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PREFACE
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Number 0118, at the request of the AEDC Directorate of Technology (AEDC/DOT). The Air Force
Project Manager was Capt. S. G. Tennent. The results were obtained by Micro Craft Technology/
AEDC Operations, support contractor for acrodynamic testing at the AEDC, AFMC, Amold Air
Force Base, TN. The work was conducted during the period October 1, 1990 through September
30, 1994, The document was submitted for publication on May 5, 1995.
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1.0 INTRODUCTION
1.1 GENERAL

"This work is motivated by the need to understand high-speed continuum flow which occurs
within the flight envelope of many of the vehicles of current interest, including single-stage-to-orbit
vehicles, aero-assisted orbit-transfer vehicles, and particularly interceptor missiles. Personnel at the
Amold Engineering Development Center (AEDC) are now engaged in efforts to build/upgrade
various test facilities to make them capable of testing the new generation of vehicle systems in the
high velocity regime (Refs. 1-5). These facilities include the hypersenic tunnels, the ballistic
ranges, and the arc heater tunnels. For example, the hypersonic tunnels can be used to perform jet
interaction and staging studies for the interceptors, The ballistic ranges can be used for testing the
lethality of these missiles. The arc heater tunnels can be used to test materials for interceptor nose
tips. However, it is important to emphasize that these facilities will be used to generate conditions
that only simulate flight conditions. In some cases there may be significant differences between the
simulated and actual flight conditions. Flight testing can be used to obtain data that are free of the
simulation errors but at great expense. On the other hand, computational simulations are not subject
to the limitations specific to ground testing. Therefore, computations can be used together with
ground testing to accurately capture the phenomena under investigation. Thus a synergistic, truly
integrated combination of computations, ground testing, and flight testing is required for
hypersonic systems development (Ref. 6).

To support this synergism, an effort has been initiated to develop the computational capability
to simulate flows in the test facilities with high accuracy. Based on recent scaling studies, it is
assumed that a flow solver which accurately predicts the fluid dynamics of the test cells can be used
to extrapolate to free flight conditions with the same accuracy, provided valid physical models are
available for the conditions of interest.

To establish the proper context for the present effort, note that the high-speed flows mentioned
above are characterized by nonequilibrivm thermochemical processes. Such effects are significant
because the transition time for a fluid particle through a region of interest is shorter than the time
required for particle-particle collisions to bring the gas into equilibrium. Therefore, the
development of a flow solver to study these flows necessarily involves the modeling of thermo—
chemical nonequilibrium. Furthermore, the geometric complexities inherent in the simulation of the
flows around the vehicles mentioned require the use of domain decomposition technigques which
have reached maturity in the chimera methodology (Ref. 7).

1.2 BACKGROUND

Compatational fluid dynamics has matured to a stage where it is possible Lo compute transonic
flow fields about complex three—~dimensional bodies and bodies in relative motion (Refs. 8 and 9).
However, there is a need to develop algorithms for complex three-dimensional bodies and bodies
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in relative motion in hypersonic flow fields which require reasonable computational resources (Ref.
10). Some important features of a good computational algorithm are: (1) computational efficiency
to minimize the arithmetic operation count and computer memory requirements, (2) adaptability to
computational domains consisting of either blocked or non-structured grids, (3) fast convergence,
(4) high accuracy which does not degrade readily because of a sensitivity to the choice of parameter
settings, and (5) flexibility to allow transport equations (i.e., species, energy, or turbulence) to be
added or deleted with minimal effort.

Solution algorithms can generally be categorized as either explicit or implicit methods.
Explicit methods have low arithmetic operation counts because they do not require matrix
inversions in their solution procedures. These methods are limited to small computational time
steps for numerical stability. Hence, a Jarge number of iterations is required for convergence to a
steady-state solution. Implicit methods are stable for much larger computational time steps and
generally require fewer iterations to converge. Unfortunately, implicit methods require matrix in-
versions, which are computationally intensive.

Recently, several investigators have proposed numerical algorithms which are globally
explicit and locally implicit. These algorithms are called locally implicit methods (LIM) or point—
implicit methods. Locally implicit atgorithms have demonstrated the best features of both explicit
and implicit algorithms. Reddy and Jacocks (Ref. 11) developed a two—dimensional, finite—volume,
locally implicit scheme for solution of the Euler equations. The scheme uses a relaxation method
based on a modification to the one-step Gauss—Seidel-Newton iteration and does not require the
solution of any matrix equations. The scheme was applied to the two—dimensional Navier—Stokes
equations by Nayani (Ref. 12) and Towne (Ref. 13). Reddy and Benek (Ref. 14) developed a three—
dimensional thin-layer Navier—Stokes LIM algorithm which incorporates the chimera domain
decomposition procedure developed by Benek et al. (Ref. 7). Hwang and Liu (Ref. 15) developed
a two—dimensional finite—element LIM scheme. Tramel (Ref. 16) developed a stable shock—
capturing locally implicit scheme using a modified one-step red/black Jacobi~Newton iteration.
This procedure was extended to reacting flows by Tramel, et al. (Ref. 17), and applied to
vibrationally relaxing flows in nozzles by Limbaugh et al. (Ref. 18). Bussing and Murman (Ref. 19)
used a point-implicit treatment of the chemical source terms for compressible flow problems with
finite—rate chemistry. Eberhardt and Imlay (Ref. 20) developed a diagonal treatment of the chemical
source term Jacobian for the computation of nonequilibrium flow fields. Gnoffo (Ref. 21)
developed a finite-volume, point-implicit relaxation algorithm for the Navier—Stokes equations,
and extended this algorithm to flows with chemical and thermal nonequilibrium (Ref. 22).

1.3 OVERVIEW

In this report, a three—dimensional, time-accurate, locally implicit algorithm for the solution
of compressible viscous flow problems with thermo—chemical nonequilibrium is described. The
algorithm is known as the nonequilibrium diagonal approximate Newton's algorithm (NEDANA).
The new scheme is designed for vectorization in all coordinate directions. The scheme incorporates
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the chimera domain decomposition procedure. This allows the scheme to be applicable to both
complex configurations as well as bodies in relative motion. The code also incorporates the AEDC-
developed chemistry package NEQPAK (Ref. 23). NEQPAK provides the necessary chemical,
thermodynamic, and transport properties that are required to simulate the flow of & gas in thermo—
chemical nonequilibrium. The details of the thermo—physical models and the numerical method are
presented in this report along with the results from a sequence of test problems.

2.0 MODELING EQUATIONS

2.1 CONSERVATION EQUATIONS

The NEDANA code solves the conservation equations which describe the motion of a
compressible viscous fluid in thermo—chemical nonequilibrium (Refs. 23, 24, 25). A more general
development of these equations is contained in Appendix A. These equations are one mass
conservation equation for each of the ns chemical species present in the flow,

Bﬂ a(ﬂs“}) _ a(Paﬂf.s)
o T as, - 8z, T o)

and three mass—-averaged momentum equations, (i = 1, 3),

B(pu.) + dpu,u, + pbs;) - _BT"J
5 I, 2z, @

and a total energy equation,

B_E AN(E +p)w,)) _ _ﬂ(ﬂ,“r,_?) _ di _ _a_m dh
o " om, | 0z, O asz“””' " ©)
where
1
E=E)+ Pt @

and E is the intemal energy of the mixture.

The above equations are applicable to any fluid for which a continuum description is
appropriate. If the collision rate among the individual particles in the fluid is high enough to ensure
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that the species internal degrees of freedom are in thermal equilibrium with the translational tem-
perature of the fluid, then the above equation set, plus certain constituent relations described in Sec.
2.2, provides a complete description of the fluid. This equation set is referred to as a one-
temperature model. However, if the internal degrees of freedom are not in thermal equilibrium, then
additional conservation equations must be solved. In the present work, a two-temperature model is
assumed. In this model, the distribution of the rotational degrees of freedom is assumed to be given
by a Boltzmann distribution whose Boltzmann temperature is equal to the translational temperature
of the fluid, while the vibrational/electronic excitation degrees of freedom are characterized by a
separate Boltzmann temperature T, (Ref. 26). This leads to the specification of an additional
conservation equation for the vibrational-electronic energy, E,, In the absence of ionization and
radiation, this equation takes the form

dEy +3(Evu,) _ 0y, D&
dt dz, 0%, Oz,=

lu;t_qpa hyvs +wy. (5)

In this case, the internal energy of the mixture, £ 1+ 18 the sum of a translational/rotational part, £ 'r,
and a vibrational/electronic portion, E, . i. e.,

where
Ey = Z Pa€tr s ¥
g=1
and
Ey = Zpacv,s- (8)

s=1

2.2 AEROTHERMAL MODELS

In order to completely specify the fluid being simulated, certain constituent relations are
required: (1) the thermal equation of state of the gas, p = p(p,,M, T); (2) the caloric equation of
state for each species, h, = h(T, Tv) =e(T, T W+ 2 (3) the shear stress tensor, 1,; (4) the
conductive heat flux, g; (5) the diffusion veloc:ty of species s, u ; (6) the chemical source term of
species 5, @; and (7) the vibrational/electronic energy source terrn, v NEQPAK is used to provide

10
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these quantities. NEQPAK has the capability to apply many thermo-chemical models. Only those
portions of NEQPAK relevant to the present work will be discussed below. In particular, if ioniza-
tion was present while the gas was in a state of thermal nonequilibrium, then some of the formulas
presented below would need to be modified. A detailed description of NEQPAK is found in Ref. 23.

The gas is assumed to be composed of a mixture of thermally perfect gases. The static pressure
of the mixture is then the sum of the pantial pressures of the constituent gases (Dalton’s law of
partial pressures),

ns

P=) P %
a=1
where

ps = po R, T, (10)

and R is the species gas constant. The species gas constant is defined in terms of the universal gas
constant, R, and the species molecular weight, M, by the relationship

R

Ry
- M, (11)

For a gas in thermal equilibrium, the specific enthalpy for each species, h , is given by

T
_ 3 b
fig _fn CodT + Ry, (12)

where C‘g is obtamed from curve fits based on a combination of experimental data and theoretical
modelmg, while h is the heat of formation of species s at OX. These curve fits are of the form

?;: = iy g + ﬂ-Q.s’r + ﬁ3.3T2 -+ ﬂ.h,Ta + a5',T4, (13)
and the coefficients ,, are taken from Ref. 27. For the two—temperature model, k_is written as

hs = hh-,a + hV.m (]4)

where

11



AEDC-TR-94-18

T
hers = ]u C2dT* + 10 = ey + 22, (15)

5

and

h'i,r‘, = -/: Cl VdT" = EV,a- (16)

Here Cﬁ i is the constant translational/rotational portion of the specific heat (C;' » =35R_ for
diatomic species and 2.5R_for monatomic species). The vibrational/electronic portion of the
specific heat is calculated according to the formula

v = Cg(Ty) = C an

Here, C "(TV) means that the curve fits in Eq. (13) are evaluated using T,,. The temperatures T and
T, are determined from E’r and Ev.

The stress tensor with the Stokes hypothesis is expressed as
iy = "(_“La_” 3020 (18)
and the components of the heat flux vector are given by

o o 9Ty
g5 = MramJ"hV 3.7:3' (19)

The individual species viscosities, K, are calcnlated using the following curve fits (Ref. 27):

#s = 0.1exp(bs ; + by T + b3,T% + by, T + b, . TY), 20

where 7 = In T. The species conductivities are related to the species viscosities by the relations (Ref,
27

Kerg = 3. 7514 Ry + pDs .sC;rs (21)
and

Kvs = pD, s(p Ve (22)

12
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where the binary diffusion coefficient is given by the following curve fit:

10.1325 eXpldasr + daorT + o, T2 +dr o T3). (23)

ar =

The mixture viscosity and mixtare conductivity are computed using the semi-empirical methods of
Armaly and Sutton (Refs. 28, 29).

The species diffusion velocities, u}i , are given by Fick's law,

d s
Xotiy, = — D, 9z, (24)

The above equation is only rigorously valid for cases in which the following conditions hold (Ref.
30): (1) the gas is a binary mixture; (2) the molecular weights of the species in the binary mixture
are equal, or the pressure is constant; (3) thermal diffusion is negligible; and (4} the body forces per
unit mass acting on each species are equal. If these conditions are not satisfied, then the rigorous
computation of the diffusion velocities involves the solution of a matrix equation. However, the
complexity of this process has lead to the concept of an effective binary ditfusion coefficient, D,
(Ref, 30} defined to be

1-Y,

Dy = =———,
! Zu.',\':l _Dx:f: (25)

where D is obtained by treating ns - 1 of the species as if they were present in trace amounts and
diffusing through a background of a predominate species. Here, D_is defined to be an average of
the binary diffusion coefficients D,,, where D,, is the diffusion coefficient obtained for a mixture
composed of only species s and r (Ref. 31). Note that in order to strictly enforce mass conservation,
the diffusion velocities of the predominate species would have to be obtained from the relationship
- Y,uf, =0, j = 1, 2, or 3. However, this expression is not employed in the present code. The
diffusion velocities for all species are computed using Eq. (24). This expression is a reasonable
approximation provided that the molecular weights of the species do not vary widely, which is the
case for air.

The species source terms, , and vibrational/electronic energy source term, @, are also

provided by NEQPAK. The species source terms are construcied as follows. Let the rth reaction
involving species s be written in the form

13
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na ns

Z Vr.uM'u = Z ”"’:ﬂ‘Mm' (26)

n=1 m=1

in which M_ represents one mole of species s and the v, ; and v;, are the stoichiometric
coefficients. The rate of disappearance of a species s due to the rth reaction is

,

, = Vrn e Vy
.C.r.a = H:-la'k: H Tﬂ ' + Vr.ak‘;-f H Tﬂ l'!- (27)

n=1 n=1}

while the production rate of a species s due to the rth reaction is

na na

’ ”‘r m r "m,
gr.s = llr..,k".’ H Y+ y‘l‘.skr H ",(:;r' B (28)

m=1 =1

The net rate of change of species » due to all reactions is

nr

Wy = Ma Z(gﬁ’ - Er.s)u
r=1 29)

where nr is the number of reactions. Like most acrothermochemical models, NEQPAK assumes the
modified Arrhenius form (Ref. 32) for chemical reaction rates

kl = A, TP exp(-C./T), (30)

where Tis the translational temperature of the gas. The rates defined in Eq. (30) were obtained from
fits to experimental data that were collected under conditions of thermal equilibrium. However,
when the reaction rate under question represents, for instance, a two-body dissociation reaction,
then the reaction rate also depends on the vibrational temperature of the gas. One of the more pop-
ular approaches used to account for thermal nonequilibrium is that of Park (Ref. 33), who replaced
the translational temperature in Eq. (30) with a generic temperature or average temperature, 7,. Park
defined T, by the relation

T, =TeT' " 0<a<]l, 3D

where o was chosen to reproduce experimentat data.

14
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The reverse reaction rate coefficient k is related to the forward rate by
where

e AF
K7 = (o RT )" e2p(~25), (33)

is the equilibrium constant for the rth reaction and

s

be = ) (Vs = Ves);

s=1

AF =Y (0 — 1) (39

In Eq. (33), Poym = 1.01325 X [0® Pa. Also Gg is the Gibbs free energy for species s at the given
temperature and a pressure of 1amm. The Gibbs free energies are computed from curve fits taken
from Ref. 27.

The vibrational source term, Dy is the sum of two terms. The first term, m"v' r. models the
relaxation of vibrational energy under collisions with heavy particles while the second term, @), °,
deals with the addition or removal of energy from the vibrational/electronic energy pool due to
chemical reactions. The vibration—translation interaction is modeled according to the theory
developed by Landau and Teller (Ref. 34). Landau and Teller showed that if the vibrational energy
levels of a molecule are equally spaced (harmonic oscillator approximation) and only single—level
transitions are allowed, then

ns (l‘.‘" - Cu,a)
wv—-T _ rouE v
Wy = Zﬂs s {35)

s=1

where the e, ; indicates the equilibrium value of the vibrational energy, and T_is the vibrational
energy relaxation time. Here, ¢,, represents the vibrational energy of the molecule rather than the
vibrational/electronic energy. Strictly speaking, Eq. (35) was derived for a harmonic oscillator, but
it is applied to anharmonic oscillators by using the polynomial curve fits defined in Egs. (13) and
(16) to calculate the vibrational energy as follows. First, the electronic excitation energy e, is

computed from the formula .
e

|
€es = MaT 3 ynexp(—va), (36)
=1

15



AEDC-TR-94-18

where ¥, = €,/k T, and the electronic partition function is

nel
Z=Y grexp(—#1), (37
=1

where nel is the number of electronic energy levels for species s; g, is the degeneracy of the Ith
electronic level, and &, is its energy. e,, is set equal to the difference of ., and ¢,,.

The relaxation time T,, of species = in a bath of species r is calculated using the empirical cor-
relations of Millikan and White (Ref. 35), where 1,, is defined to be

PTar = explA, T™3 — 0.015A4, 0/ — 18.42], (38)
where
Asr = 0.00116p1/205/3; 39

p is the pressure in atmospheres, and |,, is the reduced mass of the interacting molecules s and r.
In Eq. (39), 8, = hv/k, where v, is the characteristic vibrational frequency of species s; 4 is the
Planck constant, and & is the Boltzmann constant. The relaxation time employed in Eq. (35) is
computed from the 1,, according to the formula

"y

Te =) XeTap+ 77 (40)
r=1
where
Pyl
T v {41)

is Park’s high-temperature correction (Ref. 36) and

C = (0, N4/8R/%)" = 2.898677 x 10~

in SI units. The value G = 10% m? for the effective cross section for vibrational relaxation is that
suggested by Gnoffo et al. (Ref. 26). The second term in o, models the effect that chemical
reactions have on the vibrational energy. Clearly, the dissociation of a molecule removes
vibrational/electrenic energy, while recombination of a molecule must add vibrational/electronic
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energy to the species pool. In this work it is assumed that nonpreferential dissociation occurs. Under
this assumption, m‘;," ° takes the form

W= ) weeVa. 42)
=1
3.0 NUMERICAL FORMULATION
3.1 THREE-DIMENSIONAL FINITE-VOLUME FORMULATION
The following derivation is for the two—temperature model. However, the equations and

numerical method are easily reduced to the one—temperature model. The integral formulation of a
system of conservation equations over a finite region of space takes the general form (Ref. 37)

5 Jff,eav + [[7.6& = [[f aav, @3

where for flows in thermo-chemical nonequilibrium

{ M \ f wh \
Ptlu Wha
Q=& [; a=] v |;
pu D
pv D
pu 0
\ E ) \ 0/ @4)

and the numerical flux vector is written as the sum of inviscid and viscous contributions;
F = .7-'-'1 + F
(Fi+ FYir + (Gr+ Gy + (81 + His. 45)

O and Q are the vectors of conserved quantities and source terms, respectively. F, G, and H are the
inviscid flux vectors. They are equal to the flux of @ per unit area per unit time in the Cartesian
coordinates x, y, and z, respectively, with unit vectors I, 'fy. and‘l; . For the present, we will ignore
the viscons flux vectors F,, G,, and H,. The inviscid flux vectors may be written as

17



AEDC-TR-84-18

( My \ ([ mv ) f Afw \
Pna U Pra ¥ P W
F=| EBvv lia=| B |im=)| B
put+p puv puw
pun pv2 +p prw
pwu purv pw? +p
\ (E+p)u / \ (E+p)v / \ (E+p)w } (46)

In order to solve Eq. (43) numerically, the spatial domain of interest is broken into a set of
disjoint control cells with volumes, V, and cell face areas, 3,-. The flux into or out of a finite-cell
volume, V, across a cell face 3,- is obtained by Fe 3’,- . The equations are written in terms of the
fluxes in the computational directions F, G, and H. These directions correspond to the integer indi-
ces j, k, and /.

