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1.  General Overview and Conclusions 

1.0    Models and Validation 

Target acquisition (TA) models predict how well human observers, using an 
optical or electro-optical (EO) viewing device, are able to detect, recognize, or 
identify military targets. The input variables are the properties of the targets 
and backgrounds, the atmospheric conditions, and the physical properties of the 
viewing device used. The output is the probability of correct detection, 
recognition, or identification as a function of target range. TA models are 
used, for example, in tactical decision aids (TDAs), in war games, and as a 
tool to compare performance of competing sensor systems for a specific task. 
A comprehensive TA model is the Target Acquisition Model (TARGAC), 
developed at the U.S. Army Research Laboratory, Battlefield Environment 
Directorate (ARL-BED). The model is part of the Electro-Optical Systems 
Atmospheric Effects Library (EOSAEL). 

Target recognition and identification by human observers is a complex pattern 
recognition process, that is not yet fully understood. Models that describe this 
human capability must still rely on a number of simplifying assumptions. In 
addition to the human pattern recognition capabilities, psychological factors 
play an important role in human performance, and these factors are even more 
difficult to incorporate into a model. Therefore, the quality of the models is 
not always known. To allow correct and valid use of TA models, it is 
necessary to know how well the models predict TA performance and under 
which conditions a model may be used. Furthermore, it is important to know 
the confidence limits of the predicted model output. Also, the fact that the 
accuracy of the model predictions is usually not known gives rise to the 
so-called false precision problem, which means that values for which the 
accuracy is not known are treated as being exactly correct. All this means that 
a careful validation of a TA model should be carried out before conclusions can 
be drawn from its predictions. 

Model validation can be done by analyzing the structure of the model, or 
comparing the predictions of the model to the actual performance of observers 
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in military (field) tasks. This study takes the latter approach, by measuring 
observer performance on a large number of thermal images collected during the 
field trial Battlefield Emissive Sources Trials under the European Theater 
Weather and Obscurants (BEST TWO) (organized by the North Atlantic Treaty 
Organization (NATO) AC243/Panel4/RSG.15, 1990) and calculating the 
corresponding TARGAC predictions. 

This study was carried out by the Perception Department of The Netherlands 
Organization for Applied Scientific Research (TNO), TNO Human Factors 
Research Institute (TNO-HFRI) in Soesterberg, The Netherlands. TNO is a 
large independent research facility serving the Dutch government and the Dutch 
Ministry of Defense. 

1.1    Observer Experiments and Field Trials 

Observer experiments must be carried out, using carefully controlled 
procedures, according to a design that allows proper statistical analyses of the 
data. For this reason, such experiments are best carried out in the laboratory 
where conditions can be controlled and repetition of identical experiments with 
different observers is possible. In a field situation, conditions are difficult to 
control and often change quickly. Further, it is difficult to obtain accurate and 
reliable data on observer performance. 

BEST TWO provided an opportunity to collect imagery for laboratory observer 
performance experiments that would yield data with sufficient accuracy for a 
quantitative evaluation of TA models. During the test, a large amount of 
thermal images of stationary and moving target vehicles at many distances were 
recorded. Target recognition and identification performance were determined 
for these images. A limited observer experiment was carried out in the field 
for validation of the observer scores measured in the laboratory. Also 
collected during the trial were meteorological data, target contrast values, and 
other parameters required by TARGAC to make acquisition range predictions. 

1.2    Overview 

The work carried out within this project consists of three studies. The 
experimental methods are described in sections 2 and 3, and the results are 
discussed in sections 4, 5, and 6.   These sections are based on a number of 
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mostly confidential reports published earlier (see bibliography). Most of the 
data in the original reports are confidential because they reveal recognition and 
identification performance for thermal imaging of a number of actual military 
targets. To make the present report unclassified, the targets have been coded 
with the letters A through I in all instances concerning data and graphs. This 
does not in any way influence the conclusions that can be drawn from this 
study. The key to the target codes is available on request from TNO-HFRI or 
ARL-BED (Dr. P. Gillespie). In addition to coding the target vehicle names, 
the contents of the original reports have been slightly rearranged to obtain a 
coherent final report. 

1.2.1 Field Test 

In section 2, an overview of the NATO BEST TWO is presented, and the 
scenarios carried out in the field and the different recording conditions are 
described. The weather during the test was hot and dry and very constant over 
the 3-week test period, meaning the effect of the weather on TA performance 
could not really be studied. 

1.2.2 Design of Laboratory Experiments 

Section 3 treats the design of the laboratory observer experiments and the 
training and selection of the observers.  It is shown as follows: 

• For the restricted set of target vehicles used, observers without experience 
could be trained to an acceptable level in a few hours. 

• Large differences in performance between subjects occurred, and within 
a few hours good observers could be distinguished from poor ones. A few 
observers were exceptionally good, and about 30 percent of the observers were 
unsuitable for the task. 

• Military and civilian observers were tested and no overall difference in 
performance between the two groups was found. Section 5, however, shows 
a difference in response behavior. 
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1.2.3    Study I: Observer TA Performance 

Section 4 presents the results of Study I. Target recognition and identification 
probability was determined as a function of range, for a number of different 
conditions. The effect of target type, time of day, approach route, and target 
motion on the observer scores was determined. Further, two different ways 
of presenting the targets were used: pop-up and sequential. In the pop-up 
presentation mode, randomly picked targets appeared at random positions in the 
field; in the sequential mode, the targets were presented as an ordered sequence 
of decreasing distance, from 4 km down. The latter condition simulated a 
target approach, during which the observer may accumulate information on the 
target. Both ways of target presentation have military significance. Search and 
target detection were not studied. 

The data were collected in two main experiments using 24 observers. A total 
of 811 different images containing single targets were presented, and each 
target presentation was repeated five times at random in the course of an 
experiment. All datapoints in the graphs are the averaged scores over all 
participating observers. Appendix A presents a complete overview of all the 
observer performance data collected. 

The results can be summarized as follows: 

• Identification and recognition performance varies considerably for the 
different targets, in different trials, under different conditions; in some cases 
targets were recognized at 4 km, while in others they could not be recognized 
at 1 km. 

• Identification and recognition performance for a target that suddenly 
appears at a certain location (pop-up) may be considerably worse than for a 
target approaching from a large distance (sequential). Current TA models do 
not take this difference into account. 

• Head-on target motion, with or without a dark dust cloud behind the 
target, does not have a large influence on identification or recognition 
performance.  However, it may have an effect on detection probability. 
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1.2.4    Study II: Reliability of Observer Responses 

Section 5 describes Study II, in which the reliability of observer responses and 
some of the more psychological and task-structure effects on the observer 
performance are analyzed. In a TA task, it is always possible for an observer 
to make a wrong judgement. This can make the observer feel unsure and 
hesitant to give a report, although the target is correctly recognized. On the 
other hand, if the observer is confident enough to give a report or to undertake 
an action, it is of obvious importance to know the probability of being wrong 
and the factors influencing this probability. Therefore, apart from the 
observer's skill in identifying or recognizing a target, observer confidence and 
the corresponding response behavior forms an important factor in TA 
performance. This study was designed so the influence of skill and behavior 
on TA performance could be separately analyzed. Also, the reliability of first 
reports (the first time an observer reports an identification or recognition) 
during a target approach was analyzed.  The results show the following: 

• Observers possessing the same skill can differ widely in behavior. In 
practice, this means that one observer gives reports at much closer target 
ranges than another, although, in principle, the observers could provide the 
same information at the same distance. 

• There is a large range of target distances at which the observers do not 
feel sure enough to report an identification, but respond correctly if they are 
forced to. Thus, if the circumstances ask for it, acquisition range may be 
significantly increased by forcing the observers to respond. Because this may 
also lead to an increase of false alarms, the instructions should be given 
depending on the circumstances. 

• The reliability (the probability of being correct) of a first identification or 
recognition report during a target approach, is 80 percent, averaged over all 
subjects. This percentage is largely independent of target distance, target type, 
part of day (POD), and target background. However, large individual 
differences (between 55 and 97 percent) are found. 
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1.2.5    Study III: TARGAC Validation 

Section 6 presents the results of Study HI. A comparison is made between 
TARGAC recognition predictions and measured observer performance for a 
large number of trials. 

First, TARGAC was subjected to sensitivity analyses in which the effect of 
changes in the input parameters on the model output were determined. This 
showed that, for BEST TWO, the predicted recognition ranges are almost 
independent of time of day and target and background temperatures. Only the 
target effective dimension and the thermal imager resolution limit (the cut-off 
frequency of the minimum resolvable temperature difference curve (MRTD)) 
had a significant effect on model output. The result was, in fact, caused by the 
excellent atmospheric conditions during BEST TWO. It means that, in this 
study, the recognition performance predictions are determined solely by the 
system performance module of TARGAC, which is equivalent to the 
1-dimensional Night Vision Electro-Optics Sensors Directorate (NVESD) Static 
Performance Model. 

The model was validated by determining the ratio between measured and 
predicted acquisition ranges for a large number of trials (a large number of 
target approaches in different conditions). The results are expressed as a 
probability distribution of this ratio. The mean of this distribution 
quantitatively shows how well the model predicts overall acquisition 
performance over a large number of trials. The variance of the distribution is 
a quantitative measure of the accuracy of the model predictions for individual 
trials. If the mean of the distribution is equal to 1 and the variance is equal to 
0, the model predictions are perfect. Deviations of the ideal values indicate the 
extent to which to the model can be used. The results for TARGAC 
BEST TWO are as follows: 

The mean of the ratio distribution is 1.8 (+/- 0.2), which means that, on 
average, observer performance is considerably better than the model predicts, 
and a correction factor of 1.8 should be used to match the predicted recognition 
ranges to the results of the observer experiments. However, the shape of the 
mean probability versus range curve is very similar for the model and the 
observations. 
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The variance of the ratio distribution is large: the ratio between measured and 
predicted acquisition range spreads between 0.9 and 3.6 (95 percent level) 
(spans a range of a factor of 4). Thus, TARGAC predictions of recognition 
range for individual targets can differ from the actual recognition range by a 
factor between 0.9 and 3.6, which means that TARGAC does not predict 
recognition performance very well. A similar conclusion may hold for other 
models based on the same principle. 

The TARGAC output was compared to the 1-dimensional (1-D) ACQUIRE 
target acquisition model developed by NVESD, which showed that both models 
produce identical recognition versus ranges curves. Both models underpredict 
the mean recognition range by a factor of 1.8. Predictions of the newer 2- 
dimensional (2-D) ACQUIRE model, which uses the Johnson criteria in 2 
dimensions, yielded a much better result: the factor of 1.8 was reduced to 
about 1.3. However, the variance in ratio distribution remained the same when 
the 2-D model was used. 

The sensitivity analysis and a number of tests performed on TARGAC before 
the actual validation was carried out, brought to light a number of problems 
and errors in the software. The errors were fixed after consultation with 
Dr. Patti Gillespie from ARL-BED, before the validation was carried out. 

1.3    Conclusions and Recommendations 

TARGAC was validated using BEST TWO observer performance data for 
recognition of targets in front view. The major conclusions of Studies I and 
II are that human acquisition performance depends considerably on factors such 
as target structure, local terrain structure, and cognitive factors. 

In TARGAC, and in many other TA models, these factors are not 
incorporated. Study III shows that the TARGAC predictions for BEST TWO 
hardly depend on the experimental and field conditions. Therefore, important 
differences between measured and predicted recognition performance were 
found. 
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The main results of the validation follow: 

1. The model predictions are too conservative. On average, TARGAC 
underestimates recognition range by a factor 1.8 (+/- 0.2). 

2. TARGAC makes accurate predictions for individual cases. The analyses 
show that the uncertainty interval roughly ranges from 0.9 to 3.6 times the 
predicted acquisition range, spanning a range of a factor 4. 

3. TARGAC recognition performance predictions for BEST TWO (excellent 
weather) are determined solely by its system performance module, which is 
equivalent to the 1-D NVESD Static Performance Model. 

4. The TARGAC predictions for overall mean performance can be improved 
by incorporating the 2-D version of the Static Performance Model. For 
individual cases, however, the predictions with the 2-D version are not better 
than those with the 1-D version. 

5. It is proposed that TARGAC predictions are not only presented as single 
numbers for acquisition probability versus target range, but that some 
indication is given of the accuracy of the results, preferably in the form of a 
95 percent confidence interval. 

6. The version of TARGAC tested (PC version, released in June 1992) 
contained a number of software errors and some minor problems. A number 
of corrections are suggested. Additional work in modularizing and 
streamlining the model is recommended. It is also recommended that the 
model is given a more consistent and user-friendly interface. 

7. TARGAC and other models that incorporate the NVESD Static 
Performance Model should only be used to provide an indication of the actual 
acquisition performance. 
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2.  BEST TWO 

2.0    Summary 

BEST TWO was held in Mourmelon, France in Jul and Aug 90. The test was 
organized by NATO AC/243, Panel 4, RSG 15; the participating countries 
were the United States, England, Germany, France, Denmark, and The 
Netherlands. The purpose of BEST TWO was to quantify the performance of 
EO imaging and observation devices under battlefield conditions. This section 
gives an overview of the four scenarios carried out. 

In Scenario 1, single target vehicles (tanks, armed personnel carriers, and 
trucks) drove down a predefined track from a distance of 4000 m toward the 
main instrumentation area (MIA). The targets stopped for 2 min at designated 
positions along the track (roughly every 300 m). Two different tracks were 
used: one with 16 stop positions and one with 10 stop positions. This scenario 
allowed the recording of imagery of stationary targets at a range of distances 
between 4000 and 1000 m. 

Scenario 2 was very similar to Scenario 1, the difference being that the target 
vehicles did not stop. Battlefield effects were included in some versions of 
Scenario 2. 

In Scenario 3, a column of 8 or 12 target vehicles drove along a track across 
the field of view. The purpose of Scenario 3 was to study the recognition of 
groups of targets and the effects of dust on observer/system capability. 

In Scenario 4, an attack formation of four tanks and eight armored personnel 
carriers (APCs) approached the MIA from a distance of 4 km. The purpose 
of Scenario 4 was to assess the effects of simulated artillery barrages and/or 
smoke on observer/system performance in a realistic task environment. 
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2.1    Introduction 

BEST TWO was held at Camp de Mourmelon, near Chalons-sur-Marne, in the 
Northeastern part of France, from 26 Jul to 10 Aug 90. This report describes 
the four scenarios carried out during BEST TWO. A detailed description of 
target vehicle order, timing and movement during the scenarios, and the timing 
of the simulated battle events is presented elsewhere. [1] 

2.1.1     General Information 

2.1.1.1 Session organization.— BEST TWO was organized in 4-h sessions, and two 
or three sessions were carried out per 24-h day. The session time slots are 
listed in table 1. The sessions were numbered by a code xx.y where xx is the 
day of the month and y is the slot number (table 1). Because the experiments 
were carried out in the last week of July and the first 10 days of August, use 
of the day numbers only allows a unique session code (session 27.3 is the 
afternoon session on 27 Jul and 3.4 is the late night session on 3 Aug). 

Table 1. Session time slots 

Slot number Time period 

1 0200 - 0600 (early night) 
2 0900 - 1300 (morning) 
3 1400 - 1800 (afternoon) 
4 2200 - 0200 (late night) 

2.1.1.2 Terrain layout.— The basic pattern of the experiments was that at least one 
• target vehicle was stationary or moving in the terrain while measurements and 

recordings were made from several sites in the field. Seen from the MIA, the 
terrain was roughly 2-km wide and 4-km long. In most scenarios, the target 
vehicles approached the MIA from the far end of the field up to 1 or 2 km 
from the MIA. Maps showing the target vehicle routes are presented for each 
scenario in section 2. The maps were made with the field survey data provided 
by France. The target vehicle routes were marked in the field with numbered 
signs.  The numbers made it possible to repeatedly position the targets at the 
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same designated points, as in Scenario 1. The signs were dimly illuminated at 
night to allow the target vehicle drivers to find their way. Different colored 
signs were used for the routes for the different scenarios: white and black for 
Scenario 1 and 2 (left and right), yellow for Scenario 3, and blue, blue/black, 
and black/blue for Scenario 4. Sometimes the approach routes are named after 
the color of the signs used. 

2.1.1.3 Test time.— Standard test time was provided by France and distributed in 
IRIG-B format to all national setups in the MIA on a coax cable. This signal 
was recorded with the measurements to provide a common time base for all 
data. The code was recorded on the audio channel of the video systems used 
to record imagery. 

2.1.1.4 Laser experiments. — Lasers were used during a large number of experiments, 
and during about half the sessions all personnel in the field were required to 
wear laser safety goggles. 

2.LI.5 Characterization.— In addition to the four scenarios described in this report, 
there were three characterization sessions in which physical measurements of 
isolated battle effects were made. One or two tanks were used as targets 
during these measurements, but no large scale vehicle movements were 
involved. 

2.1.2    Target Vehicles 

A total of 14 target vehicles of three different types were used: two types of 
tank, three types of APC, and one type of truck. The French supplied 
3 AMX-30 tanks, 6 AMX-10 APCs and 2 trucks. The Dutch contributed one 
Leopard 2 tank and two versions of the YPR 765 APC: the YPR-PRI, a 
standard APC with a 25-mm cannon, and the YPR-PRAT that has a dualtube 
launched, optically tracked, wire-guided missile (TOW) anti-tank missile turret. 
Germany added special thermal camouflage materials to three of the French 
vehicles; these are identified with a C behind their name. Table 2 lists the 
target vehicles used. 

23 



Table 2.  Target vehicles 

Tanks APCs Wheeled 

Leopard 2 
AMX-30 
AMX-30 C 

PRI 
PRAT 
AMX-10 
AMX-10C 

Truck 
Truck C 

To have an operational signature during the test, the drivers exercised their 
vehicles for 15 to 30 min before each run outside the view from the 
instrumentation areas. There was a signature post at the back of the field 
where the Danish and the Germans took calibrated measurements of all target 
vehicles before each run. If the signature was not right, the driver had to go 
back to further warm up the vehicle. 

Target vehicle management was done by a cadet of the Dutch Royal Military 
Academy, who was in radio contact with the general test management in the 
MIA. 

2.1.3    Battle Events 

During the test, a large number of simulated battlefield effects were produced: 

a) sandbags - a simulation of an artillery barrage by exploding sandbags 
that were suspended from tripods, each sandbag representing 
two 122-mm and one 152-mm Soviet shells 

b) LUST 

c) fires 

(Limited use smoke technology device) canisters producing 
white phosphorous smoke 

a simulation of a burning object on the battlefield by burning 
fuel and tires in oil drums 

Details of the execution of the simulated battle events are described in 
Danielian. [21 Scenarios 2, 3, and 4 were carried out a number of times, with 
and without several of the simulated battle events. 
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2.2    Scenarios 

2.2.1    Scenario 1 

In Scenario 1, single target vehicles drove down one of two different approach 
routes (left and right). The routes are shown on the map in figure 1, which 
also shows the location of the MIA. The numbers along the tracks are the 
locations of the numbered signs. The distances between the stop positions and 
the MIA are given in Valeton, Bijl, and De Reus. [1] In this scenario, the 
target vehicles stopped for about 2 min at each stop sign, allowing the teams 
in the instrumentation areas to make recordings and measurements of stationary 
targets. A stationary target in this case is not only a target that does not move, 
but also a target that has no large dust cloud behind it. The left route came as 
close as 1000 m from the MIA, while the closest distance for the right route 
was about 1600 m. Note that stop sign 14 is missing on the left route. It 
disappeared during the first day of the test. Scenario 1 was carried out six 
times: three times along the left route and three times along the right route. 
No battlefield effects were included. 

Several nations had observers in the MIA doing a real-time TA task. The 
order of the targets in each session was chosen at random by the test 
management so the observers never knew in advance which target they were 
going to see. A session lasted 4 h, each target vehicle run lasted about 30 min, 
and on average 6 to 8 targets could participate in each session. 

2.2.2    Scenario 2 

Scenario 2 was very similar to Scenario 1, the only difference being that the 
target vehicles drove down the approach routes continuously, without stopping. 
The location of each vehicle during a run was later determined (appendix A). 
This scenario allowed recordings and measurements of moving targets. 
Scenario 2 was carried out six times under different conditions. Two target 
vehicle speeds were used: 20 km/h (fast) and 8 km/h (slow). The purpose of 
the two speeds was to create one condition of moving targets with dust thrown 
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up by the vehicles, and one condition of moving targets without dust thrown 
up by the vehicles. 

In practice, it appeared that there was little difference in the amount of dust 
produced by the targets in both conditions. Two kinds of battlefield effects 
were used: fires and artillery dust simulations. Table 3 gives the conditions 
used for the six versions of Scenario 2. 

In Scenario 2C, one sandbag was exploded 50 m to the left of the route, and 
one sandbag was exploded 50 m to the right of the route. Both sandbags were 
exploded at 3500 m and at 2500 m during each target vehicle run. The timing 
was such that the explosions went off when the target was right between the 
two bags. 

In this scenario, the targets could complete a run in less, sometimes much less, 
than 30 min. However, to coordinate target movements with battle events and 
the timing of helicopter and fixed wing aircraft overflights, the targets were 
scheduled to start at exactly the half hours on the clock. This meant that 
usually only seven runs could be completed; therefore, not all targets could be 
included in each session. 

Table 3. Details of Scenario 2 

Scenario Route/Speed Session No. Battle Effects 

2A left/slow 31.4 none 
2A left/fast 31.3 none 
2A right/slow 8.1 none 
2B left/slow 3.4 6 fires 
2B left/fast 1.3 6 fires 
2C left/slow 31.2 2 sandbags at 3500 m 

2 sandbags at 2500 m 
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Figure 2. Approach route for 
Scenario 3. 

2.2.3    Scenario 3 

In Scenario 3, a column of target vehicles at a mutual distance of 50 m drove 
down an oblique track across the field, see the map in figure 2. The vehicle 
speed was 20 km/h. 

The size and composition of a column of vehicles is important information. 
When a column is partly obscured by dust or battle effects, correct appraisal 
of the situation might be hampered. The purpose of this scenario was to 
determine whether observers can classify a column on the basis of its whole 
appearance, or gestalt, instead of by seeing all individual vehicles. 
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To test this idea, four main types of columns were used. All columns 
consisted of tanks and APCs. The tanks were always grouped together. The 
columns were short (8 targets) or long (12 targets). In the short columns, the 
tank group was in front or at the back; in the long columns, it was in front or 
in the middle. The four formations are illustrated in figure 3. The short 
column was typical of two platoons moving to contact; the long column was 
typical of a company-size column of mixed composition. The distribution of 
the available tanks, APCs and trucks within the layout of a given column was 
different for each run. 

back • • 
• # 
• # 
# • 

• A # A 
• A • A 
• A • A 
• A • A 
A • A • 

A • A • 

A • A • 

A • A • front 

1 2 3 4 

A = tank • = APC    # = Truck 

Figure 3. General composition of the four 
column types of Scenario 3. The layout is 
presented as the targets were seen coming 
toward the MIA; the bottom ones are in 
front. 
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Scenario 3 was carried out three times, twice without battlefield effects and 
once with three fires located at 3500 m from the MIA along the track. Details 
are presented in table 4. In each session, four runs could be completed, so a 
total of 12 runs were realized during the whole test. 

