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ABSTRACT 

This dissertation considers optimization problems in which similar decisions need to 

be made repeatedly over many successive time periods. These problems have wide 

applications including manpower planning, scheduling, production planning and control, 

capacity expansion, and equipment replacement/modernization. In reality these decision 

problems usually extend over an indeterminate time horizon, but it is common practice to 

model them using a finite horizon. Unfortunately, an artificial finite horizon may adversely 

influence optimal decisions, a difficulty commonly referred to as the end effects problem. 

Past research into end effects has focused on theoretical issues associated with solving (or 

approximately solving) infinite-horizon extensions of finite-horizon problems.This 

dissertation derives equivalent finite-horizon formulations for a small class of infinite- 

horizon problem structures. For a larger class of linear and integer programs, it also 

develops finite-horizon approximations which bound the infinite-horizon optimal solution, 

thereby quantifying the influence of end effects. For linear programs, extensions of these 

approximations quantify the end effects of fixed initial period decisions over a functional 

range of future infinite-horizon conditions. The bounding methods prove successful in 

eliminating many end effects in two sample applications: A linear program in use by the 

United States Army for manpower planning and an integer program in use by the Defense 

Language Institute for course scheduling. Using as little as two times the computational 

requirements needed to solve a finite-horizon problem, the bounding methods supply 

feasible solutions to the infinite-horizon problems that are guaranteed to be within 1% of 

optimal. 
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I. INTRODUCTION 

This dissertation considers optimization problems in which similar decisions need 

to be made repeatedly over many successive time periods. These problems have wide ap- 

plications including manpower planning, scheduling, production planning and control, ca- 

pacity expansion, and equipment replacement/modernization. Even though many instances 

of these decision problems extend over an indeterminate time horizon, it is common prac- 

tice to model them using a finite horizon. The length of the finite horizon (referred to as a 

forecast or solution horizon), is usually subjective and driven by problem complexity and/ 

or knowledge of data and functional structures. Unfortunately, in many cases, using an ar- 

tificial finite horizon adversely influences the optimal decisions: This is commonly referred 

to as the end effects problem (Grinold 1983b). 

Past research into end effects has focused on solving (or approximately solving) an 

infinite-horizon extension of the finite-horizon problem and developing sufficient condi- 

tions to ensure that solutions are convergent to the infinite optimal. If the extension to the 

infinite horizon accurately reflects the true problem, generated solutions are optimal (if the 

infinite-horizon problem can be solved directly), or near optimal (if approximation meth- 

ods are used) and are not influenced by end effects. This dissertation derives equivalent fi- 

nite-horizon formulations for a small class of infinite-horizon problem structures. For a 

larger class of linear and integer programs, it also develops finite-horizon approximations 

which bound any infinite-horizon linear or integer program's optimal solution, thereby 

quantifying the influence of end effects. For linear programs, extensions of these methods 

quantify the end effects of fixing initial period decisions over a functional range of future 

infinite-horizon conditions. The bounding methods prove successful in eliminating many 

end effects in two sample applications: A linear program in use by the United States Army 

for manpower planning and an integer program in use by the Defense Language Institute 



for course scheduling. Using as little as two times the computational requirements needed 

to solve a finite-horizon problem, the bounding methods supply feasible solutions to the in- 

finite-horizon problems that are guaranteed to be within 1% of optimal. 

Little has been done specifically to isolate or quantify the impact of end effects (ex- 

ceptions being Grinold (1983b), Svoronos (1985), and Schochetman and Smith 

(1989,1991,1992)). Also, only a few examples of infinite-horizon problem structures exist 

for which the form of the infinite-horizon optimal solution is known, thereby eliminating 

end effects (see Grinold and Hopkins (1973a) and Schochetman and Smith( 1989,1991, 

1992) for published examples). No research has been conducted to quantify end effects for 

finite-horizon formulations whose future period coefficient structures may vary. This re- 

search brings into focus two general approximation methodologies and concentrates on 

identification of quantifiable measures of stability (i.e., minimizing potential end effects) 

for initial decision variable(s), given some functional range of future infinite-horizon con- 

ditions. This dissertation is organized as follows: 

•The remaining sections of this chapter introduce infinite-horizon mathemati- 
cal programs, illustrating that strong and weak duality conditions are not 
always satisfied. The chapter concludes by highlighting the research contri- 
butions of this dissertation. 

•Chapter II provides a detailed review of the separate literatures that exist for 
infinite-horizon linear/convex programs (see Manne (1970), (1976), 
Grinold(1977), (1983a/b), Svoronos(1985)) and for finite/bounded i.e., inte- 
ger programs (see Bean and Smith (1984), Schochetman and Smith(1989), 
(1991), (1992)). The methodologies developed by this dissertation use as 
their basis the general solution techniques developed by Manne, Grinold, and 
Svoronos. Two illustrative examples highlight the two approximation meth- 
ods used extensively in this dissertation, primal and dual equilibrium approx- 
imation and their ability to bound the infinite-horizon optimal objective 
function value. The second general approach is research conducted by Bean 
and Smith (1984), (1985), (1993) and Schochetman and Smith (1989, 1991, 
1992). Their research involves developing methods to generate initial period 
optimal solutions for infinite-horizon bounded integer programs. The authors 
devise sufficient conditions under which solving a finite-horizon formulation 
over a long enough horizon, generates an initial solution that is optimal (or 



near optimal) over the infinite-horizon. The chapter concludes each section 
by discussing the applicability of each method to the end effects problem. 

•Chapter III derives several simple single period overlap staircase structures 
that have infinite optimal solutions which satisfy the dual equilibrium condi- 
tions defined by Grinold (1983b). Since the solution form of the infinite-hori- 
zon optimal is known, end effects are eliminated using dual equilibrium 
approximation. 

•Chapter IV lays the basic theoretical background to support the use of primal 
and dual equilibrium approximations to quantify end effects associated with 
infinite-horizon linear and integer programs. Proofs are provided showing 
primal and dual equilibrium approximations have monotonic optimal objec- 
tive values over an increasing solution horizon. An example illustrates that 
convergence of dual and truncation approximation methods is possible, even 
when weak and strong duality fail. 

•Chapter V develops the theory and a set of algorithms that quantify the 
impact of a changing right hand side on the initial period optimal solutions 
for infinite-horizon linear programs. 

•Chapter VI applies the primal and dual equilibrium approximations to a real- 
world linear program (a military manpower planning model in use by the 
United States Army). The chapter presents the model, its extension over an 
infinite-horizon, application of primal and dual equilibrium approximations, 
and an extensive computational study. The computational study includes the 
impact of future period growth on initial decisions made under assumptions 
of zero growth. 

•Chapter VII applies primal and dual approximations, which were originally 
developed for use with linear and convex programs, to a real-world integer 
program in use by the Defense Language Institute as a decision aid to deter- 
mine instructor requirements and establish course schedules. 

•Chapter VIII summarizes the key theoretical results and insights gained from 
implementation on the two real-world problems, and also provides recom- 
mendations for future research. 



A. THEORETICAL RESULTS 

The main theoretical results of this dissertation are: 

•Showing a class of infinite-horizon problem structures have equivalent finite- 
horizon formulations. These problems can easily be solved providing optimal 
solutions free of end effects. 

•Showing that primal and dual equilibrium approximations, which were origi- 
nally developed for infinite-horizon linear and convex programs, can also be 
applied to integer programs. 

•Showing that convergence of the truncation and dual equilibrium formula- 
tions to an infinite optimal solution can be achieved even if strong and weak 
duality fail in the limit. 

•Deriving an algorithm that provides a method of bounding the potential error 
associated with using initial decision variables generated under certain 
assumed conditions, when those conditions vary over a functional range of 
values. 

B. PRACTICAL RESULTS 

The practical implications of this research include: 

•Validating the effectiveness of using primal and dual equilibrium approxima- 
tions to bound the infinite-horizon optimal solution and quantify end effects 
for a real-world military manpower planning model. Little research has been 
conducted in the last ten years in the use of either primal or dual equilibrium 
approximations. Only Svoronos (1985), in his unpublished dissertation, has 
used both methods together to bound the infinite-horizon optimal solution. 
However, for the manpower planning model examined, the primal and dual 
equilibrium approximation methods prove highly successful in identifying 
and quantifying end effects associated with solving the model over a finite 
solution horizon. 

•Validating the algorithm developed in this dissertation to bound the potential 
error when using specific values of decision variables over a functional range 
of future conditions. 

•Validating the effectiveness of using primal and dual equilibrium approxima- 
tion methods to bound the optimal infinite-horizon objective function value 
and to quantify end effects associated with a finite-horizon integer program. 
No work has been found that uses primal and dual equilibrium approxima- 



tions to quantify end effects associated with integer programs. For the integer 
program examined, these methods prove highly successful in identifying and 
quantifying end effects linked to the finite-horizon formulation. 

C. INFINITE-HORIZON MATHEMATICAL PROGRAMS 

This dissertation considers a (countably) infinite-horizon integer or linear program 

oo 

Minimize ^ atc( (x() 
t = o 

Subject to: 

A (0,0) (xo) ~   ° 
Ad,o)(xo)+  A(i,i)(xi^ = hi 
A (2> 0) (x0) + A (2;}) (xj) +   A (2> 2) (x2) = b2 

A{30){x0)+A{3J){Xl)+  A{32){x2)    ... =b3 

A(T,0) (Xo)+A(T,l) (Xl)+A(T,2) (*2)+ ••• A(T,T) (XT^ = bT 

0<xt<ut(t=0,l,2,...). 

Where: 

• up ct, and bt are data vectors of dimensions nt x 1, lxnt,andm,xl, t>0. 
(It is possible that the dimensionality may vary by period). In addition, we 
can assign, nt=n, mt=m, for t>l. 

• a is a discount factor such that (0<a<i). The restriction a<i is needed to 
ensure convergence of the objective function. 

•xt is a decision vector of dimension ntx 1, where xt e Xt. Xt c R   or 

Xt c Z"' depending on whether the problem of interest is a linear or integer 

infinite-horizon program. 

'ct(xt) (t>0) is a linear function from xt e Xt    ->   R, that is bounded above 

by an exponential growth function. 



IB, 

• A (, 0 (xf) (t>0,t< t') , is a linear function from JC( e X,   -> R   . 

The ideal situation would be to solve the above problem directly, effectively dealing 

with end effects. However: 

•Accurate projections of future data may be difficult if not impossible to 
obtain. 

•Even if accurate projections are available, many infinite-horizon mathemati- 
cal programs cannot be solved directly. 

D. STRONG AND WEAK DUALITY OVER AN INFINITE- 
HORIZON 

Any consistent finite dimensional convex mathematical program satisfies strong 

and weak duality (Bazaraa and Shetty (1979)). However, when extended over an infinite- 

horizon, strong and weak duality do not necessarily hold. The following examples illustrate 

the concepts of duality gap (failure of strong duality in the limit) and duality overlap (fail- 

ure of strong and weak duality in the limit). 

1. Duality Gap 
The following example, modified from Duffin and Karlovitz (1965), illustrates the 

violation of strong duality (i.e., existence of a duality gap). The primal formulation is: 



Minimize xi 

Subject to 

xi 

1 
4Xi+ 

1 
16*2 

1 1 
25*2 

1 
-x,+ 
n  1 

1 
~2X2 
n 

Xj s R, x2 e R. 

>-l 

>0 

>0 

>0 

The associated dual formulation: 

Maximize -u} + 0u2 + 0u3 + ...+ 0un + ... 

Subject to: 

Uj+     -u2 + 3u3+    ...     +^2»„+     ■■■ = 1 

0u1+ ±u2 + -u3+ ... + —2un+ ... = 0 
IO        ZJ (n+2) 

Uj>0        u2>0        ... un>0        ...    . 

For any finite-horizon problem (i.e., fix n), strong and weak duality hold for the pri- 

mal and dual pair with optimal objective function values equal to -1 {xj=-l and x3=n, u}=l 

and ut=0 (2<t<ri)). As n    ->   °°, the dual formulation maintains the optimal objective val- 

ue of -1 with optimal dual decision variables Uj=l, ut=0 (t>2). However, the infimum of 

the primal formulation is zero with x}=x2=0, as JC7 is driven to zero to keep x2 finite. This 

is a pathological example, since the added constraint x2<M, for large M, allows strong and 

weak duality to hold in the limit. 



2. Duality Overlap 
This example, provided by Grinold and Hopkins (1973b), is a linear program that, 

when expanded over an infinite-horizon, exhibits a duality overlap. 

The primal formulation is: 

Minimize ^T I - J zt 

t = 0 

Subject to: 

x0 = 1 

Ox0 + y0 + z0 = 1 

xt-2yt_j + 0zt_j = 0 fort=l,2,3,...,n 

-2xt_j+yt + zt = 0 fort=l,2,3,...,n 

xt,yt,zt>0 fort=l,2,3,...,n. 

The associated dual formulation: 

Maximize uQ + v0 

Subject to: 

ut-2vt + 1<0 fort=0,l,2,...n-l (1) 

vt-2ut + 1<0 fort=0,l,2,...n-l (2) 

un<0 (3) 

vn<0 (4) 

V'~(0 fort=0,l,2,...n. 

For any horizon, an optimal primal solution with objective function value of zero, 

is xt=yt=2f, zt=0 (t=0,1,2,-n). For any finite n, dual constraints (3) and (4) result as special 

cases of constraints (1) and (2) when t=n, (i.e., vn+1 and un+1 do not exist for any finite 

formulation). For finite n, the optimal dual solution with objective function value of zero, 

is vt=ut=0 (for all 0<t<n). However, in the limit as n   ->   ~, the dual formulation no long- 

er includes constraints (3) and (4) and ut = v, = [-J    (for all t=0,l,2,3,...) is feasible 



with an objective function value of 2. Therefore, in the limit, a duality overlap of 2 exists 

between the primal and dual formulations' optimal objective function values. 

E. SUMMARY 

For both the special cases presented in the last section, strong and/or weak duality 

fail in the limit (as n   -»   °°). As illustrated in later sections, while this is an interesting 

theoretical problem, the bounding techniques developed to eliminate and/or quantify end 

effects work even when strong or weak duality are not satisfied in the limit. 

The next chapter provides a detailed review of the separate literatures that exist for 

infinite horizon linear/convex programs and for finite/bounded programs. 
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II. BACKGROUND 

This chapter provides a detailed review of the separate literatures that exist for in- 

finite-horizon linear/convex programs (Manne (1970), (1976), Grinold(1977), (1983a/b), 

Svoronbs(1985)), and for finite/bounded programs (Bean and Smith (1984), Schochetman 

and Smith(1989), (1991), (1992)). The focus of this review is the applicability of these 

techniques to cope with end effects. 

Section A provides a review of five approximation methodologies developed for in- 

finite-horizon linear programs (Truncation, Salvage, Fixed End Conditions, Primal Equi- 

librium, and Dual Equilibrium).Two illustrative examples highlight some of the properties 

associated with the primal and dual equilibrium approximations. 

Second B extends the concept of using primal and dual equilibrium approximations 

to bound the infinite optimal solution for infinite-horizon convex programs (Svoronos, 

1985). A simple example illustrates the effectiveness of the bounding methodology pro- 

posed by Svoronos and developed independently by the author. 

Section C reviews research conducted by Bean and Smith (1984), (1985), (1993) 

and Schochetman and Smith (1989), (1991), (1992). Their research involves developing 

methods to generate initial period optimal solutions for infinite-horizon bounded integer 

programs. The authors devise sufficient conditions for which solving a truncated formula- 

tion over a long enough horizon, generates an initial solution that is optimal (or near opti- 

mal) over the infinite horizon. 

The last section of this chapter concludes that together primal and dual equilibrium 

approximations show the greatest promise for practical implementation. Follow on chap- 

ters expand on issues associated with practical implementation of primal and dual equilib- 

rium approximations to quantify end effects for both infinite-horizon linear and integer 

programs. 
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A. INFINITE HORIZON LINEAR PROGRAMMING AND END 
EFFECTS 

When xt is a real valued vector, {i.e., a member of R'), the infinite-horizon math- 

ematical program is an infinite-horizon linear program (hereto defined as LP°°). Research 

into solving and understanding the underlying structures of LP°° has been conducted by 

Manne (1970,1976), Hopkins (1971), Grinold and Hopkins (1973a), Grinold (1971,1977, 

1983a/b), Murphy and Soyster (1986), and Romeijn, Smith, and Bean (1992). The purpose 

of this chapter is to summarize the results of past research in this area and highlight the ap- 

plicability of such work to end effects when the original problem can be formulated as a 

LP°°. 

1. Approximation Methods 
Grinold (1983b) identifies five general approximation techniques (Truncation, Sal- 

vage, Fixed End Conditions, Primal Equilibrium, and Dual Equilibrium), that can generate 

finite-horizon approximations for LP°°. 

a. Truncation 

Truncation approximates the LP°o by dropping constraints and cost coeffi- 

cients tied to the variables xt, (t> T+l). The following is a truncation approximation of LP°°: 

12 



T 

Minimize ^ OCfcfxf 

t = o 
Subject to: 

A        x *bn  (0) 

AU,o)xo+  A(i,nxi ~bi  {1) 

A
 (2, 0)X0+ A (2,1)X1+   A(2,2)X2 ~b2   ^ 

A(3,0)X0+A(3,1)X1+A(3,2)X2+   A(3,3)X3 ^b3   ^ 

A(T,0)X0+ A(T,1)X1+ A(T,2)X2+ A{T,3)X3+ -     A(T,T)XT        >bT  ^ 

0<xt<ut        (t=0,l,2,...). 

Truncation disconnects the first T period decisions from the rest of the prob- 

lem. The form of disconnection assumes that resources created up to time T have no value 

after period T. This can lead to end effects where either the initial decision variable(s) are 

suboptimal, or worse, infeasible over LP°°. Truncation is effective at eliminating end ef- 

fects over the initial decision(s) x0, when there exists an F such that for all (T>F), the opti- 

mal initial decision variable(s) for the T period truncation, x0
T are optimal for LP°°. The 

difficulty lies in determining under what conditions one can guarantee that a finite F exists. 

Assuming sufficient conditions exist for weak and strong duality for a LP°° {i.e., Romeijn, 

Smith, and Bean (1992)), the cluster points (as T -» «>) of the sequence {x0
T} form a set 

of optimal points for LP°°. However (as subsequently shown in section A.2), there is no 

assurance in general of the existence of a finite/oreca^ horizon F, such that if T>F, and the 
rp 

truncation problem is solved, the resultingx0
s is optimal to LPoo. 

The truncation method has the property that given ct>0 for all t>T, the opti- 

mal objective function value to the truncated problem is a lower bound to the optimal ob- 

jective function value of LP°o. 

13 



b. Salvage 

The salvage technique extends truncation by placing a future value on re- 

sources carried over into later periods {salvage value). The model formulation is very sim- 

ilar to truncation except the objective includes salvage values dt that represent the per unit 

value of*, in all future periods not explicitly modeled (i.e., periods T+l, T+2, T+3,...). 

T 

Minimize   ^CL(c(-dt)xt 

t = 0 

Subject to: 

AQXQ = h (0) 

HJX0    +Axj = h U) 
H2x0   +KJXJ +Ax2 = b2 (2) 

H3x0    +K2Xj +KjX2 +Ax3 = b3 (3) 

HTx0+KT_1xJ   +KT_2x2 ... +AxT=bT(T) 

0<xt<upt (t=0,l,2,...,T). 

Grinold (1983b) uses Lagrange multipliers to relate the infinite-horizon and 

salvage linear program formulations. Grinold starts with the LP°° problem: 
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Minimize   ^ a c(x( 

t = o 

Subject to: 

A-oxo 

HjX0 +Axj 

™2X0 +Kixi +Ax2 

H3X0 +K2Xj +KjX2 +AxQ 

HJXQ    +KJI_JXJ        +KJ._2^2 

= b0 (0) 

=bj (/) 

=b2 (2) 

= b3 (3) 

+AxT = bT (T) 

t = o t = T+l 

0<xt<upt (f=0,7,2,...). 

Grinold (1983b) uses Lagrange multipliers ut, to formulate LP°° as: 

oo co f t-1 > 

Minimize   £ acfxt +    £   aut bt - H(x0 - ]T Kt _ nxn - Axt 

n = l J 

=b0 (0) 

= bj (7) 

= b2 (2) 

= b3 (3) 

+AxT = bT   ( T) 

Subject to: 

^oxo 
HjX0 +AXj 

H2X0 +KJXJ +Ax. 

H3x0    +K2Xj        +KjX2 

HTx0 +KT_}XJ   +KT_2X2 

+Ax- 

0<xt<upt (t=0,l,2,...). 

Grinold (1983b) illustrates that if: 

oo 

d0=    X   autHt   ; 
t = T+l 
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can 

dj-    Z   <*~J«t
Kt-j   (J$*T)   'and 

t = T+1 

CO 

dj = UjA + £ a/ut+jKt   (j>T+l). 
t = i 

Then the objective function: 

oo 00/ t-1 \ 

Minimize   £ a c,*, +    £   aut bt - H(x0 - ]T Kt _ nxn - Ax( 

t = 0 t=T+l ^ n = 1 ' 

be rewritten as: 

X oo oo 

Minimize   ]T a' (crrfP */ +    2   a (ct~dt) xt+    X   a utbt • 
t=o t=T+l t=T+l 

The salvage technique uses the first term and ignores the last two terms of 

the reformulated objective function. Grinold (1983b) further shows that 

X oo oo 

Minimize  £ a (ct-dt) xt +    ^   a (ct-dt) xt+    ]T    au(bt yields a lower bound 
t=o t=T+l t=T+l 

on the optimal value of the infinite horizon problem provided the following assumptions 

hold: 

•Given any set {ut},dt (for all t) exist; 

•The sum     £   a'MA  exists; and 
l-T+l 

•The optimal solution jct* t>T+l of 

Minimize {cf- dt) x( 

Subject to: 

0<xt< upt 

exists for all t>T+l. 

16 



A difficulty with using the salvage method lies in determining a-priori the 

proper salvage values {dt} or Lagrange multipliers {ut}. Grinold (1983b) illustrates that 

under the above assumptions, given any set of Lagrange multipliers {ut}, an optimal solu- 

tion (x0*jci*, x2*,.--*T-l*' *T*)t0 tne salvage approximation provides a lower bound to 

LP°° (as defined in this section). However, the quality of any solution is dependent on the 

a-priori choice(s) for {dt} and {ut}. Therefore, it is impossible in general to quantify the 

end effects of any derived optimal solution set using salvage techniques. A poor choice of 

{dt} and {ut} can lead to greater end effects difficulties than those created by the truncated 

solution approach. 

c. Fixed End Conditions 

Another typical approach to deal with LP<>=, is to solve a finite period prob- 

lem, fixing the desired end conditions. The formulation is very similar to truncation, how- 

ever, it includes one additional constraint (representing the tie-in to all future constraints). 

T 

Minimize ^ a'ctxt 

t = o 
Subject to: 

A(0,0)X0+ ~bo 
AV,o)xo+ A(i,i)xi -°i 

A(T,T-1)XT-1+ A(T,T)XT ~"T 

A(T + 1,T)XT -^T+l     A(T+1,T + 1)XT+1 

JC. > 0, (0<i<T) 

Given a staircase problem structure and a-priori the infinite optimal value of 

A
(T+I, T+ D

X
T+ i. solving the above formulation provides an infinite optimal solution for the 
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variables x0, x}, x2,... xT. Consider the following example: 

oo 

Minimize ]T (0.9) x( 

t = 0 

Subject to: 

XQ >1 

JC s\i    JL j >1 

Xj+ x2 >1 

x2+ X3 
>1 

xt>0      (t=0,l,2,3...). 

For this example the optimal solution is xt=l (t=0, 2, 4,...), xt=0 (t=l, 3, 

5...). (See chapter III section A for a proof that problems with this structure have optimal 

solutions of this form.) 

Using x3=0, the problem can be formulated as: 

oo 

Minimize ^ (0.9) xt 

t = o 
Subject to: 

xo 
x0+ Xj 

X2 

xt>0 (t=0,l,2,...). 

Note that the problem is separable, which allows for x0, x}, and x2 to be eas- 

>1 

>1 

>1 

>1- ■ (x3 = 0) 

x4 >1- - (x3 = 0) 

Xj+ Xj >1 

ily solved: 
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Minimize (x0 + 0.9xj + 0.81x2) 

Subject to: 

xo >1 

•V r\  T JL j >1 

Xj+X 2*1 

X 2^ 

XQ! X J, A?2 2. U 

Minimize ^ (0.9) x( 

t = 4 

Subject to: 

X4 

X5+ 

x6+ 

xt>0 

>1 

>1 

>1 

>1 

(t=0,l,2,...) 

Solving the finite-horizon problem on the left provides an optimal solution of x0=l, x}=0, 

x2=l. 

Fixing end conditions assumes that the infinite optimal solution has as part 

of its optimal solution set, A(T+1>T+1)xT+1. Of course, the difficulty lies in identifying an 

optimal xT+1. For linear programs, the number of feasible values for xT+1 is in general un- 

countably infinite (a special case however, exists when only one point xT+1 is feasible over 

the infinite-horizon problem space). While in theory it is possible to address this issue, 

(Schochetman and Smith (1989, 1991, 1992)), the approach in general is plausible only 

when there exists some period T+l for which xT+1 has only a manageably finite number of 

possible solutions. Using this method with a suboptimal end condition produces an unwant- 

ed end effect whose influence cannot be easily measured. 
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d. Primal Equilibrium Approximation 

Manne (1970,1976) proposed an approximation to LP°° that assumes there 

exists a time period T, such that for all t> T, *t+1=A*t (i.e., the decision variables after a fixed 

period become functionally related). Grinold (1983b) refers to this as Primal Equilibrium 

approximation. Svoronos (1985) further expands this definition to be any restriction on the 

feasible region, such that a finite period re-formulation is possible. For the purposes of il- 

lustration, we restrict ourselves in this section to restrictions posed by Manne. The primal 

equilibrium approximation requires the following assumptions: 

»ct=c<M, t>T; 

•A,a<l (Needed for objective function convergence); 

•There exists an L such thatA(f t)=0 for all t'-t>L, (0<t<f) (implying any 
decision variable xt links only a finite number of constraints); 

•There exists a Tsuch thatA(rf)=A, A{t<n=Kj (where j=t-t', t>t', t>T)\ 

•A0 is the lower triangular matrix structure associated with the variables x0, Xj, 
x2'-xT-l witn dimensions [(m0+m]+m2+...+mT_1)   x   (n0+n1+n2+...+nT.1)]; 

'Ht={A(t>0),Ait>1),A(ti2),..A(ttT-i)} with dimensions [(mt)    x    (n0+nj+n2+... 

+nT.j)] (t<r-iy, 

'bt+1=Xbt (t>T) (ensuring non-empty primal feasible region whenxt+1=hct. 

Figure 1 shows the general form of LP°° satisfying the above conditions: 
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Minimize cxQ + a   ^T a     cxt 

t = T 

Subject to: 

AQXQ 

LA   jXß"T     HA rp 

ttjXnV      l\.,Xrp-T AXrp j 

ll iX/j+  A2^7'^' 1XT + 1 T + 2 

HLxQ+ KL_jXT+ KL_2xT + 1+ KL  3xT + 2- 

KLxT+     KL_jXT + 1+ KL_2xT + 2 

KLXT+1+       KL-lXT+2 

= K (0) 

= bj (1) 

= Xbj, (2) 

= X bj (3) 

AxT + L- j = X      bj (L) 

(L+1) 

xt>0 (t=0,T,T+l,. ••) 

Figure 1. 
General form of LP°° formulation for which 

primal equilibrium approximation is applicable. 

Where x0 is the aggregated vector (x0, x}, x2, x3,...xT_j) and c is the vector (ch ac2, o?c2, 

a3c3,...,aT'1cT_1), and b0 is the vector (b0, bh b2, b3...bT.j), (with dimensions 

{nj+n2+n3+... +nT_j}   xl, Ix   {nj+n2+n3+... +nT.j} and {mj+m2+m3+... +mT_j} 

x 1).  When xt+1 is restricted to xt+1=Xxt for t>T, the above structure allows an equiva- 

lent finite period formulation. For example, consider L=l. The constraints from period T 

onward (i.e., equation (3) onward in Figure 1) become redundant. Substituting xt+]=Xxt 

for t>T, the objective function can be re-written in terms of x0 and x-f. 

oo 

cx0 + a   2J 
a        ^        CX

T- 
t = T 

If L>1 and X=l, then adding the functional constraint sctxt+k=xt, t>T, k finite leads to a 

finite period reformulation as the constraint set again eventually becomes redundant. 
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Primal equilibrium approximation has the following properties. (The prop- 

erties are formally proven in Chapter IV). 

•Primal equilibrium approximation adds constraints (i.e., restrictions) to the 
original primal feasible region. Therefore, any primal equilibrium 
approximation optimal solution is an upper bound to the LP°° optimal 
objective function value. 

•Let {xj}       be an optimal solution to the primal equilibrium approximation 
t = o 

where xt ='kt'TXj{t>T). These decision variables form a feasible solution 

sequence to the LP°° problem. 

The primal equilibrium approximation assumes a T exists where a function- 

al relationship can be derived that restricts the feasible region and leads to a finite period 

re-formulation. If this functional relationship holds for an optimal solution to LP°°, and T 

is known, end effects are eliminated. The difficulty lies in determining a-priori if the prob- 

lem structure has an infinite optimal sequence where the functional relationship holds. 

Manne (1970) derived a set of sufficient conditions under which primal equilibrium func- 

tional relationships exist in optimal primal solution sequences. If an optimal solution does 

not exist satisfying the functional relationship, the optimal solutions to the infinite horizon 

formulation may be severely impacted. Even in such circumstances, Chapter IV shows that 

primal equilibrium approximation provides an upper bound on the optimal objective func- 

tion value to LP°°. It is important to note, that even if primal equilibrium approximation 

converges to the optimal solution for LP oo, this does not necessarily imply the existence of 

a finite forecast horizon F, such that if k=F, and the primal equilibrium approximation is 

solved, the resulting xt
F is optimal to LP°° for any t (0<t<F). 

e. Dual Equilibrium Approximation 

Dual equilibrium approximation (see Grinold (1971, 1977, 1983a/b)), 

solves LP°° by aggregating constraints of the original problem, in a manner that allows re- 
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formulation of LP°° as a finite-horizon linear program. Dual equilibrium approximation 

provides solutions for LP°° problems with the following general structure: 

Minimize 
r v   t-T 

cx0 + a   2_i a     cxt 

t = T 

Subject to: 

AQXQ 

HJX0+ f\.X rp 

H2x0+ A\   1X rp~T~                    JLM-Xrp           J 

H3x0+ MX *\X rp"T"                     A   ]X rp           j~] 

**0 (0) 

>bT U) 
>bT+l (2) 

>bT + 2 (3) 

HLX0+ KL1XT+ KL_2XT + 1+  ... AxT + L-l =  bT + L-l (L) 

HL + 1X0+    KLXT+       KL-1XT + 1+ - AXT + L       = bT + L       (L+1> 

0<x0<u0 0<xt<ut      (t=l,2,...) 

The following conventions are used: 

• x0, is the aggregated vector (x0, Xj, x2, x3, x4,...jcT_j), (with dimensions 

(n0+n1+n2+...+nT.])   xl)', 

•c is the vector (c0, 0£}, a
2c2, a3c3,...,   aT']cT.]), (with dimensions 

lx   (n0+nj+n2+...+nT.])); 

•ct=c for all t>T; 

• bo is the aggregated right hand side (b0, bj. b2. b3....,bT.j), (with dimensions 

(m0+mj+m2+... +mT.j)   x    1). 

In addition, the following functional relationships must hold: 

•A{tt)=A (for all t>T), A {tn =Kj (where;=M', t>t',t> T); 

• A0 is the lower triangular matrix for variables x0,X],x2,...xT_] with 

dimensions [(m0+mj+m2+... +mT.])   x    (n0+nj+n2+...+nT.j)]; 
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•Ht={Am, A(tJ), A(t:2),....A(tiT_1}} with dimensions [(mt)   x 

((n0+n1+n2+...+nT.])] (t<T-l); and 

•The infinite sums ba=   £ a"    bn, Ha=   £ a"    Hn, 
n=T n=l 

Aa = A+ X«X-and\ =   X, an"\<Ma<°oexist. 

n=T n=l 

n-T 

Aggregating all constraints from time T onward under the condition that the jth constraint 

(j>l) multiplied by ot^ leads to the following formulation: 

T 
Minimize cxQ + a cxa 

Subject to: 

Ha*0 + Aaxa^ba 

0<x0<u0,xa>0 

Dual equilibrium has the following properties: 

•The optimal value of the dual equilibrium relaxation is a lower bound on the 
optimal value of LP°°. Aggregating the constraint space is a relaxation of the 
original feasible region, therefore, the derived optimal solution cannot be 
worse, (i.e., the set of feasible solution sequences for LP°° is a subset to the 
set of feasible solution sequences for the dual equilibrium approximation). 
Chapter IV contains a proof. 

•Define xT
0, x£ as optimal solution values to the relaxation where the 

aggregation of constraints begins at period T. Note that 

x0 = xT
0, x], xT

2, x], ...xT
T_! are feasible to the first T-l constraints of LP°o. 

•If the value of the optimal objective function for the dual equilibrium 
problem converges to the optimal objective function for LP°° then for all 

finite teZ+, there exists a subsequence StcZ+, such that for keSt 

{x
k

ty ->x* , where xt
k is an optimal decision variable for a k period 

approximation and xt* is an optimal decision variable for LP°° (See 
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Grinold(1977, 1983), Svoronos (1985), and Romeijn, Smith, and Bean 
(1992)). 

