre cross-correlation sequence.   From 

well-known properties of the ^-transform it can also be expressed as 

nlli2(/) = ^-/   .'-^„(^A^-1)^ (3.78) 
2-j Jci 



The complex cross-spectral density function SWl,W2 (z) is the ^-transform of the cross- 

correlation function Ryh,yi3{l) and is then given by 

SKlM.{z) = vUhM (3.79) 

where s^ ,»,(*) is the z-transform of the Laguerre cross-correlation sequence 

l=-oo 

-I 

with 

••■•*<"=277 £/~1^w<fc 

(3.80) 

(3.81) 

The quantity silti2{z) will be referred to as the Laguerre cross-spectral density func- 

tion. Then by comparing (3.78) and(3.80) and substituting (3.65) we have 

*!,*(*)   =   Aij(r)Ail(r 

=   (W2) 

-1. 

»2 ,-1 

P{~~- 

-l~P) 

(~ -P)      \ 

Pi*-1-?-1: 
p) 

(3.82) 
P       iz ~ p)(z ~ P'1'. 

This function has the interesting property that it depends only on the difference 

between the orders of the two Laguerre linear system outputs and not on the actual 

values of the orders. If the order difference is denoted by 

d = i2- i\ 

the Laguerre cross-spectral density function is 

(I-P2) 

(3.83) 

sd{z) = -■ 
p      (z-p)(z-p-*) 

P[z-P K 
[z-p) 

(3.84) 

and the complex cross-spectral density function of the two outputs is given by 

- vii .y.j [z) =<T0sia-il(: (3.85) 
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By the same considerations, the Laguerre cross-correlation sequence is a 

function only of the difference d = i2 - i\ and can be denoted by 

riiii(l) = rii-il{l) = rd{l) (3-86) 

Therefore (3.76) can also be written as 

i^,K,(/) = *,-<,(') (3-8?) 

Since the Laguerre cross-correlation sequences and their transforms depend only on 

the order difference d, it is interesting to examine their behavior for different values 

of this parameter. The leading cross-spectral density function for which d = 0 is the 

complex power spectral density function of the output of any of the Laguerre systems 

and is given by 

<? M - a2sn(~) -       g°(1"p2) (3.88) 

The corresponding autocorrelation function is 

W) = alMl) = ^ (3.89) 

Further (3.84) indicates that 

Sd(z)     =      Srf-l(£)//ap(z) 

=   s»{z)HdJz) (3.90) 

Fig. 3.8 shows a plot of the sequence r0(/) for p = 0.5 and the corresponding power 

spectral density function 5o(e*"), which is S0(z) evaluated on the unit circle. Starting 

with r0(l) the Laguerre cross-correlation sequence can be derived by the convolution 

form 

rd{l) = ri-1(l)*hv(l) (3.91) 

or by the recurrence relation 

rd(l) = prd(l - 1) + prd^{l) - rd^{l - 1) (3.92) 

78 



1 

0.8 

0.6 

0.4 

0.2 

-°10 

1.5 

1 

0.5 

-3 

-2 0 
I 

10 

-2 -1 
w rad/sec 

Figure 3.8: The Laguerre autocorrelation sequence r0(l) and power spectral function 
s0{ejw) for p = 0.5. 

6{l) 
(I-P2)P P-z-i 

1-pz-1 (1-P2-»)(1-PZ) 

1 I) ' rid) 
■ 

Figure 3.9: The generation of the Laguerre cross-correlation function. 

Both of these relations follow from considerations similar to those in section C. Fur- 

ther, the sequence can be thought of as the "impulse response" of the ''system'1 shown 

in Fig. 3.9. This picture does not represent a real system, but only a convenient way 

to show the relation between the Laguerre cross-correlstion sequences. 

By substituting (3.84) in (3.81). rj(l) has the representation 

r*(l)    =    TJ-.t   ^sd{z)dz 
27T.7 JCl 

2-j Jc 

l-rrj 

T 
J( -l\d-l 

:~--p)d+1 
-dz (3.93) 
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with the following characteristics: 

1. For d> 0 and / = 0 

r,(0) = -(l-^)/-l^-^-'=0 (3.94) 

(This is a restatement of the fact that the i/;(n) are orthogonal.) 

2. For d > 0 and / < 0 a change of variables z = V1 can be made in (3.93). Then 

since the integrand has no poles inside the unit circle. In other words, for d > 0 

the rd(l) are strictly right-sided. 

3. For d > 0 and / > 0 (3.93) can be evaluated as 

rd(l)    =    -(WV-^^-p-1)'-1] 

_ (1   ^y   (-irv + i-mY-   p-^   (3.96) 

which provides an explicit expression for rd{I). 

We also note here that negative values of d need not be considered explicitly since 

from the definition (3.77) with d = z'i - 17. 

r-d(l) = rd(-/) 

Characteristics 1 and 2 above imply that the cross-correlation function (not the auto- 

correlation) of the outputs of the Laguerre systems is zero if the output of a higher 

Laguerre order system is averaged with the output of a lower Laguerre order system 

at an equal or greater time lag. In other words, the output of a Laguerre system is 

orthogonal to (uncorrelated with) the future values of the output of the lower order 

Laguerre system. An example of the first four Laguerre cross-correlation sequences 

is shown in Fig. 3.10. 
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Figure 3.10: Laguerre cross-correlation functions for p = 0.5. 

2.  The Effect of the Parameter p on the System 
Characteristic 

The above derivations of the transfer functions and cross-spectrum (impulse 

responses and cross-correlation) were carried out for real values of the system pole 

location p. The impulse response of any stable causal system can be expanded in 

terms of the complete orthonormal set of discrete Laguerre functions. The expansion 

generally requires an infinite number of these functions. When an impulse response 

is approximated as a finite weighted sum of Laguerre functions however, the error 

in this expansion is affected by the choice of the parameter p (pole location in the 

complex 2-plane). Stated another way, for a given mean square approximation error, 

the minimum number of terms in the expansion is reduced when p is appropriately 

chosen. For positive real p the linear system has a lowpass characteristic. If the 

system is required to have a highpass characteristic the best choice of p is on the 

real negative axis. For a system with a bandpass characteristic the pole is best 

chosen as a complex value. This leads to a system with a complex output. However. 
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combining the response of two systems with parameters p and p* (p conjugate) as 

shown in Fig. 3.11 produces a real output process with essentially the same statistical 

characteristics. This follows because conjugating p merely results in conjugation of 

the functionals Qp in the Wiener representation (see (3.20)).   To obtain the real- 

Wiener model 
with parameter 

P 
• w(n) 
S    , 

m°i] 
J 

Wiener model 
with parameter 

P' 

x(n) 

Figure 3.11: The nonlinear model for bandpass processes 

valued output shown in Fig. 3.11 we can equivalently work with the top system and 

take the real part of its output. When a complex value of p is used, (3.66),(3.67) and 

(3.84) need to be modified slightly. 

1. The leading Laguerre function becomes: 

Ao( = fi P) 

2. The allpass filter transfer function becomes: 

^*      ~-i 
H, ap\ 

[z-p) 1 - pz-i 

3. The leading Laguerre cross-spectrum becomes: 

(1-l/f) 
SQ{Z) = 

(z-p)(z-*-p) 

(3.97) 

(3.98) 

(3.99) 
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These have the frequency characteristics similar to those for real positive p except 

for a shift on the frequency axis equal to Lp. 

S3 
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IV.  CUMULANTS AND POLYSPECTRA OF 
THE WIENER MODEL OUTPUT 

As has been mentioned earlier, our interest in the Wiener model is to represent 

a class of discrete random processes. The output of the Wiener model has been 

shown to be represented as the weighted sum of multinomials (3.34) known as the Q- 

polynomials. These multinomials are denoted by Qa; and each was shown in (3.33) 

to be formed as a specific product of the outputs of the memoryless nonlinear blocks 

of section 3 of the model. Since each of these outputs is represented by a Hermite 

polynomial formed from the output of a linear system driven by a zero-mean white 

Gaussian process, the Q-polynomial is a sum of functionals of a white Gaussian 

process similar to those discussed in Chapter II. Thus the procedures developed 

in that chapter to calculate the cross-moments and the cross-spectral functions for 

this type of functionals can be applied here to develop cumulants and polyspectra of 

processes represented by the Wiener model. Moreover, since the impulse responses of 

the linear filters in section 1 are the discrete Laguerre functions, the cross-correlation 

functions and cross-spectral functions of the outputs of the linear filters were shown 

to have special properties which result in a structured method of representing the 

required cumulants and polyspectra of the modeled process. 

In the following section we present a detailed view of the Wiener model and 

define the Q-polynomials for a model of specific dimensions. In the next sections we 

formulate the process cumulants and develop an organized procedure for their eval- 

uation. In the last section that we formulate expressions for the process polyspectra 

and develop a procedure for their evaluation. 
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A. THE DETAILED WIENER MODEL 

We consider here a finite version of the Wiener model for discrete nonlinear 

systems presented in Chapter III defined by the two model dimensions NL and JVjy. 

The integer NL is the highest order of discrete Laguerre functions representing the 

impulse responses of the linear filters comprising section 1 of the model; that is, 

section 1 consists of NL + 1 filters with impulse responses given by the discrete 

Laguerre functions A0(n), Ai(n), • • •, X^L(n). The integer Ns is the highest degree of 

nonlinearity in each memoryless nonlinear block comprising section 2 of the model. 

Nff is therefore the order of the highest order Hermite polynomial in these blocks, 

which is the highest degree of nonlinearity in this representation. The complete 

structure of this model is shown in Fig. 4.1 for NL — Njf = 2. In general if a 

system is used to model a process with nonlinearity degree p. the lower degrees of 

nonlinearity are also included in the representation. This follows since the system is 

represented using the Wiener G-functionals Qo-Gi- • • • -Gp-i-Gp- The following rules 

are therefore necessary to define the Q-polynomials. 

1. The kernels of the G-functionals are symmetric with respect to their time ar- 

guments. Therefore the expansion of the leading kernel in terms of a product 

of discrete Laguerre functions must include all the possible permutations of 

products of these functions with total sum of exponents equal to the order of 

the kernel. This means that the G-functional is a sum of terms each formed 

by one of the possible permutations of products of Hermite polynomials whose 

sum of orders is equal to the functional order. Therefore in the model represen- 

tation the pth degree nonlinearity is represented by all the possible permutations 

of products of the outputs of section 2 that result in multinomials of degree p. 
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tfo(y2) 

A2(n) 
y2(n) 

#1(3/2) 

#2(2/2) 

x [n\ 

Figure 4.1: The detailed Wiener model for A'L = 2 and Ajv = 2. 

2. The relation between the derived kernels and the leading kernel of the G- 

functional implies that when a Hermite polynomial of one of the linear section 

outputs is included in the product, no other polynomials of the same output 

are included.  Therefore in each permutation of the products of the outputs of 

section 2, one and only one output is taken from each nonlinear block at a time. 

3. If the nonlinearity of the process is required to be of degree NN- the expression 

for the nonlinear system output does not include functionals of order greater 

than Njf. This means that the sum of the orders of Hermite polynomials in 

each term does not exceed AJV. 
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Recall from Chapter III that the Q-polynomials, which replace the G-functional 

representation of the output of the model, are formed as follows: 

1. Each polynomial is assigned a vector of indices 

oti  = [aio,ctii,-",aufL] 

The value of each component a^- G [0,1,2, • ■ •, NN] indicates the order of the 

Hermite polynomial of the corresponding output j/j(n) that is included in the 

product, i.e., 

Qtti(n)     =     Qa«,aa~aiwt(
n) 

=   nai0(y0(n))Hail(yi(n))---HailfL(yNL(n)) (4.1) 

2. The set of Q-polynomials are weighted and summed over all the possible values 

of the vectors oc{. To keep the symmetry property of the functional kernels, 

each a,, assumes the values 0.1,2, • • •, N^ for same vector a; in the set. The 

maximum degree of nonlinearity is maintained by keeping the sum of the com- 

ponents of (Xi less than or equal to A#• Hence the Q-polynomial representation 

of the output for specific dimensions Ni and A'jv is 

E[aj]=o 

The quantity £[<*;] (see (2.90)) is the order of the functional represented by the 

Q-polynomial Qa^n). When Efa^] = 0 we have the multinomial Qo which is the 

product of all H0(yi(«))- Since all Ho(t/i(n)) are equal to 1 it follows that Qo is also 

1. This term represents the zero-order homogeneous functional, which is a constant 

value. The weighted sum of Q-polynomials for which £[<*;] = 1 represents the linear 

portion of the representation and is equal to the non-homogeneous functional of 

first order Qi[w(n)}.   Similarly the Q-polynomials for which £[a;] = 2 represent 
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the quadratic part G2[w(n)], and so on. In our development of the cumulant and 

polyspectra expressions we will need to define a procedure for ordering the indices 

of the polynomials. We choose the following rules of ordering because they result in 

an organized structure of the arrays of the values of cross-moments and cross-spectra 

of the Q-polynomials required in our formulation. The indices are ordered using the 

vector notation 

ai > aj (4.3) 

with the following interpretation: 

1. a,- > atj if S[ot,-] > S[a,-]. In other words, the former is greater than the latter 

if it represents a functional of order greater than that represented by the latter. 

2. If E[a»] = S[aj], then oci > a, if the partial sums (below) satisfy 

£ aik > £ Qjk 3me[0A,2,--,NL) (4.4) 
k=m k=m 

In fact (4.4) defines the entire ordering since it includes the case m = 0. This 

means that if the Laguerre systems are divided into two groups, one vector of indices 

is considered greater than the other one if the group of the higher order Laguerre 

systems is represented by Hermite polynomials that have a greater sum of orders. 

For example if NL = 2 and Ns = 2 the output x(n) is comprised of the weighted 

sum of ten Q-polynomials that have indices CKJ  with the following descending order: 

002 > Oil > 020 > 101 > 110 > 200     second order (quadratic) terms 

001 > 010 > 100     first order (linear) terms 

000     zeroth order (constant) term 

(4.5) 
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NL/NN 1 2 3 4 
1 3 6 10 15 
2 4 10 20 35 
3 5 15 35 70 
4 6 21 56 126 
5 7 28 84 210 

TABLE 4.1: Number of section 3 parameters c„. for a set of model dimensions. 

In this example x(n) can be represented as 

002 

(n) =    E   caiQa,- 
aij=ooo 

(4.6) 

where the coefficients CQi are the parameters that define section 3 of the model. The 

number of coefficients N depends only on the value of the model dimensions NL and 

Nff and increases with both dimensions, as shown in Table 4.1. 

B.  CUMULANTS OF THE OUTPUT OF THE WIENER 
MODEL 

If the output of the Wiener model is represented as a sum of Q-polynomials (see 

(3.34)) then the kth order output cumulant can be written as 

xcum(Qai(n)-Qa3(n + h), .QajR + 4-i)) 

(4.7) 

To be notationally correct we should denote the as by a^.-'-.a^ but this nota- 

tion gets extremely cumbersome in the development that follows. Therefore aa for 

example should be interpreted as a generic index vector not simply the first one in 
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the set, and the sum over a2 is the sum over all such index vectors. We can write 

(4.7) more simply as 

a 

where 

Clk)(l) = Ec<*C&\l) (4.8) 
a 

Cg)(Z) = cum(Qa1(n),Qa3(n + /i),-", Qak(n + lh-i)) 

and a is a concatination of the vectors cti, that is 

a = [a/,a/,...,afc
r]r (4-9) 

while cat is the product of the coefficients 

ca = caica3---cak (4-10) 

and the sum in (4.8) is over all the possible permutation of the indices. 

The number of terms in (4.7) would seem to be equal to the number of the 

coefficients CQ raised to the power lc. which is a huge number even for low dimen- 

sional models, and increases exponentially as the order of the cumulant increases. 

Fortunately this is not the case because the cumulant Ca'(/) of Q-polynomials has 

properties that make its value identically zero for many well-defined combinations 

of the indices. In the following, we define the combinations of indices for which the 

terms in (4.7) are not equal to zero. Moreover from the combination of indices we 

develop a formula to compute the value of the cumulant. 

To obtain an expression for the A-^-order output cumulant of C^(l) we need to 

develop an expression for the fc^-order cross-cumulant of the Q-polynomials CQ (/). 

For these cumulants we need to compute the expectation of the product of the Q- 

polynomials (moments) and substitute in the moment-cumulant relations described 

in Chapter II. To develop the expression for these expectations we expand the Q- 

polynomials as the product of Hermite polynomials. These are in turn functions of 
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the Gaussian outputs y,- of the linear filters. The values of the components of the 

vectors of indices a together with the time lag arguments of the Q-polynomials can 

be used to determine if in a product of Laguerre cross-correlation sequences there 

exists at least one which is zero. This principle is used to construct a set of sufficient 

conditions on the vectors of indices such that the cumulant of the Q-polynomials 

is not identically zero. Then we can apply the procedure developed in Chapter III 

to find the desired expression. The analysis is presented in three subsections. First 

we form a general expression for the moments of Q-polynomials. Next we show by 

example how we simplify the general expression and eliminate most of the terms. 

