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FOREWORD

This report by researchers from Michigan State University (MSU) summarizes the results and
conclusions of their study of soil arthropods and earthworms. In this effort, MSU monitored soil
invertebrates exposed to electromagnetic fields produced by the U.S. Navy’s ELF Communications System
in Michigan. The Space and Naval Warfare Systems Command (SPAWAR) funded this MSU study through
contracts N00039-81-C-0357, N00039-84-C-0070, N0O0039-88-C-0065, and N00039-93-C-0001 to T
Research Institute (IITRI). lITRI, a not-for-profit organization, provided engineering support to MSU and
managed their study through subcontract agreements.

MSU initiated their studies in late 1982. Their early efforts focused on selecting study sites,
validating assumptions made in proposals, and characterizing critical study aspects. As these tasks were
accomplished in 1983 and 1984, MSU then emphasized accumulating a data base for statistical analysis.
The MSU research team and lITRI evaluated each study variable for continued funding before contract
renewals in 1984, 1988, and 1993. As a result, several originally proposed study elements were either

expanded or discontinued in subsequent periods of performance.

Since its inception, scientific peers have reviewed the technical quality of this study on an annual
basis. In similar fashion, a draft of this report has been reviewed by peers with experience in soil ecology,
statistics, and electromagnetics. MSU authors have considered, and addressed, peer critiques prior to
submitting a revised manuscript to ITRI. Except for added prefatory and title pages, MSU’s manuscript
is here issued by IITRI on behalf of SPAWAR without further changes or editing by liTRI or SPAWAR.

Respectfully submitted,
IIT RESEARCH INSTITUTE

%. Zapotosg, iﬁ .

Program Coordinator

. Aoeenslon Fer S

/
Ralph D. Carlson, Director
Engineering Systems Department

IITRt D06212-7
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GLOSSARY

A horizon - uppermost zone of soils, in which organic matter accumulates and most biological
activity is concentrated.

AFDW - Ash-Free Dry Weight, an estimate of dry weight of litter samples after subtraction of
the weight of contaminating soil.

ANOVA - analysis of variance; statistical procedure for comparing treatment means by
partitioning a total sum of squares into components associated with sources of variation.

B horizon - zone of soil underlying the A horizon; in our sites, it is sandy and contains relatively
little organic matter and few animals. '

BACI - statistical analysis (Before and After Control and Impact), used here to comparing
differences between sites (means and variances) before and after antenna activation.

Biomass - total weight of all individuals of a given species or other taxon, usually estimated per
unit area of one square meter.

Chaetotaxy - use of external characteristics (particularly the number and location of hairs) for
identifying species or developmental stages of species.

Clitellate - possessing a clitellum - adult earthworms showing a glandulai' swelling which
secretes material to form the cocoon; i.e., fully reproductive adults.

Cocoon - lemon-shaped structure produced by clitellate adult earthworms; contains one or more
eggs and, later, one or more developing young worms. '

Cohort - a group of animals of one species which have emerged or hatched at approximately the
same time; loosely equivalent to “generation”.

Correlation - statistical method for quantifying the amount of association between two variables,
without assuming a causative relationship between them.

Density - number of individuals of a species or other taxon, estimated from numbers per sample
and extrapolated to area units of one square meter.

Deutonymph - here, refers to the third developmental stage of Acari or mites (the first = larva,
the second = protonymph).

Diel - refers to the 24-hour cycle of day and night (cf. diurnal, nocturnal).
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Diurnal - refers to daytime; e.g., diurnal activity = activity during daylight hours.

Diversity - a measure of the relative abundance of the species within a community as related to
the total number of species and individuals in the community; we use the Shannon-Wiener
diversity index, H’.

Dominance - relative numerical abundance of a single species in the entire array of species
present in a community. :

Edaphic - refers to the soil; e.g., edaphic factors are conditions or characteristics of the soil
which influence organisms. '

ELF - Extremely Low Frequency electromagnetic radiation, produced by local power lines as
well as by the U.S. Navy’s ELF antenna.

Endogeic - (=endogean) - living in the soil; refers specifically to earthworms living and feeding
in the A horizon or below it.

Epedaphic - living on or above the soil surface.
Epigeic - (= epigean) - living at or above the soil surface; refers specifically to earthworms
which feed on and live in the litter layer unless conditions get dry; they have poor burrowing

‘capabilities.

Equitability - a measure of of the degree of "evenness" with which the individuals of a
community are apportioned among the component species of that community; we use the Lloyd
and Ghelardi index, S°’/S.

Euedaphic - strictly tied to or living in the soil.

Gravimetric - based on weight measurements; here used in reference to soil and litter moisture
determinations based on the difference between wet and dry weight of samples.

Hatchling - young animal after it has emerged from the egg (in arthropods) or from the cocoon
(in earthworms).

Hemiedaphic - living on or above the soil surface as-well as in the soil itself; e.g., some
Collembola which are capable of vertical migration and exploit leaf litter as well as soil
resources.

Hibernation - dormancy during the winter; a state of reduced activity or complete inactivity.

Instar - general term for developmental stages of Collembola; instar I (= hatchling) refers to
young after emergence from the egg, but prior to the first molt.
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Larva - the first delopmental stage of certain arthropods; here, used in conjunction with mites
and beetles.

Multivoltine - a type of life cycle in which two or more generations of young are produced per
year. :

Nocturnal - refers to nighttime; e.g. nocturnal activity = activity during nights.

Operational period - includes all years from 1989 onward, ending year variable depending on
the specific work element.

Ovigerous - carrying developing or developed eggs in ovaries (of beetles, for instance).
Oviposition - deposition of eggs.

Pre-ELF period - includes all years through 1988, with beginning year variable depending on
the specific work element.

Recruitment - addition of young (recruits) to a population of animals.

Regression - statistical method for expressing changes in one (dependent) variable associated
with changes in one or more (independent) variables.

T-test - statistical test of the difference between two means.
Taxon - any taxonomic category, e.g., species, genus, family.

Teneral - newly or recently emerged; in carabid beetles, refers to adults just after they have
emerged from the pupa.

Turnover time (1/k) - in natural systems, refer to the time (years) needed for forest floor litter
to return to its previous state, i.e., to the mass of litter present just prior to the preceding
leaffall; here, applied to decomposition of confined litter (in litterbags), where k = the rate
of decay.

Univoltine - a type of life cycle in which only one generation of young is produced per year.
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ABSTRACT

Based on analysis of years grouped by pre-ELF and operational periods, density fluctuations
of arthropods (Collembola and mites) were, in some taxa, significantly different between sites;
in others, differences between year groups were significant within either of the study sites. No
consistent patterns were seen at the level of species or higher taxa. In some species, effects of
the 1988 drought may have carried over into 1989, the first year of antenna operation.

Surface-active Collembola, velvet mites and carabid beetles did not alter their activity patterns
following antenna activation (e.g., species predominantly spring-active remained spring-active).
Although analyses routinely yielded significant differences with respect to total numbers captured
-in Test and Control, numbers alone were found to be unreliable estimators for disturbance,
because a variety of potentially important factors other than EM fields were present. Weekly
changes in relative numbers captured, however, showed that increases and decreases in activity
were synchronous in the study sites. Carabid beetle activity, which is highly seasonal and
governed mainly by reproductive processes, was not affected by EM fields.

Earthworm behavior (in terms of vertical distribution) did not change during operational years,
being determined mainly by moisture conditions. Antenna activation did not affect the health of
two abundant Test site species (as measured by mean weight of cocoons and adults). Regression
models were used to compare pre-ELF reproductive activity in Aporrectodea tuberculata to
activity from 1989 through 1993. Differences between the two 5-year periods were not
significant for cocoon densities and for numbers of reproductive adults. However, when single

operational years were tested, 1990 data were found to differ significantly from pre-ELF years.
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These results indicated that reproductive activity was depressed briefly after antenna activation,
- and was then resumed at near-normal or normal levels. |
Three series of A. tuberculata were reared in mesh bags in Test and Control sites, and were
periodically retrieved, examined and weighed; cocoons were counted and weighed as well.
Incubated worms which had originated from the Test site after 2 years exposure to full intensity
ELF EM fields reproduced better when removed from EM influence. Worms collected in Test
after 4 years exposure, when incubated in Control bags, showed no differences with respect to
all reproductive parameters tested. However, worms collected in an EM-free site and incubated
in Test produced more cocoons than those in Control. Although interpretation is complex when
both experimental worms and natural populations are taken into account, the hypothesis that EM
fields would induce subtle, short-term curtailment of reproduction was substantiated.
Litter inputs (maple, basswood and total leaf litter) and litter decomposition rates were
unaffected by antenna operation. Litter decomposition rates were shown to be under the partial
control of earthworm decomposer species, biomass of decomposers explaining over 70% of

observed variation in litter decay rates.




SUMMARY

1. Soil and litter Arthropoda: data available at bi-weekly intervals from early May to mid-
or late October, 1984-92 (litter) and 1986-92 (soil). All collembolan taxa fluctuated greatly m
terms of total abundance during most years, and in both sites. These variations could not be
clearly linked to the time of antenna activation in 1989. Population structure of one isotomid
species, abundant in both sites, showed obvious differences during operational years in the
Control site, but seemed unaffected in Test (although data were not amenable to rigorous
analysis).

2. Surface-active Arthropoda: data available at weekly intervals, 1985-91, from early May
to late October. Analyses of numbers trapped routinely revealed significant differences between
pre-ELF and operational periods when sites were compared. However, changes in catch size
showed no consistent patterns between single taxa or within sites. We concluded that several
factors other than EM fields provided underlying causes for numerical changes, in Collembola,
carabid beetles, and, to a lesser degree, Acarina. Patterns of reproduction and maturation, which
are driving forces for seasonal activity patterns, were unaffected by ELF antenna activation.
BACI tests of date-to-date fluctuations in numbers (catch ratios) showed that relative increases
and decreases in Test and Control were not altered during operational years, i.e., that effects
of biotic and abiotic variables which determine activity were still in operation.

3. Earthworms: field populations: data available at biweekly intervals, 1984-93, early May
through mid-October. Two species abundant in the Test site (and one species in Control,

although comparisons were used cautiously) were investigated. For Lumbricus rubellus, which
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is relatively impervious to climatic and edaphic conditions, we were unable to construct
predictive models for testing reproductive parameters. Aporrectodea z_‘uberculata exhibited a brief
(1990) depression in reproductive activity, which returned to approximately normal levels during
the 1991-93 period. Cocoon production rates were significantly increased during operational
years, but a 5-year series of relatively moist years (compared to 2 drought years and one partial
drought year among the 5 pre-ELF years) may provide an expla_mation equally valid as that ‘of
EM field effects. Mean weight of cocoons and adults did not differ between the two 5-year
periods.

4. Earthworm isolation experiments: three "series” of experiments were performed using
adult A. ruberculata incubated in fiberglass mesh bags: a) worms collected in the Test site in
1991, after they had been exposed to EM fields for two years; b) worms collected in Test in
1993, after four years of exposure; and c¢) worms collected in a site removed from EM
influence, i.e., never exposed. All series were replicated in Test and Control sites, representing
continued (or first) exposure in Test bags, and representing removal from exposure (or continued
non-exposure) when incubated in Control bags. Results were somewhat ambiguous, but we
concluded, in a comparison between field populations and experimentally isolated groups, that
EM fields produced subtle and transient effects on reproductive activity, decreasing maturation
of worms to the clitellate state and increasing cocoon production rates. Several possible
mitigating circumstances contributed to lack of clarity in interpretations. They included: the
developmental state (and body size) of individuals at the time of first exposure in field
populations, and the duration of exposure prior to removal from EM field effects; and a possible

dose-response relationship, since EM fields inside mesh bags were of less than ambient intensity.
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5. Litter inputs and decomposition: Litter inputs (maple, basswood and total leaf inputs)
over the 1984-1992 period were consistent with amounts reported for similar sites in north-
temperate areas. No effects of antenna operation were detectable.

Litterbag experiments were conducted through the 1993 season. Decay rates varied between
years in both sites, variation being attributable to a large degree to fluctuating populations of
decomposer earthworm species (mean annual biomass of decom—poser species was significantly
related to turnover times for maple litter). The worm biomass parameter was unlikely to have

been affected by antenna operation, and at any rate would have masked potential effects of EM

fields on decomposition.
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1. SITE DESCRIPTION AND EXPERIMENTAL DESIGN

1. Description of study sites:

In late summer of 1983, one Test and one Control site were established in Dickinson County
(T44N. R29W. 825 and T43N. R30W. S11 respectively). The Test site was located next to the
nonh—;outh leg of the antenna, the Control approx. 11.5 km distant from it. In both sites, Acer
saccharum Marsh was dominant, 7ilia americana L. subdominant. Soils were naturally well-
drained podzols (Alfic Haplorthods, coarse-loamy, mixed, frigid). Soil texture (approximately
60% sand, 23% silt, and 17% clay) and pH (approximately 5.9) were essentially equal in Test

and Control. Detailed site descriptions are available in Snider and Snider (1987). A map of site

locations with respect to the ELF antenna is included in Appendix 1.

2. Electromagnetic fields:

To a large extent, selection of paired study sites was governed by actual or anticipated EM
field ratios (Test/Control). ELF fields, centered at a frequency of 76 Hz, and 60 Hz fields
produced by commercial power lines, were both considered. Initially, the following ratios were
desired:

1. T(@6)/ C(76) = 10

2. T(76) / C(60) = 10

3. T(76) / T(60) = 10

4. 0.1 < T(60) / C(60) < 10,

where: T(76) = Test site EM field level due to the ELF antenna system; T(60) = Test site EM

field level due to power lines; efc...

In 1983 and 1984, actual measurements of ambient 60 Hz fields were obtained in Test and
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Control sites, while 76 Hz values were estimated using projected data of antenna operating
conditions, earth conductivity, and distance to antenna elements (Enk and Gauger 1985).
Calculated field ratios met or exceeded the criteria specified above, assuring that ELF fields in
Test should dominate its own ambient as well as Control EM fields by a factor of = 10; and
that ambient fields from power lines were matched to within a factor of < 10.

After the ELF antenna became fully operational in May 1989 (at 150 A), continued annual
measurements confirmed that Test and Control sites were well paired; in 1993, for instance, the
earth electric field ratio for T(76) / C(76) was 125, and that for T(76) / T(60) was 300. During
years of full antenna operation, actual 76 Hz earth electric field intensities in Test averaged
approximately 57 mV/m; and 76 Hz magnetic flux densities averaged approximately 2.0 mG.
Detailed data on measurement point locations and results are given in Appendix 1.

As the study progressed, additional 60 Hz EM field measurements became necessary. They
included (details in Appendix 1):

a. the collection sites for earthworms never exposed to EM fields, to be used in Isolation
Experiments ("Fire Tower" and "Merriman Road" series, see section VI); both sites were found
acceptable with respect to exposure criteria;

b. the laboratory where live earthworms from Isolation Experiments were processed after
retrieval from the field; with the exception of the top of an electronic scale (on which
earthworms rested for very brief time periods), EM field intensities were found to be low in the

general work area.



3. Experimental design:

The most homogeneous portion of each site was divided into 10 x 10 m quadrats separated
by walkways. Twenty quadrats per site were made available for faunal sampling, the remainder
were used for environmental monitoring or litter decomposition studies. Maps showing the-
configuration of each site are included in Appendix 1.

Each quadrat contained one pittrap and one leaf litter trap, both permanently installed. Litter
and soil samples were taken from randomly selected locations (the same in all quadrats sampled
at a given time) along x/y coordinates (Fig. 1). In principle, the following cluster of samples
were obtained on each occasion, in the sequence listed here: leaf litter and soil for arthropod
extraction; soil cores (2 depths) for moisture determination; leaf litter for moisture
determination; and finally, leaf litter and A and B horizon samples for earthworm and cocoon
extraction (Fig. 2). Details regarding numbers of samples, sampling frequency, and/or changes

in protocol or methodology, will be given in the pertinent sections of this report.

..................................................

x6, y5
sampling location

litterfall
trap\
Lt I—

Fig. 1. General outlay of a sampling quadrat (10 x 10 m), with an example of a randomly
chosen sampling location at coordinates X6, Y5.
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—25cm——

Litter & soil
earthworms

Litter arthropods

S\
/ \

Soil moisture Soil arthropods

Litter
moisture

25 cm

Fig. 2. General scheme for taking contiguous samples of earthworms (five vertical subsamples),
arthropods, and litter and soil samples for moisture determination.

4. Statistical analyses:

Generally, data were divided into pre-ELF (through 1988, beginning year variable with work
element) and operational (beginning in 1989, ending year variable) periods. All data sets were
tested initially for homogeneity of variances (Bartlett’s test), additivity (Tukey’s test), and
normality (Kolmogorow-Smirnov). Where appropriate, transformations were used (e.g., log
transforms).

Those sets of data amenable to analysis were subjected to t-tests or Lohrding’s g-test, or to
ANOVA. In many cases BACI tests (Before and After Control and Impact) (Stewart-Oaten et
al. 1986) proved the most meaningful for arriving at conclusions. In the case of earthworms,
multiple regression procedures were used to test several response variables dealing with

reproductive activity.
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Due to the large number of results reported herein, we will not elaborate at this point, but
include brief discussion of the statistical methods used in each of the major sections of this

report. Data sets which could not be analysed, yet are important for understanding the subject

matter, are included in descriptive form.
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II. ENVIRONMENTAL MONITORING

1. Precipitation:

Methods: In an open area near each study site, rain gauges were mounted on poles, and were
read and emptied at least once a week. Each year, they were brought out of winter storage and
installed in the last days ef April, and and records were obtained through the third or fourth
week of October. To aid interpretation of results, 30-year means were obtained from the Crystal
Falls Weather Station (Iron County, approx. 20 km distant) for comparison with site-specific
data.

Results: General conclusions regarding rainfall are made possible by comparing overall season
totals: precipitation through October, as well as through September only (because raingauges
were dismantled at different times in October of each year) are listed in Table 1. The
appropriate 30-year means (May through October and May through September) are included in
Table 1. Years in which rainfall deficiencies occurred are easily recognizable (1986 in
particular).

However, seasonal distribution patterns of rainfall yield a better appreciation of between-year
differences (Fig. 3). In 1986, for instance, significant rains did not occur until late August and
September, just as 1988 was characterized by subnormal rains in May, June and July. In 1985,
rains were very unevenly distributed, being most ample in August and September. In contrast,
rains were most ample in early- and mid-summer in 1987. Indeed, 1987 and 1990 were the two
years in which monthly rainfall patterns came closest to the relatively evenly distributed 30-year

averages (Fig. 3).
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Although we do not show detailed Test and Control for each year individually, it was evident
that major rainfall events were well synchronized between sites. Differences with respect to

small localized rainfall events did occur occasionally, and contributed to differences in seasonal

totals (Table 1).

Table 1. Precipitation totals (in mm) for May through October and May through September in
Test (T) and Control (C) sites, 1984 through 1993, and 30-year average (A) totals for the same

periods in the area at large (Crystal Falls Weather Station).

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

Total
May thru Oct: T 457 524 362 535 457 434 477 475 400 487

C 438 578 382 530 459 362 476 494 385 462
A 514 514 514 514 514 514 514 514 514 514

Total,
May thru Sep: T 443 445 282 474 388 398 401 381 375 451

C 417 500 304 465 377 330 399 415 356 419
A 461 461 461 461 461 461 461 461 461 461

2. Temperature:

Methods: In a centrally located quadrat in each site, remote sensors and dataloggers were
installed to record air and soil (soil surface, 5 cm and 15 c¢m depth) temperature at 1 or 2 hr
intervals (one sensor per level). Because of repeated equipment malfunction, back-up data were

obtained by periodic measurements with YSI telethermometers, and with chart-type
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hygrothermographs housed in equipment shelters. Finally, the systems were replaced in spring
of 1993 with new sensors and multichannel recorders. In the A horizon (5 cm depth), three
replicate sensors were buried in each site, so that accurate mean temperatures could be obtained.

Results: All available information indicated that temperatures in Test and Control were
essentially identical. As examples, mean weekly temperatures at 5 cm depth in 1993 are
illustrated in Fig. 4, and mean air temperatures for 1992 are shown in Fig. 5. Correlation
coefficients between sites were invariably high (R2 > 0.94). Therefore, a single set of
temperature data, from either site if proven reliable, were used in analyses of faunal data
whenever temperature effects were needed for interpretation of results.

Among the 10 years of study, 1992 stood out as one of the coolest: compared to 1991 for
instance, weekly air and A horizon temperatures were frequently >5 °C lower (Figs. 6-7). The
specific form of temperature data used in analyses (e.g., daily, weekly or bi-weekly means) will
be described in the pertinent subsequent sections of this report. A year-specific summary of

weekly temperature means at 5 cm depth is provided in Appendix 2.

3. Litter and soil moisture:

Methods: Samples of A and B horizon soil (approx. 150 ml) were taken at the time of faunal
sampling (20 samples /date /site, at intervals of 2 weeks from early May to October), weighed,
air-dried, and re-weighed. Root masses and gravel were removed before enclosing these samples
in screw-top jars in the field. Litter samples (N = 20) were taken from a 1/16 m? area of the
forest floor, woody debris being eliminated at the time of sampling. They were weighed, oven-

dried at 60 °C, and re-weighed. Moisture was calculated as percent of dry weight.
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Fig. 4. Mean weekly soil temperature (5 cm depth) in Test and Control, 1993 (week 1 beginning
on May 1; data derived from three replicate sensors per site).
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Fig. 5. Mean weekly air temperatures in Test and Control, 1992 (week 1 beginning on May 1).
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Fig. 6. Average weekly air temperatures in Control, 1991 vs. 1992 (week 1 beginning on May
1 of each year).
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Fig. 7. Average weekly temperature of the A horizon at 5 cm depth in the Test site, 1991 vs.
1992 (week 1 beginning on May 1 of each year).
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Results: Moisture estimates for litter, A and B horizons are illustrated for all years in
Appendix 3. As an example of between-site comparisons, 1993 data are shown in Fig. 8. Much
as in other years, moisture fluctuations were well correlated between sites, soil moisture was
depressed in mid-season, and A horizon moisture tended to be somewhat higher in Control than
in Test.

Between-year variations are illustrated by means of 1987, 1988 and 1990 data (Fig. 9). Both
1987 and 1990 were "moist"” years, while 1988 was a drought year during which A horizon

moisture repeatedly fell to « 20%.
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III. SOIL AND LITTER ARTHROPODA

A. METHODS

Soil samples were taken with a éorer, 5 cm diameter, to a depth of 15 cm. Litter samples
were cut with a sharp knife along the inside periphery of a 25 x 25 cm metal frame. All samples
were transported in coolers, and animals were extracted in Tullgren funnels and collected in 95%
alcohol. Ten samples /date /site (all stemming from even-numbered quadrats) were thus
obtained. Sampling dates /year numbered either 12 or 13, depending on weather conditions late
in the season.

In 1984 and 1985, soil samples received no further treatment. Beginning in 1986, soil samples
were taken off the funnels after heat-extraction, and were individually floated in saturated sugar
solution. The procedure was repeated twice, all supernatant being scooped off and rinsed and
preserved in 95% alcohol. For many (though not all) taxa, data are only reliable from 1986
onward, when specimens obtained by sugar floatation could be added to those obtained by heat
extraction.

It was necessary to limit taxonomic identification and data analyses to those for which
expertise was available and/or those which occurred fairly frequently in both study sites: in the
case of Collembola, all were identified to species level; in the case of Acarina, a few taxa were
selected which were readily identifiable (including their immature stages), even if the species
had not yet been described and named.

One species of Collembola, Isotoma notabilis, was selected for analysis of population

structure. Body length of specimens obtained by heat extraction of soil and litter samples was
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recorded, allowing division of the populations into developmental classes (first instars, other
juveniles, and adults). Class limits were established by rearing the species in the laboratory. In
questionable specimens, size measurements were supplemented by chaetotaxy observations, e.g.,

presence or absence of a genital plate to distinguish between large juveniles and adults.

B. RESULTS

1. Efficiency of heat extraction of soil cores:

For a few of the major soil-inhabiting taxa, extraction efficiency is summarized in Table 2.
Some taxa were always poorly extracted by heat (e.g., Onychiuridae in general and the
mesostigmatid sp. A), others were consistently obtained with relatively high efficiency (e.g.,
Nanorchestes sp. A).

