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ABSTRACT

This dissertation considers optimization problems in which similar decisions need to
be made repeatedly over many successive. time periods. These problems have wide
applications including manpower planning, scheduling, production planning and control,
capacity expansion, and equipment replacement/modernization. In reality these decision
problems usually extend over an indeterminate time horizon, but it is common practice to
model them using a finite horizon. Unfortunately, an artificial finite horizon may adversely
influence optimal decisions, a difficulty commonly referred to as the end effects problem.
Past research into end effects has focused on theoretical issues associated with solving (or
approximately solving) infinite-horizon extensions of finite-horizon problems.This
dissertation derives equivalent finite-horizon formulations for a small class of infinite-
horizon problem structures. For a larger class of linear and integer programs, it also
develops finite-horizon approximations which bound the infinite-horizon optimal solution,
thereby quantifying the influence of end effects. For linear programs, extensions of these
approximations quantify the end effects of fixed initial period decisions over a functional
range of future infinite-horizon conditions. The bounding methods prove successful in
eliminating many end effects in two sample applications: A linear program in use by the
United States Army for manpower planning and an integer program in use by the Defense
Language Institute for course scheduling. Using as little as two times the computational
requirements needed to solve a finite-horizon problem, the bounding methods supply

feasible solutions to the infinite-horizon problems that are guaranteed to be within 1% of

optimal.
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I. INTRODUCTION

This dissertation considers optimization problems in which similar decisions need
to be made repeatedly over many successive time periods. These problems have wide ap-
plications including manpower planning, scheduling, production planning and control, ca-
pacity expansion, and equipment replacement/modernization. Even though many instances
of these decision problems extend over an indeterminate time horizon, it is common prac-
tice to model them using a finite horizon. The length of the finite horizon (referred to as a
forecast or solution horizon), is usually subjective and driven by problem complexity and/
or knowledge of data and functional structures. Unfortunately, in many cases, using an ar-
tificial finite horizon adversely influences the optimal decisions: This is commonly referred
to as the end effects problem (Grinold 1983b).

Past research into end effects has focused on solving (or approximately solving) an
infinite-horizon extension of the finite-horizon problem and developing sufficient condi-
tions to ensure that solutions are convergent to the infinite optimal. If the extension to the
infinite horizon accurately reflects the true problem, generated solutions are optimal (if the
infinite-horizon problem can be solved directly), or near optimal (if approximation meth-
ods are used) and are not influenced by end effects. This dissertation derives equivalent fi-
nite-horizon formulations for a small class of infinite-horizon problem structures. For a
larger class of linear and integer programs, it also develops finite-horizon approximations
which bound any infinite-horizon linear or integer program’s optimal solution, thereby
quantifying the influence of end effects. For linear programs, extensions of these methods
quantify the end effects of fixing initial period decisions over a functional range of future
infinite-horizon conditions. The bounding methods prove successful in eliminating many
end effects in two sample applications: A linear program in use by the United States Army

for manpower planning and an integer program in use by the Defense Language Institute




for course scheduling. Using as little as two times the computational requirements needed
to solve a finite-horizon problem, the bounding methods supply feasible solutions to the in-
finite-horizon problems that are guaranteed to be within 1% of optimal.

Little has been done specifically to isolate or quantify the impact of end effects (ex-
ceptions being Grinold (1983b), Svoronos (1985), and Schochetman and Smith
(1989,1991, 1992)). Also, only a few examples of infinite-horizon problem structures exist
for which the form of the infinite-horizon optimal solution is known, thereby eliminating
end effects (see Grinold and Hopkins (1973a) and Schochetman and Smith(1989,1991,
1992) for published examples). No research has been conducted to quantify end effects for
finite-horizon formulations whose future period coefficient structures may vary. This re-
search brings into focus two general approximation methodologies and concentrates on
identification of quantifiable measures of stability (i.e., minimizing potential end effects)

for initial decision variable(s), given some functional range of future infinite-horizon con-

ditions. This dissertation is organized as follows:

«The remaining sections of this chapter introduce infinite-horizon mathemati-
cal programs, illustrating that strong and weak duality conditions are not
always satisfied. The chapter concludes by highlighting the research contri-
butions of this dissertation.

«Chapter II provides a detailed review of the separate literatures that exist for
infinite-horizon linear/convex programs (see Manne (1970), (1976),
Grinold(1977), (1983a/b), Svoronos(1985)) and for finite/bounded i.e., inte-
ger programs (see Bean and Smith (1984), Schochetman and Smith(1989),
(1991), (1992)). The methodologies developed by this dissertation use as
their basis the general solution techniques developed by Manne, Grinold, and
Svoronos. Two illustrative examples highlight the two approximation meth-
ods used extensively in this dissertation, primal and dual equilibrium approx-
imation and their ability to bound the infinite-horizon optimal objective
function value. The second general approach is research conducted by Bean
and Smith (1984), (1985), (1993) and Schochetman and Smith (1989, 1991,
1992). Their research involves developing methods to generate initial period
optimal solutions for infinite-horizon bounded integer programs. The authors
devise sufficient conditions under which solving a finite-horizon formulation
over a long enough horizon, generates an initial solution that is optimal (or




near optimal) over the infinite-horizon. The chapter concludes each section
by discussing the applicability of each method to the end effects problem.

«Chapter III derives several simple single period overlap staircase structures
that have infinite optimal solutions which satisfy the dual equilibrium condi-
tions defined by Grinold (1983b). Since the solution form of the infinite-hori-
zon optimal is known, end effects are eliminated using dual equilibrium

approximation.

«Chapter IV lays the basic theoretical background to support the use of primal
and dual equilibrium approximations to quantify end effects associated with
infinite-horizon linear and integer programs. Proofs are provided showing
primal and dual equilibrium approximations have monotonic optimal objec-
tive values over an increasing solution horizon. An example illustrates that
convergence of dual and truncation approximation methods is possible, even
when weak and strong duality fail.

«Chapter V develops the theory and a set of algorithms that quantify the
impact of a changing right hand side on the initial period optimal solutions
for infinite-horizon linear programs.

«Chapter VI applies the primal and dual equilibrium approximations to a real-
world linear program (a military manpower planning model in use by the
United States Army). The chapter presents the model, its extension over an
infinite-horizon, application of primal and dual equilibrium approximations,
and an extensive computational study. The computational study includes the
impact of future period growth on initial decisions made under assumptions
of zero growth.

«Chapter VII applies primal and dual approximations, which were originally
developed for use with linear and convex programs, to a real-world integer
program in use by the Defense Language Institute as a decision aid to deter-
mine instructor requirements and establish course schedules.

«Chapter VIII summarizes the key theoretical results and insights gained from
implementation on the two real-world problems, and also provides recom-
mendations for future research.




A. THEORETICAL RESULTS

The main theoretical results of this dissertation are:

«Showing a class of infinite-horizon problem structures have equivalent finite-
horizon formulations. These problems can easily be solved providing optimal
solutions free of end effects.

«Showing that primal and dual equilibrium approximations, which were origi-
nally developed for infinite-horizon linear and convex programs, can also be
applied to integer programs.

+Showing that convergence of the truncation and dual equilibrium formula-
tions to an infinite optimal solution can be achieved even if strong and weak

duality fail in the limit.

«Deriving an algorithm that provides a method of bounding the potential error
associated with using initial decision variables generated under certain
assumed conditions, when those conditions vary over a functional range of

values.

B. PRACTICAL RESULTS

The practical implications of this research include:

«Validating the effectiveness of using primal and dual equilibrium approxima-
tions to bound the infinite-horizon optimal solution and quantify end effects
for a real-world military manpower planning model. Little research has been
conducted in the last ten years in the use of either primal or dual equilibrium
approximations. Only Svoronos (1985), in his unpublished dissertation, has
used both methods together to bound the infinite-horizon optimal solution.
However, for the manpower planning model examined, the primal and dual
equilibrium approximation methods prove highly successful in identifying
and quantifying end effects associated with solving the model over a finite

solution horizon.

«Validating the algorithm developed in this dissertation to bound the potential
error when using specific values of decision variables over a functional range

of future conditions.

«Validating the effectiveness of using primal and dual equilibrium approxima-
tion methods to bound the optimal infinite-horizon objective function value
and to quantify end effects associated with a finite-horizon integer program.
No work has been found that uses primal and dual equilibrium approxima-




tions to quantify end effects associated with integer programs. For the integer
program examined, these methods prove highly successful in identifying and
quantifying end effects linked to the finite-horizon formulation.

C. INFINITE-HORIZON MATHEMATICAL PROGRAMS

This dissertation considers a (countably) infinite-horizon integer or linear program

MPe:
Minimize Y ofc,(x,)
t=0
Subject to:

A(O,O) (xo) = bO
A(I,O)(xo)"' A(I,])(xl) - =b1
A (XDt An (x)+ A (%) =b,
A0 (X)+ Az (x)+ Ay (x) = b,
A(T, 0) (xo) + A (T, 1) (x]) + A(T, 2) (x2) + A (T.T) (xT) = bT

0<x,<u,(t=0,12,..).

Where:

*u, ¢, and b, are data vectors of dimensions n, X 1,1xn,,and m,x 1, 0.

(It is possible that the dimensionality may vary by period). In addition, we
can assign, n=n, m=m, for t21.

e o is a discount factor such that (O<o<]). The restriction o< is needed to
ensure convergence of the objective function.

*x, is a decision vector of dimension n, X I, where x, € X,.X,c R" or
X, c z" depending on whether the problem of interest is a linear or integer

infinite-horizon program.

sc(x;) (£20) is a linear function from x,€ X, — R, thatis bounded above
by an exponential growth function.




A,y (x) (820,25 t') ,is a linear function from x, € X, — R"™.

The ideal situation would be to solve the above problem directly, effectively dealing

with end effects. However:

«Accurate projections of future data may be difficult if not impossible to
obtain.

«Even if accurate projections are available, many infinite-horizon mathemati-
cal programs cannot be solved directly.

D. STRONG AND WEAK DUALITY OVER AN INFINITE-
HORIZON

Any consistent finite dimensional convex mathematical program satisfies strong
and weak duality (Bazaraa and Shetty (1979)). However, when extended over an infinite-
horizon, strong and weak duality do not necessarily hold. The following examples illustrate

the concepts of duality gap (failure of strong duality in the limit) and duality overlap (fail-

ure of strong and weak duality in the limit).

1. Duality Gap
The following example, modified from Duffin and Karlovitz (1965), illustrates the

violation of strong duality (i.e., existence of a duality gap). The primal formulation is:




Minimize x,

Subject to

x, > -1
1 1
z = >
4x1+ ]6x2 >0
1 1
ol — >
5x]+ 25x2 >0
1 1
Ex1+ —%; >0

x]eR, X,€ R.

The associated dual formulation:

Maximize —u1+0u2+0u3+ +0un+

Subject to:
u,+ Zu + Zu + + ! u + =1
1 4 2 5 3 e n+2 n Y -
1 1 1
Ou+ —u, + szt ..o + ———H,+ ... = 0
16 25 (n+2)2 n
u,20 u,20 u,20

For any finite-horizon problem (i.e., fix n), strong and weak duality hold for the pri-

mal and dual pair with optimal objective function values equal to -1 (x;=-1 and x3=n, u;=1
and u=0 (2<t<n)). Asn — , the dual formulation maintains the optimal objective val-
ue of -1 with optimal dual decision variables u;=1, u=0 (t>2). However, the infimum of

the primal formulation is zero with x;=x,=0, as x; is driven to zero to keep x; finite. This
is a pathological example, since the added constraint x,<M, for large M, allows strong and

weak duality to hold in the limit.




2. Duality Overlap
This example, provided by Grinold and Hopkins (1973b), is a linear program that,

when expanded over an infinite-horizon, exhibits a duality overlap.

The primal formulation is:

n

t

Minimize G) z
t=0

Subject to:
x,=1
Ox,+y,+zy = 1
xt—zyt_]+0zt_1 =0 for t=1,2,3,...,n
=2%,_;+Yy,tz = 0 fort=1,23,...,n

xt’ yt7 zt 20 f07’ t=1,2,3,...,n.
The associated dual formulation:

Maximize u,+v,,

Subject to:
u,—2v, <0 for t=0,1,2,..n-1 (1)

v,-2u,,,<0 fort=0,12..n-1 (2)
u,<0 (3)
v <0 (4)

1\
vts(é) fort=0,1,2,...n.

For any horizon, an optimal primal solution with objective function value of zero,
is x,=yt=2t, z,=0(t=0,1,2,...n). For any finite n, dual constraints (3) and (4) result as special
cases of constraints (/) and (2) when t=n, (i.e., v,,,; and &, ; do not exist for any finite
formulation). For finite n, the optimal dual solution with objective function value of zero,

is v=u=0 (for all 0<t<n). However, in the limitasn — o, the dual formulation no long-

t
er includes constraints (3) and (4) and u, = v, = (é) (for all 1=0,1,2,3,...) is feasible




with an objective function value of 2. Therefore, in the limit, a duality overlap of 2 exists

between the primal and dual formulations’ optimal objective function values.

E. SUMMARY
For both the special cases presented in the last section, strong and/or weak duality
fail in the limit (as# — ). As illustrated in later sections, while this is an interesting

theoretical problem, the bounding techniques developed to eliminate and/or quantify end
effects work even when strong or weak duality are not satisfied in the limit.

The next chapter provides a detailed review of the separate literatures that exist for

infinite horizon linear/convex programs and for finite/bounded programs.




10




II. BACKGROUND

This chapter provides a detailed review of the separate literatures that exist for in-
finite-horizon linear/convex programs (Manne (1970), (1976), Grinold(1977), (1983a/b),
Svoronos(1985)), and for finite/bounded programs (Bean and Smith (1984), Schochetman
and Smith(1989), (1991), (1992)). The focus of this review is the applicability of these
techniques to cope with end effects.

Section A provides a review of five approximation methodologies developed for in-
finite-horizon linear programs (Truncation, Salvage, Fixed End Conditions, Primal Equi-
librium, and Dual Equilibrium).Two illustrative examples highlight some of the properties
associated with the primal and dual equilibrium approximations.

Second B extends the concept of using primal and dual equilibrium approximations
to bound the infinite optimal solution for infinite-horizon convex programs (Svoronos,
1985). A simple example illustrates the effectiveness of the bounding methodology pro-
posed by Svoronos and developed independently by the author.

Section C reviews research conducted by Bean and Smith (1984), (1985), (1993)
and Schochetman and Smith (1989), (1991), (1992). Their research involves developing
methods to generate initial period optimal solutions for infinite-horizon bounded integer
programs. The authors devise sufficient conditions for which solving a truncated formula-
tion over a long enough horizon, generates an initial solution that is optimal (or near opti-
mal) over the infinite horizon.

The last section of this chapter concludes that together primal and dual equilibrium
approximations show the greatest promise for practical implementation. Follow on chap-
ters expand on issues associated with practical implementation of primal and dual equilib-
rium approximations to quantify end effects for both infinite-horizon linear and integer

programs.
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A. INFINITE HORIZON LINEAR PROGRAMMING AND END
EFFECTS

When x, is a real valued vector, (i.e., a member of R™ ), the infinite-horizon math-

ematical program is an infinite-horizon linear program (hereto defined as LPoo). Research

into solving and understanding the underlying structures of LP~ has been conducted by

Manne (1970,1976), Hopkins (1971), Grinold and Hopkins (1973a), Grinold (1971, 1977,
1983a/b), Murphy and Soyster (1986), and Romeijn, Smith, and Bean (1992). The purpose
of this chapter is to summarize the results of past research in this area and highlight the ap-

plicability of such work to end effects when the original problem can be formulated as a
LPoo.

1. Approximation Methods

Grinold (1983b) identifies five general approximation techniques (Truncation, Sal-

vage, Fixed End Conditions, Primal Equilibrium, and Dual Equilibrium), that can generate

finite-horizon approximations for LPeo.

a. Truncation
Truncation approximates the LPo> by dropping constraints and cost coeffi-

cients tied to the variables x,, (t>T+1). The following is a truncation approximation of LPe

12




T
Minimize 2 ole,x,

t=0
Subject to:
A(o,0)x0 Zbo (0
A(1,0)x0+ A(I,I)xl b, (I)
A(2,0)x0+ A(2,1)x1+ A(z,z)xz b, (2)
A(3,0)x0+ A(3’1)x1+ A(3’2)x2+ A(3,3)x3 2b3 (3)
A(T’o)x0+ A(T’I)x1+ A(T, %ot A(T,3)x3+ A(T’ nXr 2b, (T)

0<x,<u, (t=0,1,2,...).

Truncation disconnects the first T period decisions from the rest of the prob-
lem. The form of disconnection assumes that resources created up to time 7 have no value

after period 7. This can lead to end effects where either the initial decision variable(s) are
suboptimal, or worse, infeasible over LPeo. Truncation is effective at eliminating end ef-

fects over the initial decision(s) x, when there exists an F such that for all (T2F), the opti-

T are optimal for LP . The

mal initial decision variable(s) for the T period truncation, x
difficulty lies in determining under what conditions one can guarantee that a finite F exists.
Assuming sufficient conditions exist for weak and strong duality for a LP° (i.e., Romeijn,
Smith, and Bean (1992)), the cluster points (as T — o) of the sequence {xOT} form a set
of optimal points for LPe . However (as subsequently shown in section A.2), there is no
assurance in general of the existence of a finite forecast horizon F, such that if 7>F, and the
truncation problem is solved, the resulting xoTis optimal to LPe.

The truncation method has the property that given ¢,>0 for all £>T, the opti-

mal objective function value to the truncated problem is a lower bound to the optimal ob-

jective function value of LPe.

13




b. Salvage

The salvage technique extends truncation by placing a future value on re-
sources carried over into later periods (salvage value). The model formulation is very sim-

ilar to truncation except the objective includes salvage values d, that represent the per unit
value of x, in all future periods not explicitly modeled (i.e., periods T+1, T+2, T+3,...).

T

Minimize Y o (c,~d,)x,
t=0

Subject to:

AyX, =b, (0
Hxx, +Ax, ‘ =b, (1)
H,x, +Kx, +Ax, =b, (2)
H,x, +K,x; +K ;x, +AX; =b; (3)
Hx,+K;_ ,x, +K;_,x, +Ax; = by (T)

0<x,<up, (t=0,1,2,...T).

Grinold (1983b) uses Lagrange multipliers to relate the infinite-horizon and

salvage linear program formulations. Grinold starts with the LPe problem:

14




.5

. ¢
Minimize Z ocx,

t=0
Subject to:
Apx, =b, (0)
H;x, +Ax, =b, (I)
H,x, +Kx, +Ax, =b, (2)
Hx, +K,x, +Kx, +Ax; =b; (3)
Hyx,+K;_;x; +Kp_,x, +Ax; = b (T)

0<x,<up, (t=0,1,2,...).

Grinold (1983b) uses Lagrange multipliers u,, to formulate LPe as:

oo o0 t-1
. t t
Minimize 2 ocx,+ Z o ut(bt—Htxo— 2 K, ,x, —AxtJ

t=0 t=T+1 n=l
Subject to:
Apx, =b, (0)
Hix, +Ax; =b, (I)
H,x, +Kx, +Ax, =b, (2)
H.x, +K)x, +K x, +Ax; =b;, (3)
Hx,+K;_x; +K,_,X, +Ax; = by (T)

0<x,<up, (t=0,1,2,...).

Grinold (1983b) illustrates that if:

t
d0= 2 ouH, ;
t=T+1

15




_ t-j , :
d;= Y o uK, ; (I1sI) ;and
t=T+1

— J
dj=ujA+ Zoc u

t=1

(oK G2THD).

Then the objective function:

v o0 t-1
L t t
Minimize Y ocx,+ Y o ut[bt—Htxo— D Kt_nxn—Axt) can
t=0 t=T+1 n=1

be rewritten as:

T oo (=]
. t t t
Minimize Yy o (¢,~d,)x, + Y o (ed)x, + Y, ougb,.
t=0 t=T+1 t=T+1

The salvage technique uses the first term and ignores the last two terms of

the reformulated objective function. Grinold (1983b) further shows that

T oo oo
. t t t .
Minimize z o (c,~d)x, + z o (c,~d)x,+ z o ub, yields a lower bound
t=0 t=T+1 t=T+1

on the optimal value of the infinite horizon problem provided the following assumptions

hold:

Given any set {u,}, d; (for all #) exist;

t .
*The sum Y o ub, exists; and
t=T+1

*The optimal solution x* t2T+1 of
Minimize (¢,~d,) x,
Subject to:
0<x,<up,
exists for all 2T+1.

16




A difficulty with using the salvage method lies in determining a-priori the
proper salvage values {d,} or Lagrange multipliers {«,}. Grinold (1983b) illustrates that
under the above assumptions, given any set of Lagrange multipliers {u,}, an optimal solu-
tion (xp*x*, Xo*,..x_1*, x7¥) to the salvage approximation provides a lower bound to
LPw (as defined in this section). However, the quality of any solution is dependent on the
a-priori-choice(s) for {d,} and {u,}. Therefore, it is impossible in general to quantify the
end effects of any derived optimal solution set using salvage techniques. A poor choice of

{d,} and {u,} can lead to greater end effects difficulties than those created by the truncated

solution approach.

¢. Fixed End Conditions
Another typical approach to deal with LPeo, is to solve a finite period prob-
lem, fixing the desired end conditions. The formulation is very similar to truncation, how-

ever, it includes one additional constraint (representing the tie-in to all future constraints).

T
Minimize z afe,x,

t=0
Subject to:
A(o, 0%ot Zbo
A(I,o)x0+A(1’1)x1 Zbl

A r_pnXr-t Aaqn*r 2by
A1 2by 1A T+ ¥T+1

x,2 0, (0<i<T)

Given a staircase problem structure and a-priori the infinite optimal value of

A (7,174 1y%74 > S0lving the above formulation provides an infinite optimal solution for the

17




variables X, X, X,... X7. Consider the following example:

Minimize Z (0.9) txt

t=0
Subject to:
X, >1
Xyt X, >1
X+ X,
X+ X >1

x,20 (1=0,123..).

For this example the optimal solution is x=1(t=0, 2, 4,...), x=0(t=1, 3,
5...). (See chapter I section A for a proof that problems with this structure have optimal

solutions of this form.)

Using x3=0, the problem can be formulated as:

Minimize ¥, (0.9)'x,

t=0
Subject to:
X, >1
X t+ X, >1
x,+x, >1
x, 21-(x;=0)
x, 21— (x;=0)

X+ X5 >1

x,20 (t=0,1,2,...).
Note that the problem is separable, which allows for x, x;, and x; to be eas-

ily solved:

18




Minimize Z (0.9) txt
Minimize (x,+0.9x;+0.81x,)7 b t=4
t to:
Subject to: ubjectto
x, 21 x, > ]
x,+Xx; >1 + X4 X > ]
X, +x,21 Xt Xg 21
X + x 21
x221 6 7
X, X,xX,20 .
o tr ]
’ ? x,20
i (t=0,1,2,...) |

Solving the finite-horizon problem on the left provides an optimal solution of xy=1, x;=0,
xy=1.

Fixing end conditions assumes that the infinite optimal solution has as part
of its optimal solution set, A . ; r, nXr. ;. Of course, the difficulty lies in identifying an
optimal x7., ;. For linear programs, the number of feasible values for x7, ; is in general un-
countably infinite (a special case however, exists when only one pointxr, ; is feasible over

the infinite-horizon problem space). While in theory it is possible to address this issue,
(Schochetman and Smith (1989, 1991, 1992)), the approach in general is plausible only

when there exists some period 7+1 for which x7, ; has only a manageably finite number of

possible solutions. Using this method with a suboptimal end condition produces an unwant-

ed end effect whose influence cannot be easily measured.
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d. Primal Equilibrium Approximation

Manne (1970, 1976) proposed an approximation to LP e that assumes there
exists a time period T, such that for all T, x,,;=Ax; (i.e., the decision variables after a fixed
period become functionally related). Grinold (1983b) refers to this as Primal Equilibrium
approximation. Svoronos (1985) further expands this definition to be any restriction on the

feasible region, such that a finite period re-formulation is possible. For the purposes of il-

lustration, we restrict ourselves in this section to restrictions posed by Manne. The primal
equilibrium approximation requires the following assumptions:

'Ct=c._<_M, tZT;
*Ao<1 (Needed for objective function convergence);

*There exists an L such that A ,=0 for all £’-t>L, (O<t<t’) (implying any
decision variable x, links only a finite number of constraints);

*There exists a T such that A, 5=A, A(; »=K; (Where j=t-t’, t2t’, t=2T);

*A ,is the lower triangular matrix structure associated with the variables xy, x,

X,..X7.; With dimensions [(my+m j+my+..4my.p) X (ngtn+ny+..+ngpl;

.th{A(t,O)’ A(t,])’ A(t,2)""A(t, T—])} with dimensions [(mt) X (n0+n1+n2+...
+ng.p)] (¢<T-1);

*b,. ;=\b, (t>T) (ensuring non-empty primal feasible region when x,, ;=Ax,.

Figure 1 shows the general form of LPe satisfying the above conditions:
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e e an T t-T
Minimize ¢X,+ O ZOL cx,

t=T

Subject to:
Ay, =b, (0)
H 2+ Axp = by (1)
H,%p+ Kixp+ Axp = Abg (2)

a 2
H %)+ Kyx+  Kpxp o+  Axp = Abr (3

N L-1
H 2+ K, x;+ Ky _oxp v Ky sxp o+ 0 Axp g = A br (L)

K x;+ Kp_xp K _Xp,., - : (L+1)

Kixp v Kp_Xp.,
x>0  (1=0TT+l,.)

Figure 1.
General form of LPe formulation for which
primal equilibrium approximation is applicable.

Where £, is the aggregated vector (xg, XJ, X5, X3,...%7.7) and & is the vector (¢y, 0y, azcz,
agc3,...,a”cT_1), and b, is the vector (by, b}, by, b3...br.), (With dimensions
(npnytngt.. +npg} X1, 1x {nptnytng+.. +np g} and {mp+my+tms+... +my )

x 1). When x,, ; is restricted to x,, ;=Ax, for £2T, the above structure allows an equiva-

lent finite period formulation. For example, consider L=1. The constraints from period T

onward (i.e., equation (3) onward in Figure 1) become redundant. Substituting x, =hx;

for 2T, the objective function can be re-written in terms of X, and x7:
N T (t-T), =T
ex,+o Z o A cxp.
t=T

If L>1 and A=1, then adding the functional constraint set x,,;=x,, =T, k finite leads to a

finite period reformulation as the constraint set again eventually becomes redundant.
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Primal equilibrium approximation has the following properties. (The prop-

erties are formally proven in Chapter IV).

«Primal equilibrium approximation adds constraints (i.e., restrictions) to the
original primal feasible region. Therefore, any primal equilibrium

approximation optimal solution is an upper bound to the LPeo optimal
objective function value.

oo

*Let {x,T } be an optimal solution to the primal equilibrium approximation
t=0 ’

where x; =A*Tx; (£2T). These decision variables form a feasible solution
sequence to the LPe problem.
The primal equilibrium approximation assumes a T exists where a function-
al relationship can be derived that restricts the feasible region and leads to a finite period

re-formulation. If this functional relationship holds for an optimal solution to LPe, and T
is known, end effects are eliminated. The difficulty lies in determining a-priori if the prob-
lem structure has an infinite 6ptimal sequence where the functional relationship holds.
Manne (1970) derived a set of sufficient conditions under which primal equilibrium func-
tional relationships exist in optimal primal solution sequences. If an optimal solution does
not exist satisfying thé functional relationghip, the optimal solutions to the infinite horizon
formulation may be severely impacted. Even in such circumstances, Chapter IV shows that
primal equilibrium approximation provides an upper bound on the optimal 6bjective func-
tion value to LPe, It is important to note, that even if primal equilibrium approximation
converges to the optimal solution for LPeo, this does not necessarily imply the existence of

a finite forecast horizon F, such that if k=F, and the primal equilibrium approximation is

solved, the resulting xtF is optimal to LP~ for any ¢ (0<I<F).

e. Dual Equilibrium Approximation

Dual equilibrium approximation (see Grinold (1971, 1977, 1983a/b)),

solves LP by aggregating constraints of the original problem, in a manner that allows re-
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formulation of LPe as a finite-horizon linear program. Dual equilibrium approximation

provides solutions for LP= problems with the following general structure:

oo

T T (-T
Minimize &%,+ o Eoc cx,

t=T
Subject to:
A%, >b, (0)
Hjq+  Axp >b, (1)
H,%,+ Kx .+ Axp,, 2b,. ., (2)
H3£c0+ K2xT+ KIxT+1+ AxT+2 2bT+2 (3)
H, %)+ Ky _xp+ Ky _ %, + - AxT+L—'1 =bp,p_; (L)
H, 2, Kpxp+ Ky xp, o+ .. Axp,, =by., (L+])
0<%,<1m, 0<x,<u, (1=12..)

The following conventions are used:

* &,, is the aggregated vector (xy, X ;, X, X3, X4,...,X7.1), (With dimensions
(l’io+i’l1+l’i2+...+I’lT_1) X ] ),

*¢ is the vector (¢, 0c;, oczcz, oc Zaeens OLT‘IcT, 1), (with dimensions
1 X (ng+n;+ny+...+npp));

oc=c for all 12T,

« b, is the aggregated right hand side (by, b;. b,. b3....,bz. ), (with dimensions
(m0+m1+m2+... +mT_1) x 1)

In addition, the following functional relationships must hold:

A=A (for all t27), A &) =K; (wherej=t-f,t21t,t2T),

* A, is the lower triangular matrix for variables x,x ;,x5,...x7.; with
dimensions [(my+m;+my+... +my)) X (ng+np+ny+..+nrpl;

23




H={A0p A1y A 2p-A, 1)) With dimensions [(m,) X
((n0+n1+n2+...+nT_1)] (tg-]), and

. . n-T - n-1
*The infinite sums b = Z o 'b,.Hz= 2 o H,,
n=T n=1

n n-T .
Aa=A+ZocKn,andxa= Zoc x, <u, <eo exist.

n=1 n=T
Aggregating all constraints from time 7 onward under the condition that the jth constraint

(7=1) multiplied by o leads to the following formulation:
Minimize ¢2,+ ocTcxOc
Subject to:
Ak, 2bg
H%,+A x,2b,

OSxOSuO,vaO

Dual equilibrium has the following properties:

*The optimal value of the dual equilibrium relaxation is a lower bound on the
optimal value of LPe> . Aggregating the constraint space is a relaxation of the
original feasible region, therefore, the derived optimal solution cannot be
worse. (i.e., the set of feasible solution sequences for LP<o is a subset to the
set of feasible solution sequences for the dual equilibrium approximation).
Chapter IV contains a proof.

*Define fcg, x({ as optimal solution values to the relaxation where the
aggregation of constraints begins at period 7. Note that
:‘c(f = xg, x,T, x?, x3T, ...xﬁ_ , are feasible to the first 7-/ constraints of LPeo.

oIf the value of the optimal objective function for the dual equilibrium
problem converges to the optimal objective function for LP then for all

finite teZ*, there exists a subsequence S, C Z" , such that for k€S ¢

k . . . . . .
x,} = x*,wherex k is an optimal decision variable for a k period
t t t P p

approximation and x,* is an optimal decision variable for LPeo (See
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Grinold(1977, 1983), Svoronos (1985), and Romeijn, Smith, and Bean
(1992)).

Dual equilibrium approximation aggregates constraints from period T+1
onward. The effect of this aggregation becomes clearer if one looks at the equivalent for-
mulation one can obtain using Lagrange multipliers. Given LPw, placing the constraints
from period T+ onward into the objective function with their associated multipliers, and
assuming that the multipliers have the functional relationship that u,, j=ouw, (12T+1), leads
to an objective function with only one multiplier for the aggregated discounted summation
of all constraints beyond T+1. Dual equilibrium approximation, when applicable, indicates
that the value of future resources is functionally tied and decreasing at a constant rate. If an
optimal solution to the original infinite horizon formulation has this underlying functional
relationship, solving the dual equilibrium reformulation with the proper value of T pro-
vides an optimal x,, for LPeo . Grinold and Hopkins (1973b) identify a class of problems in
which an infinite horizon optimal has the dual equilibrium functional relationship. Howev-
er, this class is by no means inclusive (See Chapter III for additional examples). Difficulties
exist in determining a-priori if the problem structure has an infinite optimal sequence where

the associated multipliers have the functional relationship u,, j=ow, (12T, T finite). Even if

no optimal exists to LPeo with this functional structure, dual equilibrium approximation
still provides a lower bound on the objective function (see Chapter 1V), however, the opti-
mal decision variables have the potential of being infeasible for the infinite horizon prob-
lem of interest. If sufficient conditions are met which ensures that the dual equilibrium

approximation converges to an infinite horizon optimal, (e.g. ,Grinold (1977)), then for all
finite r€Z* as T — oo there exists a subsequence S, € Z", such that for k € S, ,

{x,k} —  x/*, where x,k is an optimal decision variable for a k period dual equilibrium
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formulation, and x,* is an optimal decision variable for LPe. This does not necessarily

imply the existence of a finite forecast horizon F, such that if k=F, and the dual equilibrium

problem is solved, the resulting xtF is optimal to LP~ for any (0<t<F).

