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INTRODUCTION 

Adaptive neural networks are considered to be promising architectures for real-time pattern recog- 
nition. Due to the large network sizes required for real-world problems involving imagery, these 
adaptive networks will be most useful for solving real-time problems if tliey are implemented in 
parallel hardware. The parallel processing capabilities of opto-electronic systems together with the 
relatively simple computational requirements of artificial neural networks make optics a natural 
candidate for hardware implementations of neural computing systems. Optical computing sys- 
tems however, typically suffer from optical device imperfections and system noise that can degrade 
performance. By employing adaptive on-line training techniques these noise sources can be in- 
corporated into an error-driven learning process to provide improved system performance. Neural 
networks therefore offer an opportunity to realize parallel optical computing systems that toler- 
ate noise. In this paper we describe an adaptive neural architecture capable of exploiting parallel 

optical hardware for multi-dimensional signal classification. 

The radial basis function (R.BF) neural network has been successfully used in many multi- 
dimensional classification applications including 3D object recognition [1. 2], radar signal classifica- 
tion [3], face recognition [4, 5], fingerprint recognition [6], speech recognition [7], and handwritten 
character recognition [8, 9]. Other applications of RBF neural networks include nonlinear function 
approximation [10, 11, 1], kernel regression [12], equalization of time-dispersive communication 
channels, and nonlinear modeling and prediction for echo cancella.tion in the presence of nonlinear 
distortion [13]. Previous experiments have shown that RBF networks have similar classification per- 
formance to backpropagation neural networks while typically incurring shorter training times [8]. 
Both all-electronic [14] and opto-electronic [15] parallel hardware implementations of RBF networks 

have been reported. 

In this paper we experimentally demonstrate an adaptive optical RBF classifier that facilitates 
on-line learning to offer robustness to noise and optical system imperfections. The system per- 

formance is evaluated in the application of handwritten digit classification. The issues of system 
imperfections, device characterization, and system noise are discussed. The experimental results 
from our optical system are compared with data from a computer model of the system in order to 
identify critical noise sources and to indicate possible areas for system performance improvements. 
We then present conclusions and discuss future directions of this work. 



RBF NEURAL NETWORKS FOR 
HANDWRITTEN DIGIT 
RECOGNITION 

2.1    RBF Neural Networks 

A single-output multi-layer neural network can be regarded as a continuous input-output mapping, 
UN —► 3ft. The network should behave well in the presence of noise and correctly generalize when 
a previously unseen input pattern is presented. To obtain these characteristics we may impose 
smoothing constraints on the input-output mapping as derived from regularization techniques and 
approximation theory[1]. Approximation theory attempts to provide an optimal solution to approx- 
imating a continuous multivariate function /(x), with an approximating function /(w,x) , where 
x is a A dimensional input vector and w is a parameter vector used to minimize the approximation 
error. The set of M input vectors comprise the training set on which the desired input-output 
mapping, {x; —> /(XJ); i= 1,..., M}, is defined. 

The RBF approximation scheme arises from making certain symmetry assumptions about the 
smoothing constraints utilized in the regularized solution and corresponds to an approximating 
function of the form 

M            /_|x_tM2\ 
/(w,x) = ^c-expl j    ' (2>1) 

i=\ \ Gi ) 

where {V} is a set of center locations, {CTJ} are the corresponding center widths, and {a;} are a set 
of weighting factors. These three sets define the parameters of w. 

The approximation function given above can be represented in the form of a one layer neural 
network as shown in Figure 2.1. The hidden layer RBF node response is given by 

/-|x- V\2\ 
Vi = eXP (   ^2  ) ' (2-2) 

where V is the neuron center and Oi is the neuron width.  The first layer requires the calculation 
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Figure 2.1: Schematic diagram of RBF neural network for digit recognition. 

of a Euclidean distance in contrast to conventional networks which use inner products. Also, the 
neuron response is not sigmoidal but corresponds to a e^l^ function.   For a multiple output 
RBF network the kth output node response to an input vector x is given by: 

/*(x) 

where aik is the connection weight between the ith RBF node and the kth output node. 

