
ARI Research Note 95-28 

Integrating Analogy With Rules 
and Explanations 

Greg Nelson, Paul Thagard, and Susan Hardy 
University of California at Los Angeles 

for 

Contracting Officer's Representative 
George Lawton 

^|a      , „    «-« jr> «^n -«a F ".-'% 

^ 

Research and Advanced Concepts Office 
Michael Drillings, Acting Chief 

June 1995 

1 
United States Army 

Research Institute for the Behavioral and Social Sciences 

4N 
Approved for public release; distribution is unlimited. 



U.S. ARMY RESEARCH INSTITUTE 
FOR THE BEHAVIORAL AND SOCIAL SCIENCES 

A Field Operating Agency Under the Jurisdiction 
of the Deputy Chief of Staff for Personnel 

EDGAR M. JOHNSON 
Director 

Research accomplished under contract 
for the Department of the Army 

University of California 

Technical review by 

Michael Drillings 

NOTICES 

DISTRIBUTION: This report has been cleared for release to the Defense Technical Information 
Center (DTIC) to comply with regulatory requirements. It has been given no primary distribution 
other than to DTIC and will be available only through DTIC or the National Technical 
Information Service (NTIS). 

FINAL DISPOSITION: This report may be destroyed when it is no longer needed. Please do not 
return it to the U.S. Army Research Institute for the Behavioral and Social Sciences. 

NOTE: The views, opinions, and findings in this report are those of the author(s) and should not 
be construed as an official Department of the Army position, policy, or decision, unless so 
designated by other authorized documents. 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

gathermg and maintaining the data needed, and<omJ™«ln9 *™ rLrHntV Washington Headquarter Services. Directorate for Information Ooe-at.ons and Reports. 1215 Jefferson 
f°.'vÄ^^ S-r"of,0M~n?em aÄget. P.perwo* „eduaion W(07Q4J,M),W.,h.n9«on. DC »M3: 

1.   AGENCY USE ONLY (leave OianK) 

4. TITLE AND SUBTITLE 

2. REPORT DATE 
1995,  June 

3.REPORT TYPE  AND DATES COVERED 
Final       Sep 89 - Aug 92 

Integrating Analogy With Rules and Explanations 

6. AUTHOR(S) 

Nelson, Greg; Thagard, Paul; and Hardy, Susan (UCLA) 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

University of California, Los Angeles 
Department of Psychology 
Los Angeles, CA 90024 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

U.S. Army Research Institute for the Behavioral and 
Social Sciences 

ATTN:  PERI-BR 
5001 Eisenhower Avenue 
Alexandria, VA 22333-5600 ___  

5.  FUNDING NUMBERS 

MDA903-89-K-0179 
61102B 
74F 
2901 
C03 

8.  PERFORMING ORGANIZATION 
REPORT NUMBER 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

ARI Research Note 
95-28 

11. SUPPLEMENTARY NOTES 

Contracting Officer's Representative, George Lawton. 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 

Approved for public release; 
distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

This paper presents a new integrated artificial-intelligence model, 
Connecting Analogies With Rules and Explanations (CARE), which combines analogy, 
rule use, and the assessment of explanatory coherence.  The model is applied to 
complex problem-solving and decision-making tasks in a variety of domains. 

14. SUBJECT TERMS 

Analogy• 
Rules 

Explanation 
Artificial intelligence 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18.   SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19.   SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

15. NUMBER OF PAGES 

48 
16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

Unlimited ' 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Std  Z39-1S 
298-102 



INTEGRATING ANALOGY WITH RULES AND EXPLANATIONS 

CONTENTS 

INTRODUCTION      

RELATIONS BETWEEN ANALOGIES, RULES, AND EXPLANATIONS 

CONSTRAINT SATISFACTION: WHY LOCALIST CONFECTIONISM   . 

RULES AND ANALOGIES      

CARE KNOWLEDGE BASES       

THE CONSTRAINT NETWORKS     

The Comparison Network 
The Interference Network  
Relaxing the Constraint Networks 

TEST CASES 

Solving Juliet's Problem 
Explaining Gorbachev's Decision 
The Duncker Radiation Problem 

CONCLUSION 

REFERENCES 

FIGURE CAPTIONS 

FIGURES 

111 

f71S     Gllfi.kl 
DTIC TA3 
Unamiour.ced 
jupti.f i, o^t ion- 

Page 
1 

2 

4 

5 

6 

8 

8 
9 
13 

14 

14 
16 
16 

19 

20 

23 

24 



To appear in K.J. Holyoak & J.A. Barnden(Eds.), Advances in connectionist and neural 
,  computation theory, Vol.2:  Analogical connections.  Norwood, NJ: Ablex. 

INTEGRATING ANALOGY WITH RULES AND EXPLANATIONS 

Greg Nelson, Paul Thagard, and Susan Hardy 

1. INTRODUCTION 

In the past decade, analogy has been one of the most progressive research areas in cognitive science. Previ- 

ously, there had been isolated investigations in philosophy, psychology, and artificial intelligence, but the 1980s 

brought substantial work on many aspects of analogy, particularly on how two analogs can be mapped to each other 

and on how analogs can be retrieved from memory. Case-based reasoning, which is analogy in workaday clothes 

with a restriction to single domains, became an active research area in artificial intelligence. 

There are, however, important unresolved issues concerning the role of analogy in human cognition. One of 

the most pressing concerns the relation of analogy to other central cognitive processes. How, for example, is ana- 

logical problem-solving related to rule-based problem solving in which chains of rules are used in quasi-deductive 

fashion to accomplish goals? One extreme view, implied by some of the advocates of case-based reasoning, is that 

there is no such thing as rule-based reasoning. At the other extreme, there is the view that analogy is of peripheral 

interest, at most a minor module to be added onto a rule-based system which handles basic cognitive operations. In 

between, there is the view that analogy and rule-based reasoning should be viewed as integrated aspects of a general 

cognitive system. 

How rule-based reasoning can be integrated with analogical reasoning depends in large part on what compu- 

tational mechanisms are seen as crucial to retrieving analogs: spreading activation, indexing, or parallel constraint 

satisfaction. Analogical retrieval mechanisms using spreading activation have been combined with production sys- 

tems in models like PI (Thagard 1988, Holyoak and Thagard 1989b), PUPS (Anderson and Thompson 1989), and 

EUREKA (Jones and Langley 1991). Case-based reasoning systems retrieve analogs by a direct computation of 

similarity between problems and stored cases, often paying special attention to indexing by goals and failures. 

This research was supported by contract MDA903-89-K-O179 from the Basic Research Office of the Army Research Institute for the Behavioral 
and Social Sciences, and conducted at the Princeton University Cognitive Science Laboratory. We thank David Gochfeld for discussions and pro- 
gramming that helped guide us toward the current model, and Dmitry Gorenburgov for developing the Gorbachev example. For helpful com- 
ments on a previous draft, we are grateful to John Bamden, Keith Holyoak, and Heather Pfeiffer. 
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Systems that combine case-based reasoning with rule-based reasoning include CASEY (Koton 1988) and 

CABARET (Rissland and Skalak 1989, Skalak and Rissland 1990). A third method of retrieving analogs uses paral- 

lel constraint satisfaction implemented using localist connectionist techniques (Thagard, Holyoak, Nelson, and 

Gochfeld 1990; Holyoak and Thagard 1989a; Thagard, Cohen, and Holyoak 1989). Analogs can be retrieved from 

memory on the basis of parallel satisfaction of a set of semantic, structural, and pragmatic constraints that are effec- 

tively implemented in a connectionist network. In this paper we present the CARE model, which uses these tech- 

niques to accomplish both analogical and rule-based reasoning. 