An implicit finite—volume discretization of Eq. (43) is

v Q3% L~ Qou)
LKL A
+ (PR, ~ FPELY + (G5, - ’JkL] + (A3 - B3

1
= VirxL QT;:'}-"J_,-

(47)

Throughout this report, the notation of Gnoffo (Ref. 21) has been adopted where capital letters
J. X, L indicate cell centers and j, &, [ indicate cell faces. Also, unlike most finite~volume schemes,
NEDANA stares the conserved quantities at the cell vertices. The difference between this technique
and traditional finite-volume techniques is largely transparent (see Appendix B). Storing the
conserved variables directly at mesh points allows for interaction with finite—difference algorithms
without altering the computational grids or data.

The numerical flux function is based on the flux-limited, artificial dissipation model of Jame-
son (Ref. 38), and Yoon and Kwak (Ref. 39). This model combines the simplicity of artificial
dissipation schemes with the total variation diminishing, (TVD), property. A discussion of the
relevant numerical issues involved in the selection of this particular flux model, as well as a com-
plete description of the numerical flux function, is included in Appendix C. The flux at the cell face
Jj + 1is calculated as the average of the fluxes from cell ./ and J + 1. This averaging requires the flux
function to be evaluated twice and then averaged. An alternative approach would be to average the
conserved variables to obtain values at the cell face and then perform the flux evaluation. The
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former method was chosen for its flexibility in writing finite—difference-type schemes. The numer-
ical flux in the & direction at the j + | face has the form

Fm 1 11 =~ —
1,111.5’,14 = 5( oL+ Fidko) @inKL
+ e an(F(AQT ks AeQTR L)
- 208005,
+ WAQTH L, 2eQF k) (48)

where the cell face directed area is defined as
Ge = ofir + agh + 0fis, 49)
and

AR = itk — Qs (50)
Here, ¥ is defined for vectors P and (0 to have components:

¥;(P,Q) = i[sign( F,) + sign(Q,)] min{| ], |Q;[). (51

The scalar dissipation coefficient is defined by

ekl = 0.25[Ac ppinr + AeskLlls2 + ke pesk.Lls (52)

and the spectral radius of the flux Jacobian is defined at the cell center by
Ae KL = Iﬁ - g IJ'.K.L + asK L || O “ IKL’ (53)

and the cell area in the £ direction evaluated at the cell center is

— l - -
Teakl = S{Gkn + FenL) (54)

The frozen speed of sound is defined as

a? = w-ﬁ- (55)
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where the frozen ratio of specific heats is expressed as

i = (1+8), (56)

where [} = dp/0dE (see Appendix D).
The dissipation is a function of the pressure sensor
pesxL = max(vgrKL, YeJ-1K,L)s (57

where

Prvi kL — 2.0pak L +PI1 KL
wi kL + 20psKL + pr-1K L (58)

VeJR.L =

The numerical fluxes G, and H are calculated similarly.
3.2 QUASI-ONE-DIMENSIONAL FORMULATION

The one-dimensional form of the conservation equations with area change is derived in
Appendix E. This form of the equations is solved when performing numerical studies for shock tube
and nozzle problems. The finite-difference form of the equations is presented below:

o] [ mule ] [ AJ'wy ]
AJ“ Pus + AJ’"- Pusugz' = AJ"lwn.l
Ey Eyuf, AJ lwy
pu (pun + p)Eo Ardlp
e )/, [ Eepmee 1/, L 00 ] 69

Note that the equation has been transformed to curvilinear coordinates. The Jacobian of the
transformation x—¢ is J = 8&/0x. For constant area problems such as shock tubes, A is set equal to 1.

3.2 VISCOUS TERMS
In this section the viscous contributions to the flux function will be discussed. These

contributions include shear stress, heat conduction, and diffusion terms. The viscous Cartesian flux
function for the x direction from Eq. (45 ) has the form
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{ pruf \

p"l! uﬂ,‘g
v Pshvsut + qyz
T:I"J"
Try
T.rz
2 nshsud + g + gvs
\ + Terll + Tgyt + Tew  J

!'&8

(60)

Each component of Eq. (60) may be formulated in the context of a finite—volume scheme. A
thin-layer ; approxnmahon also is employed in the direction normal to the body surface, {. Recalling
that .7-" +F, , the viscous flux contribution for species continuity becomes,

{ (f")J.K.I (% }J-K-‘}, = (%i) JK. (%)JJ{J (Ec - ﬁc) JKdT (61)

where

| o—

(__p;.;ﬁ)_;_g,. B [(%)J.K.L—] * (__p’igi)J.K.L]- (62)

The viscous flux contribution to the vibrational—electronic energy equation can be expressed as

_ ) s D, 9x
{( )JM ("()J,h'.l}mH = (”"VC)J.KJ [tivc + Z phy Xs Bf]“m, (63)

where

(s 2)
e = "V T8¢ LKL (64)

The viscous flux contribution o the x~-momentum equation in finite—volume form can be written as

{(I)Jm (Ec)J"""‘}n”z - 0C 7o+ 53—('-&( CI]J.K.(. (65)
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In a similar manner, the viscous flux contribution for all of the momentum equations can be written
compactly as

pBl%tE‘ + #Bzc::

{(ﬁv)J,KJ.(E{JJJ\'J} hnesd nrsa = - ﬂﬂlﬁf + p B, ,
IR R » By -;% + puBy(. IKd {66)
where .
o= & V¢ 67)
and
1 [éhu ou M
By = = -—-_—rr" + + ]
= alact et A 69)

The viscous flux contribution to the total energy equation now can be easily written using the
previously developed expressions. The equation becomes

} ) . 6 ns h —_DaaXa
{('F")J_KJ.(o‘c)J-KJ}“’_FS = ("C' C)J.K.l fire + gve + ;Pa ' X ac .

3 Jw ]
- B
“[ 1( C)C c+wd{-)J.K,L

+ II[B'J (ulr + vy + wc:)],;_x'{- (69
where aTtr
Qe = 7 (H-t'r' T) IR
0Ty
e = 7 (w —ff) LKL (70

3.4 CHIMERA DOMAIN DECOMPOSITION

NEDANA has incorporated the chimera domain decomposition procedure developed by
Benek, Steger, and their co—workers (Refs. 7, 40-43). The chimera scheme was developed to allow
a system of simple grids with simple topologies to model complex aerodynamic configurations or
bodies in relative motion.

The general concept behind chimera is illustrated in Fig. 1, which depicts two independently
generated meshes representing a flapped airfoil. The flap mesh is embedded within the airfoil mesh.
Clearly, the flap mesh outer boundary can receive flow—field information interpolated from
appropriate mesh points of the airfoil mesh. However, a reverse process must occur as well; the
airfoil mesh must receive flow—field information from the flap mesh. This transfer is achieved as
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follows. A hole must be created within the airfoil mesh to remove the points within the airfoil mesh
that are interior to the flap. The hole boundary points of the airfoil mesh can be updated by
interpolation from the flap mesh. In general, any mesh can receive information from other meshes
through both outer boundary and hole boundary points.

Alrfoit
Mesh

Artificial Boundary
in Airfoll Mesh

Embeddad
Flap Mesh

Figure 1. Mesh-to-mesh communication.

The interpolation process is further illustrated in Fig. 2, which depicts a portion of the overlap
region between the airfoil and flap meshes. Airfoil mesh points inside the hole region surrounding
the flap are blanked out of the computational domain of the airfoil mesh. In chimera terminology
they are hole points. The hole region is defined by a hole creation boundary within the flap mesh.
The points in the airfoil mesh surrounding the blanked points are hole boundary points, and they
receive flow—field information interpolated from mesh points within the flap mesh.
Correspondingly, points on the the outer boundary of the flap mesh receive flow-field information
interpolated from mesh points within the airfoil mesh.

Application of the chimera scheme requires two steps: (1) a description of how each mesh is
1o communicate flow-field information to other meshes, and (2) execution of the flow solver (in
this case, NEDANA) using the information generated in step 1. Step 1 is performed by PEGSUS
(Ref. 44) developed at the AEDC. The processes accomplished by PEGSUS include establishing
which boundary points in a mesh will be updated by interpolated flow variables from other meshes.
Also, PEGSUS calculates the required interpolation coefficients for donor mesh points that provide
interpolated information for recipient boundary points in another mesh. More information on the
chimera scheme and the PEGSUS code can be found in the references.
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Airfoil Mesh

Interpolated Boundary Point
in Fiap Mesh

Interpolated Boundary
Point in Airfoil Mesh

Hole Creatian
Boundary in
Flap Mesh
-t

Hole Boundary in

Airfoil Mesh

d Hole in Airfoil

Mesh

Flap Mesh

Figure 2. Overlap region between meshes.

3.5 SOLUTION PROCEDURE

Equation (47) is a set of nonlinear algebraic equations which is solved at each time step. A
variety of techniques exists to solve such equations. An encyclopedic review of such techniques
may be found in Ref. 45. Throughout this section, the nomenclature of Ref. 45 is used.

Newton’s method is the classical procedure for solving nonlinear algebraic equations. For
this, first define the residual vector, R"(Q), at time level n, as a function of a vector, Q, so that at a

point J, K, L, R" has components

Tk,0(Q)

+ + +

(Quir.t —Qlk.L)

At
(Faxn(@) — Fuce(Q))
(CriesL(@) — Guar(Q))
(Hixie1(Q) — Hyp(Q))
Virt k(@)

VKL

The solution to Eq. (47) at time level # + 1 is the vector, 0"*that satisfies the residual equation,

Ru(Qh-I-I) = . (‘?l)
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An approximate Newton’s method is used to solve this equation iteratively. The initial iteration is
always 0", and after a sufficient number of iterations, (** is set equal to the last iteration. To
simplify notation in the following, the dependence on » is suppressed. Let Q("‘) denote the m'™
iterative approximation to the solution of Eq. (71). Also, let R™ denote the residual vector
evaluated at Q("'} . Similarly, let the evaluation of the fluxes and the sources at Q("') be denoted by
the superscript, (m).

To motivate the development of the iterative techniques used in the NEDANA code, consider the
use of a pure Newton's method approach to solving Eq. (71). First, the following linear system of
equations is solved:

laR[rri]

aQ(f.-.}] (@ — Qi) = —ROM,

(72)

or

m)] -1
gR(m™) R(m}.

{mt1} — ) _
¢ ¢ [BQ"“' (73)

Next, the norm, 101 — 0|, is checked to see if it is less than some prescribed tolerance. If it is,
then Q(”') is accepted as the solution to Eq. (47) at time level a + 1. If [lg=? — || is greater than
the prescribed tolerance, then m is incremented and Eq. (73) is solved again. This process is repeat-
ed until the norm is less than the prescribed tolerance or until a fixed number of iterations has been
performed. When solving problems in two and three dimensions, Newton’s method is
computationally intensive since the Jacobian, IR/, isa very large, sparse matrix. This makes
direct inversion of the Jacobian impractical. Therefore, as described in detail below, the NEDANA
code uses an alternative to Newton’s method to solve Eq. (71). This method is referred to as a mod-
ified one-step, odd/even, Jacobi-Gauss-Seidel-Newton (JGSN) scheme. In the past, this iterative
method was known as a variant of the LIM scheme.

To motivate the use of the JGSN method, first examine the Gauss-Seidel-Newton (GSN) and
the Jacobi-Newton (JN) schemes. If a one-step GSN iteration were employed to solve Eq. (71}, a
Gauss-Seidel method would be applied as a primary iteration and Newton’s method would be
applied as a secondary iteration. Specifically, in the primary Gauss-Seidel iteration, for every grid
point, J, K, L, the local residual equation,

E Y ‘ [ ]
Ryk Ll @i 1 QUL Q5 ko) = 0, (74)
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(m+1)

is solved for @, , * . Here, m" indicates that the components of Q¢+ are used in Eq. (74) if they
are available, and otherwise, the components of Q™™ are used, Then, in the secondary iteration,
Newton’s method is used to solve Eq. (74) according to

3R. m*) 31

(1) (m}) JK,L m*

Qxr = Qwe ~ | o Ry, (75)
QKL

In a one-step version of this scheme, only one iteration of Eq. (75) is implemented before proceed-
ing to the next grid location. When all components of g+ are calculated, a sweep is said to be
completed.

If a one-step JN iteration were employed to solve Eq. (71), a Jacobi method would be applied
as a primary iteration and Newton’s method would be applied as a secondary iteration. Specifically,
in the primary Jacobi iteration, for every grid point, J, X, L, the local residual equation,

{m) (m+1) m
RJ-K.L(""QJ,K.L—I LKL 1QS+]1 Kpi-) =0, (76)

is solved for Q}""Kf,f’ . Note that here the fixed arguments of the local residual are written only in
terms of the components of ‘™, Then, in the secondary iteration, Newton’s method is used to solve
Eq. (76) according to

(4 -1
oy - aity - (S| a2

. m JKLL- (77)
Q5L

Both methods described above involve only the inversion of an ng X ng matrix, where ng is
the number of conserved variables. However, the GSN method is recursive and is not well suited
for implementation on machines that employ vector processors (Ref. 46). In addition, Tramel (Ref.
16) has shown that a JN iteration is unstable for CFL numbers greater than one. Therefore, an odd/
even JN iteration is proposed in Ref. 16 and is the basis for the solution technique used in
NEDANA.

In NEDANA, an odd/even JN iteration is applied along lines of constant J, K, while a GSN
iteration is applied in the other computational directions. As indicated above, this procedure is
referred to as a Jacobi-Gauss-Seidel-Newton (JGSN) method. The odd/even JGSN iteration is
implemented in NEDANA as follows. First, the following equation is solved for every point along
a line of constant J, K, with L = L, aneven value,
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an {0 -1
= QiR - ORhse RSy
[¥ L P 3Q“;‘]}(‘Le J,R.Le (78)
m*) o Ve

= (J(+1J\L. F'(’I'{JL.)

+ (@, - 5L

+ (a5, - AR

(m) _m
v Vaxi (QJ,K.L.NQJ,K.L.,) 9

r m*
- \f J'h"L‘ QPI'K?LF -

Again, m * indicates that the components of Q™+ are used if they are available, and otherw:se the
components of O™ are used. In addition, the superscript, e, in R™*}¢ emphasizes that q"
evaluated entirely in terms of O™, as opposed ta being evaluated as described below for the odd
Jacobi iteration. Note that the Jacobian matrik, BR}D} L ,J'BQ}? Le » is fixed over the course of a
time step. Next, the following equation is solved for every point along a line of constant J, K, with
L=L , an odd value,

Here,

m41
Q%L

+ +

) () -1
_ {"l’ G RJ.K|L° R["“]To
= QikL. ~ a0 LK La"
BQJ,K.LQ
(80)
(n*)o {m*}) £(m*)
K Lo (F 1+11 K.L. Fj.h’.La)
() 2! m
((’JL+1J.. 'EH:I}M)
(B — AIRT)
) (Q(m! _ Qn A
VK, = Jacs) 1)

\" J‘}\—-Lu !)f;.r;l!.-[ao .

Recall that ( HJ KI+1- HJ k 1) dependson {Q;, . LIRS LT TS LITTRE Q.urm} In this case, the
supetscript, o, m R("' *1¢ emphasizes that £ is evaluated in terms of ol N l. . When L is odd, and

in terms of Q, ,;

) when L is even.
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Once all points on the line of constant J and X have been updated, the iteration proceeds to
the next line. When all components of 0™*!) are calculated, a sweep is said to be completed.
Typically, the total number of sweeps, m_, is set to two or four, and Q™ is accepted as the solution
to Eq. (47) at time level n + 1.

Computational experience and theoretical analysis (Refs, 12-16) have shown that the use of
the exact Jacobian, BR}?,);_ J BQ,(?}_ 1» leads to an unstable iteration scheme when large CFL numbers
are used. In the past, several ad hoc formulations have been advocated on how to approximate the
Jacobian with another matrix B,.,. However, viewing the LIM scheme as a Diagonalized
Approximate Newton's Algorithm (DANA), convergence of the method is guaranteed if the
Jacobian of the iteration process has spectral radius less than or equal to one (Ref. 45). The
importance of this new perspective of the LIM scheme is that a well-founded criterion is available
to estimate under what conditions the scheme is convergent. This criterion allows the previous ad

hoc formulations of B, to be readily checked.

In previous applications of the LIM scheme, the matrix B was taken to be

BJJ\.L = bJ.K,L [ﬂ.qxuqq (82)

where

b _ Vurw
JKL =T

+ U.l25()l£_l+] + 2.0 + AE_]_])
1.5((’534.1 + CEJ)]KL

0.125{ A yx41 + 2005 + Ak 1)

+

+

+15(enr + ent)]
+[0.125(AcL41 + 202¢L + Acno1)
;

1.5(ect + C;:t)]_,,h, + by, (83)

and
B is S
b, = n.,; (41( . VC) 1K (84)
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where a, is a relaxation parameter optimized for stability and convergence. However, in the present
work the matrix B becomes

B, 0
BirkL = [ ] . (85)
0 B LKL
where
o0
Buke = [b I(m+m=]x{m+up] - EQV]JKL, (86)
and
B2irL = bukL laxa. &N

Here ns and ne are the number of nonequilibrium species and energies, respectively. Note, this
partitioning of B ignores the derivatives of w with respect to pu, pv, pw, and E. However, it has been
observed that this simplification does not affect the stability or accuracy of the scheme. In Appendix
F, the complete derivation of the nonequilibrium source Jacobian, d€¥/ dQ, is included.

Thus, the nonequilibrium variables (p ..., p, , E,)7 are solved for by a matrix inversion, and
the variables (pu, pv, pw, E)T are solved for by a scalar inversion. Specifically, at the beginning of
a given time step, an LU decomposition of B,; x ; is performed for every point. The decomposition
is saved and not updated during a sweep. In fact, in the absence of significant temporal variations,
the decomposition need not be updated at every time step. Once the higher order work of an LU
decomposition is performed, sweepwise updates of the nonequilibrium variables can be computed
with the lower order work associated with a simple back substitution.

4.0 RESULTS OF ONE-DIMENSIONAL COMPUTATIONS

Extensive one-dimensional numerical tests were performed with NEDANA to compare the
results of the present numerical technique with the results of existing flow solvers. Three cases were
chosen:

1.  Shock tube problem.
2. Supersonic duct flow with area change.

3.  Supersonic duct flow with area change and normal shock.
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For all results presented in this section, the one-temperature model was assumed. One-dimensional
computations using the two-temperature capabilities of NEDANA may be found in Ref. 18, These
three cases are used to test the speed, accuracy, and stability of the present algorithm as compared
with state-of-the-art flow solvers from other researchers.

In the comparisons presented in Figs. 3-8, variables are normalized by reference quantities. In
all cases, the reference quantities are denoted by an * superscript. This should not be confused with
the common usage of the * superscript to indicate sonic conditions. For the shock tube problem, these
variables are normalized with the equilibtium properties of the high-pressure side of the diaphragm.
The variables are normalized by the properties at the supersonic inlet for the two duct problems.

4.1 SHOCK TUBE

Shock tubes are long constant-area devices that are initially pressurized with two gases
separated by a diaphragm. The gases are maintained in states of equilibrium that are very much
different from one another. For instance, in the tube shown in Fig. 3, the left side of the tube is
maintained at a pressure of 100 atm and a temperature of 9000 K. The right side is at 300 X and the
pressure is 1 atm. The flow in the shock tube can be modeled as a one-dimensional inviscid wave
propagation problem. At ¢ =0, the diaphragm is burst, and a strong compression wave (shock)
moves to the right with velocity C. As the shock wave propagates to the right, an expansion wave
will propagate to the left as the mixture responds to the the adjacent fluid moving to the right. Also,
a contact surface separating the two gases will follow the shock wave as the shock wave moves to
the right compressing the fluid it encounters. The contact surface travels with velocity V where
< C. Figure 4 details the various structures present as they advance in time. Notice that the contact
surface is maintained, since there is no mechanism to mix the gases. In the following shock-tube
comparisons, relative to the distance the shock wave has traveled, time has not advanced far at all,
Consequently, the contact surface is close behind (slightly to the left of) the shock wave. The double
step is most noticeable in plots of the temperature. This is because the shock wave increases the
temperature in advance of the contact surface. Most of the temperature increase then occurs across
the contact surface for this particular case. Note that the contact surface does not compress and heat
the gas like the shock wave. The changes across the contact surface are embedded in the fluid due
to the initial differences in the states of the gas that existed across the diaphragm. Also, keep in mind
that there is no velocity or pressure jump across the contact surface. Therefore, by observing the
velocity and pressure curves, one can determine how well an algorithm is capturing shocks. Also,
by observing the temperature and density plots, one can see both the shock and contact surface most
clearly.