Finally we present the general efficient procedure for computation of the cumulants. 

1.  General Expression for Moments of Q-Polynomials 

For a model of dimensions NL and NN the cross-moment of the Q-polynomials 

can be expressed as 

V&Hl)   =   £{Qa>)Qa> + /i)"-CW" + /*-i)} 

r^0m!(a-2m)! V 2 / 

(4.11) 

where 7?a-2mC) }S defined as the moment 

fa-amC) = e {Ya>-2mi(n)YQ>-2mj(n + /,)... Ya*-2m*(n + /*_i)}       (4.12) 

and where the following vector notation is used 
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r     T       T mT]T 
m = [mi,m2,---i

mfcJ 

r T    iT 
mi = [mi0, ma, •••■> miNL\ 

£=E  E- Eo m=0       moo=Omoi=0        mhsL-° 

y««-nn,(n) = ,„— („),-—(n)-^"2m<Ni(n) (4-13) 

We seek here to simplify this general expression, to outline its specific structure, and 

to show which terms need to be computed and which do not. The cross-moment of 

the Q-polynomials has been expanded as a weighted sum of expectations of prod- 

ucts of Gaussian variables ,£>. The weights in this summation are products of the 

coefficients of the Hermite polynomials. Since the sum of the exponents in each 

cross-moment 77a-2m 1S 

£[a - 2m] = E[a] - 2S[m] 

then the sum of exponents is even if S[a] is even. Thus a necessary condition for the 

cross-moments of the Q-polynomials to be non-zero is that the total sum of indices 

of the polynomials E[a] is even. The value of the cumulant in (4.8) is therefore the 

sum of the terms v»th indices a for which each S[a] is even. In this case the value 

of the cross-moment rff is obtained by following the procedure described in Chapter 

II. The symmetry properties of the cumulant functions of real stationary random 

processes are utilized in this respect to calculate the cumulants in the non-redundant 

region defined by 

0 >/!>/»■■•>/*-! (4-14) 

This choice ensures that the time lag arguments of the submatrices of C^ defined 

as R(n) in (2.88) are non-negative. The entries of these matrices are the cross- 

correlation functions of the outputs of the Laguerre filters comprising section 1 of 
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the model and this gives the matrices specific important structure. Recall that the 

Laguerre cross-correlation functions have the following properties: 

1. The index d of each cross-corelation function is a single integer representing 

the difference between the Laguerre orders i and j of the correlated outputs 

(d = j- •). 

2. The cross-correlation functions (not the autocorrelation functions) are strictly 

single sided; for positive values of d the function rd(l) is non-zero only for 

strictly positive values of the time lag /. 

It follows from the above that the diagonal {NL + 1) x {NL + 1) blocks denoted R(0) 

in (2.87) are the identity matrices because for / = 0 

rvi(O) •{ 
1   for d = 0 
0   for d ^ 0 

(4.15) 

For cumulant values in the non-redundant region, the off-diagonal blocks above the 

main diagonal are upper triangular and Toeplitz because for d > 0 and / > 0 rd{-l) 

is identically zero and rd(l) in general is not zero. The blocks have the form 

R(Z) 

ro(0    ri(l)    r2(l) 
0 r0(/)    ri(l) 
0 0 r0(/) 

TNL{1) 

nvL-i(0 
TNL-2(l) />0 (4.16) 

0 0 0 •■•   r0(/) 

Since the overall matrix C^(/) is symmetric the off diagonal blocks below the main 

diagonal are lower triangular. Then for the case of the fcth-order cumulant of the 

output of the Wiener model the matrix of cross-correlation sequences becomes 

C„(I) = 
R(0) 
RT(/i 

R(/i) 
R(0) 

R(/2) 
R(/2-/i) 

Rr(/*-i-M   RT(/*-i-/2)   R
T(k-i-h) 

R(/*-i) 
R(/*-i - h) 

R(0) 

(4.17; 

94 



where the R(0) blocks, as previously noted, are the identity matrix. 

The corresponding k(NL + 1) x k(NL + 1) multiplicity matrix M is con- 

structed such that no permutation resulting in a zero-valued term is allowed. Since 

the moment expression is a sum of the products of system cross-correlation sequences, 

the value of any term including a zero-valued entry of Cv is zero. In any permutation 

we must keep the multiplicity of a zero-valued entry of Cv equal to zero. Then an 

entry of M is zero if the corresponding entry of Cy is zero. This means that the 

ltiplicity matrix M has the same structure as C„, i.e., mu 

1. The matrix M is partitioned into k x k square blocks each of size {NL + 1) x 

(Ni + l). 

2. The diagonal blocks are also diagonal containing non-negative even-valued en- 

tries along the diagonal. 

3. The upper non-diagonal blocks are upper triangular and the matrix is symmet- 

ric. 

4. The values of the entries of M in the last column and in the last row or along the 

diagonal of the lower right block are dependent on the values of the preceding 

entries in the columns or rows. This dependence is required to maintain the 

condition that the sum along any row or column is equal to the corresponding 

exponent oy - 2m{j. We write this more simply using the reduction notation 

as 

S[M] = a - 2m 

As an example, consider computing the second order cumulant of a model 

with dimension NL = 2 . The matrix of the Laguerre cross-correlation sequences has 
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the form 

Cv(/) = 

1 0 0 r0(/)   rx(/) r2(l) 
0 10        0        r0(/) n(/) 
0        0 10        0 r0(/) 
r0(/)   0        0 10 0 

1 0 
0 1 

(4.18) 
0 
1 

ri(/)   r0(l)   0        0 
r*(t)   ra(/)   r0(/)   0 

where the above mentioned properties are evident. The associated multiplicity matrix 

M has a similar form and must satisfy the condition 

(4.19) 

" 2ii 0 0 «2 «3 «4 oio — 2m10 
0 2?'s 0 0 «6 «7 On - 2mn 

0 0 2*8 0 0 »9 Ql2 - 2mi2 

«2 0 0 2iio 0 0 a2o - 2m2o 
«3 «6 0 0 2»'ii 0 «21 - 2m2i 

.  *4 «7 *9 0 0 2*12  . „   ^   m . Ö22 — 2m22 

M 

Note that the vector on the right hand side represents the exponents of y{ in a 

specific term in the expression (4.11), and that the moment Va-xmO) is expressed 

using (2.92) as 

V&lun«) = 

= (O        5        (a, - 2ma)!(a3 - 2m2)! 

v^ _±_ 2(ffa) (CyQ1,Jl))
J£^ 2^> [CvUuh))»™ 

£[M]=a — am 2   2     Jl=i I—^—"J-       Ä=ii+i M(ji,h 

(4.20) 

In this example the entries of M are divided into two groups; the first is that of 

the independent entries {h. ?2,?3. i6, ieJs} and the second is that of the dependent 

entries {z4,?7, z9, i10, in, i12}. The summation 

E[M] = a - 2m 

is actually a multiple summation over the non-negative integer values of the inde- 

pendent entries while the dependent ones are determined from condition (4.19).  In 
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general, for a system of any size NL, the value of the kth-ovder cross-moment is given 

by 

Va Um(') = (^)"L-T-^(a1 - 2mi)!(a, - 2m2)! • ■ • (afc - 2mfc) 

1     fc(V} (C.feji))^ ^tf^ {C,Uuh))M«A) 

11 /M(i„Jl)M 11 Z^ »£*!      11 /Mfajihi .11 Af(?'i,?2)! 
s[M]=a-2m2   >       ii=i I     2     J!        Ä=ii+i        m\JiiJ*)- 

(4.21) 

Now we are ready to consider the cross-moment of the Q-polynomials which 

we denote by yr^. A necessary condition for this statistic to be non-zero is that S[a] 

is an even value and the permutations are arranged so that the specific structure of 

the multiplicity matrix M is kept as described above. In this case the value of the 

cros-moment is calculated by substituting (4.21) in (4.11) to obtain 

Pci 

L^J      L^J (-!)*«<*,!€*,!...«**! (o*0\
zlm] 

m5o    'm5omi!m2!-"mfeH«i-2m1)!(aa-2m2)!.--(afc-2mfe)! \2 ) 

x(cr0
2)a:ta^m'](a1 - 2ma)!(a3 - 2m2)! • ■ • (afc - 2m,)! 

1     *(*A+1) (Cv(ji. ja))^^ fc(yi} (CyüW,))"^ ,,_ 
•^ "(M)      11 /Af(ji,ji)u 11 A/h'i   ?', 

E[M]=a-2m2   2^    JI=I I      2;•        Js=Ji+l IY1Ul,J2 

Notice that since the first summations are over the terms mj, the dependent entries 

of the multiplicity matrix change to maintain the condition S[M] = a — 2m. The 

last equation can be simplified to 

i&V) 
,a,| ,Oj,       |Qfc i 

s[ai LTM L-^J       LTM (_i)=[m] 
= K2)   .   aJa,!...ofc!  £    £  •••  £   mJmJ .. .m,'(2^W 

mi=0m2=0       mt=0mlm2-       m*-^J 

X
s[MÄ-2m2^  ifii        (*^)!      i2ii+1     MOW»)' 

(4.23) 



It appears that the general expression (4.23) for the cross-moment of Q- 

polynomials is extremely complex. However it will be shown that considerable sim- 

plifications are possible and that when moments are combined to produce cumulants, 

even further simplifications arise. These combine to make the overall computation 

quite managable. 

2.  Rules for Computation of Moments of Q-polynomials 

The key to reducing (4.23) to a simple form is the following. Although we 

have specified some necessary conditions for the terms in (4.23) to be non-zero, these 

conditions are not sufficient. In fact, if we proceed in calculating the cumulant of 

the Q-polynomial according to the arrangement in (4.23) many computations are not 

necessary due to the following: 

1. For a large number of configurations of the values of the first summation pa- 

rameters m, there is no multiplicity matrix M with non-negative integer entries 

that satisfies the the condition S[M] = a - 2m. In these cases the correspond- 

ing term is equal to zero. 

2. In many other configurations there exsits a matrix M satisfying the above 

condition but the resulting terms sum to zero. Therefore the value of the 

moment is also zero. 

This results in a tremendous simplification of the resulting moment expressions and 

a corresponding savings in computation. For instance, in the case of the second-order 

moment of Q-polynomials of our example, (4.23) reduces to the considerably simpler 

expression 

(2)m      ,   2,mi     ,     ,aV2°ro2+i6+i9(/)ris+i7(/)r^(/) 
Pa(0 = (O   '   o.!a.!    J2    ~ ■ ■■   ■,•■•/ (4.24) 
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where the quantities i2, ü, ie, 17 and i9 depend upon the value of i3 as described in 

Appendix C. 

In Appendix C we examine the conditions for which we can avoid computing 

the terms in the Q-polynomial given by (4.11) which are identically zero. This leads 

to the following principles: 

1. The non-zero terms in the expression for the cross-moment of Q-polynomials 

come only from the expectation of the product of the first terms in the Hermite 

polynomials corresponding to m = 0. This means that the Q-polynomial cross- 

moment expression (4.11) reduces to a single term and that the computational 

effort is correspondingly reduced by a large factor. 

2. This expectation is taken in a special way such that the pairing permutations 

do not include any permutation that would result in the term r0(0) as a factor. 

This corresponds to setting the values of the diagonal entries of the multiplicity 

matrix M equal to zero. 

Although the Q-polynomial expression (4.23) is reduced to one term only, this term 

is also investigated to determine the relations between the components of the index 

vectors cti such that this term itself is not identically zero. The relations between 

the index vector components depend upon the order of the moment: therefore we 

develop these relations for each moment order below. 

a.    The First Order Moment (Mean) of the Q-polynomials 

The procedure described above can be applied to compute the value of 

the first order moment. In this case, according to the principles just cited, we take 

the moment of the product of only the first terms of the Hermite polynomials without 

allowing the pairing that results in having ro(0) as one of the quantities within the 
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product. In this case however, the matrix of cross-correlation sequences Cv in (4.17) 

is the upper-left block denoted by R(0) for which all of the off-diagonal entries are 

zero and the diagonal entries are ro(0) = 1. Also the M matrix is diagonal with 

even valued diagonal elements. If the sum of the components of the vector a is odd 

then it is clear that the mean is zero. For any a with even sum of components, the 

diagonal elements of M must satisfy 

E[M] = a 

This means that if a / 0 the diagonal elements are not equal to zero and each 

of the individual components a{j of the vector a must be even. In other words, 

when expanding the Q-polynomial using the Hermite polynomials and taking the 

expectation, the sum of the resulting terms has the form 

(1_l)T(l-l)^...(l-l)^ (4.25) 

which equals zero except for a = 0. In that case 

$) = S{QoW} = l 

Let us now apply this result to compute the mean of the process x(n) which is given 

by 

£{*(»)}   =   elZcaiQcLiin] 

=   Eca^Qc^n)} (4.26) 
<*i 

All the terms under summation are zero except the first one for which 

£ {x(n)} = c0£ {Qo} = co (4.27) 

Therefore CQ is equal to the mean of the process. Since the cumulants of a random 

process do not change when a constant is added to or subtracted from the process 
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we will henceforth assume that co is equal to zero and thus that x(n) has mean zero. 

If co is not zero, this affects only the mean of the process and not the higher order 

cumulants. 

b.   Second-Order Moment 

Let us now examine the moment 

$ = £{Q<xAn)Q<*,(n + I)} for/>0 

with 

and 

r< = [Q<O, an, ai2, • • •, o^-a), o^-i), OiffJ (4-28) 

a = [aJ,a/)T (4-29) 

From the principles stated above (see section IV.2) this moment is calculated as the 

expectation of the product of only the first term of each Hermite polynomial of order 

corresponding to the individual components of the two index vectors. Thus this 

moment becomes 

£{Qa»Qa> + 0} = 

£H{yrHyt11(n)yr(n)---y7L
NL(^yr(n + i)yr^ + i)---y7L

NL(n + i)} 

(4.30) 

where the operator SH denotes the expectation obtained by summing up all the 

possible pairing permutations excluding those that result in one or more instances 

ro(0). Since 

*on>(0) = £{yi(n)yi(n)} = £{yi{n + l)yi(n + /)} 

this means that all of the yj{n) or y,-(n + /) of the first term of a Hermite polynomial 

must be paired with those from oiher polynomials. Note also that the pairing with 
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other yj that have the same time argument is equal to zero because of the property 

rd(0) = 0 for d ^ 0. Finally, note that if is / is positive the variable t/i(n) of some 

Laguerre order can only be paired with another variable yj{n) with Laguerre order 

j > i. This follows because rd(l) = *•,-;(/) = 0 for j < i. Therefore, let us arrange 

the components of the index vectors according to the Laguerre order and the time 

index as follows 

VQ     J/i     V2     ■••   VNL-2       VNL-I       yNL 

n + l :     a20     "21     <*22     * * *    Q2(NL-2)    <*2(NL-1)     <*2NL 

n    :       aio   on   ai2   •••   QI(NL-2)   ai(jvt-i)   OINL 

To obtain a non-zero result j/jvL(n) can be paired with yNL(
n + 0 on^- Therefore the 

exponent of the latter must be greater than or equal to the exponent of the former, 

i.e., 

oc2Nh>alNL (4.31) 

Also since J/JVL-I("-) 
can be paired only with yNL-\{n + /) or ysL{n + 0 to obtain a 

nonzero result, the sum of the exponents of the two outputs with highest Laguerre 

orders must satisfy 

Q2NL + 0-2(^-1) > <>1NL + Ol(NL-l) (4.32) 

Continuing this argument leads to the set of conditions 

<*2NL + Q2(7Vx,-l) + Oj(JVt-2) > CtlNL + Ol(^-l) + 01(^-2) 

(>2NL + &2{NL-\) + &2{NL-2) + ®2{NL-3) > &1NL + aX{NL-l) + Ql(JVL-2) + <*l(NL-3) 

Q2NL + Q2(NL-1) H h O22 + Q21  > OINL + Q1(jvZi_1) -f h Q12 + On 

C*2NL + 02(JVL-1) + \~ «22 + Ö21 + Q20 > OciffL + Ql(tfL-l) + h Q12 + 0.n + Ö10 

(4.33) 
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Now let the vector /3* be defined as the vector composed of the rightmost m compo- 

nents of the vector c^. 

