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Problem Statement 

This research project has involved studying methods for Synthesis and Simulation 
of robotic motions. The emphasis has been on the development of a scientific foundation 
for design synthesis as well as computer graphics based high performance simulation for 
multi-degree of freedom motions in general and robotic systems and components in 
particular. 

Background 

Military applications of robot manipulators are usually different from the 
commercial manufacturing applications in that robots are used in the unstructured field 
operations where there is a need for long reach, redundant degrees of freedom, high 
payloads and on site calibration and targeting. Commercially available robots are usually 
designed for the more structured manufacturing applications and therefore are not 
suitable for such field operations. Military robots are therefore custom designed for each 
application. This means that there is a need for a set of scientific design and planning 
tools that can be used in the initial design and the subsequent field testing of military 
robots. This research deals with development of scientific fundamentals that can provide 
the foundation for the development of such tools. 

Summary of Results 

The main results of this research has been published (or is being published) in the 
technical literature. A summary of these publications is provided in the next section. 
Here, we provide a summary of some of the main results. 

The work performed under this project can be divided into two parts: one dealing 
with issues associated with motion synthesis meaning design synthesis of robotic 
motions, sub-components, and systems and one dealing with high performance computer 
graphics simulation of robotic and general multi-degree-of-freedom motions. Several 
results have been derived and development in each of these broad areas that have not only 
extended the state of knowledge in robotics and mechanical system design but have also 
provided impact in other areas such as computer graphics and computational geometry. 
Each of these two parts are described in separate sub-sections below. 

Results in Design Synthesis 
In the area of design synthesis we have published seven technical papers (Papers 1- 

7 in the next section). We have developed a general computational geometric structure 
for mechanical motion synthesis that can be used to design mechanical linkages (see 
publication No. 1). Since spherical linkages can be used to model robotic wrists, we have 
applied this technique to the design of spherical linkages representing robotic wrists 
mechanisms. 

In the case of redundant manipulators, we have developed a set of kinematics 
design criterion that can be used to generate singularity free motion trajectories. 
Kinematic design arrangements have been studied for redundant manipulators that would 
produce singularity free trajectories within the workspace. Redundant manipulators have 
extra degrees of freedom that can be used in reaching around objects or in avoiding 
singularities. These manipulators are specially useful in Army applications involving, 
for example, camouflage painting of Army vehicles or in rapid repair of Army facilities. 
In the past there exists very little knowledge on how to globally design such manipulators 
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to assure that singularity free trajectories will exist for any set of path requirements within 
the workspace of the manipulator. In this research an approach based on Lie algebra is 
used and the kinematic problem for a redundant robot is formulated as a control problem. 
This problem is then used to define a set of kinematic design criterion that can be used to 
check suitability of a design for singularity avoidance. The results are summarized in 
publication No. 2. 

Another, general set of results in design synthesis has dealt with motion design for 
instantaneous performance. A powerful tool used in instantaneous kinematic design is 
the set of so-called "instantaneous invariants". These quantities are used to either study 
differential properties of motions or to design for certain differential kinematic 
performance. The problem for applying instantaneous invariants to three dimensional 
linkages such as robot manipulators is that their derivation is based on the use of the so- 
called canonical coordinate system which is difficult to derive for spatial linkages. In this 
research we have developed a method for the derivation of instantaneous invariants which 
are independent of the use of canonical coordinate system. This is described in 
publication No. 3. 

In terms of more specialized research in design synthesis, our emphasis in this work 
has been on the design of drive systems and their components for robotic systems. 
Several applications of robotic for military field operations require design of specialized 
drive systems. This includes for example design and development of specialized 
automatic weapon loading systems. Here we have developed a set of scientific 
techniques for design and sizing of the drive system of robot manipulators including the 
joint actuators and ball screw type drive mechanisms. 

In this area, we have developed a method for sizing the joint actuators of a robot 
manipulator. The problem is formulated as an optimization problem where the actuators 
are selected to achieve a desired dynamic load carrying capacity of the manipulator over 
an entire trajectory. Worst case trajectories in the robot workspace are then used to 
generalize the results to joint actuator selection over the entire robot workspace. 
Appropriate constraints are included in the problem formulation to prevent actuators from 
being overloaded and to limit their sizes. The results are summarized in publication No. 
4. 