The shock-tube problem is ideal as a first case, because it is inherently unsteady. Spurious pro-
duction of various constituents of the gas would indicate that the solver was unable to maintain time
accuracy. To make a comparison, the conditions of the shock tube case performed by Shuen, Liou,
and van Leer (Ref. 47) were used as starting conditions.
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For x € [0.0, 3.0] em (pr.Ti.ur) = (100 atm, 9000 K, 0.0 m/sec).
For x € [5.0, 10.0] em (pa.Tr,ur) = (1l atm, 300 K, 0.0 m/sec).

Diaphragm
| /
State L State R

Initial State at £=0

Initial Position
of Diaphragm

AN

® \@__;@) - ®

Expansion Contact Shock
Fan Discontinuity

Flow State at /-0
Figure 3. Shock tube schematic.
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Contact
Discontinuity

Expansion
Fan

Figure 4. Wave structure of shock tube in time.
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Figure 5. Concluded.
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The equilibrium air densities were computed using the curve fits of Prabhu and Erikson (Ref.
48) to be pL = 2.627 kghn3 for the high-pressure side and pR = 1.1733 kg/m® for the low-pressure
side. In the following comparisons, all computations were performed on a grid consisting of 200
equally spaced nodes distributed over the interval [0.0, 10.0] cm. The comparison presented in Fig.
5 is made with Shuen’s MUSCL-interpolated Roe upwind scheme (Ref. 47) and with Molvik’s flow
solver (Ref. 49). Both Molvik’s flow solver and the present flow solver were run for 250 time steps
at a CFL number of 0.5, which gave an absolute time of 0.167 x 10 sec. This number of steps was
chosen so as to match the shock position of Shuen et al., who supplied no temporal data. Boundary
conditions for this problem are unimportant, as the flow at both boundaries remains undisturbed.
The results from NEDANA and the results from the Shuen et al. flow solver were computed using
Dunn and Kang’s (Ref. 50) reaction model (ionization reactions were not included). The results
from Molvik’s flow solver were obtained using Blottner's (Ref. 51) reaction model and were
obtained at the AEDC by the authors. The results attributed to Shuen et al, were manually digitized
from plots taken from the cited article. This accounts for waviness present in their results.

Similar results for the gas constituents and flow properties are presented in Fig. 5 for all three
flow solvers. The pressure comparison, Fig. 5b, demonstrates that NEDANA produces shock fronts
that are as sharp as those predicted by the flow solvers of both Molvik and Shuen et al. Figure 5Sc,
however, shows that NEDANA does not reproduce the contact surface as well as the other codes.
This is becanse both the Molvik and Shuen et al. flow solvers are based on approximate Riemann
solvers, which force the net flux to be modeled exactly across discontinuities in one dimension. In
multi-dimensional flows in which the grid is not aligned with the discontinuity, much less favorable
results are obtained using Roe’s Riemann solver. It is encouraging that the present solver so closely
follows the Molvik solution, as it is a well validated and widely used flow solver. The agreement
in the expansion region between the NEDANA and the Molvik results on the one hand, and both
disagreeing with the results of Shuen et al. on the other hand, would indicate that the solver of Shuen
et al. does not handle the expansion comrectly. Overexpansions are typical with flow solvers using
higher order upwind schemes; but, since Molvik also uses a high order upwind method, it is not
clear what mechanism is driving this disagreement.

Mole fractions for the species N, 0, N,, 0,, and NO as computed by the three flow solvers
are plotted together in Figs. Se—i. Again, the three flow solvers produce similar results, with the
codes of Molvik and Shuen et al. producing sharper discontinuities and the results predicted by
the Molvik and NEDANA flow solvers agreeing more closely, in general. Notice that the relative
amount of the species changes greatly across the contact surface, but little across the shock. In
particular, the mixture on the high-pressure side has little molecular oxygen, Fig. 5h. However,

1.  Additional calculations have been made with NEDANA using a doubly finer mesh, The results show a
much sharper contact surface, and the density comparison is nearly exact.
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because of the temperature drop across the contact surface, the amount of molecular oxygen rises
and remains nearly constant through the shock. This behavior illustrates the finite-rate nature of the
chemical process. The motion of the shock is very rapid; thus, the chemical changes lag behind the
shock. Consequently, changes in the species concentrations resulting from the shock are not
observed until the changes resulting from the contact discontinuity begin. Changes across the
contact surface then become dominant and obscure the much smaller changes initiated by the shock
wave. By definition, the molar fractions of the constituents of the mixture must change discontinm-
ously across the contact surface. This is not captured in the numerical simulation. Numerical smear-
ing of the contact surface causes nonphysical intermediate temperatures that are conducive to the
production of species not actually present at the contact surface. In particular, notice that all the flow
solvers smear the contact surface and produce spurious overshoots in NO and O. This overshoot is
related to the fact that the equilibrium mole fractions of N and O as a function of temperature for
a given pressure are non-monotone. This spurious production itself causes further smearing because
there also is a lag in this nonphysical production of species. The numerical and nonequilibrium
issues thus become entangled, By turning off the chemistry, NEDANA produces solutions with less
smearing of the species mole fraction profiles across the contact surface; but with the chemistry
enabled, the smearing is amplified.

4.2 SUPERSONIC DUCT

Supersonic ducts with area change, Fig. 6, are good model problems for testing a time-
marching code’s ability to achieve an accurate steady-state solution. Two cases were chosen for
comparison: (1) a supersonic duct flow that remains supersonic to the exit; and (2) a supersonic duct
flow that has had its exit pressure raised until a shock is standing approximately half-way down the
duct, with subsonic flow in the remaining portion of the duct from the shock to the exit.

Results of the twe nozzle flow problems are presented and compared with the results
produced by Molvik's flow solver for the case with no shock. Both the flow solvers use the same
reaction models used for the shock tube example. However, for the supersonic duct test cases,
jonization reactions are included in the models. Results are also presented for the two test cases of
equilibrium air solutions produced using curve fits taken from Ref. 48. The arca distribution of the
duct is taken as

A(z) = 5.5 + 4.51anh(0.7x — 3.5); = € (0.0, 10.0] m,

which produces a nozzle with an area ratio of 10.0. Both grids consisted of 101 uniformly
distributed points. The supersonic inflow conditions for both cases were:

7" = 6000 K
p* = 10 atm,

while the frozen Mach number at the inflow was 2.5.
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In both of the supersonic duct test cases, convergence to steady state was assumed when the
unsteady residual was driven to machine zero everywhere.

12 .

5.5 + 4.5" tanh (0.7* x-3.5) —

Area Distribution

00 2 4 6 8 10

X
Figure 6. Duct schematic.

4.3 SUPERSONIC DUCT WITH AREA CHANGE

As this case is a pure supersonic expansion, the exit boundary conditions are those of superson-
ic outflow; i.e., the exit conditions are determined from a zeroth order extrapolation of the dependent
variables at the j ., - 1 grid location. Initial conditions for this case were the uniform distribution of
the dependent variables as determined from an equilibrium calculation of the inflow conditions.

The comparisons of the NEDANA results with results from Molvik's flow solver are pre-
sented in Fig. 7 along with the results from the author’s equilibrium airflow solver. The distribu-
tions of the species and the flow properties are nearly indistinguishable among the three solutions,
except for the NO comparison, Fig. 7h. Near the nozzle exit, where the density has dropped by an
order of magnitude from the inflow value, the NO chemistry appears to be frozen.
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4.4 SUPERSONIC DUCT WITH AREA CHANGE AND NORMAL SHOCK

This case is interesting because the flow downstream of the normal shock is subsonic.
Consequently, a subsonic boundary condition is required at the exit. Initial conditions also must
reflect this fact. Initial conditions were determined by first making an approximation to the proper-

.ties in the duct from a perfect gas calculation. Then a crude equilibrium air calculation was made
of the species distribution over the length of the duct. The initial shock location was close to the
expected result. All of the dependent variables at the exit were determined by extrapolation as
explained in the previous subsection; except that the specific total energy was calculated from the
exit pressure which was imposed (pgy;, = 14.8 atm). That is,

Pexit
ns Py N
RY (%)

Knowing the mixture temperature and the constituents at the exit, NEQPAK returns the specific in-
ternal energy. The total specific energy is then found by adding the kinetic energy, as

Texit. -

1,32
Cexit = €7 + 3u°.

The comparisons are shown in Fig. 8. Only the equilibrium results are available to compare
with NEDANA, because the version of Molvik’s code used in this study does not make provisions
for subsonic outflow boundary conditions.The results from NEDANA are in excellent agreement
with the equilibrium air solution except for the distribution of NO+ downstream of the shock. This
results because the equilibrium air solution considers eleven species, whereas the NEDANA
computation was performed with a seven species model.

Note the changes in the constituents of the mixture across this shock, relative to the changes
discussed with regard to the shock and contact surface in the shock tube. The changes in pressure
and temperature are not as severe in the duct so that the adjustment process is not as smeared as in
the shock tube. The constituents change cleanly across the duct shock, except for a spike in atomic
oxygen. It is also important to recognize that in the duct, substantial dissociation exists on both sides
of the shock; whereas in the shock tube, the air molecules are shocked from a nearly quiescent state.
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5.0 RESULTS OF TWO- AND THREE-DIMENSIONAL COMPUTATIONS

Extensive flow computations were performed to validate and demonstrate the methodology
and accuracy of the two-dimensional and three-dimensional modes of NEDANA. The classes of
problems studied include:

1.  Laminar Separated Flows on Hypersonic Flat Plate/Wedges
2.  Nonequilibrium Flows around Hemisphere Cylinders
3. Chimera Domain Decomposition in Nonequilibrium Flows

The numerical results are compared to both experimental data and numerical results from existing
flow solvers where available,

5.1 BOUNDARY CONDITIONS

In this section, the boundary conditions imposed for the three test problems are discussed. In
all cases, the flow was supersonic. Therefore, the upstream boundary was specified with free—
stream values. The flow at the outflow boundary was primarily supersonic. Only a small subsonic
region existed in the boundary layer at the outflow boundary. Therefore, a zeroth—order
extrapolation was used. Fluxes at symmetry planes were calculated by reflecting grid points across
the symmetry boundary. At the body surface, a no—slip condition was applied such that all
components of the velocity were zero. For non—catalytic walls, a zero normal gradient in the species
mass fractions was set at the wall. For fully catalytic walls, the species mass fractions at the wall
were set to their equilibrium values based on the wall temperature. The nonequilibrivm flow
experiments investigated in this study reported a constant wall temperature of 555.55 K.
Calculations using the method of Prabhu and Erickson (Ref. 48) showed that for this temperature
the equilibrium composition of air was equal to the free-stream composition. Furthermore, this re-
suit was nearly independent of the equilibrium density. Therefore, the species mass fractions at the
wall were set to their free-stream values. The pressure at the wall was set assuming zero normal
pressure gradient. The temperatures at the wall were set to the reported wall temperature, Park (Ref.
52) reports that the vibrational and electronic temperatures of molecules leaving a surface are nearly
equilibrated with the translational wall temperature. Therefore, the translational-rotational and
vibrational—electronic temperatures at the wall were set to a common value.
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Table 1. Flow Conditions and Geometries for Flat-Plate/Wedge Calculations

Wedge Angle (deg) M. Re,(1/m) T..(K) PoolPd) Tyan(K)

15.05 15.67 4.885 % (10)° 40.31 827 294.4
18.00 15.58 4.521 % (10)° 42.53 834 294.4

0.3

0.2 .

E :
0.1
0 Il

0O 01 02 03 04 05 06 0.7
X, m
Figure 9. Flat-plate/wedge grid, 101 x 3 x 101.

5.2 HYPERSONIC LAMINAR FLOW OVER A FLAT-PLATE/WEDGE

The flow over a compression corner formed by the intersection of a flat plate and a wedge was
chosen as a test case for the two-dimensional, viscous coding of NEDANA. Measurements for
laminar, attached and separated flows on flat—plate/wedge configurations reported in the CUBDAT
database by Holden (Ref. 53) have been used by various researchers for code validation (Refs. 54,
55, and 56). Although the configuration is geometrically simple, the physics of the flow field are
very complicated and serve as an ideal test case for viscous hypersonic phenomenon. A very strong
leading—edge shock is generated that extends downstream and intersects the wedge flow field. In
addition, for sufficiently large wedge angles, a boundary-layer separation region forms in the
corner. On the wedge, downstream of this separation region, the flow is compressed and the
boundary layer thins, resulting in large increases in skin friction and heat transfer. Furthermore, the
compression waves produced by the corner coalesce into a shock wave that intersects with the
leading—edge shock, generating an expansion fan and shear layer.

The CUBDAT database includes pressure, heat-transfer, and skin-friction data for nominally
two-dimensional (finite-span) 15.05-deg, 18-deg, and 24-deg wedges. The work of Rudy et al. (Ref.
55) concludes that the inclusion of three-dimensional effects is necessary for accurate comparisons
to experimental data for the 24-deg wedge case due to the larger boundary-layer separation region.
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Therefore, two-dimensional comparisons are made only to the 15.05-deg and 18-deg wedge data.
The conditions for the simulations are listed in Table 1. Note that the Reynolds number was low
enough that the flow remained laminar. In addition, the high Mach number is achieved by an
extremely low free-stream temperature. Therefore, the flow is assumed a perfect gas and not a
chemically reacting gas. As a result, the flat—plate and wedge data comparisons allow for a
validation of the NEDANA flow solver in the absence of the additional complexities of turbulence
and chemistry.

For both wedge angles, the length of the flat plate and wedge are 0.4396 m and 0.3048 m,
respectively. The test geometries were modeled as two—dimensional compression cormers with
101 x 3 x 101 grids. (Note that the current version of NEDANA is a three-dimensional, finite-
volume flow solver with the grid system described in Appendix B. Therefore, a minimum of three
grid points is required in all coordinate directions.) A viscous wall spacing of 1.0 x 10 m was
used. This viscous spacing produced values of y* < 0.1. The calculation of y+ is useful for deter-
mining the minimum grid spacing required for accurate viscous solutions even in the absence of
turbulence, A typical grid is shown in Fig. 9. The current version of NEDANA has been devel-
oped for nonequilibrium computations and, therefore, receives all thermodynamic and transpost
properties from NEQPAK. As a consequence, the perfect-gas flow was modeled as a chemically
frozen mixture of N, and O,, representing air. This fact is noteworthy because the NEQPAK
curve fits for thermodynamic and transport properties were formulated for 100 K to 30,000 K.

Steady-state computations were made with the NEDANA flow solver for both the 15.05-deg
and 18-deg wedge configurations using a global time step and a maximum CFL number of five. The
dissipation parameters ((see Eq. (52)) were set at x, = 0.8 and x,, = 1.8. Numerical tests showed that
the use of local time stepping greatly increased the number of iterations for convergence. This find-
ing may be due to the unsteady nature of the separated flow region. Steady-state solutions were
typically achieved in 10,000 iterations with a reduction in residual of four orders of magnitude.
Pressure, heat-transfer, and skin—friction results for the 15.05-deg wedge case are presented in Figs.
10, 11, and 12. The results are compared to experimental data. Solutions were also computed using
Molvik’s TUFF (Ref. 45) flow solver and the AEDC flow solver XMERA (Ref. 42). These results
are included to assess the performance of NEDANA versus other state—of—the art flow solvers. Re-
sults from all three flow solvers are in good agreement with the experimental data. Note, the results
of all three flow solvers may differ slightly due to the use of different curve fits for thermodynamic
and transport properties.

48



AEDC-TR-94-18

10° —— NEDANA
---- XMERA
~—— TUFF

« EXP :

10’ ; L
0 0.5 1.0 15
X/L
Figure 10. Pressure distributions for laminar flow over a 15.05-deg wedge,
M, =15.67.
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Figure 11. Heat-transfer distributions for laminar flow over a 15.05-deg wedge,
M., = 15.67.
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Figure 12. Skin friction distributions for laminar flow over a 15.05-deg wedge,
M.. = 15.67.

The calculation of the size of the separation region that forms at the juncture of the flat plate/
wedge is extremely sensitive to the nnmerical dissipation of the flow solver. A flow solver with low
numerical dissipation should accurately predict both the size and shape of the separation region. As
the dissipation of the numerical scheme increases, the size of the predicted separation region
conversely decreases. Extremely dissipative schemes may actually suppress the formation of a
separation region entirely. The effect of the separated flow is to decrease both the skin friction and
heat transfer at the wall. As a result, the extent of the separation region is marked by a drop in the
skin-friction and heat-transfer distributions. With this phenomenon in mind, an examination of the
skin-friction and heat-transfer distributions reveals that NEDANA and XMERA are slightly more
dissipative than TUFF. This result was anticipated because the TUFF flow solver is based on an
upwind algorithm, whereas the NEDANA and XMERA flow solvers are based on central differ-
ence schemes with constant numerical dissipation parameters.

To investigate the effects of decreased numerical dissipation, a series of computations
were performed with NEDANA in which the dissipation parameters were lowered to x,=0.4and
K= 0.8. Additional computations were performed where the dissipation parameters were also
scaled by the normalized velocity such that k, — 0.0 and k, — 0.0 at the no-slip wall. This
scaling was performed to further lower the dissipation in the viscous region near the wall. The
decreased numerical dissipation did not significantly improve the NEDANA results. Only a
slight increase in the size of the separation region was achieved, and at a cost of decreased
numerical stability. A further numerical experiment was performed where the viscous spacing
was increased to 1.0x10™ m. The ensuing computation completely failed to predict the separation
region. This result would indicate that adequate viscous grid resolution is more significant than
the magnitude of the dissipation parameters employed.
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Similar results are presented in Figs. 13, 14, and 15 for the 18-deg wedge case. The NEDANA
and XMERA flow solvers performed similarly, However, the upwind Roe scheme of TUFF initially
generated a nonphysical solution in the vicinity of the separation region where the flow switches
from supersonic to subsonic. This nonphysical behavior is common to upwind Roe schemes and
¢an be eliminated by applying an entropy fix (eigenvalue limiter) to the eigenvalues (Ref. 49). By
increasing the absolute value of the entropy fix, physically consistent solutions were obtained.
However, the TUFF results then offered no advantage over the central difference NEDANA and
XMERA flow solvers. All three flow solvers failed to completely predict the extent of the separa-
tion region.

10°F

—— NEDANA
—--- XMERA .

~—~ TUFF

10' L — :
0 0.5 1.0 15
XL
Figure 13. Pressure distributions for laminar flow over an 18-deg wedge,
M, =15.58.

The results of the hypersonic laminar flat-plate/wedge cases have shown NEDANA to
perform as well as current state—of-the art flow solvers. The NEDANA flow selver proved to be
more stable and to converge more rapidly for hypersonic flow conditions than the XMERA flow
solver. Where the NEDANA flow solver was able to run with a CFL number of five and converge
in 10,000 iterations, the XMERA flow solver was limited to a CFL number of one-tenth and
required 100,000 iterations to converge. Where the NEDANA code proved to be robust for both
wedge geometries, the TUFF flow solver was susceptible to spurious solutions, even for small
changes in wedge angle.
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Figure 14. Heat-transfer distributions for laminar flow over an 18-deg wedge,
M, = 15,58,
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Figure 15. Skin-friction distributions for laminar flow over an 18-deg wedge,
M, = 15.58.
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5.3 NONEQUILIBRIUM FLOW AROUND HEMISPHERE CYLINDERS

The computation of the thermal and chemical nonequilibrium flow fields around hemisphere
cylinders (Refs. 57 and 58) was sclected as a validation case for the nonequilibrium capabilities of
NEDANA. Computations were made for the three geometries listed in Table 2. The three
hemisphere cylinders have different radii and are referred to as model 1, model 2, and model 3. The
nominal flow conditions for all three models are M _=9.8, Re = 3.025 x (10)° (1/m), T _=450K,
p,, =230 Pa, and T,y = 555.55 K. The conditions are such that the flow is in chemical and thermal
nonequilibrium. The free-stream total enthalpy, A_, is 9.14 MJ/kg. A five species air chemistry,
two—temperature model was applied using the reaction rates of Park (Ref. 36). In this work, the
dissociation reactions are governed by a generic temperature where ¢ = 0.3 (see Eq. (31)). Heat-
transfer measurements were obtained with both thin-film and thermocouple gauges. The thin-film
gauges were coated with mother of pearl to minimize wall catalycity, whereas the thermocouple
gauges allowed for wall catalysis. Models 1 and 2 were fitted with stagnation point thin-film gauges
for measuring heat transfer, and model 3 was fitted with a stagnation point thermocouple gauge for
measuring heat transfer.

