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I. INTRODUCTION AND SUMMARY

For a theoretical description of power plants that derive their energy from the combustion of a
fuel, it is necessary to solve, to an appropriate degree of precision, a hydrodynamic problem that

requires for its solution a knowledge of the thermodynamic properties of the working fluid com-
posed of the products of the combustion reaction. It is usually a good approximation to assume

that the properties of the combustion gas are determined by the conditions of thermal equilibrium,

and it is thus possible to employ the methods of classical thermodynamics for their computation.

The thermodynamic properties of fuel gases also are of considerable importance, as they form the
basis for the design of appropriate means for their effective utilization. The specification of the

operating conditions to produce a gas for use as an intermediate in a chemical process, such as

the synthesis of liquid fuels, may be based upon a study of the variation of the composition of

the synthesis gas with changes in the various process variables.

Although there exist a large number of important scientific and technical applications of the
data that can be obtained from the systematic determination of the thermodynamic properties of
combustion gases, such application has been greatly handicapped by the extremely tedious and
time-consuming computational methods required. The development of large-scale automatic com-

putational equipment makes feasible the initiation of a systematic program for the determination

of the thermodynamic properties of combustion gases and for the application of such data to spe-

cific problems of scientific and technical importance.

As a part of its program of basic research in flame and combustion phenomena, the Explo-

sives and Physical Sciences Division of the Bureau of Mines is engaged in such a program. The
present communication is designed to introduce a series of reports presenting the results of this

program.

There has long existed a need for systematic and economical methods for the calculation of
the thermodynamic properties of systems of many constituents, and this need is emphasized by
the application of automatic computational equipment. In the present report, we wish to assemble

the methods that have been employed in this laboratory and that have been shown to be particu-

larly well-adapted to routine application.

Consideration of the thermodynamics of combustion gases is introduced by a discussion of
the stoichiometry of multicomponent systems and of applications of the phase rule to such sys-
tems. This formal treatment serves to introduce the notation that will be employed consistently

throughout the remainder of the report, and it establishes the conditions for equilibrium in multi-
component systems in a mathematical form that is particularly appropriate for computational

procedures.

Two methods are described for the calculation of the equilibrium composition of systems of
many constituents. These methods are employed in the formulation of several specific compu-

tational programs for the calculation of the equilibrium composition of systems composed of com-

pounds of carbon, hydrogen, oxygen, and nitrogen.
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Throughout this report, we assume that the ideal gas law provides an adequate equation of
state for the gaseous phase. However, it is shown that the methods for the calculation of equi-
librium composition are easily generalized to take account of gas imperfections, and that this

generalization does not affect in any important respect the detailed computational programs al-
ready formulated. The necessary general relations are summarized. They can be applied to spe-
cific forms of the equation of state without difficulty.

The calculation of the thermodynamic properties of the equilibrium mixture is straightforward

after the composition of the mixture is known. We summarize briefly the well-known thermody-
namic relations that are employed for this purpose.

We conclude with a description of a massive generalized table of the equilibrium composition

and thermodynamic properties at equilibrium of the four-component system containing compounds
of carbon, hydrogen, oxygen, and nitrogen. The table will list the composition and thermody-
namic properties over an extended range of temperature and pressure, and it will include all pos-
sible combinations of the four elements, the spacing of calculated points being small enough to
permit accurate interpolation. The table will be the result of about half a million individual com-
putations, and its construction utilizes the computational methods described in this report.

II. ACKNOWLEDGMENTS

The numerical calculations by means of which the generalized table, referred to above, is
being constructed were performed on the Electronic Numerical Integrator and Calculator (the

ENIAC) at the Ballistic Research Laboratory, Aberdeen Proving Ground, Md. This calculator
was made available for this program by the Office of the Chief of Ordnance, Department of the
Army. The authors are greatly indebted to L. S. Diderick, of the Ballistic Research Laboratory,
for his interest and continued cooperation. They wish to record their appreciation of the labors
on this project of all of the members of the ENIAC staff. The assistance of John V. Holberton
and Helen Mark in preparing the programs for the ENIAC is gratefully acknowledged.

Portions of this research have been carried out as part of Project No. NA onr 25-47, sup-

ported by the Office of Naval Research and the Air Force.

Il1. STOICHIOMETRY AND APPLICATION OF THE PHASE RULE

The composition and the thermodynamic properties of a mixture at equilibrium are independent
of the path by which equilibrium is attained. From the point of view-of thermodynamics, the mo-
lecular form in which the different elements are initially introduced to the system is therefore ir-
relevant, and it suffices to specify the gross composition of the system in terms of the elements

contained by it. As the composition of the system at equilibrium is most appropriately expressed
in terms of intensive quantities (mole fractions), the results are independent of the total size of

the system, which may be taken to be any convenient value. Therefore, if the number of different
elements in the system is m, it is sufficient for a unique description of the system to specify the
number of gram atoms of m-1 elements relative to an arbitrary amount of the m-th element, i.e., to
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specify values of the quantities (X(k)/X(m)) k 1, 2, ... m-i, where

Qk = (X(k)/X(m)) Qm, (3.1)

and Qk and Qm are the number of gram atoms of the k-th and m-th elements, respectively, avail-

able to the system. Alternatively, one may specify m-1 different linearly independent combina-

tions of these ratios Rkm. We note that it is not always necessary to specify as many as m-I dif-

ferent quantities.

Description of Carbon, Hydiogen, Oxygen, Nitrogen Systems

A large number of different sets of parameters can be employed for the description of the

gross composition of any given system. In this section, we introduce certain parameters that are

particularly convenient for the description of systems composed of compounds of carbon, hydro-

gen, oxygen, and nitrogen, and we deduce several relations that will be employed later. Alterna-

tive descriptions may be transposed into the language of this section by obvious algebraic

procedures.

For a discussion of the thermodynamics of combustion gases, it is convenient for the descrip-

tion of the gross composition of the system to employ the parameters,

A - QN/( 4 Qc + QH + QN),

B = QH/( 4 QC + QH), (3.2)

C = 2Qo/(4Qc + QH + 2QO),

where QC, QH' QO, QN are the number of the gram atoms of carbon, hydrogen, oxygen, and nitro-

gen, respectively, available to the system. Quantity C is a measure of the amount of oxygen

actually available to the system relative to that required for conversion of all of the carbon to

carbon dioxide and all of the hydrogen to steam. At this stoichiometric point C = 1/2. Rich fuel-

oxidant systems are characterized by C < 1/2 and lean systems by C > 1/2.

It will be shown that for the characterization of rich fuel-oxidant systems consisting of a gas

mixture in heterogeneous equilibrium with solid carbon, it is sometimes convenient to describe

the relative hydrogen, oxygen, and nitrogen content by means of parameters that are independent

of the amount of carbon. For this purpose, an appropriate set of parameters consists of

B = QH/( 4 Qc + QH)

D = QN/(QH + 2Q% + QN) (3.3)

E = 2Qo/(QH + 2Qo).

We note the sets (3.2) and (3.3) are not independent, but that

D A(1-0)
(i-A) [B(1-C) + C] + A(I-C)

(3.4)

CB(i-C) + C.
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Equations (3.2) or (3.3) determine the amounts available to the system of three of the elements

relative to the amount available of the fourth. If oxygen is selected as the reference element,

then

(C/O) QC (1-B) Cl-c) (1-B) (l-E)

QO 2C 2BE

QH 2B(1-C) 2(l-E) (35)
(H/0) - QO c = E35

QN 2A(l-C) 2D
)- E(I-D)Qo C(1-A) =EiD

For the characterization of fuel-air systems, it is convenient to employ the parameters A, B,

and C as defined by equations (3.2) to describe the relative concentrations of carbon, hydrogen,

oxygen, and nitrogen of the fuel alone without regard to the constituents of air. These fuel pa-

rameters may be distinguished from their more general counterparts by a superscript f. Then, if

the fuel-air ratio is determined by the general parameter C, taking account of the total available

oxygen, it is easy to show that

b(1-Bf) (1-C) (1-Cf) + c (C-Cf)
(C/O) = 2bC(1-Cf) + 2c (C-Cf)

4bBf(l-C) ( 1-Cf)

(H/O) = 2bC(1-Cf) + 2c(C-Cf),

(3.6)

4bAf(1-C) (1-Cf)/( l-Af) + 2a(C-Cf)
(N/O) = 2bC(1-Cf) + 2c (C-Cf)

d (C-Cf)
(A/o) =

2bC(1-Cf) + 2c (C-Cf)'

where Af, Bf, Cf are measures of the fuel composition, C is the measure of the total amount of
available oxygen in fuel and air, and where a =0.780881, b =0.209495, c =0.000300, and d=

0.009324. The composition by volume of dry air has been taken to be

Oxygen, 20.9495% Carbon dioxide, 0.0300%

Nitrogen, 78.0881% Rare gases (Argon), 0.9324%

If the fuel is a hydrocarbon, Af =Cf =O, and equations (3.6) reduce to

b(1-Bf) (1-C) + cC
(C/O) = 2C (b + c)
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4bBf(1-C)
(H/O) = 2C (b + c)' (3.7)

a d(N/0) - , (A/0)=b+c 2(b+ c)

The Components

In a system containing many constituents, it is possible to select certain constituents that

are sufficient for the complete thermodynamic description of the composition. By this it is meant

that if the system is conceived to consist of the selected constituents only, its gross composi-

tion (in terms of the amounts of each chemical element present) is completely defined. The con-

stituents thus sufficient to describe the composition are called the components of the sy ;tem.

An analytical criterion has been publishedl/ for the choice of the components. In terms of this

criterion, the conditions for equilibrium may be written in a form that has a high degree of sym-

metry and is particularly well-adapted for formulating a computational method for the calculation

of the equilibrium composition.

The number of constituents of any system depends upon the accuracy with which it is desired

to describe its composition. The constituents to be considered must be chosen a priori, and this

choice usually will imply the neglect of certain equilibria that may be expected to exert a negli-

gible effect on the composition of the system at equilibrium.

Consider a closed system containing s different substances, which are assumed to be in

chemical equilibrium. The molecular formula of the i-th substance may be represented by

y(i) = X(1) . . X(k) • • • X(m) (3.8)
ail aik aim

i 1, 2, . . . s, where X(k) is the symbol of the k-th element, aik is the subscript (which may be

zero) to this symbol in the formula to the i-th substance, and m is the total number of elements

represented in the system. For every i, the array of subscripts a ik, k = 1, 2, . . . , m, may be

said to define a vector

Yi =(ail, • " ik, """,aim), (3.9)

which may be called the formula vector of substance i. If the rank of the matrix of the vector

elements caik is c, it follows from a well-known theorem of algebra that there are c linearly inde-

pendent vectors, and if c <s there are (s-c) linearly dependent vectors, which may be expressed

as linear combinations of the independent vectors. It may be assumed that the independent vec-

tors are designated by the values 1, 2, . • • , c of their index. Then the dependent vectors may

be expressed as linear combinations of the form

3/ Brinkley, S. R., Jr., Note on the Conditions of Equilibrium for Systems of Many Constituents:

Jour. Chem. Phys., vol. 14, 1946, pp. 563-64.
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c (3.10)

SVij Yj =yi,
j=I

i = c + 1, c + 2, . . . , s. To equation (3.10) there correspond (s -c) conceivable chemical
reactions

c

T Viy(j) =y(i), (3.11)j=l

resulting in the formation, from the c substances with linearly independent formula vectors, of the

(s-c) substances with linearly dependent formula vectors. It follows that the specification of c
substances such that their formula vectors are linearly independent is sufficient for a description
of the composition of the system. Therefore, the number of components of the system equals the
rank c of the matrix of the subscripts to the symbols of the elements in the formulas of the sub-
stances comprising the system. The number of components is usually, but not necessarily, equal
to the number of different elements in the system. It may be noted that the choice of independent
vectors is not, in general, unique and that, in consequence, the choice of c substances as com-
ponents and the expression of the remaining (s-c) substances as products of reactions involving
only the chosen components is usually not unique. However, for the heterogeneous case, con-
sisting of a gas mixture in equilibrium with a solid phase composed of a single constituent, these
criteria can be satisfied only by the selection of that constituent as a component.

This discussion has demonstrated the possibility of a choice of components, which make it
possible to express each of the dependent constituents as products of reactions involving com-
ponents only. Our computational procedure for the determination of the equilibrium composition
is based upon the possibility of writing down for the case of interest the reactions that are ex-
pressed by equations (3.11). In many cases it is possible to write these reactions immediately
by intuition. In some cases it may be necessary to formulate the reactions of equations (3.11)by
applying to the system under consideration the steps indicated by equations (3.8) to (3. 10).

If the number of moles of the j-th component contained in the hypothetical system consisting
of components only is denoted by qj, it is evident that

Y Ujk qj =Qk, (3.12)j=l

k = 1, 2, . . . m. We shall assume henceforth that the number of components c is equal to the num-
ber of different elements m. Introducing the ratios defined by equation (3. 1), we obtain

c

- ajk qj (X(k)/X(m)) Qm =O. (3.13)
j=1
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For the systems to be considered in this report, it is convenient to assume that

j qj =(3.14)

where the operator denotes a summation over the gaseous components only. Equations

(3.13) and (3.14) constitute c+l linear nonhomogeneous equations in the quantities Qm and qj,

j = 1, 2, . . . c, and they may be employed to express the qj in terms of the ratios (X(k)/X(m)) and

thus in terms of the parameters employed for the description of the system. Equation (3.14) is

equivalent to, an assumption as to the total size of the system, the weight M0 of the gaseous

phase being given by

M° qj Ny (3.15)

where Nj is the molecular weight of the j-th component. We shall call the constants qj, deter-

mined by means of equations (3.13) and (3.14), the normalized stoichiometric constants.

Conditions for Equilibrium

The discussion of equilibrium in systems of many constituents assumes a particularly simple

and symmetrical form in terms of the definitions that have been introduced. We consider the gen-

eral case where the s substances are distributed among 71 coexisting phases. The conservation of

mass in the system as a whole requires that

nj (k)Mj + ni MM, qj Mj, (316)
k=l j=l i='c+ 1 j=l

where ni(k) and nj(k) are the number of moles in the k-th phase of the i-th and j-th substances,

respectively, and Mi and Mj are the corresponding weights of 1 mole. As mass is conserved by

each of reactions (3.11), one may substitute

c

Mv iM j (3.17)
j=1

into equation (3.16). On equating the coefficients of MI, there are obtained

nj (k) + Vii ni(k) = qj(

k=4 i=c+ 1
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j =1, 2,... c.