Dual equilibrium approximation aggregates constraints from period T+l 

onward. The effect of this aggregation becomes clearer if one looks at the equivalent for- 

mulation one can obtain using Lagrange multipliers. Given LP°°, placing the constraints 

from period T+l onward into the objective function with their associated multipliers, and 

assuming that the multipliers have the functional relationship that ut+1=aut (t>T+l), leads 

to an objective function with only one multiplier for the aggregated discounted summation 

of all constraints beyond T+l. Dual equilibrium approximation, when applicable, indicates 

that the value of future resources is functionally tied and decreasing at a constant rate. If an 

optimal solution to the original infinite horizon formulation has this underlying functional 

relationship, solving the dual equilibrium reformulation with the proper value of T pro- 

vides an optimal x0 for LP °°. Grinold and Hopkins (1973b) identify a class of problems in 

which an infinite horizon optimal has the dual equilibrium functional relationship. Howev- 

er, this class is by no means inclusive (See Chapter III for additional examples). Difficulties 

exist in determining a-priori if the problem structure has an infinite optimal sequence where 

the associated multipliers have the functional relationship ut+1=aut (t>T, T finite). Even if 

no optimal exists to LP°° with this functional structure, dual equilibrium approximation 

still provides a lower bound on the objective function (see Chapter IV), however, the opti- 

mal decision variables have the potential of being infeasible for the infinite horizon prob- 

lem of interest. If sufficient conditions are met which ensures that the dual equilibrium 

approximation converges to an infinite horizon optimal, (e.g.,Grinold (1977)), then for all 

finite teZ+ as T -» °° there exists a subsequence S^Z*, such that for k e St, 

{JCt
k}   -»    xt*, where xf

k is an optimal decision variable for a k period dual equilibrium 
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formulation, and xt* is an optimal decision variable for LP°°. This does not necessarily 

imply the existence of a finite forecast horizon F, such that if k=F, and the dual equilibrium 

problem is solved, the resultingx*is optimal toLP<=° for any (0<t<F). 

2. Primal and Dual Equilibrium Examples 

The following two examples illustrate the concepts and potential shortcomings of 

the primal and dual equilibrium approximations. 

a. Primal Equilibrium Assumptions Satisfied 

In this example LP°°, an optimal sequence exists that satisfies the assump- 

tions associated with primal equilibrium. 

The LP°° of interest is: 

oo 

Minimize ^T  (0.9) x( 

t = o 
Subject to: 

JC + x0 = 1 
0.899) i 2 

1 
0.899 )X>+        ■** =1 

xt>0       (t=0,l,2,...) 

Property I: This formulation has only one feasible (and therefore optimal) solution 

xt=^? for all (t=0, 1,2,3,...). 
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0 899 
Proof. Clearly *r=rööö is feasible since for a11 (^=0,1,2,3,...) 

' x. , + .=r  '  YÄ<^ = ;. 
0.899 '-**     \0.899A1.899J    1.899 

The proof shows by contradiction that this is the only feasible solution. As- 

sume there exists some feasible sequence {x,} % 0 such that x^xul for some t. We first 

show that it is sufficient without loss of generality to consider only xt>xul where 

x>> 1W9 ■We then show Xt+2>Xt and Xt+2'Xt= 1' o~W9+((öW9 J"1 r ■Using this 

result, it can easily be shown for any finite ri>l that xt+2n+2>xt+2n 
and 

Xt+2n+2-Xt+2n=l " ^ + ((ä^I " 'K2"' ^ rdati°nShip Pr0VideS * «>ntradic- 
tion since (xt<xt+2<xt+4...)   xt+2n for (n=l,2,3...) grows without bound and xt<0.899 

foYal\t(^-^xt + xt + 1 = 1 and xt,xt + 1>0j. 

•     ,. j        Ö-S99  « +, We first show that xp>xt.} implies xp>xf+7 and xt > j-^. If *,>*,.;, then 

x > 9^2?   Since *,_, = x-8, (0 < 8 < 0.899) which implies —5 {xt -8) +xt = 1 
1.899 t/.oyy 

xt.j<xp>xt+1 it should be clear that it is sufficient to only consider xf>xt.L 

Therefore, without loss of generality consider xf>xt_j, and note that 

Xt > °^2z.. Now examine the relationship between xt+2 and xt. Since 
1.899 
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fr     = 7 -—x.  , I   xt^ , = 1 +   TTT^z.   x.. Therefore xt+2>xt since xt+2 ■ 
V ,+2 0.899 t+1)     ,+2 0.899    \0.899J   ' t+z    l t+z 

■öh^iömf-^^^m ^^-^+(l^J-7J^and7-^+U^ö9T-iJ^>0when 
899    \\0.899 

. Using this result, it can be shown for any finite n>l that xt+2n+2>xt+2n and Xt> 1.899 

Xt+2n+2-Xt+2n=l ~ÖM + {{äktJ " O*'*2" ' ^ relati°nShip P^^ * COntradic- 

tion since (xt <xt + 2 <xt+4...)   xt+2n for (n=l,2,3...) grows without bound andxt<0.899 

for all t [ 7r^\x( + x(+1 = 1 and xt,xt+I>0). Accordingly, the only feasible (and there- 
v 0.899 J 

0 899 
fore optimal) solution is xt=~röön for a11 (t=0>l> 2>-)- 

QED (Property I) 

Applying the primal equilibrium approximation (applying the additional 

constraints xj=x2=x3...) the problem reduces to: 

Minimize x0 + 9xj 

Subject to: 

Ö899X°+      Xl       = 1 

1.899      _ j 
0.899Xl 

x0, x}>0 

This formulation has an objective function value of approximately 4.734 

with x0, xj = 0^2. = 0.4734, which are optimal for the infinite horizon problem. This prob- 
1.899 

lern exhibits some interesting characteristics: 

•Solving the original formulation using truncation approximation techniques, 

given a forecast horizon T, yields a solution x?, (0<t<T) which is not optimal 

to LP<x>. The sequence of objective function values and optimal decision 
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variables (as T -> °o) from the truncated approximation are convergent 

(Romeijn, Smith, and Bean (1992)) to the optimal values for LPo°, however, 

there exists no finite forecast horizon T under which xf
T, for any (0<t<T) is 

optimal to LP°°. 

•Solving the original formulation using dual equilibrium approximation 

techniques, given a forecast horizon T, yields a solution xf
T, (0<t<T) which is 

'  suboptimal to LP°°. The sequence of objective function values and optimal 

decision variables (as T -> <*>) from the dual equilibrium approximation are 
convergent (Using results of Romeijn, Smith, and Bean (1992), and Grinold 
(1983)) to the optimal values for LP°°, however, there exists no finite 

forecast horizon T for which xr
T for any (0<t<T) is optimal to LP oo. 

b. Dual Equilibrium Assumptions Satisfied. 

The following simple example of LP°° has an optimal solution sequence 

that satisfies the dual equilibrium assumptions. 

Minimize 1 
t = o 

(0.9)'xt 

Subject tc ): 

XQ 

0.8x0+ Xj 

0.8xt 

0.8x2+ 

>1 (0) 

>2 (1) 

>2 (2) 

x, >2 (3) 

xt>0   (t=0,l,2...). 

Applying dual equilibrium method with cc=0.9 (aggregating with/discount- 

ing constraints (2) onward) generates the following dual equilibrium approximation: 
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Minimize xQ + 0.9xj + 0.81 x2 

Subject to: 

x >1 xo 
0.8x0+ Xj > 2 

0.8xj+      1.72x2    >20 

This approximation has an optimal objective function value of 11.0465 with 

x0=\, jc;=1.2, and x2=11.0698. This problem is an example of the K=$A structure (See 

i-l i-2 

Chapter III). If one uses the formula  x{ = x} £ (-1)' (ß)' + *0ßX W)'(ß)'   t0 gen~ 
t=0 t=0 

erate xt (t>2) with ß=0.8, and Xj and x0 are optimal solutions to the truncated formulation 

(which equals the values of the dual equilibrium formulation), the following formula is de- 

rived: 

i-2 

*i = 2Z, (-l)t0.J + 1.2(-l)i~1(0.8)1-1    i>2 . 
t = o 

It can be shown that the above formula generates feasible points to LP°°, 

and that: 

oo 

x2=  ^a~2xt = 11.0698. 
t = 2 

This sequence is feasible to LP°°, yet provide the optimal solution to the re- 

laxed formulation. Therefore, x0, mdxj, the optimal solutions to the relaxed formulation, 

are also optimal to LP°°. 

3. Summary 
All of the approximation methods discussed have potential pitfalls regarding end ef- 

fects. The truncation method, completely disregards future requirements, and the other 
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methods discussed, (salvage, fixed end conditions, primal, and dual equilibrium) all rely on 

assumptions regarding the infinite-horizon, that usually cannot be verified. However, pri- 

mal equilibrium approximation always lead to upper bound optimal objective function val- 

ues for LP°°, and dual equilibrium approximation always lead to lower bound optimal 

objective function values for LP°° (See Chapter III for a formal proof). Therefore, as the 

next section illustrates primal and dual equilibrium approximations together can provide a 

tight bound for the infinite horizon optimal objective function value. This provides an ef- 

fective way to measure any remaining end effects with the optimal decision variables asso- 

ciated with the primal and/or dual equilibrium approximations. 

B. INFINITE HORIZON CONVEX PROGRAMMING 

When ct is a continuous convex function, A^t^(xt) is concave where xt is a real val- 

ued vector (i.e., a member of Rn) and bt is a real valued vector, MP°° becomes an infinite- 

horizon convex program (CP™). Svoronos (1985) conducted research in the areas of duality 

theory and finite-horizon approximations for a general class of infinite-horizon convex pro- 

grams, for which the constraint space is staircase in nature (i.e.,the concave period t con- 

straint function depends only on variables associated with either period t or t+1) 1. The 

general form of the problem follows introduction of notation, as used by Svoronos: 

Indices: t Time Period (0,1,2,3... T-l, T, T+1...). 

Data: a        Discount Factor (0<a<l); 

n(t)     Dimension in tth period. 

Decision Variables:  xt        Ith period current production vector with dimensions 

n(t) x 1; 

'•Extension of contributions by Grinold (1977,1983a/b), Manne (1970,1976), Evers (1973,1983), 
among others. For a complete listing, see Svoronos (1985). 
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Decision Space: 

Functionals: 

yt+1     t
th period lagged production vector with dimensions 

n(t+l) xl. 

St        feasible set of decisions (xt, yt+i)- 

Gt       Closed proper concave function St   ->   R; 

ut        Closed proper convex function St —>  R; 

ht        Proper convex function R"®   ->   R; 

gt        Proper concave function R""'   ->   R. 

Infinite Horizon Convex Program: 

oo 

Minimize ^aut (xt, yt + 1) 
t = o 

Subject to: 

Gt(xt,yt + 1)>0 (0<t<~) 

ht(xt)<gt(yt)   (0<t<oo) 

{xvyt + 1)eSt   (0<t<o«) 

where y0 is given. 

It is important to note that this convex structure is general in nature, and includes as 

an important subset single period overlap staircase structured linear programs. A non-lin- 

ear example of this general program structure used by Svoronos (1985) follows: 
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Example Problem Formulation: 

oo 

Minimize ]T (-l)alogx( 

t = o 
Subject to: 

akb
t>xt + yt (0<t<°°) 

K+i = kt+yt    (o<t<°°) 

kQ given 

kt,yt,xt>0 (0<t<o°) 

a>0,0<b<l. 

For any finite forecast horizon T, this problem involves minimizing a strictly con- 

vex function over a convex feasible region. Therefore, for any finite forecast horizon T, the 

optimal solution represents a unique global minimum (Bazaraa and Shetty (1979)). 

Svoronos (1985) illustrates when given certain regularity conditions, the solution of the in- 

finite-horizon convex program also has a global minimum . 

Convex programs, of which linear programs are a special subset, have, as a rule, an 

uncountable number of possible end conditions for any finite horizon. Because of this, there 

is no assurance in general for the existence of finite forecast horizons (i.e., a forecast hori- 

zon Tfor which a subset of the optimal decision variables to the T period approximation 

are optimal to the infinite-horizon problem). However, Svoronos (1985) illustrates  for a 

general staircase structure convex program, (given certain assumptions are met), that T pe- 

riod finite horizon approximations generate a sequence of optimal objective function values 

that converge in the limit to the infinite optimal. He also shows under the same assumptions 

that a subsequence of the optimal decisions generated by the T period finite-horizon ap- 

proximations converge point-wise to an infinite optimal. 

2- Svoronos used an equivalent class of problems, where the problem was to maximize a concave 
objective over a convex region. 
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1. Bounding Methods 
Svoronos (1985) was the first to propose using a generalization of the primal and 

dual equilibrium approximations to bound the optimal objective function value for the in- 

finite-horizon problem.3 For infinite-horizon convex programs, no finite horizon T exists 

in general for which the optimal decision variable(s) (xt
T,yt+1

T) for any (0<t<T) are optimal 

for the infinite-horizon problem. If the objective function can be bounded by use of approx- 

imations which have finite-horizon formulations, then the difference between these approx- 

imations can be used as a measure of quality for the decision variable(s) (xt , yt+1 ) as 

compared to the optimal (xt, yt+1) for the infinite-horizon problem. The general algorithm 

is: 

• Step 1. Set initial forecast horizon T. Set tolerance level £. 

• Step 2. Apply variation of primal equilibrium approximation to the convex formulation. 
Add functional restrictions as needed to make all constraints which include decision vari- 
able xT+1 onward redundant. Evaluate restricted formulation. Note optimal objective value 

z(TRestrict) and optimal initiai perioci decision(s) xt
TRestrict. Note that xt

TRestHct is feasible 

to the original formulation. 

• Step 3. Apply variation of dual equilibrium approximation to convex formulation. Aggre- 
gate/with discounting all constraints which include variables xT+1 onward. Evaluate 

relaxed formulation. Note optimal objective value Z ^TRelax^ and optimal period decision(s) 
xTRelax Note that xTRelax may not be feasible to original formulation. 

• Step 4. Evaluate Z (TRestrict> - Z (TRelax>. If the difference is less than 8, stop. Use xt
TRestrict 

as your choice as an e-optimal xt. Otherwise, increment T, and return to step 2. 

As long as the objective function values of both the primal and dual equilibrium ap- 

proximations converge to the infinite optimal objective function value, this algorithm 

3- This idea was developed independently by the author prior to finding Svoronos (1985) unpub- 
lished dissertation. The concepts are an extension of work done primarily by Grinold (1977, 
1983), and Manne (1970, 1976). 
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provides a near optimal solution for the decision variable(s) of the infinite-horizon prob- 

lem. Figure 2 illustrates this idea. 

Optimal Obj Value 

Primal Equil Approx 
Objective Function Value 

Gap 
(Desire < e) 

Dual Equil Approx 
Objective Function Value 

Figure 2. 
Bounding the objective function. 

2. Using Bounding Methodology 
This section illustrates how the above bounding algorithm can be used for a specific 

problem. 

Let's examine the following linear program: 

Minimize ^T 
t 

acxt 

t = 0 

Subject to: 

Ax0 >s(0) 

Kx0+  Axj >b(l) 

Kx}+ Ax2 >b(2) 

Kx2+ Ax3 >b{3) 

xt>0 (t=0,l,2...). 

Applying primal equilibrium approximation to the above formulation at period T 

(i.e., setting xt=xt+1 for t>T) results in the following finite period approximation: 
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T-1 l 

Minimize 2^ acx( + — a 
t = o 

Subject to: 

Ax0 *s(0) 

Kx0+Axj ^b(l) 

Kxj+Ax2 >b(2) 

KxT1+AxT ^b(T) 

(K + A)xT >b(T + l) 

xt>0 (t=0,l,2...,T). 

Applying the dual equilibrium approximation to the original formulation from pe- 

riod T onward (aggregating constraints T onward discounting with factor a) results in the 

following finite period formulation: 

T-l 

Minimize ^ac^ + a cxa 

t = 0 

Subject to: 

Ax0 

Kx0+ Axj 

Kxj+ Ax 2 

M\-JCrp         O"* 

>s(0) 

>b(l) 

>b{2) 

AxT_j >b(T-l) 

KxT_1+ (aK + A)xa       Zjz^W 

xt>0 (t=0,l,2,...J-l) xa>0. 

Increasing the solution horizon for each of the above approximations (i.e., in- 

creasing T), leads, in many cases, to a sequence of optimal objective function values 
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which form a convergent sequence for both primal equilibrium and dual equilibrium 

approximations. Chapter IV discusses the issue of convergence in detail. A specific exam- 

ple uses: 

1.0 1.0 1.0 

0.0 1.0 0.0 

K = 0.8 1.5 0.8 

0.0 1.2 0.0 

c = (1.0, 3.0, 2.0); 

s = (1.0, 2.0); 

b = (13.0, 5.0); 

a = 0.9; 

Applying both primal and dual equilibrium approximation generates the bounds shown in 

Figure 3: 

106.85   _ 

106.6 

Obj 106.35171 Value 

106.1     _ 

Primal Equilibrium 
Approximation Objective Value 

Dual Equilibrium 
Approximation Objective 
Value 

Figure 3. 
Convergence of bounding methodology. 

37 



3. Summary 
Svoronos (1985) shows that the generalization of the primal and dual equilibrium 

approximations, when applied to a class of convex formulations, converge to the infinite 

optimal solution as T tends toward infinity. Svoronos requires several conditions be veri- 

fied to ensure that the objective functions of the primal and dual equilibrium approxima- 

tions converge to the same value, and therefore converge to a infinite horizon optimal. 

However, the more practical result is the bounding algorithm. Using both primal and dual 

equilibrium approximations, it is possible to bound the error associated with using either 

approximations decision variables. Therefore, if the infinite-horizon problem structure is 

completely defined, this bounding methodology provides a method to eliminate many of 

the end effects associated with finite-horizon formulations and link any remaining end ef- 

fects that exist with the primal or dual approximations to the size of the gap between their 

respective optimal objective function values. 

C.     INFINITE HORIZON INTEGER PROGRAMMING AND END 
EFFECTS 

Bean and Smith (1984, 1985, 1993), Ryan, Bean and Smith (1989), and Schochet- 

man and Smith (1989, 1991, 1992) investigate problem structures for which finite forecast 

horizons exist for obtaining optimal initial decisions for infinite horizon program structures 

that include infinite horizon integer programs (IP<*>). Smith and Bean (1984) and Schochet- 

man and Smith (1992) assume in general the following: 

•All cost functions are continuously discounted. The necessary level of 
discounting is driven by the nature of the cost function and is required to 
ensure a finite cost over the infinite-horizon. 

•All problem characteristics are deterministic. The problem is well defined 
over the infinite-horizon. 

• At any time period the choices available are finite in number. This is a critical 
requirement to ensure existence of a finite forecast horizon. Schochetman and 
Smith (1992) relax this assumption so that feasible choices need only lie over 
a compact space. In this case, since the number of feasible choices can easily 
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be uncountably infinite, the definition of forecast horizon is modified to be a 
horizon for which a quantifiable small <8 tolerance exists (based on an 
imposed metric) between an infinite optimal and candidate optimal solutions. 
This assures the existence of some finite T period approximation such that the 
solution obtained is 8 optimal to the infinite-horizon problem. 

•All cumulative net cost functions are the difference of a monotone cost 
function and a monotone revenue function, both of which are uniformly 
bounded by some exponential. This requirement helps to ensure the existence 
of a feasible finite cost over the infinite-horizon. 

Bean and Smith (1984) define any sequence of decisions which cover the infinite- 

horizon as a strategy, and the individual decisions associated with any strategy as policies*'. 

A further assumption is made that the infeasibility of any strategy is a property that can be 

identified by observing at most finitely many initial policies. 

1. Problem statement 
The sequence n ={7ii, 7t2, TC3,...} is a strategy where each element nt is a policy. The 

number of available policy choices for %t is finite and the feasible policy set is a function 

only of past policies (nhn2,...nt_{). Let n be the set of all feasible strategies. 

Let C„(t)= Kn(t)-Rn(t) where RK(t) and Kn(t) are assumed to be non-decreasing func- 

tions on R+ and: 

Q<Kn{t)<Me^ for all t>T, some y>0; 

0<Rn{i)<Me^ for all t>T, some y>0. 

Define the net cost as: 

00 

Cn (r)  =  ie~rtdCn (t) (Note: r>y as a rule to ensure convergence). 

4- Strategy is the term used by Bean and Smith to define a sequence of decisions feasible over the 
infinite-horizon. Svoronos (1985) uses the term trajectory. Both terms are in essence identical. 
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The problem of interest then is: 

Minimize Cn (r) 

Subject to: KG IT. 

This problem definition includes any class of problems such that the solution space 

at any particular decision point is cost bounded, including mathematical program formula- 

tions for which K represents any feasible sequence of decision variables (x0, x]t x2, x3,...) 

over some defined region X, and C% (r) is defined as X e'r'ctxt, where ct and xt are vec- 
t = o 

tors in Rn. The main over-riding assumption is that the feasible xt lies in a non-empty com- 

pact region (based on the defined metric) for all t. 

2. Topology of feasible space 
Smith and Bean (1984) impose a metric topology over the feasible strategy space, 

and using the associated inherited properties of metrics show the existence of finite forecast 

horizons. This section provides a brief summation of the defined metric, and some of the 

key results derived by Smith and Bean. 

Let Tt and n' be two strategies in II. Define the distance between nt and n',J (where 

these represent the tth policies in strategy 7t and 7t' respectively) as: 

4>(rcf,7u',)  = 
1  ift policies different 

\0 ift policies same 

This metric holds when the number of decision choices for nt is finite. If the number 

of choices is not finite, but forms a non-empty compact subset of Rm(n), and the feasible 

space is compact, the standard Euclidean norm is used (Schochetman and Smith (1992)). 

Further, define: 

p(7C,7C')   =   XiJj^'7^ 
t = i 
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Smith and Bean (1984) and Schochetman and Smith (1989, 1991, 1992) prove the 

following key results: 

•(p,IT) is a metric space and II is compact (i.e., complete and totally bounded) 
in the metric. 

•Given p(%,n' )<&<l/2n, and the decision space is finite with the finite metric, 

then (j) (n„ n\) =0 for all t<n, which implies nt=nt' for all t<n. 

•If limt _* Jog' * < r, then the cost function is bounded. 

•Define CK (r, T)  = \e'r'dCK (t) , to represent the total cost of any feasible 
o 

strategies over the horizon [0,T\. Also define any Min ^^nCn{r,T) as 

C*(T). Then C*(T) converges to the infinite optimal solution C* as T   -> °°. 

•If the infinite-horizon optimal strategy TC*is unique, then the optimal strategies 
associated with the T period problems n*(T) converge to K* as T   ->°°. 

•Given a finite set of possible solution policies at each decision epoch, and 
given any policy period t of interest, there exists some Tfor which %t(T) 
(t<T<°°) is an optimal %t policy for the infinite-horizon problem. If the 
solution space is not finite, then under the revised metric (using the Euclidean 
norm), there exists some Tfor which the Euclidean norm of (7C?(T)-7i/)<8 
(where j<T<:°°), where %t(T) is the optimal policy obtained using a T period 
approximation and nt is an optimal policy for the infinite-horizon problem. 
71/7) is defined as a 8 optimal policy for the infinite-horizon problem. 

•Given the infinite-horizon optimal strategy 7t* is unique, there exists some T* 
for each t>0, for which nt(T) (T>T*) is an optimal nt policy (or 5 optimal if 
the number of choices is infinite) for the infinite-horizon problem. 

•Given the first L policies of any optimal strategy n* are unique, there exists 
some T* for each t where 0<t<L, such that nt(T) (all T>T*) is an optimal nt 

policy (or 8 optimal if the number of choices is infinite) for the infinite- 
horizon problem. 
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3. Stopping Rule Criteria 
Stopping rule criteria proposed by Bean and Smith (1984), ensure that a finite fore- 

cast horizon can be identified for initial decision policies. Schochetman and Smith (1989, 

1991, 1992) further develop stopping rule criteria for finite and compact feasible solution 

sets by essentially solving finite-horizon problems over a finite cover of potential ending 

conditions and examining the resulting efficient set (defined by Schochetman and Smith 

(1992)) of optimal solution sequences This approach is similar to the fixed end effects ap- 

proximation method presented in the linear programming section, except instead of guess- 

ing an optimal end condition, the approach examines all potential end conditions. 

Schochetman and Smith (1989,1992) also modify the stopping rule criteria to deal with the 

problems associated with isolating an infinite optimal x0 when multiple infinite optimal so- 

lutions are possible. For a detailed discussion, see Schochetman and Smith (1989, 1992). 

4. Applicability to the end effects problem 
The general staircase structure represents a fairly robust subset of infinite-horizon 

mathematical programs, including infinite-horizon bounded integer formulations. The 

main difficulty lies in implementing the stopping rule criteria proposed by Smith and Bean 

(1984), and more recently the modified stopping rules of Schochetman and Smith (1989, 

1992) when the number of possible ending conditions is large or uncountable. For example, 

if the discrete mathematical program of interest is an infinite-horizon integer program, each 

T horizon problem itself may be NP hard (or complete). As a rule, exact solutions are re- 

quired. Solving a number of integer programs that is equal to the number of potential end 

conditions (re-solving for each end condition) at each time step T, and then dealing with the 

associated multiple optima, can quickly become computationally impractical. 

D. SUMMARY 

Of all the methods examined in this chapter to deal with end effects, the concept of 

extending the problem formulation over the infinite horizon, and then solving bounding ap- 
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proximations using primal and dual equilibrium approximations appears to be the most vi- 

able and practical approach in eliminating end effects associated with finite-horizon 

formulations. The extension and implementation of this methodology is the focus for the 

following chapters of this dissertation. 
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III.  LPoo STRUCTURES THAT SATISFY DUAL EQUILIBRIUM 

When an infinite-horizon problem has an optimal solution structure that satisfies 

the assumptions of dual equilibrium for some finite T, the dual equilibrium approximation 

provides an optimal solution to the infinite-horizon problem and end effects, by definition, 

are eliminated. As discussed in Chapter I, few examples exist of infinite-horizon problem 

structures for which the form of the infinite-horizon optimal solution is known. In order to 

gain insight regarding the impact of end effects on LP«>, this chapter presents several simple 

problem structures and shows the dual equilibrium approximation generates optimal feasi- 

ble solutions to the original infinite-horizon problem. 

Sections A through D show several simple problem structures that have optimal pri- 

mal and dual decision variables which can be formed as a function of the optimal primal 

and dual decisions generated by a two period truncated model. Section E derives the limit- 

ing optimal primal and dual decision variables functional relationship as the solution hori- 

zon extends to +°°. The results of Romeijn, Smith, and Bean (1992) show the limiting 

values are optimal over the infinite horizon. These infinite-horizon optimal solutions satis- 

fy functional relationships assumed by dual equilibrium approximation, therefore, any op- 

timal solutions generated by using dual equilibrium approximation are also optimal for the 

infinite-horizon problem. 

A. K=ßA SINGLE PERIOD OVERLAP STAIRCASE STRUCTURE 

The problem P(ßA) has a single period overlap staircase structure with a constant 

right hand side following the first period which is shown below: 
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Minimize V acxt 

i = 0 

Subject to: 

Ax0 

$AxQ +AXj 

H*! +Ax2 

>s (0) 

>b (7) 

>b   (2) 

PAxft_2 +Axk_1    >b(k-l) 

xt>0, (1=0,7,2...). 

The associated dual 7)(ßA) is: 

Maximize uQs + ^T K^ 

Subject to: 

u0A+ußA +V        =c       (0) 

M7A+ «2ßA + V      = ac      (7) 

u?A+   u3$A +v2/     = a2c     (2) 

wfc_7A+      ii^ßA +vjt_i/=a     c (k-1) 

ut>0,    vt>0,     (1=0,7,2...). 

For the above problems, ß is a constant such that 0<ß<7, and 0<a<l. To ensure 

strong and weak duality hold in the limit (Romeijn, Smith, and Bean (1992)), A>0, and c>0 

are also imposed. 

Property II: For any finite k period (k even) truncation of P(ßA), defined as P(k$A), 

if v0 > aß2v;, there exists an optimal set of decision variables {x{} , {ut} , and 
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{ vf} (primal, dual, and dual slack variables respectively) of the form: 

k _ - xo ~ X0' 

X ,   —  X i, 

xi = i;S(-i)"ß"+MS(^)"ß" 
.    n=0 n=0 

(2<i<k-l); 

(k-2) 
2 

2n 
uo = "ol   <aß)    ; 

n=0 

k- (i + 1) 

«* = ö,a-7    2    (-i)n(aß)n (7</<fc-ij; -r 
71 = 0 

vo = vo 

{k-4)/2 

i+(aß)2    X    <aß)2n 

\ / (Jfc-4)/2 

- V 

\ 

n = 0 

aß2    X     (aß)2n 

V „ = 0 ^ 

vf = a ~1v1 (l<i<k-l). 

Where u0, u„ xQ, Jc;, v0, i>;, are the associated optimal solutions to the two period trun- 

cated problems: 

P(2ßA) (Two period Truncated Primal) 

Minimize cxQ + acXj 

Subject to: 

AXr >s 

ßAx0 + AXj        > b 

x0, Xj > 0; 
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D(2$A) (Two period Truncated Dual) 

Maximize    uQs + Ujb 

Subject to: 

u0A+Uj$A + v0I            = c 

UjA             +VjI = ac 

u0,Uj,v0,Vj>0. 

Proof: Along with primal and dual feasibility, the optimal solution sets for P{2$A) 

and D(2$A) also satisfy complementary slackness. That is: 

u0(Ax0-s) = 0; 

üjißAxQ + Axj-b) = 0; 

vox0 = 0; 

VjX] = 0. 

The proof shows the solution structure presented above satisfies (1) primal feasibility, (2) 

complementary slackness, and (3) dual feasibility (Karush-Kuhn-Tucker (KKT) require- 

ments for optimality). First let's define the arbitrary k=even period primal and dual prob- 

lem structures of interest: 

P(fcßA) 

k-l 

Minimize ^T a cx{ 

i = 0 

Subject to: 

Ax0 
>s 

ßAx0 +AXj >b 

$AXj +Ax2 
>b 

§Axk-2 +Axk _; >b 

*i * °> (i=0,l,...k-l); 
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D(k$A) 

k-l 
Maximize uQs + V uJb 

i = l 
Subject to: 

uQA+ ußA                                                                         +v0I       = c 

UjA+ M2ßA                                                               +vil      = ac 

2 
u2A+    u3$A                                                         +v2?      = CL c 

Uk-2A+     Uk-M           +vfc_2/=afc_2c 

A                                                             T                   *-l uk_]A             +vk_jl=a     c 

u(>0,    v{>0,     (i=0,l,...k-l). 

(1) Show primal feasibility holds, i.e., show that the constraints of P(k$A) are satisfied: 

Xik>0                         (l<i<k-l);       (1) 

Ax0
k>s-                                            (2) 

fiAx^+Axf^b          (l<i<k-l).       (3) 

Given primal feasibility satisfied for P(2$A): 

x0>0; 

Xj>0; 

Ax0>s; 

$Ax0 + Axj >b. 

Equation (1) holds for i=0 and i=l, since x0 = x0 and x, = x,. Equation (1) holds for 

2<i<k-l   since x0, x} > 0, X; = i;I (-i)"ß"+^IH)T 
-     n=0                                     n=0 

(2<i<k-l), and 

i-l 

X (-i)"ß">0 (l<i<k-l), (the latter can easily be shown by induction). 
n = 0 
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Equation (2) holds as x0 = x0. Equation (3) holds when i=l since xk
0 = x0 and xt - x,. 

When i is greater than one, substituting x} = Xj or 

Xi   = 

i-l i-2 

■      n=0 n=0 

(2<i<k-l) (hypothesis), 

as appropriate leads to the equality b < $Ax0 + Ax, = ßAx,_, + Axt, (l<i<k-l), and 

x) > 0. Therefore primal feasibility is satisfied. 

(2) Show that complementary slackness holds between the optimal primal and dual vari- 

ables for P(£ßA) and D{k$A), i.e., show that: 

u0{Axk
0-s) =0\ (4) 

u\ ($Axl j+Ax*-b) =0 (l<i<k-l);     (5) 

vkxk = 0   (0<i<k-l). (6) 

Given complementary slackness between the optimal primal and dual variables for 

P(2$A) and D(2ßA): 

ü0(Ax0-s)  = 0; 

üjifiAxo + Axj-b) = 0; 

v0x0 = 0; 

VJXJ = 0. 

(k-2)/2 

Substituting u\ = U0    X     (aß)'" and *° = x° (both from hyPothesis)' E(*uation (4) 

n = 0 

is equivalent to multiplying uQ (Ax0 + s) by a sealer value. Therefore equation (4) holds. 

Substituting«; = uia'-'x'^ (-1)" (a^")(l<i<k-D (hypothesis), and recogniz- 
^ 71 = 0 

ing that $Ax0 + Axj = $Axi_1+Axi (from primal feasibility results), equation (5) 
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(l<i<k-l) is equivalent to multiplying ü} (ßAJc0 + Ax} -b)  = 0 by a sealer. Therefore 

equation (5) (l<i<k-l) holds. 

To show equation (6) holds we need the requirement v0 > ocß2v7. Examining v0x0, the fol- 

lowing equivalent relationship holds: 

k   k k A A.   * 
V0X0  =  V0X0  =  VQXQ 

(k-4) 
2 

2n 
i+(aß)   I  («ß) 

n = 0 

-VjX0 

J 

(.k-4) 

aß2 i  (aß)2n (7) 
) V n = 0 

Note that v^ = 0 as complementary slackness holds for the two period problem. In 

addition 0 < ccß2v;x0 < VgXg = 0, since v0, v„ x0 > 0 , aß2> 0, and v0 > aß2v7. Therefore, 

k   k 
VjX0 = 0. Substituting these equalities into equation (7) leads to v0x0 = 0. 

Showing vk,x) = 0 is trivial since x\ = x, and \\ = v,. Therefore v\x\ = v,x, = 0. 

To show v*x* = 0 (2<i<k-l), we need v,x0 = 0, which is shown above. Substituting 

k 
X:     = 

i-1 i-2 

*;X (-i)T+*0ßX (-DT 
n = 0 n = 0 

i-1* (2<i<k-l),mdvi = a    v, (2<i<k-l), we 

i-1 i-2 

obtain v]xi   = a~V/I (-/)T + oT'v^oß I (-0T (2<i<fc-i). Recognizing 
n = 0 n = 0 

v;jty = 0 and v,x0 = 0, this leads to v*x* = 0 (2<i<k-l). Complementary slackness is 

satisfied for all k=even period truncated problems. 

(3) Show dual feasibility holds, i.e., show that the constraints of D(k$A) are satisfied: 

ul_ jA + «f PA + v 7 - a " 7c = 0 (l<i<k-l);      (8) 

uklA + vk_jI-a     c = 0. (9) 
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Given dual feasibility is satisfied for D(2$A): 

ü0A+üßA + v0I-c = 0; 

üjA + VjI-ac = 0. 