Table 2. Hemisphere/Cylinder Geometries and Stagnation Point

Catalytic Boundary Conditions
Model Rn {m) L (m) ‘Wall B.C.
1 0.0127 0.1143 Noncatalytic
2 0.0254 0.2032 Noncatalytic
3 0.0508 0.4064 Catalytic

Grid resolution studies were performed with the current flow solver on the intermediate-
sized model, model 2, to determine the grid requirements for achieving valid pressure and heat-
transfer results for nonequilibrium flows. Josyula and Shang (Ref. 57) reported using a mesh
system with 40 points in the body-tangential direction and 50 points in the body-normal direction
with a viscous wall spacing of 5.0 X (10)"® m. Using the results of Josyula and Shang as a guide,
the system of meshes listed in Table 3 was developed. A typical grid is shown in Fig. 16. Grids 1,
2, and 3 were developed such that the grid distribution functions in the body-tangential and body-
normal directions were the same. This criterion was enforced to maintain the same relative
resolutions in all three grids. Grid 4 was created with the same number of grid points as Grid 1 but
with the viscous spacing of Grid 3. Grid 4 was developed to assess the relative importance of the
viscous spacing and the total number of points in the body-normal direction. (Grids 5, 6, and 7 will
be discussed later.) Note that NEDANA was used in a fully three-dimensional, finite-volume
mode with the grid system described in Appendix B. Therefore, five grid points were required in
the body-azimuthal direction.
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Table 3. Details of Grid Resolution Study

Grid Dimensions No. Points An(m) Iteration for Conversion
1 51 x5x%51 13005 1.0 (10)3 1100
2 75%x5x%x75 28125 7.0x (10)6 1900
3 101 x 5 % 101 51005 5.0 % (10) 2850
4 51x3x51 13005 5.0 % (10)6 1300
5 51 % 5x51 13005 1.0 % (10)© 3700
6 51x5x%75 19125 1.0% (10) 4500
7 S1x5x%x75 19125 5.0 % (10)7 5000
0.15

0.10 |

1 PR R W | |

0 0.05 0.10 0.15 0.20
X, m

Figure 16. Hemisphere/cylinder grid, 51 x 5 x 51.

Steady-state computations were made with NEDANA for Grids 1, 2, 3, and 4 using local time
stepping and a maximum CFL number of ten. The dissipation parameters were set at , = 0.8 and
K, = 1.8 for all cases. Numerical tests showed that the use of a local time step gave the optimal
convergence rate for the hemisphere cylinder flow fields. (This result is contrary to the findings of
the flat-plate/wedge investigation and emphasizes the uncertainties of using local time-stepping
methods.) The solutions were considered converged when the heat transfer to the wall varied by
less than 1 percent over a characteristic time step based on the minimum time step for the grid,
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where t,,,,, = Rn/ u_. The number of time steps required to obtain a steady-state solution is also listed
for each grid in Table 3. The NEDANA flow solver operated at a speed of 2.03 x 103 cpu-s/ptfiter
on a Convex 3840 compnter for five species in chemical and thermal nonequilibrium.

Surface pressure and heat-transfer distributions for the grid resclution study of model 2 with
grids 1, 2, 3, and 4 are presented in Figs. 17 and 18. The comparisons with experimental measure-
ments for pressure are excellent. Furthermore, the calculation of surface pressure is Iargely
independent of the grid used. The pressure distributions for all grids differed by less than 2 percent.
The comparisons with experimental heat-transfer measurements show a greater grid dependency.
As the grid resolution and viscous spacing are refined, the computed heat transfer increases. The
viscous spacing normal to the wall is critical in predicting surface heat transfer. This fact is evident
in the comparison of the surface heat transfer for grids 3 and 4. Grid 4 has the same initial viscous
spacing as grid 3, but only half the number of points normal to the body. Nevertheless, the surface
heat-transfer distribution obtained on grid 4 is in better agreement with the results obtained on grid
3 than those obtained on grids 1 or 2. A comparison of the stagnation-point heat transfer for grids
1, 2, and 4, shows they differ from that of grid 3 by approximately 20 percent, 10 percent, and 5
percent, respectively. The comparisons are taken relative to grid 3, because it is assumed the grid
with the best resolution will produce the most accurate results. Clearly, the computed surface heat-
transfer distributions are grid dependent. For grid 3, y* = 0.3 at the stagnation point, and down-
stream of the spherical surface y* = 1.5. A viscous resolution corresponding to y* < 1 was initially
expected to yield grid-independent results. However, the criteria for the accurate calculation of
surface heat transfer proved to be more complex.

Siddiqui et al. (Ref. 59) report similar difficulties in computing grid-independent surface heat
transfer using a variety of thin-layer Navier-Stokes algorithms. Siddiqui et al. computed the flow
over spherically blunt cones at similar Mach numbers and Reynolds numbers. (However, the free-
stream temperature and velocity were such that the flows were not chemically reacting.) They de-
veloped an expression to estimate the required viscous spacing as a function of Mach number and
Reynolds number. Applying this expression to the hemisphere cylinders of this study, the estimated
viscous spacing required for grid-independent heat transfer is 5.0 x (107) m. To generate a grid with
this viscous spacing and maintain a similar grid distribution as grids 1, 2 and 3 is not practical. The
resulting grid would require hundreds of points normal to the body. Also, note that the number of
iterations to convergence, as well as the cpu-sfiter would increase beyond practicality. Therefore, a
compromise was made by holding the number of points normal to the body constant. As aresult, a
decrease in the viscous spacing produces poorer resolution of the shock layer. This reduced resolu-
tion in the shock layer is of importance in nonequilibrium flows where the chemical reactions can
affect the heat transfer to the surface. This need to accurately resolve the chemical reactions in the
shock layer is an additional constraint not imposed on the perfect-gas work of Siddiqui et al.
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Figure 17. Pressure distributions for hemisphere/cylinder model 2 for
grids1,2,3,and 4.
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Figure 18. Heat-transfer distributions for hemisphere/cylinder model 2 for
grids 1,2, 3, and 4.
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To assess the effecis of even smaller viscous spacings, a second series of grid resolution
computations was performed with viscous spacings approaching those recommended by Siddigui
et al. These grids are listed in Table 3 as grids 5, 6, and 7. Surface pressure and heat-transfer distri-
butions for grids 3, 6, and 7 are presented in Figs. 19 and 20. The comparisons with experimental
measurements for pressure are once again excellent. Furthermore, the calculation of surface
pressure is largely independent of the grid used. The pressure distributions for all grids differed by
less than 2 percent. The pressure distributions, as expected, also are in agreement with the results
obtained from grids 1-4. The comparisons with experimental heat-transfer measurements for grids
5, 6, and 7 are similar. However, the heat-transfer distributions still exhibit a sensitivity to the
viscous spacing. The stagnation-point values of heat transfer for grids 5 and 6 differ by
approximately 20 and 10 percent, respectively, from those of grid 7. For grid 7, y' = 0.10 at the
stagnation point. Downstream of the spherical surface, y* = 0.15. For grids 5 and 6, y* = 0.15 at the
stagnation point. Downstream of the spherical surface, y* = 0.20. These results further demonstrate
the difficulties in achieving truly grid-independent, heat-transfer predictions. However, these
results coupled with the resulis of Sec. 5.2 also demonstrate that for the cases studied, grids with
viscous spacings corresponding to y* = 0.1 produced heat-transfer predictions within the
experimental scatter.

105 —
------- Grid 5
---- Grid 6
Grid?7
10* b *oBe
©
e
2
10° F
101 L 1 L L 1 i )
o 1 2 3 4 5 6 7 8

Figure 19. Pressure distributions for hemispherefcylinder model 2 for grids 5, 6, and 7.
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Figure 20. Heat-transfer distributions for hemisphere/cylinder model 2 for
grids 5, 6,and 7.

The effects of viscous resolution on heat-transfer predictions have been well documented.
However, the importance of resolving the shock layer should not be overlooked. This constraint is
seen in the comparisons of surface heat transfer for grids 5 and 6. Both grids have the same initial
viscous spacing. They only differ in the number of points and distribution of points normal to the
body. The computed stagnation-point heat transfer for these two grids differs by approximately 8
percent, demonstrating the importance in resolving the shock layer. Also, the heat-transfer
distributions for grids 5, 6, and 7 differ from those of grids 1-4 downstream of the hemisphere nose.
However, instead of predicting an increased heat-transfer rate to the surface, they show a lower
heat-transfer rate to the body. This trend is more in line with the experimental data. Siddiqui et al.
(Ref. 59) state that this lower heat-transfer rate is due to a better resolution of the expansion waves
emanating from the spherical region. This consequence of better resolving the expansion region of
the flow further emphasizes the difficulties associated with accurate prediction of heat-transfer data.

Based on the results of the two grid resolution studies, the geometries of models 1, 2, and 3
were madeled with 51 x 5 x 75 grids with initial viscous spacings of 5.0 x {10)m. These viscous
spacings produced values of y* = 0.1. Surface pressure and heat-transfer distributions for models 1,
2, and 3 are presented in Figs. 21-26. The surface pressure distributions are in excellent agreement
with the experimental data for all three models. The agreement with the stagnation-point heat—
transfer data is reasonable for all three models. The agreement with the heat-transfer data on the
afterbodies is within the experimental data scatter. For model 3, both a fully catalytic wall and a
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noncatalytic wall beundary condition were applied. The uncertainty in the stagnation-point heat-
transfer measurement of model 3 is reported as zero because only one measurement was taken. Note
that the fully catalytic wall increases the stagnation-point heat transfer by 58 percent over that of
the noncatalytic wall. Generally, the model surface will exhibit finite catalytic rates. Therefore, the
true heat-transfer distribution is bounded by the fully catalytic and noncatalytic values. Clearly, the
accurate madeling of wall catalycity represents a significant challenge in the accurate prediction of
surface heat transfer in both computational and experimental simulations.
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Figure 21. Pressure distributions for hemisphere/cylinder model 1.
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Figure 22. Heat-transfer distributions for hemisphere/cylinder model 1.
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Figure 23. Pressure distributions for hemisphere/cylinder model 2.
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Figure 24. Heat-transfer distributions for hemisphere/cylinder model 2.
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Figure 25. Pressure distributions for hemispherefcylinder model 3.
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Figure 26. Heat-transfer distributions for hemisphere/cylinder model 3.

Temperature distributions along the stagnation streamline for models 1, 2, and 3 are
presented in Fig. 27, The conditions directly behind the shock are determined by the free-stream
conditions. Therefore, the peak post-shock temperatures for all three models are neatly the same.
(Small differences in the post-shock temperatures may be attributed to differences in grid resolu-
tion.) Nete, the translational temperature rises rapidly behind the shock. However, a much longer
time is required for the vibrational modes of the molecules to become excited. As a result, the
vibrational temperature lags the translational temperature, producing a state of thermal nonequilib-
rium. The time or distance that is required for the translational and vibrational temperatures to
equilibrate is dependent on this initial departure from equilibrium, and is therefore similar for all
three models. However, the shock-stand off distance for each model is proportional to the nose
radius. Therefore, as the nose radius decreases, a larger extent of the shock layer is in a state of
thermal nonequilibrium. Also, note that the peak post-shock temperature occurs closer to the body
with decreasing nose radius. This condition produces steeper temperature gradients near the body,
leading to increased heat-transfer rates. These findings are consistent with hypersonic boundary-
layer theory (Ref. 60) which states that g =<1/ JRn.
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Figure 27. Temperature distributions along stagnation streamline for
models 1, 2, and 3.

5.4 CHIMERA DOMAIN DECOMPOSITION

As a demonstration of the chimera capability of NEDANA, a computation for the hemisphere
cylinder model 2 was made with the computational domain defined by two overlapping grids
consisting of 45 % 5 x 75 points on the forebody and 25 x 5 X 51 points on the afterbody. The two-
grid system is shown in Fig. 28. The two grids had different numbers of points and grid distributions
in both directions. Therefore, there was no exact overlap (direct injection) of points between the two
grids. The one grid constraint that was applied was that the first point off the wall for the two grids
has the same viscous spacing. This constraint was applied because of the extreme dependence of
heat-transfer results on viscous spacing. To facilitate the comparisons of the results obtained on a
single grid, the two chimera grids were given initial viscous spacings equal to that of grid I in Table
3. Hence, comparisens are also made to the results of grid 1. Surface pressure and heat-transfer
distributions for grid 1 and the chimera grid system are compared in Figs. 29 and 30. The
distributions for the chimera grids are almost identical to those of grid 1 even with the mismatches
in grid resolution. The pressure and heat-transfer distributions are also smooth in the overlap region
between the forebody and afterbody grids.
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Figure 28. Chimera hemisphere/cylinder grid, 45 x 5 x 75 and 25 x 5 x 51.
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Figure 29. Pressure distributions for model 2 with single and chimera grid system.
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Figure 30. Heat-transfer distributions for model 2 with single and
chimera grid system.

These results demonstrate the ability of the chimera grid system to reproduce the surface pres-
sure and heat-transfer results of the single grid. However, questions have been raised about the ap-
plicability of the chimera scheme to hypersonic nonequilibrium flows, in particular, the ability of
the scheme to capture strong shocks, as well as conserve species concentrations in the vicinity of
grid overlaps. In Figs. 31 — 34, contour plots are presented for the translational-rotational and
vibrational-electronic temperatures, and for the mass fractions of diatomic and monatomic oxygen.
Contour lines are plotted on both grids in the overlap region. Therefore, any discrepancies in the
temperatures or mass fractions between the grids should appear as mismaiches in the contour lines.
Small discrepancies are perceivable in the overlap region. They occur primarily in the plots of
translational-rotational temperature and not in the plots of vibrational-electronic temperature or
mass fractions.
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Figure 31. Translational-rotational temperature contours for chimera grid system.
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Figure 32. Vibrational-electronic temperature contours for chimera grid system.
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Figure 33. Mass fraction O, contours for chimera grid system.
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Figure 34. Mass fraction O contours for chimera grid system.
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The contour plots provide a means for examining the qualitative properties of the chimera
scheme in the overlap region. However, contour plots may be misleading because they depend on
the contour levels chosen. Therefore, temperature and mass fraction profiles normal to the body at
the location indicated by the arrows (x = 0.036) are presented in Figs. 35 and 36, The profiles
extracted from the forebody and afterbody grids are nearly identical. Also, note the effects of both
thermal and chemical nonequilibrium. The overlap region and the profile location extend from the
free stream through the shack layer to the surface of the cylinder. Examining Fig. 35, the transla-
tional-rotational and vibrational-electronic temperatures are seen to be in equilibrium in the free
stream. As the distance to the body decreases, the profiles correspond to a fluid element that crossed
the oblique shock just upstream of the profile station. Therefore, the translation-rotational temper-
ature increases while the vibrational-electronic temperature lags. This behavior is similar to the
behavior along the stagnation line that was discussed in the previous section. The profiles at the
stagnation line, by definition, correspond to a single streamline and shock crossing position.
However, unlike the profile along the stagnation line, the current profiles correlate to many stream-
lines and shock crossing positions. As the distance to the body in Fig. 35 decreases further, the pro-
file corresponds to fluid elements that have come through the much stronger shock of the stagnation
region. These fluid elements have also been rapidly expanded around the hemisphere nose and are,
to a great extent, vibrationally and chemically frozen. An examination of the temperature profiles
near the surface show that the vibrational-electronic temperature is frozen at a much higher level
than the translational-rotational temperature.

The effects of chemical nonequilibrium and freezing are seen in the mass fraction profiles of
Fig. 36. The increase in the translational-rotational temperature that is a result of crossing the
obligue shock is not accompanied by a change in the mass fractions of oxygen as is experienced at
the stagnation line. This behavior is a result of the weaker oblique shock. The oblique shock
produces lower temperature, and density rises relative to the shock at the stagnation region. The
dissociation rates behind the oblique shock are, therefore, much slower. However, significant
variations in the mass fractions are seen as the distance to the body decreases further, Near the body,
the profiles correspond to fluid elements that have passed through the much stronger shock of the
stagnation region and the subsequent expansion region. Therefore, the composition of the gas is
partially frozen. This effect of chemical nonequilibrium is evident in the increased degree of
dissociation of diatomic oxygen near the body. If the gas were in equilibrium at the local
translational ternperature, the degree of dissociation of the gas would be decreasing with decreasing
temperature near the body.
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Figure 35. Temperature profiles in chimera overlap region.
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Figure 36. Mass fraction O, and O profiles in chimera overlap region.
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6.0 CONCLUSION

A three-dimensional nonequilibrium chimera flow solver was developed and tested against
existing flow solvers and experimental data. The present flow solver, NEDANA, uses an implicit,
time-marching algorithm that is central differenced and made TVD (Total Variation Diminish-
ing) through flux limiters. The LIM (Locally Implicit Method) scheme is used at each time step
to obtain a solution to the nonlinear set of equations. Flexibility in the use of various
nonequilibrium chemistry models is made possible by the availability of an AEDC-developed
nonequilibrium chemistry package, NEQPAK. Use of such a chemistry package makes
NEDANA unique in the field.

One-dimensional comparisons with the results from state-of-the art flow solvers were
excellent. It was expected at the outset that sharper shocks in one-dimensional flows would be
traded for a simpler algorithm, but this was not the case. The simpler algorithm (NEDANA)
captured shocks as well as those of the more complex solvers. However, it is also evident that
NEDANA does not handle contact surfaces as well. But, these surfaces only occur in unsteady
flows, which are of somewhat less interest at AEDC. The three-dimensional NEDANA flow solver
has been extensively tested against other flow solvers and available experimental data for perfect-
gas and thermo-chemical nonequilibrium air chemistry. As expected, the NEDANA code proved to
be slightly more dissipative than upwind schemes, but the effects of increased dissipation were
marginal. A nonequilibrium chimera capability was also demonstrated, emphasizing the flexibility
of the NEDANA methodology.

The present solver’s simplicity helps achieve the goal of having solvers that are relatively easy
to use, understand, and modify.
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APPENDIX A
DERIVATION OF MODELING EQUATIONS

The purpose of this appendix is to begin with very few simplifying assumptions, and to
develop a rather general set of conservation equations modeling viscous nonequilibrium flow. Then,
various assumptions are made to obtain a simplified, reduced equation set from the more general.

First, the internal energy per unit mass, e, of a given species, 5, is assumed to be composed
as follows:

€s = €5+ €rp + €1 T Ee i s=1,....na

where ¢, , e,,, e,, and e,, are translational, rotational, vibrational, and electronic parts, respectively.
Also, ns is the total number of species. Each of the above energies has an associated temperature.
Specifically, in thermodynamic equilibrium, the most probable fractions, ?")s, g=trv,e, of the
particles of a given species, s, at the discrete energies, e\, g=1, r, v, e, respectively, are described
by Boltzmann distributions,

N e
f&:}:-zi'—exp _}c_;_ . g=trve, s=L....n8
7.8 9.8

with temperatures, 7,,, ¢ =1, r, v, e, respectively. Here, i is an index over discrete energy states.
Also, dﬂ is the number of distinct states with energy, e and Z,, is the partition function,

[

z {0} ef,ﬂ
0 = ;tq.aexl) —m .