In almost all cases, data for 1984 and 1985 were excluded from analyses. Correction factors
(based on 1986-1992 data) would have had to be applied to single sample data. However, not
only did efficiencies vary between dates (Table 3), but they also varied greatly between single
samples (an example is given in Table 4). A posteriori "correction" was liable to introduce a

large amount of artificial error.

2. Collembolan populations

2.1. Annual fluctuations

A checklist of all species obtained during the project period is given in Appendix 4. Estimated
mean annual densities per m2, for all taxa inhabiting litter and soil, are listed in Appendix 5.

In virtually all species, as well as at the family level, major density fluctuations were observed
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in both sites. Between-year differences were often attributable to numbers of one or a few
species within a given family: e.g., Willemia spp. and Anurida furcifera among Control
Hypogastruridae; or Orchesella hexfasciata and Pseudosinella violenta among Test
Entomobryidae (Appendix 5). Onychiuridae (with Tullbergia mala and T. granulata its most
abundant members) strongly dominated both communities. In general, total collembolan
abundance in the Control site tended to be at least twice that in the Test site.

Table 2. Mean annual efficiency of heat extraction of soil cores for selected arthropods : values

are given as percent [(N individuals obtained by heat extraction) / (N total obtained by heat and
floatation)] x 100. T = Test, C = Control.

PERCENT EXTRACTED BY HEAT

YEAR 1986 1987 1988 1989 1990 1991 1992
ACARINA
Nanorchestes sp. A T 100 80.1 92.3 91.5 94.2 87.2 100
(o} 94.9 84.4 97.8 98.4 94.1 98.7 100
Mesostigmata sp. A T 36.9 23.9 38.9 27.5 42.1 20.9 18.9
C 25.6 32.4 40.3 40.6 34.8 27.7 14.4
COLLEMBOLA
Tullbergia mala T 27.8 - 25.2 15.1 11.1 27.2 12.2 9.1
C 23.4 11.9 7.3 10.1 9.1 8.6 7.7
T. granulata T 29.2 19.8 20.4 11.1 19.5 16.2 4.8
: (o] 28.5 12.1 7.5 19.7 12.8 13.9 7.8
Isotoma notabilis T 92.4 90.4 90.7 84.5 94.6 78.1 72.7
(o] 94.2 87.5 90.2 90.1 91.6 93.9 71.1
Isotomiella minor T 43.8 44.3 30.3 34.3 29.7 15.7 2.1
C 50.7 28.6 22.9 48.3 33.3 29.3 19.6
Total Onychiuridae T 31.6 24.1 18.1 12.8 '20.3 16.5 6.6
C 24.5 12.1 7.3 12.6 13.1 13.1 4.4
Total Isotomidae T 77.1 78.3 80.3 70.1 78.7 56.8 51.4
C 84.8 71.2 68.9 74.1 64.6 66.1 48.9
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Table 3. Example of date-specific heat extraction efficiencies: Tullbergia mala in Control, dates
1 through 13 (early May to late October), 1986. N Heat = number of individuals extracted by
heat; N Float = number obtained by sugar floatation; % Effic = percent of total number
extracted by heat.

TOTAL NUMBER OF INDIVIDUALS /DATE

DATE 1 2 3 4 5 6 7 8 9 10 11 12 13

.N Heat 78 173 75 212 97 83 35 38 22 138 50 67 23
N Float 254 209 382 336 281 130 410 203 196 241 322 260 331
% Effic 23.5 45.3 16.4 38.7 25.7 39.0 7.9 15.8 10.1 36.4 13.4 20.5 6.5

Table 4. Examples of sample-specific heat extraction efficiencies: Tullbergia mala from the
Control site, May 5 and 19, 1986. Abbreviations as in Table 3.

TOTAL NUMBER OF INDIVIDUALS /SAMPLE

SAMPLE NO. 1 2 3 4 5 6 7 8 9 10 TOTAL
May 5, 86:

N Heat S 0 0 0 7 8 0 1 3 50 78
N Float 15 10 3 6 17 28 16 12 90 57 254
% Effic 37.5 0.0 0.0 0.0 29.2 22.2 0.0 7.7 3.2 46.7 23.5
May 19, 86:

N Heat 9 4 34 18 37 19 3 1 34 14 173
N Float 2 0] 5 20 3 11 7 5 147 9 209

% Effic 81.8 100 87.2 47.4 92.5 63.3 30.0 16.7 18.8 60.9 45.3
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Examples of year-to-year numerical fluctuations are illustrated below for some of the common -
collembolan taxa.

The dominant litter-dwelling family, Isotomidae, was consistently more prevalent in Control
than in Test, although Test populations experienced considerable increases in 1989 and 1990
(Fig. 10). Annual fluctuations were determined entirely by the single dominant, Isotoma
notabilis, to the extent that family means precisely reflected 1. notabilis means (Fig. 11).

Sminthuridae were also more abundant in Control than in Test during all pre-ELF years
(Fig. 12). In 1989 and 1990, essentially equal numbers were obtained in both sites, followed by
a return to pre-ELF Test/Control relationships. In 1992, abundance was somewhat reduced in
both sites. To a large extent, annual fluctuations at the family level were determined by
fluctuating numbers of the single dominant, Sminthurinus henshawi (Fig. 13).

Litter-dwelling Entomobryidae (Fig. 14) showed a striking pattern reversal in 1988. Much
more abundant in Test through 1987, family means in 1988-1990 were higher in Control.
Although this pattern reversal appeared to be similar to that of Orchesella hexfasciata (Fig. 15),
other species contributed significantly to it. In 1988, for instance, high numbers of entomobryids
in Control were due niainly to unprecedented numbers of Entomobrya comparata, which
contributed 80% to the family total (a trend which persisted, to a lesser extent, through 1990).
On the other hand, reduced total numbers in Test (Fig. 14) were attributable to decreases in two
species: O. hexfasciata (Fig. 15) and E. comparata (decreases which persisted, in variable
degrees, through 1992).

The only non-onychiurid collembolan regularly extracted from soil samples was the

hemiedaphic Isotoma notabilis (Fig. 16). Populations were intitially higher in Control, and
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declined drastically in both sites in 1988 (a severe drought year). From 1990 to 1992, However,
numbers in Test exceeded those in Control. Mean annual density of the species, based on
summed densities in litter and soil (Appendix 5) also shows that overall abundance in Control
was below that in Test during 1990-92, unlike any of the preceding years.

The strictly euedaphic Onychiuridae were found to fluctuate considerably between years,
particularly in Control (Fig. 17). The most abundant component species, Tullbergia mala and
T. granulata (Figs. 18-19) contributed significantly to family fluctuations, particularly 7. mala

in Control (Fig. 18).
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(means /sample + SE, N = 120 or 130 samples per year).
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Fig. 14. Mean annual number of Entomobryidae extracted from leaf litter samples in Test and
Control (means /sample + SE, N = 120 or 130 samples per year).

5 —_
LITTER
O. hexfasciata
4 -
o
a 3 -
=
<
wn
~ N
z 27 §
& N
= N
N
1 N
N
N
§ W TEST
o - N CONTROL

84 85 86 87 88 83 980 91 962
YEAR
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Control (means /sample + SE, N = 120 or 130 samples per year).
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2.2, Seasonal fluctuations

Biweekly numbers of total Collembola present in leaf litter (Fig. 20) were well correlated
between Test and Control, mainly because synchronous litter moisture fluctuations (Fig. 8 and
Appendix 3), was a major determinant of abundance of litter-dwelling Collembola.

Entomobryidae were selected as an example of seasonal variation at the family level, allowing
us to point out potential difficulties in comparing sites at taxonomic levels above that of species.
Total entomobryids in Control exceeded those in Test in 1988, 1989 and 1990 (Fig. 21).
Biweekly numerical changes in Control were mainly due to one species, Entomobrya comparata
(Fig. 22), which dominated the family during those three years (Appendix 5). In Test, several
species contributed to seasonal and yearly fluctuations: E. comparata to a small extent,
Orchesella hexfasciata to an appreciable degree in 1986 and 1987 (Fig. 23), and Pseudosinella
violenta, dominant in Test, but very rare in Control (Appendix 5).

At the species level, it was obvious that large fluctuations over time were the rule.
Entomobrya comparata (Fig. 22) and O. hexfasciata have already been mentioned above. Data
for 1. notabilis and S. henshawi indicated that biweekly abundance estimates were well
synchronized between sites (Figs. 24-25). Tomocerus flavescens, obtained mainly from the Test
site (Fig. 26) was least abundant in 1988, 1989 and 1992.

Fluctuations in numbers of Collembola obtained from soil samples were not as well
synchronized as those from leaf litter. Total Collembola (Fig. 27), as expected, were strongly
influenced by numbers of Onychiuridae (Fig. 28), which in turn were determined mainly by
seasonal abundance of Tullbergia mala (Fig. 29). Tullbergia granulata (Fig. 30) and to a lesser

degree Isotomidae (Fig. 31) also influenced soil collembolan fluctuations.
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Fig. 20. Mean number of Collembola (all species combined) extracted from leaf litter samples
(N =10 samples /site /date) during pre-ELF and operational years.
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FAMILY ENTOMOBRYIDAE IN LITTER: PRE-ELF

40
275
w ] ---@--TEST
= —B- CONTROL
% 72 P . T
<
0
\ 28 e
- :
= =
S
z ..........................................................................
Z i
lﬁ' R A W e | " .................. ot
& S ... ... Py
NSRS ‘_:..h ....... e
L R :
[ e £
....... AT TR & 25
87... 88

Z/SAMPLE

MEAN NUMBER

Fig. 21. Mean number of Entomobryidée extracted from leaf litter samples (N=10 samples /site
/date) during pre-ELF and operational years.
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Entomobrya comparata IN LITTER: PRE-ELF
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Fig. 22. Mean number of Entomobrya comparata in leaf litter (N=10 samples /site /date) during
pre-ELF and operational years.
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Orchesella hexfasciata IN LITTER: PRE-ELF
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Fig. 23. Mean number of Orchesella hexfasciata in leaf litter (N=10 samples /site /date) during
pre-ELF and operational years. A
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Isotoma notabilis IN LITTER: PRE-ELF
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Fig. 24. Mean number of Isotoma notabilis in leaf litter (N=10 samples /site /date) during pre-
ELF and operational years.
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Fig. 25. Mean number of Sminthurinus henshawi in leaf litter (N=10 samples /site /date) during
pre-ELF and operational years.
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Fig. 26. Mean number of Tomocerus flavescens in leaf litter (N=10 samples /site /date) during
pre-ELF and operational years.
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Fig. 27. Mean number of Collembola (all species combined) extracted from soil cores (N= 10
samples / site /date) during pre-ELF and operational years.
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FAMILY ONYCHIURIDAE (COLLEMBOLA) IN SOIL: PRE-ELF
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Fig. 28. Mean number of Onychiuridae extracted from soil cores (N= 10 samples /site /date)
during pre-ELF and operational years.
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Tullbergia mala IN SOIL: PRE-ELF
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Fig. 29. Mean number of Tullbergia mala extracted from soil cores (N= 10 samples /site /date)
during pre-ELF and operational years.
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Tullbergia granulata IN SOIL, PRE-ELF
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Fig. 30. Mean number of Tullbergia granulata extracted from soil cores (N=10 samples /site
/date) during pre-ELF and operational years.
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SOIL COLLEMBOLA: FAMILY ISOTOMIDAE, PRE-ELF
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Fig. 31. Mean number of Isotomidae extracted from soil cores (N = 10 samples /site /date)
during pre-ELF and operational years.



2.3. Community structure
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Diversity as well as equitability indices (Fig. 32) were consistently lower in Control, where

the collembolan community was heavily dominated by Onychiuridae. Summarized over pre-ELF

and operational periods (Table 5), both indices were found to be stable in Test, but increased

significantly in Control. BACI tests of date-specific differences (Control-Test) during pre-ELF

vs. operational periods reflected the shift toward higher indices in Control, mean differences

between sites being reduced in 1989-92 (Table 6).

Table 5. Mean diversity and equitability indices of Test and Control colilembolan communities,
based on densities /m? (soil and litter estimates summed); P values obtained by t tests.

DIVERSITY (H’) EQUITABILITY (S’/S)

SITE 86-88 89-92 P 86-88 89-92 P
TEST

MEAN 2.144 2.047 0.10 0.217 0.210 0.40

SD 0.276 0.234 0.042 0.036

N 38 51 38 51
CONTROL

MEAN 1.550 1.647 0.05 0.140 0.163 | 0.001

SD 0.187 0.244 0.027 0.031

N 38 51 38 51

Table 6. Results of BACI tests of [Control-Test] differences in datg-specific diversity and
equitability indices of collembolan communities, based on densities /m* (litter + soil).

INDEX/PERIOD N MEAN DIFF. SD P
DIVERSITY 86-88 38 -0.6018 0.3191

89-92 51 -0.3994 0.3381 0.005
EQUITABILITY 86-88 38 -0.0786 0.0498

89-92 51 -0.0471 0.0438 0.003
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Fig. 32. Mean annual diversity and equitability indices for the collembolan communities in Test
and Control sites, based on date-specific indices (N= 12 or 13 dates /year).
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2.4, Statistical analyses: population densities
BACI tests of date-specific differences (Control—Tesi) between sites were performed on all
collembolan taxa in which data could be made to meet the required assumptions (i.e., soil

collembolan data were transformed by In (x+1)).

Results pertaining to soil Collembola are summarized in Table 7. Tests of site-specific means
showed that reduced numbers of Tullbergia mala and T. granulata entailed significantly lower
numbers of Onychiuridae. Lower numbers of Onychiuridae, enhanced by reduced I. notabilis
populations, resulted in significantly reduced numbers of total Collembola in Control during
operational years. In the Test site, Entomobryidac and Tomoceridae underwent significant
reductions. BACI tests of mean differences reflected some of these changes, i.e., in
Entomobryidae, Tomoceridae, and T. mala.

Among litter-dwelling Collembola (Table 8), Tomoceridae and its single dominant member
T. ﬂaveséens experiencéd simultaneous decreases in both sites, such that differences between
Test and Control were not significant. Where BACI test results were significant, they fell into
three categories:

a. decreased differences between sites due to increased populations in Test only: Isotomidae
and its dominant constituent species I. notabilis, and Hypogastruridae;

b. reduced populations in Test only: Entomobryidae and two of its major component species,
0. hexfasciata.and E. comparata;

c. reduced populations in Control only: S. henshawi; at the sminthurid family level, effects

of S. henshawi decreasés were not significant (P = 0.07) (Table 8).
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2.5. Population structure: Isotoma notabilis

Summary data for densities and proportions of developmental stages are presented below and
in Appendix 6.

As discussed previously, soil-dwelling I. notabilis populations underwent major reductions in
the Control site during operational years, while Test populations experienced moderate increases
(Fig. 33). Broken down to developmental stages, these changes were clearly consistent in Test,
all stage densities increasing by approximately equal increments from pre-ELF to operational
periods (Fig. 34). In Control, adults and juveniles (but not instars I) decreased significantly
during operational years (P = 0.000) (Fig. 33). BACI tests of (Control - Test) differences
simply confirmed decreased Control densities in 1989-92 for adults and juveniles (Table 9).

Data on proportions in each stage were not amenable to parametric analysis due to severe
heterogeneity of variances. However, there was little noticeable difference, visually, either
between sites or between ELF periods within sites (Fig. 34). Population structure after antenna
activation was thus not detectably distorted in any way.

Biweekly fluctuations in adult and hatchling proportions were quite extreme and not always
well correlated between sites (Figs. 35-36). Hatchlings, however, tended to be well represented
at the very beginning of each season, with a second peak following approximately 2-3 months

later (Fig. 35).
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Table 9. Results of BACI tests of (Control - Test) differences in density of I notabilis

developmental stages during pre-ELF and operational periods.

DEVELOPM.STAGE /

PERIOD N MEAN DIFF. SD P
INSTAR I _

1984-1988 63 197.06 419.73

1989-1992 51 59.42 418.61 0.084
TUVENILES

1984-1988 63 261.55 700.43

1989-1992 51 -107.58 476.99 0.002
ADULTS

1984-1988 63 377.03 519.10

1989-1992 51 -0.61 398.29 0.000
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Fig. 35. Proportion of 1. notabilis populations in the instar I (hatchling) stage, at biweekly
intervals during pre-ELF and operational years in Test and Control.
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Fig. 36. Proportions of I notabilis populations in the adult stage at biweekly intervals during
pre-ELF and operational years in Test and Control.
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3. Acarina

Among three species routinely obtained from litter and soil samples, Asca aphidioides (L.)
had been previously described. The second belonged in the genus Nanorchestes, was
morphologically distinct from other Nanorchestes spp. found in our samples, and is here
designated as Nanorchestes "sp. A". The third was a mesostigmatid of unknown generic or
specific assignation (Dr. A. Welbourn, pers. comm.), and is herein called "mesostigmatia sp.
A".

Asca aphidioides was almost exclusively litter-dwelling; Nanorchestes sp. A frequented both
soil and litter, while the mesostigmatid sp. A was exclusively soil-dwelling. Mean annual
densities for the three species are listed in Table 10. Error measures were typically very high,
reflecting strong aggregation tendencies (SD for Nanorchestes density estimates in litter or soil,
not shown in Table 10, always exceeded the means by a factor of 2 to 3). With the exception
of the mesostigmatid sp. A, correlations between Test and Control abundances were high,
indicating synchronicity in between-year variations.

Examples of biweekly numerical fluctuations are shown in Fig. 37 for litter-dwelling
Nanorchestes subpopulations, and in Fig. 38 for A. aphidioides. The latter experienced drastic
population declines after 1985, and never recovered during the study period. In the
mesostigmatid sp. A, fluctuations showed only a general synchronicity between sites, be it with
respect to the total population (Fig. 39) or with respect to a given developmental stage (F' 1g 40
illustrates adult numbers as example).

Data for Nanorchestes sp. A could not be made to meet required assumptions for parametric

statistics, either in terms of additivity or homogeneity of variances. However, numerical
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fluctuations were well correlated between sites (R2 for 1984 through 1988 = 0.85). Edaphic.
factors potentially causing these fluctuations were apparently not overriden by EM field effects
once the antenna was activated (R2 for 1989-1992 = 0.90).

- In A. aphidioides, only data for adults could be analyzed (after In-transform). Results showed
that numerical reductions were significant during 1989-1992 in Control (P = 0.02), but not in
Test (P = 0.47) (Table 11). Despite severe populétion decreases in both sites (Table 10),
relatively more drastic reductions in Control caused significant BACI‘ differences, i.e., a
significant reduction in the magnitude of [Control-Test] differences (Table 11).

Data for the mesostigmatid sp. A met all required assumptions. BACI tests of [Control-Test]
differences showed that site relationships were not significantly altered by antenna activation.
Site-specific tests of [1986 to 1988] vs. [1989 to 1992] indicated that numerical increases in

adults and in total populations occurred in both sites during operational years (Table 11).
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Fig. 37. Mean number /date (N = 10 samples /site /date) of Nanorchestes sp. A in leaf litter

during pre-ELF and operational years (early May to October of each year).
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Asca aphidioides IN LITTER: PRE-ELF
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Fig. 38. Mean number /date (N = 10 samples /site /date) of Asca aphidioides in leaf litter
during pre-ELF and operational years (early May to October of each year).
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Mesostigmatid A: SOIL: PRE-ELF
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Fig. 39. Mean number /date (N = 10 samples /site /date) of mesostigmatid sp. A (all
developmental stages summed) in soil during pre-ELF and operational years (early May to
October of each year).
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Fig. 40. Mean number /date (N = 10 samples /site /date) of mesostigmatid sp. A (adults only)
in soil during pre-ELF and operational years (early May to October of each year).
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C. SUMMARY AND DISCUSSION

There is little information available in the literature on long-term density fluctuations of
microarthropod populations. Judging by data on macroarthropods such as millipedes, centipedes,
pseudoscorpions and dipteran larvae (Blandin et al. 1982), or on nematodes (Willard 1973, cited
in Peterson and Luxton 1982), highly significant between-year fluctuations are the rule rather
than the exception, and can be partly due to variations in climate.

Takeda (1987) obtained data on collembolan populations in a Japanese pine forest over a 15
year period. In eight dominant species, annual abundances varied by factors of 3.5 to 29, and
up to 128 in one species. Years when maxima and minima occurred differed between species,
and the most severe drought year had no clearly definable effect on any of them. In our study,
densities of several abundant species fluctuated (generally by factors of <2 to approximately 3)
in both sites, with no apparent synchronicity between Test and Control. Possible relationships
with climatic patterns were discernible only in two epedaphic species, 7. flavescens and O.
hexfasciata, in the Test site (neither was abundant in Control): reduced numbers in 1988, a
severe drought year, carried over into 1989, the year of antenna activation. In north temperate
zones, entomobryids and tomocerids tend to have only one generation per year (Persson and
Lohm 1977; Huhta and Mikkonen 1983; Peterson 1980), so that populations reduced by drought
would not be able to recover as rapidly as multivoltin_e species. On the other hand, these same
species also incurred reduction in the Test site in 1993 (Appendix 5), with no clear relation to
edaphic conditions.

Based on analysis of years grouped by pre-ELF and operational periods, several species and

higher taxa were found to have increased or decreased in Control as well as Test. Changes in
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relationships (differences) between sites after 1988 were thus due to increases or decreases in
either site (Tables 7 and 8, also ref. page 49). Since decreased population densities in Cbntrol
in particular cannot be linked to ELF EM field effects, our data indicate that observed
differences reflected:

a) species-specific responses to climatic and edaphic conditions, in interaction with site-
specific factors: a givé;l species may show variable population dynamics in two different sites,
although causative agents are usually not identifiable (as is the case here) (Joosse 1969; Verhoef
and van Selm 1978);

b) very long-term changes in population densities and community structure, which may be
cyclic or may be related to maturation of the two forest stands. We found little substantiating
evidence for these conjectures in the literature although, in a general sense, distinct soil faunal
differences between successional communities (discussed in Usher 1985) may represent an
analogy to slow, subtle changes over time in slowly maturing forest systems.

We conclude that "ELF effects" (referring strictly to differences between pre-ELF and
operational years) were statistically detectable in both sites, and were not consistent between
taxa. In some species, effects of the 1988 drought were carried over into 1989. Climatic effects
thus happened to coincide with the year of antenna activation, and cannot be distinguished from
potential ELF effects. In other species density variations were well correlated between sites over
all years, indicating absence of ELF effects. For Isotoma notabilis, our data indicated two to
three generations per year, in agreement with Bodvardsson (1973). Population structure was not
visibly affected by antenna aétivation (Fig. 34), and numerical changes were drastic in the

Control site only (Fig. 33).
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IV. SURFACE-ACTIVE ARTHROPODA

A. METHODS

Pittraps were placed in permanent locations in each quadrat (Fig. 1). At intervals of 1 week,
they were activated at dusk and collected at dawn (= night catch), replaced and collected again
the following evening (= day catch). Twenty traps were installed in each site.

Beginning in 1985, each trap was provided with four barriers analogous to the single barriers
described by Reeves (1980): four 1 m lengths of plastic garden edging, protruding approx. 8 cm
above ground and abutting to the trap, were positioned at 90° angles to each other. Catches of
some arthropods (particularly carabid beetles) were thereby increased significantly (Snider and
Snider 1986).

Barrier-trapping was used from 1985 through 1991; 1984 data are disregarded in summaries
and analyses below.

Classification of Collembola follows the.system of Gisin (1960), that of mites follows Krantz
(1978), and that of Carabidae follows Lindroth (1961-1969), with more recent corrections being
taken into account where appropriate.

B. RESULTS

1. Collembola

1.1. Annual and seasonal fluctuations

An overview of total numbers trapped per year is provided in Table 13 for the most
commonly encountered taxa in either Test or Control sites. (The entire array of species is

included in the Collembola checklist in Appendix 4).
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Large between-year fluctuations were observed in single species (e.g., Orchesella
hexfasciata), species groups ( Pseudachorutes spp.) and total Collembola (Table 12). Although
most of the 30-odd species captured were common to both sites, they were collected in differing
proportions. For instance, Lepidocyrtus paradoxus and Dicyrtoma aurata were common in
Control, but relatively rare in Test. Conversely, Pseudosinella violenta and Entomobrya nivalis

were more common in Test than in Control (Table 12).