(k-2)/2 

Examining equation (8) when i=l, substituting uQ = üQ    ]£     (aß)'" (hypothesis) 
n = 0 

{k~2) n 
mdu1 = ü1  £   (-7) "(aß)    (hypothesis), we get the following reformulation: 

n=0 

2n 

(k-2) (k-2) 

ü0A+üßA-c + (ü0A + ü,$A) I   (aß) 
v „ = / 

2n -M;ßA I  (aß) 
v „ = / 

2n-l 
+ v*/ = 0. 

Note that üQA + üßA-c = -P0/(D(2ßA) first constraint). Substituting the equations 

c - v0I = ü0A +üj$A, and ac - Vjl = üjA (a rearrangement of the constraints for 

D(2$A)), we discover that the above equation reduces to: 

k-2 
2 

k-4 
2 

2n 2n 

v = vX («P) - v«ß S <«ß> • 
n = 0 n = 0 

Since vk
0 must be greater than or equal to zero, we can derive a relationship that must hold 

for any k=even between v0 and v;, i.e., 

k-2 
2 

k-4 
2 

2n 2n 
V£ (aßr>V«ß  X («ß)   • 

71=0 n = 0 

Note that for all (k=even), if v0 > v;aß2 (hypothesis), the above equation holds. There- 

fore, equation (8), when i=l, is feasible for all k=even. Equation (8), (l<i<k-l), can be 

shown to hold by substituting «f_; = öJcc'~2x £ (-i)" (aß)"), and 
n = 0 
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k-(i+l) 

n = 0 

u) = u\ a'1 x    X    (--0" (aß)" ] (hypothesis). Substituting the above into equation 

(8) provides the equivalent expression 

/       k-i \ 

üjA 
i-2 

a 1+ 2 ((aß)"-(aß)n) 
V        n = l 

ai'2u1A + vt1I-a
i',c. 

+ v._ ,/ - a     c which is equivalent to: 

(10) 

Noting that ÜjA + v}I = ac (l<i<k-l)(D(2$A) second constraint) and letting 

v
k     = Vjd'2 (from hypothesis), substituting these relationships into equation (10), one 

obtains a~2 (ÜjA + Vjl-ac) . Equation (8) (l<i^c-l) is equivalent to multiplying the 

second constraint of Z>(2ßA) by a sealer. Therefore, equation (8) holds above for all 

k=even period problems. 

Equation^) holds when uk_1 = up'2 (hypothesis), u1 A + v}I = ac (D(2ßA) sec- 

ond constraint), and v* _ ; = v;a* " 2 (hypothesis) is substituted into the equation. Equa- 

tion (9) is then equivalent to: 

Ä      k-2.        k      .       k-1 k-2 
üjOL     A + vk_jI-a     c = a 

vk-lI 

u,A + -^r-LT-ac 
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Which is equal toe/  2 (K;A + v}I -ac)  = 0. Under the hypothesis, Equation (9) is 

equivalent to multiplying the second constraint of D(2ßA) by a scalar. Therefore, dual fea- 

sibility (equations (8) and (9)) is satisfied.The hypothesis variable sets satisfy KKT condi- 

tions for P(k$A) and D(k$A) for any k=even period formulation. 

QED (Property IT) 

The proof derives a functional relationship for the optimal primal/dual decision 

variables of the truncated problem over any even period solution horizon. This functional 

relationship depends only on the optimal decision variables for the two period truncated 

formulation, and the length of the solution horizon. The following sections examine several 

special cases and extensions of this problem structure. 

B. SPECIAL CASE: P(ßA) WITH $s>b 

The problem P($ADemand), $s>b, has the following structure: 

Minimize V acxt 

i = 0 

Subject to: 

Ax0 >s   (0) 

ßAx0 +Axj >b   (1) 

ßA*; +Ax2 >b   (2) 

f**t-2 +Axk_j >b (k-1) 

xt>0    (i=0,l,2,...), 
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The associated dual D($ADemand) is: 

oo 

Maximize uQs + ^jT uJb 
i = l 

Subject to: 

u0A+ UjfiA 

UjA+ K2ßA 

u2A+   MjßA 

+v0I = c 

+v = ac 

+v2I 
2 

= a c 

Uk-1A+    U$A      +vk-lI = °<k~lc 

ut>0,     vt>0,     (i=0,l,2,...). 

For the above problems, ß is a constant such that 0<ß<i, and 0<a<l. To ensure strong and 

weak duality hold in the limit (Romeijn, Smith, and Bean (1992)), A>0, and c>0 are also 

imposed. 

Property III: An optimal solution to P($ADemand) exists where x, = 0. 

Proof. Prove by contradiction. Assume there exists an optimal sequence 

{x0, 5c „ 5b2, 5c3, ...} to P($ADemand) such that 5c, > 0. Now examine the change in the 

objective function for the new sequence {x0, 0, x,+x2, x3, ...}. This sequence is still fea- 

sible since: 

Xi>0\/i; 

Ax0>s (Constraint (0) of P($ADemand)); 

ßA*0 + A (0) > b Since ßA*0 > ßs > b (Constraint (1) of P($ADemand)); 

ßA (0) + A (5cj + 5c2) > ßAJc7 + Ax2 > b (Constraint (2) of P($ADemand)); and 

ßA (St, + 5c2) + Ax3 > ßAJc2 + Ax3 > b (Constraint (3) of P($ADemand)). 

However, note the change in objective function value. The objective function of P($ADe- 
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mand}) in period (1) decreases by the amount acx, since x, -> 0. The objective function 

of P($ADemand)) in period (2) increases by the amount acx, since x2 -> x, + x2. This 

leaves a net decrease in the objective function value for P($ADemand)) of (a - a ) ex,. 

Therefore, if c*0, any optimal sequence to P($ADemand)) must have x, = 0. For the 

trivial case where c=0, the feasible solution with x, = 0 is an alternative optimal. 

QED (Property III) 

Given there exists an optimal solution to P($ADemand) with x, = 0, the problems 

(PSubl) and (PSubl) shown below are equivalent to P($ADemand) with x, = 0: 

Minimize ^ a CJ^. 

i = 2 

Subject to: 
'Minimize cx0' 

Subject to: 

AxQ>s 
(PSubl) + 

Ax2 

$Ax3 +Ax, 

>b 

>b 

>b 

(PSub2). 

xt>0,      0 < ß < 1 

(i=2,3,...) 

Therefore, for a P($ADemand) problem the optimal first period solution is found by solv- 

ing the one period truncated problem. Note that (PSub2) is just a special case of P(ßA) 

where s=b. 

C. P($A) WHERE s=b 

The primal and dual formulations (defined as P($ARHS) and D($ARHS) respec- 

tively) for the case when s=b are shown below: 
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PftARHS) 

Minimize V acxt 

i = 0 

Subject to: 

Ax0 

ßAx0 +AXj 

$Ax} +Ax2 

>b 

>b 

>b 

$Axk_2     +Axk_j        >b 

x.>0    (1=0,7,2,...) 

DftARHS) 

Maximize V uJb 
i = 0 

Subject to: 

uQA+ ußA + v0I = c 

UjA+ u2$A +v = ac 

u2A+ u3$A + v2I 
2 

= a c 

uk- -1A+ uk$A + v*-;7 
k-1 

= a     c 

ut>0,    vt>0,     (i=0,7,2...). 

Property IV: For any finite k period (k even) truncation of P($ARHS), there exists 

an optimal set of decision variables {*•} , {«•} ,and {v-} (optimal primal and dual vari- 

ables respectively) of the form: 

57 



[ 

n = 0 

k- (i + 1) 

n = 0 

v,. = av0. 

Where Jt0, w0, v0, are the associated optimal solutions to the one period truncated prob- 

lems: 

P(1$ARHS) (One period Truncated Primal) 

Minimize cxQ 

Subject to: 

Ax0 >b 

x0>0; and 

D(lßARHS) (One period Truncated Dual) 

Maximize uQb 

Subject to: 

u0A + v0I 

u0,v0,    >0. 

u0A + VQI = c 

Proof: Along with primal and dual feasibility, the optimal solution sets for 

P(1$ARHS) and D(1$ARHS) also satisfy complementary slackness. That is: 

Ü0(Ax0-b) =0; 

VoX0 = 0. 

The proof shows that the solution structure presented above satisfies (1) primal feasibility, 

(2) complementary slackness, and (3) dual feasibility (KKT requirements for optimality). 

First let's define the arbitrary k=even period primal and dual problem structures of inter- 

est: 
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P(k$ARHS) 

k-l 

Minimize ^T a cxt 

i = 0 

Subject to: 

Ax0 >b 

■ $AxQ +AXj >b 
■ 

$Axj +Ax2 >b 

§Axk_2        +Axk_j >b 

xt>0,     (i=0,l,2,~,k-l). 

D(k$ARHS) 

k-l 

Minimize V uJb 
i = 0 

Subject to: 

uQA+ «7ßA +v0I = c 

UjA+ «2ßA +v;J = ac 

u2A+   «5ßA +v2I 
2 

= a c 

Uk-2A+ Uk-ßA +Vk-2I=CL       C 

uk-lA +vk_1I=a~1c 

ut>0,     vt>0,     (i=0,l,2...,k-l). 

(1) Show primal feasibility holds, i.e., show that the constraints of P(k$ARHS) are satis- 

fied: 

xt>0; HD 

Ax0
k>b; (12) 
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ßAx(,/+Ajc;
k>6 (l<i<k-l). (13) 

k 
Non-negativity (equation (11)) is satisfied since xt = xQ ]T  (-7)  ß     (0<i<k-l) and 

n = 0 

£ (-7)"ß" > 0 (7>0) (easily shown to hold by induction). Given the primal feasibility 
n = 0 

constraint AxQ > b is satisfied for P(1$ARHS), substituting x0 = xk
0 (hypothesis) into 

equation (12), primal feasibility is satisfied for all k= even period problems. When 0<i<k- 

i 

1, substituting x) = x0 £ (-1) T  (hypothesis), as appropriate into equation (13) leads 
n = 0 

to the equality §Ax\_, + Ax- = A (ßx*_, + x\) = Ax0 > b, (l<i<k-l). Therefore primal 

feasibility is satisfied. 

(2) Show that complementary slackness holds between the optimal primal and dual vari- 

ables for P(k$ARHS) and D(k$ARHS), i.e., show that: 

u0(Axk
0-b)=0; (14) 

uk ($Axk_ j+Axk-b) = 0 (l<i<k-l);     (15) 

vk
tx,k = 0 (0<i<k-l). (16) 

Given complementary slackness between the optimal primal and dual variables for 

P(1$ARHS) and D(1$ARHS): 

u0(Ax0-b)  = 0; 

VoX0 = 0. 

k~> ^ k 
Substituting«* = öJ I (-7) "(aß) "I and*0 = x0 (both from hypothesis), Equation 

n = 0 

(14) is equivalent to multiplying uQ (AxQ -b)  = 0 by a sealer value. Therefore equation 
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(14) holds. Substituting u\ = aaj    X    (~7)" (aß)" J (hypothesis) and 
n = 0 

ßx*_;+** = x0 (result of verifying primal feasibility), equation (15) (1 <i<k-l) is equiva- 

lent to multiplying uQ (AxQ -b)  = 0 by a sealer. Therefore equation (15) (l<i<k-l) 

i 

holds. Noting that x\ = xQ £ (-/)"ß     (0</<fc-7) and v* = a'v0(0<i<k-l), 
n = 0 

vkx- = VoX0a X (-7) "ß" = 0 x a1' £ (-7) "ß" = 0 (0<i<k-l). Equation (16) is satis- 
n=0 n=0 

fied. Complementary slackness satisfied for all k=even period truncated problems. 

(3) Show dual feasibility holds, i.e., show that the constraints of D(k$ARHS) are satisfied: 

ui_1A+ui$A + vki_1I-ai~1c = 0 (l<i<k-l);    (17) 

uk_1A + v]c_]I-a     c = 0. (18) 

Given dual feasibility uQA + vQI-c = 0 is satisfied for D(1$ARHS). 

Lets examine equation (17) (l<i<k-l) in the following form: 

uljA+u^A+v^jI-a^c = ((«•_; + «fß)A+v._7/-a'";c). (19) 

Substituting «f., = a'"'*/ I (-7)" (aß)') and «f = cc'ö/   £    (-7)" (aß) "1, 

into ul_j + w*ß leads to the equality «f_, + K*ß = a'";Ä0. Substituting this into the right 

hand side of equation (19) one obtains d~'ü0A + v*_7J - a"'c. Now note that 

vk
i_1 = a~'v0 (hypothesis). Using these two equations, we discover that equation (17) 

under the hypothesis reduces to a ~1 (uQA + vQI-c)  = 0. Equation (17), l<i<k-l, is 

feasible for all k=even. Equation (18) holds when uk_, = a~'ü0 (hypothesis), and 
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v*_; = a~'v0 (hypothesis) are substituted into the equation. Equation (18) is then equiv- 

alent to: 

ak~1ü0A+ak-\-a'1c = a'1(ÜQA + v0I-c) = 0. 

Under the hypothesis, Equation (18) is equivalent to multiplying the constraint of 

D(1$ARHS) by a scalar. Therefore, dual feasibility (equations (17) and (18)) is satis- 

fied.The hypothesis variable sets satisfy KKT conditions for P(k$ARHS) and D(k$ARHS) 

for any k=even period formulation. 

QED (Property IV) 

Note that when s=b and ß=7, problems ?($ADemand) and P($ARHS) are identical. 

In this case the results of both sections B and C apply. 

D.  AN LPoo WITH EXPONENTIAL GROWTH 

This section describes a modification to the K=$A problem (herewith defined as 

ßA/) by introducing a limited exponential growth (y>1.0 and aj<l) of the right hand side 

starting with period;+7 where 2<j+l<k-l. The problem P(ßA/) has the following structure: 

Minimize ^ a cx{ 

i = 0 

Subject to: 

Ax0 
>S (0) 

ßAar0 +Axj 

$AXj +Ax2 

>b 

>b 

(7) 

(2) 

VAXj_ 1 +Axj 

VAxj +AXj + j 

>b 

>jb 

(7) 

U+l) 

VAxj + i +Axj + 2 >y2b (7+2) 

x, > 0, (1=0,7,2,...). 
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The associated dual is D($Aj): 

Maximize uQs + ^u.b+    ]£   y     uJb 

Subject to: 

uQA+ UJ$A 

UJA+ w2ßA 

u2A+   u3$A 

+ v0I = c       (0) 

+ VjI      = ac     (7) 

2 
+ v?I     = a c    (2) 

uk-iA+      U$A + vk]I = a     c (k-1) 

ut>0,    v->0,     (1=0,7,2,...). 

The growth factor y is limited to l<y<l/oc to ensure convergence of the objective 

function, and 0<ß<l. To establish strong and weak duality hold (Romeijn, Smith, and Bean 

(1992)), A>0, c>0, are also imposed. 

Property V: For any finite k period (k even) truncation of P(ßA/'), defined as 

PQc$Aj), if v0 > ocß2v;, and;<ifc-7, there exists an optimal set of decision variables {x,} , 

{uk
{} , and {v*} (primal, dual, and dual slack variables respectively) of the form: 

xo ~ X0' 

Xj   —      /' 

A: 
X.   = */l (-J)"ß"+*0ßX (-7)"ß 

.     n=0 n=0 

fr-1 
xj + r = (ß*0 + *;)Y 

^    .    ,,K    (r-l)-n   n 

K-n = 0 

(2<i<j); 

+ ((-7)rßr)jcJ (l<r<k-(j+l)); 
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(ft-2) 

2n 

n = 0 

ft- (i + 7) 

Mf = «7a"-7    X     (-7)n(ocß)" (7</<fc-7); 
n = 0 

f (k-4) 

v0 = V0 7+(aß)2 X   (aß) 
71 = 0 

2/i 

A f (ft-4) 
2 

aß2 X   «*ß) 
n=0 

-V 

J 

2n 

V 

WhereÄ0, K7, Jc^Jcy, i>0, v;, are the associated optimal solutions to the two period trun- 

cated problems: 

P(2ßAj) (Two period Truncated Primal) 

Minimize cxQ + acxj 

Subject to: 
Ax, >s 

$Ax0 + AXj        > b 

X 0, Xj > 0; and 

D(2$Aj) (T wo period Truncated Dual) 

Maximize u0s + Ujb 

Subject to: 

u0A+ußA + v0I c 

UjA             +VjI = ac 

u0, up v0, Vj > 0. 

Proof: Along with primal and dual feasibility, the optimal solution sets for P(2$Aj) 

and D(2$Aj) also satisfy complementary slackness. That is: 
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u0(Ax0-s) = 0; 

üjifiAxQ + Axj-b) = 0; 

v0x0 = 0; 

PjXj = 0. 

The proof shows that the solution structure presented above satisfies (1) primal feasibility, 

(2) complementary slackness, and (3) dual feasibility (KKT requirements for optimality). 

First let's define the arbitrary k= ■■even period primal and dual problem structures of inter- 

est: 

P(k$Aj) 

k-l 

Minimize 2_, a cx
n 

n = 0 

Subject to: 

Ax0 >s (0) 

$Ax0 +Axj >b U) 

$AXj +Ax2 >b (2) 

PA*y-j +Axj >b 0') 
$Axj       +Axj + 1 >yb (j+D 

2, 
fLAxJ + 1+AxJ + 2 >jb        (j+2) 

VAxk_2+Axk_j     >yk-(j + 1)b  (k-l) 

xt>0   0<i<k-l ) 
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D(k$Aj) 

j k-l 
Maximize uQs + ]£ unb +    ]T    y      unb 

n = 1 n=7 + 7 

Subject to: 

uQA+ Uj$A 

UjA+ M2ßA 

u2A+   a5ßA 

+ v0Z       =c 

+ v77      = ccc 

2 
+ v2I     = a c 

^-;ßA T                k~2 

+ vk_2I=a     c 

M*-7A 
k-i 

+ vk_}I = a     c 

u>0,      v>0    (0<n<k-l), 
n " 

(1) Show primal feasibility holds, i.e., show that the constraints of P(fcßA) are satisfied: 

x?>0 (l<i<k-l);       (20) 

Ax0
k>s; (21) 

VAxi_1
k+Axi

k2b (l<i<k-l).       (22) 

Given primal feasibility satisfied for P(2$Aj): 

x0>0; 

xj>0; 

Ax0>s; 

$Ax0 + AXj>b. 

Equations (20), (21), and (22) hold for 0<i<j since the primal variables have the same 

form as the problem P(JfcßA). In order to prove non-negativity and that equation (22) holds 

for i>j, we first need the following lemma. 

Lemma: Given the above definition for an optimal primal variable set, then: 

ßxf_;+jcf = (ß*0+*7) (i<i$); <23) 
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ß*;+r-i+*}+, = /(ß*o + *;) d^<(k-l)-j).        (24) 

Proof. Lets examine equation (23) first. Substituting 

r      >-■' (-2 

*,X  (-J)"ß"+*oßX  (-0   ß 
n = 0 n = 0 

(2<i<j)   and the fact that x; = x,, we note 

thatß^ + x* = ß*7+*; = ßx7+x;(i-ß) +Jc0ß = x0ß+*;. Similarly, for (3</<;j, 

substituting  x, 
i-2 

*,x (-i)"ß"+*0ßx (-or 

ß*f-, = ß 
i-2 

n=0 «=0 

i-J 

(2<i^/j   and 

*il H)"ß"+^ßIH)ß 
L     n=0 «=0 

, which is equal to 

*/(-0 X (-i)"ßn)+^0ß((-i) X (-Or), we also obtain that 
n = / « = i 

ß*f_,+xf =  (ß*0 + *,) (3</<;j. 

To prove equation (24), we need 

xk
j+r =  (ß*0 + *,)Y(x M)"y(^)_"ßn)+ ((-J)T)*; (^r<k-(j+l)) and 

n = 0 

r-2 
„    (r-2)-n0„ + ; r-lnr-,     k 

ß^+r_, =  (ß*0 + *,)Y[X (~W ß     J+((-0     ßV, f2<Z<fe-(7+ij),both 
n = 0 

of which are derived directly from the hypothesis. Adding these two equations together 

gives us 

ß**+r_;+*;+r = (ß*0 + S,)YX X(-/)"Y 
n = 0 

r-2 

"-(r_;)""ß")+( x (-7)Vr_2)_"ßn+; 

« = 0 

? r—7 

Noting that X (-7)"y(r"2)""ß" + ; = (-i) X (-i)"Y(r";)""ßn, and substituting this 
n = 0 

into the above equation, we obtain 

Vxk
j+r_1+xk

j+r= (ßx0 + ^)Y(Yr_i) = (¥>x0 + Xl)y 

QED (Lemma) 
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Given *;+l = (P*0 + *I)Y( I (-i)'Y(l_/>""ß")+ ((-0'ß')*J (l<l<k-(j+l)).We 
n - 0 

first prove that x)+r > 0 (l<r<(k-l)-j) by induction. 

(a) xk
j + j > 0. From our lemma, ßx* + x)+, =  (ß£0 + Xj) y. This implies that 

x%, =  (ßi0 + ^;)Y-ßx*. Now note from equation (23) that ßx*_;+x* =  (ßx0 + x;) , 

which implies that x) = ($x0 + x,) -ßx*_; or that ßx* = ß(ßx0 + x;) -ß
2x*_,. Sub- 

stituting this back one obtains 

xk
+1 =  (ßJc0 + Jc;)Y-ß^ = (ßÄ0 + ^)Y-(ß(ßÄ0 + ^)-ß2*;-/).Notethatthe 

right hand side of this expression is equivalent to 

(Y-ß) (ß*0 + *;) +$2x*-1>0(as (y>$)and (ß2x*_, >0)). Therefore, x)+1 >0. 

(b) Given that x)+r > 0 (l<r<m<k-(j+l)), show that xk
+m + 1>0. Note that from our 

lemma ß**+m+**+ra + , =  (ßx0 + Jt;) y
m + 1 and $x%m_, +xk

j+m = ^x0 + Xl)y
m which 

implies that ßx*+m = ß (ßx0 + Jc;) y
m - ß2xJ+B,_;. Therefore 

*;+m + , =  (ßx0 + ^)Y'" + ;-(ß(ß^ + ^)Ym-ß2^—i) or 

^+m + ; =  (y-ß) ((ßjt0 + Jc;)Y
m) +$2xk

+tn-1>0(as (y>$)and (ß2x-+m_, >0)). 

Therefore non-negativity (equation (20)) is satisfied. To prove equation (22) holds, we 

again use the result of our lemma. From equation (22), we need to show that 

$Axk
+r_j+Axk

+r>yrb. However, since ß**+r_;+**+r =  (ßx0 + x;) Y', then 

VAxk
+r_]+Axk

j+r = A(Wx0 + x1)y) = ^Ax0 + AXl)y>yb. 

Primal feasibility has been shown. 

(2) Show that complementary slackness holds between the optimal primal and dual vari- 

ables for P(k$Af) and D(k$Aj), i.e., show that: 

u0(Axk
0-s) =0; (25) 
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«f(PAxf_7+A*f-*)  = 0 (l<i<k-l);     (26) 

vkxk = 0  (0<i3c-l). (27) 

(Note: This complementary slackness proof is very similar to the proof for problem 

P(ßA).) 

Given complementary slackness between the optimal primal and dual variables for 

P(2$Aj) and D(2$Aj): 

u0(Ax0-s) = 0; 

üjifiAxQ + Axj-b)  = 0; 

vox0 = 0; 

VJXJ = 0. 

(k-2)/2 k 

Substituting uQ = üQ    ]T     (aß) " and xQ = x0 (both from hypothesis), Equation 
71 = 0 

(25) is equivalent to multiplying uQ (AxQ -s) by a sealer value. Therefore equation (25) 

holds. Substituting uk = ü,l a"' x    £    (~7)" (aß) "J (1&&-1) (hypothesis), and 
71 -0 

recognizing that ßAJt0 + Ax} =  (ßAxf_; + Axt) , (for i<j), and that 

^Ax)+r_, + Axk
j+r = y (ßAJc0 + Ax,) , (for l<r<(k-l)-j) (from primal feasibility results), 

equation (26) (l<i<k-l) is equivalent to multiplying ü1 (ßAx0 + Ax} -b)  = 0 by a 

sealer. Therefore equation (2<5) (l<i<k-l) holds. Equation (27) is shown to hold by exam- 

ining the equation in terms of v0, v„ x0, x,, and using the requirement that v0 > aß2v;. 

Examining vk
0x

k
0, the following equivalent relationship holds: 

( (*z£ ^ (      i*zÄ ^ 

vo-*-o — vo*o — voxo i+(aß)2 I  (aß)2" 
V „ = o J 

aß2 £  (aß)2" 
V n = 0 J 

Note that 
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VQXQ = 0 as complementary slackness holds for the two period problem. In addition 

0 < atfvjXo <VoX0 = 0, since v0, v„ x0 > 0 , aß2> 0, and v0 > ccß2v;. Therefore 

VjX0 = 0. Substituting both these equivalent relations into the above equation it is clear 

that vk
0x

k
0 = 0. Showing vkx) = 0 is trivial since x\ = x, and v) = i>,. Therefore 

vkjXk = VjX, = 0. To show v*** = 0 (2<i<k-l), we need P,x0 = 0. Substituting 

k 
x, = x;XH)T+^IH)T   (2<i<j)  ,or 

-      n=0 n=0 

xk
+r = (ßJ^ + Wl (-l)myl"1)~"V)+U-iyV)xkj (^r<k-(j+l)) md 

11 = 0 

i-1 
v; = a    Vj (2<i3c-l), we obtain 

i-l i-2 

n = 0 n = 0 

v7xf   = a   ViX (-J)T + <*    *AßX (-/) ß (2</<;),or 

ft j+r-l 
vj+rxJ+r = a        V; 

n = 0 

fßx0 + x7YX-;Y"/_"ßn+ (-i)'ß*}) (i<r<fc-0+^.Recog- 
^ n = 0 

nizing v,*, = 0 and v,x0 = 0, and that both of the above equations are of the form 

(pvy*0 + Xv,x, (<p and X jcfltora;, this leads to v*x* = 0 (2<i<k-l). Complementary 

slackness is satisfied for all k=even period truncated problems. 

(3) Show dual feasibility holds, i.e., show that the constraints of D(k$Aj) are satisfied: 

u)_jA + u\ßA + v\_j-a^c = 0 (l<i<k-l);      (28) 

ui.jA+vi.jI-a-'c = 0. (29) 
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Given dual feasibility is satisfied for D(2$Aj): 

ÜQA+ü^A + VQI-C = 0; 

üjA + VjI-ac = 0. 

(Note: This is identical to the proof for problem P(ßA).) 

(k-2)/2 
2n 

Examining equation (28) when i=l, substituting uQ = üQ    ^     (aß)     (hypothesis) 
71 = 0 

and Uj = ilj X   (-i)"(aß) 
^ « = o 

(hypothesis), we get the following reformulation: 

1       2 
(k-2) 

ü0A+üßA-c+ (ü0A + üßA) I   (aß) 2n «;ßA I  (aß) 2n-l 

V „ = ; 
+ vK

0I = 0. 

Note that üQA + üßA-c = -vQI (£>(2ßA/) first constraint). Substituting the equations 

c-v0I = u0A + Ä7ßA  , and ac - v}I = üjA (a rearrangement of the constraints for 

D(2$Aj)), we discover that the above equation reduces to: 

k-2 k-4 
2 2 

vJ/ = vX («ß)2"- v«ß2S («ß) 
n=0 n=0 

2n 

Since v&
0 must be greater than or equal to zero, we can derive a relationship that must hold 

for any k=even between vQ and v 1,i.e., 

k-2 
2 

k-4 
2 

2n 2n v0/£ (aß^v/aß^ (aß)z". 
n = 0 n = 0 

Note that for all (k=even), if v0 > v;aß   (hypothesis), the above equation holds. There- 

fore, equation (28), when i=l, is feasible for all k=even. Equation (28), (l<i<k-l), can be 

shown to hold by substituting ui_l = u,[ a"2 x £ (-7)" (aß)" ), and 
n = 0 
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/    . k-(i + l) \ 

u) = u,[a!~' x    ]T     (-7)" (aß)" 1 (hypothesis). Substituting the above into equation 
n = 0 

(28) provides the equivalent expression 

i-2 
ÜjA a 

f      k~i 1 
1+ 2 ((aß)"-(aß)") 

V        n = l ' 

+ v- _jl - a     c which is equivalent to: 

a'-2M + V//-a,_c. (30) 

k i-2 
Noting that ü}A + v}I = ac (D(2$Aj) second constraint) and letting vi_1 = a     vi 

(l<i<k-l) (from hypothesis), substituting these relationships into equation (30), one 

obtains a ~~2 (ÜjA + v}I - ac) . Equation (28) (l<i<k-l) is equivalent to multiplying the 

second constraint of D(2ßA/) by a sealer. Therefore, equation (28) holds above for all 

k=even period problems. 

Equation (29) holds when uk_1 = a ~ «; (hypothesis), ÜjA + v}I = ac (D(2ßA/) 

second constraint), and vk_j = a " v; (hypothesis) is substituted into the equation. 

Equation (29) is then equivalent to: 

„      Jfc-2.        A:      ,        k-1 k-2 
Ä7a     A + vk_jI-a     c = a 

r k    .       \ 
vk-iI 

u,A + -^-L
T-ac 

.     1 k-2 . 
V a J 

Which is equal to a*  2 («;A + Vjl-ac)  = 0. Under the hypothesis, Equation (29) is 

equivalent to multiplying the second constraint of D(2$A) by a scalar. Therefore, dual fea- 

sibility (equations (28) and (29)) is satisfied.The hypothesis variable sets satisfy KKT con- 

ditions for P(k$Aj) and D(k$Aj) for any k=even period formulation. 

QED (Property V) 
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E. P(ßA) AND K=ßAy RELATED TO PRIMAL/DUAL EQUILIBRIUM 

The problem structures examined all have the property of satisfying strong and 

weak duality in the limit (Romeijn, Bean, and Smith 1992), and that any convergent subse- 

quence of the optimal decision variables (primal and dual) converge to an infinite optimal 

solution. This allows the examination of the dual multipliers for the K=ßA and K=$Aj stair- 

case truncated linear programs (the number of periods k even) as the number of periods k 

goes to infinity. As shown below, the dual multipliers converge to u. = a     u1, i.e., dual 

equilibrium is satisfied from period one onward for the infinite-horizon linear program 

(Grinold, (1983b)). Additionally, we verify that for K=$A when ß<l, primal equilibrium is 

satisfied in the limit. 

Model K=$A,ß=l: 

( (k-2)/2 

u0 ~ U0 2 « 
V    n=0 

2n 

k 
U.   =  U 

f k-(i + l) 
(i-1) v        ,    n«   « 

aK     ;x     2,     (~7)  a 

V n = 0 

(7 </<£-;) 

As k —> °°: 

k      „ 
u0-*u0 

k      „ 
1       nJ+a 

1 -a 

1 

2 \-U0- 

= u 

,     k        A      i-1 
and u. —> u,a     , , 1        '        Vi + a ^Mi- 

lt is clear by substitution that a,- = a   'uj. Therefore, dual equilibrium conditions 

are satisfied (Grinold (1983b)). 

Model K=$A,ß<l: 
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(k-2) 

uo = üo Z   ("ß^ W; 

n = 0 

k- (i + 1) 

Mf = «;a'-7    X     (-l)n(^)n(l<i^c-l); 
n = 0 

n = 0 n=0 

As & —> °°: 

M0-^M0 

* 
«,—>«: 

7-(aß) 

7 

;««; 

= «,; '^"'ü + aß;—' 

,   A:     ^    i-lf    1 
and«. —>M,OC       -7 „ 1        7        Vi + aß 

= «,.. 

As &,   —> oo: 

Lim 
A: 
fc-r 

+ ßx 
7 + ß^^°U + ß 

= JC 

(for any r=1,2,...,k) 

It is clear by substitution that «. = a" «7, and that x* converges in the limit to 

x for all i. Therefore, dual equilibrium conditions are satisfied and primal equilibrium con- 

ditions are satisfied in the limit (Grinold (1983b)). 
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Model K=$Aj, with 0<a<7, ß<7,7>1 and ay<7: 

xo ~ xo, 

Xj   —     7' 

k 
X.   = Jfc/X (-i)"ßn+x0ßX (-7)-ß" 

L     n=0 n = 0 

fr-1 

(2<i<j); 

(k-2) 

2n uo = üo X   (aß)    ; 

n = 0 

k- (i + 1) 

n=0 

V0 =  V0 

(k-4) A f 
2 

2n i+(aß)z X   (aß) 
n = 0 J \ 

(k-4) 
2 

(aß2)   X   (aß)2" 
n=0 

vk. = a   1v1 (l<i<k-l). 

As k —><>=>: 

u0^u0\ 
i-(aß) 

— un, 2~0 

B*-*HiTSßJSB': 

1       1       vi + aß 
;«.. 

It is clear by substitution that ü. 

fied (Grinold (1983b)). 

i-7~ a     üj. Dual equilibrium conditions are satis- 
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F. SUMMARY 

The following summarizes the key results of this chapter: 

•The Ä=ßA structure with ß=7, satisfies dual equilibrium from period one 

onward, as «. = a~1ii1 (/>/). However, primal equilibrium (using restric- 

tions xt=xt+1) is never satisfied as the optimal primal sequence is cyclic, with 
periodicity two. Primal restrictions of the form xt=xt+2 allows primal equilib- 
rium to collapse to an infinite-horizon optimal. 

•The Ä"=ßA staircase structure with ß<7 and the K=$Aj structure satisfies dual 

equilibrium from period one onward, as Mj. = a     üj (i>l). 

It is also important to note that for these particular problem structures, solving the 

two period truncated solution provides all the information needed to derive an optimal so- 

lution sequence {*,•} to the infinite-horizon formulation. 