The Boltzmann constant is k =R/N,, where R.is the universal gas constant and N, is Avagadro’s
number. To obtain the four energies for the mixture, a mass average is performed:

na
= £‘1.*3 =1re.€
€= ege = HLED.E
s=1p

Here, p is the partial density of species, s, and p is the mixture density given by the sum of the
partial densities. Also, the mixture intemmal energy is given by:
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In contrast to the species that have an intemmal structure, the free electron has only one form of
energy, namely translational energy. Specifically,

€e— = Epe—n €re~ = €ye- = €~ =0, (A-1)
Also, because elemental species do not have components that vibrate with respect to each other,
ton =0, s # molecule. (A-2)

Similarly, the enthalpy per unit mass, A,, for a given species, s, is assumed to be the sum of
translational, rotational, vibrational, and electronic parts:

s =lys+ hrs+ hos+ hes. s=1..... ns.

These are related to the internal energies according to

; qu, q # {
e = ey 7141”: ¢ (A-3)
]

where.\, is the molecular weight of species, 5. Thus, by Eq. (A-1), the free electron has only one
form of enthalpy:

hc" = h.t',—. h,.‘g-.. = hu_e_ = he.e— =0. (A-4)

Also, by Eq. (A-2),

hys =0, 8 # molecule. (A-5)

To obtain the four enthalpies for the mixture, a mass average is performed:

ns
he = z "hql,, g=1r.0c¢.
=1

N

Then, the mixture enthalpy is given by:
na
h= ﬂ'-h,.

a=1
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The energies and their associated temperatures are related by specific heats according to:

Tq.s
e‘,,..:f ) Co A TYAT" + (€g,8) s - g=t,r.o.e, s=1.....ns.
Trer

Also, the enthalpies and the temperatures are related by:

Ty.s
hya = f " CpgTET" + (hys) e+ g=trve, s=1..... ns.
Tref

Here, C;,' p and C';‘ o are specific heats per unit mass at constant volume and pressure, respectively.
From statistical mechanical considerations it can be shown that (Ref. 32)

c R 0 ITQ 311129,,],

= g.5 aTq,s

v = f, BTq,s g=%fr,r.e, s=1,....n8 (A-6)

Then, by Eq. (A-3), it follows that:

cz, - q#t
g Il 2.+ ¥ g=1 " (A-T)

As with the energies and enthalpies, the specific heats, C'.:- and C: , for a given species, s, are
assumed to be the sum of translational, rotational, vibrational, and electronic parts:

Ci=C+C,+Co+ (3.
g=1,....0n8 (A-8)
Co=Ca i+ o+ Ch +Co s
To obtain the mixture specific heats for the different modes, a mass average is performed:

ny ns

(] p ¥ Ll Ps 8 —
Coq=2, -;"C,iq, Cou = 21 —EC,,.,I, g=1.r.ue
=

Then, the mixture specific heats are given by:

B o
=1 P =1 P
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In complete thermal equilibrium, when all temperatures are equal, say 7, ,= 7, Egs. (A-6) and (A-7)
can be evaluated explicitly to give the species specific heats according to Eq. (A-8). The following
interpolation is used to approximate this calculation as a function of the equilibrium temperature:

) R i— '3 =1 R
CAT) = .M,Z“' ,T1 CNHT) = —Za. 5T - (A-9)

i=1

Also, in certain cases where the temperatures are distinct, explicit calculations can be performed
easily to obtain the specific heats. For example, the translational and rotational specific heats are
independent of temperature:

. _ 3R , SR
ot = oA Y (A-10)
. rS.R =C_ta .
Cor = 2M, 7" (A-11)

Here, r,is the number of rotational degrees of freedom for a species, s. In particular, for diatomic
molecules, 7= 2. Next, though it requires more effort, the electronic specific heats can be calculated
from Eq. (A-6) after tabulating a sufficient number, say [, of energy levels, e, s » and degeneracies,
™. . The result is:

] LE-] R ]- (‘l {',
CL'.E = Clp.! - E e (LTeJ exp "TE 5

Hee(E)- ()]
", < kT, "Tes )| - (A-12)

Finally, because of the complexity of calculating the vibrational specific heats by Eq. (A-6 ) for real
molecules, the following approximation is used:

Core = CUTL)—CldT )= C2 AT, ,) — €2 (T.,)

_ _B+nR .,

= CiTys) 2, CoelTos) (A-13)
(';.‘l' = C': o

Here, the nonvibrational parts are subtracted away from the total specific heat for the species, after
evaluating all these specific heats at the vibrational temperature in Eqs, { A-9)} - (A-12).

Since the free electron has only translational energy or enthalpy, its specific heats have only
a translational part. Thus, with s = ", Eq. (A-8) becomes:
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¢ - = 3R oo — e - SR

vt T oA, p T Vmt T 9N, (A-14)

For the temperatures, T, . ¢ =1, 7, v, ¢, there are associated thermal conductivities, K, ¢
=1{, 7, v, e, tespectively. First, the translational thermal conductivities are given by

B R [T
“ 4 2l VM (A-15)

Here, o, is the collision diameter for the pure species, s, and £ is the collision integral defined as
the weighted average of a collision cross section of the form

O m ' \
f -/u 7 | \.y)e""g')m +3(1 — cos’ \)sin vdrdy
v

Ol (T) = = -
j f e 12' +3(1 — cos’ \)sin\dydy
0 [1]
_ [ M, M, ]-% )
I=|RTM, + Myl (A-16)

Here, o_ is the collision cross section for the s-r collision pair, ¥ is the scattering angle in the center
of mass system, g is the relative velocity of the colliding particles, and yis the reduced velocity. The
expression in Eq. (A-15) is approximated within NEQPAK (Ref. 23) by the following interpolation:

15 R

Kta = —

4 .'Vl,

exp |Y_ bis(InTs, )5"] - (A-17)

i=1

The other thermal conductivities are given by:

Hgs = P2 ‘_D,,(';.q. g=r,nec (A-18)

Here,

D, = Du{ Tis)

is the self-diffusion coefficient, where, in general, the binary diffusion coefficient is given in terms

of a temperature, 7, as:
Do(T) = ITE [R(M, + M)
o - SPQ-E;])(T} 27;"43-"”,- ' (A'lg)
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This expression is approximated within NEQPAK (Ref, 23} by the interpolation,

D (T}=10.13255;”—{2exp f:d‘i'"(lnl"r’“
a P ¢ (A-20)

i=1
where S"(T) is the electrostatic shielding ratio (Ref. 27),
1 s and r neutral

5a(T) = __1_1 s or r charged
In A (Tp\:_I )

and the shielding function A(T) is defined as

200 / T4\ 132 T4\ %
AT = \j i () + 30w )

and p,. is the partial pressure of the electron in arm. In case a collection of species has the same
temperature for a given energy mode, an associated mixture thermal conductivity can be defined in
terms of thermal conductivities for the pure species. Specifically, suppose all species but the free
electron have the same translational temperature, T. Then, the translational thermal conductivity for
this mixture is given by:

[ Ln Lins 1]
4 : R S : 1
Ky = det s *
det {L’r}ﬂ,rﬁe_ :
Lysa ‘e Lns,ns \ns
| X1 IS ¥ I \ns a d yrste-

Here the terms L, depend on the pure species thermal conductivities, but the explicit form is given
below only for the diagonal terms to fully specify the approximation,

I

Ky = -—4
sgor Los

(A-21)

where ¥ _is the mole fraction of species, 5. The diagonal terms are given by

¥

. : .
L, = —-I\—E _ Z \s\r (L;Mg + %.-Mf + 4.‘“1-M,,A,r) M7I F+ M 5.,
Kte 4, VM, + ,-'Vl,]% Ay Hl?L,s R:::r
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where in general,

N Q(ﬂ.?l(r) Fo l22)(T) B — 912.2}(7.)
ar (1 1,{T) a = _|2 2) T L T-ﬂ_
a5 ( ) (T)

Following the method of Armaly and Sutton (Ref. 29), these terms are approximated as follows:

018 s=H,r=H%*
0.025 s=He,r=Het

A = v = 1.10 s=atom# H,He,r = st _
1.25 otherwise (A-22)
and
Fopo=F,.=1, (A-23)
0.2 s = atom or molecule.r = ¢~
0.15 s = atom or molecule,r = ion
Bsr = Bra

0.78 s,r = atom or molecule
1.0 otherwise (A-24)

Thus, Eq. {A-21) can be viewed as giving a mixture thermal conductivity according to a mixture
function, V5, due to Armaly and Sutton, that depends on pure species thermal conductivities.
In particular, if the translational temperatures for all species, except the free electron, are the
same, then

Ky = J’VAS( T Ht,a#e_ R (A_ZS)
In a similar manner, other mixture thermal conductivities can be defined, provided the constituents
have the same temperature for the corresponding energy mode. Specifically, if the rotational
temperatures are the same (there is none for the electron),

By = Nagloo o Ky gtemr o) (A-26)

If the vibrational temperatures of the molecules are the same,

hy = -'\"‘AS( v+ o « Kz g=molecules - » » )- (A-27}
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If the electronic temperatures are the same,
e = Masloo oy Kepgem-ee ). (A-28)

Since the free electron has only a translational temperature, i.e., T,.= T, .., its thermal conductivity
is given by Eq. (A-15),

K 15 R exp [ib {lnT, )5"]
Fgm = Hypgm = —— .= .= .
‘ A M T (A-29)
Finally, if all temperatures are the same and equal to 7, the species thermal conductivities are
determined by

R ] : (A-30)

15 R ,
"33="4—‘_e’{P Zbra(]nT)s ]+ Ps D, [Cp_'z' M

M
Here, the first expression shows the translational part. The second expression shows the
translational part of the specific heat subtracted away so that the expression gives the
nontranslational part of the thermal conductivity. Then, the mixture thermal conductivity is given,
according to the method of Armaly and Sutton, as

k= Nyslky..... Kna ). (A-31)

A similar procedure, due to Armaly and Sutton (Ref. 28), is used to determine the mixture
viscosity, jL. First, the pure species viscosity, L, for a species, s, is defined by

M
He = 7578 Fts (A-32)

where x,, is defined in Eq. (A-15). Thus, by Eq. ( A-17), |, is approximated by the interpolation,

1 5=
He = 15 EXP bis(InTy,) l
*T 10 § ) (A-33)

Then, the viscosity for the mixture is given by

Hy o+ Hizne 1
1 : : :
= — ——— det " ) )
s dct {Har] H,;,_l . Hna.ru \ns
Ao Ase O
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Here the terms /1, depend on the pure species viscosities, but the explicit form is given below only
for the diagonal terms to fully specify the approximation,

ns 12
=5 s
= Lm,, (A-34)
The diagonal terms are given by
i 1 2
\ i V.MM, 5 M1 | M$ M3
fIa_g == =2 3 - 1 Fﬂl' + Bﬂl'
Ha rs Qﬁ {.Ma + -Mr]!. JA'T JM’ H; fl'é

where A, F,,, and B,, are given by Egs. (A-22) — (A-24).

In the remainder of this report, it is assumed that the translationat and rotational energies, e,,
and e,,, s # e , are distributed with the same temperature, T, i.e.,

Tta=T;s=1T, sF e,
Also, the electronic excitation energies, £, , s # €, are assumed to be distributed with the same

temperature, T, i.e.,
Tes = T sxfe”.

Recalling T, = T,,., and using Eq. (A-3),

RT,-
M,

hE" = et— +

Since there is a single translational temperature, Eq. (A-3) shows that the translational enthalpy and
energy for other species are related according to:
RT

hes =€+ M (A-35)

With the above definitions, the conservation equations can now be given. First, the
conservation of mass for each species is expressed as:

J .
gt gy [t = e=lns (A-36)
=1
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where u}'; is the diffusion velocity of a species, 5. Also, @, is a source term that depends on the
partial densities and the translational temperature in such a way that it vanishes when equilibrium
conditions are achieved. Specifically, the source terms are constructed as follows. The reactions on
which they are based can be written in the form

ny na
Z ve A, = Z [T § f 1 <r < nr
n=1 mz=1 (A—37)

Here, {v, ¥»°_, and {v, )}’ , are stoichiometric coefficients for the rth reaction, M,
represents one mole of species 5, and nr is the number of reactions. The rate of disappearance of a
species s due to the rth reaction is

na naE

Lyg = 15 sk H ,}.:’r.n + ”r',k,{ H ')'::r'".
n=1 n=1L (A-38)

while the production rate of a species s due to the rth reaction is

ns

ng »
’ | L r Vr. )
Grs = Vo] H Y+ gkl H . (A-39)
m=1 m=1
The net rate of change of species s due to all reactions is

nr

Wy = Ma (Gr,s - ‘Cr.s)-
E (A-40)

Like most acrothermochemical models, NEQPAK assumes the modified Arrhenius form (Ref. 32)
for chemical reaction rates

k= A, TP eap(-C',/T), (A41)

where T is the translational temperature of the gas. The rates defined in Eq. (A-41) were obtained
from fits to experimental data that were collected under conditions of thermal equilibrium.
However, when the reaction rate under question represents, for instance, a two-body dissociation
reaction, then the reaction rate also depends on the vibrational temperature of the gas. One of the
more popular approaches used to account for thermnal nonequilibrium is that of Park (Ref. 33), who
replaced the translational temperature in Eq. (A-41) with a generic temperature or average
temperature, 7. Park defined T, by the relation

T,=TeT'0<a <1, (A-42)
where o was chosen to reproduce experimental data,
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The reverse reaction rate coefficient k | is related to the forward rate by
k= kJRE. (A-43)

where
(Pnlm/rf} erpl— R-T) (A-44)
is the equilibrium constant for the rth reaction and

na

o, = Z[";.,s - ]’r,s]';

=1

AF = Z(V:".s — Vs 'GI.J- (A-45)

=1

In Eq. (A-44}, po = 1.01325 x 10° Pa. Also Gg is the Gibbs free energy for species s at the given
temperature and a pressure of 1 atm. The Gibbs free energies are computed from curve fits taken
from Ref. 27. This interpolation takes the form,

1
Ty = — Mt i = -
GAT)=RT ltq,,(l InT) - Z HiT 1'T + u,,]

Next, the conservation of mixture momentum is expressed as:

i 3.8 Dy, duw, Ou,
Jt-(pu.;] +,Z=:1 oz, [pu,n, + by (p+ ,uz ) — (3.::,' + Ua';)]

1 ap. - .
= — E z =1,2,3
(l n,- n,) Ox; '

e=ion (A-46)
Here, the mixture viscosity, |, is given in Eq. { A-34 ).
The vibrational energy associated with each molecule is conserved according to:
ar,
a [Psfr. l) + Z B' |:Psfu.s u; — Hu,sa_;‘;i + hlr.apa lt?, =Wy,
=1
& = nolecule. (A-47)
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where
£ T

e —e ™™ £, R
[N ] v,5 8 [LI¥ ]
w”.g = pj : + p.’ ! + w.’DG
Ti—u» Te—u,

Here, &), s and ¢, ¢ are the vibrational energies of species s evaluated at the translational
temperature, 7, and the electronic excitation temperature, T,, respectively. Also, t..,, and T, are
the translational-vibrational energy relaxation time and electronic-vibrational energy relaxation
time, respectively, for molecular species s. Finally, D, is the average vibrational energy per unit
mass of molecule s, which is created at rate o,.

Since all the electronic excitation energies, e, , are assumed to be distributed with the same
temperature, T,, the conservation of the mixture electronic excitation energy, e,, can be expressed
in terms of this single temperature as follows:

J 29 IT. J

.E)?(PEE)+ZI?T PEett, “HEW + Z he.aﬁau_;a = _Qrad (A_48)
j=1""3 I sge-

where K, is given in Eq. (A-28). Also, Q. is the radiative energy transfer rate. Since the

translational temperature, T,,. = T,,, for the free electron is assumed to be different from that for oth-

er species, the conservation of electron energy must be written separately as:

) 3.0 a7, - ;
B_f(pc—ee' ) +§ 5;; [pe—ec"u.l = K- aﬂ.J + hc‘ﬂr’"‘_;e-l

3

i)u

= - Zf’e*ﬁ + W,
=1 vj

where

wom =30 RIT = T) 3 222 = 3 e fy = 3 P ag)

- Tep
sgpe— s=ion s=mol. ot

and k,_is given in Eq. (A-29). Also, v, is the effective collision frequency for electrons and heavy
particles in electronic-translational energy relaxation. Then, #, _ . is the molar rate of production
of species s per unit volume by electron impact ionization, and /, is the first ionization energy of
species s per kg-mole.

Finally, define the total energy as the sum of internal and kinetic energy:

3
fT = €+U.52u?.

=1
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This is conserved according to the following:

T o e o 0L, T

] - N o | -
h‘a_l E().EJ N d.'!‘_,

i 3.9 T
-(.-)-’(peﬂ + EJ—IJ l(pc"r +pluj — (ks + h.r)ax'?

s=1nol.

e du; Ou Ouy,
4
+ E hopsul, — pu, (3 LS e J) 3;eu i, E a“.]

3
E' e=

M- a=ion =1

where x, and « are given in Eqs. (A-25) and { A-26).

Now, assume that the electron energy, e,., and the mixture electronic excitation energy, e,,
are distributed with the same temperature, T, i.e.,

Tg =T,- = T..

Therefore, the conservation of the two energies can be expressed in a single equation in terms of a
single temperature. For this, define the electron and electronic excitation energy,

€E =€ + -p‘—-f,,_
I

Also, certain molecules may be assumed to have the same vibrational temperature. These will be
called type I molecules, and their vibrational temperatures are assumed to be equal to the
translational temperature, i.e.,

T=T,s & = type | molecule.

The remaining molecules with distinct vibrational temperatures will be called type II molecules.
Finally, the degree of charge separation,

is assumed negligible and is set to zero in the apprepriate conservation equations.

Now the conservation equations are given as follows. First, the conservation of mass for each
species is expressed as

9 LI N
Er_pa+z]aT.j.[P’1¢j_pD3—'-1:—:-.] = w, sa=1....,n8 (A-5D)
J:
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Note that in this equation and in onmes that follow, the diffusion velocity of species s is
approximated as an

d
u —_ —.D
= "9z, (A-52)

where )_is the mole fraction of species, s, and D is an effective diffusion coefficient given by

I’r.l (A'53)

In general, the diffusion velocity for a given species depends on concentration gradients of other
species as:

\o\r [ - Ps = \s\r { Df DT
ED,. (o - F:)_V\,+(\,—F)Vlup lz (p p.)]n"T

where D; is the thermal diffusion coefficient for species s. This dependence does not appear in the
approximation of Eq. (A-52).

Next, since the number density of the free electron is assumed approximateiy equal to the
total number density of ions, the conservation of mixture momentum is expressed as:

J 3.0 duy du, 3HJ
E(p"'}-l-j; 5Py [fm y + 8, (P+ 3!-' Z ) - " (o‘.!i + D'_')l =0
i=1.2.3 (A54

The vibrational energy associated with each type II molecule is conserved according to:

9 = 9 aT, o
a (pseus) + E Az Pa€yslly — K-u.aaT"a - Phu,aDs'é\.— = Wy
=t ’ " (A-55)
where & = tvpe II molecule.
€l = €, €3 = €u, .
Wae = Py ;! =+ g2 —= +w,D,
- U8 e—8

Since the mixture electronic excitation energy, e, and the electron energy, e,., are assumed
to be distributed with the same temperature, T, the conservation of the electron and electronic
excitation energy, e, can be expressed in terms of this single temperature as follows:
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(P E)+Z [pGEuJ_("c‘i'ﬁ—)g‘T__thE.aD (;\s

dz; et i
3
- du;
where T E‘“’_ dx; +WE = Qraa (A-56)

h, =e
hg.s = { h., otherwise

and

. €ne — o
wr = 3p,-RIT - Tg) Z —_ fle— ody ~ z p,-ﬁ—-—i

g M" s=ion =l Te—v.s

Finally, the total energy is conserved according to the following:
a1 o7, 5
(ﬂfl )+ Z D, l[pFT +pu; - (h‘; +e Y -"'L-,s) ol 2 e
J=1 s=mol. I T a=mwl. 11 Ty
_ iTe ad 31:, (‘)uJ Jup | _
—(k, + K, )—— - ZI:,D,{,) — i, ('f).'.': 4 — Tr, 3“1' i Z: 6::;,. = —Qrad
(A-5T)

Now, assume that the vibrational energies of all molecules, e,,, s = molecule, are distributed
with the same temperature, 7., i.c.,

Tys =T, s = molecule.