The derivation by means of the method employed by Gibbs, 4/ subject to the constraints of
equations (3.18), of the conditions for equilibrium is straightforward, and it is unnecessary to
reproduce it here. The usual conditions for thermal and mechanical equilibrium are obtained, and

the conditions for chemical equilibrium take the form,
kj(k) = j, (3.19)

c

Ii(k) => vi j, (3.20)
j=1 (k) (k)k = 1, 2, 7T ; j = 1, 2, .. c; i = c + 1, c + 2., . . s, Where L.(k and ý1.(k) th he iak=,,.I =,2. .... ,ic1c2... hr~ n~ are the chemical

I J
potentials in the k-th phase of the i-th and j-th substances, respectively, the j are constants

that may be eliminated from equations (3.19) and (3.20), and where it has been assumed for sim-
plicity that each substance of the system is included in every phase. If a particular component
is excluded a priori from some phase, the corresponding member of equations (3. 19) disappears
as being without meaning, and similar considerations obtain if a particular dependent constituent
is excluded a priori from some phase.

Together with equation (3. 18), equations (3.19) and (3.20) provide, by reason of their symme-
try, the simplest basis for calculating the concentrations at equilibrium of the several constitu-
ents of the system. In particular, if the substances are limited to a single phase, the equations
become

S

nj + 1 Vij ni =qj, (3.21)
i =c+ I

c

Ili Vij J = 0, (3.22)
J=!

j = 1, 2, . . . c, i = c + I, . . . s, for equilibrium at constant temperature and pressure. Equations
(3.21) and (3.22) are also applicable to systems composed of a gas phase in equilibrium with a

single pure solid phase, as in this case it is not necessary to retain explicitly the index label

of the phase.

The chemical potential of the k-th constituent of a gas mixture can be expressed as5

0 *

4k = 4k (T) - RT log Pk (3.23)

4/ Collected Works of J. Willard Gibbs: Longmans, Green & Co., New York and London, 1928,
vol. 1, pp. 63-82.

5/ See, for example, Guggenheim, E. A., Modern Thermodynamics by the Methods of Willard
Gibbs: Methuen & Co., Ltd., London, 1933, p. 72.
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where p is the fugacity of the k-th constituent in the mixture and 4k (T), the chemical potential
k k

of the k-th constituent in the standard state of unit fugacity, is a function of the temperature, T,

only. The chemical potential of a constituent, say the m-th, existing as a pure solid phase, can

be written as a function of temperature only,

= = 0 (T), (3.24)
m m

for the range of pressures to be considered in this report. Equations (3.22) can be written

log Pi log p. =log Ki, (3.25)

where

c 0 0

RT log Ki = jij Lj °i (3.26)
j=l

Ki, the thermodynamic equilibrium constant of the reaction (3.11) for the formation of the i-th de-

pendent constituent from the components, is a function of the temperature only. Equations (3.25)
are valid both for homogeneous gas mixtures and for heterogeneous systems composed of a gas

mixture in equilibrium with a single pure solid phase, the summation being over gaseous com-

ponents only.

Degrees of Freedom of Carbon, Hydrogen, Oxygen, Nitrogen Systems

The phase rule of Gibbs can be obtained directly from Equations (3.18), (3.19), and (3. 20).6/
It can be expressed in the form

f =c + 2-iT,

where f is the number of degrees of freedom possessed by a system of c components and 7T phases

that depends on two state variables.

The four-component system containing carbon, hydrogen, oxygen, and nitrogen consists of

two regions. There is a region of low oxygen: carbon ratio in which the system is heterogene-

ous, consisting of a gas phase in equilibrium with solid carbon. If the oxygen:carbon ratio ex-

ceeds a critical value (whieh depends on the temperature, pressure, and composition), the system

is homogeneous, consisting of a single gas phase.

_/ Brinkley, S. R., Jr., Work cited in footnote 3.
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According to the phase rule, the homogeneous portion of the four-component system pos-

sesses five degrees of freedom, and the heterogeneous portion four degrees of freedom. The

state is uniquely determined by the specification of two state variables, for which purpose either

the temperature and pressure or the temperature and volume are commonly selected. The thermo-

dynamic requirements for the description of the homogeneous portion of the system are completed

by the specification of three parameters defining its gross composition. The specification of

only two parameters defining gross composition is necessary in the case of the heterogeneous

portion of the system.

As equations (3.25) are independent of the amount of solid phase actually contained by the

system, it is convenient to define the relative amounts of hydrogen, oxygen, and nitrogen avail-

able to the system. For this purpose, parameters D and E of equations (3.3) are appropriate, and

the specification of D and E together with two state variables is sufficient thermodynamically

for the complete description of the system. The number of gram atoms of carbon present in the

gas phase of the system at equilibrium (as carbon monoxide, carbon dioxide, methane, etc.) is

easily computed after the equilibrium composition is known. If this quantity is denoted by Qc,

we may calculate

B 1 =Q11/(4Qc + Qi)" (3.27)

As Qc is a function of the composition at equilibrium, the ratio defined by equation (3.27) is an
implicitly defined function of the state (say the temperature and pressure) and of the relative

hydrogen, oxygen, and nitrogen compositions. This functional relationship is expressed by

B 1 =31 (D, E, p, T), (3.28)

where p is the pressure. Equation (3.28) defines a surface in the space with coordinates B, D,

and E that may be termed the carbon boundary surface. This surface represents the limiting con-

ditions under which a gas phase can exist in equilibrium with solid carbon.

If the relative gross composition of a particular mixture of the four elements is specified by

values of the three quantities B, D, and E, as defined by equations (3.3), and if B < B 1 for a

given temperature and pressure, then the mixture at equilibrium consists of a gas phase whose

composition is uniquely determined by the values of D and E in equilibrium with Qc - Qc gram

atoms of carbon, where

Qc"- Qc (= ) (YB1 Q . (3.29)

As the ratios D and E can be expressed as functions of A, B, and C by means of equations

(3.4)

D -D (A, B, C),

E =E (B, C),
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it follows that the functional relation, equation (3.28), defining the carbon boundary surface, can

be converted to the form,

B 1 B1 (A, C, p, T), (3.30)

and inverted to the form

C1 =C 1 (A, B, p, T) (3.31)

by suitable numerical procedures. Here C 1 is the critical value of C for the carbon boundary sur-

face, the heterogeneous portion of the system corresponding to the region C <C1 . The represen-
tation, equation (3.28), is the natural one to employ for investigations within the heterogeneous

portion of the system, and the representation, equation (3.31), is the more convenient one to em-
ploy for the description of the extent of the homogeneous region. We shall show in a later sec-

tion that it is possible to determine the relation (3.31) by direct calculation for given values of

A, B, p, and T, as an alternative procedure to the series of interpolations required to obtain the
representation (3.31) from the representation (3.28).

If C >-Cl (A, B, p, T), the system consists of an homogeneous gas phase with five degrees

of freedom. The complete description of the system therefore requires the specification of two

state variables and three parameters describing the gross composition of the system, the set A,
B, C of equations (3.2) being a particularly convenient set for the consideration of combustion

gases.

IV. CALCULATION OF THE EQUILIBRIUM COMPOSITION

The composition of a system at chemical equilibrium is easily calculated where there is only
a single reaction (one dependent constituent) to be considered. In this case, the concentration

of each constituent can be related to a single variable, "the degree of reaction," and the solu-

tion of the mass action equation is straightforward. Difficulties are encountered if this method

is extended to a consideration of two simultaneous equilibria; and when the number of such si-
multaneous equilibria becomes large, the ordinary methods become very laborious. In a recent

publication,7/ a systematic procedure for calculating the equilibrium composition of a system of
many constituents was presented. This method presents a simple rule for formulating the work

program of such calculations, with the result that very little time is required for setting up a par-

ticular problem. The systematic nature of the procedure makes the method well adapted to com-
putation by modern automatic computational equipment. In the publication cited, the method was

2/ Brinkley, S. R., Jr., Calculation of the Equilibrium Composition of Systems of Many Constit-

uents: Jour, Chem. Phys., vol. 15, 1947, pp. 107-110.
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developed for systems of a very general nature. In subsequent communications, 8,9, 10/ applica-

tion of the method was restricted to the calculation of the equilibrium composition of mixtures

consisting of a single homogeneous gas phase or of a gas phase in equilibrium with a single pure

solid phase, and it was assumed that the gas phase is adequately described by the ideal gas

equation of state. By taking advantage of these restrictions, it was possible to formulate a com-

putational method applicable to these particular cases, which is substantially simpler and more

systematic than the more general method. In addition, it was possible to formulate a special

method, applicable in. restricted cases, that has the advantage of converging considerably more

rapidly than the more systematic general method.

In order that the present discussion may be self contained, we repeat portions of the develop-

ment of the basic equations that have been published elsewhere.

The General Method

The formal methods of the preceding section have resulted in a statement of the conditions

for equilibrium in a form that is particularly well suited to serve as a basis for the computation

of the equilibrium composition. We shall henceforth limit consideration to the cases of a homo-

geneous gaseous system or of a heterogeneous system composed of a gas mixture in equilibrium

with a single, pure, solid phase.

The conservation of each element was shown to require that

s

nj+ T__ V ij ni =qj, (4.1)

i~ic+ I

j = 1, 2, . . . c, where ni and nj are the number of moles of the i-th dependent constituent and

j-th component, respectively, in the equilibrium mixture containing Mo grams of gas, qj is the

number of moles of the j-th component in the hypothetical mixture containing components only

and where ') ij is the coefficient to the symbol of the j-th component in the equation for the for-

mation of the i-th dependent constituent (involving only components as reactants). The con-

stants qj are normalized in accord with the relation,

-j qj=1, (4.2)

8/ Kandiner, IA. J., and Brinkley, S. R., Jr., Calculation of Complex Equilibrium Relations: Ind.

Eng. Chem., vol. 42, May 1950, pp. 850-855.

9/ Brinkley, S. R., Jr., and Smith, R. WX., Jr., Calculation of the Equilibrium Composition of

Systems of Many Constituents: Proc. Scientific Computation Forum 1948, International

Business Machines Corp., New York, 1950, pp. 77-82.

10/ Brinkley, S. R., Jr., and Smith, R. W., Jr., Calculation of the Equilibrium Composition of

Homogeneous Multicomponent Systems: Proc. Seminar on Scientific Computation 1949,

International Business Machines Corp., New York, 1950, pp. 58-63.
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where the operator denotes a summation over gaseous components only, and this normal-

ization implies that the weight of the gas phase Mo is assigned the arbitrarily assumed value

given by equation (3.15).

The conditions for chemical equilibrium, given in equations (3.25), can be put in the form,

Ki =pi 7 j I(P j) V ' (4.3)

i =c+1. . . . s, where pi and pj are the fugacities of the i-th dependent constituent and j-th com-

ponent, respectively, Ki is the thermodynamic equilibrium constant, a function of the temperature

only that is defined by equation (3. 26), of the reaction for the formation of the i-th dependent con-

stituent, and where the operator 7Tj denotes that the repeated product is to betaken over gaseous

components only. The equilibrium constant Ki is most easily obtained by the relation,

Ki =Kfi i (Kfj) (4.4)

where Kfi and Kfj are the equilibrium constants for the formation of the i-th dependent constituent

and j-th component, respectively, from the elements.

For each gaseous component we employ equations (4. 1) in the form

xj + ij xi = qj/n, (4.5)

where xi and xj are the mole fractions in the equilibrium mixture of the i-th dependent constituent

and the j-th gaseous component, respectively, and n is the total number of moles of gas in the

equilibrium mixture corresponding to the normalized constants qj. In view of equation (4. 2)

xj + v i xi = I/n, (4.6)
i=c+lI

where

V i = ý jV Vij.

The mole fractions of the gaseous constituents are subject to the identity relation

xi + Xi = 1.

1 i=c+ 1
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Therefore, equation (4.6) becomes

s

1/n =1 I _ +v-1 xi

i=c+ 1

and equations (4.5) may be written

S

xj =qj - 7 [vij - qj (vi- 1)1] xi, (4.7)

i=c+ I

there being a member of the set (4.7) for each gaseous component.

If an activity coefficient fk of the k-th gaseous constituent is defined by the relations
,

Pk =xk fk P,

(4.8)

Lim (p-->0) fk 1,

equations (4.3) can be written in the form

xi =ki 71 j xji j (4.9)

=c + 1, . . . s, where the ki are functions of temperature and pressure given by

ki =Ki p i,

(4.10)

jfl f- V ijFi =fi 1 r .

in which the 1i are in general functions of the temperature and pressure. In this section we shall

assume that the gas mixture is ideal and therefore that Li = I for every i. In a later section we
shall consider the evaluation of the Pi for imperfect gas mixtures.

The computation of the equilibrium composition requires the simultaneous solution of equa-
tions (4.7) and (4.9. If xi<<xj for all i and j, the solution may be carried out by a simple itera-
tion method. 1U1/ An approximate set of values is chosen for the xj. (In the absence of any cri-

teria for the choice of the initial set, one may take xj = qj.) Equations (4.9) are employed in
the computation of corresponding values of the xi. These, in turn, are employed with equations

(4.7) for the determination of an improved set of values for the xi. This iterative process is con-
tinued until the difference between successive approximations to the xj is less than the desired
precision of the computation.

1_y Scarborough, J. B., Numerical Mathematical Analysis: Johns Hopkins Press, Baltimore, kid.,
1930, pp. 191-195.
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The convergence of this simple iteration method is very slow for larger relative values of the

xi, and when the xi and xj are of the same order of magnitude, this method may not converge at all

for any choice of components. A more powerful computational procedure is provided by the

Newton-Raphson method. 12/ Equations (4.7) may be written in the form

Fj =O (4. 11)

for each gaseous component, where

5

Fj qj G-xj - .T Vi j xi,
i=c+ I

i =c+

We seek the solution of equations (4. 11) subject to equations (4.9). If the functions 1i are ex-

panded in Taylor series about an approximate set of values of the variables xj with neglect of

terms involving derivatives of second and higher orders, there results a set of linear equations

that can be compactly represented in the notation of matrices by

[Asjý] [h~r] = [Fj~rj 4.2

where the r-th and (r + 1)-th approximations to the composition are related by

(r+ 1) _ (r) I+ hr)), (4.13)x~j -xj (1 -h 413

and where the elements of the matrix are given by

AjjI =Ujj' - qj Vj' (4.14)

where

s

Uj j xj 6j I + :E vij vij xi,
i=c+ 1

s

V j, 7T_ •i'Vi - 1) I xi,

i=c~l

and where Ujj I Uj 1j. The superscript r indicates that the designated quantity is to be evaluated

with the r-th approximation to the composition of the system, and 6j r is the Kronecker delta.

12/ Scarborough, J. B., Work cited in footnote 11, pp. 178 and 187.

4351 - 15-



Criteria for the choice of components that results in the most rapid convergence of the itera-

tion process can be developed from the remainders to the two-term Taylor series expansions of

functions Fj. liowever, the resulting expressions are too cumbersome for practical utility, and

in practice the convergence will be found to be satisfactory if the components are selected so as

to minimize the quantities ki, i =c + 1, . . . , s.