If a problem of interest satisfies any of the problem structures defined in this chap- 

ter, or is an example of other specific problem structures for which the form of the infinite- 

horizon solution can be found (e.g., Grinold and Hopkins (1973a)), then the infinite-hori- 

zon optimal solution can be solved for directly. However, in general, for most practical 

problems, it is difficult to ascertain enough information regarding the form of the infinite 

optimal solution, to use direct methods. Therefore, a bounding approximation is needed for 

most real-world applications. The next chapter explores the properties associated with pri- 

mal and dual equilibrium approximations, and confirms that these methods generate valid 

bounds over a large class of potential problem structures. 
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IV.   CONVERGENCE PROPERTIES OF PRIMAL, DUAL 
EQUILIBRIUM, AND TRUNCATION APPROXIMATION 

METHODS 

Svoronos (1985) first introduced the notion of using primal and dual equilibrium 

approximations to establish an approximate value for the optimal objective value for a gen- 

eral class to infinite-horizon convex programs. This chapter shows that when appropriately 

defined, primal and dual equilibrium approximations generate upper and lower bounds re- 

spectively for both LP°°, and for infinite-horizon integer and mixed integer programs 

(MIP°°). Sections A introduces notation for this chapter. Sections B and C prove the primal 

and dual equilibrium optimal objective function values, when properly established, always 

bound the infinite-horizon optimal objective function value. Section C also establishes that 

convergence of the truncated optimal objective function value to the infinite optimal solu- 

tion implies the optimal objective function value for the dual equilibrium approximation 

converges to the infinite optimal solution. Section D provides an illustrative example, 

where both truncated and dual equilibrium approximations converge to the infinite optimal, 

however, a duality overlap exists. Section E discusses how these results may be used in 

practice. 

A. NOTATION 

This section uses the following mathematical notation where, unless stated other- 

wise, holds for both LP°° and MIP°°: 

X°°       The feasible region for the infinite-horizon formulation, X°° c JJ R 
t = o 

n(0 
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XT°°     The feasible region for a T period truncated approximation of the infinite- 

oo 

horizon formulation, XT c J[ | /c       ; 
* = 0 

Ap^oo  The feasible region for a T period primal equilibrium approximation of the 

00 

infinite-horizon formulation, with cuts of the form \t=xt+L (t>T, L>1), XpT c [ [ R      ; 
t = o 

XdT°°   The feasible region for a T period dual equilibrium approximation of the in- 

finite-horizon formulation, where all constraints containing the decision variables xt (t>T) 

are aggregated using an a discount factor, XdT c ]~| R 
,.<0 

t = o 

V°       The optimal objective function value for the infinite-horizon formulation; 

VT°°     The optimal objective function value for the T period truncated approxima- 

tion; 

VpT°°   The optimal objective function value for the r period primal equilibrium ap- 

proximation; 

VdT°° The optimal objective function value for the T period dual equilibrium ap- 

proximation; 

Vp™     The value of the limT^JVp°°T when it exists; 

VcT    The value of the limT_>„Vd~T when it exists; 

x An infinite sequence of decision variables {xt} that is feasible to the infinite- 

horizon formulation (i.e., x e X°°); 

xT       An infinite sequence of decision variables {xt} that is feasible to the trun- 

cated formulation (i.e., xT e XT°°); 
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xpT     An infinite sequence of decision variables {xt} that is feasible to the primal 

equilibrium approximation (i.e., xpTe XpT ); 

xdT     An infinite sequence of decision variables {xt} that is feasible to the dual 

equilibrium approximation (i.e., xdT e XdT°°). 

B. PROPERTIES OF PRIMAL EQUILIBRIUM APPROXIMATIONS 

The relationship between a primal equilibrium approximation and its infinite-hori- 

zon formulation: 

Given any infinite-horizon formulation (restricted in this case to LP°° orMIP°°), 

primal equilibrium approximations are additional restrictions placed on X°°, start- 
ing at some finite period T, that result in a finite period equivalent formulation of the 
problem, with a non-empty feasible region. 

This is a slightly more general definition than that of Manne (1970) presented in 

Chapter II. The defining restrictions limit choices to those that maintain primal feasibility 

and allow for the constraints in the original formulation to eventually become redundant, 

by creating a functional tie between a finite set of decision variables and the rest of the vari- 

ables in the sequence. This allows primal equilibrium approximations to be solved as 

equivalent finite period formulations. For the lower triangular structured LP«=  presented 

in Section A. l.g of Chapter II, restrictions of the form *t=Axt+1 are viable. However, when 

X=l, restrictions of the form xt=xt+k (k finite) are viable for both LP°°, and when the for- 

mulation is restricted to integer, i.e.,MIP°°. 

Given this defining relationship between the original infinite-horizon formulation 

and the primal equilibrium approximation, it is possible to establish several general rela- 

tionships relating the optimal value of the primal equilibrium approximation to the optimal 

value of the infinite-horizon optimal solution. 
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For the remainder of this section the following assumptions hold: 

•The infinite-horizon problem of interest is to minimize a linear objective 
function, over a defined and non-empty feasible region. 

•Restrictions can be identified that generate non-empty feasible regions and 
finite period re-formulations with finite optimal objective function values. 

•A finite optimal exists for the infinite-horizon problem. 

1. Monotonie Behavior of the Primal Equilibrium Approximation 

Objective Value 
Property VI: The optimal objective function value for the primal equilibrium ap- 

proximation is monotonic and non-increasing with increasing T. 

It is clear that Xp°°T c Xp^+i, since Xp°°T=Xp^+1C\ {xT =   xT+L} (i.e., x e Xp°°T 

implies x e Xp^+1). Let xpT be any optimal solution with objective function value Vp°°T 

to Xp°°T. The objective function value Vp? provides an upper bound on the optimal objec- 

tive function value Vp?+, determined over the feasible region Xpj+], since xpT e XpT+,. 

Therefore, the optimal objective value Vp~T is monotonically non-increasing with increas- 

ingTUe., VpT   >VpT + 1   . 

QED (Property VI) 

2. Relationship Between the Primal Equilibrium Approximation 
and the Infinite-Horizon Optimal Objective Function Value 
Property VII: The optimal objective function value for the primal equilibrium ap- 

proximation generates an upper bound for the optimal objective function value for the in- 

finite-horizon problem. 

For any T, given xpT e Xp°°T, then xpTe X°° as by definition 

Xp"=X~n {x, =   xt+L, \/t>T} . Therefore, since xpT e X°°, it's associated objective 
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function value Vp? > V°°. Assume further that there exists a T such that Vp^ is finite. In 

this case, the limit of Vp?, defined as Vp°° exists, and VpT>VpT+1>Vp°°> V°°. 

QED (Property VII) 

3.  Convergence Properties of Primal Equilibrium Approximation 

There are relatively few assumptions required to show both VpT°° and Vp~ exist 

and bound V°° from above. However, the conditions under which Vp°°=V°° are problem 

specific and more difficult to in general to verify. Manne (1970), and Svoronos (1985) de- 

velop problem structures that ensure when primal equilibrium restrictions are used, the ob- 

jective function value and a subsequence of decision variables converge to an infinite- 

horizon optimal. Verifying convergence is highly dependent on both problem structure, and 

on the choice of restriction. This is illustrated with the following example: 

Minimize x2 

Subject to: 

Xj +x2 = 1 

x2     +X3 = 1 

x3     +X4 =  1 

xt>0 

Given any T, the primal restriction xt=xt+l for all t>T, leads to an optimal solution 

of Vp°°=VpT~=0.5, and the optimal solution sequence {0.5, 0.5, 0.5,...}. It is clear by in- 

spection however, that the minimum possible solution is x2=0, and that the sequence 

{1,0,1,0,1,0...} is a feasible sequence with x2 and the optimal objective function equal to 

0.0. If the primal restriction xt=xt+2, t>T is used for any T>1, the resulting feasible region 

still includes the optimal sequence {1,0,1,0,1,0...}., resulting in Vp°°=VpT°°= V°° =0.0. 

81 



Verifying convergence of primal equilibrium approximations to the infinite-hori- 

zon optimal, using any restriction is non-trivial. However, given the restriction generates a 

non-empty feasible region, the solution VpT°° is an upper bound for V°° , and its associated 

decisions xpT e X°°. This allows for practical implementation of primal equilibrium as a 

method to generate a sequence of non-increasing upper bounds for V°° . 

C. PROPERTIES OF DUAL EQUILIBRIUM APPROXIMATIONS 

The relationship between the dual equilibrium approximation and the original infi- 

nite-horizon formulation: 

Given any infinite-horizon formulation (LP°° orMIP°°), where the constraint 
space is lower triangular in nature, the dual equilibrium approximation are relax- 

ations over IT. This relaxation takes the form of aggregating all constraints that in- 
clude xt, for all t>T, (Tsome fixed integer value) using a discount factor a, to form 

one constraint. The aggregation allows the variable xT = X a'xt and for the infinite 
t = T 

constraint space to be collapsed such that an equivalent finite period formulation ex- 

ists. 

Chapter II provides a detailed discussion of dual equilibrium approximation as ap- 

plied to LP°°, however the point is that the dual feasible region derived, XdT°° 3 X   for all 

T. When X°° is the feasible region of a MIP«> formulation, the relaxation can involve not 

only aggregating the constraint space, but also relaxing the integrality of the decision vari- 

ables. 

For the remainder of this section, the following assumptions hold: 

•The infinite-horizon problem of interest is to minimize a linear objective 
function over a defined non-empty region. 
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•A finite optimal solution exists for the infinite-horizon problem. 

•For some T, (T finite) a finite optimal solution exists over the dual feasible 

region XdT°°. 

1. Monotonie Behavior of the Dual Equilibrium Approximation 

Objective Value 
Property VIII: The optimal objective function value for the dual equilibrium ap- 

proximation is monotonic and non-decreasing with increasing T. 

This is obtained directly be realizing that XdT°° 3 Xd°°T+i- Therefore, 

x G Xd~T+i => x e Xd~T ■ Then any optimal solution xdT+i to the T+l period dual equi- 

librium formulation, is a feasible point for the T period dual equilibrium relaxation. This 

implies that Vd~T+i is an upper bound for Vd°°T ■ Therefore, the optimal objective function 

value is a non-decreasing sequence with increasing T i.e., Vd°°T^Vd T+i for all T. 

QED (Property VIII) 

2. Relationship Between the Dual Equilibrium Approximation and 

the Infinite-Horizon Optimal Objective Function Value 
Property IX: The optimal objective function value for the dual equilibrium approx- 

imation generates a lower bound for the optimal objective function. 

This again comes directly from the definition of dual equilibrium. By definition, 

XdT°° 3 X°° for all T. This linked with our previous result leads to XdT°° ^Xd T+I^X 

for all T Since any x e X" => x e XdTT+i =$xs Xd°°T, any optimal x to X~ with objec- 

tive value V°°, is and upper bound for the value of Vd°°T+1, which is an upper bound for the 

value of Vd°°T. Given that V°° exists and is finite, and that for some T, a finite solution exists 

VöTT , then the sequence formed by { Vd°°T] is a monotonic, non-decreasing sequence of 

real numbers bounded above by a finite value, which implies that this sequence has a lim- 
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iting value defined as Vd°° < V°°. Therefore, the dual equilibrium approximation provides a 

non-decreasing sequence of lower bounds with increasing Jfor the optimal objective func- 

tion value of the original primal infinite-horizon formulation. 

QED (Property IX) 

3. Convergence Properties of Dual Equilibrium Approximation 
As illustrated in the previous section, relatively few assumptions are required to in- 

sure that the dual equilibrium formulation, when properly derived, provides a valid lower 

bound for the optimal objective function value for the infinite-horizon formulation. How- 

ever, conditions under which Vd°°=V°° are more restrictive and become problem specific 

in nature. Grinold (1977, 1983b) and Svoronos (1985) have derived convex infinite-hori- 

zon structures for which dual equilibrium approximation values (variable and objective 

function) converge in the limit to an optimal associated with the infinite-horizon formula- 

tion. In general confirming convergence involves verifying that in the limit, a subsequence 

of the optimal decision variables derived using dual equilibrium approximations converge 

to some feasible sequence over X°°. 

If the truncated formulation objective function value is convergent to the infinite 

optimal, then the dual equilibrium approximation is convergent to the infinite optimal as 

well. In this case, by construction X^ 2 XdT°°, (i.e., x e XdT°°, implies x e XT°°). Since 

xdT is an element of XT°°, this implies that VdT°° is an upper bound for VT°° 

(VT"<VdT°°<V° for all T). Therefore, if V£ -> V", this implies Vd°°T -> V. 
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D. AN EXAMPLE WHERE DUAL AND TRUNCATED 
APPROXIMATIONS ARE CONVERGENT AND A DUALITY 
OVERLAP EXISTS 

Consider the following example originally introduced by Grinold and Hopkins 

(1973b) and modified by Romeijn, Smith, and Bean (1992) to include bounds on the vari- 

ables. 

Primal Formulation: 

Minimize V 
1 

Subject to: 

XJ>1; 

yj+Zj>l; 

-2yi_1+xi >0 (i =2,3, ..); 

-2xi-i+yi + zt>0 (i= 2,3,...); 

0<Xi<21   1 (i=l,2,...); 

0<v.<2'~7 (i=l,2,...); 

0<zt<l (i=l,2,...). 

Dual Formulation: 

maximize 

Subject to: 

ui-2vi + ]-pi<0(i=l,2,...); 

vi-2ui + 1-qi<0(i=l,2,...); 

Vi-r^'1 (i=l,2,...); 

uvvi>Pvri-° (i=l>2>-)- 

It is a simple matter to verify that the best possible optimal primal objective is 0, 

and that the following solution is optimal for the primal infinite-horizon formulation: 
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Xfzt1 (i=i,2,...y, 

Zi=0, (1=7,2,...). 

Note that this solution is an optimal solution for any truncated or dual equilibrium 

approximation (with period T). Therefore, in this case both the truncated and dual equilib- 

rium approximations converge to the infinite-horizon optimal solution and provide a finite 

set of decision variables that are part of an optimal set to the infinite-horizon primal formu- 

lation. 

However, now examine the dual infinite-horizon formulation. It is easily shown that 

the following solution set is feasible and generates a optimal objective function value of 2 

for the dual infinite-horizon formulation: 

ui = (0"1 (i=l,2,...); 

Vi = {iy (i=l,2,..); 

Pi=Qi=ri=° (i=l,2,-h 

In this case weak duality fails however both truncated and dual equilibrium approxima- 

tions provide convergent solutions to the infinite-horizon primal optimal. 

E. SUMMARY 

This chapter shows that when properly defined, primal and dual equilibrium ap- 

proximations bound the infinite-horizon optimal objective function value for both LP°° and 

MIP°°. Further, any primal equilibrium optimal solution is feasible over the infinite-hori- 

zon. This ability to bound the objective function value of the primal infinite-horizon for- 

mulation, is key to quantifying the influence of any end effects acting on the primal and 

dual equilibrium approximations. Other authors have almost exclusively focused on the is- 

sue of convergence (Svoronos (1985) for Convex Spaces, Schochetman and Smith (1992) 
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for infinite dimensional spaces that include MIP°°). Convergence is a problem specific is- 

sue, and cannot be verified in general. If the difference between the primal and dual equi- 

librium approximation objective function values is small, then whether or not the solution 

is convergent to the infinite optimal is of little practical importance, as primal and dual 

equilibrium approximations generate a solution to the infinite-horizon problem which is 

measurably (examining objective function values) near optimal. Following chapters exam- 

ine the effectiveness of primal and dual equilibrium approximations to both generate tight 

bounds on the infinite optimal solution, and to eliminate end effects associated with trun- 

cated formulations. While the issues of weak and strong duality are also of theoretical in- 

terest, our focus is on solving or bounding the infinite optimal solution to the primal 

infinite-horizon formulation. Strong and/or weak duality may or may not hold: Primal and 

dual equilibrium approximations always bound the infinite-horizon optimal for the primal 

formulation. 

A major flaw from a modeling perspective in extending truncated formulations over 

an infinite-horizon, is the assumption that the problem structure over the infinite-horizon is 

completely known. While many problems subject to end effects have indeterminate hori- 

zon lengths, their structure is not necessarily known. If this extension method is to prove 

valid, tests must be devised to examine the variability of initial period optimal decisions to 

changes in future period coefficients, that were not originally modeled in the truncated for- 

mulation. The next chapter focuses on this issue for LP°°. 
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V. DETERMINING THE STABILITY OF THE INITIAL DECISION 
VARIABLES OVER A RANGE OF POSSIBLE RIGHT HAND SIDE 
VALUES 

For many problems, the constraint coefficients associated with primal decision 

variables are well defined (e.g., utility coefficients or network structure), however the right 

hand side (e.g., projected demand) can only be predicted to lie within some range. 

Section A defines the optimal objective function value as a function of the right 

hand side. A linear programming example illustrates that even when two right hand sides 

b0 and b1 have the same initial period optimal decision variable (x0), this variable may be 

suboptimal for some b=((l-Q)b0 +Qbh 0<9<1). This section also proves the optimal objec- 

tive function value for a bounded finite dimensional minimization linear program, is a 

piecewise continuous convex function over the convex combination ((1 -Q)b0 +Qb j, O<0< 1). 

Sections B through E use the results of section A to develop an algorithm which de- 

termines if a specific x0 is an optimal solution for all b= ((l-Q)b0 +6*1. 0<Q<1). 

Section F expands on the results of section E, by developing an algorithm to deter- 

mine the potential worst case impact of using x0 for any b= ((l-Q)b0 +Qbh 0<B<1). This 

algorithm generates a monotonic non-increasing sequence of upper bounds on the error, 

and is guaranteed to terminate after a finite number of iterations. 

Section G extends the algorithm of section F for primal and dual equilibrium ap- 

proximations. The algorithm still generates a monotonic non-increasing sequence of upper 

bounds on the error associated with the infinite-horizon optimal objective function value 

when x0= x0 for  b= ((l-Q)b0 +Qbx, 0<9<1). The only limiting factor is that after some fi- 

nite horizon, elements of b must eventually become invariant in order to define the dual and 

primal equilibrium approximations. 
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A. PROBLEM DEFINITION/PRELIMINARIES 

Consider the problem LPQ1: 

LPQ1 

h (0)  = minimize ex 

Subject to: 

Ax>(d)bj+(1-Q)b0 

x>0. 

Where x={x0, x},x2,...xn}, a feasible set of decision variables for the right hand side 

(Q)b0 + (7-0) b}, (0<0<7) which represents some range of interest. LP07 is assumed to have 

a finite optimal for all O<0<7. 

Now assume that for 0=0, and for 0=7, there exists an optimal 

{x0, xp x2, ...} =xQ with x0=x0. Further, assume that A(6) is finite over the range O<0<7. 

Is x0=x0 part of an optimal solution for all O<0<7? This is not assured in general. Consider 

the following problem: 

LPEX1: 

Minimize —zXQ - x} 

Subject to: 

-x0 + Xj>0 

-x0-Xj>Q(-4) + (7-0) (-2) 

-2x0 + Xj>-1 

x0,Xj>0. 

This problem has the optimal solution values illustrated graphically by Figure 4. 
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Optimal solution 
at 6=1, (1,3) 

*1 

highlights feasible region 
for 0 =0 

highlights feasible region 
for 9 =1 

Optimal solution 
at 6=3/4, (3/2,2) 

Optimal solution 
at 6=0, (1,1) 

*0 

Figure 4. 
Behavior of optimal xQ. 

To derive an algorithm which determines whether x0=x0 is part of an optimal solution for 

all 0<Q<1, we require Theorem 1. 

Theorem (1): Given A(6) is finite for 0<0<7, Ä(0) is a piecewise linear convex function 

over 0<0<7, continuous over 0<B<1, and has only finitely many points of non-differentia- 

bility. 

Figure 5 illustrates the functional relationship between A(0) and 0: 
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A(0) 

0 ■0 ♦1 

Figure 5. 
Piecewise linear convex function with a finite number of non-differentiable points. 

Proof: 

The dual formulation of h(Q) is: 

h (9)  = maximize % ((9) bl + (1 - 9) bQ) 

Subject to: 

izA <c; 

%>0. 

Given h(Q) is finite over 0<Q<1, then for each 9, there exists a dual extreme point optimal 

solution. Also note that the dual feasible region has only a finite number of possible 

extreme points. Accordingly, the dual formulation is equivalent to: 

h (9)  = maxj^k {it ((9) bj + (1 - 9) b0) } ; 

where ij l<i<k are the extreme points of the dual feasible region. Therefore, h(B) is the 

maximum of a finite number of linear functions with respect to 9. 

Proof that h(Q) is convex with respect to 9 over the range 0<Q<1. 

Let 97 and 92 be any two elements of the set [0,1]. For any A, e (0,1), 
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h (XQj + {1 -X) 62) = max ; <. <k {n [b} (X0y + (1 - X) 92) + bQ (1 - (X0; + (7 -Ä.) %2)) ] } 

The right hand side is equivalent to: 

1<i<k{ni[b1(lQ1+(l-X)Q2)+b0(X+(l-'k)-(XQ]+(l-X)Q2))]} max 

= max1<i<k{Ki[X(b1Q1+(l-Q1)b0) + U-V(b1Q2+(l-Q2)b0)]} 

^maXj^^^XnibjQj+U-Q^bo)} +max1± •<* { (1-X) n (bjQ2+ (1 - Q2)bQ) } 

= ImaXj^^inibjQj+V-Q^bJ} + (1-X) maxj < .^ {% (*;92 + {1 - Q2)bQ) } 

= Xh(Qj) + (l-X)h(Q2) . 

Therefore: 

h (XQj + XQ2) < Xh (0;) + (1-X)h (02) , and ä(8) is convex with respect to 9. 

Proof that h(Q) is continuous with respect to 0, over the range 0<Q<1. (A proof is provided 

below. An alternate proof can be found in Rockafellar (1970)). 

For this part of the proof, we rely on the fact that ä(6) is convex, and reference the follow- 

ing lemma (Royden, (1988), pp 113): 

Lemma: If/ is convex on any open interval (a,b), and if*, y, x\ y' are points of (a,b) with 

x<x'<y', and x<y<y', then the chord over (x',y') has larger slope than the chord over (x,y); 

thatis,(/w-/w)<(/(y)-/w), 
y-x y-x 

We use this lemma to prove that h(Q) is continuous for any (0;, 02) c [0,1] . 

Given any (0„ 02) c [0,1] , where 02>0i, one can find an x, y, x\ and y' such that 

O<x<0!<02, 0<x<y<Q2, and Q^'Ky'Kl, 01<02<v'</. From the lemma we obtain: 
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(h(y) -h(x)) ^ (h(Q
2) -h(Qj))     (h(y') -h(x')) 

y-x " 62-e7 y'-x' 

Since h(Q) is defined and bounded over the interval [0,1], it is clear from the above that 

there exists some finite number M>0 such that: 

(A(62)-A(e7)) 

-M^ ^ ^M; 

orthat|A(02) -h (0,)| <M|02-0;|. 

Now let 5=8/M. Then for any l02-e1l<5, \h (02) - h (0;) | < 8. Therefore, h(Q) is continu- 

ous. 

Prove that the function h(Q) has only finitely many points of intersection (i.e., non-differ- 

entiable points). 

The following property is required: 

Property X: Given h(Q{) = Tt1*«©^ + (i"-0i)£O)> h<$l) = ^*((Q2)bl + 0-®2)b& and 

ö<01<02<7, then h(Q) = Tt1*«©)^ + (i-0)^o) for all 0!<0<02. 

Proof of Property X: There exists a n1* that satisfies the hypothesis since A(0) exists and is 

finite for all O<0<7, and there are only finitely many dual extreme points, 7t1. Now, assume 

the claim is not true. Then there exists at least one 0 (01<0<02),where 0=A,0j +(1-A,)02 

for some X (0<X<1), and another extreme point %], such that 

71^0! +(i-^)e2)&1 + (7-^0! +(i->i)e2))feo]>ni*[(^0i +(i-^)e2)&i + (M^i +(i-^)e2))fe0]- 

Rearranging both sides one obtains the equivalent expression: 

X7iJ(e1*1+(i-01)feo)+(i-^j(e2ft1+(i-e2)feo)>^i*(e1ft1+(i-e1)fto)+(i-^i*(02^i+(1-e2^o)-      (l) 

However note from the hypothesis that %l*(($i)bx + (l-Ql)b0)>nK(Ql)bl + (1-Qi)b0) since 

h(Qj)  =max1^Ki((Q1)b1+(l-Q1)b0)  = n'*( (0;)*; + (1 -0,) bQ) . Since 

0<X<1, this implies that XnH(Qi)bi + (i-01)*o)^^*((ei)*i + (^l^o)- Similarly, 
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(l-?i)7tj((02)fti + (i-e2)^o)^(!-^Jt1*((©2)^ 1 + V-QiWo)- Adding both sides of these two 

equations together one obtains: 

?o7lJ(01Ä1+(l-el)Äo)+(l-V(e2*l+(l-02)*o)^7ti*(eifcl+(1-ei)feo)+(1-^)7ti*(e2*l+(l-92)*o)- 

A contradiction with equation (1). 

Therefore, given any two points 9j and 02, for which nl* is an argmax dual extreme point, 

then, n{* is an argmax dual extreme point for the interval [Qh 02]. 

QED (PropertyX) 

Now using Property X, it is clear that given any two disjoint intervals for which 7U1* is the 

max dual extreme point, i.e., [01; 62], [63, 94], where 01<e2<e3<e4, that TC
1
* is the max 

dual extreme point for the interval [Qh 04]. Therefore each 7c1 is either: 

•Not an max dual extreme point for any 0 (0<0<i). 

•An max dual extreme point over a single closed interval [6ls 02]. 

•An max dual extreme point over a single point 0. 

Therefore, each max dual extreme point is tied to only one unique point or to only one lin- 

ear line segment over the interval. Since there are only finitely many dual extreme points, 

there can only be finitely many linear line segments, and therefore only finitely many 

points of intersection possible over the domain of 0 (i.e. given k dual extreme points, a 

max of k-1 points of non-differentiability). Therefore, h(Q) is a convex, piecewise linear 

function with only finitely many points of non-differentiability. 

QED (Theorem (1)) 
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B. EXAMINING THE STABILITY OF x0 FOR O<0<1 

Consider the linear program LPQ2: 

z (zv z0, bp bQ) = Minimize      ex - (Qzj + (1 - 6) z0) 

Subject to: 

Ax> (Qbj+ (1-Q)b0) 

X>0,0<9<1; 

and the linear program LPQ3 (where x0 is the optimal x0 for LP07 with 6=0): 

hr(Q)  = minimize ex 

Subject to: 

Ax>bj(B) +b0(l-Q) 

XQ     =     Xg 

x>0. 

Assume that x0=x0 is a feasible solution for any 0<9<7 (e.g., the feasible region repre- 

sented by Ax>b} is a subset of the feasible region represented by Ax>b0). Define x r as a 

set of optimal decision variables to LP93 with 0=7, and x0r as a set of optimal decision 

variables to LPQ3 with 6=0. Now \etzi=hr(l), (the optimal objective function value 

obtained from LPQ3 with 6=i) and z0=h(0)=hr(0) (the optimal objective function value 

obtained from LPQ1 with 6=0). 

Over all choices of 6, LP62 seeks to maximize the distance between the optimal ob- 

jective function value of LP67 (i.e., h(Q)), and the convex combination of Z\ andz0- Figure 

6 illustrates graphically the optimal solution. 
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ä(6) 

z1(9)+z0(i-e) 
This gap is 0 if 
x0 optimal for 
Hi). 

Optimal Value at 
0 is \z\ 

0 'e 
-0 

1 

Figure 6. 
Graphical representation of an optimal solution to LP02 in terms of 0. 

Note that the optimal solution occurs at a point of intersection for the continuous piece- 

wise linear convex function h(Q) or at 0=7. 

Theorem (2) \z{z1,z0,b„b0)\>hr{Q) -h (0) V0, 0<0<7. 

Proof: 

Clearly Bx]r+(1-Q)x0r generates the objective function value of 0Zi+(7-0)zo> and 

Qxlr+(l-Q)x0r 0<9<7 is feasible to both LP07 and LP03 since QAxlr>Qbl and (7- 

0)AjtOr>(7-0)&o, which implies that A[Qxlr+(l-Q)x0r] > 061+(7-0)6o andx7r andx0r both 

contain x0=x0. Because LP03 is a restriction of LP07 we have h(Q)<hr(Q). By convexity, 

we also have hr(Q)<Qzi+(l-Q)z0. Therefore h(Q)<hr(B)<Qzi+(l-Q)z0. Subtracting h(Q) gen- 

erates the expression O<Är(0)-Ä(0)<0Z!+(7-0)zo- ^(0) (for any 0). Hence; 

max (0z,+ (l-Q)zn-h(Q)) >hr(Q) -h(Q) .The proof is complete by 
0<Q<1 1 u 

noting that the left hand side of the above inequality is -z (z7, z0, b}, bQ) . 

QED {Theorem (2)) 
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Theorem (2) shows that solving LP02 provides an upper bound on the error possi- 

ble by fixing xQ = xQ for any right hand side range specified by 0<0<7. This theorem is 

used throughout the rest of this chapter. This theorem provides a basis to verify whether or 

not a particular initial decision variable(s) is optimal over a range of right hand side values 

and to generate reasonable error bounds for the initial decision variable(s) of a particular 

right hand side, given these decision variable(s) remain fixed over a range of potential right 

hand sides. 

C. SPECIAL CASE: THE OPTIMAL VALUES FOR Q=0AND 1 HAVE 
THE SAME BASIS 

Define x° and x1 as the optimal decision variables to LP07 for 9=0 and 7 respec- 

tively. If x° andx; have the same optimal basis B, h(Q)=Qz]+(l-Q)z0and the basis stays fea- 

sible over the range of 0 since QBx1=Qb1, (l-Q)Bx°=(l-Q)b0, which implies 

B(Qx1+(l-Q)x°)=Qb1+(l-Q)bo- since the max dual extreme point 7t(*= cbB! is the same for 

both h(0) and h(l),  Property X provides that for all ö<0<7,7t'* is a max dual extreme 

point. It is important to note that*0 and*1 having the same basis implies 

h(e)=8z]+(l-Q)zo, however /t(0)=0z;+(7-0)zo does not necessarily imply that or0 andx7 

have a common optimal basis. 

D. ALGORITHM X0OPTIMAL: DETERMINING IF x0 IS OPTIMAL 
FOR 0, O<0<1 

The following algorithm determines if x0 is optimal for 0<0<i. 

(1) Set i -7, 0iowerO>0, and 0upper(i>7. 
{Evaluate until discover Jc0 not optimal or until all points of non-differentiability 

of Ä(0) examined} 

(2) While i>l Do 
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{Set objective function values and appropriate RHS for interval of interest} 

(3) z0(*>MeiOWer(0) 
(4) Zi(/)<-Är(eupper(0) 

(5) fto(O-(i-eiower(O)*o+(01ower(O)*l 
(6) fti(i)-(i-0upper(O)*O+(0upper(O)6l 

{Solve for maximum difference between LP01 and feasible convex combination 
over 0 interval of interest) 

(7) Solve LP02. Differenced (z; (0, z0(i), bj (i), b0(i)) 

(8) 0 <-   optimal 0 generated by solving LPQ2 

{Convert 0 of scaled interval back to original 0<Q<1 interval} 

(9) § (I) <- Clover (0 ) V ~ 6) + (8BW„ (0) (0) 

{Determine if LP01 lies on line generated by convex combination) 

(10) If (Difference^) then... 

{If Difference =0 and i=l, then either first iteration has shown objective function 
lies on convex combination line, or all possible non-differentiable points have 
been identified) 

(11) 
(12) 

If (/=ij then- 
Stop, x0 optimal for 0<Q<1 

(13) 
(14) 
(15) 

Else 

Endif 
(16)     Else 

{Determine if x0 optimal at point of non-differentiability of LPQ1} 

(17) Solve LPQ1, Zfree~h(Q (i) ) 

(18) Solve LPQ3, Zrestricted-hr( 0 (i) ) 

{Implication is if Zfree<Zrestricted, then Jc0 cannot be optimal to LPQ1} 
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(19) If (Zfree<Zrestricted) then 
(20) Stop, x0 not optimal for O<0<7 

(21) Else 

(Set up next division of interval, splitting original interval into two 
new subintervals} 

(22) e,0„„(i)<-Ö(/) 

(23) e8W„(i)<-e8„,r(i) 

(24) e/ow,r(i+i)<-e/01Mr(o 

(25) ew,r(i+i)<-e(o 

{Increment i to reflect additional subintervals need to be tested} 

(26) M+l 
(27) End If 
(28) End If 
(29) End While 

This algorithm systematically identifies (if needed) each non-differentiable point 

for A(8), terminating only when the algorithm identifies a non-differentiable point where 

x0 is not part of the optimal solution, or after visiting all non-differentiable points. Termi- 

nation is guaranteed since there are only a finite number of non-differentiable points. If x0 

is optimal for all the non-differentiable points, then x0 is optimal over the entire range of 

0. Figure 7 illustrates the first two iterations of this algorithm, and Figure 8 illustrates the 

behavior of this algorithm on problem LPEX1 (from Section A). 
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ä(9) 

second z0(6)+z1(i-9) 

second optima 
for LPQ2 

initial z0(Q)+Zi(l-Q) 

irst optimal 
for LPQ2 

0 -0 
1 

Figure 7. 
Algorithm to determine if x0 is optimal for 0, 0<0<7. 

O   -4.5 J 

0=0.75      1 

Differenced 
andjr0^Jc0 

Figure 8. 
Illustrating algorithm x0error using LPEX1. 

E. AN UPPER BOUND ON DEVIATION FROM THE OPTIMAL 
OBJECTIVE VALUE WHEN x0 IS FIXED OVER O<0<1 

Whether or not x°0 * x0, we still desire to know how good the initial decision 

x°0 = x0 is over the range of 0, 0<B<1. Given x0 is feasible over the range, it is possible to 

generate a simple upper bound on the potential error associated with this decision variable 

over the range of 0. To illustrate the concept involved, determine the optimal objective val- 
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ue of LPQ1 for 9=0, and set Z(j=h(0). Now fix x0 = x0 and solve LPQ3 fixing 9=7. Set 

Z\=hr(l). Now solve LPQ2. Figure 9 graphically illustrates the result: 

13 (0)z1+(i-e)zo 
> 
c o V— ■     r~ /C^hrid) 
o 
3 ~^\^-h(d) 

^^^; ; — —^^ Optimal Value at 
O 

iff 
9 is \z\ 

O 
'o 6 'i 

-*  0 -  >- 

Figure 9. 
Generating an upper bound on the error associated with x0. 