2. Primal and Dual Equilibrium Examples

The following two examples illustrate the concepts and potential shortcomings of

the primal and dual equilibrium approximations.

a. Primal Equilibrium Assumptions Satisfied

In this example LP<, an optimal sequence exists that satisfies the assump-

tions associated with primal equilibrium.

The LP~ of interest is:

Minimize ¥ (0.9)'x,
t=0
Subject to:

(—]——)x+ X =]
0.899) 0 - 1 B

(—i—)x + X =1
0.899)72 3 -

x,20 (t=0,1,2,...).
Property I This formulation has only one feasible.(and therefore optimal) solution

0.899
xt‘f@@ for all (=0, 1, 2, 3,...).
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Proof:. Clearly x,=-1q'%g-g is feasible since for all (¢=0,1,2,3,...)

1 4x _( 1 )(0.899)4_0.899_1
0.8997t-17"t ~ \0.899/)\1.899) " 1.899 = '

The proof shows by contradiction that this is the only feasible solution. As-

sume there exists some feasible sequence {x,},_, such that xzx, ; for some . We first

show that it is sufficient without loss of generality to consider only x,>x; ; where

0.899 ] AR . '
> 7800 We then show x,, ,>x;and x;, y-x=1 — 5355 + ((0.899) _ ])xt . Using this

result, it can easily be shown for any finite n>1 that x,, 5, 2>X;, 2, and

1 1 \? . . . . .
Xppone2-Xeeon=1 — 0,899 + ((0_3_9_9) -1 )xH ,»- This relationship provides a contradic-

tion since (X, <X,,,<X;,4...) Xpy2, for (n=1,2,3...) grows without bound and x,<0.899

1
for all ¢ (0899x,+x,+, =1 and x,x,,, 20)
, . 0.899
We first show that x>x, ; implies x,>x,, ; and x, > 7890" If x,>x,_;, then
0.899 1
—_ = < =
> 7200 since x,_; = x,~8, (0<8<0.899) which implies 0899( -0) +x, = 1
_0.899+86 _0.899 . 0.899
rX, = —7255 >1.899.Smce x, = ]899+8 (> 0) , this implies

1 (0.899 ) ( 0.899 £ 0.899
+e|+x,,, =1 (el =

0.899\. 1.899 = 7.8990.899 ].899) or X;>X,. 1. From

X, ;<X >X,, ] it should be clear that it is sufficient to only consider x>x;.;.

Therefore, without loss of generality consider x,>x, ;, and note that

0.899

> 7899 Now examine the relationship between x,,, and x;. Since

1x+x = 1 (x =I——]——x)and I —x,,  t+Xx,,, =1
0899 t+1 t+1 0899 t 0899 t+1 t+2
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1 1 1 Y :
(xHZ =] _0.7—9936’”)’ X, =1 _0.899+(0.899) x, . Therefore x,,,>x, since x5 -

- 1 s (o) - e e 1 g+ () 1)
* =1 0.899+((0.899 1 Jx, and I =555+ 5ggg,) —1 >0 When

0.899

X,> 7205 Using this result, it can be shown for any finite n21 that X, 5,4 2>X;4 2 and

1 I ¥V . . . . .
Xppope2-Xeon=1— 0,899 + ((0.899) - I)x,”,, . This relationship provides a contradic-

tion since (X, <X,,,<X;44.--) Xp4o, for (n=1,2,3...) grows without bound and x,<0.899

forall ¢ ( ﬂ{——%x, +x,,,=1 and x,x,,,2 0) . Accordingly, the only feasible (and there-

fore optimal) solution is xF%g for all (r=0,1, 2,...).

QED (Property I
Applying the primal equilibrium approximation (applying the additional

constraints x ;=x,=x3...) the problem reduces to:

Minimize x , + 9x I

Subject to:
1
(7§9_9x0+ X, =1
0.899"1
Xp X, >0

This formulation has an objective function value of approximately 4.734

withxy,x; = %g—iz = 0.4734 , which are optimal for the infinite horizon problem. This prob-
lem exhibits some interesting characteristics:

«Solving the original formulation using truncation approximation techniques,
given a forecast horizon 7, yields a solution x,T, (0<t<T) which is not optimal

to LPoo . The sequence of objective function values and optimal decision
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variables (as T — o) from the truncated approximation are convergent
(Romeijn, Smith, and Bean (1992)) to the optimal values for LPoo , however,
there exists no finite forecast horizon 7 under which x,T, for any (0<t<7) is

optimal to LPoo.

*Solving the original formulation using dual equilibrium approximation
techniques, given a forecast horizon 7, yields a solution x,T, (0<£<T) which is
" suboptimal to LPos . The sequence of objective function values and optimal

decision variables (as T — o) from the dual equilibrium approximation are
convergent (Using results of Romeijn, Smith, and Bean (1992), and Grinold
(1983)) to the optimal values for LPe, however, there exists no finite

forecast horizon T for which xtT for any (0<<7) is optimal to LP.

b. Dual Equilibrium Assumptions Satisfied.
The following simple example of LPe has an bptimal solution sequence

that satisfies the dual equilibrium assumptions.

Minimize ¥, (0.9)'x,

t=0
Subject to:
X, 21 (0)
0.8x,+ x; >2 (1)
0.8x,+ x, 22 (2)

0.8x ,+ X3 22 (3)

X,20 (1=0,12..).

Applying dual equilibrium method with 0:=0.9 (aggregating with/discount-

ing constraints (2) onward) generates the following dual equilibrium approximation:
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Minimize x,+ 0.9x , + 0.81%,

Subject to:
X, =1
0.8x )+ X, >2
0.8x + 1.72%, 220
Xp X £,20.

This approximation has an optimal objective function value of 11.0465 with

xy=1, x;=1.2, and £,=11.0698. This problem is an example of the K=pA structure (See

i-1 i-2
Chapter III). If one uses the formula x; = x, ), -D P +x,BY (-1 (B)" to gen-
t=0 t=0

erate x, (£22) with $=0.8, and x; and x are optimal solutions to the truncated formulation

(which equals the values of the dual equilibrium formulation), the following formula is de-

rived:
i_ 2 . ) 1
x,=2Y (-D'os+12¢-n"" 08" 2.
t=0
It can be shown that the above formula generates feasible points to LPeo,
and that:

oo

2= 3 o Pxy = 11.0698.
t=2

This sequence is feasible to LPe, yet provide the optimal solution to the re-

laxed formulation. Therefore, x,, and x, the optimal solutions to the relaxed formulation,

are also optimal to LP .

3. Summary
All of the approximation methods discussed have potential pitfalls regarding end ef-

fects. The truncation method, completely disregards future requirements, and the other
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methods discussed, (salvage, fixed end conditions, primal, and dual equilibrium) all rely on
assumptions regarding the infinite-horizon, that usually cannot be verified. However, pri-
mal equilibrium approximation always lead to upper bound optimal objective function val-
ues for LP, and dual equilibrium approximation always lead to lower bound optimal
objective function values for LPe (See Chapter III for a formal proof). Therefore, as the
next section illustrates primal and dual equilibrium approximations together can provide a
tight bound for the infinite horizon optimal objective function value. This provides an ef-
fective way to measure any remaining end effects with the optimal decision variables asso-

ciated with the primal and/or dual equilibrium approximations.

B. INFINITE HORIZON CONVEX PROGRAMMING

When ¢, is a continuous convex function, A, () is concave where x; is a real val-

ued vector (i.e., a member of R") and b, is a real valued vector, MP~ becomes an infinite-

horizon convex program (CPe). Svoronos (1985) conducted research in the areas of duality
theory and finite-horizon approximations for a general class of infinite-horizon convex pro-

grams, for which the constraint space is staircase in nature (i.e.,the concave period ¢ con-

straint function depends only on variables associated with either period # or 7+1]) 1 The
general form of the problem follows introduction of notation, as used by Svoronos:
Indices: t Time Period (0,1,2,3... T-1, T, T+1...).
Data: o Discount Factor (0<o</);
n(t) Dimension in #h period.

Decision Variables: x, /b period current production vector with dimensions

n(t) X 1;

1. Extension of contributions by Grinold (1977, 1983a/b), Manne (1970, 1976), Evers (1973, 1983),
among others. For a complete listing, see Svoronos (1985).
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Ye+1

Decision Space: S;

Functionals: G,

8

A period lagged production vector with dimensions

n(t+l) X 1.
feasible set of decisions (x, y;..p)-

Closed proper concave function §;, — R;

Closed proper convex function S, — R;

Proper convex function R"® —  R;

Proper concave function R*® — R.

Infinite Horizon Convex Program:

C t
Minimize z o, (XY, )

t=0
Subject to:

) (¥p) <8 (5’0)

Gt (xts yt+1) >0 (05[(00 )
h,(x,) <g (y,) (0si<e)

(X, ;.1 € S, (0<t<oo )

where Y, is given.

It is important to note that this convex structure is general in nature, and includes as

an important subset single period overlap staircase structured linear programs. A non-lin-

ear example of this general program strucfure used by Svoronos (1985) follows:
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Example Problem Formulation:

Minimize ¥, (~1) o/ logx,

t=0

Subject to:

b
ak, 2x,+y, (0<t<oo )
k,,, =k+y,  (0si<)
k, given }
k,y,x 2 0 (0<t<o )
a>0,0<b<1.

For any finite forecast horizon T, this problem involves minimizing a strictly con-
vex function over a convex feasible region. Therefore, for any finite forecast horizon 7, the
optimal solution represents a unique global minimum (Bazaraa and Shetty (1979)).

Svoronos (1985) illustrates when given certain regularity conditions, the solution of the in-

finite-horizon convex program also has a global minimum?.

Convex programs, of which linear programs are a special subset, have, as a rule, an
uncountable number of possible end conditions for any finite horizon. Because of this, there
is no assurance in general for the existence of finite forecast horizons (i.e., a forecast hori-
zon T for which a subset of the optimal decision variables to the T period approximation
are optimal to the infinite-horizon problem). However, Svoronos (1985) illustrates for a
general staircase structure convex program, (given certain assumptions are met), that 7' pe-
riod finite horizon approximations generate a sequence of optimal objective function values
that converge in the limit to the infinite optimal. He also shows under the same assumptions
that a subsequence of the optimal decisions generated by the T period finite-horizon ap-

proximations converge point-wise to an infinite optimal.

2. Svoronos used an equivalent class of problems, where the problem was to maximize a concave
objective over a convex region.
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1. Bounding Methods

Svoronos (1985) was the first to propose using a generalization of the primal and

dual equilibrium approximations to bound the optimal objective function value for the in-
finite-horizon problem.3 For infinite-horizon convex programs, no finite horizon T exists

in general for which the optimal decision variable(s) (xtT, Vis JT) for any (0<t<T) are optimal

for the infinite-horizon problem. If the objective function can be bounded by use of approx-

imations which have finite-horizon formulations, then the difference between these approx-
imations can be used as a measure of quality for the decision variable(s) (xtT, Vs IT) as

compared to the optimal (x,, y, ;) for the infinite-horizon problem. The general algorithm

is:
o Step 1. Set initial forecast horizon T. Set tolerance level €.

+ Step 2. Apply variation of primal equilibrium approximation to the convex formulation.
Add functional restrictions as needed to make all constraints which include decision vari-
able x7,.; onward redundant. Evaluate restricted formulation. Note optimal objective value

Z/(TRestrict) and optimal initial period decision(s) x TRestrict Note that x,TReS! is feasible

to the original formulation.

« Step 3. Apply variation of dual equilibrium approximation to convex formulation. Aggre-
gate/with discounting all constraints which include variables Xz, ; onward. Evaluate

relaxed formulation. Note optimal objective value Z (TRelax) ynd optimal period decision(s)
x,TRelax Note that x,TRelax may not be feasible to original formulation.
+ Step 4. Evaluate Z (TRestrict) . 7 (TRelax) 1f the difference is less than &, stop. Use x, TRestrict

as your choice as an €-optimal x,. Otherwise, increment T, and return to step 2.

As long as the objective function values of both the primal and dual equilibrium ap-

proximations converge to the infinite optimal objective function value, this algorithm

3- This idea was developed independently by the author prior to finding Svoronos (1985) unpub-
lished dissertation. The concepts are an extension of work done primarily by Grinold (1977,

1983), and Manne (1970, 1976).
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provides a near optimal solution for the decision variable(s) of the infinite-horizon prob-

lem. Figure 2 illustrates this idea.

Optimal Obj Value
Primal Equil Approx

/ Objective Function Value

Gap
(Desire < €)

Period T —= \
Dual Equil Approx

Objective Function Value

e
-

' Figure 2.
Bounding the objective function. -

2. Using Bounding Methodology
This section illustrates how the above bounding algorithm can be used for a specific
problem.

Let’s examine the following linear program:

oo

o t
Minimize Z o cx,

t=0
Subject to:
Ax, >s(0)
Kx,+ Ax, >2b (1)
Kx,+ Ax, >2b(2)

Kx,+ Ax; =b(3)

x,20 (1=0,1,2...).

Applying primal equilibrium approximation to the above formulation at period T

(i.e., setting x,=x,, ; for t>T) results in the following finite eriod approximation:
gX~ Xty ] g p pp
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T-1 ¢ ocTch
Minimize Y o cx,+ Vs
t=0
Subject to:
Ax, >s(0)
Kx,+ Ax, 2b (1)
Kx + Ax, >b(2)
Kx,_+ Axp >b (T)
(K+A)x, >b(T+1)
x,20 (t=0,1,2...,T).

Applying the dual equilibrium approximation to the original formulation from pe-
riod T onward (aggregating constraints 7 onward discounting with factor o) results in the

following finite period formulation:

T-1
Minimize 2 octcxt + ocTcxa
t=0
Subject to:
Ax, >5(0)
Kx,+ Ax, >b (1)

Kx,+ Ax, >b(2)

Kxp_,+ Axp_, >b(T-1)
Kx; ,+ (0K+A)x, Z—f—a(T)
x,20 (1=0,12,.,T-1) x,20.

Increasing the solution horizon for each of the above approximations (i.e., in-

creasing T), leads, in many cases, to a sequence of optimal objective function values
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which form a convergent sequence for both primal equilibrium and dual equilibrium

approximations. Chapter IV discusses the issue of convergence in detail. A specific exam-

?

ple uses:

A = (101010,
10.0 1.0 0.0

x = |08 1508
0.0 1.2 0.0

c=(1.0, 3.0, 2.0),

s=(1.0, 2.0);

b=(13.0,5.0);

o=0.9;

Applying both primal and dual equilibrium approximation generates the bounds shown in

Figure 3:

106.85

106.6

Obj 106.35171

Value

106.1

Primal Equilibrium
Approximation Objective Value

~

|||||||110 20 T T > T
Period T
Dual Equilibrium
Approximation Objective
Value
Figure 3.

Convergence of bounding methodology.
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3. Summary
Svoronos (1985) shows that the generalization of the primal and dual equilibrium

approximations, when applied to a class of convex formulations, converge to the infinite
optimal solution as T tends toward infinity. Svoronos requires several conditions be veri-
fied to ensure that the objective functions of the primal and dual equilibrium approxima-
tions converge to the same value, and therefore converge to a infinite horizon optimal.
However, the more practical result is the bounding algorithm. Using both primal and dual
equilibrium approximations, it is possible to bound the error associated with using either
approximations decision variables. Therefore, if the infinite-horizon problem structure is
completely defined, this bounding methodology provides a method to eliminate many of
the end effects associated with finite-horizon formulations and link any remaining end ef-
fects that exist with the primal or dual approximations to the size of the gap between their

respective optimal objective function values.

C. INFINITE HORIZON INTEGER PROGRAMMING AND END
EFFECTS

Bean and Smith (1984, .1985, 1993), Ryan, Bean and Smith (1989), and Schochet-
man and Smith (1989, 1991, 1992) investigate problem structures for which finite forecast
horizons exist for obtaining optimal initial decisions for infinite horizon program structures
that include infinite horizon integer programs (IP~). Smith and Bean (1984) and Schochet-
man and Smith (1992) assume in general the following:

«All cost functions are continuously discounted. The necessary level of
discounting is driven by the nature of the cost function and is required to
ensure a finite cost over the infinite-horizon.

+All problem characteristics are deterministic. The problem is well defined
over the infinite-horizon.

« At any time period the choices available are finite in number. This is a critical
requirement to ensure existence of a finite forecast horizon. Schochetman and
Smith (1992) relax this assumption so that feasible choices need only lie over
a compact space. In this case, since the number of feasible choices can easily
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be uncountably infinite, the definition of forecast horizon is modified to be a
horizon for which a quantifiable small <d tolerance exists (based on an
imposed metric) between an infinite optimal and candidate optimal solutions.
This assures the existence of some finite T period approximation such that the
solution obtained is & optimal to the infinite-horizon problem.

*All cumulative net cost functions are the difference of a monotone cost
function and a monotone revenue function, both of which are uniformly
bounded by some exponential. This requirement helps to ensure the existence
of a feasible finite cost over the infinite-horizon.

Bean and Smith (1984) define any sequence of decisions which cover the infinite-

horizon as a strategy, and the individual decisions associated with any strategy as policies4.

A further assumption is made that the infeasibility of any strategy is a property that can be

identified by observing at most finitely many initial policies.

1. Problem statement

The sequence T ={m;, Ty, T3, ...} is a strategy where each element 7, is a policy. The
number of available policy choices for T, is finite and the feasible policy set is a function
only of past policies (T1,Ty,...T,_1). Let IT be the set of all feasible strategies.

Let Cp(t)= Kn()-R(t) where R;(t) and K (t) are assumed to be non-decreasing func-

tions on R* and:
0<K (t)<Me" for all £2T, some y0;

OSR,t(t)SMeYt for all £2T, some y>0.

Define the net cost as:
é'n (r) = je_rtan (t) (Note: r>y as a rule to ensure convergence).

0

4. Strategy is the term used by Bean and Smith to define a sequence of decisions feasible over the
infinite-horizon. Svoronos (1985) uses the term trajectory. Both terms are in essence identical.
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The problem of interest then is:

Minimize C (r)

Subject to:m € IL

This problem definition includes any class of problems such that the solution space
at any particular decision point is cost bounded, including mathematical program formula-

tions for which & represents any feasible sequence of decision variables (xy, x, x5, X3,...)

over some defined region X, and C (r) is defined as e"c,x,, where ¢, and x, are vec-
t=0

tors in R™. The main over-riding assumption is that the feasible x, lies in a non-empty com-

pact region (based on the defined metric) for all 7.

2. Topology of feasible space

Smith and Bean (1984) impose a metric topology over the feasible strategy space,
and using the associated inherited properties of metrics show the existence of finite forecast
horizons. This section provides a brief summation of the defined metric, and some of the
key results derived by Smith and Bean.

Let wand 7' be two strategies in I1. Define the distance between m; and 7',” (where
these represent the A policies in strategy 7 and 7' respectively) as:

th
' 1 ift "policies different
o (n,m,) = [ .

| T
0 ift policies same
This metric holds when the number of decision choices for s finite. If the number

of choices is not finite, but forms a non-empty compact subset of R™™ and the feasible

space is compact, the standard Euclidean norm is used (Schochetman and Smith (1992)).

Further, define:

(=3

pm) = X (o).

t=1
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Smith and Bean (1984) and Schochetman and Smith (1989, 1991, 1992) prove the

following key results:

«(p,IT) is a metric space and ITis compact (i.e., complete and totally bounded)
in the metric.

*Given p(m, ' )<e<1/2", and the decision space is finite with the finite metric,
then ¢ (m, ') =0 for all #<n, which implies T=n," for all #<n.

< r, then the cost function is bounded.

_ C (¢t
oIf lim,_,mlog|——"t(—)|

T
*Define Cx (r, T) = [edC, (t) , to represent the total cost of any feasible
0

strategies over the horizon [0,T]. Also define any Min .. Hén (r,T) as
C*(T). Then C*(T) converges to the infinite optimal solution C* as T — eo.

oIf the infinite-horizon optimal strategy 7 is unique, then the optimal strategies
associated with the T period problems 7*(T) converge to T as T — eo.

«Given a finite set of possible solution policies at each decision epoch, and
given any policy period ¢ of interest, there exists some T for which 7t(7)

(1<T<) is an optimal T, policy for the infinite-horizon problem. If the

solution space is not finite, then under the revised metric (using the Euclidean
norm), there exists some 7 for which the Euclidean norm of (t(T)-1,)<d

(where <T<w), where T(7) is the optimal policy obtained using a T period
approximation and T, is an optimal policy for the infinite-horizon problem.
nt(T) is defined as a § optimal policy for the infinite-horizon problem.

+Given the infinite-horizon optimal strategy * is unique, there exists some 7"*
for each £20, for which 7t(T) (T=T*) is an optimal 7, policy (or 6 optimal if

the number of choices is infinite) for the infinite-horizon problem.

«Given the first L policies of any optimal strategy m* are unique, there exists
some T* for each t where 0<t<L, such that w,(7) (all 72T*) is an optimal Tt

policy (or 8 optimal if the number of choices is infinite) for the infinite-
horizon problem.
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3. Stopping Rule Criteria
Stopping rule criteria proposed by Bean and Smith (1984), ensure that a finite fore-

cast horizon can be identified for initial decision policies. Schochetman and Smith (1989,
1991, 1992) further develop stopping rule criteria for finite and compact feasible solution
sets by essentially solving finite-horizon problems over a finite cover of potential ending
conditions and examining the resulting efficient set (defined by Schochetman and Smith

(1992)) of optimal solution sequences_This approach is similar to the fixed end effects ap-

proximation method presented in the linear programming section, except instead of guess-
ing an optimal end condition, the approach examines all potential end conditions.
Schochetman and Smith (1989, 1992) also modify the stopping rule criteria to deal with the

problems associated with isolating an infinite optimal x, when multiple infinite optimal so-

Jutions are possible. For a detailed discussion, see Schochetman and Smith (1989, 1992).

4. Applicability to the end effects problem

The general staircase structure represents a fairly robust subset of infinite-horizon
mathematical programs, including infinite-horizon bounded integer formulations. The
main difficulty lies in implementing the stopping rule criteria proposed by Smith and Bean
(1984), and more recently the modified stopping rules of Schochetman and Smith (1989,
1992) when the number of possible ending conditions is large or uncountable. For example,
if the discrete mathematical program of interest is an infinite-horizon integer program, each
T horizon problem itself may be NP hard (or complete). As a rule, exact solutions are re-
quired. Solving a number of integer programs that is equal to the number of potential end
conditions (re-solving for each end condition) at each time step 7, and then dealing with the

associated multiple optima, can quickly become computationally impractical.

D. SUMMARY

Of all the methods examined in this chapter to deal with end effects, the concept of

extending the problem formulation over the infinite horizon, and then solving bounding ap-
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proximations using primal and dual equilibrium approximations appears to be the most vi-
able and practical approach in eliminating end effects associated with finite-horizon
formulations. The extension and implementation of this methodology is the focus for the

following chapters of this dissertation.
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III. LP- STRUCTURES THAT SATISFY DUAL EQUILIBRIUM

When an infinite-horizon problem has an optimal solution structure that satisfies
the assumptions of dual equilibrium for some finite 7, the dual equilibrium approximation
provides an optimal solution to the infinite-horizon problem and end effects, by definition,
are eliminated. As discussed in Chapter I, few examples exist of infinite-horizon problem
structures for which the form of the infinite-horizon optimal solution is known. In order to
gain insight regarding the impact of end effects on LP, this chapter presents several simple
problem structures and shows the dual equilibrium approximation generates optimal feasi-
ble solutions to the original infinite-horizon problem.

Sections A through D show several simple problem structures that have optimal pri-
mal and dual decision variables which can be formed as a function of the optimal primal
and dual decisions generated by a two period truncated model. Section E derives the limit-
ing optimal primal and dual decision variables functional relationship as the solution hori-
zon extends to +. The results of Romeijn, Smith, and Bean (1992) show the limiting
values are optimal over the infinite horizon. These infinite-horizon optimal solutions satis-
fy functional relationships assumed by dual equilibrium approximation, therefore, any op-
timal solutions generated by using dual equilibrium approximation are also optimal for the

infinite-horizon problem.

A. K=pA SINGLE PERIOD OVERLAP STAIRCASE STRUCTURE

The problem P(BA) has a single period overlap staircase structure with a constant

right hand side following the first period which is shown below:
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00

. i
Minimize Z o cx;

i=0
Subject to:
Ax, >s (0)
BAx, +Ax, >b (1)
BAx, +Ax, 2b (2)

BAx, ,  +Ax,_, 2b(kI)
x,20, (i=0,1,2...).

The associated dual D(BA) is:

oo

Maximize u s + z uib

i=1
Subject to:
u,A+ u,BA +v,l =c (0)
u,A+ u,pA +v, I =oc (1)
u,A+ u;pA +v,I = o’e (2)
k-1
u, A+ A +v,_ =0 “c(kl)

u;20, v;20, (i=012..).

12
For the above problems, B is a constant such that 0<B</, and 0<o<1. To ensure

strong and weak duality hold in the limit (Romeijn, Smith, and Bean (1992)), A=>0, and ¢=0

are also imposed.
Property IT: For any finite k period (k even) truncation of P(BA), defined as P(kBA),

if 9,2 ocﬁzﬁ ,, there exists an optimal set of decision variables {xf} , {uf} ,and
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{vf} (primal, dual, and dual slack variables respectively) of the form:

k.
Xo = Xo
k Ly SN
X;p=Xp
. i-1 i-2
A nAn A nan .
5= 5,3 D" +2B Y (<D BJQS:Sk-]);
n=0 n=0
(k-2)
k 2 2
N n
uy =y ¥ (af)™
n=20
. Ik~(i+1)
ui=a,0 ™Y D" (aB)” (Isisk1);
n=0
. k=972 , k=972 ,
v0=90(1+(06|3) > (0B "]—9,(043 > (ap) "];
n=0 n=0

Vo= ol T, (1sisked).
Where @, @i, £, £, 9, 9, , are the associated optimal solutions to the two period trun-
cated problems:
P(2BA) (Two period Truncated Primal)
Minimize cx,+ ocx;

Subject to:
Ax, 25

BAx,+ Ax, 2b

xo,xIZO;
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D(2BA) (Two period Truncated Dual)

Maximize u,s + ulb

Subject to:
u,A +u A +v,l =c

uIA +v11=occ

uo,ul,vo,vIZO.

Proof: Along with primal and dual feasibility, the optimal solution sets for P(2BA)
and D(2BA) also satisfy complementary slackness. That is:

h,(A%,~-s) = 0;

o, (BAX,)+ A%, ~b) = 0,

1 0;

The proof shows the solution structure presented above satisfies (1) primal feasibility, (2)
complementary slackness, and (3) dual feasibility (Karush-Kuhn-Tucker (KKT) require-

ments for optimality). First let’s define the arbitrary k=even period primal and dual prob-

lem structures of interest:

P(kBA)
k-1
Minimize 2 oclcxi
i=0
Subject to:
Ax, 25
BAx, +Ax,;

BAx, +Ax, >b

[3Axk_2 +AXx, >b
x,20, (i=0,1,..k-1);
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D(kBA)

k-1
Maximize u s + 2 ub
i=1
Subject to:
u,A+ u,pA +v,l =c
uA+ u,pA +v, I = oc
u, A+ u,BA +v,I = o’c
2 3 2 =
A A I=o "
u, A+ u,_ P +v, =0 ¢
k-1
u, A tv,_ =0 ‘¢

u,20, v,20, (i=0,1,..k-I).

(1) Show primal feasibility holds, i.e., show that the constraints of P(kBA) are satisfied:
x>0 (Isisk-1); (1)
Axgf>s; (2)
BAx; F+Ax kb (1sisk-1).  (3)
Given primal feasibility satisfied for P(2BA):
%,20;
X 12 0;
AX,2>s;

BAZ,+A%,>b.

Equation (/) holds for i=0 and i=1, since x’; = %, and x',‘ = X,. Equation (/) holds for
i-1 i-2

2<i<k-1 since £, %,20, xi = [fc, S (- +xB8Y (—I)"B"} (2<i<k-1), and
n=0 n=0

i-1
Y (=1)"B" 20 (I<i<k-1), (the latter can easily be shown by induction).

n=0
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Equation (2) holds as x; = £,. Equation (3) holds when i=1 since xf = %,andx} = %,.

When i is greater than one, substituting x’,‘ = X, or
i-1 i-2

xf = [f, Yy, (=1) "B +2B Y (1) "B"} (2<i<k-1) (hypothesis),
n=0 n=0

as appropriafe leads to the equality b < BAX, + Ax ;= BAxf_ ,+ Ax}, (1<isk-1), and

xf > 0. Therefore primal feasibility is satisfied.

(2) Show that complementary slackness holds between the optimal primal and dual vari-

ables for P(kBA) and D(kBA), i.e., show that:
Ul (Axy—s) = 0; (4)
ut (BAxE_, + Axf—-b) = 0 (Isisk-1);  (5)

vixt = 0 (0sisk-1). (6)
Given complementary slackness between the optimal primal and dual variables for
P(2PA) and D(2BA):

i,(AX,—s) = 0;

i, (BA%y+ AR, ~b) = 0;

b%, = 0;
v, =0
. (k-2)/2 ,
Substituting u, = @, z (aP) " and £, = x, (both from hypothesis), Equation (4)
n=0

is equivalent to multiplying &, (A%, + s) by a scaler value. Therefore equation (4) holds.

k—(@i+1)

Substituting uf = ﬁ,(oti_l x ¥ (=1 " (ap) ") (I1sisk-1) (hypothesis), and recogniz-
n=0

ing that BAJ?O +AX; = BAx; ,+ Ax; (from primal feasibility results), equation (5)
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(1<i<k-1) is equivalent to multiplying &, (BA%,+ A%, -b) = 0 by a scaler. Therefore
equation (5) (1<i<k-1) holds.
To show equation (6) holds we need the requirement ¥, 2 O(,Bzf’ ;- Examining v’;x’;, the fol-

lowing equivalent relationship holds:

(k-4) (k-4)
2 2
k_k ka A A 2 2n A A 2 2

VoXg = VoXo =V 0(1 + (af)” Y, (ap) )"vixo[aﬁ >, (ap) n]- (7)

n=0 n=20
Note that $,%, = 0 as complementary slackness holds for the two period problem. In
addition 0 < op’p,&, < P,%, = 0, since vy, v, x,20 , af?> 0, and 9,2 op’p, . Therefore,
$,%, = 0. Substituting these equalities into equation (7) leads to vf,x’; = 0.

. k_k . - . k A k A k_k Ao

Showing v;x; = 0 is trivial since x; = %, and v; = ;. Therefore v;x; = 9,2, = 0.

To show vfxf = 0 (2si<k-1), we need 9,8, = 0, which is shown above. Substituting

i-1 i-2 .
xi = [ic, S (D) + &P Y (—1)"3"} (2<i<k-1), and v¥ = o' "9, (2<i<k-1), we
n=0 n=20

i-1 i-2
obtain v'x, = o' 9,2, 3 (-1)"B"+ o' '9,2,B Y, (=1)"B" (2sisk-1). Recognizing
n=0 n=0

$,2, = 0 and 9,%, = 0, this leads to vfxf = 0 (2<i<k-1). Complementary slackness is

satisfied for all k=even period truncated problems.

(3) Show dual feasibility holds, i.e., show that the constraints of D(kBA) are satisfied:
ut A+ulBA v —o e =0 (1sig1);  (8)

u:_1A+v:_II—0Lk*Ic = 0. (9)




Given dual feasibility is satisfied for D(2BA):
a A+ BA+V,I—c = 0;
a,A+9,I-ac = 0.