Rule-based reasoning is traditionally implemented in production systems and logic programming, but we shall 

construe it in terms of parallel constraint satisfaction. We believe that analogy is not a module operating separately 

from and external to rule-based processing. Rather, rule-based processing can be viewed as another process of 

parallel constraint satisfaction, with deep affinities to analogical reasoning. Investigating those affinities provides 

clues to how it might be possible to develop a fully integrated cognitive system that seamlessly embraces both rule- 

based and analogical reasoning. We will describe an implemented system called CARE, for "Connecting Analo- 

gies with Rules and Explanations," that illustrates a novel kind of rule-based processing complementary with our 

previous connectionist work on analogy. 

Additional motivation for applying parallel constraint satisfaction to rule-based reasoning comes from its suc- 

cessful application to another important area of high-level cognition, the evaluation of explanatory hypotheses. 

Thagard (1989,1992) has developed a theory of explanatory coherence that is implemented in a connectionist pro- 

gram called ECHO and applied to numerous cases of reasoning in science and everyday life. Explanation and the 

evaluation of hypotheses are processes intimately connected to analogy and rule-based reasoning. 

2. RELATIONS BETWEEN ANALOGIES, RULES, AND EXPLANATIONS 

The ultimate goal of cognitive science is the development of a unified theory that embraces the full range of 

human information processing from vision to reasoning to language. The current goal of our research program (in 

collaboration with Keith Holyoak) is much more restricted. We wish to develop a local unified theory that ties 

together three important factors in high-level cognition: analogy, rule-based reasoning, and explanation including 

hypothesis generation and evaluation. Other important cognitive functions, such as vision, language, and learning 

would ideally be integrated into more complex versions of the cognitive system we have designed, extending it to 
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constitute a full cognitive architecture. For now, it is a difficult enough task just to model the interrelations (sum- 

marized in figure 1) of the three kinds of thinking we have chosen as our focus. 

Insert Figure 1 about here. 

First consider how analogical and rule-based reasoning are tied to each other. Analogy tends to be a useful 

alternative to rule-based reasoning, since rules are often too rigid to suggest a solution to all problems. Analogy 

offers a more flexible way of using past rule-based solutions to solve problems where no exact rule-based solution is 

available. Thus analogy can extend a rule-based system to allow inferences and solutions that the rules alone would 

never have produced. Conversely, rules offer useful ways of elaborating and adapting analogies for successful solu- 

tions. Two cases may not even seem to be related to each other until rule-based inferences have clarified the simi- 

larities between them. Even after the similarities have been detected, additional inference of the sort carried out by 

rule-based systems can help to adapt one analog for use in accomplishing some task involving the other. Thus rule- 

based reasoning can help with analogical thinking as well as vice-versa. 

Analogical thinking interacts with the formation and evaluation of explanations in several ways. Analogies 

can suggest explanatory hypotheses, generating an explanation of some puzzling fact viewed as similar to some- 

thing already understood. Analogy can also be one of the factors relevant to selecting which of a number of com- 

peting explanations provides the best explanation of the facts. In the other direction, explanatory goals help to 

shape the ways in which analogies are retrieved, mapped, and transferred. 

Rule-based reasoning and hypothesis evaluation are even more intimately connected. Though not all explana- 

tion is of the deductive sort approximated by rule-based systems, it is often natural to explain a puzzling fact by 

showing how it can be derived from known facts by a set of known rules. Sometimes the derivation cannot be made 

simply on the basis of what is known, and facts or rules must be hypothesized to make the derivation work. Evalua- 

tion of hypotheses in terms of their explanatory coherence with other facts and hypotheses must then be carried out 

Thus rule-based systems are relevant to hypothesis evaluation because they can provide the hypotheses to be 

evaluated. Going in the other direction, hypothesis evaluation can be crucial to the operation of rule-based systems, 

since it can determine whether a hypothesis can be viewed as accepted and therefore capable of figuring in new 

deductions. An integrated explanation system would be continuously forming and evaluating hypotheses and using 

them in subsequent inferences. 
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3. CONSTRAINT SATISFACTION: WHY LOCALIST CONNECTIONISM? 

CARE is an attempt to integrate, extend, and revise previous computational models of analogy and hypothesis 

evaluation: ACME (Holyoak and Thagard 1989a), ARCS (Thagard, Holyoak, Nelson, and Gochfeld 1990), and 

ECHO (Thagard 1989). As in those programs, the fundamental approach is constraint satisfaction using localist 

connectionist networks, extended to model rule-based reasoning and analogical transfer. Three questions naturally 

arise: why the connectionist approach, why use local rather than distributed representations, and what is the 

relevance of constraint satisfaction to rule-based reasoning? 

Various methods for constraint satisfaction have been developed using techniques as diverse as logic pro- 

gramming and mathematical programming. We find the connectionist approach attractive for several reasons. Rea- 

soning problems of the sort we are interested in can be viewed as optimization problems of a very complicated sort 

given what you now know and the various inference methods you possess, infer the most reasonable and effective 

set of conclusions. Unlike a typical optimization problem in mathematical programming, it is not feasible to 

describe a function precisely stating the variables that are being optimized. Even if they could be described, such 

functions for cognitive processes would be nonlinear, since the soft constraints on reasoning involve complex trade- 

offs. ACME, ARCS, and ECHO use input about analogs and explanations to produce networks that yield answers 

based on satisfaction of multiple constraints. Other techniques for constraint satisfaction might be workable, but do 

not appear to be either so naturally applicable or so computationally efficient 

Some cognitive tasks have been insightfully investigated using connectionist models with distributed 

representations, in which concepts or hypotheses are represented by patterns of activation across numerous units 

rather than by individual units. This approach has computational advantages and neural plausibility, but no full- 

fledged distributed system for rule-based reasoning has yet been developed, although some progress has been made 

toward understanding how systems employing distributed representations can be given the capacity to do such rea- 

soning (see for example Ajjanagadde and Shastri 1989, Barnden 1991, Pollack 1990, Smolensky 1990, Touretzky 

and Hinton 1988, van Gelder 1990). We view local representations as approximations to kinds of distributed 

representation that remain to be understood, just as distributed representations as produced by current backpropaga- 

tion methods are obviously only weak approximations to neurological structures. Like Hendler (1991), Lehnen 

(1991), Eskridge (this volume), and Kokinov (this volume), we have developed a hybrid model in order to exploit 
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new connectionist insights without abandoning valuable ideas from traditional AI. 

4. RULES AND ANALOGIES 

Rules and analogs have some important similarities. Both must be retrieved from long-term memory in order 

to be of any use. Rules and analogs must go through a binding or mapping process in which the correct match 

between elements of the rule or analog and the problem being solved is sought out. When a good match is found, 

rules are fired and analog components are transferred, generating new plausible inferences to contribute toward 

problem solutions. 