By convexity (9)z7+(7-0)zo> h(Q), and (9)z7+(7-9)z0> hr(&) (with x0=x0). The 

maximum difference between Ä(8) andz7(9)+z0(7-9) occurs either at a point of non-differ- 

entiability offt(6), or at 9=7, and the resulting solution to LPQ2, \z\, provides a weak upper 

bound on the error associated with using x0 over the entire range of 9,0<9<7. This suggests 

an algorithm can be developed to generate a sequence of non-increasing bounds on the dif- 

ference between hr(&) and h(Q); i.e., the error associated with using x0=x0. 

F. ALGORITHM XgERROR: GENERATING NON-INCREASING 
UPPER ERROR BOUNDS 

The following algorithm generates a non-increasing sequence of weak upper 

bounds on the error associated with using x0 over the entire range of 9, 0<9<7. This algo- 

rithm is similar in many respects to x^Optimal. 
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{Initialize Algorithm} 

(1) Set d~l, i -1, 6lower(</,i>0. %ppei(d,i)*-l, 
(2) Set MaxDiff+-0, Maxd-Maximum number of iterations. 

{Evaluate until best upper bound found} 

(3) While (i>l and d<Maxd) Do 
(4) Divd*-0, imax^O 
(5) While (i>J) Do 

{Solve for objective function values (LPQ3) and appropriate RHS for interval of 
interest} 

(6) 
(7) 
(8) 
(9) 

Z0(i)*-hr(QloweT(d,i)) 

Z7(j>Är(eupper(J,/)) 
b0(i)^(l-QloweT(d,i))b0+(Qlower(d,i))bl 

fe7(iXi-eupper(^0)*0+(eupper(^0)*l 

{Solve for maximum difference between LPQ1 and feasible convex combination 
over 0 interval of interest} 

(10) SolveLPQ2. Difference - \z (z, (0, z0(i),b, (i),b0(i))\ 

(11) 9 <-   optimal 0 generated by solving LPQ2 

{Convert 0 of scaled interval back to original O<0<7 interval} 

(12) e(0 <- (6Wer(0) U-h + (e„„„(/)) (§) 

{Determine ifLPQl lies on line generated by convex combination} 

(13) If (Difference=0) then... 
{If Difference =0 and d=l the first iteration has shown optimal objective 

function lies on convex combination line} 

(14) 
(15) 
(16) 
(17) 

If (d=l) then- 
Stop, x0 optimal for O<0<1 

Endif 
Endif 

(18) If (Difference >Divd) then 
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(19) Divd^Difference 
Endif 

{Set up next division of interval, splitting original interval into two 
new subintervals} 

(20) Qlower (d+1, imax+1) <- 9 (/) 

(21) QupPer (d+1, imax+1) <- Qupper (d,i) 

(22) Qlower (d+l,imax+2) f- Qlower (d,i) 

(23) Qupper (d+1, imax+2) <- 0 (0 
(24) imax*- imax+2 
(25) i-i-7 
(26) EndWhile 
(27) If (Divd=0) 
(28) MaxDiff-Divd 
(29) Done 
(30) Endif 
(31) If (Divd=MaxDiff) 
(32) Done 
(33) Else 
(34) MaxDiff^Divd 
(35) d-d+7 
(36) i^imax 
(37) Endif 
(38) EndWhile 

This algorithm generates a non-increasing sequence of error bounds (MaxDiff). The 

first iteration "d=l" solves for the maximum distance between the objective function de- 

fined by the convex combination of optimal objective function values z0 (best value using 

RHS b0), and Zi(best value using RHS b1 restricted to include x0=x0). This maximum oc- 

curs at some point 0. This is illustrated by Figure 9. The second iteration "d=2" solves for 

the maximum distance between the convex combination of optimal objective function val- 

ues z0 and hr (0) , and the convex combination of optimal objective function values 

hr (0) and z\. This iterative process continues with the number of steps for each division 

potentially growing by a factor of two for each iteration. The number of iterations for each 

division can be reduced if one uses the distances obtained from the previous division to as- 
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sist in determining the most appropriate sections to examine. However, the purpose here is 

to illustrate the basic concepts. 

Figures 10 and 11 show the Xfßrror algorithm executed on a hypothetical example. 

Figure 12 illustrates x0Error for the example problem LPEX1. 

> 

v     Är(Ö)(9)+z( ,(1-0) 

t 

Zl(0)+zo(l-0) 

>^     v^/*r(0) 

Jp^/^/ir( ^(l-9)+z1(6) 
O 

O error found during 
loop 2 but smaller tha n error 2 

^ error\ 

-_ error2 

'o 0 
e —  ► 

<7~ 

Figure 10. 
Error bound generated after first two iterations of XgError. 
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—r 
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Figure 11. 

Error bound generated after first three iterations of XgError. 
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Figure 12. 
Illustrating algorithm x0Error using LPEX1. 

G. BOUNDING THE ERROR ASSOCIATED WITH LP- INITIAL 
DECISIONS 

Figure 13 shows an infinite-horizon problem that may be bounded by using primal 

and dual equilibrium approximation. 

i-l 
Minimize cxQ + ^ a     cxt 

i = 1 

Subject to: 

A0X0 

HjX0+ AXj 

H2x0+ KJXJ+      Ax2 

H3x0+ K2Xj+      KjX2+      Ax3 

= K 

= b: 

= b.. 

(0) 

(7) 

(2) 

(3) 

HLX0
+KL-1X1+KL-2X2+KL- 3x3+ ...AxL   =bl 

KLXj+     KL_jX2+ KL_2x3 

KLX2+       KL-1X3 

(L) 

(L+l) 

x.>0 (i=0,i,2,...) 

Figure 13. 
Illustration of LP°° for which primal and dual equilibrium approximation is applicable. 
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Further assume, that for some k, bn=bn+1, for all n>k. Also note that the dimension- 

ality of X], x2, x3,... may differ from x0. Chapter 2 illustrates that both primal and dual equi- 

librium approximations can be used for the problem illustrated in Figure 13. 

This section uses the following notation: 

Ad, the coefficient matrix associated with dual equilibrium approximation; 

Ap, the coefficient matrix associated with primal equilibrium approximation; 

cd, the cost vector associated with dual equilibrium approximation; 

cp, the cost vector associated with primal equilibrium approximation; 

xd, the decision variables associated with dual equilibrium approximation; 

je-, the decision variables associated with primal equilibrium approximation; 

b, the right hand side of any infinite-horizon formulation; 

b0, bj, infinite right hand sides of interest such that for some k, bn=bn+1, for all n>k; 

b(Q)=(l-Q)b0+Qb}, 0<0<i, any right hand side value defined as a convex combina- 

tion of b0 and b^, 

bJQ), the right hand side of 6(0) in the primal equilibrium approximation; 

bjß), the right hand side of 6(0) in the dual equilibrium approximation; 

hp(Q), the optimal objective function value for the primal equilibrium approxima- 

tion with right hand side value b(Q)=(l-Q)b0+Qb]; 

hpr(Q), the optimal objective function value for the primal equilibrium approxima- 

tion with right hand side value b(Q)=(l-Q)b0+Qb], including restricting initial decision vari- 

ables to optimal values associated with right hand side bQ\ and 

hd(Q), the optimal objective function value for the dual equilibrium approximation 

with right hand side value 6(0)=(/-0)6o+06;. 
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tions: 

The following useful relationships hold for primal and dual equilibrium approxima- 

tiven any 0<9<1, and any b(Q)=(l-Q)b0+Qbj, the primal equilibrium approx- 
imation optimal objective function value is greater than or equal to the dual 
equilibrium approximation optimal objective function value, i.e., 
hp(Q)>hd(Q). 

•Let x0 represent a optimal solution for a set of initial decision variables to the 
primal equilibrium approximation evaluated at % Now fix the initial deci- 

sion variables to the primal equilibrium approximation to x0, and assume that 

for any 0<9<7, that x0 is feasible over the primal feasible region defined by 
bJQ) and solve for optimal solution of this restricted primal equilibrium for- 
mulation for any 9, hpr(Q). Then hpr(Q) is finite and hpr(Q)>hp(Q) for all 
0<9<7. 

The relationship between hpr(Q), hp(Q), and hd(Q) is illustrated by Figure 14. 

> 

o c 

O 

O 

O 

hpr(Q) 

hp(Q) 

hd(Q) 

9=0 9=1 

Figure 14. 
Illustration of the relationship between hd(Q), hp(Q), and hpr(Q). 

(hpr(B)>hp(Q)>hd(Q)) 

This relationship can be exploited to obtain an upper bound on the error associated 

with fixing initial decisions associated with right hand side b0. 
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Consider the linear programs: 

LP^dl 

hd (0)  = Minimize cdxd 

Subject to: 

Adxd>bd(Q) 

x= (x0,Xj,x2, ...xn) >0. 

LP°°62: 

z (Zj, z0, bp b0) = Minimize cdxd - (z;9 + z0 (/ - 0)) 

Subject to: 

Arf*d>ve)+M7-0) 
x>0, 0<Q<1. 

LP~03: 

hpr(Q)  = minimize ex 

Subject to: 

APXP*bP (6) 
A. 

XQ    -    XQ 

x>0. 

Algorithm x0Error with only slight modifications can be applied to iteratively gen- 

erate improving upperbounds on the gap between hpr(Q) and hd(Q). 

Algorithm XQError°°: 

{Initialize Algorithm} 

(1) Set d=l, i =1, 6lower(d,0=0, eupper(J,0=i, 
(2) Set MaxDijf-O, Maxd-Maximum number of iterations. 

{Evaluate until best upper bound possible found} 

(3) While (i>l and d<Maxd) Do 
(4) Divd<-0, imax-0 
(5) While (i>l) Do 
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{Solve for objective function values (LP°°63) and appropriate RHS for interval of 
interest} 

(6) z0(i)~hpr(Qlowei(d,i)) 
(7) Z](i)~hpr(Qupper(d,i)) 

(8) *0(i>( 1 -eiower(^0)^(0)+(eIower(^0)^( 1) 
(9) *7(»Xl-eupper(^0)*p(O)+(eupper(^0^(l) 

{Solve for maximum difference between LP°o07 and feasible convex combination 
over 0 interval of interest} 

(10) SolveLP~62. Difference-\z (z, (0, Z0(0, br (i),b0(i))\ 

(11) 0 <r-   optimal 0 generated by solving LP°°Q2 

{Convert 0 of scaled interval back to original 0<Q<1 interval} 

(12) 0(0 *- (Qlowerd)) (7-§) + (6w„(i)) (0) 

{Determine if LP°°B1 lies on line generated by convex combination} 

(13) If (Difference=0) then... 

{If Difference =0 and d=l, first iteration has shown optimal dual equilibrium 
objective function lies on convex combination line that provides an upper bound 
for the restricted primal. If this holds, then primal equilibrium equals dual 
equilibrium, and the infinite optimal solution has been obtained, and x0 is an 

infinite optimal initial decision variable} 

(14) If(J=7)then... 
(15) Stop, Jc0 optimal for O<0<7 

(16) Endif 
(17) Endif 

(18) If (Difference>Divd) then 
(19) Divd-Difference 

Endif 

{Set up next division of interval, splitting original interval into two 
new subintervals} 

(20) Qlower (d+1, imax+1) <- 0 (i) 
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(21) Q.pper (d+1> imax+1) <- Qupper (d,i) 

(22) 9lower (d+l,imax+2) <- Qhwer (d,i) 

(23) Qupptr(ä+limax+2) <-§(/) 

(24) imax^imax+2 
(25) i-i-1 
(26) EndWhile 
(27) If (Divd=0) 
(28) MaxDiff-Divd 
(29) Done 
(30) Endif 

{if max gap this division equal to max gap of last division, done, as found best 
possible gap for this algorithm} 

(31) If (Divd=MaxDiff) 
(32) Done 
(33) Else 

{in this case Divd<Maxdiff, so update Maxdiff] 
(34) MaxDiff-Divd 

{Move onto next division} 

(35) d-d+1 

{Set next division starting point} 

(36) i-imax 
(37) Endif 
(38) EndWhile 

Applying algorithm x,firror<x> iteratively generates improving upper bounds on the 

gap between hpr(B) and hd(Q).   This bound occurs either at a non-differentiable point, or 

at the value 0=7. Figures 15 and 16 graphically illustrate the algorithm. 
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Figure 15. 
Demonstrating x0Error°° generates an upper bound on size of the gap 

between restricted primal and dual equilibrium approximations. 
(After first iteration) 
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Figure 16. 
Demonstrating x0Error°o generates an upper bound on size of the gap 

between restricted primal and dual equilibrium approximations. 
(After two iterations) 
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In the above example, 62, is the point where the maximum gap exists between 

hpr(Q) mdhd(Q). In this case XQError^ would run for one more iteration, generate the same 

gap, then terminate. 

H. SUMMARY 

This chapter develops a method to examine the error potential of fixing the initial 

decision variable(s) for finite and infinite-horizon linear programs, over a linear convex 

combination of potential right hand side values. For solving LP°°, these algorithms can pro- 

vide insight regarding the stability of the initial decision variable for the original infinite- 

horizon program as the restricted primal equilibrium approximation and dual equilibrium 

approximation still bound the infinite-horizon optimal. The algorithms of this chapter un- 

fortunately are not applicable for MIP°°, as the primal equilibrium approximation solution 

hull hp(Q) is neither convex or continuous over 0<0<7. 

This ability to deal with variations in the right hand side value, provides some flex- 

ibility in extending truncated formulations over the infinite horizon as a method for elimi- 

nating the end effects associated with a finite horizon. The next two chapters of this 

dissertation apply the developed theory to a real world LP°° and M/P°°. 
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VI. APPLYING PRIMAL AND DUAL EQUILIBRIUM 
APPROXIMATION METHODS TO QUANTIFY END EFFECTS 
FOR LINEAR PROGRAMS 

This chapter examines the capability of primal and dual equilibrium approxima- 

tions to bound the infinite optimal objective function value and quantify end effects for a 

large scale, military manpower planning model4(linear program). This is the first real- 

world example, known to the author, to use both primal and dual equilibrium approxima- 

tions to quantify the impact of end effects and provide feasible near optimal solutions to the 

infinite-horizon problem.   The methodology proves highly successful applied over a rela- 

tively short solution horizon. Dual and primal equilibrium approximations provide a tight 

bound for the infinite optimal and effectively eliminate key end effects found to adversely 

influence the optimal solutions provided by finite-horizon formulations. Section A pro- 

vides a brief summary of research conducted using LP°° solution techniques. Section B in- 

troduces the LP of interest, The Total Army Manpower Life Cycle Model (TAPLIM) and 

the Future Personnel Extension (TAPLIM/FPS). The TAPLIM series of models are cur- 

rently used by the Directorate of Military Personnel Management, Deputy Chief of Staff 

for Personnel, United States Army (ODCSPER) as decision aids for setting personnel re- 

cruiting, hiring, promotion, and retention policies. Section C provides a detailed formula- 

tion of TAPLIM/FPS. This section derives a modification to the original TAPLIM/FPS 

model structure that more fully integrates the FPS extension. Section D extends TAPLIM/ 

FPS to an infinite horizon problem and derives dual and primal equilibrium approxima- 

tions. Section E examines TAPLIM using primal and dual equilibrium approximation 

methods. Analysis and results illustrate the power of the primal and dual equilibrium ap- 

proximations to bound the infinite optimal solution and capture and quantify end effects. 

4- See Gass (1991) for an overview of approaches used in military manpower planning models. 
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Section E also examines the impact on the initial decisions of varying the right hand side 

over a functional range. Section F summarizes the key results of this chapter. 

A. BACKGROUND 

The focus of past research on end effects has been convergence of the optimal so- 

lution for primal and/or dual equilibrium approximation methods to an optimal solution for 

the infinite horizon problem. Grinold (1971,1977) and Svoronos (1985) derive problem 

structures that assure convergence of the primal and/or dual equilibrium approximations to 

an infinite horizon optimal. From this, inferences are made regarding the impact of end ef- 

fects on initial period solutions. In general, however, whether or not the primal and/or dual 

equilibrium approximations converge to an infinite horizon optimal is not critical to the 

practical implementation of these methods to bound the infinite optimal solution. As long 

as primal and dual equilibrium approximations are found that generate a narrow bound for 

the infinite horizon objective value, then inferences can be made regarding the impact of 

end effects on the feasible set of initial decision variables provided by the primal equilibri- 

um approximation. This chapter illustrates that for TAPLIM, convergence does not have to 

be proved to obtain near optimal solutions where end effects are negligible. 

B. TAPLIM/FPS 

TAPLIM is a large scale military manpower planning model originally developed 

by COL Anthony Durso, USA (retired), while assigned to RAND Corporation, Santa Mon- 

ica, California. A brief description of TAPLIM and TAPLIM/FPS follows. For additional 

detail, see Durso and Donohue (1994). 

While TAPLIM/FPS forms one model, it is comprised of two distinct sections, 

TAPLIM and FPS. Both are identified. As TAPLIM/FPS is the more general model, it is 

presented first. Section E of this chapter presents the simplified formulation for TAPLIM 
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derived from TAPLIM/FPS by modifying a single index set and removing the constraints 

which generate the FPS extension. 

TAPLIM/FPS examines the dynamics of the Army's enlisted personnel inventory 

as changes in manning level requirements occur over time. The model has multi-period 

generalized network flows and a relatively large number of side constraints. Durso and 

Donohue use three distinct networks, which are tied together with additional constraints. 

The first network directs the flow of initial enlistees by their initial contractual obligation 

through their first 6 years of service; the second network directs the flow of service years 

for personnel by rate for each time period; the third directs the flow of transfers between 

geographic areas by rate for each time period. The first two networks form the base 

TAPLIM model, and the third forms the FPS extension. Figures 17 to 19 show these net- 

work structures: 

Enlist w/Contract 

Time 

Survive lyear/_Survive 2years^-Survive3years^~xSurvive.. 

t+1 

Attrition 
Loss 

Attrition     £°g$P 
ij0SS        (starting yr. "3") 

Figure 17. 
Network tracking initial enlistees. 
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(Promoted previous period to rate r j 

Rate rw/y years 

Attrition Loss 

Promoted 
tor+1 

Attrition Loss Attrition Loss 

Figure 18. 
Network tracking personnel by rate and years of service. 

Transfers to area g from other areas J 

Rate r 

Attrition 
Loss 

to other areas Transfers Transfers 
to other areas        to other areas 

Figure 19. 
Network tracking movement of personnel between geographic areas. 

The data sets that influence the enlisted force structure include: 

•Billet requirements. Defined by rate for each main geographic area and time 
period (year). Billet requirements reflect area manning requirements. 
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•Total End-of-Year Manpower. This reflects the total number of enlisted per- 
sonnel allowed to be on active duty at the end of each period. 

Decision variables include: 

•The number of accessions (new recruits) per year. An implementation of the 
model provided by ODCSPER, fixes the number of accessions for periods 2, 
3,4, 5, and 6, (the first 5 periods of the model, as there is no period 1) allow- 
ing the variable to float from period 7 onward. Subject to manning require- 
ments, the model seeks to minimize accessions. 

•Number of personnel continuing in rate, by years of service, for each time 
period. This decision variable dictates the potential to fill future requirements 
for promotion, and current manpower needs (by rate). 

•The number of personnel selected for promotion to the next higher rate, by 
years of service for each time period. The size of the rate population limits the 
number of promotions to the next higher rate. The model seeks to maximize 
promotions while satisfying manpower requirements for each rate. 

•The number of involuntary separations. This reflects the number of personnel 
by rate and years of service who involuntarily leave the service each time 
period. The model seeks to develop a solution which minimizes involuntary 
separations, as such separations are detrimental to morale, while meeting 
manning and billet requirements. 

•The number of personnel that take some form of early voluntary separation, 
by rate and years of service. Congress authorizes DOD to provide financial 
incentives for selected rates to voluntarily separate prior to the end of their 
enlistment. In the model, voluntary separation occurs at the E-4 and E-5 level. 
The model seeks to minimize voluntary separations, while meeting manning 
and billet requirements. 

•The model deviation between actual manning and billet requirements. The 
model minimizes manning deviations (over or under manning of billets). 

Side constraints that drive the flows across the network structures include: 

•Ensuring initial enlistees encompass minimum proportion of total lower rate 
population base. 

•Fixing attrition losses to a proportion of the total number in the rate. 
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•Retire all E-5's at the 15 year point in their career, but allow any E-5 with 
more than 15 years at the start of the model to continue to 20 years (known as 
grand-fathering a new policy). 

•Retire all E-6's at 20 years, and implement early retirement policy for E-7's. 

•Distribute those selected for promotion by years of service. 

•Control the number of transfers between areas, for each rate. 

•Satisfy minimum manning requirements in each geographic area. 

•Limit upper rate manning levels to a proportion of total rate manning levels. 

•Limit the number of personnel allowed to voluntarily separate. 

ODCSPER implements and solves TAPLIM and TAPLIM/FPS using the Linear In- 

teractive Discrete Optimizer, (LINDO), (Schräge, 1991). The LINDO implementation of 

TAPLIM/FPS with some documentation was provided by the Directorate of Military Per- 

sonnel Management, Deputy Chief of Staff for Personnel, U.S. Army. The version provid- 

ed covers 9 fiscal years, however, because of the model's staircase structure the number of 

time periods can be easily increased or decreased. TAPLIM/FPS's periodicity and semi- 

invariant staircase structure (i.e., equation and right hand side coefficients from period to 

period become identical from year 9 onward) make the model a candidate for employing 

infinite-horizon linear programs to analyze the stability of initial decision variables as the 

future enlisted force structure of the Army varies. 

C. FORMULATION OF THE TRUNCATED MODEL 

A formulation for TAPLIM or TAPLIM/FPS was not available from ODCSPER. 

Accordingly, this dissertation derives a formulation by examining the LINDO code provid- 

ed, and modifies it by: 

•Discounting the objective function. This is commonly used to reflect the 
increased value of choices made today (as they are implemented immedi- 
ately), versus choices made for some future time period. Infinite-horizon 
approximation techniques can be used when the objective is discounted. 
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'Expanding the underlying network structure to more effectively track person- 
nel by both geographic area and years of service for each time period. The 
separate networks that track the number of personnel by rate and years of ser- 
vice and track the number of personnel by rate and geographic location, are 
linked by constraints that match the sum over years of service of a particular 
rate to the sum over geographic areas of the same rate. This leads to feasibility 
problems since connecting the two sub-networks in this way can result in sit- 
uations where transfers could never support differences in years of experience 
found for the same rate in a single geographic area from period to period {e.g., 
the number of E-4's with 3 years of experience in Germany, who did not 
transfer, would not necessarily be reflected properly the next period in the 
number of E-4's with 4 years of experience in Germany). The new formula- 
tion combines two networks (Figures 18 and 19) into a single network track- 
ing personnel by rate, years of service, and geographic location (Figure 20). 
This results in a more complex model, with more decision variables, but pro- 
vides a more complete underlying network structure. 

Number of rate "r-1", selected for Nurnber of rate "r", selected for 
promotion to rate V, promotion to rate "r+l", 
transferring into area "g" transferring out of 
with >r years of service, area < ,„ wkh y, 
inPerlod  tA of service in period «r 

(Includes loss paths) 

Number of rate "r" 
transferring into 
area "g", with "y-i" years 
of service, in period "t-1". 
(Includes "g" to "g" transfers) 

Number of rate V, transferring 
out of area "g", with 
"y" years of service, 
in period "*" 

(Includes loss paths) 

Figure 20. 
Network flow balance (flow by geographic area and years of service). 

The formulation follows an introduction to notation. 
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1. Indices 
t time period (2,3,4,5,6,...!), (t starting with period 2 reflects the 

starting year (Fiscal Year 1992) provided by ODCSPER); 

y years of service (0, 1, 2,...35); 

r rate (E4, E5, E6,... E9); 

c initial contract obligation for enlistees (2,3,4,5,6); 

a transfer areas (boot camp (b), geographic areas (9 areas for TAPLIM/FPS, 

1 area for TAPLIM), involuntary separation is), voluntary separation (v), 

attrition losses, discharge and/or retirement (/)); 

gb       a subset of transfer areas, includes geographic areas and boot camp; 

g, g'    a subset of transfer areas consisting of just geographic areas. 

2. Derived Sets 
Derived sets define feasible combinations of indices for both variables and con- 

straints. These sets are grouped by the constraint type and/or variables they are associated 

with: transfer/flow balance, losses, tracking of initial enlistees, voluntary separation and 

early retirement, and eligible years of service. 

a. Transfer/Flow Balance Sets 

TALLOW       Areas (gb,g)  soldiers can transfer between 

(includes transfers from/to the same geographic area (g,g)); 

PCS Geographic areas (g,g') soldiers can PCS transfer between; 

TTOLE Transfer paths (r, gb, a, y) for a soldier that is not selected 

for promotion. This includes transfers to all applicable loss 

areas; 

TTOLP Transfer paths (r, g, a, y) for a soldier that is selected for 

promotion. This includes transfers to all applicable loss 

areas. 
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b. Loss Sets 

TLFLOW       Loss paths (r,y) for enlisted personnel who did not select for 

promotion; 

TLPFLOW     Loss paths (r,y) for enlisted personnel who were selected for 

promotion. 

c. Tracking Initial Enlistee Sets 

YTOS Allowable (r,y, i) used for tracking initial enlistees through 

their first 6 years of service; 

NOTYTOS       Allowable (r,y, f) for other than initial enlistees. This allows 

the selection of appropriate flow loss equations. 

d. Voluntary Separations and Early Retirement Sets 

YV Allowable (r,y) combinations for voluntary separation; 

YER Allowable (r,y) combinations for early retirement (r=E5), or 

selective early retirement (r=E7). 

e. Eligible Years of Service Sets 

YEX 

YEXS 

YPROM 

Allowable (r,y) for enlisted personnel not selected for 

promotion during a period. Includes all but last year of 

service possible for the rate; 

Allowable (r,y) for enlisted personnel not selected for 

promotion during a period. Identical to YEX except the last 

year of service possible for the rate is included; 

Allowable (r,y) for enlisted personnel selected for promotion 

to rate r during each period. 
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3. Data 
The data divides into the following groups; objective function drivers, problem ini- 

tialization, manpower requirements, tracking initial enlistment, promotion flows, transfer 

flows, loss flows, and voluntary separations and early retirement. 

a. Objective Function Coefficients 

a Discount factor for follow on period objective function 

coefficients; 

WOVERr _      Weight of overmanning total for area "g"; 

WUNDERrg   Weight of undermanning total for area "g"; 

COSTp e> Cost of PCS transfer from area g to area g'; 

CENLISTC       Cost per enlistee with contract type "c"; 

Csr a y Cost of involuntary separation; 

Cvr a y Cost of voluntary separation; 

Wpr Value of promotions. 

b. Initialization Data 

Edatary Number of personnel with rate V, not selected for 

promotion, with "v" years of service at problem start; 

Pdatar Number of personnel with rate "r-1", selected for promotion 

to rate V, with "y" years of service at problem start. 

c. Manpower Requirements 

TOP The maximum proportion of total enlisted force that can 

comprise the top enlisted rates (E8, E9). Currently set at 

0.05; 

BILLETrgt     Number of billets requiring rate "r" in area "g" for each 

period "t"; 
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MAErat Minimum number of personnel with rate "r" that must be 

assigned to area "g" for each period "t"; 

PE4 Minimum proportion of all E-4's that must be new (with 0 

years of service); 

TOTALt Total allowed enlisted manpower in the Army in period "t"; 

UMANt Limit on how much the E-9 rating can be undermanned, as a 

proportion of total E-9 manning. For time periods 3 and 4 

only. 

d. Initial Enlistee Data 

PTOS. c.y 

PTERMct 

PACC 8 

NACCt 

Proportion of those who signed up under contract type "c", 

starting the period with "y" years of service, that survive to 

"y+1" years of service; 

The minimum proportion of accessions that must enlist for 

term "c", in time period "t"; 

Minimum proportion of accessions assigned to geographic 

area "g " for each time period; 

The number of pre-determined accessions for period 3,4, 

5,and 6. After period 6, the number of accessions becomes 

variable. 

e. Promotion Flow Data 

PROrt.(PROrt) Minimum (maximum) proportion of target population 

allowed to be selected for promotion to rate "r", in time 

period "t"; 

PYRS 
■f.y 

Minimum proportion of rate "r-1" selected for promotion to 

rate "r", by years of service "y", for any time period. 
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/. Transfer Flow Data 

PPCSrss,(PPCSr„„) Minimum, (maximum) proportion of transfers 

for rate V out of area "g" that go to area "g' "; 

TPCSr „ Minimum proportion of area force total with rate "r", that 

must transfer out of area "g" for each time period. 

g. Loss Flow Data 

PLOSSrg,(PWSS rg) Minimum (maximum) proportion of total 

rate "r" losses, for each area "g "; 

NLOSSr y       Proportion of total (r,y) population lost to normal attrition 

(Honorable discharge, retirement, etc.). 

h. Voluntary Separations and Early Retirement Data 

PVSEPr y        Minimum proportion of the total number voluntary 

separations with rate "r", broken down by years of service 

"y", for each time period; 

VMAXr t Maximum number of personnel with rate "r", that can be 

voluntarily separated in period "t"; 

PERr Minimum proportion of early retirements of rate "r", broken 

down by years of service "y", for each time period; 

E9R3 Limit the number of E-9' s separated in key year groups, for 

period 3 only. 

4. Variable Definitions 
E    „. „, Number of personnel in rate "r ", starting period "f in area "a ", 

being transferred to area "a' " with "y" years of service, not selected 

for promotion to the next higher rate in period "t"; 
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r,a,a', y,t 

TOS c,y,t 

Number of personnel of rate "r-1", with "v" years of service, in area 

"a" at the beginning of the period, transferred to area 'V " during 

the period, and selected for promotion to rate "r" during period "t"; 

ENLIST c t     Number that enlist under contract length "c " in period "f; 

Number of personnel in their initial service obligation remaining 

that have not been selected for promotion with enlistment contract 

"c", with "y" years of service, 

for each period "t"=3 onward; 

IPROM^ v t    Number of tracked accessions by contract length "c ", with "y " 

years of service, selected for E-5 in period "t" 

(When y e YPROM("E5", y)); 

UNDERr „ t    Number of billets that require rate "r" personnel, that are not filled 

in area "g" during period "t" =3 onward; 

Number of excess personnel of rate "r" in area "g" during period 

"t"= 3 onward. 

lc,y,t 

vr,g,t 

OVERrgt 

5. Objective Function and Constraints for the Truncated Model 
The following equations provide the formulation of TAPLIM/FPS for a truncated 

linear program. 
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Objective Function: 

Minimize 

1« 
t = 3 

t-3 

Y y (WOVER     OVER   „ t + WUNDER     UNDER,      ) + 

CENLöT y ENLIST' t + Csrn c^-i c,i        r,a, 
(r,a,"s",y) e TLFLOW 

Er,a,"s",y,t l + 

Cv r,a,y 2       2 (Er, g, "v", y,t + Pr + l, g, "v", y, t> 
(r,y) eYV g 

-Vp 
r,y 

(r,y) e YPROM(g,g') e TALLOW 
F»\ *,*',*<+ 

COST 

V(ff,g')G TALLOW 

Constraints: 

ZdE"E4","b",tt,"o",2 = EdataE4i0, 
g 

g,g 
y   E Z-r r, g, 

(r,y) e YEX 
■ +      I     p- 

(r, j) e YPROM 
g',y,t^ l-i * r,g,g',y,t 

I 
(g, g') e TALLOW 

V(r,v) e F£X 

^r, «,«•,,, 2 = Edatar<J 

(1) 

g,g'e TALLOW 

for(r.y) e {(£5,3), C^^^;, (£7,7i), (£«,;#, (E9,18)} 

(la) 

YJENLISTct = NACCt 

3<t<6 

(2) 

ENLISTc t > PTERMC , x ^ENLISTC , 
c 

\/c,t>3 

(3) 
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T°Sc,'<r.t = PTOSö/,0„txENLISTct 

\/c,t>3 
(4) 

TOScyt + IPROMcyt = PTOSetyxTOSety_Jtt^ ($) 

Vc, t>3, (E4,y,t) G YTOS 

£ E"E4",gb,g,y,t ~ Z,T0Sc,y,t 
(gb, g) e TALLOW c 

\f(E4,y,t)s YT0S,t>3 

I P"E5»,g,g',y,t = lIPR0Mcy,< 
(g,g') s TALLOW c 

V(E4,y,t) e YTOS, t>3 

(6) 

(7) 

X                Er,gb,g,y-l,t-l +                 2J                   r,g',g,y-l,t-l 
gb: (gb, g) e TALLOW                                      £'•• (*', g) e TALLOW 

/or (r, y - 1) e F£Z                                       for (r,y-l)e YPROM 

2J                
Er,g,a,y,t +                 Z-t                 "r + l,g,a,y,t 

a: (r, g, a, y) e TTOLE                        a: (r, g, a, y) e rrOLT? 