Table 12. Total annual catches of selected Collembola in Test and Control, 1985 through 1991.

Night and day catches summed, T = Test, C = Control.

1985 1986 1987 1988 1989 1990 1991

S. henshawi T 1637 1435 1992 2811 3065 3196 2364
c 2606 2934 4123 5084 3675 2666 2475
S. lepus T 669 236 1049 503 1438 1375 1335
(o} 397 375 1019 824 724 505 1129
T. flavescens T 4213 1965 2429 1684 641 1033 2198
c 842 242 280 165 237 170 90
O. hexfasciata T 3201 3402 4137 3426 738 1767 3434
c 1099 421 1180 3549 1662 2976 1500
E. comparata T 35 80 119 150 57 90 69
Cc 287 87 157 1493 440 731 92
E. nivalis T 531 1057 294 291 218 326 546
Cc 4 14 34 77 104 243 172
L. paradoxus T 22 6 37 123 22 229 1377
C . 1142 961 @ 2701 2649 3783 4385 2717
P. violenta T 166 381 606 916 327 132 330
C 1 1 47 0 2 4 4
D. aurata T ) 0 4 1 0 22 1
c 468 976 2198 448 403 233 145
Pseudachorutes spp. T 13 o 5 0 187 131 174
(o} 1925 198 348 379 659 860 483
TOTAL COLLEMBOLA T 11518 9550 12010 11072 7987 9301 13101
(o} 9946 6815 13120 15521 12964 13467 10282
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Weekly catches of total Collembola reflected low activity in early spring and late fall, and
generally good correlation betweenv sites with respect to the timing of major activity peaks
(Fig. 41). In late 1987 and 1988, and throughout 1989 and 1990, Control catches were higher
than Test catches, while numbers tended to be higher in Test in 1986 and 1991.

Between-site comparisons at taxonomic levels above that of species may, however, be
relaﬁvely meaningless. We illustrate this point by means of the family Entomobryidae. In
Control, Lepidocyrtus paradoxus contributed the bulk of entomobryids trapped and frequently
determined the time and size of activity peaks at the family level (Fig. 42). In Test, L.
paradoxus was virtually non-existent until 1991 (Fig. 43). Total numbers trapped
(Entomobryidae including L. paradoxus) exhibited a startling change in pattern: much higher in
bTest during 1985 through early 1988, then higher in Control during 1989 and 1990, then again
higher in Test in 1991 (Fig. 44). Excluding L. paradoxus, the family-level pattern still holds true
during pre-ELF years; in 1989 and 1990, however, numbers trapped in Test were essentially
equal to the low catches obtained in Control (Fig. 45).

It is obvious that the component species must be the primary subjects of analysis if trends
observed in higher taxa are to be explained; e.g., was the reversal of the pre-ELF Test/Control
proportionality seen in Figs. 44-45 due to increased numbers in Control, or to decreased
numbers in Test?

In addition to L. paradoxus, one other species greatly affected total numbers captured in this
group. Activity patterns of Orchesella hexfasciata (Fig. 46) were mainly responsible for those
observed in thé family (Fig. 44), including the "reversal" of Test/Control proportionality

between mid-1988 and late 1990 caused by simultaneous increases in Control and decreases in
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Test.

The family Tomoceridae was represented almost exclusively by a single species, Tomocerus
flavescens (Fig. 47), which showed a yearly pattern of reduction and increase strongly
reminiscent of that in O. hexfasciata.

A third family consistently well represented in trap catches was Sminthuridae (Fig. 48), with
Sminthurinus henshawi (Fig. 49) the single main determinant of total numbers and of the timing
of activity peaks in both sites. Sminthurides lepus (Fig. 50), a secondary component of the
family, exhibited relatively drastic overall between-year fluctuations in both sites (Table 12).
Neither at the species nor at the family level were drastic nuﬁerical changes around the time of

antenna activation recorded.
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Fig. 41. Weekly catches of Collembola (all species summed) in Test and Control sites, early
May to late October, 1985 through 1991.
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CONTROL TRAPS: Total Entomobryidae vs. L. paradoxus, PRE-ELF
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Fig. 42. Weekly catches of total Entomobryidae and of Lepidocyrtus paradoxus alone in the
CONTROL site, from early May to late October of each-year.
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TEST TRAPS: Total Entomobryidae vs. L. paradoxus, PRE-ELF
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Fig. 43. Weekly catches of total Entomobryidae and of Lepidocyrtus paradoxus alone in the
TEST site, from early May to late October of each year.
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Fig. 44. Weekly catches of total Entomobryidae (Lepidocyrtus paradoxus included) in Test and
Control sites, from early May to late October of each year.
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FAMILY ENTOMOBRYIDAE IN PITTRAPS: PRE-ELF
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Fig. 45. Weekly catches of total Entomobryidae (Lepidocyrtus paradoxus excluded from family
totals) in Test and Control, from early May to late October of each year.
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Orchesella hexfasciata IN PITTRAPS. PRE-ELF
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Fig. 46. Weekly catches of Orchesella hexfasciata (Entomobryidae) in Test and Control, from
early May to late October of each year.



79

Tomocerus flavescens IN PITTRAPS: PRE-ELF
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Fig. 47. Weekly catches of Tomocerus flavescens (Tomoceridae) in Test and Control, from early
May to late October of each year.
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TOTAL SMINTHURIDAE IN PITTRAPS: PRE-ELF
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Fig. 48. Weekly catches of total Sminthuridae in Test and Control, from early May to late
October of each year.
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Sminthurinus henshawi IN PITTRAPS: PRE-ELF
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Fig. 49. Weekly catches of Sminthurinus henshawi (Sminthuridae) in Test and Control, from
early May to late October of each year.




Sminthurides lepus IN PITTRAPS: PRE-ELF
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Fig. 50. Weekly catches of Sminthurides lepus (Sminthuridae) in Test and Control, from early
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May to late October of each year.
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1.2. Diel activity

For four commonly captured species, percent diurnality is summarized in Table 13.
Sminthurinus henshawi was almost equally day- and night-active, S. lepus and O. hexfasciata
tended to be more diurnal. Tomocerus flavescens, however, was strongly nocturnal.

Table 13. Diurnality [(total day catcheva total 24-hour catches) x 100] per year, for four
frequently trapped species in Test and Control sites.

DIURNALITY (PERCENT)

YEAR/SPECIES 1985 1986 1987 1988 1989 1990 1991

49.2 44.7 59.4 63.0 51.1 54.5 57.9
60.4 48.5 62.9 61.5 58.6 56.1 56.6

S. henshawi

78.9 67.9 79.2 87.4 72.2 68.2 72.9
51.1 73.7 70.5 66.7 71.4 57.8 67.8

S. lepus

71.2 64.5 64.1 67.7 65.8 66.8 54.8
77.1 75.6 72.1 71.1 67.0 63.5 64.5

O. hexfasciata

20.3 19.5 18.3 22.9 21.7 25.0 21.6
25.1 26.7 20.5 14.4 23.6 24.7 33.3

T. flavescens

0ol o3 03 093

Weekly day- and night-catches of two species are illustrated below, using only single-year
subsets of data randomly chosen as examples (Figs. 51-52). Week-specific diurnality patterns
were significantly correlated between sites (in these two examples, P = 0.001 for both species),
although correlation coefficients were relativel-y low (R2 = 0.40 for S. henshawi and 0.43 for
O. hexfasciata). Overall (Table 13) there were no obvious changes in species-specific diurnality

patterns or in between-site relationships after antenna activation.
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Sminthurinus henshawi IN TEST: DAY AND NIGHT CATCHES, 1989
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Orchesella hexfasciata IN TEST: DAY AND NIGHT CATCHES, 1988
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Fig. 52. Total numbers of O. hexfasciata captured at weekly intervals in day- and night-traps
in Test and Control sites in 1988; Date 1 = May 10-11, Date 25 = October 25-26.
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1.3. Community structure

Community diversity (H’) and equitability (S’/S) calculations were based on date-specific
catches of each species, so that yearly means were calculated from 25 or 26 dates /year. Figs.
53-54 jllustrate that both community indices tended to vary between years, and in both sites.
This is not surprising, given the often drastic between-year variability in numbers trapped as
evidenced by preceding Figures and Table 12. Summarized by pre-ELF and operational
periods, we find that all significant differences, within each site as well as in terms of
differences between sites, were due to increases in diversity and equitability in both sites (Table
14). Lacking a true causative explanation for annual or seasonal fluctuations in numbers trapped
for individual species, we contend that these variations in community structure may simply be
due to normal long-term fluctuations in populations coupled with their locomotory responses to

year-specific climatic patterns.
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Fig. 53. Mean annual diversity indices for diurnal and nocturnal collembolan communities in
Test and Control, 1985-1991 (N= 25 or 26 dates /year).
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Test and Control, 1985-1991 (N= 25 or 26 dates /year).
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1.4. Statistical analyses

Each year was divided into three “seasons" (spring, summer and fall), each consisting of
eight dates. Total numbers per trap (day + night summed) were then analyzed by ANOVA, with
ELF (pre-ELF and operational periods) and sites as main factors, ELF x site interactions, and
traps [within sites] as additional factor. In addition to total Collembola, data for four species
satisfied the assumptions for ANOVA: T. Sflavescens, O. hexfasciata, S. henshawi and S. lepus.

Condensed results are shown in Table 15. Whether entire years or single seasons were
examined, it was cléar that catches of total Collembola showed no significant numerical
deviations (ELF effect) after antenna activation. Neither did S. henshawi, despite increased
numbers in Test and decreased numbers in Control during operational years. ELF effects were
significant in all other species, but no general trends across species was discernible: neither the
relative magnitude nor the direction of change were consistent between species (Table 15).

In all species, not surprisingly, significant site effects were the rule (ref. also Table 12).
ELF x site interactions,‘ significant in virtually all cases, indicated that the degree or direction
of numerical changes after antenna activation differed between sites.

BACI analyses of full-year data, on the other hand, answered a different question: by using
catch ratios (date; / date;_; ), differences in date-to-date fluctuations (or relative increases and
decreases over time) were tested; mean [Control - Test].differences represented the response
variables. Results of these tests indicated that seasonal (date-to-date) fluctuations were well

synchronized in all four species (Table 16).

—a
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Table 16. Results of BACI tests of (Control - Test) differences in trap catches, using ratios of

( catch on date; / catch on date;_; ), for four collembolan species.

SPECIES/ PERIOD N MEAN DIFF SD P
T. flavescens

1985-88 96 +0.2259 1.5535

1989-91 68 +0.0497 2.1306 0.56
O. hexfasciata

1985-88 99 -0.1197 1.6034

1989-91 73 -0.0646 1.0347 0.78
S. henshawi

1985-88 99 -0.0921 1.0727 ,

1989-91 72 -0.0804 1.0513 0.94
S. lepus

1985-88 94 -0.0316 1.1445

1989-91 70 +0.0572 1.2074 0.63

92
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2. Acarina

2.1. Annual and seasonal fluctuations

Three épecies were trapped in sufficient numbers to warrant discussion and analysis:
Nanorchestes sp. A (Actinedida: Nanorchestidae), and the velvet mites Trombidium auroraense
(Actinedida: Trombidiidae) and Abrolbphus sp. (Actinedida: Erythraeidae). Total numbers
obtained are listed in Table 17. Between-year variation was particularly pronounced in
Nanorchestes, but was appreciable in velvet mites as well. |

Table 17. Total annual catches of Acarina in Test and Control (nocturnal and diurnal catches,
and all developmental stages, summed). T = Test, C = Control.

1985 1986 1987 1988 1989 1990 1991

T. auroraense T 206 281 202 291 371 318 253
Cc 599 731 634 748 724 385 246
Abrolophus sp. T 309 335 155 387 200 580 267
Cc 713 431 226 714 282 293 108
Nanorchestes sp. T 1322 4405 1746 2216 1810 3872 2539
C 808 5926 2329 4984 2697 2370 1350

Both 7. auroraense and Abrolophus were strongly diurnal, while Nanorchestes, although
diurnality predominated, was also captured frequently during nights (Table 18), differences

between neither sites nor years showing a consistent pattern.
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Table 18. Percent diurnality [(day catch / total catch per year) x 100] of mites trapped in 1985 -
1991. T = Test, C = Control.

1985 1986 1987 1988 1989 1990 1991

99.2 98.9 95.0 95.2 96.8 97.2 88.1
99.5 98.5 98.6 95.2 96.1 98.2 92.7

T. auroraense

82.1 96.1 94.5 92.4 86.1

Abrolophus sp. .
96.9 96.3 93.8 95.8 97.2 93.2 89.8

o 0943
Vo]
(&}
|
(o]
(S}
[\

Nanorchestes sp. T 60.4 66.3 58.0 82.8 63.5 52.4 59.2
C 81.4 63.7 68.1 66.5 76.8 85.9 67.8

Weekly catches of Nanorchestes (Fig. 55) showed that the species was most active during
summer months, with particularly pronounced activity peaks in 1986 and 1988 in both sites.
Only adults were captured (although it is probable that larvae and nymphs of this as yet
undescribed species were simply not recognized).

Activity of T. auroraense was highly seasonal: Fig. 56 illustrates (using the sum of all
developmental stages) that the main period of activity occurred from early May to early June.
These initial peaks were due almost entirely to adults, which were observed ovipositing in the
field at that time. Subsequent lesser peaks were due to larvae and deutonymphs. The species was
collected only rarely during the latter part of each season (Fig. 56).

The second species of velvet mites, Abrolophus sp., exhibited a different life cycle, reflected
in distinct, temporally separated activity peaks (Figs. 57-58). Larvae were the first to appear in
May, followed by deutonymphs, then adults. Deutonymph activity tended to occur earlier in Test
than in Control, with the exception of 1985 and 1991, but larval and adult occurrence was well

synchronized between sites.
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Nanorchestes sp. A IN PITTRAPS: PRE-ELF
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Fig. 55. Total catches of Nanorchestes sp. A in Test and Control during pre-ELF and
operational years (night and day catches summed for each date).
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350 Trombidium auroraense IN PITTRAPS: PRE-ELF
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Fig. 56. Total catches of Trombidium auroraense per date in Test and Control during pre-ELF
and operational years (night and day catches, and developmental stages, summed per date).
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Abrolophus sp. IN PITTRAPS: ALL YEARS
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Fig. 57. Total catches per date (night and day catches summed) of larvae and deutonymphs of
Abrolophus sp. in Test and Control.
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Abrolophus sp. IN PITTRAPS: ALL YEARS
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Fig. 58. Total catches of Abrolophus sp. adults per date (night and day catches summed) in Test

and Control.

Year-specific correlations between weekly Test and Control catches showed that activity was

most synchronous in 7. auroraense (Table 19). In the other two species, R? was generally lower

and more variable between years, but no pre-ELF vs. operational years pattern was discernible.

Table 19. Correlation coefficient (R2) for Test and Control trap catches of Acarina. Night and
day catches, and developmental stages, summed per date (N = 25 or 26 dates per year).

1985 1986 1987 1988 1989 1990 1991
T. auroraense 0.85 0.92 0.86 0.92 0.96 0.92 0.98
Abrolophus sp. 0.94 0.86 0.62 0.72 0.83 0.63 0.57
Nanorchestes sp.A 0.72 0.74 0.50 0.85 0.86 0.30 0.61
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2.2. Statistical analyses
All late-season dates for Abrolophus and T. auroraense were disregarded, since these species
hibernate or become inactive long before the end of the trapping season. Data for these two
species were also summed over all stages, and those for Abrolophus were further combined over
2-week intervals in order to overcome occasional low numbers trapped.
In all three mite species, trap catches were transformed to ratios of [present date / previous
date catch]. Differences between ratios (Control - Test) were then subjected to BACI analysis.

None of the means for pre-ELF and operational periods differed significantly (Table 20).

Table 20. Results of BACI analysis of (Control-Test) differences in trap catches, after serial
differencing (catch on date; / catch on date; 1), for three acarine species.

SPECIES/ PERIOD N | MEAN DIFF. SD P
(Abrolophus sp.

1985-88 44 -0.773 48.573

1989-91 33 +0.848 30.808 0.86
T. auroraense

1985-88 34 -0.572 3.299

1989-91 31 +0.122 1.155 0.26
Nanorchestes sp. A

1985-88 96 -0.364 2.090

1989-91 73 -0.023 1.373 0.25




3. Carabidae

3.1. Annual fluctuations and seasonal actii'ity

Total numbers captured per year of each of the 20-odd species in each site are summarized
in Table 21. With the exception of a few rare species, species composition of the carabid
communities was similar in Test and Control, although dominance relationships were unequal:
i.e., Pterostichus melanarius was strongly dominant in Test, while several species were
essentially co-dominant in Control (variable between years).

Between-year variation in numbers captured was often considerable (e.g., P. melanarius in
Test or Synuchus impunctatus in Control). A general decline in total numbers during the last 2
or 3 years was one of the reasons which prompted us to discontinue trapping after 1991.

Examples of seasonal activity patterns, which are determined mainly by reproductive cycles
(Loreau 1985) are shown in Figs. §9-63. Typical "summer breeders" were represented by P.
melanarius, S. impunctatus, P. coracinus and Harpalus fuliginosus (Figs. 59-62), in which the
majority of individuals overwinter as larvae, and adults are most active in mid-summer.
Prerostichus pensylvanicus, on the other hand, overwintered mainly as adults, which became
active early in the season and oviposited. The resulting larvae matured during summer and fall,

and teneral adults contributed to secondary activity peaks in late fall (Fig. 63).
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Pterostichus melanarius IN PITTRAPS: PRE-ELF
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Fig. 59. Total weekly catches of Prerostichus melanarius in Test and Control sites, early May
to late October of pre-ELF and operational years.
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Synuchus impunctatus IN PITTRAPS: PRE-ELF
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Fig. 60. Total weekly catches of Synuchus impunctatus in Test and Control sites, early May to
late October of pre-ELF and operational years.
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Pterostichus coracinus IN PITTRAPS: PRE-ELF
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Fig. 61. Total weekly catches of Prerostichus coracinus in Test and Control sites, early May to
late October of pre-ELF and operational years.
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Harpalus fuliginosus IN PITTRAPS: PRE-ELF
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Fig. 62. Total weekly catches of Harpalus fuliginosus in Test and Control sites, early May to
late October of pre-ELF and operational years.




106

Pterostichus pensylvanicus IN PITTRAPS: PRE-ELF

40 M

35 Lfeoeeeemeemeiaaann B e STT@TTEST
a I —H— CONTROL
1 [ | EERRREEEEEERPPTTPPPPPRE
(Y I i
é q : . ]
& 25 .- .. E .................... R EREE AEEREEEEEEEE
7 (4 14 . ]
[&] 20 .-:‘..- ' EREEEEEREEERE .....: ............ I.....q’ .................... ‘ ..........
2 [ i o Bl '
5 15 _.:.. ............. :::._g ........ Y ‘...E.: ............. .....! ..............
g [ AR E A i
g 10 +--- S CREREEER : 4. -. ........ .:.: ...‘..:.... ........... .- .‘. IR R R

I : ) I 8 o
& o5 ... RS 1 S 3 SO .-;. ........ g i P R
- h " 1 2 | n
0 v ﬁ"‘*‘ d __A_ 3 ‘I’ Y vt :""!L'._n;
5/85... 5/86... 5/87... 5/88...
SAMPLING DATE
Pterostichus pensylvanicus IN PITTRAPS: OPERATIONAL
40
35 ---@-- TEST

TOTAL NUMBER TRAPPED

SAMPLING DATE

Fig. 63. Total weekly catches of Prerostichus pensylvanicus in Test and Control sites, early May
to late October of pre-ELF and operational years.
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3.2. Diel activity and sex ratios

In some species, a surprising degree of variability between years was observed with respect
to diel activity. For instance, based on total numbers captured per year, P. melanarius was
mainly day-active in 1985 and 1990, almost equally day- and night-active in 1986 and 1989, and
mainly nocturnal in all other years (Table‘22). Other species showed more constant diel
preferencés: Clivina fossor, H. fuliginosus and particularly Notiophilus aeneus welre strongly
diurnal; Cymindis cribricollis was almost exclusively nocturnal. To some degree, our results
were in accordance with Thiele (1979) and Thiele and Weber (1968), namely that forest carabids
tend to be night-active, and field carabids (such as Clivina fossor) tend to be day-active.

In Calosoma frigidum, decreased diurnality in 1988 (Table 22) coincided with reproductive
failure in both sites (none of the females ever carried ripe ova), followed by virtual
disappearance of the species from both sites. Potential causes for this anomaly range from
discrepancies in environmental factors needed for full ovarian development (Thiele 1979) to low
prey density (Jeffords and Case 1987). In other species as well, we have been unable to
succinctly relate changes in diurnality to any known reproductive or environmental factors.

Year-to-year shifts in diurnality were often synchronous in both sites (e.g., R2 for P.
melanarius = 0.62, R2 for P. coracinus = 0.72), and did not seem related to antenna activation
in any of the common species. Furthermore, the annual summary ‘data in Table 22 were not a
result of a few single-date outlying catches. Rather, diel patterns seemed consistent throughout
each trapping season. For example, numbers of P. melanarius in the Test site were consistently

higher in day traps in 1985, and were consistently higher in night traps in 1991 (Fig. 64).
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Table 22. Percent diurnality [(day catch / total catch) x 100] of carabid species commonly
occurring in either or both sites, based on total annual catches in Test (T) and Control (C).

YEAR
SPECIES SITE | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 1991
P. melanarius 71.8 | 47.7 | 347 | 38.6 | 49.6 | 713 30.7

73.8 | 50.0 | 31.2 | 39.1 | 27.3 | 58.2 | 39.8

335 | 26.8 | 314 16.2 | 30.1 63.0 44.2
36.0 | 33.6 | 324 185 | 33.6 | 343 48.4

555 | 276 | 22.4 | 145 | 29.4 | 400 | 34.2
605 | 384 | 253 | 59 | 18.1 | 28.7 | 23.7

50.5 379 | 22.1 36.5 36.7 31.7 27.3
36.4 | 319 | 34.1 33.1 69.3 35.8 31.8

86.8 | 82.7 | 8L.7 | 82.3 78.5 87.5 70.0
89.1 87.1 85.2 | 829 68.7 | 69.0 74.2

P. pensylvanicus

P. coracinus

S. impunctatus

H. fuliginosus

C. frigidum 98.5 85.6 | 80.8 | 56.1 - - -
86.2 86.0 | 71.4 | 38.7 - - -
N. aeneus 100.0 | 100.0 | 100.0 | 97.6 | 100.0 | 100.0 | 90.6

95.7 | 100.0 | 97.2 | 100.0 - - -

0.0 0.0 0.0 0.0 6.4 9.5 9.5
0.0 0.0 1.5 2.2 2.9 0.0 0.0

89.8 | 71.4 | 80.8 | 83.3 86.4 | 75.0 78.3

C. cribricollis

C. fossor

P. mutus 19.8 15.3 19.5 13.7 24.2 6.6 38.3

o a0 ja=L a3 oo |3 (a3 a3 104
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Pterostichus melanarius IN TEST: DAY AND NIGHT CATCHES, 1985
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Pterostichus melanarius IN TEST: DAY AND NIGHT CATCHES, 1991
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TRAPPING DATE (WEEKLY INTERVALS)

Fig. 64. Diurnal and nocturnal catches of P. melanarius in the TEST site at weekly intervals in
1985 and 1991; total N individuals = 1087 and 504 in 1985 and 1991 respectively. In 1985,
Date 1 = May 7-8, Date 26 = Oct 28-29; In 1991, Date 1 = May 6-7, Date 25 = Oct 22-23.
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Attempts to correlate diel activity patterns and variations in sex ratios were not successful.
With only a few exceptions (and these were not related to diel activity preferences) males tended
to outnumber females in all years (Table 23). Only in P. mutus (data not shown in detail) could
we detect somewhat stable frequencies of males in day- and night-traps: night catches consisted

of 58 to 68 percent males in all years, while day catches tended to be dominated by females in

all years.
We are currently unable to explain between-year variations in either diel activity shifts or sex
ratios; there is no evidence, however, for linking these shifts to antenna activation, since they

occurred during pre-ELF as well as operational periods.