The largest differences between these two types of information seem to be matters of degree of complexity 

and degree of specificity. The conditions of a rule usually only have a few propositions and most rule-based sys- 

tems require a complete match of these against a data base of facts. Inferences from rules are relatively sound. 

Analogs usually contain many more propositions than rules, and their greater structural complexity makes them 

relevant in fewer situations than rules. However, it is less critical to match the entirety of an analog, because analo- 

gies often include many uninteresting details that do not fit the current problem, and sometimes only a part of the 

analogy may be relevant. Because of this flexibility, inferences drawn through analogical transfer may be less reli- 

able, but more insightful. Rules and analogies may therefore be viewed as the ends of a spectrum rather than as the 

basis of unrelated problem-solving strategies. Our CARE system is intended in part to test the plausibility of this 

hypothesis. The major innovation in CARE is the use of connectionist methods to model rule-based reasoning. In 

section 6.2, we will describe how inferences using rules can be naturally and flexibly accomplished using connec- 

tionist techniques. 

In rule retrieval as in analog retrieval, the primary goal is to find within a general knowledge base an element 

that may be applicable to a particular case. While some efficient search mechanisms have been developed for rule 

retrieval (Buchanan and Shordiffe 1984, Forgy 1982), they rely on powerful indexing and a great deal of computa- 

tion, rather than on psychologically plausible theories. Our theory suggests that principles used for analog retrieval 

such as those in our ARCS retrieval model should be applicable to rules as well In particular, semantic similarity 

should have a strong influence on retrieval, but should be combined with information about structural similarity and 

pragmatic relevance. 
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5. CARE KNOWLEDGE BASES 

CARE, a program implemented in Common LISP, uses two different kinds of knowledge representation. 

Analogs, rules, and problem descriptions are represented as grouped sets of propositions using an extended version 

of predicate calculus. A problem to be solved is represented by a list of predicate calculus propositions; the predi- 

cate of each proposition is a semantic concept Semantic concepts are represented as frame-like structures, with 

slots describing their semantic relationships to other concepts (such as synonymy, antonymy, and part-whole rela- 

tions). Like ARCS, CARE's retrieval mechanisms use these semantic relationships to select rules and analogs 

which are semantically similar to the problem. This method helps to restrict the potential candidates for retrieval in 

a psychologically plausible way, yet allows more flexibility than matching techniques that require identical predi- 

cates. 

The central element of our representation of rules and analogs is the proposition, a unit containing informa- 

tion comparable to that in a very short sentence. Each proposition consists of a predicate, a list of arguments, a 

acceptance value, and a proposition name. The predicate represents a concept, found in the semantic database, that 

describes the relationship between the arguments. It can be a simple concept like DOG or a complex relation like 

COLLECT-FROM. The arguments represent the objects being related, and may refer to specific objects like 

NEW-YORK-CITY or objects considered local to a given structure, such as OBJ-DOG. Arguments may be either 

constants or variables, with variables indicated by the use of ? or % as the first character. Arguments in problem 

descriptions and analogs are usually constants, while in rules they are usually variables. The acceptance value is 

either true, false, or unknown, and represents the degree to which the problem solver believes a fact These values 

play an important role in the inferential network described in section 6.2, as do the proposition names. 

The database of rules and analogs in CARE, like the analog database in our previous models, consists of sets 

of propositions grouped together and given a single name. Within these collections, smaller functional groupings 

exist: for rules, they are conditions and actions; for analogs, they may include a start state and a goal field. As rules 

are defined in our system, multiple conditions must all be satisfied for a rule to apply, and if a rule that has multiple 

actions is applied, all of the actions are used- Analogs do not need to be fully mapped in order to apply, and only 

those parts which are considered pragmatically relevant are transferred. 
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Table 1 shows the input to CARE to create a simple rule that if something is a tree, it is likely to be tall. The 

variable ?x may match to any argument of a predicate that is semantically related to trees or to tallness. Rules may 

be used in different sorts of inferences. The most familiar is forward inference in accord with the logical principle 

of modus ponensr. from the fact that something is a tree, we may infer that it is tall. The rule may also be used 

backwards in accord with the principle of modus tollenr. if something is not tall, then it is not a tree. In addition to 

making inferences, rules are used in problem solving to identify subgoals that seek out possible inferential paths 

from the goals of the problem back to the starting conditions. CARE implements two kinds of subgoaling that we 

call accomplishing and preventing. Given the goal to show that an object is tall, we can establish the accomplishing 

subgoal of showing that it is a tree, since with the rule that trees are tall we could then accomplish the inference that 

it is tall. On the other hand, if the goal is to show that an object is not tall, we want to avoid showing that it is a tree, 

since otherwise we could use the rule to infer that it is tall. Hence CARE establishes a preventing subgoal of show- 

ing that the object is not a tree. 

Insert Table 1 about here. 

Problems in CARE are complex structures with three fields, for data, starting conditions, and goals. Proposi- 

tions in the data and start field both represent information taken to be true at the start of problem solving, with the 

difference that data propositions are ones likely to remain true. For retrieval, the propositions in the problem are 

matched against propositions in analogs and rules. Table 2 presents a small problem along with two rules relevant to 

its solution. Arthur is a young man who wishes to drink a love potion possessed by the magician who made it The 

two rules say that if you have a liquid and wish to drink it, you drink it, and, if you do not have a liquid, even if you 

wish to drink it, you do not drink it. Each rule contains five propositions: four conditions and one action. From the 

second rule, Arthur can infer that he cannot drink the potion, but from the first, he generates the subgoal of having it 

With more rules, this might lead to him to purchase or steal the potion. In the rules in table 2, the variable ?x stands 

for the owner or non-owner of the liquid, ?y stands for the liquid, and %have-c3 stands for the proposition about 

the owner drinking the liquid. The % sign distinguishes variables representing propositions from variables that can 

match to anything. 

Insert Table 2 about here. 
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6. THE CONSTRAINT NETWORKS 

So far, CARE looks like a traditional rule-based system. In order to perform retrieval and inference, however, 

CARE uses two separate connecüonist networks that we call the comparison network and the inference network. 

The first network is used for comparing the current problem against analogs stored in memory and amalgamates the 

functions of retrieval and mapping performed by our previous programs ARCS and ACME. A very different con- 

straint network is needed to make inferences and to perform subgoaling. 

Each network consists of units with real-valued links between them. Each unit has an activation between -1.0 

and +1.0 that represents the degree of acceptability of what the unit stands for. In the comparison network, the 

units stand for hypotheses concerning correspondences between the current problem and stored analogs. In the 

inference network, the units represent propositions derived from rules or analogical transfer, activation of -1.0 inter- 

preted as full rejection, 1.0 as complete acceptance, and 0.0 as acceptance value unknown. In the comparison net- 

work, all links are symmetrical, as in ARCS, ACME and ECHO. But CARE's inference network employs asym- 

metric links to capture the directional nature of rule-based inference. Both networks reach their conclusions by 

means of the relaxation algorithm described in section 6.3. 