(2.3) 

The learning problem for multiple output RBF networks will involve determining {V}, {ai}, 
and {aik}. For our networks the learning is performed in two stages. The first stage involves 
finding a suitable set of RBF center locations, {t'}. A simple method for choosing RBF center 
locations is to assign a RBF node for every training point; however, this approach can result in 
unacceptably large networks. We can improve the first layer hardware efficiency by applying a 
clustering technique to reduce the number of RBF centers. Although iterative on-line moving 
centers training algorithms exist[1], we chose to perform training data clustering as a preprocessing 
step to 'fix' the center locations in order to take advantage of high-contrast static spatial light 
modulators (SLMs). From a hardware system standpoint the static centers are also much easier 
to implement since no error feedback to the SLM is required. We use a class-based clustering 
algorithm[16] to merge nearby in-class training samples into a single center to form prototypes of 
the training set and to eliminate redundant center locations. The algorithm will merge two same- 
class training clusters if the criterion, Dout > aRtn is met, where Dout is the distance from the new 
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Figure 2.2:  Illustration indicating the operation of the class-based clustering technique used to 
reduce the number of RBF center locations. 

cluster mean to the nearest out-of-class cluster mean, a is the 'clustering parameter', and Rin is 
the distance from the new cluster mean to the furthest member of the cluster. This is illustrated 
for the 2D case in Figure 2.2 where the merging of the clusters cl and c2 is considered and c3 is 
an out-of-class cluster. Initially all of the training samples form separate clusters and the merging 
criterion is then applied repeatedly until all possible cluster merges have been considered. The 
clustering parameter a, controls the extent, of overlap between neighboring clusters of differing 
classes. As a is decreased the overlap between out-of-class clusters is increased and we expect to 
see a reduction in network classification performance due to reduced class separability. Table 2.1 
shows the results of the clustering algorithm applied to a 600 sample training data set, the details 
of which are described in the next section. 

Clustering parameter 
a 

Number of clusters 
(600 training samples) 

3.0 407 

2.5 341 
2.0 269 
1.5 198 

1.0 106 

Table 2.1: Results of clustering algorithm. 



The {<Ti} and {aik} parameters can be trained by minimizing the squared error at each output 
node using a gradient descent technique. The squared error of the kth output node in the presence 
of the single input vector x' is defined as 

.b (4)2=[A(w,x')-/fc(* 

The gradient descent update equation for the pth RBF width is 

A U ) = -aa(E[f (|x< - tf ) apexp [J^L ), (2-4) 
p. 

where aa is the acceleration constant for the width update. The update equation for the intercon- 
nection weight between the pth RBF node and the kth output node is 

/_|x' -tp|2\ 
A(apfc) = «a(4)2expl     '   g2     '     , (2.5) 

where aa is the acceleration constant for the weight update.  The iterative update equations are 
applied after each training input vector is presented. 

2.2    Handwritten Digit Recognition 

Handwritten digit recognition is used to evaluate the performance of our RBF neural network 
classifier. RBF classifiers have been reported with shorter training times and superior classifi- 
cation performance than either backpropagation networks or k nearest-neighbor classifiers for this 
problem[8]. Handwritten digit recognition can be viewed as a multi-dimensional classification prob- 
lem having an output class for each of the ten digits. 

We obtained a database of 900 binary, segmented handwritten digits. 600 of the digits are 
used as the training set and the remaining 300 digits are reserved as a testing set. The input 
sampling region for each digit is a 40 X 40 pixel area and examples of the training set are shown in 
Figure 2.3. The RBF network is not inherently scale, position, or rotation invariant although by 
providing enough training data for these distortions new centers can be formed for each distorted 
view[2]. A more efficient approach however, is to preprocess the digits in a class independent 
manner by centering and scaling them to minimize position and scale variation. From the 40 X 40 
pixel image the maximum extent of each digit is found and the digit is scaled and centered into a 
new 10 X 10 pixel image (see Figure 2.4). The 10 X 10 pixel image is then unrastered to form a 
100 bit binary vector used as input to the RBF classifier. In practice character recognition systems 
may use more sophisticated feature-extraction methods in order to further improve both efficiency 
and discrimination ability[17]. This data preprocessing must be performed before the training 
set clustering algorithm described in the previous section can be applied. From the training set 
clustering results presented in Table 2.1 we chose to use 198 cluster centers each of 100 bit length 
for our optical system since commercial SLMs of this resolution (i.e. 100x200) are readily available. 