(k=2)/2

Examining equation (8) when i=1, substituting u](; =, Z (af) 2n (hypothesis)
n=20
i (k-2) n
andu; = 4, z (-1) " (af) (hypothesis), we get the following reformulation:
n=20

2

*k-2) *&-2)
2
,A +0,BA —c+ (a0A+a,BA)[ (aB)Z"J—ﬁ,BA( v (OLB)Z"_]J+v’51 = 0.
1 1

n= n=

Note that &,A + @ ,BA —¢c = Pyl (D(2BA) first constraint). Substituting the equations
c—p,0 = t,A+a,pA,and ac-9,I = @1 ;A (arearrangement of the constraints for

D(2BA)), we discover that the above equation reduces to:

k=2 k-4
k 2 2 2 2 2
vol = 9,0 Y (ap)™ = 9,10p” Y, (ap) "
n=0 n=0

Since vko must be greater than or equal to zero, we can derive a relationship that must hold

for any k=even between ¥, and ¥,, i.e.,

k=2 k-t
2 2 2 2 2
P I Y (ap)” 29 1oB” Y, (ap) "
n=0 n=20

Note that for all (k=even), if ¥,2 ]0(.[32 (hypothesis), the above equation holds. There-

fore, equation (8), when i=1, is feasible for all k=even. Equation (8), (I <i<k-1), can be

k-i
shown to hold by substituting u;_, = ﬁl(a'_z x ¥ (-1)"(aP) ") , and
n=0
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H

. k-(i+1)
u =i ,((x"l x ¥ (=I)"(ap) ") (hypothesis). Substituting the above into equation
n=0

(8) provides the equivalent expression

k—i
it,A {al—z[l + Y ((aB)” - (aB) " ﬂ +vf.‘_]1—a"’c which is equivalent to:

n=1I
o a,A+vi I-o e, (10)
Noting that & ,A + 9,1 = ac (I <i<k-1)(D(2BA) second constraint) and letting
koo IOLi ~? (from hypothesis), substituting these relationships into equation (10), one
obtains of” 2 (a,A+9,1 —occ)> . Equation (8) (I<i<k-1) is equivalent to multiplying the

second constraint of D(2PA) by a scaler. Therefore, equation (8) holds above for all

k=even period problems.

Equation (9) holds when u, _, = & ]ak—z (hypothesis), & ;A + ¥ ,I = o¢ (D(2BA) sec-
ond constraint), and vﬁ =) Iock -2 (hypothesis) is substituted into the equation. Equa-
tion (9) is then equivalent to:

. k-2 k k-1 k-2 Vil
a0 "A+v_JJ-o c=a [u1A+ 5 o .
o




Which is equal toock_ 2 (B, A+9,1-0c) = 0. Under the hypothesis, Equation (9) is
equivalent to multiplying the second constraint of D(2BA) by a scalar. Therefore, dual fea-
sibility (equations (8) and (9)) is satisfied. The hypothesis variable sets satisfy KKT condi-
tions for P(kBA) and D(kBA) for any k=even period formulation.

QED (Property II)

The proof derives a functional relationship for the optimal primal/dual decision
variables of the truncated problem over any even period solution horizon. This functional
relationship depends only on the optimal decision variables for the two period truncated
formulation, and the length of the solution horizon. The following sections examine several

special cases and extensions of this problem structure.

B. SPECIAL CASE: P(BA) WITH ps>b
The problem P(BA Demand), Ps=b, has the following structure:

[

. i
Minimize Z o cx;

i=0
Subject to:
Ax, >s (0)
BAx, +Ax, >b (1)
BAx, +Ax, >b (2)

BAx,_, +Ax,_,; 2b (k-1)

%20 (i=0,1,2,..).
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The associated dual D(BA Demand) is:
Maximize u s + 2 u;b

i=1

Subject to:
u,A+ u,BA +v,l =c
u A+ u,pA +v, I = oc
u,A+ u;pA +v, I = o’c
A [ = k-1
u, A+ uwfpA +v,_ =0 "¢

w20, v;20, (i=0,1,2,...).

i
For the above problems, P is a constant such that 0<P<1, and 0<o<1. To ensure strong and
weak duality hold in the limit (Romeijn, Smith, and Bean (1992)); A>0, and ¢=0 are also
imposed.

Property III: An optimal solution to P(BADemand) exists where £, = 0.
Proof. Prove by contradiction. Assume there exists an optimal sequence

{%,, &), &p %5, ...} to P(BADemand) such that £, > 0. Now examine the change in the
objective function for the new sequence {%,, 0, £, + £,, &;, ... }. This sequence is still fea-
sible since:

X, 2 0Vi;

A%,2s (Constraint (0) of P(BADemand));

BA%,+ A (0) 2b Since BA%,2>Ps 2b (Constraint (1) of P(BADemand));

BA (0) +A (%, +%,) 2PA%X;+A%,2b (Constraint (2) of P(BADemand)); and

BA (%, +%,) + A%;>PA%, + A%;>b (Constraint (3) of P(BA Demand)).

However, note the change in objective function value. The objective function of P(BADe-
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mand)) in period (1) decreases by the amount cic®, since £, — 0. The objective function
of P(BADemand)) in period (2) increases by the amount o’c? , since £, = X, + %, . This

leaves a net decrease in the objective function value for P(BADemand)) of (o - o’) ek, .
Therefore, if ¢0, any optimal sequence to P(BADemand)) must have £, = 0. For the
trivial case where ¢=0, the feasible solution with £, = 0 is an alternative optimal.

QED (Property III)

Given there exists an optimal solution to P(BADemand) with £, = 0, the problems

(PSub1) and (PSub2) shown below are equivalent to P(BADemand) with £, = 0

[ o
Minimize Z OLlcxi
i=2
e - Subject to:
Minimize cx, »
Subject to: Ax, >b
Axo > (PSub]) + BAxZ +Ax3 (PSMbZ)
X920 i BAx,  +Ax, >b
L =23 |

Therefore, for a P(BADemand) problem the optimal first period solution is found by solv-
ing the one period truncated problem. Note that (PSub2) is just a special case of P(BA)

where s=b.

C. P(BA) WHERE s=b
The primal and dual formulations (defined as P(BARHS) and D(BARHS) respec-

tively) for the case when s=b are shown below:
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P(BARHS)

e i
Minimize Z ocx;

i=0
Subject to:
Ax, >b
BAx, +Ax,
BAx, +Ax, >b
BAx, , +Ax,_,; >b
x;20 (i=012,..).
D(BARHS)

Maximize z uib

i=0
Subject to:
u,A+ u A +v,l =c
u,A+ u,pA +v,I = oc
u,A+ u;BA +v,l = o’c
k-1
u, A+ uPA +v,_ =0 "¢

0,20, v;20, (i=012..).

Property IV: For any finite k period (k even) truncation of P(BARHS), there exists

an optimal set of decision variables {xf} , {uf} ,and {vf} (optimal primal and dual vari-

ables respectively) of the form:




i
=2, (-D"" (0sik1);
n=0

. k- (i+1)

w; = g0y (~D)" (ap)” (0sisk-1);
n=0

k in

vi = OCVO.

Where £, i, ¥, , are the associated optimal solutions to the one period truncated prob-

lems:

P(IBARHS) (One period Truncated Primal)
Minimize ¢x

Subject to:
Ax, 2b

x,20; and

D(IBARHS) (One period Truncated Dual)
Maximize u b

Subject to:

uA+vyl =c

Uy Vp 2>0.

Proof: Along with primal and dual feasibility, the optimal solution sets for
P(IBARHS) and D(I1BARHS) also satisfy complementary slackness. That is:

i, (A%,-b) =0;

VX, = 0.
The proof shows that the solution structure presented above satisfies (1) primal feasibility,

(2) complementary slackness, and (3) dual feasibility (KKT requirements for optimality).

First let’s define the arbitrary k=even period primal and dual problem structures of inter-

est:
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P(KBARHS)

k-1
Minimize Z Oclcxi
i=0
Subject to:
Ax, 2b
"BAx, +Ax, >b
BAx, +Ax, 2b
BAX, , +Ax, _; >b
x;20, (i=012,...k-1).
D(kBARHS)
k-1
Minimize 2 ub
i=0
Subject to:
u,A+ u,fA +v, [ =c
u,A+ u,pA +v, I = oc
u,A+ u;pA +v,I = o’e
k-2
u, ,A+ u,_,pA +v, I =0 "¢
u, A +v,_ I = o e

u;20, v;20, (i=012..k1).

(1) Show primal feasibility holds, i.e., show that the constraints of P(kBARHS) are satis-
fied:
'k>0.
x; 20, (11)

Axgob; (12)
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BAx; f+Ax ) 2b (1<i<k-1). (13)
. i
Non-negativity (equation (11)) is satisfied since x; = %, 2 (1) an (0<i<k-1) and
n=0

Yy, (=1) "B" > 0 (i>0) (easily shown to hold by induction). Given the primal feasibility

n=0

constraint A%, >b is satisfied for P(1BARHS), substituting £, = xz (hypothesis) into

equation (12), primal feasibility is satisfied for all k= even period problems. When 0<i<k-
1, substituting xf =%, (-)"B" (hypothesis), as appropriate into equation (13) leads
n=0

to the equality BAx*_, + Ax = A (Bx;_, +x;) = A%,2b, (Iisk-1). Therefore primal

feasibility is satisfied.

(2) Show that complementary slackness holds between the optimal primal and dual vari-

ables for P(kBARHS) and D(kBARHS), i.e., show that:

ul (Axy—b) =0; (14)
k k k .
u (BAxE_, +AxE —b) = 0 (Isi-1);  (I5)

vex = 0 (0sisk-1). (16)
Given complementary slackness between the optimal primal and dual variables for
P(IBARHS) and D(I1BARHS):

n,(A%,-b) = 0;

P8, = 0.
k-1 k
Substituting uy = ﬁo( Y (=1)" (o) ") and%, = x,, (both from hypothesis), Equation
n=0

(14) is equivalent to multiplying &, (A%,—-b) = O by ascaler value. Therefore equation
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. k- (i+1)
(14) holds. Substituting u; = oc'ag( 3 (—])"(aB)")(hypothesis) and
n=0

Bxf_  + xi = %, (result of verifying primal feasibility), equation (15) (/<i<k-I) is equiva-

lent to multiplying &, (A%,—b) = 0 by ascaler. Therefore equation (15) (1<i<k-1)

i
holds. Noting that x} = £, Y (-D"B" (0sisk-1) and v = o', (0<isk-1),
n=0

14

vk = 92,00 S (=1)"B" = 0x o Y, (-1)"B" = 0 (0sisk-1). Equation (16) is satis-
n=0

n=0

fied. Complementary slackness satisfied for all k=even period truncated problems.

(3) Show dual feasibility holds, i.e., show that the constraints of D(kBARHS) are satisfied:

ub  AvulpA+vi 1-0' e = 0 (1sik-1); (17)

ub_A+vi_1-0 e =0 (18)
Given dual feasibility #,A4 +9,I —c = 0 is satisfied for D(IBARHS).
Lets examine equation (17) (I<i<k-1) in the following form:

WA ut Ay, I-o e = (b +ufpy Ay, T-0'T"e). (19)

) k—i o k=G+D
Substituting u;_, = a'_lao( Y (-1)" (aB) ") and u} = Oc'ﬁo( S (=" (op) "),
n=0 n=0
into uf_, + u'B leads to the equality ut_ +ulp = o '@, . Substituting this into the right

i-1A

hand side of equation (19) one obtains o. "@#,A + vf.’_ e o' "'c. Now note that

ve = a” Ifzo (hypothesis). Using these two equations, we discover that equation (17)

i-1 =

under the hypothesis reduces to OLi -1 (@A +9yl-c) = 0. Equation (17), I<i<k-1, is

o '@, (hypothesis), and

1l

feasible for all k=even. Equation (18) holds when u:_ ;
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v’,ﬁ_ ;= o', (hypothesis) are substituted into the equation. Equation (18) is then equiv-

alent to:

k-1, k-1, k-1 k-1, R
o fdA+o V-0 ¢ = (yA +9p)l—c) = 0.

Under the hypothesis, Equation (18) is equivalent to multiplying the constraint of
D(1BARHS) by a scalar. Therefore, dual feasibility (equations (/7) and (18)) is satis-
fied. The hypothesis variable sets satisfy KKT conditions for P(kBARHS) and D(kBARHS)
for any k=even period formulation.

QED (Property IV)
Note that when s=b and B=1, problems P(BA Demand) and P(BARHS) are identical.

In this case the results of both sections B and C apply.

D. AN LP- WITH EXPONENTIAL GROWTH

This section describes a modification to the K=BA problem (herewith defined as
BAj) by introducing a limited exponential growth (y>1.0 and oy<I) of the right hand side
starting with period j+ where 2<j+/<k-1. The problem P(BAj) has the following structure:

(=]

. i
Minimize z oex;

i=0
Subject to:
Ax, >s (0)
BAx, +Ax; >b (D)
BAx, +Ax, >b (2)
_ Bij-} +ij >b ()
BAx; +Ax; 2vb (j+1)

2, .
Bij” +ij+2 2Y'b (j+2)

x,>0, (i=0,1,2,...) .

62




The associated dual is D(BA)):

J °
.. i—j
Maximize uys + > wb+ Y, ¥ ‘upb

1

i=1 i=j+l
Subject to:
u,A+ u A +v,l =c (0)
u,A+ u,pA +v, I =oac (I)
u,A+ u,BA wv,d =dc (2)
k-1
u, A+ wpA +v, =0 “c(kl)

u,>0, v.20, (i=012..).

1 1

The growth factor 7 is limited to 1<y<1/ot to ensure convergence of the objective
function, and 0<B<1. To establish strong and weak duality hold (Romeijn, Smith, and Bean
(1992)), A=0, ¢>0, are also imposed.

Property V: For any finite k period (k even) truncation of P(BA)), defined as

P(kBA)), if 9,2 ochfz ,, and j<k-1, there exists an optimal set of decision variables {x:‘} ,

{uf} , and {vf} (primal, dual, and dual slack variables respectively) of the form:

k o
X, = X
k 5
X; =X
i i—1 i-2
x; = [fc, > (=D +EB Y, (—1)"13”] (25i));
n=20 n=20
k =l n r=I)-n_yn ror. k .
Xj, = (BRo+2)y| X D7y B" |+ ((-D)'B)x; (Isrk-(j+1));
n=20
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(k-2)

2
k ~ 2n
uy =, y, (af)”;
n=20

k- (i+1)

KoY (D" ()" (IsiskD);

n=20

(k-4)
2

(k-4)

2
Komp 1+ @)’ Y @B |-oap’ T (@)

n=0

W= ol T, (1siskel).

n=20

Wherelt, &}, X, X, 9,v,,are the associated optimal solutions to the two period trun-

cated problems:
P(2BAj) (Two period Truncated Primal)
Minimize cx,+ 0lcx, '

Subject to:
Ax, =S

BAx,+Ax, >b
xpx,;20; and
D(2BAj) (Two period Truncated Dual)

Maximize u,s + ulb

Subject to:
u,A +u PA +vyl =

c

uIA +vII=0Lc

upu, vo,v120.

Proof: Along with primal and dual feasibility, the optimal solution sets for P(2BAj)

and D(2PA}) also satisfy complementary slackness. That is:
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a,(A%,-s) =0;

i, (BAx,+A%,~b) = 0;
PRy = 0;
9%, = 0.

The proof shows that the solution structure presented above satisfies (1) primal feasibility,

(2) complementary slackness, and (3) dual feasibility (KKT requirements for optimality).

First let’s define the arbitrary k=even period primal and dual problem structures of inter-

est:
P(kBAj)
k-1
Minimize z oc"cx"
n=0

Subject to:
Ax,
BAx, +Ax,
BAx, +Ax,

BAx +Ax,
PAXx; +Ax;,

Bij” +AX;, ,

BAx, _, +Ax, _

x,20 0<i<k1).

65

vV WV IV IV
o~ LS

v
E)

%
-2
N
S

(0)
(n
(2)
)]
G+1)
(+2)

v e




D(kBAJ)
k-1

J .
Maximize uys + Y, u,b + Y ¥ " u b
n=1 n=j+1
Subject to:
u,A+ u,BA +v,l =c
u,A+ u,pA +v, I = oc
A A I =0
u,A+ usp +, =oc¢
A A I=d"?
u, A+ w_,p +v, =0
k-1
u, A tv, =0

u,>0, v,20 (0<n<klI).

(1) Show primal feasibility holds, i.e., show that the constraints of P(kBA) are satisfied:

x>0 (1sisk-1);  (20)

Axgl>s; (21)
BAx; f+Ax /b (1isk-1).  (22)

Given primal feasibility satisfied for P(2BAj):

Equations (20), (21), and (22) hold for 0<i<j since the primal variables have the same

form as the problem P(kBA). In order to prove non-negativity and that equation (22) holds

for i>j, we first need the following lemma.
Lemma: Given the above definition for an optimal primal variable set, then:

Bxi_, +xf = (B, +%) (IsiS) ; (23)
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Bxt,,_ +xh,, = ¥ (BRo+ %) (Isr<(k-1)).  (24)

Proof. Lets examine equation (23) first. Substituting
i-1 i-2
X = [il S ()R +xB Y (1) "B"} (2<i<j) and the fact that x* = £,, we note
n=0 n=0

that Bx* +x% = P&, +x% = B2, +2,(1-B) +2,B = £,B +2,. Similarly, for (3<isj),

' i-1 i-2
substituting x; = [ﬁ, Y (=D"B +EB Y (—I)nﬁn} (2<isj) and
n=0 n=0

i-2 i-3
Bx;_, = B[JACI S (DB +xB Y (—1)"B"i|,which is equal to
n=0 n=0

i-17 i-2
fz( (-1 3, (—1)'1[3")+£¢0[3( -0 Y (—1)"B"),we also obtain that
n=1 n=1

Bxi ,+xi = (BR,+%,) (3<is).

To prove equation (24), we need

r-1
£, = B+ 2)1( T D) (DB (1srsgD)) and
n=0
Bxj.,, = (BXo+%) 7(2 (—1)"7('“2""6"”)+ ((-1)"'B")x} (2<I<k-(j+1)), both

of which are derived directly from the hypothesis. Adding these two equations together
gives us

n (r=-2)-n

bt e = Brrarx [(T 0 )+ (X o))

r-2 r-1

Noting that ¥, (~1) PR = (=) Y (-]) "y "D 7"B"  and substituting this
n=0 n=1

into the above equation, we obtain

Bxl,,  +x,, = (BR+2)Y(Y ) = (BR,+2)Y

QED (Lemma)
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-1
Given &}, = (Bo+2)7( T (<D™ B )+ (D' (1515k(41). We

n=20

first prove that x},, > 0 (1r<(k-1)-j) by induction,

(a) xf+ , = 0. From our lemma, Bx';- + xif,, ; = (B#,+2%,) 7. This implies that

fo = (BX,+X) Y- Bxﬁ . Now note from equation (23) that Bx;f_l + x:f = (Bx,+%)),

which implies that x* = (B%,+£,) —Bx\_, or that Bx} = B (B2, +£,) —B’xj_;. Sub-
stituting this back one obtains

¥, = (B%,+2)7—Bxs = (B, +2,)7~ (B(BZ+%,) —B'x;_1) . Note that the

right hand side of this expression is equivalent to

k

(Y=B) (B, +%,) +Bxs-1 20 (as (y>PB)and (B’xj-,20)). Therefore, x;,, 2 0.

(b) Given that x;” >0 (1<r<m<k-(j+1)), show that xfm ;2 0. Note that from our

lemma Bx’,,, +x, = (B, +2,)y"" and Bx},,_, +X.m = (BE,+%£,)y" which

Jj+m+1

implies that Bx},,, = B(BE,+£)Y" - Bzxjf“,,_ ;. Therefore

Womer = (B +E)Y™ = (B(BEy+£) "~ B'Xjem 1) or
x_l;+m+1 = (y-B) (([33?:0+_i‘31)'y'") +Bzxf+m—1->-0(as (y>B) and (B2x§+m_,20)),

Therefore non-negativity (equation (20)) is satisfied. To prove equation (22) holds, we
again use the result of our lemma. From equation (22), we need to show that
BAXS,,_, + Axl}ﬂ >y'b . However, since Bx},,_; +x5,, = (B, +%,) Y, then

BAx:,, ,+Axi,, = A((B2,+2)Y) = (BAZ,+A%)Y 27D.

J+r
Primal feasibility has been shown.

(2) Show that complementary slackness holds between the optimal primal and dual vari-

ables for P(kBAj) and D(kBA)), i.e., show that:

Ul (Axy—s) = 0; (25)
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uf (BAxE_, +Axi-b) = 0 (ISik]);  (26)

vixk = 0 (0sik-1). (27)
(Note: This complementary slackness proof is very similar to the proof for problem

P(BA).)

Given complementary slackness between the optimal primal and dual variables for

P(2BAj) and D(2BAj):

i,(A%,-s) = 0;
i, (pA%)+A%,-b) = 0;
vk, = 0;
v,2, = 0.
(k-2)/2
Substituting uz =, Z (o) " and %)= x’(; (both from hypothesis), Equation
n=0

(25) is equivalent to multiplying &, (A%,—s) by a scaler value. Therefore equation (25)

k—-(i+1)

holds. Substituting u; = a,(a’”x v (—])"(ocB)") (1<i<k-1) (hypothesis), and
n=0

recognizing that BA%, + A%, = (BAxr_, +Ax}) , (for isj), and that

BAx:,, , +Ax}, = 7 (BA%,+A%)) , (for 1<r<(k-1)-j) (from primal feasibility results),
equation (26) (1<i<k-1) is equivalent to multiplying &, (BAx,+Ax,-b) =0bya
scaler. Therefore equation (26) (1<i<k-1) holds. Equation (27) is shown to hold by exam-
ining the equation in terms of 9, ¥,, £, £,, and using the requirement that ¥, > aBzﬁ ;e
Examining v’;xlg , the following equivalent relationship holds:

(k-4) (k-4)

k_k k 2 2 2n 2 2 2n

vixh = vk, = PR, 1+ (aB)” Y, (af)™ |-9,%| aB” X (ap)™ |. Note that
n=0

n=20
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0 as complementary slackness holds for the two period problem. In addition

<>

Ko =
0< ok, <Pk, =0, since vy, v, %,20 , 0?0, and 9, > ap’#, . Therefore
$,%, = 0. Substituting both these equivalent relations into the above equation it is clear

k k . k k . . . . k A k A
that v,x, = 0. Showing v;x; = 0 is trivial since x; = X, and v, = $,. Therefore

v = 9,8, = 0.To show vix = 0 (2<isk-1), weneed 9%, = 0. Substituting

= [ﬁli (—])"B"+£0Bi (—1)"[3"]' (2<isj) ,or
= n=0

o= B+ )1 T DB J (B (155 and

e o= och), (2<i<k-1), we obtain

4

ivi

vie! = ol .8, z (-1)"p" + oc""f:lfcoﬁg (-1)"B" (2<i5)) , or

= n=0
ViXe, = o7 (on + 3,y 2 1" TR+ (D) ’B’xjf) (1<r<k-(j+1)) . Recog-
nizing #,&, = 0 and 9,&, = 0, and that both of the above equations are of the form
@v,x,+ Av,x, (¢ and ) scalars), this leads to vfxf =0( ZSiflc-] ). Complementary

slackness is satisfied for all k=even period truncated problems.

(3) Show dual feasibility holds, i.e., show that the constraints of D(kBAj) are satisfied:
k k i-1 .
u, A+uPA+v,_;-o ¢ = 0 (I<ik-1); (28)

wt_ A+ 1-0e = 0. (29)
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Given dual feasibility is satisfied for D(2BA)):
0;

i,A+9,I-ac = 0.

a,A+i A+ —c

(Note: This is identical to the proof for problem P(BA).)

(k-2)/2
Examining equation (28) when i=1, substituting ulg =4, 2 (o) 2n (hypothesis)
: n=20
(k-2)
and u ;= a 1( Z (-1 (O(.B) J(hypothesis), we get the following reformulation:
n=20

(k-2) (k-2)
2 2
f,A +0,PA —c + (B,A +1,BA) ( Y (oB) 2"] —ﬁ,BA[ Y (oB) 2”"] +vil = 0.
n=1
Note that 1,4 + @ ,BA —¢c = Pyl (D(2BA)) first constraint). Substituting the equations

¢l = ayA+a,pA ,and oc—7,I = @t,A (arearrangement of the constraints for

D(2BAj)), we discover that the above equation reduces to:

k-2 k-4

2 2
=5l 2 ( (@B)® - 9,1ap’ Y, (aB)”"
= n=0

Since vko must be greater than or equal to zero, we can derive a relationship that must hold

for any k=even between ¥ 0 and ¥ T ie.,

k-2 k-4
2 , 2_2— ,
A n A n
Pl D (o)™ 29 Iaf Y, (o)
n=0  n=0

Note that for all (k=even), if 9,29 IOLBZ (hypothesis), the above equation holds. There-

fore, equation (28), when i=1, is feasible for all k=even. Equation (28), (I<isk-1), can be

k-i
shown to hold by substituting u;_, = ﬁ,(oc"zx D (—1)"(os|3)"),and
n=0
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' k-(i+])
u =i ,(oc'“l x Y (=D"(op) ") (hypothesis). Substituting the above into equation
n=90

(28) provides the equivalent expression
. k _i k .
a,A [al_z(l + z (p)" = (ap)”) Il +v, - o' "'¢ which is equivalent to:
n=1

i-2 4

o Ca,A+vE I e, (30)

Noting that &,A + 9,1 = o (D(2BA)) second constraint) and letting vf_ = of %,

(I<i<k-1) (from hypothesis), substituting these relationships into equation ( 30), one
obtains oci -2 (&t,A + 9 ,I - oc) . Equation (28) (1<i<k-1) is equivalent to multiplying the

second constraint of D(2BAj) by a scaler. Therefore, equation (28) holds above for all

k=even period problems.

Equation (29) holds when ;. _; = ock_zﬁ 1 (hypothesis), &,A + 9,1 = oc (D(2BA))

. k-2, CN e . . .
second constraint), and v, _, = o “9; (hypothesis) is substituted into the equation.

Equation (29) is then equivalent to:

k
- _ _ v, 1
alock ‘A +v:_]l—ock e = of 2(”1‘4 +%—o¢c],

o
Which is equal to (xk ~2 (&t,A +9,I-0c) = 0.Under the hypothesis, Equation (29) is

equivalent to multiplying the second constraint of D(2BA) by a scalar. Theréfore, dual fea-
sibility (equations (28) and (29)) is satisfied. The hypothesis variable sets satisfy KKT con-
ditions for P(kBAj) and D(kBAj) for any k=even period formulation.

QED (Property V)
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E. P(BA) AND K=pAj RELATED TO PRIMAL/DUAL EQUILIBRIUM
The problem structures examined all have the property of satisfying strong and
weak duality in the limit (Romeijn, Bean, and Smith 1992), and that any convergent subse-
quence of the optimal decision variables (primal and dual) converge to an infinite optimal
solution. This allows the examination of the dual multipliers for the K=BA and K=BAj stair-

case truncated linear programs (the number of periods k even) as the number of periods k

e . -1,
goes to infinity. As shown below, the dual multipliers converge to u; = o u ;- i-e., dual
equilibrium is satisfied from period one onward for the infinite-horizon linear program

(Grinold, (1983b)). Additionally, we verify that for K=BA when <1, primal equilibrium is

satisfied in the limit.

Model K=BA, p=1I:

X (k-2)/2 ,
Uy = ’70[ > nj;

n=0

. k-(G+])
u’.‘:ﬁl[a(“”x Y (—])"oc"j(]ﬁgc—l).

n=0

As k — o0

ko . 1 _~ .
Ug—=>Up — |[FUp;
1-«

uk—)ft( ! )=ﬁ ;
I ""Np+o/) 0

dk L i1 1 ) _ -
an ui—>u1a ]—+& =u;.

It is clear by substitution that u; = o' ', . Therefore, dual equilibrium conditions

are satisfied (Grinold (1983b)).
Model K=PA, f<1I:
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(k-2)
k 2 2
A n
U, = U, z (OCB) 5
n=0
. k(4D
Wk =00 Y (D" (aB) " (Isi-D);
n=0
X i-1 i-2
X, =%, (-D"B"+2,B (-D"B" (2<igk-1).
n=0 n=20
As k > o

ulg - fto( ]—————_ (]ocB) 2) =u,;

u* >0 (———] ) u,;
7 R +aB)

k N i-1 1 -
and u, —>@,0 =uU,.

i 1 i
As k — oo

Lim  x* = [x (L)wfc (Lﬂ F
k—-—)oo k_r_ 1 1+B 0 ]+B .
(for any r=1,2,...,k)

. s ~ i1~ . -
It is clear by substitution that u; = o @ ;»and that xf converges in the limit to

% for all i. Therefore, dual equilibrium conditions are satisfied and primal equilibrium con-

ditjons are satisfied in the limit (Grinold (1983b)).
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Model K=BAj, with O<o<I, <1, y>1 and ary<I:

ko
Xo = Xps
koo
X =Xp

i-1 i-2
xf {x, Y DB B Y (—D”B"} (25is));

n=0 n=0

r-1
b (cho+5c,)v(2(—1)"v( ! B”]+<(—1>’B’)x§f (1< i+ 1))

n=0

(k=2)
k 2 2
ug =y Y, (0f)7
n=0
C k=(i+])
wb =0, Y (D" (oP)" (Isigke1);
n=20
(k-4) (k-4)
k 2 2 2 2 2 2
~ n A n
Vo = VYo I+ ((XB) 2 (O('B) -V (OLB) z (OCB) ;
n=0 n=20

V= o T, (1siseD).

As k — o

| 2 1 o~
Uy Uy ——— |=Up;

I-(ap)’

-~

ko . 1 o~
u,>u, _—1"‘0‘[3 =u;;

us > ai'l( ! )=f¢

i I+of/ %

. Y ~ i1 ~ I . .
It is clear by substitution that u; = o @ ;- Dual equilibrium conditions are satis-

fied (Grinold (1983b)).
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F. SUMMARY

The following summarizes the key results of this chapter:
The K=BA structure with f=1, satisfies dual equilibrium from period one
~ i-1~ . . . . .
onward, as u; = o u ; (i21). However, primal equilibrium (using restric-
tions x,=X,, ;) is never satisfied as the optimal primal sequence is cyclic, with
periodicity two. Primal restrictions of the form x=x,, » allows primal equilib-
rium to collapse to an infinite-horizon optimal.

+The K=PA staircase structure with f</ and the K=BAj structure satisfies dual

e . ~ i-1~ .
equilibrium from period one onward, as u; = o u; (i]).

It is also important to note that for these particular problem structures, solving the
two period truncated solution provides all the information needed to derive an optimal so-
lution sequence {x;} to the infinite-horizon formulation.

If a problem of interest satisfies any of the problem structures defined in this chap-
ter, or is an example of other specific problem structures for which the form of the infinite-
horizon solution can be found (e.g., Grinold and Hopkins (1973a)), then the infinite-hori-
zon optimal solution can be solved for directly. However, in general, for most practical
problems, it is difficult to ascertain enough information regarding the form of the infinite
optimal solution, to use direct methods. Therefore, a bounding ai)proximation is needed for
most real-world applications. The next chapter explores the properties associated with pri-
mal and dual equilibrium approximations, and confirms that these methods generate valid

bounds over a large class of potential problem structures.
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IV. CONVERGENCE PROPERTIES OF PRIMAL, DUAL
EQUILIBRIUM, AND TRUNCATION APPROXIMATION
METHODS

Svoronos (1985) first introduced the notion of using primal and dual equilibrium
approximations to establish an approximate value for the optimal objective value for a gen-
eral class to infinite-horizon convex programs. This chapter shows that when appropriately
defined, primal and dual equilibrium approximations generate upper and Jower bounds re-
spectively for both LP~, and for infinite-horizon integer and mixed integer programs
(MIPw). Sections A introduces notation for this chapter. Sections B and C prove the primal
and dual equilibrium optimal objective function values, when properly established, always
bound the infinite-horizon optimal objective function value. Section C also establishes that
convergence of the truncated optimal objective function value to the infinite optimal solu-
tion implies the optimal objective function value for the dual equilibrium approximation
converges to the infinite optimal solution. Section D provides an illustrative example,
where both truncated and dual equilibrium approximations converge to the infinite optimal,

however, a duality overlap exists. Section E discusses how these results may be used in

practice.