6.1. The Comparison Network 

The comparison network, like the networks of ARCS and ACME, consists of units that represent hypotheses 

about potential mappings between the target problem and potential analogs. Each unit has a complex name that 

represents the different predicates, arguments, and propositions being matched. For example, it might contain a unit 

DOG=DOG representing the hypothesis that a dog in the target problem should be matched to a dog in an analog. 

This unit would compete with such units as DOG=CAT but would be favored by stronger semantic similarity. 

Units also exist that represent the match between the target problem and the source analog as a whole. The activa- 

tions of these units reflect the degree of retrieval of a particular analog, and only analogs that reach a retrieval thres- 

hold actually undergo a complete mapping with the problem. 

Inhibitory links with negative weights are used to discourage mappings that are not one-to-one. Excitatory 

links with positive weights are used to connect hypotheses that fit well together, such as ones concerning synonyms 

or structurally coherent elements. Although the density of links make comparison networks difficult to display 
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graphically, the algorithm for generating them is quite simple. The comparison network acts like an ARCS retrieval 

network, only mapping propositions whose predicates have some semantic similarity. For each pair of propositions 

that are put into correspondence with each other, the unit representing the proposition mapping is connected to a 

unit representing the predicate mapping, to each unit representing argument mappings, and to a unit representing the 

overall mapping between source and target. The predicate mappings units are also connected to each of the argu- 

ment mapping units. Much more detailed descriptions of how such networks are created is provided in papers on 

ACME and ARCS (Holyoak and Thagard 1989a; Thagard, Holyoak, Nelson, and Gochfeld 1990). When a unit 

representing a correspondence between the problem to be solved and some analog reaches a threshold, more units 

are created to produce a full ACME-like mapping between the problem and analog. After this network settles, 

transfer, described in section 7.3, can occur. 

6.2. The Inference Network 

The inference network implements the most novel aspect of CARE: rule-based inference is construed in terms 

of parallel satisfaction of multiple constraints. In its simplest form, rule-based reasoning appears straightforwardly 

deductive. A rule is a general statement that says that if certain conditions are met, then an action follows. From 

the rule P &Q &R -* S and the facts P, Q, and R, we can infer S. But human are never simply deductive in this 

way. We may well have another rule T & U -» S which, with the facts T and U would license the conclusion that 

5 is false, contradicting the original inference. The two competing rules must then be understood in terms of uncer- 

tainty and the conflict between the conclusions S and S resolved as a problems of satisfying the constraints pro- 

vided by the same rules. In general, we may not be able to infer ß from P and P -» Q, since there may be other rea- 

sons for rejecting Q (Harman 1973). Even when there are no conflicts between possible inferences, rule-based rea- 

soning must be constrained in ways that contribute toward the accomplishment of the inferential task at hand. In 

problem solving, the purpose of inference is to determine how to accomplish a set of goals; in explanation, the pur- 

pose is to produce a chain of reasoning that explains a puzzling fact The inference network in CARE is used to 

implement logical constraints on what can be consistently inferred as well as pragmatic constraints concerning what 

is worth inferring. It also makes possible a graceful kind of nonmonotonic reasoning, in which additions of new 

information can lead to the retraction of what had been previously accepted. 
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In the inference network, units represent propositions that are either taken from the problem description or 

from rules and analogs that are used in the course of problem solving. Unlike standard connectionist networks, the 

inference network is dynamic, in that new units and links are added to it in the course of problem solving. Some 

links between units are established by virtue of special predicates in the problem description that describe relations 

between propositions: cause, if, and conjoin-event. For example, if there is a causal connection from propositionl 

to proposition2, then CARE places a link from the unit representing propositionl to the unit representing proposi- 

tion!. Other links are established by virtue of rules that are retrieved because their propositions are semantically 

similar to propositions in the problem description. For example, there will be links from the propositions in the con- 

ditions of the rule to propositions in the actions of the rule, once the variables in these propositions have been bound 

to objects in the problem description. Although we would prefer a connectionist method, CARE currently does 

variable binding using a standard resolution technique. 

In section 5, we described four functions of rules, two involving the performance of inferences in accord with 

the principles modus ponens and modus tollens, and two involving subgoaling to either accomplish or prevent 

desired inferences. CARE uses links between units to enable a rule to fulfill these functions if its conditions or 

actions have been fully matched. Figure 2 displays the part of the inference network created to deal with the for- 

ward inference function of the rule that trees are tall. Here TREE1 is the unit representing the first proposition of 

the rule that employs the predicate TREE, and TALL2 is the unit representing the proposition in the action of the 

rule representing the proposition with the predicate TALL. The link from TREE1 to TALL2 is asymmetric, since 

modus ponens only licenses forward inference. 

Insert Figure 2 about here. 

The plus sign on the link between the units indicates a novel aspect of the design of CARE's inference net- 

work. Unlike the links in the comparison network, the links in the activation network are activation dependent: 

whether a link transmits activation from one unit to another depends on whether the activation of the transmitting 

unit is positive or negative. A positively qualified link is one that functions only if the transmitting unit has positive 

activation, while a negatively qualified link functions only if the transmitting unit has negative activation. How a 

link is qualified is independent of whether it is excitatory or inhibitory. The link in figure 2 is both excitatory and 

positively qualified and has the effect that if TREE1 has positive activation, then TALL2 will tend to get positive 
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activation. If this link were not qualified, then whenever TREEl's activation dropped below 0, it would tend to 

deactivate TALL2, producing the fallacious inference that if something is not a tree then it is not tall (see the algo- 

rithm for updating activation described in section 6.3). 

Backwards inferences in accord with the logical principle of modus tollens are implemented in CARE by 

means of links that are excitatory and negatively qualified. Figure 3 is figure 2 with an additional excitatory link 

from TALL2 to TREE1. This link is negatively qualified, since its function is ensure that if the activation of 

TALL2 drops below 0, so will the activation of TREE1. According to the rule that trees are tall, if something is not 

tall, we have some grounds for inferring that it is not a tree. 

Insert Figure 3 about here. 

Activation dependent links can be inhibitory when the condition of a rule has the acceptance value false. For 

example, the rule "If X is not tall, then X is short," generates the forward inference link shown in figure 4 which is 

inhibitory and negatively qualified. This link has the effect that if the activation of unit TALL2 drops below 0 (i.e., 

an object is not tall), then the negative activation combined with the negative weight on the link will tend to produce 

positive activation in unit SHORT3 (i.e., the object is short). Other combinations of positive and negative weights, 

and positive and negative activation qualifications, are needed to deal with different combinations of truth and fal- 

sity in the conditions and actions. 

Insert Figure 4 about here. 

Further complications are necessary to deal with rules with multiple conditions. A rule such as "If X is a tree 

and X is alive, then X is green." should only be used in a forward inference based on modus ponens if both the con- 

ditions hold, i.e. if an object is both a tree and alive. Hence a link from a unit representing that something is a tree 

to a unit representing that it is green needs to be dependent not only on the unit for tree but also on the unit for alive. 