A number of observers from different nations made real-time observations for 
Scenario 3. The task of the observers was to first quickly determine whether 
a column was long or short, second classify the type (tanks in front or not), 
and third name the targets in the column. 

Table 4. Details of Scenario 3 

Scenario Session No. Battle Effects 

3A 
3A 
3B 

7.3 
8.2 
6.3 

none 
none 
3 fires at 3500 m 

The main conclusion from the field observations is that the columns in this test 
are never recognized at a glance; the idea that a column with a certain mission 
has a certain gestalt does not appear to be true. The observers judge each 
vehicle of a column as it comes into view, and they count them one by one to 
find out what kind of column they are dealing with. The columns throw up a 
lot of dust, and depending on the wind, a whole column may be obscured by 
the dust cloud generated by the first vehicle. 

2.2.4    Scenario 4 

2.2.4.1 General.— In Scenario 4, an attack formation consisting of four tanks 
followed by eight APCs approached the MIA from the far end of the field to 
about 2500 m. The speed of the vehicles was 15 km/h. The purpose of this 
scenario was threefold: (1) to collect data on the number and duration of holes 
or visibility windows in dust and/or smoke clouds; (2) to determine how many 
targets of an attack formation can be seen at any one time; (These two points 
are important for deterrnining the effectiveness of guided missiles like the TOW 
and direct fire systems like tank and APC guns.) and (3) to record realistic 
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thermal and visual imagery of an attacking formation under various battlefield 
circumstances for training purposes. This scenario was carried out 10 times 
in five forms, and usually several runs could be made in one session. The 
different versions and the combinations of battlefield effects used are listed in 
table 5. 

Table 5. Details of Scenario 4 

Scenario       Session No. Battle Effects 

4A 27.2-30.3 
4B 6.2 
4C 1.2-7.2-10.3 
4D 2.3-9.2 
4E 3.2-9.3 
4X 9.3 

None 
Rolling Artillery Barrage near targets, see text 
Artillery barrage in front of MIA 
WP smoke in front of MIA 
Artillery barrage + WP smoke in front of MIA 
None 

Scenario 4A was a baseline condition for Scenarios 4C, D, and E. 
Scenario 4B was different from the others and is described separately. The 
target tracks and explosion areas are presented in figures 4a and 4b. 
Scenario 4X was a short search experiment and was different from all other 
versions of scenario 4. 

2.2.4.2 Scenario 4 A, C, D, and E— In Scenarios 4A, C, D and E, the attack 
formation was about 600-m wide. Four tanks were driving down the four 
approach routes shown in figure 4a, and two APCs followed each tank at a 
distance of 100 to 200 m. One of each pair of APCs drove 50 m to the left of 
the tank-track, the other drove 50 m to the right. The formation is 
schematically depicted in figure 5. 
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Figure 4a. Approach routes for scenarios 
4A, C, D, and E. The explosion area is 
marked EXPL. Mutual distance between the 
tracks is 200 m. 
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Figure 5.  Schematic diagram of the target formations for all versions 
of Scenario 4. The arrow on the right indicates the direction of motion. 
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The battle effects were produced in a 400- by 100-m explosion area (marked 
EXPL on the map in figure 4a) at a distance of 300 m from front of the MIA. 

The scenarios typically lasted 6 to 8 min. To illustrate the timing of target 
movements and battle events, a sample of a planning sheet used for these 
scenarios is presented in figure 6. The scenario began after all targets were 
warmed up and in position at the beginning of the tracks. During the first 
3 min, battle events (sandbag explosions, LUST devices, or both) were set off 
at 1-min intervals in the explosion area in front of the MIA; the vehicles 
waited. After the dust/smoke screen was built up, the formation started to 
move. Battle events were generated once a minute, for 6 min, to sustain the 
obscuration. By the time the tanks reached the end of their tracks, at about 
2500 m from the MIA, the event was over. 

2.2.4.3 Scenario 4B.— A rolling artillery barrage was simulated in Scenario 4B. The 
idea is that artillery paves the way for an attack formation by shelling from 
behind the area in front of the troops to neutralize all enemy defenses to enable 
fast and unobstructed advance of the forces. 

The attack formation was the same as in figure 5. In the first phase (red), the 
formation was 200-m wide; after that it expanded to 600-m wide. Figure 4b 
shows the tracks and explosion areas. The figure shows an enlarged (2x) view 
of the target area. The two outer tracks in figure 4b are the same as the two 
inner tracks of figure 4a. The central track in figure 4b was added for 
Scenario 4B and coincided with the left route for Scenarios 1 and 2. The four 
tanks were evenly spaced over the 200 m width: one tank followed the leftmost 
track, one followed the rightmost track, one drove 30 m to the right of the 
central track, and the other drove 30 m to the left of the central track. 

Four explosion areas were laid out in the field, and they were labelled red, 
blue, green-N (north), and green-S (south). In the four explosion areas, 
different area/time densities of artillery bombardment were simulated (table 6). 
In area red, 20 sandbags, spread evenly over the 100 by 100 m, were exploded 
over a period of 2 min, while in both green areas the same number of bags was 
spread out over twice the area and exploded in a quarter of the time. These 
different conditions threw up dust clouds of different densities and duration. 
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The execution of this scenario is described below. The position of the 
formation is indicated as 3700/3900 m, where the numbers represent the 
distances of the tanks/APCs from the MIA. 

«•- M"         -2.                        Scen:4C 
Re! Abs 1 I                  1 

Time Time EXPLOSION CREW ! TARGET FORMATION 

-50 
fli:min) Sandbag?         1 I (Vehicles use Blue/Black # signs) 

WannuoofallvRhKiM 
-10 Thermal signature* nf 1 Tanir& 1 APC 
-5 Pre-check chaises Tanks to sim # I: APCs tn sim #0 
-4 
-3 Task APC 
-2 Pos.-DisL Pos. - DisL 
-1 
0 Exolode 1-st voilev (21 baes) 1-3700 m 0- 3900 m All vehicles WATT 
1 Exolode 2-nd voilev aba«) l-3700m O-39O0m AU vehicles WATT 
2 Exolode 3-rd voilev abtat 1-3700m 0-3900m All vehicles WATT 
3 Exolode 4-th voilev aba«) 1 - 3700 m 0-3900m All vehicles START: 15 km/h 
4 Exoiode 5-th voilev (7 baast 3-34O0m 1-3700 m 
5 Exolode 6-th voilev       (7 ban) 4-3150 m 3-3400m 
6 Exolode 7-th voilev (7 bags) 7-2850m 5-3100 m 
7 Exolode 8-th voilev a baas) 9-2650m 7-2850 m 
8 Exolode 9-th voilev (7 bare* 10 -2400m 9-2600m All vehicles WATT 
9 
10 
11 
12 All vehicles take tactical bom-covered 
13 Dostams farina- MIA. Wait for 4 min. 
14 
15 
16 
17 "" END SCENARIO ••• All vehicles leave field in sir. 
18 1 following route Yellow. 

Figure 6. An example of a planning sheet:  Scenario 4. 
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Table 6. Artillery barrage density in Scenario 4B 

Expl. Area Size No. Sandbags Duration 

red 100 x 100 m 20 2 min 
blue 200 xlOO m 20 1 min 
green-N 200 x 100 m 20 0.5 min 
green-S 200 xlOO m 20 0.5 min 

2.2.4A    Event RED — 
1. The target formation was stationary in position at 3700/3900 m. 

2. The explosions in area red were set off; the targets did not move. 

2.2.4.5 Event BLUE.— 
1. The formation was moved 200 m down the tracks, to the blue start 
position at 3500/3700 m. 

2. The targets started driving down the tracks at 15 km/h (250 m/min). 

3. As soon as the formation was in motion, the explosions were started in 
area blue. 

4. During the explosions the formation drove about 300 m; the formation 
stopped when the explosions were finished in area blue. 

2.2.4.6 Event GREEN.— 
1. The formation was moved 300 m down the tracks to the green start 
position at 3200/3400 m. 

2. The targets started driving down the tracks at 15 km/h (250 m/min). 

3. When the formation started moving, the explosions were started in area 
green: the first 1/2 min in area green-N, the next 1/2 min in area green-S. 
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4. During the explosions the formation drove about 250 m; when the targets 
reached the end-point at 2900/3000 m the blue explosions were finished in area 
green. 

Analyses of Scenario 4 are presented in Vonhof and Goessen. [3] 

2.2.4.7 Scenario 4X.— In this version of Scenario 4, the attack formation took 
position along the ridge with some trees and bushes about 2000 m from the 
MIA. The vehicles were to take a position suitable for an attack on the MIA 
but obscured from view by using the local terrain features as much as possible. 
The task of the observers in the MIA was to find the targets on the thermal 
imagers. This scenario was carried out only once, to get an idea of the 
detection probabilities in the described situation. 

The surprising result of this short test was that only about half the targets were 
found, and half of the responses given turned out to be false alarms. [4] 

2.3    Target Positions in Scenario 2 

For the analyses of the data collected during the experiments, the location and 
distance of each target must be known at all times. Because obtaining this 
time/distance information for Scenario 2 was not straightforward, the procedure 
used is outlined below. 

2.3.1    Radar Data 

The U.S. fielded a multitarget tracking system (AUTOFEDS) that was 
developed by NVESD for recording target vehicle movements and observer 
responses during field trials to provide all target vehicle locations in x,y 
coordinates relative to the MIA as a function of time. Unfortunately this 
system was not operational during most of the test, and the limited data 
available proved unusable. Fortunately, two French teams had a battlefield 
radar: 1) LMT-Radio Professionelle (French battlefield radar system) from 
Boulonge and 2) RASIT (French battlefield radar system) from ETC A 
(Etablisement Centrale Technique d'Armement), Arcueil. The radar systems 
were to provide backup information on target vehicle locations; therefore, 
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information, albeit only for moving single targets (Scenario 2), was available 
after all. 

Two problems emerged in the analyses of the data provided by both radar 
systems. First, it appeared that in most of the data of the LMT radar, the 
compass bearing was not set according to the local deviation of the earth's 
magnetic field. By rotating the coordinates of the vehicles by the amount of 
the local deviation, a reasonable fit with the land survey data could be 
obtained. This exercise proved that the LMT data were, in principle, usable. 
The RASIT radar produced geometrically correct data. 

A second problem in the radar data concerns the time information. The master 
time for the test was provided by France and made available to all nations in 
the MIA in IRIG-B format on a coax cable. The IRIG-B signal was recorded 
on the audio channel of video recorders; therefore, the correct time for the 
imagery on the video. The computers of the radar systems had no hard-wired 
connection to the IRIG-B signal, and the computer clocks were presumably set 
by hand. This resulted, for many sessions, in differences between the time 
axes of the LMT radar, the RASIT radar, and the IRIG-B time. The problems 
were noticed when time/distance information of the LMT and RASIT radars 
for a few runs were compared with actual target time/position as inferred from 
the video image/audio channel. Time differences between IRIG-B and the two 
radar systems of up to 2 min have been found. Because the radar data was not 
considered reliable, the time/position relation of all targets in Scenario 2 were 
determined by direct analyses of the video imagery. 

2.3.2     Visual Determination of Target Time/Distance Profile 

The images of a complete Scenario 1 run were displayed on a monitor. A 
transparent sheet was attached to the face of the monitor, the approach route 
was sketched on the sheet and the locations of stationary target vehicles were 
marked. The marks correspond with the locations of the numbered signs along 
the approach route. This procedure was done for the left and right approach 
routes. Next, imagery of Scenario 2 runs was played back on the same 
monitor while the IRIG-B time was displayed. At each instance when a target, 
as it moved along the track, passed a mark on the monitor face, the target was 
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at a stop-sign location. The IRIG-B time of the instance was noted, and 
because the distance of all numbered signs along the track are known, a series 
of correct time/distance values for each run was obtained. These data are 
indicated as visual or VIS. The VIS time/distance data were plotted, obvious 
errors were corrected, and comparisons with the radar data were made. A 
complete set of time/distance plots is presented in Valeton, Bijl, and 
De Reus. [1] 

As an example of the differences in time/distance relations found for the three 
data sets, two extremes are presented in figure 7. In figure 7a, a run is plotted 
for which the time/distance relations from all three sources coincide perfectly. 
Figure 7b shows an example in which there are time shifts of 1.5 and 2 min 
between IRIG-B and the radar data. Each symbol on a radar curve indicates 
a position generated by the radar. Note that the curves are almost straight 
lines, showing the target vehicle drove at constant speed and the three data sets 
are consistent with the only difference being a shift in the time setting. 
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Figure 7a. Examples of time/distance 
relations for Scenario 2 from three 
different sources: the RASIT radar, 
the LMT radar, and visual data 
obtained from IR imagery. The data 
from the three sources coincide. 
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Figure 7b. Time shifts between 
IRIG-B time and both radar data sets 
are apparent. Time shifts indicate 
errors in the time setting of the radar 
systems. 

2.4    Closing Remarks 

BEST TWO was executed with great success. Only one of the planned 
sessions had to be canceled, because the schedule was overloaded. All national 
teams expended a great effort and collaborated successfully. In addition, 
France supplied field radio systems, the standard test time, a safety officer, 
road blocks, and the explosives team that prepared, set up, and executed all 
battle event simulations with a very high success rate. Further, a large number 
of logistic problems were solved every day.  The weather during the test was 

38 



mostly constant; very hot and dry. Meteorological data are presented in Smith 
and Corbin. [5] 

In hindsight, it might be concluded that the test schedule had one flaw. Night 
sessions were to be included in BEST TWO, but it was decided not to sacrifice 
any daytime experiments. 
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3.  Design of the Observer Experiments 

3.0 Summary 

During BEST TWO, images of single stationary targets (Scenario 1) and 
moving targets (Scenario 2) were recorded with a thermal imager. The images 
are used in observer performance experiments to collect data for the evaluation 
of TA models and for operational purposes. This section describes the methods 
and design the experiments. 

Stimuli consisting of short image sequences were shown to observers, using an 
analogue video disc system. This system allows presentation of events in 
random order at fast pace, while retaining the dynamic character of the 
imagery, for both stationary and moving targets. Identification and recognition 
performance was determined as a function of target range. 

An extensive training program was developed; transfer of training to the main 
experiments was satisfactory. Large differences in performance between 
subjects occurred. The criteria for selecting observers for further analyses are 
discussed. Military and civilian observers were tested, and no overall 
difference in performance between the two groups was found. 

3.1 Introduction 

Thermal images recorded during BEST TWO were used in observer 
experiments in the laboratory to determine TA performance. The purpose of 
these experiments is to collect data for the evaluation and development of TA 
models and supply rules of thumb for operational purposes. The present 
observer performance experiments were restricted to target identification and 
recognition; target detection and search are not studied. No battlefield effects 
were included. 

This section treats the design of the experiments, the setup that was built, the 
observer training, and the subsequent observer selection process. Also, a 
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comparison is made between the performance of military and civilian 
observers. 

Because detailed information on thermal image recognition on target vehicles 
is confidential, target names are coded with the letters A through I in all data 
plots. This does not in any way affect the conclusions that can be drawn from 
the experiments (see section 3.5.3). The key to the vehicle code is available 
on request. 

3.2    Methods 

3.2.1 Field Recordings 

Four scenarios were carried out during BEST TWO. An overview of these 
scenarios has been presented in section 2. Detailed information on the events 
during the trials including test schedules, maps, time tables, vehicle positions, 
and battlefield events is reported in Valeton, Bijl, and De Reus. [1] The 
laboratory experiments were conducted with imagery collected during 
Scenarios 1 and 2. Recordings were made of stationary and moving single 
target vehicles at a range of distances between 4000 and 1000 m. Nine target 
vehicles were used in these scenarios: three tanks, four APCs, and two wheeled 
vehicles.  Three vehicles were camouflaged. 

The imagery was recorded from an 8 to 12 ^m thermal imager on Umatic 
video tape. The field of view was 5 x 3° (H x V). The camera was aimed 
such that the target vehicle was approximately in the middle of the image. A 
selection of the imagery was copied to video disc (sections 3.2.2 and 3.2.3) for 
use in the laboratory experiments. 

3.2.2 Experimental Setup 

A flexible setup was developed to present dynamic video imagery to four 
observers in parallel. The most important properties of the setup are described 
below. 
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3.2.2.1 Dynamic Stimulus Display.— The heart of the setup was an analogue video 
disc system (Sony LVR-6000/LVS-6000P) used to present the stimuli to the 
observers. This system is ideally suited for these kinds of observation 
experiments for two reasons. First, it allows the use of video sequences as 
stimuli, which comes as close as possible to the real field operation of thermal 
imagers because the image dynamics (spatio-temporal noise and image jitter) 
are retained. Stationary and moving targets can be displayed realistically. 
Second, it allows the presentation of stimuli (short video sequences) to the 
observers in random order at fast pace. This is a requirement in the design of 
the observation experiments. The stimuli were displayed on Sony PVM 122 
CE 12-in. monitors white B4 phosphor, and the contrast and brightness controls 
were set for maximum linear contrast range before the experiment. The 
observers were not allowed to touch the controls. 

The experiments were controlled by a PC that operated the video disc and was 
further interfaced (RS232) to four response panels used by the observers. 

3.2.2.2 Response Panels.— Tandy Model 100 notebook computers were used as 
response panels. A number of keys on the keyboard were designated as target 
response keys by putting a name sticker on them. Six keys were assigned to 
the different targets: Leo, AMX-30, PRI, PRAT, AMX-10, and Truck. The 
camouflaged versions of AMX-30, AMX-10, and Truck were not used as 
separate response categories. The reason is that interest is in the ability of an 
observer to identify or recognize a target vehicle either camouflaged or 
uncamouflaged, not in his ability to distinguish a camouflaged target from an 
uncamouflaged one. 

Three keys were used to further qualify a response as an I (identification), 
R (recognition) or D (detection only). The latter responses are analyzed in 
section 5. The LCD display on the notebook computers wasused to inform the 
observers on the status of the experiment and to give feedback during the 
training sessions. 

3.2.2.3 Observer Setup.— The observers were placed in a dimly lit room, and the 
response panel display was illuminated with a small external light source. Care 
was taken to prevent stray light from falling on the monitor screen.   The 
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observers were allowed to choose their own optimal viewing distance and to 
scrutinize the display if they wished to do so. The viewing distance was 80 cm 
on average. 

The observers were watched from a control room with a closed circuit TV 
system. An experiment lasted three days. The sessions lasted 30 to 45 min. 
The observers worked in two shifts. While four observers were running the 
trials, the other four had a rest period. 

3.2.3    Stimulus Preparation 

The video discs can store 24 min of video, or 36000 frames at 50 Hz per side. 
Because a large number of stimuli had to be stored on a single side, a limited 
number of frames was available per stimulus. Different sets of stimuli were 
used for the observer training and for the main experiments. In experiments 
using only stationary target images from Scenario 1, the observers were trained 
with stimuli generated from Scenario 2 tapes (see below). In using experiment 
images from Scenario 1 and 2, about 40 percent of the available images were 
set aside for observer training. 

3.2.3.1 Stimuli for Experiments.— For the images of stationary targets, sequences of 
2 s (50 frames), taken at each vehicle stop position (section 2), were copied 
from the Scenario 1 video tapes to the disc. The required stimulus duration 
was 5 s in the experiments and 4 to 9 s during training. The longer 
presentation times were obtained by playing the sequences repeatedly back and 
forth for as long as required. Smooth stimulus presentations of any desired 
duration could be obtained, and it was not possible to see the difference with 
continuous video, at least for stationary targets. 

For the stimuli consisting of moving targets (Scenario 2), sequences of 5 s 
duration were copied to a separate video disc. To have the same observation 
distances as in the Scenario 1 imagery, the stimulus sequences were taken at 
exactly those times when the targets were passing the stop signs along the 
track. Section 2 contains details and maps of the approach routes for the two 
scenarios. 
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3.2.3.2 Stimuli for Observer Training.— The observers were trained in four phases 
(section 4). For the first two phases, a sequence of close-up images, recorded 
at 400- to 600-m distances during a characterization session were used to teach 
the observers the target names and their typical characteristics. Thermal and 
visible charge-coupled device (CCD) images of all targets, in front and two 
side views, were copied to the video disc. 

In further training stages, the images were similar to those used in the 
experiments. For experiments where only stationary targets were used, 
stationary training images were extracted from Scenario 2 (moving vehicles) 
by copying very short sequences of 15 frames to the video disc and playing 
them back and forth. The moving targets appeared stationary except at the 
shortest distances in which case a slight rocking movement was visible. The 
movement made them a little easier to detect, which was considered an 
advantage in the training stage. Images of camouflaged vehicles were not used 
during training. 

3.2.4    Stimulus Presentation 

Because the present experiments included target identification and recognition 
only, the image presentations were structured such that the observers could 
always find the targets easily. Two ways of ordering the target images were 
used: position and sequential. 

3.2.4.1 Position Presentation.— In this case, targets popping-up at random positions 
were simulated by presenting targets at random distances along one of the two 
approach routes. First a position was chosen at random. To avoid search and 
detection problems, this position was shown to the observers. All target 
images available at that position (usually 6 to 8) were presented in a randomly 
ordered sequence. 

All images were presented to the observers five times during different sessions. 

3.2.4.2 Sequential Presentation.— A straight-line approach of the target toward the 
MIA was simulated by presenting the targets as an ordered sequence of 
decreasing distance, from 4 km down. The reasoning behind this presentation 
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method is that in a practical field situation, targets may often be seen 
approaching for a certain period of time. As the target approaches, the 
observer may accumulate information on the target. The accumulation may 
lead to a better acquisition performance than the targets presented at random 
positions. 

Sequential presentation of the images was repeated three times. Section 4 
presents the results of the comparison between the two presentation orders. 

3.2.5    Statistical Analyses 

The direct observer scores (the numbers of correct responses for all the 
conditions) are the data analyzed. A correct identification is made if the 
observer chooses the correct target response key. The response is a correct 
recognition if target and response belong to the same vehicle class (both are 
tanks or APCs). Identification and recognition scores were obtained in a single 
experiment. Most of the results in this and subsequent reports are presented 
as plots of percent correct responses (identification or recognition) versus target 
distance. Error bars are shown in some of these plots to give an indication of 
the accuracy. 