A. NOTATION
This section uses the following mathematical notation where, unless stated other-

wise, holds for both LP« and MIP~:

X~ The feasible region for the infinite-horizon formulation, X “c H R" @) ;
t=0
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X;~  The feasible region for a T period truncated approximation of the infinite-

. . oo - n(t)
horizon formulation, X, € H R

t=0

Xpr~ The feasible region for a T period primal equilibrium approximation of the

infinite-horizon formulation, with cuts of the form x=x,,; (22T, L21), Xp; c H R"Y ;
t=0

Xdp~ The feasible region for a T period dual equilibrium approximation of the in-

finite-horizon formulation, where all constraints containing the decision variables x; (:2T)

are aggregated using an o discount factor, Xd"T° - H g"® :

t=0

| % The Optimal objective function value for the infinite-horizon formulation;

V7~  The optimal objective function value for the T period truncated approxima-
tion;

Vpy~ The optimal objective function value for the T period primal equilibrium ap-
proximation;

Vd;” The optimal objective function value for the T period dual equilibrium ap-
proximation;

Vp~  The value of the lim;_, . Vp~r when it exists;

Vd® The value of the lim,_,.Vd r when it exists;

x An infinite sequence of decision variables {x,} that is feasible to the infinite-

horizon formulation (i.e., x € X *Y);

xr An infinite sequence of decision variables {x} that is feasible to the trun-

cated formulation (i.e., x; € Xy );

78




xpp  Aninfinite sequence of decision variables {x.} that is feasible to the primal

equilibrium approximation (i.e., xpr € X Pr )

xdy  An infinite sequence of decision variables {x;} that is feasible to the dual

equilibrium approximation (i.e., xd, € Xd r)-

B. PROPERTIES OF PRIMAL EQUILIBRIUM APPROXIMATIONS

The relationship between a primal equilibrium approximation and its infinite-hori-

zon formulation:

Given any infinite-horizon formulation (restricted in this case to LP= or MIP~),

primal equilibrium approximations are additional restrictions placed on X*, start-
ing at some finite period T, that result in a finite period equivalent formulation of the
problem, with a non-empty feasible region.

This is a slightly more general definition than that of Manne (1970) presented in
Chapter II. The defining restrictions limit choices to those that maintain primal feasibility
and allow for the constraints in the original formulation to eventually become redundant,
by creating a functional tie between a finite set of decision variables and the rest of the vari-
ables in the sequence. This allows primal equilibrium approximations to be solved as
equivalent finite period formulations. For the lower triangular structured LPe presented
in Section A.1.g of Chapter II, restrictions of the form x;=Ax,, are viable. However, when
A=1, restrictions of the form x=x,, (k finite) are viable for both LP=, and when the for-
mulation is restricted to integer, i.e., MIPe.

Given this defining relationship between the original infinite-horizon formulation
and the primal equilibrium approximation, it is possible to establish several general rela-
tionships relating the optimal value of the primal equilibrium approximation to the optimal

value of the infinite-horizon optimal solution.
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For the remainder of this section the following assumptions hold:

*The infinite-horizon problem of interest is to minimize a linear objective
function, over a defined and non-empty feasible region.

«Restrictions can be identified that generate non-empty feasible regions and
finite period re-formulations with finite optimal objective function values.

*A finite optimal exists for the infinite-horizon problem.

1. Monotonic Behavior of the Primal Equilibrium Approximation

Objective Value
Property VI: The optimal objective function value for the primal equilibrium ap-

proximation is monotonic and non-increasing with increasing T.

It is clear that Xp; c Xp;, ,, since Xp7=Xpy, N {x; = x;..} (ie,xe Xp;
implies x € Xpy, ). Let xApT be any optimal solution with objective function value Vp;
to Xp7 . The objective function value Vpy provides an upper bound on the optimal objec-
tive function value Vp7, ; determined over the feasible region Xp5,,,since xpre Xpy,,.
Therefore, the optimal objective value Vpy is monotonically non-increasing with increas-
ing T;ice., Vpp 2Vpp,, -

QED (Property VI)
2. Relationship Between the Primal Equilibrium Approximatidn

and the Infinite-Horizon Optimal Objective Function Value

Property VII: The optimal objective function value for the primal equilibrium ap-
proximation generates an upper bound for the optimal objective function value for the in-

finite-horizon problem.

For any T, given xp, € Xp7, then xp, € X~ as by definition

Xp7=X"N{x,= x,,,, V=T} . Therefore, since xpre X~ ,it’s associated objective
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function value Vp = V" . Assume further that there exists a T such that Vp is finite. In

this case, the limit of Vp5, defined as Vp”~ exists, and Vp72Vpr, ,2Vp 2 V™.

QED (Property VII)

3. Convergence Properties of Primal Equilibrium Approximation

There are relatively few assumptions required to show both Vp r and Vp~ exist

and bound V~ from above. However, the conditions under which Vp~=V" are problem

specific and more difficult to in general to verify. Manne (1970), and Svoronos (1985) de-
velop problem structures that ensure when primal equilibrium restrictions are used, the ob-
jective function value and a subsequence of decision variables converge to an infinite-

horizon optimal. Verifying convergence is highly dependent on both problem structure, and

on the choice of restriction. This is illustrated with the following example:

Minimize x,

Subject to:
x; +x, =]
X, +x3 =1
x; +x, = 1
x.20

12

Given any 7, the primal restriction x;=x,, for all £2T, leads to an optimal solution

of Vp~ =Vp,°° =0.5, and the optimal solution sequence {0.5, 0.5, 0.5,...}. It is clear by in-
spection however, that the minimum possible solution is x,=0, and that the sequence
{1,0,1,0,1,0...} is a feasible sequence with x, and the optimal objective function equal to

0.0. If the primal restriction x;=x,, #>T is used for any 721, the resulting feasible region

still includes the optimal sequence {1,0,1,0,1,0...}., resulting in Vp“=Vp, =V  =0.0.
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Verifying convergence of primal equilibrium approximations to the infinite-hori-

zon optimal, using any restriction is non-trivial. However, given the restriction generates a

non-empty feasible region, the solution Vp , is anupper bound for ¥V~ ,and its associated
decisions x}n e X~ . This allows for practical implementation of primal equilibrium as a

method to generate a sequence of non-increasing upper bounds for V"

C. PROPERTIES OF DUAL EQUILIBRIUM APPROXIMATIONS

The relationship between the dual equilibrium approximation and the original infi-

nite-horizon formulation:

Given any infinite-horizon formulation (LP= or MIP~), where the constraint
space is lower triangular in nature, the dual equilibrium approximation are relax-

ations over X=. This relaxation takes the form of aggregating all constraints that in-
clude x,, for all t=T, (T some fixed integer value) using a discount factor 0, to form

oo

one constraint. The aggregation allows the variable £, = Y, OL'x, and for the infinite
t=T

constraint space to be collapsed such that an equivalent finite period formulation ex-

ists.

Chapter II provides a detailed discussion of dual equilibrium approximation as ap-
plied to LPeo, however the point is that the dual feasible region derived, Xd ;’ 2 X~ forall

T. When X* is the feasible region of a MIPe formulation, the relaxation can involve not
only aggregating the constraint space, but also relaxing the integrality of the decision vari-

ables.
For the remainder of this section, the following assumptions hold:

«The infinite-horizon problem of interest is to minimize a linear objective
function over a defined non-empty region.
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+A finite optimal solution exists for the infinite-horizon problem.
«For some 7, (7 finite) a finite optimal solution exists over the dual feasible

region Xd, .

1. Monotonic Behavior of the Dual Equilibrium Approximation

Objective Value
Property VIII: The optimal objective function value for the dual equilibrium ap-

proximation is monotonic and non-decreasing with increasing T.

This is obtained directly be realizing that Xd,” > Xd 7. Therefore,

x e Xd“r.; = x € Xd . Then any optimal solution xdr.; tothe T+] period dual equi-

librium formulation, is a feasible point for the T period dual equilibrium relaxation. This
implies that Vd"r. ; is an upper bound for Vd"r . Therefore, the optimal objective function
value is a non-decreasing sequence with increasing 7, i.e., Vd~r<Vd r,; forall T.

QED (Property VIII)

2. Relationship Between the Dual Equilibrium Approximation and
the Infinite-Horizon Optimal Objective Function Value
Property IX: The optimal objective function value for the dual equilibrium approx-

imation generates a lower bound for the optimal objective function.

This again comes directly from the definition of dual equilibrium. By definition,
Xd,” 2 X" for all T. This linked with our previous result leads to Xd S oXdr 20X
forall T. Since any x € X" = x € Xd r.;= x € Xd r,any optimal £ to X" with objec-
tive value V=, is and upper bound for the value of Vd"r.;, which is an upper bound for the
value of Vd”r. Given that V* exists and is finite, and that for some 7, a finite solution exists

Vd~r, then the sequence formed by {Vd r} is a monotonic, non-decreasing sequence of

real numbers bounded above by a finite value, which implies that this sequence has a lim-
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iting value defined as Vd~ <V~ . Therefore, the dual equilibrium approximation provides a
non-decreasing sequence of lower bounds with increasing T for the optimal objective func-
tion value of the original primal infinite-horizon formulation.

QED (Property IX)

3. Convergence Properties of Dual Equilibrium Approximation

As illustrated in the previous section, relatively few assumptions are required to in-
sure that the dual equilibrium formulation, when properly derived, provides a valid lower

bound for the optimal objective function value for the infinite-horizon formulation. How-

ever, conditions under which Vd~ =V~ are more restrictive and become problem specific
in nature. Grinold (1977, 1983b) and Svoronos (1985) have derived convex infinite-hori-
zon structures for which dual equilibrium approximation values (variable and objective

function) converge in the limit to an optimal associated with the infinite-horizon formula-
tion. In general confirming convergence involves verifying that in the limit, a subsequence

of the optimal decision variables derived using dual equilibrium approximations converge

to some feasible sequence over X™.

If the truncated formulation objective function value is convergent to the infinite

optimal, then the dual equilibrium approximation is convergent to the infinite optimal as

well. In this case, by construction Xy 2 Xd;", (i.e., x € Xd,, implies x € X; ). Since

xd is an element of X;", this implies that Vdy™ is an upper bound for V7~

(Vg <Vdyp“<V™ for all T). Therefore, if V; — V™, this implies Vd7 — V™.
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D. AN EXAMPLE WHERE DUAL AND TRUNCATED
APPROXIMATIONS ARE CONVERGENT AND A DUALITY
OVERLAP EXISTS

Consider the following example originally introduced by Grinold and Hopkins
(1973b) and modified by Romeijn, Smith, and Bean (1992) to include bounds on the vari-
ables.

Primal Formulation:

> 1 i-1
Minimizez (5) z;

i=1
Subject to:
x1_>.1;
y,+z;21;
—Zyi_1+xi20 (i=2,3,...);
—le._1+yi+zi20 (i=2,3,...);

0<x,<2'"" (i=12..);

0<y, <27 (i=1,2,..);
0<z,<1 (i=12,..)

Dual Formulation:

maximize (u1+v1— Y (2iﬁlpi+2i_]qi+"i)]

i=1
Subject to:
u,—-2v; ;—p;< 0 (i=1,2,...);
v,=2u; 1 —4;< 0 (i=1,2,...);

-1 .
vi—riS(ﬁ) (i=1,2,...);
U,V Ppl; 2 0 (i=1,2,...).

It is a simple matter to verify that the best possible optimal primal objective is 0,

and that the following solution is optimal for the primal infinite-horizon formulation:
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x=21 (i=1,2,...);

y=2t(i=1,2,...);

z;=0, (i=1,2,...).

Note that this solution is an optimal solution for any truncated or dual equilibrium
approximation (with period T). Therefore, in this case both the truncated and dual equilib-

rium approximations converge to the infinite-horizon optimal solution and provide a finite

set of decision variables that are part of an optimal set to the infinite-horizon primal formu-

lation.
However, now examine the dual infinite-horizon formulation. It is easily shown that

the following solution set is feasible and generates a optimal objective function value of 2

for the dual infinite-horizon formulation:

i-1
u;, = (g‘) (i=1,2,...);

i-1
v, = (é) (i=1,2,...) ;

pi=gi=ri=0(i=12,...). .
In this case weak duality fails however both truncated and dual equilibrium approxima-

tions provide convergent solutions to the infinite-horizon primal optimal.

E. SUMMARY

This chapter shows that when properly defined, primal and dual equilibrium ap-
proximations bound the infinite-horizon optimal objective function value for both LP and
MIPw. Further, any primal equilibrium optimal solution is feasible over the infinite-hori-
zon. This ability to bound the objective function value of the primal infinite-horizon for-
mulation, is key to quantifying the influence of any end effects acting on the primal and
dual equilibrium approximations. Other authors have almost exclusively focused on the is-

sue of convergence (Svoronos (1985) for Convex Spaces, Schochetman and Smith (1992)
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for infinite dimensional spaces that include MIPe). Convergence is a problem specific is-
sue, and cannot be verified in general. If the difference between the primal and dual equi-
librium approximation objective function values is small, then whether or not the solution
is convergent to the infinite optimal is of little practical importance, as primal and dual
equilibrium approximations generate a solution to the infinite-horizon problem which is
measurably (examining objective function values) near optimal. Following chapters exam-
ine the effectiveness of primal and dual equilibrium approximations to both generate tight
bounds on the infinite optimal solution, and to eliminate end effects associated with trun-
cated formulations. While the issues of weak and strong duality are also of theoretical in-
terest, our focus is on solving or bounding the infinite optimal solution to the primal
infinite-horizon formulation. Strong and/or weak duality may or may not hold: Primal and
dual equilibrium approximations always bound the infinite-horizon optimal for the primal
formulation.

A major flaw from a modeling perspective in extending truncated formulations over
an infinite-horizon, is the assumption that the problem structure over the infinite-horizon is
completely known. While many problems subject to end effects have indeterminate hori-
zon lengths, their structure is not necessarily known. If this extension method is to prove
valid, tests must be devised to examine the variability of initial period optimal decisions to
changes in future period coefficients, that were not originally modeled in the truncated for-

mulation. The next chapter focuses on this issue for LPx.
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V. DETERMINING THE STABILITY OF THE INITIAL DECISION
VARIABLES OVER A RANGE OF POSSIBLE RIGHT HAND SIDE
VALUES

For many problems, the constraint coefficients associated with primal decision
variables are well defined (e.g., utility coefficients or network structure), however the right
hand side (e.g., projected demand) can only be predicted to lie within some range.

Section A defines the optimal objective function value as a function of the right
hand side. A linear programming example illustrates that even when two right hand sides
b, and b, have the same initial period optimal decision variable (%,), this variable may be
suboptimal for some b=((1-8)b +6b, 0<6<1). This section aléo proves the optimal objec-
tive function value for a bounded finite dimensional minimization linear program, is a
piecewise continuous convex function over the convex combination ((1-0)bg +6b, 0<6<1).

Sections B through E use the results of section A to develop an algorithm which de-
termines if a specific £, is an optimal solution for all b= ((i—G)bO +6b;, 0<6<1).

Section F expands on the results of section E, by developing an algorithm to deter-
mine the potential worst case impact of using £, for any b= ((1-6)b¢ +6b{, 0<6<I). This
algorithm generates a monotonic non-increasing sequence of upper bounds on the error,
and is guaranteed to terminate after a finite number of iterations.

Section G extends the algorithm of section F for primal and dual equilibrium ap-

proximations. The algorithm still generates a monotonic non-increasing sequence of upper

bounds on the error associated with the infinite-horizon optimal objective function value
when xq= £, for b= ((1-6)by +6b, 0<6<1). The only limiting factor is that after some fi-
nite horizon, elements of b must eventually become invariant in order to define the dual and

primal equilibrium approximations.
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A. PROBLEM DEFINITION/PRELIMINARIES

Consider the problem LP6I:

LPoI

h (0) = minimize cx
Subject to:

Ax2 ()b, + (1-6)b,
x20.

Where x={xy, X, X,,...X,}, a feasible set of decision variables for the right hand side
(8)by+ (1-6) b, (0<B<I) which represents some range of interest. LPO1 is assumed to have
a finite optimal for all 0<6<I.

Now assume that for 6=0, and for 6=1, there exists an optimal

0 . - s
{xp X%y .. } =x withxy=%,. Further, assume that #(0) is finite over the range 0<6<1.

Is x,j=%, part of an optimal solution for all 0<6<1? This is not assured in general. Consider

the following problem:

LPEX]I:
Minimi 3
inimize —§x0 -x,

Subject to:
-Xx,+x,;20
—X,—-Xx;20(~4) + (1-6) (-2)
—2x,+x,2-1
—2x,-%;2-5

xo,x120.

This problem has the optimal solution values illustrated graphically by Figure 4.
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Optimal solution highlights feasible region
at =1, (1,3) cor 620

\ highlights feasible region
N for 6 =1

X1
\ Optimal solution
at 6=3/4, (3/2,2)

/ Optimal solution
/ at 6=0, (1,1)

X0
Figure 4.

Behavior of optimal xy,.

To derive an algorithm which determines whether xy=%, is part of an optimal solution for

all 0<0<1, we require Theorem 1.

Theorem (1): Given h(0) is finite for 0<6</, h(8) is a piecewise linear convex function
over 0<0<I, continuous over 0<8<I, and has only finitely many points of non-differentia-
bility.

Figure 5 illustrates the functional relationship between k() and 8:
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h(0)

0= 0 >1

Figure 5.
Piecewise linear convex function with a finite number of non-differentiable points.

Proof:
The dual formulation of &(0) is:
h(0) = maximize T((0)b,+ (I-0)b))

Subject to:
A <c;
n=0.

Given h(8) is finite over 0<0<1, then for each 6, there exists a dual extreme point optimal
solution. Also note that the dual feasible region has only a finite number of possible

extreme points. Accordingly, the dual formulation is equivalent to:
h(0) = max, ;o {7 ((8)b,+ (I1-0)by)};

where 7t 1<i<k are the extreme points of the dual feasible region. Therefore, h(0) is the

maximum of a finite number of linear functions with respect to 6.

Proof that h(B) is convex with respect to © over the range 0<6<1.

Let 8; and 0, be any two elements of the set [0,1]. Forany A e (0, 1),

92




h(M8,+ (1-0)8,) = maxISiSk{ni[b](K6]+ (1-2)0,) +by(I- (M8, + (1-2)8,))1} .
The right hand side is equivalent to:

maxlsl.sk{ni[bl(x9]+ (1-1)6,) +b0(7»+ (1-2) - (8, + (1-1)8,))]}
=max | An V(B0 + (1-0)by) + (1-1) (5,8, + (1-0,)5))1}
<max, ;A0 (8,8,+ (1-6))by)} wmax, ;L I-N)7 (5,8,+ (1-0,)b)) }

= Amax, ; dn (5,0,+ (1-0))by)} + (I-ANymax, ;¢ ' (b,0,+ (1-0,)b)) }

= 7\.h(91) + (1—k)h(92) .
Therefore:

h (A8, +A08,) <AR(8)) + (I - A) h (8,) , and k(8) is convex with respect to 0.

Proof that h(8) is continuous with respect to 8, over the range 0<8<I. (A proof is provided
below. An alternate proof can be found in Rockafellar (1970)).

For this part of the proof, we rely on the fact that k(8) is convex, and reference the follow-
ing lemma (Royden, (1988), pp 113):

Lemma: If f is convex on any open interval (a,b), and if x, y, x', y' are points of (a,b) with

x<x'<y', and x<y<y', then the chord over (x',y') has larger slope than the chord over (x,y);

O -fx)  FO)=FX))
y-x

yl—_xl

that is,

We use this lemma to prove that k(6) is continuous for any (6,,0,) < [0, I].

Given any (0,,0,) c [0, 1], where 8,>0,, one can find an x, y, x', and y' such that

0<x<0,<8,, 0<x<y<B,, and 8;<x'<y'<], 8;<6,<y'<]. From the lemma we obtain:
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(h(y) —h(x)  BO) -1 6)) (h(y)-h(x))
y-x B 0,-9, B y-x '

Since h(0) is defined and bounded over the interval [0,1], it is clear from the above that

there exists some finite number M>0 such that:

(h(6,) -k (0)))
< 5,20, <M;

or that [k (8,) ~h (8,)| <M|6,~8,.
Now let 8=¢/M. Then for any 16,-6,1<9, |h (8,) —h (0)) | < ¢ . Therefore, h(0) is continu-

ous.

Prove that the function h(8) has only finitely many points of intersection (i.e., non-differ-

entiable points).

The following property is required:

Property X: Given h(6,) = T*((8)b; + (I-8)bo), h(62) = T*((02)b; + (I-82)by), and
0<60,<8,<1, then h(B) = T*((0)b, + (1-8)by) for all 6;<6<6,.

Proof of Property X: There exists a ni* that satisfies the hypothesis since h(8) exists and is
finite for all 0<0<1, and there are only finitely many dual extreme points, ni.ﬁ Now, assume

the claim is not true. Then there exists at least one & (8,<8<6,),where 6=\0, +(1-1)0,

for some A (0<A<I), and another extreme point nj, such that
T8, +(1-L)8by + (I-A8; +(1-M)8))bI>* (A0 +(1-M)8by + (I-(A8; +(1-1)8)bol-
Rearranging both sides one obtains the equivalent expression:
A(,b+(1-8))bo)+(1-A)TI (0, +(1-8)b)>AT* (8,51 +(1-8 Do) +(1-MT*(8,51+(1-8)bg). (1)
However note from the hypothesis that ni*((Gl)bl + (1 -91)b0)21tj((91)b1 + (1-61)b) since
h(8)) = max, oo (8D, + (1-0)b) = ' ((8,)b,+ (1-6))b) . Since

0<\<1, this implies that AT9*((8))b1 + (1-87)bo)SAT*((81)by + (1-81)by). Similarly,
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(1-N(O)b; + (1-8,)bo)<(1-MT*((8)b1 + (1-02)bp). Adding both sides of these two
equations together one obtains:

AT(0,B +(1-8)b)+H(1-M)T(8,h1+(1-8,)b) SAT*(8 15 1+(1-6) b+ (1-M)T*(85b 1+(1-6,)bo).
A contradiction with equation (7).

Therefore, given any two points 8; and 6,, for which T* is an argmax dual extreme point,

then, % is an argmax dual extreme point for the interval [6;, 0,].
QED (PropertyX)
Now using Property X, it is clear that given any two disjoint intervals for which mi* is the

max dual extreme point, i.€., [81, 8,1, [03, 8], where 0;<0,<63<6,, that * is the max

dual extreme point for the interval [8;, 6,]. Therefore each 7t is either:

Not an max dual extreme point for any 0 (0<6<1).

«An max dual extreme point over a single closed interval [0, 0,].

An max dual extreme point over a single point 6.

Therefore, each max dual extreme point is tied to only one unique point or to only one lin-
ear line segment over the interval. Since there are only finitely many dual extreme points,
there can only be finitely many linear line segments, and therefore only finitely many
points of intersection possible over the domain of 8 (i.e. given k dual extreme points, a
max of k-1 points of non-differentiability). Therefore, k() is a convex, piecewise linear
function with only finitely many points of non-differentiability.

QED (Theorem (1))
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B. EXAMINING THE STABILITY OF £, FOR 0<6<1

Consider the linear program LP62:
2(z;2p b b)) = Minimizg cx—(0z,+ (1-0)z,)
Subject to:
Ax = (0b;+ (1-0)b,)
x20,0250<1;
and the linear program LP03 (where £, is the optimal x, for LP8. with 8=0):
hr (0) = minimize cx

Subject to:
Ax2b,(6) +b,(1-9)

*o = %o

x20.
Assume that x,=2%, is a feasible solution for any 0<6</ (e.g., the feasible region repre-
sented by Ax>b; is a subset of the feasible region represented by Ax2by). Define x"asa
set of optimal decision variables to LP83 with 6=1, and x7" as a set of optimal decision
variables to LP83 with 8=0. Now let z;=hr(1), (the optimal objective function value
obtained from LP83 with 8=1) and zy=h(0)=hr(0) (the optimal objective function value

obtained from LPO1 with 6=0).

Over all choices of 0, LPO2 seeks to maximize the distance between the optimal ob-

jective function value of LP81 (i.e., h(0)), and the convex combination of z; and z. Figure

6 illustrates graphically the optimal solution.
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\ z1(9)+z0(1-6)

h(0) This gap is 0 if
X, optimal for
h(1).
Optimal Value at
6 is |3
I 0 ' I |
- 0 >
Figure 6.

Graphical representation of an optimal solution to LP62 in terms of 6.

Note that the optimal solution occurs at a point of intersection for the continuous piece-
wise linear convex function k(8) or at 6=1.
Theorem (2) |2 (2,24 b1, bo)| 2 hr (8) —h (6) VO, 0<6<1.
Proof:
’ Clearly ox!” +(1-9)x0r generates the objective function value of 6z;+(/-6)z(, and
0x!"+(1-0)x?% 0<6<1 is feasible to both LPOI and LP83 since eAx!" >0b, and (I-
| 0)Ax0">(1-8)by, which implies that A[6x'"+(1-8)x%"] > 8b+(1-6)bg and x'" and x” both
| contain xy=%,. Because LP83 is a restriction of LPO we have h(0)<hr(6). By convexity,
we also have hr(0)<6z;+(I1-0)z. Therefore h(0)<hr(8)<6z,+(I-6)z(. Subtracting h(0) gen-
erates the expression 0<hr(0)-h(0)<6z;+(1-8)zy- h(6) (for any 6). Hence;

max (0z,+ (1-0)z,—h(6)) 2hr(6) —h (0) . The proof is complete by

noting that the left hand side of the above inequality is -2 (2, 2y, b, b)) -

QED (Theorem (2))
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Theorem (2) shows that solving LP62 provides an upper bound on the error possi-

ble by fixing x, = £, for any right hand side range specified by 0<6<]. This theorem is

used throughout the rest of this chapter. This theorem provides a basis to verify whether or
not a particular initial decision variable(s) is optimal over a range of right hand side values
and to generate reasonable error bounds for the initial decision variable(s) of a particular

right hand side, given these decision variable(s) remain fixed over a range of potential right

hand sides.

C. SPECIAL CASE: THE OPTIMAL VALUES FOR 6=0 AND I HAVE
THE SAME BASIS

Define x¥ and x’ as the optimal decision variables to LP@1 for 6=0 and I respec-
tively. If x? and x” have the same optimal basis B, h(8)=6z ;+(1-8)z¢ and the basis stays fea-
sible over the range of 0 since 6Bx'=0b, (1 -0)Bx%=(1-6)b,, which implies
B(Ox'+(1 -0)x%)=6b jH(I-0)by. Since the max dual extreme point = ch'I is the same for
both k(0) and h(l), Propertbe provides that for all 0<6<1, 7* is a max dual extreme
point. It is important to note that xY and x! having the same basis implies
h(0)=0z ;+(1-6)z(, however h(8)=0z;+(1-6)z¢ does not necessarily imply that x% and x’

have a common optimal basis.

D. ALGORITHM X,0PTIMAL: DETERMINING IF %, IS OPTIMAL
FOR 0, 0<6<1

The following algorithm determines if £, is optimal for 0<6<I.

(1) Set i 1, Bjye(D)-0, and Byppe (D)1
{Evaluate until discover £, not optimal or until all points of non-differentiability

of h(0) examined}

(2) While i>I Do
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3)
)
®)
(6)

(7
®)

®

(10)

(11
(12)
(13)
(14)
(15)
(16)

(17)
(18)

{Set objective function values and appropriate RHS for interval of interest}

2o(D)=hr(0gyer(D)
z1(i)<hr (eupper( 1))
bO(i)"(]‘elower(i))b0+(elower(i))b 1
b))~ (1-8ypper(D)Bo+Bypper ()1

{Solve for maximum difference between LP61 and feasible convex combination
over 0 interval of interest}

Solve LP02. Difference-% (2, (i), 2, (i), b, (i), b, (7))
0« optimal 0 generated by solving LP62

{Convert 8 of scaled interval back to original <0</ interval}

8(1) = (Orper (D)) (1=6) + (B0, (1)) (8)
{Determine if LPO1 lies on line generated by convex combination}

If (Difference=0) then...

{If Difference =0 and i=1, then either first iteration has shown objective function
lies on convex combination line, or all possible non-differentiable points have
been identified }

If (i=1) then...
Stop, £, optimal for 0<8<I
Else

i~i-1
Endif
Else
{Determine if &, optimal at point of non-differentiability of LPO1}
Solve LP91, Zfree-h( (i) )
Solve LPO3, Zrestricted-hr(8 (i) )

{Implication is if Zfree<Zrestricted, then £, cannot be optimal to LPB1}
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(19) If (Zfree<Zrestricted) then
(20) Stop, £, not optimal for 0<0<]

21 Else

{Set up next division of interval, splitting original interval into two
new subintervals}

(22) Btower (i) < 0 (i)

(23) Oupper (1) € Bupper (3)
(24) B1ower (i+1) Oy, (1)
(25) Oupper (i+1) < B (i)

{Increment i to reflect additional subintervals need to be tested}

(26) i-i+l]
(27) End If

(28) EndIf

(29) End While

This algorithm systematically identifies (if needed) each non-differentiable point

for h(0), terminating only when the algorithm identifies a non-differentiable point where

%, is not part of the optimal solution, or after visiting all non-differentiable points. Termi-
nation is guaranteed since there are only a finite number of non-differentiable points. If £,

is optimal for all the non-differentiable points, then £, is optimal over the entire range of

0. Figure 7 illustrates the first two iterations of this algorithm, and Figure 8 illustrates the

behavior of this algorithm on problem LPEXI (from Section A).
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second zo(0) +z,(1-0)
initial zo(0) +z1(1-06)

h(6)

irst optimal

second optima for LPO2
for LPO2
I I
0 1
-¢ e —
Figure 7.

Algorithm to determine if £, is optimal for 8, 0<8<I.

0 0 0=0.75 1

/0(9) +21(1-0)

Difference+0
and x¢# %,

-3.0 |

-4.0 _ h(e) "
-4.5

Objective Function Value

Figure 8.
Illustrating algorithm xgerror using LPEX]I.

E. AN UPPER BOUND ON DEVIATION FROM THE OPTIMAL
OBJECTIVE VALUE WHEN #, IS FIXED OVER 0<6<1

Whether or not xg # xf, , we still desire to know how good the initial decision

xg = %, is over the range of 6, 0<8</. Given %, is feasible over the range, it is possible to

generate a simple upper bound on the potential error associated with this decision variable

over the range of 8. To illustrate the concept involved, determine the optimal objective val-
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ue of LPO1 for 6=0, and set z)=h(0). Now fix ¥, = xg and solve LP03 fixing 0=1. Set

zy=hr(1). Now solve LPO2. Figure 9 graphically illustrates the result:

(0)z;+(1-6)z¢

N

(]
E
<
>
g hr(®)
g
E %h(9)
2 Optimal Value at
2 6 is |2
S

T 5 B

- 6 >

Figure 9.
Generating an upper bound on the error associated with £,.

By convexity (8)z;+(1-0)z¢> h(8), and (8)z;+(1-8)z¢= hr(0) (with xg=%, ). The
maximum difference between h(0) and z;(8)+z,(1-6) occurs either at a point of non-differ-
entiability of k(8), or at 6=1, and the resulting solution to LP62, 2|, provides a weak upper
bound on the error associated with using £, over the entire range of 0, 0<O<I. This suggests
an algorithm can be developed to generate a sequence of non-increasing bounds on the dif-

ference between hr(0) and h(0); i.e., the error associated with using xy=%,,.

F. ALGORITHM X,ERROR: GENERATING NON-INCREASING
UPPER ERROR BOUNDS

The following algorithm generates a non-increasing sequence of weak upper

bounds on the error associated with using £, over the entire range of 0, 0<0<1. This algo-

rithm is similar in many respects to xoOptimal.
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{Initialize Algorithm}

(1) Setd-1,i 1, O15yer(d,i)-0, Oupper(d,i)d,
(2) Set MaxDiff-0, Maxd-Maximum number of iterations.