Table 23. Annual percent males (day and night catches summed) in selected carabid species,
1985 to 1991, based on total numbers captured per year (T= Test, C = Control).

YEAR

SPECIES 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991

61.6 | 59.6 | 68.1 | 57.8 | 70.8 | 71.4 | 825
73.1 | 709 | 87.5 | 66.8 | 72.7 | 78.5 | 80.5

61.3 | 59.2 | 51.9 | 389 | 41.9 | 59.3 | 545
53.8 | 70.4 | 70.0 | 44.5 | 61.5 | 62.9 | 55.7

589 | 64.8 | 62.9 | 554 | 67.1 | 75.7 | 76.7
68.3 | 65.2 | 619 | 51.2 | 60.0 | 73.3 | 63.7

83.2 | 68.6 | 729 | 533 | 67.3 | 70.3 | 66.8
46.4 | 499 | 50.0 | 44.7 | 545 | 50.2 | 51.6

48.7 | 49.6 | 493 | 57.3 | 57.0 | 64.8 | 52.5
69.1 | 63.8 | 554 | 53.5 | 48.2 | 50.0 | 51.5

P. melanarius

P. pensylvanicus

P. coracinus

S. impunctatus

H. fuliginosus

#5]
AX las|la=a o= o-—aa
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3.3. Community structure

Community diversity (H’) and equitability (S°/S) indices were obtained from date-specific
catches of each species. Summarized by pre-ELF and operational periods, it is evident that
community structure did not fluctuate in the Test site, but that diversity estimates decreased in
the Control site during operational years (Table 24). This change in community structure (in
Control only) resulted in BACI results being significant at P < 0.04, since the magnitude of

differences between sites increased relative to the stable estimates in Test.

3.4. Statistical analyses

Catches from individual traps /date were summed (males + females and night + day), 20
traps /site thus providing the experimental unites on which ANOVA was based. Data for each
year were divided into three seasons, each encompassing eight dates (approx. May-June, July-
August, and September-October). Numerical changes were then tested by ANOVA for all
seasons, and for each season separately, using the factors ELF (pre-ELF vs. operational
periods), sites, ELF x site interactions, and traps [within sites].

Condensed results of ANOVA are given in Table 25. The season(s) in which activity of each
. species was most pronounced yielded most of the significant results with respect to ELF effects
as well as with respect to ELF x site interactions. This is not surprising, since main periods of
activity yielded the largest numbers of animals and were thus more susceptible to showing
differences. Site effects were uniformly significant (for all seasons) in P. melanarius, P.

coracinus and S. impunctatus, but not in P. pensylvanicus and H. fuliginosus (Table 25).
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BACI tests represent a simpler approach which, in effect, assesses potential date-to-date
differences in activity. Tests of mean differences (Control - Test) in ratios of catches (date; /
date ;_;) during pre-ELF and operational periods showed that fluctuations in activity did not

differ significantly between sites after antenna activation (Table 26).

Table 26. Results of BACI tests of (Control-Test) differences in trap catches, based on ratios
of (catch on date; / catch on date;_1), for five carabid species; males and females, and night and
day catches, summed per date; N variable due to variable numbers of zero captures in each
species.

SPECIES/ PERIOD N MEAN DIFF. SD P
P. melanarius

1985-88 77 -0.2237 1.9924

1989-91 57 0.4681 2.3443 0.075
P. pensylvanicus

1985-88 61 0.2379 1.4172

1989-91 49 -0.2455 1.6936 0.113
P. coracinus

1985-88 70 -0.2792 2.3153

1989-91 49 -0.3687 1.7420 0.810
S. impunctatus

1985-88 47 0.0191 1.3974

1989-91 38 -0.0021 1.9921 0.956

H. fuliginosus
1985-88 61 0.3204 2.4668
1989-91 45 0.0542 2.9981 0.628
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C. SUMMARY AND DISCUSSION

1. Collembola:

In none of the Collembola commonly trapped in either site (Table 12) could we detect
significant correlations between catch size and annual abundance (Appendix 5). Only in
Orchesella hexfasciata and Tomocerus flavescens did there appear to be some relationship:
decreased abundance in 1988 was coincident with severe drought, and slow recovery of these
(probably) univoltine species may have resulted in low catches in 1989. However, low
abundances in Test in 1993 (Appendix 5) did not produce proportionally lower trap catches in
that site (ref. also Discussion in section III. C.).

Factors determining catch size include trap design and spacing (Joosse 1965; Snider and
Snider 1986), which were kept constant across sites and years. Extrinsic factors include
temperature and relative humidity or saturation deficit (Joosse er al. 1970; Joosse 1981), |
barometric pressure (Zettel 1984) and light intensity (Desender et al. 1984). Given the close
climatic similarity between sites, relative fluctuations over time in Test and Control catches
should not have been significant; indeed, BACI tests showed that ratios of successive catches
were not altered by antenna activation in several species.

Variations in total trap catches over the years (for single species) are not easily explained,
especially-in view of the lack of long-term information in the literature. Whether intrinsic
tendencies for surface-activity can be altered by absolute abundance is not known. However,
activity can vary with developmental state (Joosse 1969; Aitchison 1984; Desender et al. 1984).
If population structure différed between sites at any given point in time, catch size could have

been affected by an unquantifiable (short of measuring all specimens) source of variation.
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In summary, we concluded that significant differences between pre-ELF and operational
periods attested to changes in activity and/or density which could not be attributed to EM fields:
increased or decreased catch sizes occurred in Control as well as in Test, with little relationship
between sites. Where decreased trap catches seemed related to lower abundance, effects of
drought in the last pre-ELF year offered an explanation equally as likely as that of ELF effects.
BACI tests strongly indicated that relative ‘weekly activity fluctuations were not detectably
affected by antenna activation.

2. Acarina:

BACI tests of weekly catch ratios (Table 20) clearly showed that none of the three species
monitored altered their seasonal activity patterns during and after 1989. We have found no
comparable long-term records in the literature. The basic life cycle of T. auroraense observed
in our sites complemented records given by others for this and other members of the genus
Trombidium (Vercammen-Grandjean et al. 1977; Southcott 1961; Welbourn 1983).

Abrolophus sp. has just recently been described as Abrolophus welbourni Yao, in a
comprehensive treatise on velvet mites occurring in and near this project’s study sites (Yao
1994).

3. Carabidae:

In an 11-year study on carabid faunas in Manitoba, Holliday (1991) showed that annual trap
catches in conifer and aspen forests varied greatly, by factors of approx. 2 to 6. Similar extreme
variations were noted by Desender and Alderweireldt (1990) over a period of 4 years. In analogy
to Collembola, large between-year differences observed in our study thus appear the rule for

carabids as well.
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Seasonal activity fluctuations in carabids are mainly related to patterns of reproduction and
maturation (e.g., Loreau 1985). Patterns described here for five common species did not differ
from those observed in other northern localities (Barlow 1970; Holliday 1991; Levesque and
Levesque 1986; Bousquet 1986; Liebherr and Mahar 1979; Epstein and Kulman 1990). Most |
species in our study exhibited a single-year life cycle. Small numbers of P. melanarius females,
however, occagionally survived into a second season and were ovigerous as 'early as May
(distinct from the main oviposition period in mid-summer) (R.M. Snider, unpubl. data).

Short-term fluctuations in trap catches (within a species’ main period of activity) may be
closely related to prey availability (Loreau 1988; Niemeld e al. 1992), in interaction with
changing litter morphology (Loreau 1987) and microclimatic events (Levesque ef al. 1979).
Differences between Test and Control sites could thus be mediated through differential density
and activity of prey species, such as abundant epigeic Dendrobaena octaedra in Control, or
specific components of the surface-active collembolan communities in either site. Specific
knowledge of carabid diets would be required to investigate these relationships further.

"Well-known" (Loreau 1988) correlations between spring-breeding and diurnalism, and
summer/autumn breeding and nocturnalism, are considered expressions of different microclimatic
requirements of the two groups (Thiele and Weber 1968; Thiele 1979). In some species,
however, diel patterns can be variable between seasons, years, and habitats: P. melanarius, for
instance, responds to low light intensity (cloud cover) with increased diurnality (Ericson 1978),
which can lead to V;Iidely differing mean annual diurnality estimates (range 29 to 65 %, Desender
and Alderweireldt 1990). The values reported by these authors are clearly reminiscent of the

ranges in diurnality observed for P. melanarius in our study (Table 22).
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Again, knowledge of prey specificity would have allowed more detailed analysis of carabid
catches with respect to activity patterns of potential prey (Loreau 1988; Ottesen 1985). In a
specialised predator of Collembola, for instance, diel activity patterns of the carabids and of their
collembolan prey were found to coincide (Desender et al. 1984; Desender and Alderweireldt
1990).

Overall, in species common to both sites, no shifts in breeding patterns were observed
following antenna activation. Site-specific variations in total numbers captured were likely due,
in part, to site-specific shifts in prey species or communities. However, BACI tests of date-
specific catch ratios showed that short-term activity fluctuations were generally well correlated

between Test and Control, both prior to and during antenna operation.
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V. EARTHWORMS: FIELD POPULATIONS
A. METHODS
Ten or 12 samples were taken per site and date at intervals of 2 weeks (except for the sécond
half of 1987, when they were té.ken at 4 week intérvals), from early May to mid- or late
October. The number of sampling dates per year (10 in 1987, 12 or 13 in other years) will be
specified where appropriate in Results sections. Samples were 25 x 25 cm square, cut and dug
in the following depth increments: leaf litter (L), A horizon (A), and two (1984-1985) or three
consecutive 10 ¢cm increments of the B horizon (B-10, B-20 and B-30). They were hand-sorted
and wet-sieved as detailed in Walther and Snider (1984). Specimens were killed in alcohol and
preserved in 10% formalin. Counts and individual weights were obtained 3 - 5 weeks after
sampling. Identifications were made according to Reynolds (1977). The designation
Aporrectodea turgida (Eisen), rather than A. caliginosa (Savigny) was based on taxonomic

considerations detailed by Gates (1972) and discussed by Reynolds (1977) and Fender ( 1985).

B. RESULTS -
1. Species composition , density and biomass
The nine species encountered in Test and Control sites are listed below:

Aporrectodea longa (Ude)

A. trapezoides (Duges)

A. tuberculata (Eisen)

A. turgida (Eisen)

Dendrobaena octaedra (Savigny)
Dendrodrilus rubidus (Savigny)
Lumbricus rubellus Hoffmeister
L. terrestris L.

Octolasion tyrtaeum (Savigny)
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All species with the exception of A. longa (unique to Test) were common to both sites, but
occurred in very different proportions. The Test community was strongly dominated by
A. tuberculata, with L. rubellus numerically in second place. In Control, the numerically
dominant endogeic was A. turgida, but numbers of the epigeic D. octaedra exceeded those of
A. turgida in some years.

Rare species (< 3% dominance) included A. tuberculata, D. rubidus, Lumbricus spp. and O.
tyrtaeum in thé Control community, and A. trapezoides, A. turgida, D. rubidus, L. terrestris and
O. tyrtaeum in the Test community.

Anhual fluctuations in density and biomass of the most abundant species are illustrated in
Figs. 65-66. Between-year numerical variations were most pronounced in the epigeic D.
octaedra in the Control site (Fig. 66), with effects of the severe 1988 drought carrying over into
1989. In the Test site, D. octaedra also declined in 1988-89, but did not recover during
subsequent years (Fig. 65). Other species, in particular the deep-dwelling A. longa, exhibited
less pronounced between-year fluctuations.

Variations in mean biomass were roughly correlated with numerical fluctuations in some
species (e.g., A. turgida and A. trapezoides in Control, Fig. 66), but not in all. In L. rubellus,
for instance, a significant population increase occurred in 1990, but biomass did not increase
until »1992, after recruits had grown to large immature and adult size (Fig. 65). Year-specific
moisture conditions probably influenced mean biomass both through individual body mass
changes and through effects on recruitment and population structure (Snider and Snider 1994).

Detailed data on individual species useful for the purposes of this project concern only A.

tuberculata and L. rubellus in Test (with some cautious interpolations between A. tuberculata
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and its congener A. turgida in Control). The drastic decrease of D. octaedra in Test after 1987

(Fig. 65) precluded use of the species for between-site éomparisons.
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Fig. 65. Mean annual density and biomass (+ 95% CL) of the common lumbricid species in the
Test site, 1984-1993.
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2. Community structure

Mean anmial diversity indices (Shannon-Wiener H’) derived from date-specific estimates are
illustrated in Fig. 67. Diversities began to diverge in 1988, estimates for Control rising steadily,
those for Test decreasing. When data were grouped into pre-ELF and operational sets, changes
in diversity were significant for the Control community, but not for the TeSt community (Table
27). 1t is not surprising, given the di;'ergent trends in community diversity (Fig. 67) that BACI
tests of between-site differences also yielded significant results (P < 0.001, Table 27).

The uneven numerical distribution of component species in Test and Control communities, and
the differential impact of climatic events on each, lie at the root of these discrepancies. For
instance, reduction of the abundant epigeic D. octaedra population in Control during the drought
of 1988, coupled with increased numbers of A. turgida, resulted in higher diversity in that site.
Further diversity increases in 1992 and 1993 (Fig. 67) were partly attributable to increases of
species originally very rare in Control, i.e., A. tuberculata and L. rubellus.

In the Test site, overwhelming dominance of a single species, 4. tuberculata, resulted in
relatively more stable diversity over time. Decreased H’ in 1988 and 1989 (Fig. 67) was the
result of reduced numbers of D. octaedra and L. rubellus during and following the 1988
drought.

Equitability indices (S’/S) tended to be higher in Control in all years (Fig. 68). Pre-ELF
estimates were higher than operational years’ in both sites, significantly so in Test. Given that
equitability decreased in both sites, between-site differences were not significant (P = 0.4,
Table 27). Overall, it seems the communities in both sites haye been (and are) undergoing long-

term changes related to natural phenomena, not to potential effects of EM fields.
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Earthworm community diversity per year
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Fig. 67. Mean annual diversity (H’) of lumbricid communities in Test and Control sites (N =
12 or 13 dates per year).
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Fig. 68. Mean annual equitability (S’/S) of lumbricid communities in Test and Control sites
(N = 12 or 13 dates per year).
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Table 27. Mean (+ SD) diversity and equitability indices of lumbricid communities in Test and
Control sites, and mean [Control - Test] differences (BACI tests), for pre-ELF vs. operational
periods; P values based on t-tests.

DIVERSITY () EQUITABILITY (S’/S)

SITE 84-88 89-93 P< 84-88 89-93 P<
TEST

MEAN 0.9692 | 0.9357 0.1 0.5250 | 0.4649 0.01

SD 0.0955 | 0.0918 0.1075 | 0.0954

N 60 60 60 60
ICONTROL

MEAN 1.0061 | 1.1359 | 0.001 | 0.6083 | 0.5767 0.1

SD 0.0879 | 0.0817 0.1201 | 0.0556

N 60 60 60 60
[CONTROL-TEST]

MEAN 0.0369 | 0.1999 | 0.001 | 0.0833 | 0.1117 0.4

SD 0.1381 | 0.1127 0.1758 | 0.1044

N 60 60 60 60
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3. Lumbricus rubellus in the Test site

3.1. Vertical distribution

Lumbricus rubellus can be considered a raw humus feeder (Piearce 1978) and ranks as an
"intermediate” between epigeic and endogeic earthworms in Bouché’s (1977) or Lee’s (1959)
ecological classifications. In our Test site, L. rubellus preferred the A horizon, although part of
the population invaded the leaf litter under favorable moisture conditions (Snider and Snider
1988). Very few individuals were ever obtained from B horizon samples. Potential changes in
vertical distribution thus concerned only relative distribution patterns in A and litter horizons,
in response to litter moisture (A horizon moisture was irrelevant, since the species did not
respond to low A horizon moisture by vertical migration to deeper layers).

Immatures of L. rubellus tended to invade leaf litter more readily than adults (Table 28).

Table 28. Lumbricus rubellus in Test: Percent of total adults and total immatures per year
extracted from leaf litter.

Year % of adults in litter % of immatures in litter
1984 4.2 17.7
1985 2.4 12.0
1986 5.0 15.9
1987 5.2 25.2
1988 4.0 19.4
1989 6.6 16.4
1990 4.6 17.8
1991 5.1 19.3
1992 1.7 11.3
1993 10.8 25.0

Furthermore, among immatures, smaller size classes were more likely to dwell in litter than

larger (older) ones: on several sampling occasions, 80 to 100% of immatures found in leaf litter



127

belonged in the smallest classes (< 104 mg). Inclusion of the proportion of small immatures in
regression analyses of vertical distribution was found to increase the coefficients of
determination.

The proportion of the population present in leaf litter on each sampling date is illustrated in
Fig. 69. Over all years, correlation between litter moisture and proportion of the population
present in litter was significant, although less than 50% of variation was explained by moisture
and small immature proportions (RZ = 0.47, P <0.000). Peak litter moistures and highest
numbers in litter frequently coincided. Exceptions occurred mainly in 1992 (Fig. 69), a year
characterized by relatively low proportions of small immatures ( <40% on all dates, Fig. 70).
Between-year variations in population structure, particularly drastic during operational years
(Fig. 70) provide one explanation for differing R? in regression subsets (Table 29). Without
doubt, more detailed documentation of the timing of rainfall events with respect to the time of
sampling would have improved the explanatory power of regressions. Pairwise comparisons of
regression parameters showed that vertical distribution of L. rubellus was not altered by ELF
antenna activation.

Table 29. Results of multiple regression of the proportion of L. rubellus in leaf litter on litter
moisture and proportion of the population in small immature stages (< 104 mg body mass).

0

Source Period SS DF MS F-ratio P R”
Regression 84-86 0.3864 2 0.1932 27.58 0.000 0.60
Residual 0.2312 33 0.0070
Regression 87-88 0.3723 2 0.1861 32.48 0.000 0.76
Residual 0.1031 18 0.0057
Regression 89-93 0.4436 2 0.2218 15.00 0.000 0.34

Residual 0.8429 57 0.0148
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Fig. 69. Proportion of L. rubellus (Test site) present in leaf litter versus litter moisture during
pre-ELF and operational years, at intervals of 2 weeks from May to October of each year.
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Fig. 70. Date-specific proportions of the L. rubellus (Test site) population in small immature
stages (< 104 mg body mass) during pre-ELF and operational years, at intervals of 2 weeks
from May to October of each year.
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3.2. Mean clitellate and cocoon mass

Mean annual body mass of clitellates (Table 30) ranged from 461 to 550 mg. Pairwise
comparisons showed that, among pre-ELF years, mean clitellate mass in 1984 was higher than
in any other year (P < 0.05 or better). Among operational years, 1989 yielded a highly

significant peak in mean mass, differing from all other operational years at P < 0.001.

Means for 1984 and 1989, however, did not differ significantly.

Table 30. Annual mean body mass of clitellate Lumbricus rubellus in the Test site.

YEAR MEAN (MG) SD N
1984 532 114.4 78
1985 489 123.8 93
1986 461 119.0 95
1987 483 137.2 87
1988 480 118.7 67
1989 550 140.3 138
1990 479 123.2 80
1991 479 123.6 62
1992 476 117.6 156
1993 453 ’ 108.7 79

Mean mass of new cocoons (Table 31) was approximately 9 mg throughout the study period.
Relatively small differences between years were often significant; e.g., 1985 vs. 1987 among
pre-ELF years (P < 0.001), or 1989 vs. 1993 among operational years (P < 0.001). Cocoon

size is closely related to adult size, according to Lavelle (1981) in a comparison across species;



131

in the present case, a similar relationship probably exists within L. rubellus: highest mean
cocoon mass and highest mean clitellate mass coincided (in 1989). Regression results, however,
yielded an R2 of 0.40, at P < 0.1. Since cocoon mass is the dependent variable in this case,

one is left with exploring whether the mass of reproductive adults was influenced by EM fields.

Table 31. Annual mean mass of new cocoons of Lumbricus rubellus in the Test site.

YEAR MEAN (MG) SD N
1984 9.40 1.64 322
1985 9.49 1.62 400
1986 9.43 1.67 460
1987 8.91 164 405
1988 9.09 1.61 232
1989 9.72 1.80 600
1990 9.51 1.71 508
1991 9.14 1.81 352
1992 8.98 1.52 552
1993 8.69 1.72 541

3.3. Reproductive activity

There is little doubt that edaphic conditions influence reproductive activity of L. rubellus to
some degree, although no significant relationships between environmental variables and

reproductive parameters could be obtained. Aduits dwell mainly in the A horizon, occasionally

invade leaf litter, and are virtually never recovered from B horizon samples (ref. section 3.1.).
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However, we were unable to develop predictive models for reproductive activity during pre-ELF
years, based on A horizon moisture, A horizon temperature, litter moisture, rainfall during
various periods prior to sampling, or a combination thereof. Since reproductive performance
during operational years can thus not be strictly tested, we restrict our account to summary
illustrations and tables.

Percent of adults in the clitellate state during pre-ELF years varied between approximately 40
and 100%. Relatively fewer adults were fully reproductive after 1989 (Fig. 71), maxima of 60
to 80% occurring more frequently than the 100% recurring during pre-ELF years. Yearly mean

clitellate percentages reflect this apparent change (Table 32).

Table 32. Percent of adult Lumbricus rubellus (Test site) in the clitellate state (means + SD),

1984 - 1993 (N dates in parentheses).

YEAR 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

Mean 85.3 69.0 69.1 79.1 69.3 84.2 60.9 56.9 64.4 65.8
SD 14.3 26.3 17.4 22.8 21.4 15.1 19.4 24.4 18.5 16.2
(N) (12) (13) (13) (10) (12) (13) (13) (13) (13) (12)
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A horizon on each sampling date during pre-ELF and operational years (Test site).
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In terms of proportions, reproductive adults tended to occur slightly less frequently during
operational years; in terms of absolute numbers, however, 1989 and particularly 1992 were
characterized by high densities of adﬁlts and clitellates (Fig. 72). Large between-year

fluctuations in adult densities are traceable to cocoon production and survival rates of immatures

during the preceding 2 to 3 years (ref. section 3.3.).

L. rubellus

MEAN DENSITY /M2

84 85 86 87 88 89 80 91 92 93
YEAR

I CLITELLATES TOTAL ADULTS

Fig. 72. Mean annual density of total adults and clitellates of Lumbricus rubellus in the Test site,
1984-1993. '

Numbers of new cocoons produced (Fig. 73) were significantly correlated with numbers of
clitellate adults (P <0.05, R2 for 1984-1988 = 0.77, R for 1989-1993 = 0.54). During pre-

ELF years, some modulation of cocoon production by climatic patterns was evident, e. g., low
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cocoon densities in the 1988 drought year, high cocoon density in the moist year 1987.

Relationships between clitellate and cocoon densities were more variable during operational years

(R2 = 0.54), with virtually equal cocoon numbers observed in 1989, 1992 and 1993, years in

which numbers of clitellates differed by as much as a factor of 2 (Fig. 73).
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Fig. 73. Mean annual density of new cocoons and clitellate adults of Lumbricus rubellus in the

Test site,

1984-1993.

Cocoon production rates (relating numbers or mass of cocoons to numbers or mass of

clitellate adults) were calculated by several methods, three of which are detailed below. Annual

mean rates (Figs. 74-76) were based on s_ampling dates when > 3 clitellates were present'in

samples.

METHOD 1: cocoon production rate = number of new cocoons on date; / average number
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of clitellates in the 2 weeks preceding date;. Average clitellate numbers are calculated as
[(N clitellates on date; + N clitellates on date;_;) / 2]. This method takes into account increases
or decreases in the number of reproductive individuals prior to the sampling occasion on which
cocoon counts were obtained.

METHOD 2: cocoon production rate = number of new cocoons on date; / number of
clitellates on date;. Numbers of new cocoons and clitellates found on each sampling date are
related directly, without regard to changes in clitellate numbers prior to sampling.

METHOD 3: cocoon production rate = total mass of new cocoons on date; /average total
mass of clitellates, derived from date; and date; | body mass data. Method 3 is thus the "mass
equivalent" of Method 1, which is based on numbers.