To illustrate the capabilities of the RBF neural network in the application of handwritten digit 
recognition we train and test a software version of the network described above. The training set 



0 0 0 a ö a 0 0 0 0 
r 1 1 1 1 [ 1 7 1 
z a. a I £ 2 2 z a a 
3 3 3 3 3 3 3 1 3 3 
*t f M -i -4 M H H 4 4 
£ 5 5* 5 5 s i 5 B 
6 6 & 6 b fc to In to <o 

1 7 7 7 } 7 7 1 1 7 
a 8 8 0 e S c? 8 8 8 
R q 1 R 9 9 1 S =) T 

Figure 2.3: Samples of unprocessed 40x40 pixel digits. 
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Figure 2.4: Samples of centered and scaled 10x10 pixel digits. 
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Figure 2.5: Training history of software RBF neural network error. 

inputs are presented sequentially to the network. The error at each output node is calculated and 
the update equations are applied to iteratively minimize the network errors. The mean squared 
error (MSE) measure is used to evaluate the system performance as the network trains. The MSE 
is given by 

MSE- 1/P^ ^ f £<*S)' 
where P = 600 is the number of training set samples and K = 10 is the number of output nodes. 
Figure 2.5 shows the MSE of the network during training for the first 1000 epochs (training cycles). 
The best results obtained were 100.0% recognition of the training set and 97.7% correct recognition 
of the testing set data. These recognition rates serve as a baseline for comparing the performance 
of the software RBF neural network with the optical hardware neural network that we present in 
the following chapters. 



OPTICAL RBF NEURAL 
NETWORK 

In this chapter we describe an opto-electronic implementation of the parallel RBF neural network 
classifier[15]. The hardware implementation of the RBF classifier is composed of two subsystems, 
the first is a parallel Euclidean distance computer which we implement in optics. This subsystem is 
spatially multiplexed, making use of two-dimensional SLMs to represent the center locations. The 
second subsystem evaluates the basis functions and performs the interconnect weighting between the 
RBF layer and the output layer. An analog electronic hardware design is proposed for implementing 
the postprocessing subsystem. In our system the optically computed distances are captured with 
a CCD camera and the postprocessor is simulated in software. 

3.1    Parallel Optical Distance Computation 

The first layer of the RBF neural network computes the Euclidean distance between the input and 
each of the centers.  The Euclidean distances {d4}, between a vector x, and the centers {t*}, can 
be written as 

N N 

d*" = |x-tf = 5>j-'5)a = £<(;■. (3.1) 

where   _ 
d) = Xjt) + x]t), (3.2) 

for the case of binary vectors. The overbar indicates a bitwise complement. We can implement 
this distance computation in parallel hardware using the optical system shown in Figure 3.1. A 
photograph of the system fabricated in-house is shown in Figure 3.2. This system is spatially 
multiplexed in contrast to previously demonstrated time multiplexed optical disk-based systems[15, 
18]. The light in LEG 1 of the system illuminates the input SLM labeled x and is then collimated 
in the y direction and imaged in the x direction onto the centers SLM labeled tlj. The result 
that appears immediately behind the centers SLM is the product term {xjfj ; i = l,...,M;j = 
1,..., N}, which is required in the distance computation. LEG 2 of the system forms the products 
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Figure 3.1: Dual-rail vector-matrix multiplier used as a parallel optical distance computer. 

{x]f} in a similar fashion. The results of these vector-matrix multipliers are simultaneously imaged 
onto7 a contrast-reversing liquid-crystal light valve (LCLV) SLM where they are superimposed to 
form the terms {d}}. The result of the contrast reversal yields the {d)} terms and the final 

integration operation Y^Li 4' is Performed usin§ a cylindrical lens. 

We implement the standard RBF neural network paradigm which does not incorporate a moving 
centers algorithm[l]. This allows the center locations to be placed upon fixed masks such as etched 
chrome or developed film on glass for high contrast and uniformity over the entire mask area. In 
our system the centers masks are film negatives. Figure 3.3 shows a sample centers mask with 
198, 100-dimensional center locations. All of the centers belonging to a class are placed together in 
order to minimize the effects of crosstalk between classes. Additionally, a blank spacer vector (not 
shown) is placed between classes to prevent inter-class crosstalk. The pixel size used for the centers 
masks is 63.5 jim center-to-center. The overall centers mask area is approximately 1.0 cm by 2.0 
cm. Additional vectors are placed on either side of the centers data vectors to aid in alignment and 
data normalization. In this system the input vectors are also placed onto film since the training 
and testing sets were fixed. For real-time operation electronically-addressed ID SLMs would be 
used for the x and x inputs. 

