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Chapter 1 

Flexible Multibody Systems 

The Air Force remains active in space systems, and hardware, such as space 
robots, rotorcraft and spacecraft. They consist of subsystems which can be de- 
scribed as flexible multibodies. The dynamics and control of flexible multibody 
systems has been of interest for many years (Refs. 1-16). Identifying, modeling 
and controlling such systems using various theories with confidence has also be- 
come an important issue. At present, a real need exists for the validation and 
comparison of various modeling and control theories based on an actual hard- 
ware experiment. However, compared to theoretical developments and number 
of computer programs available, experimental verification has never been con- 
ducted. To this end, the Phillips Laboratory at Kirtland AFB has constructed 
a flexible multibody structure called PACE(Planar Articulating Controls Ex- 
periment) which consists of 2 flexible beams connected in series with motors at 
both the hub and the elbow joint (Fig. 1.1). 

In recent years, the interest has broadened so as to include maneuvering and 
control. This narrows the choice of formulations significantly, as the formulation 
must be consistent with the control task. A set of equations of motion suited 
for the control task can be formulated by means of Lagrange's equations for 
flexible bodies in terms of quasi-coordinates. The advantage of this approach is 
that it yields equations in terms of body axes, which are the same axes as those 
used to express control forces and torques. In using the approach of Ref. 12 
to derive equations of motion for a chain of flexible multibody systems, it is 
convenient to adopt a kinematical procedure permitting the expression of the 
velocity vector of a nominal point in a typical body in terms of the velocity 
vector of the preceding body in the chain. The resulting differential equations 
are nonlinear and hybrid (Ref. 13), where the term "hybrid" implies that the 
equations for the rigid-body translations and rotations are ordinary differential 
equations and those for the elastic motions are partial differential equations. 
Because maneuvering and control design in terms of hybrid equations is not 
feasible, the partial differential equations must be transformed into sets of ordi- 



Figure 1.1: PACE Test Article 

nary differential equations by means of a discretization-in-space procedure, such 
as the finite element method (Ref. 14) or a Rayleigh-Ritz based substructure 
synthesis (Ref. 15). The resulting formulation consists of a high-order set of 
nonlinear ordinary differential equations. A common approach to control de- 
sign requires the solution of a two-point boundary-value problem, which is not 
feasible for high-order systems, so that a different approach is advisable. 

The nonlinearity enters into the differential equations through the rigid- 
body motions. Indeed, the elastic motions tend to be small. In view of this, it 
appears natural to conceive of a perturbation approach whereby the rigid-body 
motions can be regarded as being of zero-order in magnitude and the elastic 
motions as being of first-order in magnitude. This approach permits dividing 
the problem into a low-dimensional set of nonlinear zero-order equations for the 
rigid-body motions and a high-dimensional set of linear first-order equations for 
the elastic motions and the perturbations in the rigid-body motion, where the 
order is to be taken in a perturbation sense. Note that, because the zero-order 
solution enters into the first-order equations as a known function of time, the 
first-order equations represent a time-varying system. Moreover, the system is 
subjected to persistent disturbances. The perturbation approach just described, 
first proposed in Ref. 16, was used in Refs. 17-21 to maneuver and control flexible 
spacecraft. 

The kinematical synthesis of Refs. 16-21 works quite well in the case in which 
the number of bodies in the chain is relatively small. When the number of bodies 
is larger than three, difficulties can be expected, so that a different approach is 
advisable. In Refs. 14-19, the kinematical synthesis was implemented before the 
derivation of the equations of motion was carried out. In this paper, we consider 
a procedure whereby the equations of motion are derived first for each individual 
flexible body. Then, the sets of equations for the individual bodies are assembled 
into a global set by invoking the kinematical relations described above. In the 
process, the redundant coordinates and velocities resulting from considering 
the individual bodies separately are eliminated. It is convenient to carry out 



the kinematical synthesis on the zero-order problem and first-order problem 
separately. Implementation of the kinematical synthesis is based on recursive 
relations that lend themselves to ready computer coding. The resulting zero- 
and first-order global sets of equations are particularly suited for maneuvering 
and control design, respectively. 

The zero-order nonlinear equations govern the maneuver as if the system 
consisted of articulated rigid bodies where the maneuver amounts to driving 
the system from an initial state to a final state. The equations can be solved 
open-loop or closed-loop. For minimum-time maneuvering, the control law is 
bang-bang. The simplest approach is to carry out the maneuver by means of 
actuators that impart predetermined motions to the substructures relative to 
one another. The first-order equations govern the elastic vibrations and the 
perturbations in the rigid-body motions. They contain the zero-order solution 
as a known function of time. As a result, the system is time-varying. Moreover, 
it is subjected to persistent disturbances caused by the maneuver. The process 
can be likened to that in which the system must follow a reference state. In 
this case, the reference state is defined by the rigid-body maneuvering, which 
is characterized by zero elastic states. Then, the first-order equations are sim- 
ply the equations in terms of the difference between the actual states and the 
reference states, where this difference can be identified as perturbations in the 
state variables. Control of the first-order system is carried out closed-loop and 
includes a disturbance accommodation procedure. The latter depends on the 
type of disturbance, which in turn depends on the type of maneuver performed. 

As a numerical example, PACE with direct DC motors is considered, in 
which bang-bang control voltages are applied to shoulder and elbow motors. 
Numerical results show the effectiveness of the new algorithm developed in this 
paper. 



Chapter 2 

Modeling of Flexible 
Multibody Systems 

2.1    Equation of Motion 

Our interest lies in deriving equations of motion capable of describing the prob- 
lem of maneuvering and control of structures in the form of an articulated 
chain of 2 flexible substructures. To this end, we propose to use a kinematical 
synthesis procedure whereby the motion is referred to sets of local body axes 
embedded in the undeformed substructures and the motion of one substructure 
is described in terms of the motion of the preceding substructure in the chain. 
This kinematical procedure obviates the need for constraint equations. 

The approach used in this report is to derive equations of motion for the 
individual substructures separately and then impose kinematical relations of 
the type described earlier to obtain system's equations of motion. Although the 
approach is used for the case of a two-link flexible body system, the approach 
can be extend to the case of arbitrary N flexible multibody systems. 