Therefore, the conservation of vibrational energies can be expressed in a single equation involving
the mixture vibrational energy, e,, and the single temperature, 7,.

Now the conservation equations are given as follows. First, the conservation of mass and of
mixture momentum are shown in Egs. (A-54) and (A-36). The mixture vibrational energy is
conserved according to:

8 0 T =
Elpev)+§13—%' Ph-‘"g""rax - P Z h.sD y | T % (A-58)

s=mul. €

where X, is given in Eq. (A-27), and

T e

a=mwol.
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The conservation of the electron and electronic excitation energy is expressed as:

na

d L . OTe O\,
a(mE)*‘EE P‘?E"-J _(he+hz—]awj thE“Daaﬂ'J (A_Sg)

""_ch aﬂ +"“E Ql'ad

=1
where d
) 5= e
o = 3p.- S DR AR
ae— s=jon s=mol. Te—ua

Finally, the total energy is conserved according to the following:

3. g
ar a7, )
(P"T’ Z [(PFT +P]“_f—-(l‘ir+ﬁr)3":—h'ud — (A g+h,-)——p2h, ¢ h
1 x) T £
ou; | Ou; 2 t?m:
—pu, (3 3:&.) + Eﬂ:u,t‘lu 31 = —Qrad (A-60)

Now, assume that the electron and electronic excitation energy, ez, and the mixture
vibrational energy, e,, are distributed with the same temperature, Ty, i.e.,

Te =T, =Tyv.

Therefore, the conservation of the two energies can be expressed in a single equation involving the
mixture vibrational and electronic energy,
ev = €eg + €.

and the single temperature, T).
Now the conservation equations are given as follows. First, the conservation of mass and of
mixture momenturn are shown in Egs. (A-54) and (A-36). The mixture vibrational and electronic

energy is conserved according to:

7] 3.0 T
E{per)+§ B, [Peves —(Ky+ e + & —)'—_chi,aD —=

= —zP a”‘L+w1 — Qrad
=1 O (A-61)
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where
h.- &=c"
hya=4¢ Moo+ by 8= molecule
Nes ol,ller\use
and

Wi = Wyt WE

Finally, the total energy is conserved according to the following:

] 3.0 8T N
H—Jlﬂﬁ'ermJ {(ﬂ'"T'FPl";‘(M%’M)a —(hl-+hf+h,-)—-ﬂ2’ D, T,

=1 v

—jeu, (g “ 4 %’%’—) FHU &, E d"" = —Qrad

(A-62)

Now, assume that all energies are distributed with the same temperature. The conservation
equations are given as follows. First, the conservation of mass for each species is expressed in Eq.
(A-36). The conservation of mixture momentum is expressed in Eq. (A-54). Finally, the total
energy is conserved according to the following:

9 2 9 aT e
E(Pf]”"‘ E Dri [(PET + pluy — "‘FF: - pz—:hsuad J
g=177 a=
du; S Py
B ((ET_J T J) FAwb Z ] = ~Qrad- (A-63)

Here, k is given in Eq. (A-31).
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APPENDIX B
CELL GEOMETRY

The method by which the flow field is discretized into a three-dimensional computational
domain is described in this appendix. The numerical algorithm employed by NEDANA is a finite-
volume scheme. Traditional finite-volume schemes are constructed on computational grids where
the dependent variables {Q) are stored at cell centers, and the independent variables (x, y, z) are
known at cell corners. Employing the notation of Gnoffo (Ref. 21), (/, X, L) denote the indices of
the cell centers, and (j, &, [} denote the indices of the cell faces. The two indexing systems are related
by (/, K, L) = ( + 172, k + 1/2, I + 1/2). In traditional schemes, the cell corners, (j, k, £), form the
vertices of a computational cell, and the dependent variables represent the average of the variables
over the cell volume (J, K, L). One disadvantage of this grid technique is that the grid must be
shifted to output the {x, y, z) location of the dependent variables. Because NEDANA interacts with
software that requires the dependent and independent variables to be written at the same location,
an alternative grid system was adopted. In this system, the computation grid is constructed from the
cell-centered coordinate system. In effect, the coordinate system is shifted by half an index. The
areas and volumes are calculated on the (J - 1/2, X - 1/2, L - 1/2) coordinate system and stored before
the flow solver is executed. This shift is made possible because the location of the cell corners is
never explicitly used in the finite-volume scheme. As long as the cell volumes and areas are
calculated correctly with respect to the cell centers, the coordinate system chosen is irrelevant. This
shifting is transparent to the user of NEDANA because all of the cell geometry logic is performed
by a preprocessor code.

The shifting does, however, affect the treatment of the boundary conditions. Unlike
traditional finite-volume schemes where domain boundaries correspond to cell faces, the
NEDANA boundaries correspond to cell centers. Therefore, the boundary conditions can be set
directly. Figure B-1 is a schematic of the NEDANA grid system for a single plane. Note that at the
boundaries, the cell face areas become cell-centered areas. This psuedo-area is appropriate
because no flux evaluations are performed at the boundaries. The areas are only used for
calculating normals to the surface and setting boundary conditions. In Fig. B-2, the geometry of a
single computational cell is shown. In this figure, the two coordinate systems and the relative
positions of the cell faces and the cell center can be more easily seen. Note that the cell faces lag
the cell centers by half an index.
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Figure B-1. NEDANA grid system.
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Figure B-2. Cell geometry and coordinate systems.

The calculation of the cell face areas and volumes is performed entirely by the NEDANA
preprocessor code. The methodology employed follows directly from that of Gnoffo (Ref. 21).

First, define the location of the cell corners with position vectors in the Cartesian coordinate
system. Let

diy = Fiee1r — Dkte
A = Fkatidr — Tkt
diy = Firie1 — Tyt
diy = Typrki+r — Tkl
dis = Tipnkl — Toktid
dfs = Trpre+1d — Tok
dfy = Topresige — Trkd (B-1)
where
Foer = (28 + yiy + 28], 4, (B-2)

The directed cell areas, &, and the cell volume, V, can now be defined by

- dry x drp
Tkl = — 5
- dry x dFy
Gyakl = —5
- dis X dfg
Guki = ——H (B-3)

e nk + Fyael + Tk}

Viwr = diff | 3

(B-4)
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The projected area, 3, with magnitude ©, is normal to the cell face and points in the direction of
increasing J, X, L, respectively. In the NEDANA notation, the cell face areas are written

GiiklL = Ofiz + afly + afi
GysaKL = Opiz + oyiy + opi,
Gkl = Ol + ol + afi (B-5)

where the terms ¢, ¢, and 6° denote the magnitude of the area as projected onto the Cartesian
coordinates. The transformation metrics in a finite-volume scheme, such as §,, &,, €,, are expressed
as the ratio of cell face areas to cell volumes. Equation (B-4) is first-order accurate with respect to
a cell face or a cell volume. Gnoffo states that this formulation introduces errors when crossing an
axis singularity. Gnoffo proposes a second-order accurate expression that uses symmetric averages
of differences about the cell center. The volume can now be expressed as

dis - (Fe,x L + Feprrie + Fpupl + Fpasrl + Fears + Feakiqa)

Vikir = .
(B-6)
where . N N o i i L i A L
dis = [(&¢ + &y + B¢)in + (F + 9 + Be)iy + (2 + 20 + ZHelypen
(B-7)
ind o o Belgpn  Belgppie  [Felisg + el pap
JKL = > = 5
(3] st Bl ks  Balosa Bl
ke = 5 = 3
. [fdsee + Bedapgrr  Bed,mi+ 31k
[3lspr = 5 = : 2 (B-8)

where the generic differences § are second-order accurate with respect to the cell centers, and the
dummy variable s represents the independent variables x, y, z. The 5 differences are second-order
accurate with tespect to the cell faces and have the form

(30 = SO — Gkt + Skt = ki)

- 1

(Bl ey = ‘2‘(3)+1.k.l = &kd t Sppl41d — Syk41d)
[EQ]JJ\"L = E[SJ.’-'-I-LI = &kt 81041 — Spki+1)

o 1

[anlyne = E(SJ.L'+IJ = &0t t Skl — S410d)

. 1

[Sc],,,r\',[, = E(SJ.L-.:H - St S04 — Sud)

. 1

[3(]_;_,\._;‘ = 5(8_;.1.-.“1 — &kl t B41kd41 — Ep1kd)e (B-9)
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The transformation metrics are defined by

-1

Ez' N C:: g Y& I
ey G| =) It 2 (B-10)
£ n: Te Yoo %
In finite-volume notation, these terms are written as the ratio of cell face areas to cell volumes
- &E . WA
VE kL =
EJI \J LKL
= Gy kL
Vipetr = o5——
Virk.L (B-11)
- Foopn
VCini = 1.0
Vik,L

Equations (B-11) are only first-order accurate. The reason being that & is second-order accurate
with respect to cell faces but only first-order accurate with respect to cell centers; and conversely,
V is second-order accurate with respect to the cell centers but only first-order accurate with respect
to cell faces. Gnoffo suggests using a symmetric average of cell faces and volumes to obtain
second-order accurate metrics for the evaluation of viscous terms. These second-order accurate
metrics take the form

Oty = YexlFokiL t Fejkt) + VoorkilGirs + O¢jnKL)

5 K,L AV g LVI—1K.L

. Var (k1L + Fguk-10) + Vak-10(e,k0 + Fejnke)
VEner =

AV ik iVikaL
Var G kL1 + Fe a1 k,0-1) + Voro-108e,k0 + e jr1kL)

Vs = 4VykLVIKL-1
Ikl = ViorL(Gya1pe + Gyuciprr) + Viorkn(Fyaet + Fyapsr,r)
o 4VixVii kL
ﬁq‘””_, = Var,L(Gyah—1L + Fyiki) + Vok-1,L{Fy okl + Fnaks1,l)
- 4VirntVik-1.L
Viuke = Vor i Fy skt + FqansrL-1) + Voxo-1(@naes + Fpaiern)
o AV tVIiKL-1
Vikr = VikGcoimi + o win) + VooiwlGeani + Fcakis)
o 4ViwiVioikL
Vime = Vor{Gcu-1.k4 + Feaikinr) + Vor-10(Fcuxi + Fcakiv1)

4VinLVik-aL

¢ Vik p(Gcaria + Feanig) + Vaxi-Fcart + e gxivt)
JEE 4V R LVIK L= - (B-12)
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APPENDIX C
NUMERICAL BACKGROUND

The purpose of this appendix is to discuss basic issues crucial to the selection of a finite-
volume scheme for the solution of the nonequilibrium flow equations shown in Eq. (43). The topics
covered include first, the properties of schemes that guarantee convergence of approximate
solutions: conservativeness, consistency, and total variation stability. Then the flux-limited and the
slope-limited approaches to constructing high-resolution convergent schemes are introduced. The
examples given to illustrate these two approaches are Yee’s symmetric TVD scheme and van Leer’s
MUSCL scheme, respectively. However, a primary objective of the work documented in this report
is that the numerical method selected be not only fast, accurate, and stable, but also easy to under-
stand and modify. With this in mind, Jameson’s flux-limited dissipation model is developed as an
alternative to the previously defined techniques. Most of this material is presented for scalar model
problems but also is briefly generalized to a vector setting. For a more detailed discussion of the
issues addressed in this appendix, see LeVeque (Ref. 61).

For simplicity, first consider methods for solving the model problem,
q+f:=0. (C-1)

The task is to approximate the solution to this problem on a space-time grid, {(x,, /*)}, with grid
values [qj"} such that qj" = g(x;, 7). Although all grid values are known only at grid points, the
definition of certain numerical constructs will be motivated by focnsing on activity at the midpoints,
X,4n = 12(x + xj_,.}. These will also be referred to as the interface points between adjacent spatial
cells. The jth such cell is defined as the set of points for which x is between x;.,; and x5

It will also be necessary to consider the performance of approximation schemes on space-time
grids of ever increasing refinement. Specifically, it is crucial that the grid values {qj"1 } approximate a
solution, g, with arbitrarily small error, provided Ar = 7**'-f" and Ax = X,.4n- X, ., are sufficiently small.
This convergence is theoretically guaranteed of finite-difference schemes that:

1.  can be written in conservation form,

2. are consistent, and

3. are total variation diminishing (TVD).

These three conditions are explained in detail below.
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C-1.0 CONSERVATION FORM AND NUMERICAL FLUX FUNCTIONS

Before deriving a finite-difference approximation to Eq. (C-1), note that a physically rele-
vant solution, g, to Eq. (C-1) may develop discontinuities even in cases in which the initial data,
q(x, 0), are smooth (Ref. 62). Such a g would not satisfy the differential equation in a strict sense.
Thus, it is productive to express Eq. (C-1) in a weaker form, where no differentiability is required
of the solution. This is accomplished by integrating the differential equation over an arbitrary space-
time cell, say [x ARSI 12]. Specifically, integrating g explicitly with respect to £, and £, explicitly
with respect to x gives the integral equation:

[ latet) - gtmtodlde + [ (fGatennt)) - Hater, )l =

Notice that no derivatives appear in this equation. In particular, the meaning is clear even if a
solution is discontinuous. A function, g, that satisfies this equation for all x,, x;, t, and ¢, is said to
be a weak solution to Eq. (C-1). Toward a finite-difference approximation to this, let the integration
cell be [x.,n, X,,12) % [°, 2**'], s0 that it is aligned with a space-time grid cell. Then the above
equation can be written in the finite-volume form:

[—-u+1 _"]A.‘.ﬂ-l- [f3+% _ J——]A‘ =0.

Here,q and g ' denote averages of the solution over the spatial interval, [x, ,, X,,,,], at times
t=rand £ = I, respectively. Also, £, and f,,, denote averages of the flux over the temporal
interval, [#, 1], at cell interfaces x = x,,, and x = x,,,,, respectively. This calculation motivates
the distinction of finite-difference schemes in the following conservation form:

¢t - g N fivg — 54
At Ax

= 0. (C-2)

Compare the last two equations. Here, the grid value, q, approximates the Spatml average, ¢q.
A]so. the temporal average, f ;+ 12 18 approximated by the numerical flux function, f i+ 12. Asample
f is given by:

Fey =35+ 54) (C-3)
which leads to the central difference approximation to f.-

_fJ—J; _ e —foy
Az 2Az
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In general, f ;+ 12 is a function of a certain number of grid values on opposite sides of the
interface at Xjerze Also, these could be taken from time level # or #*!. In the example shown in

Eq' (C'3)vfj+lﬂ =f;+|,r2 {q‘:‘!! qr.g.] )

A natural requirement of any numerical flux function is that it should reduce to the exact flux
in certain simple cases. For example, if the solution is a constant, g = g, then the flux is a constant,
F=£4). Therefore, f should satisfy:

£}

3

118 = ). (C-4)

Schemes of the form shown in Eq. {(C-2) for which this condition holds (and for which f' depends
sufficiently smoothly on its arguments) are said to be consistent. In particular, the central
difference example mentioned above is consistent since £, (q; -4; )= 112(f +f..1) implies that
Fie1n: (@ @) =12(f ((q) +f (@) = f (@). Note that this particular notion of cons:stency is an ex-
ample of a general notion that may be more familiar to the reader. Specifically, a finite-difference
equation is said to be a consistent approximation to a differential (or integral) equation, if the
solution to the latter satisfies the former, except for a residual that vanishes in the limit of ever
increasing grid refinement.

C-3.0 TVD PROPERTY

Although the central difference example given above easily demonstrates consistency, it
does not lead to a stable scheme. In fact, it can lead to errors that increase without bound as the
number of time steps increases. On the other hand, there are schemes that give bounded solutions,
but with spurious oscillations near discontinuities. When such oscillations develop in the grid
function, {qj" }, its total variation,

{qg})_2| qJ‘-

increases with respect to n2. Observe that this is an appropriate measure of the spatial variation in 4",
since TV( {qj"}) approximates the spatial integral of | 84"/0x |. Thus, a particular notion of stability
based on the total variation is now introduced. Specifically, a method is said to be fotal variation
diminishing (TVD) if

TVi{g;"' ) < TV({g}'}).
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The TVD property is geometrically straightforward; nevertheless, from a practical perspective, it is
important to have criteria that can be verified easily to show that a given scheme is TVD. For this,
let the terms of the scheme be rearmanged in the form:

AI‘I_;" Az‘l;l+l A:c@';lfl Azq_,

Argt
+ - — pt -ri C-5
At + L-’ Ar + L’ Az R Ar R Azx (

where

Avgy = q;‘H ¢ and Al =4 -4,

To make this process more concrete, consider an upwind example for which the numerical flux
function is given by:

$3 ai3 T — f'l; 1 — f!l
f; 1= 3 ,+1+f )= i|a® 3@ —¢),  where @y = q;.:l—_é:- (C-6)

Observe that the consistency criterion in Eq. {(C-4) is satisfied by this example. Also, a few calcu-
lations show that;

ey = § [y 1y g 4 [or, +iar )] vy

where - - - n ¥ n
bofi =y —fy wd Vegr =g g

The upwinding character in this formula is seen by noting that backward or forward differencing is
used on g depending on the sign of g, i.e., the wind direction. When this expression is inserted into
the conservation form in Eq. (C-2), the following result is obtained;

quj ::q;l Aﬂ-'q?—l

n
[Ia,_ﬂ * “:-%] Az

Compare this with Eq. (C-5) to find that for the upwind scheme:

=1 [laj.pl J+'I'

L;" =0, L;= Ry = |:|a.]+l| —“_.H.L] and RS =-3 [l“,_Ll + “_.,-.I.]

Thus, as this example illustrates, a given scheme can always be written in the form shown in Eq.
(C-5). Furthermore, provided At/Ax is sufficiently small, the upwind scheme is seen to be TVD
according to the following general result due to Harten, (Ref 63), and Jameson and Lax, (Ref. 64).
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A finite-difference schewme in the form of Fq. (C-5) is TVD if L;’ <0,

Ly >0, R} >0, R} <0and (R}, - R))At/Ar < 1.
Note that the conditions stated here are sufficient for a scheme to be TVD. They are not necessary.
Moreover, a given scheme is not represented uniquely in the form shown in Eq. (C-5). Therefore,

it may be necessary to experiment with different ways of defining the coefficients before the above
conditions can be verified.

C-40 CONVERGENCE
The forgoing concepts are now summarized precisely in the following convergence result.

Suppose a grid function is generated by a TVD finite-difference scheme which is
consistent with the scalar wave equation in Eq. (C-1). Also, assume that the scheme
can be written in conservation form. Then, the grid function approximates some
weak solution to Eq. (C-1) {in an integral sense} with arbitrarily small error,
provided At and Ax are sufficiently small.

For example, the basic upwind scheme defined by Eq. (C-6) satisfies all stated conditions. There-
fore, it can be used to compute an arbitrarily accurate approximation to a weak solution. However,
this scheme is only first-order accurate and is extremely dissipative. In other words, it does not offer
high resolution of a weak solution, without a highly refined grid. Therefore, the discussion now
turns to the development of high-resolution schemes that satisfy the conditions of the convergence
result given above,

C-5.0 HIGH-RESOLUTION SCHEMES

The construction of a high-resolution method begins with the observation that the order of
the method should switch according to the smoothness of the solution. Specifically, greater
accuracy can be achieved in regions where the solution is smooth, by using a higher-order method.
On the other hand, such a method causes oscillations around discontinuities such as shocks. Thus,
in these regions, it is necessary to switch to a lower-order method.
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C-6.0 FLUX-LIMITED APPROACH

This switching can be accomplished according to a ﬂux limited approach such as the
following. Let f* be a numerical flux function such that § Jrf /Ax approximates f to an order cor-
responding to the smoothness of q. In other words, & rf “/Ax switches from a high-order
approximation to f, where g is smooth, to a low-order approximation to f, where g is nonsmooth.
Specifically, f* can have the form

f;:l:.:,— = f:-li.% + [l Jil]( jﬂ:l fi.l.)i (C-?)

where § f WA xand d f L/Ax are high- and low-order approximations to £, respectively. Also, ® is
a nenlinear flux limiter. It is so-named because the use of high-order flux terms is limited as &
switches from one to zero whenever a lack of smoothness is detected in 4.