Figure 3.1 shows the actual (a) and optically computed distances (b) between an input vector 
representing the digit '0' and the 198 center locations (templates). As a comparison Figure 3.4 
shows the corresponding distances for the input digit '4'. Although large errors are present in the 
optically computed distances we observe that the distances are generally smallest for the appropriate 
template numbers. The accuracy of the optical distance computation can be quantified using the 

formula 
1/2 

ADrms~ 1/M^f ' (3'3) 

where dfpt are the Euclidean distances between the 300 testing inputs and the 198 centers calculated 
from the optical system and dfct are the actual Euclidean distances.   The average rms distance 



Figure 3.2: Picture of optical RBF classifier system. 
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Figure 3.3: Example of a centers mask (not to scale). 
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Figure 3.4:   Euclidean distance vs.   template number for a single input image (handwritten 0). 
a) Actual distance and b) optically computed distance. 
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Figure 3.5:   Euclidean distance vs.   template number for a single input image (handwritten 4). 
a) Actual distance and b) optically computed distance. 

error over the testing set for our optical system is measured to be 29%. This large 29% distance 
computation error result will lead to a large classification error in our system. The errors present 
in the optical distance computation are due to device imperfections and system noise that will be 
discussed in the next chapter. 

3.2    Parallel Basis Function Evaluation 

We now consider the second subsystem of the RBF classifier which performs the basis function 
evaluation and output interconnect weighting. The block diagram in Figure 3.6 shows a possible 
analog electronic implementation of the subsystem for the single output case[15]. Each array of 198 
modules provides a single network output; therefore, we require ten such arrays for our application. 
Note that all of the proposed operations are local with exception of the global sum and are compactly 

11 



Class Optical     Software 
(Correct out of 30) 

0 0 29 
1 0 30 
2 0 28 
3 4 29 
4 30 29 

^     5 28 28 
6 5 30 
7 26 30 
8 0 30 

9 0 30 

Total 93 293 
Overall recognition 31.0% 97.7% 

Table 3.1: Performance comparison between optical RBF classifier and software RBF classifier. 

achievable in analog VLSI circuitry. In this non-adaptive postprocessor the network center widths 
and interconnection weights can be trained 'off-line' in software and then downloaded to the chip 
during operation. In our experiments the analog postprocessor chip is emulated in software. 

A software RBF neural network was trained using the preprocessed training data. The center 
widths and interconnect weights are taken from the trained network and loaded into the software 
postprocessor emulator. Then using the optically computed distances of the test set we evaluated 
the optical neural network classifier performance. The overall recognition rate for the RBF classi- 
fier is 31.0%. This very poor performance does not agree with the 97.7% testing recognition rate 
measured from the RBF network software simulations presented in Section 2.2. A class-wise com- 
parison between the performances of the RBF network using the optically computed distances and 
the perfectly computed distances is shown in Table 3.1. It is evident that the distance errors caused 
by the optical system imperfections have a catastrophic effect upon the overall system performance. 
Although it may be possible to use a detailed model of the optical system to more accurately com- 
pute the center widths and interconnect weights, the measurement of system parameters would 
be difficult to make for highly integrated, compact systems. More importantly, temporal changes 
in the system can greatly effect the system operation. Therefore it is highly desirable to perform 
on-line adaptation of the network parameters. 

12 
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Figure 3.6: Non-adaptive RBF postprocessing chip for a single output network. 
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NOISE CHARACTERIZATION 
AND COMPUTER MODELING 

We now present a noise analysis of the optical RBF system. This analysis will help to identify 
the limiting noise sources that lead to the large decrease in performance of the optical system as 
compared to the software RBF neural network. To better understand the effects of each noise term 
on the overall system performance we have developed a detailed computer model of the optical 
system which uses parameters taken from the actual optical hardware. The noise terms that are 
incorporated in the model include: 

1. optical system imperfections (illumination nonuniformities, input and centers SLM finite con- 
trast, and optical system PSF), 

2. LCLV response (intensity transfer function, spatial resolution, and fixed-pattern noise), 

3. detector response (A/D quantization error and detector random noise). 

The following sections present the mathematical expressions used to represent each of these noise 
terms in our computer model. Each noise term is characterized in terms of its effect upon the 
optical distance computation as given in Equations (3.1) and (3.2). 