A Special Method

An alternative computational procedure is very useful in certain special cases. 1ýe employ

equations (4. 1),

s

nj + j - V ij ni =qj, (4.1)

i=c+ 1

and write equations (4.9) in the form
I T %lij

ni =ki (n) 7T j nj

1 (4.15)

ki (n) =ki n1 i

i =c + 1, . . . s, by means of the substitution nk =xkn. In view of equations (4. 1) and (4. 2), the
total number of moles of gas n is given by

s

n=I+ 7 (1- vi) ni. (4.16)

i=c+ I

Ve define a variable ýL by

kL =71j nj , (4.17)

and rewrite equations (4. 15) in the form

nii iI(n) 7j nj ,

Gij = "ij " ýi 7),

i =c+1, . . . s. We endeavor to choose the rTj, so that tor each i there exists only a single value

of j, say j1, for which CYij does not vanish, and so that for some value of j, say j*, Oij vanishes

for every value of i. If this can be done, equations (4.18) reduce to expressions of the form

) i GijI
ni =ki (n)4t nj 1 (4.19)

i =c + ... s, j
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Introduction of the variable ýt leads immediately to a separation of variables in the set of

equations composed of equations (4.19) and those of equations (4. 1), for which /j* when mass

action expressions of the form (4. 19) can be obtained with

L = nj , (4.20)

Then '.* is the lowest common divisor of those coefficients Vij. that are nonzero and Gij =Vii

for j # j*. By substitution of equations (4.19) into equations (4. 1), we obtain

nj + > Vij ki(n)ýI 9i njfl - qj =O (4.21)
i(j)

for j • j*, which can, at least in principle, be solved for nj by ordinary algebraic methods for
given values of n and ýL. If equations (4.19) and (4.20) are then employed, a solution can be found
in the form

nj nj (n, k),

ni ni (n, li),

j = 1, 2. . . . c; i =c + I,. s.

The values of n and kL leading to an exact solution of the equilibrium conditions must satisfy

equation (4.16) and the member of equations (4. 1) for which j j*. These can be written in the

form

F ( 0) =0, F (n) =0, (4.22)

5

F (ii) =qj* - nj* - Vij* ni,
i=c+ 1

F (n) =n - + (Vi"- 1) ni.
i=c+ I

If the functions F (kL) and F (n) are expanded in Taylor series about approximate values of n and
i with neglect of terms involving second and higher derivatives, there result a pair of linear

equations,

All A 12  h(4)- F (W()
I(4.23)

I (r) (r) (r) (r)n
A 2 1  A 2 2 ) K (n) = nF n)

where the r-th and (r+ 1)-th approximation to i and n are related by
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(r+1) (r) (r)S=• [1I+ h( ) ]

(4.24)

(r+1) (r) (r)n =n [I + h (n) ]

and where the coefficients are given by

s s

All =nj* L + Vij. 'i ni + >_ Vij* vij(i) Uj(i) ni,

i=c+1 i=c+ 1

S s

A12 => j V ij* (1 - ) ni + >11 V j * V ij(i) Vj (i) i
i=c+ 1 i=c+ I

S_ s (4.25)

A2 1 =nj NI + (1 - vi) % ni + (1 - vi) Vi(i) Uj(i) ri,
=~c+l i=c+l

s s
A2 2 = -n + :E (I1- Vi) 2 ni + :E (1- )) i) V ij (i) Vj(i) ni,,

i=c+ 1 i=c +

where j(i) is the value of j, for which Oij does not vanish for a given i, and where

L = 1/nj, M =0,

Uj v ij Ei n~i [nj *(~) ~

"i(j) i(j)
(4.26)

Vi vii (1vi) + (Vj) 2

The superscript r indicates that the designated quantity is to be evaluated with the r-th approxi-

mation to the composition of the system.

Introduction of the variable i also leads to a separation of variables in the set of equations
composed of equations (4. 19) and those of equations (4. 1), for which j /j* when mass action ex-
pressions of the form (4.19) can be obtained with

k = njT Y j nj, (4.27)

jT .j* Then 'i =Vii*, Oij =Vij for jO*jT, j*, and 0ijI =Vij,- Vij, 7*. The stoichiometric

conditions for j 4j* can then be put into a form analogous to equations (4.21)
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nj V vij ki (n) J= qj =O0, j ý j ,

i(j )

"j -- lk~n)Ii •iI~ c*ij ,(4.28)
njT-jf j nj I +i. iki(n)4 n ij-qj + j qj* ,(ij I)

which can, at least in principle, be solved for nj, j 4 j*, by ordinary algebraic methods for given

values of n and 4. If equations (4. 19) and (4. 27) are then employed, a solution can be found in

the form

nj nj (n, i),

ni ni (n, -),

j = 1, 2,... c; i =c + 1,.. .s.

The values of n and Jt leading to an exact solution of the equilibrium conditions must satisfy

equations (4.22). The application of the Newton-Raphson method to obtain an improved pair of

values of n and ki requires the solution of equations (4.23) and the application of equations (4.24).

The coefficients of equations (4.23) are given by equations (4.25) but with

L =l-nij Uj, , M =- 1 Vj,

Uj Knij ýin] + (Vij)2nj , jj,
i(j)

U j,= I nj* " ij ) -ij in 1  I + )2 nj* + (oij ) 2ni
I i(j') 1 (4.29)

Vj- L ' i j (1- vi) niJ L, + (vj)2 n ,j j',
L j) i(j)

Vj' = E ij ('i) ni [j, + •n. 2, + (Gij)2 n1]

i,(j) io

replacing equations (4. 26).

The special method converges considerably more rapidly than the general method and can be

advantageously employed for computations where it is applicable. It has the disadvantage, how-
ever, that the computation program for a single iteration is longer and less systematic than for

the general method. The final results are easily expressed in terms of mole fractions by the

application of the relation

xk =nk/n. (4.30)
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Modifications for Computation at a Specified Density

Many of the applications of thermodynamics to combustion processes are such that it is nat-
ural to specify the state by means of the variables temperature and pressure. The methods for

the calculation of the equilibrium composition that have been described assume that the temper-

ature and pressure have been explicitly specified, i.e., that the equation of state is of the form

p/p =nRT cp (p,T)/Mo,

where n is the number of moles of gas contained in Mo grams of gas, P is the density, and cP (p,T)
is explicit in the pressure and temperature and unity for the ideal gas.

In certain applications, as in those of internal ballistics, it is more natural to specify the

state by means of the variables temperature and density (or volume). For these cases the equa-

tion of state may be assumed to be of the form

p/p =nRT 03 (0,T)/Mo,

where T' ( P,T) is explicit in the density and temperature and unity for the ideal gas. The meth-

otis for the calculation of the equilibrium composition at a specified density are analogous for

those at a specified pressure, but they differ in certain details.

The conditions for equilibrium, equations (4.3), can be advantageously written in the form,

I Ini =ki T~j nj (4.31

c+ 1, . . . s, where the ki are functions of temperature and density given by

1 v-1 Fyki =Ki (RTP/Mo) i 7 (4.32)

= [wp,'r1 V1 f~7-~.f. ij,
I JJWi=I (P, T)] V _I" fi" IT fj j ,

in which the P are in general functions of the temperature and density and are unity for every i
if the gas mixture is ideal. In a formal way, equations (4.31) and (4.32) can be obtained from the

analogous expressions, equations (4.9) and (4. 10), employed in the general method above by re-

placing xi and xj by ni and nj, respectively, and by replacing ki by ki. We note that the ki of
equations (4.15) and (4.31) are identical, although they are evaluated in different ways.

Equations (4.31) determine the concentrations of the dependent constituents for assumed

values of the concentrations of the components. In order that these calculations lead to an exact

calculation of the equilibrium composition, it is necessary that the results satisfy the stoichio-

metric conditions, equations (4.1), which we write in the form

Fj =0, (4.33)
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where
s

Fy j =qj - nj -V_. "ij ni"

i~c+l

In a formal way, equations (4.33) can be obtained from the analogous expressions, equations

(4. 11) by replacing xi and xj by ni and nj, respectively, and by setting G = 1.

The application of the Newton-Raphson method to the improvement of an approximate set of
values of the concentrations of the components requires the solution of equations analogous to

equations (4.12),

where the r-th and the (r+1)-th approximations to the composition are related by

nj(r+1) = nj(r) (1 + h (r)), (4.35)

and where the elements of the matrix are given by

s

A'jj =nj 6jjI +> V ii ijI ni. (4.36)

i=c+

In a formal way, equations (4.34), (4.35), and (4.36) can be obtained from the analogous expres-
sions, equations (4.12), (4.13), and (4.14), respectively, by replacing xi and xj by ni and nj, re-

spectively, and by setting Vj =0 for all j.

It is evident that the general method for computations at specified density is similar in out-
line with the previously described general method for computations at specified pressure, and
that a particular computational program for the former case can easily be derived in a formal way

from the equivalent program for the latter case. The total number of moles n contained inMo
grams of gas mixture can be calculated with equation. (4.16).

The alternative computational method, which we have called the special method, is easily
applied without substantial modification to calculations at specified density. \We again employ
the stoichiometric conditions as expressed by equations (4.1) and the equilibrium conditions as

expressed by equations (4.15). The constants k'i appearing in the equilibrium conditions are to
be calculated by equations (4.32), and for specified temperature and density they are independent
of the total number of moles n. Consequently, it is possible to seek a solution of the form

nj =nj(ýt)

ni = ni(ti)

j = 1, 2. . . . c; i = c+ 1,. . . . s, for those cases where the introduction of a variable u results in a

separation of variables.
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The value of i leading to an exact solution of the equilibrium conditions must satisfy the

condition,

FM• =0O (4.37)

where F(ýL) is defined by equations (4.22). The application of the Newton-Raphson method to

obtain an improved value of ýi requires the application of the relation

i(r+l) = j(r) [ + h (ýL) (r) ] (4.38)

where

(r) (r) (r)
h(ji) =F(ji) /All (4.39)

and where. All has been defined as one of equations (4.25). Equations (4.37), (4.38), and (4.39)

are obtained from the analogous expressions, equations (4.23), (4.24), and (4.25), respectively,

by retaining only those terms of significance in the latter equations after setting F(n) =0, h(n) =0.

Calculation of the Equilibrium Composition of Imperfect Gas Mixtures

In the previous discussion it has been assumed that the gas mixture can be described ade-

quately by the ideal gas equation of state. At the temperatures of interest in the consideration

of combustion gases this assumption is adequate for most purposes. However, for combustion

processes occurring at high pressures, as in closed bombs or in gun barrels, the ideal gas equa-

tion of state is no longer adequate, and it is necessary to consider the effects of gas imperfec-

tion on the calculation of the equilibrium composition. In the present section, we indicate the

modifications to the previously described computation methods that are necessary to take account

of gas imperfections, and we assemble the relations required for this purpose. A comprehensive

discussion of the evaluation of the thermodynamic properties of mixtures of real gases, with

derivations of the necessary relations, has been given by Beattie. L3/

For calculations that are carried out at a specified pressure, the mass action constant ki is

related to the thermodynamic equilibrium constant Ki by equation (4. 10),

ki =Ki p F~i,

where

J' = fi- 1 7 .f. v i ,(4 .40 )
I I

and where the activity coefficient of the k-th constituent is the ratio of the fugacity to the partial

pressure of the k-th constituent in the gas mixture

fk =Pk*/XkP,

13/ Beattie, J. A., The Computation of the Thermodynamic Properties of Real Gases and Mix-

tures of Real Gases: Chem. Rev., vol. 44, February 1949, pp. 141-192.
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tending to the unity as the pressure tends to zero. In the general case of the non-ideal gas, the

ri are functions of temperature, pressure, and composition.

If the equation of state is explicit in the pressure and of the form

p _ nRT (4.41)
P MO

where T.(p,T) is generally a function of the composition as well as of the temperature and pres-

sure, the activity coefficient of the k-th constituent of the gas mixture is given by

lo g fk = f op [ rp . -l + n a P I d .( . 2•nk p(4.42)
k 0On k p

This expression can be evaluated explicitly for a particular equation of state and employed to
determine the activity coefficients of the constituents of the mixture as functions of temperature,

pressure, and, in general, composition. Equation (4.40) can then be employed to evaluate the
functions Pi that determine the effect of gas imperfection on the mass action constants ki.

If the activity coefficients are functions ot the composition of the system, the Pi must be

evaluated with each successive approximation to the composition. The Pi are relatively insensi-
tive to the composition, and, consequently, it is unnecessary to modify the computation proce-

dure by means of which a particular approximation to the composition is determined by the one
preceding it.

Lewis and Randall-4 have proposed as a basis for an approximate thermodynamic treatment

of imperfect gas mixtures the rule

Pk =Xk Pk (P,(4.43)

where Pk (p) is the fugacity of k-th constituent as a pure gas at the temperature and total pres-
sure of the mixture. If tire k-th constituent obeys the gas law

pV = nkRT 'Pk(P,T), (4.44)

where 'P k is a function of pressure and temperature only and V is the volume occupied by nk
moles at temperature T and pressure p, the Lewis and Randall rule results in the expression

p dp
log fk = fo [(Pk 1] P- (4.45)

for the activity coefficient of the k-th constituent. Where applicable, equation (4.45) is more con-
venient than the exact form, equation (4.42), as it is independent of the composition of the mix-
ture. The range of validity of the approximate expression for a particular application may be
determined by comparison between results obtained from equations (4.42) and (4.45) with an ex-

plicit form of the equation of state.

14/ Lewis, G. N., and Randall, M., Thermodynamics: McGraw-ttill Book Co., Inc., New York,

1923, pp. 225-227.
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For calculations at a specified density, the equation of state may be assumed to be of the

form

pnRT T (p,T), (4.46)

P Mo

where T ( P,T) is generally a function of composition as well as of temperature and density. TheI
mass action constants ki for this case have been related to the corresponding thermodynamic

equilibrium constants by the expressions

RTP 
il

with ki =Ki 0o

v ' i -l I T c f i j - I Y i j
i= [T(p,T)] fi yf- =g 7j gj (4.47)

where we have introduced an alternative activity coefficient,

gk = fk V (P, T). (4.48)

The activity coefficient gk of the k-th constituent of the mixture is given by the general thermo-
dynamic relation

.,.pdo
logg= [d- 1n•k] (4.49)109 gk o, 0 ["-I +

This expression can be evaluated explicitly for a particular equation of state and employed to

determine the activity coefficients of the constituents of the mixture as functions of temperature,

density, and, in general, composition. Equations (4.47) can then be employed to evaluate the
Y I

functions 1i that determine the effect of gas imperfection on the mass action constants ki .

If the activity coefficients are functions of the composition of the system, the Pi must be

evaluated with each successive approximation to the composition. The Ti are relatively insen-

sitive to the composition, and it is unnecessary to modify the computation procedure by means of

which a particular approximation to the composition is determined by the one preceding it.

