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1.0 INTRODUCTION 

1.1 GENERAL 

This work is motivated by the need to understand high-speed continuum flow which occurs 

within the flight envelope of many of the vehicles of current interest, including single-stage-to-orbit 

vehicles, aero-assisted orbit-transfer vehicles, and particularly interceptor missiles. Personnel at the 
Arnold Engineering Development Center (AEDC) are now engaged in efforts to build/upgrade 
various test facilities to make them capable of testing the new generation of vehicle systems in the 

high velocity regime (Refs. 1-5). These facilities include the hypersonic tunnels, the ballistic 
ranges, and the arc heater tunnels. For example, the hypersonic tunnels can be used to perform jet 

interaction and staging studies for the interceptors. The ballistic ranges can be used for testing the 
lethality of these missiles. The arc heater tunnels can be used to test materials for interceptor nose 

tips. However, it is important to emphasize that these facilities will be used to generate conditions 
that only simulate flight conditions. In some cases there may be significant differences between the 
simulated and actual flight conditions. Hight testing can be used to obtain data that are free of the 
simulation errors but at great expense. On the other hand, computational simulations are not subject 
to the limitations specific to ground testing. Therefore, computations can be used together with 
ground testing to accurately capture the phenomena under investigation. Thus a synergistic, truly 
integrated combination of computations, ground testing, and flight testing is required for 

hypersonic systems development (Ref. 6). 

To support this synergism, an effort has been initiated to develop the computational capability 
to simulate flows in the test facilities with high accuracy. Based on recent scaling studies, it is 
assumed that a flow solver which accurately predicts the fluid dynamics of the test cells can be used 
to extrapolate to free flight conditions with the same accuracy, provided valid physical models are 

available for the conditions of interest. 

To establish the proper context for the present effort, note that the high-speed flows mentioned 

above are characterized by nonequilibrium thermochemical processes. Such effects are significant 
because the transition time for a fluid particle through a region of interest is shorter than the time 

required for particle-particle collisions to bring the gas into equilibrium. Therefore, the 
development of a flow solver to study these flows necessarily involves the modeling of thermo- 
chemical nonequilibrium. Furthermore, the geometric complexities inherent in the simulation of the 
flows around the vehicles mentioned require the use of domain decomposition techniques which 
have reached maturity in the chimera methodology (Ref. 7). 

1.2 BACKGROUND 

Computational fluid dynamics has matured to a stage where it is possible to compute transonic 
flow fields about complex three-dimensional bodies and bodies in relative motion (Refs. 8 and 9). 
However, there is a need to develop algorithms for complex three-dimensional bodies and bodies 

7 
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in relative motion in hypersonic flow fields which require reasonable computational resources (Ref. 
10). Some important features of a good computational algorithm are: (1) computational efficiency 
to minimize the arithmetic operation count and computer memory requirements, (2) adaptability to 
computational domains consisting of either blocked or non-structured grids, (3) fast convergence, 
(4) high accuracy which does not degrade readily because of a sensitivity to the choice of parameter 
settings, and (5) flexibility to allow transport equations (i.e., species, energy, or turbulence) to be 
added or deleted with minimal effort. 

Solution algorithms can generally be categorized as either explicit or implicit methods. 
Explicit methods have low arithmetic operation counts because they do not require matrix 
inversions in their solution procedures. These methods are limited to small computational time 
steps for numerical stability. Hence, a large number of iterations is required for convergence to a 
steady-state solution. Implicit methods are stable for much larger computational time steps and 
generally require fewer iterations to converge. Unfortunately, implicit methods require matrix in- 
versions, which are computationally intensive. 

Recently, several investigators have proposed numerical algorithms which are globally 
explicit and locally implicit. These algorithms are called locally implicit methods (LIM) or point- 
implicit methods. Locally implicit algorithms have demonstrated the best features of both explicit 
and implicit algorithms. Reddy and Jacocks (Ref. 11) developed a two-dimensional, finite--volume, 
locally implicit scheme for solution of the Euler equations. The scheme uses a relaxation method 
based on a modification to the one-step Ganss--Seidel-Newton iteration and does not require the 
solution of any matrix equations. The scheme was applied to the two--dimensional Navier-Stokes 
equations by Nayani (Ref. 12) and Towne (Ref. 13). Reddy and Benek (Ref. 14) developed a three- 
dimensional thin-layer Navier-Stokes LIM algorithm which incorporates the chimera domain 
decomposition procedure developed by Benek et al. (Ref. 7). Hwang and Liu (Ref. 15) developed 
a two-dimensional finite-element LIM scheme. Tramel (Ref. 16) developed a stable shock- 
capturing locally implicit scheme using a modified one-step red/black Jacobi-Newton iteration. 
This procedure was extended to reacting flows by Tramel, et al. (Ref. 17), and applied to 
vibrationally relaxing flows in nozzles by Limbaugh et al. (Ref. 18). Bussing and Murman (Ref. 19) 
used a point-implicit treatment of the chemical source terms for compressible flow problems with 
finite-rate chemistry. Eberhardt and Imlay (Ref. 20) developed a diagonal treatment of the chemical 
source term Jacobian for the computation of nonequilibrium flow fields. Gnoffo (Ref. 21) 
developed a finite-volume, point-implicit relaxation algorithm for the Navier--Stokes equations, 
and extended this algorithm to flows with chemical and thermal nonequilibrium (Ref. 22). 

1.3 OVERVIEW 

In this report, a three--dimensional, time-accurate, locally implicit algorithm for the solution 
of compressible viscous flow problems with thermo-chemical nonequilibrium is described. The 
algorithm is known as the nonequilibrium diagonal approximate Newton's algorithm (NEDANA). 
The new scheme is designed for vectorization in all coordinate directions. The scheme incorporates 
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the chimera domain decomposition procedure. This allows the scheme to be applicable to both 
complex configurations as well as bodies in relative motion. The code also incorporates the AEDC- 
developed chemistry package NEQPAK (Ref. 23). NEQPAK provides the necessary chemical, 
thermodynamic, and transport properties that are required to simulate the flow of a gas in thermo- 
chemical nonequilibrium. The details of the thermo-physical models and the numerical method are 
presented in this report along with the results from a sequence of test problems. 

2.0 MODELING EQUATIONS 

2.1 CONSERVATION EQUATIONS 

The NEDANA code solves the conservation equations which describe the motion of a 
compressible viscous fluid in thermo-chemical nonequilibrium (Refs. 23, 24, 25). A more general 
development of these equations is contained in Appendix A. These equations are one mass 
conservation equation for each of the ns chemical species present in the flow, 

• d Op. O(p.u:) = O(p.u~.) 
0--7 + Ox, O=------~ + ~ "  (1) 

and three mass-averaged momentum equations, (i = 1, 3), 

O(pu,) O(pu,uj + p6,j) Ori~ 
0------(-- + Oxj - - Oxj ' (2) 

and a total energy equation, 

OE O( (E+p)u : )  O(u~r,) Oqj O "" d 
- -  = - u j ' p ' h ° '  ( 3 )  O~ + Oz~ Ox~ Bz~ ~ .=1 

where 

1 
E = El + ~pulul, (4) 

and E i is the internal energy of the mixture. 

The above equations are applicable to any fluid for which a continuum description is 
appropriate. If the collision rate among the individual particles in the fluid is high enough to ensure 
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that the species internal degrees of freedom are in thermal equilibrium with the translational tem- 

perature of the fluid, then the above equation set, plus certain constituent relations described in Sec. 
2.2, provides a complete description of the fluid. This equation set is referred to as a one- 

temperature model. However, if the internal degrees of freedom are not in thermal equilibrium, then 

additional conservation equations must be solved. In the present work, a two-temperature model is 
assumed. In this model, the distribution of the rotational degrees of freedom is assumed to be given 

by a Boltzmann distribution whose Boltzmann temperature is equal to the translational temperature 

of the fluid, while the vibrational/electronic excitation degrees of freedom are characterized by a 

separate Boltzmann temperature T v (Ref. 26). This leads to the specification of an additional 

conservation equation for the vibrational-electronic energy, E v. In the absence of ionization and 
radiation, this equation takes the form 

_ _  d OEv O( Evu:) Oqv~ 0 ~-~u:,p, hv, +~v. 
Ot + O~j - Oxj O~.j (5) 

a----1 

In this case, the internal energy of the mixture, E I, is the sum of a translational/rotational part, Er, 
and a vibrational/electronic portion, E v , i. e., 

E l  = E~T + E v ,  (6) 

where 

and 

?&S 

Err ---- ~ psf.tr,~. 
8 = 1  

(7) 

Ev = ~ p.ev,.. (8) 
s = l  

2.2 AEROTHERMAL MODELS 

In order to completely specify the fluid being simulated, certain constituent relations are 

required: (1) the thermal equation of state of the gas, p = p(p,,.M.,T~; (2) the caloric equation of 

state for each species, h, -- h,(T, T v) = e,(T, T v) + p i p , ;  (3) the shear stress tensor, %; (4) the 
d 

conductive heat flux, qj; (5) the diffusion velocity of species s, uj.,; (6) the chemical source term of 

species s, cos; and (7) the vibrational/electronic energy source term, coy" NEQPAK is used to provide 

10 
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these quantities. NEQPAK has the capability to apply many thermo-chemicai models. Only those 

portions of NEQPAK relevant to the present work will be discussed below. In particular, if ioniza- 

tion was present while the gas was in a state of thermal nonequilibrium, then some of the formulas 

presented below would need to be modified. A detailed description of NEQPAK is found in Ref. 23. 

The gas is assumed to be composed of a mixture of thermally perfect gases. The static pressure 

of the mixture is then the sum of the partial pressures of the constituent gases (Dalton's law of 

partial pressures), 

1 L 8  

p =  ps. (9) 
s = l  

where 

p., = p, R,T,  (10) 

and R is the species gas constant. The species gas constant is defined in terms of the universal gas 
$ 

constant, TZ, and the species molecular weight.Me by the relationship 

H, = ( !1 )  

For a gas in thermal equilibrium, the specific enthalpy for each species, h s, is given by 

h~ IT  C~dT ' + hO" 
Jo P (12) 

where ~ is obtained from curve fits based on a combination of experimental data and theoretical 
0 

modeling, while h s is the heat of formation of species s at OK, These curve fits are of the form 

, a T R-'~ - -  a l  s -}- 2,s + a a . s T  2 a t- a4,sT 3 d- as.sT 4, (13) 

and the coefficients a~, are taken from Ref. 27. For the two-temperature model, h is written as 
. $ 

h, = h,,.., + hv,,, (14) 

where 

11 
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and 

~o T h,,,at = t"at ,/q" o P...~, (15) • .,p.tr-,= + h, = err,at + pat, 

fo Tv hv.s = C ; , v d T '  = ev,,.  (16) 

Here ~ t, is the constant translational/rotational portion of the specific heat (~p, t, = 3.5R s for 
diatomic species and 2 .5R for monatomic species). The vibrational/electronic portion of the 
specific heat is calculated according to the formula 

c ; . v  = C ; ( T v )  - C:;.,,. (17) 

Here, CS(Tv) means that the curve fits in Eq. (13) are evaluated using T v. The temperatures T and 

T v are determined from Err and E V. 

The stress tensor with the Stokes hypothesis is expressed as 

a~,, Ou,) 20uj,~ 
(18) 

and the components of the heat flux vector are given by 

OT ~T[v 
(19) 

The individual species viscosities, gs' are calculated using the following curve fits (Ref. 27): 

# ,  = 0.1 exp(bs,s + b4.sT + b3,sT z + b2,,T 3 + bl.atT4), (20) 

where T ffi In T. The species conductivities are related to the species viscosities by the relations (Ref. 
27) 

Kt,-,at = 3.75#atRat + p~at.atC'~,,., (21) 

and 

rat 

~v., = pD,.atCp.v, (22) 

12 



AEDC-TR-94-18 

where the binary diffusion coefficient is given by the following curve fit: 

/~s,r - 10 .1325  exp(d4.~,r -]- d3,s.,T + d2,a:T 2 -F dl.s,r T3). (23)  
P 

The mixture viscosity and mixture conductivity are computed using the semi-empirical methods of 

Armaly and Sutton (Refs. 28, 29). 

The species diffusion velocities, uj d , are given by Fick's law, 

~.~ u~ = - D, . (24) 

The above equation is only rigorously valid for cases in which the following conditions hold (Ref. 
30): (1) the gas is a binary mixture; (2) the molecular weights of the species in the binary mixture 
are equal, or the pressure is constant; (3) thermal diffusion is negligible; and (4) the body forces per 
unit mass acting on each species are equal. If these conditions are not satisfied, then the rigorous 
computation of the diffusion velocities involves the solution of a matrix equation. However, the 

complexity of this process has lead to the concept of an effective binary diffusion coefficient, D ,  

(Ref. 30) defined to be 

l - Y ,  
Ds-- 

v,,.o (25) 

where D is obtained by treating ns - 1 of the species as if they were present in trace amounts and 
diffusing through a background of a predominate species. Here, D is defined to be an average of 
the binary diffusion coefficients 19,~, where D,., is the diffusion coefficient obtained for a mixture 
composed of only species s and r (Ref. 3 I). Note that in order to strictly enforce mass conservation, 
the diffusion velocities of the predominate species would have to be obtained from the relationship 
T.,:~ Ysuja~ = 0, j = 1, 2, or 3. However, this expression is not employed in the present code. The 
diffusion velocities for all species are computed using Eq. (24). This expression is a reasonable 
approximation provided that the molecular weights of the species do not vary widely, which is the 

case for air. 

The species source terms, m s, and vibrational/electronic energy source term, mv' are also 
provided by NEQPAK. The species source terms are constructed as follows. Let the rth reaction 

involving species s be written in the form 

13 
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1't8 tg8 

]E ,~..,,M,, = 2E ,<,,,M,,,, 
TI.-~- I Tt ' t=  l 

(26) 

in which M represents one mole of species s and the v,. s and v~.s are the stoichiometric 
coefficients. The rate of disappearance of a species s due to the rth reaction is 

L,,. =,,..,k~ II  ~.,~ + I I  
l ' t = !  T i r o l  

(27) 

while the production rate of a species s due to the rth reaction is 

1&8 138 * 

~,. = ,,;.k:. 1I "&"+  , . . , k :  I I  "y,,,"'"'- (2s) 
. , = 1  m = l  

The net rate of change of species s due to all reactions is 

~.  : M .  ~ ( ¢ . , .  - £. , . ) ,  
,=, (29) 

where nr is the number of reactions. Like most aerothermochemicai models, NEQPAK assumes the 
modified Arrhenius form (Ref. 32) for chemical reaction rates 

k 1, = A , T B ' e z p ( - C , / T ) ,  (30) 

where Tis the translational temperature of the gas. The rates defined in Eq. (30) were obtained from 
fits to experimental data that were collected under conditions of thermal equilibrium. However, 

when the reaction rate under question represents, for instance, a two-body dissociation reaction, 
then the reaction rate also depends on the vibrational temperature of the gas. One of the more pop- 

ular approaches used to account for thermal nonequilibrium is that of Park (Ref. 33), who replaced 

the translational temperature in Eq. (30) with a generic temperature or average temperature, T~. Park 

defined T~ by the relation 

Tq = T~T'-~;O < ~ < 1, (31) 

where a was chosen to reproduce experimental data. 
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The reverse reaction rate coefficient k: is related to the forward rate by 

- k,,/K,, (32) 

where 

~ A F  
= (p ,m/reT) 

(33) 

is the equilibrium constant for the rth reaction and 

?SS 

s=1 

T J,8 

- 

(34) 

s = l  

In Eq. (33), Pats = 1.01325 x IO s Pa. Also ~ss is the Gibbs free energy for species s at the given 

temperature and a pressure of latin. The Gibbs flee energies are computed from curve fits taken 

from Ref. 27. 

v-T 
The vibrational source term, co v, is the sum of two terms. The first term, co v , models the 

Y - - C  
relaxation of vibrational energy under collisions with heavy particles while the second term, co v , 

deals with the addition or removal of energy from the vibrationaFelectronic energy pool due to 

chemical reactions. The vibration-translation interaction is modeled according to the theory 

developed by Landau and Teller (Ref. 34). Landau and Teller showed that ff the vibrational energy 

levels of  a molecule are equally spaced (harmonic oscillator approximation) and only single-level 

transitions are allowed, then 

7L8 

s=l 
(35) 

where the e~, s indicates the equilibrium value of the vibrational energy, and x s is the vibrational 

energy relaxation time. Here, e,., represents the vibrational energy of the molecule rather than the 

vibrational/electronic energy. Strictly speaking, Eq. (35) was derived for a harmonic oscillator, but 

it is applied to anharmonic oscillators by using the polynomial curve fits defined in Eqs. (13) and 

(16) to calculate the vibrational energy as follows. First, the electronic excitation energy ee. s is 

computed from the formula 
TtP~ 

I E 'q'l exp(-~',i), (36) 
i - - !  
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where ~Pt •- ~ / k  T v, and the electronic partition function is 

, tel  

= e x  ' C t ) ,  Z ~ _ , g t  P t -  
/=I 

(37) 

where ne l  is the number of electronic energy levels for species s; gt is the degeneracy of the lth 

electronic level, and et is its energy, e,., is set equal to the difference of el,., and e,.,. 

The relaxation time ¢,,, of species s in a bath of species r is calculated using the empirical cor- 
relations of Mill ikan and White (Ref. 35), where '¢,., is defined to be 

prs,,, exp[A,,rT -Ua : 114 18.42], = - O.OlaAs,rl~s,r - (38) 

where 

A~ ,. = 0.0011RH- I/2A4/3" 
' - v r ' 8 , 1 r  ~ 8  ,~ (39) 

p is the pressure in atmospheres, and I~,., is the reduced mass of the interacting molecules s and r. 

In Eq. (39), 0, = hv, /k ,  where v, is the characteristic vibrational frequency of species s; h is the 

Planck constant, and k is the Boltzmann constant. The relaxation time employed in Eq. (35) is 

computed from the xL, according to the formula 

?L8 

rs = ~_, X , r , , r  + r P (40) 
r = |  

where 

c, 1 

(41) 

is Park's high-temperature correction (Ref. 36) and 

C = ( a s N A ~ f ~ - ' ~ / r , )  -1 = 2.898677 x 10 -7 

in SI units. The value o s ffi 10"2°m 2 for the effective cross section for vibrational relaxation is that 

suggested by Gnoffo et al. (Ref. 26). The second term in to v models the effect that chemical 

reactions have on the vibrational energy. Clearly, the dissociation of  a molecule removes 

vibrational/electronic energy, while recombination of a molecule must add vibrational/electronic 
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energy to the species pool. In this work it is assumed that nonpreferential dissociation occurs. Under 
this assumption, o~vv - c takes the form 

TL$ 

~'l--p E w v = +,ev,~. (42) 
s----1 

3.0 NUMERICAL FORMULATION 

3.1 THREE-DIMENSIONAL FINITE-VOLUME FORMULATION 

The following derivation is for the two-temperature model. However, the equations and 

numerical method are easily reduced to the one-temperature model. The integral formulation of a 

system of conservation equations over a finite region of space takes the general form (Ref. 37) 

O 
(43) 

where for flows in thermo-chemical nonequilibrium 

( p l  ~ ( w l  

Pns tons 

Q = E v  ; ft = wv  ; 
pu  0 

pv 0 

pw 0 

~ E )  ~ O j  (44) 

and the numerical flux vector is written as the sum of inviscid and viscous contributions; 

f = f i + f v  
= (Fi + Fv)i~, + (Gl + Gv)~ + (Hi + Hv)i~. (45) 

Q and f~ are the vectors of conserved quantities and source terms, respectively. F, G, and H are the 

inviscid flux vectors. They are equal to the flux of Q per unit area per unit time in the Cartesian 

coordinates x, y, and z, respectively, with unit vectors ~x, ly, and/z • For the present, we will ignore 

the viscous flux vectors F ,  Gv, and Hr. The inviscid flux vectors may be written as 
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F,  = 

Pl  u 

P~L8 U 

E v  u ; 
pu "z + p 

p v ~  

p i v  u 

( ' l  

Pl  v 

P,Ls V 

Ev ~ 

puv 

pv 2 + P 
pu,v 

(E + 

Hi  -= 

Pl  iv 

Pns w 

E v  I v  

p u w  
p v i v  

ply2 + p 

(E + p)iv (46) 

In order to solve Eq. (43) numerically, the spatial domain of interest is broken into a set of 
disjoint control cells with volumes, V, and cell face areas, ~i. The flux into or out of a finite-cell 
volume, V, across a cell face ~i is obtained by ~ -  ~i. The equations are written in terms of the 
fluxes in the computational directions F, G, and H. These directions correspond to the integer indi- 
ces j ,  k, and I. 

An implicit f'mite-volume discretization of Eq. (43) is 

(Q +I 
V j K,  L J ,K ,L  -- Q J ,K,L ) 

• A t  

+ k * j + I , K , L  -- " j , K , L I  + I~JJ, k+l ,L  -- I IJ ,  k,L] + ~UJ,  K, i+!  -- " ' J ,K , l ]  
f~,~+ I 

-- V J, K,  L J,K,L" 

(47) 

Throughout this report, the notation of Gnoffo (Ref. 21) has been adopted where capital letters 
J, K, L indicate cell centers and j, k, I indicate cell faces. Also, unlike most finite-volume schemes, 
NEDANA stores the conserved quantities at the cell vertices. The difference between this technique 

and traditional finite-volume techniques is largely transparent (see Appendix B). Storing the 

conserved variables directly at mesh points allows for interaction with finite-difference algorithms 
without altering the computational grids or data. 

The numerical flux function is based on the flux-limited, artificial dissipation model of Jame- 
son (Ref. 38), and Yoon and Kwak (Ref. 39). This model combines the simplicity of artificial 
dissipation schemes with the total variation diminishing, (TVD), property. A discussion of the 
relevant numerical issues involved in the selection of this particular flux model, as well as a com- 
plete description of the numerical flux function, is included in Appendix C. The flux at the cell face 
j + 1 is calculated as the average of the fluxes from cell J and J + 1. This averaging requires the flux 
function to be evaluated twice and then averaged. An alternative approach would be to average the 
conserved variables to obtain values at the cell face and then perform the flux evaluation. The 

18 



AEDC-TR-94-18 

former method was chosen for its flexibility in writing finite--difference-type schemes. The numer- 

ical flux in the ~ direction at the j + 1 face has the form 

~in+ 1 -- l i ~ n +  1 .~,+1 ~" ~j+I,K,L 
j+I ,K,L  -- ~ "  IJ+I ,K,L "l" ., IJ, K,L] 

- n + l  A f m + l  
-k C ~ j + I , K , L ( ~ ( A f Q j + I , K , L  , z . ~ W j ,  K,LJ 

- 2.0A Q3  L 

~.,A t,.+l A .,n+1 ~ (48) 
-k " r ~ ' a ~ J , K , L  ~ ~ W J - I , K , L / )  

where the cell face directed area is defined as 

= + + (49) 

and 

Here,  

A f ~ n + l  = Qn+l r3,t+l 
~W J, K,L J+ I,K,L -- "¢ J,K,L" 

is defined for vectors P and Q tO have components: 

eli(P, Q) = ½[sign(P, ) + sign(Q,)] min(lPil, IQd). 