Let us consider a typical flexible substructure moving on a horizontal sur- 
face (Fig. 2.1) and introduce the inertial axes XY with the origin at O and a 
set of body axes xsya with the origin at S and embedded in the undeformed 
substructure. Then, we can write the position vector of a typical point in the 
substructure with the spatial coordinates given symbolically as follows: 

W, = hT(R, + Cjua) = nTW, (2.1) 

where h = [I J]T represents the column matrix consisting of the unit vectors 
in X- and Y-directions corresponding to inertial coordinates, Cs = C(9S) is the 
matrix of the direction cosines which is given by 

c6,    so, 
C,= 

-s6,    cÖ, 
(2.2) 



Figure 2.1: Flexible Body 

In addition, Rs is the radius vector from I to S, and us includes the radius 
vector from S to a typical point in s and the elastic displacement vector of the 
same point relative to the body axes x,ys, respectively. Thus, we can write 

*-{£} -{:} (2.3) 

where vs represents the elastic displacement. Note that Ra is in terms of inertial 
coordinates and x, and v, are in terms of components along the body axes. We 
propose to derive the equations of motion by the approach of Ref. 1. In fact, 
the equations of motion for the individual bodies are identical to the hybrid 
equations derived here, so that here we merely present the pertinent material. 

The Lagrangian formulation requires the kinetic energy, which in turn re- 
quires velocities. Assuming that axes x,y, rotates with the angular velocity 0, 
relative to the inertial axes, the velocity vector of a typical point in s can be 
easily derived. Since we are concerned with the kinetic energy, let us derive the 
velocity squared. Hence, using Eq. (2.1), we can obtain 

=    l-RjR,-6tRTDju, + RTCjü, 

(2.4) 



where 

D,= 
s9s    -c9s 

c9s      s9s 
1 = 

0 -1 
1 0 (2.5) 

in which c9 = cos 9 and s9 = sin 9. 
For chains of flexible substructures such as those under consideration here, 

no closed-form solution of the hybrid differential equations is possible, so that 
we must be content with an approximate solution. This implies discretization in 
space of the partial differential equations, which amounts to replacing the partial 
differential equations by sets of ordinary differential equations. The discretiza- 
tion can be carried out by means of the finite element method of the classical 
Rayleigh-Ritz method. In either case, we express the elastic displacement vector 
in the following form: 

u. = 
x,        0 
0    *,(*,) . ;} (2.6) 

where $s(xs) is the vector of admissible functions and q, is the vector of gener- 
alized coordinates. We will assume that the admissible functions introduced in 
Eq. (2.5) automatically satisfy the geometric boundary conditions. In addition, 
the control design for the hybrid equation is not feasible, so that the use of the 
discretization approach can be justified. 

Inserting Eq. (2.5) into Eqs. (2.4) and integrating over the length results in 

T   =    -m,RiR, - 9SRJ Dj (LSS + N$sqs) + RjCjN<S>sq. 

+ ±Is9]+9s$sqs + ^qT
sM!q, 

where 

m. -I" Jo 
m.dx, I" Jo 

m.x.dx, -r Jo 
msxs 

in which m, is the mass density per unit length. In addition, 

4. f Jo 
m,$3dxs        $. 

Jo 
m.x.$.dx. 

r>- 
M,=  f   ms$J<S>sdxs        L= |  ; | N = 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

Moreover, the potential energy can be expressed in the following form: 

Vs = [us,us] (2.11) 
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where [ ] denoted symbolically an energy integral and is a measure of the strain 
energy. Since we are concerned with the beam bending vibration, the elastic 
potential takes the form 

LEI,(^)ä*. (2.12) 

Inserting Eq. (2.6) into Eq. (2.12), we obtain the potential energy in the dis- 

cretized form: 1 

V, = ffK.q. (2-13) 

where T 

*■ = /"•!? sT" (214) 

represents the substructure stiffness matrix. 
The virtual work for the system can be expressed in the following form: 

6W = TS66, (2.15) 

where Ta is the torque applied to the origin of the body axes x,ys. 
Hence, the Lagrange's equations of motion for the system shown can be 

written as . 
±    °2L) = o (2.16) 
dt \dRj 

L(*L\-S- = T. (2.17) 
dt \d6j    des 

A(^n_- + - = 0 (2.18) 
dt\dqj       dq,       dq, 

Inserting Eqs. (2.7), (2.13) and (2.15) into Eqs. (2.16), (2.17) and (2.18). we 
can obtain 

msRs-6,Dl(LS,+N$3q,) 

+CjN$,q, - e2
sCj(LSs + N$,q,) - 26sD

T
sN$sq, = 0      (2.19) 

- RT
SD

T
X{LS, + N$aq,) + ij, + $sq, = Ts (2.20) 

$*I%CSRS + $J'e, + Msq\ + K,q, = 0 (2.21) 

The above equations represent the nonlinear ordinary differential equations for 
the single substructure. Imposing the kinematical relations to the above equa- 
tions to link two adjacent substructures is not an easy task. In addition, the 
control design for the nonlinear system is not easy. Thus, we propose the per- 
turbation method in the next section to ease the kinematical synthesis and 
numerical calculations. 



2.2    Perturbation Method 

Designing the maneuvering and control for articulated systems of substructures 
is very difficult, especially if the design is to be optimal in some fashion. The 
difficulty can be traced to the fact that the system is nonlinear and of high or- 
der. The nonlinearity can be attributed to the rigid-body motions and the high 
order to the elastic motions. The perturbation approach is based on the simple 
observation that rigid-body motions tend to be large compared to the elastic 
motions. Consistent with this, let us assume that the translations and rotation 
of the body can be divided into zero-order terms and first-order terms in mag- 
nitude. Elastic displacements are assumed to be small so that the generalized 
displacements associated with elastic motion can be regarded as a first-order 
term. Thus, we may write 

Rs = R,o + R,i       0, = 0,o + 0,i       T, = TJO + T,i (2.22) 

Inserting Eq. (2.22) into trigonometric functions yields the following relations. 

c0s = c0sO - s0,o0,i        s0, = s0sO + c0,o0,i (2.23) 

which lead to 
C, = C,0 - D,o0sl       D, = D,Q + C,o0,i (2.24) 

Introducing Eqs. (2.22) and (2.24) into Eqs. (2.19), (2.20) and (2.21), we can 
obtain the zero-order equations of motion 

m,R,0 - Dj0LSjs0 - ö2
s0Cj0LS, = 0 (2.25) 