{Evaluate until best upper bound found}

(3) While (=] and d<Maxd) Do

)
®)

(6)
(M
®)
©)

(10)
(11

(12)

(13)

(14)
(15)
(16)
17)

(18)

Divd-0, imax-0
While (i21) Do

{Solve for objective function values (LP83) and appropriate RHS for interval of
interest}

2o(0)~hr(B1ower(d:1)
21y~ hr(® pper(dii))
b(i)~(1-B1ower(d:D)bo+H(Brower(d:0)b)
b 1)~ (1-8,pper(dsi)bo+Bupper ()b

{Solve for maximum difference between LP8! and feasible convex combination
over 0 interval of interest}

Solve LP02. Difference - |2 (z, (i), 2, (i), b, (i), b, (1)) ]|
0« optimal 6 generated by solving LP62

{Convert 8 of scaled interval back to original 0<6</ interval }

8(1) & (Broner (1)) (1=8) + (B, (1)) (8)
{Determine if LP81 lies on line generated by convex combination}

If (Difference=0) then...
{If Difference =0 and d=1 the first iteration has shown optimal objective

function lies on convex combination line}

If (d=1) then...
Stop, £, optimal for 0<6<1
Endif
Endif

If (Difference >Divd) then
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(19) Divd-Difference
Endif

{Set up next division of interval, splitting original interval into two
new subintervals}

(20) B, (d+1,imax+1) « 8 (i)

21) Oupper (d+1, imax+1) < B,,,, (d)
(22) 0,y (d+1,imax+2) < 0y, (d,i)
(23) Bupper (d+1,imax+2) <8 (i)

(24) imax-imax+2

(25) jei-1

(26) EndWhile
27) Y (Divd=0)

(28) MaxDiff-Divd
(29) Done

(30) Endif

(31) If (Divd=MaxDiff)
(32) Done

(33) Else

(34 MaxDiff-Divd
(35) d-d+1

(36) i-imax

(37) Endif

(38) EndWhile

This algorithm generates a non-increasing sequence of error bounds (MaxDiff). The
first iteration “d=1I" solves for the maximum distance between the objective function de-

fined by the convex combination of optimal objective function values zq (best value using

RHS b), and z;(best value using RHS b, restricted to include xo=%,). This maximum oc-

curs at some point 8 . This is illustrated by Figure 9. The second iteration “d=2" solves for

the maximum distance between the convex combination of optimal objective function val-

ues zg and hr (é) , and the convex combination of optimal objective function values

hr (8) and z;. This iterative process continues with the number of steps for each division

potentially growing by a factor of two for each iteration. The number of iterations for each

division can be reduced if one uses the distances obtained from the previous division to as-
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sist in determining the most appropriate sections to examine. However, the purpose here is

to illustrate the basic concepts.

Figures 10 and 11 show the x,Error algorithm executed on a hypothetical example.

Figure 12 illustrates xoError for the example problem LPEX].

N z1(9)+zo(1—6)
hr©)(6 1-6
r(e)/( H2o(1-0) -

Q
= [ hr(6)
s I A
>
o A
E hr(8)(1-0)+21(6)
8 error,
o Y
© error found during error
loop 2 but smaller than error;
I 1A I
0 o 1
- 9 >
Figure 10.

Error bound generated after first two iterations of xyError.

Approximation of hr(8) generated
By XoError

Objective Value

. error .
error found during Tn this ase two candidates

loop 3 but smaller than errory  occur over the same

I0 l I1

- 0 >
. Figure 11.
Error bound generated after first three iterations of xyError.
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0 0 0=0.75 1

2.0
20(0) +2,(1-0)

-3.0 4

: Difference generated by
iteration d=1. Iteration d=2
confirms this is the maximum
difference.

-4.0 _ h(e)—"
-4.5 ]

Objective Function Value

Figure 12.
Illustrating algorithm xoError using LPEX1.

G. BOUNDING THE ERROR ASSOCIATED WITH LP- INITIAL
DECISIONS

Figure 13 shows an infinite-horizon problem that may be bounded by using primal

and dual equilibrium approximation.

oo

e . e i-1
Minimize €%,+ 2 o ex;

i=1

Subject to:

A%, =b, )]
Hx,+ Ax,; =b, (1)
H,%,+ K x + Ax, = b, (2)
H %)+ Kx +  Kx,+ Ax; = b, (3)
H x,+ K; _x+ K; _,x,+ K, x;+ .. Ax; = b, (L)

K, x+ K, x,+ K, ,x; .. : (L+1)

Kyx,+ K, ;x;
x,20 (i=0,1,2,...)

Figure 13.
TNlustration of LPw for which primal and dual equilibrium approximation is applicable.
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Further assume, that for some k, b,=b,,., ;, for all n=k. Also note that the dimension-

ality of x, X, X 3,... may differ from X,. Chapter 2 illustrates that both primal and dual equi-
librium approximations can be used for the problem illustrated in Figure 13.

This section uses the following notation:

A, the coefficient matrix associated with dual equilibrium approximation;

A,, the coefficient matrix associated with primal equilibrium approximation;

¢4, the cost vector associated with dual equilibrium approximation;

¢, the cost vector associated with primal equilibrium approximation;

x4, the decision variables associated with dual equilibrium approximation;

X, the decision variables associated with primal equilibrium approximation;

b, the right hand side of any infinite-horizon formulation;

by, b, infinite right hand sides of interest such that for some k, b,=b,,, ;, for all nk;

b(8)=(1-8)b,+6b,;, 0<B<1, any right hand side value defined as a convex combina-
tion of by and b;

b,(6), the right hand side of b(0) in the primal equilibrium approximation;

b 40), the right hand side of 5(8) in the dual equilibrium approximation;

hp(8), the optimal objective function value for the primal equilibrium approxima- -
tion with right hand side value b(0)=(/-0)b,+0b ;

hpr(0), the optimal objective function value for the primal equilibrium approxima-
tion with right hand side value b(8)=(I-6)b,+6b;, including restricting initial decision vari-
ables to optimal values associated with right hand side by; and

hd(0), the optimal objective function value for the dual equilibrium approximation

with right hand side value b(0)=(1-0)b,+6b.
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The following useful relationships hold for primal and dual equilibrium approxima-

tions:

«Given any 0<6<1, and any b(8)=(1-0)b,+6b, the primal equilibrium approx-
imation optimal objective function value is greater than or equal to the dual

equilibrium approximation optimal objective function value, i.e.,
hp(0)=hd(0).

«Let £, represent a optimal solution for a set of initial decision variables to the
primal equilibrium approximation evaluated at by. Now fix the initial deci-

sion variables to the primal equilibrium approximation to £,, and assume that

for any 0<6<1, that £, is feasible over the primal feasible region defined by
b,(6) and solve for optimal solution of this restricted primal equilibrium for-
mulation for any 0, hpr(8). Then hpr(6) is finite and hpr(6)2hp(6) for all
0<6<1.

The relationship between hpr(8), hp(), and hd(0) is illustrated by Figure 14.

«—nhpr(0)

Optimal Objective Function Value

hd(0)
| l
e: 9=1
Figure 14.
Ilustration of the relationship between hd(8), hp(8), and kpr(6).
(hpr(6)=hp(8)2hd(6))

This relationship can be exploited to obtain an upper bound on the error associated

with fixing initial decisions associated with right hand side by.
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Consider the linear programs:
LP=B]

hd (8) = Minimize ¢ x,
Subject to:

Ayx,;2b,(0)

x= (x5 XX,y ...x,) 20.
LPxB2:

2(2;, 2 b by) = Minimize ¢ x,— (2,0 +2,(1 - 0))
Subject to:

Aux;2b,(6) +b,(1-6)
x20,0<0<1.

LP=03:

hpr (0) = minimize ¢ x,

Subject to:

A,x,2b,(0)
Xog = X9
x20.

Algorithm xError with only slight modifications can be applied to iteratively gen-

erate improving upperbounds on the gap between hpr(6) and hd(8).

Algorithm xyErrore:

{Initialize Algorithm}

(1) Set d=1, i =1, B5yer(d,))=0, Gupper(d,i)=1,
(2) Set MaxDiff-0, Maxd-Maximum number of iterations.

{Evaluate until best upper bound possible found}

(3) While (i> and d<Maxd) Do

Divd+-0, imax+-0
While (i21) Do

109




(6)
(7
®)
®

(10)
(1D

(12)

(13)

(14)
(15)
(16)
a7

(18)
(19)

20)

{Solve for objective function values (LP~83) and appropriate RHS for interval of
interest}

29(0)~hpr(Bigwer(d:D)
21())-hpr(Bypper(dii))
b o) ~(1 'elower(d, )b p(0)+(elower(d’ )b p( D
b 1 (-1 'eupper(d, )b p(0)+(eupper(d, )b p( 1y

{Solve for maximum difference between LP=8] and feasible convex combination
over 0 interval of interest}

Solve LP«02. Difference~ |2 (z; (i), 2, (), b, (i), b, (1)) ]
0« optimal 8 generated by solving LP62

{Convert 0 of scaled interval back to original 0<6<I interval }

8(i)  (Brpper () (1=8) + (B () (B)
{Determine if LP~0] lies on line generated by convex combination }

If (Difference=0) then...

{If Difference =0 and d=1, first iteration has shown optimal dual equilibrium
objective function lies on convex combination line that provides an upper bound
for the restricted primal. If this holds, then primal equilibrium equals dual

equilibrium, and the infinite optimal solution has been obtained, and %, is an
infinite optimal initial decision variable}

If (d=1) then...
Stop, £, optimal for 0<0</

Endif
Endif

If (Difference>Divd) then
Divd-Difference
Endif

{Set up next division of interval, splitting original interval into two
new subintervals}

0,,,., (d+1,imax+1) < 0 (i)
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2n Oupper (d+1, imax+1) 0, (d)i)
(22) B,pner (d+1,imax+2) < 8,,,,, (d,i)
(23) Bupper (d+1,imax+2) « B (i)
(24) imax-imax+2
(25) i-i-1
(26) EndWhile
27) If (Divd=0)
(28) MaxDiff-Divd
(29) Done
(30) Endif
{if max gap this division equal to max gap of last division, done, as found best
possible gap for this algorithm}
(31) If (Divd=MaxDiff)
32) Done
(33) Else
{in this case Divd<Maxdiff, so update Maxdiff}
(34) MaxDiff-Divd
{Move onto next division}
(35) d-d+1
{Set next division starting point}
(36) i-imax
(37) Endif
(38) EndWhile

Applying algorithm x Error= iteratively generates improving upper bounds on the

gap between hpr(0) and hd(0). This bound occurs either at a non-differentiable point, or

at the value 8=1. Figures 15 and 16 graphically illustrate the algorithm.
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Optimal Objective Function Value

This gap
size known

Solution to xyErrore Largest Gap Between
first iteration Restricted Primal and
Dual Equilibrium
| l [
6=0 6, o=1
Figure 15.

Demonstrating x(Errore generates an upper bound on size of the gap
between restricted primal and dual equilibrium approximations.

Optimal Objective Function Value

(After first iteration)

hpr(6)
__This gap
size known
Solufion to xnError Largest Gap Between
sgcléﬁgr}t;fgogmr Restricted Primal and
Dual Equilibrium
! [ [
6=0 0, 6=1
Figure 16.

Demonstrating xErrore generates an upper bound on size of the gap
between restricted primal and dual equilibrium approximations.

(After two iterations)
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In the above example, 65, is the point where the maximum gap exists between

hp,(8) and hd(). In this case xpErrore would run for one more iteration, generate the same

gap, then terminate.

H. SUMMARY

This chapter develops a method to examine the error potential of fixing the initial
decision variable(s) for finite and infinite-horizon linear programs, over a linear convex
combination of potential right hand side values. For solving LP, these algorithms can pro-
vide insight regarding the stability of the initial decision variable for the original infinite-
horizon program as the restricted primal equilibrium approximation and dual equilibrium
approximation still bound the infinite-horizon optimal. The algorithms of this chapter un-
fortunately are not applicable for MIPe, as the primal equilibrium approximation solution
hull 2p(8) is neither convex or continuous over 0<8<I.

This ability to deal with variations in the right hand side value, provides some flex-
ibility in extending truncated formulations over the infinite horizon as a method for elimi-
nating the end effects associated with a finite horizon. The next two chapters of this

dissertation apply the developed theory to a real world LPe and MIP.
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VI. APPLYING PRIMAL .AND DUAL EQUILIBRIUM
APPROXIMATION METHODS TO QUANTIFY END EFFECTS
FOR LINEAR PROGRAMS

This chapter examines the capability of primal and dual equilibrium approxima-

tions to bound the infinite optimal objective function value and quantify end effects for a

large scale, military manpower planning model*(linear program). This is the first real-
world example, known to the author, to use both primal and dual equilibrium approxima-
tions to quantify the impact of end effects and provide feasible near optimal solutions to the
infinite-horizon problem. The methodology proves highly successful applied over a rela-
tively short solution horizon. Dual and primal equilibrium approximations provide a tight
bound for the infinite optimal and effectively eliminate key end effects found to adversely
influence the optimal solutions provided by finite-horizon formulations. Section A pro-
vides a brief summary of research conducted using LPw solution techniques. Section B in-
troduces the LP of interest, The Total Army Manpower Life Cycle Model (TAPLIM) and
the Future Personnel Extension (TAPLIM/FPS). The TAPLIM series of models are cur-
rently used by the Directorate of Military Personnel Management, Deputy Chief of Staff
for Personnel, United States Army (ODCSPER) as decision aids for setting personnel re-
cruiting, hiring, promotion, and retention policies. Section C provides a detailed formula-
tion of TAPLIM/FPS. This section derives a modification to the original TAPLIM/FPS
model structure that more fully integrates the FPS extension. Section D extends TAPLIM/
EPS to an infinite horizon problem and derives dual and primal equilibrium approxima-
tions. Section E examines TAPLIM using primal and dual equilibrium approximation
methods. Analysis and results illustrate the power of the primal and dual equilibrium ap-

proximations to bound the infinite optimal solution and capture and quantify end effects.

4. See Gass (1991) for an overview of approaches used in military manpower planning models.
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Section E also examines the impact on the initial decisions of varying the right hand side

over a functional range. Section F summarizes the key results of this chapter.

A. BACKGROUND

The focus of past research on end effects has been convergence of the optimal so-
lution for primal and/or dual equilibrium approximation methods to an optimal solution for
the infinite horizon problem. Grinold (1971,1977) and Svoronos (1985) derive problem
structures that assure convergence of the primal and/or dual equilibrium approximations to
an infinite horizon optimal. From this, inferences are made regarding the impact of end ef-
fects on initial period solutions. In general, however, whether or not the primal and/or dual
equilibrium approximations converge to an infinite horizon optimal is not critical to the
practical implementation of these methods to bound the infinite optimal solution. As long
as primal and dual equilibrium approximations are found that generate a narrow bound for
the infinite horizon objective value, then inferences can be made regarding the impact of
end effects on the feasible set of initial decision variables provided by the primal equilibri-
um approximation. This chapter illustrates that for TAPLIM, convergence does not have to

be proved to obtain near optimal solutions where end effects are negligible.

B. TAPLIM/FPS

TAPLIM is a large scale military manpower planning model originally developed
by COL Anthony Durso, USA (retired), while assigned to RAND Corporation, Santa Mon-
ica, California. A brief description of TAPLIM and TAPLIM/FPS follows. For additional
detail, see Durso and Donohue (1994).

While TAPLIM/FPS forms one model, it is comprised of two distinct sections,
TAPLIM and FPS. Both are identified. As TAPLIM/FPS is the more general model, it is

presented first. Section E of this chapter presents the simplified formulation for TAPLIM
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derived from TAPLIM/FPS by modifying a single index set and removing the constraints
which generate the FPS extension.

TAPLIM/EFPS examines the dynamics of the Army’s enlisted personnel inventory
as changes in manning level requirements occur over time. The model has multi-period
generalized network flows and a relatively large number of side constraints. Durso and
Donohue use three distinct networks, which are tied together with additional constraints.
The first network directs the flow of initial enlistees by their initial contractual obligation
through their first 6 years of service; the second network directs the flow of service years
for personnel by rate for each time period; the third directs the flow of transfers between
geographic areas by rate for each time period. The first two networks form the base

TAPLIM model, and the third forms the FPS extension. Figures 17 to 19 show these net-

work structures:

Enlist w/contract “c” ) ) .
Survive {year Survive oy Survives years Survive...
—_—

Attrition
Loss

Attrition
Loss

Attrition
Loss

" Promote
Attrition to “ES”

.LOSS (starting yr. “3”)

Figure 17.
Network tracking initial enlistees.
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(Promoted previous period to rate Q

Rate Iy/y years

service Rate 1y, Rate 1y,
t+1
/ f O_TIOted Promoted Promoted
or
Attrition Loss to r+1 ¥y tor+l
Attrition Loss Attrition Loss
Figure 18.

Network tracking personnel by rate and years of service.

Transfers to area g from other areas )

Rate Ijp area ¢

Attrition
Loss

Attrition
Loss

Attrition
Loss

Transfers

to other areas Transfers Transfers
to other areas to other areas
Figure 19.

Network tracking movement of personnel between geographic areas.
The data sets that influence the enlisted force structure include:

*Billet requirements. Defined by rate for each main geographic area and time
period (year). Billet requirements reflect area manning requirements.
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«Total End-of-Year Manpower. This reflects the total number of enlisted per-
sonnel allowed to be on active duty at the end of each period.

Decision variables include:

*The number of accessions (new recruits) per year. An implementation of the
model provided by ODCSPER, fixes the number of accessions for periods 2,
3,4, 5, and 6, (the first 5 periods of the model, as there is no period 1) allow-
ing the variable to float from period 7 onward. Subject to manning require-
ments, the model seeks to minimize accessions.

«Number of personnel continuing in rate, by years of service, for each time
period. This decision variable dictates the potential to fill future requirements
for promotion, and current manpower needs (by rate).

The number of personnel selected for promotion to the next higher rate, by
years of service for each time period. The size of the rate population limits the
number of promotions to the next higher rate. The model seeks to maximize
promotions while satisfying manpower requirements for each rate.

The number of involuntary separations. This reflects the number of personnel
by rate and years of service who involuntarily leave the service each time
period. The model seeks to develop a solution which minimizes involuntary
separations, as such separations are detrimental to morale, while meeting
manning and billet requirements.

The number of personnel that take some form of early voluntary separation,
by rate and years of service. Congress authorizes DOD to provide financial
incentives for selected rates to voluntarily separate prior to the end of their
enlistment. In the model, voluntary separation occurs at the E-4 and E-5 level.
The model seeks to minimize voluntary separations, while meeting manning
and billet requirements. ' :

*The model deviation between actual manning and billet requirements. The
model minimizes manning deviations (over or under manning of billets).

Side constraints that drive the flows across the network structures include:

«Ensuring initial enlistees encompass minimum proportion of total lower rate
population base.

«Fixing attrition losses to a proportion of the total number in the rate.
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«Retire all E-5’s at the 15 year point in their career, but allow any E-5 with
more than 15 years at the start of the model to continue to 20 years (known as

grand-fathering a new policy).

*Retire all E-6’s at 20 years, and implement early retirement policy for E-7’s.
«Distribute those selected for promotion by years of service.

«Control the number of transfers between areas, for each rate.

«Satisfy minimum manning requirements in each geographic area.

«Limit upper rate manning levels to a proportion of total rate manning levels.
«Limit the number of personnel allowed to voluntarily separate.

ODCSPER implements and solves TAPLIM and TAPLIM/FPS using the Linear In-
teractive Discrete Optimizer, (LINDO), (Schrage, 1991). The LINDO implementation of
TAPLIM/EPS with some documentation was provided by the Directorate of Military Per-
sonnel Management, Deputy Chief of Staff for Personnel, U.S. Army. The version provid-
ed covers 9 fiscal years, however, because of the model’s staircase structure the number of
time periods can be easily increased or decreased. TAPLIM/FPS’s periodicity and semi-
invariant staircase structure (i.e., equation and right hand side coefficients from period to
period become identical from year 9 onward) make the mode] a candidate for employing
infinite-horizon linear programs to analyze the stability of initial decision variables as the

future enlisted force structure of the Army varies.

C. FORMULATION OF THE TRUNCATED MODEL

A formulation for TAPLIM or TAPLIM/FPS was not available from ODCSPER.
Accordingly, this dissertation derives a formulation by examining the LINDO code provid-

ed, and modifies it by:

eDiscounting the objective function. This is commonly used to reflect the
increased value of choices made today (as they are implemented immedi-
ately), versus choices made for some future time period. Infinite-horizon
approximation techniques can be used when the objective is discounted.
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«Expanding the underlying network structure to more effectively track person-
nel by both geographic area and years of service for each time period. The
separate networks that track the number of personnel by rate and years of ser-
vice and track the number of personnel by rate and geographic location, are
linked by constraints that match the sum over years of service of a particular
rate to the sum over geographic areas of the same rate. This leads to feasibility
problems since connecting the two sub-networks in this way can result in sit-
uations where transfers could never support differences in years of experience
found for the same rate in a single geographic area from period to period (e.g.,
the number of E-4’s with 3 years of experience in Germany, who did not
transfer, would not necessarily be reflected properly the next period in the
number of E-4’s with 4 years of experience in Germany). The new formula-
tion combines two networks (Figures 18 and 19) into a single network track-
ing personnel by rate, years of service, and geographic location (Figure 20).
This results in a more complex model, with more decision variables, but pro-
vides a more complete underlying network structure.

Number of rate “r-1”, selected for Number of rate “r”, selected for

€6 0

promotion to rate "7, promotion to rate “r+1”,

: : [{P=id
transferring into area “g transferring out of

with “y-I1” years of service .

. J e ’ area “g”, with “y” years

in period “¢-1 L . T e
of service in period “¢”

(Includes loss paths)

[ {3 1]

rate “r

in area “g”
with “y” years of
service, in period
“t”,

9

Number of rate “r 2 .
Lo Number of rate “r”, transferring
transferring into vy s
out of area “g”, with

area “g”, with “y-1” years g .
of service, in period “t-1” y” years of service,
, .

P44
66 9 Iyl t

(Includes “g” to “g” transfers) in period

(Includes loss paths)

Figure 20.
Network flow balance (flow by geographic area and years of service).

The formulation follows an introduction to notation.
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1. Indices

t

gb

& 8

time period (2,3,4,5,6,...T), (¢ starting with period 2 reflects the

starting year (Fiscal Year 1992) provided by ODCSPER);

years of service (0, 1, 2,...35);

rate (E4, ES, E6,... E9);

initial contract obligation for enlistees (2,3,4,5,6); 7

transfer areas (boot camp (b), geographic areas (9 areas for TAPLIM/FPS,
1 area for TAPLIM), involuntary separation (s), voluntary separation (v),
attrition losses, discharge and/or retirement (1));

a subset of transfer areas, includes geographic areas and boot camp;

a subset of transfer areas consisting of just geographic areas.

2. Derived Sets

Derived sets define feasible combinations of indices for both variables and con-

straints. These sets are grouped by the constraint type and/or variables they are associated

with: transfer/flow balance, losses, tracking of initial enlistees, voluntary separation and

early retirement, and eligible years of service.

a. Transfer/Flow Balance Sets
TALLOW Areas (gb,g) soldiers can transfer between

(includes transfers from/to the same geographic area (g.,8));
PCS Geographic areas (g,g'") soldiers can PCS transfer between;
TTOLE Transfer paths (r, gb, a, y) for a soldier that is not selected

for promotion. This includes transfers to all applicable loss

areas;
TTOLP Transfer paths (r, g, a, y) for a soldier that is selected for

promotion. This includes transfers to all applicable loss

areas.
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b. Loss Sets

TLFLOW Loss paths (r,y) for enlisted personnel who did not select for
promotion;

TLPFLOW  Loss paths (r,y) for enlisted personnel who were selected for

promotion.

c. Tracking Initial Enlistee Sets

YT0S Allowable (r,y,t) used for tracking initial enlistees through
their first 6 years of service;

NOTYTOS Allowable (r,y,f) for other than initial enlistees. This allows

the selection of appropriate flow loss equations.

d. Voluntary Separations and Early Retirement Sets
YV Allowable (r,y) combinations for voluntary separation;
YER Allowable (r,y) combinations for early retirement (r=ES5), or

selective early retirement (r=E7).

e. Eligible Years of Service Sets

YEX Allowable (r,y) for enlisted personnel not selected for
promotion during a period. Includes all but last year of
service possible for the rate;

YEXS Allowable (r,y) for enlisted personnel not selected for

promotion during a period. Identical to YEX except the last

year of service possible for the rate is included;
YPROM Allowable (r,y) for enlisted personnel selected for promotion

to rate r during each period.
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3. Data

The data divides into the following groups; objective function drivers, problem ini-
tialization, manpower requirements, tracking initial enlistment, promotion flows, transfer

flows, loss flows, and voluntary separations and early retirement.

a. Objective Function Coefficients
o Discount factor for follow on period objective function

coefficients;

ITPR

WOVER,, , Weight of overmanning total for area “g”;

6« 9,

WUNDER, , Weight of undermanning total for area “g”;

COST, o Cost of PCS transfer from area g to area g”;

[TPRIN

CENLIST,, Cost per enlistee with contract type “c”;

Csyay Cost of involuntary separation;
Cvray Cost of voluntary separation;
Vpry Value of promotions.

b. Initialization Data

Edata,’y Number of personnel with rate “r”, not selected for
promotion, with “y” years of service at problem start;

Pdata, Number of personnel with rate “r-1”, selected for promotion

to rate “#”, with “y” years of service at problem start.

c. Manpower Requirements

TOP The maximum proportion of total enlisted force that can
comprise the top enlisted rates (E8, E9). Currently set at

0.05;
[139% 24 6¢_ 9

BILLET, ¢ ; Number of billets requiring rate “r” in area *“g” for each

period “t”;
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=24220rn 8.t

PE4

TOTAL,

UMAN,

Minimum number of personnel with rate “r” that must be

assigned to area “g” for each period “¢”;
Minimum proportion of all E-4’s that must be new (with 0
years of service);

Total allowed enlisted manpower in the Army in period “¢”;

Limit on how much the E-9 rating can be undermanned, as a

proportion of total E-9 manning. For time periods 3 and 4

only.

d. Initial Enlistee Data

PTOS,,

PTERM,,

PACC,

NACC,

[Pl

Proportion of those who signed up under contract type “c”,
starting the period with “y” years of service, that survive to
“y+1” years of service;

The minimum proportion of accessions that must enlist for

€«

term “c”, in time period “t”;
Minimum proportion of accessions assigned to geographic

area “g” for each time period;

The number of pre-determined accessions for period 3, 4,
5,and 6. After period 6, the number of accessions becomes

variable.

e. Promotion Flow Data

PRO, (PRO , ) Minimum (maximum) proportion of target population

PYRS,,

662

allowed to be selected for promotion to rate “r”, in time
period “t”;
Minimum proportion of rate “r-1” selected for promotion to

rate “r”, by years of service “y”, for any time period.
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f. Transfer Flow Data

PPCS, g,(PPCS re, g) Minimum, (maximum) proportion of transfers
for rate “r” out of area “g” that go to area “g” ”;
IPCS,, Minimum proportion of area force total with rate “r”, that

must transfer out of area “g” for each time period.

g. Loss Flow Data

PLOSS, ,,(PLOSS ;) Minimum (maximum) proportion of total

1,8°

1,

rate “r” losses, for each area “g”;

NLOSS,.,, Proportion of total (r,y) population lost to normal attrition

(Honorable discharge, retirement, etc.).

h. Voluntary Separations and Early Retirement Data

PVSEP, , Minimum proportion of the total number voluntary
separations with rate “r”, broken down by years of service
“y”, for each time period;

VMAX, , Maximum number of personnel with rate “7”, that can be
voluntarily separated in period “¢”;

PER,, Minimum proportion of early retirements of rate “r”, broken
down by years of service “y”, for each time period;

E9R3 Limit the number of E-9’s separated in key year groups, for

period 3 only.

4. Variable Definitions

Er,a,a’,y,t

Number of personnel in rate “r”, starting period “¢” in area “a”,
g
being transferred to area “a” ” with “y” years of service, not selected

TP
s

for promotion to the next higher rate in period
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raa’, y,t

ENLIST .,
TOS,,,

IPROM,, ,,

UNDER, ,,

OVER,

Number of personnel of rate “r-1”, with “y” years of service, in area

“a” at the beginning of the period, transferred to area “a” ” during
the period, and selected for promotion to rate “r” during period “¢”;
Number that enlist under contract length “c” in period “”;
Number of personnel in their initial service obligation remaining
that have not been selected for promotion with enlistment contract
“c”, with “y” years of service,

for each period “t”=3 onward,;
Number of tracked accessions by contract length “c”, with “y”
years of service, selected for E-5 in period “¢”

(When y € YPROM("E5”,y));

€5 _ 9

Number of billets that require rate “r” personnel, that are not filled

in area “g” during period “t” =3 onward,

Number of excess personnel of rate “r” in area “g” during period

“t”= 3 onward.

5. Objective Function and Constraints for the Truncated Model
The following equations provide the formulation of TAPLIM/FPS for a truncated

linear program.
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Objective Function:

Minimize
» (wover, OVER, , . +WUNDER, JUNDER, )+
g r

CENLIST ZENLI ST .+Cs (
c ¢t r.a,y
¢ (r,a,”s”,y) € TLFLOW

t-3
z (x Cvr’ a,y z 2 (Er’ g, Ilvll’ ¥y, t + P’, + I, g Ilvll, ¥, t)
(r.y)eYV g

P +

—Vr rg.g,yt

r,y
(r,y) € YPROM (g,8’) € TALLOW

COSTg, ( Z Er,g,g',y,t+
(r,y) e YEX (r,y) € YPROM

(g,g) € TALLOW

Constraints:

ZE"E4”, " a,"0”, 2 = EdataE‘;'o 3
g

E,,.,. = Edata,,
g, g) € TALLOW

YV (ry) € YEX

P
g,8'e TALLOW

for(r,y) € {(E5,3), (E6,5), (E7,11), (E8,16), (E9,18)}

rgg, 2 Pdamr,y

M ENLIST, , = NACC,
4

3<t<6

ENLIST, ,> PTERM, ,x Y ENLIST,
4

Y, t23
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Pr, 88, y,t)

(D

(1a)

2)
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TOSC, ”O”,t = PTOSC’ ”0”, ¢ X ENLISTC,t

@
V¢, t23
TOS, , ,+IPROM, , , = PTOS, XTOS,, ;,_, s
Ve, 123, (E4,y,t) € YTOS
E”E4”, gb, g y,t = ZTOSC, y,t
(gb,g) € TALLOW c 6)
V(E4,y,t) € YTOS, t>3
Pigse g oyt = 2 IPROM,
(g.8") € TALLOW c @)
V(E4,y,t) e YTOS, t=3
Erigbvgiy_l’t_l-lp P’,g',g,)"“l,t—l =
gb: (gh,g) € TALLOW g:(g,g) € TALLOW
for (r,y-1) € YEX for(r,y-1) e YPROM
8
Er,g,a,y,t+ Z Pr+1,g,a,y,t ( )
a:(r,g,a,y) € TTOLE a:(r,g,a,y) € TTOLE
for (r,y) € YEXS for(r+1,y) e YPROM
Vr,gyt23
E rg Uyt T L 1,g "1 y,t
Jor(r,y) € YEXS for(r+1,y) € YPROM
: 9
NLOSS, ,_ ;X z E ggy-1t-17 Z Pr,g',g,y—l,f-lj ®
g:(g,g) € TALLOW g':(g,g) € TALLOW
for(r,y-1) e YEX for (r,y-1) e YPROM

Vg, (r.yt) € NOTYTOS
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D Eopy, oy, g, 707,12 PE4 ( 2 2 Emp gy, t) +

g (gh, g) e TALLOWy: (E4,y) e YEX

}_)@t( Z 2 P”E5", 8 g',y,t)

(g',8) e TALLOWY: (E4,y) € YPROM

V>3

Er,gb.g,y,t"'
gb:(ghg) € TALLOWy:(r,y) € YEX

Pr+1,g',g,y,t
g':(gg) € TALLOWy: (r+1,y) € YPROM
UNDER, 2 t—OVER = BILLET

r, g,t r, g,t
Yr2ES5,t23

+

P <
r’ g, a? y’ t
(g,a):(r,g a,y) € TTOLPy: (r,y) e YPROM

PRO, t( 2 Z E, _ 1,gb,a,y, t) +
(gh,a):(r—1,gh,a,y) € TTOLEy:(r-1,y) € YEX

PRO,, t( > Y P, ,)
4 (g,a):(r,g,a,y) € TTOLPy: (r,y) e YPROM
Vr2ES5,t23

P >
r,gayt
(g,a):(r,g,a,y) € TTOLPy: (r,y) e YPROM

}E_Qr,t( 2 Z ' Er—l,g,a,y,t)"-
(gh,a): (r-1,gb,a,y) € TTOLEy: (r-1,y) € YEX

PRO P oay t)

——

( (g,a):(r,g,a,y) € TTOLPy: (r,y) e YPROM
Vr2ES5,t>3
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(10)

(11)

12)

13)




P
(g,a):(r,g,a,y) € TTOLP

PYRSr,y,tX 2 2 Prigiary’t
(g,a):(rgay) € TTOLPy:(r,y) e YPROM

r7g’a’y7t2

(14)

Vr2ES, t23

E”E4”, ”b”, g’ lloll,t 2 PACCg x EE”E4”, /Ibll, g’ ”0", t
g (15)

Vg, c, t23

Er,g,g',y,t"' Pr+1,g,g',y,t2

y:(r,y) € YEX y:(r+1,y) € YPROM
(16)
PPCS E ot S Prigg M))

58 g':(g.g’) e TALLOW \y:(r,y) € YEX y:(r+1,y) € YPROM

Vr(gg’) € TALLOW,t=23

<
Er,g,g',y,t+ Z Pr+1,g,g',y,t‘

y:(r,y) € YEX y:(r+1,y) € YPROM

PPCS (17)
PPCSr,g,g( ( Er,g,g',y,t+ 2 Pr+],g,g',y,t))
g':(g,8) € TALLOW \y:(r,y) € YEX y:(r+1,y) e YPROM

; Vr, (g,g") € TALLOW,t>3

>
Er, g g',y,t+ Pr+1,g, g',y',t) -

g:(gg) e PCS(y: (r,y) e YEX y:(r+1,y) € YPROM

(18)
mes, (3 (% bt S Fses)
(g.g) e PCS \y:(r,y) € YEX y:(r+1,y) € YPROM
Vrg, t23
>
Er,g,a,y,t+ 2 Pr+1,g,a,y,t—
(a.y):(r..a,y) « TLFLOW (a,y): (r + 1,8 a,y) € TLPFLOW
(19)
PLOSS'&‘Z[ Er,g,a,y,t+ Z Pr+1,g,a,y,t
g \(a,y):(r,8ay) e TLFLOW (a,y):(r+1,8,a,y) e TLPFLOW
Vrg,t=23
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Er,g,a,y,t+ z Pr+1,g,a,y,t'<‘

(a,y):(r, g a,y) € TLFLOW (a,yy:(r+1,g,a,y) e TLPFLOW
BFATT (19a)
PLOSSr,g,tZ[ Er,g,a,y,t+ Z Pr+1,g,a,y,t
g \(@y):(r,gay) e TLFLOW (a,y):(r+1,g,a,y) € TLPFLOW
Vr,g,t23

Z Er,gb,g,y,t +
gh:(gh,g) e TALLOWY: (r,y) € YEX

> Y Prigey2MAN 20)

g':(g' g) e TALLOWY: (r+1,y) € YPROM

Vr,g,t=>3

2 (B, gyt Prot gy, )2
4

21
PVSEP, , Z( S (B gyt Pris gy d ) 2y
g \y:(r,y)eYV
VE4<r<ES, y:(r,y) € YV, t=3
2 (B, gyt t Prot g me, 50 S VMAX,
g y:(r,y)eYv (22)
VE4<r<E5, t>3
Z (Er, g, Ilsll’ y’ t + Pr + 1, g, ”S”, y, t) Z
g
23
PER, , % 2( (B, g rgny i+ Pry g s d) ) (23)
g \y:(r,y) € YER

VE5<r<E7, y:(r,y) € YER, t23
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2 2 2 Er,gb,g,y,t +
r y:(r,y) € YEX (gh,g) € TALLOW

= 24
P, 1 eyt = TOTAL, (24)
r y:(r+1,y) € YPROM (g,8') € TALLOW
V>3
E.gn 2,"s" y,t < E9R3 fort=34 only (25)
g 26sy<29
Er,g,g',y,t +
E8<r<E9y:(r,y) € YEX (g,g’) € TALLOW
— TOP 26
Popgr g gyt = TOPX TOTAL, (26)
y:(E9,y) € YPROM (g,8’) € TFROM
V=3
Y UNDER.g, , < UMAN,( Evggr g g5t )
g (g.g") € TALLOWy: ("E9”, y) € YEX 27

t=3,4

’ Equation Definitions:
(1) Initialize personnel levels (both E and P variables) for first period.
(2) Fix enlistment totals for years 3 to 6.