In most robotic systems, electric actuators are usually coupled with some form of 
geared transmission mechanism. There has been some previous work on gearing systems 
but very little work exist in understanding of ball screw mechanisms which are also 
commonly used in several robotic systems. These mechanisms are also used in other one 
or two degree of freedom automation systems used by the US Army such as the tilt table 
ammunition loading system. We have developed the basic kinematic model of the ball 
screw mechanism and have shown that much of the existing results in the literature are 
based on false assumptions. We have also included in our model the effect of contact 
deformation and have identified the pattern of sliding lines of contact for wear and finite 
element analyses. We have used the results of our kinematic analysis to develop methods 
for design and efficiency analysis of such mechanisms. The work developed under this 
project represents the first comprehensive and mathematically correct treatment of the 
subject. The results are summarized in two separate publications No. 5 and 6. 

Since every drive system for a robot manipulator has to use some sort of a ball 
bearing, this research has also looked into some aspects of the analysis of the high speed 
thrust Ball Bearings. A method is developed for design of Ball Bearings that would 
results in optimum contact angle and minimum friction. The method is specially useful 
for high speed applications and is described in detail in publication No. 7. 

Results in High Performance Computer Graphics Simulation 
In the area of simulation of robotic motions, this research has made several 

fundamental contributions in both kinematics and dynamics simulation as well as in the 
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area of calibration and referencing for simulation purposes. The results in addition to 
their applications in robotics are considered as fundamental contributions to the fields of 
Computer Aided Geometric Design, Computer Graphics, Kinematics and Dynamics. 

IN the area of kinematic simulation of robotic motions, a scientific foundation is 
developed for motion interpolation based on the use of a kinematic mapping for spatial 
kinematics. Both analytical (publication No. 8) as well as discrete computational 
geometric methods (publication No. 9) are developed for design of Bezier type motions 
that can interpolate a series of control configurations of an end-effector. In robotics, 
generation of Cartesian trajectories requires interpolation of specified target 
configurations of the end-effector. In computer simulation of large mechanical systems, 
generation of tightly spaced displacements of a moving body along its trajectory may not 
be cost effective. Instead, a series of displacements are generated using the dynamic 
equations of motion and then the in-between displacements can be constructed using 
appropriate motion inteprolants. In computer graphics, motion interpolation is a 
fundamental problem in animation. In this research we have development the first very 
fundamental analysis of the motion interpolation problem (publications No. 8 and 9) and 
for the first time have developed a completely coordinate independent method for 
interpolation of rotations (publications No. 10 and 11). We have also been able to 
develop the first generation of the so-called Bezier curves in nonlinear or curved spaces 
of manifolds of rigid body motion (publications No. 10 and 11). In dealing with 
simulation of robotic motions, the kinematic inteprolation techniques developed would 
allow smooth animation of robot motions without the need for solving the differential 
equations of motions at all display sampling intervals. This results in a simulation 
capability that would require much less computer power as the more traditional 
approaches. 

Any CAD (Computer Aided Design) based robotic simulation system requires some 
level of calibration capability before it can be utilized for military field applications. As 
part of this research, a method is developed for field calibration and targeting of robot 
manipulators. The calibration approach would allow a robot to use targets in a site to 
reference itself to its operational field environment. The algorithm developed uses 
Clifford algebra to exploit the geometry of the CAD model and uniquely assigns a body 
fixed coordinate system to the computer model of the object. This is important in 
World Model calibration for off-line robot programming and simulation (see 
publication No. 12) where the computer model has to update its object models 
automatically from sensor measurements. The results, in addition to their robotic 
applications, can also be useful in artillery aiming and target acquisition problems in 
smart Weapon systems. In addition, we have studied the mechanics of automatic 
targeting using different sensor arrangements and have developed a method for 
reconstructing object or target locations based on redundant sensor measurements of 
different geometric features (see publication No. 13). Although the problem lends itself 
to a non-linear least squares problem, we have been able to develop a formulation that 
reduces the problem into a linear problem suitable for fast computations. The results, in 
addition to their application in calibration of robotic and mechanical system simulation 
software packages have applications in automatic targeting for smart weapon systems. 