Thus links in CARE's inference network can be dependent on the activation of more than unit Figure 5a displays 

the part of the inference network created to make forward inferences using the rule that live trees are green. The 

curved lines are not links, but instead indicate additional qualifications. The link from TREE1 to GREEN6 is exci- 

tatory but is allowed to have an effect only if both TREE1 and ALIVE5 have positive activation. A slightly more 

complicated case involving a negative condition is shown in figure 5b, which shows the links created for forward 
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inference with the rule "If X flies and X is not feathered, X is a bat" We want to use this rule to infer that some- 

thing is a bat only if we know both that it flies and that it is not feathered. Hence the excitatory link from FLIES7 

affects BAT9 only if FLIES7 has positive activation and FEATHERED8 has negative activation. Similarly, the 

inhibitory link from FEATHERED8 to BAT9 operates just in case FEATHERED8 has negative activation (yield- 

ing a positive effect on BAT9) and FLIES7 has positive activation. Making the effects of links dependent on the 

activation of units does not contradict the principle of connectionism that computations should be local and parallel, 

since such dependencies arise only between units representing propositions occurring in the same rule; units 

representing those units can easily have local access to each other's activation values, just as do units that have exci- 

tatory and inhibitory links between them. 

Insert Figure 5 about here. 

The full set of possibilities for rules with various combinations of true and false conditions and inferences in 

accord with both modus ponens and modus tollens is too long to detail; CARE automatically creates the appropriate 

links for these cases. Two or more rules can affect the inference of a conclusion, either by all supporting it, by all 

attacking it, or by a mixture of support and attack. To take a famous example from the literature on nonmonotonic 

reasoning, consider the inference whether Dick is a pacifist given that he is both a Republican and a Quaker. The 

rules that Quakers generally are pacifists and that Republicans generally are not will tend to lead to different infer- 

ences. Figure 6 shows the network that CARE would create to deal with this case, with the unit representing Dick 

being a Quaker exciting the unit representing his being a pacifist, which is inhibited by the unit representing his 

being a Republican. Which conclusion CARE reaches in such cases depends on the comparative activation of the 

units that provide excitation and inhibition, as well as on the weights on the links, which can vary depending on how 

reliable the rules are known to be. If the rule that Quakers are pacificists is less reliable than the rule that Republi- 

cans are not, the excitatory link in figure 6 will be weaker than the inhibitory link, so pacificism will not be inferred. 

Thus the inference network in CARE performs many of the functions of a conventional AI truth-maintenance sys- 

tem while also allowing non-monotonic and probabilistic reasoning. 

Insert Figure 6 about here. 

The subgoaling section of the CARE inference network acts as a rule-based planning mechanism. In the same 
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ways that inferences are made from the data and starting conditions of a problem, subgoals are made from the goals, 

using the information in the rules to determine possible solution paths. Activation is passed through this network 

starting at units representing the top-level goals of the system and filtering down to the lowest level subgoal units. 

These goal units interact in the same ways as other proposition units, with links connecting them created by the 

accomplishing and preventing subgoaling principles. Possible "plans" are evaluated by the settling of this network. 

Plans which would cause other goals to fail will be rejected because the other goal inhibits them. Viable options are 

selected because their acceptance does not conflict with other goals. Some goals generated by the planning system 

actually generate inferences. When the problem solver realizes that it has a goal to do something for which all of 

the preconditions are satisfied, it can act upon this. This prevents the system from taking action before a plan is 

fully formed. 

63. Relaxing the Constraint Networks 

Comparison and inference networks reach conclusions by updating activation until all units reach asymptotic 

activation levels. Settling is done incrementally, with each unit's activation being updated based on its links with 

other units. The change in activation passed along each link is dependent on the activation of the unit the link 

comes from (the input unit), the weight on the link, and, if the link is activation dependent, on whether the input unit 

and other relevant units are positive or negative. The algorithms used for updating activation are based on the ones 

proposed by Grossberg (1978). (We have modified them slightly because our activations are not always positive.) 

The activation level of unity on cycle t+1 is given by: 

fly(f+l) = 0,(0(1-9) + enetj(max - aft)) + inetfait) - min). (1) 

The inputs enet- (the net excitatory input) and inet. (the net inhibitory input, a negative number), are determined by 

the equations: 

enetj^WijOiit) for wiyo,>0, and (2) 

inetj=LiWij°iO) forwy0,<0. (3) 

In each of these equations, ojt) is the output of unit i on cycle t, set by: 

o,(r)=max(a,(0.0). (4) 

The parameters min (normally -1) and max (normally +1) in equation (1) determine the minimum and maximum 
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activation of any given unit. 6 is a decay parameter that determines the rate at which the activation will decay to 

zero in the absence of external input CARE's comparison network uses a decay value of .1, as was used in ACME 

and ARCS. But the decay parameter for the inference network is set at 0, since otherwise the system would cease to 

believe things or forget its goals for temporal reasons alone. 

Within connectionism, CARE's inference network mechanism is similar to that proposed by Ballard (1986), 

who shows how parallel logical inference can be treated as an energy minimization problem. His method, however, 

is a connectionist version of theorem proving by resolution, in which the negation of a theorem is "resolved" with 

the knowledge base, and if a contradiction results, the theorem is considered proven. Our method is more akin to so 

called natural deduction theorem provers, which work from a set of premises and use known inferential relations to 

work forward to the theorem to be proven. 

Our inference model is also similar in some ways to the work of Shastri (1988), who describes semantic 

classification by "is-a" hierarchies using localist networks with units that may be either "enabled" or "disabled". 

We perform the same function with our activation dependent links, but the types of reasoning we can do are not lim- 

ited to questions of category membership. Shastri limited types of relationships considered to ensure that the system 

could operate in constant time. Our system takes more time for complex problems, but still settles in a reasonable 

number of cycles. 

7. TEST CASES 

We have developed several applications to test whether CARE successfully can perform rule-based and ana- 

logical reasoning. The first models Juliet's decision in Shakespeare's play to drink a special potion that will make 

others believe she has died. This case shows the ability of CARE to do rule-based reasoning in problem solving. 

The second application models the explanation by a leading Sovietologist of why Mikhail Gorbachev appointed 

Eduard Shevardnadze as foreign minister and shows that CARE can use rules to explain as well as to solve prob- 

lems. The third case, modeling Duncker's familiar radiation problem, illustrates CARE's capacity for analogical 

reasoning, including retrieval and transfer. 

7.1. Solving Juliet's Problem 
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In the fourth act of Shakespeare's Romeo and Juliet, Juliet has secretly married Romeo, but her father is 

pressing her to marry Paris. She must decide how to achieve several goals: 

1) She does not want to commit the sin of bigamy. 
2) She does not want her father to be angry with her. 
3) She wants to be with Romeo. 

Juliet knows that: 

1) She is alive. 
2) Her father wants her to marry Paris. 
3) She has a potion that will make her stop breathing. 

CARE models how Juliet uses this information and a set of rules to find a solution to her problem. English versions 

of the rules are presented in table 3. 

Insert Table 3 about here. 

CARE recognizes that to be with Romeo, Juliet cannot be dead. Meanwhile, it determines that she can 

prevent her father from getting angry at her, by appearing to be dead. There are two ways to appear dead: being 

dead (by killing oneself) or not breathing. Juliet knows she has a potion that will stop her breathing without killing 

her. Taking this route, she can convince her father that she is dead while not precluding being with Romeo. Now 

her father will not ask her to marry Paris, and so she will not become a sinner. 