The error in the observer scores can be calculated as follows. Let p be the 
probability that a target in a certain image will be recognized or identified 
correctly.   Suppose that this image has been presented n times. 

If the outcomes of the trials do not influence each other, this leads to a 
binomial distribution with mean value 

score (%) = p * 100%, (!) 

and standard deviation 

A PQlE> * ioo%. (2) 
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The standard deviation is highest if p = 0.5 : 

v/n 

With n = 100 independent observations (responses from 100 different 
observers that see the image once), the maximum standard deviation in the 
datapoints will be 5 percent; with n = 20, a^ = 11 percent. In the 
experiment, each image was presented 5 times to about 20 observers. 

Because responses of the same observer cannot be regarded as independent, the 
maximum standard deviation falls between 5 and 11 percent. In some cases, 
less than 20 observers (but at least 5) were used. This leads to an increase in 
the standard deviation by a factor < 2. Therefore, the worst-case assumption 
is 10 percent < a^ < 20 percent. (Note that the actual values of a will be 
much smaller when p j* 0.5.) 

Because the numbers of correct responses are distributed binomially, they were 
analyzed by using a log-linear model. These analyses are similar to Analysis 
of Variance, which would be used for continuous, normally distributed 
variables. 

3.2.6    Observers 

Eight male civilian observers, students from a nearby university, and seven 
male military observers, (drafted) APC drivers/gunners, participated in the 
experiment. The military observers had a general military training, experience 
with a number of military vehicles, and experience with two kinds of thermal 
imaging systems. If no difference in performance between civilians and 
military personnel was found, future experiments can be carried out with paid 
volunteers who are more readily available than military personnel. 

All subjects were male and between 18 and 25 years old. They were tested for 
visual acuity before entering the experiment.  For all observers, visual acuity 
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was better than 1.5 arcmin"1. Near vision acuity was tested with the TNO 
Priegel test.  All observers scored better 20 mm"1. 

3.3    Experimental Design 

The present experiment was designed to measure the effects of different 
conditions such as target presentation order (section 3.2.4), target motion, 
target camouflage, approach route, POD, or different groups of observers 
(section 3.2.6) on acquisition performance. Some general design issues are 
discussed below; some details are discussed more fully in the following 
sections. 

To draw statistically sound conclusions about performance in many different 
conditions, images are needed for all target vehicles in all conditions, at all 
ranges. This is called a complete design. With 9 target vehicles, 15 distances 
on the left route and 11 on the right route, and 4 different daily recording 
sessions (PODs), for stationary and moving targets a complete design consists 
of (9 x 15 x 4) + (9 x 11 x 4) = 936 images, that would have been 
collected in 72 runs. In practice, it proved not to be possible to record all 
conditions: only 31 runs of Scenario 1 and 39 runs of Scenario 2 could be 
carried out. Four additional factors further decreased the number of available 
images: (1) the target vehicles were not barely detectable or detectable at the 
first two stop positions of route Right, so nine usable stops remained, (2) some 
vehicles went off track and got lost, (3) in Scenario 1, some stops on otherwise 
completed runs were missed, and (4) some images proved to be unusable 
because of unplanned disruptive events in the field. From Scenario 1, this left 
a set of 331 images for use in the experiments. The effective design for 
stationary targets is illustrated in table 7. 

Each dot represents a usable target image at a stop position. Missing dots in 
a sequence represent missed stop signs, and the empty cells in the table indicate 
sessions that were not recorded at all. 

In Scenario 2, the targets drove down the tracks without stopping; therefore, 
in principle, a very large number of short image sequences of moving targets 
can be extracted from the video tapes.    Because image sequences from 
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Scenario 2 were selected at the locations of the stop signs of Scenario 1, the 
complete design for Scenario 2 also has 936 stimuli, of which 480 usable 
images were available. The effective design for moving targets is similar to 
the one shown in table 7. 

Table 7. Experimental design 

Part Of Day 1 Part Of Day 2 Part Of Day 3 PartOfDav 4 
Left Ri^ht Left Ri&ht Left Ripht Left Rifcht 

Leo2 -— •••••"•• ■-—»—»■— -—• - — 
AMX-30 ~~~   — -———— ••  •• • 

AMX-30C —•— •—• 
PRI ■•—— —— — - —— —— 
PRAT ■— •••• — -•—- ——— 
AMX-10 ••— —■"— -•— 
AMX-10C —- —— ••••••••■ 

Truck «—-•— ■*-*    •~— •—~ •—— •— 

Because the available image data is so incomplete, the effects of different 
conditions on acquisition performance had to be analyzed in smaller 
subdesigns. This means that a smaller number of vehicles (usually about four) 
for which balanced information is available (targets that drove both approach 
routes at all possible PODs that can be compared) was used in the analyses. 
Reducing statistical significance of the results. The problem is hard to avoid 
when imagery is collected in a large scale, multipurpose field test. 

3.4    Observer Training 

3.4.1     Training Structure 

The observers were trained in four phases. The purpose of training was to 
bring the observers to about the same level of skill at the start of the 
experiments, and to avoid contamination of the data by the effects of possible 
additional learning during the experiments. The images used for training are 
described in section 3.2.3.2. Observer training took 4 to 5 h of running trials 
and, with two groups working in shifts, was completed in one day. 
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3.4.1.1 Phase 1.— The observers were shown sequences of four pairs of CCDs and 
forward looking infrared radar (FLIR) images of the same vehicle: a front 
view two times and both side views. The name of the vehicle was presented on 
the response panel display. Each image was shown for 4 s. The observers 
were encouraged to make notes, and details were pointed out to them. The 
sequence was repeated four times.  Phase 1 lasted about 20 min. 

3.4.1.2 Phase 2.— The front view thermal images of Phase 1 were shown to the 
observers in random order at a presentation time of 7 s. The observers 
responded by pressing a key corresponding to a target, and the response was 
echoed on the LCD display. Feedback was given by showing the correct target 
name on the display and by beeping when the response was wrong. This phase 
was repeated until all observers scored better than 95 percent correct. One 
session consisted of three presentations of all six vehicles and lasted about 
4 min. 

3.4.1.3 Phase 3.— Images of all six target vehicles at distances of 1001, 1096, 1215, 
and 1350 m were used. The images were taken from Scenario 1 or Scenario 2, 
depending on the experiment. Each vehicle appeared 12 times; a complete 
session consisted of 72 presentations. Presentation time was 7 s, and the 
response was followed by feedback. Phase 3 was repeated four to five times. 

3.4.1.4 Phase 4.— Phase 4 was very similar to Phase 3, but closely resembled the real 
experiment. Target vehicle distances bracketed the complete range up to 
4000 m. Images were taken from the left and right approach routes at 
4 PODs. A Phase 4 session consisted of 150 stimulus presentations: 
2x8 distances X 6 vehicles from route left and 9 distances x 6 vehicles 
from route right. Stimulus presentation was 9 s in the first session. It was 
decreased to 7 s and, finally, to 5 s in subsequent sessions. In addition to the 
target response keys, the acquisition level keys, I (identification), 
R (recognition), and D (detection only), also had to be used. The duration of 
a session was 30 min, and feedback was given. Phase 4 was carried out four 
or five times, depending on the scores. 
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3.4.2    Confusion Matrices 

A confusion matrix gives a quick impression of the results of an observer on 
a particular session. The matrix is a table that shows how the responses of the 
observer are distributed over the different targets. Figures 8a and 8b are two 
examples of the matrix. 

The targets are listed in the left column, and the response categories are listed 
in the top row. The row to the right of each target contains the percentages of 
responses in each category given to that target. Consider figure 8a. This is 
the confusion matrix for one observer after only a few training sessions. The 
first row of data shows that of all Leopard 2 presentations, 58 percent were 
correctly scored as Leo 2. However, the Leo 2 was seen as an AMX-30 in 
8 percent of the presentations, and it was identified as PRI or PRAT in 
17 percent of the cases. The errors are called confusions. The confusions for 
the other targets can be analyzed likewise. Note that responses on the diagonal 
(bold) are the correct responses. This observer, in this session, had a total 
percentage of 69 percent correct. 

Figure 8b shows that performance is much better rafter training is completed. 
Only a few confusions between PRI and PRAT remain. 

Confusion matrices were calculated after each session and were discussed with 
the observers to help them improve their training score. 
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a Responses (%) 

Tank APC Wheel 

Test object Leo 2     AMX-30 PRI         PRAT AMX-10 Truck 

Leo2 
AMX-30 

PRI 
PRAT 

AMX-10 
Truck 

58             8 
17             75 
8 

17 
33 

17             17 

75             17 
33            50 

8 

8 

58 
100 

Figure 8a. Confusion matrix for an observer after a few training sessions. 
Numbers indicate the percentage of responses assigned to each category 
with correct responses on the diagonal. Numbers in off-diagonal cells 
show confusions between targets.   The overall correct score is 69 percent. 

b R 

Tank 

Test object Leo 2     AMX-30 

Leo2 
AMX-30 

PRI 
PRAT 

AMX-10 
Truck 

100 
10P 

Figure 8b.  Confusion matrix for the same subject as shown in figure 8a 
after training was completed. Overall correct score is 96 percent. 
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3.5    Results 

3.5.1     Training Results 

Figure 9 presents the results of the training for the civilian and military 
observers and an indication of their performance in the main experiment. The 
data points present identification scores for individual observers, averaged over 
target type, approach route, and POD. Three kinds of data are presented: 
a) the results of Phase 3, sessions 1 through 5 (connected points); b) the 
average score for a subset of Phase 4 trials, indicated as session 6; and c) the 
average score on a subset of the main experiment trials, indicated as session 7. 
Details on these subsets are given below. 

100 

ao 

60 

40 

-    20- 

T 1 1 1 1 1 r 
civilian observers 

=1       .       " 

X _L 
1      2     3     4     5      6 

session number 

T 
militarv observers 

/>^=«   !   : 

J L _L 
2     3     4     5     6      7 

session number 

Figure 9. Results of observer training (a) civilian observers; (b) military observers. 
Three data sets are shown in each panel: score as a function of session number for 
Phase 3 (connected symbols, sessions 1 through 5), mean score for Phase 4 
(number 6), and mean score for the main experiment (number 7). 

3.5.1.1 Phase 3 Results. — The general trend in the Phase 3 results is that performance 
increases with session number, which means that the observers are learning. 
Most observers have reached a steady level after about 5 sessions, which 
indicates that no further learning occurs. 
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Figure 9a (civilians) shows that four observers are good (have reached a high 
level at the final session of Phase 3), three observers are reasonable, and one 
observer is weak. Figure 9b (military) shows that two observers are extremely 
good, three observers are reasonable, and two are weak. The civilian 
observers show rather similar behavior; whereas, there are large differences 
between the military observers. This difference can possibly be explained by 
the fact that the civilians, being students, were more homogeneous as a group 
and were used to sitting down at a task for long periods of time. The military 
observers (draftees), on the other hand, were not a homogeneous group with 
respect to educational level, and they exhibited large differences in attitude and 
motivation. 

3.5.1.2 Phase 4Results.— The second data set in figures 9a and 9b (session 6) shows 
the average scores for the shortest target distances (ranges used in Phase 3) of 
the Phase 4 trials. For almost all observers, the scores are roughly at the 
end-level of Phase 3, meaning there is sufficient transfer of training from 
Phase 3 (only short ranges) to Phase 4 (ranges up to 4 km). 

3.5.1.3 Main Experiment Means.— The third data set in figures 9a and 9b (session 7) 
shows the average scores obtained for the shortest target distances (ranges used 
in Phase 3) in the main experiment. Most observers, except the weak ones, 
have a score that is only slightly lower than in the training. This means that 
there was sufficient transfer from training (with feedback) to the main 
experiment (no feedback). The slight drop in performance may be explained 
by different images used in the main experiment, and picture recognition (see 
below) was not possible. 

3.5.1.4 Picture Recognition.— During the training process, some observers learned to 
recognize the pictures rather than the targets on the images. This was possible 
because of the feedback given after each target presentation. Because target 
recognition is the purpose of these experiments, picture recognition can 
contaminate the data. The main reason for using different image sets for 
training and the main experiment was to avoid the effects of picture 
recognition. Because no feedback is given in the main experiment, picture 
recognition cannot lead to higher scores. 
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3.5.1.5 Observer Selection.— The large differences in overall performance between 
observers brings up the question of observer selection. In psychophysical 
experiments it is generally not allowed to exclude observers that behave 
differently from the analyses because it gives rise to biased conclusions. In the 
present case, the situation is different. The final purpose of these experiments 
is to evaluate TA models. These models should describe the performance of 
military observers in the field, and such personnel have usually gone through 
extensive training. It appears that not everybody can learn the task well 
enough to be an operator in the field; in practical military training, about 
30 percent of the trainees fail. For this reason, a performance criterion was 
set (in advance) and the worst observers were dropped from the final analyses. 

The criterion is based on the following considerations: 1) At the shortest ranges 
(1000 to 1350 m), recognition is a relatively easy task; an observer that cannot 
distinguish a tank from an APC at those ranges with a reliability of at least 
90 percent is in fact not fit for the task. 2) During the BEST TWO field trials, 
real time observations by military observers yielded identification and 
recognition scores at short ranges of 75 and 95 percent correct, respectively. 
After consulting military experts, it was decided that identification and 
recognition performance in the main experiments, averaged over all conditions 
and for short target ranges only, should exceed the following limits: 

identification:     better than 70 percent correct 
recognition:        better than 90 percent correct 

These criteria resulted in dropping two civilian and two military subjects 
(which is about 30 percent). 

3.5.2    Military Versus Civilian Observers 

Acquisition performance was determined for 15 runs. In figures 10a, b, c, and 
d, identification or recognition scores are plotted as a function of target range 
for four of the runs. The standard deviation (not plotted) in each data point is 
about 10 to 20 percent. Only the results of the position presentation 
(section 3.2.4) are shown. Solid lines represent performance for the civilians; 
dashed lines represent performance for the military observers.   In all four 

55 



examples, the groups show very similar, if not identical, behavior. Second, 
the performance/distance relations are very different in the four examples. 
Because the scores for the two groups are so similar for such widely different 
conditions, it is concluded that no difference exists in overall performance 
between well-trained military and civilian observers. Statistical analyses of the 
data shows no significant main effect on observer groups, meaning that, in 
further analyses, the results for all observers can be taken together to reduce 
the statistical errors. 

3.5.3    General Observations 

The following general observations can be made. Target F on the right 
approach route (figure 10a) is identified correctly up to 3500 m. The 
combination of the thermal signature of the target and the local background is 
apparently such that it stands out clearly, almost to the end of the range. 
Identification of target A, on the other hand, (figure 10b) starts to become 
difficult at ranges greater than 1500 m and is down to chance level at 2500 m. 
The general shape of this performance curve is expected: a gradual decrease 
in score with increasing range, albeit somewhat steep in this case. A similar 
behavior is found in figure 10c. 

The curve in figure lOd (target F at the left approach route) is very different 
from the curves in figures 10a, b, and c, but it is similar for both groups of 
observers. The local background on this left approach route at 2000, 2600 
to 3000, and 3600 m is apparently such that this target is extremely difficult to 
identify or even recognize at those ranges, while at a range of about 2400 or 
3900 m it appears to be no problem at all. 

A similar behavior was found for many different runs, and because it is caused 
by a strong interaction between target signature and local background, this 
behavior is termed target-terrain interaction. Section 4 treats this phenomenon 
in more detail. 
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Figure 10. Acquisition performance for civilian (open circles) and military (filled 
circles) observers: (a) identification score for target F, route right; (b) identification 
score for target A, route left; (c) recognition score for target C, route right; 
(d) recognition score for target F, route left. 

3.6    Discussion and Conclusions 

The experimental setup built for these observer performance experiments 
proved to be a very practical and flexible tool. Training and experiments were 
set up quickly and run very efficiently. Because of problems specific to 
large-field trials, the design was incomplete from a statistical point of view. 
This problem was alleviated by using many observers and by repeating each 
experiment several times, reducing the experimental error in individual 
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datapoints to about 10 percent, which is sufficiently small for our purposes: the 
evaluation and development of TA models, and the deduction of rules of 
thumb. Because TA models describe general behavior, only large effects or 
the absence of effects are of interest. 

The method of training the observers worked very well. Analyses of the 
performance of the military and civilians observers revealed no relevant 
differences. Note that this finding applies to this study only, where both 
groups went through exactly the same training procedure. The observer 
training was sufficient, and the task could be learned relatively easily. 
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4.  Study I: Observer Target Acquisition Performance 

4.0 Summary 

During BEST TWO, images of single stationary targets (Scenario 1) and 
moving targets (Scenario 2) were recorded with a thermal imager. The images 
are used in observer performance experiments to collect data for the evaluation 
and development of TA models and for operational purposes. 

The influence of the head-on motion of targets and the differences in 
acquisition performance for morning, afternoon, and early night recordings 
were studied. In a number of situations, performance was heavily influenced 
by the interaction between the target and the local background properties 
(target-terrain interaction). Differences in performance for pop-up targets and 
approaching targets were found. Such differences are not described by current 
TA models. 

4.1 Introduction 

The design of the experiments, the setup that was built, the observer training, 
and the subsequent observer selection process are described in section 3; the 
main results are presented in section 4, and the effects of several parameters 
on acquisition performance are determined. A complete set of observer 
response data is presented in appendix A. The experiments were restricted to 
target identification and recognition; target detection and search are not studied 
in the experiments. 

The targets are indicated by the letters A through I because recognition 
performance data on these targets is confidential. 

4.2 Methods 

The experimental method is explained in detail in section 2. Briefly, a 
selection of the thermal imagery recorded during the field trial was shown to 
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observers by using an analogue video disc system (Sony 
LVR-6000/LVS-6000P). The experiments were controlled by a PC that 
operated the video disc and collected the responses from a maximum of four 
observers. 

During BEST TWO, recordings were made of stationary (Scenario 1) and 
moving (Scenario 2) single target vehicles at a range of distances between 4000 
and 1000 m. About 10 to 15 short image sequences were taken from each run. 
A total of 24 Scenario 1 and 14 Scenario 2 runs were used in the laboratory 
experiments. The images contained one of the nine single target vehicles listed 
in table 2. Three of the vehicles were camouflaged. The images were 
presented to the observers for 5 s. The observers tasks were to name the 
target, and to hit the designated key on a response panel after each 
presentation. 

The analyses of the observer responses are explained in section 3. The results 
are presented as plots of percent correct responses (identification or 
recognition) versus target distance. In some of the plots, error bars are shown 
to give an indication of the accuracy. See section 3 for the calculation of the 
error bars.  In most cases, the standard deviation is 10 to 20 percent. 

Two ways of ordering the target images were used: position and sequential. 
In the position presentation, targets were presented at random distances along 
one of the two approach routes. In the sequential condition, the targets were 
presented as an ordered sequence of decreasing distance, from 4 km down. As 
the target approaches, the observer may accumulate information on the target. 
This accumulation may possibly lead to a better acquisition performance than 
if the targets are presented at random positions. 

The experiments were preceded by extensive training. The purpose of the 
training is to bring the observers to about the same level of skill at the start of 
the experiments and to avoid contamination of the data by the effects of 
possible learning during the experiments. Training material was selected from 
runs that were not used in the main experiment. The training method and 
results are discussed in detail in section 3. 
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4.3    Experimental Design 

The main purpose of the experiments is to collect data for the evaluation and 
development of TA models. For a thorough evaluation, it is important that 
acquisition performance is tested under a wide variety of conditions for 
different times of the day, different atmospheric conditions, different terrain 
conditions, etc. A second demand, especially important for model 
development, is to find out which parameters significantly influence acquisition 
performance. Therefore, it is necessary to vary one parameter, while keeping 
all other conditions unchanged. To draw statistically sound conclusions about 
performance in many different conditions, we need images of all target vehicles 
in all conditions. This is called a complete design. As was shown in 
section 3, the available material is far from complete, meaning the effects of 
different parameters on acquisition performance have to be analyzed in smaller 
subdesigns, which reduces the statistical significance of the results. Other 
factors that complicate a comparison between different situations are that 
background temperature varied during the sessions, and the field recordings 
were spread over several weeks. The atmospheric conditions were remarkably 
constant during that period, but terrain conditions changed significantly because 
of the intensive use of the approach routes. 

Research is restricted to a few parameters that seem most relevant to TA 
modeling: (1) target presentation order (position or sequential), (2) approach 
route, (3) target motion, (4) camouflage, and (5) POD. The following 
questions are discussed in this section: 

1. Does the presentation order influence acquisition performance? In other 
words, does accumulation of information lead to higher scores for an 
approaching target that has been spotted for a while, than for a target that 
suddenly appears at a certain distance? 

2. Is observer performance different for the two approach routes (left, 
right)? In other words, does local background structure influence performance 
significantly? 
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3. What is the effect of head-on target motion on observer performance? 
In other words, what is the difference in performance between Scenario 1 (no 
movement) and 2 (continuous movement) images? 

4. What is the effect of the camouflage used on three of the vehicles on 
recognition and identification? 

5. What is the effect of POD on observer performance? 

The data were obtained in two series of experimental sessions with different 
groups of observers. The reasons being that not all questions could be 
answered in a single experiment. About half of the image material had to be 
used for training purposes. A more complete dataset was collected by using 
different stimulus material and different groups of observers. 

In Experiment 1, acquisition performance was determined for 15 daytime runs 
(POD 2 and 3) of stationary targets. Both types of presentation order were 
applied. A group of seven military and eight civilian observers participated in 
this experiment. As shown in section 3, there is no difference in performance 
between the two groups. Eleven observers were selected on the basis of a 
predefined criterion (section 3). The mean scores of the observers are 
presented. 

In Experiment 2, data was collected for 33 runs of stationary and moving 
targets for all PODs. Part of these runs were also used in Experiment 1. Only 
position presentation was applied. A new group of seven civilian observers 
participated in this experiment. After applying the criterion, only four 
observers were selected and their scores are used in this report. However, two 
of the observers dropped performed only slightly below the selection criterion. 
The mean results for six observers were calculated and are very similar to the 
results for the selected observers, except for a slightly lower overall score. 
Furthermore, the results for the identical runs in Experiments 1 and 2 are very 
similar, meaning that, although the scores of only four observers are used in 
the analyses, the results are reliable. 
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4.4    Results 

4.4.1    Approaching and Pop-Up Targets 

In figures 11a through f, identification scores obtained in Experiment 1 are 
plotted as a function of target distance for six different runs. Open circles 
represent the scores for position presentation, filled circles represent the scores 
for sequential condition. The runs are selected to illustrate three different types 
of acquisition performance versus range found for the position condition (open 
circles). In figures 11a and b, identification score is invariably high, except 
for one or two positions, and almost independent of target distance. 
Apparently, target contrast and camera resolution allow excellent identification 
of targets F and G, respectively, under these conditions and up to distances of 
at least 3500 m. 