(50) 

(51) 

The scalar dissipation coefficient is defined by 

C~j+I,K,L : 0 . 2 5 [ A ~ J + I , K . L  -l- AI~ J.K,L][~2 + K41I( J,K,L], 

and the spectral radius of the flux Jacobian is defined at the cell center by 

IJ, K,L J,K,L 

(52) 

(53) 

and the cell area in the ~ direction evaluated at the cell center is 

-=- 1 
(54) 

The frozen speed of sound is defined as 

a2 - -yfpP- (55) 
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where the frozen ratio of specific heats is expressed as 

7 i  = (1-I-f~), (56) 

where ~ = ~)p/aE (see Appendix D). 

The dissipation is a function of the pressure sensor 

where 

l.Z~, J , K , L  ---- ma.X( P:, J.K,L , I/fi j_l,K,L ) , 

PJ+I,K,L - -  2 . 0 p J ,  K , L  -I- PJ-I,K,L 
V~J,K,L = PJ+I,K.L ~" 2.0pJ, K,L -'+ ~ " 

(57) 

(58) 

The numerical fluxes G, and ~/are calculated similarly. 

3.2 QUASI-ONE-DIMENSIONAL FORMULATION 

The one-dimensional form of the conservation equations with area change is derived in 
Appendix E. This form of the equations is solved when performing numerical studies for shock tube 
and nozzle problems• The finite-difference form of the equations is presented below: 

A j - I  

p~ 1~ 

P.~ + 
Ev 
pu 
E ) t  

A j - t  

Pl u~ 

P,,s u~x 

Evu~ 
( pu u + P){x 
( E + 1 IA'-l 'l, = AJ-I~ns 

AJ-lojv 
AxJ-lp 

0 (59) 

Note that the equation has been transformed to curvilinear coordinates. The Jacobian of the 
transformation x - ~  is J = ~J3x. For constant area problems such as shock tubes, A is set equal to I. 

3.3 VISCOUS TERMS 

In this section the viscous contributions to the flux function will be discussed. These 
contributions include shear stress, heat conduction, and diffusion terms. The viscous Cartesian flux 
function for the x direction from Eq. (45) has the form 
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F~ = 

m u~ 

d Pns Uns 
E2s=! pshvs  uda + qvx 

r~u 
rtz 

E's~s=z p..hs u~ + qr "4- qv= 
+ r~zu + T=~V + r~zW 

(60) 

Each component of Eq. (60) may be formulated in the context of a finite-volume scheme. A 
thin-layer approximation also is employed in the direction normal to the body surface, 4- Recalling 
that f =.FI + f v ,  the viscous flux contribution for species continuity becomes, 

(61) 

where 

) 
k ,  J.K.t J.h'.t,-I ~, J.K, (62) 

The viscous flux contribution to the vibrational---electronic energy equation can be expressed as 

I 7L8 
(~,-~)~.~.., q~, + E ~,~ -~" ~.1 

s=l Xs O( J J,K,l ' (63) 

where 

( 0Tv 
qv< - ~ t¢i., 

= \ - ~ - )  .I,K,i" (64) 

The viscous flux contribution to the x-momentum equation in finite-volume form can be written as 

1 0 ~ .  ~¢ (=] (65) 
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In a similar manner, the viscous flux contribution for all of the momentum equations can be written 
compactly as 

( ) p B1 ~ + p B2 ~x 
= - p B l ~ a "  + # B 2 ( ~  

# BI ~ + I,¢ B2 G 
J,K,i 

'1 

(66) 

where 

and 

B~ = #~:. V(  (67) 

B2 -- ~ tO< ~ + ~ a~ ÷ ~ .  . (68) 

The viscous flux contribution to the total energy equation now can be easily written using the 
previously developed expressions. The equation becomes 

where 

i t s  

= (~  e~). , , ,  ~,., + ,,., + E , '.".-o. o,. 1 
,= ,  x ,  ~Jj.,.., 

Ov O,J, ~ 1 • • 

+ p[B.2 (uG, + v(y + wf:)]j.K.t. (69) 

( OTt,.'~ 
qtr( - - ~,~t," " ~ J  J,K,t 

/ OTv 
qv ~ - ( ,w  = ,, ~ / J , h . , t  

3.4 CHIMERA DOMAIN DECOMPOSITION 

(70) 

NEDANA has incorporated the chimera domain decomposition procedure developed by 
Benek, Steger, and their co-workers (Refs. 7, 40-43). The chimera scheme was developed to allow 
a system of simple grids with simple topologies to model complex aerodynamic configurations or 
bodies in relative motion. 

The general concept behind chimera is illustrated in Fig. 1, which depicts two independently 
generated meshes representing a flapped airfoil. The flap mesh is embedded within the airfoil mesh. 
Clearly, the flap mesh outer boundary can receive flow-field information interpolated from 
appropriate mesh points of the airfoil mesh. However, a reverse process must occur as well; the 
airfoil mesh must receive flow-field information from the flap mesh. This transfer is achieved as 
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follows. A hole must be created within the airfoil mesh to remove the points within the airfoil mesh 
that are interior to the flap. The hole boundary points of the airfoil mesh can be updated by 
interpolation from the flap mesh. In general, any mesh can receive information from other meshes 
through both outer boundary and hole boundary points. 

Airfoil 

Mesh ~~.~[ -~ ~ j Artificial Boundary 

Embedded 
Flap Mesh 

Figure 1. Mesh-to-mesh communication. 

The interpolation process is further illustrated in Fig. 2, which depicts a portion of the overlap 
region between the airfoil and flap meshes. Airfoil mesh points inside the hole region surrounding 
the flap are blanked out of the computational domain of the airfoil mesh. In chimera terminology 
they are hole points. The hole region is defined by a hole creation boundary within the flap mesh. 
The points in the airfoil mesh surrounding the blanked points are hole boundary points, and they 
receive flow-field information interpolated from mesh points within the flap mesh. 
Correspondingly, points on the the outer boundary of the flap mesh receive flow-field information 
interpolated from mesh points within the airfoil mesh. 

Application of the chimera scheme requires two steps: (1) a description of how each mesh is 
to communicate flow-field information to other meshes, and (2) execution of the flow solver (in 
this case, NEDANA) using the information generated in step 1. Step 1 is performed by PEGSUS 
(Ref. 44) developed at the AEDC. The processes accomplished by PEGSUS include establishing 
which boundary points in a mesh will be updated by interpolated flow variables from other meshes. 
Also, PEGSUS calculates the required interpolation coefficients for donor mesh points that provide 
interpolated information for recipient boundary points in another mesh. More information on the 
chimera scheme and the PEGSUS code can be found in the references. 
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InterDolated Boundary Point 

Interpolated Bq 
Point in Airfoil 

Figure 2. Overlap region between meshes. 

3.$ SOLUTION PROCEDURE 

Equation (47) is a set of nonlinear algebraic equations which is solved at each time step. A 
variety of techniques exists to solve such equations. An encyclopedic review of such techniques 
may be found in Ref. 45. Throughout this section, the nomenclature of Ref. 45 is used. 

Newton's method is the classical procedure for solving nonlinear algebraic equations. For 
this, first define the residual vector, g'cQ), at time level n, as a function of a vector, Q, so that at a 
point J, K, L, f f  has components 

( QJ,K,L -- Q~,K.L) 
R~,K,L(Q) = V.~,K.L At. 

+ (F~+I .K .L[Q)-  ~",.K.L(Q)) 

+ ((;J.k+I.L(Q) -- (--JJ.k.L(Q)) 
+ (~ I j .K . I+I (Q) -  [IJ.K.I(Q) ) 

-- V J.K.L QJ.K.L(Q). 

The solution to Eq. (47) at time level n + I is the vector, LY~+lthat satisfies the residual equation, 

R"(Q ''+1 ) = O. (71) 
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An approximate Newton's method is used to solve this equation iteratively. The initial iteration is 

always Qn, and after a sufficient number of iterations, Q,÷S is set equal to the last iteration. To 

simplify notation in the following, the dependence on n is suppressed. Let Q(m) denote the mth 
iterative approximation to the solution of Eq. (71). Also, let R (m) denote the residual vector 

evaluated at Q(m). Similarly, let the evaluation of the fluxes and the sources at Q(m) be denoted by 

the superscript, (m). 

To motivate the development of the iterative techniques used in the NEDAHA code, consider the 

use of a pure Newton's method approach to solving Eq. (71). First, the following linear system of 

equations is solved: 

OR('")] (Q~,, ,+I~ _ O ( , ~ ) )  = -1~("*) ,  
~ J  (72) 

or 

I 

Q(,,,+,) : QC,,,) _ [ R('"). 

L°Q'"')J (73) 

Next, the norm, IIQ ¢'÷~ - is checked to see if it is less than some prescribed tolerance. If it is, 

then Q(m) is accepted as the solution to Ec 1. (47) at time level n + 1. If IIQ0.÷,)- Qcm)ll is greater than 

the prescribed tolerance, then m is incremented and Eq. (73) is solved again. This process is repeat- 

ed until the norm is less than the prescribed tolerance or until a fixed number of iterations has been 

performed. When solving problems in two and three dimensions, Newton's method is 

computationally intensive since the Jacobian, ~R¢'*)/~(~ "), is a very large, sparse matrix. This makes 
direct inversion of the Jacobian impractical. Therefore, as described in detail below, the NEDANA 

code uses an alternative to Newton's method to solve Eq. (71). This method is referred to as a mod- 

ified one-step, odd/even, Jacobi-Gauss-Seidel-Newton (JGSN) scheme. In the past, this iterative 

method was known as a variant of the LIM scheme. 

To motivate the use of the JGSN method, first examine the Gauss-Seidel-Newton (GSN) and 

the Jacobi-Newton (JN) schemes. If a one-step GSN iteration were employed to solve Eq. (71), a 

Gauss-Seidel method would be applied as a primary iteration and Newton's method would be 
applied as a secondary iteration. Specifically, in the primary Gauss-Seidel iteration, for every grid 

point, J, K, L, the local residual equation, 

l~ i ~ ( m ° )  rl( , ,t+l)  O(,n*) 
J,K.L~ "" 'W. I .K ,L- I '  "aJ, K.L ' "~J+I,K,L~ " " !  = O, (74) 

25 



AEDC-TR-94-18 

Q(m+ I) * 
is solved for ]. x. L • Here, m indicates that the components of ~ ' ~ )  are used in Eq. (74) if they 

arc available, and otherwise, the components of Q(m) are used. Then, in the secondary iteration, 

Newton's  method is used to solve Eq. (74) according to 

P'~n(m') "1-I 
Q(, .+ l )  ,.,(,,,) /""-J,K,._____b.L / El,,,. ) 

" < "  = " " " -  La<;S',#,,.J " ' < ' "  
(75) 

In a one-step version of this scheme, only one iteration of Eq. (75) is implemented before procec, d- 

ing to the next grid location. When all components of ~'+J) are calculated, a sweep is said to be 
completed. 

I f a  one-step JN iteration were employed to solve Eq. (71), a Jacobi method would be applied 

as a primary iteration and Newton's method would be applied as a secondary iteration. Specifically, 
in the primary .Iacobi iteration, for every grid point, J, K, L, the local residual equation, 

g . .-.{,,,) Q(,,,+]) r)('") 
J,h ' ,Lt" ' ,~J ,K.L-I ,  J.K.L ,"~J+I,K,L, "") = O, (76) 

~ ( m  + I) is solved for ~j. x, t • Note that here the fixed arguments of the local residual are written only in 
terms of the components of Q¢m). Then, in the secondary iteration, Newton's method is used to solve 
F_,q. (76) according to 

r .~D(,,~) 1-1 
n(,,,+l) n('") / / p ( ' )  
"¢ J ,h ' ,L  = "~ J , K , L  - / ~ /  "*'J,K,L" ( 7 7 )  

I v"C J, K , L  J 

Both methods described above involve only the inversion of an nq x nq matrix, where nq is 

the number of conserved variables. However, the GSN method is re.cursive and is not well suited 

for implementation on machines that employ vector processors (Ref. 46). In addition, Tramel (Ref. 
16) has shown that a JN iteration is unstable for CFL numbers greater than one. Therefore, an odd/ 

even .IN iteration is proposed in Ref. 16 and is the basis for the solution technique used in 
NEDANA. 

In NEDANA, an odd/even .IN iteration is applied along lines of constant J, K, while a GSN 

iteration is applied in the other computational directions. As indicated above, this procedure is 

referred to as a Jacobi-Gauss-Seidel-Newton (.IGSN) method. The odd/even .IGSN iteration is 

implemented in NEDANA as follows. First, the following equation is solved for every point along 
a line of constant J, K, with L = L ,  an even value, 
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r #R(°) _ ] /Z(,n+l) ~(m) / J,K,Le R ( m * ) , e  
"¢'J,K,l-,e = ~ J , K . ' , . . -  I ~  J ,K ,Le "  

L J,K,Le (78) 

H e r o ,  

R(.•'),• J.K,Le 
I ~("~') / ' ( " ' )  

= ~j+I,K,L~ - -  "Zj,K,L..; 

,, .~,(,,.') ,,-,(m* ) x 
Jr t~T.l,k+l,L,. - -  LTj, k,Le ) 

Jr t "  J . K d , + l  - -  " "  J.K.I ,  ; 

,.-,(,,,) ,, 
j , t . ' .L .  - q ) 

Jr V J, K ,Le A t  
(79) 

Again, m* indicates that the components of ~ " ) a r e  used if they arc available, and otherwise, the 
(m) . . . .  (m*),e components of 0 am used. In addRmn, the superscript, e, m R emphasizes that f-I (m)'" is 

• • ( m )  • evaluated enttrely m terms of Q , as opposed to being evaluated as described below for the odd 
. . . . .  (o) {o) 

Jacobl iteration. Note that the Jacobmn matr ix,  aRj,  x, Le/aQ~ x L. , is f ixed over the course o f  a 

time step. Next, the following equation is solved for every point along a line of constant Y, K, with 

L = L o, an odd value, 

Hero, 

Q(..+I) ~( . , )  
J ,K ,Lo  : "¢ J .h ' .Lo - 

"OR(j°)K,Lo 
O,q(o) 

'~ J ,K,Lo 

- 1  

~ J , K  ,Lo " 

R(,,,'),o I i ' ( ' " ' )  / ' ( " ' )  
' J ,K ,Lo  = ', " .~+] ,K.L , ,  - -  " j , K , L o J  

(80) 

, f ,( , , , ' )  f , ( , , , ' )  , 
Jr LxTj .k+l .Lo -- ~ j , k , L o  I 

I f i  (m),o h(,,~),o 
+ ~ " J . K , l o + !  --  " ' J .K . i o )  

/01-,) ,, 
+ V J ,  K.L, ,  ~" J , K , L o  --  Q J , K , L o )  

A t  

V ~'~("~) --  ' J,K.I..o a~J,K,Lo. 

(81) 

Recall that (~/j. Ic. t + I " i-'/j, K, 1 ) depends on { QJ.x.,-2, QJ.x.z,t, QJ.~, Qj.~c.z,., QJ.x.L+2 }. In this case, the 
r~ (") when L is odd, and superscript, o, in R (m*)'° emphasizes that [/f"~° is evaluated in terms of ~j,  x. L 

/~(m+ I) 
in terms of  z j, K, L w h e n  L is even. 

27 



AEDC-TR-94-18 

Once all points on the line of constant J and K have been updated, the iteration proceeds to 
the next line. When all components of ~ m + l )  are calculated, a sweep is said to be completed. 

Typically, the total number of sweeps, ms, is set to two or four, and Q(m,) is accepted as the solution 
to Eq. (47) at time level n + 1. 

Computational experience and theoretical analysis (Refs. 12-16) have shown that the use of 
,.l~ (o) 1;:1/3 (o) the exact Jacobian . . . .  s, x. L-, ,zs .  x. L, leads to an unstable iteration scheme when large CFL numbers 

are used. In the past, several ad hoc formulations have been advocated on how to approximate the 

Jacobian with another matrix Bj.x.,. However, viewing the LIM scheme as a Diagonaiized 
Approximate Newton's Algorithm (DANA), convergence of the method is guaranteed if the 
Jacobian of the iteration process has spectral radius less than or equal to one (Ref. 45). The 

importance of this new perspective of the LIM scheme is that a well-founded criterion is available 

to estimate under what conditions the scheme is convergent. This criterion allows the previous ad 
hoc formulations of Bs.g.L to be readily checked. 

In previous applications of the LIM scheme, the matrix B was taken to be 

BJ, A.L = b.I,K,L lnqxnq, 
(82) 

where 
V J.K,L 

bJ, K . L  - -  At 

+[0.125(A(,/+1 + 2.0A~j + A~j_] )  

+ 1.5 (c(a+1 + c~3)] K,L 

+[0.125(AnK+I + 2.0A,K + AnK_I ) 

-t-l.5(C,lk+l Jr C,,k)]j. L 

+[O.125(A(L+l + 2.0A~L + ACL-~) 

+1.5(c<~+, + c¢i)]j, K + by, (83) 

and 
"( ) b,, = r , , . -  a¢. VC 
p J,K,i (84) 

28 



AEDC-TR-94-18 

where a v is a relaxation parameter optimized for stability and convergence. However, in the present 
work the matrix B becomes 

B1 0 ] 
BJ,K,L "- 0 B2 J,K,L (85) 

where 

0fl 
B1J.K.L = [bl(ns+,elx(,ts+.,el--'~V]j.K.L. (86) 

and 

B2J, K,L = bJ,K,L 14×4. (87) 

Here ns and ne are the number of nonequilibrium species and energies, respectively. Note, this 
partitioning of B ignores the derivatives ofw with respect to pu, pv, pw, and E. However, it has been 

observed that this simplification does not affect the stability or accuracy of the scheme. In Appendix 
F, the complete derivation of the nonequilibrium source Jacobian, ~}~ ~}Q, is included. 

Thus, the nonequilibrium variables (Pl ..... Pns' Ev)rare solved for by a matrix inversion, and 
the variables (pu, pv, pw, E) r are solved for by a scalar inversion. Specifically, at the beginning of 
a given time step, an LU decomposition ofBIj, g,L is performed for every point. The decomposition 
is saved and not updated during a sweep. In fact, in the absence of significant temporal variations, 

the decomposition need not be updated at every time step. Once the higher order work of an LU 
decomposition is performed, sweepwise updates of the nonequilibrium variables can be computed 

with the lower order work associated with a simple back substitution. 

4.0 RESULTS OF ONE-DIMENSIONAL COMPUTATIONS 

Extensive one-dimensional numerical tests were performed with NEDANA to compare the 

results of the present numerical technique with the results of existing flow solvers. Three cases were 

chosen: 

1. Shock tube problem. 

2. Supersonic duct flow with area change. 

3. Supersonic duct flow with area change and normal shock. 
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For all results presented in this section, the one-temperature model was assumed. One-dimensional 
computations using the two-temperature capabilities of NEDANA may be found in Ref. 18. These 
three cases are used to test the speed, accuracy, and stability of the present algorithm as compared 
with state-of-the-art flow solvers from other researchers. 

In the comparisons presented in Figs. 3-8, variables are normalized by reference quantities. In 
all cases, the reference quantities are denoted by an * superscript. This should not be confused with 
the common usage of the * superscript to indicate sonic conditions. For the shock tube problem, these 
variables are normalized with the equilibrium properties of the high-pressure side of the diaphragm. 
The variables are normalized by the properties at the supersonic inlet for the two duct problems. 

4.1 SHOCK TUBE 

Shock tubes are long constant-area devices that are initially pressurized with two gases 
separated by a diaphragm. The gases are maintained in states of equilibrium that are very much 
different from one another. For instance, in the tube shown in Fig. 3, the left side of the tube is 
maintained at a pressure of 100 a t m  and a temperature of 9000 K. The right side is at 300 K and the 
pressure is 1 arm. The flow in the shock tube can be modeled as a one-dimensional inviscid wave 
propagation problem. At t ffi 0, ~ e  diaphragm is burst, and a strong compression wave (shock) 
moves to the right with velocity C. As the shock wave propagates to the right, an expansion wave 
will propagate to the left as the mixture responds to the the adjacent fluid moving to the right. Also, 
a contact surface separating the two gases will follow the shock wave as the shock wave moves 
th~right compressing the fluid it encounters. The contact surface travels with velocity V where V 
< C. Figure 4 details the various structures present as they advance in time. Notice that the contact 
surface is maintained, since there is no mechanism to mix the gases. In the following shock-tube 
comparisons, relative to the distance the shock wave has traveled, time has not advanced far at all. 
Consequently, the contact surface is close behind (slightly to the left of) the shock wave. The double 
step is most noticeable in plots of the temperature. This is because the shock wave increases the 
temperature in advance of the contact surface. Most of  the temperature increase then occurs across 
the contact surface for this particular case. Note that the contact surface does not compress and heat 
the gas like the shock wave. The changes across the contact surface are embedded in the fluid due 
to the initial differences in the states of the gas that existed across the diaphragm. Also, keep in mind 
that there is no velocity or pressure jump across the contact surface. Therefore, by observing the 
velocity and pressure curves, one can determine how well an algorithm is capturing shocks. Also, 
by observing the temperature and density plots, one can see both the shock and contact surface most 
clearly. 

The shock-tube problem is ideal as a first case, because it is inherently unsteady. Spurious pro- 

duction of various constituents of the gas would indicate that the solver was unable to maintain time 

accuracy. To make a comparison, the conditions of the shock tube case performed by Shuen, Liou, 

and van Leer (Ref. 47) were used as starting conditions. 
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For  x E [0.0.  5.0] t.ylt (pL,TL,~IL) "- (100 arm, 9 0 0 0  K, 0.0 re~see). 