The networks created include 16 comparison units for the predicates that appear in the various rules, and 60 

inference units representing 42 facts and 18 goals. The hierarchical structure of the goal network is shown in figure 

7, in which the labels on the units are names for propositions whose full predicate calculus representation is given in 

table 4. Here some of the types of interacting subgoals can be seen. The units in the networks created by CARE 

have 458 links between them, of which 406 are activation dependent in the way described in section 6.2. Settling 

the networks completely requires 116 cycles. CARE concludes that by drinking the potion Juliet finds an adequate 

solution for her problem since her goals have been achieved. 

Insert Figure 7 about here. 

Insert Table 4 about here. 
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12. Explaining Gorbachev's Decision 

In 1985, Mikhail Gorbachev replaced Andrei Gromyko with Eduard Shevardnadze as foreign minister. This 

was surprising, since Gromyko had held the post for thirty years, and Shevardnadze had no foreign policy experi- 

ence. CARE has been used to model the explanation of Gorbachev's action by noted Sovietologist Jerry Hough 

(1990). According to Hough, Gorbachev wanted to replace Gromyko because of his resistance to change, but 

avoided firing him by promoting him to a ceremonial post. Shevardnadze's lack of foreign policy experience was 

actually attractive to Gorbachev, who knew that Shevardnadze was committed to reform, not to the foreign policy 

establishment 

CARE's model of Gorbachev's decision uses 21 rules describing Soviet politics, stating, for example, that a 

leader can make appointments and that only one person can occupy a position. CARE infers that because Gromyko 

has been in power for a long time, he opposes reform; but Gromyko's experience make it appropriate to promote 

him to chair the Presidium of the Supreme Soviet. CARE also infers that Shevardnadze was named the minister 

because he wanted reform and lacked experience. CARE used 107 units with 867 links in its inference network and 

derived the desired propositions within 100 cycles of activation, although the network did not completely settle until 

564 cycles. 

Our simulation of Gorbachev explained his action by applying rules in deductive fashion; it did not have to 

conjecture any hypotheses in order to perform the explanation. CARE has the capacity to generate explanatory 

hypotheses, both by chaining rules backward and by analogy, but this capacity has so far been tested only on very 

small cases. 

73. The Duncker Radiation Problem 

The radiation problem of Duncker (1945) has been widely used in psychological experiments (Gick and 

Holyoak 1980,1983; Holyoak and Koh 1987). It concerns how to use an X-ray to destroy a tumor without harming 

the patient's tissue that surrounds it Since beams of a high enough intensity to kill the tumor will also destroy the 

healthy tissue and kill the patient, simply shooting the X-ray beams at the tumor will not solve the problem. Instead, 

a convergence solution should be used: multiple beams weak enough not to harm the healthy tissue should be aimed 

to meet at the tumor where their combined strength will be great enough to destroy it One analog to the problem, 
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discussed by Holyoak and Koh (1987) concerns using a laser beam to fuse the broken filament in a lightbulb without 

destroying the bulb. A convergence solution of the tumor problem or the lightbulb problem provides a great aid to 

solving the other problem. 

CARE is given a solution to the tumor problem and is presented with the lightbulb problem to solve. CARE's 

goal is to figure out how to use a laser to fuse the filament without breaking the glass. As in the tumor problem, 

simply aiming the laser at the filament will not work, since a beam strong enough to fuse the filament will break the 

glass. The predicate calculus representations of the laser problem and the tumor analog are given in tables 5 and 6. 

Insert Tables 5 and 6 about here. 

In order to solve the lightbulb problem, CARE retrieves and maps the tumor problem as an analog and 

transfers the convergence solution. First it creates a comparison network with 371 units and 10,187 links that places 

the elements of the stored tumor problem in correspondence with the elements of the lightbulb problem. In addition, 

an inference network with 25 units is created. 18 cycles of updating the activation of units determines the relevance 

of the tumor problem to the lightbulb problem, and the analogs are then mapped to each other. At cycle 91, the net- 

works settle and the convergence solution is transferred from the tumor problem to the lightbulb problem. English 

versions of the new propositions created by transfer are shown in table 7. These propositions are added to the infer- 

ence network to see whether they yield a solution, and after a total of 451 cycles of updating the network CARE 

finds that all goals of the tumor problem have been accomplished so that the problem is solved. 

Insert Table 7 about here. 

We will now explain the transfer process in greater detail. CARE's transfer mechanism operates on the 

source analog propositions which represent possible clues to solving the target problem. After a mapping is esta- 

blished between the source and target, CARE identifies propositions in the source that do not correspond to anything 

in the target For example, the predicate converge-on in the solved tumor problem does not map to anything in the 

lightbulb problem. CARE does not, however, transfer all such information from the source to the target, since much 

of the source may be irrelevant to the target Rather, it determines which unmapped elements are related to the 

system's goals, using the inference network. A proposition is goal related if any of its arguments map well to any of 

the arguments in the goals of the current problem. The predicate converge-on is goal related because its arguments 
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representing the rays and the tumor map well to the beams and filament that are part of the statement of the goals of 

the lightbulb: we want the beams to fuse the filament In this case, the goal relevance is immediately obvious, but 

in more complex cases CARE traces back causal chains of goal related propositions in the source, using the connec- 

tives if, cause, and conjoin-event. All goal-related source propositions without correspondences are transferred. 

Transferring a proposition requires reconstituting it in a form appropriate for the target problem, using the 

mappings identified by the comparison network. To transfer the proposition from the tumor problem, (converge-on 

(obj-ray obj-tumor)), CARE needs to find a map for the predicate and each of the arguments. The comparison net- 

work has units with high activation representing maps between ray from the tumor problem and beam from the 

lightbulb problem, and between tumor and filament. The corresponding elements are therefore substituted. But 

since no unit representing a mapping for converge-on has high activation, the predicate is transferred as is, resulting 

in the new proposition (converge-on (obj-beam obj-filament)). 

Once a new proposition is created, a unit representing it is added to the inference network, along with links 

resulting from if, cause, and conjoin-event statements in the source and target Once in the inference network, pro- 

positions transferred from a source analog are indistinguishable from propositions generated by other mechanisms. 

Because new inferences are made whenever units are added to the inference network, the transferred solutions will 

be modified automatically (debugged) if there are rules or other analogs that recognize obvious problems. 

Transferred propositions may be partial at first, but further inference brought about by settling the expanded infer- 

ence network can bring about a solution. 

The transfer mechanism in CARE is a version of what Holyoak, Novick and Melz (this volume) call copying 

with substitution and generation (CWSG), although CARE differs from their extension of ACME in that CARE's 

use of a goal hierarchy (derived from rules) enables it to select elements for transfer on pragmatic grounds. This 

constrains transfer in a more natural way, so that the source analog need not be cut up into compartments delineat- 

ing the starting conditions, goal, and solution fields. In most cases of analogical problem solving, particularly across 

domains, it seems unlikely that these categories will be known in advance. In fact, it is quite conceivable that what 

acts as the solution for one problem might be the analog of the starting conditions for another. 