Figures lie and d show that identification performance is good at short 
distances, but the score gradually decreases with target distance. For distances 
beyond 3000 m, the score is at about chance level (17 percent). Such behavior 
is expected under certain conditions; such as, the resolution is too low to 
distinguish the various targets from each other at large distances or 
meteorological conditions limit the identification range (which was obviously 
not the case during the BEST TWO trials). Notice that the steepness of the 
curves in figures lie and d is different. 

In figures lie and f, a very different relation between performance and target 
range is found. Performance depends largely on the exact position of the 
target. In these cases, camera resolution is not the limiting factor, because 
performance is quite good at the largest distance. Similar results were found 
for three observer groups. 
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Figure 11. Identification score as a function of target distance for six runs: position 
presentation (open circles) and sequential presentation (filled circles). For a and b 
performance is invariantly good; c and d, identification score decreases gradually 
with target distance; e and f, large target/terrain interactions are found for the 
position presentation.  Sequential presentation leads to more stable results. 
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In figure lie the local background on the left approach route at 2000, 2600 to 
3000, and 3600 m is such that target F is extremely difficult to identify, while 
at ranges of 2400 and 3900 m it is quite easy. Inspection of the imagery shows 
that contrast between target and local background varies greatly during this 
run: in some cases identification is simple, in others the target is barely visible, 
and at a few positions it is easily confused with one of the other vehicles. A 
similar behavior was found for many other runs. Because this behavior is 
caused by a strong interaction between target signature and local background, 
this behavior is termed target-terrain interaction. 

The filled circles in figure 11 represent the scores obtained with the sequential 
presentation. In figures 11a through d, the results for sequential and position 
presentation are similar. Apparently, information obtained from earlier 
presentations does not improve performance if the information from the actual 
presentation is equal or better. However, large differences between the curves 
appear in figures lie and f. The scores obtained with the sequential 
presentation are much more stable with respect to target distance. At the 
positions in which the information is sparse, the observers usually retain their 
choice from an earlier presentation. As a result, rapid drops in performance, 
caused by target-terrain interactions, do not take place during a target 
approach. 

Only data obtained with the position presentation will be considered in the 
remainder of this section. These data contain the most complete information 
because performance is based on single images without being influenced by 
history. This makes a comparison between conditions more sensitive to the 
local properties of target and terrain. On the other hand, if large differences 
between conditions are found, the differences may be less striking in the case 
of a target approach. 

4.4.2    POD 

To determine if the observers perform differently at different times of the day, 
the effect of the parameter POD on observer performance was analyzed. There 
are only three conditions for which a comparison between more than two PODs 
is possible.    The recognition scores for these conditions are plotted as a 
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function of target distance in figures 12a through c. Although the amount of 
data is too limited to draw sound conclusions, POD does not seem to have a 
large influence on observer performance. The variability in the data indicates 
that target-terrain interaction plays a much more dominant role. 
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Figure 12. Recognition performance as a function of target distance for different 
PODs: (a) target F, route right, PODs 2, 3, and 4; (b) target E, route left, PODs 2, 
3, and 4; (c) target C, route left, PODs 1, 3, and 4. 
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A comparison between morning and afternoon (PODs 2 and 3, respectively) is 
possible for five different conditions (two from Experiment 1 and three from 
Experiment 2). For two conditions, performance was almost identical; two 
conditions yielded slightly better scores for POD 2 (figures 12a and 12b), and 
in one condition the scores for POD 3 were higher. Statistical analyses showed 
that there is no significant main effect (P > 0.05) between the scores for 
PODs 2 and 3, but there is an interaction between POD and condition. This 
means that the overall score is similar for the two PODs, although for some 
runs performance may be different for morning and afternoon. 

The differences between daytime (PODs 2 and 3 combined) and nighttime 
(POD 4) performance were analyzed further. Comparison was possible for six 
conditions from Experiment 2. Again, no significant main effect was found, 
but there was an interaction between day/night and condition. The late night 
(POD 1) was not included in the analyses, because only two late night runs 
were available in the observer experiments. 

The conclusion is that there is no POD for which overall performance is better 
or worse than other PODs. However, one vehicle may be recognized better 
during the morning and another during the early night. Such an interaction is 
not unexpected and may be closely related to circumstantial factors like 
differences in contrast between target and background. 

4.4.3    Approach Route 

A comparison between acquisition performance for the left and right approach 
routes is possible for six conditions: three for which the POD is the same, and 
three for which it is different. Figures 13a through c illustrate the results of 
the comparison. Recognition scores are plotted as a function of target distance. 
Filled circles represent the data for a target on the left approach route; open 
circles represent the data for a target on the right route. 
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Figure 13. Comparison between acquisition performance for the two approach 
routes: (a) the overall course of the two curves is similar; (b) performance is 
identical for the two routes at close range, but significantly better for the right route 
at large distances; (c) target/terrain interactions cause large performance differences 
for the two routes. 

In figure 13a, the overall course of the two curves is similar, which means 
there is no important difference in performance for the two routes. Figure 13b 
shows that recognition performance for the target H is identical for the two 
routes at close range, but it is significantly better for the right route at large 
distances. Finally, figure 13c shows that large terrain effects occur on the left 
route; whereas, target F can be recognized easily on the right route. Thus, 
depending on the circumstances, performance for two routes, separated by a 
relatively small distance (60 to 200 m), is sometimes similar and sometimes 
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very different. One of the reasons for the differences might be that the left 
route was used more often, and was clearly visible as a white, hot track during 
the last days of the trials. The results illustrate the importance of the local 
background structure and its interaction with target signature. 

4.4.4    Thermal Camouflage 

In figures 14a through f, recognition scores for the camouflaged targets A, D, 
and G are compared to those for the uncamouflaged versions of these vehicles. 
Figure 14a is obtained from Experiment 1; figures 14b through f are from 
Experiment 2. Figures 14a, b, d, and f were recorded on the same day and 
POD; figure 14c was recorded on the same POD, and figure 14e was recorded 
on different PODs. Note that the observers were not trained on camouflaged 
vehicles. Figures 14a and b show that for target A, camouflage does not 
greatly influence acquisition performance in figure 14a the camouflaged version 
is recognized slightly better than the uncamouflaged vehicle, and figure 14b 
illustrates the effects of target-terrain interaction but shows that the overall 
performance is similar for the camouflaged and uncamouflaged targets. The 
same findings hold for target G (figures 14c and d). There is a large difference 
in performance for target D (figures 14e and f). In most situations, target D 
is recognized very well for ranges up to 3500 m; however, recognition of the 
camouflaged vehicle breaks down at about 2000 m. The breakdown for target 
D was found on all material available (four runs). Analyses of the observer 
responses showed that target D was often confused with target E. Thus, with 
respect to target recognition, thermal camouflage was not effective for targets 
A and G, but very effective for target D. 
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Figure 14. The effects of thermal camouflage: uncamouflaged vehicles (filled circles) 
and camouflaged vehicles (open circles). No differences in performance are found 
for target A (a and b) or target G (c and d). The camouflage of target D (e and f) 
is very effective. 
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4.4.5    Target Motion 

A direct comparison of performance for stationary and moving targets was 
possible for four conditions. The targets were approaching along the left route, 
and all recordings were made during the mornings (POD 2) of two days. 

Figures 15a through d present the recognition scores for these targets, obtained 
in Experiment 2. Figure 15a shows small differences for target F mainly 
because of target-terrain interactions. At some positions the moving target is 
recognized better, at other positions the stationary vehicle is recognized better. 
The moving target D (figure 15b) is slightly better recognized than the 
stationary one at long range. A slightly better overall performance is obtained 
for the moving target G (figure 15c). Figure 15d shows no difference in 
performance for the stationary and moving target A at large distances; 
however, the recognition score for the stationary target is much higher at short 
range. 

The differences in identification and recognition performance for stationary and 
moving targets are small, but statistically significant (P < 0.05). The 
differences are entirely due to the lower score for moving target A at short 
range (figure 15d): if these data are excluded from the analyses, no statistically 
significant differences between moving and stationary targets remain. It is 
uncertain whether the low recognition score for target A is due to target motion 
per se; other factors may influence performance as well. Inspection of the 
imagery showed that no dust clouds were near the target. However, the 
contrast between target and background was much lower for the moving vehicle 
than for the stationary target, which seriously complicated recognition. 
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Figure 15. Recognition scores as a function of target distance for stationary (filled 
circles) and moving (open circles) targets. No overall effect of target motion is 
found. 

4.5    Discussion 

Acquisition performance was determined for a large number of runs under 
various conditions. This section concentrates on the effects of several 
parameters on acquisition performance. 

A major outcome of the experiments is that, in a number of conditions, strong 
undulations in the relation between target distance and acquisition performance 
are found.   This may be ascribed to the interaction between a target and the 
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local background properties (target/terrain interaction). A strong target/terrain 
interaction is found if the contrast between target and background is relatively 
low, in which case, local changes in background temperature or texture may 
considerably change the contrast and apparent shape of the target. Terrain 
interactions complicate the comparison of performance for different conditions. 
For example, performance for comparable runs along two routes separated by 
a relatively small distance is sometimes similar and sometimes very different. 

Current acquisition models predict a gradual, monotonous relation between 
target distance and performance, like the curves in figures 11a through d. 
These predictions are based on parameters like resolution, target size, mean 
target contrast, and global terrain properties. The models do not distinguish 
between textured and uniform background. To predict the effects of 
target/terrain interactions (see figures lie and llf), local contrast and local 
background properties have to be taken into account. 

The influence of target/terrain interaction is especially apparent in the results 
for pop-up targets (position presentation), in which case, the only information 
available is that of the target at the present position. During a target approach 
(sequential presentation), information from earlier target positions may be used 
if the present information is poor. Therefore, the sequential presentation order 
yields more stable results. 

Performance for a target approach can be predicted from the data obtained with 
the position presentation. The most simple procedure for obtaining an 
approximation of the score at a certain position, is to take the highest score for 
the pop-up targets at all positions between the largest and actual distance. In 
such a model, performance increases monotonically as the target approaches. 
In a more refined model, the amount of information transfer from each 
presentation is taken into account to predict the choices of an observer during 
a target approach. This amount can be derived from the confusion matrix. [6] 
For example, if the responses to an image are distributed evenly over the 
response categories, the observer just guesses and the information transfer is 
low. If, on the other hand, the observer consistently makes the same choice 
(this choice may be incorrect), the information transfer of an image is high. 
The image that gives the largest information transfer, contributes most.   The 
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advantage of the second procedure is that dips in performance may occur at 
certain positions, and it will predict smoother curves than the first procedure. 
Figure 11 illustrates both phenomena. 

There are no indications that overall acquisition performance is different 
between morning (POD 2), afternoon (POD 3) and early night (POD 4). This 
means that the amount of clutter, which varied during the day, does not have 
a large influence on identification and recognition scores. However, 
performance may be different for individual runs on different PODs. 

The thermal camouflage did not reduce the recognition scores for targets A and 
I, but it was very effective for target D. The camouflage mainly consisted of 
nets that covered the hot spots like the engine of the vehicles; the shape of the 
targets was not changed significantly. [7] At the front side of targets A and G, 
there are no hot spots except the tracks, which explains why camouflage is 
ineffective for a front-view of these two vehicles. 

Head-on target motion did not have a large influence on overall identification 
and recognition performance. A small (negative) effect was found, but was 
entirely due to a single run in which the contrast between target and 
background was very low. A similar finding was reported by Vonhof and 
Rogge, [8] and by Wester and Van de Mörtel, [9] who analyzed observer 
responses collected during the field trial. Thus, if acquisition models are 
extended to target motion, head-on motion may be treated as the static situation 

• with regard to identification or recognition. With respect to search and target 
detection, motion will probably have a large effect. 

4.6    Conclusions 

1. Observation experiments were carried out with thermal images of 
stationary and moving single target vehicles. Identification and recognition 
performance was determined for a large number of runs under various 
conditions. 

2. Head-on motion of targets does not have a large influence on 
identification and recognition performance. 
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3. Acquisition performance was similar for morning, afternoon, and early 
night runs. 

4. Performance was largely influenced by the interaction between a target 
and the local background properties (target/terrain interaction) in a number of 
runs.  These effects are not predicted by current TA models. 

5. There is a large difference in acquisition performance for a target that 
suddenly appears and an approaching target that has been spotted for a while 
if target/terrain interactions play a role. Performance for approaching targets 
may be predicted from the results for pop-up targets. 
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5.  Study II: The Reliability of Observer Responses 

5.0 Summary 

During BEST TWO, thermal images of single target vehicles were presented 
to observers in the laboratory to determine TA performance. Observers were 
asked to give two responses after each presentation: (1) they were forced to 
name the target, even if they were not sure which vehicle was presented; and 
(2) they were asked to indicate whether they were able to identify 
(I), recognize (R), or only detect (D) the target. The first (forced-choice) 
procedure has the advantage that performance is not biased by observer 
confidence, which appears to yield the maximum score that can be obtained. 
With the second answer, observer performance is obtained for free—or 
unforced—identification and recognition reports, which is more similar to the 
TA task in a practical situation. The scores appear to be partly determined by 
the observer's confidence. The difference between forced and unforced 
responses gives a direct indication of the influence of observer behavior on TA 
performance. The reliability (= probability of correctness) of first, unforced 
I and R reports during a target approach were also determined. The influence 
of observer behavior, acquisition level (I or R), target distance, target type, 
POD, and approach route on these reports was analyzed. The implications for 
TA modeling are discussed. 

5.1 Introduction 

Thermal imagery, collected at BEST TWO, was used in an observer laboratory 
experiment to obtain identification and recognition scores for single target 
vehicles. The three previous sections describe the experimental method and 
present recognition and identification performance under a wide variety of 
conditions. All responses were obtained with a forced-choice procedure 
(observers are forced to name the target, even if identification or recognition 
is practically impossible (because the target vehicle is too far away)). The 
reason for using the forced-choice procedure is that it yields objective scores, 
which means that performance is not biased by the subjective confidence of an 
observer. However, the procedure differs fundamentally from the task of a 
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military observer in a practical situation. If an observer in the field sees an 
approaching target, he will usually first report a detection, and then, only if he 
is quite sure, report a recognition or an identification. Because the observer 
is free to wait until he feels sure, these reports are called unforced. The 
quality and the number of unforced reports may depend strongly on subjective 
observer confidence and instructions. If, for example, an observer shows a 
conservative behavior, targets will be at close distance before he is confident 
enough to give a report. The reliability of these reports will be relatively high 
as there are few false alarms. On the other hand, if the observer shows a 
lenient behavior, his reports will be earlier while the targets are still far away, 
at the expense of their reliability. Thus, both observer task and observer 
behavior may influence the outcome of an experiment. 

The importance of measurement procedure and observer confidence has long 
been realized in psychophysical research, and various methods have been 
developed to separate performance from observer bias. An overview of these 
methods is given by Bartleson and Grum. [10] However, the influence of 
these factors on performance has never received much attention. 
Sanders et al. [11] introduce Signal Detection Theory (one of the 
psychophysical methods described in Bartleson and Grum [10]) in a recent 
paper as a tool to determine acquisition performance free from observer bias 
and re-estimate some of the Johnson criteria. [12] Unfortunately, the 
experiment was not repeated with the original procedure used by Johnson, 
which would make possible a direct comparison of the results obtained with the . 
two procedures. Moreover, it is important to keep in mind that observer bias, 
evidently, plays a role in the practical acquisition task. It is not useful to 
eliminate this factor by using an advanced psychophysical procedure, if it is not 
also determined how large the influence of observer behavior actually is. If the 
effects are large, this may have an important impact on TA modeling. 

To simulate the practical situation in the experiment, the observers were not 
only forced to respond, but they were also asked to qualify each response as 
I, R, or D. The I and R reports can be regarded as equivalent to unforced 
identification and recognition reports in the field. Thus, in a single 
experiment, objective and subjective scores were obtained. The scores can be 
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directly compared. Furthermore, the effects of differences can be 
quantitatively determined in observer behavior on TA performance. 

The reliability of first I and R reports for approaching target vehicles under a 
variety of conditions were also determined. A first report is decisive, as in the 
case that a gunner is instructed to fire as soon as he recognizes or identifies a 
specific target. A wrong judgement leads to waste of ammunition and may be 
dangerous. It is important to know the reliability of his initial judgement and 
to obtain insight on the factors influencing reliability. Such knowledge can also 
be of use for a commander who may have to make a decision based on several 
reports from different observers. 

5.2    Methods 

5.2.1    General 

The experimental method is explained in detail in section 3. Thermal images, 
containing one of nine single target vehicles, were presented to the observers 
for 5 s.  The target vehicles are listed in table 2. 

Target distance varied between 4000 and 1000 m. The targets were presented 
at successive positions, simulating a target approach (a run) along one of the 
two routes. Table 8 shows an example of a run. In the two leftmost columns, 
the presentation numbers and corresponding target distances are given. In the 
first presentation of the run, target distance is 3900 m; in the next presentation, 
it is 3583 m.  A run consisted of 10 to 15 stop positions. 

Only daytime runs recorded during the morning or the afternoon of stationary 
targets were used. The total number of runs was 15. Each run was repeated 
three times. A maximum of 45 first R and I reports may be obtained for each 
observer. 

Eight male civilian and seven military observers participated in the experiment. 
Section 2 shows that, 11 of the observers were selected on the basis of a 
predefined criterion. 
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5.2.2    Observer Task 

The observer's task is to name the target and hit the designated key on a 
response panel after each presentation. In addition, the observer is asked to 
qualify his response as an I (identification), R (recognition) or D (detection 
only). If an observer is sure that the presented target was a Leopard 2 tank, 
he presses Leopard 2, followed by I. If he is sure that it was a tank, 
Leopard 2 or an AMX-30, he presses Leopard 2 or AMX-30, followed by R. 
If he thinks it's an AMX-30 (tank) or an AMX-10 (APC), he presses AMX-30 
or AMX-10; D, because he is not able to distinguish between two different 
vehicle classes. 

I responses can be regarded as equivalent to unforced identification reports in 
the field. R responses are equivalent to recognition reports (Leopard 2; R is 
equivalent to reporting a tank in the field). D responses are not analyzed, 
because the experiment was designed in such a way that detection of the target 
was always possible. 

5.2.3    Analyses 

The responses for each run were analyzed in the following way. Table 8 
shows a simulated run of a Leopard 2 tank. The two leftmost columns give the 
presentation number and the target distance, the middle column shows the 
subject's responses to the successive presentations of the approaching target, 
the two rightmost columns give the analyses of the responses in terms of a 
forced and unforced report, respectively. 

The Leopard is at 3900 m at the first presentation. The response of the 
observer, PRI, is of the wrong vehicle type and class. Thus, the forced 
response is not a correct identification or recognition. The qualification D 
means that, at this stage, the observer is not confident enough to report an 
identification or recognition. 
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Table 8.  Simulated run of Leopard 2 tank approaching along the left route 

Pres. Distance Response Forced Unforced 
No. (m) Ident./Rec. Report 

1 3900 PRI D wrong/wrong none 
2 3583 Truck D wrong/wrong none 
3 3188 Truck D wrong/wrong none 
4 2913 PRAT D wrong/wrong none 
5 2615 Leopard 2 D correct/correct none 
6 2353 AMX-30 D wrong/correct none 
7 2124 AMX-30 R wrong/correct correct rec. 
8 1933 AMX-30 R wrong/correct correct rec. 
9 1631 AMX-30 I wrong/correct incorr. ident. 

10 1494 Leopard 2 I correct/correct correct ident. 
11 1349 Leopard 2 I correct/correct correct ident. 
12 1215 Leopard 2 I correct/correct correct ident. 
13 1096 Leopard 2 I correct/correct correct ident. 

If all responses, regardless of the acquisition qualification, are taken into 
account, forced-choice scores are obtained. In table 8, identification is correct 
for distances below 1494 m and, probably because of a lucky guess, at 2615 m. 
Recognition scores can be obtained in a similar way. Under forced conditions, 
the Leopard 2 was correctly recognized as a tank for all distances below 
2615 m. 

The number of correct identification and recognition responses are divided by 
the total number of presentations averaged over observers and repetitions to 
obtain identification and recognition probabilities for each image. Sections 3 
and 4 discuss forced-choice performance. 

No R or I report was made at distances greater than 2124 m, which means that 
the observer is not sure enough to pass on information about the vehicle class 
or type. Thus, in the example of table 8, unforced correct recognitions may 
only occur for distances < 2124 m. From this distance down, all R-reports 
are correct (the Leopard 2 has been correctly recognized as a tank). Similarly, 
an unforced correct identification may only occur for distances < 1631 m. 
The first I report is incorrect; at nearer distances, all I reports are correct. 
Identification and recognition probabilities are obtained by dividing the number 
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of correct I and R reports by the total number of presentations averaged over 
observers and repetitions. 

The first R report occurs at a distance of 2124 m, and is correct in this 
example.  The first I report (1631 m) is incorrect. 

The reliability, or percentage correct, of first reports is defined as the number 
of correct first I and R reports, divided by the total number of first I and R 
reports. 

An R or I report, given at the largest distance (the first position of a target), 
cannot be treated as a first report, because recognition or identification might 
be possible at much longer distances. 

5.3    Results:  First Reports 

5.3.1    Observer Differences 

For each observer the overall percentage correct of first recognitions and 
identifications (averaged over all runs and repetitions is determined). Table 9 
presents the results. 

At both acquisition levels, the mean overall score is about the same: 75 percent 
versus 80 percent. The overall variation (± 1 s.d.) in reliability is 8 percent 
for identification and 12 percent for recognition. Individual differences may 
be caused by differences in observer conservatism (some observers wait a little 
longer before they report an R or I than others do) or in overall skill of the 
observers. As shown in section 3, there are large individual differences in the 
scores at short ranges, which were taken as a measure of observer skill. 

Possibly, the best observers also score highest on overall reliability. To test 
this hypothesis, the correlation between the percentage correct of first 
identifications (from table 9) and the percentage of correct (forced) 
identifications at short distances was calculated. The correlation is low 
(r = 0.28) and is not significant (n = 11, P > 0.05). Similarly, no significant 
correlation (r = 0.16) was found between the recognition scores at short 
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distances and the score on first recognitions. It is concluded that the variation 
in reliability is caused by differences in conservatism of the observers 
(section 5.3.2). 

Table 9. Overall reliability (percentage correct) of 
first recognitions and identifications of civilian and 
military observers 

Observers Recognition Identification 
(%) (%) 

civilian 
JB 81 85 

EM 82 88 
LO 79 93 
WH 97 72 
PBR 67 77 
CK 84 79 

mean 82 ± 9 82 + 8 

military 
JS 64 71 
RC 87 70 
WK 70 79 
MW 67 83 
PH 55 75 

mean 69 ± 12 76 ± 6 

overall mean 75 ± 12 80 + 8 

The overall score for civilians is higher than for military observers (13 percent 
higher for recognition and 6 percent higher for -identification). Civilians act 
more conservative than military observers because both groups score equally 
well under forced conditions (sections 3 and 4). 