The method, in a specialized form, has been tested by a specialized medical 
instrument manufacturer (Accuray in Silicon Valley, California) for a robotic system 
for Stereolaxic Radiosurgery. The results have been promising and has the potential in 
improving the accuracy of their system and reducing the calibration requirements for 
their device. 

Al 1 of the work described so far in this section has dealt with kinematic simulation. 
In the area of dynamic simulation, our activities have focused on development of 
methods for the formulation of dynamical equations of motion for computational 
purposes and dynamic interpolation of motion trajectories. In terms of formulation of 
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equations of motion for dynamical systems, we have developed a method that would 
result in first order decoupled equations of motion for multi body mechanical systems. 
Such equations can then be more easily integrated resulting in the computational 
performance needed for high performance computer graphic simulation. The results 
developed apply to not only robotic systems but also to the more general class of 
mechanical systems with multiple degrees of freedom, and made of multiple bodies. 
The decoupling method involves an algorithm for selecting the generalized coordinates 
used to define the configuration of a dynamical system. This choice of the so-called 
generalized coordinates guarantee that the resulting dynamical equations of motion 
become decoupled in the highest derivative terms. The algorithm uses congruency 
transformation and constraint relaxation to achieve the first order decoupling of the 
resulting equations of motion. In the case of the more complex dynamical systems 
where the appropriate congruency transformation may be difficult to obtain, a method is 
developed based on the use of orthogonal complements that still achieves the needed 
computational efficiency. The results have been used to simulate the dynamic 
equations of motion for a robotic system on a moving base. This is the kind of robotic 
system useful in Army field applications where a robot for ammunition loading for 
example can be mounted on the back of an Army truck. The work is published in 
publication No. 14. 

In the area of dynamic interpolation, a method is developed for generation of 
dynamic equations of motion that interpolates two end positions of an end-effector. 
The problem is formulated as a two pointy boundary value problem and is solved using 
a numerical method. The results are summarized in publication No. 15 and have 
applications again in robotic system simulation and computer graphics animation of 
rigid body motion. 
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Preface 

This volume contains a selection of papers presented at the 13th World Congress on 
Computation and Applied Mathematics. This Congress was organized by IMACS in Dublin 
Ireland on July 22-26, 1991. The best papers in the areas of artificial intelligence, expert 
systems, and symbolic computing were selected along with applications to scientific com- 
puting. About one-third of the papers presented in these areas at the World Congress were 
selected. 

These 48 papers provide an excellent overview of the dynamic state of these closely related 
fields. We foresee that scientific computation will involve symbolic and artificial intelligence 
tools more and more as these software systems become more and more sophisticated. The 
future systems of computational science and engineering will be problem solving environ- 
ments created with components from numerical analysis, computational geometry, symbolic 
computing, and artificial intelligence. The historical separation.of these fields will gradually 
blur as they come together to create the high level, natural systems of the future. 

We thank Georgia Connaroe and Connie Wilson for their excellent help in organizing 
the correspondence for the papers in this book. We also thank Robert Vichnevetsky for his 
encouragement to us in editing this volume. 

Elias N. Houstis and Johii R. Rice 

i 
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lern mo the problem of geometric curve design problem. This is made possible using a 
geometric mapping introduced by Ravani and Roth (1984). The mapping transforms a 
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dual Euler parameters X = {Xi,X2,X3,Xi) and —X = (—Xlt — X2, —X3, —X4) (see Ge 
and Ravani 1991) where 

Xi = slsin(§/2), 
X2 = s2sm(§/2), 
X3 = s3sm(§/2), U 

X, = cos (0/2). 

The symbol """ denotes numbers of the form ö = a + ea°, called dual numbers, where 
e has the property e2 = 0. The dual numbers J{ = s< + es° (i = 1,2,3) are Pliicker line 
coordinates representing the screw axis; the dual number 6 = 9 + ed is the dual angle 
representing the amount of a screw displacement. The sine and cosine functions of a dual 
angle are defined as 

sin(0/2) = sin(0/2) + e(d/2) cos(0/2), 
cos(0/2) = cos(0/2) - e(d/2)sin(0/2). 

More details on dual numbers, Pliicker coordinates and dual Euler parameters can be 
found in Bottema and Roth (1979). 