- SsL
TDs0R,o + I,Ö,o = Ts0 (2.26) 

as well as the first-order equations of motion 

msRsl - S,DjoL03l + Cj0N$sq, - 20sOCfoLS,0sl - 20sODjoN$,q, 

-(0,oCjo - 02
sODsO)LS,0sl - (0iODjo + 62

s0C,o)N$sqs = 0    (2.27) 

- S,LTDs0Rsl + I,0sl + 9,q, - S,LTCs0Rs09,i - Rj0Dj0N$sqs = Tgl (2.28) 

$*NTC,0R,i    +    $,0,i + M,q, - if LJDSOR,O0,I + K,q, 

=    -0sO$J-$>TCso/to (2.29) 

In matrix form, we have 

M,oxs0 = f,o + d,0 (2.30) 

M,ii,i + C,ixsl + IC,ix,i = fsi + d,i (2.31) 

8 



where 

ZäO = 

and 

RsO 

OsO 
flO = 

0 
0 

dso 0 
,i 

X,l = 

9»   . 

/.i = 

'   0 

0 

0 

dsi — 0 

-eso^J-^NTCsoRsO . 

Mso = 
m,          —SsDs0L 

-SsL
TDso          Is 

Ms i — 
  

m, 
SsLTDs 
T
tN

TCs 

0 

0 

-SsDj0L 

Is 

/ 

Ms 

'«1 

0   -20fo    -2ö,o^o^*f 

0       0 0 
0       0 0 

£«i = 

0   -(ÖsoCfo - 02soD,o)LS,    -(6,0DJ0 + e2
0Cso)N$s 

0 -SsLTCsoRso -RsoDj0N$s 

0 -^NTDsoRso K. 

(2.32) 

(2.33) 

(2-34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

The main advantage of using the perturbation method is in that the zero- 
order equations can be solved independently of the first-order equations. The 
zero-order equations are nonlinear but in low order. Once the zero-order equa- 
tions are solved, the solution of the zero-order equations enters into the first- 
order equations and complete the numerical calculations. So far, we are con- 
cerned with the single substructure. In the next section, we will see how to 
assemble individual equations into a global equations of motion by means of the 
kinematical synthesis. 

2.3    Zero-Order Kinematical Synthesis 

The derivation of the equations for the individual substructures was carried out 
in Sec. 2.2 as if the substructures were free to move relative to one another. In 
reality, however, they are all part of an interacting system of flexible bodies, 
so that the motions of the various substructures are coupled. Indeed, because 
the various substructures are hinged to one another, the motion of a given 



hinge is accounted for several times, once for each substructure sharing the 
hinge. As a result, the motions defined by the independent equations of motion 
derived in Sec. 2.2 contain redundant coordinates. In this regard, we note that 
hinges constrain the translational motions but leaves the rotational motions free. 
The kinematical synthesis to be introduced shortly is designed to eliminate the 
surplus coordinates. We propose to carry out the kinematical synthesis for the 
zero-order and first-order equations separately. Then, we can conclude that 
the zero-order rigid-body displacements and velocities of the substructures are 
related as follows: 

s-l 

ä,O = £C£L4 (2.39) 

4-1 

0,0 = *io+ £ä+I,O (2-40) 
i=l 

The first and second derivatives with respect to time can be easily obtained. 

j-i 

?s0 — "10 ' 

s-l s-l 

R.o = -52DT0L£ieio (2.41) 
»=i 

s-l 

+ X>+i,o (2-42) 
»=i 

s-l 

Rso = ~Y, DfoLeÄo - J2 ClLWl (2.43) 
i=i «=i 

s-l 

ö,o = Äio + X)Ä+i,o (2.44) 
i=i 

Let us confine the case to a two-link flexible body system such as PACE. 
In this case, the origin of the first body is identical to the origin of the inertial 
axes and the body is rotating on a plane. The second body is connected to 
the first body through the pivot joint. The zero-order system amounts to the 
two-link rigid body system. Thus, the overall degree-of-freedom is two. The 
first variable can be chosen as an absolute angle of the first body with respect 
to the inertial axes and the second variable can be chosen as the relative angle 
between the body axes of the second body and the body axes of the first body. 
Thus, we may write for the global zero-order displacement as follows: 

2o = [0io /?2of (2.45) 

The acceleration vector of each body can be generally written as 

Xso = E,o'zo + ds0 ,   s = 1,2 (2-46) 

10 



It can be readily seen that 

E\o = 

for the first body and 

E20 = 

O21    O21 
1      0 

-DLhh    O21 ioJ 

1 1 

dio = 

,    ^20 = 

021 
0 

0 

(2.47) 

(2.48) 

for the second body where 0„m represents an n x m null matrix. Inserting 
Eqs. (2.47) and (2.48) into Eq. (2.30) and adding the results, we can obtain the 
global zero-order equation. 

Mo'zo = do (2-49) 

where 
2 2 

M0 = ^2EJ0MS0E30,  d0 = YlE^(f'0-Msoda0) (2.50) 
3=1 3=1 

It can be observed from Eq. (2.49) that the numerical simulation of the global 
zero-order equation can be carried out independently of the first-order equation 
so that the maneuvering control can be also designed independently. Hence, 
the maneuvering motions excite beam vibrations which in turn cause perturbed 
motions in rotational motions. 

2.4    First-Order Kinematical Synthesis 

The kinematical synthesis for the first-order equations is carried out in the same 
way as for the zero-order equations. The derivation of the constraint relations 
is tedious and is omitted here for brevity. The basic recursive relations are 

a-l 

Ä.i = E [CToNMdhi - DfoLtiffn] 
»=i 

3-1 

0äi=0ii+X>.+U+*K4)<7i] 

(2.51) 

(2.52) 
i=l 

The first and second derivatives with respect to time are as follows: 

s-l 

»=1 

Ä,i = 2 [d?0N*i(li)qi - ei0Di0N$i(ti)<li - DlLiiOa - ÖnC&LliOn 

3-1 

(2.53) 

(2.54) 
t=i 

11 



4-1 

«=1 
Rsl    =    Y,MoNWWi-ÜioI%N$i(li)qi-eioDlN$M)<li 

-DfoLliOn - 29i0ClQLli6a - Ö.oQiM^i 

4-1 

i=l 

(2.55) 

(2.56) 

If we confine ourselves to the two-link flexible body system as we did in 
the previous section, the substructure first-order displacement vector can be 
expressed in terms of the global first-order displacement vector. 

where 

It can be readily seen that 

£n = 

for the first body and 

i?21 = 

xsl = £',i2i ,  s = 1,2 

21 = [011 91 /?21?2]T 

021      02n      O21      Ü2n 
1        0i„        0        0i„ 

Onl      Inn      0„l      0nn 

(2.57) 

(2.58) 

(2.59) 

-Djohi,    CfohMti)    O21    02n 

1 tß[(ti) 0     0i„ 
Onl Onn 0nl      Inn 

(2.60) 

for the second body where I„„ represents an n x n identity matrix. Inserting 
Eqs. (2.59) and (2.60) into Eq. (2.31) and adding the results, we can obtain the 
global first-order equation. 