5.3.2     The Effect of Target Distance and Route 

Figure 16 shows the number of first recognitions and identifications as a 
function of target distance, expressed as the percentage of the total number of 
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runs. Figure 17 presents the percentage of first recognitions and identifications 
correct. The results for the left and right route are plotted together in the 
figures. Largest distance for the left route is 3900 m; it is 3820 m for the right 
route. As was argued in section 5.2.3, scores for the distances should be 
treated separately. 

Figure 16a shows that most of the first recognitions (53 percent) are reported 
at the two largest distances. About 75 percent of these recognitions are correct 
(figure 17a). This means that recognition of targets at a distance of about 4 km 
or more is quite possible (more than half of the recognitions can be made at 
distances larger than about 4 km) for the camera and under prevailing 
conditions. However, the number of first identifications (figure 16b) made at 
the largest distances is not higher than at short distances. If the largest 
distances are omitted, most of the first recognitions are reported between 2200 
and 3600 m; the number of first identifications is distributed evenly over the 
entire range. No R report was given at all a few times. No I report was given 
in about 10 percent of the runs. 

Figure 17a shows that the percentage correct of first recognitions gradually 
decreases with target distance. However, the mean identification score 
(figure 17b) slightly increases with distance. Calculation of weighted 
regression lines yields the following results: 

• Between 1000 and 4000 m, the increase of the identification score with 
distance is about 10 percent. The lines are similar for the left and right routes. 

• Over the entire range, recognition scores for the right route are about 
10 percent higher than for the left route. The mean recognition score decreases 
from about 90 percent at short distances to 60 percent at the largest distances. 

The slight increase of the identification score with distance is considered not 
relevant. The significance of the decrease in the mean recognition score with 
distance is tested below. 
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Figure 16. Number of first reports as a function of target distance, expressed as the 
percentage of the total number of runs: (a) recognition and (b) identification. Most 
of the first recognitions are reported at the largest distances. The number of first 
identifications is distributed more evenly over the entire range. 
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Figure 17. Percentage correct of first reports as a function of target distance: 
(a) recognition and (b) identification. The percentage correct of first recognition 
reports decreases with distance. For identification, the percentage is independent of 
distance. 
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5.3.2.1 Interaction Between Observer Behavior and Distance of First Reports. — The 
decrease of the recognition score with distance might be caused by a possible 
interaction between observers and the distance at which the R reports are made: 
especially for recognition, large intersubject differences were found in mean 
overall score (table 9). 

If two observers are at the same level of skill, the more conservative observer 
will give his first R report at shorter distances, and yield a higher score. 
Consequently, higher scores are expected at shorter distances because of 
differences in conservatism of the observers. 

The following procedures were to test whether the decrease in score with 
distance is real, or caused by differences in observer conservatism: 

• The observers were divided into two groups: (1) the recognition scores 
in table 9 are better than 75 percent (6 observers) and (2) the recognition 
scores are below 75 percent (5 observers). 

• The distances were divided into two ranges: above and below 2500 m 
to test whether the overall distance effect is present for both groups or is the 
result of unequal proportions of both groups in the two distance classes. 

The test showed that 85 percent of the variation may be ascribed to the 
observer groups. The remaining 15 percent was caused by target distance and 
is not statistically significant. The decrease of the percentage correct of first 
recognitions with distance (figure 17a) is almost entirely due to differential 
effects of observer conservatism. The test was extended further to determine 
the influence of approach route (left or right). Differences caused by approach 
route turned out to be not statistically significant. 

It was concluded that target distance and approach route do not significantly 
influence the reliability of first R and I reports. 
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5.3.3 The Effect of POD 

The experiment was carried out for two PODs: morning and afternoon. Mean 
identification scores are 78 and 81 percent, respectively, and recognition scores 
are 78 and 69 percent, respectively. An extension of the test, introduced in 
section 5.3.2, showed that the variation in recognition scores caused by POD 
is significant (P < 0.05) but small, compared to the variation caused by 
observer differences. It is concluded that there are no relevant differences in 
reliability caused by POD. 

5.3.4 The Effect of Target Type and Camouflage 

No significant differences in the reliability of first R and I reports were found 
between target types. However, the results show a slightly lower score (10 to 
15 percent) for two camouflaged vehicles than for the uncamouflaged vehicles. 
The difference is considered not relevant because it is smaller than the 
intersubject differences. 

5.4    Results:  Forced Versus Unforced Responses 

This section compares the probability of an observer giving a correct 
identification response under forced-choice to that of giving a correct unforced 
I report. Figures 18a through d, plot identification scores as a function of 
target distance for four different runs. Open circles represent unforced 
responses, filled circles represent forced responses. Roughly, three different 
cases can be distinguished: 

1. Differences between the curves are small if the task is relatively simple (at 
near distances). In this case, observers are very confident, and most of the 
responses will be I reports.  No differences are expected. 

2. Observers become less sure of the vehicle type in a more difficult situation, 
which means that less unforced identifications are reported. However, 
identification performance is good if the observer is forced to make a choice, 
as is shown by the upper curves in figure 18a through c at distances between 
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2000 and 4000 m. In this case, there are large differences between the scores 
for the forced and the unforced task. 

3. There will be no I reports at all if the task is very difficult (figure 18d). 
Probability will be at guess level (17 percent for six different response 
categories) with the force-choice procedure. 

For most runs at intermediate distances (case 2), the identification score 
obtained with the forced-choice task is much higher than it is if the observer 
is free to respond which means that, although the observer is not confident 
enough to give an I report, his responses are still quite reliable. Identification 
ranges which may be defined as the ranges for which identification 
performance is better than 70 percent may differ by more than a factor of 2 in 
the examples of figure 18 as a consequence. 

5.5    Discussion and Conclusions 

Identification and recognition scores were obtained for the TA experiments 
with two different measurement procedures: (1) the observer was forced to 
give a response, and (2) the observer was free to wait until he felt sure of the 
response.   The results of these tasks can be compared directly. 

A forced-choice task has the advantage that it yields objective scores that are 
not biased by a subjective confidence criterion of an observer. However, the 
unforced task is more similar to the actual task of an observer in a practical 
field situation. Moreover, the chance level, which can be considerable in a 
forced-choice task with a limited set of targets, has been reduced or eliminated. 
However, the score depends on a subjective criterion of the observer, which 
in turn can be affected by the instructions given to him (see below). 

The probability that a first unforced R or I report is correct, is about 75 to 
80 percent. The percentage is independent of factors that influence acquisition 
performance, such as target distance, target type, camouflage, POD, or 
approach route. A similar finding was reported by Vonhof and Rogge, [8] who 
analyzed observer responses collected during BEST TWO. They reported that 
the reliability of first I and R reports is about 80 percent, regardless of the 
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target distance (between 1000 and 4000 m). At the same time, mean 
acquisition performance varies greatly over that range. Task and camera type 
used in the experiment were different from those used in this experiment. The 
results suggest that the reliability of first reports is determined by a fixed 
internal risk criterion of the observer, which is independent of the outside 
conditions. An observer will only decide to give a report at a higher 
acquisition level if he thinks that the risk is acceptable (below his internal 
criteria). If this hypothesis is correct, the finding will not only be valid for the 
restricted conditions under which BEST TWO was carried out, but may be 
considered as a more general rule. 
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Figure 18. Identification scores as a function of target distance for four 
different runs: unforced responses (open circles) and forced responses 
(filled circles). 
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The present results also show that different observers show a considerable 
difference in risk criteria, especially for the recognition task: mean correct 
scores vary between 55 and 97 percent. These criteria are not correlated with 
observer skill (the ability of an observer to correctly identify or recognize a 
target if he is forced to). Thus, some observers are more conservative than 
others, wait longer before they give a report and, consequently, yield higher 
scores. Surprisingly, civilian observers turned out to be more conservative 
than military observers. 

The two measurement procedures used yield important differences in the 
probability of a correct response. Identification ranges, obtained with the 
forced-choice procedure, are usually much longer than those obtained if the 
observers are free to give a report. This difference may be ascribed to 
observer conservatism. The largest differences in scores arise in the situations 
in which the observer is not sure, but chooses correctly if he is forced to. The 
fact that the differences are considerable means that the observer possesses 
more information than he actually uses. The risk of making a mistake prevents 
him from giving a report. 

A practical consequence is that the instructions to an observer may have a large 
impact on the information he will pass on. Therefore, it is advisable that a 
commander adapts his instructions to the actual situation in the battlefield. If 
wrong reports are very dangerous, he will instruct the observers to be very 
conservative, and he will obtain relatively few reports, which will be of high 
quality. If he wishes to have more information, he will ask the observers to 
try to identify the targets as soon as possible. This may extend the acquisition 
ranges considerably, of course at the cost of a higher false-alarm rate. The 
forced-choice procedure corresponds to the actual limit of unconservative 
behavior. 

The present finding also has important implications for TA modeling. The 
forced-choice score is the maximum score that can be obtained, given the 
contrast, resolution, capacities of the human visual system, and chance that an 
observer guesses correctly. Therefore, the forced condition may be regarded 
as an important condition for TA modeling.   Observer conservatism acts as a 
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filter that describes the difference between the forced condition and a practical 
situation. 

It is suggested that a TA model consist of two stages: (1) The maximum score 
that may be obtained under the circumstances is calculated. The score is only 
limited by the physics and physiology of the systems involved and is 
independent of observer behavior. Current acquisition models are designed 
according to this principle. (2) The information is passed through the 
uncertainty filter, and the actual probability of an unforced report is calculated. 
The filter characteristics depend largely on observer confidence. Filter 
characteristics and their variation caused by differences in conservatism can be 
determined from the experiment. The characteristics also depend on the 
instructions to the observer. More research is required to determine the impact 
of this factor. 
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6.  Evaluation of TARGAC Using BEST TWO Observer 
Performance Data 

6.0 Summary 

The TARGAC model predicts TA performance for a variety of sensors in the 
visible and thermal IR. A comparison was made between TARGAC 
recognition performance predictions and measured observer performance for 
a large number of trials using thermal imagery collected during BEST TWO. 
The evaluation shows important differences between measured and predicted 
recognition performance. On average, observer performance is considerably 
better than the model predicts: a correction factor of 1.80 should be applied to 
match the recognition range predictions to the results of the experiments. 
Further, the model does not give accurate predictions for individual targets on 
specific backgrounds: the ratio between observed and predicted recognition 
range varies between 0.9 and 3.6 (95 percent criterion). The routine that 
describes EO and human visual system performance is responsible for the 
predictions. This routine is based upon the widely-used NVESD Static 
Performance Model that uses the Johnson criteria. Hence, the findings of this 
evaluation may also hold for other models based on these criteria. In addition, 
it was found that the version of TARGAC tested contained a number of 
problems and software errors.  Corrections are suggested. 

6.1 Introduction 

TA models predict how well human observers, using an optical or EO viewing 
device, are able to detect, recognize, or identify a military target. The input 
variables are the properties of the target and its background, the atmospheric 
conditions, and the properties of the viewing device used. The output is a 
relationship between the distance from the target to the sensor and a probability 
of correct detection, recognition, or identification. TA models are used as 
TDA's in war games and as a tool to compare performance of competing 
sensor systems for a specific task. A comprehensive TA model is TARGAC, 
developed at the ARL-BED.  TARGAC is part of the EOSAEL. 
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The evaluation of TA models is of interest because the reliability and accuracy 
of their predictions is not always known. The models are usually based on 
theoretical knowledge of EO device physics, atmospheric optics, and human 
vision. However, TA is an extremely complex process, and many processes 
that play an important role in visual performance are not yet understood. 
Therefore, cognitive factors are often not incorporated in models, and 
predictions are made for artificial targets in a laboratory environment rather 
than real targets in the field. The significance of the effects of these omissions 
are not known. An important side effect is the so-called false precision 
problem. TA model predictions are often treated as being exactly correct 
because the accuracy is not known. Therefore, it is necessary to measure 
observer performance for realistic field conditions and to evaluate model 
predictions empirically. 

Ideally, a TA model evaluation provides a quantitative measure of the accuracy 
of the model predictions and indicates the applications in which the model may 
be used and what the restrictions are. The evaluation may also give indications 
for model improvement. The complexity of the acquisition process makes 
model evaluation very difficult. It is difficult to obtain accurate and reliable 
observer performance measures for realistic field conditions. Conditions in the 
field are hard to control, and there is little or no opportunity for repeated trials 
under identical conditions, which are needed to obtain statistically meaningful 
results. Often, only qualitative conclusions can be drawn from the results of 
a field trial, and the results of the evaluation do not provide insight into the 
reliability of the model or indicate how the model may be improved. As a 
result, adequate evaluations of TA models using field data are sparse. 

One of the test objectives of the field trial BEST TWO, was to collect observer 
performance data with sufficient accuracy for a quantitative evaluation of TA 
models. Many images of stationary and moving target vehicles at many 
distances were recorded during the test. Thermal (8 to 12 fxm) images were 
used in a laboratory experiment to measure target recognition and identification 
performance for a large number of observers. A limited observer experiment 
was carried out in the field for validation of the observer scores measured in 
the laboratory. 
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The results of the BEST TWO observer performance experiments are used for 
the evaluation of TARGAC. A comparison is made between TARGAC 
recognition performance predictions and measured observer performance for 
a large number of trials. The result is expressed as a probability distribution 
of the ratio between measured and predicted acquisition ranges. The mean of 
this distribution quantitatively shows how well the model predicts overall 
acquisition performance over a large number of trials. The variance of the 
distribution is a quantitative measure of the accuracy of the model predictions 
for individual trials. 

The TARGAC evaluation is carried out in five steps: 

1. TARGAC predictions are calculated for the BEST TWO situation. To 
be able to do this, extensive meteorological data for the BEST TWO situation, 
data on the BEST TWO target set, and the MRTD curve for the thermal 
imaging system, were collected and fed into the model. 

2. Sensitivity analyses are performed because not all the input information 
is available with a high degree of accuracy. The analyses show the extent to 
which changes in each input parameter influence the model output. Parameters 
for which the- model is not very sensitive need not be specified with great 
accuracy, while parameters for which a high sensitivity is found must be 
provided with high precision. 

3. The TARGAC predictions are plotted as probability of a correct 
recognition response versus target range, with the observer data. Graphical 
comparison gives a first impression of the quality of the predictions. 

4. The ratio between actual and predicted recognition range is calculated for 
each trial. A set of BEST TWO trials yields a probability distribution of this 
ratio. Mean and variance of the probability distribution are a measure of the 
reliability of the model predictions for the set of BEST TWO trials. 

5. Further analyses are carried out to find the possible sources of the 
differences between observer scores and model predictions. Suggestions for 
model improvement, based on the results, are discussed. 
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These sections are organized as follows: 

• Section 6.2 gives a short description of TARGAC. 

• Section  6.3  contains  an  outline  of BEST  TWO  and  the  observer 
performance experiments. 

• Section 6.4 presents the sensitivity analyses. 

• Section 6.5 gives a simple equation that describes the TARGAC predictions 
for the entire set of BEST TWO runs. 

• Section 6.6 contains the comparison between the TARGAC predictions and 
the observer performance data. 

• Section 6.7 analyzes the variance in the probability distribution to find its 
possible sources. 

• Section 6.8 presents a discussion of the results, and section 6.9 gives 
conclusions and recommendations. 

6.2    TARGAC 

6.2.1    General 

TARGAC predicts the probability of detection and recognition of military 
targets as a function of range for a variety of sensors. The model is freely 
available as part of the EOSAEL in PC and mainframe versions. The program 
runs in interactive and batch modes. An extensive overview of the model is 
given in the TARGAC User's Guide. [13] The model basically consists of three 
parts: (1) an inherent target contrast module, (2) an atmospheric effects 
module, and (3) a system performance routine. 

6.2.1.1 Inherent Contrast Calculation.— The first stage of the model calculates the 
inherent contrast (the contrast at the location of the target) between target and 
background, given the characteristics of target and background, and the 
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meteorological conditions. For visual devices, mean or area contrast is defined 
as the difference between mean target and background luminance divided by 
mean background luminance. For thermal imaging, target and background 
temperature are calculated by a Thermal Contrast Model (TCM2), and the 
inherent contrast is expressed in terms of a temperature difference. It is 
possible to bypass this module and directly input the inherent contrast. 

6.2.1.2 Atmospheric Effects Calculations.— TARGAC contains an extensive 
atmospheric effects module. This module calculates the contrast transmittance 
through the atmosphere for various wave bands, based on meteorological input 
data. It yields the apparent contrast of a target as seen by a sensor, as a 
function of range. 

6.2.1.3 System Performance Calculation.— The actual probability of acquisition is 
calculated using the NVESD Static Performance Model [12,14] in which TA 
performance is described using the well known Johnson criteria. These criteria 
link TA performance with the ability to resolve dark bars of a certain spatial 
frequency and contrast against a uniform background. For example, the model 
predicts a recognition probability of 50 percent if a target is at such a range 
that a human observer with the viewing system is just able to resolve four line 
pairs over the effective (minimum) dimension of the target. The higher the 
resolution of the viewing device, or the larger the target, the longer the range 
at which four line pairs can be resolved. For a 50 percent detection 
probability, a resolution of one line pair across the effective dimension of the 
target is required, for identification this is eight line pairs. Criteria exist for 
different levels of probability. The relationships between the number of 
resolvable line pairs and probability for several acquisition levels are called 
target transfer probability functions (TTPFs). [15] These functions have been 
established experimentally by averaging over many targets, target orientations 
and aspects. Ratches [15] also indicates the accuracy of the criteria: the ratio 
between an optimistic and a conservative criterion is 3:4. The four line pair 
criterion used in TARGAC for thermal viewing systems for a 50 percent 
recognition probability is conservative; whereas, a three line pair criterion 
would be optimistic. 

97 



The Johnson criteria are applied in practice using a threshold performance 
curve of the viewing device that gives the contrast required to resolve a 
four-bar pattern as a function of spatial frequency. This is called the minimum 
resolvable contrast (MRC) curve for visible-light devices; IR devices are 
characterized by a MRTD curve. 

6.2.2 TARGAC Version 

The TARGAC model is defined as being in the developmental stage of 
software. [13] This means that new versions are released regularly. For the 
present evaluation, the PC version of TARGAC that was released in June 1992 
was used. A number of software errors were found and most of the bugs were 
fixed in consultation with Dr. P. Gillespie, ARL-BED, during the sensitivity 
analyses (section 6.4). This means that results presented in this paper were 
obtained with an improved version and not with the standard distribution 
version. Contact ARL-BED before using the program because the standard 
version still contains a number of errors. Appendix D contains a complete 
overview of the traced errors, modifications, and recommendations. 

6.2.3 TARGAC Input 

All calculations were carried out in batch mode for this study. TARGAC 
requires an input file that contains information about target, background, 
meteorological conditions, geographic situation, date, time, and the viewing 
device that is used in this mode. Three levels of probability (between a 
maximum of 90 percent and a minimum of 10 percent) may be specified in the 
standard version for which TARGAC predicts a detection and recognition 
range. The number of levels was extended to five in the improved version. 
Ranges in this study were always calculated for five probability levels: 90, 70, 
50, 30, and 10 percent. 

TARGAC has 24 built-in targets and 29 background choices. Examples of 
targets are T62 and T72 tanks, a Soviet ZIL truck, and a BRDM-2 antitank 
vehicle. Many of the targets are available in off, idle, and exercised conditions. 
For example, there is tall grass (growing), dirt road, and coniferous trees 
(dormant) for background. It is not possible to enter user-specified targets and 
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backgrounds. The TCM2 module in TARGAC calculates target and 
background temperature on the basis of target and background characteristics 
and meteorological input. It is possible to bypass the TCM2 calculations and 
directly input target and background temperature. 

There are 14 visible sights, 4 image intensifiers and 5 thermal sights in the 
viewing device menu, and the corresponding MRC or MRTD curves are built 
into the program. The user must specify an MRC or MRTD curve in the form 
of the coefficients of a sixth order polynomial fit to the MRC or MRTD data 
when predictions must be made for a viewing device that is not built in. 

6.2.4    TARGAC Output 

The program calculates detection and recognition ranges for the probability 
levels specified in the input file. Ranges are specified with a precision of 
0.1 km. TARGAC also provides several results of intermediate calculation 
stages, such as the inherent target contrast when the TCM2 is used. 

6.3    BEST TWO Field Test and Laboratory Experiments 

The purpose of the BEST TWO filed trials was to quantify the performance of 
EO devices under battlefield conditions. Section 2 reports a comprehensive 
overview of the trials. 

6.3.1    Observer Performance Data 

During the field test, recordings were made of single, stationary and moving 
target vehicles approaching from 4000 to 1000 m. Targets were always in 
front view. Image sequences, recorded from a thermal (8 to 12 /xm) imager 
on a U-matic video recorder, were used in laboratory experiments to measure 
observer performance for target recognition and identification. The 
experiments are described extensively in the previous sections. For one 
observer, acquisition performance with the thermal imager was measured 
directly in the field, and the experiment was repeated with the video tapes in 
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the laboratory for a number of observers.   No significant differences were 
found between field and laboratory performance. [9] 

Observer performance was measured for a total of 38 different target 
approaches (runs) in two experiments. The runs differ in target type, approach 
route, date, and time (recordings were made during day and night). Six 
different targets were used, three of which were camouflaged during some of 
the runs. Sequences of images containing a single target were presented to 
observers. The observers' task was similar to the TA task in a practical 
military situation: after each presentation, they were first asked to indicate 
whether they were able to identify, recognize, or only detect the target, after 
which they had to name the target. Two ways of presenting the target images 
were used: pop-up and approaching. 

A randomly chosen target was presented at a random distance in the pop-up 
presentation. The images from a single run were presented as an ordered 
sequence, simulating a target approach from 4 km down in the approaching 
presentation. Search was explicitly avoided. Experiment 1 used 11 observers. 
Each target image was presented five times. Performance was measured for 
15 runs for the pop-up and approaching presentations. Appendix B figures B-l 
and B-4 present recognition scores averaged over observers and repetitions for 
these runs. Each target image was presented five times to four observers in 
Experiment 2. Performance was measured for 33 runs for pop-up presentation 
(10 of these runs were also used in Experiment 1). Appendix B figures B-2 
and B-3 give recognition scores for these runs. 