All estimates of cocoon production rates have an inherent source of error. The basic data used
for calculations consist of lumped numbers (or mass) of cocoons and clitellates obtained from
all samples taken on a given date. While cocoons are obviously non-motile, but adults are not,
some degree of error is unavoidable (e.g., adults which were the source of cocoon aggregations
in single samples were often no longer present in that sample).

In pre-ELF as well as operational periods, between-year differences in cocoon production rates
occurred. Based on numbers, 1993 cocoon production rates were slightly higher than any other
(Figs. 74-75). Based on mass, 1990 data produced the highest estimate (Fig. 76), which did not
differ significantly, however, from those of pre-ELF years 1985 and 1986. Cocoon production
rates, using field-derived data, appeared to be variable between years irrespective of potential

ELF EM field influence.
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Fig. 74. Mean (z SE) annual cocoon production rates of Lumbricus rubellus in the Test site,
1984-1993. Method 1 based on (N cocoons / average N clitellates).
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Fig. 75. Mean (& SE) annual cocoon production rates of Lumbricus rubellus in the Test site,
1984-1993. Method 2 based on (N cocoons / N clitellates) at the end of each incubation period.
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L. rubellus METHOD 3
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Fig. 76. Mean (4 SE) annual cocoon production rates of Lumbricus rubellus in the Test site,
1984-1993. Method 3 based on cocoon and clitellate mass.

In general, reproductive patterns of Lumbricus rubellus have proven impervious to predictive
analyses. It became clear that the species was capable of reproducing year-round, with some
modulation by climatic patterns. Unlike Aporrectodea spp., for instance, reproductive adults
were present at all times (Fig. 71). Production of new cocoons was never interrupted, although
cocoon densities varied with clitellate densities (Fig. 73).

Mean monthly densities of cocoons and hatchlings are shown in Fig. 77, where new cocoon,
old cocoon, and hatchling densities serve to illustrate basic reproductive patterns and their
between-year variability.

New cocoons are produced throughout the season, although moderate to severe drought
reduces their number (e.g., second half of 1985 and 1986, and most of 1988, Fig. 77). The

years 1987 and 1989 were propitious due to ample rainfall; unusually high new cocoon densities
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in 1992 were traceable to high survival rates of the 1989 cohort, which matured and reproduced
in 1992 (ref. section 3.3.).

Densities of old (ready-to-hatch) cocoons tended to accumulate in the second half of the
season, frequently not until September and October (e.g., 1984, 1989). Hatchlings, although
present throughout the season, exhibited peak emergence in May and June of most years, at a
time when old cocoons were esséntially absent; i.e., L. rubellus hatched at relaﬁvely low

temperatures, prior to the first early-May sampling dates.

3.4. Population structure

Patterns of growth and reproduction can be briefly summarized as follows: fully developed
cocoons accumulate in the fall, and a pulse of recruitment occurs in early spring of the following
year. We estimate that 2 - 3 years of growth are required to reach adulthood. Growth patterns,as
reflected in abundance of individuals in successive weight classes, were often obscured by high
mortality during pre-ELF drought years. Beginning in 1989, however, we were able to document
the development of a single cohort.

High cocoon numbers in 1989 resulted in high densities of hatchlings and medium-sized
immatures in 1990 (Fig. 78). Numbers of large immatures and adults began increasing in 1991,
adults reaching an all-time numerical peak in 1992 (Fig. 78), two years after peak hatchling
density. High cocoon production during 1987 would probably have produced the same patterns,
but the severe drought year of 1988 curtailed survival of small immatures, thereby eliminating

a potential population increase which would have been realized in 1988-89-90.
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Fig. 77. Mean monthly densities (May to October) of new cocoons, old cocoons and hatchlings
of Lumbricus rubellus in the Test site, 1984 through 1993 (continued on following pages).
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Population structure can also be expressed as the ratio of immature : adult densities. Mean
| annual immature proportions were approximately equal during all five pre-ELF years, then
began to fluctuate significantly (Fig. 79). Low immature : adult ratios in 1989 were attributable
to low survival of immatures during the 1988 drought year. On the other hand, high ratios in
1990 and 1991 wefe the result of high cocoon production in 1989: with moisture not limiting

during those two years, a larger proportion of immatures than ever before survived and reached

adulthood, resulting in decreased immature : adult ratios in 1992 (Fig. 79).

Lumbricus rubellus

MEAN RATIO

84 85 - 86 87 88 83 90 91 92 93
YEAR

Fig. 79. Mean + SE immature/adult ratios for Lumbricus rubellus in the Test site, 1984 - 1993
(N variable from 10 to 13 dates /year, ref. section V.A.).
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4. Aporrectodea tuberculata in the Test site

4.1. Vertical distribution

Vértical migration of individuals in response to decreasing A horizon moisture tended to be
more pronounced in adults than in immatures in all years (Flg 80). No differences in vertical
distribution patterns were detectable following antenna operation. Using transformed proportions
of all worms in the A horizon [In (p/1-p)], and A horizon moisture, temperature and
temperature2 as independent variables, analysis of regression residuals showed that pre-ELF and
operational periods did not differ (P = 0.7).

We may point out that moisture stress (as reflected in low proportions of worms remaining
in the A horizon) was often more severe during pre-ELF years (1985, 1986, 1988, Fig. 80) than

during operational years.

4.2, Mean clitellate and cocoon mass

Mean body mass of clitellate individuals (Table 33) varied between pre-ELF as well as
operational years. The 1988 mean of 605 mg, for instance, was significantly lower than the 1986
mean of 655 mg (t test, P < 0.05). The highest mean was recorded for 1990, differing
significantly from 1989 (P < 0.05), from all pre-ELF years except 1986, and from operational
years 1992 and 1993 (P < 0.01). Whether the mean mass increase in 1990 is related to some
physiological response to EM fields is difficult to assess (refer, however, to section VII in whicﬁ

mean body mass of isolated A. tuberculata is discussed).
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Table 33. Mean body mass of clitellate Aporrectodea tuberculata in the Test site, 1984 to 1993.

YEAR MEAN (MG) SD N
1984 648 115 250
1985 631 118 121
1986 655 ' 125 66
1987 637 129 272
1988 605 135 60
1989 652 139 166
1990 692 123 79
1991 662 117 147
1992 645 115 155
1993 647 108 120

Mean mass of new cocoons (Table 34) clearly showed that cocoons tend to have less mass
during years with moderate to severe rainfall deficits. Means in 1985, 1986 and 1988 did not
differ from each other, but the 1988 mean in particular differed from all other means (P < 0.01
or < 0.001). During years with relatively ample rainfall, including all operational years, an

average cocoon mass of approximately 20 to 21 mg appeared the norm (Table 34).

4.3. Reproductive activity
In this section we deal mainly with reproductive parameters of A. ruberculata, although we
will occasionally illustrate reproductive activity of A. turgida, where a comparison between these

congeneric species may be appropriate.
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Table 34. Mean annual mass of new cocoons of A. tuberculata in the Test site, 1984-1993.

YEAR MEAN (MG) SD N WEIGHED
1984 21.52 4.07 193
1985 19.58 4.17 137
1986 19.36 4.94 44
1987 20.73 4.08 223
1988 18.69 4.01 63
1989 20.39 4.61 174
1990 21.31 4.10 55
1991 21.42 3.57 155
1992 20.93 4.43 192
1993 20.65 4.24 174

4.3.1. Clitellate and cocoon numbers

Densities of adults peaked in 1987 and 1988 (Fig. 81), probably as a result of reproductive
events prior to 1984. Adult numbers remained stable thereafter. Abundance of clitellates was
highest in 1984 and 1987; low numbers of reproductive adults in 1985, 1986 and 1988 were
related to moderate or severe drought conditions. In none of the operational years did clitellate
densities reach the highest pre-ELF means observed (33 and 43 /m? in 1984 and 1987
respectively). In 1990 in particular, propitious A horizon moisture conditions (Appendix 3) were

not reflected in high clitellate numbers (Fig. 81).
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Fig. 81. Annual mean densities /m? (£SE) of total adult and cliteliate Aporrectodea tuberculata
in the Test site, 1984 to 1993.

Since adult densities were not completely stable over the enﬁre study period, proportions (or
percent) of all adults in the clitellate state represents a more accurate criterion of reproductive
performance. In the following, we illustrate (Fig. 82) and describe relationships between A
horizon moisture and the population’s reproductive condition.

During pre-ELF years, brief moisture decreases immediately followed by prolonged
rehydration resulted in brief reductions in clitellate percentages (i.e., 1984 and i987, Fig. 82).
Steadily decreasing (1985) or repeatedly low moisture levels (1986, 1988) in early- through mid-
season had lasting effects on reproductive activity; recovery occurred in late fall of all three
years, but tended to be delayed by = 2 weeks even after soil moisture had returned to = 25%

(ref. also Appendix 3), i.e., to levels at which maximal reproduction was observed at other
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times of the year. Reproduction was thus seasonally "modulated” by A horizon moisture. The
degree to which reproductive activity was increased or decreased seemed to depend on
interacting faétors including: seasonal timing of moisture fluctuations, magnitude (particularly
of moisture decreases) and duration of moisture-stress period.

During operational years 1991 through 1993, this "modulation” of reproductive activity by
soil moisture was again apparent, although the pfe-ELF highs of 55 - 80% clitellates never re-
occurred after 1989 (Fig. 82). In 1989, the first year of antenna operation, clitellate percentages
were variable at first, then dropped to 5% at season’s end, although soil moisture neither
fluctuated excessively nor ever dropped to pre-ELF minima (Appendix 3). In 1990, neither high
early-season moisture levels nor their subsequent, relatively mild fluctuations elicited a clear
temporal response pattern in terms of reproductive activity. Annual mean clitellate proportions
(Fig. 83) showed a 1990 mean reminiscent of pre-ELF drought years and reflected the same

between-year relationships discussed earlier with respect to clitellate densities (Fig. 81).
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Fig. 83. Annual mean (% SE) proportion of A. tuberculata adults in the clitellate state, Test site,
1984-1993 (N = 10 to 13 dates, variable between years, ref. section V.A.).

Mean numbers of new cocoons and of clitellates are summarized by month in Fig. 84. These
two parameters were closely related during pre-ELF as well as operational periods (for 1984-88,
R? = 0.83; for 1989-93, R2 = 0.73; N = 30, P <0.001 in both cases). Reproduction in
A. tuberculata clearly can proceed uninterrupted from spring to fall, except under extreme
moisture stress (i.e., absence of clitellates over a 2-month period in 1988, Fig. 84).

Data shown above indicated a possible depression of reproduction in 1990, with low clitellate
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and cocoon numbers and decreased responsiveness to soil moisture fluctuations. However,
mathematical quantification of reproductive events in terms of their dependence on abiotic
variables proved difficult. Data obtained by point-sampling lack the precision needed to quantify
processes, such as the rate at which adults regenerate their clitellum given prior and current
consitions. Results of available analyses are presented below.

4.3;2. Statistical analyses

The main response variables (clitellate density, clitellate proportions, and cocoon density) were
tested as follows:

For each parameter, a pre-ELF regression model was developed based on 1984 through 1986
data. The validity of the model was ascertained by testing residuals of the 1984-86 regressions
against those of a second (1987-88) pre-ELF regression. All models proved valid, allowing
testing of entire pre-ELF sets (1984-88) versus entire ELF sets (1989-93), and versus single
operational years.

A condensed overview of results is given in Table 35. In all three response variables, the
explanatory power of independent variables decreased during operational years. Among single
operational years, 1990 was found to be discrepant from pre-ELF models in the case of clitellate
and cocoon densities, but not for clitellate proportions. A test of regression residuals obtained
for each 5-year period showed that neither clitellate densities nor proportions differed; cocoon
densities also yielded non-significant results (P < 0.06, Table 35).

Clitellate proportions in particular (Fig. 82) were prone to variations over time for which we

could not find an appropriate independent variable: i.e., following a period of reduced moisture,
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return of worms to the reproductive state was delayed, and the degree to which reproduction

resumed varied (but not in direct relation to the degree of soil rehydration or the length of time

it had been dry).

Table 35. Summary of results of regression analyses of reproductive parameters in Test site 4.
tuberculata. Clitellate proportions were transformed to [In (p/1-p)]. The last two rows are based
on tests of regression residuals, for pre-ELF vs. operational periods, and for the entire pre-ELF
period vs. single operational years. CLIT. DENS. and CLIT. PROP. = clitellate densities and
proportions respectively; COCOON DENS. = density of new cocoons. Note: details in

Appendix 8.
RESPONSE VARIABLES
PERIOD CLIT,DENS.® CLIT.2PROP.b CocoozN DENS.©
- R” (P) R* (P) R* (P)

1984-1986 0.89 (0.000) 0.55 (0.000) 0.84 (0.000)
1987-1988 0.73 (0.000) 0.90 (0.000) 0.86 (0.000)
1984-1988 0.79 (0.000) 0.71 (0.000) 0.85 (0.000)
1989-1993 0.30 (0.003) 0.39 (0.000) 0.52 (0.000)
1984-88 vs.
1989-93 NS (0.20) NS (0.48) NS (0.06)
Pre-ELF vs. single 1990 ONLY NONE 1990 ONLY
ELF years: year (0.000) SIGNIFICANT (0.000)

2 Independent variables: Clitellate density lagged (by one date), A horizon moisture, A horizon

temperature, (A horizon temperature)“, and (moisture x temperature).

b Independent variables: Clitellate proportions lagged (by one date), A horizon moisture.

C Independent variables: Clitellate densities and clitellate densities lagged (by one date).
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Comparisons between A. tuberculata and its congener A. turgida in Control are tenuous, since
we do not consider them to be the same species (unlike many European authorities, e.g., Sims
and Gerard 1985, or Easton 1983). It is striking, however, that correlations between the two
species in terms of reproductive 'parameters were significant in pre-ELF years, but not in
operational years. Two (;f these parameters are illustrated below. Mean annual percent of adults
clitellate (Fig. 85), although low moisture affected A. tuberculata more than A. turgida, were
well correlated in 1984-1988 (R2 = 0.87, P < 0.01, N = 5); in 1989-1993, R2 dropped to
0.43. Mean abundance of new cocoons (Fig. 86) yielded more extreme results: R? for 1984-

1988 = 0.87, R? for 1989-1993 = 0.00.
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4.3.3. Cocoon production rates

Rates of cocoon production (Methods 1 and 2 based on numbers, Method 3 based on mass,
ref. page 138 ) were quite variable between years, and tended to be slightly elevated during
operational years (Figs. 87-89). Summarized by pre-ELF and operational periods, overall mean
cocoon production rates were significantly higher in 1989-1993, for all methods of calculation
(Table 36).

We had thought earlier that increased cocoon production rates represented a possible ELF
effect. Comparison of A. tuberculata and A. turgida, however, raises some doubts. Mean annual
cocoon : clitellate ratios were equally variable in A. turgida, and tended to be higher during
operational years (Figs. 90-92). No significant correlation existed between annual mean rates
in the two species. We were also uhable to tease out any predictive environmental factors which
may have affected cocoon production rates. Deviations between species (potentially beginning
with antenna activation), such as were observed for other parameters (Fig. 86) were not
detectable.

Although rates of cocoon production in A. turgida during 1989-1993 were significantly
increased based only on Method 3 (mass-related calculation) (Table 37), the fact that the
direction of change over time was the same in both species is noteworthy. It suggests that factors
unrelated to antenna activation may have been operative. For instance, uneven rainfall
distribution and the severity and duration of soil moisture fluctuations were much less

pronounced in 1989-93 than during pre-ELF years.




165

A. tuberculata METHQOD 1

84 85 86 87

] i !

i
g2 93

Y

.

N I
m . .
—mI

T

T
88 89 90 @1

§

§

20

IV TIHLNO/SNOOD0D

YEAR
A. tuberculata METHOD 2

— I T,

"

1

g2 83

T

—

— I
. —mmm

YEAR

—

T

I

T

U,

Fig. 87. Annual mean (4 SE) cocoon production rates of A. wuberculata (Test site),
20

Method 1 (N cocoons / average N clitellates).

0 o 0
- - O
3LV TB1MD/SNOOD0D

84 85 86 87 88 89 90 91

Fig. 88. Annual mean (+ SE) cocoon production rates of A. tuberculata (Test site), Method 2

(N cocoons /N clitellates).



0075

COCOON/CLITELLATE MASS

0.000

A. tuberculata METHOD 3

i

Il

i 1

[l 1

[ 1 1

0.080 H--ereqe

0.015 —---

mm—

W

7

0.048 --orerrerrrmiiennneneene i

////j/// /////7

)
A

010 510 T FE T OO UU U

1

1 b )

84 85 86 87 88 89 90 91 92 98
YEAR

166

Fig. 89. Annual mean (+ SE) cocoon production rates of A. tuberculata (Test site), Method 3:
(total cocoon mass / average clitellate mass).

Table 36. Mean cocoon production rates of A. tuberculata during pre-ELF and operational
periods in the Test site. Only dates on which = 3 clitellates were present were used, resulting
in variable N. P values based on t test results.

PERIOD
%;;CH(S)'{)A“STICS 1984-1988 1989-1993 P<
METHOD 1 | Mean 1.0320 1.2787 0.05
SD 0.4919 0.5976
N 42 55
METHOD 2 | Mean 1.0092 1.3419 0.01
SD 0.5489 0.6203
N 44 53
METHOD 3 | Mean 0.0337 0.0416 0.04
SD 0.0179 0.0211
N 52 55
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Fig. 92. Annual mean (+ SE) cocoon production rates of A. turgida in the Control site, 1984
to 1993; rates calculated by Method 3 (total cocoon mass / average clitellate mass).

Table 37. Mean cocoon production rates of A. turgida in the Control site during pre-ELF and
operational periods; P values based on t test results.

PERIOD
BASIC STATISTICS P<
/METHOD 1984-1988 1989-1993
METHOD 1 | Mean 1.1001 1.2944 0.10
SD 0.5662 0.5962
N 49 55
METHOD 2 | Mean 1.1766 1.3448 0.40
SD 0.7310 0.6124
N 49 55
METHOD 3 || Mean 0.1255 0.1500 0.01
SD 0.0667 0.0130
N 55 55
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4.4. Population density and structure

Biweekly density estimates (Fig. 93 and Appendix 9) showed a strong dependency of total
population abundance on immature abundance. Seasonal fluctuations were very pronounced, and
could only be explained as effects of several interacting factors such as: the time of maximum
cocoon production during the preceding or current year (determining time of emergence)
(Rundgren 1977); or edaphic conditions at the vtime when recruits were ready to hatch (drought
can delay emergence) (James 1992). We did not observe consistent mid-summer density
decreases documented by others (Nowak 1975; Tomlin et al. 1992).

Although data on population structure do not lend themselves to rigorous analyses, they
provide an overview of developmental patterns of A. tuberculata, and of their annual variability;
a descriptive summary is provided in Fig. 94. Small immatures tended to increase in numbers
the year following high cocoon production (e.g., 1984-85, 1987-88, 1989-90). Intermediate-sized
immatures tended to peak 1 to 2 years later. Between-year fluctuations virtually disappeared in
the large immature and adult classes, indicating that a relatively long life span played a role in
smoothing out population dynamics over the long term.

A frequently observed phenomenon was the delay between cocoon production and appearance
of small immatures. As an example, the 1987 and 1988 seasons are illustrated in Fig. 95. New
cocoon densities were maximal in July - September of 1987. Hatchlings began to increase in
numbers in the second half of the 1987 season, but did not reach highest densities until 1988 (at
a time when the 1988 cocoon production was severely depressed by drought). There was thus
a delay of a few months, and up to a year (due to the intervening winter) between maximum

cocoon production and emergence of the corresponding cohort of recruits (Fig. 95). Delayed
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emergence and delayed growth of hatchlings during the dry year 1988 probably also affected
population structure (Rundgren 1977).

Variable rei)roduction and growth patterns were also reflected in mean immature:adult ratios.
They ranged from approximately 2.5 to 3.7, and differed significantly between successive years
on three occasions (1985 ratios higher than 1984, P < 0.001; 1987 lower than 1986 , P <
0.001; and 1991 ratios lower than 1990, P < 0.01). In general, lower ratios were linked to high
rates of recruitment 2 to 3 years previously, suggesting that attainment of adulthood requires
close to 3 years.

Finally, one may examine immature frequencies with respect to potential differences between
A. tuberculata and A. turgida (Fig. 96). Correlation between annual mean immature frequencies
was significant in 1984-1988 (R2 = (.82, P < 0.01), but no longer existed in the operational
period (R? = 0.05).

It is possible that discrepancies were caused by differential maturation rates. For instance, low
A. turgida immature frequencies in 1990 could have been the result of an influx of adults
stemming from the 1987 cocoon cohort; a corresponding influx of A. tuberculatd adults did not
depress immature frequencies until 1991 (combined with reduced numbers of small immatures
from the 1990 cocoon cohort, Fig. 84). It is surprising, however, that similar discrepancies did
not occur during pre-ELF years (which, in turn, reflected reproduction and growth patterns
prior to 1984). Lacking reliable data useable as independent, predictive variables, these results

cannot be examined beyond the descriptive stage.
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Fig. 96. Mean annual immature/adult ratios for A. tuberculata (Test site) and A. turgida
(Control site), 1984 to 1993 (N = 10 to 13 dates /year).

C. SUMMARY AND DISCUSSION

Several population attributes or patterns documented here confirm or expand on results
reported in the extensive literature on European lumbricids. Species associations in our sites
corresponded closely to those found in deciduous forests in various parts of Europe (Bouché
1972, 1977; summaries in Nordstrdm and Rundgren 1973, Satchell 1983, Lee 1985). Individual
constituents of Test and Control communities did not deviate behaviorally from expected
responses to edaphic conditions as reflected in vertical distribution patterns (Snider and Snider
1988, 1994). The ecologically "intermediate" (Bouché 1977) L. rubellus, restricted to A and

litter horizons, was here shown to prefer the litter stratum to a greater degree when immature.
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The endogeic A. tuberculata exhibited seasonal variations in depth distribution, clearly in
response to A horizon moisture. In agreement with Rundgren (1975, 1977) and Nordstrom
(1975), adults migrated downward more readily than immatures. In neither of these species
were effects of EM fields on vertical distribution detectable.

The most salient points of discussion for this report concern reproductive parameters.

Individual cocoon mass of L. rubellus and A. tuberculata (as well as of other species not
discusséd here) showed a wide range, the largest weighing 3 to 4 times as much as the smallest.
Such ranges are not unusual (Christensen and Mather 1990; Pedersen and Bjerre 1991). Potential |
causes for between-year variation in cocoon mass are difficult to detect in field-derived data. In
L. rubellus, highest mean adult mass in 1989 coincided with highest mean cocoon mass, but over
all years the relationship was marginally significant (P = 0.1). In A. tuberculata, reduced
cocoon mass coincided with drought years. In other species, soil moisture was found to be
negatively correlated with cocdon mass (Evans and Guild 1948; Reinecke and Venter 1987).
Parent adult mass is known to be positively correlated to cocoon mass (Phillipson and Bolton
1977; Lofs-Holmin 1983). The same species living in different soils can produce distinctly
different cocoon sizes, related to adult size, which in turn reflects site conditions (Christensen
and Mather 1990). Within one site (our Test site), over several years, additional mechanisms
may have been operative; e.g., population structure in terms of age and size of adults at first
reproduction, or longevity and therefore size of adults as affected by edaphic conditions.

Neither in L. rubellus nor in A. wuberculata did antenna activation detectably affect adult or
cocoon mass.

For L. rubellus, we were unable to develop predictive models for reproductive performance
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based on pre-ELF data. Our only conclusion can be that.given all available information, no EM
field effects were detectable.

In A. tuberculata, raw data summaries strongly portrayed depressed reproduction in late 1989
through 1990 . Results of regression analyses suggested EM field effects during operational
years, as evidenced by lowered R2 (Table v35). Differences between the two 5-year periods,
however;-were only marginally (cocoon density) or not at all significant (clitellate density and
clitellate proportions). Among single operational years, however, 1990 stood out as the year
most discrepant from pre-ELF years (Table 35).