(3) Distribute contract options for enlistees.

(4) Ensure the appropriate losses of new enlistees from initial boot training, for each contract op-

tion.
(5) Of the personnel that the model takes in as enlistees, ensure the appropriate proportion of per-
sonnel survive into the next period. Survival is defined as not being attrited or promoted.

(6) Link initial contract personnel to associated variable that tracks years of service and movement.

(8) Balance equations for state r,g,,#: (The number of personnel in rate r, located in area g, with y

133

(7) Link initial contract personnel to associated promotion variable that tracks years of service and
movement.




years of service, at the end of period £).

(9) Account for attrition losses “I” for all those personnel not being tracked over their initial obli-

gations.

(10) Ensure new recruits comprise some minimum percentage of total E-4 and below manning.
(11) Match billets to available bodies. Account for under and over manning.

(12) Limit the number of promotions to be no more than some percentage of the rate population.
(13) Ensure a minimum percentage of each rate selects for promotion.

(14) Distribute promotions over years of service.

(15) Distribute those accessions that make it through initial training over all geographic areas.

(16) Ensure a minimum percentage of personnel transferred out of area gb go to area g .

(17) Ensure a maximum percentage of the total transferred out of area gb gotoarea g .

(18) Limit the number of transfers out of area g as a proportion of the total number of personnel
with rate r, during period .

(19) Distribute all losses over geographic areas.

(20) Meet minimum manning requirements.

(21) Distribute voluntary separations by years of service.

(22) Limit voluntary separations to maximum authorized.

(23) Distribute early retirements by years of service.

(24) Meet total manpower requirements.

(25) Limit the number of E-9’s separated (for periods 3 and 4 only).

(26) Limit the number of E-8’s and E-9’s to a proportion of the total enlisted force.

(27) Limit the undermanning of E-9’s to a fixed percentage of the total E-9 population, (periods 3

and 4 only).

For TAPLIM/FPS, the right hand side (RHS) structure becomes invariant from pe-
riod 7 onward as manning requirements stabilize. The equations and their coefficients be-
come invariant from period 9 onward. This allows the formulation to be a candidate for the
application of LPe techniques to evaluate the potential influence of either steady state force

levels, or growth from period 10 onward on the optimal decisions made in the early periods.
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D. TAPLIM/FPS AS AN INFINITE HORIZON PROBLEM

TAPLIM/FPS, when defined over an infinite horizon, exhibits the single period

overlap staircase structure:

oo

e (-3
Minimize €x )+ 20( cx,

t=9
Subject to:
Apx, =5 (0)
Hx, +Ax, =b (1)
Kx, +Ax, =b (2)
Kx, ; +Ax, =b(1+B) (k)

2
Kx, +Ax, =b(I+B)" (k+1)

x,20 (1=0,9,10..).

It is important to note that the variables associated with periods 2-8 of the TAPLIM model
are contained in the variable x; since the matrix and right hand side coefficients are not
invariant (i.e., are not the same from period to period) until period 9. The eventual invari-
ance in the coefficient matrix structure allows the implementation of the dual and primal
equilibrium approximation methods to bound the problem. Also note the invariant right
hand side is equivalent to assuming that once stabilizing steady state manning require-
ments (these actually become invariant after period 7), they remain constant until some
period k. At period k, it is possible to introduce an exponential growth (or decay) of ( +B)

on the RHS, as long as (/+B)o<!.
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1. Dual Equilibrium Formulation

The dual equilibrium approximation aggregates all the constraints from period 72k

(where k=first period of exponential decay/growth, if used) onward with an o. discount fac-

o0

tor and substitutes £, = Y, oc'_Tx,. The resulting reformulation:

t=T
T-1
Minimize €x,+ Z oct_3cxt + OLT-3C£TT
t=9
Subject to:
Apx, =§ (0)
Hx,+ Ax, = b, (1)
Kx9+ Axw = b2 (2)
Kx, ,+Axp_; =b,_, (T-1)
K K+A)z2 by
xT_1+ (OL + )xT = j_—(]m (T)

x,20, (1=09,10..).

A t- T A . . -
Ry = z o " x, and ¥, includes appropriate slack/surplus variables.
t=T

b;=b for j<k where k= first period of exponential decay/growth.

bi=b(I +[3)i'k where k= first period of exponential decay/growth, k<j<T.

The implementation of constraints associated with period T depends on the row
structure of K, A, and b. For the following sections, ki, and a’ correspond to row i vectors

of K and A respectively.

a. Constraints For Which k'=0
All the TAPLIM/EPS constraints with the exception of the flow balance and

loss factor constraints fit into this category (constraints 3,4, 6, 7, 10, 11, 12, 13, 14, 15, 16,
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17, 18, 19, 20, 21, 22, 23, 24, 26,and 27). Implementation of the dual equilibrium approx-
imation method needs to simply adjust the right hand side of these constraints. For con-

straints with a non-zero right hand side (11, 20, 22, 24, and 26), this involves changing the

right hand side for period T from b, to j—(]—:_T& . The revised constraints follow:
Egbgy1™
gh: (gh,g) € TALLOWYy: (ry) € YEX
Pr+1,g',g,y,T+
g’:(g,g) e TALLOWYy: (r,y) € YPROM
BILLET, , 1 (11d)

UNDER -OVER = —
ryg;T r!gyT 1_(]+B)a

Where k=first period of P growth/decay
T-k
BILLET, , 1 = BILLET, g,9.(1 +B)
Vrg

2 Z Er,gb,g,y,T+

ghb:(gh,g) e TALLOWY: (r,y) € YEX
MAN

P, p2 e
g': (g’ g) € TALLOWy: (r+1,y) € YPROM r+l.g:83T - (1+PB)a (204d)
Where k=first period of P growth/decay
T-k
MAN, , 1 = MAN, , o(1+P)
Vr.g
VMAX, ;.

Z 2 (Erg””yT+Pr+1g"v”yT)S_———

g (Y ey ' [-(+Pa

Where k=first period of B growth/decay (224d)
T-k

VMAX, = VMAX, (1+PB)

VE4<r<E5
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z 2 2 Er, gh, gy, T +
r y:(r,y) € YEX (gbh,g") € TALLOW

Total T

s 3 P .. o
1, 9 ’ ’T —
T y:(r+1,y) € YPROM (g,g') € TALLOW rrheg,y I-(I1+B)o (24d)

Where k=first period of B growth/decay

Total, = Totaly(I1+B)" "

2 2 Z Er,g,g',y,T+
E8<r<E9y:(r,y) € YEX (g,8') € TALLOW

_ TOPx TOTALy
"ES" 883 T - (I1+B)o (26d)

P
y: (E9,y) € YPROM (g,g’) € TALLOW

Where k=first period of B growth/decay

Total, = Totaly (1 + ) Tk

If the right hand side b=0, (constraints 2, 3,4,6,7,11, 13, 14, 15, 16, 17, 18, 19, 20, 22,
24, and 28), then the constraints associated with period 7 require no adjustment for imple-

menting dual equilibrium.

b. Constraints for which K0

This structure holds for the flow balance constraints and loss factor adjust-

ment constraints of TAPLIM/FPS (constraints 5,8,and 9). In this case, the effected con-

straints must reflect adding the factor K%, in period T:

TOSC’ 3T + IPROMC y, T When (ES".3) € YPROM) = PTOSc,y X TOSC,y_ nr-1t
PTOSc’y X OLTOSC’ y-LT (5d)
Ve, (E4,y,T) € YTOS
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Er,gb,g,y—I,T—1+ 2 Pr,g',g,y—I,T—I'*'

gb: (gh,g) € TALLOW g':(g,g) e TALLOW
for(r,y-1) € YEX for(r,y~1) € YPROM
o Z E’,gb,g,y—l,T-l- P"+1,g',g,y—1,T
gh: (gh,g) € TALLOW g': (g, g) e TALLOW (8d)
for(r,y-1) € YEX for(r+1,y-1) € YPROM
Er,g,a,y,T+ 2 Pr+1,g,a,y,T
a:(r,g,a,y) € TTOLE a:(r,ga,y) e TTOLE
for(r,y) € YEXS for(r+1,y) € YPROM
Vr,gy
E +P

rg" 1",y T r+1,8,71,yT
for (r,y) € YEXS for (r+1,y) € YPROM

NLOSSr’y_IX Z Er,g',g,y—I,T—I + z Pr,g',g,y—I,T—I +
g':(g,8) € TALLOW g:(g.g) € TALLOW
for(r,y-1) e YEX for(r,y-1) € YPROM (9d)
o weoss X > E, pey-11 > P ggy-1r
g':(g,g) € TALLOW g': (g, g) e TALLOW
for(r,y-1) e YEX for(r,y-1) € YPROM

Vg, (r,y,t) € NOTYTOS

2. Primal Equilibrium Formulation
The primal equilibrium approximation for TAPLIM/FPS adds the restriction

X, 1=(14B)x;, (¢2T, and (I +B)o<]). The finite period re-formulation for T>k (where k= first

period of exponential growth/decay when used) is:
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T-1 T-3

e A t-3 o
Minimize éx ,+ t;goc cx, + tmch
Subject to:
Ayx, =¥ (0)
Hx,+ Ax, = b, (D)
Kxg+ Ax) =b, (2
Kx,_,+ Axg = by (T)
Kxp+ Axp (1+B)  =by, (T+1)
x,20.

t

b;=b for j<k where k= first period of exponential decay/growth.

bi=b(I +B)i'k where k= first period of exponential decay/growth, k<j<T.

a. Adjusting the Objective Function

Adjustment of the objective function is easily done by multiplying all period

T cost coefficients by T:U]"'—B)—O‘ :
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Minimize

(ZZ (wover, OVER, . +WwuNDEr, UNDER, ) ) +
g r

CENLISTCZENLIS T, ,+CS, . y( 2 : E, .y
c (r,a,”s"”,y) e TLFLOW
T-1
z at-—-3 Cvr’ ay z Z (Er, g, ”V”, y’ t + Pr + 1’ g Ilv”, y’ t)
(=3 (rny)eYVyg

—Vp, z z Pr, g gyt +

,y
(r,y) € YPROM (g,g’) € TALLOW

(g,8") e TALLOW (r,y) e YEX (r,y) € YPROM

Y. > (wover, OVER, , r+wunir, UNDER, . ) +
g r

(r,a,”s”)y) e TLFLOW

T-3 ‘
_1 _1214.[})(1 Cvr, a’y 2 z (Er’ g //v”, y, T + Pr + I, g, ”v//’ y’ T)
(rny)eYV g

—Vp z P

+
ry T
(r,y) € YPROM (g,g’) € TALLOW

rgg.y

(g.g") e TALLOW (r,y) e YEX (r,y) € YPROM

b. Modifying the Constraint Space

COSTg, I( 2 Er,g,g',y,t + z P’:g:g'ryrt)

CENLISTCZENLIS T, p+Cs,, y( 2 E, v, T) +
c

COSTg,g,( Y, E gt Y ) S 1)

)+

Like dual equilibrium, the primal equilibrium implementation of constraints

associated with period T depends on the row structure of K. If k'=0, implementation of the

primal equilibrium approximation method requires no change to the constraint set(s) asso-

ciated with the truncated formulation. All the TAPLIM/FPS constraints with the excéption

of the flow balance and loss factor constraints fit into this category (constraints 2, 3, 4, 6,

7,10,11,12,13, 14,15, 16, 17,18, 19, 20, 21, 22, 23, 24, 25, 26,and 27). When k-0, which

holds for the flow balance and loss factor constraints (constraints 5, 8, and 9), an additional

constraint set must be added to reflect the ties created by the cut x,(1+B)=x,, ;. These addi-

tional constraints are listed below:
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(1+3) (TOS, , 7 +IPROM, , ;) = PTOS, ,xTOS, ,_; p o)
Ve, (E4,y,T) € YTOS
Er,gbrg’y_]1T+ Z Pf,g',g,y—J,T =
gb: (gh,g) € TALLOW g':(g,g) e TALLOW
for (r,y-1) € YEX for (r,y-1) e YPROM
(8p)
(]+B) z Er,g,a,y,T+ Z Pr+1)gya’y’T
a:(r,g,a,y) € TTOLE a:(r,g,a,y) € TTOLE
for (r,y) € YEXS for(r+1,y) € YPROM
Yrgy
(1 + B) [E r, g’ ”l”, y, T + P r+ ]’g, ”l”,y, T ) =
for (r,y) € YEXS for(r+1,y) e YPROM
(10p)
NLOSS, ;X Y E poy 11t Y T]
g':(g.g) e TALLOW g:(g,g) € TALLOW
for(r,y-1) e YEX for(r,y-1) € YPROM

Vg, (r,y,T) e NOTYTOS

E. EXAMINING THE IMPACT OF END EFFECTS ON TAPLIM/FPS

The initial runs of TAPLIM/FPS consist of using the truncated formulation with
data provided by ODCSPER (i.e., FY-92 to FY-99, with stability in all coefficients occur-
ring in year FY-99), then comparing these results with the dual and primal equilibrium ap-
proximations of the infinite horizon model with manning set to FY-99 steady state levels
from FY-99 to infinity, (i.e., no growth or decay of manning or billet requirements, B=0).
Table 1 provides a comparison of optimal objective function values for the truncated, dual,

and primal equilibrium approximations over the solution horizon FY-92 to FY-99.
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Dual Equilibrium Primal Equilibrium Truncated Approximation
Approximation Approximation
4379 Infeasible 2637
Table 1.

Comparison of Optimal Objective Function Values for TAPLIM/FPS

Because TAPLIM/FPS encompasses 9 geographic areas and 6 rate classes for each
time period, the 8 period models (FY92 - FY99) are large (approximately 59,496 variables,
16,856 constraints for each formulation). Initial tests generating the model using the Gen-
eral Algebraic Modeling System, GAMS, (Brooke, Kendrick, and Meeraus, (1992)) with
solvers XA (Sunset Software Technology, (1993)) and OSL (IBM Corporation, (1991)) re-
quire in excess of 24 IBM RS-6000 Model 590 CPU hours. In addition, the primal equilib-
rium method requires a longer solution horizon to satisfy feasibility. This made the model
impractical for examining longer time horizon dual and primal equilibrium approxima-

tions.

F. TAPLIM

In comparing the results of baseline runs of TAPLIM/FPS, to baseline runs of
TAPLIM without FPS (i.e., eliminate tracking personnel by geographic area), the accession
and promotion levels are similar for both models. An explanation of this similarity lies in
the coarseness of the coefficient data provided by the United States Army to drive the mod-
el. Both the promotion and attrition rate data are dependent only on years of service, there-
fore geographic location has only a minor influence on the results (maintaining feasible
numbers of personnel in each geographic area and feasible transfer flows). The key deci-
sions of interest (number of accessions required, number of promotions, number of invol-
untary separations, number of voluntary separations) can still be addressed effectively

without the FPS extension. This dissertation uses TAPLIM without FPS to fully examine
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end effects. To use TAPLIM without FPS, the following modifications to TAPLIM/FPS

are made:

1. Indices

The following are indices modifications:
a transfer areas (boot camp (b), active duty (x), involuntary separation
(s), voluntary separation (v), normal attrition losses either by
discharge or retirement (1));
gb Active duty plus boot camp (x, b);
g Active duty only (x).

2. Derived Sets

The following are modified sets:

TALLOW Set of allowable areas (gb,g') soldiers can transfer between
(includes transfers from/to the same area (g,g))
(Modified to be only (b,x), (x,x) .);

TTOLE Set of allowable (7, gAb, a, y) for soldiers not selected for
promotion during the period. This includes loss areas.
(Modified to reflect that active duty is the only geographic
area); | l

TTOLP Set of allowable (r, g, a, y) for soldiers selected for
promotion during the period. This includes loss areas.

(Modified to reflect that active duty is the only geographic

area).
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The following sets are eliminated:

PCS

3. Data.

Set of allowable geographic areas (g,g') for which PCS

transfers between are possible.

The following data changes:

BILLET,,,

M.A]_Vr, g’t

Number of billets requiring rate “r” for area “g” for each

period “¢t”. (Modified to Billet, ..., = Y.Billet, ,,);
4

“ ”

Minimum number of personnel] with rate that must be

assigned to area “g” for each period “t”. (Modified to
MAN _, . ZMA );

—r, 8¢

The following data sets are eliminated:

BA'C—Cg
PPCS, e
PPCS
TPCS,

PLOSS, ,

PLOSS

COST,

188’

Minimum proportion of accessions assigned to geographic

area “g” for each time period;

“ ”

Minimum proportion of transfers out of area that must

({2

g0 toarea g

({4 »

Maximum proportion of transfers out of area “g” that can go

“« In

to area “g
Minimum proportion of area force total with rate “r”, that

can PCS out of area “g” for each time period;

Assign a minimum proportion of total rate “r” losses,
6 0,

to area “g”;

Assign no more than proportion of total rate “7” losses, that

[ »”,

can be assigned to area “g”;

Cost of PCS transfer from area g to area g’.
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4. Modified Formulation

The following reflects the modified formulation using the original constraint num-
bers with only one geographic area to represent personnel on active duty. Constraints 16-
19 linked specifically to the geographic transfer flow network are eliminated. Please note
that the modifications for the primal and dual equilibrium approximations described above
still apply.

Objective Function (modified by dropping costs linked to geographic transfer
flows):
Minimize
( Y'Y (wover, OVER, . ,+WooER, UNDER, ) ) +

g T

CENLISTCZENLIS T, ,+Cs E .. ) +
[

r,a,y( r.a s, yt
(r,a,”s"”,y) € TLFLOW

t=3 CVr, a,y Z Z (Er’ r'a ”V”, y,t + Pr + 1, g ”V", ¥, t)
(r,y)eYVg

—Vp, Z p r,g.g\yt
(r,y) € YPROM (g,g") € TALLOW

Constraints:

S E gy oy a2 = Edatag,y,
g

E = Edata, NV (r,y) € YEX ¢))

g, g") e TALLOW

r.aa,y?2

P, ... = Pdata,,
g, 8’ € TALLOW (1a)

for(r,y)=(E5,3), (E6,5), (E7,11), (E8,16), (E9,18)

Y ENLIST, , = NACC,
c ’ @

for 3st<6
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ENLIST, > PTERM, ,x 3 ENLIST, ,
4

Ve, 123

TOS, vy = PTOS, v X ENLIST,

V¢, t>3

TOS, , ,+IPROM, , ,

V¢, t23, (E4,y,t) e YTOS

Y Erpp gyt = 210 0
g c

V>3

E”E4”, g, gt, y, t

(g.8") € TALLOW
Y(E4,y,t) € YTOS, t=3

P”ES”
(g,8") e TALLOW

V(E4,y,t) e YTOS, t=3

.8, 8.yt

E
gh:(gh,g) € TALLOW
for(r,y-1) € YEX

= ZTOSC, it
c

= Y IPROM,
4

rgbgy-1t-1"F

= PTOSC,yXTOSc’y_Lt_I

P

g:(g,g) e TALLOW
for(r,y-1) € YPROM
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The original TAPLIM/FPS formulation should be used if data can be pro-
vided which breaks down promotion/attrition rates by rate and years of service and geo-
graphic area, and if these rates are significantly different between geographic areas for at

least some rate and year combinations. However, given the data provided, the reduced
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model is sufficient to analyze the impact of end effects on the key decision variables of in-
terest (total accessions, total promotions by years of service for each rate, total voluntary

and involuntary separations by rate and years of service, and deviations from satisfying ac-

tive duty manning requirements).

G. ANALYSIS AND RESULTS

This section highlights the results obtained when applying primal and dual equilib-
rium approximations to TAPLIM. The first section looks at an infinite—hbrizon extension
of the truncated formulation that assumes steady state FY-99 year manning, from FY-99 to
infinity, using a 0.9 discount factor. Truncation end effects impact both the accession and
promotion decision variables. It is shown that the primal and dual equilibrium approxima-
tions generate a tight bound on the infinite-horizon optimal solution and both primal and
dual equilibrium approximations effectively eliminate the end effects. The second section
examines the impact of primal and dual equilibrium approximations to capture end effects
when the discount factor o varies. The choice of o, does impact the optimal decisions, how-
ever, even with 0. set to a relatively low value of 0=0.5, end effects found when using only
a finite horizon are eliminated. Sections three through seven examine the variability of the
initial optimal accession decisions obtained from the zero growth model, under conditions
of growth in future periods. Section eight uses algorithm xyError, (see Chapter V), and it
proves highly effective, generating a tight upper bound on the error associated with using
the optimal accession decisions derived under the zero growth assumption, when moderate
growth occurs in future periods. In all cases, solution run times are quite reasonable. Tests
using the model generator GAMS with solver OSL, running on an IBM RS-6000, generated
optimal solutions using between 2 (dual equilibrium, 7 year horizon), and 7 CPU minutes

(primal equilibrium, 29 year horizon).
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1. Analysis and Results, Zero Growth (=0, 0=0.9)

a. Convergence of Dual/Primal Equilibrium Objective Func-
tion
Figure 21 illustrates the convergence performance of the primal and dual

equilibrium objectives as the solution horizon is varied.

Primal Equilibrium Objective
& Function Value

9,1
~J
e

Objective Function Value
¥
i

—T \ Dual Equilibrium Objective
Function Value

W
o=
P

10 15 2

Problem Horizon

(1) Manpower Requirements Steady State Period 7 onward

(2) Problem Structure Invariant Period 9 onward
3) 0=0.9

Figure 21.
Convergence of primal and dual objective function values.

Figure 21 illustrates that for TAPLIM, both primal and dual equilibrium ap-
proximations converge to within 1% within 11 years after the formulation becomes invari-
ant. It is also worth noting that while dual equilibrium is converging slower than the primal,

it is a closer approximation to the infinite horizon optimal objective function value for both
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the 10 and 15 year problem horizons. This can be recognized given the infinite-horizon op-
timal solution must be between 524 and 528, as determined from evaluating the primal and

dual equilibrium approximation methods for a 20 year horizon.

b. Truncated, Partial Primal Equilibrium and Dual Equilibri-

um Objective Function Values

Table 2 provides a comparison of period 2 through 9 optimal objective func-
tion values obtained from a 2 to 9 period TAPLIM formulation, and dual/primal partial ob-
jectives obtained from the primal and dual equilibrium solutions over a 19 year horizon

(periods 2-20).

Truncated Objective | Partial Primal Objective | Partial Dual
Function Function Objective Function
469.16 491.68 490.31

Table 2.

Comparison of period 2 to 9 objective function values.

With no end effects in the truncated formulation, the truncated optimal ob-
jective function value should closely match the Primal and Dual Equilibrium partial objec-
tive function values over the truncated problem’s solution horizon. As Table 2 illustrates,
this is not the case. A gap of approximately 5% exists between both the primal and dual
partial objective function values and the truncated objective function value. This indicates
that end effects are potentially influencing the solution of the truncated problem. Table 3
provides a comparison of the dual and primal equilibrium approximation optimal solutions

obtained when constrained to include the optimal ENLIST, , variables of the truncated for-

mulation.
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, Unconstrained | Constrained | Difference
Primal Equilibrium 528.067 565.575 37.508 (7%)
Dual Equilibrium 524.284 538.480 14.196 (3%)

Table 3.

Comparison of primal and dual equilibrium approximations.
The constrained version has the value of Enlist, , set to the optimal truncated solution.

As Table 3 illustrates, the optimal accession choices of the truncated formu-
lation are feasible, but sub-optima for both the primal and dual equilibrium approximations.
Given the infinite optimal objective function value lies between the primal and dual objec-
tive function values (524.284, 528.067), it is clear that the truncated decisions are feasible,
but sub-optimal, since the best possible infinite horizon objective function value using the
truncated formulation decisions is 538.480, yet the infinite optimal lies at or below

528.067. End-effects are influencing the choices made by the truncated formulation.

c. Examining Accession Decision Variables (ENLIST ;)

Given that end effects are influencing the accession decision variables, the
next goal is to try to determine how these variables are being influenced by end effects, and
then to determine whether solutions derived from Dual and/or Primal Equilibrium approx-
imations effectively minimize or eliminate this influence. Tables 4-6 provide the optimal
decision variables (periods 15 - 20) generated By a20 period truncated formulation, a 20

period dual approximation, and a 20 period primal approximation.
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Time Period
15 16 17 18 19 20
:?D 2 7.50 | 6.88 6.87 6.93
§ 3 10.62 | 9.75 9.73 9.82
g 4 26.86 | 24.66 | 24.60 | 24.83
é: 5 375 | 12.62 | 12.59 | 12.70
6 13.74 | 344 3.43 3.46
Table 4.
Enlistments by contract type and time period.
Truncated model with 20 year horizon, periods 15-20.
Time Period
15 16 17 18 19 20 (Note 1)
§D 2 7.24 6.88 6.77 6.93 6.80 71.28
E’ 3 10.25 |9.74 9.59 9.82 9.63 100.98
g 4 2593 | 24.64 | 24.26 24.84 24.36 25542
S [5 [4m2 e
6 | 1197 . 4l

Table 5.
Enlistments by contract type and time period.

Dual equilibrium model with 20 year horizon, periods 15-20.
(Note 1: Period 20 represents aggregated discounted sum periods 20 to «)
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Time Period
15 16 17 18 19 20
7.29
10.20
25.80
3.60
13.12

Contract Length

AN | ] W N

Table 6.
Enlistments by contract type and time period.
Primal equilibrium model with 20 year horizon, periods 15-20. '

The model intuitively should seek to hire as many five and/or six year con-
tracts as possible, since the model seeks to minimize accessions and the attrition loss rates
for the five and six year enlistees are less than any other contract. Promotions also play a
role, as most E4s promote to ES at the 4 and 5‘year point, and once an E4 becomes an E5,
the attrition rate decreases. Side constraints keep the model from assigning all enlistees to
5 and 6 year contracts as the number of enlistees in each contract length must account for
some minimum percentage of total enlistees. As the final hiring period approaches, the
truncated model no longer needs to minimize future period attrition (and therefore the need
to input a greater number of accessions). This influences the 6 year contract length vari-
ables as early as year 16 (Table 4). Examining both the dual and primal equilibrium, it is
apparent that primal and dual equilibrium approximations successfully capture the influ-
ence of this end effect (Tables 5 and 6). It is important to note that this end effect, in and of
itself, does not appreciably impact the truncated objective function value. There are no dif-
ferentiated costs between contract types for enlistees, only costs associated with the total
number of enlistees. The costs associated with this end effect are most likely tied to promo-
tion levels to E5 and above, as these levels are heavily influenced by accession policy. It

may also be possible that this end effect is partially the result of the existence of multiple
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optimal solutions in the truncated formulation, that are sub-optimal over longer time hori-

zons.

d. Examining Promotions
Selection for promotion to the next higher rate is driven by the objective
function and by end effects. Tables 7-9 provide a listing of selections for promotion to E-5

by years of service, from period 15-20, for the truncated, primal, and dual equilibrium ap-

proximations:
Time Period
15 |16 17 18 19
° 3 9.752 | 10.430 | 9.330 | 11.637 | 8.622
= 4 6339|6779 |6739 | 7564 |6.227
%) 5 6.339 | 6.779 | 7.775 | 7.564 6.227
§ 6 | 1463|1564 |1.555 |1.746 |2.395
7 0.244 | 0.261 | 0.259 | 0.291 0.239
8 0.244 | 0.261 | 0.259 | 0.291 0.239
Table 7.
Promotions by years of service to ES, periods 15-20.
(Truncated Model)
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Time Period
15 16 17 18
o 3 10.086 | 10.406 | 10.805 | 10.219
E 4 | 6556 |6764 |7.023 |6.842
é; 5 6.556 | 6.764 | 7.023 6.842
E; 6 | 1513 |1561 |1.621 |1.579
7 0.252 | 0.260 |0.270 0.263
8 0.252 |0.260 |0.270 0.570
Table 8.
Promotions by years of Service to E5, periods 15-20.
(Dual equilibrium model)
Time Period
15 16 17 18 19
o 3 11.559 | 11.697 | 11.658 11.538 | 11.655
= 4 | 7513 | 7603 |7.578 |7.500 |7.576
i}’; 5 7.513 | 7.603 | 7.578 7.500 | 7.576
§ 6 1.734 | 1.755 | 1.749 1.731 1.748
7 0.289 [ 0.292 | 0.291 0.288 0.291
8 0.289 | 0.292 | 0.291 0.288 0.291
Table 9.