For example, f* might correspond to central differencing as explained after Eq. (C-3). This
can be implemented by setting

f3+l = 2{ 1 T f7) (C-8)
Also, f - might correspond to upwinding as explained after Eq. (C-6). This can be achieved with
f_H.L = Jl+| + f; ) 2 J+ L |(Q_1+1 fI" ) (C-g)

For the flux limiter, @, to perform the switching from £H to fL, it must be constructed to
detect a lack of smoothness in the solution, 4. For example, this can be accomplished by monitoring
the ratio of differences,

qu - qu

n . )+ 3 n n no_ no_ M

!"J = q“ _‘fﬂ . QJ #q.j—l’ 1'3 = 0! f!g _qJ—l'
ki =1

Specifically, r}" is negative when the solution is oscillating. This should trigger the use of only low-
order flux terms. On the other hand, when :}" is close to one, g is smooth and the high-order flux
terms should be switched on. A typical limiter can be implemented by defining:

®,,1 = ory)Wl(riiy), (C-10)
where

&(r} = minmod(1,r) = { l“illgl,f') : z g and  ¢(r) = ¢(1). (C-11)
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Note that ®,,., becomes zero when r”< 0 or ri+1 S0, it approaches one when rand 5, are
close to one. This gives a continuous switching required in Eq. (C-7). Also, © can be shown to
satisfy conditions which guarantee that the scheme is TVD (Ref. 65).

C-7.0 SLOPE-LIMITED APPROACH

Alternatively, the switching can be accomplished according to a slope-limited approach as
follows. As before, the numerical flux function is constructed so that & j /Ax approximates £, to an
order corresponding to the smoothness of g. However, in the present approach, the switching occurs
among g values instead of among fluxes. This is performed within the framework of a discretization
procedure which is originally due to Gudonov (Ref. 66), which is described in detail below.
Basically, the procedure consists of the following. At a given time level, the variations in the
solution are approximated by jumps at cell interfaces. In fact, the accuracy of this approximation
determines the order of the method. Next, the waves resulting from these jumps are propagated
forward in time. When this information reaches the next time level, it is averaged to complete the
time step.

To implement this procedure, the solution is initially approximated by a constant on opposite
sides of a cell interface. Let the value on the right of x,,,, be denoted by qﬁ_m, and the value on the
left by q;;_m. For example, they can be determined by zeroth-order extrapolation according to:

= and iy =4 (C-12)
Since these values are generally not equal, this piecewise constant approximation creates a jump,

qﬂ, n- qj’;m, , at the cell interface, x,,,,. Next, this information is propagated forward in time by
assigning it as the initial state for the linearized problem,

) CAVED(C-AY)
Hw z, )+ a", fw . 1(2.1) =0, whete L = .
0y (1) By Oy 73 Uiy~ Ted

This Riemann problem can be solved explicitly for every interface x,.,. Then the solutions are
superimposed so that the grid value, g7,,, is determined according to an average of values at time
level !,

1 T; Tt
+1 \ n+1 3 ntl
.q;l = E [\/1.1_* u.j_%{“:,t )d:ﬂ + le wj+%[z-t )d&'] .
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The details are not provided, but it can be shown that this scheme has a numerical flux function with
the form:

1 1.,
fy =3 (f( Tey) + f(q},,p) - 518l (frﬁlg - ?i‘+g) - (C-13)

Note that this is identical to the low-order upwind flux in Eq. ( C-9), under the condition of the
zeroth-order extrapolation shown in Eq. ( C-12). This gives the low-order method to be used where
the solution is nonsmooth, A higher-order method is obtained by improving the accuracy of the
extrapolation. However, the first-order extrapolations,

— an 1 "
= @i+1~ 38a4h

R n T4 — & n n
g1 = SO — — ¢ — O51)
144 { ALTIQEPTIL L L i+ -
Fi+d

= Q_;l + %V:I:Q_?

1!=J.‘J+#

L _ n r—r o an
q;,_'_% - {q: + I, “' :rj—l(qJ q:—[)}

lead to unwanted oscillations in nonsmooth regions. Thus, to limit the slope variations appearing in
these linear approximations, slope limiters, ¢ and y, are introduced to give:

R n n n n " "
G4t = T41— Fo(rii1)845  and qﬁ;% = g} + 39(r3)Vaq. (C-14)

Again, ¢ and y are defined by Eq. (C-11}, but their interpretation here is different. Before, they were
used to limit the use of high-order flux terms. Here, they limit the use of large slopes in a linear
approximation of the solution.

The scheme will now be summarized. When a lack of smoothness is detected in the solution,
the interface values are determined by zeroth-order extrapolation. This leads to a low-order upwind
numerical flux function. On the other hand, when the solution is smooth, the interface values are
determined by first-order, linear extrapolation. The result is a high-order upwind numerical flux
function. The switching is performed according to the formulas in Egs. (C-13) and (C-14). Also,
the slope limiters can be shown to satisfy conditions which guarantee that the scheme is TVD. This
slope-limited method is an example of a MUSCL scheme (Ref. 67).

C-8 VECTOR FORM

Now consider the generalization of the above schemes for nonscalar problems such as the one-

dimensional Euler equations,
Qt + F=0.
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Focus on generalizing Egs. (C-9) and (C-13), in particular, since it is not clear how to form a
counterpart to aj, 1 or Eif’,, in- This is accomplished in the following first-order upwind Roe
scheme:

AQY 6
Y + Azx =0

where

Frey = 3R+ 1) = 3140 (@ — Q).

For this, the absolute value of a matrix is defined in terms of the absolute values of its eigenvalues.
Specifically, if A = S'AS, where A = dia.g{li}, then

|Al = S71A)S,  where  |A| = diag{|A:]).
The most conspicuous property defining A;' , 1 Above is that
A Q- Q) = Pl -

Such a matrix can be constructed by a special averaging procedure. This was done by Roe (Ref. 68)
for the case of a perfect gas, and extended to nonequilibrium flows by Liu and Vinokur (Ref. 69).

The flux-limited approach introduced above can be implemented by setting

I;:-+ = ( J+I+Fﬂ)_ (.‘—1(! q>71+1}|An|c’~{QJ+1 Q;&} (A:. —1!\3)

(8110

where ﬂi}’ + 12 is a diagonal matrix whose ith entry is a flux limiter as shown in Eq. (C-10), with q;'
replaced with the ith component of SDf.

Finally, the slope-limited MUSCL approach intreduced above can be implemented by
setting

1 aAn
Fop = 5 (F@L 0+ FQ5) - 551 (954 - Pha)

2

where

+.I.(QJ+J. J+.l) F(QJ+.L F(Q_H.l)
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and the components of Qf,, 1n and QJL + 1. are defined in terms of slope limiters as shown in Eq.
(C-14).

Note the complexity of defining such upwind schemes. In addition, extending upwinding
techniques to higher dimensions is not straightforward. In fact, attempts to generalize these schemes
to two or three dimensions have resulted in the production of zigzag shocks unless the grid is
aligned with the shock. Also, the eigenvalues and eigenvectors of A would have to be rederived and
coded whenever a new thermo—chemical model was considered. Therefore, as an alternative to the
matrix-based dissipation models presented above, Jameson's flux-limited scalar dissipation was
selected for incorporation into NEDANA to satisfy the objectives of this developrnental effort.
Jameson's model is discussed below.

C-9.0 JAMESON’S FLUX-LIMITED DISSIPATION MODEL

The high resolution schemes based on upwinding presented in the previous subsection have
developed in parallel with those based on artificial dissipation models. The concept of artificial
dissipation originated with von Neumann and Richtmyer (Ref. 70), who were attempting to
simulate computationally the propagation of shock waves in inviscid fluid flow without generating
mesh scale numerical oscillations. von Neumann proposed that to suppress these oscillations, the
difference equations could be angmented with terms reminiscent of the viscosity terms in the
Navier-Stokes equations. However, the proposed artificial terms were purely numerical and did not
correspond to any physical dissipative mechanism. This concept has evolved so that modemn
implementations operate adaptively. In the more recently developed schemes, smoothing terms are
made to dominate in the vicinity of discontinuities when a lack of smoothness is detected in the
solution. In particular, Jameson’s flux-limited artificial dissipation model has the simplicity of the
artificial dissipation approach while satisfying the TVD criteria.

Subsection 6.0 gives a general description of the flux-limited approach to achieving the TVD
property. Here, the particular method used in NEDANA is explained. This flux-limited dissipation
approach was first studied by Jameson (Ref. 38), and modified by Yoon and Kwak (Ref. 39), and
later by Deese and Agarwal (Ref. 71). It can be described easily for the scalar Eq. (C-1), and its
finite-difference approximation in Eq. (C-2). Here, the numerical flux function is defined by

- _ 1 +1 1 . i
fog = HEE + 5 + e, gl IO A - 28,47 + 09 AR (C15)

where ¢! = 0(77\') and ¥]*' = ¥(»"*") are defined in Eq. (C-11). Also, &,., is an adjust-

able parameter which can be used to control the amount of artificial dissipation.
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Recall from subsection C-6.0 that if oscillations are detected in the solution, the numerical
flux function shown in Eq. (C-7) becomes the flux shown in Eq. (C-9). Here, oscillations cause ¢
and yto vanishand f ;1 becomes

L 41 141 u+l n+1
fj+ = 2[! 1 +f ) +%|a"+%|ﬂxqj

This resembles the low-order form shown in Eq. (C-9), and it is useful to view the second term as
artificial dissipation. Next, recall that if the solution is smooth, the numerical flux function in Eq.
(C-7) becomes the flux shown in Eq. (C-8). Here, when g is smooth, ¢ and v are close to one, and
f ;+m becomes

1 +1y 1 +1g2 A gt
fH_J.. 3(.",":1 +f;l )+§53+é]aﬂ |6z :I:q;l

This resembles the high-order form shown in Eq. (C-8) since the second term is negligible in terms
of truncatien error; thus, f* here and in Eq. (C-8) leads to an approximation of /_ of the same order.
The second term here is used because it has been found to inhibit the odd/even decoupling of grid
values that can result from the use of a central difference scheme. Finally, note that the method
defined by Egs. (C-2) and (C-15) can be shown to be TVD, provided E,,,, = L. The numerical flux
function for Jameson’s scheme takes the following form for systems of equations:

F* = %(FTH F"'H] + D"'H (C-lﬁ)

j'+ 3+1

where

Dt = o7 [B(8.Q0H  AQI) - 20,Q0 + HAQTH . 807
2

Pry1 — %P7 i,
Pha 297 + 9}

¥

£
et = —-2- 3 [,\“ + A_1+1] s':‘_l__]z_ = (kg + kgmax(p?,oi,)],  ¥F =

Here, W is defined for vectors P and Q to have components:
¥,(P,Q) = i[sign( £,) + sign(@Q )] min(| P, |Q:])-
Note that this is a convenient way of expressing the limiters since for the scalar case,
HAGH = VAl Asg™)  and PTG = B(Aaqgt, Augly).

The other quantities in Eq. (C-16) include x, and x, which are adjustable dissipation parameters,
and A which is the spectral radius of the flux Jacobian @F/3Q. An important advantage of the present
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method is that only the spectral radius of the flux Jacobian need be rederived and implemented
when new thermo-chemical models or new physical phenomena such as magnetohydrodynamics
are considered for inclusion in the code.

Consider the terms that comprise < First, €, depends on the pressure sensors, vj” and
Vv 7.1 - These sensors allow the dissipation to be adjusted adaptively. Specifically, they are large in
the presence of high-pressure gradients and negligible in regions of a smoothly varying pressure.
The influence of these variations on €,,, is attenuated or amplified according to the value of X,
Also, 1, is a constant chosen large enough to suppress small-scale background oscillations.

This implementation of the flux-limited dissipation scheme is a componentwise application
of the scalar constructions to the vector equations. However, such a generalization is not uniguely
determined. For example, the quantity, €,,,,la;,,|, appearing in the scalar development, has a natu-
ral matrix counterpart here. Yet, for ease of implementation, it is replaced by the scalar coefficient,
¢ . Therefore, this is called a scalar dissipation model. The form of the numerical flux function used
for the quasi-one-dimensional set of conservation equations may be found in Ref, 17.
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APPENDIX D
DEFINITION OF TIME STEP

The computational time step at the cell volume J, X, L is set to be the minimum of the time
steps in the individual computational directions

At = min{A1%, A7, AtS), (D-1)
. ' R'A
where Aty = CFL |+
$1aRL
T v
Afixy = CFL |+
LM 4 KL
. , [ v ]
Mige = CFL |+ . (D-2)
[ Mluk.L
and CFL is the Courant-Friedrichs-Lewy number. The spectral radii are defined as
Aeskr = I“'”El.r,h’.z, t 8K.L | %% I.I.K.L
Ad KL = |""7<T_';: snp T oKL ay SKL
ACARL = |“'a‘|J.K.L Tk o IJ,K,L 0-3)
where
— 1, .
OsghL = 5[ +1.K.L + 0, nL]
- 1, . -
Foyrl = 5{ wlkt1,L + FparL]
—= 1, . D-4
Gcrnt = §[ﬂcJ.K.z+1 + acan)- (D-4)
The frozen speed of sound, a, is calculated from
o =7 d
T (D-5)
where the frozen ratio of specific heats, Y is expressed as
v = (1+4), (D-6)

where B = dp/0E. The evaluation of B is dependent on the type of nonequilibrium model employed.
The current version of the NEDANA flow solver is limited to NEQPAK thermodynamic models
one or two. Therefore,

( il Ps(-';_t,.) - /T, model = 1

.5 = -1 .
(Lote- £:C20) " (p—p)/T. model = 2 ®-7)

111



AEDC-TR-94-18

APPENDIX E
QUASI-ONE-DIMENSIONAL NOZZLE FLOW EQUATIONS

The purpose of this appendix is to derive the partial differential equations that model inviscid
quasi-one-dimensional nozzle flow. The derivation proceeds by integrating the differential form of
the equations over a nozzle cross section of vanishingly small width. Then, the integral is
transformed in steps by applying certain assumptions. For example, it is assumed that there are no
azimuthal variations in the flow. Also, for simplicity, nozzle cross sections are assumed to be
circular. Finally, the required result is obtained in the limit of decreasing cross-sectional width. See
Ref. 72 for more information.

To facilitate the integration of the differential form of the equations over a nozzle cross
section, the full three-dimensional equation set is first expressed in the curvilinear coordinates,

£=&ux.y.2), 1=mnlz,52) {=C((z.y.2)
For convenience, the notations
(£.y.2) = (z1. 0, 23) = & (E,0,0) = (E1,60,83) = €

(v,v.w)=(r.upw3)=7% (F.G,H)=(FR.F,F)

are used. Here, F G, ;nd H are the Cartesian flux vectors defined in Eq. (46). The Jacobian of the
transformation ¥ — E is written as .
J = det { ()E' } )
* 1<,3<3

Following Ref. 37, the differential form of the conservation equations is written in the curvilinear
coordinates as:

9Q oF 8¢ 8R .
Gitee e tac (E-1)
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where for flows in thermo—chemical nonequilibrium

[ o [ nl
Pm PrtaU
g=7"| Ev F=7" BU
put X puli + pd€/oz
pr poll + pdkfdy
puw pull + pd€ [0z
| E | | (E+p)U
[ 14 ] [ mw ] [ Wy ]
?sv Puaw Wie
&= j-l vV . g = J'-l EvW , = 1| wy ,
puV + pon/dx pulW + pd(/ox J 0
pvV + pdn/By puW + pd¢ /oy 0
pwV + pin/dz pwW + pd(/0=z 0
(E+p)V | (E+pW 0

V=VEd  V=Vp§ o W=V(-7

Here, (U, V, W) are the so-called contravariant components of velocity. For convenience, the
following notation is nsed:

(UV.W)= (Wi, VaVa) =V and (PG, B)= (8,5, F).

Then, 3 3 BE;
Vi= Y n o F=g'y FoE 1<i<3. (E-2)

bz, gz,

=1 =1

Now, a particular nozzle coordinate system is introduced. Let the Cartesian coordinates x, y,
and z be situated so that the x-axis is aligned with the central axis of the nozzle. Then, let the
curvilinear coordinates be defined so that £ varies only along the length of the nozzle, ie., it
depends only on x. Also, within a transverse planar section, let { be a radial coordinate and 1 an
azimuthal angle. In particular, note that the nozzle surface is not a { = constant surface. Specifically,

E=£(r). y=—tan"z/y), {=+/y?+2?

y={(cosn, z= —(siny
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and
% o o
e Qv % & 0 0
J = det % ? %z! =det| 0 —(7'siny -("'cosy [ = &7
¢ a( o 0 cos 7 —siny (E-3)
oz By bz

The quasi-one-dimensional equations are derived by integrating the three-dimensional equations
over a cross-sectional volume, V, defined by:

E{(E!’LC) EOSES{O‘I‘AE! 05”527"1 USCET(E)}!

where { = (&) defines the nozzle surface. This leads to
2w plo+AE (&) R ~ P 9] 4
f f£ fu (@ + Fe+ Gy + A - 1] dgdgdn = 0. 4

Now using Egs. (E-2) and (E-3) and the lack of azimuthal variation in each F,,

. on| _ ¢ 3 8 (dn\ _
Gy = d—[f ZFJB ]*E_,ZE’H_%(ETW)_O' (E-5)

i=l

Next, for fixed m, the following is an integration over an area, say.4, in a meridian plane of the
nozzle. Green's theorem in the plane gives:

bo+AE prtd) o, Ao
/& [, [&+H<]d<ﬁ=£A(—H,F)-rdr (E-6)

where d.Adenotes the boundary of the area,.4, ¢ denotes a unit vector tangent to dA with.A4 to the
left of 1, and dt denotes an infinitesimal line element. On the edges:

§=6+ AL 7=(0.1). dr =d(; E=&. #=(0,-1), dr = —d(;

{ =r(€), f':(_l’—_rf)l. dr = —\f1 + (r¢)2dE; (=0, #=(1,0), dr = d¢.
v1+(re)?
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Thus,
., rléo+ag) . éo
_H By -#dr = f _H.F , _A.F :
/3.4( ) - #dr 0 ( )IE=Eu+Af (@ D + €o+ﬁ£( H’F)lc=r(£) (Loreddt
+/ A, 01d+f (-8,F - {1,0)d,
. (0.1 ) oo - (1,008
r(fo+AE) ﬁ' fo+AL
- fg |E=€o+At dC + ./ [_T‘EFJFH]L-r(ﬂ
*(6) . o+DE
-f | dc-/° A _ . (E-7)
(1] =g € (=u
The last term vanishes since by Eq. (E-3),
il _, Z Rl L 23: oS E®)
"d.r:, T £ L B, -
=0 =1 (=

Next, for the second term on the right side of Eq. (E-7), it will be shown that

pml—reli + W) ] 0
prw(_rnf" + W) 0
"'""EF + H = _(,'_ El,.f(—‘l'iU + W) = 0
(=r & pua{—rell + W) — pre€s —rprg (E-9)
pr{—rell + W)+ peosy r€-1pcosy
pw(—re U + W) — psing —r&;1psing
(E+pl(—r:l + W) | - 0

The fitst equality here follows from Eq. (B-3) and the definition of ¥ and . Also, the fact that
(-reU + W} is zero at the nozzle surface, where = r(), can be determined by applying a tangent
flow boundary condition. For this, note that the nozzle surface is represented by f={ - (£) =0.
Therefore, the outwardly directed vnit normal is:

5 Vf  (—r¢by,co8n, —sin n)
A Jregerz +1
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Also, the contravariant velocity components are given by

U = #.VE = uf,
V = §-Vy = —(!(vsiny+wcosy)
W = §-V{ = wvcosny— wsiny.