Mi'z\ + C1Z1 + K-iZi = di 

where 

Mi = J2 E^MsiEsl ,  Ci = £ Ej^MnE,! + CtlEtl) 

(2.61) 

(2.62) 
4=1 4=1 

£i = I>?i(A<.i£i + C,ii7,i + /C,i£.i),  di^^E^d,! (2.63) 
4=1 4=1 

It can be observed from Eqs. (2.61), (2.62) and (2.63) that the zero-order solu- 
tion enters into the coefficient matrices of the global first-order equation so that 
the global first-order equation is in fact the time-varying linear second-order 

12 



differential equation. Numerical simulation is carried out in a way that first we 
solve the global zero-order equation and then insert the zero-order solution to 
the coefficients of the global first-order equation and solve the global first-order 
equation. It should be noted here that the actual rotational motions are the 
sum of two solutions as indicated by Eq. (2.22). 
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Chapter 3 

Numerical Results and 
Discussions 

A computer program based on the algorithm developed here was written using 
MATLAB. We consider the PACE shown in Fig. 1.1 as a numerical example. 
Each body represents a uniform slender beam with tip masses at both ends. 
The maneuver consists of bang-bang controls applied to each DC motors. As a 
result, the beams undergo bending deformation alone. 

Figures 3.1 through 3.4 show time histories of the response of the system. 
The time integration of equations was carried out by means of the wilson 6 
method. Figure 3.1 shows zero-order response of the system. It can be seen from 
Fig. 3.1 that the rigid-body rotations are made through the torques applied to 
the shoulder and the elbow. Figure 3.2 shows first-order rotational responses of 
the system, which are in fact the per tubed motions due to the elastic vibrations 
of each beam. Thus, the actual rotational responses of the system are the 
combination of Figs. 3.1 and 3.2 as shown in Fig. 3.3. 

Figure 3.4 shows time responses of tip displacements of each beam. As 
can be seen from Fig. 3.4, the fundamental modes are mostly excited by the 
maneuvering motions. However, dynamic characteristics of the whole system 
becomes more complicated than a single-body system since there are interactions 
between two bodies. It should be mentioned here that an efficient numerical 
integration scheme should be developed to cope with the nonlinearity of the 
system equations. 

There remains a question regarding what kind of data is good for neural 
network training. Since there is no available guideline on this, we generated the 
data set by applying random signals to the shoulder and elbow motors, which 
results in random motions. It should be mentioned here that based on the past 
PACE experiments the motions of PACE are not repeatable which may cause 
serious problems in neural network control since neural networks are simply the 
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Figure 3.1: Zero-Order Displacements 

mapping of the input and output. When there exists uncertainty, there is no 
definite answer on the stability of neural network control. We will have ample 
opportunities to explore the neural network control for the new field such as 
control of flexible multibody systems. 

The first part of this report is concerned with the development of a mathe- 
matical formulation capable of treating the problem of maneuvering and control 
of flexible multibody systems. The formulation is based on equations of motion 
in terms of coordinates derived for each substructure independently of the other 
substructures. The individual substructures are made to act as a single structure 
by means of a consistent kinematical synthesis. The net effect of this synthe- 
sis is the elimination of the redundant coordinates resulting from the original 
treatment of the substructures as if they were independent. 

In most problems of interest, the elastic motions are small compared to 
the maneuvering motions. In recognition of this, a perturbation approach is 
developed whereby the rigid-body maneuvering of the system defines the zero- 
order problem and the elastic motions and perturbations from the rigid-body 
maneuvering define the first-order problem., where the term "order" refers to 
magnitude in a perturbation sense. The kinematical synthesis mentioned earlier 
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Figure 3.2: First-Order Displacements 

is applied to both the zero-order problem and the first-order problem. The zero- 
order problem for the rigid-body maneuvering is nonlinear and of relatively low 
dimension and can be solved independently of the first-order problem. On the 
other hand, the zero-order solution induces time-varying coefficients and persis- 
tent disturbances in the first-order problem. The system of equations describing 
the first-order problem is linear, time-varying, and of high dimension. The equa- 
tions are in terms of components about body axes, which makes them ideal to 
control design. The formulation lends itself to ready computer implementation. 

As a numerical example, PACE test article is maneuvered according to a 
bang-bang control law by means of torques applied to the shoulder and the el- 
bow. The numerical example shows the effectiveness of the algorithm developed 
in this report as well as the applicability of the equations to the maneuvering 
and control of flexible multibody systems. 
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Figure 3.3: Time Histories of Angular Displacements 
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Figure 3.4: Time Histories of Tip Displacements 
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Chapter 4 

Neural Network in Control 

Contemporary control synthesis algorithms (e.g., robust, adaptive, and optimal 
controls) face severe limitations for some of the more challenging realistic systems as 
summarized in (Ref. 22). In particular, modern space structures are made of light- 
weight composites and equipped with piezoelectric or piezoceramic sensors and 
actuators. These flexible space structures, which are likely to be highly nonlinear with 
time-varying structural parameters and poorly modeled dynamics pose serious 
difficulties for all currently advocated methods. The difficulties arise in the 
characteristics of control system designs from a broad spectrum of aerospace 
applications; e.g., surveillance satellites, military robots or space vehicles. Existing 
design techniques often rely on the assumption of a good dynamic model containing 
identified system parameters. Furthermore, these iterative and computationally 
expensive approaches often require a prior fixed design constraints, where the loading 
and material properties need to be specified in advances. Consequently, design 
procedures to achieve the desired stability, robustness, and dynamic response for large 
space structures with unknown parameters are incomplete. 