Some of the limitations of ACME described by Hofstadter and Mitchell (this volume) have been addressed by 

CARE. Like their Copycat model, CARE's problem descriptions are not static structures, but can be modified and 
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extended by the actions of a variety of inference rules. Unlike Copycat, however, CARE also addresses the ques- 

tion of analog retrieval and how it may be integrated with analogical mapping. Copycat does not model retrieval, 

instead focusing strongly on the rerepresentation by perceptual mechanisms of a source and target analog that are 

provided. Since these perceptual mechanisms cannot operate until after a potential analog has been retrieved, it is 

not clear from Copycat how retrieval and mapping might interact CARE reflects psychological evidence that map- 

ping and retrieval do interact and that the same pressures that affect mapping also affect retrieval. 

8. CONCLUSION 

In sum, CARE goes beyond our previous connectionist work on analogy in important ways. It shows how the 

retrieval and mapping of analogs can occur in the context of a rule-based problem solver. Most importandy, it 

shows that rule-based reasoning can be understood in terms of parallel constraint satisfaction implemented using a 

novel kind of localist connectionist network. CARE also extends our previous models in that it does pragmatically 

guided analogical transfer as well as mapping and retrieval. 

Nevertheless, the integration of analogy and rule-based reasoning accomplished in CARE could be taken 

farther. We conjecture that matching of parts of rules against problem descriptions could be performed by mechan- 

isms like those used for matching of analogs in the comparison network. Then determination of what rules to fire 

could be performed simultaneously with analog retrieval instead of by the traditional AI unification method that 

CARE currendy uses. In addition, we would like explanatory hypotheses that are formed by CARE using rules and 

analogs to be evaluated for their coherence as is done by the program ECHO. Such evaluation would require 

integration or adaptation of the networks used by ECHO so that they could become part of or enhance CARE's 

inference network. Finally, since the simulation examples that we have used so far in CARE's development are 

quite small, larger data bases should be constructed to provide more stringent tests of CARE's ability to do rule- 

based and analogical reasoning using parallel constraint satisfaction using connectionist networks. 
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Figure Captions 

Figure 1. Relations among analogy, rule-based reasoning, and hypothesis formation. 

Figure 2. Component of the inference network created using the rule that trees are tall to license an inference in 

accord with modus ponens. The arrow indicates a unidirectional excitatory link. The plus sign signifies that the unit 

TREE1 has an effect only if it has positive activation. 

Figure 3. Inference network enhanced to license an inference in accord with modus tollens. The minus sign 

signifies that the unit TALL2 has an effect only if it has negative activation. 

Figure 4. Implementation of the rule that if something is not tall then it is short. The dotted line indicates an inhibi- 

tory link. The minus sign signifies that the unit TALL2 has an effect only if it has negative activation. 

Figure 5. Rules with multiple conditions. See text for explanation. 

Figure 6. Inference network for inferring whether Nixon is a pacifist The plus signs signifies that the marked units 

have an effect only if they have positive activation. The solid line indicates and excitatory link, while the dotted line 

indicates an inhibitory link. 

Figure 7. The hierarchical goal structure of Juliet's problem. The top level goals are those connected to the PRAG- 

MATIC unit, which keeps these active. The goals generated by the system are ones further down the tree. The 

links show various goals interactions: incompatible plans of action, ways of accomplishing goals, and ways to 

prevent undesirable things from happening. 



elaborate 

RULE-BASED REASONING 

ANALOGY 

evaluate 

HYPOTHESIS EVALUATION 

constrain conclusions 

24 



-K TALL2 

25 



u 

26 



A / 

TALL2 ) "KSHORT3 

27 



(a) 

(b) 

if 

2B 



>7 

29 



3o 

Lisp Screen 
Mon Jul 22  16:46:45 EDT 1991 

.20 ' 

'PRAGMATIC-, 

20 

G*ANGRX-AT35 

-.20.. 

G*MARRIED-R0ME0 

6 
G*BELIEVE36 G*ALIVE8 

G*SINNER22 

G*MARRIED-PARIS 

G*BHEATHIKG12 C*DEAD17 C*ALIVE14 G*MARHIED-TO2 G*MARRIED-T026 

a       6 
G*POTI0N28 G*DRDJK29 G*DEAD11 

ft 
C»KILU3 

G*KILL21 

30 



Pf 

Table 1: A simple rule 

(mrule 'trees-are-tall 'causal 
'((tree (?x) true is-a-tree)) 
'((tall (?x) true then-is-tall)) 

) 
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Table 2: Arthur's rules 

(make-problem 'arthurs-problem 
'((liquid (obj-potion) true) 

(love-potion (obj-potion) true) 
(magician (merlin) true)) 

'((have (merlin obj-potion) true) 
(have (arthur obj-potion) false) 
(drink (arthur obj-potion) unknown)) 

'((drink (arthur obj-potion) true)) 
) 

(mrule 'have-liquid-can-drink 'causal 
'((have (?x- ?y) true have-cl) 

(liquid (?y) true have-c2) 
(drink (?x ?y) unknown %have-c3) 
(desire (?x (%have-c3 true)) true have-c4)) 

'((drink (?x ?y) true %have-c3)) 
) 

(mrule 'dont-have-liquid-cant-drink 'causal 
'((have (?x ?y) false dont-have-cl) 

(liquid (?y) true dont-have-c2) 
(drink (?x ?y) unknown %dont-have-c3) 
(desire (?x (%dont-have-c3 true)) true dont-have-c4)) 

'((drink (?x ?y) false %dont-have-c3)) 
) 
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Table 3:  Rules for Juliet's Dilemma 

Semantic rules: 
If you are dead, you are not alive. 
If you are not dead, you are alive. 
If x is with y, y is with x. 
If x is married to y, y is married to x. 
A potion is a liquid. 

General rules: 
If x is capable of performing an action that x wants, x will 

perform the action. 
If x kills x, x is dead. 
If x is dead, x doesn't breathe. 
If y believes x is not breathing, y believes x is dead. 
If y believes x is dead, y believes x can't do anything. 
If y believes x is dead, y will not be angry at x. 
If x is not alive, x can't be with anyone else. 
If x has a liquid, x is both capable of drinking it, and capable 

of not drinking it. 
If x is alive and x and y are people, and x and y are not already 

married and x is not equal to y, x is both capable of 
marrying y, and capable of not marrying y. 

If x and y are married and neither is dead, they are with each 
other. 

If you are married to two different people, you are a sinner. 
If x drinks the potion, x will stop breathing. 