(8) 

/or (r, j>) e YEXS                           for (r + 7, y) e FPÄOM 

Vr,g,y,t>3 

E     r,g,"l",y,t      + P       r + l,g,"l",y,t 
for (r, y) e y£XS        /or (r + 7, >>) e YPROM 

NLOSSry_jX 
( 

Zr            Er,g',g,y-l,t-l+              X             Pr,g',g,y-l,t- 
g': (g; g) <= rAZXOW                                               f'•■ («', g) e TALLOW 

for(r,y-l)e VEX                                              for (r,y-l)e YPROM 

-7 
(9) 

Vg,(r,y,t) G NOTYTOS 
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YJ
E"E4","b",g,"0",t-PEi[ X X E"E4",gb,g,y,t) + 

g ^ (gb> g) e TALLOW y: (E4,y) e KM y 

V (g', g) e T/lLLOWj'.- (£•#, y) e YPROM 

Vt>3 

PROrJ X X Er-l,gb,a,j,t\ + 

{gb, a): (r -1, gb, a, y) e TTOLEy: (r -l,y)e YEX 

PRÖJ X X Pr,g,a,y,t 
^ (g, a): (r, g, a, y) e TTOLPy: (r, y) e YPROM 

\/r>E5,t>3 

2-i 2-i r, g, a, y, t 
(g, a): (r, g, a, y) e TTOLPy. (r, y) e YPROM 

PMrl X X Er-l,g,a,y,t\ + 
' V {gb> a): (r - 1, gb, a, y) € TTOLEy: (r -l,y)e YEX 

MO     { 2 I Pr,g,a,y,t 
' ^ (*,«) • (r, £, a, y) e TTOLPy: (r, j) e 1TÄ0M 

Vr>E5,t>3 

(10) 

X X Er,gb,g,y,t + 

gb: ( gfc.g) e TALLOWy: (r,y) e 1^ 

X X Pr + /,*',*,j,* + (11) 
g': ( g,g) e TALLOWj: (r + l,y) e FP/JOAf 

\/r>E5,t>3 

2-i 2-i r,g, a, y, t 
(g, a): (r, *,«, j0 e TTOLPy: (r, y) e YPROM 

(12) 

(13) 
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X Pr ■* r, g, a, y, t 
(g,a):(r,g,a,y)eTTOLP 

PYRS X 2 X Pr.*.,*« 
' (£, a): {r,g,a,y) e TTOLPy: (r, >-) e FPÄ0M 

Vr>E5, f>5 

(14) 

^"£4", "Z>", f, "0", t - PACCg X LtE"E4", "b", g, "0", t 

Vg, c, t>3 

-g 
g (15) 

X Er,g,g',y,t+ X Pr + l,g,g\y,t- 
y: (r, >>) e FEZ j>: (r + 7, j>) e YPROM 

PPCSr I X      *W^ + I *V + W.,.r 

Vr,(g,g') e TALLOW,t>3 

(16) 

X Er,g,g',y,t+ lu r + l,g,g',y,t 
y: (r, 3») e FEX >•: (r + i, j>) e YPROM 

PPCSr.gJ X (        X        *r.*,\,./+ X Pr + A,.^,.*)l(17) 

Vr,(g,g') e TALLOW, t>3 

X I X        Er,g,g',y,t+ X 'r + y.^^j»,*)' 
?, *') e PCS Vj; (r, j) e YEX y: (r + 7, j) e FPÄ0M ^ 

^      *f       X       {       X       £r,g,^ + X       ../r + W.*' 

Z-i I ZJ "r^.g'.j.r ' .   ^ „ ~r + l,g,g,f,tj 
g': {g, 

— — " p 

Vr,g, r>3 

X £r,g,a,j,f+ 2rf Fr + l,g,a,y,t 
(a, j>): (r, ?, a, y) e TLFLOW (a,,); (r + 7, j, a, j>) e TLPFLOW 

(18) 

PLOSS    ,Y 
g 

Vr,g,t>3 

X £r,g,a>>>,f + X Pr + l,g,a,y,t 
V («. >) ■ (r, S, «. }0 e TLFLOW (a, .y): (r + 7, g, a, ;y) e TLPFLOW 

(19) 
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X Er,g,a,y,t+ 2J r + l,g,a,y,t~ 
{a,y): (r, g, a,y) e TLFLOW (a, y): (r + 1, g, a, y) e TLPFLOW 

PL0SSr,g,t£ 
g 

Vr,g,t>3 

X Er,g,a,y,t+ 1J "r + l,g,a,y,t 
(a,y): (r, g, a,y) e TLFLOW (a, y): (r + 1, g, a, y) e TLPFLOW 

\/E4<r<E5, y:(r,y) e YV, t>3 

X X (Er,g^ + Pr + l,g'V'y,^VMAX-< 
g y:(r,y)sYV 

VE4<r<E5, t>3 

X (Er, g, "s", y,t + Pr + l, g, "s", y, t> ~ 
S 

PERr,y^{ X (Er,g,;'.,.t + Pr + l,t.::y.t'>) 
P \v:(r.v) e YER J g V(r,j)e YER 

VE5<r<E7, y:(r,y) e YER, t>3 

(19a) 

X X       Er,gb,g,y,t + 

gb:(gb,g) € TALLOWy-(r,y) e rEX 

y y      p  , ,    ,>MAiv ^ 
ZJ Z-I r + l,g\g,y,t     r,g,t (AU 

g':(g',g) e TALLOWy■■(' + '<?) * YPR0M 

Vr,g,t>3 

X (£r, ft "v", y,t + Pr + l, g, "v", y, f) - 

PVS^^xjf X (Er,g,»v»,y,t + Pr + l,g,»V",y,t)) 
gyy:(r,y)eYV J 

(21) 

(22) 

(23) 
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X X X Er,gb,g,y,t + 

r y:(r,y) e FLX(£6,g) e TALL01V 

X I 2 '»W.*, " T0TAL, 
r y:(r + l,y) e mf0M(g,g') e TALLOW 

Vf>3 

2^ iLf 2^ r,g,g',y,t 
E8<r<E9y:(r,y) e YEX(g,g') e TALLOW 

X X     ^,^,, = 7Wx rorAL< 
y:(E9,y) e YPROM(g,g') e TFROM 

\ft>3 

E„ 

(24) 

X  X  E"9", g, "s", y, t <E9R3 f°r t=3>4 only (25) 

g 26<y<29 

(26) 

^UNDER„r      <UMANt( £ X "'IWW.,,*   ,    ,_ 
g ^ (g,g') e FALLOW^. ("£9",)0 e FLX '     (27) 

t=3,4 

Equation Definitions: 

(1) Initialize personnel levels (both E and P variables) for first period. 

(2) Fix enlistment totals for years 3 to 6. 

(3) Distribute contract options for enlistees. 

(4) Ensure the appropriate losses of new enlistees from initial boot training, for each contract op- 

tion. 

(5) Of the personnel that the model takes in as enlistees, ensure the appropriate proportion of per- 

sonnel survive into the next period. Survival is defined as not being attrited or promoted. 

(6) Link initial contract personnel to associated variable that tracks years of service and movement. 

(7) Link initial contract personnel to associated promotion variable that tracks years of service and 

movement. 

(8) Balance equations for state r.g.y.t: (The number of personnel in rate r, located in area g, with y 
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years of service, at the end of period t). 

(9) Account for attrition losses "/" for all those personnel not being tracked over their initial obli- 

gations. 

(10) Ensure new recruits comprise some minimum percentage of total E-4 and below manning. 

(11) Match billets to available bodies. Account for under and over manning. 

(12) Limit the number of promotions to be no more than some percentage of the rate population. 

(13) Ensure a minimum percentage of each rate selects for promotion. 

(14) Distribute promotions over years of service. 

(15) Distribute those accessions that make it through initial training over all geographic areas. 

(16) Ensure a minimum percentage of personnel transferred out of area gb go to area g . 

(17) Ensure a maximum percentage of the total transferred out of area gb go to area g . 

(18) Limit the number of transfers out of area g as a proportion of the total number of personnel 

with rate r, during period t. 

(19) Distribute all losses over geographic areas. 

(20) Meet minimum manning requirements. 

(21) Distribute voluntary separations by years of service. 

(22) Limit voluntary separations to maximum authorized. 

(23) Distribute early retirements by years of service. 

(24) Meet total manpower requirements. 

(25) Limit the number of E-9's separated (for periods 3 and 4 only). 

(26) Limit the number of E-8' s and E-9' s to a proportion of the total enlisted force. 

(27) Limit the undermanning of E-9's to a fixed percentage of the total E-9 population, (periods 3 

and 4 only). 

For TAPLIM/FPS, the right hand side (RHS) structure becomes invariant from pe- 

riod 7 onward as manning requirements stabilize. The equations and their coefficients be- 

come invariant from period 9 onward. This allows the formulation to be a candidate for the 

application of LP°° techniques to evaluate the potential influence of either steady state force 

levels, or growth from period 10 onward on the optimal decisions made in the early periods. 
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D. TAPLIM/FPS AS AN INFINITE HORIZON PROBLEM 

TAPLIM/FPS, when defined over an infinite horizon, exhibits the single period 

overlap staircase structure: 

oo 

,,.   .    .     ~ v     t-3 
Minimize cxQ + 2_, a     cxt 

t = 9 

Subject to: 

Aoxo = s                (0) 

Hx0  +AX9 = b                 (1) 

Kx9   +Ax]0 = b                (2) 

Kxk-i +Axk = *(i + ß)    (k) 

Kxk     +Axk + i = &(i + ß)2 (k+1) 

xt>0    (t=0,9,10,...). 

It is important to note that the variables associated with periods 2-8 of the TAPLIM model 

are contained in the variable x0 since the matrix and right hand side coefficients are not 

invariant (i.e., are not the same from period to period) until period 9. The eventual invari- 

ance in the coefficient matrix structure allows the implementation of the dual and primal 

equilibrium approximation methods to bound the problem. Also note the invariant right 

hand side is equivalent to assuming that once stabilizing steady state manning require- 

ments (these actually become invariant after period 7), they remain constant until some 

period k. At period k, it is possible to introduce an exponential growth (or decay) of (i+ß) 

on the RHS, as long as (i+ß)a<i. 
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1. Dual Equilibrium Formulation 
The dual equilibrium approximation aggregates all the constraints from period T>k 

(where £=first period of exponential decay/growth, if used) onward with an a discount fac- 

tor and substitutes xT =  X a'-1*, • The resulting reformulation: 
t = T 

T-l 

Minimize cxQ + ^T a     cxt + a      cxT 

t = 9 

Subject to: 

A0x0 = * (0) 

Hx0+ Ax9 = bj (1) 

Kx9+ Axw = b2 (2) 

Kx~   ,+ AxT   , =bT_,        (T-l) "j_2r        T-l ~     T-l 

KXJ,_J+ (CLK + A)Xj,      — j    ß. 

xf>0,      (t=0,9,10,...) ■ 

brp 

xT =   T a   rx, and Jcr includes appropriate slack/surplus variables. 
t = T 

bj=b for j<k where fc= first period of exponential decay/growth. 

bj=bU+&y~k where k= first period of exponential decay/growth, k<j<T. 

The implementation of constraints associated with period T depends on the row 

structure of K, A, and b. For the following sections, k\ and a1 correspond to row i vectors 

of K and A respectively. 

a.   Constraints For Which kl=0 

All the TAPLIM/FPS constraints with the exception of the flow balance and 

loss factor constraints fit into this category (constraints 3,4,6,7,10,11,12,13,14,15,16, 
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17, 18, 19, 20, 21, 22, 23, 24, 26,and 27). Implementation of the dual equilibrium approx- 

imation method needs to simply adjust the right hand side of these constraints. For con- 

straints with a non-zero right hand side (11, 20,22, 24, and 26), this involves changing the 

right hand side for period Tfrom b, to „ 

gb:{gb,g) e TALLOWj: (r,y) e F£X 

The revised constraints follow: 

2-i 2^ * r + l,g',g,y,T~ 
£'.-(#',£)"e^ZVlLLOWj/Cr-,)-) e YPROM 

UNDER, g T-OVERr g T =   y _ (] + ß°a 

W/zere k=first period of ß growth/decay 

BILLETrgT = BILLETrgt9(l + $)T~k 

Vr,g 

BILLETrgT (nd) 

X 2       Er,gb,g,y,T 
gb: (gb,g) e TALLOWy: fo JO e yE* 

MAW  „ T 
I X     p..,„,„...> ^ ^ ~ r + l,g\g,y,T- j _ (i + R)a /0njN 

Where k=first period of ß growth/decay 

MANrgT = MANr^9(l + V)T-k 

Vr,g 

X X (£>,g,"v",y,T + Pr + l,g,"v",y, T> ~ ]_ (7 + ß)a 

Where k=first period of ß growth/decay (22d) 

yMAXr r = VMAX,. 9 (7 + ß)r~* 

\/E4<r<E5 
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SS S Er,gb,g\y,T + 

r y:(r,y) e YEX{gb,g') e TALLOW 

Totalj. 

SS S Pr + i,g,g',y,T - 7_(i + ß)a (24d) 
r y: (r + l,y)e YPROM (g, g') e TALLOW v        v' 

"Where k=first period of ß growth/decay 
T-k 

TotalT = Total 9 (1 + ß) 

S S S Er,g,g',y,T + 

E8<r<E9y:(r,y) e YEX(g,g') e TALLOW 

_ TÖPx   TOTAL? 
S S P"E9",g,g',y,T -      7_(i + ß)a (26d> 

j>: (E9, y) e F.PÄ0M (#, g') e TALLOW v        r/ 

Where k=first period of ß growth/decay 

Totalj = Total 9{1 + ß) 

If the right hand side ft=0, (constraints 2, 3, 4, 6, 7, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 

24, and 28), then the constraints associated with period T require no adjustment for imple- 

menting dual equilibrium. 

b. Constraints for which kl?0 

This structure holds for the flow balance constraints and loss factor adjust- 

ment constraints of TAPLM/FPS (constraints 5,8,and 9). In this case, the effected con- 

straints must reflect adding the factor aKxT in period T: 

TOS„  „  T + IPROMr  „  T(when ("E5",y)e YPROM)   =   PTOS£      XTOSj  T_j + 

PTOScyxaTOScy_ 

Vc, (E4,y,T) e YTOS 

PTOScyxaTOScy_1T (5d) 
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X Er,gb,g,y-1,T-1+ Zs 
gb:(gb,g) e TALLOW g':(g\g) e TALLOW 

for (r, y -1) e y£* /or (r, JI - /) 6 KPÄOM 

a 

Pr,g',g,y-1,T-1 + 

\ 

1 
gb.(.gb,g) e TALLOW 

V   /or (r, y-l)e YEX 

Er,gb,g,y-1,T+ Z Pr + l,g\g,y-l,T 
g:-(g;g)e TALLOW 

for (r+l,y-l)<= YPROM J 

Lt Er,g,a,y,T+ 2, Pr + l,g,a,y,T 
a:(.r,g,a,y) e TTOLE a: (r,g,a,y) e 7TOLE 

/or (r, JF) e FEXS /or (r + l,y)e YPROM 

Vr,g,y 

(8d) 

E     r,g,'T,y,T      +P      r + l,g,"l",y,T 
for (r, y) e YEXS        for (r + l,y) e YPROM 

( 
NLOSS X 

r,y-l 
g'.(g',g)e TALLOW 

for(r,y-l) e YEX 

f        2 g:(g\g)€ TALLOW 

for (r, j - /) e FE* 

\/g,(r,y,t) e NOTYTOS 

a NLOSS X 
r,y-l 

\ 

Er,g\g,y-1,T-1 + 

Er,g\g,y-1,T + 

X Pr,g\g,y-1,T-I 
g:-(g\g)€ TALLOW j 

for(r,y-l) e YPROM 

\\ 

Zj Pr,g\g,y-1,T 
g':(g\g)z TALLOW JJ 

for (r, y-1) e YPROM 

(9d) 

2. Primal Equilibrium Formulation 
The primal equilibrium approximation for TAPLIM/FPS adds the restriction 

xt+1=(l+ß)xt, (t>T, and (7+ß)a<7). The finite period re-formulation for 7>k (where k= first 

period of exponential growth/decay when used) is: 
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T-l T-3 
v-,     t-3 a 

Minimize cxQ+ ^ «     c*, + j_ (j + ß)a
c*r 

t = 9 

Subject to: 

Aoxo 
= s (0) 

Hx0+ Ax9 = *>! U) 
Kxg+ Ax10 = h (2) 

T           7             -l^Xrp =    by (T) 

KxT+ AxT(l + ß) = bT+ jiT + 1) 

xt>0. 

bj=b for j<k where k= first period of exponential decay/growth. 

bj=b{l+$fk where £= first period of exponential decay/growth, k<j<T. 

a. Adjusting the Objective Function 

Adjustment of the objective function is easily done by multiplying all period 

Tcost coefficients by        .,    R,    : 
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Minimize 
( 

T-l 

< = 5 

£ ]T (irovfiR,. ff0V£Ar ^ + wuNDERrgUNDERrg>t)   + 
g   r 

CENLIST y ENLIST•  t + csr „ 
(r,a,"s",y) e TLFLOW 

Er,a,"s",y,t] + 

Cv 
r,a,y 

(r,y) eYV g 

-vpr „        X 

X       X (£i", g, "v", y,t + Pr + l, g, "v", y, t> 

1 P + 
r,y *-i s-t r,g,g',y,t 

(r,y) e YPROM (g,g') e TALLOW 

COST 
g,g 1 *« g.g'.y.t r,g,g',y,t 

(r,y) € YEX (r,y) e YPROM \(g,g')e TALLOW 

^y T (WOVER     OVER   a T + WUNDERr   UNDER, p T) + l-tLuK r,g r,g,l r,g r,g,i' 
g   r 

+ 

T-3 

1- (/ + ß)a 

CENLIST£ENLISTC} T + cs       { X 
TLFLOW 

Er,a,"s",y,T] + 

Cv 
r,a,y 1   Z(*. 

(r,y)eYV g 
r,g,"v",y,T + Pr + l,g,"v",y,T^ 

-yPr,y X X 
(r, y) e YPROM (g, g') e TALLOW 

X     «%,*(   2   ^ 
V (g,g') e TALLOW ^ (r,y) e YEX 

Pr,g,g',y,T + 

+      X     p- 
(r, y) e YPROM 

g,g\ J-t r.g.g'.y.T-r £j * r,g,g',y,T 

b. Modifying the Constraint Space 

Like dual equilibrium, the primal equilibrium implementation of constraints 

associated with period T depends on the row structure of K. If kl=0, implementation of the 

primal equilibrium approximation method requires no change to the constraint set(s) asso- 

ciated with the truncated formulation. All the TAPLIM/FPS constraints with the exception 

of the flow balance and loss factor constraints fit into this category (constraints 2, 3, 4, 6, 

7,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,and27). When fcVO, which 

holds for the flow balance and loss factor constraints (constraints 5, 8, and 9), an additional 

constraint set must be added to reflect the ties created by the cutxt(l+$)=xt+1. These addi- 

tional constraints are listed below: 
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U + ß)(TOScy>T + IPROMcytT)  = PTOScyxTOScy_1T 

Vc, (E4,y,T) e YTOS 
(5p) 

I 
gb:{gb,g)e TALLOW 

for{r,y-l)zYEX 

Er,gb,g,y-1,T+ £, lr,g\g,y-l,T 
g':(g',g)e TALLOW 

C + ß) 

Vr,g,y 

1 
a: (r, g, fl, j) e 7T0LE 

/or(rj)ereXS 

i e T 
for(r,y-l) e YPROM 

Er,g,a,y,T+ X Pr + 7, *, a, y, T 
a:(r,g,a,y) e TTOLE 
for (r + l,y) e YPROM 

\ 

J 

(8p) 

(i + ß) 
f \ 
E    r,g,"l",y,T      +P r + l,g,"l'\y,T 

V    for (r, y) e YEXS        for (r + l,y)e YPROMJ 

f 
NLOSS ,X r,y-l 1 

g':(g',g)e TALLOW 
V for(r,y-l)eYEX 

Vg,(r,y,T)eNOTYTOS 

I P- 
) € TA 

for(r,y-l) e YPROM 

Er,g',g,y-1,T+ L* * r,g\g,y-l,T 
g-:(g\g)€ TALLOW 

(10p) 

E. EXAMINING THE IMPACT OF END EFFECTS ON TAPLIM/FPS 

The initial runs of TAPLIM/FPS consist of using the truncated formulation with 

data provided by ODCSPER (i.e., FY-92 to FY-99, with stability in all coefficients occur- 

ring in year FY-99), then comparing these results with the dual and primal equilibrium ap- 

proximations of the infinite horizon model with manning set to FY-99 steady state levels 

from FY-99 to infinity, (i.e., no growth or decay of manning or billet requirements, ß=0). 

Table 1 provides a comparison of optimal objective function values for the truncated, dual, 

and primal equilibrium approximations over the solution horizon FY-92 to FY-99. 

142 



Dual Equilibrium 
Approximation 

Primal Equilibrium 
Approximation 

Truncated Approximation 

4379 Infeasible 2637 

Table 1. 
Comparison of Optimal Objective Function Values for TAPLIM/FPS 

Because TAPLIM/FPS encompasses 9 geographic areas and 6 rate classes for each 

time period, the 8 period models (FY92 - FY99) are large (approximately 59,496 variables, 

16,856 constraints for each formulation). Initial tests generating the model using the Gen- 

eral Algebraic Modeling System, GAMS, (Brooke, Kendrick, and Meeraus, (1992)) with 

solvers XA (Sunset Software Technology, (1993)) and OSL (IBM Corporation, (1991)) re- 

quire in excess of 24 IBM RS-6000 Model 590 CPU hours. In addition, the primal equilib- 

rium method requires a longer solution horizon to satisfy feasibility. This made the model 

impractical for examining longer time horizon dual and primal equilibrium approxima- 

tions. 

F. TAPLIM 

In comparing the results of baseline runs of TAPLIM/FPS, to baseline runs of 

TAPLIM without FPS (i.e., eliminate tracking personnel by geographic area), the accession 

and promotion levels are similar for both models. An explanation of this similarity lies in 

the coarseness of the coefficient data provided by the United States Army to drive the mod- 

el. Both the promotion and attrition rate data are dependent only on years of service, there- 

fore geographic location has only a minor influence on the results (maintaining feasible 

numbers of personnel in each geographic area and feasible transfer flows). The key deci- 

sions of interest (number of accessions required, number of promotions, number of invol- 

untary separations, number of voluntary separations) can still be addressed effectively 

without the FPS extension. This dissertation uses TAPLIM without FPS to fully examine 
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end effects. To use TAPLIM without FPS, the following modifications to TAPLIM/FPS 

are made: 

1. Indices 
The following are indices modifications: 

a transfer areas (boot camp (b), active duty (x), involuntary separation 

0), voluntary separation (v), normal attrition losses either by 

discharge or retirement (/)); 

gb       Active duty plus boot camp (x, b); 

g Active duty only (x). 

2. Derived Sets 

The following are modified sets: 

TALLOW      Set of allowable areas (gb.g') soldiers can transfer between 

(includes transfers from/to the same area (g,g)). 

(Modified to be only (b,x), (x,x) .); 

TTOLE Set of allowable (r, gb, a, y) for soldiers not selected for 

promotion during the period. This includes loss areas. 

(Modified to reflect that active duty is the only geographic 

area); 

TTOLP Set of allowable (r, g, a, y) for soldiers selected for 

promotion during the period. This includes loss areas. 

(Modified to reflect that active duty is the only geographic 

area). 
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The following sets are eliminated: 

PCS Set of allowable geographic areas (g,g') for which PCS 

transfers between are possible. 

3. Data. 
The following data changes: 

BILLETrgt     Number of billets requiring rate "r" for area "g" for each 

period "t". (Modified to Billet, Vj = ^BilletrgJ); 
g 

MANr 01 Minimum number of personnel with rate "r" that must be 

assigned to area "g" for each period "t". (Modified to 

MAN ..   = TMAN   ,); 
 r,"x",t *-• r.gj" 

g 

The following data sets are eliminated: 

PACCg Minimum proportion of accessions assigned to geographic 

area "g " for each time period; 

PPCSr „ „•       Minimum proportion of transfers out of area "g" that must 

go to area "g' "; 

PPCS r.g.g 

TPCSr,g 

PLOSSrg 

PLOSSr. 

COST, g>g 

Maximum proportion of transfers out of area "g" that can go 

to area "g' "; 

Minimum proportion of area force total with rate "r", that 

can PCS out of area "g " for each time period; 

Assign a minimum proportion of total rate "r" losses, 

to area"g"; 

Assign no more than proportion of total rate "r" losses, that 

can be assigned to area "g"; 

Cost of PCS transfer from area g to area g'. 
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4. Modified Formulation 
The following reflects the modified formulation using the original constraint num- 

bers with only one geographic area to represent personnel on active duty. Constraints 16- 

19 linked specifically to the geographic transfer flow network are eliminated. Please note 

that the modifications for the primal and dual equilibrium approximations described above 

still apply. 

Objective Function (modified by dropping costs linked to geographic transfer 

flows): 

Minimize 

f { X X ( W°VERr g° VERr, g, t + WUNDER
r, g UNDER, gJ)] + 

V   e    r 

St-3 a 
t = 3 

g   r 

^ENLIST' , + cs       f 2 Er a v, y!t] + CENLIST 
V ' '""" v (r, a, "s",y) e TLFLOW 

Cvr, a,y       X       X <Er, g, "v", y, t + Pr + 1, g, "v", y, t> 
(r,y) eYV g 

VP,v X X P 
V     rr,y 

(r,y) e YPROM(g,g') e TALLOW 
r, g, g', y, t 

Constraints: 

zJ^"'E4","b'\ti,"o",2 — EdataE40, 
8 

I Ermttf,,,2 = Edatari,V(r,y)eYEX (1) 
{g,g')e TALLOW 

1 pr,g,g'y,2 = PdatartJ 
g, g' € TALLOW 

for(r,y)=(E5,3), (E6,5), (E7.ll), (E8.16), (E9,18) 

^ENLISTct = NACCt 

c 

for 3<t<6 

(la) 

(2) 
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ENLISTc t > PTERMC t x ^ENLISTc t 

c 

\/c,t>3 

TOSc„0.,t = PTOSd „0„txENLISTct 

Vc,t>3 

TOScyt + IPROMcyt = PTOS^XTOS^J^J 

Vc, t>3, (E4,y,t) e YTOS 

^LE"E4",b,g,y,t ~ ^TOSc,"0",t 
g c 

Vt>3 

Z E"E4",g,g',y,t ~ l^T0Sc,y,t 
(g, g') € TALLOW c 

V(E4,y,t) e YTOS, t>3 

X P"E5»,g,g',y,t = lIPR0Mcy>t 
(g,g') e TALLOW c 

V(E4,y,t) £ YTOS, t>3 

(3) 

(4) 

(5) 

(6a) 

(6b) 

(7) 

X Er,gb,g,y-l,t-l+ 2u r,g',g,y-l,t-l 
gb: (gb, g) e TALLOW g': (g', g) s TALLOW 

for (r,y-l)e YEX for (r,y-l)e YPROM 

Sw + V P (8) 
^r, g, a, y, t ^ Li r + 1, g, a, y, t 

a: (r, g, a, y) e TTOLE a: (r, g, a, y) e TTOLE 

for (r, y) e YEXS for (r + l,y) e YPROM 

\/r,g,y,t>3 
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E     r,g,'T,y,t      +P       r + l,g,"l",y,t 

for (r, y) e YEXS        for (r + l,y) e YPROM 

( \ 

NLOSSry_jX 

V 
2 Er,g\g,y-l,t-l+ 2 Pr,g',g,y-l,t-l 

g': (g\ g) e TALLOW g': ig', g) e TALLOW J 
for(r,y-l)e YEX for(r,y-1) e YPROM 

Vg,(r,y,t) e NOTYTOS 

Yß"E4","b",g,"0\t-PJ^{ S S E"E4",gb,g,y,t) + 

g ^ (gb, g) e TALLOW y: (E4,y) e YEX y 

PE4(        X I        P-JW. **.,,* 
^ (g\ g) e 7VlZX0Wy: (£4, jr) 6 J7>Ä0M 

(9) 

(10) 

2 2 Er,gb,g,y,t + 

gb: ( gZ>,g) e TALLOWy: (r,y) s FEX 

Z S Pr + 7,g'(g^^+ (11) 
#'•■ ( g.g) e rALL0W.y. (r + /, j) e YPROM 

UNDER, gt-OVERrgt = BILLET,^ 

Vr>E5,t>3 

2^ 2-i "r,g,a,y,t 
(g, a): (r, g, a, y) e TTOLPy: (r, y) G 1TÄ0M 

\(gb,a):{r-l,gb,a,y)eTTOLEy:{r-l,y)<EYEX J U4> 

^ (ft a) • (r, g, a, y) e TTOLPy. (r, y) <= YPROM 

Vr>E5,t>3 
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JL 2-i r,g,a,y,t- 
(g, a): (r, g, a, y) e TTOLPy: (r, y) e YPROM 

PJ°{ X X *r-7.,*.«.,.,l+ n„ 
\(gb,a):(r-l,gb,a,y) eTTOLEy:(r-l,y) eYEX ' (1-3) 

™( X X Pr, *..,.* 
V (g, fl) • (r, *, a, J) e TTOLPy. (r, j>) <= WÄOJf 

\fr>E5,t>3 

Z^ r, g, a, j, f 
(g,a):(r,g,a,y)e TTOLP 

PYRS X £ 2 Pr,g,a,y,t 
T'y'       {g, a): (r, *, a, j) e ZTOLPj*. (r, j) e YPROM 

Vr>E5, t>3 

E"E4", "b", g, "0", t ~ PACC
S 

X AiE"E4", "b", g, "0", t 

Vg=x, c, t>3 

-g 
g 

X X       Er,gb,g,y,t + 

gb:(gb,g) e TALLOWy:(ry) e KB* 

r + l,g',g,y,t      r,£,f X X ^..---^MAiV 
g'.(g',g) e TALLOWy:(r+',y) e WÄ0M 

Vr,g,f>3 

X (£r, ft "v", j, t + Pr + 1, g, "v", y, f ) ~ 
g 

PVSEPryX^( £ (Er,g,»v»,y,t + Pr + l,g/V>y,t)) 
e V v: (r. vl e FV y g yy:(r,y)eYV 

ME4<r<E5, y:(r,y) e YV, t>3 

X        X (Er,g,^y^Pr + 1,g,^y,^VMAXr,t 
g y:(r,y)eYV 

\/E4<r<E5, t>3 
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(15) 

(20) 
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X (£>,g,"s",y,t + Pr + l,g,"s",y,t> ~ 
g 

PERr,y*l{ X (Er,g,"s»,y,t + Pr + l,g,»s»,y,A 
g\y:(r,y)eYER J 

\/E5<r<E7, y:(r,y) e YER, t>3 

XX X Er,gb,g,y,t + 

r y:(r,y) e F£AT(g*,g) e TALLOW 

Y y y P    ,     ,   , = TOTAL, 2-t 2-t 2-t r + l,g,g,y,t t 
r y:(r + l,y) e YPROM{g,g') e TALLOW 

\ft>3 

X    X    E"9", g, "s", y, t ^ E9RS f°r t=3>4 only 

g 26<y<29 

XX X Er,g,g\y,t + 

E8<r<E9y:(.r,y) e YEX{g,g') e TALLOW 

X X P»E9»,g,g',y,t = ^X    T0TAL< 
y:(E9,y) e YPROM(g,g') e TALLOW 

\ft>3 

(23) 

(24) 

(25) 

(26) 

^UNDER„r      <UMANt £ £ E'Br.g,g,,,t „„ 
Y (g,g')e rALL0Wy:("L9",;y) e FLX U') 

The original TAPLEvI/FPS formulation should be used if data can be pro- 

vided which breaks down promotion/attrition rates by rate and years of service and geo- 

graphic area, and if these rates are significantly different between geographic areas for at 

least some rate and year combinations. However, given the data provided, the reduced 
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model is sufficient to analyze the impact of end effects on the key decision variables of in- 

terest (total accessions, total promotions by years of service for each rate, total voluntary 

and involuntary separations by rate and years of service, and deviations from satisfying ac- 

tive duty manning requirements). 

G. ANALYSIS AND RESULTS 

This section highlights the results obtained when applying primal and dual equilib- 

rium approximations to TAPLIM. The first section looks at an infinite-horizon extension 

of the truncated formulation that assumes steady state FY-99 year manning, from FY-99 to 

infinity, using a 0.9 discount factor. Truncation end effects impact both the accession and 

promotion decision variables. It is shown that the primal and dual equilibrium approxima- 

tions generate a tight bound on the infinite-horizon optimal solution and both primal and 

dual equilibrium approximations effectively eliminate the end effects. The second section 

examines the impact of primal and dual equilibrium approximations to capture end effects 

when the discount factor a varies. The choice of a does impact the optimal decisions, how- 

ever, even with a set to a relatively low value of a=0.5, end effects found when using only 

a finite horizon are eliminated. Sections three through seven examine the variability of the 

initial optimal accession decisions obtained from the zero growth model, under conditions 

of growth in future periods. Section eight uses algorithm XgError, (see Chapter V), and it 

proves highly effective, generating a tight upper bound on the error associated with using 

the optimal accession decisions derived under the zero growth assumption, when moderate 

growth occurs in future periods. In all cases, solution run times are quite reasonable. Tests 

using the model generator GAMS with solver OSL, running on an IBM RS-6000, generated 

optimal solutions using between 2 (dual equilibrium, 7 year horizon), and 7 CPU minutes 

(primal equilibrium, 29 year horizon). 
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1. Analysis and Results, Zero Growth (ß=0, oc=0.9) 

a. Convergence of Dual/Primal Equilibrium Objective Func- 

tion 

Figure 21 illustrates the convergence performance of the primal and dual 

equilibrium objectives as the solution horizon is varied. 

Primal Equilibrium Objective 
y Function Value 

Dual Equilibrium Objective 
Function Value 

Problem Horizon 
(1) Manpower Requirements Steady State Period 7 onward 
(2) Problem Structure Invariant Period 9 onward 
(3) cc=0.9 

Figure 21. 
Convergence of primal and dual objective function values. 

Figure 21 illustrates that for TAPLIM, both primal and dual equilibrium ap- 

proximations converge to within 1% within 11 years after the formulation becomes invari- 

ant. It is also worth noting that while dual equilibrium is converging slower than the primal, 

it is a closer approximation to the infinite horizon optimal objective function value for both 
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the 10 and 15 year problem horizons. This can be recognized given the infinite-horizon op- 

timal solution must be between 524 and 528, as determined from evaluating the primal and 

dual equilibrium approximation methods for a 20 year horizon. 

b.   Truncated, Partial Primal Equilibrium and Dual Equilibri- 

um Objective Function Values 

Table 2 provides a comparison of period 2 through 9 optimal objective func- 

tion values obtained from a 2 to 9 period TAPLIM formulation, and dual/primal partial ob- 

jectives obtained from the primal and dual equilibrium solutions over a 19 year horizon 

(periods 2-20). 

Truncated Objective 
Function 

469.16 

Partial Primal Objective 
Function 

491.68 

Partial Dual 
Objective Function 

490.31 

Table 2. 
Comparison of period 2 to 9 objective function values. 

With no end effects in the truncated formulation, the truncated optimal ob- 

jective function value should closely match the Primal and Dual Equilibrium partial objec- 

tive function values over the truncated problem's solution horizon. As Table 2 illustrates, 

this is not the case. A gap of approximately 5% exists between both the primal and dual 

partial objective function values and the truncated objective function value. This indicates 

that end effects are potentially influencing the solution of the truncated problem. Table 3 

provides a comparison of the dual and primal equilibrium approximation optimal solutions 

obtained when constrained to include the optimal ENLISTct variables of the truncated for- 

mulation. 
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Unconstrained Constrained Difference 

Primal Equilibrium 528.067 565.575 37.508 (7%) 

Dual Equilibrium 524.284 538.480 14.196(3%) 

Table 3. 
Comparison of primal and dual equilibrium approximations. 