As a basis for the approximate thermodynamic treatment of gas mixtures, GibbsL5 has pro-

posed that the pressure of a mixture of gases be assumed to be equal to the sum of the pressures

of the different gases as existing each by itself at the same temperature and with the same value

of its chemical potential. If the k-th constituent obeys the gas law

pvk =RT W k (T, vk), (4.50)

where vk is the molar volume of the k-th constituent, then the assumption of Gibbs has been

shown by BeattieL6/ to lead to the approximate relation

15 Gibbs, J. W., Collected Works: Longmans, Green & Co., New York, 1906, vol. I, pp. 155-158.

16 Beattie, J. A., Work cited in footnote 13.
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log gk P [LvkP1+nk-k -- (4.51)

for the activity coefficient of the k-th constituent. This expression is not in general independent

of the composition of the mixture. It may, however, lead to simpler expressions than those de-

rived from the general relation, equation (4.49). The range of validity of the approximate expres-

sion for a particular application may be determined by comparison between results obtained from

equations (4.49) and (4.5 1) with an explicit form of the equation of state.

V. COMPUTATION PROGRAMS FOR CARBON-HYDROGEN-OXYGEN-NITROGEN SYSTEMS

A large number of the fuel-oxidant systems of scientific and technical interest yield on com-

bustion a mixture of products composed of compounds of carbon, hydrogen, oxygen, and nitrogen.

Because of the importance of such systems, we give explicitly in this section the relations ob-

tained by the application of the general methods of the preceding section. These computational

programs will also serve to illustrate the application of the general methods to the calculation

of the equilibrium composition of particular systems.

The computation programs will be written for calculations at specified pressure. We do not

present explicitly the relations for calculations at specified density. We have observed in a pre-

ceding section that the relations for the latter case are easily obtained from those for the former

case in a formal way by simple and systematic substitutions that have been given explicitly.

The rapidity with which a particular computational program converges is largely determined

by the abundance in the mixture of those constituents chosen as components relative to the abun-

dance in the mixture of the remaining derived constituents. The equilibrium composition of car-

bon, hydrogen, oxygen, nitrogen systems varies greatly if considerable variation of the gross com-

position parameters and of the temperature and pressure are to be considered. Consequently, the

program that is suitable for a given set of conditions of state and composition may converge very

slowly or even diverge if applied to another region of different characteristics. For the efficient

consideration of all possible gross compositions over considerable ranges of temperature and

pressure a number of different programs, corresponding to different choices of the components,

will be required. Each of these programs will be most appropriately employed for particular re-

gions of the complete set of systems. It is unnecessary to specify closely the region of appli-

cability of a particular program, since there is considerable overlap with the regions appropriate

for alternative programs. It will be noted that the procedure for setting up a particular program is

routine, once the constituents to be considered have been specified and a choice of components

has been made.

It will generally be assumed that the equilibrium composition of the combustion products of

fuel-oxidant systems, composed only of compounds of carbon, hydrogen, oxygen, and nitrogen,

can be adequately represented by a consideration of the constituents: Cksolid), CO, C0 2 , H 2 ,
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H 20, N 2 , 02, 0, OH, Hl, NO, N, NH 3, CfA4. Solid carbon will be assumed to be in the form of
graphite. If the oxidant is air, argon will be introduced as an additional constituent. Argon will

necessarily be chosen as an additional component, and, as it is inert, it does not affect in any

important way the computational programs. We assume that the ideal gas law provides an ade-

quate equation of state. In the previous section, the modifications necessary to take account of

gas imperfections have been described.

The General Method for Lean Mixtures

Fuel-oxidant mixtures containing an excess of oxygen over the amount required for stoichio-
metric conversion of the carbon to carbon dioxide and the hydrogen to steam are called lean mix-
tures and are characterized by C> 1/2, where C is the composition parameter defined by equation

(3.3). The predominant constituents of the combustion products satisfying the condition of inde-

pendence required for their choice as components are

CO 2 , 1120, 02, N2 ,

except at very high temperatures. A more convenient set of components for mixtures at such tem-

peratures. (ca. 40000 K.) is described in a later section. If the oxidant is air, a fifth component,

argon, must be considered.

The solution of equations (3.13) and (3.14) for this choice of components results in the

equation s

4 (C/O)
q (C0 2) - 2 + (H/O) + 2 (N/O) + 4 (A/O)

2 (H/o)
q(tt 20) = 2 + (H/O) + 2 (N/O) + 4 (A/O)

2- 4 (C/O) - (H/O) (5. 1)q(02) = 2 + (11/0) + 2(N/O) + 4(A/O)

2 (N/O)
q(N 2) = 2 + (WO) + 2(N/O) + 4 (A/O)'

4 (A/o)
q (A)= 2 + (H/O) + 2 (N/O) + 4 (A/O)'

relating the normalized stoichiometric constants to the atomic ratios. These relations can be

employed together with equations (3.6) or (3.7) to evaluate the stoichiometric constants for as-

signed values of the parameters descriptive of the gross composition of the system. If the oxi-

dant is not air, (A/O) =0, q (A) =O, and we obtain
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(I-A) (I-B) ( 1-Q

q(C0 2) (1-C)(2A + B- AB) + C(1-A)'

2B (I-A) (1-C)
q(H 20) (I-C) (2A + B - AB) + C (l-A)'

(I-A) (2C- 1) (5.2)

q (02) =(1-C)(2A+ B- AB) + C(I-A)'

2A (1-C)
q (N 2 ) (I-C)(2A+ B- AB) + C(1-A)'

by substitution of equations (3.5) into equations (5. 1).

In lean mixtures, we assume that methane and ammonia are absent from the equilibrium mixm
ture, an assumption that is confirmed by test calculations for the temperatures of interest in con-

bustion research. The chemical reactions in the form of equations (3. 11) for the formation of the
dependent constituents from the components are

CO 2 -(1/2)0 2 = CO,

1120 -(1/2)0 2 = 112,

(1/2)0 2 =0,

(1/2)Ht20 +( 1/4)02 = Ol

(1/ 2)1-p20 -( 1/4)02 =1H,

(I/2)N 2 +(1/2)0 2 ='No,

(1/2)N2 =N,

in which the symbols of all of the components are written on the left-hand side of the equations.
The coefficients *vij of these equations can be summarized in matrix form,

CO 2  H20 02 N 2  A

(vij) = CO 1 0 -1/2 0 0

H 2  0 1 -1/2 0 0

0 0 0 1/2 0 0 (5.3)

OH 0 1/2 1/4 0 0

H 0 1/2 -1/4 0 0

NO 0 0 0 1/2 0

N 0 0 0 1/2 0
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The constants ki of the mass action expressions, equations (4.9), are given for stated values of
the temperature and pressure by

k(CO) = p-1/2K(CO), k(H) = p°3/4K(H),

k(H 2 ) = P" 1/2K(H2 ), k(NO) = K(NO),
(5.4)

k(O) = p" 1/ 2 K(O), k(N) = p-I/ 2 K(N),

k(OH) p- 1/ 4 K(Oll),

where the thermodynamic equilibrium constants can be calculated from the equilibrium constants

of formation by means of the relations

K(CQ) Kf(CO)/Kf(CO2 ), K(H) = Kf(H)/ [Kf(H20)] 1/2,

K(H 2) 1/Kf(H20), K(NO) = Kf(NO),

K(0) Kf(O), K(N) = Kf(N),

K(OH) = Kf(OH)/ [Kf(H 2 0)] 1/2.

In writing down equations (5.5), we have taken account of the fact that the equilibrium constant

of formation of an element is unity.

The mole fractions of the dependent constituents are determined, for assumed values of the
mole fractions of the components, by equations (4.9) in the form

x(CO) = k(CO)x(C0 2)/ [x(02)] 1/2,

x412) = k(t 2)x(H 2 0)/ [x(02)] 1/2,

-<0) = k(O) [x(O2)] 1/2,

x(Ot) = k(OH) [x(H20)] 1/2 [x(02)] 1/4, (5.6)

x(H) = k(H) [x(H 20)] 1/2/ [x(02)] 1/4,

x(NO) = k(NO) [x(02) 1/2 [x(N2)] 1/.2,

x(N) = k(N) [x(N 2)] 1/2

The values of the mole fractions of the components leading to an exact calculation of the equi-
librium composition satisfy the conditions

F(C0 2) =O, F(11 20) =0, F(0 2 ) =O, F(N 2 ) =0,

where the functions, defined by equations (4. 11), are given by
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F(CO 2) = Gq(CO2) - x(CO2) - x(CO),

F(H20) = Gq(n 20) - x(H 20) - x(H 2) - x(OH)/2- x(H)/2,

F(0 2) = Gq(0 2) - x(0 2 ) + x(CO)/2 + x(1H2 )/2 - x(O)/2 (5.7)

x(OHI)/4 + x(H)/4 - x(NO)/2,

F(N 2) Gq(N 2) - x(N 2) - x(NO)/2 x(N)/2,

and where

G = 1 - x(CO)/2 - x(H 2)/2 - x(O)/2 - x(OH)/4- 3x(H)/4 - x(N)/2. (5.8)

The application of the Newton-Raphson method to the improvement of an approximate set of
values of the mole fractions of the components requires the solution of equations (4. 12) in the

form

All A1 2  A13  A 14  h(CO2) = F(CO2)

A 2 1  A2 2  A2 3  A24  h(H 20) F(H 20)
S(5.9)

A3 1  A3 2  A3 3  A34  h(0 2) F(0 2)

A4 1  A4 2  A4 3  A4 4  h(N 2) F(N 2 )

where h(CO2•, h(H 20), h(0 2), and h(N 2) are estimates of the fractional errors of a particular

approximation to the mole fractions of the respective components, to be employed as indicated

by equations (4. 13) in obtaining the next approximation, and where the coefficients, defined by

equations (4. 14), are given by

All = Ull - Vlq(CO2), A3 1 = U 13 - Vlq(O2),

A1 2 = U 12 - V2 q(CO2), A3 2 = U 2 3 - V2q(O2),

A 13 = U 1 3 - V3 q(CO2), A3 3 = U 3 3 - V 3q(02),

A 14 = U 14 - V4 q(CO 2), A34 = U34 -.V4q(0 2),

A2 1 = U 12 - Vlq(H2O), A4 1 = U 14 - Vlq(N2),

A2 2 = U2 2 - V2q(1t 20), A4 2 = U 24 - V2q(N2),

A2 3 = U2 3 - V3 q(H 20), A4 3 = U3 4 - V3q(N2),

A2 4 = U2 4 - V4 q(H20), A4 4 = U4 4 -V4q(N2)
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wi th

UIl = x(CO2 ) + x(CO), U 1 2 = 0, U 1 3 = x(CO)/2,

U 14 = 0, U2 2 = x(H 2 0) + x(H 2 ) + x(OH)/4 + x(H)/4,

U2 3 = x(H 2)/2 + x(OH)/8- x(H)/8, 7 U2 4 = 0,

U3 3 = x(O2) + x(CO)/4 + x(H 2)/4 + x(O)/4 + x(OH)/16 + x(H)/16 + x(NO)/4,

U3 4 = x(NO)/4, U4 4 = x(N 2) + x(NO)/4 + x(N)/4,

and

V1 = -x(CO)/2, V2 = -x(H 2 )/2 - x(OH)/8- 3x(W)/8,

V3 = x(CO)/4 + x(H 2)/4- x(O)/4- x(OH)/16 + 3x(H)/16, V4  -x(N)/4.

If the oxidant is air, the value of the mole fraction of argon in the equilibrium mixture can be
calculated from

x(A) =Gq(A). (5.10)

The total number of moles n contained in Mo grams of mixture is equal to G- 1, where

Mo = 44.010 q(CO2 ) + 18.016 q(H 20) + 32.000 q(O 2 ) + 28.0 16 q(N 2 ) + 39.914 q(A),

and where the quantity G is defined by equation (5.8).

A Special Method for Lean Mixtures

The special method of computation can profitably be employed in calculations for conditions
such that the convergence of the general method is inconveniently slow. This will be the case
for mixtures near the stoichiometric point C = 1/2 and for mixtures at temperatures such that dis-
sociation of the components into atomic species is important. Although the special method con-
verges more rapidly than the general method, each iteration of the special method involves a con-
siderably longer and less systematic computational routine than is required by the general
method.

We take the variable 4, defined by equation (4. 17), to be

[n(0 2)] 1/2 (5.11)

and employ equation (5. 11) to eliminate n(0 2) from the set of equations describing the equilib-
rium conditions. The stoichiometric conditions, equations (4.1), on the components CO2, 2120,
and N 2 are given by
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n(CO 2) + n(CO) = q(CO 2),

n(E'20) + n(H12) + n(01)/2 + n(H)/2 = q(H120), (5.12)

n(N 2) + n(NO)/2 + n(N)/2 =q(N 2).

The mass action expressions, equations (4.19), can be written explicitly

n(CO) = k'(CO)x/4, n(H) = k'(H)y/ýI/2,

n(112 ) = k '(H 2 )y 2/ t, n(NO) = k '(NO)ziL, (5.13)

n(O) = k '(0) kL, n(N) = k '(N)z,

n(OH) = k '(oH)y l/2,

where

k '(CO) = n1/2 k(CO), k'(14) n3/4 k(H),

k '(112) = n 1/2 k(112), k '(NO) k(NO), (5.14)

k'(O) = nl/2 k(O), kO(N) n 1/2 k(N),

k'(OH) = n 1/ 4 k(OH),

and where we have employed the abbreviations

x =n(CO 2), y 2 =n(I120), z 2 =n(H 2). (5.15)

Substituting equations (5. 13) into equations (5. 14), we obtain

x[1 + k'(C)o)/I] -q(C0 2) = 0,

y 2 1[1 + k'(H2)/AL + y[k'(OH)lh1/2 + kI(H)/1/l/2]/2- q(H 20) 0,

z2 + z [k'(NO)bl + k'(N)1/2- q(N 2) = 0,

with the solutions,

q(CO2)
I + k (CC))/4L (5.16)

k'(OH)'L 1/2 +k '(H)/4 1/2 + 4K'(OH) ýj/2+k'(H)l2) + kq(0)
I(NO)q(+ k)

4 + 4k'(H 2 )/y. 4 + 4 k'(H12 )/Ai 1j ()A

k'(NO) L +k + _)k(NO)+k( 2 + q(N2)

\4I + 4(N1
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Equations (5.16), together with equations (5.11), (5.13), and (5.15), determine the equilibrium

composition for assumed values of n and ýL.

The values of n and i leading to an exact calculation of the equilibrium composition satisfy

the conditions,

F(ýL) =0, F (n) =O0,

where the functions are defined by equations (4.22) and have the explicit form

F(L) =q(0 2) - n(0 2) + n(CO)/2+n(f12)/2-n(O)/2-n(OII)/4+n(li)/4-n(NO)/2,
(5.17)

F(n) = n-l-n(CO)/2 - n(H2)/2 - n(9)/2 - n(OH)/4 - 3n(li)/4 - n(N)/2.