4.1     Optical System Noise Characteristics 

4.1.1    Illumination Characteristics 

There are two different Gaussian laser beam profiles present in each vector-matrix multiplier. This 
is due to the cylindrical optics which performs coUimation along one axis and imaging in the other. 
The resulting anamorphic beam profile can be measured directly behind the plane of the centers 
mask SLM. The effect upon the distances can be expressed as 

d) = dürfxjt)  +  Gi(jti)xjt) 

14 



where 

Gi(j,i) = exp (i - io) 
<J\ 

and d{- is the optically generated estimate of dl-, and (j0, i0) represents the midpoint of the centers 
SLM array. The imaging axis profile ax, is along the length of the ID input SLM. The collimating 
axis beam profile <r2, is proportional to the beam expansion in the vector-matrix multiplier and is 
orthogonal to <j\. The beam profiles can be calculated from the beam intensity at the edge of the 

SLM using the formula: 

a = v(2ln^))' 
where D is the distance from the edge of the SLM to the center of the SLM, and E is the ratio of 
the beam intensity at the SLM edge to the beam intensity at the center of the SLM. In the LCLV 
read-out portion of the system there is another Gaussian beam profile (circular) which corrupts the 
distance computation according to 

N 

where 

d> 

G2(j, i) = exp 
(j - jo) + (i - ioT 

^3 

and d1 is the optically generated estimate of d\ 

4.1.2    SLM Characteristics 

In our system we made use of film negatives to act as SLMs for both the center locations and the 
input vectors. By employing film masks we can achieve very high contrast (> 100:1) and uniformity 
over the entire mask. While it may be realistic to use these static SLMs for the center locations 
in a dedicated real-time optical processor, an electronically-addressable SLM would generally be 
required for the input vector SLMs. Electronically-addressed SLMs typically have contrast ratios 
in the range of 10:1 to 100:1. The effect of finite contrast SLMs on the distance computation can 
be represented by 

d) Xj + 
Ür 

+ Xj + 
-   /1 - ft 

Or 

where Cr is the contrast ratio. 

4.1.3    LCLV Characteristics 

The device used to perform contrast reversal in our system is a Hughes LCLV (pre-1987). In 
our experiment the contrast, uniformity, and resolution were critical characteristics for the LCLV 
device. The contrast is determined by the transfer function of the device. The intensity transfer 
function of our contrast-reversing LCLV is shown in Figure 4.1 along with the response curve used 
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Figure 4.1: Measured and modeled LCLV transfer functions. 

in the computer model. The effect of the LCLV response on the optical distance computation can 
be represented as 

TV   

di = TTF(d)), 
i=i 

where TF is the transfer function 

TF(I) = 0O — a 
1 + exp -i+e, 

In this expression for the LCLV transfer function I represents the input intensity, 0j is the intensity 
bias of the input illumination, 90 is the bias of the output (read-out) intensity, a is an output 
scaling factor, and 7 is the slope of the transfer curve. 

One of the largest errors in our system arises from fluctuation of the LCLV transfer function 
over time. We have measured these variations in LCLV transfer function and Figure 4.2 is a repre- 
sentative example of read-side intensity versus time for a fixed write-side intensity. Figure 4.2 shows 
a temporal variation of nearly 20% of the entire intensity ränge for a single pixel (approximately 
50 /J.m2 area of the LCLV). We observed that the 'dark' regions on the read-side of the LCLV 
have a greater temporal variation than the 'bright' regions. This is because the 'dark' regions on 
the read-side of the contrast-reversing LCLV correspond to bright illumination on the write-side. 
Measurements taken on the write-side of the LCLV indicate that the LCLV device is the source 
of the temporal fluctuations, not the laser. This presents a difficult error for the system to adapt 
to since our system's distance computations critically depend on the 'darker' areas which define 
the smallest distances. Due to non-uniformities in our LCLV certain portions of the device appear 
to fluctuate more than others. Heat external to the device is thought to be the primary cause 
of these fluctuations. The data presented in this paper was taken during periods when the these 
temperature induced fluctuations were at a minimum. This problem can be tolerated in a real-time 
system by periodically calibrating the system. Alternatively, there are other newer commercial 
devices available which have superior performance characteristics[19]. 
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Figure 4.2: Measured intensity fluctuations over time measured on a 50 fim2 area of the LCLV. 

4.1.4    System Noise Characteristics 

The effects of random detector noise on the optical distance computations can simply be represented 

by 

d«' E(4 + %)> 
.7 = 1 

where r]d is a random variable with a Gaussian distribution. The detector noise is modeled as 
stationary additive noise and is a result of detector dark current. The noise variance was assumed 
to be on the order of 2% of the detector's full scale range[20]. The A/D quantization error also 
effects the distance computation. This noise source can be represented as 

where 2n bits is the number of quantization levels in the A/D conversion. Eight bit quantization 
was used in our optical RBF system. 