ßi = [Q<(tfL-,+2), • • •, otiffL, ai(tfL+i)] (4.34) 

This means that /3* represents the exponents of the outputs of the q systems with 

highest Laguerre orders. With this definition, (4.31)-(4.33) can be summarized as: 

ßl>ßl forq=l,2r>-,NL + l (4.35) 

where the last relation for q = Ni + 1, implies that the total sum of the components 

in a3 is greater than the total sum of the components in ax. 

Now. let us consider the relation of the index components starting with 

the outputs of the lowest Laguerre orders. The output y0{n + /) can be paired with 

yo(n) only. Therefore 

Qio > O-20 (4.36) 

The output ?/i(n + /) can be paired with yo(n) or y\{n) only, which implies that 

o-io + o-n > «20 + Q21 (4-37) 

By similar consideration the following relations must hold: 

OlO + On + Ö12) > Q20 + Q21 + O22 

Ö10 + OH + Ö12 + »13 > Q'20 + Ct2l + Q22 + Q23 

Ö10 + QlH h «1(^-2 + 0\{NL-\) > Q20 + 0-21 + 1" 0:2(NL-2) + 0-2(/Vj,-l) 

«10 + Oil + h Ö1(ATL-1) + OLINL > Q20 + o2i 4- h Q2(J\rL-l) + Ct2NL 

(4.38) 
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If the vector 7? is defined to be composed of the leftmost q components of a{ (repre- 

senting the exponents of the outputs of the q systems with lowest Laguerre orders), 

7? = [ai0, «ii, •' •, a;(,_i)] (4-39) 

then the relations (4.36)-(4.38) can be summarized as 

7*<71* ioiq=l,2,---1NL + l (4.40) 

The last relation in (4.40) (for q = NL + 1) means that £[<*»] is greater than E[a,]. 

This and the last relation in (4.35) (for m = NL + 1) are not true unless S[a,] = S[a3] 

. This implies that: 

1. E[a] is even where a = [aj ,a/}T. 

2. Since a,- = [-y?L+1~q     ßl] for any q the relations (4.40) are true if and only if 

the relations (4.35) are true. 

From this condition we also observe that if the Q-polynomials in the expression (4.2) 

are divided into groups according to the degree of nonlinearity they represent (i.e. 

linear, quadratic, cubic, etc.). the necessary and sufficient conditions for the second- 

order cross-cumulant of two Q-polynomials to be not identically zero are: 

1. The two polynomials belong to the samt group of nonlinearity. 

2. The relations (4.33) or (4.35) hold. 

c.    Third-Order Moment 

The relations between the vectors of indices a1, a, and a3 such that 

&\hJ2) = £{Qa»Qa> + li)Qo,(n + '2)} ^0 for /2 > /a > 0   (4.41) 
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are developed as follows. The components of each vector are arranged according to 

descending time argument value and increasing Laguerre order of the corresponding 

output: 
y0    yi     y2     •••   VNL-2      VNL-i      y*L 

n + l2:     «30    <*31     <*32     • • •    Q3{NL-2)    «3(^-1)     a™L 
Tl + h :    Q20    «21     «22     ' •'    <*2{NL-2)    Ö2(JVL-1)    <**NL 

n    :        a10   au   ai2   •••   «1(^-2)   a^-i)   Qi^ 

We have two conditions on these variables.   The first condition follows from the 

condition on the expectation of the product of Gaussian variables; namely E[a] is 

even. The second condition is obtained if we examine the conditions on the values 

of the individual components in each vector. We find the relations 

ßq + ßl>ßl for 9=l,2,---,iVi + l (4-42) 

71* + 7*>7* for 9= 1.2,---,Ari + l (4-43) 

Z[ai}+ßl>ßl for 9= 1,2,.--,^ + 1 (4-44) 

where the vectors ß\ and 7? have the same definition as before.   For q = NL + 1 

equations (4.42), (4.43) and (4.44) yield the following relations: 

S[ttl] < S[aa] + S[a3] 

v[a3] < S[a>] + S[a3] 

£[«,] < E[a,] + £[«*>] (4-45) 

If these three relations are true one of the relations in (4.42), (4.43) and (4.44) 

becomes redundant. Therefore necessary and sufficient conditions for the values of 

the components in the three vectors of exponents to ensure that the value of the 

moment is not identically zero are : 

1. The sum of all the components of the three vectors S[a] is even. 

2. The sum of the components of any two vectors is greater than or equal to the 

sum of the components in the third. 
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3. The relations (4.42) and (4.43) are satisfied. 

Similar relations can be developed between the vectors of indices of the Q-polynomials 

for computing the cross-moment of any order. The set of indices in the expression of 

the cumulant of the output of the model is generated then examined to exclude the 

terms that do not satisfy these relations. The value of the cumulant is then obtained 

by calculating the rest of the terms because their values are not identically zero. In 

general, the non-zero valued Q-polynomial cross-moment in (4.11) is then given by 

= (ol)^a<a<-ak!    £    n^ (4-46) 
£[M]=a j       l'- 

where the first summation is over the possible multiplicity matrix permutations. The 

product is over all the nonzero-valued entries ij of the multiplicity matrix and Vj is 

the corresponding Laguerre cross-correlation with time argument lj. 

3.  Computation of Cumulants of Q-Polynomials and 
Model Output 

To obtain an expression for the kth-order cumulant of the output x(n) as 

described by (4.7) we need to develop an expression for the kth-order cross-cumulant 

of the Q-polynomials 

cäVi.k,---,/*-!) 

Since the Q-polynomials are all zero-mean except Qo (which has a mean equal to one) 

the mean of the model output was shown to be given by the value of the coefficient CQ 

(see (4.27)). In our development of the model output cumulants we assume that this 

coefficient equals zero so the model output henceforth has zero mean. Consequently 

the Q-polynomial representation of the model output does not include Qa0. The 

expressions of the model output  cumulants and the Q-polynomial cumulants are 
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given by (2.14). In this case the Q-polynomial cumulants of orders 2 to 4 have the 

expression 

Cff(/)   =   £{Qa»Qa> + /)} 

C&\l)   =   5{Qa1(n)Qaa(n + /1)Qa3(n + /2)} 

C&\l)   =   £{Qa>)Qa> + /i)Qa,(n + /,)Qa,(n + /«)} 

-£ {Qa, (n)Qa> + h)} € (Qas(n + MQa4(n + /3)} 

-S {Qa»Qcr3(n + /,)} € {Qa> + h)QaA{n + /,)} 

-S {QQl (n)Qa4(n + /,)} S {Qa3(n + /1)Qa3(n + /»)} 

(4.47) 

It can be seen that the second- and third-order cumulants of the Q-polynomials 

are given directly by their respective moments. As for the fourth-order cumulant. 

we still can compute it directly using the same procedure we have developed to 

compute the moment. Since the last three terms cancel with similar terms that arise 

in the computation of the first term, we need only to compute the moment using 

the procedure developed above and set a condition so that the common terms which 

cancel are not computed. This condition is imposed on the permutations simply by 

setting terms of the multiplicity matrix M to zero. For the fourth-order moment this 

matrix has 4x4 blocks and we do our computations on the upper trianglar parts 

of the six off-diagonal blocks. The entries of this matrix take on values as described 

before such that at least three of the six blocks have entries which are not all equal 

to zero. 

The computation of the model output cumulant can be summarized as fol- 

lows: 

1. From the model dimensions A'i and NN construct a vector of indices a the 

partitions of which are the Q-polynomial indices a;. 
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2. For computation of a cumulant of order k, test all the possible combinations 

of k indices a = [en* oiia
T •••Qik

T]T to determine those that satisfy the 

conditions for a nonzero-valued cross-moment. 

3. For each of the combinations that give nonzero-valued moments use (4.46) 

to obtain the value of the cumulant by applying the proper condition on the 

permutations of the matrix of multiplicity. 

4. From the values of the coefficients cai the output cumulant is given by (4.7). 

C. POLYSPECTRA OF THE OUTPUT OF WIENER 
MODEL 

The polyspectra of the output of the Wiener model are the Fourier transforms 

of the corresponding cumulants of this output. Due to the linearity of the Fourier 

transform these polyspectra are the weighted sum of the polyspectra of the individ- 

ual Q-polynomials in the expression (4.2) with the same coefficients ca. Although 

it might at first seem that the procedures developed in the previous section could 

be adopted directly to compute the polyspectra. the regions of symmetry of these 

quantities and other considerations make the problem sufficiently complicated that it 

is better to develop the spectral procedures on their own. The resulting expressions 

and procedures for computation are analogous to those for the cumulants but differ 

in important details. 

Since the Q-polynomials are functional of Gaussian random variables #;(n), the 

expressions derived in Chapter II Section C.2 can be applied to the compute cross- 

polyspectra of the Q-polynomials. The second-order system cross-spectral functions, 

which are the entries of the matrix S defined in Chapter II. are shown in Chapter III 

to be the Laguerre cross-spectral functions sd(u:).  In the following development we 
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make use of the functions 

**{z) =  £ rd(l)z~l (4.48) 
J=-oo 

which are used in Chapter III to derive the Laguerre cross-correlation sequences. 

These functions, when evaluated on the unit circle, are the Laguerre cross-spectral 

functions1. We also make use of the orthogonality of Q-polynomials, which can be 

detected from the vectors of indices a, to represent the polyspectra as a sum of only 

the terms that are not guaranteed to be identically zero. 

Since the Q-polynomial moments of orders higher than third are not equal to 

their cumulants (see (4.47)), their Fourier transform is different than the polyspectra. 

We shall call the Fourier tranforms of these moments the Q-spectral functions and 

denote the itth-order Q-spectral function as SQ{U). The Q-spectral function has the 

form 

cOL i     N fiQ^Q,,-,01k/   , \ 
SQ (u) = SQ

1 *(u;i.u.'2.---,u;fc_i) 

y   O-*P Hf )-^-*(rf —[—) ^-2m(-) ^ 1A    i**UiJi)\i    li    Min HYI       
v 

E[M]=a-2m \   3i = l     {     \     ')■ »=,i+l m\Jl,j2)-J 

(4.49) 

where M is the multiplicity matrix, which depends on the summation parameters 

m through the relation E[M] = a - 2m. As described in Chapter II, the quantity 

5£™,2m is formed as the product of the two quantities : 

1. The product of values of each quantity in the block matrix R(0) that is included 

in the pairing permutation. 

1We note as before, that the use of the term *<j(w) rather than Bd{e>u) is slightly abusive but 
results in some simplification of notation. 
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2. The multiple convolution of the system cross-spectral functions sd(z) that are 

included in the pairing permutation. These were defined in Chapter II as the 

entries of the off-diagonal blocks S of the matrix S given by (2.106). 

Since the matrix M determines the multiplicity of each of the above quantities, the 

entries of this matrix need to be set to zero whenever the inclusion of the correspond- 

ing spectral functions results in a term S£~y
2m(u>) which is identically zero. 

We have noted earlier (see Section B.l) that the diagonal blocks of the multiplic- 

ity matrix are diagonal. Since each of the off-diagonal blocks Su of S is Hermi- 

tian symmetric, if the upper triangle has entries that are expressed as sd(u;) for 

d = 0, l,---,Ai, then the lower triangle entries are given by sd( — u;). The corre- 

sponding z-transforms are sd(z) and s^z-1). For purpose of this discussion let us 

denote a block of the multiplicity matrix corresponding to a block Sw in the spectral 

matrix as M". Now if the pairing permutation results in a combination of entries 

from the both the upper triangle and the lower triangle then at least one of the 

convolutions takes the form 

sdl(z) * sd2(z~l) = -^ /   v-'s* (^-)sd2(v)dv (4.50) 
Izj Jci \vJ 

If we substitue the value of sd{z) from (3.84) we get 

sdl( = )*sd,(:    ) = —-T-Pil    ^ fci (r _ zp-^i {v _ ri)*+i*' ^ 

which is identically zero because there are no poles inside the unit circle. Therefore 

if the values of the polyspectra are computed in the non-redundant regions for which 

0 < u>i <-,v • < u*-! (4.52) 

the off-diagonal blocks Mw of the multiplicity matrix M must be upper triangular to 

exclude the permutations for which sd(z~l) is included. Then the multiplicity matrix 
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in this procedure is exactly the same as that used for computing the moments. Since 

the terms in the lower trianglular portion are never used, the block S" can be replaced 

by one which is upper triangular and Toeplitz: 

Su = 

s0(u>)   ai(w)   s2(u>)   •••   SNL(W) 

0 s0{u>)   ai(w)   •••   ajvL-i(w) 
0 0 SO(OJ)   •••   &NL-*{W) (4.53) 

0 0 0 •••   soH 

Notice that a single subscript d =■ j — iis used for the system cross-spectral functions 

rather than the double index used in Chapter II because the Laguerre cross-spectral 

functions depend only on the difference between the two Laguerre system orders i 

and j. 

In the development in Appendix C of the relations between the vectors of indices 

for which the value of the moment is not identically zero the results were based upon 

excluding permutations that contain the terms r0(0). These are the diagonal entries 

of the matrix Cy in (4.17) and result in a common factor that equals zero. Since 

these functions also appear in the polyspectra expressions under similar conditions, 

the same factorization exists with the same zero values. This means that terms of 

the Q-spectral functions are identically zero in exactly the same cases for which the 

moments of the Q-polynomials are identically zero. The relations between the vectors 

of indices developed in the previous section are therefore the same for the Q-spectral 

functions. Thus the expressions (4.49) simplifies in the same way as the expression 

(4.23) did for the time domain computation. 

Let us now consider the remaining part of the problem, namely computing the 

quantities 5£n~2m(u;). It will be seen that, like in other calculations involving the 

Wiener model, there is abundant structure present so that the form of the result 

can be predicted from an analysis presented here and the actual computation can be 

implemented by a table lookup scheme. 
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1. Multiple Convolutions of the Laguerre System Cross- 
Spectral Functions 

The Q-spectral functions given by (4.49) are obtained by performing multi- 

ple convolutions on the system cross-spectral functions sj{z) with given multiplicity 

to compute the frequency-dependent quantities S£r«,(w). Convolving the spectral 

functions by directly applying the convolution formula (4.50) is a tedious operation 

especially when this needs to be repeated many times. Fortunately however, we can 

use the characteristic of the Laguerre cross-spectral functions to develop a procedure 

to obtain the value of a multiple convolution algebraically. If a system cross-spectral 

function has a multiplicity m. this quantity equals the sum of the entries along the 

corresponding diagonals, principal and non-principal, in the block M" of the mul- 

tiplicity matrix M. This means that the contribution of this function sd{z) to the 

quantity S£n„ is the result of convolution with itself {m - 1) times. The result is 

then convolved with the contributions of the other functions. Let us use the notation 

sd(z: p) to denote the a complex cross-spectral density function with parameter p and 

define s™{z;p) as 

d
m)(z:p)   =   sd(z: p) * sd{z: p) * sd{z: p) * • • • * sd{z; p) 

• , ■ -> 

m — 1 convolutions 

=   sd(z: p) * s<T%: P) (4-54) 

Using this notation we can also define 

sd°\=;p)   =   6[z) 

8$\z]P)   =   sd(z:p) (4.55) 

We consider various special cases below. 
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a.   Multiple Self-Convolution of the Complex Spectral Density 

Function s0(z;p) 

When the sum of the entries along the principal diagonal of the block 

M" is non-zero then the system complex spectral density function s0(z;p) has a 

contribution to the required spectral function S£n„. This contribution is obtained 

by performing a number of successive convoutions. The Laguerre system complex 

spectral density function has the form 

s0(z;P) = JJ-^1. -i — (4.56) 
P      {z-p){z-p    ) 

The first convolution is given by 

s{d\z\p)    =   s0(z; p) * s0{z; p) 

(1-V)2_   1     t    v A, (4 57) 
p2      "l-Kj Jci (v- zp)(v- zp-y)(v-p){v - p-1) 

Since \z\ < |/9_1| it follows that \zp\ < 1|.   Therefore the integrand has two poles 

inside the unit circle, at locations p and zp, and by evaluating residues the result of 

this convolution is found to be 

S°  {Z]P)   " P2      (z - ?)(z - p-*) 
(1-(P2)2) 

=   s0(z;p2) (4.58) 

It is seen that the two poles of the complex power spectral density function are moved 

from the locations p and p~x to p2 and p~2 respectively as a result of one convolution. 