Our conclusions (keeping in mind tentative comparisons between A. tuberculata and A.
turgida), are as folllows:

a) an EM field effect on A. tuberculata did occur during the first two seasons of antenna
operation, resulting in decreased numbers of reproductive worms and cocoons; the effect was
transient, however, and no longer detectable in 1991-1993.

b) higher rates of cocoon production during operational years were statistically significant.
However, in viéw of concurrent increases in A. turgida, this may simply reflect an effect of
several consecutive years of non-limiting moisture conditions. Cocoon production tends to
increase with temperature (Butt 1991), so that rates would tend to be highest in mid-season. Low
soil moisture curtailed reproduction during the warmest time of the year in 1986 and 1988 (two
of five pre-ELF years). Higher mean cocoon production rates in 1989-1993 may have been the
result of relatively uninterrupted reproductive activity during the warmest months of all five

operational years.
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VI. EARTHWORM ISOLATION EXPERIMENTS

A. METHODS

Aporrectodea tuberculata adults were incubated in cylindrical fiberglass mesh bags (20 cm
diameter) embedded in the soil to a depth of approximately 20 cm. Bags were filled with dried,
sieved, and re-moistened soil consisting of 70% A horizon and 30% B horizon material,
manually compressed and settled by addition of water during the filling process. Earthworms
were added to each bag and covered with wet leaf litter in order to eliminate moisture stress
during the time they burrowed into the soil. Bags were retrieved at monthly intervals, and
earthworms and cocoons were recovered by a combination of handsorting and washing after
removing a 150 ml sample of soil from the center of each bag for gravimetric moisture
determination. Earthworms were weighed individually (except for 1991) and were returned to
the field 24 hours after retrieval. Cocoons were preserved in 10% formalin and weighed 1 to
2 weeks later.

The 1991 season was used to develop the techniques and to document its potential flaws and
variations (details in Snider 1994). Below, the characteristics of four observation series, differing
with respect to methods and earthworm collection sites ("provenance") are summarized. Each
series or group was duplicated in the Test and the Control site. Series are identified by
earthworm provenance site and year of initiation of observations (not total duration of

observation).
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1. Test 1991 series:

Provenance of earthworms: Test site, spring 1991

Observation period: May 1991 - October 1993

Previous EM exposure history: exposed since May 1989

Incubation in Test bags = continued exposure to EM fields

Incubation in Control bags = removal from exposure to EM fields

Provenance of soil used for incubation: Test site

Replication / site: 10 bags (May - June 1991, 15 worms / bag); reduced to five bags (30
worms / bag) thereafter

2. Merriman 1991 series:

Provenance of earthworms: Merriman Rd. site (deciduous forest), spring 1991
Observation period: May 1991 - October 1991

Previous EM exposure history: never exposed

Incubation in Test bags = first exposure to EM fields

Incubation in Control bags = continued non-exposure

Provenance of soil used for incubation: Test site

Replication / site: 10 bags (May - June 1991, 15 worms / bag); reduced to five bags (30
worms / bag) thereafter

3. Fire Tower 1992 series:

Provenance of earthworms: Fire Tower site (deciduous forest), spring 1992
Observation period: May 1992 - October 1993

Previous EM exposure history: never exposed

Incubation in Test bags = first exposure to EM fields

Incubation in Control bags = continued non-exposure

Provenance of soil used for incubation: Fire Tower site

Replication / site: 10 bags (30 worms / bag)

4. Test 1993 series:

Provenance of earthworms: Test site, spring 1993
Observation period: May 1993 - October 1993

Previous EM exposure history: exposed since May 1989
Incubation in Test bags = continued exposure to EM fields
Incubation in Control bags = removal from exposure
Provenance of soil used for incubation: Test site
Replication / site: 5 bags (30 worms / bag)
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During the three years in which isolation experiments were performed, changes in protocols,
omitting details, can be summarized as follows:

1. Distribution of earthworms:

In 1991 (Test 1991 and Merriman Rd. 1991 series), each group of earthworms was returned
to its bag of origin on each sampling date. Beginning in May 1992, earthworms were re-
distributed randomly to replicate bags such that each bag received approximately equal numbers
of clitellate and non-reproductive adults. Each incubation period. thus began with approximately
equal stage structure in each bag. The procedure alleviated problems of autocorrelation and
allowed use of parametric statistics.

2. Earthworm body mass:

Complete voiding of earthworms’ intestines when placed on wet paper towels in the laboratory
takes up to 5 days, during which time they are removed from EM field exposure. Although "gut-
voided" mass data are more precise than and are preferrable to "gut-full" weights, the long
period of removal from EM fields was not justifiable. In early 1991, we attempted to obtain a
correction factor which would allow estimation of gut-voided mass from gut-full data by
regression. However, mass changes were so variable between individuals (due to combined
effects of weight loss by voiding and weight gain by rehydration) that the relationship was not
quantifiable. Weighing of worms was thus discontinued for the remainder of the 1991 season.

In 1992 and 1993, we resumed weighing of individual worms from all series (gut-full massj
within 20 minutes of their removal from mesh bags. Analysis of 1991 data yielded no evidence
of consistent between-site differences in terms of mass changes after voiding. We concluded that

despite some error inherent in gut-full estimates, we would be able to detect potential differences
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in body mass, especially since soil moisture inside bags was assessed concurrently.

In all Provenance series, field-collected earthworms were randomly divided into two groups
destined for incubation in Test and Control sites. They were allowed to void their intestines prior
to initial weighing. Mean initial body mass did not differ significantly between Test and Control
groups in any of the series. We thereby confirmed that separation of worms into groups was
indeed random, ensuring equal starting points for subsequent assessment of potential differences
in mass changes.

Since earthworm body mass was not monitored in 1991, mass-related response variables are
available for 1992 and 1993 only (body mass, and cocoon production rates Method 3, which is
based on mass ratios).

3. Moisture and temperature in mesh bags:

In 1991, bags were left undisturbed between samplings. Beginning in 1992, periodic
temperature readings were taken in Test and Control bags by means of a YSI telethermometer.
Temperature differences between sites were small (+ 0.2 to 0.5 OC) and not consistently lower
or higher in either site.

Beginning in 1992, three additional bags were installed in each site and provided with TDR
(Time Domain Reflectometry) moisture sensors. Based on regression (R2 = 0.84, N = 87) it
was determined that TDR readings of approx. 20% corresponded to approximately 18 % mois.ture
(gravimetric). Whenever TDR readings in any one of the six bags fell below 20%,

approximately 3 - 4 1 water were gradually added to each bag in both sites.




B. RESULTS

1. Electric fields
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Each year, electric fields within and immediately adjacent to each bag were measured by

directional field probes designed and calibrated by IIT Research Institute (details in Haradem et

al. 1989). In 1991, after initial installation of mesh bags, average field intensities within bags

were reduced to 47% of ambient fields in both sites (Table—38). Repeated use of the same holes

which housed mesh bags apparently resulted in better contact between mesh bags and their

contents and the surrounding soil, since mean field intensities in 1992 and 1993 increased in both

sites, and approximately 70% of ambient electric field intensity was present inside the bags. On

average, field intensities inside Control bags were 250 to 360 times lower than those in Test

bags (Table 38).

Table 38. Mean (£ SD) electric field intensities (mV/m) within mesh bags in Test and Control
sites, 1991-1993. Percent field reduction = mean of individual ratios of (mV/m within

bag)/(mV/m next to bag) x 100. Each value based on N = 20 measurements.

TEST SITE CONTROL SITE
1991 1992 1993 1991 1992 1993
mV/m within bags
mean 24.0 46.0 45.0 0.09 0.14 0.12
SD 6.7 10.6 11.6 0.04 0.04 0.03
% field reduction .
mean 47.0 72.0 73.0 47.0 77.0 64.0
SD 12.0 11.4 13.8 9.4 9.6 12.6
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2. Moisture

All mesh bags were treated equally in terms of periodic addition of water in 1992 and 1993.
Drainage conditions in the immediate surroundings of each bag probably influenced bag-specific
soil moisture, and differences between sites in terms of drainage patterns as well as (occasional)
rainfall events were probably influential in moisture differences between sites.

Mean moisture estimates cannot document moisture conditions as they changed over the short
term (i.e., between monthly samplings). They did reflect general seasonal conditions, and
indicated that:

a) Differences between Test and Control bags were not always consistent between years
(within series) or between series (within years). For instance, moisture in Test 1991 series bags
buried in Control tended to be higher than in the Test site, though not in all years or on all dates
(Fig. 97). In Fire Tower series bags (Fig. 98), soil moisture was somewhat higher in Test site
bags in 1992 as well as 1993, similar to the site relationships observed in Test 1993 series bags
(Fig. 99).

b) The watering regime used in 1992 and 1993 was not entirely successful. In August 1993
in particular, moistures in all Provenance series fell to < 15%, despite repeated addition of
water prior to the August 25 sampling date. Only whole-scale irrigation of the entire area
(logistically impossible) could have alleviated the pronounced seasonal changes in soil moisture.
However, judging by data obtained for body mass and reproductive performance, seasonal

moisture minima were not low enough to curtail earthworm activity (ref. following sections).
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Fig. 99. Mean soil moisture (gravimetric) in wormbags on each sampling date, Test 1993
Provenance series (N = 5 bags per site).
3. Test 1991 Provenance series

3.1. Eérthworm body mass and cocoon mass

Mean body mass of clitellate adults did not differ significantly between Test and Control
groups in 1992 and 1993 (Table 39). Mean mass of all individuals taken together (reproductive
and non-reproductive) (Fig. 100) was significantly higher in the Control group (P < 0.000),
possibly due to somewhat higher moisture in wormbag soil on several dates.

Mean mass of cocoons (approx. 20 - 25 mg, Fig. 101) did not differ significantly between
sites throughout the three years of observation. The number of cocoons produced (means /bag

are shown in Fig. 102) were higher in Control, the most notable exceptions occurring at the end

of the 1992 season.
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Fig. 102. Mean number of cocoons present in Test and Control bags (N = 5 /site), Test 1991
Provenance series.

3.2. Proportion of adults clitellate

In 1991 (when worms were not redistributed randomly on each date), only pairwise
comparisons could be made due to serial correlation within bags over time. Worms incubated
in Control exhibited higher proportions of clitellates, significantly so in September and October
(t tests, P < 0.005). Analysis of variance was possible for 1992 and 1993 data. ANOVA of
each year’s data separately showed that the generally greater proportion of clitellates in Control
bags (Fig. 103) was highly significant (P < 0.000), and that site x date interactions were also
significant, particularly in 1992 (P < 0.000) (Table 39), when clitellate proportions in Test bags

peaked one month after those in Control (Fig. 103).




188

TEST 1991 PROVENANCE

0.8
wi
l.- 0'7_H.....‘....... .................................................................
< 7 Iy
- AR
— 064 - 7 S
w O aAm
= 7
7
3 AR
054 ------ v R R R
o - BN 2 b
mn1n N y
< s Al 1 b B 7
A Al.Y 71 T 7R
O 0_4_ ....... éééé ...... . ?
— Z B7 Z Z Z 7 7 Z
A0 1 vy - 7
O 0'3_ ....... ...... ....4 ........................ .. . .........
A /R B Vi U V /B . A Y
a ey AERNE I n v
A Z VA a Z 7 Z Z Z Z Z
o A1 11...]. . aldl N | .
m 0.2_ ....... ééé é ,.‘. éé ............ Z é é
A V8 VB U LV AR Y VA VR v D
Q. A E /R 2 Vi A /R 72 B7 B/
00 Y Ve A A O A A at
122 . OO A ARl 121,
014 R AEB =R AR AR R 2 A BRE v
. AR RV 22 A AU 2 A A A v
A 2R R A A A AR A v YV LY
A A AR 1 AR AR A AU 2 A A A
707 b7 &% 0070728 0 B 807 87 B
5721 10/31 4/27 10/22 §5/8 10/18

coNTROL HEM TEST
Fig. 103. Mean proportion of all adults in the clitellate state on each sampling date, Test 1991

Provenance series. Note: each group of worms was returned to their bag of origin in 1991;
thereafter, worms were randomly redistributed to replicate bags on each date.

3.3. Cocoon production rates

As discussed in Section V, ratios of cocoons : clitellates can be a useful parameter for
assessing earthworm reproductive performance. We chose two basic calculation methods:
Method 1, which relates numbers of cocoons to "average" number of clitellates during each
incubation period (Fig. 104); and Method 3, which yields ratios of total mass of cocoons
produced to average mass of clitellates during each inc;,ubation period (Fig. 105).

ANOVA of cocoon production rates based on numbers (Fig. 104) yielded no signiﬁcaht
between-site differences (Table 39). Analysis of mass-based data (Fig. 105) showed that
production rates were higher in the Test site in 1992 (P < 0.04), but that differences were not

significant in 1993.
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4. Merriman 1991 Provenance series

The Merriman 1991 series differed from all others in that the soil used as incubation medium
stemmed from the Test site (it was »logistically impossible to retrieve the large quantities of soil
needed from the remote Merriman site); i.e., it was n‘ot the "native" soil in which the worms
had been living. Resulting data, although consistent within themselves, were discrepant from the
concurrently run Test 1991 series, for reasons which were not clear. Mean weights of cocoons,
for instance, were significantly lower than those in the Test 1991 series, indicating that substrate
conditions may have been suboptimal for the Merriman group of A. tuberculata. The series was
therefore discontinued at the end of 1991. A detailed presentation and discussion of results can
be found in Snider (1994).

Statistical analyses were limited to pair-wise comparison of means, due to serial correlation
over time within each bag (as in the first year of observation in the Test 1991 series). Either
Student’s t tests or Lohrding’s q tests were used, depending on preliminary tests of equality of
variances and coefficients of variation.

4.1. Cocoon mass and numbers

Date-specific tests showed that cocoons from Control bags had less average mass than Test
cocoons on 8/24 (Fig. 106), differences on all other dates ﬁeing not significant. Overall means
for the entire year did not differ significantly between sites (Test mean + SD = 19.9 + 3.7,
N = 96; Control mean + SD = 18.8 + 3.6, N = 102).

The number of cocoons per date tended to be slightly higher in Control bags (Fig. 107), but

none of the date means differed significantly between sites.
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4.2, Proportion of adults clitellate |
Following approximately equal clitellate proportions in both sites through 7/16, a higher
proportion of adults were clitellate in Control bags on the last three sampling dates (Fig. 108).
None of the means differed significantly between sites, however. The general pattern (higher

numbers of clitellates in Control during the second half of the season) was reminiscent of that

observed in the Test 1991 series during 1991 (Fig. 103).

MERRIMAN 1991 PROVENANCE

0.5

PROPORTION CLITELLATE

5/21 6/17 7/16 . 8/24 9/28 10/31
' SAMPLING DATE

conTRoOL M TEST

Fig. 108. Mean proportion of adults clitellate during 1991, Merriman 1991 Provenance series;
5/21 = initial date of incubation, no clitellates present. N = 10 bags through 7/16, N = 5 bags

thereafter.
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4.3. Cocoon production rates

Cocoon production rates based on numbers of cocoons and clitellates (Fig. 109) did not differ
significantly between sites on any date. The trend toward highest rates occurring in mid-summer
mirrored that observed in other Provenance series, but rates in the Merriman series were

generally lower than, for instance, those in the Test 1991 series (Fig. 104).

MERRIMAN 1991 PROVENANCE

MEAN RATIO

6/17 7/16 8/24 9/28 10/31
SAMPLING DATE -

conNTrRoL [ TEST
Fig. 109. Mean cocoon production rates during 1991, Merriman 1991 Provenance series,
Method 1 (number of cocoons / average number of clitellates); N = 10 through 7/116, N =5
bags thereafter.
5. Test 1993 Provenance series
5.1. Earthworm body mass and cocoon mass

Neither mean clitellate body mass, nor mean mass of all worms combined (Fig. 110) differed

significantly between sites during the single experimental year of 1993. Average cocoon mass
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/date proved to be somewhat highe; at the Test site (P = 0.04), mainly because of an unusual
number of relatively small cocoons in Control bags on May 31 (Fig. 111). Site-specific mean
cocoon mass for the entire year did not differ significantly between Test and Control (Control
mean + SD = 21.6 + 3792 mg, N = 114 cocoons; Test mean + SD = 22.3 + 3.73 mg, N
= 113 cocoons). No consistent between-site differences were detected with respéct to average

numbers of cocoons produced over time (Fig. 112).
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Fig. 110. Mean body mass of earthworms (developmental stages combined) in the Test 1993
Provenance series.

5.2. Proportion of adults clitellate
ANOVA of clitellate proportions over time (Fig. 113) showed that clitellate proportions did

not differ significantly between sites.
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Fig. 113. Average proportion (of all worms) in the clitellate state on each date in 1993, Test
1993 Provenance series; N = 5 bags /site.

5.3. Cocoon production rates
Despite seemingly large differences in cocoon production rates between sites on some dates
(Figs. 114 and 115 illustrate numbers-based and mass-based rates respectively), results of

ANOVA showed that, overall, these differences were not significant.
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6. Fire Tower 1992 Provenance series

6.1. Earthworm body mass and cocoon mass

Mean body mass of clitellates as well as mean mass of all worms (developmental states
combined) (Fig. 116) were consistently higher in Test groups throughout 1992 and 1993
(ANOVA, P < 0.000). It is unlikely that generally higher moisture in Test bags (Fig. 98)
producgd such consistent differences over all dates. In the Test 1993 Provenance series, for
instance, no body mass differences were detectable, although the soil in these bags also tended
to be moister in Test than in Control (Fig. 99).

Average mass of cocoons (Fig. 117) differed between sites in 1993 ( ANOVA of date-specific
data, P = 0.04. However, annual mean mass (all dates combined) did not differ between sites;
rather, a significant mass decrease from 1992 to 1993 occurred within each site (Table 39),

probably as a result of increasing age and generally decreasing body mass of adults.

Table 39. Mean annual mass (+ SD, N in parentheses) of cocoons produced in the Fire Tower
1992 series in Test and Control sites, 1992 and 1993.

SITE YEAR
1992 1993

CONTROL 24.88 + 3.902 _. 23.97 + 4.392
(659) (312)

TEST 25.24 + 4.01P 24.20 + 4.34b
(884) (552)

a = means differ at P < 0.01
. b = means differ at P < 0.001
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Earthworms at the Test site produced higher numbers of cocoons than those in the Control

site, during 1992 as well as 1993 (Fig. 118).

FIRE TOWER 1992 PROVENANCE

60

MEAN NUMBER OF COCOONS

5/25 10/22 5/9 10/18
1993

1992
SAMPLING DATE

conNTROL N TEST

Fig. 118. Mean number of cocoons produced per date, Fire Tower 1992 Provenance series; N
= 10 bags / site /date.

6.2. Proportion of adults clitellate

On most dates in 1992 and 1993, the proportion of individuals in the reproductive state was
higher in Test than in Control groups (Fig. 119). Data from 1992 could not be transformed to
meet the requirements for ANOVA; however, single dates could be compared by either t-tests
or Lohrding’s g-tests, depending on the magnitude of variances. Mean clitellate proportions were
indeed significantly higher in Test in June, July and August, but did not differ significantly on

the last two sampling dates of the year. ANOVA of 1993 data showed that, despite higher mean
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proportions of clitellates at the Control site in May (P < 0.01 on 5/31/93); overall proportions
were higher in the Test site (P < 0.000).

The validity of using individual bags as the sample unit could be questioned, because the
redistribution scheme employed in 1992 and 1993 (ref. p. 179) disrupted the continuity of each
replicate (A. El-Shaarawi, pers. comm.). Data were therefore subjected to a second analysis,
ignoring bag replicates, and usiné only date-specific totals from each site. In this regression
| model, In (moisture), In (moisturez), differences between In (moisture), and dates were the
variates taken into account. Results for 1992 through 1993 data again indicated that clitellate

proportions were significantly higher in Test groups (P < 0.01) (A. El-Shaarawi, pers. comm.).

6.3. Cocoon production rates

Again, we selected Methods 1 and 3 for a summary presentation of results. Based on numbers
(Fig. 120) as well as on mass estimates (Fig. 121), rates of cocoon production were consistently
much higher in the Test group than in the Control group over both years (ANOVA, P < 0.000).
As was the case with clitellate proportions (above), a second analytical design was used to check
these results, using numbers-based Method 1 data: in this case, the regression model included
In (moisture) and In (clitellate numbers), and used date-specific totals rather than bag-specific
numbers. Cocoon production rates were again shown to be significantly higher at the Test site

(P < 0.01) (A. El-Shaarawi, pers. comm.).
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Fig. 119. Mean proportion (of all adults) in the clitellate state on each date, Fire Tower 1992
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Fig. 120. Mean cocoon production rates in the Fire Tower 1992 Provenance series; Method 1

based on (number of cocoons / average number of clitellates); N

10 bags /site /date. Rates

not calculated if < 3 bags contained cocoons (Control 5/25/92 and 10/18/93).
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FIRE TOWER 1992 PROVENANCE
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Fig. 121. Mean cocoon production rates in the Fire Tower 1992 Provenance series; Method 3

based on (total mass of cocoons / average mass of clitellates); N = 10 bags /site /date. Rates
not calculated if < 3 bags contained cocoons and/or clitellates.

C. SUMMARY AND DISCUSSION

We here focus on Test and Fire Tower Provenance series. Results of the Merriman 1991
series were limited to one season and three response variables, and the reproductive performance
of these groups of A. tuberculata appeared to be unusual, for reasons which were not
quantifiable (refer to Snider 1994 for details). A summary of statistical results for all series is
is provided in Table 40. |

Test 1991 and 1993 series:

At the beginning of field-incubation, Test 1991 series worms were noﬂ—reproductivg: (aclitellate
and posclitellate) adults which had been collected in the Test site and had thus been exposed td

EM fields for 2 years. They exhibited significant responses to removal from EM influence (=
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incubation in Control site bags), particularly with respect to increased clitellate proportions
relative to their counterparts in Test site bags (Fig. 103, Table 40). In 1992, a temporal shift
took place, individuals in Control site bags reaching a reproductive peak sooner than those
incubated in the Test site (Fig. 103). No such shift was apparent in 1993; it is possible that
effects of senescence were then becoming more pronounced and more random, since these
worms were in their third (known) year of adulthood, and their chronological age was not
known. There were essentially no major differences in cocoon production rates, except for
higher ratios in Test site groups in 1992 (P < 0.04 for mass-based ratios).

It is striking that the Test 1993 series duplicated none of the significant results obtained for
the Test 1991 series (Table 40). The 1993 series worms had been exposed to EM fields for 4
years prior to incubation. Continued exposure in Test bags or removal from exposure in Control
bags produced very similar reproductive patterns, with a single exception concerning higher
mean cocoon mass in Test.

We find that failure to confirm 1991 series results was most probably a consequence of the
duration of exposure to EM fields with respect to the development of individuals.

Many earthworms can mature in approximately 1 year (Evans and Guild 1948; Satchell 1967),
although periods of low temperature or drought lengthen development time considerably. In our
Test site, we estimated that approximately 3 years were needed for A. tuberculata to reach

adulthood, somewhat longer than A. caliginosa in Polish pastures (Nowak 1975). Total lifespans
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are often thought to be short in the field (Satchell 1967), although Phillipson and Bolton (1977)

estimated that large individuals of Aporrectodea rosea were S to 6 years old. We know from
isolation experiments that A. tuberculata can survive for at least 3 years after reaching
adulthood: 30 to 50% of the origihal Test 1991 series individuals were still alive in October
1993. Animals injured during sampling had not been replaced since May 1992, so that actual
survial rates were slightly higher. Some effects of senescence were evident in declir{ing cocoon
producﬁon and clitellate proportions in 1993 (Fig. 103), but not in body mass (Fig. 100).

We estimate that adult earthworms collected for the Test 1991 Provenance series had been
medium- to large-sized immatures at the time of antenna activation in May 1989; some may even
have been adults. Worms collected for the Test 1993 series were most likely to have hatched
during or shortly before the first year of antenna operation; i.e., they were exposed to EM fields
during most or all of their development to maturity. Lack of response to removal from EM
influence (= incubation in Control site bags) would then indicate some form of "habituation",
or would indicate that they had gone beyond the initial, short-lived effects of exposure. We have
found no pertinent information in the published literature to substantiate these explanations.