4.1.5    Other Optical System Characteristics 

Two other important error sources impacting our optical distance measurements are the LCLV res- 
olution limit and the ratio of light intensity between the two legs in the optical distance computer. 
We measured our LCLV resolution to be 8.0 lines/mm using the Air Force resolution target. The 
pixel pitch in our centers masks is 63.5 \im which requires a minimum resolution of 15.8 lines/mm 
at a l.Ox magnification. The LCLV aperture is 50.0mm in diameter which allows us to image the 
centers masks onto the LCLV at an increased magnification. The factor that limits this magnifica- 
tion is nonuniformity in the active area of the LCLV. Figure 4.3 is a picture showing nonuniformities 
in the area surrounding the centers mask image as viewed from the read-side of the LCLV. The 
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Parameter Measured Values 

Nonuniform Illumination 
Imaging Axis, o\ 0.28 

Collimating Axis, 02 0.13 
Read-out Beam, 0-3 0.32 

SLM Finite Contrast, Cr > 100:1 
Leg Intensity Ratio, ß\jßi 0.96 

LCLV Blur, ab 0.85 
LCLV Transfer Function, 6i,80,a,j 0.29,0.078,0.065,0.05 

Detector Noise, a^ 0.02 
A/D Quantization, 2n Ms 8 bits 

Table 4.1: Measured error values from optical system. 

nonuniformities are thought to be caused by liquid crystal thickness variations, fringes from the 
LCLV readout cover glass, and spherical curvature due to imperfect photoconductor flatness [21]. 
The magnification in our system was increased to nearly 1.5 X to make the best use of a uniform 
area of the LCLV. The LCLV resolution limit and optical system PSF are modeled together as a 
Gaussian blur that impacts the optical distance computation according to 

^ = fc(i,j)*(a;jt5 + :cJ*j)> 

where the * symbol denotes a convolution and h(i,j) is an n X n Gaussian convolution kernel. In our 
system the Gaussian kernel width is measured to be a^ — 0.85 pixels of the centers SLM (labeled 
fj in Figure 3.1) which can be adequately modeled with a 3x3 pixel kernel. 

The second optical system error is the beam intensity ratio between LEGS 1 and 2 shown in 
Figure 3.1. The impact of this light intensity ratio on the optical distance computation can be 
expressed as 

tJ=ß1(xJt)) + ß2(x]¥J), 

where /3i//?2 is the leg intensity ratio. We make use of a polarizing beam-splitter to direct or- 
thogonally polarized light into each of the two legs in order to minimize interference fringes at 
the summing beam-splitter. Placing a wave plate before the polarizing beam-splitter allows us to 
adjust the leg intensity ratio by rotating the wave plate. 

4.2    Optical System Software Model 

Using our computer model of the optical system together with the measured system noise param- 
eters shown in Table 4.1 we generate a set of simulated optical testing set distances. As in the 
last chapter we again use the center widths and interconnect weights computed off-line from the 
software RBF neural network to test the system, this time using the simulated optical distances 
instead of the actual optical distances.   Our testing recognition result is 29.0% which agrees well 
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Figure 4.3: Image of the readout side of the LCLV depicting nonuniformities (slightly out of focus). 
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Class Optical Model 
(Correct out of 30) 

0 0 0 
1 0 0 
2 0 0 
3 4 1 
4 30 30 

5 28 28 

6 5 2 

7 26 26 

8 0 0 

9 0 0 

Total 93 87 

Overall recognition 31.0% 29.0% 

Table 4.2: Performance comparison between optical RBF classifier and modeled optical RBF clas- 

sifier. 

with the recognition rate of 31.0% obtained with the actual optically computed data. The class- 
wise performance comparison between the model predictions and the optical system is shown in 
Table 4.2. This result suggests that we can now accurately predict the system performance of our 
optical hardware RBF neural network using our computer model. Furthermore, the model allows 
us to simulate other system operating points from which we can deduce which noise terms are 
most critical for the overall system performance. These issues will be pursued further in the next 

chapter. 
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ADAPTIVE OPTICAL RBF 
NEURAL NETWORK 

As we have seen in the last two chapters our optical hardware network performance greatly suffers 
due to errors in distance computation caused by optical system imperfections and noise. We 
expect that by training our optical system in the presence of these imperfections, the network will 
compensate for these errors and its performance will more closely match that of the software RBF 
network. In this chapter we consider an adaptive postprocessor[15] and present computer model 
comparisons between adaptive and non-adaptive RBF classifier systems. 