For x E [5.0, 10.0] cm (pR, TmuR) = (1 arm: 300 I(, 0.0 m/sec). 
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Figure 3. Shock tube schematic.  

31 



AEDC-TR-94-18 

Contact 
Discontinuity 

Fan 

© 
S h o c k ~  

® 
Figure 4. Wave structure of shock tube in time. 
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The equilibrium air densities were computed using the curve fits of Prabhu and Erikson (Ref. 
48) to be p/, = 2.627 kg/m 3 for the high-pressure side and pR -- 1.1733 kg/m 3 for the low-pressure 
side. In the following comparisons, all computations were performed on a grid consisting of 200 
equally spaced nodes distributed over the interval [0.0, 10.(3] crn. The comparison presented in Fig. 
5 is made with Shuen's MUSCL-interpolated Roe upwind scheme (Ref. 47) and with Molvik's flow 
solver (Ref. 49). Both Molvik's flow solver and the present flow solver were run for 250 time steps 
at a CFL number of 0.5, which gave an absolute time of 0.167 × 10 -5 sec. This number of steps was 
chosen so as to match the shock position of Shuen et al., who supplied no temporal data. Boundary 
conditions for this problem are unimportant, as the flow at both boundaries remains undisturbed. 
The results from NEDANA and the results from the Shuen et ai. flow solver were computed using 
Dunn and Kang's (Ref. 50) reaction model (ionization reactions were not included). The results 
from Molvik's flow solver were obtained using Blottner's (Ref. 51) reaction model and were 
obtained at the AEDC by the authors. The results attributed to Shuen et al. were manually digitized 
from plots taken from the cited article. This accounts for waviness present in their results. 

Similar results for the gas constituents and flow properties are presented in Fig. 5 for all three 
flow solvers. The pressure comparison, Fig. 5b, demonstrates that NEDANA produces shock fronts 
that are as sharp as those predicted by the flow solvers of both Molvik and Shuen et al. Figure 5c, 
however, shows that NEDANA does not reproduce the contact surface as well as the other codes.I 
This is because both the Moivik and Shuen et al. flow solvers are based on approximate Riemann 
solvers, which force the net flux to be modeled exactly across discontinuities in one dimension. In 
multi-dimensional flows in which the grid is not aligned with the discontinuity, much less favorable 
results are obtained using Roe's Riemann solver. It is encouraging that the present solver so closely 
follows the Molvik solution, as it is a well validated and widely used flow solver. The agreement 
in the expansion region between the NEDANA and the Molvik results on the one hand, and both 
disagreeing with the results of Shuen et al. on the other hand, would indicate that the solver of Shuen 
et al. does not handle the expansion correctly. Overexpansions are typical with flow solvers using 
higher order upwind schemes; but, since Molvik also uses a high order upwind method, it is not 
clear what mechanism is driving this disagreement. 

Mole fractions for the species N, O, N 2, 02, and NO as computed by the three flow solvers 
are plotted together in Figs. 5e-i. Again, the three flow solvers produce similar results, with the 
codes of Molvik and Shuen et al. producing sharper discontinuities and the results predicted by 
the Molvik and NEDANA flow solvers agreeing more closely, in general. Notice that the relative 
amount of the species changes greatly across the contact surface, but little across the shock. In 
particular, the mixture on the high-pressure side has little molecular oxygen, Fig. 5h. However, 

1. Additional calculations have been made with NEDANA using a doubly finer mesh. The results show a 
much sharper contact surface, and the density comparison is nearly exact. 
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because of the temperature drop across the contact surface, the amount of molecular oxygen rises 
and remains nearly constant through the shock. This behavior illustrates the finite-rate nature of the 
chemical process. The motion of the shock is very rapid; thus, the chemical changes lag behind the 
shock. Consequently, changes in the species concentrations resulting from the shock are not 
observed until the changes resulting from the contact discontinuity begin. Changes across the 
contact surface then become dominant and obscure the much smaller changes initiated by the shock 
wave. By definition, the molar fractions of the constituents of the mixture must change discontinu- 
ously across the contact surface. This is not captured in the numerical simulation. Numerical smear- 
ing of the contact surface causes nonphysical intermediate temperatures that are conducive to the 
production of species not actually present at the contact surface. In particular, notice that all the flow 
solvers smear the contact surface and produce spurious overshoots in NO and O. This overshoot is 
related to the fact that the equilibrium mole fractions of NO and O as a function of temperature for 
a given pressure are non-monotone. This spurious production itself canses further smearing because 
there also is a lag in this nonphysical production of species. The numerical and nonequilibrium 
issues thus become entangled. By turning off the chemistry, NEDANA produces solutions with less 
smearing of the species mole fraction profiles across the contact surface; but with the chemistry 

enabled, the smearing is amplified. 

4.2 SUPERSONIC DUCT 

Supersonic ducts with area change, Fig. 6, are good model problems for testing a time- 
marching code's ability to achieve an accurate steady-state solution. Two cases were chosen for 
comparison: (1) a supersonic duct flow that remains supersonic to the exit; and (2) a supersonic duct 
flow that has had its exit pressure raised until a shock is standing approximately half-way down the 
duct, with subsonic flow in the remaining portion of the duct from the shock to the exit. 

Results of the two nozzle flow problems are presented and compared with the results 
produced by Molvik's flow solver for the case with no shock. Both the flow solvers use the same 
reaction models used for the shock tube example. However, for the supersonic duct test cases, 
ionization reactions are included in the models. Results are also presented for the two test cases of 
equilibrium air solutions produced using curve fits taken from Ref. 48. The area distribution of the 

duct is taken as 

A(x) = 5.5 + 4.5tanh(0.Tx - 3.5); z E [0.0, 10.0] m, 

which produces a nozzle with an area ratio of 10.0. Both grids consisted of 101 uniformly 
distributed points. The supersonic inflow conditions for both cases were: 

7"" = 6000 K 

p" = I0 atm, 

while the frozen Mach number at the inflow was 2.5. 
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In both of the supersonic duct test cases, convergence to steady state was assumed when the 
unsteady residual was driven to machine zero everywhere. 
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Figure 6. Duct schematic. 

4.3 SUPERSONIC DUCT WITH AREA CHANGE 

As this case is a pure supersonic expansion, the exit boundary conditions are those of superson- 
ic outflow; i.e., the exit conditions are determined from a zeroth order extrapolation of the dependent 
variables at thej  max - 1 grid location. Initial conditions for this case were the uniform distribution of 
the dependent variables as determined from an equilibrium calculation of the inflow conditions. 

The comparisons of the NEDANA results with results from Molvik's flow solver are pre- 
sented in Fig. 7 along with the results from the author's equilibrium airflow solver. The distribu- 
tions of the species and the flow properties are nearly indistinguishable among the three solutions, 
except for the NO comparison, Fig. 7h. Near the nozzle exit, where the density has dropped by an 
order of magnitude from the inflow value, the NO chemistry appears to be frozen. 

38 



AEDC-TR-94-18 

, m  

O 
_o 
> 

l | l I 

2 . 0 -  

1.0- 

0 
0 

NEDANA 
Molvlk O 

Equilibrium • 

I I I I 

2 4 6 8 10 
X 

a. Velocity (normalized by a*) 

w 
w 

ft. 
o 

2.0 

1.6 

1.2 

0.8 

0.4 

0 
0 

t ' ' ' NEDANA 
~ .  Molvik O 

_ Equilibrium * 

2 4 6 8 10 
X 

b. Mixture pressure (normalized by p*) 

1.6 

• 1.2 t 

0.8 
E 
0 t-- 0.4 

0 
0 

! ! I I 

NEDANA ~ ' 
Molvik O 

° o  • 

I I i 

2 4 6 
X 

c. Temperature (normalized by T*) 
Figure 7. Super duct. 

8 10 

39 



AEDC-TR-94-18  

>,, 

21 
q) 
e- 

UJ 
i 

t~ 
e- 
L_ 

I¢ 
m 

3 . 0  

2 . 0  

1 .0  

I 

NEDANA 
Molvik O 

Equilibrium • 

I 

OI , , , , 
0 2 4 6 8 10 

x 

d. Internal energy (normalized by el*) 

w 
r -  
q) 
a 
.o 

.z3_ 
=Z 

1.6 

1.2 
¢ 

0 . 8  

0 

I I | I 

NEDANA 
Molvik O 

 'ii " ....... 
2 4 6 8 10 

x 

e. Mixture density (normalized by 13") 

0 . 4 0 ~  ' O ' ' ' 

I~ 0"20I N E D A N A -  

• 0.10! Molvik O 
~; N Equilibrium • 

0 2 4 6 8 ' 
X 

0 

f. Atomic nitrogen and oxygen 
Figure 7. Continued. 

40 



AEDC-TR-94-18 

r-  
O . m  

"6 m 
14. 
_e 
O 

e- 
.o_ 

E 
U.. 
O 
O 

f I I I I 

0.8 N2 

0.4 NEDANA 
Molvlk O 

0.2 Equilibrium • 

O2 
. . . . . . .  _ . . . . .  L . . . . . .  , . . .  - ' " - -  - - .  - - " ~ - - ; : : : - ;  - - , ; - ;  . . . . . . . . . . . . . . . .  

0 
0 2 4 6 8 10 

X 

g. Molecular nitrogen and oxygen 

0.06 t 
0.04 

0.02 

I I l I 

NEDANA 
Molvik 0 

Equilibrium • . . . . .  

0 I I I 

0 2 4 6 8 10 
X 

h. Nitric oxide 

0.00040 

= 0.00030 
O . t  

E 0.00020 
U. 
G 
"6 0.00010 

0 

I I I I 

NEDANA m 
Molvik 0 

Equilibrium • 

1 . J . . . . . . . . . . . .  

0 2 4 6 8 10 
X 

i. Electrons 
Figure 7. Concluded. 

41 



AEDC-TR-94-18 

4.4 SUPERSONIC DUCT WITH AREA CHANGE AND NORMAL SHOCK 

This case is interesting because the flow downstream of the normal shock is subsonic. 
Consequently, a subsonic boundary condition is required at the exit. Initial conditions also must 
reflect this fact. Initial conditions were determined by first making an approximation to the proper- 
ties in the duct from a perfect gas calculation. Then a crude equilibrium air calculation was made 
of the species distribution over the length of the duct. The initial shock location was close to the 
expected result. All of the dependent variables at the exit were determined by extrapolation as 
explained in the previous subsection; except that the specific total energy was calculated from the 
exit pressure which was imposed (Pexit - 14.8 atm). That is, 

~ e x i t  ~ 
Pexh 

Knowing the mixture temperature and the constituents at the exit, NEQPAK returns the specific in- 
ternal energy. The total specific energy is then found by adding the kinetic energy, as 

(-exit  = ~: ! ~ ,~,~'2. 

The comparisons are shown in Fig. 8. Only the equilibrium results are available to compare 
with NEDANA, because the version of Molvik's code used in this study does not make provisions 
for subsonic outflow boundary conditions.The results from NEDANA are in excellent agreement 
with the equilibrium air solution except for the distribution of NO+ downstream of the shock. This 
results because the equilibrium air solution considers eleven species, whereas the NEDANA 
computation was performed with a seven species model. 

Note the changes in the constituents of the mixture across this shock, relative to the changes 
discussed with regard to the shock and contact surface in the shock tube. The changes in pressure 
and temperature are not as severe in the duct so that the adjustment process is not as smeared as in 
the shock tube. The constituents change cleanly across the duct shock, except for a spike in atomic 
oxygen. It is also important to recognize that in the duct, substantial dissociation exists on both sides 
of the shock; whereas in the shock tube, the air molecules are shocked from a nearly quiescent state. 
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S.0 RESULTS OF TWO- AND THREE-DIMENSIONAL COMPUTATIONS 

Extensive flow computations were performed to validate and demonstrate the methodology 
and accuracy of the two-dimensional and three-dimensional modes of NEDANA. The classes of 
problems studied include: 

!. Laminar Separated Flows on Hypersonic Flat Plate/Wedges 

2. Nonequilibrium Flows around Hemisphere Cylinders 

3. Chimera Domain Decomposition in Nonequilibrium Flows 

The numerical results are compared to both experimental data and numerical results from existing 
flow solvers where available. 

$.1 BOUNDARY CONDITIONS 

In this section, the boundary conditions imposed for the three test problems are discussed. In 

all cases, the flow was supersonic. Therefore, the upstream boundary was specified with free- 

stream values. The flow at the outflow boundary was primarily supersonic. Only a small subsonic 

region existed in the boundary layer at the outflow boundary. Therefore, a zeroth-order 

extrapolation was used. Fluxes at symmetry planes were calculated by reflecting grid points across 
the symmetry boundary. At the body surface, a no-slip condition was applied such that all 
components of the velocity were zero. For non-catalytic walls, a zero normal gradient in the species 
mass fractions was set at the wall. For fully catalytic walls, the species mass fractions at the wall 
were set to their equilibrium values based on the wall temperature. The nonequilibrium flow 

experiments investigated in this study reported a constant wall temperature of 555.55 K. 

Calculations using the method of Prabhu and Erickson (Ref. 48) showed that for this temperature 

the equilibrium composition of air was equal to the free-stream composition. Furthermore, this re- 

suit was nearly independent of the equilibrium density. Therefore, the species mass fractions at the 

wall were set to their free-stream values. The pressure at the wall was set assuming zero normal 

pressure gradient. The temperatures at the wall were set to the reported wall temperature. Park (Ref. 
52) reports that the vibrational and electronic temperatures of molecules leaving a surface are nearly 

equilibrated with the translational wall temperature. Therefore, the translational-rotational and 
vibrational-electronic temperatures at the wall were set to a common value. 
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Table 1. Flow Conditions and Geometries for Flat-Plate/Wedge Calculations 

Wedge Angle (deg) M.. Re**(l/m) T,dK) p**(Pa) Twalt(K) 

15.05 15.67 4.885 x (10) 5 40.31 8.27 294.4 

18.00 I5.58 4.521 x (10) 5 42.53 8.34 294.4 

0.3 
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Figure 9. Flat-plate/wedge grid, 101 x 3 x 101. 

0.7 

5.2 HYPERSONIC LAMINAR FLOW OVER A FLAT-PLATE/WEDGE 

The flow over a compression comer formed by the intersection of a flat plate and a wedge was 
chosen as a test case for the two-dimensional, viscous coding of NEDANA. Measurements for 

laminar, attached and separated flows on fiat-plate/wedge configurations reported in the CUBDAT 

database by Holden (Ref. 53) have been used by various researchers for code validation (Refs. 54, 

55, and 56). Although the configuration is geometrically simple, the physics of the flow field are 

very complicated and serve as an ideal test case for viscous hypersonic phenomenon. A very strong 

leading-edge shock is generated that extends downstream and intersects the wedge flow field. In 

addition, for sufficiently large wedge angles, a boundary-layer separation region forms in the 

comer. On the wedge, downstream of this separation region, the flow is compressed and the 
boundary layer thins, resulting in large increases in skin friction and heat transfer. Furthermore, the 

compression waves produced by the comer coalesce into a shock wave that intersects with the 

leading--edge shock, generating an expansion fan and shear layer. 

The CUBDAT database includes pressure, heat-transfer, and skin-friction data for nominally 

two-dimensional (finite-span) 15.05-deg, 18-deg, and 24-deg wedges. The work of Rudy et al. (Ref. 

55) concludes that the inclusion of three-dimensional effects is necessary for accurate comparisons 

to experimental data for the 24-deg wedge case due to the larger boundary-layer separation region. 
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Therefore, two-dimensional comparisons are made only to the 15.05-deg and ! 8-deg wedge data. 
The conditions for the simulations are listed in Table 1. Note that the Reynolds number was low 
enough that the flow remained laminar. In addition, the high Mach number is achieved by an 

extremely low free-stream temperature. Therefore, the flow is assumed a perfect gas and not a 

chemically reacting gas. As a result, the flat-plate and wedge data comparisons allow for a 

validation of the NEDANA flow solver in the absence of the additional complexities of turbulence 

and chemistry. 

For both wedge angles, the length of the flat plate and wedge are 0.4396 m and 0.3048 m, 
respectively. The test geometries were modeled as two-dimensional compression corners with 

101 × 3 × 101 grids. (Note that the current version of NEDANA is a three-dimensional, finite- 

volume flow solver with the grid system described in Appendix B. Therefore, a minimum of three 
grid points is required in all coordinate directions.) A viscous wall spacing of 1.0 × 10 .5 m was 

used. This viscous spacing produced values of y+ < 0.1. The calculation of y+ is useful for deter- 

mining the minimum grid spacing required for accurate viscous solutions even in the absence of 

turbulence. A typical grid is shown in Fig. 9. The current version of NEDANA has been devel- 

oped for nonequilibrium computations and, therefore, receives all thermodynamic and transport 

properties from NEQPAK. As a consequence, the perfect-gas flow was modeled as a chemically 
frozen mixture of N2 and O2, representing air. This fact is noteworthy because the NEQPAK 

curve fits for thermodynamic and transport properties were formulated for 100 K to 30,000 K. 

Steady-state computations were made with the NEDANA flow solver for both the 15.05-deg 
and 18-deg wedge configurations using a global time step and a maximum CFL number of five. The 

dissipation parameters ((see Eq. (52)) were set at K2 = 0.8 and g4 = 1.8. Numerical tests showed that 

the use of local time stepping greatly increased the number of iterations for convergence. This find- 
ing may be due to the unsteady nature of the separated flow region. Steady-state solutions were 

typically achieved in 10,000 iterations with a reduction in residual of four orders of magnitude. 

Pressure, heat-transfer, and skin-friction results for the 15.05-deg wedge case are presented in Figs. 

10, 11, and 12. The results are compared to experimental data. Solutions were also computed using 

Molvik's TUFF (Ref. 49) flow solver and the AEDC flow solver XMERA (Ref. 42). These results 

are included to assess the performance of NEDANA versus other state-of-the art flow solvers. Re- 

sults from all three flow solvers are in good agreement with the experimental data. Note, the results 

of all three flow solvers may differ slightly due to the use of different curve fits for thermodynamic 

and transport properties. 
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Figure 10. Pressure distributions for laminar flow over a l$.0$-deg wedge, 

Moo = 15.67. 
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Figure 11. Heat-transfer distributions for laminar flow over a 15.05-deg wedge, 

Moo = 15.67. 
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Skin friction distributions for laminar flow over a 15.0$-deg wedge, 
M .  = 15.67. 

The calculation of the size of the separation region that forms at the juncture of the fiat plate/ 
wedge is extremely sensitive to the numerical dissipation of the flow solver. A flow solver with low 
numerical dissipation should accurately predict both the size and shape of the separation region. As 
the dissipation of the numerical scheme increases, the size of the predicted separation region 
conversely decreases. Extremely dissipative schemes may actually suppress the formation of a 
separation region entirely. The effect of the separated flow is to decrease both the skin friction and 
heat transfer at the wall. As a result, the extent of the separation region is marked by a drop in the 
skin-friction and heat-transfer distributions. With this phenomenon in mind, an examination of the 
skin-friction and heat-transfer distributions reveals that NEDANA and XMERA are slightly more 
dissipative than TUFF. This result was anticipated because the TUFF flow solver is based on an 
upwind algorithm, whereas the NEDANA and XMERA flow solvers are based on central differ- 
ence schemes with constant numerical dissipation parameters. 

To investigate the effects of decreased numerical dissipation, a series of computations 
were performed with NEDANA in which the dissipation parameters were lowered to ~ = 0.4 and 
~4 = 0.8. Additional computations were performed where the dissipation parameters were also 
scaled by the normalized velocity such that ~ -~ 0.0 and ~:4 -* 0.0 at the no-slip wall. This 
scaling was performed to further lower the dissipation in the viscous region near the wall. The 
decreased numerical dissipation did not significantly improve the NEDANA results. Only a 
slight increase in the size of the separation region was achieved, and at a cost of decreased 
numerical stability. A further numerical experiment was performed where the viscous spacing 
was increased to 1.0xl0 -4 m. The ensuing computation completely failed to predict the separation 
region. This result would indicate that adequate viscous grid resolution is more significant than 
the magnitude of the dissipation parameters employed. 
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Similar results are presented in Figs. 13, 14, and 15 for the 18-deg wedge case. The NEDANA 
and XMERA flow solvers performed similarly. However, the upwind Roe scheme of TUFF initially 
generated a nonphysical solution in the vicinity of the separation region where the flow switches 
from supersonic to subsonic. This nonphysical behavior is common to upwind Roe schemes and 
can be eliminated by applying an entropy fix (eigenvalue limiter) to the eigenvalues (Ref. 49). By 
increasing the absolute value of the entropy fix, physically consistent solutions were obtained. 
However, the TUFF results then offered no advantage over the central difference NEDANA and 
XMERA flow solvers. All three flow solvers failed to completely predict the extent of the separa- 
tion region. 
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Figure 13. Pressure distributions for laminar flow over an 18-deg wedge, 

Moo = 15.$8. 

The results of the hypersonic laminar fiat-plate/wedge cases have shown NEDANA to 
perform as well as current state-of-the art flow solvers. The NEDANA flow solver proved to be 
more stable and to converge more rapidly for hypersonic flow conditions than the XMERA flow 
solver. Where the NEDANA flow solver was able to run with a CFL number of five and converge 
in 10,000 iterations, the XMERA flow solver was limited to a CFL number of one-tenth and 
required 100,000 iterations to converge. Where the NEDANA code proved to be robust for both 
wedge geometries, the TUFF flow solver was susceptible to spurious solutions, even for small 
changes in wedge angle. 
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Figure 14. Heat-transfer distributions for laminar flow over an 18-deg wedge, 
M** = 15.58. 
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Figure 15. Skin-friction distributions for laminar flow over an 18-deg wedge, 
M= = 15.58. 
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5.3 NONEQUILIBRIUM FLOW AROUND HEMISPHERE CYLINDERS 

The computation of the thermal and chemical nonequilibrium flow fields around hemisphere 

cylinders (Refs. 57 and 58) was selected as a validation case for the nonequilibrium capabilities of 

NEDANA. Computations were made for the three geometries listed in Table 2. The three 

hemisphere cylinders have different radii and are referred to as model 1, model 2, and model 3. The 

nominal flow conditions for all three models are M = 9.8, Re = 3.025 x (10) 5 (i/m), I '  = 450 K, 
p® = 230 Pa, and T ~  = 555.55 K. The conditions are such that the flow is in chemical and thermal 

nonequilibrium. The free-stream total enthalpy, he. ., is 9.14 MJ/kg. A five species air chemistry, 

two-temperature model was applied using the reaction rates of Park (Ref. 36). In this work, the 

dissociation reactions are governed by a generic temperature where ot = 0.3 (see Eq. (31)). Heat- 

transfer measurements were obtained with both thin-film and thermocouple gauges. The thin-film 

gauges were coated with mother of pearl to minimize wall catalycity, whereas the thermocouple 

gauges allowed for wall catalysis. Models 1 and 2 were fitted with stagnation point thin-film gauges 

for measuring heat transfer, and model 3 was fitted with a stagnation point thermocouple gauge for 

measuring heat transfer. 