Fire Tower 1992 series:

In this series (never exposed to EM fields prior to the beginning of observations), Test groups
out-performed Control groups with respect to all response variables tested (Table 40). One may
argue that soil moisture was consistently higher in Test site bags (Fig. 98), which could well
result in higher body mass and reproductive activity there (Gerard 1967; Nordstrom 1975; Grant
1955). However, our ANOVA results were substantiated by regression analyses which included

moisture differences in their design (ref. p. 201). In this series, therefore, first exposure to EM
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fields appeared to stimulate reproductive activity when compared to continued non-exposure.

The question remains: do data from isolation experiments explain data obtained for the A.
tuberculata population at large?

What we observed in the field population at the Test site were reduced numbers and
~ proportions of clitellates, and increased cocoon production —rates, mainiy during the second year
of antenna operation, 1990. Clitellate numbers and proportions returned to approximately
"normal” levels (approximating pre-ELF averages and seasonal patterns) during the third year
of exposure.

The Test 1991 wormbag series supported the first of these observations (clitellate proportions
increased when worms were removed from EM influence). The Test 1993 series confirmed that
EM effects tended to be short-lived (after 4 years of exposure, removal from EM influence had
no effect). The Fire Tower 1992 series, however, did not substantiate field observations, with
the possible exception of increased cocoon production rates in 1992 and 1993 following first
exposure of worms to EM fields.

It is possible that subtle, transient EM field effects on A. tuberculata reproduction did occur
for 1 to 2 years after antenna activation. The extent of this effect may in part be dependent on
dose-response relations, on the chronological age of individuals at the time of first exposure, and
both the degree and duration of the effect may vary for different response variables. For
instance, lower-than-ambient EM field intensities in mesh bags may have had a role in
stimulating reproduction in the Fire Tower 1992 series. In the field population, such stimulation
was expressed only in higher cocoon production rates. Reduced clitellate numbers in the field

population may have been the result of higher ambient EM field intensities. Given available data,
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and the lack of pertinent information in the literature, we cannot carry conclusions any further.
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VI. LITTER INPUTS

A. METHODS

Litter traps (50 x 50 cm) were made of fiberglass screening (2 mm mesh) encased by 15 cm
high wooden frames. They were positioned 50 cm above the forest floor, in permanent locations
in the same comer of each quadrat. Trap contents (minus woody debris) were collected at
monthly intervals from spring to early fall, and at weekly intervals during the main period of
abscission. Litter samples were sorted into categories: maple, basswood, others (mainly leaves
of Populus spp. and shrubs), oven-dried at 60 °C and weighed.

Replication consisted of 20 traps /site, one in each of the 20 quadrats used for faunal

sampling. Data are available for 1984-88 (pre-ELF) and 1989-92 (operational).

B. RESULTS

1. Annual and seasonal patterns

Mean annual litter inputs by the main tree components and all species together are listed in
Table 41. In general, the magnitude of between-year and between-site variations did not appear
to be influenced by antenna activation. "Other" species typically contributed more litter mass in
Control than in Test, in all years.

The tight synchronicity of abscission patterns in Test and Control sites was clearly evident and
is illustrated in Figs. 122-124. Maple leaffall was typically unimodal, while basswood abscission
tended to be bimodal to varying degrees. Although not evident in Figs. 122-124, some variation
in the timing of peak leaffall was observed in all species, peak inputs occurring between late

September and mid-October (variable between years, but synchronous in both sites).




210

Table 41. Annual leaf litter inputs (g dry /m2, means + SE) in Test and Control sites; N = 20

traps /site.
YEAR/SITE MAPLE BASSWOOD OTHER TOTAL
1984 T 175.3 + 14.5 56.9 + 11.1 26.8 + 9.1 259.2 + 8.8
C 179.0 £ 9.0 56.1 + 8.4 29.8 + 6.7 2649 + 7.4
1985 T 203.5 + 14.3 64.7 + 12.3 17.4 + 4.0 285.6 + 7.3
C 198.6 + 8.6 57.6 + 7.8 32.4 + 6.2 288.6 + 4.9
1986 T 176.0 + 13.2 64.0 + 13.2 11.6 £ 1.9 251.6 £ 7.2
C 189.1 + 11.5 62.1 £ 9.5 323+ 6.3 284.2 + 9.8
1987 T 160.9 + 14.5 58.7 + 10.9 10.9 + 2.0 231.2 £ 9.1
C 180.0 + 12.6 62.8 + 8.2 31.2 + 8.3 2743 + 8.6
1988 T 191.2 £ 15.2 69.4 + 13.2 14.7 + 2.0 275.6 + 9.6
C 198.0 + 10.5 63.6 + 8.0 39.1+ 7.3 300.7 + 9.9
1989 T 180.1 + 12.6 73.8 + 12.6 154 £ 23 269.3 + 6.7
C 161.7 + 9.0 64.5 + 14.4 3.7+ 55 2579 + 9.7
1990 T 169.0 + 10.6 62.4 + 10.9 15.0 +£ 2.8 246.4 £ 5.2
C 171.8 £ 7.7 58.2 + 5.6 31.2 + 49 261.3 £ 6.5
1991 T 166.6 + 12.6 78.2 + 14.4 16.2 + 3.0 261.0 +£ 9.9
C 186.6 + 8.7 76.8 + 10.8 33.1 + 6.0 296.5 + 8.4
1992 T 159.3 + 8.9 74.5 £ 9.7 16.2 + 3.1 250.0 + 7.4
C 176.2 + 7.4 68.8 + 7.8 319+ 5.0 277.0 £ 9.8
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Fig. 122. Mean maple litter inputs (g dry /m2) per date during pre-ELF and operational years
in Test and Control sites.




212

BASSWOOD LITTER INPUTS, PRE-ELF

: -5 CONTROL

35

®
<)
8
-

30

GRAM DRY /SQUARE METER

BASSWOOD LITTER INPUTS, OPERATIONAL

e -8~ CONTROL

35

GRAM DRY / SQUARE METER

Fig. 123. Mean basswood litter inputs (g dry /m2) per date during pre-ELF and operational
years in Test and Control sites.
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Fig. 124. Mean total (all species combined) inputs of leaf litter per date during pre-ELF and
operational years in Test and Control sites.




2. Statistical analyses

ANOVA was used to test for differences between sites, between pre-ELF and operational
periods, and for ELF x site interactions. For maple and total litter inputs, none of these factors
were significant (Table 42). In the case of basswood, differences between pre-ELF and
operational periods were significant, but ELF x site interactions were not. These results simply
documented that in both sites, basswood litterfall had increased during the 1989-92 period
(Table 41).

Table 42. ANOVA table for litter inputs in Test and Control sites, with ELF = pre-ELF vs.
operational periods, and TOTAL = all species combined.

RESP. VARIABLE|SOURCE SS DF MS F P

MAPLE ELF 37.168 1 37.168 0.639 10.424
Site 14.670 1 14.670 0.252 10.616
ELF x site 0.008 1 0.008 0.000 |0.991
Error 223138 3836 58.170

BASSWOOD ELF 51.972 1 51.972 5.684 10.017
Site 7.530 1 7.530 0.823 10.364
ELF x site 1.025 1 1.025 0.112 {0.738
Error 35074 3836 9.144

TOTAL ELF 3.312 1 3.312 0.036 [0.849
Site 182.438 1 182.438 2.008 |[0.157
ELF x site 2.071 1 2.071 0.023 10.880
Error 348553 3836 90.864
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C. SUMMARY AND DISCUSSION

Leaf litter inputs clearly were not affected by ELF antenna activation. Total annual inputs
were approximately 2.5 to 3.0 tons /ha /year in both sites, well within the range of 2.2 to 3.6
tons /ha reported by Chandler (1941), Alway er al. (1933), Bray and Gorham (1964) and
Maldague (1967) for similar forest stands. Observed between-year variation also fell within the
range reported by Bray and Gorham (1964). Reduced inputs following an unusually dry spring
and summer (Blandin et al. 1980) were not observed in our sites in the two driest years, 1986

and 1988.
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VIII. LITTER DECOMPOSITION

A. METHODS

The first studies of maple litter decomposition in 1984 and 1985 involved litterbags (1 mm
and 5 mm mesh) and "leafpacks”, which consisted of six leaves for which surface area, mass,
and position in the pack were known. We have reported these results previously (Snider and
Snider 1987) and will not repeat them here, since the methods employed were discontinued.

Beginning in November 1985, we used litterbags made of flexible nylon netting, 15-20 mm
mesh size (birdnetting), to enclose samples of maple litter samples of known mass. Wooden
clothespins and labels were used to anchor them to the soil surface.

Litter was collected around the periphery of each site just after peak abscission, air-dried,
weighed in portions of approx. 10 g, and distributed in litternags over several quadrats (not used
for faunal sampling) in each site. Control litter was routinely used in Control bags, and Test
litter in Test bags. An additional series of litterbags was cross-exposed (Control litter in Test and
vice versa) from November 1990 to November 1991.

Loss of leaf fragments during handling was validated twice and found to be insignificant.
Mass loss of air-dried leaves after oven-drying, and % ash of initial litter were quantified for
each litterbag series at the time of field placement, so that initial AFDW could be calculated.

Litterbags were placed in the field in November and sampled at approximately monthly
intervals from May to November of the following year. Continued sampling into the second year
(after a second winter) was found to yield imprecise data due to problems with invasion of bags
by herbs and seedlings. Samples were oven-dried at 80 OC, weighed, ground, and two

- subsamples (approx. 1 g each) were ashed four hours at 600 OC. Results are based on AFDW.
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Available litterbag "series":

Series I: November 1985 - November 1986

Series II: November 1988 - November 1989

Series III: November 1989 - November 1990
Series IV: November 1990 - November 1991
Series V: November 1991 - November 1992

Series VI: November 1992 - October 1993
Exchange series: November 1990 - November 1991

Available data were thus unbalanced with respect to pre-ELF vs. operational periods: series
I and series II are considered pre-operational (although the antenna was activated in May 1989,
mass loss had been occurring throughout the preceding 7 months). Series III through VI were

operational series.

B. RESULTS AND ANALYSES

For each litterbag series, mean percent of initial fnass remaining is illustrated in Fig. 125.
Some differences between sites were observed: with the exception of series I and V, litter tended
to decay to a greater degree in the Test site.

Data for individual samples were converted to differences (subtracted from the mean percent
remaining on the previous date), and were analyzed by ANOVA; series I and II represented the
pre-ELF period, series III through VI the operational period. Site effects were not significant
during pre-ELF years, but were significant at P = 0.02 during operational years. Neither series
nor site x series interactions, however, were significant (Table 43). ANOVA of pre-ELF vs.
operational periods also showed that the most important factor, site x ELF interaction, was not

significant, i.e., that between-period variability was synchronous in Test and Control.
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Fig. 125. Mean mass remaining (AFDW) of maple litter incubated in litterbags in Test and
Control sites; N samples /date = 10 or 12, variable with SERIES, which are identified by
number and year.
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Fig. 125. continued.
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Fig. 125. continued.
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Table 43. ANOVA table for percent remaining mass (based on AFDW of bag; minus mean
AFDW remaining on the previous date); SERIES = litterbag series; ELF = pre-ELF and
operational periods (series I and II vs, series III through VI). Summaries of raw data are
shown in Appendix 10.

SERIES |SOURCE SS DF MS F P

I+ Site 100.31 1 100.31 1.909 | 0.168
Series 65.25 1 65.25 1.242 | 0.266
Site x series 96.85 1 96.85 1.843 | 0.176
Error 12401.70 236 52.55

M-V |Site | 195.16 1 195.16 5.1343 | 0.024
Series 64.38 3 64.38 0.565 0.639
Site x series 64.14 3 64.14 0.563 | 0.640
Error 20678.16 544 38.01

I+IIvs. |Site 269.62 1 269.62 6.367 0.012

II-VI ELF 162.17 1 162.17 3.830 | 0.051
Site x ELF 0.09 1 0.09 0.002 0.963
Error 33370.48 788 42.35

Differences between years, in terms of estimated turnover times, occurred in both sites,
althoughto a much greater degree in Control where they ranged from approximately 1 year to
1.77 years (Table 44). Although the direction of between-year changes was similar in both
sites, correlation was weak (R2 = 0.48).

Table 44. Estimated turnover times (1/k) for litterbag series I through VI (identified by the year
during which samples were taken).

SERIES (YEAR)

SITE 1 (86) 1 (89) I (90) | IV (91) V (92) VI (93)

CONTROL 0.963 1.767 1.485 1.475 1.002 1.253
TEST 1.003 1.237 1.089 1.016 1.014 1.167
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We did, however, find good correlation between biomass of decomposer earthworms and
variations in turnover times. Mean annual mass of [D. octaedra + Lumbricus spp] in Control,
and mean annual mass of [D. octaedra + L. rubellus immatures] were significantly correlated
with turnover times (Fig. 126). |

Results of the Exchange series, sampled during 1991 (Fig. 127) allowed the following
conclusions:

a) provenance site of litter was not a factor influencing decay rates: Test litter incubated in
Control decomposed at approximately the same rate as Contrbl litter incubated in Control; and
Control litter incubated in Test decomposed at approximately the same rate as Test litter
incubated in Test (Table 45 and Figs. 125 and 127);

b) by corollary, decay rates were .site- and year-specific, most likely as a result of fluctuations

in decomposer populations, as discussed above.

C. SUMMARY AND DISCUSSION

Analyses of variance (Table 43) clearly showed that variations in litter breakdown rates were
not affected by antenna activation (i.e., site x ELF effects were not significant). Decomposition
rates did differ between years and groups of years (pre-ELF vs. operational series). To a large
degree, differences were explainable by fluctuations in epigeic earthworm biomass.

In Test, L. rubellus immatures contributed > 75% of worm biomass in all years, D. octaedra
playing a minor role due to its consistently low abundance. Relatively stable biomass (range 6.4
t0 9.7 g /'m2) resulted in relatively little variation in litter turnover times (range 1.0 to 1.24

years).
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Fig. 126. Turnover times (1/k) and mean annual biomass of litter-feeding lumbricids in Test and

Control, litterbag series I through VI.
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Fig. 127. Mean mass remaining (AFDW) in Exchange series litterbags during 1991.

Table 45. Turnover time (1/k) for litterbag series IV and for the Exchange series, both placed
in the field in November 1990 and sampled from May to November 1991.

SERIES / SITE 1/k

IV TEST 1.016
EXCHANGE TEST 0.957
IV CONTROL 1.475
EXCHANGE CONTROL 1.574
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In Control, worm biomass fluctuated more drastically (range 8.0 to 14.6 g /m2); D. octaedra
constituted more variable proportions of this biomass (range 47 to 83%). A wider range of
turnover times (0.96 to 1.77 years) were the result.

Many authors have related organic matter breakdown to lumbricid activity (summary in Lee,
1985). Recently, Hendroksen (1990) and Daniel (1991) have shown a direct, positive effect of
Lumbricus spp. on litter disappearanée. In microcosm experiments by Haimi and Huhta (1990),
D. octaedra and L. rubellus clearly enhanced mass ioss of birch litter, but relationships with
worm biomass were unclear due to variable mortality of worms in experimental containers. Our
field-derived data allowed correlation between climate-induced biomass fluctuations and litter
decay over several years.

In summary, we conclude that:

a) litter breakdown rates were site-specific, independent of provenance of litter (Exchange
series), in agreement with Herlitzius and Herlitzius (1977) who related decay to site-specific
macrodecomposer populations;

b) variations in turnover times were due mainly to species composition and dynamics of
lumbricid decomposers; and

c) no effects of EM fields on litter decay were detectable; if any had become apparent in Test,
they would have had to be traced to their primary source (i.e., effects on numbers, biomass or
behavior of L. rubellus): we were unable, however, to document significant changes in that

population (ref. section V).
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Appendix 1. Site locations, site configurations, and EM field measurements (excerpted and
adapted from Haradem et al. (1994).
The location of sites relative to the Michigan ELF antenna are shown in Fig. 1.1, Site code
numbers in Fig. 1.1. are those used by IITRI, who provided engineering support; cross-
references of IITRI site numbers, investigators’ site designations, and 'township, range and
section numbers are listed in Table 1.1. Configuration of Control and Test sites are shown in
Figs. 1.2. and 1.3. respectively.

The remaining Tables 1.2. through 1.10. list data for electric field intensities and magnetic
flux densities pertaining to our study and laboratory sites, for 60 Hz as well as 76 Hz

frequencies.

Table 1.1. Cross-reference list of site designations used by IITRI and by investigators, and site

locations.
Location
Investigator’s
IITRI Site No. Site Name Township | Range | Section
3T2 Test site T44N R29W | 25
3C5 Control site T43N R30W 11
3L1 Laboratory (barn) T43N R30W 32
3s1 Merriman Rd. site? T4IN R29W 21
382 Fire Tower site? T44N R30W 24

a = collection sites for earthworms used in Isolation Experiments (see section VI).
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Fig. 1.2. Configuration of the Control site: numbered quadrats (each 10 x 10 m) were available
for faunal sampling; others were used for litter decomposition studies or environmental
monitoring (quadrat marked X) or were unused due to excessive dead wood; points 1, 2 and 3
refer to measurement points for EM field monitoring. Measurement point 1 served for
monitoring EM fields in the Earthworm Isolation Experiment area, which was located next to
it.
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Fig. 1.3. Configuration of the Test site: numbered quadrats (each 10 x 10m) were available for
faunal sampling; others were used either for litter decomposition studies or environmental
monitoring (quadrat marked X), or were unused due to excessive dead wood; points 1 through
6 were measurement points for monitoring EM fields; points 7 through 13 were EM field

measurement points located in the Earthworm Isolation Experiment area.
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Table 1.9. 60 Hz AIR ELECTRIC FIELD INTENSITIES (V/m) at the laboratory (barn) in
Sagola.

Site No., Meas. Pt. 1992 Measurement Notes
3L1-1 0.003 Benchtop level
3L1-2 0.011 Ground level
3L1-3 1.16 Atop electronic scale, scale on

Table 1.10. 60 Hz MAGNETIC FLUX DENSITIES (mG) at the laboratory (barn) in Sagola.

Site No., Meas. Pt. 1992 Measurement Notes
3L1-1 0.012 Benchtop level
3L1-2 0.013 Ground level

3L1-3 38 Atop electronic scale, scale on




247

Appendix 2. Average weekly temperature in the A horizon (5 cm depth) obtained in the Control
site, 1984 through 1993 (Test data not shown because temperatures were essentially identical in the

two sites). Week (WK) 1 = the week beginning May 1 of each year.

E' 1984 | 1985 |1986 | 1987 | 1988 | 1989 | 1990 | 1991 1992 | 1993
1 9.6 9.9 8.8 9.4 5.2 8.0 5.7 8.6 8.5
2 12.8 |11.0 |11.3 9.7 7.3 6.7 11.9 11.3 12.3
3 11.3 |10.8 |10.6 |10.5 |11.7 8.2 12.4 13.4 8.4
4 11,5 |11.8 {109 |[11.7 [12.1 10.2 | 15.8 10.5 9.2
5 109 |12.8 |15.1 139 | 114 |[10.6 |16.3 13.4 8.4
6 123 |[11.6 |13.4 |134 |11.2 |11.3 15.6 13.8 11.3
7 120 [12.0 [164 |144 (109 |[13.8 |[16.5 13.8 12.6
8 13.0 |13.3 |[16.8 |158 |[14.7 |[13.0 |15.7 10.8 13.9
9 150 | 144 |14.6 |13.3 14.7 | 15.1 17.8 12.2 13.1

156 160 |163 |16.7 |16.5 |15.3 17.3 13.8 16.0
15,5 | 147 163 |159 |[152 [139 |17.0 15.3 15.0
15.7 |17.6 |18.6 [16.2 |156 |[152 |[19.7 14.4 15.4
16.1 17.4 }18.1 16.8 |[16.3 | 16.1 15.4 15.2 16.6
16.0 |15.8 |17.3 |18.1 17.2 1152 | 15.8 15.2 14.5
16.7 [153 |[17.1 179 | 15.2 ]12.8 | 16.6 15.2 16.0
15.3 | 15.7 [ 17.5 17.4 | 147 | 15.1 17.5 14.5 17.3
14.6 | 14.1 14.7 | 15.1 148 |15.6 |17.8 15.7 17.4
149 |13.6 |[13.7 | 145 14.6 |15.6 |18.9 13.4 14.7
16.2 |12.1 [15.0 [12.6 | 149 |[15.1 16.0 12.8 11.8
124 |10.4 |14.0 | 13.1 119 [13.2 }15.9 14.4 11.6
14.7 |12.1 13.0 |13.3 12.7 | 10.8 9.9 10.7 9.9
104 | 14.0 |12.7 |[12.1 104 | 11.2 7.8 10.3 8.2
9.8 10.8 9.3 9.1 7.8 9.9 8.1 10.7 7.4
9.3 7.8 7.6 7.9 8.3 1.2 7.6 7.6 5.6
8.7 7.6 7.6 1.7 5.7 7.1 6.3 4.8 6.5
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Appendix 3. Moisture of soil and leaf litter.
Figs. 3.1. through 3.10.: Gravimetric moisture estimates (means /date, N = 20) for leaf litter,
A horizon and B horizon in Test and Control sites. Shown are data for 12 dates /year, at
biweekly intervals from early May to October. Sampling date 13 omitted from those years in
which a late October sampling was possible.

Figures are arranged sequentially, from 1984 (Fig. 3.1.) through 1993 (Fig. 5.10.).
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Appendix 4 . Checklist of Collembola found in the Project ELF study area.