Table 4:  Conclusions in Juliet's Dilemma 

W 

Mon Jul 22 17:11:12 EDT 1991 
Description 
(MARRIED-TO (JULIET ROMEO)) 
(MARRIED-TO (ROMEO JULIET)) 
(FATHER-OF (CAPULET JULIET)) 
(PERSON (JULIET)) 
(PERSON (ROMEO)) 
(PERSON (PARIS)) 
(PERSON (CAPULET)) 
(ALIVE (JULIET)) 
(CAN-ACHIEVE (JULIET MARRIED-ROMEO+)) 
(CAN-ACHIEVE (JULIET MARRIED-ROMEO-) ) 
(DEAD (JULIET)) 
(BREATHING (JULIET)) 
(KILL (JULIET JULIET)) 
(ALIVE (ROMEO)) 
(CAN-ACHIEVE (ROMEO MARRIED-T02+)) 
(CAN-ACHIEVE (ROMEO MARRIED-T02-)) 
(DEAD (ROMEO)) 
(WITH (JULIET ROMEO)) 
(WITH (ROMEO JULIET)) 
(BREATHING (ROMEO)) 
(KILL (ROMEO ROMEO)) 
(SINNER (JULIET)) 
(MARRIED-TO (JULIET PARIS)) 
(CAN-ACHIEVE (JULIET MARRIED-PARIS+)) 
(CAN-ACHIEVE (JULIET MARRIED-PARIS-)) 
(MARRIED-TO (PARIS JULIET)) 
(DESIRE (CAPULET MARRIED-PARIS+)) 
(POTION (POTION[PROBLEM-JULIETS-DILEMMA])) 

POTION28 
(DRINK (JULIET POTION[PROBLEM-JULIETS-DILEMMA])) 

DRINK2 9 
(DRINK (ROMEO POTION[PROBLEM-JULIETS-DILEMMA])) 

DRINK30 
(LIQUID (POTION[PROBLEM-JULIETS-DILEMMA])) 

LIQUID31 
(HAVE (JULIET POTION[PROBLEM-JULIETS-DILEMMA])) 

HAVE32 
(CAN-ACHIEVE (JULIET DRINK29+)) 
(CAN-ACHIEVE (JULIET DRINK29-)) 
(ANGRY-AT (CAPULET JULIET)) 
(BELIEVE (CAPULET DEAD11+)) 
(BELIEVE (CAPULET CAN-ACHIEVE10-)) 
(BELIEVE (CAPULET CAN-ACHIEVE9-)) 
(BELIEVE (CAPULET CAN-ACHIEVE25-)) 
(BELIEVE (CAPULET CAN-ACHIEVE24-)) 
(BELIEVE (CAPULET CAN-ACHIEVE34-)) 
(BELIEVE (CAPULET CAN-ACHIEVE33-)) 

Proposition name 
MARRIED-ROMEO 
MARRIED-T02 
FATHER-OF3 
PERSON4 
PERSON5 
PERSON6 
PERSON7 
ALIVE8 
CAN-ACHIEVE9 
CAN-ACHIEVE10 
DEAD11 
BREATHING12 
KILL13 
ALIVE14 
CAN-ACHIEVE15 
CAN-ACHIEVE16 
DEAD17 
WITH18 
WITH19 
BREATHING20 
KILL21 
SINNER22 
MARRIED-PARIS 
CAN-ACHIEVE24 
CAN-ACHIEVE25 
MARRIED-T026 
DESIRE27 

CAN-ACHIEVE33 
CAN-ACHIEVE34 
ANGRY-AT35 
BELIEVE36 
BELIEVE37 
BELIEVE38 
BELIEVE39 
BELIEVE40 
BELIEVE41 
BELIEVE42 

Confidence 
0.99000 
0.98413 
0.99000 
0.99000 

99000 
99000 
99000 
99000 

0.00000 
0.00000 
0.98413 
0.98982 
0.97353 
0.99000 
0.00000 
0.00000 

98413 
99000 
99000 
00000 
97353 
25000 
99000 
99000 
99000 
98413 
99000 

0.99000 

0.98271 

0.00000 

0.98413 

0.99000 
0.98992 
0.98992 
-0.95077 
0.97349 
0.95077 
0.95077 
0.95077 
0.95077 
0.95077 
0.95077 
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Table 5: Representation of Laser Problem 

(make-problem 'laser-fragile 
' 0 
'((filament (obj-filament) true lf-1) 

(broken (obj-filament) true lf-2) 
(glass (obj-glass) true lf-3) 
(useless (obj-bulb) true lf-sl) 
(have (obj-bulb obj-filament) true lf-s2) 
(conjoin-event ((lf-2 true) (lf-s2 true)) true lf-s3) 
(cause ((lf-s3 true) (lf-sl true)) true lf-s4) 
(surround (obj-glass obj-filament) true lf-4) 
(beam (obj-beam) true lf-5) 
(laser (obj-laser) true lf-6) 
(produce (obj-laser obj-beam) true lf-7) 
(strength (obj-beam obj-beam-strength) true tp-s6) 
(variable (obj-beam-strength) true tp-s7) 
(occurs-at ((lf-8 true) obj-filament) true lf-s8) 
(occurs-at ((lf-9 true) obj-glass) true lf-s9) 
(cause ((lf-8 true) (lf-2 false)) true lf-slO) 
(cause ((lf-s3 false) (lf-sl false)) true lf-sll) 
(strong (obj-beam) unknown lf-sl2) 
(cause ((lf-sl2 true) (lf-8 true)) true lf-sl3) 
(cause ((lf-sl2 true) (lf-9 true)) true lf-sl3) 

) 
'((fuse   (obj-beam obj-filament)   true  lf-8) 

(break   (obj-beam obj-glass)   false  lf-9) 
(useless   (obj-bulb)   false  lf-s5) 

) 
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Table 6: Representation of the Tumor Problem Analog 

(manalog 'tumor 
' (start ((tumor (obj-tumor) true tp-1) 

(malignant (obj-tumor) true tp-2) 
(tissue (obj-tissue) true tp-3) 
(ill (obj-patient) true tp-sl) 
(have (obj-patient obj-tumor) true tp-s2) 
(conjoin-event ((tp-2 true) (tp-s2 true)) true tp-s3) 
(cause ((tp-s3 true) (tp-sl true)) true tp-s4) 
(surround (obj-tissue obj-tumor) true tp-4) 
(ray (obj-ray) true tp-5) 
(ray-source (obj-ray-source) true tp-6) 
(produce (obj-ray-source obj-ray) true tp-7) 
(strength (obj-ray obj-ray-strength) true tp-s6) 
(variable (obj-ray-strength) true tp-s7) 
(strong (obj-ray) unknown tp-sl2) 
(cause ((tp-sl2 true) (tp-8 true)) true tp-sl3) 
(cause ((tp-sl2 true) (tp-9 true)) true tp-sl4) 
(converge-on (obj-ray obj-tumor) true tp-soll) 
(weak (obj-ray) true tp-sol2) 
(cause ((tp-soll true) (tp-8 true)) true tp-sol3) 
(cause ((tp-sol2 true) (tp-9 false)) true tp-sol4) 
(occurs-at ((tp-8 true) obj-tumor) true tp-s8) 
(occurs-at ((tp-9 true) obj-tissue) true tp-s9) 
(cause ((tp-8 true) (tp-2 false)) true tp-slO) 
(cause ((tp-s3 false) (tp-sl false)) true tp-sll) 

) 
) 

'(goal ((destroy (obj-ray obj-tumor) true tp-8) 
(destroy (obj-ray obj-tissue) false tp-9) 
(ill (obj-patient) false tp-s5) 

) 
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Table 7:  Propositions Transferred from Tumor to Laser Problem 

The beams are weak. 
The beams converge on the tumor. 
Because the beams converge, they fuse the filament. 
Because the beams are weak, they do not break the glass. 
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