The constrained version has the value of Enlistct set to the optimal truncated solution. 

As Table 3 illustrates, the optimal accession choices of the truncated formu- 

lation are feasible, but sub-optima for both the primal and dual equilibrium approximations. 

Given the infinite optimal objective function value lies between the primal and dual objec- 

tive function values (524.284,528.067), it is clear that the truncated decisions are feasible, 

but sub-optimal, since the best possible infinite horizon objective function value using the 

truncated formulation decisions is 538.480, yet the infinite optimal lies at or below 

528.067. End-effects are influencing the choices made by the truncated formulation. 

c. Examining Accession Decision Variables (ENLISTct) 

Given that end effects are influencing the accession decision variables, the 

next goal is to try to determine how these variables are being influenced by end effects, and 

then to determine whether solutions derived from Dual and/or Primal Equilibrium approx- 

imations effectively minimize or eliminate this influence. Tables 4-6 provide the optimal 

decision variables (periods 15-20) generated by a 20 period truncated formulation, a 20 

period dual approximation, and a 20 period primal approximation. 
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Time Period 

Xi 

C 
(D 

4-» o a 
e o 
U 

15 16 17 18 19 20 

2 7.50 6.88 6.87 6.93 16.01 15.69 

3 10.62 9.75 9.73 9.82 9.72 9.53 

4 26.86 24.66 24.60 24.83 24.59 24.10 

5 3.75 12.62 12.59 12.70 3.43 3.36 

6 13.74 3.44 3.43 3.46 3.43 3.36 

Table 4. 
Enlistments by contract type and time period. 

Truncated model with 20 year horizon, periods 15-20. 

Time Period 

G 
<D 

b e o 
U 

15 16 17 18 19 20 (Note 1) 

2 7.24 6.88 6.77 6.93 6.80 71.28 

3 10.25 9.74 9.59 9.82 9.63 100.98 

4 25.93 24.64 24.26 24.84 24.36 255.42 

5 4.92 3.44 3.38 3.47 3.40 68.72 

6 11.97 12.61 12.41 12.71 12.46 97.60 

Table 5. 
Enlistments by contract type and time period. 

Dual equilibrium model with 20 year horizon, periods 15-20. 
(Note 1: Period 20 represents aggregated discounted sum periods 20 to °°) 
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Time Period 

bß 
C 
0) 

•J 

c o 
U 

15 16 17 18 19 20 

2 7.29 7.12 7.12 7.12 7.12 7.12 

3 10.20 10.08 10.08 10.08 10.08 10.08 

4 25.80 25.50 25.50 25.50 25.50 25.50 

5 3.60 5.82 5.82 5.82 5.82 5.82 

6 13.12 10.79 10.79 10.79 10.79 10.79 

Table 6. 
Enlistments by contract type and time period. 

Primal equilibrium model with 20 year horizon, periods 15-20. 

The model intuitively should seek to hire as many five and/or six year con- 

tracts as possible, since the model seeks to minimize accessions and the attrition loss rates 

for the five and six year enlistees are less than any other contract. Promotions also play a 

role, as most E4s promote to E5 at the 4 and 5 year point, and once an E4 becomes an E5, 

the attrition rate decreases. Side constraints keep the model from assigning all enlistees to 

5 and 6 year contracts as the number of enlistees in each contract length must account for 

some minimum percentage of total enlistees. As the final hiring period approaches, the 

truncated model no longer needs to minimize future period attrition (and therefore the need 

to input a greater number of accessions). This influences the 6 year contract length vari- 

ables as early as year 16 (Table 4). Examining both the dual and primal equilibrium, it is 

apparent that primal and dual equilibrium approximations successfully capture the influ- 

ence of this end effect (Tables 5 and 6). It is important to note that this end effect, in and of 

itself, does not appreciably impact the truncated objective function value. There are no dif- 

ferentiated costs between contract types for enlistees, only costs associated with the total 

number of enlistees. The costs associated with this end effect are most likely tied to promo- 

tion levels to E5 and above, as these levels are heavily influenced by accession policy. It 

may also be possible that this end effect is partially the result of the existence of multiple 
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optimal solutions in the truncated formulation, that are sub-optimal over longer time hori- 

zons. 

d. Examining Promotions 

Selection for promotion to the next higher rate is driven by the objective 

function and by end effects. Tables 7-9 provide a listing of selections for promotion to E-5 

by years of service, from period 15-20, for the truncated, primal, and dual equilibrium ap- 

proximations: 

Time Period 

ü 
'> 
4) 

<4-c o 

15 16 17 18 19 20 

3 9.752 10.430 9.330 11.637 8.622 18.970 

4 6.339 6.779 6.739 7.564 6.227 13.945 

5 6.339 6.779 7.775 7.564 6.227 12.967 

6 1.463 1.564 1.555 1.746 2.395 2.992 

7 0.244 0.261 0.259 0.291 0.239 0.499 

8 0.244 0.261 0.259 0.291 0.239 0.499 

Table 7. 
Promotions by years of service to E5, periods 15-20. 

(Truncated Model) 
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Time Period 

O 
"> 

1-4 o 
xrx 
«4-1 o 

15 16 17 18 19 20 

3 10.086 10.406 10.805 10.219 12.101 113.636 

4 6.556 6.764 7.023 6.842 8.166 74.973 

5 6.556 6.764 7.023 6.842 8.166 74.973 

6 1.513 1.561 1.621 1.579 1.885 17.301 

7 0.252 0.260 0.270 0.263 0.314 2.884 

8 0.252 0.260 0.270 0.570 0.777 4.591 

Table 8. 
Promotions by years of Service to E5, periods 15-20. 

(Dual equilibrium model) 

Time Period 

O 
">    ■ 

V 

o 
</3 

15 16 17 18 19 20 

3 11.559 11.697 11.658 11.538 11.655 11.655 

4 7.513 7.603 7.578 7.500 7.576 7.576 

5 7.513 7.603 7.578 7.500 7.576 7.576 

6 1.734 1.755 1.749 1.731 1.748 1.748 

7 0.289 0.292 0.291 0.288 0.291 0.291 

8 0.289 0.292 0.291 0.288 0.291 0.291 

Table 9. 
Promotions by years of Service to E5, Periods 15-20 

(Primal equilibrium model) 

Examining time period 20 of the truncated model (Table 7) it is clear that 

the model is under promoting in periods 15,17, and 19, (when compared to primal and dual 

equilibrium) and heavily over-promoting in year 20. This end effect is most likely caused 
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by both the lack of manpower requirements for follow-on years and the objective function 

seeking to maximize promotions. The optimal promotion levels from the primal and dual 

equilibrium approximations are stable over the last five years. (It is important to note that 

year 20 of the dual equilibrium approximation, Table 8, is the discounted sum of promo- 

tions from year 20 onward. The per year average is approximately 1-oc times the value list- 

ed). Dual and primal equilibrium approximations appear to minimize the impact of this end 

effect. 

2. Impact on Zero Growth(ß=0), When a Varies 
The scalar a directly impacts the relative value of future decisions on the objective 

function value for both the primal and dual equilibrium approximations. Therefore, deceas- 

ing the value of a decreases the importance of future periods and hence the likelihood that 

end effects will pose a serious problem. For TAPLIM, this intuitive result holds true. To 

illustrate the truncated, dual equilibrium, and primal equilibrium models, with a varied 

(cc=0.5, oc=0.95) are solved for a 20 year time horizon.The variables reflecting the optimal 

number of enlistees by contract length, from the 15 - 20th period are examined. Tables 10 

- 12 summarize the results for a=0.5, and Tables 13 - 15 summarize results for a=.95. 

Time Period 

.0 
4-> 
bO 
C 
D 

-4-> 

S3 
O 
U 

15 16 17 18 19 20 

2 8.36 6.78 6.54 7.28 15.66 15.13 

3 11.85 9.61 9.26 10.32 9.51 9.19 

4 29.96 24.30 23.43 26.10 24.05 23.24 

5 4.18 3.39 3.27 3.64 3.36 3.24 

6 15.33 12.43 11.99 13.36 3.36 3.24 

Table 10. 
Enlistees by contract length, periods 15-20 

(Truncated model, a=0.5) 
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Time Period 

bß 
C <u 
iJ 

o 
U 

15 16 17 18 19 20 

2 8.36 6.79 6.57 7.25 6.71 14.56 

3 11.85 9.62 9.31 10.27 9.51 20.63 

4 29.97 24.32 23.55 25.98 24.05 52.17 

5 4.18 12.44 12.05 3.63 12.30 26.69 

6 15.33 3.39 3.29 13.29 3.36 7.28 

Table 11. 
Enlistees by contract length, periods 15-20. 

(Dual equilibrium model, a=0.5) 

Time Period 

J3 
-t-» 
bß 
G 
<D 

■J 
■4-» 
Ü 
03 a 
Ö o 
U 

15 16 17 18 19 20 

2 17.10 6.98 10.57 10.57 10.57 10.57 

3 11.76 9.89 10.48 10.48 10.48 10.48 

4 29.85 25.03 26.51 26.51 26.51 26.51 

5 6.32 12.60 10.38 10.38 10.38 10.38 

6 4.15 3.70 3.70 3.70 3.70 3.70 

Table 12. 
Enlistees by contract length, periods 15-20. 

(Primal equilibrium model, a=0.5) 
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Time Period 

ss 
c m 

o 
at 
is c o 
U 

15 16 17 18 19 20 

2 7.77 6.85 6.86 6.81 16.16 15.68 

3 11.01 9.70 9.72 9.65 9.81 9.52 

4 27.84 24.54 24.59 24.40 24.82 24.08 

5 3.89 12.55 12.58 12.48 3.46 3.36 

6 14.25 3.42 3.43 3.40 3.46 3.36 

Table 13. 
Enlistees by contract length, periods 15-20. 

(Truncated model, a=0.95) 

Time Period 

X! 
-4-» 
bO 
C 
<D 

o as 
tt 
C o 
U 

15 16 17 18 19 20 

2 7.21 6.87 6.78 6.92 6.81 141.39 

3 10.21 9.74 9.61 9.80 9.65 200.30 

4 25.83 24.63 24.30 24.78 24.42 506.65 

5 7.52 3.44 3.39 3.46 3.41 107.34 

6 9.31 12.60 12.43 12.68 12.49 222.57 

Table 14. 
Enlistees by contract length, periods 15-20. 

(Dual equilibrium model, a=0.95) 
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Time Period 

XI 
bß e 
0) 
J 

G 
O 
U 

15 16 17 18 19 20 

2 7.46 7.05 7.05 7.05 7.05 7.05 

3 10.09 9.99 9.99 9.99 9.99 9.99 

4 25.52 25.28 25.28 25.28 25.28 25.28 

5 3.56 5.08 5.08 5.08 5.08 5.08 

6 12.72 11.38 11.38 11.38 11.38 11.38 

Table 15. 
Enlistees by contract length, periods 15-20. 

(Primal equilibrium model, oc=0.95) 

In examining the truncated model's results (Tables 10 and 13), it is clear that the 

end effect associated with the selection of 5 and 6 year contracts is evident for both a=0.5 

and oc=0.95. When the dual and primal equilibrium results are examined for a=0.5 (Tables 

11 and 12), the choice of a is influencing the long term costs which influence the number 

of 5 versus 6 year contracts. However, when the dual and primal equilibrium results are ex- 

amined for a=0.95, the relative worth of a 6 year contract is improved. 

Promotion end effects are eliminated using primal and dual equilibrium approxima- 

tion methods with cc=0.5. Tables 16-18 provide a listing of the number of E4's selected for 

promotion to E5, for periods 15-20, given a=0.5, for the truncated, primal, and dual equi- 

librium approximations The truncated solution still has a significant end-effect at the 20 

year point. Both primal and dual equilibrium approximations appear to take into account 

this promotion end effect even with oc=0.5, however, the numbers selected for promotion 

are significantly lower than those with cc=0.9. (i.e., the primal equilibrium approximation's 
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total number of enlistees at period 20 is down 23%, and dual equilibrium approximation's 

total number of enlistees at year 19 is down 64%). This appears to be the result of too 

heavily discounting the value of promotions. 

Time Period 

O 
■> 

s-i 

U-i 
o 

15 16 17 18 19 20 

3 7.733 5.482 8.364 6.109 5.593 19.904 

4 5.026 4.569 6.970 4.142 4.039 14.703 

5 5.026 3.960 6.041 4.142 4.039 14.375 

6 1.160 0.914 1.394 1.219 1.136 4.051 

7 0.193 0.152 0.232 0.159 0.573 1.703 

8 0.193 0.152 0.232 0.159 0.155 0.553 

Table 16. 
Promotions by years of service to E5. 

(Truncated model (a=0.5)) 

Time Period 

o 

O 

15 16 17 18 19 20 

3 7.734 5.564 8.290 5.701 4.029 29.967 

4 5.027 4.637 6.908 4.277 2.910 20.158 

5 5.027 4.019 5.987 4.118 2.943 20.158 

6 1.160 0.927 1.382 1.425 1.099 4.652 

7 0.193 0.155 0.230 0.158 0.112 1.821 

8 0.193 0.155 0.230 0.158 0.008 0.775 

Table 17. 
Promotions by years of service to E5. 

(Dual equilibrium model (a=0.5)) 
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Time Period 

O 
'> 

o 
c/3 

15 16 17 18 19 20 

3 6.942 6.087 10.622 8.933 8.933 8.933 

4 4.512 5.072 6.904 5.832 5.806 5.806 

5 4.512 4.396 6.904 5.887 5.806 5.806 

6 1.041 1.014 1.593 1.346 1.340 1.340 

7 0.174 0.169 0.266 0.224 0.223 0.223 

8 0.174 0.169 0.266 0.209 0.223 0.223 

Table 18. 
Promotions by years of service to E-5. 

(Primal equilibrium model (oc=0.5)) 

For TAPLIM, decreasing a significantly influences the optimal solution choices, 

however, even with a 0.5 discount factor, both primal and dual equilibrium approximations 

eliminate significant end effects. 

For the zero growth model, both primal and dual equilibrium approximations effec- 

tively capture end effects of TAPLIM. The choice of a should reflect the relative value of 

future decisions, as its choice can heavily influence the optimal decision variables. For 

TAPLIM, a high value of a (0.9 or higher) seems appropriate for primal and dual equilib- 

rium approximations. 

3. Allowing for Growth in the Right Hand Side (ß>0) 
Two approaches help evaluate end effects of the truncated model for growth of the 

right hand side (RHS) after period 9. The first involves initiating a constant growth rate 

(1+P) of 1.05, starting at period 12, and continuing on indefinitely. The truncated model in 

this case should experience end effects, particularly relating to the manning requirements 

for higher rates, since the truncated model fails to account for future growth. In this case, 

the dual equilibrium approximation is feasible for all ß<(l-ct). Unfortunately, the primal 
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equilibrium approximation is not feasible over any reasonable finite-horizon. 

The truncated formulation is run over a 19 year horizon, then compared with the 19 

year partial objective function value of the 20 year dual equilibrium approximation. Table 

19 shows a large gap exists between the optimal objective function values for the truncated 

and dual equilibrium approximation. 

Truncated Objective Partial Objective, 
Dual Equilibrium 

Difference 

945.10 1076.94 >13% 

Table 19. 
Comparison of truncated objective to dual equilibrium partial objective. 

(Growth rate of 5% starting at year 12) 

A closer examination of the output of both models reveals that both the truncated 

and dual equilibrium formulations over-man in to cope with future year requirements, with 

dual equilibrium having significantly higher manning levels. Table 20 shows E4 over-man- 

ning. 

Time 
Period 

Truncated 
Over-manning 

Dual Equilibrium 
Over-manning 

6 9.946 11.029 

12 0.0 2.983 

17 0.0 4.853 

20 0.0 28.636 

Table 20. 
Overmanning of E4's to satisfy future exponential growth. 

The dual equilibrium approximation is over-manning to overcome future period 

growth, which is occurring at an exponential rate over the infinite horizon. Using exponen- 

tial growth over the infinite horizon to determine the impact of growth on the stability of 

the early decision variables is questionable, since in reality, increases or decreases in mili- 
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tary manning are not exponential over any significant time horizon.This method was 

dropped in favor of a more realistic growth. 

4. Examining the Stability of Initial Decision Variables, Given Fu- 

ture Period Growth (ß>0) Over a Finite Horizon 
Truncated, dual equilibrium, and primal equilibrium approximations are run using 

a 5% growth rate from periods 12 to 14. Figure 22 illustrates the convergence performance 

of truncation, and primal and dual equilibrium approximations. 

a 

o 
c 
3 

<D 

O <u 
IE1 

O 

580 
570 

560 

544.5 

530 

520 

Primal 

Gap <0.05% 

Time Period 

Figure 22. 
Convergence of truncated, primal equilibrium, and dual equilibrium approximations. 

(oc=0.9, and 5% annual growth, periods 12-14) 

The solution horizon length is longer because invariance is not established until pe- 

riod 15. The difference between the primal equilibrium approximation and dual equilibri- 

um approximation optimal objective function values is less than 0.05% for a 29 year 

solution horizon. The truncated solution at 20 years is approximately 3% below the infinite 

horizon optimal (between 544 and 545), and even at 30 years, has an approximate 1.3% 
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gap. End effects influence the truncated problem over solution horizons up to and including 

30 periods. 

Examining the output verifies the truncated formulation experiences the same end 

effects difficulties with the accession and promotion decisions encountered earlier. The pri- 

mal and dual equilibrium approximations effectively capture these end effects. 

5. Comparing Optimal Accession Decision Variables (Zero 

Growth Against 5% Growth) 
Primal and dual equilibrium approximations take into account end effects missed 

by the truncated model. Therefore, it is reasonable to use primal and dual equilibrium ap- 

proximations to determine optimal accession policies. However, this approach assumes 

that the coefficients associated with future periods are known. How stable are the earlier 

period decisions regarding accessions when future period requirements are uncertain? This 

question is difficult to deal with directly. However, insight is gained regarding the stability 

of accession decisions by examining changes between the zero and 5% growth models. Ta- 

bles 21-22 compare the dual equilibrium approximations, Tables 23-24 compare the primal 

equilibrium approximations. 
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Time Period 

•3 
a u 

c o 
U 

7 8 9 10 

2 6.03 7.36 6.95 7.32 

3 8.54 10.43 9.85 10.36 

4 21.61 26.37 24.92 26.22 

5 4.77 5.88 6.21 7.77 

6 9.31 11.30 10.01 9.30 

Total 50.26 61.34 57.94 60.95 

Table 21. 
Number of enlistees by contract type, periods 7-10. 

(Dual equilibrium, 30 period solution horizon, no growth) 

Time Period 

bJO 
(S 
0) 
J 
-4-» o 
S-l 

c o 
U 

7 8 9 10 

2 5.74 7.13 7.40 7.79 

3 8.13 10.10 10.48 11.04 

4 20.58 25.55 26.50 27.92 

5 2.87 5.54 9.78 10.89 

6 10.53 11.10 7.48 7.30 

Total 47.85 59.42 61.64 64.94 

Table 22. 
Number of enlistees by contract type, periods 7-10. 

(Dual equilibrium, 30 period solution horizon, 5% growth, periods 12 - 14) 
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Time Period 

C u 
hJ 
o a 
S-l 

C 
O u 

7 8 9 10 

2 6.03 7.36 6.95 7.31 

3 8.54 10.43 9.85 10.36 

4 21.61 26.37 24.92 26.21 

5 4.81 5.86 6.12 7.61 

6 9.27 11.31 10.11 9.46 

Total 50.26 61.33 57.95 60.95 

Table 23. 
Number of enlistees by contract type, periods 7-10. 

(Primal equilibrium, 30 period solution horizon, no growth) 

Time Period 

43 

c u 
►J 
-4—» 

a c o 
U 

7 8 9 10 

2 5.74 7.13 7.38 7.74 

3 8.12 10.11 10.45 10.96 

4 20.55 25.56 26.44 27.72 

5 2.87 5.54 9.80 10.85 

6 10.51 11.11 7.41 7.20 

Total 47.79 59.45 61.48 64.47 

Table 24. 
Number of enlistees by contract type, periods 7-10. 

(Primal equilibrium, 30 period solution horizon, 5% growth, periods 12-14) 

Tables 21-24 highlight the following: 

•The primal and dual equilibrium approximations provide optimal solutions 
that are almost identical over the same projected future manning requirements 
(Table(s) 21/23, Table(s) 22/24). 
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•There is some difference in the optimal accession choices for the periods 7 - 
10, when comparing the optimal zero growth choices, with the optimal 5% 
growth choices. 

The impact on the optimal objective function value of using zero growth optimal 

decisions when 5% growth is actually encountered in periods 12-14, is measured by using 

the zero-growth optimal decisions for periods 7-10, as input data to the growth model, then 

comparing the optimal objective value to that of the original growth model. Table 25 sum- 

marizes the results. 

Primal Equilibrium 
Objective Value 

Dual Equilibrium 
Objective Value 

Zero Growth 525.139 524.977 

5% Growth 544.765 544.466 

5% Growth Using Zero 
Growth Decisions 

552.710 552.415 

% Increase in 5% Growth 
Objective When Zero Growth 

Decisions Used 

1.5% 1.5% 

Table 25. 
Quantifying impact of using zero growth decisions for 5% growth 

Key results include: 

•Zero growth decisions from the primal equilibrium approximation in periods 
7-10 are feasible under 5% growth for periods 12-14. 

•Zero growth decisions from the dual equilibrium approximation in periods 7- 
10 are feasible under 5% growth for periods 12-14. 

•Zero growth decisions, are sub-optimal, but lead to objective values that lie 
within 1.4% of the infinite horizon optimal (which lies between 544.466 and 
544.765). 
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This sample point of a potential future change provides insight regarding the quality 

and of early period decisions. In this case the decisions made assuming zero growth in pe- 

riods 7-10 are near optimal for the 5% growth model. 

6. Comparing Optimal Accession Decision Variables (Zero 

Growth Against 10 % Growth, Periods 11-20) 
This section examines the impact of 10% growth over periods 11-20 on early period 

(7-10) manning requirements. Primal and dual equilibrium approximations are run over a 

30 year horizon. This solution horizon provides a tight bound for this growth pattern. Table 

26 shows a comparison of the optimal objective function values. 

Primal Equilibrium Optimal 
Solution, 30 Period Horizon, 

10% Growth, 
Periods 11-20 

12,715.038 

Dual Equilibrium Optimal Solu- 
tion, 30 Period Horizon, 

10% Growth, 
Periods 11-20 

12,604.856 

Gap (%) 

0.9% 

Table 26. 
Determining the gap between primal and dual equilibrium approximations. 

(30 period solution horizon, 10% growth periods 11-20) 

Tables 27-28 provide the optimal decision accession decision variables (periods 7- 

10) given 10% growth, for periods 11-20. 
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Time Period 

■S 
c 
(D 
J 
O 

c o 
U 

7 8 9 10 

2 7.50 8.33 8.10 7.48 

3 10.63 11.79 11.47 10.60 

4 26.88 29.83 29.02 26.81 

5 6.15 7.23 7.21 9.52 

6 11.36 12.19 11.68 7.93 

Total 62.52 69.37 67.48 62.34 

Table 27. 
Number of enlistees by contract type, periods 7-10. 

(Dual equilibrium, 30 period solution horizon, 10% growth, periods 11-20) 

Time Period 

■5 
bO 
C 
<D 

■4—> 

-4-» e o 
U 

7 8 9 10 

2 7.62 8.49 7.92 7.56 

3 10.79 12.03 11.22 10.71 

4 27.30 30.43 28.39 27.08 

5 6.98 7.62 . 7.23 8.18 

6 10.80 12.19 11.26 9.46 

Total 63.49 70.76 66.02 62.99 

Table 28. 
Number of enlistees by contract type, periods 7-10. 

(Primal equilibrium, 30 period solution horizon, 10% growth, periods 11-20) 

Given 10% annual growth, TAPLEVI requires more accessions in early periods than 

under the assumption of zero growth to offset future period manning needs for the higher 
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rates. This is not surprising given the amount of growth. Over a 10 year horizon, billet and 

manning requirements for all rates increase over 235%. Since the model can only satisfy 

higher rate manning requirements through promotion, the model hires early to deal with fu- 

ture higher rate (E7, E8, E9) needs. To determine the penalty incurred by implementing 

zero growth decisions under 10% growth for periods 11-20, the zero growth decisions are 

forced on the growth rate model. Table 29 compares the optimal objective function values 

for the growth model, (constrained versus unconstrained): 

Primal Equilibrium 
Objective Value 

Dual Equilibrium 
Objective Value 

Zero Growth 525.139 524.977 

5% Growth 12715.037 12604.856 

10% Growth Using Zero 
Growth Decisions 

13340.150 13450.259 

% Increase in 10% Growth 
Objective When Zero Growth 

Decisions Used 

4.9% 6.7% 

Table 29. 
Quantifying the impact of using zero growth decisions 

when 10% growth occurs over periods 11-20. 

Implementing zero growth decisions in the growth model still leads to a feasible so- 

lution, however the solution is sub-optimal. A difference of between 5-7% in the infinite- 

horizon optimal (which lies between 12,715 and 12,605) is possible. A closer examination 

of the decisions also shows that from the models point of view, implementing zero growth 

decisions results in ramping up recruiting to unrealistic levels, overmanning lower rates and 

undermanning higher rates in later periods. While the model treats these conditions as fea- 

sible (at a high cost), these conditions are not feasible in practice. 
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7. Determining Quantitative Impact of Using Zero Growth Initial 

Optimal Decisions When Potential For Growth Exists 
Assume that two extreme right hand side possibilities are possible, b0, which rep- 

resents zero growth manning requirements, and bh which represents some reasonable max- 

imal growth possibility for manning needs. Chapter VII derived algorithm x0Erwr, which 

given two potential right hand sides, b0 and^, generates a non-increasing sequence of up- 

per bounds on the deviation of the optimal infinite horizon solution if optimal solutions tied 

to b0, are used for any b=(l-d)bQ+(Q)bv This section illustrates the utility of this algorithm 

to generate an upper bound on the deviation of the optimal objective value of TAPLIM, un- 

der the 5% growth conditions presented previously in section 6. Specifically, b0 represents 

the establishment of post-downsizing level manning requirements from year 7 onward, bl 

represents the same baseline established in year 7, but then initiation of a 5% annual growth 

rate in manning requirements between years 12-14. Manning requirements then hold level 

from period 13 onward. In solving hpr(Q), the ENLISTct variables for periods 7-10 are 

fixed to the optimal decision variables obtained by solving primal equilibrium approxima- 

tion using level future manning requirements (i.e., right hand side b0). 

The following initial information is known (Obtained from Table 25.): 

•Zero Growth Optimal (Dual Equilibrium) hd(0) = 524.977 

•Zero Growth Optimal (Primal Equilibrium) hp(0) = 525.139 

•5% Growth Optimal (Dual Equilibrium) hd(\) = 544.466 

•5% Growth Optimal (Primal Equilibrium) hp(\) = 544.765 

•5 % Growth Optimal (Primal Equilibrium Restricted) hpr( 1) =552.711 

In examining the difference hpr(\)-hd(\)=%.2A5, the maximum potential error gen- 

erated by using the initial decision variables is at least 8.245, (the restricted primal deci- 

sions are used and the infinite optimal solution is equal to the dual equilibrium 

approximation). However, the maximum error can potentially be worse. Two full iterations 
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of x0Error {d=\, d=2) are run providing a tight upper bound on the maximum error possi- 

ble. Figure 23 graphically shows the results. x^Error confirms that the worst error possible 

is 8.245, and this occurs at the highest growth rate, which is associated with right hand side 

equal to bx. For this problem, x0Error performs quite well. 

555 

545 
s 

K 
•2 
S 

•5 
o 

535 

525 

First Approximation 
ofhpr(B) 

Second Approximation 
qfhprfQ) 

Upper Bound 
on Error After 
Second Iteration 

Upper Bound on 
Error After First 
Iteration 

hd(Q) (Unknown) 

I  Known points ofhd(Q) 
■  Known points of hpr(B) 
k. Known points ofhp(Q) 

Figure 23. 
Illustrating the performance of algorithm x0Error on TAPLM. 

H. SUMMARY 

TAPLIM experiences end effects when solved using truncation. Two key decision 

variables being influenced by end effects are the number of accessions selected each period 

(by contract type), and the number of personnel selected for promotion each period (by rate 

and years of service). Use of primal and dual equilibrium approximations provide the abil- 
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ity to capture, and quantify the impact of these end effects. Primal and dual equilibrium ap- 

proximations can also be used to quantify the impact of using baseline infinite-horizon 

decisions, when manning requirements differ from the infinite-horizon baseline. 

Primal and dual equilibrium approximations have proven useful, effectively elimi- 

nating the end effects associated with the truncated formulation of TAPLIM. While primal 

and dual equilibrium approximations worked well on TAPLIM, the primal equilibrium ap- 

proximation could not be used with TAPLIM/FPS. Given the quality of data provided, fur- 

ther study of TAPLIM/FPS was not pursued. 

The next chapter examines the capability of the primal and dual equilibrium ap- 

proximations to bound the infinite optimal solution and eliminate end effects for an integer 

program. 
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VII. APPLYING PRIMAL AND DUAL APPROXIMATION 
METHODS TO QUANTIFY END EFFECTS FOR AN INTEGER 
PROGRAM 

This chapter examines the capability of primal and dual equilibrium apporoxima- 

tions to bound the infinite optimal objective function value and quantify end effects for an 

integer program. For the problem considered, the methodology proves highly successful in 

both bounding the infinite optimal solution and identifying and minimizing the impact of 

end effects. Dual and primal equilibrium approximations, solving over the same solution 

horizon as a truncated formulation, provide a tight bound around the infinite optimal and 

eliminate a key end effect which adversely influences the truncated formulations optimal 

decision variables. 

Section A introduces the integer program of interest, called Optimally Scheduling 

Instructors (OSI). OSI is currently in use by the Defense Language Institute (DLI), as a de- 

cision aid to determine instructor requirements and establish course schedules. Section B 

presents a finite period formulation of OSI. Section C then expands the finite-horizon for- 

mulation to an infinite-horizon formulation, and provides insight regarding the basic matrix 

structures involved. Sections D and E derive the dual and primal equilibrium approxima- 

tions for the infinite-horizon formulation of section C. These formulations form the basis 

for the follow-on analysis. Section F examines the impact of end effects on OSI providing 

the following results: 

•The first period optimal decisions are highly variable for varying truncated 
solution horizons. 

•The optimal initial decisions generated by shorter truncated solution horizons 
are suboptimal over longer truncated horizons. 
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•Primal and dual equilibrium approximations tightly bound the infinite-hori- 
zon optimal solution for solution horizons as little as 3 years. In addition, 
both the primal and dual equilibrium initial year optimal decisions remain 
quite stable for increasing solution horizons. 

•The primal equilibrium approximation tightly bounds the infinite optimal 
solution, is feasible to the infinite-horizon problem, and any remaining end 
effects have little influence over the optimal objective value, since any 
remaining end effects can only influence the infinite optimal objective over a 
very small range. 

•The end effects of using the initial year optimal decisions from the three year 
truncated model significantly influence the optimal solution over the infinite- 
horizon. The primal and dual equilibrium approximations eliminate the key 
end effect influencing the truncated formulation. 

•The choice of the discount factor a has little influence over the optimal deci- 
sions. 

•The impact of future growth on the optimal first year decisions is minimal. 

Finally, section G summarizes the key results of this chapter. For OSI, primal and 

dual equilibrium approximations prove highly effective in generating realistic solutions 

that minimize end effects. 

A. OPTIMALLY SCHEDULING INSTRUCTORS 

Optimally Scheduling Instructors (OSI) is a series of mixed integer programs de- 

signed for the Defense Language Institute (DLI), that are currently used to assist in the cre- 

ation of a separate yearly course schedule for each foreign language (see Dell, Kunzman, 

and Bulfin, (1993)). 

Dell, Kunzman, and Bulfin report the constraints imposed by DLI in generation of 

a schedule to include: 

•Instructors work full time; 

•Instructors are hired on a one year contract (Calendar Year); 

•Instructors can only teach one section of a course at a time; 
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•Two instructors are needed for each section of a course; 

•DLI is closed for holiday during the last two weeks in December. (This 
allows the use of a yearly 50 week schedule for modeling); 

•DLI restricts any courses from beginning within one month prior to the 
December Holiday. Courses may be allowed to end during this period; 

•Courses may not end within the three weeks following the December holiday 
break; 

•DLI prefers to start three (but no more than three) sections of a course in any 
week; and 

•The scheduled section starts must satisfy the yearly requirement for section 
starts. 

B. MODEL OSIi 

The model of interest is OSIj, the first model in the series (see Dell, Kunzman, and 

Bulfin, (1993)) which seeks to minimize the total instructor man-years over the solution ho- 

rizon while satisfying course scheduling requirements. The following sections provide a 

detailed formulation for OSIj. 

1. Indices: OSIj 

i course; 

y schedule year (1-k); 

t,t' weeks DLI is in session (l-50(k)). 

2. Given Data: OSIx 
startit 1 if course i can begin in week t and 0 otherwise (this parameter 

enforces scheduling restrictions); 

pcdurt number of sections in session during week t due to past scheduling 

decisions; 
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sectioniy number of sections of course i that require scheduling in year y, 

lengthi length of course i (in weeks). 

3. Decision Variables: OSIx 

xit number of sections of course i to start in week t (non-negative 

integer, limited to a value <3); 

tmaxy maximum number of simultaneous sections meeting in year y 

(with xit restricted to non-negative integer, tmaxy is implicitly a 

non-negative integer). 

4. Formulation: OSIj 

Objective: 

Minimize ^2x tmaxy 

y 

Subject to the following constraints: 

50y 

X startuxit = sectioniy 

t= (l+50(y-l)) 

\/i,y 

(1) 

t 
stnrt. .T.... 4- nrdur. <tmax   .. 

+ 1 (2) V-l) 
50 

V       y\       startit,xit> + pcdur{ < tmax 
* t' = t - length 

Vt, |_  J is the floor operator 

Constraint (1) ensures that yearly requirements for course i are scheduled. Con- 

straint (2) defines the maximum number of simultaneously scheduled courses. 