TARGAC is evaluated against three data sets. Data set A contains observer 
performance data for all (38) runs for pop-up targets. Data set B contains the 
data for 15 runs presented as an ordered sequence. Data set C, which is a 
subset of data set A, contains the data for the same 15 runs now presented as 
pop-up targets. Data set C is for a direct comparison of the results of the 
evaluation for the two types of presentation order. 
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6.3.2    TARGAC Input Data 

During BEST TWO, the input data for target acquisition models were collected 
by several participating nations. Meteorological data were gathered by the 
delegations of the United States, France, Germany, and The Netherlands. The 
data are stored in the AAODL database that is maintained by ARL-BED. Dr. 
P. Gillespie collected the appropriate meteorological and geographical data, 
date, and time, and composed TARGAC input files (section 6.2.3) for a large 
number of BEST TWO runs, excluding the viewing device parameters and 
target and background. 

MRTD measurements (horizontal and vertical) for the thermal imager, 
including the video recorder, were carried out by TNO Physics and Electronics 
Laboratory (TNO-FEL). [16] 

Target and background type have to be selected from the TARGAC menu. 
Comparable built-in targets had to be chosen (section 6.4.1) because the targets 
used in the BEST TWO experiments are not part of the TARGAC menu. 
Direct measurements of target and background temperature in the field, made 
by the Danish delegation, [17] may also be used. Section 6.5 shows that 
calculations for the BEST TWO targets can be made using a simplified 
equation that describes the TARGAC probability versus range predictions for 
the entire set of BEST TWO runs. 

6.4    TARGAC Sensitivity Analyses 

All the input data that TARGAC requires to make predictions for the 
BEST TWO situation is not available, or is not available with high accuracy. 
Inaccuracies in the input are reflected in the output of the model, affecting the 
comparison between the model predictions and the observer performance data. 
The model may be very sensitive to some parameters and insensitive to others. 
Sensitivity analyses show the extent to which the model outcome is influenced 
by changes in the input parameters. Basically, this is done by systematically 
changing one parameter while keeping all the others constant, which allows 
assessment of the effect of possible errors in the input data on the outcome of 
the evaluation. 
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6.4.1    Inaccuracies in the Input Data 

Inaccuracies in the TARGAC input data for BEST TWO, which may influence 
the model predictions, follow: 

6.4.1.1 Meteorological Data.— There are small differences in meteorological data 
collected by Germany and the U.S. Furthermore, meteorological data are not 
available for all runs or days. Fortunately, the weather conditions were 
constant during the trials. Meteorological data from other days may possibly 
be used in TARGAC. The effects of variations in meteorological data and of 
using data from other days on the range predictions will have to be assessed. 

6.4.1.2 Target and Background.— There are two target parameters in TARGAC that 
affect the range predictions: (1) effective target dimension and (2) thermal 
contrast between target and background (section 6.2.1.3). The effective 
dimension of the selected target may differ from that of the target in the field 
because the BEST TWO targets are not in the TARGAC menu. 

The TCM2 in TARGAC and the temperature measurements in the field can 
provide the inherent thermal contrast of the targets with high accuracy. The 
model calculates temperatures for the selected built-in target and for a built-in 
background in TARGAC that do not exactly match the background in the test. 
TCM2 only calculates mean target and background temperatures; whereas, 
background temperature varies from location to location. Temperature 
differences of more than 10 K were found for areas lying only several meters 
apart in BEST TWO. [17] Field measurements of target and background 
temperatures may be used, but these were only carried out at one location, and 
some time before a run. During a run, no measurements were carried out; 
therefore, measured inherent contrasts are inaccurate. The effects of using a 
wrong effective target dimension and target and background temperatures on 
the range predictions have to be calculated. 

6.4.1.3 MRTD.— The MRTD was estimated in the field through an objective method 
using an apparatus that was under development. [16] This means that the 
accuracy of the MRTD may be limited. Bakker and Roos [18] present a large 
number of objective and subjective MRTD measurements with this apparatus. 
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On the basis of their results, it is estimated that, with the objective method, the 
error in cut-off frequency may be up to 20 percent based on the results of 
Bakker and Roos. [18] 

6.4.2 Methods 

Section 6.4.1 shows the need to assess the sensitivity of the TARGAC output 
for variations in time, date, target type (effective dimension and temperature), 
background type (temperature), and MRTD. Two BEST TWO standard 
situations   were   defined   as   a   reference   for   the   sensitivity   analyses: 
(1) Meteorological data were taken from an afternoon trial (Jul 27 at 1500). 
(2) Data corresponds to an early night trial (Aug 3 at 2300). An exercised T62 
tank (TARGAC menu target no. 3) was selected as target, and the background 
was a grass field (menu background no. 17). The horizontal MRTD, which 
corresponds to the vertical resolution of the viewing device including the video 
recorder, was chosen. 

Recognition range predictions were always made at 5 probability levels: 90, 
70, 50, 30 and 10 percent correct. Apart from the range predictions, target 
and background temperature calculated by TCM2, also will be considered. 

6.4.3 Results of the Sensitivity Analyses 

6.4.3.1 The Effect of Time and Date. — Figure 19 presents the predicted detection and 
recognition ranges for the two standard situations. The predicted ranges are 
almost identical for afternoon and night. Predictions for other days, or other 
times of the day, yield similar results. TCM2 predicts that inherent thermal 
contrast is high and only slightly affected by the time of day: contrast is 9.2 K 
for the afternoon situation and 8.7 K at night. It is concluded that the time of 
day or date are of minor importance with respect to predicted acquisition range 
for BEST TWO. 

6.4.3.2 The Effect of Acquisition Level: Transmission Losses.— The effect of 
transmission losses through the atmosphere can be assessed by comparing the 
predicted ranges for recognition and detection in the following way. According 
to the Johnson criteria, [12] on which the sensor performance model is based, 
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the number of resolvable line pairs required for target recognition at a certain 
probability level is four times the number of line pairs required for detection 
at the same probability level. For example, a 50 percent recognition 
probability requires 4 line pairs to be resolved across the target, whereas a 
detection probability of 50 percent requires only 1 line pair (section 6.2.1.3). 
This means that the ratio between detection and recognition ranges should be 
4:1 if atmospheric effects are negligible. Atmospheric effects reduce the ratio. 
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Figure 19. TARGAC detection and recognition range predictions for the two BEST 
TWO standard situations at 5 levels of probability: 90, 70, 50, 30, and 10 percent. 
Predictions for afternoon and night are very similar. Where the values coincide, the 
symbols are shifted slightly in the vertical direction. 

Ratios between the detection and recognition ranges for the two standard 
situations plotted in figure 1 are equal to 4.0 at all probability levels higher 
than or equal to 30 percent. This means that transmission losses are negligible 
for ranges below 70 km. The longest target range in the field trial was 4 km. 
Atmospheric effects do not play a role in the BEST TWO situation, at least if 
thermal contrast is high. 

6.4.3.3     The Effect of Target Type.— TARGAC predictions were made for several 
target types. Targets in exercised and off states were chosen to change thermal 
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contrast over a wide range. Table 10 presents the results. The first and 
second column give the target type and its effective, or minimum, dimension. 
The predicted inherent contrasts for the day and night situation are given in the 
third and fourth column, respectively. The two rightmost columns present the 
predicted 50 percent recognition ranges r50 for day and night. 

Table 10. Effect of target type on TARGAC predictions 

Target Target Inherent Contrast (TD Iso. fknri 
Type Height (m) Afternoon Night Afternoon Night 

T62 (tank), off 2.2 2.6 1.5 1.5 1.2 
T62, exercised 9.2 8.7 1.5 1.5 

ZIL (truck), off 2.6 3.3 -0.29 1.8 1.8 
ZIL, exercised 5.8 2.2 1.8 1.7 

T72 tank, off 2.3 2.9 3.6 1.6 1.5 
T72, exercised 10.6 11.3 1.6 1.6 

BRDM-2 (APC), off 2.1 2.0 1.3 1.4 1.3 
BRDM-2, exercised 3.8 3.3 1.4 1.4 

6.4.3.4 Thermal contrast.— Table 10 shows that thermal contrast varies over a wide 
range (-0.29 to 10.6 K). The largest differences occur between off and 
exercised targets. However, thermal contrast only has a small effect on 
predicted acquisition range. The four predicted acquisition ranges are very 
similar for each target. Thus, a large influence of target temperature can only 
be expected for contrasts that are very close to zero (within tenths of degrees), 
which means that, in most cases, thermal contrast will not be the limiting factor 
for the predicted acquisition range. 

6.4.3.5 Target effective dimension.— When atmospheric effects are negligible, 
predicted range is expected to be proportional to the effective dimension of the 
target. This is because a number of line pairs must be resolved across the 
target effective dimension.    The minimum dimension is target height for 
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ground-to-ground TA. The average ratio between the predicted recognition 
range r50 (the two rightmost columns) and target height (the second column) is 
0.67 +/- 0.04 for the targets in table 10, which means that the expected 
proportionality is there. Thus, effective target dimension is a parameter that 
has a large influence on the model output. 

6.4.3.6 Background Type. — The test field in Mourmelon mainly consisted of dry grass 
with bushes. However, because of the frequent use of the approach routes, bare 
soil came up and hot tracks appeared during the test, which were seen as white 
lines on the thermal imagery. The targets were seen against a background of 
wood at the longest ranges. Several background types from the TARGAC 
menu were chosen to assess the possible influence of background type on the 
predicted ranges. Table 11 gives the results. Although the temperature is 
different for different backgrounds (contrast between target and background 
varies between 12.0 and 5.0 K), there is no effect of background type on 
recognition range. 

6.4.3.7 MRTD.— The acquisition threshold will be determined in the high contrast, 
high spatial frequency region of the MRTD curve, and acquisition range may 
be expected to be proportional to the cut-off frequency of the MRTD-curve 
when the apparent contrast is high as for the BEST TWO situation. 
Acquisition ranges were calculated for the two standard situations using both 
the horizontal and vertical MRTD-curves for the thermal imager. [16] The 
results show that the ratio between cut-off frequency and recognition range is 
constant. Hence, the second parameter that has a large influence on the model 
output is the cut-off frequency of the MRTD, and an error in this frequency 
(which may be up to 20 percent, section 6.4.1) directly affects predicted 
acquisition range. 

6.4.4     Verification of the Results for Other BEST TWO Situations 

The sensitivity analyses were carried out for the two standard situations only. 
To check whether the results of the sensitivity analyses also apply to all other 
BEST TWO situations, TARGAC predictions were made for all the BEST 
TWO runs for which meteorological data existed.   The tank and truck used 
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Table 11. Effect of background type on TARGAC predictions 

Temperature Temperature 
Background (K) (K) r5o r5o 
Type (afternoon) (night) (afternoon) (night) 

deciduous trees 303.5 293.3 1.5 1.5 
dirt road, dry 309.0 291.0 1.5 1.5 
grass field 304.1 291.9 1.5 1.5 
standard sand 304.6 291.1 1.5 1.5 
foliage growing 300.6 290.7 1.5 1.5 
sparse 

were the exercised T72 and ZIL, respectively. The BRDM-2 was used for the 
APC runs, and the grass field was chosen as background. The horizontal 
MRTD was chosen, which describes the vertical resolution of the system. 

Predicted ranges for the same target under different conditions never differ by 
more than 0.1 km, the precision of the TARGAC output. Thus, the results of 
the sensitivity analyses apply to all conditions for which there is meteorological 
data. 

6.4.5    Conclusions 

The results of sensitivity analyses for the BEST TWO situation can be 
summarized as follows: 

1. Predicted recognition range is almost independent of time or day because 
of excellent atmospheric conditions. 

2. Recognition range is almost independent of target and background 
temperature because of the excellent atmospheric conditions. Therefore, it is 
not necessary to have an accurate estimate of target and background 
temperature. This is a very important result, because large temperature 
differences were found between different locations in the field, and neither 
TCM2 nor the field measurements can provide the inherent contrast with high 
accuracy. It makes no difference whether target and background temperatures 
calculated by TCM2 or measured during the trials are used for the calculations. 
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3. There are only two input parameters that significantly influence the 
TARGAC outcome. Predicted range is directly proportional to the effective 
dimension of the target and to the cut-off frequency of the MRTD curve of the 
viewing device. The effective dimension of the BEST TWO targets is known 
with high accuracy (section 6.5.2). The error in the MRTD cut-off frequency 
may be up to 20 percent. Thus, a difference of up to 20 percent between 
actual and predicted ranges may be ascribed to inaccuracies in the values of the 
input parameters. 

4. Only the routine that describes EO and human visual system performance, 
the NVESD Static Performance Model, can be tested with the BEST TWO 
observer data because the influences of thermal contrast and atmosphere on 
recognition range are negligible. This means that the results of the present 
evaluation may also be relevant for other models based on the Johnson 
approach. 

6.5    TARGAC Predictions for the BEST TWO Runs 

Section 6.4 shows that, because of excellent atmospheric conditions during 
BEST TWO, the predicted probability versus range relationship for recognition 
depends significantly on only two parameters: effective target dimension and 
cut-off frequency of the MRTD of the viewing device. Section 6.5 shows that 
the TARGAC predictions for the entire set of BEST TWO runs can be 
described with a single equation that contains the two parameters. Such a 
simplified description of the predictions is convenient for two reasons: 

1. The BEST TWO targets are not part of the TARGAC menu, which means 
that acquisition ranges for these targets have to be deduced from predictions for 
standard menu targets. Recognition ranges for these targets can be directly 
calculated with an equation that contains the effective target dimension. 

2. TARGAC calculates ranges for only three probability levels (the improved 
version calculates five ranges, section 6.2.3) in a single run. The entire 
probability versus range relationship is required for the evaluation (section 6). 
Calculation of the entire curve would require a number of TARGAC runs for 
each condition.   The derived equation specifies the entire curve. 
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6.5.1    Derivation of the Probability versus Range Equation 

Sections 6.4.3.3 and 6.4.3.5 show that recognition range is directly 
proportional to target effective dimension and MRTD cut-off frequency. The 
Static Performance Model predicts a recognition probability of 50 percent if 
four line pairs can be resolved across the effective target dimension (6.2.1.3); 
therefore: 

f, 
r50   = 

MRTD D TARGET (4) 

where 

r50 = the recognition range in km at the 50 percent probability level, 
Wro me MRTD cut-off frequency in lp/mrad 

^TARGET    = the effective dimension of the target in m. 

Equation (4) is confirmed by the results of the calculations in section 4 
(table 10). 

The probability versus range relationship can be described very well with an 
s-shaped curve known as the Weibull function.  The relationship is given by 

P = 1 - 2 w ' 
(5) 

100% 

where 

P    =      the predicted probability of a correct recognition 
r   =      the target range. 

The parameter s determines the steepness of the curve and is set to s = 2.32 
for an optimal fit to the T ARG AC predictions. Figure 20 confirms that this 
function nicely coincides with the predictions for one of the standard situations 
(see 6.4.3). 
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Figure 20. Comparison of the results of the simplified 
equation (solid line) with the TARGAC predictions 
(filled circles) for the BEST TWO standard situation. 

Equations (4) and (5) can be combined to yield the following equation which 
describes the entire set of TARGAC recognition range predictions for the 
BEST TWO situation: 

TARGACBEST TWO 

'MRTO 
D

TARGET 

4~r 100% (6) 

or, inversely 

r _   MRTD    
D

TARGET 
'TARGACBEST TWO :  

4 

, l 

1      100 , (7) 

6.5.2    Range Predictions for the BEST TWO Targets 

Equation (7) can be used to calculate the TARGAC range predictions for the 
specific targets used in BEST TWO, if effective dimension and the MRTD cut- 
off frequency of the viewing device are known. Table 12 presents the results. 
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The BEST TWO targets are listed in the leftmost column. The next columns 
give the estimate of their effective dimensions and the corresponding 50 percent 
recognition ranges (r50) calculated with equation (7). The bottom row gives a 
50 percent recognition range for a mean BEST TWO target, which will be used 
in one of the analyses in the next section. Note that the probability versus 
range relationship is the same for each target and each run, except for a single 
factor that is determined by the effective target dimension (equation (6)). 

Table 12. Target effective dimensions and predicted 
recognition ranges (at the 50-percent probability 
level) for the targets used in BEST TWO 

Target Type Target Height r5o 
(m) (km) 

Leopard 2 2.50 1.8 
AMX-30 2.30 1.6 
PRI 2.60 1.8 
PRAT 2.60 1.8 
AMX-10 1.90 1.3 
Truck 2.80 1.9 

mean target 2.45 1.7 

6.5.3    Conclusions 

T ARG AC recognition range predictions for the entire set of BEST TWO runs 
can be described with a single equation that contains only two input 
parameters: effective target dimension and MRTD cut-off frequency. Such an 
equation is convenient for the evaluation of the model because complete 
probability versus range curves for the BEST TWO targets can be calculated 
at once. 

It is also shown that, after modifications to the software, the TARGAC 
calculations for the BEST TWO situation are in agreement with the Static 
Performance Model predictions, as expected. 
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6.6    Evaluation of Range Predictions 

The evaluation of TARGAC takes place at various levels of complexity. The 
TARGAC predictions for the BEST TWO targets (section 6.5.2) are plotted 
together with the observer data presented in appendix B in section 6.6.1. This 
gives a qualitative impression of the accuracy of the model predictions. 

The TARGAC predictions are compared to the overall mean score of all runs 
in section 6.6.2. The Johnson criteria were originally based on mean 
acquisition performance over a large number of conditions; therefore, it is 
useful to check their validity in this respect. 

Finally, a complete quantitative comparison is made between the set of 
individual datapoints and the TARGAC predictions. Large differences in 
performance were found because of factors such as target type, target distance, 
approach route, and POD in the BEST TWO observer data. The sensitivity 
analyses showed that the TARGAC model predictions depend on only a few of 
these factors. Thus, the model cannot account for part of the variation in the 
observer data. This part, called the unexplained variance, is determined in 
section 6.6.3. It is of obvious importance to know how large the unexplained 
variance is, because it directly provides a measure of the reliability of the 
acquisition ranges predicted by the model. If the amount of unexplained 
variance is small, the model is able to make reliable predictions for individual 
cases or trials (a T62 tank on a grass field at 3000 m at 1400). The model is 
not applicable to individual cases and can only be used to predict overall mean 
performance if the amount of unexplained variance is large. 

6.6.1     Qualitative Comparison for Individual Runs 

Appendix B figures B-l through B-4 present the complete set of recognition 
performance data from the BEST TWO observer experiments, described in 
section 6.3.1, with the corresponding TARGAC predictions for these runs. 
The set consists of 63 plots of recognition performance versus target range. 
Each plot typically consists of 10 to 15 datapoints. Filled circles represent the 
averaged observer scores, and solid lines represent the TARGAC predictions. 
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The standard error of the mean of the observer scores sP was smaller than 
10 percent (see appendix C). 

Figure 21 gives three typical examples from this set. The prediction is 
reasonable: measured and predicted recognition performance gradually 
decrease with target range in figure 21a. However, TARGAC underestimates 
observer performance. Predicted recognition performance is far too low in 
figure 21b. The data show that target recognition probability is better than 
80 percent for ranges up to 4000 m; whereas, the predicted probability is 
below 80 percent at a range of 1000 m. TARGAC predicts a recognition 
probability of less than 10 percent at a distance of 4000 m. Figure 21c shows 
that recognition performance does not simply decrease with target range but 
changes rapidly with the exact position of the target. The recognition 
probability is high at distances below 1600 m and at 2200, 2300, and 3900 m. 
At intermediate distances (1900 and 2600 m) recognition probability is very 
low. This behavior was termed target-terrain interaction (section 4), and it 
cannot be described satisfactorily with a monotonously decreasing function. On 
average, predicted performance is far too low. 

The following conclusions can be drawn: 

• The predicted curves fall below most of the datapoints, meaning the 
TARGAC predictions are conservative on average. At a certain range, the 
predicted probability is too low, or equivalently, the predicted ranges for a 
certain probability level are too small. The deviation can be considerable for 
individual points. The data often show a high recognition probability at 
distances near 4000 m; whereas, TARGAC predicts a probability less than 
10 percent for these ranges. 

• The monotonously decreasing performance curve that TARGAC predicts is 
found only in a number of cases. 

• Strong undulations in the relation between target distance and acquisition 
performance are found in some cases, because not only target range but also 
the local conditions are an important determinant of observer performance. 
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Strictly, a probability versus range relationship does not exist in these cases. 
Such behavior is not predicted by the model. 

•   TARGAC is not suitable for predicting performance for individual targets. 
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Figure 21. Comparison of observer performance versus target range and the 
corresponding TARGAC predictions for three typical examples of observer 
recognition scores (filled circles) and TARGAC predictions (solid lines): (1) measured 
and predicted performance gradually decrease with target range, TARGAC 
underestimates observer performance; (2) predicted recognition performance is far 
too low at all ranges, and (3) TARGAC is unable to predict the large undulations in 
the observer scores. 

6.6.2      Comparison With Overall Mean Observer Performance 

Because TARGAC does not appear to be suitable to predict performance for 
individual targets, the predictions of TARGAC are compared with the overall 
mean performance of observers over a large number of targets and runs. This 
seems to be a reasonable approach because, originally, the Johnson criteria 
were also based on mean acquisition performance over a large number of 
conditions. 
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Data sets A, B, and C, defined in section 6.3.1, are used, and figure 22 shows 
the comparison with the TARGAC prediction for the mean BEST TWO target 
(see table 12). 

Using the prediction for a mean target makes sense because all targets in the 
set were presented to the observers approximately the same number of times, 
and predicted ranges for the six targets do not differ considerably. Filled 
circles represent mean observer performance averaged per distance. The solid 
line indicates the TARGAC predictions for the BEST TWO mean target. The 
dashed line represents the best fit of equation (2) (section 6.5.1) to the observer 
data and is shown to correspond to TARGAC range predictions increased by 
a factor of 1.80 (section 6.6.3). 

Data set A is the largest set. Target images were presented in the pop-up 
presentation order. Data sets B and C (a subset of A) correspond to the same 
set of images, but the images were presented as an ordered sequence for data 
set B, simulating a target approach.  Figure 22 shows that 

• TARGAC underestimates mean observer performance for all data sets. 

• The mean recognition probability for the observers is never below about 
50 percent correct, even at the longest target range (4 km). This means that 
the shape of the measured probability versus range relationship is not known 
for lower probabilities. 

• The overall mean probability decreases with target range, which was not the 
case for the scores for individual runs (figure 21). This is because averaging 
over many runs diminishes the effects of target/terrain interactions. The results 
for set C show more residual terrain interactions because it is a small subset 
of A. 

• Comparison of data sets B and C shows that for approaching targets (B) the 
data conform much better to a monotonously decreasing function than for pop- 
up targets (C). This is because the accumulation of information during a target 
approach helps to reduce the effects of the target/terrain interactions 
(section 4). 
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• For the approaching presentation order (data set B), the slope of the dashed 
curve fits nicely to the data. For pop-up targets, the predicted curve is too 
steep. A shallower function would fit better. This difference in slope is most 
pronounced for data set A, which might suggest that the model should be made 
to accommodate the different target behaviors. 