If F and G do not vanish, the application of the Newton-Raphson method to obtain an im-

proved pair of values of n and 4 requires the solution of equations (4.23),

h 

(u)

21 A2 J Kh(n) (n)

where h(ýL) and h(n) are estimates of the fractional error of the approximation to ýi and n, respec-

tively, to be employed as indicated by equations (4.24) in obtaining the next approximation, and

where the coefficients, defined by equations (4. 25), are given by

All = 2n(0 2) + n(CO)/2 + n(H 2)/2 + n(O)/2 + n(OH)/8 + n(li)/8 + n(NC)/2

+ U [-n(CO)/2] +V [- n"(!2) + n(OHt)/4 - n(H)/4 I + W In(NO)/2]

A1 2 = -n(CO)/4 - n(H 2)/4 + n(O)/4 + n(Oti)/ 16 - 3n(t)/ 16

+ X [- n(CO)/2] + Y [- n(I- 2) + n(OH)/4 - n(H)/4] + Z [n(NO)/2]

A2 1 = - n(CO)/2 - n(1" 2)/2 + n(O)/2 +n(Ofl)/8- 3nWH)8

+ U [n(CO)/2] +V[n(H 2)+n(OH)/4 + 3n(H)/4] +V, [n(N)/2]

A2 2 = - n + n(CO)/4 + n(H 2)/4 + n(O)/4 + n(OH)/ 16 + 9n(H)/16 + n(N)/4

+ X [n(CO)/2] + Y [n(12) + n(014)/4 + 3n(lI)/4] + Z [n(N)/2]

where
n(CO) n(CO)/2
q(CO 2)' q( CO 2)

n(H 2) - n(OH)/4 + n(H)/4 n(H 2)/2 +n(OH)/8 +3n(Hi)/8
V=y=.

q(H20) + n(H 20) + n(H 2 ) q(H 20) +n(H 20) +n(H 2)

n(NO)/2 n(N)/4
= Z =.-q(N 2) + n(N 2) ' q(N 2) + n(N 2)
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If the oxidant is air, the concentration of argon is given by

n(A) = q(A). (5.19)

The equilibrium composition is expressed in terms of mole fractions by dividing the number of

moles of each constituent by the total number of moles n of the mixture. The mass of the mix-

ture in grams containing a total number of gram moles n is Mo, where

N1 =44.010 q(CO 2 ) + 18.016 q(H20) + 32.000 q(O 2 ) + 28.016 q(N 2) + 39.944 q(A).

The General Method for Rich Mixtures Without Solid Carbon

Fuel-oxidant mixtures containing a deficit of oxygen compared to the amount required for

stoichiometric conversion of the carbon to carbon dioxide and the hydrogen to steam are called

rich mixtures and are characterized by C<1/2, where C is the composition parameter defined by

equation (3.2). If C>C 1, where C 1 is the critical value of C defining the solid carbon boundary

surface, equation (3.31), the equilibrium mixture will consist of a gas phase only. The predom-

inant constituents of the combustion products satisfying the conditions of independence required

for their choice as components are

CO, H2 , H20, N 2 ,

except at very high temperatures. A more convenient set of components for mixtures at such tem-

peratures (ca. 40000 K.) is described in a later section. If the oxidant is air, a fifth component,

argon, must be considered.

The solution of equations (3.13) and (3.14) for this choice of components results in the

equations

2(C/O)
q(CO) =

2(C/O) + (WO) + (N/O) + 2(A/O)

(H/O) + 2(C/0) - 2
q(Hl2 )= 2(C/O) + (H/O) + (N/O) + 2(A/O)'

2- 2(C/O)
q(1120) = 2(C/O) + (H/O) + (N/O) + 2(A/O) ' (5.20)

(N/O)q(N 2)= 2(C/0) + (JI/0) + (N/O) + 2(A/0) '

2(A/0)q(A) = 2(C/0) + (H/O) "+ (N/O) + 2(A/0) '
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relating the normalized stoichiometric constants to the atomic ratios. These relations can be

employed, together with equations (3.6) or (3.7), to evaluate the stoichiometric constants for as-
signed values of the parameters descriptive of the gross composition of the system. If the oxi-

dant is not air, (A/O) =0, q(A) =0, and we obtain

(1- A) ( 1- 13)
q(CO ) = + A + 1 -A '

(-A) [(1+13) (1-C) - 2C]
q(fl 2)= I-C) (1 + A + B1- AB)

(5.21)

I-A) [2C - (1-B) (1-C)]q(f!20) I- Q-C (I + A + B - AB)'

2A
q(N 2 ) =I + A+ B-AB

by substitution of equations (3.5) into equations (5.20).

The chemical reactions in the form of equations (3.11) for the formation of the dependent con-

stituents from the components are

CO + 1-120- H2 = C0 2 ,

21120 - 2112 = 02,

fl 20 - H2 = 0,

H 2 0 - 1 1H2 = O!,
2

I-H fl,2

f12) + 1 N 2 - 12 = ND,
2

I
_-N2 = N,

CO + 3112 - f120 = C0 4 ,

3 tt2 + 1 N 2 = NH 3 ,
2 2

in which the symbols of all of the components are written on the left-hand side of the equations.
The coefficients Vij of these equations can be summarized in matrix form,
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CO H 2  H 20 N2  A

(Vij)= C( 2  -1 1 0 0

02 0 -2 2 0 0

O 0 -1 1 0 0

OH 0 -1/2 1 0 0
(5.22)

H 0 1/2 0 0 0

NO 0 -1 1 1/2 0

N 0 0 0 1/2 0

CH 4  1 3 -1 0 0

NH 3  0 3/2 0 1/2

The constants ki ot the mass action expressions, equations (4.9), are given for stated values of
the temperature and pressure by

k(CO2) = K(C0 2 ),. k (NO) = p- 1/2K(NO),

k(0 2) = p'IK(o 2), k(N) = p-1/2K(N),

k(O) = p- lK(O), k(CH4 ) = p 2K(CH4), (5.23)

k(OH) = I1T/ 2K(OH), k(NH3 ) = pK(NH 3),

k(H) = p- I/2K(H),

where the thermodynamic equilibrium constants can be calculated from the equilibrium, constants
of formation by means of the relations,

K(CO 2) = Kf(CO2 )/Kf(CO)Kf(H 2 0), K(NO) = Kf(NO)/Kf(H 20),

K(0 2) = 1/ [Kf(H 20)] 2, K(N) = Kf(N), (5.24)

K(O) = Kf(O)/Kf(H 2 0), K(CH4 ) Kf(CI{ 4) Kf(H 20)/Kf(CO),

K(Ott) = Kf(OH)/Kf(H 20), K(NH 3 ) =Kf (NH 3 ),

K(H) = Kf (H).

In writing down equations (5.25), we have taken account of the fact that the equilibrium constant
of formation of an element is unity.
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The mole fractions of the dependent constituents are determined, for assumed values of the
mole fractions of the components, by equations (4.9) in the form

x(C0 2) = k(C0 2) x(CO)x(t12 0)/x(H2),

x(02) = k(0 2) [x(H 20)] 2/ [x(H2)] 2,

x(O) = k(O) x(H20)/x(H 2),

x(OH) = k(OH)x(H 2 0)/[x(H2)] 1/2,

"x(H) = k(H) [x(H2)] 1/2, (5.25)

x(NO) = k(NO)x(H 20) [x(N 2)] 1/2/x(112),

"x(N) = k(N) x(N 2)1 1/2,

x(CH4 ) = k (Ct14 )x(CO) Ix(1i2)] 3/x (1120),

x(Nt13 ) = k(NH3 ) [x(fl 2)] 3/2[x(N2 )] 1/2.

The values of the mole fractions of the components leading to an exact calculation of the equi-

librium composition satisfy the conditions

F(CO) =0, F(tI2 ) =O, F(H 20) =0, F(N 2 ) =0, (5.26)

where the functions, defined by equations (4. 11), are given by

F(CO) = Gq(CO)- x(CO) - x(C0 2 ) - x(CI14 ),

F(H 2 ) = Gq(H 2) - x(W1 2) + x(CO2 ) + 2x(0 2) + x(O) + x(OH)/2

-x(H)/2 + x(NO) -3x(CH4 )- 3x(NH3 )/2, (5.27)

F(1P20) = Gq(H 20) - x(t 20) - x(CO2) - 2x(02) - x(O) - x(OH)

-x(NO) + x(CH4 ),

F(N 2) = Gq(N 2) - x(N 2)a- x(NO)/2 - x(N)/2 - x(NH 3)/2,

and where

G = 1 - x(0 2) - x(O) - x(OH)/2 - x(H)/2 - x(NO)/2 - x(N)/2
(5.28)

+ 2x(Cf-4) + x(NH3 ).

The application of the Newton-Raphson method to the improvement of an approximate set of
values of the mole fractions of the components requires the solution of equations (4. 12) in the

form
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All A1 2  A1 3  A14  h(CO) F(CO)

A2 1  A2 2  A2 3  A24  h(H 2) F(H 2) (5.29)

A3 1  A3 2  A33  A3 4  h(H 20) F(H 20)

A4 1  A4 2  A4 3  A4 4  h(N 2) F(N 2)

where h(CO), h(11 2), h(H 20), and h(N 2) are estimates of the fractional errors of a particular ap-

proximation to the mole fractions of the respective components, to be employed as indicated by
equations (4. 13) in obtaining the next approximation, and where the coefficients, defined by equa-

tions (4. 14), are given by

All = U 11 - Vlq(CO), A 3 1  U 13 - Vlq(1120),

A1 2 = U 1 2 - V2q(CO), A3 2  U 23 - V2 q(H 20),

A13 = U 13 - V3 q(CO), A3 3  U3 3 - V3 q(11 20),

A1 4 = U 14 - V4 q(CO), A34 = T3 4 - V4 q(H 20),

A2 1 = U 1 2 - Vlq(H 2), A4 1 = U 14 - Vlq(N2),

A2 2 = U 2 2 - V2 q(H 2), A4 2 = U24 - V2q(N2),

A2 3 = U2 3 - V3 q(H 2), A4 3 = U3 4 - V3 q(N 2),

A 2 4 = t" 24 - V4 q(H2), A4 4 = U4 4 - V4q(N2),

with

Ull = x(CO) + x(CO2) + x(CH4 ), U 1 2 = -x(CO2) + 3x(CH4 ),

U 1 3 = x(C0 2) - x(C114 ), U14 = 0,

U 2 2 = x(H 2) + x(C0 2 ) + 4x(0 2)+ x(O) + x(OH)/4 + x(H)/4 + x(NO) + 9.x(CH4 )

+ 9x(NH3)/4,

U 2 3 = x(CO2) - 4x(0 2) - x(O) - x(011)/2 - x(NO) - 3x(CH4),

U 24 = -x(NO)/2- 3x(NH 3)/4,

U 3 3 = x(H 20) + x(C0 2) + 4x(02) + x(O) + x(OH) + x(NO) + x(CH4),

U3 4 = x(NO)/2, U4 4 = x(N 2) + x(NO)/4 + x(N)/4 + x(Nt1 3)/4,
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and

V1 = 2x(CH4),

V 2 = 2x(0 2) +x(O) +x(OH)/4 +x(H)/4 +x(NO)/2 +6x(C11 4 ) +3x(N"i 3)/2,

V3 = -2x(0 2) - x(O) - x(OH)/2 - x(NO)/2 - 2x(CH4 ),

V4 = -x(NO)/4 - x(N)/4 + x(NH 3)/4.

If the oxidant is air, so that q(A) YO, the value of the mole fraction of argon in the equilib-

rium mixture, can be calculated from

x(A) =Gq(A). (5.30)

The total number of moles n contained in Mo grams of mixture is equal to G- 1, where

NI =28.010 q(CO) + 2.016 q(l12 ) + 18.016 q(H 2 0) + 28.016 q(N 2) + 39.944 q(A),
0

and where the quantity G is defined by equation (5.28).

The rate of convergence of this method of computation can be increased substantially if the
mole fractions of dependent constituents are calculated from an approximate set of values of the
variables, Yl, Y2, Y3' and x(N 2), where

Yi =x(CO) + x(C0 2),

Y2 = x(H 2) - x(CO 2 ), (5.31)

Y3 =x(H 20) + x(C0 2).

We may determine a value of x(CO2), consistent with given values of Yl, Y2, andY 3 and with the
first of equations (5.26), by means of

x(C0 2) = -b + ýb 2 + c for k(C0 2 ) <1,

(5.32)

x(C0 2) =-b - b2 + c for k(CO2 ) > 1,

where

b Y2 + (YI + Y3) k(C0 2 )
2[1 - k(C0 2)]

y1 Y3 k (C0 2)
c

I - k(C0 2 )

where k(C0 2 ) = 1, the solution is

x(C0 2) = y 3  (5.33)

Yl + Y2 + Y3
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The values of x(CO), x(H 2), and x(H 20) can then be determined for given y I, Y2, and.Y3 by equa-

tions (5.31), and they may be employed with equations (5.26) to complete the determination of the

equilibrium composition for assumed values of yl, Y2, and Y3 " If this determination does not

satisfy the criteria for convergence, the next approximation can be obtained by means of

y I= yl [I + h (CO)] + x(C0 2) [-h(H 2) + h(H 2 0)],

Y2 = Y2 [1 +h (H12)] + x(C0 2) [-h(CO) + 2h(I 2) - h(H 20)], (5.34)

y 3= y 3 [1 +h (H 20)] +x(C0 2) [h (CO) - h(H 2)]

x'(N 2 ) = x(N 2) [I + h(N 2 )],

I I I

where h(CO), h(12), h(H 20), h(N 2) are the solutions of equations (5.29) and where yl, Y2, Y3 1

x'(N2) are the new approximations to yl, Y2 , Y3, and x(N 2), respectively.

A Special Method for Rich Mixtures without Solid Carbon

The special method of computation can profitably be employed in calculations for conditions

such that the convergence of the general method is inconveniently slow. This will be the case

for mixtures near the stoichiometric point C = 1/2 and for mixtures at temperatures such that dis-

sociation of the components into atomic species is important. Although the s•pecial method con-

verges more rapidly than the general method, each iteration of the special method involves a con-

siderably longer and less systematic computational routine than is required by the gen e r a l

method.