5.1    Adaptive Postprocessor 

By modifying the non-adaptive single-output postprocessor chip design presented in Section 3.2 we 
can incorporate error feedback in order to implement on-line network training. Using the electronic 
module shown in Figure 5.1 we can directly implement the gradient descent update Equations (2.4) 
and (2.5). In addition to error feedback for each module we also require accumulation registers for 
adapting both the RBF widths and weights in an iterative fashion. As in the non-adaptive case we 
need to have ten arrays, each consisting of 198 modules for the optical fully-parallel implementation 
of the digit recognition RBF network shown in Figure 2.1. 

5.2    Influences of Noise on System Performance 

Using a computer model of the optical Euclidean distance computation subsystem and its ability 
to include the effects of optical system error sources, we have studied the effects of these errors 
on the optical RBF system's recognition performance. Optical systems that use adaptive or "on- 
line" training to compensate for these errors can be compared with an optical systems that are 
trained "off-line" in order to estimate the utility of adaptive training in this application. We now 
present computer model performance comparisons between the adaptive and non-adaptive hardware 
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Figure 5.1: Adaptive RBF postprocessing chip module. 
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systems. Two performance plots are provided for each of the error sources found to be most critical 
in our system. The first plot assumes the optical system to be ideal (error free) except for the error 
under consideration. The second plot predicts the influence of the error given all other parameters 
are fixed at their values as measured from the optical system and as shown in Table 4.1. Each plot 
shows two performance curves, the solid line indicates the system testing performance when trained 
in the presence of the imperfection (adaptive on-line training) and the dashed line shows the testing 
results when trained off-line as in the non-adaptive case. The measured system operating points 

are indicated in each plot by a vertical line. 

Figure 5.2 shows the predicted system testing recognition rate as a function of the imaging 
axis beam profile and Figure 5.3 shows the result for the collimating axis case. As expected the 
performance in both cases degrades with an increasingly nommiform beam profile. It can also 
be observed that the 'on-line' training significantly improves the performance as compared to the 
'off-line' training. Although the imaging axis error effects all of the centers by the same degree it 
will reduce a portion of the system's discrimination ability if the pixels on the edge of the SLM are 
not of sufficient intensity to transmit through the LCLV. The effect of the collimating beam error 
has more influence on system performance since it effects each center location vector to a different 
degree. It can be shown that the digit classes with centers near the outer edges of the SLM are more 
likely to be misclassified (e.g. see Table 3.1), attesting to the spa/tial dependence of the centers. 
While it may be possible to use this a priori information to design a more robust sequence of the 
centers, it is more desirable to correct the beam profile using increased beam-expansion, diffractive 
optic elements, or holograms. The predicted system performance in the presence of only the LCLV 
read-out beam profile is shown in Figure 5.4. The read-out profile is shown to have little impact 

on the system performance. 

Figure 5.5 shows the predicted system testing recognition rate versus finite SLM contrast. The 
system performance does not degrade appreciably until the SLM contrast Cr. falls below 1.0. This 
differs from the results of previous systems[15] in which finite SLM contrast was found to be a 

dominant error source. 

The predicted results of the leg intensity ratio are presented in Figure 5.6. It is interesting to 
note that in the ideal system case shown in Figure 5.6a the adaptive training fails to outperform 

the non-adaptive system. 

5.3    Adaptive Optical RBF Neural Network Results 

We now use the adaptive system model and the measured noise parameter values from the experi- 
mental optical system in Table 4.1 to make predictions about the adaptive system performance. The 
model predicts an overall testing recognition rate of 94.7% when trained on-line. Using the actual 
optically computed testing distances together with the on-line learning gives a final recognition rate 
of 92.67%. Table 5.1 shows the class-wise recognition performance corresponding to these results. 
Using a confusion matrix we can analyze the network misclassifications of the testing set data. 

Table 5.2 presents the confusion matrix for the actual adaptive optical network. We observe that 
the '2's are misclassified as '3's and '6's and the '5's are misclassified as '8's and '3's. These results 
suggest that adding more centers to the classes of '2's and '5's may improve the network's classifi- 
cation abilities. Again the model is in good agreement with the experimental system performance 
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Figure 5.2: Predicted recognition rate versus imaging axis beam profile, a) Otherwise ideal system. 
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Figure 5.5:   Predicted recognition rate versus finite SLM contrast,   a) Otherwise ideal system, 
b) Incorporating all error sources. 
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Figure 5.6: Predicted recognition rate versus leg intensity ratio, a) Otherwise ideal system, b) In- 
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Class Optical      Model 
(Correct out of 30) 

0 30 29 
1 30 30 
2 22 23 
3 28 28 
4 30 30 
5 21 26 
6 27 28 
7 30 30 
8 30 30 
9 30 30 

Total 278 284 

Overall recognition 92.67% 94.67% 

Table 5.1: Performance comparison between adaptive optical RBF classifier and the modeled adap- 
tive optical RBF classifier. 

illustrating the utility of the computer model predictions. The adaptive optical system provides us 
with nearly 60% increase in recognition performance as compared to the non-adaptive optical RBF 
classifier, attesting to the significant improvement imparted by adaptive on-line training. 