Table 2. HemisphereYCyHnder Geometries and Stagnation Point 
Catalytic Boundary Conditions 

Model Rn (m) L (m) Wall B.C. 

1 0.0127 0 .1143  Noncatalytic 

2 0.0254 0.2032 Noncatalytic 

3 0.0508 0.4064 Catalytic 

Grid resolution studies were performed with the current flow solver on the intermediate- 

sized model, model 2, to determine the grid requirements for achieving valid pressure and heat- 

transfer results for nonequilibfium flows. Josyula and Shang (Ref. 57) reported using a mesh 
system with 40 points in the body-tangential direction and 50 points in the body-normal direction 

with a viscous wall spacing of 5.0 × (10)'6 m. Using the results of Josyula and Shang as a guide, 

the system of meshes listed in Table 3 was developed. A typical grid is shown in Fig. 16. Grids 1, 

2, and 3 were developed such that the grid distribution functions in the body-tangential and body- 

normal directions were the same. This criterion was enforced to maintain the same relative 
resolutions in all three grids. Grid 4 was created with the same number of grid points as Grid 1 but 

with the viscous spacing of Grid 3. Grid 4 was developed to assess the relative importance of the 

viscous spacing and the total number of points in the body-normal direction. (Grids 5, 6, and 7 will 
be discussed later.) Note that NEDANA was used in a fully three-dimensional, finite-volume 

mode with the grid system described in Appendix B. Therefore, five grid points were required in 

the body-azimuthal direction. 
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Table  3. Detai ls  of  Grid Reso lut ion  S tudy  

No. Points 

13005 

28125 

51005 

13005 

13005 

19125 

19125 

Dimensions 

51x5x51  

7 5 x 5 x 7 5  

101 x 5 x 101 

51 x 5 x 5 1  

51 x 5 x 5 1  

51 x 5 x 7 5  

5 1 x 5 x 7 5  

an(m) 

1.0 x (10) -5 

7.0 × (10) -6 

5.0 × (10) -6 

5.0 x (10) -6 

1.0 × (10) -6 

1.0 x (10) .6 

5.0 × (10) -7 

Iteration for Conversion 

1100 
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2850 
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Figure  16. Hemisphere /cy l inder  grid, 51 x 5 × 51. 

Steady-state computations were made with NEDANA for Grids 1, 2, 3, and 4 using local time 

stepping and a maximum CFL number of ten. The dissipation parameters were set at r2 = 0.8 and 

~:4 = 1.8 for all cases. Numerical tests showed that the use of a local time step gave the optimal 

convergence rate for the hemisphere cylinder flow fields. (This result is contrary to the findings of 

the flat-plate/wedge investigation and emphasizes the uncertainties of using local time-stepping 

methods.) The solutions were considered converged when the heat transfer to the wall varied by 

less than 1 percent over a characteristic time step based on the minimum time step for the grid, 
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where t~,,  = Rn I u®. The  number of time steps required to obtain a steady-state solution is also listed 

for each grid in Table 3. The NEDANA flow solver operated at a speed of 2.03 x 10 -3 cpu-s/pt/iter 

on a Convex 3840 computer for five species in chemical and thermal nonequilibrium. 

Surface pressure and heat-transfer distributions for the grid resolution study of model 2 with 
grids 1, 2, 3, and 4 are presented in Figs. 17 and 18. The comparisons with experimental measure- 

ments for pressure are excellent. Furthermore, the calculation of surface pressure is largely 
independent of the grid used. The pressure distributions for all grids differed by less than 2 percent. 

The comparisons with experimental heat-transfer measurements show a greater grid dependency. 
As the grid resolution and viscous spacing are refined, the computed heat transfer increases. The 

viscous spacing normal to the wall is critical in predicting surface heat transfer. This fact is evident 
in the comparison of the surface heat transfer for grids 3 and 4. Grid 4 has the same initial viscous 
spacing as grid 3, but only half the number of points normal to the body. Nevertheless, the surface 

heat-transfer distribution obtained on grid 4 is in better agreement with the results obtained on grid 
3 than those obtained on grids 1 or 2. A comparison of the stagnation-point heat transfer for grids 
1, 2, and 4, shows they differ from that of grid 3 by approximately 20 percent, 10 percent, and 5 
percent, respectively. The comparisons are taken relative to grid 3, because it is assumed the grid 

with the best resolution will produce the most accurate results. Clearly, the computed surface heat- 
transfer distributions are grid dependent. For grid 3, y+ = 0.3 at the stagnation point, and down- 
stream of the spherical surface y+ = 1.5. A viscous resolution corresponding to y+ < 1 was initially 
expected to yield grid-independent results. However, the criteria for the accurate calculation of 

surface heat transfer proved to be more complex. 

Siddiqui et al. (Ref. 59) report similar difficulties in computing grid-independent surface heat 

transfer using a variety of thin-layer Navier-Stokes algorithms. Siddiqui et al. computed the flow 
over spherically blunt cones at similar Mach numbers and Reynolds numbers. (However, the free- 
stream temperature and velocity were such that the flows were not chemically reacting.) They de- 
veloped an expression to estimate the required viscous spacing as a function of Mach number and 

Reynolds number. Applying this expression to the hemisphere cylinders of this study, the estimated 
viscous spacing required for grid-independent heat transfer is 5.0 x (10 7) m. To generate a grid with 

this viscous spacing and maintain a similar grid distribution as grids 1, 2 and 3 is not practical. The 

resulting grid would require hundreds of points normal to the body. Also, note that the number of 
iterations to convergence, as well as the cpu-s/iter would increase beyond practicality. Therefore, a 
compromise was made by holding the number of points normal to the body constant. As a result, a 
decrease in the viscous spacing produces poorer resolution of the shock layer. This reduced resolu- 
tion in the shock layer is of importance in nonequilibrium flows where the chemical reactions can 
affect the heat transfer to the surface. This need to accurately resolve the chemical reactions in the 
shock layer is an additional constraint not imposed on the perfect-gas work of Siddiqui et al. 
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Figure 17. Pressure distributions for hemisphere/cylinder model 2 for 
grids 1, 2, 3, and 4. 
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Figure 18. Heat-transfer distributions for hemisphere/cylinder model 2 for 
grids 1, 2, 3, and 4. 
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To assess the effects of even smaller viscous spacings, a second series of grid resolution 
computations was performed with viscous spacings approaching those recommended by Siddiqui 
et al. These grids are listed in Table 3 as grids 5, 6, and 7. Surface pressure and heat-transfer distri- 
butions for grids 5, 6, and 7 are presented in Figs. 19 and 20. The comparisons with experimental 

measurements for pressure are once again excellent. Furthermore, the calculation of surface 
pressure is largely independent of the grid used. The pressure distributions for all grids differed by 

less than 2 percent. The pressure distributions, as expected, also are in agreement with the results 
obtained from grids 1-4. The comparisons with experimental heat-transfer measurements for grids 
5, 6, and 7 are similar. However, the heat-transfer distributions still exhibit a sensitivity to the 

viscous spacing. The stagnation-point values of heat transfer for grids 5 and 6 differ by 
approximately 20 and 10 percent, respectively, from those of grid 7. For grid 7, y+ = 0.10 at the 

stagnation point. Downstream of the spherical surface, y÷ = 0.15. For grids 5 and 6, y+ = 0.15 at the 
stagnation point. Downstream of the spherical surface, y+ = 0.20. These results further demonstrate 

the difficulties in achieving truly grid-independent, heat-transfer predictions. However, these 
results coupled with the results of Sec. 5.2 also demonstrate that for the cases studied, grids with 
viscous spacings corresponding to y÷ = 0.1 produced heat-transfer predictions within the 

experimental scatter. 
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Figure 19. Pressure distributions for hemisphere/cylinder model 2 for grids 5, 6, and 7. 
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Figure 20. Heat-transfer distr ibutiom for hemisphere/cylinder model 2 for 
grids 5, 6, and 7. 

The effects of viscous resolution on heat-transfer predictions have been well documented. 

However, the importance of resolving the shock layer should not be overlooked. This constraint is 
seen in the comparisons of surface heat transfer for grids 5 and 6. Both grids have the same initial 

viscous spacing. They only differ in the number of points and distribution of points normal m the 

body. The computed stagnation-point heat transfer for these two grids differs by approximately 8 

percent, demonstrating the importance in resolving the shock layer. Also, the heat-transfer 

distributions for grids 5, 6, and 7 differ from those of grids 1-4 downstream of the hemisphere nose. 

However, instead of predicting an increased heat-transfer rate to the surface, they show a lower 

heat-transfer rate to the body. This trend is more in line with the experimental data. Siddiqui et al. 

(Ref. 59) state that this lower heat-transfer rate is due to a better resolution of the expansion waves 

emanating from the spherical region. This consequence of better resolving the expansion region of 

the flow further emphasizes the difficulties associated with accurate prediction of heat-transfer data. 

Based on the results of the two grid resolution studies, the geometries of models 1, 2, and 3 

were modeled with 51 x 5 x 75 grids with initial viscous spacings of 5.0 x (10)am. These viscous 

spacings produced values ofy + = 0.1. Surface pressure and heat-transfer distributions for models 1, 
2, and 3 are presented in Figs. 21-26. The surface pressure distributions are in excellent agreement 

with the experimental data for all three models. The agreement with the stagnation-point heat- 

transfer data is reasonable for all three models. The agreement with the heat-transfer data on the 
afterbodies is within the experimental data scatter. For model 3, both a fully catalytic wall and a 
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noncatalytic wall boundary condition were applied. The uncertainty in the stagnation-point heat- 

transfer measurement of model 3 is reported as zero because only one measurement was taken. Note 
that the fully catalytic wall increases the stagnation-point heat transfer by 58 percent over that of 
the noncatalytic wall. Generally, the model surface will exhibit finite catalytic rates. Therefore, the 
true heat-transfer distribution is bounded by the fully catalytic and noncatalytic values. Clearly, the 
accurate modeling of wall catalycity represents a significant challenge in the accurate prediction of 
surface heat transfer in both computational and experimental simulations. 
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Figure 21. Pressure distributions for hemisphere/cylinder model 1. 
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Figure 22, Heat-transfer distributions for hemisphere/cylinder model 1. 
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Figure 23. Pressure distributions for hemisphere/cylinder model 2. 
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Figure 24. Heat-transfer distributions for hemisphere/cylinder model 2. 
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Figure 25. Pressure distributions for hemisphere/cylinder model 3. 
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Heat-transfer distributions for hemisphere/cylinder model 3. 

Temperature distributions along the stagnation sueamline for models 1, 2, and 3 are 

presented in Fig. 27. The conditions directly behind the shock are determined by the free-stream 
conditions. Therefore, the peak post-shock temperatures for all three models are nearly the same. 

(Small differences in the post-shock temperatures may be attributed to differences in grid resolu- 
tion.) Note, the translational temperature rises rapidly behind the shock. However, a much longer 
time is required for the vibrational modes of the molecules to become excited. As a result, the 

vibrational temperature lags the translational temperature, producing a state of thermal nonequilib- 
rium. The time or distance that is required for the translational and vibrational temperatures to 
equilibrate is dependent on this initial departure from equilibrium, and is therefore similar for all 
three models. However, the shock-stand off distance for each model is proportional to the nose 
radius. Therefore, as the nose radius decreases, a larger extent of the shock layer is in a state of 
thermal nonequilibrium. Also, note that the peak post-shock temperature occurs closer to the body 
with decreasing nose radius. This condition produces steeper temperature gradients near the body, 
leading to increased heat-transfer rates. These findings are consistent with hypersonic boundary- 
layer theory (Ref. 60) which states that q o¢ 1 / ~ n .  
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Figure 27. Temperature distributions along stagnation streamline for 

models 1, 2, and 3. 

5.4 CHIMERA DOMAIN DECOMPOSITION 

As a demonstration of the chimera capability of  NEDANA, a computation for the hemisphere 

cylinder model 2 was made with the computational domain defined by two overlapping grids 

consisting of 45 x 5 x 75 points on the forebody and 25 x 5 x 51 points on the afterbody. The two- 

grid system is shown in Fig. 28. The two grids had different numbers of points and grid distributions 

in both directions. Therefore, there was no exact overlap (direct injection) of points between the two 
grids. The one grid constraint that was applied was that the first point off the wall for the two grids 

has the same viscous spacing. This constraint was applied because of the extreme dependence of  
heat-transfer results on viscous spacing. To facilitate the comparisons of the results obtained on a 

single grid, the two chimera grids were given initial viscous spacings equal to that of grid 1 in Table 

3. Hence, comparisons are also made to the results of grid 1. Surface pressure and heat-transfer 

distributions for grid 1 and the chimera grid system are compared in Figs. 29 and 30. The 

distributions for the chimera grids are almost identical to those of grid 1 even with the mismatches 

in grid resolution. The pressure and heat-transfer distributions are also smooth in the overlap region 

between the forebody and afterbody grids. 
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Figure 28. Chimera hemisphere/cylinder grid, 45 x 5 x 75 and 25 x 5 x 51. 
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Figure 29. Pressure distributions for model 2 with single and chimera grid system. 
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Figure 30. Heat-transfer distributions for model 2 with single a n d  

chimera grid system. 

These results demonstrate the ability of the chimera grid system to reproduce the surface pres- 
sure and heat-transfer results of the single grid. However, questions have been raised about the ap- 
plicability of the chimera scheme to hypersonic nonequilibrium flows, in particular, the ability of 
the scheme to capture strong shocks, as well as conserve species concentrations in the vicinity of 
grid overlaps. In Figs. 31 - 34, contour plots are presented for the translational-rotational and 

vibrational-electronic temperatures, and for the mass fractions of diatomic and monatomic oxygen. 
Contour lines are plotted on both grids in the overlap region. Therefore, any discrepancies in the 
temperatures or mass fractions between the grids should appear as mismatches in the contour lines. 

Small discrepancies are perceivable in the overlap region. They occur primarily in the plots of 

translational-rotational tempera~'e and not in the plots of vibrational-electronic temperature or 

mass fractions. 
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Figure 31. Translational-rotational temperature contours for chimera grid system. 
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Figure 32. Vibrational-electronic temperature contours for chimera grid system. 

66 



AEDC-TR-94-18 

0.080 

0.060 

E >:0.040 

0.020 

0 I 
0 

profile . 

i 

. . . .  . . . . . .  . . . . . . .  

0.02 0.04 0.06 0.08 0.10 
X, m 

Figure 33. Mass fraction 02 contours for chimera grid system. 
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Figure 34. Mass fraction O contours for chimera grid system. 
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The contour plots provide a means for examining the qualitative properties of the chimera 

scheme in the overlap region. However, contour plots may be misleading because they depend on 
the contour levels chosen. Therefore, temperature and mass fraction profiles normal to the body at 
the location indicated by the arrows (x = 0.036) are presented in Figs. 35 and 36. The profiles 
extracted from the forebody and afterbody grids are nearly identical. Also, note the effects of both 
thermal and chemical nonequilibrium. The overlap region and the profile location extend from the 
free stream through the shock layer to the surface of the cylinder. Examining Fig. 35, the transla- 
tional-rotational and vibrational-electronic temperatures are seen to be in equilibrium in the free 
stream. As the distance to the body decreases, the profiles correspond to a fluid element that crossed 
the oblique shock just upstream of the profile station. Therefore, the translation-rotational temper- 
ature increases while the vibrational-electronic temperature lags. This behavior is similar to the 
behavior along the stagnation line that was discussed in the previous section. The profdes at the 

stagnation line, by definition, correspond to a single streamline and shock crossing position. 
However, unlike the profile along the stagnation line, the current profiles correlate to many stream- 

lines and shock crossing positions. As the distance to the body in Fig. 35 decreases further, the pro- 
file corresponds to fluid elements that have come through the much stronger shock of the stagnation 
region. These fluid elements have also been rapidly expanded around the hemisphere nose and are, 
to a great extent, vibrationally and chemically frozen. An examination of the temperature profiles 
near the surface show that the vibrational-electronic temperature is frozen at a much higher level 

than the translational-rotational temperature. 

The effects of chemical nonequilibrium and freezing are seen in the mass fraction profiles of 
Fig. 36. The increase in the translational-rotational temperature that is a result of crossing the 
oblique shock is not accompanied by a change in the mass fractions of oxygen as is experienced at 
the stagnation line. This behavior is a result of the weaker oblique shock. The oblique shock 
produces lower temperature, and density rises relative to the shock at the stagnation region. The 

dissociation rates behind the oblique shock are, therefore, much slower. However, significant 
variations in the mass fractions are seen as the distance to the body decreases further. Near the body, 
the profiles correspond to fluid elements that have passed through the much stronger shock of the 
stagnation region and the subsequent expansion region. Therefore, the composition of the gas is 
partially frozen. This effect of chemical nonequilibrium is evident in the increased degree of 
dissociation of diatomic oxygen near the body. If the gas were in equilibrium at the local 
translational temperature, the degree of dissociation of the gas would be decreasing with decreasing 
temperature near the body. 
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Figure 35. Temperature profiles in chimera overlap region. 
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Figure 36. Mass fraction 02 and O profiles in chimera overlap region. 
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6.0 CONCLUSION 

A three-dimensional nonequilibrium chimera flow solver was developed and tested against 
existing flow solvers and experimental data. The present flow solver, NEDANA, uses an implicit, 
time-marching algorithm that is central differenced and made TVD (Total Variation Diminish- 
ing) through flux limiters. The LIM (Locally Implicit Method) scheme is used at each time step 

to obtain a solution to the nonlinear set of equations. Flexibility in the use of various 
nonequilibrium chemistry models is made possible by the availability of an AEDC-developed 
nonequilibrium chemistry package, NEQPAK. Use of such a chemistry package makes 
NEDANA unique in the field. 

One-dimensional comparisons with the results from state-of-the art flow solvers were 
excellent. It was expected at the outset that sharper shocks in one-dimensional flows would be 
traded for a simpler algorithm, but this was not the case. The simpler algorithm (NEDANA) 
captured shocks as well as those of the more complex solvers. However, it is also evident that 
NEDANA does not handle contact surfaces as well. But, these surfaces only occur in unsteady 
flows, which are of somewhat less interest at AEDC. The three-dimensional NEDANA flow solver 
has been extensively tested against other flow solvers and available experimental data for perfect- 
gas and thermo-chemical nonequilibrium air chemistry. As expected, the NEDANA code proved to 

be slightly more dissipative than upwind schemes, but the effects of increased dissipation were 

marginal. A nonequilibrium chimera capability was also demonstrated, emphasizing the flexibility 
of the NEDANA methodology. 

The present solver's simplicity helps achieve the goal of having solvers that are relatively easy 
to use, understand, and modify. 
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A P P E N D I X  A 

D E R I V A T I O N  O F  M O D E L I N G  E Q U A T I O N S  

The purpose of this appendix is to begin with very few simplifying assumptions, and to 

develop a rather general set of conservation equations modeling viscous nonequilibrium flow• Then, 

various assumptions are made to obtain a simplified, reduced equation set from the more general. 

First, the internal energy per unit mass, e s, of a given species, s, is assumed to be composed 

as follows: 

es  = e t , s  + er ,s  + ev,s  + e e , s ,  8 = 1, . . . .  n8 

where e,.~, e,.,, evj and eel, are translational, rotational, vibrational, and electronic parts, respectively• 

Also, ns is the total number of species. Each of the above energies has an associated temperature. 
• i) 

Specifically, in thermodynamic equilibrium, the most probable fractlons,~, s, q ffi t, I", v, e, of  the 

particles of a given species, s, at the discrete energies, e (° , q., q = t, r, v, e, respectively, are described 

by Boltzmann distributions, 

d(i] ( .~[0 \ 
,7 ,s  ~-q,8 | 

fli] = 77. .  exp "q" q,s kTq,s ] 
q = t ,r ,v ,e ,  8 = J.~ . . . .  I~8 

with temperatures, Tq.s, q = t, r, v, e, respectively. Here, i is an index over discrete energy states. 
_(i) and ZCs is the partition function, Also, d (i)_q, ., is the number of  distinct states with energy, %. s , . 

~,(j) ) 
Zq,s = ~ d 0) exp ~,8 

q.s  k -~q . s  • 
J 

The Boltzmann constant is k =7~/NA, where T~is the universal gas constant and NA is Avagadro's 

number. To obtain the four energies for the mixture, a mass average is performed: 
n 8  

eq --  = P q, : q - -  f , r • t l ,  c• 

Here, Ps is the partial density of species, s, and p is the mixture density given by the sum of  the 

partial densities• Also, the mixture internal energy is given by: 

I t8  

s = l  p 
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In contrast to the species that have an internal structure, the free electron has only one form of 

energy, namely translational energy. Specifically, 

ee-  = et,e-,  er,e- = ev,~- = ee,,.- = 0. (A-l) 

Also, because elemental species do not have components that vibrate with respect to each other, 

~.~.., = 0, s ~ molecule. (A-2) 

Similarly, the enthalpy per unit mass, h,, for a given species, s, is assumed to be the sum of 

translational, rotational, vibrational, and electronic parts: 

h ,  = ht , ,  + h , . ,  + hr . ,  + he. , .  ~ = i . . . . .  n~. 

These arc related to the internal energies according to 

eq,, q ~ t 
hq,, = R.Tt,,  (A-3) 

et.s + j ~ ,  q =  t 

where.~'l, is the molecular weight of species, s. Thus, by Eq. (A-l), the free electron has only one 
form of enthalpy: 

h e- = Ih.e-,  h~.e- = h~. e- = he. e- = 0. (A-4)  

Also, by Eq. (A-2), 

h~,, = 0, 8 ~ molecule. 

To obtain the four enthalpies for the mixture, a mass average is performed: 

Tt8 

q-,ro . 

Then, the mixture enthalpy is given by: 
118 

(A-5) 

78 



AEDC-TR-94-18 

The energies and their associated temperatures are related by specific heats according to: 

f ro., 
eq,s JTt~d CS,q(Tt)dTt-}-(eq,S)ref. q t , r . v , e ,  s 1 . . . . .  n.s. 