At temperatures sufficiently high so that methane and ammonia can be assumed to be absent

from the equilibrium mixture, we take the variable Li, defined by equation (4.17), to be

L = n(It 2O)/n( It2),' (5.35)

and employ equation (5.35) to eliminate n(" 20) from the set of equations describing the equilib-

rium conditions. The stoichiometric conditions, equations (4. 1), can be written in ihe form,

n(CO) + n(CO2) = q(CO),

n(H 2) [I + 'L] + n(OH)/2 + n(H)/2 =q'(12) =q(H2) + q(H 2 0), (5.36)

n(N 2) + n(NO)/2 + n(N)/2 = q(N2),

where the second equation is a linear combination of the stoichiometric conditions on the com-

ponents 12 and H 20. The mass action expressions, equations (4. 19), can be written explicitly

n(C0 2) = k!(C0 2) x lL, n(0 2) = k'(0 2) 1L2 ,

n(OH) = k'(OH) y 4L, n(O) = k'(O) Li,
(5.37)

n(H) = k '(H) y, n(NO) k'(NO) z lL,

n(N) k'(N) z,
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where

kr'(C 2) = k(C0 2), k'(0 2) = nk(0 2 ),

kT(OH) = nli2k(OH), k'(O) = nk(O),

k'(H) = nl/2k(H), k'(NO) = n1/2k(NO), (5.38)

k'(N) = nl/2k(N),

and where we have employed the abbreviations

x = n(CO), y 2  n(H2), z 2  n(N 2). (5.39)

Substituting equations (5.37) into equations (5. 36), we obtain

x [I 4- k'(CO2)ýL] -q(CO) = 0,

y 2 (1 + i) + y [k '(011) i + k'(1[)] /2 - q'(H2) 0,

z2 + z [k'(NO) 4 + k(N)]/2- q(N 2 ) = 0,

with the solutions

q(CO)
X I + k'(CO2W•

= k'(O+H)4 + k'(H) + \F '(Off)ý +kk -2 + q'(H2) (5.40)

S 4(1 + kL) L 4(l+ + (.

k'(NO)ýi +k'(N) k-'(NO)hI +k'(N)2 2

4 ] + q(N2).

Equations (5.40), together with equations (5.35), (5.37), and (5.39), determine the equilibrium

composition for assumed values of n and iL.

The values of n and ki leading to an exact calculation of the equilibrium composition satisfy

the conditions,

F(ýL) =(O, F(n) =O,

where the functions are defined by equations (4.22) and have the explicit form,

F(I) = q(H 2 0) - n(H 20) - n(CO2 ) - 2n (0 2) - n(0) - n(Oil) - n(NO),
(5.41)

F(n) = n - 1- n(02) - n(0) - n(OH)/2 - n(H)/2 - n(NO)/2 - n(N)/2.

4351 - 40-



If F and G do not vanish, the application of the Newton-Raphson method to obtain an im-
proved pair of values of n and i requires the solution of equations (4.23),

A1 1  A 12  hi)L i LFhfl)I, (5.42)
A 2 1  A22  h(n) F(

where h(4) and h(n) are estimates of the fractional error of the approximation to ýi and n, respec-

tively, to be employed as indicated by equations (4.24) in obtaining the next approximation, and

where the coefficients, defined by equations (4.25), are given by

All = n(H 2 0) +n(C0 2) + 4n(0 2) +n(O) + n(OHl) + n(NO)

+ U n(CO2) +V [2n(H 20) +n(OH)I + Wn(NO),

A1 2 = 2n (0 2 ) +n(O) +n(OH)/2 +n(NO)/2

+ Xn( (G 2) +Y [2n(H20)+ n(OH)] + Zn(NO),

A2 1 = 2n(0 2) +n(O) +n(OH)/2 +n(NO)/2

+ V [n(OH)/2 +n(H)/21 + W [n(NO)/2 +n(N)/21,

A22 = -n +n(0 2) +n(O) +n(OH)/4 +n(ll) +n(NO)/4 +n(N)/4

+ Y [n(OH)/2 + n(H)/21 + W [n(NO)/2 +n(N)/21,

where

n (CO 2)
U =-- , X 0 ,q(CO)

n (H 20) - n (OH)/2 n(OH)/4 +n(H)/4

q'(H 2) + n (H 2) + n (H 29) q'(H2) +n(H 2 ) +n(H20)

n(NO)/2 n(NO)/4 +n(H)/4
z =.

q(N 2) n(N 2) q(N 2) +n(N 2)

If the oxidant is air, the concentration of argon is given by

n(A) = q(A). (5.43)

The equilibrium composition is expressed in terms of mole fractions by dividing the number of

moles of each constituent by the total number of moles n of the mixture. The mass of the mix-

ture, in grams, containing a total number of gram moles n is M0 , where

M =28.010 q(CO) + 2.016 q(H2 ) + 18.0 16 q(H 20) + 28.0 16 q(N 2) + 39.944 q(A).
o
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It should be noted that this computation program remains determinate for the case where the

system contains no hydrogen (B = 0), since 1 remains finite as n(H 2 ) and n(1l 2
0 ) tend to zero.

A Special Method for Homogeneous Mixtures at High Temperatures

At high temperatures (ca. 4,0000 K.), a considerable amount of dissociation results in the for-

mation of atomic species at the expense of the substances employed as components for the pre-

viously described computational methods for both lean and rich mixtures. Under these circum-

stances, these methods are inconveniently slow in converging, and it is u s e ful to employ a

special computation program for these temperatures. The predominant constituents of the com-

bustion products satisfying the conditions of independence requiredi for their choice as compo-

nents are

CO, H, O, N2.

If the oxidant is air, a fifth component, argon, must be considered. At these temperatures, am-

monia and methane need not be considered as possible constituents of the equilibrium mixture.

The solution of equations (3.13) and (3.14) for this choice of components results in the

equations

2(C/0)
q( GO) 2 +2(11/0) +-(N/0) + 2(A/0)

2(11/0)
q(-1) = 2 + 2(11/0) + (N/0) + 2( A/O)

(5.44)
2-2(C/0)

q(0) = 2 + 2(11/0) +(N/0) + 2(A/0)'

(N/0)
q(N2) 2 + 2(11/0) +(N/O) + 2(A/0)'

2(A/O)
q(A)= 2 + 2(11/0) + (N/C)).+ 2(A/O)'

relating the normalized stoichiometric constants to the atomic ratios. These relations can be

employed, together with equations (3.6) or (3.7), to evaluate the stoichiometric constants for as-

signed values of the parameters descriptive of the gross composition of the system. If the oxi-

dant is not air, (A/0) =0, q(A) :0, and we obtain by substitution of equations (3.5)
(I1-A) (lI-B) (1-C)

q(CO) 2C(1-A) + 2(1-C) (A + 2B- 2AB)

2B (1-A (1-C)
q(f ) C( 1-A) + (I-C) (A + 2B - 2AB)

(5.45)
(1-A)(B +3C- BC- 1)

2C(1-A) + 2(1-C) (A + 2B- 2AB)

A( 1-C)
q(N 2) C C( I-A) + (I-C) (A + 2B - 2AB)
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The stoichiometric constants for this program can be computed from those for the program for rich

mixtures without solid carbon at lower temperatures by means of the relations

q(CO) q(C0)(r)/ [q(Co)(r)+2q(H 2)(r)+3q(H 20)(r) + q(N2)(r)],

q(H) = [2q(t12)(r)+2q(H2)(r)] / [q(Co)(r)+2q(H 2)(r)+3q(It 20)(r) + q(N2)(r)]
(5.46)

q(O) q(H 20)(r)/ [q(Co)(r)+2q(H2 )(r)+3q(H2 0)(r) +q(ND)(r)]

q(N 2 ) =q(N2)(r)/ [q(CO)(r)+2q(H 2 )(r) +3q(H~ 20)(r) +q(N 2 )(r)],

where the superscript r is employed to aesignate the previously defined constants for homoge-

neous, rich mixtures at lower temperatures. Similarly, in terms of the constants for lean mixtures

at lower temperatures,

q(CD) q(CO2)(G)/ [2q(CO2)(C) + 3q(H 2 0)(ze) + 2q(02)( -") + q(N2)('L)],

q(H) 2q(H 20)('/)/ [2q(cD 2)("') + 3q(H 2 0)(A) + 2q(0 2)(•') + q(N 2 )(•)], (5.47)

q(0) [q(Co 2)(,Z) + q(H 20)(A) + 2q(O 2 )(1 )] / [2q(CO2)(e) + 3q(H 2 0)( + 2q(0 2)(Z)
+ q(N 2)()]

q(N 2 ) q(N 2)(-)/ [2q(CO2 )(&') + 3q(H20)(Z) + 2q(0 2 )(/) +

where the superscript- is employed to designate the previously defined constants for lean mix-

tures at lower temperatures.

CO + 0 =CO2,

211 = H 2,

2H + 0 =H20,

20 =02,

0 + 11 =OH,

(1/2)N 2 + 0 =NO,

( 1/2)N2 =N.

The coefficients V ij of these equations can be summarized in matrix form,
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CO H 0 N2  A

(vij) = CO 2  1 0 1 0 0

H2  0 2 0 0 0

H20 0 2 1 0 0 (5.48)

02 0 0 2 0 0

Oil 0 1 1 0 0

NO 0 0 1 1/2 0

N 0 0 0 1/2 0

The constants ki of the mass action expressions, equations (4.9), are given for stated values of

the temperature and pressure by

k(C0 2) = pK(C0 2 ), k(OI) = pK(OH),

k(H 2 ) = pK(H 2), k(NO) = pl/2K(NO),

k (f20) = p 2K(H20), k(N) = p- 1/2K(N),

k(0 2) = pK(O2),

"where the thermodynamic equilibrium constants can be calculated from the equilibrium constants

of formation by means of the relations

K(C0 2 ) = Kf(CO2)/Kf(CO)Kf(O), K(OH) = Kf(OH)/Kf(H)Kf(O),

K(01 2 ) = 1/ [Kf(1)] 2, K(NO) = Kf(NO)/Kf(O), (

K(1 20) = Kf(H 20)/[Kf(fl)] 2 Kf(O), K(N) = Kf(N),

K(0 2 ) = 1/ [Kf(O)] 2

In xwriting equations (5.50) we have taken account of the fact that the equilibrium constant of for-

mation of an element is unity.

The mass action expressions, equations (4. 19) can be written in the form

n(C0 2) = k'(C0 2) xýL, n(Ot) = k '(OH) yiL,

n(M 2 ) = k '(1l2) y2, n (NO) = k T(NO) z L,
(5.51)

n(H 2 0) = k (H2 0) y2 1, n (N) = k T(N) z,

n(0 2 ) = k'(0 2 ) L2,

where we have introduced the variable

S= n(O), ( 5.52)

and the abbreviations

x =n(CO), y =n(fl), z 2 =n(N 2), (5.53)
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and where

k '(C 2) = n- lk (C)2), k '(011) = d lk (OH),

k '(112) = n 1 k(H 2), k '(NO) = n-l/2k(NO), (5.54)

k '(1120) = d'2k (1120), k'(N) = n'l1/2 k(N),

k'(0 2) = n'lk(o 2).

X•e employ the stoichiometric conditions in the form given by equations (4. 1). The conditions on
the components CO, 1i, and N 2 are

n(CO) + n(C0 2 ) = q(CO),

n(H) + 2 n(H 2 ) + 2n(H 20) + n(OH) = q(H), (5.55)

n(N 2) + n(NO)/2 + n(N)/2 = q(N 2 ).

Substituting equations (5.57) and (5.53) into equations (5.55), there are obtained

x [I + k'(CO)1] - q(CO) -O,

2y 2 [k'(112) + k'(H20)kL] + y [+ k '(01) i] - q(H) =O,

z2 + z [k'(NO)jL + k'(N)]/2- q(N 2) =O,

with the solutions

q(CO)
x 1 + k '(CO)ii

I + k'(OH)I+ 1 + k'(0 2 q(H)

4k,(H 2) + 4k'(H 20)4 4I 11() + 4k'(H 20)ý 2k'(H 2) + 2k'(H20)J (5.56)

k'(NO)ýi + k'(N) + k f'(NO)t + k,(N)_ 2 +
z 4 +\14 + q(N2)4

Equations (5.56), together with equations (5.51), (5.52), and (5.53), determine the equilibrium

composition for assumed values of n and 4.

The values of n and iL leading to an exact calculation of the equilibrium composition satisfy
the conditions

F(4) =O, F(n) =O,

where the functions, defined by equations (4. 22), are given by

F(Li) = q(O) - n(O) - n(C0 2 ) - n(H 20) - 2n(02) - n(OH) - n(NO),
(5.57)

F(n) = n-i +n(CO 2 ) +n(H 2 ) + 2n(H 20) +n(0 2) +n(OH) +n(NO)/2- n(N)/2.
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If F and G do not vanish, the application of the Newton-Raphson method to obtain an im-
proved pair of values of n and p. requires the solution of equations (4. 23),

Al A12] Kh( u)] F(u)

A1 A22J Ln()F(n))(.8
where h(p.) and h(n) are estimates of the fractional error of the approximation to p. and n, respec-

tively, to be employed as indicated by equations (4.24) in obtaining the next approximation, and
where the coefficients, defined by equations (4.25), are given by

All n (0) + n(C0 2 ) +n(11 2 0) +4n(0 2 ) + n(OH) + n(NO)

+ Un (C0 2 ) + V [2n (H 2 0) + n(OH) I + Wn (NO),

A12 =-n(C02) - 2n(H 2 0) - 2n (02) - n(OH) - n(NO)/2

+ Xn (CO 2) + Y [2n (H20)±+ n (OH) I + Zn (NO),

A2 1 = -n(C02) -2n(H 2 0) - 2n(0 2) -n(OH) - n(NO)/2

+ U [-n(C0 2)] + V [-2n(H 2) -4n(H 20) -n (OH)] + Wv I-n(NO)/2 + n (N)/2],

A22 =-n + n(C02) + n(H2) + 4n(H 20) + n(02) +n(OH) + n(NO)/4 + n(N)/4

+ X [-n(C02)] + Y [-2n(H 2 ) - 4n(H20) - n(OI-I)] + Z[-n(NO)/2 + nN/1

wh ere

U n(C02) X n(O

q(CO) - (C02 )

V 2n(H 2 0) +n(OH) n(H 2 ) + 2n (H 2 0) t n (OH)

q(H)+2n(H 2 )+2n(H 2 0) -q(Hl) + 2n(H 2) + 2n(1120)

n (NO)/ 2 n (NO)// 2 - n(N)/2
q( 2 + ( 2 z _______

q(N2 + nN2)q(N 2 ) + n(N 2 )

If the oxidant is air, the concentration of argon is given by

The mass of the mixture containing a total of n moles is M.0, where

M 0-28.010 q(CO) + 1.008 q(H) + 16.000 q(O) + 28.0 16 q(N 2) + 39.944 q(A).
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The General Method for Rich Mixtures with Solid Carbon

Rich fuel-oxidant mixtures that are characterized by C<C 1 , where C is the composition param-

eter defined by equation (3.2) and C 1 is the critical value of C defining the solid carbon boundary

surface, equation (3.31), consist of a gas phase in equilibrium with solid carbon. The predomi-

nant constituents of the combustion products satisfying the conditions of independence required

for their choice as components are

C(s), CO, H2 , N2 .