26 



Input Class 
Network Output Classification 

(Number of outputs in each class) 
0 1 2 3 4 5 6 7 8 9 

0 30 0 0 0 0 0 0 0 0 0 

1 0 30 0 0 0 0 0 0 0 0 

2 0 0 22 5 0 0 3 0 0 0 

3 0 0 0 28 0 1 1 0 0 0 
4 0 0 0 0 30 0 0 0 0 0 

5 0 0 0 2 0 21 1 0 5 1 

6 0 0 0 0 1 0 27 0 2 0 
7 0 0 0 0 0 0 0 30 0 0 

8 0 0 0 0 0 0 0 0 30 0 

9 0 0 0 0 0 0 0 0 0 30 

Table 5.2: Confusion matrix for adaptive optical RBF network. 
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6 

CONCLUSIONS AND FUTURE 
WORK 

We have demonstrated a spatially multiplexed parallel optical system capable of implementing a 
RBF classifier. The system was trained using 600 handwritten digits 0-9, and tested on a disjoint 
set of 300 digits. The optical system computes the Euclidean distances between a 100 bit input 
vector and 198 centers in parallel. Our experimental results show that training the RBF network 
in the presence of optical imperfections and noise versus training the network 'off-line' can improve 
the testing recognition rate by nearly 60%. When the network is trained 'off-line' and then tested 
on data from the optical system its recognition rate is 31.0% which agrees well with our computer 
model's prediction of 29.0%. The testing performance improves considerably when the network is 
trained 'on-line', using data from the optical system. The experimental recognition rate of 92.67% 
agrees well with our model's prediction of 94.67% for the adaptive case. In order to implement a 
real-time system it is necessary to replace the film masks with dynamic SLMs and to design and 
fabricate an electronic adaptive postprocessor. The primary error source in our system arose from 
the LCLV used for contrast-reversal. The use of an alternative device is recommended for higher 
performance and reliability. 

One future area of research will be to extend the adaptive optical radial basis function neural 
network classifier to permit analog and complex-valued input signals. Many signal and image 
processing applications are best approached by analyzing the inherently complex-valued frequency- 
domain data. Recent studies have shown that complex-domain neural networks out-perform real- 
domain neural networks in applications that require the processing of frequency-domain or phase- 
plane data[22, 13]. One particular application of this proposed complex-input system is radar 
direction finding. 

A new antenna beamforming approach 'neural beamforming', has been developed at Rome 
Laboratory by researchers Major Jeffrey Simmers and Dr. Hugh Southall of RL/ERAS and Terry 
O'Donnell from the ARCON Corporation [23, 24, 25, 26]. Their goal is to design neural processing 
algorithms that can adapt to low cost phased-array antennas, even if the antennas behave in a 
nonlinear manner, are imperfectly manufactured, or become degraded after some period of time. 
Neural beamforming techniques can decrease antenna manufacturing and maintenance costs and 
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increase mission time and performance between repair actions.  Their work has focused on signal 
detection and direction finding for single and multiple sources (targets). 

The group has presented two neural beamformers, both based on RBF neural networks. Al- 
though other neural network paradigms have been previously considered the RBF approaches pro- 
vide the best overall performance. Both an adaptive RBF (ARBF) network and a linear algebra 
RBF (LINNET) network training algorithm have been employed in the beamforming application. 
Most of their work has centered around the adaptive RBF neural beamformer that uses a training 
procedure similar to one used for our adaptive optical system. The input to the neural beamformer 
consists of complex-valued data from the output of a 32 element phased-array antenna. It should be 
noted that it is desirable to perform that direction finding at MHz data rates and military phased 
array antennas typically have between 200 and 1000 antenna elements. These data processing rates 
are not attainable with current or near-term sequential computer hardware systems. The group is 
now beginning to search for parallel processing hardware in order to meet this signal processing 
demand. An analog adaptive optical RBF classifier system may present a viable solution to this 
large, real-time problem. 
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