One more convolution can be similarly shown to result in the quantity 

4
S)

(Z;P)    =    So{z;p)*s2
0{z;p) = s0{z;p)*s0{z;p2) 

(l-(/>3)2) 
pZ (,_p3)(z_r3) 

=   s0(z:p3) (4.59) 
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Continuing in this way we can find that 

4mW) = *o(*;D (4-6°) 

Thus the result of m — 1 convolutions on m functions 50(2; p) is equal to the same 

function with the parameter p raised to the m power; its poles are moved from p and 

p'1 to pm and p~m. 

b.   Convolutions of up to Three Laguerre Cross-Spectral Density 

Functions sdl{z;p), sd2(z:p), sdi(z;p) 

For the other Laguerre spectral functions sdl(z;p) for which d\ > 0 the 

sum of the elements along the corresponding non-principal diagonal of M" determines 

the number of convolutions to be performed. Let us first consider the convolution of 

sdi(~'i p) with itself: 

^{~\p)    =    sdl(z: p) * sdl{z; p) 

= z[l-p)27jL {v-P)^\v-zp-^^dv (4-61) 

Since the integrand has (G?J + 1) poles inside the unit circle at location p the value of 

this convolution is given by 

■2W) = ;(w2)2^ 
r(r_p-1)(*-1)(l,_^)(«'i-i) 

(r-rp-i )(*+i) «=p 

1      (<i1-l)(di-m1-m2) , , 

mi=0 ni2=0 mj=0 miln^n^Im^ (1 — TTli, 

7714= d} — 771 j ""TTij — 7713 

(di — 1 — rw2)' (di - 1 - ma)! 

x(-l >„« to + ^4)! L 
di\      (p- zp-y^+i+m,) 
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- .(i-»yi'E"Ü) (t;!)WP---^-^ 
n»i=0 f7is=0   \       1  /    V / 

X m^O \      m»      A * /        (/3-^-1)("1+1+m4) 
* v ' 

(4.62) 

Since mx can take on values of only 0 and 1, the double summation over mi and m2 

can be simplified. In particular, the term 

(i) 
is equal to 1, and with a change of variables 

m1 + m2 = k' (4.63) 

k' assumes values either in the range [l,di] (for mx = 1) or the range [0,di - 1] (for 

mi = 0). Therefore (4.62) becomes 

dx   min[fc',<fi-l] 
_]Wi-mj  [    u 

777 2 

di   min[fc',(ii-l] /  <7    _ 1   \ 

4f(-~;p) = -(W)E    E   (-i)^-   ^M^-'d-^)^ 
fc'=0     m2=fc'-l 

X £   (-1 m3 
d1-l\(2di- k' - m3 \   aja^+i-fc'-m») 

v    m»    M ^ 
ms €[0,di-l] 

(~_l)(dl-l-™>) 
X 

(2 _ /92j(2di+l-fc'-m3) 

(4.64) 

Now let us define 

min[fc',di-l] 

W'£\k')=      E     (-l)dl_m2 I \ p-W-»»)^ - p*)*-«» (4.65) 
m2=fc'-l 

Since m2 = 0 for k' = 0. this quantity has the value 

w'^\0) = (-lfp-2dl(l-p2)dl (4.66) 
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Similarly since m2 = dx - 1, for k' = dx we have 

/(i) 

and for k' € [l,dx - 1] 

w.Tc*')  =  (-i)*-*'+ ( * IJ ) *r**-*,+1>(i - p1)*-^1 

k' 

(4.67) 

+(-l)*-*,(dV1)^*-*'>(l-p1 

-D-' ( * ) (p-2-l)dl-k[l~YP~2] (4.68) 

Notice that if we let k' = 0 and k' = dx in (4.68) we obtain the relations (4.66) and 

(4.67) respectively. Therefore (4.68) is the required expression for w'^ik') for all 

k' € [0,di]. We then substitute k = dx - k' and define Wfhk) as 

Hence (4.64) becomes 

■wt <>-■ i - ^FV (4.69) 

* "i min[*,di-l] /    . 

i-^Ew-i1^)   E  (-irr1-1 
*=o m3=0 "? 3 

x      2(^+1 + ^-7713) 
n(di-l-mj) 

(4.70) (- _ ^(dj+l+fc-m,) 

The expression (4.70) reveals important characteristics of the convolu- 

tion of the two Laguerre cross-spectral functions of the same order. This convolution 

can be obtained algebraically as a sum of spectral functions that have one zero at 

the origin and multiple other zeros at z = 1. The poles of these functions are at 

z = P2- The number of these functions depends on the orders n of the cross-spectral 

functions being convolved and they differ only in the multiplicities of their poles and 

zeros. We will see presently that similar properties hold for multiple convolutions of 

the Laguerre cross-spectral functions of the same order and convolutions of Laguerre 

cross-specrtal functions of different orders. 
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Now let us define the spectral functions embeded in (4.70) that result 

from the first convolution as 

^Wd-^frfT? (471) 

Then (4.70) can be written as 

di   min[fc,di-l] 
sd%\P) = E      E      &(1)(^m3)^1)(z;pW(fc,m3),g(1)(m3)) (4.72) 

fc=0      mj=0 

where 

*>(*,,»,) - (-ir« (rf,
m-3') (*+5; "*) a - ^)»i'(*) 

p(i)(fci m3) = di + 2 + fc + g(1)(m3) 

9W(m,) = rfi - 1 - m3 (4-73) 

with m3 = 0,1, • • ■, k and k = 0,1.2 • • •, dx. Therefore the pole and zero multiplicities 

have a range of values given by 

p(1) = rf1 + l,rfi + 2,..-,di + 2-^1) 

9<1> = 0,l,2.....c/i - 1 (4-74) 

The procedure we have employed so far is useful for the other cases to 

be considered in this section and the results will be analogous. In particular, suppose 

it is desired to form the spectral term sjj!*(-) = s*i (2) * s^(-)- We can assume with 

no loss of generality that d2 < d\. In this case we obtain the same results except that 

the limits on m3 in (4.72) change from m3 <E [0, d1 - 1] to 0 < ms < min[rfi -l,d3-k] 

and the ranges of the pole and zero multiplicities in (4.74) change to 

pW = </i + 1,^ + 2. ••-.(?! +2 + 9
(1) 

q{1)e[d1-d2-l.dl-l] (4.75) 
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7W 

dl   —   1 

max [0, di — d2 — 1] 

•       •       •       • 

•       •       • 

•       • 

rfi + 1 di + d 2 + 1 ,W 

Figure 4.2: The multiplicities of the poles and zeros in sdl{z; />) * s*(^; />)• 

Fig. 4.2 shows the values assumed by pW and q™ in (4.72) when con- 

volving sdl(z;p) and ^(z) for d2 < dx. From this plot we note that the minimum 

value of the difference p(1) - ?(1) is given by 

mi n(p0)_9a))    =   min(p(1))-max(g
(1)) 

=   (di + l)-(di-l) = 2 (4.76) 

Now let us consider what happens when the spectral term sdl>dt(z) = sdl(z) * sd2{z) 

is convolved with yet another cross-spectral function sd3(z). We will show that the 

general structure of the problem observed so far is maintained. The convolution of 

these cross-spectral functions can be written as 

dl   min[fc,di—1] 

**(*)* #,<,(*) = E      £      ^rn3)sdi(z:p)*XV(z;p^lqV) (4.77) 
fc=0       m3=0 

where each term under the summation involves a convolution given by 

118 



sdi{z;P)*XU(z-^\qM)   =   ±f  v-^tep^K^Mdv 
2-KJ Jcx 

= z(-l/1)-^)+1/»(1~/?2^ 

x2^jfc1    (v-Py>+i(v-zP-*yi) 

(4.78) 

Since (4.76) establishes that p(1) - g(1) > 1, the integrand has at least one zero at the 

origin and <fs + 1 poles inside the unit circle at p. Thus we can find an expression for 

the convolution (4.78) similar to that of (4.72), namely 

dj   min[9(1\dj-fc] 

sd3(z; p) * XW{z; p^\ </(1)) = £        E        ^ ^^^ PW(*' m^ ^Va)) 
fc=°      ms=° (4.79) 

where the function X^ is defined as 

XW{z. p Q) = ^ÜliLZ^l! (4.80) 

and where the remaining quantities in (4.79) are given by 

pW = pW + d3-k- m3 

9(2) = 9(D _ m3 

mj=fc-t+i ^       / v 

/<-l + m2-M 
(4.8i; 

The function X^ has one zero at the origin. qW zeros at p. and p& poles at p3. The 

limits of summations in (4.79) determine the ranges of p(2) and qW or equivalent.lv 
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„(1) PM + rf, p(2) 

Figure 4.3: The range of the functions X^ as a result of Sds{z; p) * X^\ 

the set of spectral functions X^2\ For each value of pW and qW we have 

pW=p(l),p(l) + l,...,p(l) + (/3 + g(2)_9(l) 

9
(2) = 0,1.2,..-,</^ (4.82) 

Fig. 4.3 shows the region of pole and zero multiplicities of the functions X^ that 

result from convolving Sd3{z) with a single function X^ in (4.77). To define all the 

functions X^> that result from the convolution we combine (4.74) and (4.82). Then 

the entire set of spectral functions X^ has pole and zero multiplicities in the region 

defined bv 

pW = d1 + l,d1 + 2.---.d1+d3 + 2 + qW 

9^ = 0.1.2.-...rfi-1 (4.83) 

This region is shown in Fig. 4.4. 
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,<» 

<f 1 — 1 

rfl + 1 rfi + 4» + 2 2rfa + rfs + 1       P(2) 

(2) 
Figure 4.4: The range of the functions X^ as a result of sdi{z) * sdi [z). 

c.    Convolution of Any Number of Laguerre Cross-Spectral 

Functions 

To generalize the results of the previous subsections, let us assume that 

we need to perform convolutions of the Laguerre cross-spectral functions of orders 

di.d2.-- • ,dK+i such that 

di > d2 > ■ ■ ■ > dK+1 > 0 

We can denote this bv 

«a+1)(2) = 5* (*) * s*(s) * s*(*) * ''' * s«Ui(«) (4.84) 

Ac convolutions 

According to the above discussions we could convolve sdi{z) with sdl{z) then con- 

volve the resulting spectral function with sd3{z) and so on until all the required K 

convolutions are performed. In so doing we can benefit from the above relations to 

establish an efficient procedure to obtain the result. We proceed by induction. 
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Let us define the spectral function X^(z\p,q) as one of the spectral 

functions that results from performing v convolutions. This spectral function has 

the general form 

_    z(zp-(»-V - 1)« (485) 

-  (2/rH-l) _ l)p 

It is seen in the previous subsections that when a function of this form is con- 

volved with one of the Laguerre cross-spectral density functions, a weighted sum 

of spectral functions of the same form results. Thus the convolution of sd{z; p) with 

XM{z;pM,qM) produces an expression that can be written as 

sd(z;p)*X^(z]P^.q^) 

= £       E       b^\k.,mz)X^\z-p^\k.mz).q^\m3))     (4.86) 
fc=0        m3=0 

where 

,("+!) = PM + d-k- m3 

g(*+i) = qM _ n?3 

„r>,M,."fI,(,--.)'-)(^) 
/   A-   \ (   d-k   \ 
\ m2 j \d-m2 

( t - 1 + 7772 - & 

(4.87) 

where the difference between the pole and zero multiplicities in X^ satisfies 

J?) - <>) > 2 
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The set of spectral functions X^l) that result in the convolution (4.86) differ only in 

the multiplicities p(,/+1) and g("+1) which are determined by the limits of summation 

in (4.86). The ranges of p("+1) and g(v+1) or equivalently the spectral functions X^v+1) 

are obtained from the order d of the Laguerre cross-spectral function Si{z) and the 

pole and zero multiplicities of X^ as follows 

p("+1) = p("\pM + i,... ,p(") + d + 9<"+1> - <?<"> 

^ = 0,1,2,...,^ (4-88) 

Now let us consider in detail the entire convolution (4.84). This can be 

obtained by following a set of successive steps that give the value of this convolution 

in an organized algebraic procedure. The value of this convolution is a sum of spectral 

functions X^ of the form 

sltl)^) = X>^)XlK){2;Pi'qi) (4'89) 
i 

where 

v(« / >.      a.) = ?! £k—P L (4.90) 

It is clear that the set of zero and pole locations are determined simply from the 

number of convolutions. The value of the convolution is obtained by determining 

the values of pi, qi and Q based on the orders of the Laguerre spectral functions 

d\. d2. • • ■, dK+\. We can make the following observations: 

1. If this convolution were performed successively then as a result of the first con- 

volutions, sdl(z) * Sd2(z) we would have pole and zero multiplicities determined 

by a plot similar to that of Fig. 4.2. Each of the resulting functions X^\z) is 

then convolved with sdi{z). The pole zero multiplicities in the resulting spec- 

tral function X^2\z) are obtained by extending those in Fig. 4.2 using the 

extension map described by Fig.  4.3 for the Laguerre spectral function order 
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<*!-! • 

<*1 + 1 <*i + \-dK + l     dx + • • • + 4+1 + 1 

Figure 4.5: The zero and pole multiplicities in s£+ (z). 

m3. This results in a range of the pole and zero multiplicities described by a 

new plot similar to that of Fig. 4.4. This procedure is continued until the last 

extension map corresponding to the Laguerre spectral function order mK+1. We 

can obtain the same result directly however by taking the region of p,- and q{ 

in (4.89) to be as follows: 

• The maximum value of zero multiplicity is e?i — 1. 

• The minimum value of zero multiplicity is max[0. d1 — d2 - • • • *«+U 

• The maximum value of pole multiplicity is di + d2 + h dK+i + 1. 

• the minimum value of pole multiplicity is d\ + 1. 

We can also use a plot similar to that in Fig. 4.5. 

2. The coefficients c[K^ in (4.89) can also be obtained by following a recursive 

operation. Let us assume that after the first v convolutions a set of coefficients 

c\^ were computed and associated with the corresponding p< and </,-. For the 

v -f 1'* convolution, involving Sd„+J, the extension map in Fig. 4.3 for dv+2 

is used to determine the multiplicity pairs [p(l/+1),g(,/+1)] that result from the 

pairs [pW, q(v\ Then if from the extension map the v + l*f convolution results 

in generating [p^+l\ qf+1)] from \p[v\ q^} then the coefficient c\u) is modified 
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to c^+1) using the multiplier 6("+1) denned in (4.87). This multiplier is now 

written as by b^v+1Xi,j) to indicate that it corresponds to the jth multiplicity 

pair generated from the ith pair after v + 1 convolutions. Thus the coefficient 

Cj1' is updated according to 

c(^D = c^) + 6(,+i)(z?j)cW (4.91) 

Finally, for each value of the vectors of indices a, the Q-spectral function 

can be obtained as follows: 

1. The multiple convolution of the Laguerre spectral functions which are the en- 

tries of one block S1" of the matrix S given in (2.106) is obtained as a weighted 

sum of the spectral functions X^a\z;pi,qi) in the form of (4.89). The poles of 

these spectral functions are located at p(v+l) while the zeros are located at p^'1) 

where v equals the sum of the entries of the block Mw of M that corresponds 

to the block S" of S. 

2. The range of the pole multiplicities pi, the zero multiplicity </<, and the coef- 

ficients Ci in (4.89) are determined as described above from the orders of the 

Laguerre cross-spectral functions in S" for which the corresponding entries in 

M1" have non-zero values. 

d.    Convolution of SQ   {z; p) with s^      {z:p) 

To obtain the value of the multiple convolution of the Laguerre cross- 

spectral functions in the block Sw we first convolve the Laguerre cross-spectral func- 

tion s0(z: p) a number of times m0 corresponding to the sum of the entries on the 

principal diagonal of the block M" of the multiplicity matrix M. The result of this 

self convolution is given by (4.60).    We also perform the convolution on the rest 
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of the Laguerre cross-spectral functions (residing on the non-principal diagonals of 

S" the value of this convolution is given by (4.89). Thus the value of the required 

convolution is then given by 

=   Y,c*s'r)(z;P)*X{K)(z;pi,qi) (4.92) 
« 

The terms under summation in this expression are obtained by convolving s0 ° (2; p) 

with each of the spectral functions XW(z;pi,qi). This convolution has the form 

(l-(p"°)2)   1     t     (-l)«-«^-«-1^ - zp-lK-V)«   dv 

~~Z       pm°        2irj fc, (v - pm*){v - p~m°){v - zp-(K+1))Pi 

(4.93) 

Since the integrand has only one pole inside the unit circle at location pm\ the value 

of the convolution in (4.93) is easily obtained as 

nPifmo+i+l)  -IT —  //"o+t-l^i 
Am0),      ,     vW(,.„. a-\-— — r- (4-94) 

Notice that this convolution results in one term only. Moreover the pole and zero 

multiplicities of X^ do not change and the value of this convolution can be easily 

obtained by just moving the pole and the zero from pK+1 and pK~l to ^+«+1 ancj 

pmo+K-i reSpectively. More precisely from (4.94) and the definition (4.85) we have 

S<r)(z;p)*XW(z;pi,qi) = XlK+n«Hz:pi.qi) (4.95) 
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V.  MODELING A NON-GAUSSIAN RANDOM 
PROCESS USING THE WIENER MODEL 

In Chapter IV we develop the procedure for computing the cumulant and polyspec- 

trum (of any order) of the output of the Wiener model. These higher-order statistics 

are shown to be functions of the model parameters defined in Chapter III. The first 

such model parameter is a\ the variance of the zero-mean white Gaussian process 

w{n) that drives the system. This parameter specifies the set of Hermite polynomials 

that describe the memoryless nonlinearities represented by section 2 of the model. 