Because the system is heterogeneous, it possesses only two degrees of freedom for the specifi-

cation of composition, and the computation program is based upon the gaseous components only.

If the oxidant is air, a fifth component, argon, must be considered.

The solution of equations (3.13) and (3. 14) for this choice of components re sul t s in the

equations

2
q(CO) = 2 + (W!O) + (N/0) + 2(A/O)

(H/0)
q(H 2 ) 2 + (11/0) + (N/O) + 2(A/0)

(5.60)
(N/O)

q(N 2 ) 2 + (11/0) + (N/O) + 2(A/O)

2 (A/0)
q(A)= 2 + (H/O) + (N/0) + 2(A/O)

relating the normalized stoichiometric constants to the atomic ratios. These relations are inde-

pendent of the amount of carbon available, which is assumed to be in excess. They can be em-

ployed, together with equations (3.6) or (3.7) to evaluate the stoichiometric constants for as-

signed values of the parameters descriptive of the gross composition of the s ysterm. If the

oxidant is not air, (A/0) 0, q(A) =0, and we obtain by substitution of equations (3.5) the

rel ation s

q(CO) Q E(-D),

q(11 2) =(1-D) (1-E), (5.61)

q(N 2) =D

for a system described by the parameters D and E.

IWe shall determine, in addition to the equilibrium composition of the gas phase, the location

of the solid carbon boundary surface in the form B 1 = B I(D, E, p, T).

The chemical reactions in the form of equations (3.11) for the formation of the dependent con-

stituents from the components are
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2CO - C(s) - C0 2 ,

CO + l112 - C(s) = H20,

2Co- 2 qs) = o,

CO - C(s) = 0,
I

CO + 2- H2 - C(s) Olt,

= H,

CO + 2N 2 - C(s) = NO,

I
N2 = N,

Cks) + 2H12 = C1 4 ,

3 1- h2 + 2-N2 = NH3,

in which the symbols of all of the components are written on the left-hand side of the equations.

The coefficients v ij of these equations can be summarized in matrix form,

C(s) CO H-2 N2  A

(vij) = CO2  (-1) 2 0 0 0

1120 (-1) 1 1 0 0

)2 (-2) 2 0 0 0

o (-1) 1 0 0 0

OH (-1) 1 1/2 0 0 (5.62)

Vt 0 0 1/2 0 0

NO (-1) 1 0 1/2 0

N 0 0 0 1/2 0.

CflI 4  (1) 0 2 0 0

NH 3  0 0 3/2 1/2 0

where the entries in the column for solid carbon are enclosed in parentheses to indicate that

these elements are not to be taken into account in summations over the gaseous components. The

constants ki of the mass action expressions, equations (4.9), are given for stated values of the

temperature and pressure by
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k(CO2 ) pK(C02), k (H) = p 1/2KCiH),

k (H 20) = pK(112 0), k (NO) = p 1/2K(NO),

k(0 2 ) = pK(02), k(N) = p-I/2x(N), (5.63)

k(O) = K(O), k(CH4)= pK(CH4),

k (OH) = pl/2K(OH), k (NH 3)=pK(NH 3),

where the thermodynamic equilibrium constants can be calculated from the equilibrium constants
of formation by means of the relations

K(C0 2 ) = Kf(C0 2 )Kf(C)/ [Kf(CO)] 2, K(H) = Kf(H),

K(H 20) = Kf(H 20)Kf(C)/Kf(CO), K(NO) = Kf(NO)Kf(C)/Kf(CO),

K(02) = [Kf(C)] 2/[Kf(CO)] 2, K (N) = Kf(N), (5.64)

K(O) = Kf(O)Kf(C)/Kf(CO), K(CI-14 ) = Kf(CH4)/Kf(C),

K(O1) = Kf(OH)Kf(C)/Kf(CO), K(NI13 ) = Kf(NH 3 ).

In writing equations (5.A4), we have taken account of the fact that the equilibrium constant of for-
mation of a gaseous element is unity. If solid carbon is assumed to be in the form of graphite,

then Kf(C) = 1. However, if the solid carbon is assumed to exist in an activated form, the equi-
librium constant of formation of the activated form can be used explicitly in equations (5.66).

The mole fractions of the dependent constituents are determined by equations (4.9) in the
form x(CO

2) = k(CO) [x(CO)l 2,

x(11 20) = k (H 20) x(CO) x(H 2),

X(02) = k(0 2) [x(CO)] 2,

x(O) = k(O) x(CO),

"x(OH) = k(O01) x(CO) Ix(012)] 1/2,

"x(H) k(H) [x(H 2)] 1/2,

x(NO) = k(NO) x(MI)) [x(N 2 )] 1/2,

x(N) = k(N) [x(N 2)] 1/2,

x(C 4 ) =- k (Cil 4) [x(t 2)] 2,

x(NH3 ) =k(NH3) [x(H2 )] 3/2 [x(N 2)] 1/2

for assumed values of the mole fractions of the components. The values of the mole fractions of
the gaseous components leading to an exact calculation of the equilibriuln composition of the gas-
eous phase satisfy the conditions

F(CO) =0, E(H 2 ) =O, F(N 2 ) =O,
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where the functions, defined by equations (4.11) are given by

F(CO) = Gq(CO) -x(CO) -2x(CO 2) -x(H 20) -2x(0 2) -x(O) -x(OH) -x(NO),

F(142 ) = Gq(11 2) -x(H 2) -x(H 20) -x(Of1)/2-x(H)/2-2x(CHI4)-3x(NH 3 )/2, (5.66)

F(N 2) = Gq(N 2 ) -x(N 2) -x(NO)/2 -x(N)/2 -x(NH 3)/2,

and where

G=1+x(CO2 ) +x(l12 0) +x(02)+x(Of)l)/2-x(l-I)/2+x(NO)/2-x(N)/2+x(Cti 4 )+x(NI-' 3). (5.67)

The application of the Newton-Raphson method to the improvement of an approximate set of

values of the mole fractions of the gaseous components requires the solution of equations (4. 12)

in the form

[il A 12  A 13  hh(CO) F = (CO)f

A 2 1  A2 2  A2 3  L h(t12) j F(112) (5.68)

A3 1  A3 2  A3 3  h(N 2) ,F(N2)

where h(CO), h(" 2), and h(N 2) are estimates of the fractional errors of a particular approximation

to the mole fractions of the respective gaseous components, to be employed as indicated by equa-

tions (4. 13) in obtaining the next approximation, and where the coefficients, defined by equations

(4.14), are given by

All = Ull - Vlq(CO), A2 3 = U 23 - V3 q(H 2 ),

A 12 = U 1 2 - V2 q(CO), A3 1 = Ul13 - VIq(ND,

A1 3 = 1 13 - V3 q(CO), A3 2 = U2 3 - V2q(N 2), (5.69)

A2 1 = U 2 1 - VIq(H2 ), A3 3 = U 3 3 - V3 q(N 2 ),

A2 2 = U 2 2 - V2q(H2),

with

Ull = x(CO) +4x(Cf) 2) + x(1120) + 4x(0 2) + x(O) + x(OH) + x(NO),

U 1 2 = x( 2 0) + x(OH)/2, U1 3 T x(NO)/2,13 (5.70)

U 2 2 = x(1 2 ) +x(ll 20)+x((.H)/4+x (H)/4+4x (-CH4 )/4+9x (NH 3)/4,

U 23 = 3x(NH 3 )/4, U 3 3 =x(N 2) + x(NO)/4 + x(N)/4 + x(NH 3 )/4,

and

V1 = 2x(C0 2 ) + x(H 20) + 2x(0 2) + x(Oli)/2 + x(NO)/2,

V2 = x(120) + x(01)/4 - x(H)/4 + 2x(CH4 ) + 3x(NH 3)/2, (5.71)

V3 = x(NO)/4 - x(N)/4 + x(NH3)/2.
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If the oxidant is air, so that q(A) =0, the value of the mole fraction of argon in the equilib-

rium mixture can be calculated from

x(A) =G q(A). (5.72)

The total number of moles n contained in N1, grams of the gaseous mixture is G- 1, where

M° =28.010 q(CO) + 2.016 q(H 2 ) + 28.016 q(N 2) + 39.944 q(A)

and where the quantity G is defined by equation (5.67).

In order to determine the location of the solid carbon boundary surface, the number of gram

atoms of carbon contained in M0 grams of gas phase in the form of compounds of carbon is cal-

culated by
S1

QC= - [x(CO) + x(C0 2) + x(CH4 )]. (5.73)
C G

It is evident from equations (5.66) that the number of gram atoms of hydrogen in the same weight

of gas phase is

QH = 2q(H 2 )" (5.74)

If these relations are substituted into the definition of B given in equations (3.3), we obtain

q(H 2)
B 1 =2QC + q(1l 2 ) (5.75)

Now q(H 2) is a function of D and E, given by equations (5.61), and QC is a function of the equi-

librium composition, and therefore an implicitly prescribed function of D, F, the temperature, and

the pressure. It follows that equation (5.75) is a relation of the form

B 1 =BI(D, F, p, T)

for the location of the solid carbon boundary surface.

If the amount of carbon available to the system is limited and specified by a value of the pa-

rameter B<B1 , the amount of solid carbon in the heterogeneous mixture at equilibrium is given by

equation (3. 29), which can be written in the form

n(C(s)) =(1-D) (1-E) (B 1-B)/13 1B, (5.76)

where n(C(s)) is the number of gram atoms of solid carbon in equilibrium with Mo grams of gas-

eous mixture.

The foregoing computation method has been based essentially upon a specification of the a-

mou,:i.s of hydrogen, oxygen, and nitrogen available to a system with an excess of carbon. This

method affords the most convenient basis for treating systems that are known in advance to be
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heterogeneous. However, it is not convenient in determining the range of applicability of a com-

putation method for rich homogeneous mixtures described by the parameters A, B, and C. For the

latter purpose, a representation of the solid carbon boundary surface in the form

C1 =C 1 (A, B, p, T)

is desired, requiring a computation method based upon a specification of the amounts of carbon,

hydrogen, and nitrogen available to the system. Such a description of the composition is not the

natural one to employ, and the computation program for this case can not be formulated by the

routine application of the general principles. However, it is possible to devise a computation

method for the heterogeneous mixture whose composition is described by specification of the pa-

rameters A and 6, and this method is similar, except in detail, to the one that has been described.

An alternative solution of equations (3. 13) and (3. 14), appropriate to the present application,

can be written in the form

2(C/0)
q(CO) = 2(C/0) + (H/0) + (N/0) + 2(A/0)

(H/0)
q(F!2) = 2(C/0) + (WO/0) + (N/0) + 2(A/0)'

(5.77)
(N/0)

q(N2) =2(C/0) + (H/0) + (N/0) + 2(A/O)

2 (A/O)
q(A) 2(C/0) + (H/0) + (N/O) + 2(A/0)

in which q(CO) is determined by the relative amount of carbon available instead of by the rela-

tive amount of oxygen available, as in equations (5.60). Equations (5.77) are independent of the

relative amount of oxygen available to the system. They yield

(1-A) (l-B)q(co)= I + A + B - AB'

2B( 1- A)
q(H 2) = I + A + 13- AB' (5.78)

W 2A
q(N2) = 1 + A + B- AB'

for a system described by the parameters A and B.

The mole fractions of the dependent constituents are determined by equations (5.65) for as-

sumed values of the mole fractions of the components. The mass action constants appearing in

these expressions are defined by equations (5.63) and (5.64).
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The values of the mole fractions of the gaseous components leading to an exact calculation

of the equilibrium composition of the gaseous phase satisfy the conditions

F(CO) 0 0, F(H2 ) 0 0, F(N 2 ) = 0,

where the functions are given by

F(CO) = Gq(CO) - x(CO) - x(CO2) - x(CH4 ),

F(f 2) = Gq(H 2 ) - x( 2) - x(H 2 0) - x(OH)/2 - x(H)/2 - 2x(CHn@ -3x(NH 3 )/2,

F(N 2) = Gq(N 2 ) - x(N 2) - x(NO)/2 - x(N)/2 - x(NH3)/2, (5.79)

and where

G = 1-x(O1)/2-x(H)/2-x(NO)/2-x(N)/2 + 2x(Cli 4 ) + x(NH3). (5.80)

The first member of equations (5.79) differs from the corresponding member of equations (5.66)

because the value of q(CO) is determined for the former case by the relative amount of carbon

available to the gaseous phase and for the latter case by the relative amount of oxygen available

to this phase. As a result, the definition of G given by equation (5.80) differs from that given by
equation (5.67).

The application of the Newton-iRaphson method to the improvement of an approximate set of
values of the mole fractions of the components requires the solution of equations (5.68), the coef-

ficients of which are given by equations (5.69). However, in the evaluation of equations (5.69),

the definitions of the quantities Ujj r and Vj, given for the former case by equations (5.70) and

(5.71), respectively, must be replaced by the relations

Ull = x(CO) + x(C0 2 ) + x(CH4 ),

U 1 2 = 2x(CH4), U 1 3 = 0,

U 2 2 = x(H 2) + x(H 20) + x(OH)/4 + x(H)/4 + 4x(CH4) + 9x(NH 3)/4, (5.81)

U 2 3 = 3x(NH 3)/4, U 3 3 = x(N 2) + x(NO)/4 + x(N)/4 + x(NH 3)/4

and

V1 = 2x(Cti 4 ),

V2 =-x(OH)/4 -x(t)/4 + 4x(CH4 ) + 3x(NH 3)/2, (5.82)

V 3 =-x(NO)/4 -x(.N)/4 + x(N113)/2.

If the oxidant is air, the value of the mole fraction of argon is given by equation (5.72), with
G defined by equation (5.80). The total number of moles n contained in Mo grams of the gaseous

mixture is G- 1, where Mo is again given by

M =28.010 q(CO) + 2.016 q(H 2) + 28.016 q(N2 ) + 39.944 q(A),0

and where the quantity G is defined by equation (5.80).
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The number of gram atoms of oxygen contained in Mo grams of gas phase is given by

Q = G1 x(CO) + 2x(C0 2) + x(H 2 0) + 2x(0 2 ) + x(O) + x(OH) +x(NO)]. (5.83)

The number of gram atoms of carbon and hydrogen in the same weight of gas phase are

QC = q(CO), QH = 2q(H 2). (5.84)

If these quantities are substituted into the definition of C given in equations (3. 2), we obtain

Qo(
C1 2q(CO) + q(112) + QO (5.85)

Now q(CO) and q(112 ) are functions of A and B, given by equations (5.78), and QO is a function

of the equilibrium composition, and therefore an implicitly prescribed function of A, B, the tem-

perature, and the pressure. It follows that equation (5.85) is a relation of the form

C 1 =CI(A, B, p, T)

for the location of the solid carbon boundary surface.