The ultimate autonomous control for flexible space structures, intended to 
maintain acceptable performance over an extended operating range without external 
intervention, can be especially difficult to achieve due to factors such as high 
dimensionality, multiple inputs and outputs, complex performance criteria, 
operational constraints, imperfect measurements, as well as the inevitable failures of 
various actuators, sensors, or other components. It is impractical to expect the 
existence of a high fidelity model prior to deployment of such complex structures. 
Therefore, the controller needs either to be exceptionally robust or adaptable after 
deployment. Also, catastrophic changes to the structural parameters, due to 
component failures, unpredictable uncertainties, and environmental influences, 
require that the controller be reconfigurable (i.e., it refers to the ability of 
reconfiguring the controller when the plant dynamics are subjected to catastrophic 
changes.). 

Artificial neural networks, based on simplified models of the human brain, have 
been shown with promising capability for data manipulation. They have proven to 
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provide an efficient means of learning concepts from past experience, abstracting 
features from uncorrelated data, and generalizing solutions from unforeseen inputs 
(Refs. 23-24). Unlike conventional digital computers which require storing program 
representing the processing steps need to be followed exactly, artificial neural 
networks are composed of highly interconnected processing elements which are 
analogous to the most elementary functions of the biological counterparts. It is also 
believed that such networks are extremely robust with respect to malfunctions of 
individual devices because of the distributed storage and information flow. They are 
in contrast to today's high speed Von-Neumann computers, which heavily rely on the 
perfect functioning of each device. In addition, these types of large-scale dynamic 
systems possess inherent potential for parallel computation because of assumed highly 
interconnected topology. Indeed, artificial neural networks have been successfully 
applied to identification and control of many dynamical systems, including 
autonomous space and underwater vehicles (Refs. 25-26), nuclear power plants (Ref. 
27), chemical process facilities (Ref. 28), and manufacturing production lines (Ref. 
29). 

The ability of artificial neural networks to approximate arbitrary continuous 
functions (e.g., nonlinear plant dynamics and complex control law) provides an 
efficient mechanism for identification and control of large space structures. Back- 
propagation (BP) networks (Ref. 30) have recently been demonstrated to have the 
desired functional approximation capability with an arbitrary degree of accuracy (Ref. 
31). Although back-propagation learning rule proves its effectiveness in many 
instances, it usually takes excessive time to train the neural networks and the 
networks may get trapped into local minima. 

In this report, we utilize an efficient paradigm for identification and control of 
flexible space structures by incorporating the adaptive time-delay version of radial 
basis function (RBF) networks (Ref. 32). Radial basis function network with one 
hidden layer has been shown to be a universal approximator (Ref. 33). These model- 
free neural network paradigms (i.e., BP and RBF) are more effective in solving 
control problems than conventional learning control approaches, e.g., the BOXES 
algorithm which partitions the control law in the form of a look-up table (Ref. 34). 
Figure 4.1 shows the realizations of control laws via the BOXES approach (a 
staircase approximation) and a neural network approach (a smooth approximation). 

Figure 4.1: BOXES and Neural Network Approximations of Control Law 
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Our goal is to approach structural autonomy by extending the control system's 
operating envelope, which has traditionally required vast memory usage. Artificial 
neural networks, on the other hand, overcome common memory intensive problems 
and yet provide a sufficiently generalized solution space. In the vibration suppression 
problems, we utilize the adaptive time-delay radial basis function network as a 
building block to allow the control system to function as an indirect closed-loop 
controller. Prior to training the compensator, a neural identifier based on an ARMA 
model is utilized to identify the open-loop system. The horizon-of-one predictive 
controller regulates the dynamics of the nonlinear plant to follow a prespecified 
reference system asymptotically as depicted in Fig. 4.2 (i.e., model reference adaptive 
control architecture). As far as trajectory slewing problems are concerned, the 
generalized learning controller synthesized by the adaptive time-delay radial basis 
function network compensates the nonlinear large space structure in a closed-loop 
fashion as given in Fig. 4.3 (i.e., TDL: tapped delay line). 

Reference 
Model 

YR 

, •<! 

f e2 
YI ^ 

4     Neural 
^identifier"* 

->- 

R h H i h r f 

^ TDL I 1 TDL 

Neural 
Controller 

Ü ■—7 k Large 
'    Structure 

"5 '< 
5 ' 
1 t '—> 

_J <-^ r-i t—, 

TT TDL TDL 

Figure 4.2: Vibration Suppression Learning Control Architecture 

Yi 

Figure 4.3: Trajectory Maneuvering Learning Control Architecture 

The function of the neural controller is to map the states of the system into 
corresponding control actions in order to force the plant dynamics to match a certain 
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output behavior which is specified either by the reference model (YR) or command 
output (YD). However, we cannot apply the optimization procedure (e.g., gradient 
descent or conjugate gradient) to adjust the weights of neural controller because the 
desired outputs for neural controller are not available. In (Ref. 35), a specialized 
learning algorithm which treats the plant as an additional unmodifiable layer of 
network is proposed. The output error, e2, is back-propagated through the plant to 

derive the controller output error e2, and can be approximated by 

dYpj^YpjQi+Sufo-Ypjiu)^ (4l) 

diij 8« 

where Yp; is the ith component of plant output, and u; is the ;'th component of plant 

input. However, the authors fail to suggest a reliable way to compute e2. In (Ref. 36), 

the inverse Jacobian of the plant is used to estimate e2 at each weight update, which 
results in a complicated and computational expensive learning procedure. Moreover, 
since the plant is often not well-modeled because of modeling uncertainties, the exact 
partial derivatives cannot be determined. In (Ref. 37), a 'dynamic sign 
approximation' is utilized to determine the direction of the error surface, assuming 
the qualitative knowledge of the plant. This is not necessarily the case in space 
structure applications which are often equipped with highly correlated parameters. To 
achieve the true gradient descent of the square of the error, we use 'dynamic back 
propagation' (Ref. 38) to accurately approximate the required partial derivatives. A 
single-layer adaptive time-delay RBF network is first trained to identify the open-loop 
system. The resulting neural identifier then serves as extended unmodifiable layers to 
train the compensator (i.e., another single-layer adaptive time-delay RBF network). If 
the structural dynamics are to change as a function of time, the back-up neural 
identifier would require the learning algorithm to periodically update the network 
parameters accordingly. 