Order COLLEMBOLA
Suborder ARTHROPLEONA
Family HYPOGASTRURIDAE
Subfamily HYPOGASTRURINAE
Hypogastrura (Hypogastrura) nivicola (Fitch)
Xenylla acauda Gisin
Xenylla christianseni Gama
Xenylla pallescens (Scott)
Willemia denisi Mills
Willemia intermedia Mills
Willemia similis Mills

Subfamily NEANURINAE
Odontella substriata Wray
Friesea sublimis Macnamara
Pseudachorutes aureofasciatus (Harvey)
Pseudachorutes caeca Folsom
Pseudachorutes indiana Christiansen and Bellinger
Pseudachorutes saxatilis Macnamara
Anurida (Anurida) granaria (Nicolet)
Anurida (Micranurida) furcifera (Mills)
Anurida (Micranurida) pygmaea (Borner)
Micranurida spirillifera Hammer
Neanura (Neanura) muscorum (Templeton)
Neanura (Neanura) barberi (Handschin)

Family ONYCHIURIDAE
Onychiurus (Archaphorura) affinis Agren
Onychiurus (Archaphorura) allanae Christiansen and Bellinger
Onychiurus (Protaphorura) encarpatus Denis
Onychiurus (Protaphorura) parvicornis Mills
Onychiurus (Protaphorura) similis Folsom
Onychiurus (Protaphorura) talus Christiansen and Bellinger
Onychiurus (Protaphorura) armatus (Tullberg)
Tullbergia clavata Mills
Tullbergia falca Christiansen and Bellinger
Tullbergia granulata Mills
Tullbergia hades Christiansen and Bellinger
Tullbergia iowensis Mills
Tullbergia mala Christiansen and Bellinger
Tullbergia yosiii Rusek
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Family ISOTOMIDAE
Anurophorus (Anurophorus) altus Christiansen and Bellinger
Anurophorus (Anurophorus) septentrionalis Palissa
Anurophorus (Pseudanurophorus) binoculatus (Kneseman)
Proisotoma (Proisotoma) minima (Absolon)
Proisotoma minuta
Cryptopygus decemoculatus (Folsom)
Cryptopygus exilis (Gisin)
Folsomia bisetosa Gisin
Folsomia nivalis (Packard) B
Folsomia prima Mills
Isotomiella minor (Schaeffer)
Isotoma (Desoria) creli Fjellberg
Isotoma (Desoria) nigrifrons Folsom
Isotoma (Desoria) notabilis Schaeffer
Isotoma (Desoria) nympha Snider and Calandrino
Isotoma pseudocinerea (Fjellberg)
Isotoma viridis Bourlet
Isotoma trispinata MacGillivray

Family ENTOMOBRYIDAE
Orchesella ainslei Folsom
Orchesella hexfasciata Harvey
Entomobrya (Entomobrya) assuta Folsom
Entomobrya (Entomobrya) clitellaria Guthrie
Entomobrya (Entomobrya) comparata Folsom
Entomobrya (Entomobrya) nivalis (L.)
Entomobrya (Entomobryoides) purpurascens (Packard)
Willowsia buski (Lubbock)
Lepidocyrtus helenae Snider
Lepidocyrtus hirtus Christiansen and Bellinger
Lepidocyrtus lignorum (Fabricius)
Lepidocyrtus paradoxus Uzel
Lepidocyrtus violaceous (Fourcroy)
Pseudosinella rolfsi Mills
Pseudosinella violenta (Folsom)

Family TOMOCERIDAE
Tomocerus (Pogonognathellus) flavescens Tullberg
Tomocerus (Tomocerina) lamelliferus Mills
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Suborder SYMPHYPLEONA
Family NEELIDAE
Neelus (Megalothorax) minimus (Willem)
Neelus (Megalothorax) incertus (Borner)
Neelus tristani (Denis)
Neelus (Neelides) minutus (Folsom)
Neelus (Neelides) snideri (Bernard)

Family SMINTHURIDAE
Sminthurides (Sphaeridia) pumilis Krausbauer -
Sminthurides (Sminthurides) lepus Mills
Sminthurides (Sminthurides) occultus Mills
Arrhopalites amarus Christiansen
Arrhopalites benitus (Folsom)
Arrhopalites caecus (Tullberg)
Sminthurinus (Katiannina) macgillivrayi (Banks)
Sminthurinus (Polykatianna) intermedius Snider
Sminthurinus (Sminthurinus) conchyliatus Snider
Sminthurinus (Sminthurinus) henshawi (Folsom)
Sminthurinus (Sminthurinus) quadrimaculatus (Ryder)
Sminthurus (Sminthurus) butcheri Snider
Sminthurus (Sminthurus) nigromaculatus Tullberg
Sminthurus (Allacma) purpurescens (MacGillivray)

Family BOURLETIELLIDAE
Bourletiella (Bourletiella) hortensis (Fitch)
Bourletiella (Deuterosminthurus) russata Maynard
Bourletiella (Heterosminthurus) koontzi Snider and Calandrino

Family DICYRTOMIDAE
Dicyrtoma (Dicyrtoma) aurata (Mills)
Dicyrtoma (Ptenothrix) atra (L.)
Dicyrtoma (Ptenothrix) marmorata (Packard)
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Appendix 6. Population structure of Isotoma notabilis.
Table 6.1. Mean (+SD) annual densities of Isoroma notabilis in Test and Control sites, based
on summed densities in litter + soil (N = N dates /year). ’
CNI, CNJuv, CNAdl, CNTotal, and TNI, TNJuv, TNAd], TNTot =
larger juveniles, adults, and total population in Control and Test sites respectively.
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density /m? of instars I,

DENSITIES
YEAR|STATS CNI | CNJuv | CNAdl | CNTot TNI | TNJuv | TNAdI | TNTot
1984 IN 12 12 12 12 12 12 12 12
MEAN!| 313.3 | 620.0 | 545.9 | 1479.2 | 207.8 | 438.0 330.3 976.1
SD 258.2 1 3979 | 428.7 | 717.2 141.8 | 374.8 | 260.4 612.2
1985 IN 13 13 13 13 13 13 13 13
MEAN] 478.3 | 868.1 | 1235.8| 2582.3 | 342.0 | 670.5 | 673.8 1686.3
SD 330.1 | 475.0 | 674.2 | 1188.2 | 298.7 | 431.8 | 545.8 915.6
1986 IN 13 13 13 13 13 13 13 13
MEAN| 629.1 | 1001.4| 810.1 | 2440.6 | 326.5 | 687.6 | 464.0 1478.1
SD 661.5 | 1014.9] 542.2 | 2008.5 | 534.3 | 753.6 | 365.0 | 1343.8
1987 IN 13 13 13 13 13 13 13 13
MEAN| 799.9 | 1363.8 1049.0 | 3212.7 | 471.4 | 923.9 | 537.4 | 1932.7
SD 887.9 | 1058.9 | 703.5 | 2066.7 | 444.9 | 619.7 | 397.0 1244.0
1988 |N 12 12 12 12 12 12 12 12
MEAN! 302.8 | 613.8 | 514.9 | 1431.5 | 205.1 | 453.2 | 289.1 947.4
SD 208.2 | 734.2 | 274.0 | 1087.7 | 230.8 | 295.1 137.7 545.3
1989 [N 13 13 13 13 13 13 13 13
MEAN! 723.7 | 650.0 | 604.2 | 1977.8 | 379.9 | 514.2 | 498.2 | 1392.2
SD 600.9 | 325.6 | 358.1 926.4 | 400.1 | 300.8 { 385.5 894.6
1990 N 13 13 13 13 13 13 13 13
MEAN| 500.5 | 793.0 | 639.4 | 1932.9 | 565.6 | 1017.3 | 687.7 | 2270.5
SD 438.6 | 411.3 | 302.9 | 984.2 | 262.1 | 449.4 | 241.2 760.6
1991 |N 13 13 13 13 13 13 13 13
MEAN]| 307.2 | 462.5 | 330.1 | 1099.8 | 390.2 | 672.4 | 393.4 | 1455.9
SD 264.4 | 358.8 | 269.0 685.2 | 452.4 | 629.3 | 309.8 | 1241.8
1992 N 12 12 12 12 12 12 12 12
MEAN]| 250.2 | 372.5 | 367.3 990.0 | 209.6 | 506.6 | 364.1 1080.3
SD 271.3 | 205.4 | 242.0 | 589.5 186.6 | 281.8 | 228.9 549.8




Table 6.1. continued.
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DENSITIES
YEAR [STATS CNI | CNJuv | CNAdl | CNTot | TNI | TNJuv | TNAdL | TNTot
1984-88 IN 63 63 63 63 63 63 63 63
MEAN | 510.9 | 902.2 | 840.7 | 2253.8 | 313.9 | 640.6 | 463.6 | 1418.2
SD 568.0 | 813.8 | 604.9 | 1628.4 | 365.7 | 541.3 | 386.1 | 1040.5
1989-92 IN 51 51 51 51 51 51 51 ‘51
MEAN | 449.2 | 573.4 | 487.6 | 1510.2 | 389.8 | 680.9 | 488.2 | 1558.9
SD 4482 | 364.9 | 320.2 | 916.3 | 357.1 | 476.1 | 317.1 | 981.9
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Table 6.2. Mean (& SD) annual proportions of total Isotoma notabilis populations in three

developmental stages. N = N dates /year.
' CPI, CPJuv, CPAdl, and TPI, TPJuv, TPAd] = proportion of total population in Instar I, larger
juvenile, and adult classes in Control and Test respectively.

PROPORTIONS
YEAR STATS CPI1 CPJuv CPAd1 TPI TPJuv TPAdI .
1984 N 12 12 12 12 12 12
MEAN 0.226 0.404 0.371 0.228 0.404 0.367
, SD 0.176 0.198 0.213 0.147 0.197 0.202
1985 N 13 13 13 13 13 13
MEAN 0.187 0.334 0.479 0.202 0.410 0.388
SD 0.106 0.086 | 0.178 0.111 0.134 0.165
1986 N 13 13 13 13 13 13
MEAN 0.273 0.370 0.357 0.221 0.423 0.356
SD 0.167 0.162 0.164 0.161 0.128 0.175
1987 N 13 13 13 13 13 13
MEAN 0.233 0.429 0.338 0.216 0.468 0.316
SD 0.148 0.114 0.148 0.122 0.155 0.174
1988 N 12 12 12 12 12 12
MEAN 0.186 0.369 0.445 0.181 0.490 0.329
SD 0.121 0.155 0.155 0.131 0.132 0.113
1989 N 13 13 13 13 13 13
MEAN 0.345 0.340 0.315 0.251 0.405 0.343
SD 0.169 0.118 0.136 0.150 0.119 0.138
1990 N 13 13 13 13 13 13
MEAN 0.232 0.399 0.369 0.261 0.430 0.309
SD 0.111 0.126 0.131 0.124 0.114 0.071
1991 N 13 13 13 13 13 13
MEAN | 0.277 0.441 0.282 0.228 0.464 0.307
SD 0.226 .0.242 0.178 0.126 0.136 0.149
1992 N 12 12 12 12 12 12
MEAN 0.217 0.395 0.389 0.181 0.485 0.335
SD 0.154 0.166 0.178 0.110 0.148 0.139




Table 6.2. continued.
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PROPORTIONS
YEAR STATS CP1 CPJuv CPAdl TPI TPJuv TPAdI
1984-88 [N 63 63 63 63 63 63
MEAN 0.221 0.381 0.398 0.210 0.439 0.351
SD 0.145 0.146 0.164 0.132 0.150 0.165
1989-92 N 51 51 51 51 51 51
MEAN 0.269 0.393 0.338 0.231 0.445 0.324
SD 0.173 0.169 0.158 0.128 0.129 0.125
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Appendix 7 . Checklist of carabid beetles collected during 1985-1991 in Test and Control sites;
nomenclature following Lindroth (1969).

COLEOPTERA: FAMILY CARABIDAE

Tribe Cychrini
Sphaeroderus lecontei Dejean

Tribe Carabini
Carabus granulatus Linné
Carabus sylvosus Say
Carabus serratus Say
Calosoma frigidum Kirby

Tribe Notiophilini
Notiophilus aeneus Herbst

Tribe Scaritini
Dischirius sp.
Clivina fossor Linné

Tribe Bembidiini
Bembidion quadrimaculatum Linné
Bembidion pseudocautum Lindroth

Tribe Pterostichini
Myas cyanescens Dejean
Pterostichus adstrictus Eschscholtz
Pterostichus pensylvanicus Leconte
Prerostichus mutus Say
Pterostichus melanarius Illiger
Pterostichus coracinus Newman
Prerostichus bryantoides Ball
Pterostichus adoxus Say
Prerostichus haematopus Dejean
Prerostichus honestus Say
Prerostichus corvus Leconte
Abacidus permundus Say
Calathus spp.
Synuchus impunctatus Say
Agonum retractum Leconte
Agonum decentis Say
Agonum placidum Say




Tribe Amarini
Amara sp.

Tribe Harpalini
Harpalus fuliginosus Duftschmid
Harpalus lewisi Leconte
Harpalus fulvilabris Mannerheim

Tribe Licinini
Diplocheila assimilis Leconte
Tribe Lebiini
Metabletus americanus Dejean
Cymindis cribricollis Dejean
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Appendix 8. Results of regression analyses of reproductive parameters of Aporrectodea
tuberculata in the Test site.

1. Dependent variable: CLITELLATE DENSITIES
Independent variables: clitellate densities lagged (by one date); A moisture; A temperature;

(A temperature)z; (moisture x temperature).

lcrour |source SS DF | MS F P R?

84-86 Regression 7920.4 5 1584.1 43.63 0.000 | 0.89
Residual 980.2 27 36.3

87-88 Regression 8506.4 5 1701.3 8.62 0.000 | .0.73
Residual 3158.8 16 197.4

84-88 Regression 17325.6 5 3465.1 36.62 0.000 | 0.79
Residual 4636.3 49 94.6

89-93 Regression 1677.9 5 335.6 4.13 0.003 | 0.30
Residual 3976.7 49 81.2

T-TESTS OF RESIDUALS:

GROUP N MEAN SD P
84-86 33 -0.054 5.535

87-88 22 1.707 14.232 0.585
84-88 55 -0.094 9.266

89-93 55 -2.548 10.645 0.200




2. Dependent variable: CLITELLATE PROPORTIONS transformed: [In (p/1-p)]
Independent variables: clitellate proportions lagged (by one date); A moisture.
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GROUP [SOURCE SS DF MS F P | R?

84-86 Regression 48.181 2 24.090 17.98 | 0.000 | 0.55
Residual 40.195 30 1.340

87-88 Regression 70.866 2 35.433 88.94 | 0.000 | 0.90
Residual 7.570 19 0.398

84-88 Regression 118.642 2 59.321 63.79 | 0.000 { 0.71
Residual 48.359 52 0.930

89-93 Regression 13.246 2 6.623 16.85 | 0.000 | 0.39
Residual 20.435 52 0.393

T-TESTS OF REGRESSION RESIDUALS:

GROUP N MEAN SD P

84-86 33 -0.1361 1.1299

87-88 22 0.0007 0.6004 0.562

84-88 55 -0.0002 0.9463

89-93 55 -0.1127 0.6835 0.476




3. Dependent variable: NEW COCOON DENSITIES
Independent variables: clitellate densities; clitellate densities lagged (by one date).
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GROUP |[SOURCE SS DF| MS F P R2
84-86 Regression 7487.6 2 3743.8 76.57 | 0.000 | 0.84
Residual 1466.8 | 30 48.9
87-88 Regression 8521.6 2 4260.8 56.56 | 0.000 | 0.86
Residual 1431.3 19 75.3
84-88 Regression 17612.9 2 8806.5 151.36 { 0.000 | 0.85
Residual 3025.5 | 52 58.2
89-93 Regression 4583.8 2 2291.9 27.97 | 0.000 | 0.52
Residual 4260.9 52 81.9
T-TESTS OF REGRESSION RESIDUALS:
"GROUP N MEAN SD P
84-86 33 -0.005 6.770
87-88 22 1.161 9.047 0.609
84-88 55 0.001 7.488
89-93 55 2.953 8.902 0.063
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Appendix 9. Basic density statistics for Aporrectodea tuberculata (Test site) by date, 1984-1993

(N samples = 10 or 12 /date);
NTOTAL, NIMM = mean /sample /date, total worms and immatures respectively;

DENSTOT, DENSIMM = density of total worms and immatures /m2;
SD listed to the right of each mean or density column.

YEAR DATE NTOTAL SDTOTAL NIMM SDIMM  DENSTOT SDTOT DENSIMM SDIMM
84 1 17.9 9.279 13 6.58 286.4 148.464 208 105.28
84 2 18.1 8.787 13.6 6.91 289.6 140.592 217.6- 110.56
84 3 13 5.944 9.8 543 208 95.104 156.8 86.88
84 4 185 3.342 12.7 4.27 296 5§3.472 203.2 68.32
84 5 14.6 5.26 9.4 3.66 233.6 84 1504 58.56
84 6 14.8 8.08 103 7.07 236.8 120.28 164.8 113.12
84 7 15.1 8.62 113 7.33 241.6 137.92 180.8 117.28
84 8 16.8 6.14 11.3 5.29 252.8 98.24 180.8 84.64
84 9 17 6.56 125 5.27 272 104.96 200 84.32
84 10 12.8 3.94 8.8 3.52 204.8 63.04 140.8 56.32
84 11 16.3 10.45 11.7 7.66 260.8 167.2 187.2 122.56
84 12 14.9 6.33 9.7 4.27 2384 101.28 155.2 68.32
85 1 17.75 7.41 13.42 7.29 284 118.56 214.72 116.64
85 2 18.6 12.48 14.17 10.17 297.6 199.68 226.72 162.72
85 3 21.25 9.79 15.92 8.53 340 156.64 254.72 136.48
85 4 20.25 9.39 15.17 8.03 324 150.24 242.72 128.48
85 5 19.17 10.29 14.75 7.52 306.72 164.64 236 120.32
85 6 175 7.49 13.67 7.02 280 119.84 218.72 112.32
85 7 13.75 6.18 11.42 5.43 220 98.88 182.72 86.88
85 8 14.08 4.12 10.08 3.37 225.28 65.92 161.28 53.92
85 9 17.75 9.61 13.5 7.67 284 153.76 216 122.72
85 10 19.5 11.77 15 11.15 312 188.32 240 178.4
85 11 27.75 7.63 21.75 6.38 444 122.08 348 102.08
85 12 21.33 12.47 16.67 932 . 341.28 199.52 266.72 149.12
86 1 18 4.16 14 4.16 288 66.56 224 66.56
86 2 19 7.8 14.08 7.57 304 124.8 225.28 121.12
86 3 21.92 6.2 17.33 4.27 350.72 99.2 277.28 68.32
86 4 18.67 4.1 15.17 3.59 298.72 65.6 242.72 57.44
86 5 16.75 7.7 12.33 8.72 252 123.2 197.28 139.52
86 6 16.75 7.14 13.25 5.99 268 114.24 212 95.84
86 7 15.17 7.58 12.75 7.6 242.72 121.28 204 121.6
86 8 18.42 7.84 14.08 5.81 294.72 125.44 225.28 '92.96
86 9 17.17 5.73 12.08 4.98 274.72 91.68 193.28 79.68
86 10 19 8.01 14.25 7.47 304 128.16 228 119.52
86 11 17.33 8.21 13.58 6.67 277.28 131.36 217.28 106.72
86 12 14.75 5.21 10.42 4.42 236 83.36 166.72 70.72
87 1 14.83 5.64 10.75 4 237.28 90.24 172 64
87 2 17.7 6.57 11.6 6.11 283.2 105.12 185.6 97.76
87 3 19.8 9.04 14 7.97 316.8 144 .64 224 127.52
87 4 13.5 6.36 8.9 5.8 216 101.76 142.4 92.8
87 5 14.6 5.54 10.6 5.72 233.6 88.64 169.6 91.52
87 6 20.1 7.78 13.4 4.97 321.6 124.48 214.4 79.52
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26
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211
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8.26
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9.18
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13.7
9.44
9.81
7.54
5.07
7.27
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4.71
5.46
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6.8
6.53
5.17
5.46
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15.39
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17.43
9
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6.74
13.78
5.45
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10.47
5.29
9.7
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12.5
14.9
17.5
141
16.8

13

19
16.9
154
14.6
10.8
12.9
11.3
11.2

8.3
12.8

9.7
16.3
103
11.8
12.7
16.7
17.2
19.9
16.4
21.4
18.6
19.1
17.1
19.2
154
17.2
13.5
15.9

9.3

11
13.2
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7.08
5.93
6.75
6.17
6.58
1.77
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3.83
3.91
5.01
5.67
3.59
6.36
5.79
3.99
6.22
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6.71
6.9
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DENSTOT SDTOT DENSIMM SDIMM

313.6
360
408

358.4

308.8

292.8

345.6
400

3104

385.6

275.2

406.4
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329.6
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105.28
124.32
212.8
102.72
121.44
79.52
84.64
83.84
61.28
62.56
80.16
80.72
57.44
101.76
92.64
63.84
99.52
118.56
233.76
107.36
110.4
245.76
126.88
187.68
89.44
188.64
66.72
96.8
70.08
147.84
51.2
148
86.88
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YEAR

91
91
91
91
91
91
91
91
91
91
91
91
92
92
92
92
92
92
92
92
92
92
92
92

93
93
93
93
93
93
93
93
93
93
93

DATE -

—h - b ok
O © O NO G & WN =N =0 O 0N B WK -

I
© 0 NO Ut A WN AN -

NTOTAL SDTOTAL NIMM

17
17.5

16
15.9
235
12

18
19.5
15.1
13.2
19.8
19.4
19.7
17.1
17.1
18.3
15.1
13.6
14.6
14.6

16
15.9
16.7
16.6
15.9

18
16.4
17.8
18.3
13.4

14
12.6
20.2
22.2
24.1

19.7

6.73
4.9
4.88
]
8.62
5.33
7.23
7.82
7.85
5.88
7.66
6.89
7.89
5.82
5.62
9.37
10.86
5.97
6.99
7.52
9.27
7.28
5.06
11.06
4.84
6.16
8.04
8.65
8.03
717
6.39
4.55
7
9.46
9.25
8.3

12.4
13.1
10.9
111
173
8.7
13.5
15.2
11.4
8.3
13.7
14
13.7
12.8
13.6
143
111
9.6
10.2
10.9
9.9
113
119
12.2
113
114
10.8
14
14.3
11
10.8
9.3
15.4
17.2
19.5
14.5

SDIMM

7.62
5
2.96
5.04
8.92
437
5.34
7.37
7.78
4.32
5.66
4.99
7.94
4.73
5.48
7.64
8.57
4.37
7.34
6.28
6.31
6.73
3.93
8.19
3.8
5.81
5.83
7.76
8.34
6.63
6.14
3.95
5.72
5.94
8.8
7.01

DENSTOT sSDTOT

272
280
256
254.4
376
192
288
312
241.6
211.2
316.8
310.4
315.2
273.6
273.6
292.8
2416
217.6
233.6
233.6
256
254.4
267.2
265.6
254.4
288
262.4
284.8
292.8
2144
224

2016,

323.2
3565.2
385.6
315.2

107.68
78.4
78.08
80
137.92
85.28
115.68
125.12
125.6
94.08
122.56
110.24
126.24
93.12
88.92
149.92
173.76

. 95.52

111.84
120.32
148.32
116.48
80.96
176.96
77.44
98.56
128.64
138.4
128.48
114.72
102.24
72.8
112
151.36
148
132.8
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DENSIMM  SDIMM

198.4
209.6
174.4
177.6
276.8
139.2

216
243.2
182.4
132.8
219.2

224
219.2
204.8
217.6
228.8
177.6
153.6
163.2
174.4
158.4
180.8
190.4
185.2
180.8
182.4
172.8

224
228.8

176
172.8
148.8
2464
275.2

312

232

121.92
80
47.36
80.64
142,72
69.92
85.44
117.92
124.48
69.12
90.56
79.84
127.04
75.68
87.68
122.24
137.12
69.92
117.44
100.48
100.96
107.68
62.88
131.04
60.8
92.96
93.28
124.16
133.44
106.08
98.24
63.2
91.52
95.04
140.8
112.16
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Appendix 10 . Litterbags: mean (and SD) mass remaining (AFDW) per date, in each series
(identified by year of field placement and subsequent year of sampling; Date 1 through 6 or 7
= early May to November; N per date in parentheses after date 1 of each series. EXCH. =
litter Exchange series (Control site litter in Test and vice versa).

TEST CONTROL
SERIES DATE (N) MEAN SD MEAN SD
I (85-86) |1 (10) 67.60 5.47 66.00 7.72
2 70.65 5.82 62.07 9.17
3 62.7 6.49 60.14 9.45
4 61.78 6.41 56.88 11.25
5 53.23 6.72 54.78 9.10
6 47.87 7.30 48.68 7.41
7 40.16 5.44 38.68 7.89
II (88-89) 1 (10) 73.77 4.07 70.54 2.92
2 65.47 4.93 65.96 3.31
3 61.23 6.08 65.27 5.23
4 57.01 4.11 58.41 4.62
5 53.46 6.24 53.51 6.54
6 47.68 4.55 57.52 8.12
7 44.96 4.14 57.12 5.05
IITI (89-90) 1 (12) 76.96 2.42 76.99 1.87
2 68.33 3.35 73.16 3.05
3 62.65 4.16 66.47 6.25
4 59.94 2.55 65.56 3.87
5 50.49 3.84 56.86 5.19
6 41.35 6.59 54.13 6.11
7 40.14 4.30 51.19 3.74
IV (90-91) 1 (12) 70.11 3.38 74.03 2.28
2 65.37 3.63 69.669 3.33
3 60.12 2.39 66.77 4.50
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TEST CONTROL

SERIES DATE (N) MEAN SD MEAN SD
4 54.72 5.48 62.95 4.03

5 53.00 5.51 53.54 8.26

6 41.93 2.52 50.88 5.88

7 38.51 2.73 51.83 9.37

EXCH. (90-91) |1 (12) 71.05 3.39 74.52 5.71
2 63.76 2.66 70.34 3.82

3 61.78 3.00 66.95 2.79

4 56.06 5.49 64.44 4.84

5 49.38 5.18 54.96 5.30

6 40.08 5.00 51.6 6.19

7. 36.29 4.77 54.03 6.95

V (91-92) 1 (12) 66.99 5.46 63.71 5.72
2 57.41 3.76 62.42 3.84

3 55.50 4.28 54.63 3.46

4 47.82 4.80 46.21 4.31

5 44.70 5.09 42.66 3.17

6 39.17 9.57 42.62 8.53

7 32.33 6.98 37.90 8.06

VI (92-93) 1 (12) 70.46 7.24 73.13 3.62
2 56.54 6.49 65.50 3.49

3 54.34 4.78 59.07 5.74

4 50.86 5.15 59.09 3.60

5 46.50 7.28 45.30 5.98

6 44.08 5.71 46.61 3.89