Promotions by years of Service to ES5, Periods 15-20
(Primal equilibrium model)

Examining time period 20 of the truncated model (Table 7) it is clear that

the model is under promoting in periods 15, 17, and 19, (when compared to primal and dual

equilibrium) and heavily over-promoting in year 20. This end effect is most likely caused
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by both the lack of manpower requirements for follow-on years and the objective function
seeking to maximize promotions. The optimal promotion levels from the primal and dual
equilibrium approximations are stable over the last five years. (It is important to note that
year 20 of the dual equilibrium approximation, Table 8, is the discounted sum of promo-
tions from year 20 onward. The per year average is appfoximately 1-o times the value list-
ed). Dual and primal equilibrium approximations appear to minimize the impact of this end

effect.

2. Impact on Zero Growth(3=0), When o, Varies

The scalar o directly impacts the relative value of future decisions on the objective
function value for both the primal and dual equilibrium approximations. Therefore, deceas-
ing the value of o decreases the importance of future periods and hence the likelihood that
end effects will'pose a serious problem. For TAPLIM, this intuitive result holds true. To
illustrate the truncated, dual equilibrium, and primal equilibrium models, with o varied
(0:=0.5, 0:=0.95) are solved for a 20 year time horizon.The variables reflecting the optimal
number of enlistees by contract length, from the 15 - 20th period are examined. Tables 10

- 12 summarize the results for 0=0.5, and Tables 13 - 15 summarize results for o=.95.

Time Period

15 16 17 18 19 20

g 2 | 836 |678 |654

=

3 3| 1185 |9.61 |926

g 4 | 2996 |2430 |2343

=

3 5 4.18 13
6 | 1533 11.99

Table 10.
Enlistees by contract length, periods 15-20
(Truncated model, 0=0.5)
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Time Period

15 16 17 18 19 20
£ 2 8.36 | 6.79 6.57 | 725 6.71 14.56
§ 3 11.85 | 9.62 9.31 10.27 9.51 20.63
g 4 29.97 | 2432 | 23.55 |25.98 24.05 52.17
LS) 5 418 | 1244 |[12.05 |3.63 12.30 26.69
6 1533 | 3.39 3.29 13.29 3.36 7.28
Table 11.
Enlistees by contract length, periods 15-20.
(Dual equilibrium model, 0=0.5)
Time Period
15 16 17 18 19 20
£ 2 17.10 | 6.98 10.57 | 10.57 10.57 10.57
=
3 3 11.76 | 9.89 1048 | 10.48 10.48 10.48
g 4 29.85 | 25.03 | 26.51 | 26.51 26.51 26.51
§ 5 6.32 | 12.60 |10.38 | 10.38 10.38 | 10.38
6 4.15 |3.70 3.70 |{3.70 3.70 3.70
Table 12.

Enlistees by contract length, periods 15-20.
(Primal equilibrium model, 0=0.5)
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Time Period

Enlistees by contract length, periods 15-20.
(Dual equilibrium model, 0:=0.95)
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15 16 17 18 19 20
%D 2 7.77 | 6.85 6.86 6.81 16.16 15.68
&
s 3 11.01 | 9.70 9.72 9.65 9.81 9.52
:é 4 27.84 | 2454 | 2459 | 2440 24.82 24.08
S 5 3.89 | 1255 | 12.58 :
Table 13.
Enlistees by contract length, periods 15-20.
(Truncated model, 0=0.95)
Time Period
15 16 17 18 19 20
§0 2 7.21 | 6.87 6.78 6.92 6.81 141.39
=
3 3 9.65 200.30
g 4
=
8 5 Lo
6 | 1260 | 1243 | 1268
Table 14.




Time Period
15 |16 17 18 19 20
7.46 | 7.05 7.05 |7.05 7.05 7.05
10.09 | 9.99 999 1999 9.99 9.99
25.28 | 25.28 25.28 25.28

Contract Length

AN W Bl W N
SRS -
[\®]

[\

W
N
oo

| 1138 | 1138 11138 |

Table 15.
Enlistees by contract length, periods 15-20.
(Primal equilibrium model, 0=0.95)

In examining the truncated model’s results (Tables 10 and 13), it is clear that the
end effect associated with the selection of 5 and 6 year contracts is evident for both 0=0.5
and 0:=0.95. When the dual and primal equilibrium results are examined for a:=0.5 (Tables
11 and 12), the choice of ¢ is influencing the long term costs which influence the number
of 5 versus 6 year contracts. However, when the dual and primal equilibrium results are ex-
amined for 0=0.95, the relative worth of a 6 year contract is improved.

Promotion end effects are eliminated using primal and dual equilibrium approxima-
tion methods with 0=0.5. Tables 16-18 provide a listing of the number of E4’s selected for
promotion to E5, for periods 15-20, given a:=0.5, for the truncated, primal, and dual equi-
librium approximations.The truncated solution still has a significant end-effect at the 20
year point. Both primal and dual equilibrium approximations appear to take into account
this promotion end effect even with 00=0.5, hbwever, the numbers selected for promotion

are significantly lower than those with 0=0.9. (i.e., the primal equilibrium approximation’s
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total number of enlistees at period 20 is down 23%, and dual equilibrium approximation’s

total number of enlistees at year 19 is down 64%). This appears to be the result of too

heavily discounting the value of promotions.

Time Period
15 16 17 18 19

° 3 7.733 | 5482 | 8.364 | 6.109 5.593
e 4 | 5026 |4569 |6970 |4.142 |4.039
(]
qma 5 5.026 | 3.960 | 6.041 | 4.142 4.039
§ 6 | 1.160 | 0914 |1.394 | 1219 |1.136
e 7 0.193 | 0.152 | 0.232 | 0.159 0.573

8 0.193 | 0.152 | 0.232 | 0.159 0.155

Table 16.
Promotions by years of service to ES.
(Truncated model (0=0.5))
Time Period
20

3 29.967
3
E 4 20.158
Q
o 5 20.158
@] . )
% 6 4.652
> 7 1.821

8 0.775

Table 17.
Promotions by years of service to ES.
(Dual equilibrium model (0=0.5))
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Time Period

15 (16 17 18 19
6.942 | 6.087 | 10.622 | 8.933 8.933
4.512 | 5072 | 6.904 | 5.832 5.806
4,512 | 4396 | 6.904 | 5.887 5.806
1.041 | 1.014 | 1.593 1.346 1.340
0.174 | 0.169 | 0.266 | 0.224 0.223
0.174 | 0.169 | 0.266 | 0.209 0.223

Table 18.
Promotions by years of service to E-5.
(Primal equilibrium model (0:=0.5))

Years of Service

0| | AN AW

For TAPLIM, decreasing o significantly influences the optimal solution choices,
however, even with a 0.5 discount factor, both primal and dual equilibrium approximations
eliminate significant end effects.

For the zero growth model, both primal and dual equilibrium approximations effec-
tively capture end effects of TAPLIM. The choice of o should reflect the relative value of
future decisions, as its choice can heavily influence the optimal decision variables. For

TAPLIM, a high value of o (0.9 or higher) seems appropriate for primal and dual equilib-

rium approximations.

3. Allowing for Growth in the Right Hand Side (B>0)

Two approaches help evaluate end effects of the truncated model for growth of the
right hand side (RHS) after period 9. The first involves initiating a constant growth rate
(1+B) of 1.05, starting at period 12, and continuing on indefinitely. The truncated model in
this case should experience end effects, particularly relating to the manning requirements
for higher rates, since the truncated model fails to account for future growth. In this case,

the dual equilibrium approximation is feasible for all B<(1-0r). Unfortunately, the primal
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equilibrium approximation is not feasible over any reasonable finite-horizon.

The truncated formulation is run over a 19 year horizon, then compared with the 19
year partial objective function value of the 20 year dual equilibrium approximation. Table
19 shows a large gap exists between the optimal objective function values for the truncated

and dual equilibrium approximation.

Truncated Objective | Partial Objective, | Difference
Dual Equilibrium
945.10 1076.94 >13%
Table 19.

Comparison of truncated objective to dual equilibrium partial objective.
(Growth rate of 5% starting at year 12)

A closer examination of the output of both models reveals that both the truncated
and dual equilibrium formulations over-man in to cope with future year requirements, with

dual equilibrium having significantly higher manning levels. Table 20 shows E4 over-man-

ning.
Time Truncated Dual Equilibrium
Period Over-manning Over-manning
6 9.946 11.029
12 0.0 2.983
17 0.0 4.853
20 0.0 28.636
Table 20.

Overmanning of E4’s to satisfy future exponential growth.

The dual equilibrium approximation is over-manning to overcome future period
growth, which is occurring at an exponential rate over the infinite horizon. Using exponen-
tial growth over the infinite horizon to determine the impact of growth on the stability of

the early decision variables is questionable, since in reality, increases or decreases in mili-

165




tary manning are not exponential over any significant time horizon.This method was

dropped in favor of a more realistic growth.

4. Examining the Stability of Initial Decision Variables, Given Fu-

ture Period Growth (p>0) Over a Finite Horizon

Truncated, dual equilibrium, and primal equilibrium approximations are run using
a 5% growth rate from periods 12 to 14. Figure 22 illustrates the convergence performance

of truncation, and primal and dual equilibrium approximations.

580
g 570 | Primal
Q
5 0 4 Gap <0.05%
£ osaasl_________ == _j/ -
[&]
'§ 530 | Dual "
20 - s Truncated
! ] i
20 25 30

Time Period

_ Figure 22.
Convergence of truncated, primal equilibrium, and dual equilibrium approximations.
(0=0.9, and 5% annual growth, periods 12-14)

The solution horizon length is longer because invariance is not established until pe-
riod 15. The difference between the primal equilibrium approximation and dual equilibri-
um approximation optimal objective function values is less than 0.05% for a 29 year
solution horizon. The truncated solution at 20 years is approximately 3% below the infinite

horizon optimal (between 544 and 545), and even at 30 years, has an approximate 1.3%
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gap. End effects influence the truncated problem over solution horizons up to and including
30 periods.

Examining the output verifies the truncated formulation experiences the same end
effects difficulties with the accession and promotion decisions encountered earlier. The pri-

mal and dual equilibrium approximations effectively capture these end effects.

5. Comparing Optimal Accession Decision Variables (Zero
Growth Against 5% Growth)

Primal and dual equilibrium approximations take into account end effects missed
by the truncated model. Therefore, it is reasonable to use primal and dual equilibrium ap-
proximations to determine optimal accession policies. However, this approach assumes
that the coefficients associated with future periods are known. How stable are the earlier
period decisions regarding accessions when future period requirements are uncertain? This
question is difficult to deal with directly. However, insight is gained regarding the stability
of accession decisions by examining changes between the zero and 5% growth models. Ta-
bles 21-22 compare the dual equilibrium approximations, Tables 23-24 compare the primal

equilibrium approximations.
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Time Period
7 8 9 10
gﬂ 2 6.03 | 736 |6.95 7.32
§ 3 8.54 | 1043 |9.85 10.36
g 4 21.61 | 26.37 | 24.92 |26.22
(_S) 5 477 |5.88 6.21 1.77
6 9.31 | 11.30 | 10.01 |9.30
Total 50.26 | 61.34 | 57.94 | 60.95

Table 21.
Number of enlistees by contract type, periods 7-10.
(Dual equilibrium, 30 period solution horizon, no growth)

Time Period
7 8 9 10
§D 2 574 |7.13 7.40 7.79
E 3 8.13 | 10.10 | 10.48 | 11.04
g 4 20.58 | 25.55 |26.50 |27.92
LS) 5 287 |5.54 9.78 10.89
6 10.53 | 11.10 | 7.48 7.30
Total 47.85 [59.42 |61.64 | 64.94

Table 22.
Number of enlistees by contract type, periods 7-10.
(Dual equilibrium, 30 period solution horizon, 5% growth, periods 12 - 14)
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Time Period
7 8 9 10
=) 2 6.03 | 7.36 6.95 |7.31
§ 3 854 | 1043 |9.85 10.36
g 4 21.61 |26.37 |24.92 |26.21
Lg) 5 481 |5.86 6.12 | 7.61
6 927 | 11.31 |[10.11 [9.46
Total 50.26 | 61.33 |[57.95 | 60.95

Table 23.
Number of enlistees by contract type, periods 7-10.
(Primal equilibrium, 30 period solution horizon, no growth)

Time Period
7 8 9 10
§0 2 574 | 7.13 738 | 7.74
,"j’ 3 8.12 | 10.11 | 10.45 | 10.96
g 4 20.55 | 2556 |26.44 |[27.72
§ 5 287 | 5.54 9.80 10.85
6 1051 | 11.11 | 7.41 7.20
Total 4779 | 5945 | 61.48 | 64.47

Table 24.
Number of enlistees by contract type, periods 7-10.
(Primal equilibrium, 30 period solution horizon, 5% growth, periods 12-14)

Tables 21 - 24 highlight the following:

*The primal and dual equilibrium approximations provide optimal solutions
that are almost identical over the same projected future manning requirements
(Table(s) 21/23, Table(s) 22/24).
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*There is some difference in the optimal accession choices for the periods 7 -
10, when comparing the optimal zero growth choices, with the optimal 5%
growth choices.

The impact on the optimal objective function value of using zero growth optimal
decisions when 5% growth is actually encountered in periods 12 - 14, is measured by using
the zero-growth optimal decisions for periods 7-10, as input data to the growth model, then

comparing the optimal objective value to that of the original growth model. Table 25 sum-

marizes the results.

Primal Equilibrium Dual Equilibrium
Objective Value Objective Value

Zero Growth 525.139 524.977

5% Growth 544.765 544.466

5% Growth Using Zero 552.710 552.415

Growth Decisions
% Increase in 5% Growth 1.5% 1.5%
Objective When Zero Growth
Decisions Used
Table 25.

Quantifying impact of using zero growth decisions for 5% growth

Key results include:
«Zero growth decisions from the primal equilibrium approximation in periods
7-10 are feasible under 5% growth for periods 12-14.

«Zero growth decisions from the dual equilibrium approximation in periods 7-
10 are feasible under 5% growth for periods 12-14.

Zero growth decisions, are sub-optimal, but lead to objective values that lie
within 1.4% of the infinite horizon optimal (which lies between 544.466 and

544.765).
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This sample point of a potential future change provides insight regarding the quality
and of early period decisions. In this case the decisions made assuming zero growth in pe-

riods 7-10 are near optimal for the 5% growth model.

6. Comparing Optimal Accession Decision Variables (Zero
Growth Against 10% Growth, Periods 11-20)

This section examines the impact of 10% growth over periods 11-20 on early period
(7-10) manning requirements. Primal and dual equilibrium approximations are run over a
30 year horizon. This solution horizon provides a tight bound for this growth pattern. Table

26 shows a comparison of the optimal objective function values.

Primal Equilibrium Optimal | Dual Equilibrium Optimal Solu- | Gap (%)
Solution, 30 Period Horizon, tion, 30 Period Horizon,
10% Growth, 10% Growth,
Periods 11-20 Periods 11-20
12,715.038 12,604.856 0.9%
Table 26.

Determining the gap between primal and dual equilibrium approximations.
(30 period solution horizon, 10% growth periods 11-20)

Tables 27-28 provide the optimal decision accession decision variables (periods 7-

10) given 10% growth, for periods 11-20.
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Time Period

7 8 9 10
2 7.50 |8.33 8.10 | 748
3 10.63 | 11.79 | 11.47 | 10.60
4 26.88 |29.83 |29.02 | 26.81
5

6

6.15 | 7.23 7.21 9.52
11.36 | 12.19 | 11.68 | 7.93
Total 62.52 | 69.37 | 67.48 | 62.34

Table 27.
Number of enlistees by contract type, periods 7-10.
(Dual equilibrium, 30 period solution horizon, 10% growth, periods 11-20)

Contract Length

Time Period
7 8 9 10
ﬁ 2 7.62 | 849 |7.92 7.56
_":; 3 10.79 | 12.03 | 11.22 | 10.71
g 4 27.30 | 30.43 | 2839 |27.08
§ 5 698 | 7.62.]723 8.18
6 10.80 | 12.19 | 11.26 | 9.46
Total 63.49 | 70.76 | 66.02 | 62.99

Table 28.
Number of enlistees by contract type, periods 7-10.
(Primal equilibrium, 30 period solution horizon, 10% growth, periods 11-20)

Given 10% annual growth, TAPLIM requires more accessions in early periods than

under the assumption of zero growth to offset future period manning needs for the higher
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rates. This is not surprising given the amount of growth. Over a 10 year horizon, billet and
manning requirements for all rates increase over 235%. Since the model can only satisfy
higher rate manning requirements through promotion, the model hires early to deal with fu-
ture higher rate (E7, E8, E9) needs. To determine the penalty incurred by implementing
zero growth decisions under 10% growth for periods 11-20, the zero growth decisions are
forced on the growth rate model. Table 29 compares the optimal objective function values

for the growth model, (constrained versus unconstrained):

Primal Equilibrium Dual Equilibrium
Objective Value Objective Value
Zero Growth 525.139 524.977
5% Growth 12715.037 12604.856
10% Growth Using Zero 13340.150 13450.259
Growth Decisions
% Increase in 10% Growth 4.9% 6.7%
Objective When Zero Growth
Decisions Used
Table 29.

Quantifying the impact of using zero growth decisions
when 10% growth occurs over periods 11-20.

Implementing zero growth decisions in the growth model still leads to a feasible so-
lution, however the solution is sub-optimal. A difference of between 5-7% in the infinite-
horizon optimal (which lies between 12,715 and 12,605) is possible. A closer examination
of the decisions also shows that from the models point of view, implementing zero growth
decisions results in ramping up recruiting to unrealistic levels, overmanning lower rates and
undermanning higher rates in later periods. While the model treats these conditions as fea-

sible (at a high cost), these conditions are not feasible in practice.
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7. Determining Quantitative Impact of Using Zero Growth Initial
Optimal Decisions When Potential For Growth Exists

Assume that two extreme right hand side possibilities are possible, b,, which rep-
resents zero growth manning requirements, and &y, which represents some reasonable max-
imal growth possibility for manning needs. Chapter ‘VII derived algorithm xyError, which
given two potential right hand sides, b, and by, generates a non-increasing sequence of up-
per bounds on the deviation of the optimal infinite horizon solution if optimal solutions tied
to by, are used for any b=(1-6)by+(6)b;. This section illustrates the utility of this algorithm
to generate an upper bound on the deviation of the optimal objective value of TAPLIM, un-
der the 5% growth conditions presented previously in section 6. Specifically, b represents
the establishment of post-downsizing level manning requirements from year 7 onward, b,

represents the séme baseline established in year 7, but then initiation of a 5% annual growth
rate in manning requirements between years 12-14. Manning requirements then hold level
from period 13 onward. In solving hpr(8), the ENLIST, ; variables for periods 7-10 are
fixed to the optimal decision variables obtained by solving primal equilibrium approxima-
tion using level future manning requirements (i.e., right hand side by).

The following initial information is known (Obtained from Table 25.):

«Zero Growth Optimal (Dual Equilibrium) hd(0) = 524.977
«Zero Growth Optimal (Primal Equilibrium) hp(0) =525.139
*5% Growth Optimal (Dual Equilibrium) kd(1) = 544.466
*5% Growth Optimal (Primal Equilibrium) Ap(1) = 544.765

«5% Growth Optimal (Primal Equilibrium Restricted) hpr(1) = 552.711

In examining the difference hpr(1)-hd(1)=8.245, the maximum potential error gen- '
erated by using the initial decision variables is at least 8.245, (the restricted primal deci-
sions are used and the infinite optimal solution is equal to the dual equilibrium

approximation). However, the maximum error can potentially be worse. Two full iterations
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of xoError (d=1, d=2) are run providing a tight upper bound on the maximum error possi-
ble. Figure 23 graphically shows the results. xoError confirms that the worst error possible

is 8.245, and this occurs at the highest growth rate, which is associated with right hand side

equal to b;. For this problem, xoError performs quite well.

555 First Approximation
of hpr(8)
Upper Bound
o I on Error After
Second Approximation [ Second Iteration

545 | of hpr(6) P
E -
S
§
S v Upper Bound on
= Error After First
LE 335 ‘/ Iteration
§ 7
3 _ “<———hd(®) (Unknown)
S
© @ Known points of hd(6)

525 r/ a Known points of hpr(6)

A Known points of hp(0)
I | I
( 0.5 0.76 1.0
0
Figure 23.

Tllustrating the performance of algorithm x¢Error on TAPLIM.

H. SUMMARY

TAPLIM experiences end effects when solved using truncation. Two key decision
variables being influenced by end effects are the number of accessions selected each period
(by contract type), and the number of personnel selected for promotion each period (by rate

and years of service). Use of primal and dual equilibrium approximations provide the abil-
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ity to capture, and quantify the impact of these end effects. Primal and dual equilibrium ap-
proximations can also be used to quantify the impact of using baseline infinite-horizon
decisions, when manning requirements differ from the infinite-horizon baseline.

Primal and dual equilibrium approximations have proven useful, effectively elimi-
nating the end effects associated with the truncated formulation of TAPLIM. While primal
and dual equilibrium approximations worked well on TAPLIM, the primal equilibrium ap-
proximation could not be used with TAPLIM/FPS. Given the quality of data provided, fur-
ther study of TAPLIM/FPS was not pursued.

The next chapter examines the capability of the primal and dual equilibrium ap-

proximations to bound the infinite optimal solution and eliminate end effects for an integer

program.
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VII. APPLYING PRIMAL AND DUAL APPROXIMATION
METHODS TO QUANTIFY END EFFECTS FOR AN INTEGER

PROGRAM

This chapter examines the capability of primal and dual equilibrium apporoxima-
tions to bound the infinite optimal objective function value and quantify end effects for an
integer program. For the problem considered, the methodology proves highly successful in
both bounding the infinite optimal solution and identifying and minimizing the impact of
end effects. Dual and primal equilibrium approximations, solving over the same solution
horizon as a truncated formulation, provide a tight bound around the infinite optimal and
eliminate a key end effect which adversely influences the truncated formulations optimal
decision variables.

Section A introduces the integer program of interest, called Optimally Scheduling
Instructors (OSI). OSI is currently in use by the Defense Language Institute (DLI), as a de-
cision aid to determine instructor requiremenfs and establish course schedules. Section B
presents a finite period formulation of OSL Section C then expands the finite-horizon for-
mulation to an infinite-horizon formulation, and provides insight regarding the basic matrix
structures involved. Sections D and E derive the dual and primal equilibrium approxima-
tions for the infinite-horizon formulation of section C. These formulations form the basis
for the follow-on analysis. Section F examines the impact of end effects on OSI providing

the following results:

*The first period optimal decisions are highly variable for varying truncated .
solution horizons.

*The optimal initial decisions generated by shorter truncated solution horizons
are suboptimal over longer truncated horizons.
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«Primal and dual equilibrium approximations tightly bound the infinite-hori-
zon optimal solution for solution horizons as little as 3 years. In addition,

“both the primal and dual equilibrium initial year optimal decisions remain
quite stable for increasing solution horizons.

*The primal equilibrium approximation tightly bounds the infinite optimal
solution, is feasible to the infinite-horizon problem, and any remaining end
effects have little influence over the optimal objective value, since any
remaining end effects can only influence the infinite optimal objective over a

very small range.

+The end effects of using the initial year optimal decisions from the three year
truncated model significantly influence the optimal solution over the infinite-
horizon. The primal and dual equilibrium approximations eliminate the key
end effect influencing the truncated formulation.

«The choice of the discount factor o has little influence over the optimal deci-
sions.

+The impact of future growth on the optimal first year decisions is minimal.
Finally, section G summarizes the key results of this chapter. For OSI, primal and
dual equilibrium approximations prove highly effective in generating realistic solutions

that minimize end effects.

A. OPTIMALLY SCHEDULING INSTRUCTORS

Optimally Scheduling Instructors (OSI) is a series of mixed integer programs de-
signed for the Defense Language Institute (DLI), that are currently used to assist in the cre-

ation of a separate yearly course schedule for each foreign language (see Dell, Kunzman,

and Bulfin, (1993)).

Dell, Kunzman, and Bulfin report the constraints imposed by DLI in generation of

a schedule to include:

eInstructors work full time;
eInstructors are hired on a one year contract (Calendar Year);

«Instructors can only teach one section of a course at a time;
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*Two instructors are needed for each section of a course;

«DLI is closed for holiday during the last two weeks in December. (This
allows the use of a yearly 50 week schedule for modeling);

«DLI restricts any courses from beginning within one month prior to the
December Holiday. Courses may be allowed to end during this period;

«Courses may not end within the three weeks following the December holiday
break;

*DLI prefers to start three (but no more than three) sections of a course in any
week; and

«The scheduled section starts must satisfy the yearly requirement for section
starts.

B. MODEL OSI;

The model of interest is OSIy, the first model in the series (see Dell, Kunzman, and

Bulfin, (1993)) which seeks to minimize the total instructor man-years over the solution ho-
rizon while satisfying course scheduling requirements. The following sections provide a

detailed formulation for OSI;.

1. Indices: OSIy

i course;
y schedule year (I-k);
tt’ weeks DLI is in session (I-50(k)).

2. Given Data: OSI

start; 1 if course i can begin in week ¢ and 0 otherwise (this parameter

enforces scheduling restrictions);

pcdur, number of sections in session during week ¢ due to past scheduling

decisions;
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section; number of sections of course i that require scheduling in year y,

y

length; length of course i (in weeks).

3. Decision Variables: OSI;

Xt number of sections of course i to start in week ¢ (non-negative

integer, limited to a value <3);

tmax maximum number of simultaneous sections meeting in year y
(with x;, restricted to non-negative integer, fmax,, is implicitly a

non-negative integer).

4. Formulation: OSI;
Objective:

Minimize 22 X tmaxy
Yy

Subject to the following constraints:

50y
z start; x;, = sectzoniy 0
t=(1+50(y-1))
Viy
t .
Z 2 start; . x;, + pcdur, < tmax[ -1 J N @
L ¢"=t-length, 50

Vt, | | is the floor operator
Constraint (1) ensures that yearly requirements for course i are scheduled. Con-

straint (2) defines the maximum number of simultaneously scheduled courses.

C. EXPANDING OSI; OVER AN INFINITE SOLUTION HORIZON

The formulation structure for OSI; has the following characteristics:

sFeasible weeks that a given course is eligible to start remain unchanged from
year to year; and
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Course requirements from year to year are relatively stable. Therefore, the
truncated formulation can be extended to an infinite-horizon formulation
using “steady state” yearly requirements.

Computational experience with OSI;, shows:

OS], routinely provides integer solutions with very small integrality gaps
with respect to the LP relaxation (less than 3%); and

The first year decision variables experience significant end effects as the trun-
cated solution horizon varies. It appears end effects influence the initial opti-
mal decisions over solution horizons from 3 to 6 years.

Because OS], is influenced by end effects, and the constraint structure is invariant
and staircase in nature, OS], is a candidate for using dual and primal approximations to

quantify potential end effects. The observed small integrality gaps associated with truncat-
ed solutions indicate the LP relaxation to the dual equilibrium approximation may provide
a good lower bound.

OS], defined over an infinite-horizon (in years), exhibits a two period overlap
staircase matrix structure. The two period overlap is a result of the fact that some course
lengths are in excess of 50 weeks. Therefore it is possible for one of these courses to start
a section in year y-2, and not complete the section until the first part of year y. The formu-

lation below illustrates this two period overlapping staircase structure:
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Minimi k-3 y-3
inimize €X , +€Xy+CX3+0CX . + O TCXp+ Z o Cex,

y=k+1
Subject to:
Ax, =b,+s (1)
Kx, +Ax, =b2+d (2)
Hx, +Kx, +Ax; =b 3
Hx, _, +ka_1 +Axk =b (k)
Hx,_, +Kx, +AX, =b (k+])

x,20 (y=012..).

For OSI;, the objective function is discounted beginning with period 3. This en-
sures convergence of the optimal objective function value. In the formulation, x, is the vec-
tor (x;:50(y-1)+1<t<50y, tmax.), b, is the associated right hand side which includes yearly
section requirements sectiony, and s and d represent previously scheduled sections which

impact on the first two year totals. Also note that b, becomes invariant from year 3 onward.

D. DUAL EQUILIBRIUM FORMULATION

The dual equilibrium approximation aggregates with the o discount factor all the

constraints from period k onward and then substitutes X, = 3 o '3xy . The resulting re-

y=k

formulation is:
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Minimize cx , + X, +CX ., +0CX ,...
X TEexp T3 4

Subject to:

Axl

Kx +Ax‘2

1

Hx , +Kx +Ax3

1 2

Hx

k-4

+0t(k~l)_3c k-3

Xp_ gt 2
=b1+s 1)
=b2+d (2)
=b 3
k-3 +Axk_2 =b (k2)
k-3 +ka_2 +Axk_1 =b (k1)
2 . b

ka_2 +(K+0cH)xk_1 +(A+ocK+oc H)xk il (k)

x 20

Yy

The dual equilibrium implementation for period k constraints depends on the row

structure of H, K, A, and b. The structure of the OSI; allows us to capture the appropriate

H and K elements as shown in the dual equilibrium formulation OSI;d.

1. Indices: OSI;d

i course;
tt weeks DLI is in session (I toT= kx 50);
y schedule year (I to k).

2. Given Data: OSI;d

start; 1 if course i can begin in week ¢ and 0 otherwise (this parameter

enforces scheduling restrictions);

pcdur, number of sections in session during week ¢ due to past scheduling
decisions;
sectiony, number of sections of course i that require scheduling in year y,

length; length of course i (in weeks).
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3. Decision Variables: OSI;d

X number of sections of course i to start in week t<50(k);
(non-negative integer, limited to a value <3);

tmax maximum number of simultaneous sections meeting in year y

(when x;, restricted to non-negative integer, fmax, y<Y, is implicitly

a non-negative integer).

(Note: Using the LP relaxation provides a valid lower bound and unless specified

otherwise, this is the bound reported for the dual equilibrium approximation.)

4. Formulation: OSI;d
Minimize

2Xtmax;+2Xtmax, + ( Z 207" Y tmax J+20c (tmzzxk)

Subject to:
S50y
z start; x;, = sectioniy 0
t=(I1+50(y-1))
Vi y<k
30y section,
Z start. &, = ——2
itvit ] —q . (1d)
t=U+50(-1))
Viy=k
2 Z start, X, + pcdur, < tmax[ t-1) J ol @
i ¢ =t—length, 50
Vt<50(Y-1)
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‘

t
Z 2 start, X, + pcdur, +
L ¢ =t-length,

(k-1)50
o z : Y startyy R, p, 50 |+
t t’ = max (t -length, (k-2)50+1)
if max (t-length, (k-2)50+1) < (k-1)50

) (k-2)50
o Z D starty ®; p , 100 |+
t t' = max (¢t -length, (k-3)50+1)
if max (¢t —length, (k-3)50+1) < (k-2)50

(k-2)50
o 2 z start; X; ¢, 5o < thaxk
t t’ = max (t-length, (k—-3)50+1)
if max (t-length, (k—3)50+1) < (k-2)50
Y(50(k-1)+1)st<50k

E. PRIMAL EQUILIBRIUM FORMULATION: OSI;P

(2d)

The primal equilibrium formulation, OSI;p, uses cuts of the form x;, 1, /=Xy, (all

y>k, 1<L<k). For example, consider k=20 years, and L=>5. This implies that:

X16=%21= ¥26= X31-+»
X177%22= X27= X32-+-5
X18=X23= X28= X33---»
X19=X94= Xp9= X34..., and

x20=x25= X30= X35....

From this illustration it is clear that primal restrictions start being included with the

year k-L+1 variables (year 16 in our example). This method of defining cuts has the advan-

tages that it leads to a relatively simple finite period re-formulation of the infinite-horizon

problem as shown below:
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Minimize ¢X , +€X ., +€X o+ 0lCX , + vl B e, 4 Z 2 2
inimize ¢X ; 2 3 4t kL I

y=k-L+1

Subject to:
Axl =b1+s €))]
le +Ax2 =b2+d 2)
Hxl +Kx2 +Ax3 =b (&))]
ka_2 +ka_1 +Axk =b (k)
ka—l +ka +Axk+1—L =b (k+l)
=b (k+2)

Hxp +Kxp o g YA% e k+2-L)
x 20 L>1.
y

Fixing a value of k also allows different values of L to be investigated, without al-
tering the size of the resulting formulation. This allows for an effective comparison of dif-

ferent cut structures, as the resulting formulations have the same number of variables and

constraints.

For OSI;p, the primal equilibrium implementation for period k+1, and k+2 con-
straints depends on the row structure of H, K, A, and b. The structure of the OSI; allows us
~ to capture the appropriate H and K elements as shown in the primal equilibrium formula-

tion OSI;p.