VI. THE THERMODYNAMIC PROPERTIES OF GAS MIXTURES

The thermodynamic properties of a gas mixture of known composition are easily determined by
means of well-known relations. These relations are discussed in detail in standard treatises on

thermodynamics.,-/ In the present section, we list without derivation the relations that are con-

veniently employed in the evaluation of the thermodynamic properties of combustion gases. \Xe
include in general form the relations for taking into account the effect of gas imperfection on

these calculations.

The State Variables

The gross composition of the system has been quantitatively described for the purpose of the

calculation of the equilibrium composition by the parameters qj, j = 1, 2, . . . c, expressing the

composition of the hypothetical mixture consisting of components only. The normalization of the

qj, expressed by equation (3.14), implies that I is the number of gram moles of the j-th compo-
nent in the hypothetical mixture of components only whose gaseous phase is of weight Mo, where

I

Mo = .qj Mj (3.15)

1/ See for example, MacDougall, F. H., Thermodynamics and Chemistry: John Wiley & Sons,

Inc., New York, 3d ed., 1939.
See also Beattie, J. A., Work cited in footnote 13.
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and where Mj is the molecular weight of the j-th component. Explicit expressions for Mo have
been given for each of the particular computation programs. The total number of moles of gas
contained in a gas phase of weight M. has been shown to be

n (6.1)

where the general definition of G is

5

G 71+ ( (i- 1 ) xi. (4.11)

i=c+1

Explicit expressions for G have been given for each of the particular computation programs. We
have also shown that

s

n 1 +f__ (1-vi) ni (4.16)
i=c+ 1

for a computation conducted in terms of the number of moles nk instead of the mole fractions xk
of the constituents k = 1, 2, . . . s. The mean molecular weight M of the gas phase is evidently

given by

M =Mo/n. (6.2j,

We have assumed that the gas phase is described by a law in one or the other of the alterna-

tive forms

nRT

-I-° q(p,T), (6.3)

p/P nRT T ((P T). (6.4)

For an ideal gas, (P I and T = 1. The first expression determines the density as a function of

pressure, temperature, and composition. The second expression determines the pressure as a

function of density, temperature, and composition. The molar volume v and the density are re-

lated by

v =M/p =Mo/n P. (6.5)

The Thermodynamic Properties of Ideal Gas Mixtures

The enthalpy and energy of a system are undefined to the extent of an arbitrary additive con-
stant. This fact is of no consequence in practical applications, as one always wishes to know

the difference of enthalpy (or energy) between two different states, and this difference is unam-
biguously defined. The enthalpy or energy of an equilibrium mixture of combustion gases must
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therefore be evaluated relative to some convenient state taken as standard. Evidently, in cal-

culating the difference of enthalpy or energy between two states, the functions for each state

must be evaluated relative to the same standard state.

As standard state for the equilibrium mixture of combustion gases, we shall usually employ

the stoichiometrically equivalent mixture of elements, each element being in its customary stand-

ard state. The standard state of carbon is taken to be solid graphite at 00 K., and that for hydro-

gen, oxygen, or nitrogen to be hypothetical ideal gas at 0' K.

We define the relative molar enthalpy H of a gas mixture as the difference between the en-

thalpy of I mole of the mixture and the enthalpy of the stoichiometrically equivalent mixture of

elements in their standard states. For an ideal gas mixture, we write

s s

H* (p,T) = xk (H0 - Eg)k + > xk (AfE°)k, (6.6)

k=1 k=1

where the asterisk is employed to specify that the quantity is evaluated for an ideal gas mixture.

In this expression, (1H0 - Eo)k is the change in enthalpy when 1 mole of the k-th constituent is

taken from its standard state to a state of temperature T and sufficiently low pressure such that

the ideal gas law and the Gibbs-Dalton law are applicable, and (AfEo°)k is the change of energy

(equal to the enthalpy at 00 K.) accompanying the formation of 1 mole of the k-th constituent in

its standard state from the elements in their standard states. The quantity (H0 - Eo°)k is a func-

tion of the temperature only that can be calculated by statistical methods from the spectroscopi-

cally observed energy levels of the k-th constituent. (AfEo°)k is a constant for given k that can

be deduced from appropriate colorimetric experiments. The relative molar enthalpy H* of the gas

mixture is a function of both temperature and pressure, as the mole fractions xk are functions of

both temperature and pressure.

For an ideal gas mixture, the relative molar energy E of the mixture is given by

s s

E* (p,T) = xk (E° - E°)k + > xk (AfEo)k, (6.7)
k=l k=1

where (E° - Ego)k is the change in energy when 1 mole of the k-th constituent is taken from its

standard state to a state of temperature T and sufficiently low pressure so that the ideal gas

laws are applicable. For ideal gas mixtures, we also have the well-known relation

H* =E* + pv =E* + RT, (6.8)

where v is the molar volume and R is the gas constant.

The molar heat capacity at constant pressure Cp* and the molar heat capacity at constant

volume Cv* can he computed by the relations

s

Cp* = xk Cp4,
k=1

(6.9)
s

Cv* = xk C v,

k=3
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where CpC and Cvý are the heat capacities at constant pressure and at constant volume, respec-
tively, of the k-th constituent at temperature T and pressure sufficiently low so that the ideal gas

laws are applicable. For an ideal gas mixture, we also have the well-known relation

Cp* =Cv* + R. (6.10)

The adiabatic exponent y* can be calculated from the relations

y Cp* = 1 + R _ Cp* (6.11)Cv* Cv* Cp* - 1(.

Cpý and Cve are functions of temperature only that can be calculated by statistical methods from
the spectroscopically observed energy levels of the k-th constituent.

The molar entropy of an ideal gas mixture is given by

s 5

S* (p,T) = j xk S - R xk log xk - R log p, (6.12)
k =1 k=1

where SV is the entropy of the k-th constituent in the hypothetical ideal gas at unit pressure and

temperature T and can be calculated by statistical methods from the spectroscopically determined
energy levels of the k-th constituent.

In the consideration of combustion processes, it is frequently desirable to refer the extensive

thermodynamic properties to a fixed weight of the system. The specific enthalpy h* is the en-

thalpy per unit weight and is given by

I n
h* (p,T) =- H* (p,T) - H* (p,T), (6.13)

the specific energy e* by
I n

e * (p,T) = E* (p,T) -7 E* (p,T), (6.14)
NI 11

and the specific entropy s* by

s* (p,T) S* (p, T) 2 S* (p,T). (6.15)

The thermodynamic properties of the gas mixture, assumed to be ideal, may be considered to
be functions of the temperature and density. The dependence of the properties considered on the
pressure (or density) is explicit only in the case of the entropy. In the case of all of the other

properties, the dependence. on pressure (or density) is implicit, arising from the dependence of the

equilibrium compositions on the pressure (or density). The relations given can be employed with-

out modification for computation of the enthalpy, energy content, and heat capacities of the equi-

librium mixture at specified density and temperature. The entropy is given by the relation

5 p

S* (pT) > xk S -R K ixk logxk- R log p (6.16)

k =1 k=1
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The Thermodynamic Properties of Imperfect Gas Mixtures

BeattieL8/ has comprehensively discussed the thermodynamics of imperfect gas mixtures that

contains a systematic derivation of the general relations required to take account of the effect of

gas imperfection on the calculation of the thermodynamic properties. In the present section we

assemble those relations of interest in the consideration of combustion gases.

If the equation of state is of the form

pv =RT (P (p,T), (6.17)

where v =M/ P is the molar volume, one obtains the following relations

H(p,T) = 1t*(p,T) - RT
2 fP 'd• dp

o T p

S(p,T) = S*(p,T)-R ,[- I + T ] I (6.18)0 7 - p '

* P a T dp
Cp(p,T) = Cp(p,T)- RT f [T T2 + -

for the relative molar enthalpy H, molar entropy S, and molar heat capacity Cp of the real gas mix-

ture at temperature T and pressure p. The quantities designated by an asterisk are evaluated as

described in the preceding section. The integrals can be evaluated explicitly for particular forms

of the equation of state. The relative molar energy content is evaluated from the relation

E(p,T) =H(p,T) - RT P, (6.19)

and the heat capacity at constant volume, if required, may be evaluated with the aid of the well-

known relation

C-Cv = T (6.20)P~ 8T 6 p

If the equation of state is of the form

p (pT), (6.21)

one obtains the following relations,

E(p,T) = E* (p,T)- RT 2  fP --- dp
o 7T p'

S(p,T) S*(p,T)- R fP [W- 1 + T 8W dp (6.22)
o 7T` -p

* P [ 2  ') dp
Cv (P,T) = Cv (P,T)- RT f [o +2 10 aT2 7T P

LEJ/ Beattie, J. A., Work cited in footnote 13.
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for the relative molar energy content E, molar entropy S, and molar heat capacity Cv at tempera-
ture T and density P . The quantities designated by an asterisk are evaluated as described in

the preceding section. The integrals can be evaluated explicitly for particular forms of the equa-

tion of state. The relative molar entropy can be evaluated from the relation

H(p,T) = E(P,T) + RTW, (6.23)

and the heat capacity at constant pressure, if required, can be evaluated with the aid of equation

(6.20).

VII. DESCRIPTION OF A GENERALIZED TABLE OF THE EQUILIBRIUM COMPOSITION

AND THERMODYNAMIC PROPERTIES OF COMBUSTION GASES

The Explosives and Physical Sciences Division of the Bureau of Mines is calculating a mas-

sive table that will list the equilibrium composition and thermodynamic properties at equilibrium,

over an extended range of temperature and pressure, of gas mixtures containing compounds of car-

bon, hydrogen, nitrogen, and oxygen. The methods of computation described in this report have
been employed in the tabulation. 19/

The table includes all possible combinations of the four elements, the spacing of calculated

points being small enough to permit accurate interpolation in the table. The temperature ranges

from 1,0000 to 5,0000 K. and the pressure from 0. 1 atmosphere to pressures great enough to in-

clude those of interior ballistics. The table is the result of nearly a million individual

computations.

The results of the individual computations are recorded on punched cards. Because of the

size of the project, publication in tabular form of the complete table is impractical, However, the

file of punched cards constitutes a reference table with all of the computational results in easily

accessible form. This reference table can readily be employed in the consideration of specific

problems. The results of such applications will be published in a series of reports to be issued

by this laboratory.

It is anticipated that the table will have a wide range of application to the special interests

of many organizations. The cooperation of interested organizations is invited so that the greatest

possible utilization of the table may be achieved. The Bureau will welcome suggestions for ap-
plying the table to. specific problems.

The state is uniquely determined by specification of two state variables, for whichpurpose

we select the temperature and pressure. In the table, the temperature takes on the values

T(°K.) = 1,000 (100) 1,600 (200) 5,000,

where the interval spacing of the argument of a table is given in parerktheses, and the lower and

upper limits for which the interval applies are given to the left and right, respectively, of the

19/ A preliminary announcement of this table appeared in Chem. Eng. News, vol. 27, Sept. 5,

1949, p. 2540-2541.
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number in parentheses. This statement is to be read "The temperature, in degrees Kelvin, ranges

from 1,000 to 1,600 with an interval of 100 and from 1,600 to 5,000 with an interval of 200."

A closer spacing is necessary at low than at high temperatures to permit accurate interpola-

tion with respect to temperature in the table. It has been found by means of sample calculations

that interpolation with respect to the pressure is facilitated by the use of a logarithmic scale.

In the table, the pressure ranges from 0.1 to 100 atmospheres in the following way:

log p =-1.0 (0.2) 2.0._

It is intended subsequently to extend the portion of the table that is of interest in considering gun

propellants to pressures high enough to permit its application to the calculations of interior bal-

listics. In this portion of the table the temperature and density will be taken as the independent

state variables.

In selecting the table arguments that define the gross composition, we have employed, for the

heterogeneous region containing solid carbon, the quantities D and E given by equations (3.3). In

the table, these variables take on the values

D =0 (0.1) 0.9

E =0 (0.1) 1.0.

For the homogeneous part of the table we employ the parameters A, B, and C, defined by equa-
tions (3.2). In the table, the variables A, B, and C take on the following values:

A 0 (0.1) 0.9

B =0 (0.1) 0.5, 1.0

C =0.1 (0.05) 0.9 subject to C>,C1 .

For each composition defined as indicated and for each temperature and pressure, the compo-
sition at thermodynamic equilibrium is calculated by the numerical methods that have been de-

scribed in this report. We have assumed that the mixture at equilibrium may contain the following

gaseous constituents: CO, C0 2 , H2 , H 20, N2 , 02, OH, NO, H, N, 0, NH 3, CH 4 . This selection

neglects a number of additional possible constituents, and it was dictated by the storage capacity

of the computer. However, it is believed that the constituents of major importance have been con-

sidered. In exceptional cases, where it is desired to consider the existence of additional constit-

uents, the present work will provide the starting basis for a more detailed calculation, which

should be very simple.

The mole fraction of each constituent of the gas at equilibrium is recorded in punched-card

form. In addition, for the heterogeneous mixtures the punched cards record the value of the de-

pendent gross composition parameter, which defines the location of the carbon boundary surface.
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The results of the calculation of the equilibrium composition are employed in the usual man-

ner to calculate the density, energy content, heat content (enthalpy), and entropy of the equilib-

rium mixture. The table of thermodynamic properties may be considered to be a Mollier chart, in

punched-card form, for each of the different mixtures of the four elements considered.

In constructing the table we employed the values of the thermodynamic properties of the indi-

vidual constituents recommended by the National Bureau of Standards.20/ For pressures below

100 atmospheres we employed the ideal gas equation of state.

Only brief reference can be made here to some of the applications anticipated for the table.

The flame temperatures of a variety of fuels burning under a wide range of conditions can readily

be estimated.2-1/ Hottel and Eberhardt?2- have discussed the application of Mollier diagrams to

performance studies of internal combustion engines, and Sucrow2-•/ summarizes their application

to performance studies of jet-propulsion and gas-turbine engines. The table will be useful in pre-

dicting the operating conditions for various gas-synthesis processes that will produce a product

gas of desired characteristics.

20/ Tables of Selected Values of Chemical Thermodynamic Properties: Issued at irregular inter-
vals by the National Bureau of Standards, Washington, D. C.

21/ Le vis, B., and von Elbe, G., Combustion, Flames, and Explosion in Gases: Cambridge Uni-

versity Press, Cambridge, 1938, Chap. XIX.

22/ Hottel, H. C., and Eberhardt, J. E., Mollier Diagrams for the Internal-Combustion Engine:

Chem. Rev., vol. 21, Dec. 1937, pp. 439-460.

23/ Sucrow, M. J., Principles of Jet Propulsion and Gas Turbines: John Wiley & Sons, Inc., New

York, 1947, Chap. III.
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