Also, the enthalpies and the temperatures are related by: 

= f rq , ,  h,;,s JTref C~.q(Tt)dT' Jr (h~,s)ref; q =  t , r ,  tr, e,  S = ] . . . . .  l tS.  

Here, ~ .  q and ~ ,  ¢ are specific heats per unit mass at constant volume and pressure, respectively. 

From statistical mechanical considerations it can be shown that (Ref. 32) 

c'L = ~ .  OTq,. t . 0T, , , ,  j ' q = . . .  . , i s .  ( A - 6 )  

Then, by Eq. (A-3), it follows that: 

{ C'~.q q # t 

(A-7) 

As with the energies and enthalpies, the specific heats, ~ and Cp', for a given species, s, are 
assumed to be the sum of translational, rotational, vibrational, and electronic parts: 

~ I  rS  C:~, = C ,,.t + C~,,,. + C~.,. + C ~,,~. 

¢8 c',; = c'~., + c7,.,. + e L .  + G.~, 
$ = I . . . . .  ~ .  (A-8)  

To obtain the mixture specific heats for the different modes, a mass average is performed: 

c,..,- ,, z 
ffi P v v , q ,  ---- P x.,p,q, 

q--  t , r ,v :e .  

Then, the mixture specific heats are given by: 

118 

c',. = ~ ~c : ,  
s : l  p 

I i 8  

c.= Eat ' ; .  
s=l p 
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In complete thermal equilibrium, when all temperatures are equal, say T,.q = T, Eqs. (A-6) and (A-7) 
can be evaluated explicitly to give the species specific heats according to Eq. (A-8). The following 
interpolation is used to approximate this calculation as a function of the equilibrium temperature: 

,, "R. 5 
( I'( T ) = .'~I'-'~ Y ~  a t " T i - I  

i=1 

C~(T)= R s R 
.M--'~, y ~  a i ' ' T ' - 1  .It4," 

i=1 
(A-9) 

Also, in certain cases where the temperatures are distinct, explicit calculations can be performed 
easily to obtain the specific heats. For example, the translational and rotational specific heats are 
independent of temperature: 

3R 5R 
("~,t = 2.M," CJ't = 2.A4_," (A-10) 

t's'~ 
C~'r -- 2 J ~ , ,  -" (:~,r" ( A - I  1) 

Here, !-8 is the number of rotational degrees of freedom for a species, s. In particular, for diatomic 
molecules, rs= 2. Next, though it requires more effort, the electronic specific heats can be calculated 
from Eq. (A-6) after tabulating a sufficient number, say I s, of energy levels, _(i) and degeneracies, C'e, $ , 
(') The result is: 

/ ,  / (i) \2 / 3,1 \ 
f$ / ¢--'F .,$ / 

C'" =t',p,~ = ,~- z~ , , i= l  , xp  t.-K.,/ 

2 

R i X"d¢'} [ ~'~ / - - -  / ~ " " / /  
..u, -ZX., °'" k kr,., / i=1 (A-12) 

Finally, because of the complexity of calculating the vibrational specific heats by Eq. (A-6) for real 
molecules, the following approximation is used: 

~8 f8  6,..,. = 6v(T, , . , )  - C',,.t(T,..,) - CS.rtT,..o ) - ('~.,(TL..,) 

(3 + r,)R 
C~,(Tt,,.) 2..~[., C~...( T~,.. ) (A-13) 

~" Ut|r° 
('~.,. = ,, 

Here, the nonvibrational parts are subtracted away from the total specific heat for the species, after 
evaluating all these specific heats at the vibrational temperature in Eqs. (A-9) - (A-! 2). 

Since the free electron has only translational energy or enthalpy, its specific heats have only 
a translational part. Thus, with s = e', Eq. (A-8) becomes: 
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3R 5 R  
G'~- = Cve~ = 2.,~---~" C ; -  = C;,7 = 2.--.-~" (A-14) 

For the temperatures, Tq, s, q = t, r, v, e, there are associated thermal conductivities, g¢.~, q 
= t, r, v, e, respectively. First, the translational thermal conductivities are given by 

15 R T ~ . ~  
~.s = 4 a~fl(j.2;~JtTt,o) V :--)Q~*" (A-15) 

Here, o,  is the collision diameter for the pure species, s, and I2 is the collision integral defined as 
the weighted average of a collision cross section of the form 

• -,g.v, ju  ~ ~ ' ~ 4 7 r a . , . ( , . g ) e - ' ~ ' ~ 2 v + a ( 1 -  cos' , ) s in  ,d,d-~ 
m~..,. (T) = ~fore-~.'.~21'+a(1-coslk)sinkd~cd.~ 

l 

Here, o is the collision cross section for the s-r  collision pair, X is the mattering angle in the center 
a t  

of mass system, g is the relative velocity of the colliding particles, and ? is the reduced velocity. The 
expression in Eq. (A-! 5) is approximated within NEQPAK (Ref. 23) by the following interpolation: 

____1"5 R exp bi,s (lnTt,s) s-i 
tC~,s = 4 ;~4s • (A-17) 

The other thermal conductivities are given by: 

~q,s = Ps T~sClS,.q. q = r , t , , e .  (A-18) 

Here, 

is the self-diffusion coefficient, where, in general, the binary diffusion coefficient is given in terms 
of a temperature, T, as: 

3kT~ , /R( ,~4,  -{- ..~4,. ) 
" D , r t T )  = 8pfl~;l)(T ) V ~ ~ r r  " CA-19) 
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This expression is approximated within NEQPAK (Ref. 23) by the interpolation, 

where S /T)  is the electrostatic shielding ratio (Ref. 27), 

1 

S,,.(T) = 1 , 

In A CTp:-.T ) 

s and r neutral 

s or r charged 

(A-20) 

and the shielding function A(T) is defined as 

and p,. is the partial pressure of the electron in attn. In case a collection of species has the same 
temperature for a given energy mode, an associated mixture thermal conductivity can be defined in 
terms of thermal conductivities for the pure species. Specifically, suppose all species but the free 
electron have the same translational temperature, 7". Then, the translational thermal conductivity for 
this mixture is given by: 

4 
h't = det {L0r}s,~#e- 

.Lll 

det 

/ 'ns.l 
X1 

, , , . ~ $ r  ° . .  

4 B ~ 

- . .X~ . . .  

Ll,ns \ I 

\ s  

L,~.,n. \n .  
\ . .  0 s,r~e- 

Here the terms L,, depend on the pure species thermal conductivities, but the explicit form is given 
below only for the diagonal terms to fully specify the approximation, 

~t = -4 ~-~. ~ .  
(A-2]) 

where Xs is the mole fraction of species, s. The diagonal terms are given by 

2 

L~ = - 4  ~; - 
tCt'~ r~s 

v~b.~,. + :~ ,  )~ a,, F,,. + B,,. 
L I<t,~ ~°t2,. J 
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where in general, 

(2,21 
fl,,~ ( T )  

Aar = (1.1} ' 
f l , . ,  ( T )  

I ~-~( 2,2)p-r,, 
F,,. = "'~ t'IJ 

( 2 ,2 )  fl,,, (T) 

I (2,2)( T 
B , ~  = f l . . .  , _  ) 

t,-) ( 2 ,2 )  i ..T, ~ " 
a L r , r  t . t  ] 

Following the method of  Armaly and Sutton (Ref. 29), these terms are approximated as follows: 

A,,. = A,., = 1.10 

1.25 

s -  H , r - -  H + 
s = H ~ ,  r = H e  + 

s = a tonl  ~ H,  H e ,  r = .s + 

otherwise (A-22) 

and 

Fsr = irrs = I, (A-23) 

0.2 

Bs,. = B ,s  = 0.1.5 

W 

8 = &toni or molecule,  r = e -  
8 = a t o m  or nlolecule, r - i o t t  
o, r = a tom o1" molecule 
otherwise  (A-24) 

Thus, Eq. (A-21) can be viewed as giving a mixture thermal conductivi ty according to a mixture  

function,  .'V~s, due to Armaly and Sutton, that depends on pure species thermal conductivit ies.  

In particular, if  the translational temperatures for all species, except  the free electron, are the 

same, then 

= A r A s (  . . . .  , . . . ) .  (A-25) 

In a similar manner, other mixture thermal conductivities can be defined, provided the constituents 

have the same temperature for the corresponding energy mode. Specifically, if the rotational 

temperatures are the same (there is none for the electron), 

= A"AS I .... ..... ). (A-26) 

If  the vibrational temperatures of  the molecules are the same, 

Kv "- 4~fAS( . . . .  K~:,s=molecule . . . .  ). (A-27) 
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If the electronic temperatures are the same, 

, ~  = . ' V A S t .  • • , , ~ . , ~  . . . . .  ).  (A-28) 

Since the free electron has only a translational temperature, i.e., T e. = Tt, e. ,  its thermal conductivity 
is given by Eq. (A-15), 

~e- = ~t,e- = 4 .M e- exp b,. e- (In T,-15-i . 
i=l (A-29) 

Finally, if all temperatures are the same and equal to 7", the species thermal conductivities are 
determined by 

bi .s( lnT)  5- i  + Ps Ds[C,:_:~.~I. (A-30) 

Here, the first expression shows the translational part. The second expression shows the 

translational part of the specific heat subtracted away so that the expression gives the 
nontranslational part of the thermal conductivity. Then, the mixture thermal conductivity is given, 
according to the method of Armaly and Sutton, as: 

,~ = . 'V 'AS{ ~ 1  . . . . .  h ' , , ,  ) .  (A-31) 

A similar procedure, due to Armaly and Sutton (Ref. 28), is used to determine the mixture 
viscosity, p.. First, the pure species viscosity, Bs, for a species, s, is defined by 

4 .hi, 
P " -  15 "R Kt . ,  (A-32) 

where r~.~ is defined in Eq. (A-15). Thus, by Eq. (A-17), B, is approximated by the interpolation, 

~ls = -~exp  b i . , l l n T t . s )  5 - '  . 

(A-33) 

Then, the viscosity for the mixture is given by 

1 

det {H,~} 

HI1 

det 
H,Ls,1 

k]  

• " • H l , n s  \ 1  

. . .  H,,,. , ,  \ , ,  
"'" .~ns 0 
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Here the terms H .  depend on the pure species viscosities, but the explicit form is given below only 

for the diagonal terms to fully specify the approximation, 

The diagonal terms are given by 

/18 

S = I  

where A , ,  F,,, and B~, are given by Eqs. (A-22) - (A-24). 

IJ J 

(A-34) 

2 

In the remainder of this report, it is assumed that the translational and rotational energies, eu 

and e,., s ;e e-, are distributed with the same temperature, 7", i.e., 

Tt,. = T~,. = T,  s # e - .  

Also, the electronic excitation energies, ee. s, s ~ e', are assumed to be distributed with the same 
temperature, T,, i.e., 

T~,o = T ~ .  s # e - .  

Recalling T,. = T,.,., and using Eq. (A-3), 

h e- = ee- + - -  
.&d e - 

Since there is a single translational temperature, Eq. (A-3) shows that the translational enthalpy and 

energy for other species are related according to: 

~ T  
hr., = et., + . - ~ .  (A-35) 

With the above definitions, the conservation equations can now be given. First, the 

conservation of mass for each species is expressed as: 

3 0 0 f .,41 
ip j~ "~ f ) 8 | ~ $ [  ~ tl~ 8 ET,.  t .  d 

j = l  

s = i . . . . .  ns (A-36) 
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where ufs is the diffusion velocity of a species, s. Also, o,  is a source term that depends on the 

partial densities and the translational temperature in such a way that it vanishes when equilibrium 

conditions are achieved. Specifically, the source terms are constructed as follows. The reactions on 

which they are based can be written in the form 

~18 D,8 

v,.,, A,,, - -  X~ ",'.,."',,"", i < ,. < ,,,.. 
.=I  ,), =I (A-37) 

Here. ,rv I,.~ and {v',. .s ,n },. = I are stoichiometric coefficients for the rth reaction. M, L r ,  l l J / I  _-- ] 

represents one mole of species s, and nr is the number of reactions. The rate of disappearance of a 

species s due to the rth reaction is 

= +, ... ,,,.,~.~ ~ : ' . "  L'.,... ,,..l~, I I  ~ ' " ' " +  17 • 
. = I ,, = t ( A - 3  8 )  

while the production rate of a species s due to the rth reaction is 

rtdl )i,$ • 

l n = l  ~ 1 | = 1  

The net rate of change of species s due to all reactions is 

(A-39) 

,--i (A-40) 

Like most aerothermochemical models, NEQPAK assumes the modified Arrhenius form (Ref. 32) 
for chemical reaction rates 

k[ = A,.TB" e:rp(-C,./TL (A-41) 

where Tis the translational temperature of the gas. The rates defined in Eq. (A-41) were obtained 

from fits to experimental data that were collected under conditions of thermal equilibrium. 

However, when the reaction rate under question represents, for instance, a two-body dissociation 

reaction, then the reaction rate also depends on the vibrational temperature of  the gas. One of the 

more popular approaches used to account for thermal nonequilibrium is that of Park (Ref. 33), who 

replaced the translational temperature in Ex 1. (A-41) with a generic temperature or average 

temperature, Tq. Park defined Tq by the relation 

Tq = T~.TI-°;O < a . <  1, 

where ot was chosen to reproduce experimental data. 
(A-42) 
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The reverse reaction rate coefficient k r is related to the forward rate by 
r 

= k r / I ~ , . .  

where 

h,~ = ( p = , , / ~ T ) 6 '  ,..rp( - ~ ) .  

is the equilibrium constant for the rth reaction and 

E • 6r - (l~r., - i~,,); 
s = !  

_= 
s----1 

(A-43) 

(A-A4) 

(A-45) 

0 
In Eq. (A-44), p=, = ! .01325 x 105 Pa. Also G s is the Gibbs free energy for species s at the given 
temperature and a pressure of ! attn. The Gibbs free energies are computed from curve fits taken 

from Ref. 27. This interpolation takes the form, 

",0 th+l,a .T i + a~,s 
G , ( T )  = 'R.T  a a . , ( 1 - 1 n T ) -  ~'~ i(i + l) • 

/=1 

Next, the conservation of mixture momentum is expressed as: 

"~ (pt~i) + pttiUj + (~ij P q" --It 
j = l  k= l  

- -  l E 1~8 - -  he- ~ i 1,2,3 
8~i011 (A-46) 

Here, the mixture viscosity, p., is given in Eq. ( A-34 ). 

The vibrational energy associated with each molecule is conserved according to: 

0 "~ O [,9 OT,~,,, 
{p,e,..,) + ~ ~ ,~,~..,uj - ~,,,, 

L' Oxj 
./----.1 ' ,u,,,, 3 

] 

8 = mo]ecule. (A-47) 
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w h e r e  

p e ; , ,  - e,., ,  + p ~.:.,o- - ~ , , ,  
¢~ v ,s 

Here, e*~. s and e*~*s are the vibrational energies of species s evaluated at the translational 

temperature, T, and the electronic excitation temperature, T¢, respectively. Also, %~ and %-,.s are 
the translational-vibrational energy relaxation time and electronic-vibrational energy relaxation 

time, respectively, for molecular species s. Finally, De is the average vibrational energy per unit 
mass of molecule s, which is created at rate cos. 

Since all the electronic excitation energies, ee, s, are assumed to be distributed with the same 

temperature, T,, the conservation of the mixture electronic excitation energy, e,, can be expressed 

in terms of this single temperature as follows: 

~¢~o1+ ~ p~o,,~-,~ooT+ ~ h~.p.,,,. =-0,., (A4S) 
'B~ ,$::~ e - -  

where ~ is given in Eq. (A-28). Also, Q,,d is the radiative energy transfer rate. Since the 

translational temperature, T~¢. = T,., for the free electron is assumed to be different from that for oth- 
er species, the conservation of electron energy must be written separately as: 

°~p.-~-~ + F~ N p~-~.-~ - .~-  0.-V. + ./=1 

w h e r e  

= - L p o - ~ . T ,  + ~ o -  
3----1 ' J 

~.-=3po-~IT-Tol ~ "~-" E ~'~-°J.- 
s#e- , , 'vf  = ~=]Oll 

y ]  p,~;,'° - c'," 
sfmol .  "/'e-,-,s (A-49) 

and ~ .  is given in Eq. (A-29). Also, v¢,s is the effective collision frequency for electrons and heavy 

particles in electronic-translational energy relaxation. Then, ti e_ .s is the molar rate of production 

of species s per unit volume by electron impact ionization, and Is is the first ionization energy of 

species s per kg-mole. 

Finally, define the total energy as the sum of internal and kinetic energy: 

3 
"T = c + 0.5 ~ ,,.2. 
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This is conserved according to the following: 

3 0 [ OT 
/~)/(P6T } + E ~ (peT +pluj -- (g, + t~r)ox.; 

L j _ l  

OT,,,, OT~ ~.rl',_ 
H e -  - -  K ¢ -  

s=n~r~l. 

+ ~h 'P ' "~ ' - " " '  ~,o~ + o.=., ) + ~""'~' ~ o.,.,.j 
s=!  k = l  

h e -  s=ion / 3=1 

where 1¢ t and K r are given in Eqs. (A-25) and (A-26). 

(A-50) 

Now, assume that the electron energy, ee., and the mixture electronic excitation energy, eo 

are distributed with the same temperature, T~, i.e., 

T E = T ~ -  = r~. 

Therefore, the conservation of the two energies can be expressed in a single equation in terms of a 
single temperature. For this, define the electron and electronic excitation energy, 

EE -" ee + --.Pc-ee_. 
P 

Also, certain molecules may be assumed to have the same vibrational temperature. These will be 

called type I molecules, and their vibrational temperatures are assumed to be equal to the 

translational temperature, i.e., 

T = Tv,,, s = type 1 molecule. 

The remaining molecules with distinct vibrational temperatures will be called type II molecules. 

Finally, the degree of charge separation, 

1 
1 - - -  ~ 1~, 

?~e- s=ion 

is assumed negligible and is set to zero in the appropriate conservation equations. 

Now the conservation equations are given as follows. First, the conservation of mass for each 

species is expressed as 

3 o [  o,, 1 -~Ps+ ~'~xj Psuj-pDso.rjJ =ws . q =  1 . . . . .  , . q .  (A-51) 
3=1 
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Note that in this equation and in ones that follow, the diffusion velocity of  species s is 
approximated as 

,1 p 0\o u.  ~ - = D ,  ~-i= 
i , ,  o ,- ,  ,~ 3 (A-52) 

where Zs is the mole fraction of species, s, and D, is an effective diffusion coefficient given by 

D° = r . 

r ~ s  r °  

In general, the diffusion velocity for a given species depends on concentration gradients of  other 
species as: 

" ( - ; )  r5 E \ ° \ "  ( B ' ~ - e )  = v \ . +  \ .  P" V l n p -  \ ' \ "  OT r l n Z  
r - - I  Lr----1 

T 
where D s is the thermal diffusion coefficient for species s. This dependence does not appear in the 
approximation of Eq. (A-52). 

Next, since the number density of the free electron is assumed approximateiy equal to the 
total number density of ions, the conservation of mixture momentum is expressed as: 

~le,,,l+~o.~. o,,,,,,+~,., P+.V' o.,.,.)-J'~o.,., + o.,.,)j =°  
j = l  " • k = l  

i = 1.2..'.1 (A-54) 

The vibrational energy associated with each type II molecule is conserved according to: 

0 3 0 [ OTv,, 
O--t (p,e,,.,) + ~ ~ p . e . , ° u j  - ~v., O.~'j 

j ----I 

o,.1 
- 

"-- ~ t ' . O  

(A-55) 

where 
= type II molecule. 

~,,,, = p, e:,,, - e~,,, + p, e:,', - et,,, + w , b ,  

r t -v , s  re-v ,s  

Since the mixture electronic excitation energy, e e, and the electron energy, e,., are assumed 

to be distributed with the same temperature, TB, the conservation of the electron and electronic 

excitation energy, e E, can be expressed in terms of this single temperature as follows: 
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where 

and 

~I.~el+E N .~.j-I~0+~.-,~-.  ,,~.v8 
J----I ---- 

3 Ouj 
= - E P c -  - I -We  - Q rad 

0 - - - - e -  

,.~-,. ~ ~,~_j._ ~ ..~:,'.-,~,..8 
~E; = 3p.-  ~ (  T - TE) ~ ~ .  . r~_,,,. 

j#J,-  a=ion s=mol. 

(A-56) 

Finally, the total energy is conserved according to the following: 

~(.,T)+ ~ (.~+.),,J- ,~,+'~+ Y_. ~.  ~ E ""o~ 
.1=1 ,~----moL I / 8=tool. II 

• o r e  "" o , , ,  (o , , ~  o,,~'~ 2 _ .a .  o,,~.1 
-¢"' + " ' - ' ~ - " ~ E  h ' D ' ~  - ~''' \Oxj + O.~.,) + ~'""~'~ 2., 0.--~.) 

8----1 • k----1 O,~ kJ 
"-- - -  Q r a d  

(A-57) 

Now, assume that the vibrational energies of all molecules, e,~, s = molecule, are distributed 

with the same temperature, T~, i.e., 

Tu.s = Tv, a = molec t t le .  

Therefore, the conservation of vibrational energies can be expressed in a single equation involving 

the mixture vibrational energy, e,, and the single temperature, T,. 

Now the conservation equations are given as follows. First, the conservation of mass and of 
mixture momentum are shown in Eqs. (A-54) and (A-36). The mixture vibrational energy is 

conserved according to: 

- - , , - , . - - - p  E h~.O.~, ~,. Ot (/,e,,) + ~ ~ p~,.., 0z, = (A-58) 
3 = 1  a----tool.  

where r~ is given in Eq. (A-27), and 

U~v -" E ¢ d v ' s "  

8~nlol. 
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The conservation of the electron and electronic excitation energy is expressed as: 

o 3 o [ OTE " ' .  ,, 0~,1 
3=1 a = l  

where 

3 Ouj 
- - - E P . -  +~E-Orad 

j=l ~Xj 

(A-59) 

a#=e- a:Jon a=mo], T¢_ t,,a 

Finally, the total energy is conserved according to the following: 

n $  • o 3 o )OT_ Or,, )or~ ~h.DO~, 
~-(p,~)+ ~ ( / " ' t +P) " . j - ( " ,+ ' , .  O.":S " " ~ - ( " "  +~ ' -  T~-~, - p  o.,.j 

j=l s=l 

1 -l,u, \ O:cj + 0,~, ] + "~Itui~,j ~ ~ j  = -Qraa (A-60) 
k=l 

Now, assume that the electron and electronic excitation energy, e~, and the mixture 

vibrational energy, e,, are distributed with the same temperature, :Iv, i.e., 

TE = T,, = T v .  