In Section 4.1, back-propagation network is first outlined providing an underlined 
issue pertaining to the learning algorithm. Advanced from these derivations, the 
interconnecting topology and learning algorithm of radial basis function network are 
introduced in Section 4.2. This is followed by discussing an adaptive time-delay 
radial basis function network in Section 4.3 which provides an effective mechanism 
to capture most of the spatiotemporal interactions among the structural members. 
Simulation study of PACE test article is performed in Section 4.4 to demonstrate the 
feasibility and flexibility of the present architecture. 

4.1    Back-Propagation Network 

A given back-propagation network (Ref. 30) can be completely described by its 
interconnecting topology, neuronic characteristics, and learning rule. The individual 
processing unit performs its computations based only on local information. This 
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biologically inspired mechanism provides the desired collective computational 
properties. Network with sigmoidal processing units has recently been demonstrated 
to have the desired functional approximation capabilities with an arbitrary degree of 
accuracy (Ref. 31). This implies that back-propagation network is dense on C(D), 
where C(D) denotes the set of continuous functions in the closed and bounded set D. 
Based on this mathematical foundation, back-propagation networks have been 
successfully applied in various problems; from military signaturing to medical 
diagnosis; and from speech recognition and synthesis to robot and autonomous 
vehicle controls. 

The output of the ith sigmoidal neuron in the kth layer of the network is defined 
by 

vf=£f(Hf),    i = l,...,Nk 

(4.2a) 

(4.2b) 

where gf: (-»,«>) -» (-1,1) is a sigmoidal function (i.e., continuously differentiable, 

monotonically increasing, and g(0)=0), N*'1 is the number of neurons in the (fc-l)st 

layer, W~ is an adjustable parameter representing the interconnection weight between 
the output of the jth neuron of the (M)th layer to the input of the ith neuron of the 

Jfcth layer and b\ is the external bias of the ith neuron of the fan layer. Figure 4.4 
presents a functional diagram for a single neuron. 

(K-1)»tlaye 

Figure 4.4: A Functional Diagram for a Single Neuron 

The interconnection of these simple processing elements into a multilayer network 
given in Fig. 4.5 results in a general nonlinear mapping. Layer 1 is referred to as the 
input layer since the inputs directly effect these neurons. The last layer is referred to 
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as the output layer, since the output of the network is the output of these neurons. For 
a single layered network, each processing unit is an output unit; thus if we know the 
desired output of the network we can calculate the output error for each processing 
unit. System dynamics for single layer perceptron network are given by 

O; = ft(Hj) = &(XV;+b^'   '= l N (4.3) 

where Ij is the input to the network and N   is the number of input neurons. 
Assuming that our goal is to minimize the sum of the squares of the output errors 

1 N 

described by E =—^(di-oi), where ox is the actual output of the ith processing 
2;=i 

unit and dt is the desired output of the i\h processing unit, then gradient descents of E 

with respect to the interconnection weights, w,y,l</<N^^^j^ N°, and external 

biases bi,l<i<N1 are achieved by adapting each parameter according to equation 

(i.e., T| is used for the learning rate.) 

A^=-TI(4-0/)%^/;-. (4.4a) 

&bi = -i\(di-Oi) 
dgi(Ui) (4.4b) 

output layer 

hidden-2 layer 

hidden-1 layer 

input layer 

f)   linear neuron Qj)   slgmoldal neuron 

Figure 4.5: A Multi-layer Back-propagation Network 
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In a multilayer network, knowledge of a desired network output does not imply 
knowledge of the output error of each processing element within the network. The 
remaining layers of the network are referred to as hidden layers since the outputs of 
each neurons in these layers are hidden from the outputs of the network. The question 
is how to adapt the weights to the hidden layers when the desired output of the hidden 
layer is unknown. The solution, known as the back-propagation learning algorithm is 
outlined below. 

As done for a single layer network we wish to adapt the interconnection weights to 
perform a gradient descent of the squared error at the output of the network. For 
processing unit in the output layer of the network, the weight adaptation equation is 

given by Eq. (4.4) with the network input Ij replaced by the output of the;'th neuron 

of the previous layer vf1, 

Aw^-iM-Oi&ttp-vt-i^vf-1, (4.5a) 

AbP = -TK4 -0i)Mij£> = ^f (4.5b) 

where ffl =-(^-0;)  gl "'   . The introduction of the 8 parameter will simplify 
auf 

the presentation of the algorithm for the hidden layers. Each 8f can be thought of as 
the output error backpropagated through the network to the input of the ith neuron of 

dE 
the kth layer (i.e., (5 =-r-r )• Consider now a weight which does not connect to the 

cu- 

output layer of the network, (i.e., w~, where 1 < k < p). In this case we will assume 

that <f+1is known. From Eq. (4.5) this will be true for k = p-l. Using this 
information as a starting point, the algorithm presented below can be used to 
propagate the error, in an efficient manner, backwards through the network 

calculating the remaining 8* 's. The gradient of the square output error with respect to 

vv£ is described by s 

A      * dE (C1 BE a«*+1\a«? 
W-        (46a) 

=i s«*+1 a«? j 

Kuk     dE      (N™  dE  du*+l)M. ,._, 
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where 

M   #+i 8«r   auT'avf   9gf(»f)u..+i        (47a) 
3«*+1~^    ' 3«*       3vf   duf       du* 

du>     ..*-i M. = i (4.7b) ■ = v 
3w*" ;'   ' db* 

and N*+1 is the number of neurons in the (£+l)st layer of the network. Thus, the 
gradient calculation simplifies to 

Aw*=Ä = Ti«fvf1, (4.8a) 
3w; 

<j 

uk      dE        ~k Mf=-£jr = r\%, (4.8b) 

<? = a« (4.9) 

4.2    Gaussian Function Network 

A radial basis function network (RBF) (Ref. 32) is a two layer neural network whose 
outputs form a linear combination of the basis functions derived from the hidden 
neurons. The basis function in the hidden layer produces a localized response to input 
stimulus as do locally-tuned receptive fields in our nervous systems (Ref. 39). 
Gaussian function network, a realization of RBF network using Gaussian kernels, is 
widely used in pattern classification and function approximation. The output of 
Gaussian neuron in the hidden layer is defined by 

x ~ Wi I 
20? 