The second parameter, p, defines the pole and zero locations of the transfer functions 

of the linear filters comprising section 1 of the model. The impulse responses of these 

filters are the discrete Laguerre functions and the outputs are zero-mean Gaussian 

processes each with variance a\. Thus, the auto- and cross-correlation functions of 

the outputs of these filters (and in fact all of the higher-order statistics) are com- 

pletely specified by a\ and p. The remaining parameters are the coefficients c& in 

the Q-polynomial representation of the output of the model (3.34). According to our 

definition of the indices represented by the vector a. these parameters are uniquely 

determined once the model dimensions Ni and A7jv are specified. Thus for a given set 

of model dimensions the number of the model parameters is finite and the expressions 

of the model output statistics can be obtained. 

In this chapter we demonstrate the application of the Wiener model in repre- 

senting some non-Gaussian discrete random processes that fail to meet the conditions 

of linearity. The parameters of the discrete Wiener model are determined such that 

the model output statistics match the modeled process statistics up to some given 

order over a specific region of support. 
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A. NONLINEARITY DETECTION IN RANDOM 
PROCESSES 

The statistics of a linear random process either in the time domain (cumulants) 

or in the frequency domain (polyspectra) have characteristics that nonlinear processes 

do not share. A significant body of work has been reported to detect and characterize 

the nonlinearities in time series [4, 33, 5]. 

In [34] Lawrance and Lewis (1987) present a class of stationary random processes 

x(n) for which the autocovariance function, C£2)(/), has an autoregression structure, 

i.e., this function satisfies the pth order Yule-Walker autoregression 

Ci2)(l) = atCPil - 1) + a2Ci2Hl - 2) + • • • + apC?\l - p) (5.1) 

where o,- are appropriate real-valued constants. This class of processes includes 

(among others) two subclasses of stationary random processses with mean p that 

have an autoregerssive representation. The first is the class of processes for which 

the linear conditional expectation has the form 

S[x{n) - p\x{n - \).x{n - 2),--- ,x{r\ - p)} = 

<n{x{n - 1) - //) + a2{x(n - 2) - n) + ■ ■ ■ + ap{x(n - p) - p)  (5.2) 

Processes in this class may be nonlinear. The second class, which is a subset of the 

class satisfying (5.2), is that of linear stationary random processes with mean p which 

satisfy 

x(n)- p = ai{x(n - 1) - p) + a2{x(n -2)- p) + h ap{x{n - p) - p) + w(n) (5.3) 

where w(n) are independent and identically-distributed (i.i.d.) and the coefficients 

Oi are real-valued constants satisfying the condition that the linear autoregressive 

model represented by (5.3) is stable. 
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The order p linear autoregressive residual e^\n) is given by the process x(n) 

after subtracting its best linear least-square predictor in terms of x(n - 1), 

x(n-2),---,x(n-p), i.e., 

ew(n) = x(n)-p-al(x(n-l)-n)-a2{x(n-2)-n) ap{x{n - p) - fi) (5.4) 

Lawrance and Lewis [34] based the principle of detecting the nonlinearity in processes 

with autoregressive correlation structure (5.1) on the following: 

1. For processes satisfying (5.1) the linear autoregressive residuals, e(p\ are un- 

correlated. 

2. For linear processes satisfying (5.3) the linear AR residuals e^ are not only 

uncorrelated but they are also indtpendent. 

According to this distinction, the higher-order dependency of the residuals is inves- 

tigated by considering the two cross-correlation quantities : 

Corr[(:r(7?)-//)2.e(p)(r? + 0] 

Corr[(x(77)-/;)-(e(p)(« + 0)2] (5-5) 

for / = 0,±1.±2, •••. If a process satisfying (5.1) is linear (i.e satisfying (5.3)) then 

the two cross-correlation functions in (5.5) are zero for all / ^ 0. This test is a useful 

one, but it is based on a particular class of processes defined by (5.1). 

A more general test for nonlinearity was formulated by Rao and Gabr (1980) 

[35] and later extended by Hinich (1982) [36]. This test is based on the fact that if a 

process x{n) is linear (in mean square), then there exists a sequence h(n) such that 

x[n) is represented by 

x(n) = jth{k)w(n-k) (5.6) 
fc=0 
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where w(n) are i.i.d. and the sequence h(n) is square summable . In this case, given 

the process bispectrum S£3>(wi,u;2) and power spectrum SW(üJ), it is easily shown 

that the ratio 

ifflO*,"»)!' (5.7) 

Si2)MSi2\u2)Si%i+u2) 
is a constant independent of u>i and u2. In practical applications estimates of the 

process bispectrum and power spectrum functions are used to test for its linearity. 

The linearity test of Hinich actually follows from the fact that the /r^-order 

polyspectrum of a process represented by (5.6) is has the form 

SikHu1^2,---^k^) = ßkH(u;1)H(u:2)---H(u;k-1)H(-u:1-^ w*-i) (5.8) 

where ßk is a nonzero constant and H(u) is the Fourier transform of h[n). In other 

words, linear processes have the characteristic that their polyspectra are factorable: 

this is a generalization of the correlation-based innovations representation of random 

processes. The representation (2.43) is possible if the process power spectral density 

function is factorable, i.e., if it satisfies the Paley-Wiener condition. For a rational 

power spectral density, the procedure developed by Wiener [1] can be used to deter- 

mine the poles and zeros of the linear system transfer function. The factorization of 

polyspectra however is not as simple. 

Tekalp and Erdem (1989) [13] established necessary and sufficient conditions for 

the existence of a stable linear time-invariant system driven by a non-Gaussian k1 - 

order stationary white process such that the system output fclh-order polyspectrum 

matches a given one. The procedure is outlined briefly below. 

The kth-ordev complex cepstrum of a A-t,l-order stationary random process x(n) is 

defined as the multidimensional inverse ^-transform of the logarithm of the complex 

polyspectrum S^{zi,z2. • ■ •. Zk-i) 

cik\h. h. ■ • ■ - h-i) = Z-1 {log[Sifc>U-!, z*. ■■■. zu-i)}} (5.9) 
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The region of convergence is assumed to contain the fc-dimensional unit circle 

\Zl\ = \z2\ = ••• = 1-2*1 = 1, and the integration is performed over that contour. 

For a discrete random process that has the representation (5.6) its fcth-order complex 

cepstrum is given by 

i=\ »=1 i=i 

< „ ' 
for any i 

(5.10) 

where 6(1) is the unit sample function and 

g(l) = Z-1{\og[H(z)]} (5.11) 

From (2.43) the complex cepstrum of x(n) is also given by 

4fc)ci. i* • • ■> '*-o=MA] n(^)+^(-^) n«(/,- - ^)+E 9(h) ri w,o (^ 
j=l i=i i=l i=i 

> „ • 

for any ?' 

Equation (5.12) implies that the region of support of the complex cepstrum of x(n) 

is the union of the regions 72.» defined as 

Hi = {{h,h,---Jk-\) : -oo < /i < oo./j = 0  for j = 1.2, •■•,£- 1 and j ^ i, 

and 7 = 1,2,--.,Ar — 1 (5.13) 

ft* = {{h, /2, • • •, /fc-i) : -oo < /i = /2 = • • • = /*-i < oo} (5.14) 

Tekalp and Erdem proved that a necessary and sufficient condition for the process 

x(n) to have the linear representation (5.6) is that its complex cepstrum is zero 

outside the region of support 

1=1 
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If this condition is not satisfied the polyspectrum is not factorable and there does not 

exist a linear time-invariant system which when driven by a white process gives the 

required output polyspectrum. In this case a nonlinear model needs to be considered. 

The likelihood of encountering a factorable polyspectrum has also been studied 

by Tekalp and Erdem [12]. They proved that the subset of factorable polyspectra has 

measure zero in the set of polynomial polyspectra that correspond to finite-support 

cumulants. Thus from a practical point of view the linear non-Gaussian model can 

be used only as an approximation when this is justified. 

B. THE DISCRETE STOCHASTIC PROCESSES 
REPRESENTABLE BY THE WIENER MODEL 

The structure of the discrete Wiener model (in Chapter III) together with the 

analysis of the model's cumulants and polyspectra (Chapter IV) provide the following 

characterization: 

1. The linear stage of the model section 1. is represented by a bank of causal, 

stable linear filters whose impulse responses are the discrete Laguerre functions. 

The transfer functions of these filters. \{{z), are analytical functions with no 

zeros on the unit circle. The outputs of this stage are zero-mean Gaussian 

random variables and their cross-correlation functions are given by the Laguerre 

cross-correlation sequences rd(l). Thus, the complex cross-spectral functions of 

these outputs are given by the Laguerre cross-spectral functions sj(z) which 

are also analytical functions with no zeros on the unit circle. 

2. The nonlinearities in the model are represented by the Q-polynomials which 

are a wieghted sum of multinomials of the outputs of section 1. Since the model 

output is a sum of products of correlated Gaussian variables, the output cu- 

mulant is computable as a specific sum of products of the Laguerre correlation 
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sequences rd(l). The output polyspectrum is given by a sum of multiple convolu- 

tions of the Laguerre complex cross-spectral functions sd(z). This convolution 

was shown to be representable as a sum of spectral functions *(a)(*.;P;,ft) 

which are also analytical on the multidimensional unit circle. 

While sufficient conditions that a random process must satisfy to be representable 

by the Wiener model are not known, certain necessary conditions are evident from 

the above characterization: 

1. The cumulants of any order of a processes to be representable by the Wiener 

model must asymptotically approach zero as any of the time lag arguments 

increases. This follows because output cumulants of any order of the model are 

obtained as products of the Laguerre cross-correlation sequences rd(l) and a]] 

these sequences asymptotically approach zero as their lag arguments increase. 

2. Unless the polyspectrum is zero everywhere, as in the case of a Gaussian pro- 

cess, a process to be represented by the Wiener model must not be bandlimited. 

a bandlimited process is here defined as one for which at least one polyspec- 

trum of order k is zero over a nonzero-volume in the it-dimensional subspace 

that defines its region of support. 

3. The process to be represented by the Wiener model must not be periodic or 

almost periodic [37]. Since the model polyspectrum is represented with spec- 

tral functions that have the same form and all have multiple poles at the same 

location, these spectral functions do not have any singularities on the mul- 

tidimensional unit circle. Therefore these functions cannot produce any line 

spectral components. 
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C.  DISCRETE PROCESS MODELING BY CUMULANT 
MATCHING 

For a given model dimensions NL and NN the output of the Wiener model is 

given by 

x(n) = £Qai (5-15) 

and the kth-OTder output cumulant is given by 

a 

where each a vector is a concatenation of the k a; vectors and the summation 

is only over those combinations for which the C<*> are non-zero. Let us define the 

vector c as the vector of N coefficients appearing in (5.15) and ordered with indices 

in ascending order, where order for the indices a^ is defined by (4.3). Thus 

c = [ca1.caa-"-1cajv] (5-17) 

where here the variables ct^a*. • • • and aN represent specific vector of indices of the 

N terms that appear in (5.15). Further define the vector of cumulants 

c[kHl) = [<?«,(!) C™m(l) ■ ■ • c£U(/)f (5.18) 

where the variables a(1\a(2),- • • .a(fcxNi) represent the particular larger vectors of 

indices a that appear in (5.16).  Then (5.16) can be written using matrix notation 

as 

CW(l) = (CW(Z))rc®fc (5.19) 

where 

c®* = c®c® •••®c (5.20) 
< ^ ' 

k times 

and ® denotes the direct (Kronecker) product of vectors. 
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If a set of specific lag values /\/a, • • • ,/M are now chosen, then a vector of these 

values can be formed as 

Xm = CWc®fc (5.21) 

where 

z(k)T{l 

cw = 
cp)jr(l1) 

(5.22) 

. cW(lM) 

The entries in each row of the matrix C(fc) are the Q-polynomial cross-cumulants 

which are functions of the parameter p and the input variance a\. The rows differ in 

their time lag vector. 

Let us observe that although the quantities a\ and p are parameters of the 

system, the theory provides a model using any finite positive real value for a\ and 

any p satisfying \p\ < 1. Although the variance a\ is essential for ensuring the 

orthogonality of the Hermite polynomials, once its value is chosen, the scale of the 

output can be adjusted by appropriate scaling of the cai parameters. Therefore in 

our modeling, we fix the value of a\ at 1 and do not attempt to adjust it. 

Although in theory the model could be applied with any fixed value of p with 

magnitude less than 1, in practice, because the model dimension NL is finite, the 

value of p has a significant effect on the error involved in matching a given set of 

higher-order statistics. Therefore, when developing the Wiener model for a random 

process, we include both the parameter p and the coefficients c^ in spite of the fact 

that there could be some redundancy. 

1.   Model Parameter Identification Using the Extended 
Kaiman Filter Algorithm 

Given an appropriate stochastic process represented by a set of measurement 

data, we seek to model it as the output of a Wiener discrete nonlinear system. In this 
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case we estimate the process cumulants over defined regions of support and arrange 

these estimates in a vector Xp. The vector X™ in (5.21) is then defined over the 

same region of support. Let us define the modeling error E as 

E = Xp-Xm (5.23) 

We seek to determine the values of the model parameters that minimize the squared 

magnitude E*rE. Since the components of the vector Xm are nonlinear functions of 

the model parameters, a technique for solving a nonlinear optimization problem is 

required. The extended Kaiman filter algorithm was used because it was found to 

converge to a solution faster than other techniques tested (e.g., the steepest descend 

method). During the optimization we need to know the cumulant vector Xm and its 

gradient with respect to the model parameters; therefore it is necessary to have an 

efficient method to compute these arrays. In Appendix D we describe a procedure 

that enables one to compute both the cumulant vector and its gradient, in a type of 

look-up table that saves significant computation and storage. The extended Kaiman 

filter algorithm, which is used in the optimization, is also described in Appendix D. 

2.   Simulation Results 

In this section we present the results of two experimental examples. In 

the first example the procedure developed in this research is applied to model a 

synthetically generated set of data. In the second example the procedure is applied 

to a data set obtained from a biological measurement record. We refer to these 

data sets as the "original data." In both examples the vector Xp that represents 

the original data cumulant values consists of the estimates made from the data of 

both the second- and third-order cumulants in the nonredundant regions of support. 

The vector Xm representing the model output cumulants is constructed for the same 

regions of support. Note that cumulant values used in this vector are computed using 
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the expressions developed in the dissertation, i.e., they are not estimated from the 

model output. The extended Kaiman filter algorithm is then applied to identify the 

model parameters minimizing the squared magnitude of the modeling error. After 

the model parameters are obtained, they are used to generate a data sequence from 

the Wiener model using these parameters, i.e., the model is driven by a computer 

generated white Gaussian sequence to produce data. The cumulants of the generated 

output are then estimated and compared to the cumulants estimated from the original 

data. 

In this section we also compare the generated sequence to the original data 

record. This is repeated for some different model sizes, i.e., some different values of 

NL and NN. 

a.    Synthetically Generated Data 

In this example a discrete Wiener model was constructed with dimen- 

sions NL = NN = 2. The poles and zeros of the corresponding transfer functions are 

defined by the parameter p which is chosen to be 0.65 in this simulation. Section 3 

in this example is denned by the values of nine coefficients ca not including Co- A 

zero-mean unit-variance Gaussian sequence of 1024 time points was applied to the 

model to generate the random process. The second- and third-order cumulants of 

the random process were estimated as shown in Fig. 5.1. In the following experi- 

ments models of different size were used to model the generated data sequence. The 

Laguerre dimension NL was given values in the range {1.2.3.4,5} while the nonlin- 

earity dimension NN was given the values {2.3.4} for each value of NL. From the 

results of these experiments we could form the following conclusions: 

1. For all the model dimensions, the estimated value of the parameter p was very 

close to the original value namely in the region [.635. .671]. 
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2. None of the trials resulted in values of the components of the vector c relatively 

close to the original values although in all cases the cumulant matching error 

was acceptably small (< 5%). 

3. Although the cumulant matching was acceptable, the plots of the model out- 

put sequence showed temporal variations judged to be similar to those of the 

original sequence for the case of quadratic models only. For higher degrees of 

nonlinearity the sequence had temporal variations that appeared to be different 

from the original data. 