Figure 22. Comparison of overall mean observer performance for data sets A, B, 
and C, and TARGAC predictions: mean observer recognition scores (filled circles), 
TARGAC predictions (solid lines), and best fit of equation (2) (section 6.5.1) to the 
data (dashed line).  TARGAC predictions are far too conservative. 

6.6.3     Comparison With Observer Performance for Individual Trials 

Previous sections, show that overall mean recognition performance can be 
described reasonably well as a monotonously decreasing function of target 
range. The fit of the model to the mean observer data could be much 
improved by applying a single correction factor and, possibly, a small change 
in the steepness s (equation (3) or (4)). Apart from the mean performance, it 
is worthwhile to know how well TARGAC predicts the performance for 
individual trials. The previous sections show much variation in the observer 
data, but the model predicts only a single curve with an unknown confidence 
interval. 
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To determine the unexplained variances in the observer data, the variances will 
be regarded as a large set of single probability versus range points, and a point- 
by-point comparison will be made between actual target range and the range 
predicted by the model (range comparison). These analyses will yield a 
distribution that gives the unexplained variances in the data, caused by all 
parameters that were varied in the experiments including the effects of local 
conditions. The variance provides an indication of the quality of the model 
predictions for individual trials. 

6.6.3.1 Procedure.— Each datapoint represents a probability of correct recognition P 
for a target at range r. At this probability level, the model predicts a target 
range r'. A ratio r/r' between actual and predicted range is calculated for each 
datapoint in the set. The ratio r/r' = 1 if the model makes a correct 
prediction. The ratio will be larger than 1 if the predicted range is too short; 
the ratio is smaller than 1 if the predicted range is too large. Figure 23 gives 
an example of the procedure for a few datapoints. It is convenient to transform 
the values to a log scale because correct predictions are centered at 0, and over 
and underestimates of the range by the same factor are equally shifted in 
opposite directions along the axis. For example, the predicted range is twice 
or half the actual range. 
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Figure 23. Example of the point-by-point comparison between measured and 
predicted recognition performance: model prediction (solid line). A, B, and C are 
datapoints. For each datapoint, probability P corresponds to an actual target range 
r and a predicted target range r'. For point A, the predicted and measured range 
are almost identical: ratio r/r' « 1. For point B, the actual range is longer than the 
predicted range at the same probability level: r/r' « 1.5. For point C, the actual 
range is much smaller than the predicted range at the same probability 
level: r/r' * 0.75. 

A set of datapoints gives a dimensionless distribution of log (r/r') - values. An 
example of a distribution is given in figure 24. Mean and variance of the 
distribution directly provide a measure of the accuracy of the model. The 
mean of the distribution, «log (r/r')», indicates how well the model predicts 
overall mean performance. If «log (r/r')» = 0, overall mean performance is 
correctly predicted. A shift of the distribution along the log (r/r') axis means 
that predicted acquisition range is too long or too short on average. Therefore, 
«log (r/r')» provides a range correction factor that will make the model predict 
overall mean performance correctly. 
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Figure 24. Example of a distribution of r/r' values on a logscale. If the mean of the 
distribution «log (r/r1)» is equal to 0, the model correctly predicts overall mean 
performance. A shift of the distribution means predicted acquisition range is too 
long or too short on average. (In the example, predicted ranges are too short.) The 
variance a2 in the distribution indicates how well the model predicts acquisition 
performance for individual trials. 

The variance o2^ in the distribution indicates how well the model predicts 
acquisition performance for individual trials. Part of the variance, o2^,^, is 
due to statistical errors in the observer scores because an error in the 
recognition probability P leads to an error in r', and hence in log (r/r'). 
Appendix C shows how o1^^ is calculated from the standard error aP in P. 
The remainder of the variance can be ascribed to incorrect predictions by the 
model. Thus, if the evaluation yields that o1^ « o2^^, the model will be 
accepted because it correctly predicts observer performance within the accuracy 
of the measurements, as a function of the parameters that were varied in the 
experiment (target type, POD). 

On the other hand, if o2^ » cr2^,^, the unexplained variance is mainly due 
to differences between the model predictions and actual observer performance. 
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Therefore, the 95 percent confidence interval of the distribution, [«log (r/r')» - 
2a(r/r.) , «log (r/r')» + 2a(r/r.)], indicates the quality of the model predictions. 
A wide uncertainty interval means that the model is not able to make reliable 
predictions for individual trials. 

An elegant property of the procedure is that the entire set of datapoints, 
irrespective of the run or the circumstances under which they were collected, 
can be analyzed at the same time, yielding a single distribution. The analyses 
can also be carried out for subsets of the data. Section 6.7 shows that analyses 
of subsets may be used to discover which factors significantly contribute to the 
variance in the distribution. The model may be improved if these factors are 
known. 

6.6.3.2 Results. — Figure 25 shows the results of the evaluation for data set A (38 runs, 
pop-up presentation order). Figure 25a plots the ratio between actual and 
predicted range (r/r') for individual datapoints. Only datapoints with a 
recognition probability between 20 and 80 percent are considered (230 points), 
because r/r' may take unrealistic values (section 6.6.3.3) at very high or very 
low probabilities. The standard deviation a(r/r.)obs in the (r/r') values, caused 
by the statistical error in the observer scores, is presented in the upper 
right-hand corner of the figure. Appendix C shows that a(r/r.)f0bs = 0.03-0.06 
log units for probabilities between 20 and 80 percent. Figure 25b shows the 
histogram of the distribution of log (r/r ')-values, based on the datapoints in 
figure 25a. Note that this is a roughly normal distribution. The mean and the 
95 percent confidence interval of the distribution are indicated in figure 25a by 
the fat dashed line and the two dotted lines, respectively. 

It is clear, that the quality of the model predictions for individual trials is not 
very good. First, the mean of the distribution is 0.23, which means that actual 
ranges are 10°23 = 1.70 times the predicted ranges on average. The average 
range correction factor is 1.8 for the whole study. This difference cannot be 
ascribed to inaccuracies in the values of the input parameters (see 6.4.5). 

Second, the standard deviation a(r/rI) = 0.17 on a log scale, which is much 
larger than a(r/r-)obs. The 95 percent confidence interval is [-0.11, 0.57].  This 
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interval is [0.8, 3.7] on a linear scale, spanning a factor of almost 5. There 
is a 95 percent probability that the actual recognition range for an individual 
trial falls between 0.8 and 3.7 times the range that is predicted by TARGAC. 
Even after correction for the overall mean acquisition range, the actual range 
may be more than twice or less than half the predicted range. Thus, the model 
is not very good at predicting how observer performance depends on the 
prevailing conditions in the field. 

For data sets B (15 runs, approaching presentation order) and C (15 runs, 
pop-up presentation order), similar results are found. The mean shifts between 
the data and the TARGAC predictions are 0.28 for set B (70 datapoints) and 
0.27 for set C (65 datapoints) on a log scale, which correspond to an 
underestimate of the actual range by a factor 1.90. The uncertainty interval is 
very large in both cases, spanning a factor of about 4 for the pop-up 
presentation order (data set C) and 3.3 for the approaching presentation order 
(data set B). The smaller interval for the latter case is found because the 
effects of target/terrain interactions are less pronounced using this presentation 
order. 
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Figure 25. Comparison between measured and predicted recognition performance 
for individual trials: (a) ratio between actual and predicted range {r/r"); (with a 
perfect model, the points would be concentrated around the solid line (r/r' = 1). 
The dashed line corresponds to the mean of the log (r/r") distribution. The dotted 
lines indicate the boundaries of the 95-percent confidence interval. The error in 
observer scores is shown in the upper right-hand corner of the figure.) 
(b) histogram of the log {r/r1) distribution (mean 0.23; standard deviation 0.17). It 
is clear that the model is not very good at predicting recognition performance for 
individual trials. 
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6.6.3.3 High and Low Probability Levels.— At very high or low probabilities, small 
errors in the observer scores lead to large errors in the value of r/r', because 
the slope of the predicted probability versus range curve is very shallow in 
those regions. Appendix C shows that for the analyses it is safe to use only 
observer data with a probability level between 20 and 80 percent. Using data 
with a higher or lower probability level may lead to a broadening of the log 
(r/r') distribution. The effect of using a larger interval on the distribution was 
estimated for the three data sets A, B, and C. 

The effect was similar for all sets. Both mean and standard deviation of the 
log (r/r^-distribution are only slightly increased (approximately by 0.02 and 
0.01 log units, respectively) when the interval is changed from 20 to 80 percent 
to 10 to 90 percent. A further increase is not possible because TARGAC 
predictions are only defined between 10 and 90 percent. As a conclusion, the 
extent of the interval does not have a very large effect on the results. 

6.6.4    Conclusions 

There are important differences between recognition performance, as measured 
in observer experiments, and the TARGAC predictions for the BEST TWO 
situation: 

1. The model predictions are too conservative. TARGAC underestimates 
recognition range by a factor 1.8 on average. This ratio is similar for pop-up 
and approaching targets. The difference cannot be ascribed to inaccuracies in 
the values of the model input parameters. 

2. TARGAC does not make accurate predictions for individual trials. The 
analyses show that the 95 percent-confidence interval is roughly given by 0.9 
to 3.6 times the predicted acquisition range, spanning a range of a factor of 4. 

6.7    Possible Sources of the Unexplained Variance 

The previous section shows that there is a large amount of unexplained 
variance when TARGAC predictions are compared with actual observer 
performance for individual trials.   The variance cannot be ascribed to the 
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statistical error in the observer scores. The conclusion is that the model does 
not predict how observer performance depends on field factors or parameters 
that were varied in the experiment. 

It may be possible to make a model that better predicts performance for 
individual situations if the factors that contribute significantly to the 
unexplained variance can be determined. Such factors can be found using 
Analysis of Variance. Suppose that the effect of target type is not modeled 
correctly, the broad distribution of log (r/r') values that were found for the 
entire dataset is in fact a composition of narrower distributions with different 
mean shifts for different target types. The model could be improved (the 
amount of unexplained variance would be reduced) by remodeling the effect of 
target type. 

In a similar way, possible effects of other factors may be tested. These 
hypotheses can be straightforwardly tested with the present data set: 

a. Target type has an effect on acquisition range, but the effect is not modeled 
adequately by simply taking its minimum dimension. 

b. Time of day has an effect on observer performance, although the model 
does not predict any differences. 

c. Part of the variance that was found in data set A, may be due to using 
stationary and (head-on) moving targets. The model is only designed for 
stationary targets. 

d. Target-terrain interaction, section 6.6.1, has a considerable impact on 
acquisition performance. This hypothesis can be verified by comparing the 
results for different approach routes. 

Analysis of Variance was used to determine which of the above-mentioned 
factors have a significant effect on the log (r/r') distribution for the comparison 
between the TARGAC predictions and the observer data from set A, which is 
the largest data set. Only main effects are considered; interactions are not 
considered relevant for a first investigation. 
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The analyses show that there are statistically significant effects (P < 0.05) of 
target type, time of day, and approach route on variance. No significant effect 
was found for head-on target motion.  The effects follow: 

6.7.1    Target Type 

Mean range shifts («log (r/r')») for most targets are quite similar to the mean 
shift found for the complete set (ranges do not differ by more than 20 percent). 
However, for one target (AMX-10) the shift is considerably larger. Predicted 
range for this target is much shorter than for the other targets because of its 
small height (see table 12), but measured performance is slightly better than for 
the other targets. The standard deviation of the distribution is reduced from 
a = 0.17 to a = 0.15 when optimal shifts are applied for each target type 
separately, which means that most of the variance remains unexplained. Thus, 
the model cannot be improved considerably by remodeling the effect of target 
type. 

6.7.2 Time of Day 

Runs were divided into three categories: morning, afternoon, and early night 
in accordance with the division that was made during the BEST TWO 
trials. [19,20] There is a small but significant difference in mean range shift 
for morning and afternoon and early night. There is no relevant reduction of 
the width of the distribution when the effect of time of day is taken into 
account. 

6.7.3 Approach Route; Target/Terrain Interactions 

Mean recognition ranges for the right approach route were approximately 
20 percent longer than for the left route. The routes were very close to each 
other, heading in approximately the same direction. No theoretical explanation 
exists for acquisition of targets on the right approach route being easier. This 
means that local factors are very important. Furthermore, the results of the 
observer experiments also show that for a single approach route, in general, 
there is no monotonous relationship between recognition performance and 
target distance.   The effects were ascribed to a strong interaction between 
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target signature and local background (target/terrain interactions, section 4). 
A large amount of variance may be ascribed to target/terrain interactions. 

A model that takes into account the effects of target/terrain interaction may 
become very complicated. Apart from mean or area contrast between target 
and background, which is modeled in TARGAC, there are many local factors 
that may influence acquisition performance, such as edge contrast, internal 
target contrast, differences in target and background structure, or variations in 
target orientation. Their effect on acquisition performance is unknown. 
Analyzing the BEST TWO images, may make it possible to determine the 
effect of some of the above mentioned local factors on recognition 
performance.  Such analyses go beyond the scope of this report. 

In conclusion, there seems to be no simple modification that would lead to a 
model that better predicts acquisition performance for individual trials. (A 
modification that would considerably diminish the amount of unexplained 
variance that is found when TARGAC predictions are compared with actual 
observer performance.) 

6.8    Discussion 

TARGAC is a very comprehensive TA model. The model combines modules 
for target and background characterization, atmospheric transmittance, and 
system/observer performance. These properties make TARGAC a very useful 
tool for military purposes, especially as a TDA. However, the evaluation of 
TARGAC shows that the model does not predict recognition performance very 
accurately. The main differences between observed recognition performance 
and the model predictions for the BEST TWO situation follow: 

1. TARGAC underestimates the mean recognition range for the BEST TWO 
situation by a factor of about 1.8. 

2. TARGAC predictions for individual cases have an uncertainty interval of 
roughly 0.9 to 3.6 times the predicted acquisition range, spanning a range of 
a factor of 4. 

126 



The sensitivity analyses (section 4) showed, that for the BEST TWO situation 
only the module that describes EO and human visual system performance, is 
responsible for the range predictions. The effects of the outcome of the target 
background contrast module and the atmospheric transmittance module on the 
range predictions are negligible because of the excellent conditions. The 
system performance module in TARGAC is theoretically equivalent to 
1-D ACQUIRE90, the 1-D option of the 1990 version of the NVESD Static 
Performance Model (the 2-D option of ACQUIRE is discussed below). 
Figure 26 presents a comparison between the TARGAC and the 
1-D ACQUIRE90 recognition performance predictions for the BEST TWO 
standard situation (section 6.4.2). Filled circles represent the TARGAC 
predictions, and open circles represent the corresponding 1-D ACQUIRE90 
predictions. Atmospheric transmission was set to 1.0, and target background 
contrast was set to 5.0 K in ACQUIRE90. Varying the contrast had little 
effect on the ACQUIRE90 predictions. Evidently, the predictions made with 
the two models are identical. 

The conclusion is that the results of the evaluation are not only relevant for 
TARGAC but for all models that are based on the 1-D NVESD Static 
Performance Model. 
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Figure 26. TARGAC and 1-D ACQUIRE recognition 
performance predictions for the BEST TWO situations 
are identical. 2-D ACQUIRE predicts longer ranges. 

6.8.1    Mean Acquisition Performance 

Section 6.4 showed that inaccuracies in the data input to the model may lead 
to an error of up to 20 percent in predicted range. The performance of the 
observers in the experiment may be relatively high, because they were trained 
on six targets in a specific situation (a single weather condition, one terrain). 
Their score might have been lower if there were more uncertainties in their 
task. However, the factors are not large enough to explain the considerable 
difference between actual and predicted mean acquisition performance. 

TARGAC may easily be adapted to correctly predict mean acquisition 
performance for the BEST TWO situation by changing the recognition criteria 
in the system performance module. The present version of the model predicts 
a recognition probability of 50 percent if four line pairs can be resolved across 
the effective dimension of the target. According to Ratches, [13] this is a 
conservative criterion (section 6.2.1.3). However, even the optimistic criterion 
that Ratches gives (a three line pair criterion, which would predict 4/3 longer 
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ranges) is still too conservative. A recognition probability of 50 percent should 
correspond to the resolution of 2.2 line pairs across the effective dimension of 
the target to correctly predict mean recognition range for the BEST TWO 
situation. It should also be noted that the targets in BEST TWO were always 
in front view. It is well known that targets in side view are more easily 
recognized than targets in front view, but the 1-D Static Performance Model 
predicts equal ranges because the effective dimension is target height in both 
cases. This means that, for targets in side view, prediction of mean 
recognition performance by TARGAC may be even further off. 

Recently, a new version of the Static Performance Model (2-D ACQUIRE90) 
was developed; it makes its predictions on the basis of two target dimensions 
and the horizontal and vertical MRTD. Figure 26 shows that the new version 
(crosses) predicts longer ranges than the 1-D model. It also predicts better 
acquisition performance for targets in side view than for targets in front view. 
For the BEST TWO situation, the 2-D version underestimates mean acquisition 
range by less than 30 percent, an error which is near the accuracy of the 
MRTD cut-off frequency. TARGAC may be improved by implementing the 
2-D version of the Static Performance Model. 

6.8.2    Acquisition Performance for Individual Cases 

The TARGAC user interface suggests that predictions can be made for 
individual targets under given conditions. For example, the model predicts the 
50 percent recognition range for a T62 tank on a grass field at. 1400. The 
evaluation shows that the model cannot make such predictions. A very large 
uncertainty interval is found when the predictions are compared with data from 
a single observer performance experiment, using one target set, in one terrain, 
with one weather condition, and one camera. The interval may be even larger 
if more conditions are investigated. The large amount of unexplained variance 
is not due to possible errors in the input data, such as the MRTD-curve, 
because these only affect the mean of the confidence interval and not its width. 
The width of the interval is not decreased if the original system performance 
model is replaced by the 2-D version. Apparently, the model is not 
sophisticated enough to deal with individual cases: factors that play an 
important role in TA are not modeled or are not modeled correctly. 
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A model that better predicts acquisition performance for individual trials may 
have to be very complex. Section 6.7 showed that local factors play an 
important role in TA. A correct prediction probably requires a detailed model 
of the effects of local factors on acquisition performance and a detailed 
description of the local conditions as input to the model. Such a detailed 
modeling, if possible at all, may not be useful for practical purposes. The 
equivalent disc model [21] is based on a different approach; it predicts 
acquisition performance for a set of targets, rather than predicting a range for 
each target separately. 

It is likely that the width of the uncertainty interval depends on the type of 
terrain. For the BEST TWO trials, local factors were very important because 
of the inhomogeneity of the background and, consequently, the uncertainty 
interval is large. If the background is more uniform, one expects that 
acquisition performance mainly depends on target distance (as a model 
predicts), resulting in a smaller 95 percent confidence interval. The 
dependence of the reliability of the acquisition range predictions on terrain type 
or on statistical information about the terrain, may be a topic of future 
research. 

6.9    Conclusions and Recommendations 

The TA model TARGAC was evaluated using BEST TWO observer 
performance data for recognition of targets in front view. Because of the 
excellent atmospheric conditions during BEST TWO, recognition performance 
predictions are determined solely by the system performance module of 
TARGAC, which is equivalent to the 1-D NVESD Static Performance Model. 
The main results of the evaluation follow: 

1. The model predictions are too conservative. TARGAC underestimates 
recognition range by a factor 1.8 on average. This ratio is similar for pop-up 
and approaching targets. 

2. TARGAC does not make accurate predictions for individual cases. The 
analyses show that the uncertainty interval roughly ranges from 0.9 to 3.6 
times the predicted acquisition range, spanning a range of a factor of 4. 
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3. The TARGAC predictions for overall mean performance can be improved 
by incorporating the 2-D version of the Static Performance Model. 

4. It is proposed that TARGAC predictions are not only presented as single 
numbers for acquisition probability versus target range, but that some 
indication is given of the accuracy of the results, preferably in the form of a 
95 percent confidence interval. 

5. The version of TARGAC tested (PC version released in 1992) contained a 
number of software errors and minor problems. A number of corrections are 
suggested. Additional work in modularizing and streamlining the model is 
recommended. It is also recommended that the model is given a more 
consistent and user-friendly interface. 

6. TARGAC and other models that incorporate the NVESD Static Performance 
Model should only be used to provide an indication of the actual acquisition 
performance. 
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Acronyms and Abbreviations 

AAODL 

ACQUIRE 

APC 

ARL 

AUTOFEDS 

BED 

BEST TWO 

CCD 

D 

EO 

EOSAEL 

ETCA 

FOR 

I 

LMT 

LUST 

MIA 

MRC 

MRTD 

NATO 

Atmospheric Aerosol and Optics Data Library 

target acquisition model developed by NVESD 

armored personnel carrier 

Army Research Laboratory 

system developed by NVESD for recording target vehicle 
movements and observer responses during field trials. No 
longer used. 

Battlefield Environment Directorate 

Battlefield Emissive Sources Trials under the European 
Theater Weather and Obscurants 

charge-coupled device 

detection 

electro-optical 

Electro-Optical Systems Atmospheric Effects Library 

Etablisement Centrale Technique d'Armement 

forward looking infrared radar 

identification 

French battlefield radar system 

limited use smoke technology device 

main instrumentation area 

minimum resolvable contrast 

minimum resolvable temperature difference 

North Atlantic Treaty Organization 
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NVESD Night Vision Electro-Optics Sensors Directorate 

1-D one-dimensional 

POD part of day 

R recognition 

RASIT French battlefield radar system 

TA target acquisition 

TARGAC Target Acquisition Model 

TCM2 Thermal Contrast Model 

TDA tactical decision aid 

TNO Netherlands Organization for Applied Scientific Research 

TNO-FEL TNO Physics and Electronics Laboratory 

TNO-HFRI TNO Human Factors Research Institute 

TOW tube launched optically tracked wire-guided missile 

TTPF target transfer probability function 

2-D two dimensional 

VIS visual 

ZIL a Soviet truck 
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Appendix A 

The Complete Set of Observer Performance Data 
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The complete set of observer response data is presented in 126 plots (figures 
A-la-o through A-8a-o). All the results are presented as the percentage of 
correct identification and recognition responses versus target range. The 
standard deviation of the datapoints is typically about 10 to 20 percent. 

Figures A-l through A-4 (63 plots) represent the data obtained for the forced 
condition. In this condition (section 5.4), the observers were forced to name 
the target, even if they were not sure which vehicle was presented. Figures 
A-5 through A-8 show the data for the unforced condition. The scores are for 
free (unforced) identification or recognition reports, which correspond better 
to the Target Acquisition (TA) task in a practical military field situation. 