Thus, the vanishing of the normal component of velocity at the nozzle surface means that:

0=5 7= —urglr + veosS — wsiny _ —-rell + W _
Virge)? +1 lre& 2 +1

Now Eq. (E-9) follows from this formula. Finally, for the first and third terms in Eq. (E-7), note that
by Eq. (E-3) and the fact that £ is a function only of x,

F= TZF’BE_, ;;F‘&_CF (E-10)

Combining Eqs. (E4 ) — (E-10) and making use of Eq. (E-3 ) gives:

2 Eo+AL [ rrl€) g
0= f { [./u [Qt Q] dC] d¢ +f F|¢=¢°+A¢ d(
0

r{{a) fo+AE g
—f ¢ Floeg, & +f de }dq.
[ éo —rpre
r€; pcosy
—r€'psin gy
0

According to the azimuthal independence of Q, F and §,

fo+AE 7{£) {‘ r{fp+AE)
0= 2ﬂ-/£ V/ﬂ [Qt Q)d¢| dE+ 2'ﬂ'f ¢ F|£=£o+AE ¢

[0

==

7(éo} fot+aé
—2r [ Fleg de + 2 f{ de.
o

|
~3
~
ry

[ = I = R
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Observe that certain components vanish in the last term since Ioz" cos 1dn = ,[02" sin ndn = 0. Next,
this equation is transformed by applying the following mean-value theorem (Ref. 73). Suppose that
fand g are integrable on a set, S, where g 2 0. Then, there is an average value, f, between min  fand
max . [, such that

[ 00 = [t

This result can be applied to the above equation componentwise. For this, define the area function,

T{£)

Aff) = 2#] (d{ sothat Ag =2xrre.
Q

Letting A(E) play the role of | g({)d¥, in the above mean-value theorem gives:

o 17 [(49), - ()] W WP | |

where O, F and Q here represent average values over a given cross section. Dividing by AE, and
taking the limit as AE — 0 leads to:

(614Q) +(aF), = (£140) +

Gﬁﬁf?aa--
~
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Since the equations involving pv and pw are decoupled from the others, the nozzle flow equations
are taken as

P [ pule ] [ AJ iy ]
AT Pas + | AS! Pusuz — AJ—l‘li!n,
EV EV“E::: AJ_]'U.)V
pu (pul + p){x AEP
LB/, | (E+pne. 1), L 0

where J = E, is the Jacobian of the transformation x — E. Observe that by using the fact, J '€, =1,
certain terms above can be cancelled. However, this form is retained to parallel the three-
dimensional case in Eq. (E-1). The finite—volume form of the equations is easily obtained by taking
J™'A as the volume of the corresponding cell (Ref. 37). Finally, note that setting A = 1 here gives
the equation set for a shock-tube problem.
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APPENDIX F
THE NONEQUILIBRIUM SCURCE JACOBIAN

F-1.0 DEFINITION OF SOURCE JACOBIAN

The numerical scheme is based on the linearization of the nonequilibrium flux vector. The
vector of conserved variables, @, and the nonequilibrium source vector, £2, for the NEDANA flow
solver are defined as follows

( Pt [ i)

Pus W s

En Wiy
Q = ], a= :

Ean W e

pu 0

pv 0

pw J 0

E \ 0o ) E1)

The chemical source terms, ,, are the production of species s in units kg/(m>s). The nonequilibrium
energy sources, @y, are the production of energy i in units J/(m’s). The nonequilibrium source vector
is linearized as follows:

Q! = QO 4 27 (8Q™) + OfAL, F-2)

where Z" is the Jacobian of Q" with respect to ¢, and §Q" = 0"*' - 0". The matrix, Z, has the form

on
2= —= =
oQ
Gw .. s b .. ety e Dt
( E:- H_MI: HEw OENne  Alpx) pu Bﬁrwi %ﬂh \
Bu O e B i a B 5
aTuwm g?ﬁ JENT BEw e [ 2 aa'('”pui gr'pw”r 885‘
w '.u£| W N ) dw (M) N1
o1 Bpna AE N dByne  3pu FHpu 31"# gE
B Bunue U B S O Secae B ’
91 Fon. T oP GENne  O(pu) a{pv Ezpw‘ %%
0 0 0 0 ] 0 0 0
0 0 ] 0 0 0 0 0
)] 0 0 0 0 0 0 0
\ 0 0 0 0 0 0 0 0 /) @3
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The scope of the current flow solver is to use full finite-rate chemistry with a two-
temperature thermal model. In this model, the translational and rotational energies are assumed to
be in equilibrium with one another at the temperature, 7. The vibrational energy is allowed to be
characterized by a separate temperature 7,. In the case of ionization or electronic excitation, the
electron temperature, T,, is assumed to be in equilibrium with the vibrational temperature at the
temperature, T,. The nonequilibrium energy modes of all species are characterized by a single
temperature. Therefore, the current scheme has only one nonequilibrium energy, E,. This energy
contains the vibrational, electron, and electronic energies of all species. The NEDANA flow solver
employs NEQPAK to provide the nonequilibrium source terms and their derivatives. The
adaptation of NEQPAK to the development of the sources and their derivatives will now be
discussed.

F-2.0 DERIVATION OF CHEMICAL JACOBIANS

Define:;
- P
Y = M, (F-4)
na ps
V=X (F-5)
a=1 s
P =2 ps (F-6)
s=1
ns T’
M = z — M,. (E-7)
s=1 T
Y, = &, (F-8)
p
Cotr = 3. Y Coy, (F-9)
s=1
("IJ.V = Z Ya ":I'Vt (.-F'lo)
=1

where v, is the concentration of species s in kgmole/m™;  is the concentration of the mixture in
kgmolelm®; p_is the density of species s in kg/m’; p is the mixture of the density in kg/m*;M, is the
molecular weight of species s in kg/kgmole; Mis the molecular weight of the mixture in kg/kmole,
and ¥, is the mass fraction of species s. C,, is the specific heat at constant volume dependent on T.
C, vis the specific heat at constant volume dependent on 7. Also, define a general temperature array
such that
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T, = Tn.(T- TV), m = 1. ntype. (F-11)
For example, with ntype = 2,
n =7
T, = T\-=Tg (F-12)

where 0 < <1.

NEQPAK provides w_ (fmole/m’/sec) which is a function of ¥, and 7,. NEQPAK also
provides ?ﬁ; i T d %’;lm 4 » Where the vertical bars denote the partial derivatives are
evaluated holding the subscripted quantites constant. The task now is to write these quantities in
terms that the NEDANA flow solver requires. The chemical sources become

u;, = M;ib,. (F-13)

The total derivative of w; becomes
dw, = M,dd,
™ a‘:’l
= .M.{ Yy =

d
d, T

Ts#E 3T
ﬂ.Tm T
Yo Tu#m ar T,

a"r'lﬁ‘t
o TuFm oTy

a=1

niype BC:?
1

+Za—Tﬂ:‘

m=1

rebype a’:a
1

[ dT . '
"'Z:] T, . v} (F-14)

The total derivatives dy,, dT, and 4T, must now be expressed in terms of the conservative variables,
Q. First,

1
dy, = Edp,-- (F-15)

Now, consider d7. The total energy of the mixture is

| . . -
EF = Eﬂ( nt 4+ o2 +w?) + E; + Ey. (F-16)
The internal energy dependent on T is

E; = peq, (F-17)
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where
ns3
er = » Yier (F-18)
i=1
and
1
(1, = fr (T + 6 (F-19)
ref

where Cf,_ « and ¢ are the specific heat at constant volume of species i due to 7, and the energy
of formation of species i, respectively. Then,

dey = 5 dVier, + 3 Yidey,, (F-20)
=1 i=1
where
dej,. = (3, . dT (F-21)
Thus,
df'; - "_‘?.,r!ﬂ(‘]‘ df.; - "El d}’,-e;,
dT = = - = = . -
121 Y, (":;,zr ‘b (£-22)
Now,
dY, = 5 (F-23)
and
1%a
dp = Y dp;. (F-24)
r=1
Now, writing E in terms of Q,
2 2 2
and
dE = wud(pu)+ vd(pv) + wd(pw) + pdej + d( Ey)
+ey — %(uz + n? 4 w?))dp. (F-26)
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Using the fact that
| . .
= e- E{u2+v1+w£)—ev. F-27)

substitution gives

dE = ud{pu}+ vd{pv) + wd{pw) + pde; + d( Ey)

Flr = (6 + 1% + w?) - eyldp. (F-28)
Rearcanging,
der = {d(E) - wd(pu) — vi(p) = wi(pw) - d(Ev)
e~ (u? + v + w?) — ev]dp}. (F-29)
Now,
T = - C,lw{duz) — ud(pu) — vd{pr) — wd{pw) — d{Ev)
—[e— (v + v* + w?) — ey]dp — i epa[dp; — YidP]} (F-30)
leading to =
ir = B"(_IT {(E) - ud(pu) — vi{pr) — wd(pw) — d(Ev)
+ g[%tu?’ + v +w?) - e;,;]dpi} (F-31)

Now, to express dTy in terms of the conservative variables (. The vibrational/electronic energy is

Ey = pty, (F-32)
where
ev = 3 Yievi (F-33)
|=1
and
TV ] ] '
wa = [ ClpTer (E-34)
ref
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where C'f,_ v is the specific heat at constant volume of species i due to T,. Then,

ns ns

dev = 3 _dYiey, + ) Yidev,. (F-35)
1=1 =1
Thus,
dey — ) 2, dY.ev, dey — 3=, dYsey,
dTy = = - = : =
Yim iy Coyv (F-36)
But also,
dEy — eyd
dlev) = cEv —evep (F-37)
fi
Therefore,
l ns
dT‘p = - {d[EV) - E Fyy dﬂ';} . (F-38)
p( wV 1=]
NOW. define % _ ﬂ..‘.fr a‘:’,‘ UT;H,|
ar + T m=1 aTm e ThEm or T.
3@, _ i C}GJ, aTm|
aT‘V T m=1 BJTHI Yo TuFm BTV T - (F-39)

Employing Eqs. (F-15), (F-31), and (F-38), Eq. (F-14) can now be written in terms of derivatives
of the conservative variables. '

M; 8o, e
dw; = —_— d{E) — ud(pu) - vd(pn) — wd(pw
1 pcu,tr dT 'r.Tvl ) (P ) (P ) (P J]
Ml. a‘;‘; Mg ad—)g
- - — d(E
+ I:P("u.V aTv T p('rll,tr aT T (Ev)
s a‘:}‘ ,M.I
+Y { = —
J=l{ a-h %21 Tom MJ
M‘ 1 2 2 2 ] 3\':1, JMi 35).
—_ = - o - —_— -_— d,
t oCsr [2“‘ Hotbot e Gr| e Byl 1 o)
The chemical source Jacobians can now be obtained by taking partial derivatives of the above
equation. s, Mk,
dp; Prgty-pupvoun By E M, oy ¥:#3.Tn
"MI ]- 2 2 2 ] afb‘
P("u.tr [2(“ it ) Cla oT Ty

_ M; . 4,
ooy 7 BTy

(F-41)

~.T
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awl - _ Mi ?&
BEV p.ot,prpw K P("u,lr aT v Tv
+ M, o
oCo v 3Ty |l (F-42)
a‘-‘-’l M dw,
= —'u .
B(pu) s pin By 'I W dT ~Tv (F 43)
o, | JM; d::),
= _'H__ —
HNpr) i, . By E pCusr OT |1, (F-44)
dw, 3 M, oo,
a(p'm] e By B P(t tr aT +Tv (F-45)
uay LM e
L i, e By P("ﬂ.h' oT ~+Ty (F-46}

F-3.0 DERIVATION OF VIBRATIONAL/ELECTRONIC JACOBIANS

The vibrational/electronic source term for the two-temperature model where 7= T,=T, has
the form

e

Q= wre o wve Fowve — pe V- (F-47)

The first term, ®y,, is the Landau-Teller relaxation term between 7 and T,. NEQPAK returns this
term in J/m>/s, as well as the follewing derivatives: “%—f“ ,h £5.T.Ty %’%"‘L o 'MF'" T The
third term, @, is the relaxation term Ig]etween T and T,. NE PAK provndes this term in J/(m®s),
as wel] as the following derivatives: iy, e T Ty b m— (T‘T Ty aﬁ“’-‘f{' . The fourth term, p,
V + &, is the electron pressure gradient term. This term is not provided by NEQPAK This term
is treated as a viscous term and does not appear in the Jacobian formulation. The second term, @y,
is the production or destruction of E, due to chemical reactions. This term is currently not provided
by NEQPAK. Instead, due to its simple form, it is developed in the NEDANA flow solver. The
non-preferential form is

ns
wye = 3 Diéve. (F-48)
i=1
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or
na

Wy = Z: Wiey .
i=1 (B-49)

Using Eq. (F-39), the derivatives are easily formed to yield

thary - i’: S, z E-50)
E = - Vi -
M |y, =1 Milogymn
E)UJVC- ne a{:}: é 1
: = vy Va -
oT Ty 1=1 ar Ty (=51
awvf ns oy . A
" = _— €vyg + UJ‘(-“ . -
dTv " = dTV VT Vi Y (F 52)

The derivatives of the total source term can now be formed by combining the individual terms to
yield

% _ BWVu + gid_v_, + BWV c
M |orm O | a1 CeZ %% | gizr, 3
dwy _ vy + dwy, + dwy
dT Ty - l)T »Tv ()T ~. Ty dT -+ Ty (F‘54)
awV _ auVr ach + awl’u
aTy -+ T Bl aTy +.T Ty T Ty ‘T.T. (F'SS)
The total derivative of ®, becomes
doy = Y ‘:;"—" dy, + %"-’i',-k’- dT
=t O bza iy *Ty
duwy
aTv |, dTv (F-56)

The total derivatives dy, dT, and dT, were defined in Eqs. (F-15), (F-31), and (F-38), respectively.
Using these definitions of the total derivatives, Eq. (F-56) becomes
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1 v
—_ d{ £) — ud(pu) — vd{po) — wid{ pw
o BT ﬂ_v[( ) = ud(pu) - vd{pe) ~ wd(pw)]|
1 thun, 1 thury
+ | = 5 - — d(E
[P(-'u,v dtyv -~ T P(‘u,t‘r ar -}.T'v:| (Bv)
na I f)&u‘\ |
3
oM Ly
1 | 2 2 Dy EV, Dwy
- —c fahad il - Y do:
+p(/'g_gr [2(11 + 4w ) Ciz oT ATy Pf:'u,v 3Tv 1,T} i (F'S?)

The vibrational/electronic source Jacobians can now be obtained by taking partial
derivatives of the above equation.

Owy + L dusy
dp-’ Pry g ptpvow By B '.Mj a‘)‘j 1#3,T.Ty
L2, 2 2 ] dwy
+PC1:,tr [2(1‘ Tribw) e or |y,
ey, Dury
p("u,V Ty oy, T' (F-58)
Oy’ _ 1 dwy
aE\ oty o B PCu.lr aT v v
f1Owv
pCo V. Ty |41 (F-59)
Uu—'v _ —i ﬂuv
H(pu} papepwn By B - p(‘u-“‘ ar Ty (F-GO)
e _ —v vy
dlpr) roupun By B pCuu OT v Ty (F-61)
duwy __mw dwy
a(ﬂf”) pptpo By B pCU-"" ar 7 Tv (F'GZ)
(':kuv - + 1 f)h.lv
aL it pinpu By Bl P('u,tr aT +Tv (F-63)
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NOMENCLATURE

a Frozen speed of sound, m/s

Coefficient in Eq. (13)
a Scalar flux Jacobian
A One-dimensional nozzle area, m?
A Matrix flux Jacobian
A” Millikan and White coefficient
A Arrhenius coefficient, Eq. (30)
b Diagonal matrix, 1/s
b Coefficient in Eq. (20)
B Iteration matrix
Bl Block iteration matrix
B, Scalar iteration matrix
B Viscous term coefficient
B Arrhenius coefficient, Eq. (30}
c Scalar dissipation, m’/s
C Park’s correction
C, Arrhenius coefficient, Eq. (30)
Cp Specific heat at constant pressure, Jikg K
C, Specific heat at constant volume, Jikg K
CFL Courant-Friedrichs-Lewy number
d Coefficient in Eq. (23)
D Effective diffusion coefficient, m?/s
D Binary diffusion coefficient, m¥s
e Specific energy, Jikg
E Energy per unit volume, Jin®
f Scalar flux function
,-F)' Numerical flux function
AF Change in free energy, Jlkmole
F \ &, H  Cartesian flux vectors
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ﬁ‘. é, HF Computational flux vectors

&
G

G

o
~

SIS 2

Degeneracy of Ith electronic level
Gibbs free energy, J/kmole

Rate of gain, kmole/m’s

Planck constant, //s

Enthalpy per unit mass, Jikg
Species heat of formation, J/kg
Cartesian unit vectors

Identity matrix

Computational indices

Jacobian of transformation

Boltzmann constant, JIK
Forward reaction coefficient, mfkmole

Reverse reaction coefficient, m’tkmole or mSlkmolée®

Equilibrium constant
Characteristic length, m

Rate of loss, kmolelm® s

Generic molecule

Mach number

Molecular weight, kg/kmol
Avogadro’s number

Number of nonequilibrium energies
Nuomber of electronic energy levels
Number of conserved variables
Number of reactions

Number of species

Pressure, Nim®

Heat conduction, Wim?

Scalar conservaticn variable
Vector of conserved variables

Position vector, m
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Ratio of differences
Gas constant, Jikg K
Reynolds number
Nose radius, m
Universal gas constant, Jlkmole X
Residual
Generic differences
Surface area, m*
Matrix of eigenvectors
Temperature, K
Integration variable, K
Total variation
Total variation diminishing

InT
Time, s
Characteristic flow time, s
Velocity vector
Diffusion velocity vector
Cartesian velocities, m/fs
Diffusion velocities, m/s
Cell volume, m
Chemical source term, kg/m’/sec
Chemical source term, kmolelm’Isec
Generic nonequilibrium energy source term, Jim*/sec
Cartesian coordinates, m

yL ﬂ , nondimensional viscous spacing
Mass fraction

Partition function

Exponent in Park's TT, model
Viscous relaxation parameter
oploE
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Concentration, kmole/m’

Frozen ratio of specific heats
Dissipation parameter

Energy of electronic state, J/kmole
Computational coordinates
Characteristic temperature, K
Thermal conductivity, Jims K
Dissipation parameter

Spectral radius, m*/s

Diagonal matrix of eigenvalues
Viscosity of mixture, kg/ms
Reduced mass

Pressure smoothness sensors
Stoichiometric coefficients
Characteristic vibrational frequency
Source vector

Density, kg/m’

Collision cross section, m*
Directed surface area at cell face
Directed surface area at cell center
Relaxation time, s

Shear stress tensor

Flux limiter

Flux limiter

Mole fraction

Flux limiter

Dimensionless electronic energy
Mass source of species s, kg/m’ls
Vibrational/electronic source term, Jm/s
Total derivative

Partial derivative
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-5
v Del operator
n n n
Vx(')j =) -6,
) Kronecker delta
& Change in mole number

a,w(')j"I () ; in = ;-m
AW @@
ALY @, -

An Iinitial viscous spacing, m

50 Implicit time change in vector of conserved quantities
AQ Explicit time change in vector of conserved quantities
At Time step, s

At' A“. AC Differences in computational coordinates

Subscripts:

£ Electronic

f Frozen

I Inviscid

i,j. k Index notation

I Internal mode

L R Left, right

n.m Summation/iteration index
0 Stagnation/total condition
o, e Odd/even indices

q Generic temperature, K
r,s Species/reaction index

r Rotational

t Translational

tr Translational-rotational

v Viscous

v Vibrational

14 Vibrational-¢lectronic
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v-¢ Vibration—chemistry

v-T ! Vibration—translational

oo Free—stream condition
Superscripts:

atm Standard atmosphere

f Forward rate

H Higher order approximation
L Lower order approximation
L.R Left, right

] Time level

a, e Odd/even indices

m Iteration level

r Reverse rate

5 Denotes species value

v Vibrational

* Equilibrium, nozzle inlet, or latest value
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