Therefore, the conservation of the two energies can be expressed in a single equation involving the 

mixture vibrational and electronic energy, 

e v  " -  eE ~ el., 

and the single temperature, Tv. 

Now the conservation equations are given as follows. First, the conservation of mass and of 

mixture momentum are shown in Eqs. (A-54) and (A-36). The mixture vibrational and electronic 

energy is conserved according to: 

0 3 0 OTv ~ h ; . , D ,  
o-7 (e':") + ~ o-~,'~ j=~ /"ev"J - ("" + ":" + '~'-)~:7~.j - / " , ~  o~..~j 

= - 2 . ,  p , -  0 - ~  ' + ~o~. - Q, .=~ 
.lfz ' .t (A-61) 
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where 

and 

{ h , -  
h ; ; ,  = h , ,  + h, . ,  

h+]s 
~t = molecule 
otherwise 

t~t" " -  Wv + & E  

Finally, the total energy is conserved according to the following: 

o [  l o t  _ I.,, + . .  + . , -  ) or,- _ p S] h.D. ~ ' "  ' ~(p~-'r)+ ~"~ ( /W-T+P)U.I- - (Kt+t" ; , "  (9:r./ ~ s=, 
j= ]  • 

-J'"' ~, ~ + o.+, / + ~,,',~,, ~=,~E ~ j  = -o,.., (A-62) 

Now, assume that all energies are distributed with the same temperature. The conservation 

equations are given as follows. First, the conservation of mass for each species is expressed in Eq. 

(A-36). The conservation of mixture momentum is expressed in Eq. (A-54). Finally, the total 

energy is conserved according to the following: 

-~'"' \ ~  + o.,, ) + :~'"'~" ,=, ~ o.~j = -qr., .  (A-63) 

Here, K is given in Eq. (A-31). 
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APPENDIX B 
CELL G E O M E T R Y  

The method by which the flow field is discretized into a three-dimensional computational 
domain is described in this appendix. The numerical algorithm employed by NEDANA is a finite- 

volume scheme. Traditional finite-volume schemes are constructed on computational grids where 

the dependent variables (Q) are stored at cell centers, and the independent variables (x, y, z) are 

known at cell comers. Employing the notation of Gnoffo (Ref. 21), (Y, K, L) denote the indices of 

the cell centers, and (], k,/) denote the indices of the cell faces. The two indexing systems are related 

by (J, K, L) = (j + 1/2, k + 1/2, l + 1/2). In traditional schemes, the cell comers, (j, k,/) ,  form the 

vertices of a computational cell, and the dependent variables represent the average of the variables 
over the cell volume (J, K, L). One disadvantage of this grid technique is that the grid must be 

shifted to output the (x, y, z) location of the dependent variables. Because NEDANA interacts with 

software that requires the dependent and independent variables to be written at the same location, 

an alternative grid system was adopted. In this system, the computation grid is constructed from the 
cell-centered coordinate system. In effect, the coordinate system is shifted by half an index. The 

areas and volumes are calculated on the (J - !/2, K- 1/2, L - I/2) coordinate system and stored before 

the flow solver is executed. This shift is made possible because the location of the cell corners is 

never explicitly used in the finite-volume scheme. As long as the cell volumes and areas are 

calculated correctly with respect to the cell centers, the coordinate system chosen is irrelevant. This 

shifting is transparent to the user of NEDANA because all of the cell geometry logic is performed 
by a preprocessor code. 

The shifting does, however, affect the treatment of the boundary conditions. Unlike 
traditional finite-volume schemes where domain boundaries correspond to cell faces, the 

NEDANA boundaries correspond to cell centers. Therefore, the boundary conditions can be set 
directly. Figure B-I is a schematic of the NEDANA grid system for a single plane. Note that at the 
boundaries, the cell face areas become cell-centered areas. This psuedo-area is appropriate 

because no flux evaluations are performed at the boundaries. The areas are only used for 

calculating normals to the surface and setting boundary conditions. In Fig. B-2, the geometry of a 

single computational cell is shown. In this figure, the two coordinate systems and the relative 

positions of the cell faces and the cell center can be more easily seen. Note that the cell faces lag 

the cell centers by half an index. 
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Figure B-1. NEDANA grid system. 

95 



AEDC-TR-94-18 

/ ,1 face j 

. . . . . . . . . . . . . . . . . . . .  ° - - ° - - . .  F e o  

,,k : /  / k  
J - - i  

face k 

p , . o  . . . . .  . . . . . . . .  o . . ° . . . o  . . . . .  

face I 

Figure B-2. Cell geometry and coordinate systems. 

7 

The calculation of the cell face areas and volumes is performed entirely by the NEDANA 

preprocessor code. The methodology employed follows directly from that of Gnoffo (Ref. 21). 

First, define the location of the cell corners with position vectors in the Cartesian coordinate 
system. Let 

where 

df i  = ~'j,k+l,i -- 5.k, t+,  

d,"3 = ~'j,k,l+~ -- 6+~.k . t  

d~'4 = ~'~+~,~,l+~ - ~'~,k,I 

de5 = 6+l,k,I -- 5,k+,.t 

de6 = 6 + ~ , k + ~ , t -  5,k,t 

( B - t )  

~j.k,I = [Zi= + yi~ + zi-]j.k, t • ( B - 2 )  

The directed cell areas, o, and the cell volume, V, can now be defined by 

V J,K.L 

d ~  × dF2 
~ ~,K,L - -  2 

d~a x d~4 
ff*l J,k,L -- 

2 
d~'5 x d~e 

~( J,K,l -- 
2 

( ~ j , K , L  "]" ff~,J,k,L + ff( J.K,i) 
dfT m 

3 

(B-B) 

(B-.4) 
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The projected area, ~, with magnitude o, is normal to the cell face and points in the direction of 

increasing J, K, L, respectively. In the NEDANA notation, the cell face areas are written 

~,,~.~,'.L = , , ~  + ~ + o,% 
~,.~, ' .L = ~ ' ~  + o ~  + ~'p~ (B-5) 

where the terms cP, o "~, and o z denote the magnitude of the area as projected onto the Cartesian 

coordinates. The transformation metrics in a finite-volume scheme, such as ~ ~ .  ~ ,  am expressed 

as the ratio of cell face areas to cell volumes. Equation (B-4) is first-order accurate with respect to 

a cell face or a cell volume. G-noffo states that this formulation introduces errors when crossing an 

axis singularity. Gnoffo proposes a second-order accurate expression that uses symmetric averages 

of differences about the cell center. The volume can now be expressed as 

d~8 " (~3 ,K ,L  "b H~3+l,h',L + ff,~J,k,L "b ff,~J,k+l,L + ff~J,K,i "1" O(J,K,l+l) 
VJ, K,L ---- 6 (B-6) 

where 
d~'s = [(~e + "~,, + ~'¢)~ + (~1~ + :1,~ + ~1~)~ + ( ~  + ~,, + ~'¢:)~z]j,K,L 

(B-7) 

[A~]d.k,L "1- [~]J,k+l,L [~]J,K,! + ['q~,]d,K,i+l 
and ['q{]J,K.L : 2 2 

[~"]j.lx',L + [ 'q 'J]3+I.K,L (~"]J ,K,I  @ ['~]J,K.i+l 
[8"]J.K,L -- -" 2 2 

[SdJ,K,L :" ['~(]J,k,L "~" ['8(]J,k+l,L [8~]3.K,1 "~ [8~]j+I,K,L 
2 = 2 (B-S) 

where the generic differences ~ are second-order accurate with respect to the cell centers, and the 

dummy variable s represents the independent variables x, y, z. The ~ differences are second-order 

accurate with respect to the cell faces and have the form 

8j.k.! ~t. ~ j + l , k . l + l  --  8 j .k . l+ l  ) 

8j.k.I J¢" 8j+l.k+l.i -- 8j.k+l.l) 

-4- ~ .k+1 .1+1  --  s~.k.l+l) 

+ S . /+ l . k+L!  --  -~j+Lt' . l  ) 

"1" 8.~.k+13+1 --  8 . j .k+l . t l  

"~" ~ j + l . k , l - I - 1  - -  83 - } -1 .k . I } .  (B -9) 

1 
[~]J.k.L = ~ (S ,+x .~ . . l -  

1 

1 
[~'I]j.K.L -- 7{"~J.k+l. i  -- 8.I,k.l 

1 
[~,,]J.K.t = ~{s,.~.+1.1 - -~.,.~-.! 

1 
[$(]j.K.L -" :{Sj.k.l+l -- $.,,k.l 

1 
['~]J,k.L -- ~(8j,k,l+l -- 8d,k.! 
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The transformation metrics are defined by 

In finite-volume notation, these terms are written as the ratio 

~ j,K,L 
~ j , ' . r  - 

V J, K,L 

V ?lJ.k.L : a,~ J.k,L 
V J, K,L 

~¢j,~.,~ ~ J,K,~ 
-- V J, K,L " 

- 1  

(B-IO) 

of cell face areas to cell volumes 

(B- l l )  

Equations (B-I 1) are only first-order accurate. The reason being that ~ is second-order accurate 

with respect to cell faces but only first-order accurate with respect to cell centers; and conversely, 

V is second-order accurate with respect to the cell centers but only first-order accurate with respect 

to cell faces. Gnoffo suggests using a symmetric average of cell faces and volumes to obtain 

second-order accurate metrics for the evaluation of viscous terms. These second-order accurate 

metrics take the form 

V~J,k,L -- 

V~J, KJ = 

q71~,K,L = 

q~J,k,L = 

V ~ J , K . i  = 

~ ¢~,,:.L = 

V¢J,k,L = 

#¢J.K,t = 

VJ, K,L(~(3-I,K,L "b ~(j,K,L) + VJ-I,K.L(~(j,K,L + O'(j+I,K,L) 
4 VJ.K,LVJ_I,K. L 

VJ, K,L(gejJ,'-1,L + ~ej+I.K-1,L) + VJ.K-1,L(~ej,K,L + ~j+~,K.L) 
4 VJ, K,LVJ.K_ I .L 

VJ,K,L(~j,KJ.-! + ,~e~+l,r,L-~) + VJ.1,',L-~(~e~,K,L + ~ej+l,K/.) 
4 VJ, K,LVJ, K.L_! 

VJ, K,L(~,IJ-I,k,L -b ~lJ-l ,k+l,L)  + V J-I,K,L(~TIJ, k,L + ~,?J,k+l,L) 
4 VJ.K,LV J_ I,K.L 

VJ,K,L(~?J,k-1,L "~ ~lJ,k,L) + V J,K-I,L(~T?J,k,L + ~J,k+l,L)  
4 VJ,K,LVj,K-1.L 

VJ, K.L(~,IJ.k,L-I + ~,J .k÷l ,L-l)  + V J, K,L-I(t~,IJ, k,L + ~,J,k+l,L) 
4 VJ, K,LVJ.K.L-1 

VJ ,K,L(~  J-I.K.I "Jc ~ J-1,K,l+l) "}" V.I-I ,A' ,L(~ J,K,i "Jc ~(,J,K,i+I) 
4 Vj,  K.LVj_ I,K,L 

V J, K,L( ~( J-1.K.I "~ ~g J-I,K,i+l ) + V J,K-1,L( ~ J,K,i + ~( J,K,14-1) 
4 Vj.K.LVj,  K_! .L 

VJ, K,L(~(J.KJ-1 + ~CJ, K,I) ~" VJ, K,L-I(~(J,K,! + ~J,K,i+l)  
4 VJ.K.LVJ, K,L- (B-12) 
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APPENDIX C 
NUMERICAL BACKGROUND 

The purpose of this appendix is to discuss basic issues crucial to the selection of a finite- 

volume scheme for the solution of the nonequilibrium flow equations shown in Eq. (43). The topics 
covered include first, the properties of schemes that guarantee convergence of approximate 
solutions: conservativeness, consistency, and total variation stability. Then the flux-limited and the 

slope-limited approaches to constructing high-resolution convergent schemes are introduced. The 
examples given to illustrate these two approaches are Yee's symmetric TVD scheme and van Leer's 
MUSCL scheme, respectively. However, a primary objective of the work documented in this report 

is that the numerical method selected be not only fast, accurate, and stable, but also easy to under- 
stand and modify. With this in mind, Jameson's flux-limited dissipation model is developed as an 

alternative to the previously defined techniques. Most of this material is presented for scalar model 
problems but also is briefly generalized to a vector setting. For a more detailed discussion of the 

issues addressed in this appendix, see LeVeque (Ref. 61). 

For simplicity, first consider methods for solving the model problem, 

qt + A = 0. (C-l) 

The task is to approximate the solution to this problem on a space-time grid, { (x. f )} ,  with grid 
values {q2} such that q~ = q(xj, f) .  Although all grid values are known only at grid points, the 

definition of certain numerical constructs will be motivated by focusing on activity at the midpoints, 
xj+,~ = l/2(xj + x].~). These will also be referred to as the interface points between adjacent spatial 

cells. Thejth such cell is defined as the set of points for which x is between xj.,~ and xj.,n. 

It will also be necessary to consider the performance of approximation schemes on space-time 
grids of ever increasing refinement. Specifically, it is crucial that the grid values { q ;  } approximate a 
solution, q, with arbitrarily small error, provided At = t~s-f and Ax = xj+ht~- xj.~ are sufficiently small 

This convergence is theoretically guaranteed of finite-difference schemes that: 

1. can be written in conservation form, 

2. are consistent, and 

3. are total variation diminishing (TVD). 

These three conditions are explained in detail below. 
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C-l .0  CONSERVATION F O R M  AND N U M E R I C A L  FLUX FUNCTIONS 

Before deriving a finite-difference approximation to Eq. (C-i), note that a physically rele- 

vant solution, q, to Eq. (C-l) may develop discontinuities even in cases in which the initial data, 
q(x, 0), are smooth (Ref. 62). Such a q would not satisfy the differential equation in a strict sense. 
Thus, it is productive to express Eq. (C-l) in a weaker form, where no differentiability is required 
of tbe  solution. This is accomplished by integrating the differential equation over an arbitrary space- 

time cell, say [x l,x2] x [tl, t2]. Specifically, integrating q: explicitly with respect to t, andfx explicitly 
with respect to x gives the integral equation: 

// [q(z,¢~) - q(~,~, )]dz + [ / ( q (x2 ,0 )  - f(q(.r. t , t))]d, = 0. 
! 

Notice that no derivatives appear in this equation. In particular, the meaning is clear even if a 

solution is discontinuous. A function, q, that satisfies this equation for all x~, x2, t, and t2 is said to 

be a weak solution to Eq. (C-I). Toward a finite-difference approximation to this, let the integration 
cell be [x~n, xj+~n] x [f', f'*q, so that it is aligned with a space-time grid cell. Then the above 
equation can be written in the finite-volume form: 

[¢'+~ - ¢'la-. + [.~+½ - ~,_½]at = o. 

Here, ~/" and ~" + l denote averages of the solution over the spatial interval, [xj.~a, xmn], at times 

t = t ~ and t = t "+:, respectively. Also, fj.tn and finn denote averages of the flux over the temporal 

interval, [r,, e'+m], at cell interfaces x = xj.tn and x = xr, tn, respectively. This calculation motivates 
the distinction of finite-difference schemes in the following conservation form: 

q.;'+' - q;' + / ; + ½  - / ; - ½  = o. ~c-2) 
At. Az  

Compare the last two equations. Here, the grid value, q / ,  approximates the spatial average, ~". 

Also, the temporal average, ~ + it2 is approximated by the numerical flux function, f;+ ,t2. A sample 
f is given by: 

!(f,,  + :j~.,) I:+½ = .~ , (C-3) 

which leads to the central difference approximation t o f l  
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In general, fj  + I/2 is a function of a certain number of grid values on opposite sides of the 
interface at ~+m. Also, these could be taken from time level t" or t "+j. In the example shown in 

Eq. (C-3),fj+I/2 -f;+I/2 (q~' q~t+l )" 

A natural requirement of any numerical flux function is that it should reduce to the exact flux 
in certain simple cases. For example, if the solution is a constant, q = ~ ,  then the flux is a constant, 
f = f l ~ ) .  Therefore,/should satisfy: 

f~ . t .~  (~l: , . . , ~!) = f (  ( l) .  (C-4) 

Schemes of the form shown in Eq. (C-2) for which this condition holds (and for which /depends  
sufficiently smoothly on its arguments) are said to be c o n s i s t e n t .  In particular, the central 
difference example mentioned above is consistent sincefj+,n (qT" q jn )  ffi 1/2~"+f~t) implies that 

f~+ i/2 j (q', q--) =l/2(f('~') +f(~')) =f(~ ' ) .  Note that this particular notion of consistency is an ex- 
ample of a general notion that may be more familiar to the reader. Specifically, a finite-difference 
equation is said to be a consistent approximation to a differential (or integral) equation, if the 
solution to the latter satisfies the former, except for a residual that vanishes in the limit of ever 
increasing grid refinement. 

C-3.0 TVD PROPERTY 

Although the central difference example given above easily demonstrates consistency, it 
does not lead to a stable scheme. In fact, it can lead to errors that increase without bound as the 
number of time steps increases. On the other hand, there are schemes that give bounded solutions, 
but with spurious oscillations near discontinuities. When such oscillations develop in the grid 
function, {q;}, its total variation, 

TV({q;'})-= ~lq? - q~-i[ 

increases with respect to n. Observe that this is an appropriate measure of the spatial variation in q", 

since 'IV({ q; }) approximates the spatial integral of l Oqn/Ox I. Thus, a particular notion of stability 
based on the total variation is now introduced. Specifically, a method is said to be total variation 
diminishing (TVD) if 

T3,;({q~'+l}) _< TV((q~'}). 
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The TVD property is geometrically straightforward; nevertheless, from a practical perspective, it is 

important to have criteria that can be verified easily to show that a given scheme is TVD. For this, 
let the terms of the scheme be rearranged in the form: 

Atq~' Axq~ '+1 A _,,+1 " A " 
At + L+ Ax + L-~ =qJ-; -+ Azqs 

Az 

where 

Aeq? _~ q;,+x _ q,] and A.q~' = q~'+, - q~'. 

To make this process more concrete, consider an upwind example for which the numerical flux 
function is given by: 

I { CTt n f;+½ = ~',s.7+l + f~ ) _ l  ,w. n ~1%+½ I(qs+l - q~'), whero 
m 

71 ,  

7L I'1. * q)+i qi (C-6) 

Observe that the consistency criterion in Eq. (C-4) is satisfied by this example. Also, a few calcu- 
lations show that: 

r ] [,, , , ]  
L "" ~ J+2 

where 
- -TL ?L 71, 6zf~ - f~+~ - f;_½ a.nd ~q, =- qj - q.~_:. 

The upwinding character in this formula is seen by noting that backward or forward differencing is 

used on q depending on the sign of a, i.e., the wind direction. When this expression is inserted into 
the conservation form in Eq. (C-2), the following result is obtained: 

A n [ ] A -vP" 
gq3 n ,~ xq3 

At = ½ 1%+½1-%+½j Ax 
I ½1 ½] A - 1 )~ n sq3-1  

2 aj_ + as- Az 

Compare this with Eq. (C-5) to find that for the upwind scheme: 

L+=O, L-~=O, R. =½ %+½1-%+ , [ "] and R~- = --~ la~_½l + aj_x • 

Thus, as this example illustrates, a given scheme can always be written in the form shown in Eq. 

(C-5). Furthermore, provided At/Ax is sufficiently small, the upwind scheme is seen to be TVD 

according to the following general result due to Harten, (Ref 63), and Jameson and Lax, (Ref. 64). 
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A finite-difference scheme in the form of Eq. (C-5) is TVD if L + <_ O, 
L'f >_ O, R f  >_ O, R'~ <_ 0 and(R+_1-  R-~)At /Ax  <_ 1. 

Note that the conditions stated here are sufficient for a scheme to be TVD. They are not necessary. 

Moreover, a given scheme is not represented uniquely in the form shown in Eq. (C-5). Therefore, 

it may be necessary to experiment with different ways of defining the coefficients before the above 

conditions can be verified. 

C-4.0 CONVERGENCE 

The forgoing concepts are now summarized precisely in the following convergence result. 

Suppose a grid function is generated by a TVD finite-difference scheme which is 
consistent with the scalar wave equation in Eq. (C-l). Also, assume that the scheme 
can be written in conservation form. Then, the grid function approximates some 
weak solution to Eq. (C-l) (in an integral sense) with arbitrarily small error, 
provided At and Ax are sufficiently small 

For example, the basic upwind scheme defined by Eq. (C-6) satisfies all stated conditions. There- 

fore, it can be used to compute an arbitrarily accurate approximation to a weak solution. However, 

this scheme is only first-order accurate and is extremely dissipative. In other words, it does not offer 
high resolution of a weak solution, without a highly refined grid. Therefore, the discussion now 

turns to the development of high-resolution schemes that satisfy the conditions of the convergence 

result given above. 

C-5.0 HIGH-RESOLUTION SCHEMES 

The construction of a high-resolution method begins with the observation that the order of 

the method should switch according to the smoothness of the solution. Specifically, greater 

accuracy can be achieved in regions where the solution is smooth, by using a higher-order method. 

On the other hand, such a method causes oscillations around discontinuities such as shocks. Thus, 

in these regions, it is necessary to switch to a lower-order method. 
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C-6.0 FLUX-LIMITED APPROACH 

This switching can be accomplished according to a flux-limited approach such as the 

following. Let f "  be a numerical flux function such that 8xf*/Ax approximatesfx to an order cor- 

responding to the smoothness of q. In other words, /ixf*/Ax switches from a high-order 

approximation to f ,  where q is smooth, to a low-order approximation tof~ where q is nonsmooth. 
Specifically,f* can have the form 

fj~½ = fH±~ + [1 -- OjmXl(fL±~ -- fH±½), (C-7) 

where 8xf HIA x and/ixf  LIAx are high- and low-order approximations tofx, respectively. Also, ~ is 

a nonlinear flux limiter. It is so-named because the use of high-order flux terms is limited as 
switches from one to zero whenever a lack of smoothness is detected in q. 