The results for {NL = 1,NN = 2} and {AL = 2,NN = 2} are shown here to 

demonstrate the efficiency of the Wiener model in modeling nonlinear data sequences. 

The resulting vectors of cumulants are compared with that of the original data in Fig. 

5.2. The output sequences of the different size models is compared to the original 

data sequence in Fig. 5.3. 

b.     Biological Measurement Data 

In this example we attempted to model a data set obtained from a 

record of biological measurements. This data set is one that has been made available 

to researchers in the field of time series analysis by the Santa Fe Institute [38]. The 

complete data record contains 34.000 points of the heart beat rate, chest volume, 

and blood oxygen concentration together with the EEG state of a sleeping patient in 

the sleep laboratory of the Beth Israel Hospital in Boston. One segment of the blood 

oxygen concentration data was chosen while the patient was in the same EEG state 

for a sufficiently long period of time (around 2500 points). A plot of the selected 

data segment is shown in Fig. 5.4, while estimates of its second- and third-order 

cumulants are shown in Fig. 5.5. This data set was modeled with the same range 

of dimensions as in the first example. The model parameters were determined such 
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that samples of the second- and third-order cumulants of both the model output and 

the data set match in the least square sense. The results of these trials showed the 

following: 

1. The estimated values of the parameter p were very close together in all the 

trials and approximately equal to 0.95. This indicates that the linear part of 

the model has a low-pass frequency response. 

2. The vector of coefficients c was considerably diverse among all the trials al- 

though the cumulant matching was acceptable. 

3. The resulting data plots were comparable to the original data plot for quadratic 

models but unlike the original data for higher degrees of nonlinearity. 

The cumulant vectors of the data set and the model output are compared in Fig. 5.6. 

The details of the data and the model outputs for different model sizes are shown in 

Fig. 5.7. 

c.    Analysis of Results 

The results of the above examples indicate some characteristics of the 

procedure used for discrete random process modeling. These characteristics can be 

summarized as follows: 

1. The linear part of the model adjusts rapidly to the frequency content of the 

modeled process. The filter bandwidth is properly adapted to the input process 

bandwidth as shown by the estimated value of the parameter p. 

2. The solution obtained for the coefficients of section 3 of the model is not unique. 

This can be explained by the sparseness of the matrices constructed from the 

theoretical output cumulants. The resulting nonlinear equations to be solved for 
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these coefficients can be partitioned into a group of uncoupled sets of nonlinear 

equations, each with a separate subset of these coefficients. Each of these sets 

of equations has more than one solution. One solution from each set provides 

a problem solution that exactly gives the same result as any other combination 

of the different solutions of the different sets. 

3. Over estimation of the model nonlinearity order may give an acceptable cumu- 

lant matching result while the time variations of the data sets may appear to 

be far different. This seems to be illustrative of the fact that for a highly non- 

linear model second- and third-order cumulants are insufficient to characterize 

the process. 

The method employed here to match cumulants of a given time series are not the 

only possible methods and the results summarized above are as much dependent on 

the method as they are dependent on the model. We hope that other experiments 

and methods will later be investigated. 
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Figure 5.1: Plots of the estimated cumulants C?\h. h) and C«(/) for synthetically 

generated data. 
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Figure 5 o- The results of cumulant matching for the first example; V = original 

set V'=model output: (a): NL = 1, AV = 2 (b): JV* = 2.NS = 2. 
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Figure 5.3:   Example 1  data (a):   Original data sequence (b):   Model output for 

NL = 1, NN = 2    (c): Model output for NL = 1, NN = 2. 
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Figure 5.4: Example 2 data : a segment of the data set representing a patient's blood 

oxygen concentration. 
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Figure 5.5: Example 2 data (a): Estimate of data third-order cumulant (b): Estimate 
of the covariance function. 
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Figure 5.7: Example 2 results; (a) Original data set.     (a):Model output for NL 

1, NN = 2. (b):model output for NL = 2, A'jv = 2. 
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VII.   CONCLUSION 

The canonical representation of nonlinear systems developed by Norbert Wiener 

to circumvent the problems of their series-like representation has been used for many 

years in parameter identification and characterization for such nonlinear systems. 

The applications that have been reported in this regard have been primarily for 

continuous time systems and are based on second-order statistics. The kernels rep- 

resenting the system are obtained by computing the cross-correlation between the 

model output and its driving input. 

The research presented in this dissertation is focused on the use of the Wiener 

nonlinear system model to represent a general class of discrete stochastic processes 

and, in particular on: 

1. Development of the model for discrete nonlinear systems and discrete random 

processes. 

2. Analysis of the higher-order statistics of the model output, which can represent 

a broad class of discrete random processes. 

3. Application of the theory and the results to model empirical data. 

The Wiener model is comprised of three cascaded stages. The first stage is a 

bank of orthogonal linear filters driven by the the same white Gaussian process. The 

second stage consists of sets of identical memoryless nonlinear modules which form 

orthogonal multinomials of the outputs of the linear stage. The model output is then 

represented as a weighted sum of such multinomials. This output is characterized by 

the summation weights which are the constant parameters of the model final stage. 
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The higher-order statistics are generally very demanding in computation and in 

data size especially if they are involved in nonlinear system applications. The Wiener 

model is shown in this dissertation to be tractible in such applications because of its 

inherent orthogonality properties. Since the model input is white Gaussian, the or- 

thogonality of its components results in expressing the auto- and cross-correlation 

functions of the outputs of the linear stage and generally all the model output cumu- 

lants in terms of the cross-correlation sequences between the different order Laguerre 

functions. These cross-correlation sequences depend only on the difference between 

the orders of the correlated Laguerre functions. As a result of this property, a very 

small number of these sequences is needed to formulate the model output statistics 

of any order. Another important characteristic of these functions is that (except for 

the autocorrelation sequence) they are single-sided, which makes most of the terms 

in the general expression of the output statistics identically zero. 

We have exploited the model characteristics in developing a procedure that 

minimizes the computation and storage required to obtain the value of the higher- 

order cumulants of the model output. We have also developed the computation of 

these cumulants such that most of the effort is done off-line only once and stored 

in look-up tables. These tables can be used in any application of this model that 

requires computing the higher order cumulants of its output. 

In the frequency domain we introduced a method that reduces the cost of com- 

puting the model output polyspectra. The computation of such multidimensional 

spectral functions involves a large number of integral convolutions. We first proved 

that, similar to the cumulant functions, the size of this computation is greatly reduced 

due to the model structure. Moreover, we showed that such convolution computations 

can be performed algebraically in a structured recursive procedure. 
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In the last chapter of this dissertation we discuss the representability of random 

processes using the Wiener model. The polyspectra of such processes are necessarily 

analytic and not bandlimited. Two examples of modeling processes satisfying these 

conditions are presented. These examples demonstrate the viability of our approach. 

We hope that further experiments of this type, possibly using other methods of 

matching will be conducted in the future. 

The development of this structured model still has areas to be covered and ques- 

tions to be answered. In analyzing the characteristic of discrete random processes 

that can be represented using the Wiener model we provided some necessary con- 

ditions. Sufficient conditions are yet to be found and the class of those processes 

representable by the Wiener model needs to be defined. 

The development of a procedure to compute the model output polyspectra can 

be done following the results of the time domain development. The algebraic formu- 

lation of computing the multiple convolution of Laguerre cross-spectral functions can 

be directly applied to obtain the power spectral density and higher-order polyspectra 

of the model output. The use of these results to predict model behavior and for 

synthesis of processes with given polyspectral characteristics has yet to be explored 

however. 

The spectral functions denoted by X^{z;pi,qi) have multiple poles and zeros 

at locations pa+1 and pa_1 respectively. These poles and zeros move towards the 

origin as a increases. This means that as the number of convolutions required to 

represent the polyspectra increases, these spectral functions approach the form z~ . 

Since the number of convolutions is proportional to the degree of nonlinearity, in 

highly nonlinear terms the spectral functions can be approximated by z~k which 

greatly simplifies the representation. In effect, these terms can be approximated 

by a weighted sum of functions of magnitude one with linear phase.   Even if the 

147 



nonlinearity is not high we can extend the number of Laguerre filters to compensate 

for a reduction in the magnitude of p to justify this approximation. These alternatives 

need to be analyzed and the effect of each on the the model output representation 

needs to be evaluated. 

In summary, the work reported in this dissertation may be just the introduction 

to a whole new body of work yet to be explored. We have demonstrated the feasibilty 

of the Wiener model as a generic representation for a large class of random processes. 

This model expands in a natural way the much more restricted class of linear Gaussian 

processes that are currently so well understood. The utility and practicality of the 

model result from important structure foreseen by Wiener in its development and 

the recent new interest in higher-order statistics that has undergone development in 

only the last decade. Although our initial exploration of this new area leaves many 

questions unanswered, we hope that the problems posed here will continue to be 

addressed and lead to a significant improvement in our ability to understand and 

model the signals and other data that are encountered in the real world. 
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APPENDIX A 

EXPECTATION OF THE PRODUCT OF 
JOINTLY GAUSSIAN RANDOM VARIABLES 

Let y = [j/i, t/2, • • • > Vk] be a vector of real zero-mean jointly Gaussian random 

variables. The expectation of the product of these variables raised to some powers 

has the form 

s{y?y?---y?} (A.i) 
k 

The value of this moment is zero if the sum of the exponents ^ z/; is odd.  Let us 
t=i 

outline a method here for computing this moment when the sum of the exponents is 

even. The value of the moment can be computed by generalizing equation (2.34) to 

M(^+„+...+Kl,   =   e{y?y?—y?} 

=  £{yiyi • • • y \y2y2 • • • yy • j/fcyfc • ■ • yk) 

= EII^{^^}]9,I,J (A-2) 

where the exponent q^^ means that y^ and yj2 are paired q^^ times and the sum- 

mation is over all the possible permutations. Since more than one permutation can 

result in the same value of the term under summation (A.2) can be put in the form 

Mi^+...+Vh) = £^JJ [£{yjlyh}}^ (A.3) 
v 

where in this case the summation is over all the distinct permutations and the coef- 

ficient Cp is the number of non-distinct permutations that have the same value. The 

multiplication is over all the distinct pairing of the yj's with each pair raised to a 
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power that equals the number of its repetitions in the pairing configuration.  In all 

cases the relation 

T,<l»h = !>< (A.4) 
JliA t=l 

must hold for each term under the summation. The procedure to find the value of 

this moment begins by constructing the k x Ar correlation matrix C 

C = 

where 

C(l,l) C(l,2) C(l,3) ••• C(l,fc) 
C(2,l) C(2,2) C(2,3) •■• C{2,k) 
C(3,l) C(3,2) C(3,3) ••• C(Z,k) 

C(Ar, 1) C(Jfc,2) C(fc,3) ••• C(M) 

C(«,j) = £toj} 

(A.5) 

(A.6) 

and the same size matrix M of non-negative integer entries such that 

M = 

2ii *2 23 ••        tk 

ik+l 2?fc+2 *fc+3 ••      «2fc 

«2fc+l *2fc+2 2^2fc+3 ••      *3fe (A.7) 

_ ?(fc_i)fc+i i{k-i)k+2 i(k-i)k+3 • • • 2z'fc2 

Note that for clarity in the following discussion it is prefered to use k2 linearly indexed 

variables ij to represent the entries of M rather than variables with dual (row,column) 

indices. We also force the diagonal entries to assume even values for reasons that are 

explained in a moment. 

The entries of the multiplicity matrix M are used to determine the exponents 

q^n in (A.3). Since, in general, some of the exponents of the random variables y; 

in (A.2) are greater than one, there are some permutations that result in pairing 

a random varaible y; with yj more than once. This results in having the quantity 

C{i,j) appearing in the product in (A.3) a number of times equal to the number of 

the resulting identical pairs of yt- and yj. The value of the off-diagonal entry M(?',j) 
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is the number of yi paired with the same number of y, to give C(i, j)M(,,j). The 

diagonal entry M(j, j) in row and column j is the number of the elements taken from 

yj that are paired together and the result gives C(j,j) " . Therefore the values of 

the diagonal entries must be even. 

At this point it is required to compute the number of permutations to perform 

the pairing for a specific configuration of the entries of the matrix M. We start from 

the first row and examine all the possible values that the entries of this row can 

assume. Then we examine the other rows moving downwards in order. When a row 

is examined its entries are examined in order from left to right. Therefore starting 

with the upper left entry M(l,l) = 2ix for ix = 0,1,2, • • •, LyJ the number of 

permutations is obtained by computing the number of ways of choosing 2?'x elements 

out of v\ multiplied by the number of pairing permutations of 2i\ elements. This 

yields 

Nw =  ^ xüv 
*" 2ii!(j/i-2i"i)!     ii!2*» 

^ (A.8) 
ixKj/i - 2i1)!2ii 

Since the sum of the elements in the first row of M equals vx then for each value of 

?'i the value of M(l,2) = i2 < V\ - 2i\. Also the sum of the elements in the second 

column must equal v2 which means that i2 < v2. Therefore the multiplicity matrix 

entry M(l,2) equals i2 such that i2 = 0.1.2, • •• ,min{i/i - 2i1,^2}- The number of 

permutations in this case is given by the number of ways of choosing i2 elements out 

of V\ - 2?'i multiplied by the number of taking the same number i2 of the y2 out of v2 

then multiplied by the value i2\ corresponding to the number of pairing permutations. 

That is, 

'>' i,!(^-2«1-i,)!     i2\{v2-i2)\ 
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i7\(vx - 2»i - ii)K
v2 ~ *a)! 

Similarly the other entries of the first row of M follow as 

jvw) =    fr-EfcW))! „! 
"" OK*! - SU M(l, *))!     «iK^ - *i)! 

(M-EfclMCl.fc))!^! (A10) 

^(^i-ELiM(l,fc))!(^-ii)! 
and the total number of permutations of a specific configuration of the elements of 

the first row equals the product of the numbers of the above permutations,i.e., 

(1) =  vM.->-vk\  (A<11) 

"" " 2<Mj!i2! • • • W\vi - 2?i - t'a i*)!(va - «2)! •••("k - **)! 

For the second row we start with M(2,1) = ik+i and 

ifc+i = 0, l,2,---,min{(i/i -2^ - za *k), (^2 - «2)} 

The number of possible permutations is 

w«)   = (^i-2»1-»a--ifc)! x (^ ~ '»)! xifc+l! 

**' ifc+iK^i -2»'i -«2 »fc-*fc+i)!     «fc+i!(^2-«2-^+i)! 

_  (t/i — 2Ü - ?2 »'*)!( "2 -»'2)!  /A 12j 

~~ i*+i!(i/i - 2z'i - ?2 ifc - *'*+i)!("2 - *2 - *fc+i)! 

For the entry M(2,2)  = 2ifc+2 with i'*+a = 0.1,2. ■ • •, [,»-y+1 J the number of 

permutations is 

>2-«2-ü+i)! 2?fc+2! y(«)   =     11? - ^^  x 

(A.13) 

*"• 2tfc+2!(^2 - *2 - Ü+1 - 24+2)!     »fc+a!^» 

(^2 - «2 - «fc+l)! 

2**+2ifc+2!(^2 - h - ik+i - 2ifc+2)! 

Proceeding with the rest of the entries of the matrix M. we can examine all the 

possible values of the entries and compute the number of permutations of each con- 

figuration noting that in all cases the sum of the entries of both the jth row and the 

jth column must equal Vj. The coefficient c? in (A.3) is given by 

^ = nnWi) (A.14) 
»=1j-\ 
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Due to the cancellation of of terms that appear in both the denominator and the 

nominator, the value of the moment is given by 

M(,+,+-+,>) = vM...„,,£ _ n       (M^il),       n.      (M(;i,;2))! 
(A.15) 

where the summation is over all possible configurations of the matrix M that satisfy 

the above mentioned condition on the sum of the entries along the rows and the 

columns. We can write this condition as 

3 

i 

The first product corresponds to the product of the diagonal entries of the correlation 

matrix C (the autocorrelation) while the second corresponds to the off-diagonal ones 

(the cross-correlation). 

153 



154 



APPENDIX B 

THE WIENER G-FUNCTIONALS FOR 
DISCRETE NONLINEAR SYSTEMS 

A. THE RELATION BETWEEN THE DERIVED WIENER 
KERNELS AND THE LEADING KERNEL 

Since the Wiener Functional GP\gP,gP-\{Py • • ■ ,9o(Py w(n)] is required to be or- 

thogonal to any Volterra kernel of order less than p when the input is Gaussian,(3.14), 

the set of p equations 

£{ni{hi;w(n)}Gp[gp.gp-lip)r--,go(Py,w(n)}} = 0      for i = 0,1,2, • • • ,p - 1  (B.l) 

are used to determine the relation between the derived kernels and the leading kernel. 