M?=exp(-"       ;" ),   i = l,...,Nl (4.10) 

where u) is the output of the /th neuron in the hidden layer, x = f xx,...,xN<, J   is the 

input vector, w] =[w,-1,...,wjv0]   denotes the weighting vector for the /th neuron in 

the hidden layer (i.e., the center of the;'th Gaussian kernel), a? is the normalization 

parameter of the ith neuron (i.e., the width of the ;'th Gaussian kernel), and N° and 
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N1 are the numbers of neurons in the input and hidden layers, respectively. Equation 
(4.10) produces a radially symmetric output with an unique maximum at the center 
and which drops off rapidly to zero at large radii. That is, it produces a significant 
nonzero response only when the input falls within a small localized region of the 
input space. The output layer equations are described by 

y,. = w?V,   i = l,...,N2 (4.11) 

2     r   2 2   f 
where y(- is the output of the ith neuron in the output layer, wt =[w,1,...,wwlJ 

denotes the weighting vector for the ith neuron in the output layer, M
1
 = [«},..., K^I J 

is the output vector from the hidden layer, and N2 is the number of linear neurons in 
the output layer. The output layer neurons form a weighted linear combination of the 
outputs from the hidden layer. 

Gaussian function networks have the property of undergoing local changes during 
training, unlike back-propagation networks which experience global weighting 
adjustments due to the characteristics of sigmoidal function. The localized influence 
of each Gaussian neuron allows the learning system to refine its functional 
approximation in a successive and efficient manner. Figure 4.6 provides a comparison 
of back-propagation network (at left) and RBF network (at right) in a pattern 
classification problem. Back-propagation network requires at least 4 hidden and 2 
output sigmoid neurons, while Gaussian function network needs only one Gaussian 
hidden neurons and 2 output linear neurons to correctly classify two classes of 
patterns denoted by 'x' and 'o', respectively. 

•a 

Figure 4.6: A Comparison of Pattern Classifications Problem. 

The network effectively positions the Gaussian kernel at the center of the data, and 
then weights and thresholds it appropriately to produce the circular decision 
boundary. The hybrid learning algorithm (Ref. 32), which employs the K-means 
clustering for the hidden layer and the LMS for the output layer further ensures a 
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faster convergence and often leads to better performance and generalization compared 
to back-propagation learning rule. The combination of locality of representation and 
linearity of learning offers tremendous computational efficiency in real-time adaptive 
control. In order to guarantee the generalization capability, a cross validation 
algorithm is used, and the number of training samples is ten times more than the 
theoretical VCdim bounds (Ref 40). K-means algorithm is perhaps the most widely 
known clustering algorithm because of its simplicity and its ability to produce good 

results. The normalization parameters, oj, are obtained once the clustering algorithm 
is complete. They represent a measure of the spread of the data associated with each 
cluster. The cluster widths are then determined by the average distance between the 
cluster centers and the training samples, 

af = — Xlbt-w,1!2,   i = l,...,Nl (4.12) 

where 0, is the set of training patterns belonging to ith cluster and ml is the number 

of samples in 0;. This is followed by applying a LMS algorithm to adapt the weights 
in output layer. The training set consists of input/output pairs but now the input 
patterns are processed by the hidden layer before being presented to the output layer. 

4.3    Adaptive Time-delay RBF Network 

Biological studies have shown that variable time-delays do occur along axons due to 
different conduction times and different lengths of axonal fibers. In addition, 
temporal properties such as temporal decays and integration occur frequently at 
synapses. Inspired by this observation, the time-delay back-propagation network was 
proposed in (Ref. 41) for solving the phoneme recognition problem. In this 
architecture, each neuron takes into account not only the current information from all 
neurons of the previous layer, but also a certain amount of past information from 
those neurons due to delay on the interconnections. However, a fixed amount of time- 
delay throughout the training process has limited the usage, possibly due to the 
mismatch of the temporal location in the input patterns. To overcome this limitation, 
Lin et. al. has developed an adaptive time-delay back-propagation network (Ref. 42) 
to better accommodate the varying temporal sequences, and to provide more 
flexibility for optimization tasks. In a similar spirit, the adaptive time-delay radial 
basis function network is proposed in this study to take full advantages of temporal 
pattern matching and learning/recalling speed. 

A given adaptive time-delay radial basis function network can also be completely 
described by its interconnecting topology, neuronic characteristics, temporal delays, 
and learning rules. The individual processing unit performs its computations based 
only on local information. The output of the Gaussian neuron in the hidden layer is 
defined by 
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Li— WH 
«;=exp(-i—£-). 7=1,...,^ (4.13) 

2 of 

where u1- is the output of the ;'th neuron in the hidden layer (denoted by the 

superscript 1), x is the input vector, w) denotes the weighting vector for the ;th 

neuron in the hidden layer (i.e., the center of the ;'th Gaussian kernel), <j/ is the 
normalization parameter of the;'th neuron (i.e., the width of thej'th Gaussian kernel), 
and N{ is the number of neurons in the hidden layer. Equation (4.13) produces a 
radially symmetric output with a unique maximum at the center dropping off rapidly 
to zero for large radii. Inspired by the adaptive time-delay back-propagation network, 
the output equation of ATRBF networks is described by 

y;(fn) = lx4,/"K'n-^./)' ->=1 *2 (4-14) 

where w2
iJL denotes the weight from the ith neuron in the hidden layer to the j'th 

neuron in the output layer with the independent time-delay x-j, wJ(f/i-T^) is me 

output from the ith neuron in the hidden layer at time tn-T.2ßJ, Lß denotes the 
number of delay connections between the ith neuron in the hidden layer and the j'th 
neuron in the output layer. Shared with generic radial basis function networks, 
adaptive time-delay Gaussian function networks have the property of undergoing 
local changes during training, unlike adaptive time-delay back-propagation networks 
which experience global weighting adjustments due to the characteristics of 
sigmoidal functions. The localized influence of each Gaussian neuron allows the 
learning system to refine its functional approximation in a successive and efficient 
manner. The hybrid learning algorithm can also be used in the training of the 
adaptive time-delay radial basis function network. The adaptation of the output 
weights and time delays are derived based on error back-propagation to minimize the 
cost function, 

•i  N ^ 

E(tn) = \i{dj(tn)-yj(t„)) , (4.15) 
2;=1 

where dj(t„) indicates the desired value of the ;'th output neuron at time t„. The 
weights and time-delays are updated step by step proportional to the opposite 
direction of the error gradient respectively, 
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^-H2^. (4.i6b) 

where r^ and TI2 are the learning rates. The mathematical derivation of this learning 
algorithm is straightforward. The learning rule can be summarized as follows. 