For example , f "  might correspond to central differencing as explained after Eq. (C-3). This 
can be implemented by setting 

f +½ I(F' 1 ,+ +fD. (C-8) 

Also, f L might correspond to upwinding as explained after Eq. (C-6). This can be achieved with 

f?+½ = ½(f~., + f n ) _  _l, ,, ,, • j . z l % + ½ l ( q ' ~ a  - % ). (C-9) 

For the flux limiter, O, to perform the switching f r o m f  H t o f  L, it must be constructed to 
detect a lack of smoothness in the solution, q. For example, this can be accomplished by monitoring 
the ratio of differences, 

q;~+, - '!~' ,, ,, 
n ~ = O, n = n rj ,, n qj ~ " rj % . . . .  , %-1, %-] .  

qj - %-i  

Specifically, ~n is negative when the solution is oscillating. This should trigger the use of only low- 
order flux terms. On the other hand, when r. n is close to one, q is smooth and the high-order flux 

J 
terms should be switched on. A typical limiter can be implemented by defining: 

"3+2£ ---- O(r$ ) q ' ( ? 3 + l ) ,  (C-10) 

where 

( !11]11(1 ~ r )  r > 0 
¢(r )  -- minmod(  l, r) --- { and ¢ ( r )  -- ~b(~). (C-11) 

0 r_<O ( 
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n Note that ~ a  becomes zero when r. n_< 0 or rj + ! < O; it approaches one when r. n and r~+ l are 
J 1 

close to one. This gives a continuous switching requim~l in F. 4. (C-7). Also, • can be shown to 
satisfy conditions which guarantee that the scheme is TVD (Ref. 65). 

C-7.0 SLOPE-LIMITED APPROACH 

Alternatively, the switching can be accomplished according to a slope-limited approach as 

follows. As before, the numerical flux function is constructed so that 8 .f*/Ax approximatesf~ to a n  

order corresponding to the smoothness ofq. However, in the present approach, the switching occurs 
among q values instead of among fluxes. This is performed within the framework of a discretization 
procedure which is originally due to Gudonov (Ref. 66), which is described in detail below. 
Basically, the procedure consists of the following. At a given time level, the variations in the 
solution are approximated by jumps at cell interfaces. In fact, the accuracy of this approximation 
determines the order of the method. Next, the waves resulting from these jumps are propagated 
forward in time. When this information reaches the next time level, it is averaged to complete the 

time step. 

To implement this procedure, the solution is initially approximated by a constant on opposite 
R , sides of a cell interface. Let the value on the right ofxe,,a be denoted by q)+l12 and the value on the 

left by q~+l/2. For example, they can be determined by zeroth-order extrapolation according to: 

q. ½ = %+1 and q~L+½ = q~. (C-12) 

Since these values are generally not equal, this piecewise constant approximation creates a jump, 
R L q) .m " qj÷la,, at the cell interface, x~÷.n. Next, this information is propagated forward in time by 

assigning it as the initial state for the linearized problem, 

Otw~+~(x,t) + ~+½0~u,.,+½(x.t) = O, where h ' j~  -- q ÷½ ' - q j + ½  

This Riemann problem can be solved explicitly for every interface xy.,a. Then the solutions are 
superimposed so that the grid value, qj+l, is determined according to an average of values at time 

level t "+', 
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The details are not provided, but it can be shown that this scheme has a numerical flux function with 

the form: 

1 (.f(q~+½, + .f(qL+~)) I _,. L f~+~ = : _ : a,+{l (q~+{ -- q,+½) (C-13) 

Note that this is identical to the low-order upwind flux in Eq. (C-9), under the condition of the 
zeroth-order extrapolation shown in Eq. (C-12). This gives the low-order method to be used where 

the solution is nonsmooth. A higher-order method is obtained by improving the accuracy of the 
extrapolation. However, the f'trst-order extrapolations, 

q = q 3 + 1  - q.i+l = q j + l  - ~ x ' O + l  
- ~ j + 2  - -  X3+I z=xj+½ 

= ~ x_ - x j  (q,., _ q ) - l )  qi "t- ~ V = q )  q L½ ql + - - -  " '  
'~.? - -  ; E J - - 1  ' a : = ~ . ' j + ~  

lead to unwanted oscillations in nonsmooth regions. Thus, to limit the slope variations appearing in 

these linear approximations, slope limiters, 0 and W, are introduced to give: 

qR+ n 1 .h i - . , ,  ,, , 1 ,t ,, ½ = qa+t - ]v'~'3+t)A~'%+l and q~L+½ = qi + ]~/'(ri )V=q/. (C-14) 

Again, 0 and V are defined by Eq. (C- 11), but their interpretation here is different. Before, they were 
used to limit the use of high-order flux terms. Here, they limit the use of large slopes in a linear 
approximation of the solution. 

The scheme will now be summarized. When a lack of smoothness is detected in the solution, 

the interface values are determined by zeroth-order extrapolation. This leads to a low-order upwind 
numerical flux function. On the other hand, when the solution is smooth, the interface values are 

determined by first-order, linear extrapolation. The result is a high-order upwind numerical flux 
function. The switching is performed according to the formulas in Eqs. (C-13) and (C-14). Also, 

the slope limiters can be shown to satisfy conditions which guarantee that the scheme is TVD. This 

slope-limited method is an example of a MUSCL scheme (Ref. 67). 

C-8 VECTOR FORM 

Now consider the generalization of the above schemes for nonscalar problems such as the one- 

dimensional Euler equations, 
Q~+ F ~ -  O. 
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Focus on generalizing Eqs. (C-9) and (C-13), in particular, since it is not clear how to form a 
counterpart to a~+ In or 77~+ la. This is accomplished in the following first-order upwind Roe 
scheme: 

i ?t AtQ: 6~F~* 
~---7- + a--7- = 0 

where 

r;+½ = ½( F;~,  + F " ) -  ~ " " j ~lAj+½1(Q.,+l - Q~).  

For this, the absolute value of a matrix is defined in terms of the absolute values of its eigenvalues. 
Specifically, ifA = SIAS, where A = diag{~,i], then 

IAI--S-~lhlS, where IAI- diag{IAd}. 

#1 The most conspicuous property defining Aj. m above is that 

A'/+½ (Q"j+, - Q~")= F~" F~' 
• + 1 - -  • 

Such a matrix can be constructed by a special averaging procedure. Thb was done by Roe (Ref. 68) 
for the case of a perfect gas, and extended to nonequilibrium flows by Liu and Vinokur (Ref. 69). 

The flux-limited approach introduced above can be implemented by setting 

1 "F" F*+½ = 5( ~+~ + F; ~) -I'~'-~(i-'PJ+½ ) l A n I S ( Q ' z ' + ~ ' 2  -O~)" (A= S-~AS) 

where i~+ ifz is a diagonal matrix whose ith entry is a flux limiter as shown in F_,q. (C- 10), with q~ 
replaced with the ith component of SD~. 

Finally, the slope-limited MUSCL approach introduced above can be implemented by 
setting 

1 ,~,~ L 
~ ÷ ½  - ~ - 

where 

~+½~u~+½ - Q~+½) = 
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and the components of Q~+ in and ~j+ Jr2 are defined in terms of slope limiters as shown in Eq. 
(C-14). 

Note the complexity of defining such upwind schemes. In addition, extending upwinding 
techniques to higher dimensions is not straightforward. In fact, attempts to generalize these schemes 
to two or three dimensions have resulted in the production of zigzag shocks unless the grid is 
aligned with the shock. Also, the eigenvalues and eigenvectors of A would have to be rederived and 
coded whenever a new thermo-chemical model was considered. Therefore, as an alternative to the 
matrix-based dissipation models presented above, Jameson's flux-limited scalar dissipation was 
selected for incorporation into NEDANA to satisfy the objectives of this developmental effort. 
Jameson's model is discussed below. 

C-9.0 JAMESON'S FLUX-LIMITED DISSIPATION MODEL 

The high resolution schemes based on upwinding presented in the previous subsection have 
developed in parallel with those based on artificial dissipation models. The concept of artificial 
dissipation originated with yon Neumann and Richtmyer (Ref. 70), who were attempting to 
simulate computationally the propagation of shock waves in inviscid fluid flow without generating 
mesh scale numerical oscillations, yon Neumann proposed that to suppress these oscillations, the 
difference equations could be augmented with terms reminiscent of the viscosity terms in the 
Navier-Stokes equations. However, the proposed artificial terms were purely numerical and did not 
correspond to any physical dissipative mechanism. This concept has evolved so that modem 

implementations operate adaptively. In the more recently developed schemes, smoothing terms are 

made to dominate in the vicinity of discontinuities when a lack of smoothness is detected in the 

solution. In particular, Jameson's flux-limited artificial dissipation model has the simplicity of the 
artificial dissipation approach while satisfying the TVD criteria. 

Subsection 6.0 gives a general description of the flux-limited approach to achieving the TVD 
property. Here, the particular method used in NEDANA is explained. This flux-limited dissipation 
approach was first studied by Jameson (Ref. 38), and modified by Yoon and Kwak (Ref. 39), and 
later by Deese and Agarwal (Ref. 71). It can be described easily for the scalar Eq. (C-I), and its 
finite-difference approximation in Eq. (C-2). Here, the numerical flux function is defined by 

1/f , ) .+ l  f ; , + l  ) 1 ~. Ifln+! (t~ ' ' + I A  .,)n+l ---- _,i+l l b , , + l A  _,t+! f~'+~ ~', .7+1 + + '2 .,+½1 3+{ ,~.'j+t "'~'~j+l = - - 2a~qj + , 'j =qj-t ) (C-IS) 

where W+ i~n+l = ?\r:+t~t' ,+tX} and W~+ I = W ( ~  +t)  are defined in Eq" (C'll)" Als°' f'mn is an adjust- 
able parameter which can be used to control the amount of artificial dissipation. 
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Recall from subsection C-6.0 that if oscillations are detected in the solution, the numerical 

flux function shown in Eq. (C-7) becomes the flux shown in Eq. (C-9). Here, oscillations cause 

and V to vanish andf~+t/2 becomes 

a " + '  Ih q '+ r,,+~ f"+z)-%+~l ,+½ : +., 

This resembles the low-order form shown in Eq.  (C-9), and it is useful to view the second term as 

artificial dissipation. Next, recall that if the solution is smooth, the numerical flux function in Eq. 

(C-7) becomes the flux shown in Eq. (C-8). Here, when q is smooth, q} and ¥ are close to one, and 

f ~ +l/2 becomes 
,--,,+' , ..,+, ,:: ..,+, 

=-~(J,+l + + ~ ~+~ .7+½~ = =% " 

This resembles the high-order form shown in Eq. (C-8) since the second term is negligible in terms 

of truncation error; thus, f x hero and in Eq. (C-8) leads to an approximation offx of the same order. 
The second term here is used because it has been found to inhibit the odd/even decoupling of grid 
values that can result from the use of a central difference scheme. Finally, note that the method 

defined by Eqs. (C-2) and (C-! 5) can be shown to be TVD, provided ~j+~n > 1. The numerical flux 

function for Jameson's scheme takes the following form for systems of equations: 

F7 ÷ ~ 1 { p,~+l m~+z ,,+! = "3,'., + "z+l ) + l) .~ (c-16) 

where  

n+ l  ] nn+l  '~ [ ~ A  ~,,+t A r)'~+x~ o A r ) ' :  +l ,-UrA ¢3 "+! A x Q j _ 1 )  
" 3 + ½  = e./ t - , , , , - , ~ j + ~  ,.' x , ~  , - "'--'~"~.7 + = ~ " - ' ~ 3  ' 

= - = u) . • 
cj 2 2 " IP~+l + 2p~ + Pj-ln 

m 

Here, W is defined for vectors P and Q to have components: 

oI , (P,Q)  = ½[sign(P,) + s ign(Qi)]min( lPd,  IQ, I). 

Note that this is a convenient way of expressing the limiters since for the scalar case, 

,/~n+l i ^n+l  t l /[A . n + l  - -  n+l~ ,itn+l A ,,~n+l = II/(A ,~n+l A ,~n+l~ wj+l x%+1 = = ~ x ' l j + l  .~xq.7 j and wz ~='q-1 ~ x,lj , =~j-1 J" 

The other quantities in Eq. (C-I 6) include ~ and K 4 which are adjustable dissipation parameters, 

and X which is the spectral radius of the flux Jacobian ~FI~Q. An important advantage of the present 
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method is that only the spectral radius of the flux Jacobian need be rederived and implemented 
when new thermo-chemical models or new physical phenomena such as magnetohydrodynamics 
are considered for inclusion in the code. 

Consider the terms that comprise c/First ,  g~# depends on the pressure sensors, v. n and 

v " These sensors allow the dissipation to be adjusted adaptively. Specifically, they are large in j+ I  ' 

the presence of high-pressure gradients and negligible in regions of a smoothly varying pressure. 

The influence of these variations on ~j.l~ is attenuated or amplified according to the value of !c 4. 

Also, r, 2 is a constant chosen large enough to suppress small-scale background oscillations. 

This implementation of the flux-limited dissipation scheme is a componentwise application 

of the scalar constructions to the vector equations. However, such a generalization is not uniquely 

determined. For example, the quantity, ej÷,r~la~,~21, appearing in the scalar development, has a natu- 

ral matrix counterpart here. Yet, for ease of implementation, it is replaced by the scalar coefficient, 

cj. Therefore, this is called a scalar dissipation model. The form of the numerical flux function used 
for the quasi-one-dimensional set of conservation equations may be found in Ref. 17. 
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APPENDIX D 
DEFINITION OF TIME STEP 

The computational time step at the cell volume J, K, L is set to be the minimum of the time 
steps in the individual computational directions 

where 

At = min(At~,At'~,At~), 

-~tj.K, L CFL V 
J,K,L 

(D-I) 

(D-2) 

and CFL is the Courant-Friedrichs-Lewy number. The spectral radii are defined as 

~(  J,K,L J,K,L + aJ, K,L 

where 
--= l 

-=- 1 
o,,j.K.L = 7 [~,Zk+1.L + ~,J.k.L] 

1 [ ~ J , g , t + !  + ~ J , h ' , i ]  
(D-4) 

O'(.I,h ,L = "~ 

The frozen speed of sound, a, is calculated from 

P a ~ = -~! - 
(D-5) P 

where the frozen ratio of specific heats, yf,  is expressed as 

71 = (1 +/3) ,  (D-6) 

where [3 = ap/~E. The evaluation of [3 is dependent on the type of nonequilibrium model employed. 
The current version of the NEDANA flow solver is limited to NEQPAK thermodynamic models 
one or two. Therefore, 

~Lb" f.$ - - 1  

( ~ = ,  ps(.,,.,,.) p/T, model  = 1 
[,-, fs \ -1 
~L,#~- p,C,~.t~} ( p -  p,)/T, model  = 2 (D-7) 
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APPENDIX E 

QUASI-ONE-DIMENSIONAL NOZZLE FLOW EQUATIONS 

The purpose of this appendix is to derive the partial differential equations that model inviscid 

quasi-one-dimensional nozzle flow. The derivation proceeds by integrating the differential form of 

the equations over a nozzle cross section of vanishingly small width. Then, the integral is 
transformed in steps by applying certain assumptions. For example, it is assumed that there are no 

azimuthal variations in the flow. Also, for simplicity, nozzle cross sections are assumed to be 

circular. Finally, the required result is obtained in the limit of decreasing cross-sectional width. See 
Ref. 72 for more information. 

To facilitate the integration of the differential form of the equations over a nozzle cross 

section, the full three-dimensional equation set is first expressed in the curvilinear coordinates, 

= ~(~ . .u . z ) ,  ,I = , l ( x , y , z ) ,  C = ( ( z , y , z ) .  

For convenience, the notations 

( x , y , z )  = t~'l..,'2,z:3) = ~ (~ , '1 , ( )  = (~ ,~'2 ,~3)  = ( 

( u , v , w )  = (,l .~,.~.v3) = ~ (F,(.;,H) = (FI,Fz,  Fa) 

are used. Here, F, G, and H are the Cartesian flux vectors defined in Eq. (46). The Jacobian of the 
transformation x ~ ~ ~ is written as 

i f =  det Oxo Jl<,,:<a 

Following Ref. 37, the differential form of the conservation equations is written in the curvilinear 

coordinates as: 

+ = (E- I )  
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where for flows in thermo-chemicai nonequilibrium 

= 

Pl 

P l t , ~  

Ev 
pu 
ptl 

pU' 

E 

, ~ ' = 3  "-1 

p1U 

p,~U 
EvU 

puU + pO~/Oz 
, , u  + po~/o~ 
p~,u + pOUOz 

(E + p)U 

O=J-* 

Pl V 

p,~ V 
EvV 

puV + p&//Oz 
pvV + pO~/Oy 
pwV + pOTi/Oz . 

( E + p)V 

~ =j-1 

p~W 

p,,~W 
E v W  

1 

puW + pO~lOz 
pvW + pO(/Oy 
pwW + pO~/Oz 

(E + p)W 

~ = 3"-x 

OJna 
tOV 
0 
0 
0 
0 

U = v~. ~, v = VTI. ~, w = v(. ~. 

Here, (U, V, W) are the so-called contravariant components of velocity. For convenience, the 
following notation is used: 

(U,V,W) -- (,k~, ~:z, I~.~) - V and (F , (~ , .O) - -  (-~'~, F2, F.a). 

Then, 
]/~ -" 3----1E V$~.~,j. ~'i : 3----1E FJ~x.s' 1 < i < 3. (E-2) 

Now, a partidular nozzle coordinate system is introduced. Let the Cartesian coordinates x, y, 
and z be situated so that the x-axis is aligned with the central axis of the nozzle. Then, let the 
curvilinear coordinates be defined so that ~ varies only along the length of the nozzle, i.e., it 
depends only on x. Also, within a transverse planar section, let ~ be a radial coordinate and ~ an 
azimuthal angle. In particular, note that the nozzle surface is not a ~ = constant surface. Specifically, 

= f(a'), 71 = - tan-1(z/y), ( = V/y 2 + z 2 

y = ~ cos ~I. z = -(sin ~I 
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and 

,.7" = det 

O~ O~ O~ 
Ox Oy Oz 
O....~ 0..3~ Oj. 2 

Oz Oy Oz 

= (let 
I G  0 0 ] 

0 - ( - I s i n ) /  -(-IcOS)l =~=(.-l. 
0 cos )I - sin )I (E-3) 

The quasi-one-dimensional equations are derived by integrating the three-dimensional equations 
over a cross-sectional volume, V, defined by: 

Y - {(~, v, ~) : ~o _< ~ _< ~o + a~, 0 < ,I _< 2,r, 0 < ( < r(G}, 

where ~ ffi r(~) defines the nozzle surface. This leads to 

[ f,o+,,,/,,,, [,~,+ ~.+<:,, +,~ -, I  ~,,, ,- o. 
J~o J0 

Now using Eqs. (E-2) and (E-3) and the lack of azimuthal variation in each Fj, 

.[ ~" ~ ~ ' Z  'o,.,] -E = o .  

(E-4)  

(E-5) 

Next, for fixed ~, the following is an integration over an area, sayA, in a meridian plane of the 
nozzle. Green's theorem in the plane gives: 

,~o £° +''~ f"(~) (E-6) 

where 0.Adenotes the boundary of the area,.A, ~ denotes a unit vector tangent to 0A with.,4 to the 
left of'L and d'~ denotes an infinitesimal line element. On the edges: 

=~o+Af ,  +=(o.  1). dr=d(;  ~=fo,  +=(O,-1),  d r = - d C  

<-l,-r{) dr  = --~/i + (r~)2d~; 
=r(~), @- ~fl+Cre) 2" 

( = 0 ,  ~={1,0) ,  dr=d~. 
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ThUS,  

f~. (- H, FI" ~d~ fo ~('°+aO ( - / 1 '  F ) l , : , o+a , "  (0, 1)d( + f~i:~a, (-hr'/~}l¢=r(O" (1,r,)d~ 

0 

+ f ( ,o ) ( - / t ' /~}1 ,= ,o"  (o,a)d~" + f,o+a, ( _ ~ , ~ ) l , = o .  (1,0)d~ 
• ~o  

= /~ (~o+ao  ,b ~=~+a~ d~ + + ¢=~(0 d~ 
• 10 d~o 

f*"°' Pl,_-,o el,=o   aO J~o 

The last term vanishes since by Eq. (E-3), 

(B-7) 

.t----I 2----1 (~-0 

(E-8) 

Next, for the second term on the right side of Exl. (E-7), it will be shown that 

-r e+ = 

m(-r~U + w) 

p,,s(-r~l! -t- W) 
Ev(-r~U + W) 

pu(-r~U + W) - pr¢~= 
p'o(-r~U + W) + pcos 11 
pu,(-r~U + W) - psin I I 

( E + p)(-r~U -t- W) 

0 

0 
0 

-rpr~ 
r ~ l p  cos *! 
-r~lp sin ~/ 

0 

(E-9) 

The first equality here follows from F__x 1. (E-3) and the definition of ~ and F/. Also, the fact that 
(-r~U + IV) is zero at the nozzle surface, where ~ ffi ~ ) ,  can be determined by applying a tangent 
flow boundary condition. For this, note that the nozzle surface is represented by f =  ~ - r(~) ffi 0. 
Therefore, the outwardly directed unit normal is: 

h _ 
V f  ( - r ~ x ,  cos '1, - sin ~) 

II~fll ~/(r~=) 2 + 1 
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Also, the contmvariant velocity components are given by 

u = ~.v~ = u~ 
g = /~-VT? = - ~ - l ( v s i n T / + u ,  cosTl) 

W = '/~.V~ = v c o s l l - u ,  sinTi. 

Thus, the vanishing of the normal component of  velocity at the nozzle surface means that: 

0 F - h  -(tT"~G. + 7~cos 71 - u, sin 71 - r ~ U  + W 
~ ~-- ~ O° 

l 

Now Eq. (E-9) follows from this formula. Finally, for the first and third terms in Eq. (E-7), note that 
by Eq. (E-3) and the fact that ~ is a function only of x, 

= :-~ ~ F~ = F~ = ~;F. 
.7=1 

Combining Fxls. (E-4) - (E-10) and making use of Eq. (E-3) gives: 

(B-IO) 

- ( Fle=e ° eL( + 
JO J~o 

0 

0 
0 

-rpr~ 
T~x lp COS 7] 

- r ~ - I p  sin ~/ 
0 

d~ } dT 1. 