Equation (B.l) can be put in the form 

p 

£ 
3=0 

= ££'{Hiih^win^GjlgjipyMn)]} = 0 for  i = 0,1,2, • • • ,p - 1 (B.2) 
3=0 

where Gj[gj(p); w{n)] is the jth homogeneous functional corresponding to the leading 

kernel gp for j = p or one of the derived kernels otherwise. Each of the terms under 

the summation has the form 

{oo      oo oo 

J2  £ "' •   £   hiih.kz- ■■-, ki)gj{p){ki+1. • • •. ki+j)w(n -k1)---w(n- ki+j) 
Iti =0fc2=0 ki+i=0 

oo      oo oo 

fc1=0fc2=0 fej + ;=0 

x€{w(n - Än)u'(n - fra) • • • w{n - ki+j)} (B.3) 
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in which the expectation of the product of Gaussian variables is involved. The result 

is that the value of this term is zero if the number of the Gaussian variables i + j is 

odd. This means that if the Volterra kernel hi has even order i, then (B.2) will have 

terms that correspond to ^-kernels with even orders only. Likewise, if h is odd (B.2) 

will contain only odd order ^-kernels. Since p may be even or odd, gp may appear in 

either collection of terms. Therefore, for simplicity in the following development p is 

assumed to be odd but the result also applies to the case of p even. 

Starting with the expectation of the product of the G-functional with the zeroth 

order Volterra kernel we have 

00 00 

£ \ h0go(p) +EE h0g2(P){ki, kt)w{n - h)w{n - k2) 
*j =0fc2=0 

00       oo       oo       oo 

+    E  E £  £ h0g4{p){h,k2,k3,k4)w(n - h)w{n - k2)w{n - k3)w(n - kA) 
fcj =0*2=0*3 =0*4=0 

+    •••+£•••   £   hogp-lW(h,'--,kp.1)w(n-k1)---w(n-kp.1)\=0 
*l=0 fcp_i=0 ) 

(B.4) 

Then applying the properties of the expectation of the product of Gaussian variables 

and the symmetry properties of the Volterra and Wiener kernels with respect to their 

arguments produces 

oo oo      oo 

<7o(p) + °l E 92(p)(k, k) + 3atY, E 9A{p)(h,h,k3, **) + ' *' 
*=0 *i =0*2=0 

(£_L)!2l 2 > kl=0      fc£^=o 
2    /"" "l-u "E^i- 

= 0 

(B.5) 

Since this is required to be true for any h0, the zeroth order kernel relation is 
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9o(p) + <^oE92{p)(k,k) + 3a* £ £ g^){kukuk2,k2) + --- 
k=0 fe =0*2=0 

+(X'<)L/r1)t--- i 9p^P)(h,kuk2^.-^,k^) = o 
{*j-)W > ' kl=o     k^=o 

(B.6) 

Now we proceed through the Volterra kernels of even order. Letting i = 2 in (B.2) 

we have 

(OO 00 

J3 XI h2{ki,k2)g0(p)w(n - ki)w{n - k2) 
ki =0fc2=0 
oo       oo       oo       oo 

+ ELEE M*i» k2)92(p)(ka. h)w{n - ki)w(n - k2)w{n - k3)w(n - fc4) 
fc] =0 fcj =0 fcj =0 k4 =0 

oo      oo oo 

+ X  £ "■ S h2{kuk2)g4ip)(k3.k4,h,k6)w(n - fc^wfn - fca) •■-u>(n - fo) 
fci=0fc2=0        *e=0 

oo oo 

+ £ ' • ■   X   h2{kuk2)gp_1{p){k3. k4. • • •. fcp+i)u>(n - A*) • ■ • u;(n - fcp+i) J = 0 
fc1=0 fcy+l=0 

(B.7) 

Now, let us divide the pairing permutations into two sets the first of which is such 

that w(n — ki) and w(n — k2) are paired together and the second such that they are 

not. We have 
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oJEMM) 
k=0 

oo OO        00 

9ofr) + °l E 92(p)(ku ki) + 3a* E E 94fr){h, *i, *a, k2) 
jkj=0 fci=Ofcj=0 

+ 2a0
4E EM*!,*») 
*,=Ofc2=0 

0a(p)(*i, *a) + 6 E 04(p)(*i, *a> **, &») + ■•■ 
fcs=0 

/     _  I \) oo oo 

= 0 

(B.8) 

From (B.6) the first term (in brackets) is identically zero. Therefore, the second 

term must equal zero for all values of h2(kuk2):, this provides the second even-kernel 

relation 

92(, #i1i») + 6Es#,^^,) + - 
k=0 

+ «I'*  ,,!ll, JrU E • • •   E   9p-iw(kuh, h, k3„ ■ ■ ■, k^ k^) = 0 
21(^)12(^)^0      k^o 

(B.9) 

Let us take this one step further by letting t = 4 in (B.3) and dividing the 

pairing permutation into three sets. In the first set all of the time arguments in 

h4(k1,k2,k3,kA) are paired together and are not paired with any of the #-kernel 

arguments. In the second set only two of the arguments are paired together and each 

one of the other two is paired with one argument of the ^-kernels, if possible. In the 

third set each of the arguments is paired with one of the arguments of the ^-kernels, 
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if possible. By doing this, the value of the expectation we obtain is 

3ao E   E Mfcl> *!»**'*») 9o{p) + <Tll292(p){k,k) 
fc=o 

+     3^!EE 54(p)(^3, **, *4, **) + •■ ' 
Jk,=0*4=0 

(2|i)!2(^) *~o     *^=0 

oo      oo      oo 

+ 12^oE E EM**,**,**,**) 
fc1=0fcj=0At3=0 

g2{h,h,. 

p_3    (p-l)! (P-1)! 
+     6<rl'£,g4(V)(lCl,h,kA,k4) + --- + (T0      9UE-3V9(£=l)9lfEz3V2(E=i) 

fc4=0 ^   2   r~ "'y   2   '• 

oo oo 

fc4=0 fcE+A=° 

oo      oo      oo       oo 

+ 24a0
8E E E EM**.*>.**,**) #4(p)(*'l-*"2,*'3-*'4) + ••• 

+ ^; p-5 (p-l)! oo oo 

o       <|fH,,q(K.)   I]"-     E     0,-l<p)(^*».k,*4.Av*6,"-,*^*«±i) 
4!(V)!2   2    fc»=°     fc£+>=0 

= 0 (B.10) 

This is similar to the previous case; the first and the second terms (in brackets) are 

identically zero from (B.6) and (B.9), which implies that the third term must be 

equal to zero for all hA{h,k2, k3. kA). This leads to the third even-kernel relation 

04(p)(*i, **, *s, h) + 15(7* E 96(r){h.h. h. kA. h. k5) + ■ • ■ 
kb=0 

oo 

+ °rh    ^L^LE---  E  gP-n,){h.k*.ka.k<.kt,kli..~.ktp,k 
4!(E|5)!2(Eii) k%      k 

2±1: Kt±l, 

*¥'■ 
(B.n; 
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By proceeding in the same manner up to i = p - 1 we obtain 

p — 3 . 
 terms equal to zero from above equations + 

*1=0        *,-i=0 

(B.12) 

which implies that 

£ Vi(*i,fc, • • •,*»-i)^-iw(*i,fc2,• • •,Vi) = o (B-13) 

for all hp-i(ku k2, • • •, fcp_i). This relation is satisfied only if 

fl^i(p)(*i,*i,-",*p-i) = 0 (B.14) 

which is the last even-kernel relation we need. If we substitute (B.14) in the relation 

just preceding it we obtain 

<?P-3(P)(*-I.*2,---,V3) = 0 (B.15) 

By continuing this backward substitution in all the above even-kernel relations (B.6)- 

(B.14) we find that all the even-order derived kernels are equal to zero . 

To obtain the relation between the odd-order kernels we perform the expectation 

of the product of the G-functional and odd-order Volterra functionals. Making use of 

the properties of the average of the product of Gaussian variables and the symmetry 

properties of both the Volterra and the Wiener kernels, we can derive the following 

relations. Starting with the first order Volterra kernel we obtain 
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°l E MM 
*,=o 

9l(p)(fa) + 3<7o  £ 53(p)(^l, ^2, fa) 
*2=0 

+     15ao  £   £ ft(p)(fcl^> fc2' *3, *s) + 
Jfe,=0*j=0 

+     P ^JL^^E--- £ ft(*i,*i,t»^,*»,-i*«ti,*«ti) (^)!2(^)  °      ft     t|JU 
= 0 

(B.16) 

Since this must hold for all fa(k) then the first odd-kernel relation is 
oo oo      oo 

9i(P)(fa) + 3<To E 93(P)(fa,fa, fa) + 15a* E E 9h(p)(kufa, fa, fa, fa) + 
k2=0 fc2=0fc3=0 

/         I \| oo oo 

+P/.-1W ffcL^o1"^ E •'•    E   »p(*;ii*:2,^2,*:3,*;3,---,Ae±i,fc£±i) = (^)!2(^) °  ^ *4r= 
0 

(B.17) 

Using the the third-order Volterra kernel we have 

3CT
OE EM*i^iij) 

At! =0*2=0 

9i(P)(fa) + 3<r| E 93(P)ih, fa, fa) 
fc3=0 

+      15(7*   ]T    ]T  9s(p)(fa- fa, fa- fa, fa) + 
fcj =0Jfc4=0 

(p-1 oo oo 

+   ?,,_!, fg=i^oP 1} E * * *   E   9p(fa- fa- fa- fa- fa,---, hu*,km) ,2=lV9(Z71) fc3=0 fc£+j=0 

oo       oo      oo 

+ 3!<7oE E £ Ä»(*i>*>'*») 
fci=0fca=0fc3=0 

+     60(7o   E 55(p)( *1 • fa, fa■ fa ,fa) + 
fc4=0 

(P)! 

93(p){fa,fa-,fa) 

oo oo 

+    7^3~777IEiicroP 3) E '''   E   9p(fa,fa-fa-fa,fa----:kt±i,k-i±1] 

0 

fc4=0 ^£45=0 

(B.18) 
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Since from (B.17) the first term (in brackets) is identically zero, the second term is 

required to be equal to zero for all h3. This implies that 

00 

93(p){h,ki,h) + 60a* Y, #w(*i'*2'*»'fc4'**) + ''' 

(P)! 

fc4=0 
oo oo 

-<#"3)£-"   E   9p(ki,k2,h,ki,k4,---,kt±±,kt±L) = 0 

(B.19) 

This operation is continued until the expectation of the product of the G-functional 

and the last two Volterra kernels Ap_4 and V-a is performed to yield the last two 

odd-kernel relations: 
/        ey\\ OO 

2!(p-4)! fc,-3=0 

fc,_s=Ofc,_2=0 2!(p-4)!22' 

and 

#p-2(p" 

This relation is equivalent to 

ft-W(t..*».-.V.)= -J!(^1)I (^)'if-*(*..»».-.«»-..V-.)  (B.22) 

Now substituting this in (B.20) and rearranging terms we find 

9p-A{p){ki,k2, - • •, kp-i) = 

-ol/ 
p!,M9a*,4 E   E ^■.^•-.uuuw 

2!(P-4)12 *,_,=() *,_,=() 

„I / Jl\*      oo oo 
P! 

^f)     E     E   gp(ki-k2,---,kp-4.kp-3,kp-3.kp-2-kp-2) 
2\(p-A)\\2j   ^=oCr=o' 

(B.23) 
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Finally substituting this in the preceding relations we obtain 

| /'_2\3      ao oo oo 

°)-   \Z/    fc._8=0fc._«=0fc._s=0 3!(p fc,_»=0fc,_4=0fc,_s=0 

93{p)(h,k2,k3) = 

t=1 p\ /V^^    °° °° 
(-1)   '    /g-3x|/ow  ("T £"•     H    0p(fcl,**,fr3,fc4,fc4,---,fcl=»,fcl=») 

I    2   Möj-   \ Z / fc«=0 fc,_j=0 

9i(?)(h) = 

^-l^ (2=llu^{ai)       E-   £   *(*n*»,*2,...,*«-!,**=,)   (B.24) 
I  2 H-U- \z/       fc2=o      *, 1=0 

Similar results can be obtained if p is assumed to have an even value. The relation 

between the even-order derived kernels and the leading kernel is identical to those 

obtained for odd p. 

B. AVERAGE OF THE PRODUCT OF TWO DISCRETE 
G-FUNCTIONALS 

In this section we present the proof of the orthogonality of the discrete G- 

functionals, i.e., we show that 

£{Qpi\9nMri)]GrAUMn)]} (B.25) 

is zero for pi ^ p2- We show how to develop an expression for the value of the average 

for pi = p-i — p and give that expression. 

From the definition of the G-functional. Gp[gp:w(n)\ is orthogonal to any ho- 

mogeneous functional of degree less than p.  When pi ^ p2 (assuming pi > p2) we 
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expand (?„[/»; w(n)] using (3.14) and substitute its value in the product to obtain 

I m=0 

L?J 

(B.26) 
m=0 

Each term in the summation is the expectation of the product of the G-functional 

and a homogeneous functional with degree less than px. Thus from the definition of 

the G-functional, each term in the summation is equal to zero. This proves the first 

part of the property. 

When pi= P2=P all the terms under summation in (B.26) except the first (for 

m = 0) are equal to zero. In this case (B.26) reduces to 

£{Gp[gp;w(n)}gp[fp-w(n)]} = S{Gp[gp:w(n)}Gp[fp: w(n)}} (B.27) 

Now for the sake of clarity let us assume that p is odd and develop the value of the 

expectation. In this case 

£{0,[ft,:u'(n)]Gp[/p;u'(rO]} 

=   M       Y,---'Efp(h,---,kp)w(n-k1)--'w(n-kp) 
I Aea =0 kp=0 

oo 

E si(p)(*f+iMn_W) 

oo oo oo 

+      E      E     E   0s(p)(frp+i< Vn< Vi-sH« - Vt-iM" _ *p+a)">(n - *P+S) 
fcp+1=0fcp+j=0fc,+j=0 

oo oo 

+    ••■+   E   '•• E 0r(fcjH-i>--->*2PMn-VM)--'"-^"-*^) 
VH=0       fc2,=o 

(B.28) 

Since the next steps are algebraically tedious but otherwise straightforward let 

us just give an outline of those steps. By switching the order of the expectation and 
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summation we involve the expectation of the product of Gaussian variables. Then 

the development is continued in the same way as we derived the relation between the 

kernels. The pairing permutation is divided into sets. In the first set only one time 

argument of the fp kernel is set equal to one argument in each of the g kernels and 

the rest are paired together. In the second set each of three time arguments of the fp 

kernel is set equal to one of the arguments of the g kernels, if possible, and the rest 

are paired together. This continues until in the last set each of the arguments of the 

fp kernel is set equal to one argument of the g kernels. Since for the last set there is 

not enough arguments except in the leading kernel gp we have 
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S{GP[gP;w(n)]Gp[fp;w(n)]} = 
OO 00 

5i(p)(^i) + 3<:ro   E   5iCp)(*i»*t±i+n*i±i+i) 
k*£Ui 

/          -I \| 00 OO 

(«=i)!2". 

OO OO 

*thix, *»> 

+ -3   ,'   E^i^3 E  ' • '  E  U(k^ k^ **, *4, h, • • • , ^, fct±i) 
("r)!2 fc,=0        k 

*¥■ 

93(P){ki,k2, h) + 60<T„   J2   gs(p)(ki,h, k3, k^+1, ke±±+1) 

OO OO P + 3 
+   •••+-rrrl^iEr^r3  E  •■•£*(*!>fc2,^,-^- + l,**j»+1,-••,**,*} 3!(^)!2^        4~        t 

„! OO OO 
"• ^2p-2 + ^-yr2 E • • • E /ä. ■ • • • **-». Vi. Vi 2! fc1=0 fc,_2 

9p-2(p)(hi- • • , fcp-2) +   ^       OMOl'7"  E 5p(^l- • • * > *p-2, *p-l, *p-l) 

00 00 

(P-2)!2!     ^ 

+   P!^O
2P
E •-T,fp(ki,kt,..'ikr)gp(h,ka,-,kp) (B.29) 

All the sum of terms between brackets were shown to be equal to zero in (B.6)-(B.22). 