C. EXPANDING OSIx OVER AN INFINITE SOLUTION HORIZON 

The formulation structure for OSIj has the following characteristics: 

•Feasible weeks that a given course is eligible to start remain unchanged from 
year to year; and 
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•Course requirements from year to year are relatively stable. Therefore, the 
truncated formulation can be extended to an infinite-horizon formulation 
using "steady state" yearly requirements. 

Computational experience with OSIj, shows: 

•OSi! routinely provides integer solutions with very small integrality gaps 
with respect to the LP relaxation (less than 3%); and 

•The first year decision variables experience significant end effects as the trun- 
cated solution horizon varies. It appears end effects influence the initial opti- 
mal decisions over solution horizons from 3 to 6 years. 

Because OSIj is influenced by end effects, and the constraint structure is invariant 

and staircase in nature, OSIj is a candidate for using dual and primal approximations to 

quantify potential end effects. The observed small integrality gaps associated with truncat- 

ed solutions indicate the LP relaxation to the dual equilibrium approximation may provide 

a good lower bound. 

OSIj, defined over an infinite-horizon (in years), exhibits a two period overlap 

staircase matrix structure. The two period overlap is a result of the fact that some course 

lengths are in excess of 50 weeks. Therefore it is possible for one of these courses to start 

a section in year y-2, and not complete the section until the first part of year y. The formu- 

lation below illustrates this two period overlapping staircase structure: 

181 



k-3 v-<        y-3 
Minimize cxj + cx2 + cx3 + acx4...+a     cxk+ 2,   a     cxy 

y=k + l 

Subject to: 

Ax} = bi+s   V) 

Kxj +Ax2 =b2 + d   (2) 

Hxj +Kx2  +Ax3 =b       (5) 

Hxk_2+Kxk_1+Axk =b       (k) 

Hxk_j +Kxk+Axk + 1 =b     (k+1) 

xy>0    (y=0,l,2...). 

For OSIx, the objective function is discounted beginning with period 3. This en- 

sures convergence of the optimal objective function value. In the formulation, xy is the vec- 

tor (xit:50(y-l)+l<t<50y, tmaxy), by is the associated right hand side which includes yearly 

section requirements section^, and s and d represent previously scheduled sections which 

impact on the first two year totals. Also note that by becomes invariant from year 3 onward. 

D. DUAL EQUILIBRIUM FORMULATION 

The dual equilibrium approximation aggregates with the a discount factor all the 

constraints from period k onward and then substitutes xk =  X v?~3x, ■ The resulting re- 
y = k 

formulation is: 
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(k-l)-3 k-3 „ 
Minimize cx.+ cx~ + cx^ + acx4...+a cxk_] + a cxk 

Subject to: 

Ax, 

Kx. +Ax~ 

Hx. +Kx~    +Ax, 

Hxk-4 +Kxk-3 +Axk-2 
Hxk_3  +Kxk_2 +Axk-1 

Hxk-2  +(K + aH)xk-l +{A+aK + a H)xii 

:bj+S     (1) 

b2+d   (2) 

= b      (3) 

= b      (k-2) 

= *      (k-1) 

x  >0. 
y 

The dual equilibrium implementation for period k constraints depends on the row 

structure of H, K, A, and b. The structure of the OS^ allows us to capture the appropriate 

H and K elements as shown in the dual equilibrium formulation OS^d. 

1. Indices: OSIxd 

i course; 

t,t' weeks DLI is in session (i toT= kx50); 

y schedule year (1 to k). 

2. Given Data: OSlid 
startit 1 if course / can begin in week t and 0 otherwise (this parameter 

enforces scheduling restrictions); 

number of sections in session during week t due to past scheduling 

decisions; 

number of sections of course i that require scheduling in year y, 

lengthi length of course i (in weeks). 

pcdurt 

section 
V 
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3. Decision Variables: OSIxd 

xit number of sections of course i to start in week t<50(k); 

(non-negative integer, limited to a value <3); 

tmaXy maximum number of simultaneous sections meeting in year y 

(when xit restricted to non-negative integer, tmaxy y<Y, is implicitly 

a non-negative integer). 

(Note: Using the LP relaxation provides a valid lower bound and unless specified 

otherwise, this is the bound reported for the dual equilibrium approximation.) 

4. Formulation: OSIja 

Minimize 

2 x tmaxj + 2 x tmax2 + 
fk-i 

J~3< Y 2a'   ~tmax„ 
k-3        A 

+ 2a       (tmaxk) 
Vy = 5 

Subject to: 

50y 

£ StartU*it  =  Secti0niy 
t= U+50(y-l)) 

\/i,y<k 

50y section 
X     startu*it = — 

t= (l+50(y-l)) 

\/i,y=k 

iy 

a 

(1) 

(Id) 

V        V        starti(,xit, + pcdurt < tmax 
* t' = t-lengthi 

Vt<50(Y-l) 

i.t-1) 
50 

+ 1 (2) 
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startit,xit, + 50 

2       S       startit,xit, + pcdurt + 
i t' = t-lengthi 

(k-l)50 

» t' = max (< - lengthy (k- 2) 50 + 1) 

if max(t-length» (fc-2)50 + 1) <{k-1)50 

(k-2)50 

«s s 
« f' = max (f - lengthy (k -3)50 + 1) 

if max (t - lengthy {k-3)50 + 1) < (k-2)50 

(k-2)50 

aj X startit'Xi,t' + 50 
i t' = max (t - lengthy (k - 3) 50 + 1) 

V       if max (t-length» (k- 3) 50 + 1) < (k - 2) 50 

V(50(k-l)+l)<t<50k 

startit'Xi, t' +100 

< tmaxfr 

(2d) 

E. PRIMAL EQUILIBRIUM FORMULATION: OSI^ 

The primal equilibrium formulation, OS^p, uses cuts of the form xy.L+1=xy, (all 

y>k, l<L<k). For example, consider k=20 years, and L=5. This implies that: 

X\6=x2\- X2(T xll-' 

Xn=X22= *27= *32-' 

*18=*23=*28=x33-' 

x 19=^24= x29= "^34 • • •' a 

*20=*25=;,::30=*35-- 

From this illustration it is clear that primal restrictions start being included with the 

year k-L+1 variables (year 16 in our example). This method of defining cuts has the advan- 

tages that it leads to a relatively simple finite period re-formulation of the infinite-horizon 

problem as shown below: 
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* y-3 
k-L-3 V 

Minimize cx,+cx 2+cx 3 +acx 4+...+a cxk-L+        2-i 

y=k~L+l 

a       ex 
 y 

l-aL 

Subjec 'to: 

Ax j 

KXj +Ax2 

Hxj +Kx2 +Ax, 

= b ,+s (1) 

= b2 + d (2) 

= b (3) 

= b (k) 

= b (k+J) 

= b (k+2) 

Hxk-2+Kxk-l+Axk 

Hxk-1   +Kxk+Axk + 1-L 

Hxk  +Kxk + ]_L+Axm.n(kk + 2_L) 

x  >0 L>1. 
y 

Fixing a value of £ also allows different values of L to be investigated, without al- 

tering the size of the resulting formulation. This allows for an effective comparison of dif- 

ferent cut structures, as the resulting formulations have the same number of variables and 

constraints. 

For OSIjp, the primal equilibrium implementation for period k+1, and k+2 con- 

straints depends on the row structure ofH, K,A,andb. The structure of the OSIj allows us 

to capture the appropriate H and K elements as shown in the primal equilibrium formula- 

tion OSI^p. 

1. Indices: OSIjp 

i course; 

t,t' weeks DLI is in session (1 toT= kx50); 

y schedule year (1 to k). 

2. Given Data: OSIiP 
startit 1 if course i can begin in week t and 0 otherwise (this parameter 

enforces scheduling restrictions); 
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pcdurt number of sections in session during week t due to past scheduling 

decisions; 

section^, number of sections of course i that require scheduling in year y, 

lengthi length of course i (in weeks). 

3. Decision Variables: OSIxp 

xit number of sections of course i to start in week t<50(k-l) 

(non-negative integer, limited to a value <3); 

tmaxy maximum number of simultaneous sections meeting in year y 

(with xit restricted to non-negative integer, tmaxy y<k, is implicitly 

a non-negative integer.). 

4. Formulation: OSIjp 

Minimize 

(  3                  ]    (k~L   v  3                   ]        *     ay~3(2xtmax ) 
^2xtmaxy   +    £ or     (2xtmaxy)   +    £    1  

\y = l )     \y=4 '     k-L + 1 l~a 

Subject to: 

50y 

X startuxit = «cfton^ (1) 

* = (l+50(y-l)) 

Vz,y<fc 

t 

V       Y       startu,xit,+pcdurt<tmax (,_7) 

» t' = t-lengtht L   50 

V?<50(Jt) 

+ i (2) 
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(ft-7) 50 

X X startit,x{ t> + 50 + 
i t' = max (t - lengthy (k-2) 50 + 1) 

if max (t - lengthy (k-2)50 + 1) < (ft -1)50 

t 

X X startit'Xi,t'-50{L-l) + 

i       t' = max (t - length? (ft -1)50 + 1) (2pl) 

if max (t-length;, (ft-1)50 + 1) < (ft)50 

(k-2)50 

X 2 ^V • /' + 50 ^ tmaXk -(L-l) 
i t' = max (t - length;, (ft -3)50 + 1) 

if max {t - length;, (ft - 3) 50 + 1) < (ft - 2) 50 

V(50(k-l)+l)<t<50k 

(ft -1)50 

X X startit'Xi,t'-50{L-2) + 

* f = max(t-length;, (k-2)50 + 1) 

if max (t-length., (k-2) 50 + 1) <(k-1)50 

t 

2 2 startit'Xi,t'-max(50(L-2),0) + 

i t' = ma* (t - length;, (k-1)50 + 1) (2p2) 
if max it-lengthv (k-1) 50 +1) < (k) 50 

(ft - 2) 50 

]T, X startit'Xi,t' + 100-tmaXk-max(L-2,0) 
i t' = max (t-length;, (ft -3) 50 + 1) 

if max {t-lengthf (k-3) 50 + 1) <(k-2)50 

V(50(k-l)+l)<t<50k 

F. EXAMINING THE IMPACT OF END EFFECTS ON OSIx 

This section examines the ability of dual and primal equilibrium approximations to 

quantify end effects for OSIj applied to Arabic courses taught at DLL Arabic was chosen 

since four of the eight yearly courses are 63 weeks in length and this provides a fairly large 

number of constraints with two period overlaps. The number of courses required increase 
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approximately 17% between years 1 and 2, then are assumed to remain unchanged from 

year three onward (see Dell, Kunzman, and Bulfin (1993) for data). 

Section 1 examines the stability of the initial year decisions as the truncated solution 

horizon varies between 3 and 6 years. The initial year decisions vary greatly, indicating end 

effects influence the optimal solution. Section 2 examines the ability of primal and dual 

equilibrium approximations to bound the infinite optimal solution of OSI^ Primal and dual 

equilibrium approximations bound the infinite optimal solution to within 1% over solution 

horizons as short as three years. Section 3 quantifies the impact of using initial year deci- 

sions generated by the truncated formulation, by fixing these decisions over the infinite-ho- 

rizon and examining the impact on the primal and dual equilibrium approximations' 

optimal objective function values. For the Arabic data set, this impact is significant. Section 

4 examines the optimal decisions generated by the truncated, primal, and dual equilibrium 

approximations, and identifies a key end effect which adversely influences the optimal de- 

cisions of the truncated model. Section 5 analyzes the choice of a, and its impact on the 

solutions provided by primal and dual equilibrium approximations. For OSIj with Arabic 

data, the choice of a has little impact on the optimal solutions. Section 6 concludes the anal- 

ysis by examining the stability of the initial year decisions as the future year requirements 

vary. The initial year optimal decisions from the level growth model are always near opti- 

mal. 

1. Stability of Initial Year Optimal Decisions as the Truncated 

Formulation Solution Horizon Increases 
As shown in Table 30, initial runs with the Arabic data over truncated solution ho- 

rizons between 3 and 6 years indicate a large variation in the optimal first year solutions. 
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3 Year Solution 
Horizon 

188 Instructors 

4 Year Solution 
Horizon 

164 Instructors 

5 Year Solution 
Horizon 

156 Instructors 

6 Year Solution 
Horizon 

168 Instructors 

Table 30. 
Optimal number of instructors required for the first year as the 

solution horizon for the truncated formulation is increased from 3 to 6 years. 

There is a large variation in the optimal number of instructors recommended in year 

one as the truncated solution horizon increases. To determine if the first year solutions (in- 

structors required and proposed course schedule) generated by the shorter solution horizon 

formulations are suboptimal over longer solution horizons, we fix the first year solutions in 

problems with longer solution horizons. Table 31 provides a comparison listing of the op- 

timal objective function values for the truncated formulation obtained using first year con- 

strained and unconstrained solutions. 

4 Year Solution 
Horizon 

5 Year Solution 
Horizon 

6 Year Solution 
Horizon 

Unconstrained 
Objective 
Value 
(LP, MIP) 

713,714 

914,914 

1111,1120 

Constrained 
First Period 
Optimal 
Instructor 
Schedule from 
3 Year Model 
(LP,MIP) 

732,732 

944,944 

1123.6,1124 

Constrained 
First Period 
Optimal 
Instructor 
Schedule from 
4 Year Model 
(LP,MIP) 

926,926 

1120,1120 

Constrained 
First Period 
Optimal 
Instructor 
Schedule from 
5 Year Model 
(LP,MIP) 

1124,1124 

Table 31. 
Examining optimality of first year optimal decisions when these decisions are applied 

over longer solution horizons. 
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Fixing the first year best integer solution derived from the 3 year solution horizon, 

for the 4 to 6 year solution horizon models, adversely impacts the best integer objective 

function value found over the longer solution horizons (increase of 2.6% for 4 year horizon, 

3.3% for 5 year horizon, and 0.5% for the 6 year horizon). Using the first year best integer 

solutions derived from the 4 year solution horizon, leads to a slightly suboptimal solution 

when solved over a 5 year horizon (increase of 1.3%), and no significant difference is noted 

for the 6 year solution horizon (the linear programming relaxation increases by 1 %, but best 

integer solution has the same objective function value). Using the first year best integer so- 

lution, derived from the 5 year solution horizon, leads again to slightly sub-optimal solu- 

tions over a 6 year horizon (optimal objective function value increases 1%). 

End effects influence the first period best integer solution using a three year solu- 

tion horizon. These end effects appear to be present in some form even over 4,5, and 6 year 

solution horizons. However, this method of evaluating initial year solutions for end effects, 

while providing qualitative insight, provides no guidance in determining a solution horizon 

that ensures the first period solution is in some sense "nearly optimal". 

2. Bounding the Infinite-Horizon Optimal Solution 
Assuming that the course requirements from year 3 onward are invariant over the 

infinite horizon, Table 32 reports results obtained using primal and dual approximations 

with lengths of 3,4,5,6,10,15, and 20 years. Specifically, Table 32 provides the objective 

function values for primal and dual equilibrium approximations as well as the integer solu- 

tion for the number of instructors required for years 3,4,5, and 6. Figure 24 provides a 

graphic comparison of the optimal objective function values obtained for the primal equi- 

librium approximation, dual equilibrium approximation, and truncation, as the solution ho- 

rizon varies from 3-20 years. For all horizon lengths, ot=0.9 starting with year 4, and 

xt=xt+1 for primal equilibrium. The primal equilibrium line defines a near optimal objective 

value (best integer solutions with integrality gaps of 1 to 2% from the relaxed optimal), and 

therefore provide a valid upper bound. The dual equilibrium values represent the optimal 
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objective value obtained by the LP relaxation to the dual equilibrium approximation, and 

form a valid lower bound on the infinite optimal. 

Solution 
Horizon, 
Approxi- 
mation 
Type 

Relaxed 
Optimal 
Objec- 
tive 
Func- 
tion 
Value 

Best 
Integer 
Objec- 
tive 
Function 
Value 

Number of Instructors (For Each Yr.) 

Yrl Yr2 Yr3 Yr4 Yr5 Yr6 

3 Year 
Primal 

2291.2 2308.0 160 188 196 

4 Year 
Primal 

2290.2 2308.0 160 188 196 196 

5 Year 
Primal 

2289.5 2309.6 162 188 192 200 196 

6 Year 
Primal 

2289.36 2299.8 162 188 184 198 196 196 

3 Year 
Dual 

2283.92 2284.04 158 190 - 

4 Year 
Dual 

2284.82 2284.89 164 184 184 - 

5 Year 
Dual 

2284.97 2284.97 164 184 184 188 - 

6 Year 
Dual 

2285.69 2286.41 164 184 184 194 202 _. 

Table 32. 
Primal and dual equilibrium solutions. 

(3 to 6 year solution horizons) 
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Figure 24. 
Convergence of dual and primal equilibrium approximations. 

(a=0.9 discount factor starting with year 4) 
(Primal Equilibrium values are "Best Integer" near optimal solutions) 

Using primal and dual equilibrium approximations, the infinite optimal solution of 

the mixed integer program OSIj, given that year 3 requirements hold for all future periods, 

lies in the interval (2286.24, 2292.31). The ability of primal and dual equilibrium approxi- 

mations to bound the infinite optimal objective function value is outstanding. Even with a 

3 year solution horizon, the bound generated, (2283.922, 2308.0) has a gap of just 1%. Al- 

so, unlike the truncated formulation, the first period dual and primal equilibrium approxi- 

mations' solutions remain relatively stable over increasing solution horizons, with primal 

equilibrium approximation solutions varying between 160 and 162, and dual equilibrium 

approximation solutions varying between 158 and 164. 

3.  Quantifying End Effects for Initial Decision Variables 
The bound for the infinite-horizon optimal solution lies between (2286.24, 

2292.31). This bound provides a baseline for measuring the impact on the infinite optimal 
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solution of fixing first year decisions generated by the three period truncated formulation 

over the infinite-horizon using primal and dual equilibrium approximations. Figure 25 

graphically displays the results. Primal and dual solutions are generated using a 10 year so- 

lution horizon. 

Gap Between Bounds  2317.19 
For Infinite Horizon 
Optimal Objective      ^ _L _ j^ _ _ _2299.15 

2292.3 L  

2286.24 ft  

Bound on Infinite 
Horizon Optimal When First 
Period Decision Constrained 
To Those of 3 Period 

Bound on Infinite Truncated Model 
Horizon Optimal When First 
Period Decision Unconstrained 

Figure 25. 
Quantifying the impact on the infinite optimal solution when the first year 

decisions from the truncated 3 year formulation are used. 

As Figure 25 illustrates, the first year decisions generated by the 3 year truncated 

model are suboptimal choices over the infinite-horizon. Figure 25 highlights that the best 

possible infinite-horizon optimal solution implementing first year decisions is 2299.75, 

while the worst possible unrestricted infinite-horizon optimal solution is 2292.31. This is a 

minimal gap of 7.44. While this gap is insignificant compared to the total infinite-horizon 

cost, «1%, on examining the year to year manning requirements, most of this cost differ- 

ence occurs in the early years of the solution horizon. Table 33 provides a comparison of 

cumulative instructor years required over the first 5 years, for the primal equilibrium ap- 

proximation (unconstrained) and the primal equilibrium approximation (constrained to use 

first year solution from the truncated formulation). 
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Year 

Constrained Primal Equilibrium 
Approximation Using First Year Solu- 
tion From 3 Year Truncated Formulation 

Unconstrained Primal Equilibrium 
Approximation 

Cumulative Difference in Total 
Instructor Years 

Year 1 

188 

160 

-28 

Year 2 

172 

188 

-12 

Year 3 

184 

188 

-8 

Year 4 

202 

194 

-16 

Year 5 

200 

200 

-16 

Table 33. 
Illustrating the near term differences in manning costs when 

first period truncated solutions are used for Arabic course schedule. 

It is evident that there are high near term costs associated with implementing the 

first period decisions provided by the truncated solution. However, since all costs are pos- 

itive the truncated formulation provides a best possible solution minimizing the costs over 

a three year horizon. The question is, at what point does implementing a three year solution 

become more expensive than using the infinite-horizon solution. To answer this question, 

a year by year comparison is made using the primal equilibrium approximation. Two ten 

year horizon models are run, one restricting the first three year decisions to those provided 

by the three year truncated formulation, the other with no restrictions. The results are pre- 

sented in Table 34. 
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Year Yearl Year 2 Year 3 Year 4 Year 5 

Constrained Primal Equilibrium 
Approximation Using Solutions From 3 
Year Truncated Formulation 

188 168 166 230 214 

Unconstrained Primal Equilibrium 
Approximation 

160 188 188 194 200 

Cumulative Difference in Total 
Instructor Years 

-28 -8 +14 -22 -36 

Table 34. 
Illustrating the near term differences in manning costs when solutions from a three year 

truncated horizon are used for Arabic course schedule. 

As expected, the truncated model provides the better solution for a three year hori- 

zon. However, the year 4 requirements are quite high, and over a 4 year horizon, these same 

choices are suboptimal. The truncated model does not have to anticipate meeting any year 

4 requirements, and this end effect is adversely influencing the optimal decisions for the 

first 3 years. 

4. Identifying End Effect(s) Which Influence the Initial Decision 

Variables 
The optimal solutions generated by the truncated formulation, call for a large num- 

ber of instructors in year 1, followed by a significantly smaller number of instructors in 

years 2 and 3. This is a non-intuitive result, since the course loading increases from year 1 

to 2, and then remains the same for year 3. Table 35 summarizes the course requirements 

for Arabic and the optimal number of instructors generated by solving the truncated, primal 

equilibrium, and dual equilibrium approximations. 
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Year YR1 YR2 YR3 

ARABIC MODERN STANDARD 
(63 Week Course) 

65 75 75 

ARABIC INTERMEDIATE 
(47 Week Course) 

1 1 1 

ARABIC ADVANCED 
(47 Week Course) 

1 1 1 

ARABIC REFRESHER 
(20 Week Course) 

1 1 1 

Total Courses Required 68 78 78 

Optimal Number of Instructors 
Generated by Truncated Model 

188 168 166 

Optimal Number of Instructors Generated 
by Primal Equilibrium Approximation 
(10 year solution Horizon) 

160 188 188 

Optimal Number of Instructors Generated 
by Dual Equilibrium Approximation 
(10 Year Solution Horizon) 

162 186 188 

Table 35. 
Comparison of optimal values with course requirements for Arabic data. 

Why does the truncated solution hire so many instructors in year 1, and then need 

so few instructors in years 2 and 3, given the course loading is increased? The minimum 

number of instructors that must be hired in years 2 and 3 is twice the number of courses 

required, since 2 instructors are needed for each course. For year 1, this equates to 136 in- 

structors, for years 2 and 3, this equates to 156 instructors. The model also continues to sup- 

port courses that are ongoing (courses started in one of the previous two years prior to the 

current solution horizon). A closer examination of the results indicates that the truncated 

model starts as many courses as possible near the beginning year one, leading to significant 

overlapping with on-going courses, thereby requiring a large number of instructors early in 

the year. In year 2, the model seeks to start as many courses as possible in the middle of the 
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year, minimizing overlap with those courses which began in the beginning of year 1 (75 of 

the 78 courses are 63 weeks in length). For the third year the model starts as many courses 

as possible during the last third of the year, minimizing overlap with year 2. The model fails 

to account for year 4. Therefore the truncated solution, extended to year 4, has overlap 

problems over more than one half of year 4's eligible starting weeks. High penalties are 

paid when instructor needs are minimized over a 3 year horizon. Both primal and dual equi- 

librium approximations effectively account for this end effect. The solutions generated by 

the four, five, and six year truncated formulations all exhibit the end effect of scheduling 

as many courses as possible late in the final period. Solving truncated formulations over a 

longer horizon will eventually minimize the impact of this type of end effect over the first 

period optimal solution. The advantage of using primal and dual equilibrium approxima- 

tions is that they provide a tight bound on the infinite optimal solution over a reasonable 

solution horizon (which for the Arabic data is as few as 3 years). Any remaining end effects 

can only influence the optimal solution over the range of the bound. For OSI using the giv- 

en Arabic data, remaining end effects can only minimally influence the optimal objective 

function value (<1%), as the infinite optimal objective function value is bounded between 

(2286.24, 2292.31). The primal and dual equilibrium approximations capture end effect in- 

fluences in reasonable solution horizons, and provide a basis for measuring remaining end 

effects. 

5.  INFLUENCE of a 
Solving 10 year primal and dual equilibrium approximations using the Arabic data 

set, for oc=0.5, oc=0.9, and cc=0.95 provides insight regarding the influence of a on the op- 

timal decisions. Table 36 displays the optimal number of instructors hired for each year. 

The size of the gap that bounds the objective function value remains stable over a. In all 

cases, the bound between the best integer primal equilibrium approximation, and the linear 

relaxation of the dual equilibrium approximation, is well under 1%. 
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YEAR 1 2 3 4 5 6 7 8 9 10 

Dual (a=0.5) 166 182 180 198 205 198 184 200 202 380.4 

Primal (a=0.5) 166 182 180 198 204 198 186 196 200 196 

Dual (a=0.9) 162 186 188 194 198 198 192 192 194 1948.2 

Primal (a=0.9) 160 188 188 194 200 198 194 196 196 196 

Dual (a=0.95) 162 186 190 190 198 200 194 194 188 3885.8 

Primal(a=0.95) 164 184 188 194 198 196 196 196 194 196 

Table 36. 
Comparison of the optimal number of instructors required, as a is varied, for both 

primal and dual equilibrium approximations. 

Table 36 shows no distinguishing trends. Primal first year decisions vary between 

166,164, and 160. The question is, how stable is this first decision with respect to a? Table 

37 compares the optimal objective function values from solving the a=0.5 and a=0.95 

models using the a=0.9 initial year decisions (required instructors and course start weeks). 

Using a=0.9 initial year decisions has little impact on the optimal objective function value 

for a=0.5 or a=0.95. 

Relaxed Opti- 
mal Objective 
Value 

Relaxed Opti- 
mal Using oc=0.9 
First Year 
Decisions 

Best Integer 
Objective Value 

Best Integer 
Objective Value 
Using oc=0.9 
First Year 
Decisions 

a=0.95 4229.71 4229.9 4258.44 4261.54 

a=0.5 726.47 728.03 726.69 728.28 

Table 37. 
Comparison of objective function values for discount rates of a=0.5 anda=0.95 

when a=0.9 first year decisions are used. 

For OSIj with the Arabic data set, the optimal first year decisions are stable over 

oc=0.5, a=0.9, and a=0.95. 
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6. Stability of the Initial Decisions Over Changing Right Hand Side 

Values 
One of the main limitations of using infinite-horizon programming techniques, is 

that implementation assumes that the right hand side requirements are completely specified 

over the infinite-horizon. For most periodic problem structures, the right hand side coeffi- 

cients are well defined for only a few periods. The question of interest is, how stable are the 

initial decisions to changing future requirements? This question is addressed for OSI by: 

• Solving a baseline problem using both primal and dual equilibrium approxi- 
mation methods. 

•Solving a new problem using both primal and dual equilibrium, with a right 
hand side that increases course start requirements for years 4-6 over the base- 
line, stabilizing from year 7 onward. 

•Restricting the initial decisions to the values obtained by the baseline prob- 
lem and then solving the primal and dual equilibrium approximations using 
the increased course start requirements. 

•Comparing the optimal decision variables and objective function values of 
the restricted growth model to those of the unrestricted growth model (primal 
and dual equilibrium approximations). 

Primal and dual equilibrium approximations use a 10 year solution horizon. Feasi- 

bility is not an issue since any feasible set of first year decisions remain feasible over any 

solution horizon. Table 38 defines the course requirements for the baseline and growth 

models. Table 39 provides a comparison of the optimal objective function values and deci- 

sion variables. The initial period optimal decisions for the primal and dual equilibrium ap- 

proximations baseline models are near optimal for the growth models. 
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Year Yearl Year 2 Year 3 Year 4 Year 5 Year 6 

Course Year 3 onward invariant for 
baseline growth model. 

Year 4 to 6 included in 
growth model with year 6 
onward invariant. 

Arabic Modern 
Standard (63 Weeks) 

65 75 75 80 85 90 

Arabic Intermediate 
(47 Weeks) 

1 1 1 2 3 4 

Arabic Advanced 
(47 Weeks) 

1 1 1 2 3 4 

Arabic Refresher 
(20 Weeks) 

1 1 1 2 3 4 

Total 68 78 78 86 94 102 

Table 38. 
Course requirements for Arabic, for baseline and growth models. 
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Model Objective 
Value 
(Relaxed) 

Best Integer 
Objective 
Value 

Number of 
Instructors 
Yearl 

Number of 
Instructors 
Year 2 

Number of 
Instructors 
Year 3 

Primal 
(Base) 

2287.12 2301.6 160 188 188 

Dual 
(Base) 

2286.06 2289.57 162 186 188 

Primal 
(Growth) 

2677.6 2704.36 164 186 190 

Primal 
(Growth) 
(Restricted) 

2677.77 2683.38 160 188 186 

Dual 
(Growth) 

2677.5 2677.8 162 186 186 

Dual 
(Growth) 
(Restricted) 

2766.7 2677.9 162 186 188 

Table 39. 
The impact of restricting the growth model by fixing 

the initial year optimal decisions to those of the baseline model. 

From Table 39, the primal restricted solution is almost identical to the baseline so- 

lution. The difference between the unrestricted and restricted growth objective function 

values is minimal, and the best integer solution derived for the restricted growth model is 

actually better than that generated by the unrestricted growth model. The dual equilibrium 

approximation's restricted solution is identical over the first three years to the baseline 

model, with only a very small difference noted in the objective function values between the 

unrestricted and restricted growth models (both relaxed and best integer value). The first 

year decisions generated by the zero growth model are clearly nearly optimal over the ex- 

amined growth horizon. While no direct conclusions can be stated over any range of 
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possible right hand sides between these two extremes, the evidence suggests that the opti- 

mal solution generated by the zero growth model, should remain near optimal over this 

range. 

G. SUMMARY 

Using the model OSIj, this chapter demonstrates that primal and dual equilibrium 

approximations (originally developed to bound infinite-horizon linear programs) can be 

used for integer programs: For OSI} primal and dual equilibrium approximations both min- 

imize the impact of potential end effects and effectively bound the infinite-horizon optimal. 

Primal and dual equilibrium approximations generate outstanding bounds on the infinite 

optimal solution for OSIj. Using typical truncated formulation solution horizons of 3 to 6 

years produced bounds of approximately 1 % and the optimal decision variables accounted 

for a key end effect which adversely influences the solutions of the truncated formulation 

of OSI. While more general cut structures of the form xt=xt+L are not needed to produce 

tight bounds, these cut structures are still valid, and should be considered if the optimal so- 

lution appears to be cyclic in nature. For OSI1; it appears that x, = xt + 1 as t grows large, 

therefore basic primal cuts are appropriate. 
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VIII. CONCLUSIONS AND RECOMMENDED RESEARCH 

The focus of this dissertation is quantifying and eliminating end effects. If a trun- 

cated problem has an appropriate infinite-horizon extension which can be solved, the opti- 

mal decision variables are free of end effects. This dissertation develops several infinite- 

horizon problem structures that have equivalent finite-horizon formulations. These prob- 

lems are easy to solve and their optimal decisions are free of the end effects associated with 

truncated formulations. 

Unfortunately, determining whether a truncated problem, when extended to an in- 

finite-horizon, has a finite-horizon equivalent formulation, is difficult. Most real-world 

problems do not have easily definable finite period equivalent formulations. This provides 

motivation for using primal and dual equilibrium approximations to provide bounds for the 

infinite-horizon problem. 

This dissertation shows that primal and dual equilibrium approximations bound the 

optimal objective function value for any LP°° or MIP°°. Using primal and dual equilibrium 

approximations to bound the infinite-horizon optimal solution of the primal formulation is 

effective in eliminating end effects and generating near optimal solutions for both TAPLIM 

and OSIj. The methodology appears to be robust, applicable to a large class of LP°° and 

MIP°° (a potential difficulty lies in identifying effective primal restrictions). The bounding 

method is easily implemented with solution times comparable to those of the original trun- 

cated formulations. 

This dissertation illustrates that convergence of truncated and dual equilibrium ap- 

proximations to an infinite-horizon optimal, and the ability to practically implement the pri- 

mal and dual equilibrium approximations, does not depend on strong or weak duality 

holding in the limit. 
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For LP°°, this dissertation develops and implements a simple algorithm that exam- 

ines the impact of a changing right hand side on a fixed set of initial decision variables. This 

algorithm is easily implemented on TAPLIM, and proves effective in quantifying the im- 

pact of using initial decisions over a convex combination of potential right hand sides. 

In analyzing the results of this dissertation, several interesting questions present 

themselves, and should be explored further: 

•Primal and dual equilibrium approximations prove effective in eliminating 
end effects of truncated formulations, however, there may be adverse end 
effects introduced into the formulation that are related to the approximation 
methods themselves. The quantitative impact of any remaining end effects 
can be determined by the size of the gap between the primal and dual equilib- 
rium approximation. A gap which closes slowly as the solution horizon 
increases, may be due in large part to end effects created by the primal/and or 
dual equilibrium approximation. Chapter IV provides an example where a 
poor choice of restriction led to a primal equilibrium approximation which 
never converged to the optimal solution. This is clearly an end effect. 

•Primal restrictions are problem specific and are currently limited, as the 
restriction must generate a non-empty feasible region, and, result in a finite 
period equivalent re-formulation of the original infinite horizon problem. At 
present, simple functional ties are the only types of restrictions identified 
which satisfy the requisite conditions required to make primal equilibrium 
approximation work. Additional research is needed to develop alternative 
restrictions that generate finite period re-formulations. 

•The performance of primal and dual equilibrium approximations when 
applied to mixed integer programs should be investigated further. OSI was 
chosen to test primal and dual equilibrium methods as truncated versions of 
OSI consistently solved with small integrality gaps, and the truncated formu- 
lation was heavily influenced by end effects. How well primal and dual equi- 
librium performs may be closely related to the size of the integrality gap for a 
given mixed integer program. This issue should be explored further to deter- 
mine the robustness of primal and dual equilibrium to isolate and quantify end 
effects associated with truncated mixed integer programs. 
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•The issues surrounding uncertainty in the infinite horizon coefficients need to 
be explored further. The analysis performed in this dissertation on the initial 
decision variables examines only a convex combination of two potential right 
hand side extremes. Better methods must be developed to analyze the impact 
of uncertainty on the optimal decision variables. Uncertainty in future period 
coefficients can be viewed as an end effect. 
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