According to the azimuthal independence of Q, F and fl, 

J~o LJO ao 

- -  a O  J ~ o  

0 

0 
0 

-rpr~ 
0 
0 
0 

d~. 
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Observe that certain components vanish in the last term since.[2z cos Tldll = .[0 2" sin lldT1 = O. Next, 

this equation is transformed by applying the following mean-value theorem (Ref. 73). Suppose that 
fand g are integrable on a set, S, where g > O. Then, there is an average value,f, between min sfand 

max s f, such that 

This result can be applied to the above equation componentwise. For this, define the area function, 

I 
r(O 

A(~) = 2~r (d (  so that A~ = 2a'rr~. 
d(I 

Letting A(~) play the role of.[ g(~)d~ in the above mean-value theorem gives: 

0 

0 
_ r .  :o+A, - d~ + (A~) l (= (o+ , ,  ( - (AP)I~=(o + 0 d~ 0 

a~o t a~o - Aep 
0 
0 
0 

where Q, F and ~ here represent average values over a given cross section. Dividing by A~, and 
taking the limit as A~ ~ 0 leads to: 

+ = 

0 

0 
0 

A~p 
0 
0 
0 
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Since the equations involving pv and pw are de, coupled from the others, the nozzle flow equations 
are taken as 

. A j - I  

Pl 

P~ZS 
Ev 
pu 

E /L 

+ A,I -I 

pl u{~ 

PnsU~x 
E v ~  

(pu 2 + 

( E + p)u . 

AJ  -I  ~ 

A J -  I ~,~ 
AJ -I 

A~p 
0 

where J = ~ is the Jacobian of the transformation x --~ ~. Observe that by using the fact, j - I ~ =  1, 

certain terms above can be cancelled. However, this form is retained to parallel the three- 

dimensional case in Eq. (E- 1). The finite--volume form of the equations is easily obtained by taking 
J qA as the volume of the corresponding cell (Ref. 37). Finally, note that setting A = 1 here gives 
the equation set for a shock-tube problem. 
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APPENDIX F 
THE NONEQUILIBRIUM SOURCE JACOBIAN 

F-I.0 DEFINITION OF SOURCE JACOBIAN 

The numerical scheme is based on the lineadzation of the nonequilibrium flux vector. The 

vector of conserved variables, Q, and the nonequilibrium source vector, t2, for the NEDANA flow 

q = 

solver are defined as follows 

P l  

P?~8 
EN~ 

EN,Le 
p u  

p v  
ptl, 

E 

f~ = 

t~ 1 

WN1 

~ J N n e  

0 

0 

0 

0 (F- l )  

The chemical source terms, co,, are the production of species s in units kg/(m3s). T h e  nonequilibrium 

energy sources, toM,, are the production of energy i in units J/(m3s). T h e  nonequilibrium source vector 

is linearized as follows: 

~l ''+' = st '~ + Z" (6Q") + O ( A t 2 ) ,  (F-2) 

where Z ~ is the Jacobian o f f ~  with respect to ~ ,  and 8 ~  = ~ + ]  - ~ .  The matrix, Z, has the form 

Oft 

o q  

o.,, 
8pl 

Opt  

0 

0 

0 

0 

" ' "  .~,,,,, . ;E, , . ,  " ' "  , ~ E , , , ,  .~(~,,) ~ ~ , - - ,  
" . .  : : " . .  : : : : : 

Pw,., . 8 , , , . .  6 e l  

" . .  : : " . .  : : : : : 

. . .  

Op.. OEN, OEN.~ O(Ou) O(pv) 
• . .  0 0 . . .  0 0 0 0 0 

• . .  0 0 . . .  0 0 0 0 0 

• . .  0 0 . . .  0 0 0 0 0 

• . .  0 0 . . .  0 0 0 0 0 (F-3) 
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The scope of the current flow solver is to use full finite-rate chemistry with a two- 

temperature thermal model. In this model, the translational and rotational energies are assumed to 

be in equilibrium with one another at the temperature, T. The vibrational energy is allowed to be 
characterized by a separate temperature 7",. In the case of ionization or electronic excitation, the 
electron temperature, 1",, is assumed to be in equilibrium with the vibrational temperature at the 
temperature, Tv. The nonequilibrium energy modes of all species are characterized by a single 

temperature. Therefore, the current scheme has only one nonequilibrium energy, Ev. This energy 

contains the vibrational, electron, and electronic energies of all species. The NEDANA flow solver 

employs NEQPAK to provide the nonequilibrium source terms and their derivatives. The 

adaptation of NEQPAK to the development of the sources and their derivatives will now be 
discussed. 

F-2.0 D E R I V A T I O N  O F  C H E M I C A L  JACOBIANS 

Define: 

P8 
7 , -  .M, '  (F--4) 

. = 
)&8 

, = ,  (F-S) 

W.8 

e = t , , ,  (F-6) 

. ~  = ")'~ ;U , .  (F-7) 
s = l  7 

Y, = P---~, 
P 

s----1 

: Y, 

(F-8) 

(F-9) 

(F-lO) 
a = ]  

where 1,, is the concentration of  species s in kgmole/m3; 7 is the concentration of the mixture in 

kgm°le/m3; Ps is the density of species s in kg/m3; p is the mixture of the density in kg/m3;./td, is the 

molecular weight of species s in kg/kgmole;Ad is the molecular weight of the mixture in kg/kmole, 
and Y, is the mass fraction of species s. C,.,, is the specific heat at constant volume dependent on T. 

C,.v is the specific heat at constant volume dependent on Tv. Also, define a general temperature array 
such that 
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T,,. = T , , , ( T . T v ) ,  m = 1. , t t y lw.  (F-I1) 

For example, with ntype = 2, 

7~ = T 

T.z = T '-~ T~ (F-12) 

where 0 < a < 1. 

NEQPAK provides ~ ,  (kmole/m3/sec) which is a function of T: and 7".. NEQPAK also 

provides --~[ , and ~ [  r ,,, ,where the vertical bars denote the partial derivatives are 
"vs# j ,Tm "¢~ ," ,, ~ 

evaluated holding the subscripted quantites constant. The task now is to write these quantities in 

terms that the NEDANA flow solver requires. The chemical sources become 

u,i = .Miffs,. (F-13) 

The total derivative of  wj becomes 
dw, = A4, dff,, 

?IS 
_ _  0o.I 

.,=, 0% 1~,,¢~,7,,, d7., 

**t w I OT,,, dT 
+ ~ OT,,----~,l,.,r.¢,,, o r  "r~ 

1'I t= 1 

.. ,,,=~ OT,,, ~, .z ,e , , ,  0%.  IT OF-14)' 
The total derivatives dyj, dT, and dTv must now be expressed in terms of the conservative variables, 

Q. First, 

1 
d~b = --M~dPJ • (F-15) 

Now, consider dT. The total energy of  the mixture is 

E = ½p( ,,z + v" + u, 2) + E! + Ev. (F-16) 

The internal energy dependent on T is 

El = pel ,  (F-17) 
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where 

and 

TL8 
ci = EY~eI , ,  (F-18) 

t= l  

/T~ t t  t U I., = (',,.t~(T~) dr  + el, (F-19) 
e/ 

where Civ, t, and e~' are the specific heat at constant volume of species i due to 7", and the energy 
of formation of species i, respectively. Then, 

w h e r e  

T h u s ,  

118 IJ.8 

d~ ~ = ~ dr, ~.~., + ~ ~ ,U~.,, (F-2o) 
t=i  i=l  

dcl.,, = (',',.t~ dT (F-21) 

dT = = ,,~ .i . (F-22) F_.,=I Y, (',,.t~ (,,,.t,. 

Now, 

and 

Now, writing E in terms of Q, 

and 

dE 

dp, - Y~ dp 
dY, = (F-23) 

P 

n 8  

dp = ~'~ dpi. (F-24) 
i=1 

E = (PU)'2 + (pv)2 + (p~,)2 + El + Ev,  (F-25) 
2p 

= ud(/,'tt) + vd(pv) + wd(pu,) + pde! + d(Ev) 
1 +[,.~ _ ~(,,., + ,,2 + ¢ ) ldp .  (F-26) 
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Using the fact that 

substitution gives 

d E  

~'! = ~-' - 2 ( u  2 + v 2 + w "~) - ~ v ,  

= "ud(p'u) + vd(pv) + wd(pw) + pdel + d(Ev)  
+[c - ('a 2 + v 2 + tt, 2) - ev]dp. 

(F-27) 

(F-28) 

Rearranging, 

d¢l = l { d ( E ) -  u d ( p u ) -  v d ( p v ) -  w d ( p w ) -  d (Ev)  

-[,~' - ( u  ~ + v 2 + w 2) - c v ] d p } .  (F-29) 

Now, 

leading to 

dT 1 { d ( E ) -  , t d ( p u ) -  v d ( p v ) -  w d ( p w ) -  d (Ev)  
pC,..t~ 

"It8 

-[c  - ('u 2 + r 2 + "w 2) - evldp - y ~  el.,[dpi - Y~dp]} 
=----! 

(F-30) 

dT - ! { d ( E ) -  u d ( p u ) -  v d ( p v ) -  u,d(pw)-  d(Ev)  
pCv,t,. 

?1,3 

+ E[~(u. 2 + v 2 + w 2) -e l . i ]dpi}  (F-31) 
i=1 

Now, to express dTv in terms of the conservative variables Q. The vibrational/electronic energy is 

Ev = p~.v, (F-32) 

where 

and 

?1,8 

cv = ~., Y, ev,i ( F - 3 3 )  
t = l  

/T~ V tt I "II ,.v.. = C,,,v(T )d7 , (F-34) 
e! 
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where C~, v is the specific heat at constant volume of species i due to Tv. Then, 

dr, V 

?L$ n8 
y "  dY~ ev,, + Y~ Y, de.v,,. (F-35) 
=:1 a l l  

T h u s ,  

But also, 

Therefore, 

Now, define 

dev - ~{~ t  dY~ ev,, dev - ~{~z dY~ ev,, 
d T v =  = 

E } ~  Yi C,',,v C,,,v " (F-36) 

d e e  - ev dp 
d(ev) = (F-37) 

dTv - IL8 1 t d ( E v )  - dp= (F-38) 
P( 'u, V ==1 

0¢.,, ", ,,tu~,. 0'.7.,, OT,. 

- -  = ~-" 0 ] ; ,  ~..T,,~,,, OT T~ 07" 7v m=l 

O&, = ,,t,sp~ Ogai OT,,, I 

OTv-,.7" ~-" OF,.-y,,T,,¢,,, OTv T" 
m = l  (F-39) 

Employing Eqs. (F-15), (F-31), and (F-38), Eq. (F-14) can now be written in terms of derivatives 
of the conservative variables. 

.'~li 0~, i dwi - C OT [d(E) - ud(pu) - vd(pv) - wd(pw)] 
P v,tr "v.Tv 

J i e [ i O ( O t  T J~[tOffdt[ ] d ( E v )  
+ pC,,,v OTv P(",..t~ OT .y.,Tv 

7$8 +Z{ lu, 
.7=1 07a .~,¢j,7;,, ~ 

+ ~  (u2 + ,,2 +,,2) _ ez.~ 
(F-40) 

The chemical source Jacobians can now be obtained by taking partial derivatives of the above 
equation. 

I ~ i  0~, I oo,, 
" = + M j  0"r3 Opj  IOkV,,p~,pv,P,,,,Ev .E W,¢~,T,,. 

v~v~ z T "2 

i ~  ~,rv 
J~ i Offa, 

PC,,, v ev ~ " ~ v  ~.'r (F-41) 
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O Ev ,,.p,,,p,,.p,,,.E P .v,~,. i ~  "~,Tv 
At, O&, [ 

+pC.v. V OTv "~,T (F-42) 

I o =1 0~, = -~= (, (F-43) 
O(pu) ,,.,,,.,,.,.~v.E P ,.,t,. OT ..,,Tv 

0,.o, L / v l ,  O'&, l 

I O(p'r' ) [p,pu./,u.',Ev,E PC,:.tr t~'l ~ "v.Tv (F-44) 

O(p~t, ) , pC~,,~,, i7~ ~,Tv (F-45) 

0~, ,~,,~,,,.,,,~.,,.Ev At,  0~, 
O"-'E' = ÷ P(:~,.t~. OT "v,Tv (F-46) 

F - 3 . 0  D E R I V A T I O N  O F  V I B R A T I O N A L / E L E C T R O N I C  J A C O B I A N S  

The vibrational/electronic source term for the two-temperature model where Tv= T~= 7", has 
the form 

• ~t = .~v,. + ~v~ + ~ov~ - p, V.~. (F-47) 

The first term, cow, is the Landau-Teller relaxation term between T and T,. NEQPAK returns this 

term in J/m3/s, as well as the following derivatives: ~ I.,,#j T Tv; '~w~'~t 7'v; ~ I'~.T" The 
third term, COy., is the relaxatlon term between T and T,. NEQPAK provides this term m J/(m s), 

• . . ~ ~ o~, 
~weUasthefol lowmgderwatwes:  :~, ,,#~,T,Tv ; OT" I.~.Tv ; ~ l . v , T ' T h e f ° n r t h t e r m ,  P, 
V • ~u, is the electron pressure gradient term. This term is not provided by NEQPAK. This term 
is treated as a viscous term and does not appear in the Jacobian formulation. The second term, cove, 
is the production or destruction of Ev due to chemical reactions. This term is currently not provided 
by NEQPAK. Instead, due to its simple form, it is developed in the NEDANA flow solver. The 

non-preferential form is 

~t8 

cOVe = E ~iev,=. 
i=I 

(F-48) 
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o r  

¢dV c 

~.b,a 

"-- E ~ieV, i" 
i = l  (F-49) 

Using Eq. (F-39), the derivatives are easily formed to yield 

~u.~ ~, ' c 

0% 
" ~  ~ . 7 . T . T v  

= ,=1 ~ 07j "Y.#s,T.. ev,, 

~v.~ . , ,n ,  = ~ ~'~' i-~ , = 1 0 T  -y,'r~ ~v., 

' ]  O~v~ = O~i ~v,i + ~,(.,,,v • 
OTv -,.r ,=l ~ -,.r 

(F-50) 

(F-51) 

(F-52) 

The derivatives of  the total source term can now be formed by combining the individual terms to 
yield 

o,,,v o,,,v,, + o-~, I.,,,~,,r.n, + ~~-~Jl.,.#j,zr,, (F-53) 

°+°1 OT 3,Tv ?)~V,, - i)T -v.TV + OT ,..TV + OT P~,rv (F-54) 

- O'rv L.r + -~I~,T ÷ :~--~'v I.,,T (F-55) 

The total derivative of my becomes 

dwv = d% + [ dT 
s=l 0% -~,#s,T,rv ~ .~,7"v 

Owv -v,T dTv 
+ O-~v (F-56) 

The total derivatives dr, dT, and dTv were defined in Eqs. (F-15), (F-31), and (F-38), respectively. 
Using these definitions of the total derivatives, Eq. (F-56) becomes 
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dwv 1 Owv ~.7,~-[d(E) - ud(pu) -  vd (pv ) -  wd(pw)] 
PC:v.v. OT 

' ,v  OTv P(','v,t; ~ "~.Tv 
,is 1 I 

+ j=IE { ./~.~ /-)3'., "t ,*  /,7'.'l'v 

1 [1 ] OwV v,T v ev~, Owv[ }dpj 
pC,,,v i~Tv "v,T (F-57) 

The vibrational/electronic source Jacobians can now be obtained by taking partial 
derivatives of the above equation. 

~J JPk¥3,Pu,PV,Pw,E',," ,E 
= 4 

1 O.;v [ 

.}V[j O'Tj %#3,T,  Tv 

1 V2 

eva O~v [ 
pC,,,v OTv ,~,w (F-58) 

OoJt" 1 ~o;V [ 

1 d~v .v,T 
-~ pC v. V OTv (F-59) 

Ol, d V I 
O( pu ) [ p,,,,,,p,,,,Ev ,E 

O¢,J]," 

O(pv) p,~,~,.pu,,Ev.E 

OwV 
O( ml, ) l ...,,.~,,,.E,..v. 

- u ~wv .v,Tv p(',,.~ UT 

- v  O~v "Y , Tv C P.,,,o" i)T 

- w  U~V [ 
pC,,,tr UT [,v,Tv 

(F-6o) 

(F-61) 

(F-62) 

~f"~ ~"'~J-~" I,,p II,/'s I:,l.re4, ,E V 
= + 1 Owv[ 

P('~,,t,. OT -~,rv (F-63) 
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a 

a 

a 

A 

A 

A 
$,r 

A 
¥ 

b 

b 

B 

B I 

B 2 

B 

B 
¥ 

C 

C 

C 
r 

C 
P 

C 
v 

CFL 

d 

D 

£ 

E 

f 
F 

A F  

F,G,H 

NOMENCLATURE 

Frozen speed of sound, m/s 

Coefficient in Eq. (13) 

Scalar flux Jacobian 

One-dimensional nozzle area, m 2 

Matrix flux Jaeobian 

Millikan and White coefficient 

Arrhenius coefficient, Eq. (30) 

Diagonal matrix, lls 

Coefficient in Eq. (20) 

Iteration matrix 

Block iteration matrix 

Scalar iteration matrix 

Viscous term coefficient 

Arrhenius coefficient, Eq. (30) 

Scalar dissipation, m31s 

Park' s correction 

Arrhenius coefficient, Eq. (30) 

Specific heat at constant pressure, Jlkg K 

Specific heat at constant volume, Jlkg K 

Courant-Friedrichs-Lewy number 

Coefficient in Eq. (23) 

Effective diffusion coefficient, m2/s 

Binary diffusion coefficient, m2/s 

Specific energy, Jlkg 

Energy per unit volume, Jim 3 

Scalar flux function 

Numerical flux function 

Change in free energy, Jlkmole 

Cartesian flux vectors 
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F, G, H F  

gl 
G 

G 

h 

h 

h", 
l p l .p  I z 

I 

j,k,l 

J 

k 
# 
k r 

IF 

L 

£ 

M 

M 

M 

n e  

nel 

nq 

n r  

n $  

P 

q 

q 

Q 

r 

Computational flux vectors 

Degeneracy of/th electronic level 

Gibbs free energy, Jflonole 

Rate of gain, kmole/m3s 

Planck constant, J/s 

Enthalpy per unit mass, J/kg 

Species heat of formation, J/kg 

Cartesian unit vectors 

Identity matrix 

Computational indices 

Jacobian of transformation 

Boltzmann constant, J/K 

Forward reaction coefficient, m3/kmole 

Reverse reaction coefficient, m3/kmole or ra6/kmole 2 

Equilibrium constant 

Characteristic length, m 

Rate of loss, kmole/ra 3 s 

Generic molecule 

Mach number 

Molecular weight, kg/knuTl 

Avogadro's number 

Number of nonequilibrium energies 

Number of electronic energy levels 

Number of conserved variables 

Number of reactions 

Number of species 

Pressure, N/ra 2 

Heat conduction, W/ra 2 

Scalar conservation variable 

Vector of conserved variables 

Position vector, m 

129 



AEDC-TR-94-18 

r 

R 

Re 

Rn 

R 

$ 

S 

S 

T 

T" 

TV 

TVD 

T 

t 

~d  
U 

U,V,W 

N d vd w d 

V 

Q} 

% 
X, y, Z 

y÷ 

Y 

Z 

Ratio of differences 

Gas constant, Jlkg K 

Reynolds number 

Nose radius, m 

Universal gas constant, Jlkmole K 

Residual 

Generic differences 

Surface area, m 2 

Matrix of eigenvectors 

Temperature, K 

Integration variable, K 

Total variation 

Total variation diminishing 

In T 

Time, s 

Characteristic flow time, s 

Velocity vector 

Diffusion velocity vector 

Cartesian velocities, m/s 

Diffusion velocities, trds 

Cell volume, m 3 

Chemical source term, kglm31sec 

Chemical source term, kmolelm31sec 

Generic nonequilibrium energy source term, JIm31sec 

Cartesian coordinates, m 

, nondimensional viscous spacing 

Mass fraction 

Partition function 

Exponent in Park's TT, model 

Viscous relaxation parameter 

OplOE 
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3' 

E 

0 

K 

r,2, 4 

A 

IX 

gg, v~, 

V 

Vs 

£2 

0 
O 

O 
..) 
G 

,f 

(/ 

Z 
¥ 

¥ 

(3O 
$ 

~V 

d 

0 

Concentration, Ionole/m 3 

Frozen ratio of specific heats 

Dissipation parameter 

Energy of electronic state, J/kmole 

Computational coordinates 

Characteristic temperature, g 

Thermal conductivity, J/ms K 

Dissipation parameter 

Spectral radius, tn31s 

Diagonal matrix of eigenvalues 

Viscosity of mixture, kglms 

Reduced mass 

Pressure smoothness sensors 

Stoichiometric coefficients 

Characteristic vibrational frequency 

Source vector 

Density, kg/m 3 

Collision cross section, m 2 

Directed surface area at cell face 

Directed surface area at cell center 

Relaxation time, s 

Shear stress tensor 

Flux limiter 

Flux limiter 

Mole fraction 

Flux limiter 

Dimensionless electronic energy 

Mass source of species s, kglm31s 

Vibrational/electronic source term, j/m3/s 

Total derivative 

Partial derivative 
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--9, 

V Del operator 
n 

8 Kronecker delta 

S" Change in mole number 

o(.)7 (.) 
,,+, _ ( . ) j  

'~,(')s" ( ') s 

A n Iinitial viscous spacing, m 

6 Q Implicit time change in vector of conserved quantities 

A Q Explicit time change in vector of conserved quantities 

A t Time step, s 

Ag, A ,  A t Differences in computational coordinates 

Subscripts: 

e Electronic 

f Frozen 

I Inviscid 

i, j ,  k Index notation 

! Internal mode 

L, R Left, tight 

n, m Summation/iteration index 

0 Stagnation/total condition 

o, • Odd/even indices 

q Genetic temperature, K 

r, s Species/reaction index 

r Rotational 

t Translational 

t r  Translational-rotational 

v Viscous 

v Vibrational 

V Vibrational-electronic 

132 



AEDC-TR-94-18 

V - C  

v - T  

Vibration-chemistry 

Vibration-translational 

Free--stream condition 

Superscripts: 
a t m  

f 
H 

L 

L R  

n 

O, e 

m 

r 

S 

Y 

Standard atmosphere 

Forward rate 

Higher order approximation 

Lower order approximation 

Left, right 

Time level 

Odd/even indices 

Iteration level 

Reverse rate 

Denotes species value 

Vibrational 

Equilibrium, nozzle inlet, or latest value 

133 

° 

/,./~ ,¢'/-~'~\.\ 

/ 