Therefore 

00 00 

£ {gp[gp: w(n)]Qp[fp; 10(17)}} = p\a2J £ ... £ /p(^. k2. ■ ■ ■, kp)gp(h.k2. ••-,**) 
fci =0      *, 

(B.30) 

An identical result is obtained for even values of p. 
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APPENDIX C 

COMPUTATION OF THE NON-ZERO 
VALUED Q-POLYNOMIAL CROSS-MOMENT 

The general expression for Q-polynomial cross-moment is given by (4.23), which 

is repeated here for convenience: 

r|0 L%J L^J      L^J (_!)=[» 

$«) = (O • «^■!-"«*!SiEi"-i5^mi!mi!...ln4!(2)w 

(C.l) 

The goal here is to develop conditions for those terms in the expression which are zero 

or sum to zero since those terms will not need to be calculated. The development of 

sufficient conditions for the general case is very lengthy and requires more space than 

is feasible in this exposition. Instead, let us demonstrate these cases to derive the 

sufficient conditions for the example given in Chapter IV and show that the result 

can be generalized. 

We begin by specializing (C.l) to the case of k = 2 and rearranging the terms 

for our example to write 
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I QiQ —2f*i   I ..... 
*     (-1)^1  L      »      Ja1^2Ma1,-2M-»3ry(/)rt»(/)rM(/)   ^   (_!)*>«       1 

"   m,l9"i       2-d l^i Z^i 
mi=0 '"I"6 t,=0 i,=0 «s=0 

-    (-1)"" -     '     --.. -..-„ ~j •Tö^/jrrifjry^j ^ 

i4=aio— 2f?ii— 2»i—1*2— «3>0 C 

• an— **m3 I ... 

X i=o «2!^       £J      i.=o      »'i!ie!«r!2*- m^0 m,!2»- «„J*» 
> v ' > v " 

«T=OIII— 2mj— 2IB— i«>0 B 

x f (-ir   
Lf J   ^iCQ_ f (zir _j_ fC2) 

»'»=au—2TT»3 —2t»>0 .A 

In this arrangement the values of the rrij and the ij are interdependent due to the 

condition (4.19). Therefore when we rearrange the summation the upper limits des- 

ignated by ti,t2,t3,t4ih and t6 must be determined so that none of the ij assumes 

a negative value and results in a rejected configuration of the matrix M. When we 

consider these modified summations in detail there are many well defined cases in 

which terms clearly sum to zero. As we show later, eliminating these cases avoids 

the unnecessary computations which represent most of the terms in the expression. 

Starting with the innermost summation in (C.2) marked A, let us proceed to 

determine the upper limit. From the condition specified by the last row of M in 

(4.19) we have 

ii2 = m6 (C.3) 

The following restrictions need to be imposed on the relations between the summation 

parameters: 

1. The quantity Q22 — U — ij — is must have an even value so that i12 is an integer. 
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2. Since i4,z7 and i9 are non-negative integers and sum to a value less than a22 

then 
Q22 - h - 27 - ^9  < Q22 ,Q ^S 

2 -   2 {   ' ' 

3. Since i'i2 must be non-negative 

m6 <  \^-d) 

This means that we must set the upper limit of the summation t6 to the value 

on the right of (C.5) to prevent i'i2 from assuming negative values, i.e., 

Ö22 ~ z4 ~ 27 - *9 ir fix 
U= 2  ^   ' 

With these conditions the term A in the expression becomes 

i   *   {-\rm =d-i)ts (C 
•^w.^W-iu-msy.     v*u\ 

which is zero for all non-zero values of t6. This means that for some permutations the 

corresponding terms in the cumulant expression are summations of quantities that 

have a common factor of zero. Then to save the wasted effort of computing these 

terms we set the relation between the summation parameters to avoid these cases. 

This means that we let t6 = 0, i.e.. 

Q22 - U - *7 - H = 0 (C.8) 

which implies (using C.3) that 

»12 = -"is (C9) 

Since both i12 and m6 must be non-negative integers the result is 

m6 = i12 = 0 (CIO) 

and the term A in (C.2) equals one. This important relation means that because m6 

equals zero we consider only the first term of the Hermite polynomial H2(y2[n + I)). 
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Because in equals zero, the pairing of the j/j does not contain the value 

£{y2(n + l)y2(n + 0) = ro(0) as a multiplier. 

Now, from (C.8) and the relation between iB and i0 given in the third row of 

(4.19) we have 

a-12 — 2m3 — is 
^s   = 

m3 (Cll) 

2 
«12 - «22 + «4 + «7 

2 

and the summation over i6 disappears because iB is forced to have a specific value. 

In addition, the upper limit of summation over m3 must be restricted to the cases 

that have non-negative integer values of i6. Therefore, letting 

Ö12 - Q-22 + u + 17 

the last line in (C.2) starting with the summation over i3 is 

m3: 
% m3!2m3 (*3 - m3)!(a22 - i4 - ?7)!2f>-m' 

ra22-i4-»7(/) « (-l)m»f3! 
2^ ^,1/ (a22 - i4 - i7)\t3\2*» J^0 m3\{t3 - m3)\ 

ra22-M-.-!(/)      (1_1)«3 
(C.12) 

{Q22-U-iry.    <s!2f» 

Similar to the above discussion this term equals zero for all non-zero values of t3. 

Hence the computational effort is avoided if we let *3 = 0, which results in 

m3 = i8 = 0 (C.13) 

and 

0-12 = o22 - iA - i7 (C14) 

The entire term starting with the summation on m3 (last line of (C.2)) then equals 

012! 

170 

(C.15) 



The term marked B in the expression (C.2) is treated in the same way to obtain 

1 *» (_1\ms/J 

where 

U = ^LZiiZÜ (c.17) 

This has a non-zero value for ts = 0, resulting in 

m5 = iu = 0 (C.18) 

and 

*e = Ö21 - *3 (C.19) 

which implies that i6 has a specific value for each value of ?'3, and the summation 

over ?'e disappears. From (C.14) ?V has a specific value given by 

»7 = a22 - Ö12 - U (C.20) 

and the condition given in the second row of (4.19) implies that 

?7 = On — 2n?2 — 2?5 - i6 (C.21) 

Therefore from the above 

Oil + Ql2 - 02l - Q22 + 13 + U .„ nns 

and the double summation over i$ and iß disappears.   The term starting with the 

summation over m2 (second to last line in (C.2)) reduces to 

r-«-*(/)r-»+«»--»-««(/) *     (-irn2\ 
(o2i - ?3)!(Qi2 + 022 - Qi2 - 24)!<a!2'» ^0 m3\{t2 - m2 

where 

On + Q-12 - 02i - Q22 + ?3 + * uii T ui2 - U21 — "22 -T (-3 T 14 , n n» , t2 _  (C.24J 
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As in the previous cases (C.23) sums to the binomial term (1 - 

that t2 = 0 and results in the relations 

- l)h which requires 

mj = is = 0 (C.25) 

and 

U + iz = #21 + a22 ~ Qn ~ °12 (C.26) 

Consequently the term represented by the second line of (C.2) becomes 

rg»"<*(/)r?w~a"+<4(/) 

(a2i - «3)!(°22 ~ «12 + HY 

In a similar manner the term marked C in (C.2) is put in the form 

1       u       (_lpf4! 

(C.27) 

Ut. - mA\ 2***4! m^0 ™4!(*4 - m4 

where 

U 
»20 — l2 

(C.28) 

(C.29) 

and summed to the binomial (1 - \)u. Then it is required that tA = 0 which yields 

(C.30) ?7?4 = «IQ = 0 

Then from (C.26) and the relation 

ü = 010 - 2/77i - 2ii - ii - iz (C.31) 

we obtain 

O10 4- Q11 + »12 — Q20 — Q21 — Q22 
«1 = " Ö mi 

12 — ö20 

?'4 = On + Q22 _ #12 — Ö21 — lZ 

To guarantee that ?'i is a non-negative integer, we must have 

Q10 + Q11 + Qi2 — Q20 — Q21 — Q22 > 

(C.32) 

(C.33) 
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The total term then becomes 

rP(/)ris(/)r?(0 v (~1)mi V 
~0 ™l'2- «.fi.-n+b-»-.! (<1 -"»l)'-«»!«-,^!^-^ 

E 
t3+t4=an+a2j-ai2-aji 

which is only non-zero if 1i = 0 . This means that 

n?i = ii = 0 

(C.34) 

(C.35) 

and 

Ö10 -f on + Qi2 = Q20 + «21 + #22 

«3 + *4 = OlO — °20 

(C.36) 

(C.37) 

By combining all of these results, the value of the Q-polynomial cumulant in this 

example becomes 

(2)m   f 2,mi   ,   ,"V"ro+i,+<,(/^+iT(/)r?(,) 

t3=0 i2\i3*U^7W 
(C.38) 

w here the quantities i2. ?4. i'e- h and ?9 depend upon the value of i3 as follows 

?2 = Q20 

?4 = 0-10 — 020 — ?3 

«6 = ö21 - *3 

*7 = Ö20 + Ct'22 - Q10 - Q12 + ?3 

?9 = «12 (C.39) 

In general to compute only the non-zero terms in the Q-polynomial cross- 

moment we need to maintain the following: 
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1. The Q-polynomial cross-moment is computed by computing the expectation of 

the product of only the first terms in the Hermite polynomials in the expansion. 

This corresponds to setting m = 0 in (4.23). 

2. This expectation is taken in a special way such that the pairing permutations 

do not include those that result in one or more autocorrelation functions of any 

of the outputs at zero lag, ro(0). This corresponds to setting the values of the 

diagonal entries of the multiplicity matrix M equal to zero. 
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APPENDIX D 

COMPUTATIONAL METHODS AND 
OPTIMIZATION USING THE EXTENDED 

KALMAN FILTER 

In Chapter V we are concerned with finding a model, through an optimization 

procedure, that matches the a set of cumulant values computed from data. Since 

the optimization is an iterative procedure, it is necessary to have an efficient way 

of to compute the cumulants in (5.21). Also, since the optimization uses gradient 

information, it is necessary to have an efficient way to compute the derivatives of the 

cumulants with respect to the model parameters. The analysis presented in Chapter 

IV provides the means for this efficient computation. 

A. PROCEDURE FOR COMPUTING THE CUMULANT 
VECTOR Xm 

Since the Q-polynomial cumulants are computed directly from the vectors of 

indices, the structure of the arrays in (5.21) are the same for all the models that have 

the same dimensions NL and NN. Therefore for every pair of dimensions [NL, NN] a 

table-like array of numerical values can be computed and stored in a library. This ar- 

ray contains all the information needed in (4.21). Each row in this array corresponds 

to one term in (4.21) and has 3 + k{k - l)/2 fields defined as follows: 

1. The first field has the index i of the k coefficients ca. i.e., it specifies one 

element in c®fc. 
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2. The second field is the power of <r„, which equals half the sum of all the com- 

ponents of the vectors of indices a. 

3. The third field is a numerical value that results from dividing the product of 

the factorials of the components of the vectors of indices by the factorials of 

the nonzero entries of the multiplicity matrix M. 

4. Each of the last k(k—l)/2 fields has size NL + 1 and corresponds to one block 

R(/) in the matrix C„(Z) in (4.17) with / either one of the components of 1 or 

a difference between two of them. The entries of each of these fields are the 

multiplicity of the corresponding Laguerre cross-correlation sequence r ,*(/). 

According to (5.21) this array would be Ar* long where the number of model coef- 

ficients, TV, increases rapidly with the model dimensions NL and Njf. This means that 

a slight change in the model dimensions or in the cumulant order would increase the 

computational cost dramatically. Also to compute the value of the cross-correlation 

sequence r^(/) every time it is needed using (3.96) is very costly, especially when 

the parameter p is changed as it is in every iteration of the optimization procedure. 

Fortunately, as we have seen, the model has structure which dramatically reduces 

the computational cost. Recall that: 

1. The cumulants of the Q-polynomials are identically zero for most of the com- 

binations of the vectors of indices a. This can be detected by running a simple 

test on a to determine whether the corresponding term is identically zero or 

not. Using this test, presented in Chapter IV, greatly reduces the length of the 

stored array. This results in a significant saving of both storage and computa- 

tion. Tables D.l and D.2 show the actual length of this array compared to the 

quantity Nk for the cases of second and third-order cumulants respectively. 
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NL/NN 1 2 3 4 

1 
4 

4 

13 

25 

29 

81 

54 

196 

2 
9 

9 

45 

81 

145 

361 

370 

1156 

3 
16 

16 

116 

196 

516 

1156 

1741 

4761 

4 
25 

25 

250 

400 

5 
36 

1 36 
477 

729 

TABLE D.l: The ratio of the non-zero terms in the second-order cumulant function 

XL/XN 1 2 3 4 

1 
42 

125 

225 

729 

824 

2774 

2 
213 

729 

1731 

6859 

10060 

39304 

3 
759 

2744 

8746 

39304 

8746 

328509 

4 
2171 

8000 

5 
5327 

19683 

TABLE D.2: The ratio of the non-zero terms in the third-order cumulant function 
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2. Both p and / axe needed to compute the cross-correlation sequences rd(U). 

Since the maximum value of d equals NL and the maximum value of h is the 

maximum component in Z, another array of the cross-correlation sequences 

can be formed such that its (ij)th entry is rt(j) for * = 0,1,2,-- •, NL and 

j = 0,1,2,--- ,max{/}. The ith row corresoponds to the sequence of order i 

while the jth column corresponds to the value of the sequences at lag value 

;'. Instead of using (3.96) to compute each r^j) we use the recursion relation 

(3.92) 

n{j) = pTiii - 1) + pri-iU) ~ r«-i0' " !) 

In this case we need to compute the values of r<(j) along the first row and 

the first column only and then compute the rest of the values recursively. The 

values in the first row are simply 

ro(j) = ^ (D-1) 

while the entries of the first column are given by 

r-(0) = l ]    f0ri'=.° (D.2) ,v  ;      1  0   otherwise 

B.   PROCEDURE FOR COMPUTING THE GRADIENT 
MATRIX H 

In the optimization algorithm to be discussed shortly, it is necessary to compute 

the gradients of the vector Xm with respect to the model parameters. The gradient 

matrix H is thus defined as 

H = [VcXm  V,0Xm  V„Xm] (D.3) 

Although this matrix can be formed from (5.21) it is preferable to avoid the unnec- 

essary computations by utilizing the same information stored and used to compute 
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the vector X,„. Therefore each of the three partitions of H is obtained by modifying 

specific fields in the cumulant data array and using this modified array to compute 

the gradients. 

From (5.21) the gradient with respect to the vector c can be obtained by 

VcX™ = C^VcC®* (D.4) 

Then the matrix C^ does not need to be recomputed; only the information obtained 

from the first field of the array of cumulant data is used to form another table with the 

same length. Each row of this table has N elements specifying the value of gradient 

of this term with respect to each of the model coefficients ca- If a coefficient ca is 

not included in the product of coefficients then the corresponding entry in the table 

is zero. If the coefficient is included then the corresponding value in the table is 

V=ai
ca.c«i ''' C(*k = P^catj •••cak 

(D.5) 

Thus we need only to multiply the corresponding term by a value equal to the coef- 

ficient multiplicity in the first field then reduce the multiplicity by one. 

Since a change in p changes terms in the cumulant expression that have the 

form 

the gradient of this quantity with respect to p is given by 

rl{h)rZ{h)---rZ(lp) v\ 
r*('l + Vi w* + • • • + vp 

r'Al dv\
lv) 

rdl(h) rdl(l2) 
rdf{lpii 

Notice that the derivative of each term is obtained by multiplying this term by 

^(/i '«,('») WP)] 
rdAh) rd3{l2) r^ilj,) 

where the z/; are obtained from the original data array and the cross-correlation 

sequence values have already been computed and stored for a given range of orders 
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and time lags. Hence it remains to compute the values of r'd(l) for the same range. We 

can use (3.92) to obtain a recursion for the derivatives of the correlation sequences: 

r'iU) = pr'iU - 1) + prUJ) ~ ii-iU - 1) + r^) + r<-^~1) (D.6) 
P 

then precompute these values and store them in a separate array. In this array the 

entries of the first column, r'{(0) are all zeros and the first row is given by 

C. EXTENDED KALMAN FILTER ALGORITHM 

For the extended Kaiman filter optimization procedure the model parameters 

are arranged in a vector form 

C=[cT     Pf (D.7) 

Then the recursive estimation of the value of the vector £ that minimizes the quantity 

ETE is proceeds according to the structure of the Kaiman Filter technique [39]. 

Assuming that at the ith recursion we have the value ^ and the predection of £i+1 

is linear function of (^ we can build our algorithm as follows 

d/i — &/i-i + E\[XP - Xtn(Ci/j_i)] 

Ci+i/t = d/i 

Ki = P^xHiWr1 

Wi = Ht
TPi/i_1H, + I 

P.-/." = p^-i - Pi/i-iHiW^HfPi/i. 

Pi+i/i = Pi/,- (D.8) 

Where in this notation the matrix H; is the gradient matrix in (D.3) computed for 

the model parameters vector Ci/i- We start the algorithm with proper initialization 

of C and P. 
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