Aw%t = nWo-y^M^n-^iX (4.17a) 

A^v = -r\2(dj(tn)-yj(tM^h4(tn-^,i)- (4.17b) 
i=i 

4.4     Simulation Study 

The 5-second training data for system identification are generated directly from the 
modeling analysis in response to uniform random inputs. Due to the time limitation, 
at the current stage only the back-propagation network is used to validate the 
proposed architecture on this problem domain. Based on the Pi's experience over the 
past two years, it is firmly believed that with adaptive time-delay radial basis function 
network, the network will converge at a faster rate, provided sufficient number of 
Gaussian neurons are used in the hidden layer. The motivation for exploring the 
back-propagation network in this study is to serve as a head start for a proper choice 
of the number of Gaussian neurons in the ATRBF network. The authors will continue 
to pursue in this issue. 

Two sets of programs in MATLAB and gnu-C are developed for this study. They 
show different advantages in various aspects. The flowchart for C-simulation is given 
in Fig. 4.7. The dynamics of the plant are assumed unknown. System identification is 
simulated by a three layer back-propagation network. Two hidden layers with neurons 
15 and 10, respectively are used to ensure the flexibility to approximate arbitrary non- 
convex regions. The output layer with linear activation function is used to scale-up to 
arbitrary range for the state variables spans. The control objective is to achieve 
trajectory slewing as well as vibration suppression along the motion. 
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Figure 4.7: Simulation flowchart for gnu-C routines 

Our strategy is to relax the vibration suppression task for the first few seconds. The 
RMS errors are accumulated only based on the trajectory following components, i.e., 
the first four components. Around 1.5 second, we begin to suppress the structural 
vibration for the last four components while maintaining the progress of trajectory 
following. However, by confining the desired responses to strictly zeros will 
deteriorate the network performance, even affecting the first four components. The 
way we proposed in this study is to setup an implicit exponential delaying envelop, so 
the network will smoothly catch up the requirements as we expected. Whenever the 
output falls within this exponential envelop, we will have the zero error, meaning no 
weight adjustments will be taken. This indeed shortens the training time significantly. 
Trajectory slewing/vibration suppression is performed by another back-propagation 
network with only one hidden layer (125 neurons). The output layer is equipped with 
hyperbolic tangent function for the activation function. The closed-loop controller 
regulates the dynamics of the PACE structure to follow the desired outputs as given 
below: 

el(r)=-(l-cosT], 
A , .      IT   .   lit 0^-sm^-, (4.18a) 

ß2(,) = - l-cosT ß2(0 = —smy, (4.18b) 

and tip displacements and their velocity are zeros, of course. Figure 4.8 presents the 
performance of the neural identifier with respect to all output variable respectively, in 
response to random inputs after training for 20000 trials. It took roughly a day to 
train it in a 50-MHz Pentium computer. Although the neural identifier learned to 
match the open-loop system in a reasonable time frame, the compensator took more 
than four days to converge to reasonable accuracy, mean square error 0.000562. 
Figure 4.9 displays the closed-loop performance with respect to all output variables, 
respectively, in response to an impulse. As shown in the figure, the neural regulator 
has learned to follow the specified trajectory and then damp out the structural 
vibration successfully. 
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Figure 4.8: Open-loop Response of PACE test article 
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Chapter 5 

Conclusions 

This paper is concerned with the development of a mathematical formulation capable 
of treating the problem of maneuvering and control of flexible multibody systems. 
The formulation is based on equations of motion in terms of quasi-coordinates 
derived for each substructure independently of the other substructures. The individual 
substructures are made to act as a single structure by means of a consistent 
kinematical synthesis. The net effect of this synthesis is the elimination of the 
redundant coordinates resulting from the original treatment of the substructures as if 
they were independent. 

In most problems of interest, the elastic motions are small compared to the 
maneuvering motions. In recognition of this, a perturbation approach is developed 
whereby the rigid-body maneuvering of the system defines the zero-order problem 
and the elastic motions and perturbations from the rigid-body maneuvering define the 
first-order problem, where the term "order" refers to magnitude in a perturbation 
sense. The kinematical synthesis mentioned above is applied to both th zero-order 
problem and the first-order problem. The zero-order problem for the rigid-body 
maneuvering is nonlinear and of relatively low dimension, and it can be solved 
independently of the first-order problem. The control can be open loop or closed loop. 
On the other hand, the zero-order solution induces time-varying coefficients and 
persistent disturbances in the first-order problem. The system of state equations 
describing the first-order problem is linear, time-varying and of high dimension. The 
equations are in terms of component about body axes, which makes them ideally 
suited for control design. The control can be divided into two parts, one closed-loop 
part designed to control transient disturbances and another part designed to reject 
persistent disturbances. The formulation lends itself to ready computer 
implementation. 

As a numerical example, a planar three-beam system is maneuvered according to 
a bang-bang control law by means of a torque applied to the center beam. Each beam 
is equipped with two actuators in charge of suppressing vibrations and perturbations 
in rigid-body motions; they exerted forces according to the direct velocity feedback 
control law. The numerical example shows the effectiveness of the algorithm 
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developed in this paper as well as the applicability of the equations to the 
maneuvering and control of flexible multibody systems. 

To support the above modeling efforts, an effective control algorithm needs to be 
design. We propose the use of a neural network-based control system for flexible 
multibody systems. The proposed neural controller is designed to achieve trajectory 
maneuvering of structural member as well as vibration suppression for precision 
pointing of space structures. To this end, a hybrid connectionist system is employed, 
which consists of a system identification neural network and a controller neural 
network. This leads to a robust and fault tolerant controller readily applicable to space 
structures of interest to the Air Force. 

The proposed technology can directly be incorporated into various structure 
control designs for civilian and military satellites. In a similar spirit, the proposed 
architecture can be extended to dynamic controls of space engines, underwater 
vehicles, chemical processes, power plants, and manufacturing scheduling. The 
proposed technology will greatly reduce operational and developmental costs, and 
provide high performance, fault tolerant control systems in various application 
domains. 
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