Figures A-l through A-3 and A-5 through A-7 show the data for the position, 
or pop-up, presentation order (POS), (section 3.2.4), whereas, figures A-4 
and A-8 show the data for the sequential presentation order (indicated as 
RUN). 

The data were obtained in two series of experimental sessions. Acquisition 
performance was determined for 15 daytime runs (parts of day (POD) 2 and 3) 
of stationary targets (Scenario 1) in Experiment 1 (figures A-l, A-4, A-5, 
and A-8). Both types of presentation order (POS and RUN) were applied. 
The mean scores for 11 observers are presented in the figures. Data was 
collected for 33 runs of stationary (Scenario 1) and moving (Scenario 2) targets 
on all part of day (PODs) in Experiment 2 (figures A-2, A-3, A-6, and A-7). 
Only POS was used.  Mean scores are presented for four observers. 

A complete overview of the structure of the data is presented in Bijl and 
Valeton.* 

*Bijl, P., and J. M. Valeton, Observer Experiments with BEST TWO Thermal Images. 
Part 4: Complete Set of Observer Performance Data, Rep. No. IZF 1992 A-43, TNO 
Human Factors Research Institute, Soesterberg, The Netherlands, (NATO Confidential), 
1992c. 
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Figure A-5.  Observer recognition and identification performance for the 
condition UNFORCED-POS-Scenario 1, Experiment 1 (continued). 
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Figure A-7.  Observer recognition and identification performance for the 
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Appendix B 

Recognition Performance Data with 
Corresponding TARGAC Predictions 
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The observer recognition scores are taken from figures A-5 through A-8 in 
appendix A. These are the scores for free unforced recognition reports, which 
correspond to the target acquistion (TA) task in a practical military field 
situation. 

Figures B-l and B-2 show the data for the position or pop-up presentation 
order.  Figure B-4 shows the data for the sequential presentation order. 
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Figure B-3.     Observer  recognition scores  for  16  runs  of Experiment 2 
(section 6.6.3.1) for moving targets with TARGAC predictions (continued). 
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predictions. 

167 



o -M 
 !— 

— 

03 
100 •• - 

o • 
Ü 80 • 

• 
03 
O) 60 - 
CO 
+-> 40 - 
c_ 
03 
o 20 —     • observers 

*s^^        ** 

u_ targac 
03 0 - 
Q. i ! 

1000  2000  3000 4000 1000  2000  3000 4000 1000 2ÖÖÖ" 

distance (m) 
3000       4000 

Figure B-4. Observer recognition scores for 15 runs of Experiment 1 
(section 6.6.3.1) for the approaching presentation order with TARGAC 
predictions (continued). 

168 



Appendix C 

Statistical Error in Observer Scores and 
Validation Accuracy 
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C-1.    Estimate of the Error in the Observer Scores 

The observer performance data were gathered in two experiments (section 4.1). 
The number of observers in Experiment 1 was 11. Four observers participated 
in Experiment 2. The images of 10 target runs were used in both experiments; 
thus, were presented to 15 observers. Data set A was composed of observer 
performance data from Experiments 1 and 2 (which means that the number of 
observers is 4 to 15). Data sets B and C were composed of data only from 
Experiment 1 (11 observers). 

Each target image was presented five times. Section 3 shows that the 
maximum standard deviation a^, being the standard deviation at the 
50 percent probability level, is 7 to 15 percent for 11 observers and 11 to 
25 percent for 4 observers if the scores are distributed binomially. The lower 
estimates of amzx are based on the assumptions that all observations are 
independent. A worst-case assumption was made that the five observations of 
the same image by the same observer are completely dependent for the higher 
values. 

The standard deviation at probability levels above or below 50 percent is given 
by 

a. VP (100-P) 
P   ~  an»» 50 (C-1) 

where 

P = the probability level in percent. 

From equation (C-1), it can be deduced that the standard-deviation is rather 
constant at levels between 20 and 80 percent and drops to zero if the 
probability is near 0 or 100 percent. 

The above-mentioned estimates of amax are not very accurate. The standard 
deviation can be estimated in an alternative way by dividing the observers into 
two groups and calculating the correlation between the scores of the two 
groups.     The statistical error in the scores is  small if the correlation 
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coefficient r is high. It can be shown that an accurate approximation of the 

error variance (this is the variance in the scores for each image, because of a 

limited number of observations), is given by 

a, ~ 
(4i + 4z) (l-r) (C-2) 

where 

ae
2 = the error variance in the score for each image, averaged 

over all observations of all observers of the two groups 

a2
Gl and o2^ = total variance in the scores for the images, when 

averaged over the observations of the observers within 

each group. 

The correlation was calculated for the images of the 10 runs that were 

presented to 15 observers. Observers from the two experiments were divided 

equally over the two groups. The correlation is very high if all data 

(96 datapoints) are taken into account, r = 0.92, yielding a standard deviation 

ae = 4.1 percent. However, this is an average over all probability levels 

between 0 and 100 percent. The standard deviation for low and high scores is 

much lower than for intermediate probability levels. As indicated above, for 

probability levels between 20 and 80 percent, the standard deviation may be 
regarded as rather constant. An approximation for the maximum standard 

deviation o^ at the 50 percent level is achieved if only these data 

(38 datapoints) are taken into account. It turns out that for these data the 
correlation is still very high: r = 0.86, and ae = 5.0 percent for these data. 

This is the estimate of the maximum standard deviation for 15 observers. As 
the standard deviation is inversely proportional to the square-root of the 

number of observers, the maximum standard deviation in the data in set A (4 

to 15 observers) is amax = 5 to 10 percent, and in set B and C (11 observers) 
is <W = 6 percent. These values are comparable to the lower estimates based 

on a binomial distribution. 
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C-2.    Contribution to the Error in the (r/r') Values 

Actual target range r is known with high accuracy for each trial. The predicted 
range r' is calculated from the value of the recognition probability P by using 
the Target Acquisition model, or equation (4) in section 6.5.1. An error aP 

in probability will result in an error ar,_obs in range or ff(r/r.)i0bs in the ratio. The 
ratio ((7p /crr.,obs) is given by the slope of the probability versus range function 
(equation (C-3)). 

For example, at the 50 percent level the slope of the function (with s = 2.32) 
is 0.80/r50. A small error in recognition probability may lead to a large error 
in range because the function is shallow at very high or low levels. Between 
20 and 80 percent, the standard deviation is approximately constant and the 
probability versus range function is roughly linear. Therefore it is safe to 
consider only data between these probability levels. It can be shown that, for 
these data, the standard deviation in ratio, caused by the error in observer 
scores, is given by 

a(-L),obs  =   ^  ffmax (C_3) 

r* 

Thus, for data set A, a(r/r.)>obs ~ 8 to 15 percent (0.03 to 0.06 on a log scale), 
and for sets B and C, a(r/r-)obs = 9 percent (0.04 on a log scale). 
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Appendix D 

Software Errors in TARGAC 
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The following software errors were found during the evaluation of the Target 
Acquisition Model (TARGAC). 

D-l.    Conversion Errors 

For a single variable, several units are used in the program. For example, size 
or distance are expressed in meters, kilometers, or feet. It occurs in a number 
of subroutines that global variables, the value of which is written in a common 
block, are converted from one unit to another. The new value of the variable 
is used in the next routines through the common block, although a number of 
those routines expect the variable in the old unit. Incidentally, the same 
conversion is carried out twice. This occurs with the conversion of the rain 
rate in mm/h to in/h. It is recommended that the value or unit of global 
variables is never converted. A local variable should be defined if the value 
of a variable is desired in a different unit. 

D-2.    Sensor Altitude 

Target and sensor height may be varied in TARGAC; however, a supplement 
of the User's Guide reports that the slant path option (looking down to a target) 
does not work correctly and the sensor altitude is currently hardwired to 0 or 
1 m. What actually happens in the subroutine that calculates acquisition ranges 
(FINDR) is that sensor altitude is temporarily set to 1 and later to 0. 
However, ranges are defined in km in this routine. Thus, the program 
calculates ranges for a sensor looking down from a height of 1 km; whereas, 
the output file gives an altitude of 0. This error has important consequences 
for the range predictions. The minimum or effective dimension is target height 
for a target in front view. However, looking down from an altitude of 4 km, 
its effective dimension is target width, which is usually larger. The error was 
repaired by setting the altitude to 0 in FINDR. 

D-3.    Extrapolation of a High Order Polynomial Curve Fit 

When predictions are being made for a user-specified viewing device 
(section 3.2), the user has to specify spatial frequency as a function of 
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luminance or thermal contrast in the form of the coefficients of a sixth order 
polynomial fit rather than a point-by-point entry of the minimum resolvable 
contrast (MRC) or minimum resolvable temperature difference (MRTD) curve. 
Point-by-point entry is another TARGAC option to specify a viewing device, 
but it does not work properly. Polynomial curve fits may only be used for 
interpolation. Extrapolation of a high-order polynomial function may lead to 
irrational results. However, thermal contrasts, as calculated by the thermal 
contrast model (TCM2), are often much higher than the highest contrast in the 
MRTD curve. As a consequence, unrealistic spatial frequency values are 
calculated which cause very high values and even negative values occur. This 
in return lead to meaningless range predictions. No warning is given to the 
user. The problem probably also occurs with viewing devices that are in the 
TARGAC menu. [22]  The following improvements are recommended: 

1. A warning should be given (actually, a lower contrast limit already exists 
in TARGAC) if the apparent contrast exceeds a given limit (the highest contrast 
of the MRC or MRTD curve). 

2. Calculations may be carried out using the spatial frequency that corresponds 
to the contrast limit if the limit is exceeded. 

3. A lower-order polynomial fit should be used; a second or third order fit 
should be sufficient. In the present evaluation, the problem was circumvented 
by adding extra MRTD points for thermal contrasts up to 20 K before making 
a polynomial fit. 

D-4.    History of Meteorological Data 

TCM2 calculates target and background temperature at a given moment on the 
basis of meteorological data for a number of earlier moments in time, (0, 3, 
and 6 h earlier). The data are treated differently in interactive and batch mode. 
The User's Guide is correct only for the interactive mode. In batch mode, 
history is reversed if the input file is constructed according to the User's 
Guide. A correct calculation is made if the preceding times are given as 
negative numbers. Accordingly, files saved in the interactive mode, and input 
files for the batch mode are incompatible with respect to this point. 
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D-5.    Target Heading 

The user is free to choose the heading of the target in the input. However, 
target heading is always set at 90° in the program. 

D-6.    Wrong Target Files 

TCM2 rendered a temperature of 0 K for several targets in the menu (targets 
19 through 22). Range calculations were made using this target temperature, 
and no warning was given to the user. Later, new target files that gave 
reasonable temperature values were provided by Dr. Gillespie. 

D-7.    Version Number and Release Date 

Regularly, new versions of the program have been released. However, the 
version number and release date are not updated. 

D-8.    Undeclared Variables 

A number of variables used in the program are not declared. 
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Distribution 

Copies 

ARMY CHEMICAL SCHOOL 1 

ATZN CM CC 
ATTN MR BARNES 
FT MCCLELLAN AL 36205-5020 

NASA MARSHAL SPACE FLT CTR 1 
ATMOSPHERIC SCIENCES DIV 

E501 
ATTN DR FICHTL 
HUNTSVILLE AL 35802 

NASA SPACE FLT CTR 1 
ATMOSPHERIC SCIENCES DIV 
CODE ED 41 1 
HUNTSVILLE AL 35812 

ARMY STRAT DEFNS CMND 1 
CSSD SL L 
ATTN DR LILLY 
PO BOX 1500 
HUNTSVILLE AL 35807-3801 

ARMY MISSILE CMND 1 
AMSMI RD AC AD 
ATTN DR PETERSON 
REDSTONE ARSENAL 
AL 35898-5242 

ARMY MISSILE CMND 1 
AMSMI RD AS SS 
ATTN MR H F ANDERSON 
REDSTONE ARSENAL 
AL 35898-5253 
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ARMY MISSILE CMND 1 
AMSMI RD AS SS 
ATTN MR B WILLIAMS 
REDSTONE ARSENAL 
AL 35898-5253 - 

ARMY MISSILE CMND 1 
AMSMI RD DE SE 

v 

ATTN MR GORDON LILL JR 

REDSTONE ARSENAL 
AL 35898-5245 

ARMY MISSILE CMND 1 
REDSTONE SCI INFO CTR 
AMSMI RD CS R DOC 

REDSTONE ARSENAL 
AL 35898-5241 

ARMY MISSILE CMND 1 
AMSMI 
REDSTONE ARSENAL 
AL 35898-5253 

ARMY INTEL CTR 1 
AND FT HUACHUCA 
ATSI CDC C 

FT HUACHUCA AZ 85613-7000 

NORTHROP CORPORATION 1 
ELECTR SYST DIV 
ATTN MRS T BROHAUGH 
2301 W 120TH ST BOX 5032 
HAWTHORNE CA 90251-5032 

NAVAL WEAPONS CTR 1 
CODE 3331 - 

ATTN DR SHLANTA 
CHINA LAKE CA 93555 

- 
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PACIFIC MISSILE TEST CTR 
GEOPHYSICS DIV 
ATTN CODE 3250 
POINT MUGU CA 93042-5000 

LOCKHEED MIS & SPACE CO 
ATTN KENNETH R HARDY 

ORG 91 01 B 255 
3251 HANOVER STREET 
PALO ALTO CA 94304-1191 

NAVAL OCEAN SYST CTR 
CODE 54 
ATTN DR RICHTER 
SAN DIEGO CA 92152-5000 

METEOROLOGIST IN CHARGE 
KWAJALEIN MISSILE RANGE 
PO BOX 67 
APO SAN FRANCISCO 
CA 96555 

DEPT OF COMMERCE CTR 
MOUNTAIN ADMINISTRATION 
SPPRT CTR LIBRARY R 51 
325 S BROADWAY 
BOULDER CO 80303 

DR HANS J LIEBE 
NTIA ITS S 3 
325 S BROADWAY 
BOULDER CO 80303 

NCAR LIBRARY SERIALS 
NATL CTR FOR ATMOS RSCH 
PO BOX 3000 
BOULDER CO 80307-3000 

DEPT OF COMMERCE CTR 
325 S BROADWAY 
BOULDER CO 80303 
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DAMI POI 1 
WASH DC 20310-1067 

MIL ASST FOR ENV SCI OFC 1 *- 
OF THE UNDERSEC OF DEFNS 
FOR RSCH & ENGR R&AT E LS 
PENTAGON ROOM 3D 129 • 

WASH DC 20301-3080 

DEANRMD 1 
ATTN DR GOMEZ 
WASH DC 20314 

SPACE NAVAL WARFARE 1 
SYST CMND 

PMW 145 IG 
WASH DC 20362-5100 

ARMY INFANTRY 1 
ATSH CD CS OR 
ATTN DR E DUTOIT 

FT BENNING GA 30905-5090 

AIR WEATHER SERVICE 1 
TECH LIBRARY FL4414 3 
SCOTT AFB IL 62225-5458 

USAFETAC DNE 1 
ATTN MR GLAUBER 

SCOTT AFB IL 62225-5008 

HQ AWS DOO 1 1 
SCOTT AFB IL 62225-5008 

ARMY SPACE INSTITUTE 1 
ATTN ATZI SI 3 
FT LEAVENWORTH 
KS 66027-5300 
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PHILLIPS LABORATORY 
PLLYP 
ATTN MR CHISHOLM 
HANSCOM AFB MA 01731-5000 

ATMOSPHERIC SCI DIV 
GEOPHYSICS DIRCTRT 
PHILLIPS LABORATORY 
HANSCOM AFB MA 01731-5000 

PHILLIPS LABORATORY 
PLLYP 3 
HANSCOM AFB MA 01731-5000 

RAYTHEON COMPANY 
ATTN DR SONNENSCHEIN 
528 BOSTON POST ROAD 
SUDBURY MA 01776 
MAIL STOP 1K9 

ARMY MATERIEL SYST 
ANALYSIS ACTIVITY 
AMXSY 
ATTN MP H COHEN 
APG MD 21005-5071 

ARMY MATERIEL SYST 
ANALYSIS ACTIVITY 
AMXSY AT 
ATTN MR CAMPBELL 
APG MD 21005-5071 

ARMY MATERIEL SYST 
ANALYSIS ACTIVITY 
AMXSY CR 
ATTN MR MARCHET 
APG MD 21005-5071 
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ARL CHEMICAL BIOLOGY 
NUC EFFECTS DIV 
AMSRL SL CO 
APG MD 21010-5423 

ARMY MATERIEL SYST 
ANALYSIS ACTIVITY 
AMXSY 
APG MD 21005-5071 

NAVAL RESEARCH LABORATORY 
CODE 4110 
ATTN MR RUHNKE 
WASH DC 20375-5000 

ARMY MATERIEL SYST 
ANALYSIS ACTIVITY 
AMXSY CS 
ATTN MR BRADLEY 
APG MD 21005-5071 

ARMY RESEARCH LABORATORY 
AMSRL D 
2800 POWDER MILL ROAD 
ADELPHI MD 20783-1145 

ARMY RESEARCH LABORATORY 
AMSRL OP SD TP 
TECHNICAL PUBLISHING 
2800 POWDER MILL ROAD 
ADELPHI MD 20783-1145 

ARMY RESEARCH LABORATORY 
AMSRL OP CI SD TL 
2800 POWDER MILL ROAD 
ADELPHI MD 20783-1145 
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ARMY RESEARCH LABORATORY 
AMSRL SS SH 
ATTN DR SZTANKAY 
2800 POWDER MILL ROAD 
ADELPHI MD 20783-1145 

ARMY RESEARCH LABORATORY 
AMSRL 
2800 POWDER MILL ROAD 
ADELPHI MD 20783-1145 

NATIONAL SECURITY AGCY W21 
ATTN DR LONGBOTHUM 
9800 SAVAGE ROAD 
FT GEORGE G MEADE 
MD 20755-6000 

ARMY AVIATION CTR 
ATZQ D MA 
ATTN MR HEATH 
FT RUCKER AL 36362 

OIC NAVSWC 
TECH LIBRARY CODE E 232 
SILVER SPRINGS 
MD 20903-5000 

ARMY RSRC OFC 
ATTN DRXRO GS 
POBOX 12211 
RTP NC 27009 

DR JERRY DAVIS 
NCSU 
PO BOX 8208 
RALEIGH NC 27650-8208 

ARMYCCREL 
CECRL GP 
ATTN DR DETSCH 
HANOVER NH 03755-1290 
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ARMYARDEC 
SMCAR IMII BLDG 59 
DOVER NJ 07806-5000 

ARMY SATELLITE COMM AGCY 
DRCPM SC 3 
FT MONMOUTH NJ 07703-5303 

ARMY COMMUNICATIONS 
ELECTR CTR FOR EW RSTA 
AMSEL EW D 

FT MONMOUTH NJ 07703-5303 

ARMY COMMUNICATIONS 
ELECTR CTR FOR EW RSTA 
AMSEL EW MD 
FT MONMOUTH NJ 07703-5303 

ARMY DUGWAY PROVING GRD 
STEDP MT DA L 3 
DUGWAY UT 84022-5000 

ARMY DUGWAY PROVING GRD 
STEDP MT M 
ATTN MR BOWERS 
DUGWAY UT 84022-5000 

DEPT OF THE AIR FORCE 
OL A 2D WEATHER SQUAD MAC 
HOLLOMAN AFB 
NM 88330-5000 

PL WE 
KIRTLAND AFB NM 
87118-6008 

USAF ROME LAB TECH 
CORRIDOR W STE 262 RL SUL 
26 ELECTR PKWY BLD 106 
GRIFFISS AFB 
NY 13441-4514 
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AFMC DOW 
WRIGHT PATTERSON AFB 
OH 0334-5000 

ARMY FIELD ARTLLRY SCHOOL 
ATSF TSM TA 
FT SILL OK 73503-5600 

NAVAL AIR DEV CTR 
CODE 5012 
ATTN AL SALK 
WARMINISTER PA 18974 

ARMY FOREGN SCI TECH CTR 
CM 
220 7TH STREET NE 
CHARLOTTESVILLE 
VA 22901-5396 

NAVAL SURFACE WEAPONS CTR 
CODE G63 
DAHLGREN VA 22448-5000 

ARMYOEC 
CSTE EFS 
PARK CENTER IV 
4501 FORD AVE 
ALEXANDRIA VA 22302-1458 

ARMY CORPS OF ENGRS 
ENGR TOPOGRAPHICS LAB 
ETL GS LB 
FT BELVOIR VA 22060 

TAC DOWP 
LANGLEY AFB 
VA 23665-5524 

ARMY TOPO ENGR CTR 
CETEC ZC 1 
FT BELVOIR VA 22060-5546 
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LOGISTICS CTR 
ATCL CE 

FT LEE VA 23801-6000 

SCI AND TECHNOLOGY 
101 RESEARCH DRIVE 
HAMPTON VA 23666-1340 

ARMY NUCLEAR CML AGCY 

MONA ZB BLDG 2073 
SPRINGFIELD VA 22150-3198 

ARMY FIELD ARTLLRY SCHOOL 
ATSF F FD 

FT SILL OK 73503-5600 

USATRADOC 
ATCD FA 
FT MONROE VA 23651-5170 

ARMY TRADOC ANALYSIS CTR 
ATRC WSS R 
WSMR NM 88002-5502 

ARMY RESEARCH LABORATORY 
AMSRL BE M 
BATTLEFIELD ENVIR DIR 
WSMR NM 88002-5501 

ARMY RESEARCH LABORATORY 
AMSRL BE A 

BATTLEFIELD ENVIR DIR 
WSMR NM 88002-5501 

ARMY RESEARCH LABORATORY 
AMSRL BE W 
BATTLEFIELD ENVIR DIR 
WSMR NM 88002-5501 
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ARMY RESEARCH LABORATORY 1 
AMSRLBE 
ATTN MR VEAZEY 
BATTLEFIELD ENVIR DIR 
WSMR NM 88002-5501 

DEFNS TECH INFO CTR 1 
CENTER DTIC BLS 
BLDG 5 CAMERON STATION 
ALEXANDRIA 
VA 22304-6145 

ARMY MISSILE CMND 1 
AMSMI 
REDSTONE ARSENAL 
AL 35898-5243 

ARMY DUGWAY PROVING GRD 1 
STEDP 3 
DUGWAY UT 84022-5000 

USATRADOC 1 
ATCD FA 
FT MONROE VA 23651-5170 

ARMY HELD ARTLRY SCHOOL 1 
ATSF 
FT SILL OK 73503-5600 

WSMR TECH LIBRARY BR 1 
STEWS IM IT 
WSMR NM 88001 

Record Copy 10 

Total 96 
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