1. Indices: OSIyp

i course;
t,t’ weeks DLI is in session (I toT= kX 50);
y schedule year (1 to k).

2. Given Data: OSI;p

start;; 1 if course i can begin in week ¢ and 0 otherwise (this parameter

enforces scheduling restrictions);
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pcdur, number of sections in session during week ¢ due to past scheduling

decisions;
section;y number of sections of course i that require scheduling in year y,
length; length of course i (in weeks).

3. Decision Variables: OSIyp

X; number of sections of course i to start in week t<50(k-1)

(non-negative integer, limited to a value <3);
tmax maximum number of simultaneous sections meeting in year y
(with x;, restricted to non-negative integer, fmax, y<k, is implicitly

a non-negative integer.).
4. Formulation: OSI;p
Minimize

3 k-L k y-3
-3 o " (2Xtmax )
[ > 2xtmaxyj+( D o 77 (2 Xtmaxy)]+ D J

L
y=1 y=4 k-L+1 I-a

Subject to:

50y

2 start,x,;, = section
t=(1+50(y-1))
Viy<k

iy (1

t
Z 2 start; . x;, + pcdur, < tmax[ -1 J Yl @
t ¢ =t-length, 50

Vt<50(k)
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(k-1)50
z D StartyX; y . 5o
i t’ = max (t-length, (k-2)50+1)
if max (t —length,, (k-2)50+1) < (k-1)50
t

Z Y startyX; y_sop-1) t
t t' = max (t-length, (k-1)50+1) (2p1)
if max (t —length, (k—1)50+1) < (k)50
(k-2)50
Z 2 Starty X; p 4 50 <tmax, _ (L-1)

i ¥ = max (t-length, (k-3)50+1)
if max (¢ —length, (k-3)50+1) < (k-2) 50

V(50(k-1)+1)<t<50k
(k-1)50
2 > starty X; ¢ _soL-2)

i ¢ = max (¢t -length, (k—2)50+1)
if max(t—lengthi, (k-2)50+1)< (k-1)50

t

Z Y Start;yX; o _max (50(L-2),0) *
i ¢ = max (t-length, (k—1)50+1) (2p2)
if max (t-lengt}ti, (k-1)50+1) < (k) 50
(k-2)50
z 2 Start;y X; p o 100 SMAX g _ gy (1-2,0)

I ¢ = max(t-length, (k-3)50+1)
if max (t——lengthi, (k-3)50+1) < (k-2)50

V(50(k-1)+1)<t<50k

F. EXAMINING THE IMPACT OF END EFFECTS ON OSI;

This section examines the ability of dual and primal equilibrium approximations to
quantify end effects for OSI; applied to Arabic courses taught at DLI. Arabic was chosen

since four of the eight yearly courses are 63 weeks in length and this provides a fairly large

number of constraints with two period overlaps. The number of courses required increase
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approximately 17% between years 1 and 2, then are assumed to remain unchanged from
year three onward (see Dell, Kunzman, and Bulfin (1993) for data).

Section 1 examines the stability of the initial year decisions as the truncated solution
horizon varies between 3 and 6 years. The initial year deci_sions vary greatly, indicating end
effects influence the optimal solution. Section 2 examines the ability of primal and dual

equilibrium approximations to bound the infinite optimal solution of OSI;. Primal and dual

equilibrium approximations bound the infinite optimal solution to within 1% over solution
horizons as short as three years. Section 3 quantifies the impact of using initial year deci-
sions generated by the truncated formulation, by fixing these decisions over the infinite-ho-
rizon and examining the impact on the primal and dual equilibrium approximations’
optimal objective function values. For the Arabic data set, this impact is significant. Section
4 examines the optimal decisions generated by the truncated, primal, and dual equilibrium
approximations, and identifies a key end effect which adversely influences the optimal de-
cisions of the truncated model. Section 5 analyzes the choice of a., and its impact on the
solutions provided by primal and dual equilibrium approximations. For OSI; with Arabic
data, the choice of o has little impact on the optimal solutions. Section 6 concludes the anal-
ysis by examining the stability of the initial year decisions as the future year requirements
vary. The initial year optimal decisions from the level growth model are always ﬁear opti-

mal.

1. Stability of Initial Year Optimal Decisions as the Truncated

Formulation Solution Horizon Increases

As shown in Table 30, initial runs with the Arabic data over truncated solution ho-

rizons between 3 and 6 years indicate a large variation in the optimal first year solutions.
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3 Year Solution
Horizon

4 Year Solution
Horizon

5 Year Solution
Horizon

6 Year Solution
Horizon

188 Instructors

164 Instructors

156 Instructors

168 Instructors

Table 30.
Optimal number of instructors required for the first year as the
solution horizon for the truncated formulation is increased from 3 to 6 years.

There is a large variation in the optimal number of instructors recommended in year

one as the truncated solution horizon increases. To determine if the first year solutions (in-

structors required and proposed course schedule) generated by the shorter solution horizon

formulations are suboptimal over longer solution horizons, we fix the first year solutions in

problems with longer solution horizons. Table 31 provides a comparison listing of the op-

timal objective function values for the truncated formulation obtained using first year con-

strained and unconstrained solutions.

Unconstrained | Constrained Constrained Constrained
Objective First Period First Period First Period
Value Optimal Optimal Optimal
(LP, MIP) Instructor Instructor Instructor
Schedule from | Schedule from | Schedule from
3 Year Model | 4 Year Model 5 Year Model
(LP,MIP) (LP,MIP) (LPMIP)
4 Year Solution | 713,714 732,732 - -
Horizon '
5 Year Solution | 914,914 944,944 926,926 -
Horizon
6 Year Solution | 1111,1120 1123.6,1124 1120,1120 1124,1124
Horizon
Table 31.

Examining optimality of first year optimal decisions when these decisions are applied
over longer solution horizons.
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Fixing the first year best integer solution derived from the 3 year solution horizon,
for the 4 to 6 year solution horizon models, adversely impacts the best integer objective
function value found over the longer solution horizons (increase of 2.6% for 4 year horizon,
3.3% for 5 year horizon, and 0.5% for the 6 year horizon). Using the first year best integer
solutions derived from the 4 year solution horizon, leads to a slightly suboptimal solution
when solved over a 5 year horizon (increase of 1.3%), and no significant difference is noted
for the 6 year solution horizon (the linear programming relaxation increases by 1%, but best
integer solution has the same objective function value). Using the first year best integer so-
lution, derived from the 5 year solution horizon, leads again to slightly sub-optimal solu-
tions over a 6 year horizon (optimal objective function value increases 1%).

End effects influence the first period best integer solution using a three year solu-
tion horizon. These end effects appear to be present in some form even over 4, 5, and 6 year
solution horizons. However, this method of evaluating initial year solutions for end effects,
while providing qualitative insight, provides no guidance in determining a solution horizon

that ensures the first period solution is in some sense “nearly optimal”.

2. Bounding the Infinite-Horizon Optimal Solution

Assuming that the course requirements from year 3 onward are invariant over the
infinite horizon, Table 32 reports results obtained using primal and dual approximations
with lengths of 3,4, 5, 6, 10, 15, and 20 years. Specifically, Table 32 provides the objective
function values for primal and dual equilibrjum approximations as well as the integer solu-
tion for the number of instructors required for years 3,4,5, and 6. Figure 24 provides a
graphic comparison of the optimal objective function values obtained for the primal equi-
librium approximation, dual equilibrium approximation, and truncation, as the solution ho-
rizon varies from 3-20 years. For all horizon lengths, 0=0.9 starting with year 4, and

x=x,,; for primal equilibrium. The primal equilibrium line defines a near optimal objective

value (best integer solutions with integrality gaps of 1 to 2% from the relaxed optimal), and

therefore provide a valid upper bound. The dual equilibrium values represent the optimal
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objective value obtained by the LP relaxation to the dual equilibrium approximation, and

form a valid lower bound on the infinite optimal.

Primal and dual equilibrium solutions.

(3 to 6 year solution horizons)

192

Solution | Relaxed | Best Number of Instructors (For Each Yr.)
Horizon, | Optimal | Integer
Approxi- | Objec- | Objec- Yrl [ Yr2 | Y3 Yr4 Yr5 Yr6
mation tive tive
Type Func- Function

tion Value

Value
3 Year 2291.2 | 2308.0 160 | 188 196
Primal
4 Year 2290.2 | 2308.0 160 | 188 | 196 196
Primal
5 Year 2289.5 | 2309.6 162 | 188 | 192 200 196
Primal :
6 Year 2289.36 | 2299.8 162 | 188 | 184 198 196 196
Primal
3 Year 2283.92 | 2284.04 | 158 190 |-
Dual
4 Year 2284.82 |2284.89 | 164 |184 | 184 -
Dual
5 Year 2284.97 | 228497 | 164 | 184 | 184 188 -
Dual _ Q
6 Year 2285.69 | 2286.41 | 164 | 184 | 184 194 202 -
Dual

Table 32.
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Figure 24.
Convergence of dual and primal equilibrium approximations.
(0=0.9 discount factor starting with year 4)
(Primal Equilibrium values are “Best Integer” near optimal solutions)

Using primal and dﬁal equilibrium approximations, the infinite optimal solution of
the mixed integer program OSI;, given that year 3 requirements hold for all future periods,
lies in the interval (2286.24, 2292.31). The ability of primal and dual equilibrium approxi-
mations to bound the infinite optimal objective function value is outstanding. Even with a
3 year solution horizon, the bound generated, (2283.922, 2308.0) has a gap of just 1%. Al-
so, unlike the truncated formulation, the first period dual and primal equilibrium approxi-
mations’ solutions remain relatively stable over increasing solution horizons, with primal
equilibrium approximation solutions varying between 160 and 162, and dual equilibrium

approximation solutions varying between 158 and 164.

3. Quantifying End Effects for Initial Decision Variables

The bound for the infinite-horizon optimal solution lies between (2286.24,

2292.31). This bound provides a baseline for measuring the impact on the infinite optimal
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solution of fixing first year decisions generated by the three period truncated formulation
over the infinite-horizon using primal and dual equilibrium approximations. Figure 25
graphically displays the results. Primal and dual solutions are generated using a 10 year so-

lution horizon.

Gap Between Bounds 2317.19
For Infinite Horizon Y W
Optimal Objective
Value _ l_ _ __2299.75
3L
229231 Bound on Infinite
Horizon Optimal When First
2286.24 _ _ Period Decision Constrained
To Those of 3 Period
Bound on Infinite Truncated Model

Horizon Optimal When First
Period Decision Unconstrained

Figure 25.
Quantifying the impact on the infinite optimal solution when the first year
decisions from the truncated 3 year formulation are used.

As Figure 25 illustrates, the first year decisions generated by the 3 year truncated
model are suboptimal choices over the infinite-horizon. Figure 25 highlights that the best
possible infinite-horizon optimal solution implementing first year decisions is 2299.75,
while the worst possible unrestricted infinite-horizon optimal solution is 2292.31. This is a
minimal gap of 7.44. While this gap is insignificant compared to the total infinite-horizon
cost, <<1%, on examining the year to year manning requirements, most of this cost differ-
ence occurs in the early years of the solution horizon. Table 33 provides a comparison of
cumulative instructor years required over the first 5 years, for the primal equilibrium ap-
proximation (unconstrained) and the primal equilibrium approximation (constrained to use

first year solution from the truncated formulation).
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Year Year1 | Year2 | Year3 | Year4 | Year 5

Constrained Primal Equilibrium 188 172 184 202 200
Approximation Using First Year Solu-
tion From 3 Year Truncated Formulation

Unconstrained Primal Equilibrium 160 188 188 194 200
Approximation
Cumulative Difference in Total -28 -12 -8 -16 -16
Instructor Years

Table 33.

Ilustrating the near term differences in manning costs when
first period truncated solutions are used for Arabic course schedule.

It is evident that there are high near term costs associated with implementing the
first period decisions provided by the truncated solution. However, since all costs are pos-
itive the truncated formulation provides a best possible solution minimizing the costs over
a three year horizon. The question is, at what point does implementing a three year solution
become more expensive than using the infinite-horizon solution. To answer this question,
a year by year comparison is made using the primal equilibrium approximation. Two ten
year horizon models are run, one restricting the first three year decisions to those provided
by the three year truncated formulation, the other with no restrictions. The results are pre-

sented in Table 34.
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Year Year1 | Year2 | Year3 | Year4 | Year 5

Constrained Primal Equilibrium 188 168 166 230 214
Approximation Using Solutions From 3
Year Truncated Formulation

Unconstrained Primal Equilibrium 160 188 188 194 200
Approximation
Cumulative Difference in Total -28 -8 +14 -22 -36
Instructor Years :

Table 34.

Tlustrating the near term differences in manning costs when solutions from a three year
truncated horizon are used for Arabic course schedule.

As expected, the truncated model provides the better solution for a three year hori-
zon. However, the year 4 requirements are quite high, and over a 4 year horizon, these same
choices are suboptimal. The truncated model does not have to anticipate meeting any year

4 requirements, and this end effect is adversely influencing the optimal decisions for the

first 3 years.

4. Identifying End Effect(s) Which Influence the Initial Decision

Variables
The optimal solutions generated by the truncated formulation, call for a large num-

ber of instructors in year 1, followed by a significantly smaller number of instructors in

years 2 and 3. This is a non-intuitive result, since the course loading increases from year 1
to 2, and then remains the same for year 3. Table 35 summarizes the course requirements
for Arabic and the optimal number of instructors generated by solving the truncated, primal

equilibrium, and dual equilibrium approximations.
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Year YRI1 YR2 YR3
ARABIC MODERN STANDARD 65 75 75
(63 Week Course)

ARABIC INTERMEDIATE 1 1 1
(47 Week Course)

ARABIC ADVANCED 1 1 1
(47 Week Course)

ARABIC REFRESHER 1 1 1
(20 Week Course)

Total Courses Required 68 78 78
Optimal Number of Instructors 188 168 166
Generated by Truncated Model

Optimal Number of Instructors Generated | 160 188 188
by Primal Equilibrium Approximation

(10 year solution Horizon)

Optimal Number of Instructors Generated | 162 186 188
by Dual Equilibrium Approximation

(10 Year Solution Horizon)

Table 35.

Comparison of optimal values with course requirements for Arabic data.

Why does the truncated solution hire so many instructors in year 1, and then need
so few instructors in years 2 and 3, given the course loading is increased? The minimum
number of instructors that must be hired in years 2 and 3 is twice the number of courses
required, since 2 instructors are needed for each course. For year 1, this equates to 136 in-
structors, for years 2 and 3, this equates to 156 instructors. The model also continues to sup-
port courses that are ongoing (courses started in one of the previous two years prior to the
current solution horizon). A closer examination of the results indicates that the truncated
model starts as many courses as possible near the beginning year one, leading to significant
overlapping with on-going courses, thereby requiring a large number of instructors early in

the year. In year 2, the model seeks to start as many courses as possible in the middle of the
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year, minimizing overlap with those courses which began in the beginning of year 1 (75 of
the 78 courses are 63 weeks in length). For the third year the model starts as many courses
as possible during the last third of the year, minimizing overlap with year 2. The model fails
to account for year 4. Therefore the truncated solution, extended to year 4, has overlap
problems over more than one half of year 4’s eligible starting weeks. High penalties are
paid when instructor needs are minimized over a 3 year horizon. Both primal and dual eqﬁi-
librium approximations effectively account for this end effect. The solutions generated by
the four, five, and six year truncated formulations all exhibit the end effect of scheduling
as many courses as possible late in the final period. Solving truncated formulations over a
longer horizon will eventually minimize the impact of this type of end effect over the first
period optimal solution. The advantage of using primal and dual equilibrium approxima-
tions is that they provide a tight bound on the infinite optimal solution over a reasonable
solution horizon (which for the Arabic data is as few as 3 years). Any remaining end effects
can only influence the optimal solution over the range of the bound. For OSI using the giv-
en Arabic data, remaining end effects can only minimally influence the optimal objective
function value (<1%), as the infinite optimal objective function value is bounded between
(2286.24, 2292.31). The primal and dual equilibrium approximations capture end effect in-

fluences in reasonable solution horizons, and provide a basis for measuring remaining end

effects.

5. INFLUENCE of o

Solving 10 year primal and dual equilibrium approximations using the Arabic data
set, for 0=0.5, 0:=0.9, and 0:=0.95 provides insight regarding the influence of o on the op-
timal decisions. Table 36 displays the optimal number of instructors hired for each year.
The size of the gap that bounds the objective function value remains stable over o. In all
cases, the bound between the best integer primal equilibrium approximation, and the linear

relaxation of the dual equilibrium approximation, is well under 1%.
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YEAR 1 2 3 4 5 6 7 8 9 10
Dual (0=0.5) 166 | 182 | 180 [ 198 | 205 | 198 | 184 | 200 | 202 | 380.4
Primal (0=0.5) | 166 | 182 | 180 | 198 | 204 | 198 | 186 | 196 | 200 | 196
Dual (0=0.9) 162 | 186 | 188 | 194 | 198 | 198 | 192 | 192 | 194 | 1948.2
Primal (0=0.9) | 160 | 188 | 188 | 194 [ 200 | 198 | 194 | 196 | 196 | 196
Dual (0=0.95) | 162 | 186 [ 190 | 190 | 198 | 200 | 194 | 194 | 188 | 3885.8
Primal(c:=0.95) | 164 | 184 | 188 | 194 | 198 | 196 | 196 | 196 | 194 | 196
Table 36.

Comparison of the optimal number of instructors required, as o is varied, for both

primal and dual equilibrium approximations.

Table 36 shows no distinguishing trends. Primal first year decisions vary between

166, 164, and 160. The question is, how stable is this first decision with respect to o.? Table

37 compares the optimal objective function values from solving the 0=0.5 and 0=0.95

models using the a:=0.9 initial year decisions (required instructors and course start weeks).

Using a:=0.9 initial year decisions has little impact on the optimal objective function value

for 0=0.5 or a=0.95.

Relaxed Opti- Relaxed Opti- Best Integer Best Integer
mal Objective mal Using 0=0.9 | Objective Value | Objective Value
Value First Year Using 0=0.9
Decisions First Year
Decisions
0=0.95 | 4229.71 42299 4258.44 4261.54
0=0.5 | 72647 728.03 726.69 728.28
Table 37.

Comparison of objective function values for discount rates of 0=0.5 ando=0.95
when 0=0.9 first year decisions are used.

For OSI; with the Arabic data set, the optimal first year decisions are stable over

0=0.5, 0=0.9, and 0=0.95.
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6. Stability of the Initial Decisions Over Changing Right Hand Side

Values
One of the main limitations of using infinite-horizon programming techniques, is

that implementation assumes that the right hand side requirements are completely specified
over the infinite-horizon. For most periodic problem structures, the right hand side coeffi-
cients are well defined for only a few periods. The question of interest is, how stable are the
initial decisions to changing future requirements? This question is addressed for OSI by:

« Solving a baseline problem using both primal and dual equilibrium approxi-
mation methods.

«Solving a new problem using both primal and dual equilibrium, with a right
hand side that increases course start requirements for years 4-6 over the base-
line, stabilizing from year 7 onward.

*Restricting the initial decisions to the values obtained by the baseline prob-
lem and then solving the primal and dual equilibrium approximations using
the increased course start requirements.

«Comparing the optimal decision variables and objective function values of
the restricted growth model to those of the unrestricted growth model (primal
and dual equilibrium approximations).

Primal and dual equilibrium approximations use a 10 year solution horizon. Feasi-
bility is not an issue since any feasible set of first year decisions remain feasible over any
solution horizon. Table 38 defines the course requirements for the baseline and growth
models. Table 39 provides a comparison of the optimal objective function values and deci-
sion variables. The initial period optimal decisions for the primal and dual equilibrium ap-

proximations baseline models are near optimal for the growth models.
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Year Year 1 Year 2 Year 3 Year 4 Year 5 Year 6
Course Year 3 onward invariant for | Year 4 to 6 included in
baseline growth model. growth model with year 6
1 onward invariant.
Arabic Modern 65 75 75 80 85 90
Standard (63 Weeks)
Arabic Intermediate 1 1 1 2 3 4
(47 Weeks)
Arabic Advanced 1 1 1 2 3 4
(47 Weeks)
Arabic Refresher 1 1 1 2 3 4
(20 Weeks)
Total 68 78 78 86 94 102
Table 38.

Course requirements for Arabic, for baseline and growth models.
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Model Objective Best Integer | Number of | Number of | Number of
Value Objective Instructors | Instructors | Instructors
(Relaxed) Value Year 1 Year 2 Year 3
Primal 2287.12 2301.6 160 188 188
(Base)
Dual 2286.06 2289.57 162 186 188
(Base)
Primal 2677.6 2704.36 164 186 -1 190
(Growth)
Primal 2677.77 2683.38 160 188 186
(Growth)
(Restricted)
Dual 2671.5 26717.8 162 186 186
(Growth)
Dual 2766.7 2677.9 162 186 188
(Growth)
(Restricted)
Table 39.

The impact of restricting the growth model by fixing
the initial year optimal decisions to those of the baseline model.

From Table 39, the primal restricted solution is almost identical to the baseline so-
lution. The difference between the unrestricted and restricted growth objective function
values is minimal, and the best integer solution derived for the restricted growth model is
actually better than that generated by the unrestricted growth model. The dual equilibrium
approximation’s restricted solution is identical over the first three years to the baseline
model, with only a very small difference noted in the objective function values between the
unrestricted and restricted growth models (both relaxed and best integer value). The first
year decisions generated by the zero growth model are clearly nearly optimal over the ex-

amined growth horizon. While no direct conclusions can be stated over any range of
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possible right hand sides between these two extremes, the evidence suggests that the opti-

mal solution generated by the zero growth model, should remain near optimal over this

range.

G. SUMMARY
Using the model OS], this chapter demonstrates that primal and dual equilibrium

approximations (originally developed to bound infinite-horizon linear programs) can be

used for integer programs: For OSI; primal and dual equilibrium approximations both min-

imize the impact of potential end effects and effectively bound the infinite-horizon optimal.
Primal and dual equilibrium approximations generate outstanding bounds on the infinite

optimal solution for OSI;. Using typical truncated formulation solution horizons of 3 to 6

years produced bounds of approximately 1% and the optimal decision variables accounted
for a key end effect which adversely influences the solutions of the truncated formulation

of OSI. While more general cut structures of the form x;=x,,; are not needed to produce
tight bounds, these cut structures are still valid, and should be considered if the optimal so-
lution appears to be cyclic in nature. For OSIy, it appears that x, = x,, , as  grows large,

therefore basic primal cuts are appropriate.
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VIII. CONCLUSIONS AND RECOMMENDED RESEARCH

The focus of this dissertation is quantifying and eliminating end effects. If a trun-
cated problem has an appropriate infinite-horizon extension which can be solved, the opti-
mal decision variables are free of end effects. This dissertation develops several infinite-
horizon problem structures that have equivalent finite-horizon formulations. These prob-
lems are easy to solve and their optimal decisions are free of the end effecfs associated with
truncated formulations.

Unfortunately, determining whether a truncated problem, when extended to an in-
finite-horizon, has a finite-horizon equivalent formulation, is difficult. Most real-world
problems do not have easily definable finite period equivalent formulations. This provides
motivation for using primal and dual equilibrium approximations to provide bounds for the
infinite-horizon problem.

This dissertation shows that primal and dual equilibrium approximations bound the
optimal objective function value for any LPe or MIP. Using primal and dual equilibrium
approximations to bound the infinite-horizon optimal solution of the primal formulation is
effective in eliminating end effects and generating near optimal solutions for both TAPLIM
and OSI;. The methodology appears to be robust, applicable to a large class of LPe and
MIP= (a potential difficulty lies in identifying effective primal restrictions). The bounding
method is easily implemented with solution times comparable to those of the original trun-
cated formulations.

This dissertation illustrates that convergence of truncated and dual equilibrium ap-
proximations to an infinite-horizon optimal, and the ability to practically implement the pri-
mal and dual equilibrium approximations, does not depend on s‘trong or weak duality

holding in the limit.
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For LP, this dissertation develops and implements a simple algorithm that exam-

ines the impact of a changing right hand side on a fixed set of initial decision variables. This
algorithm is easily implemented on TAPLIM, and proves effective in quantifying the im-
pact of using initial decisions over a convex combination of potential right hand sides.

In analyzing the results of this dissertation, several interesting questions present
themselves, and should be explored further:

«Primal and dual equilibrium approximations prove effective in eliminating
end effects of truncated formulations, however, there may be adverse end
effects introduced into the formulation that are related to the approximation
methods themselves. The quantitative impact of any remaining end effects
can be determined by the size of the gap between the primal and dual equilib-
rium approximation. A gap which closes slowly as the solution horizon
increases, may be due in large part to end effects created by the primal/and or
dual equilibrium approximation. Chapter IV provides an example where a
poor choice of restriction led to a primal equilibrium approximation which
never converged to the optimal solution. This is clearly an end effect.

«Primal restrictions are problem specific and are currently limited, as the
restriction must generate a non-empty feasible region, and, result in a finite
period equivalent re-formulation of the original infinite horizon problem. At
present, simple functional ties are the only types of restrictions identified
which satisfy the requisite conditions required to make primal equilibrium
approximation work. Additional research is needed to develop alternative
restrictions that generate finite period re-formulations.

*The performance of primal and dual equilibrium approximations when
applied to mixed integer programs should be investigated further. OSI was
chosen to test primal and dual equilibrium methods as truncated versions of
OSI consistently solved with small integrality gaps, and the truncated formu-
lation was heavily influenced by end effects. How well primal and dual equi-
librium performs may be closely related to the size of the integrality gap for a
given mixed integer program. This issue should be explored further to deter-
mine the robustness of primal and dual equilibrium to isolate and quantify end
effects associated with truncated mixed integer programs.
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+The issues surrounding uncertainty in the infinite horizon coefficients need to
be explored further. The analysis performed in this dissertation on the initial
decision variables examines only a convex combination of two potential right
hand side extremes. Better methods must be developed to analyze the impact
of uncertainty on the optimal decision variables. Uncertainty in future period
coefficients can be viewed as an end effect.

207




208




LIST OF REFERENCES

Bazarra, Mokhtar S., and Shetty, C.M., Nonlinear Programming, Theory and Algorithms,
John Wiley and Sons, 1979.

Bean, James C. and Smith, Robert L., Conditions for the Existence of Planning Horizons,
Mathematics of Operations Research, VOL 9, #3, pp391-401, August 1984.

Bean, James C. and Smith, Robert L., Optimal Capacity Expansion Over an Infinite Hori-
zon, Management Science, VOL 31, #12, pp 1523-1532, December 1985.

Bean, James C., and Smith, Robert L., Conditions for the Discovery of Solution Horizons,
Mathematical Programming, VOL 59, pp 215-229, 1993.

Brooke, A., Kendrick, D., and Meeraus, A., GAMS: A User's Guide, 2nd Ed, The Scien-
tific Press, 1992.

Dell, Robert F., Kunzman, David S., and Bulfin, Robert L., Determining Optimal Instruc-
tor Levels at the Defense Language Institute, Naval Postgraduate School Technical Report
NPS-OR-93-022, December 1993.

Durso, Anthony, and Donohue, Scott.F., Analytical Approach to Reshaping the Army,
Directorate of Military Personnel Management, Deputy Chief of Staff for Personnel,
United States Army, 1994.

Duffin, R.J., and Karlovitz, L.A., An Infinite Linear Program with a Duality Gap, Man-
agement Science, VOL 12, #1, pp 122-134, September 1965.

Evers, J. J. M., Linear Programming Over an Infinite Horizon, Tilburg University Press,
The Netherlands, 1973.

Evers, J. J. M., A Duality Theory for Infinite Horizon Optimization of Concave Input/Out-
put Processes, Mathematics of Operations Research, VOL 8, pp479-497, 1983.

Gass, Saul L, Military Manpower Planning Models, Computers and Operations Research,
VOL18, Number 1, pp 65-73, 1991.

Grinold, Richard C., Infinite Horizon Programs, Management Science, VOL 18, #3,
pp157-170, November 1971.

Grinold, Richard C., and Hopkins, David S.P., Computing Optimal Solutions for Infinite -

Horizon Mathematical Programs with a Transient Stage, Operations Research, VOL 21,
pp 179-187, 1973a.

209




Grinold, Richard C., and Hopkins, David S.P., Duality Overlap in Infinite Linear Pro-
grams, Journal of Mathematical Analysis and Applications, VOL 41, pp 333-335, 1973b.

Grinold, Richard C., Finite Horizon Approximations of Infinite Horizon Linear Programs,
Mathematical Programming, VOL 12, pp 1-17, 1977.

Grinold, Richard C., Convex Infinite Horizon Programs, Mathematical Programming,
VOL 25, pp 64-82, 1983 (a).

Grinold, Richard C., Model Building Techniques for the Correction of End Effects in
Multi-Stage Convex Programs, Operations Research, VOL 31, #3, pp 407-431, May-June

1983 (b).

Hopkins, David S.P., Infinite-Horizon Optimality in an Equipment Replacement and
Expansion Model, Management Science, VOL 18, #3, pp 145-156, November 1971

Manne, Alan S., Sufficient Conditions for Optimality in an Infinite Horizon Development
Plan, Econometrica, VOL 38, #1, pp 18-38, January 1970. :

Manne, Alan S., ETA: A Model for Energy Technology Assessment, Bell Journal of Eco-
nomics, VOL 7, pp 379-406, 1976.

Murphy, FH., and Soyster, A.L., End Effects in Capacity Expansion Models with Finite
Horizons, Naval Research Logistics Quarterly, VOL 33, pp 373-383, 1986.

OSL: Optimization Subroutine Library, Guide and Reference, IBM Corporation, 1991.
Rockafellar, R.T., Convex Analysis, Princeton University Press, Princeton, N.J., 1970.

Romeijn, H. E., Smith, Robert L., and Bean, James C., Duality in Infinite Dimensional
Linear Programming, Mathematical Programming, VOL 53, pp 79-97, 1992.

Royden, H.L., Real Analysis, 3rd Ed., Macmillan Publishing, 1988.

Ryan, Sarah M., Bean, James C., and Smith, Robert L., A Tie Breaking Rule for Discrete
Infinite Horizon Optimization, Operations Research, VOL 40, Supplement #1, pp S117-
S126, January-February 1992.

Schochetman, Irwin E., and Smith, Robert L., Infinite Horizon Optimization, Mathematics
of Operations Research, VOL 14, #3, pp 559-574, August 1989.

210




Schochetman, Irwin E., and Smith, Robert L., Convergence of Selections with Applica-
tions in Optimization, Journal of Mathematical Analysis and Applications, VOL 155, pp

278-292, 1991.

Schochetman, Irwin E., and Smith, Robert L., Finite Dimensional Approximation in Infi-
nite Dimensional Mathematical Programming, Mathematical Programming, VOL 54, pp
307-333, 1992.

Svoronos, A., Duality Theory and Finite Horizon Approximations for Discrete Time Infi-
nite Horizon Convex Programs, Ph.D. Dissertation, Operations Research Department,

Stanford University, 1985.

XA: Professional Linear Programming System, Sunset Software Technology, San Marino,
CA. 1993.

211




212




10.

Initial Distribution List

Defense Technical Information Center. ................

Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 52 ... ..o iviin i

Naval Postgraduate School
Monterey, California 93943-5101

Dr. Hemant K. Bhargava, Code gM/Bh. ................

Naval Postgraduate School
Monterey, California 93943-5002

Dr. Robert F.Dell, Code OR/De. .. ....covvivenven..

Naval Postgraduate School
Monterey, California 93943-5002

Dr. Harold J. Larson, Code OR/La . ............. ...t

Naval Postgraduate School
Monterey, California 93943-5002

Dr. David P. Morton, Code OR/MO . .......ooevvieenn.

Naval Postgraduate School
Monterey, California 93943-5002

Dr. Peter Purdue, Code OR/Pd ... ... ..o oviiiit

Naval Postgraduate School
Monterey, California 93943-5002

Dr. Maurice D. Weir, Code MA/Wce . ...t

Naval Postgraduate School
Monterey, California 93943-5002

Dr. Lyn R. Whitaker, Code OR/Wh .. .................

Naval Postgraduate School
Monterey, California 93943-5002

CDRSteven C. Walker. ... coviiiieiiiineaeeenns

Air Operations Officer
U.S.S. Kitty Hawk, CV-63
FPO AP 96634-2770

213

................