The dual Euler parameters (1) can also be written in the form of Xi = Xi + eXf, 
i = 1,2,3,4, where 

Xl = s1sm(9/2), 
X2 = s2sm(9/2), 
X3 = s3sm(e/2), w 

X4 = cos(Ö/2) 

and 
X° = si {d/2) cos(ö/2) + s\ sin(ö/2), 
X° = s2{d/2) cos(ö/2) + s% sin(ö/2), 
X° = s3{d/2) cos(ö/2) + s°3 sin(fl/2), 
Aj = -(d/2)sin(ff/2). 

The parameters X = (XL^IXS,^) are the Euler parameters of a rotation and the 
parameters X° = (X°, X°, X3, X°) represents a translation after the rotation X. 

Study (1891) used the dual Euler parameters in the form of (X, X°) and developed a 
geometric representation for a spatial displacement in terms of Study vectors which repre- 
sent oriented lines in a space of four dimensions called the Soma space. A recent account 
of the Study vectors can be found in Bottema and Roth (1979). Ravani and Roth (1984) 
used the dual Euler parameters in the form of (1) as a set of four homogeneous coordi- 
nates to define a geometric mapping of displacements into points of a three dimensional 
projective space with a dual metric called the image space. Thus a one-degree-of-freedom 
mechanical motion is mapped into an image space curve; and a two-degree-of-freedom 
motion is mapped into a two dimensional surface in the image space. They then solved 
the linkage dimensional synthesis problem by a curve-fitting procedure for an algebraic 
curve. 

Ge and Ravani (1991) made the geometric mapping of Ravani and Roth orientable 
by considering the signed dual Euler parameters as the signed homogeneous coordinates 
of an image point. Instead of identifying the points X and z£»X (where w = w + ew° is 
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a nonpure dual number) completely, Ge and Ravani distinguished them according to the 
sign otw. They are considered to be identical if w > 0; and they are two antipodal points 
if w < 0. Two antipodal points are two distinct points occupying the same position in the 
image space but with "opposite orientations", namely "forward" and "backward". In this 
way a general displacement, which can be performed either by a forward or a backward 
screw displacement, corresponds not to one image point but two antipodal points. The 
image space consists of such antipodal points is called the oriented image space. It is a 
double covering of the original image space. 

The introduction of orientation into the image space makes it possible to unambigu- 
ously define the distance between two image points, and the directed line joining from one 
point to another. Let X = {XuX7)X3tXA) and Y = {YU%,Y3,Y4) denote two oriented 
points. The distance between them is the dual angle ä = a + d (where 0 < a < ir) 
obtained from: 

XY 
COS Ct = —= :: 3  HI 

(X-X)1/2(Y-Y)1/2' w 

where the inner product, X • Y = XXY{ + XiY2 + X3% + XAY<t is a signed dual number. 

The norm of X is y X • X and X js said to have normalized coordinates when X • X = 1. 
The line joining from X to Y is given by the wedge product X A Y. The symbol 

"A" denotes the vector wedge product which generalizes to higher dimensions the vector 
cross product, see Flanders (1963). The components of X A Y are the signed Plücker 
coordinates of a line; Here the sign is significant because -X A Y = Y A X represents 
a line joining from Y to X. They define two coincident but oppositely oriented lines. 
Similarly, the orientations of a plane defined by three oriented points and a tetrahedron 
defined by four points can also be unambiguously defined. 

3      INTERPOLATING ROTATIONS 

Recent works on rotation interpolation that are related to our approach are Shoemake 
(1985, 1987), Duff (1986), and Pletinckx (1989). They developed subdivision methods for 
interpolating rotations using unit quaternions. Ge and Ravani (1991) built on their works 
and developed analytical methods for interpolating general displacements (including both 
rotations and translations) with higher order continuities. This section applies the re- 
sults in Ge and Ravani (1991) to Hermite interpolation of rotations which correspond to 
spherical motions. 

Given two distinct orientations of an object in space together with two instantaneous 
rotation axes at these orientations, a cubic parametric motion can be designed using 
Hermite interpolation. Essential to Hermite interpolation is the ability to define the 
"tangent direction" of an orientation. In this paper, we define the tangent direction using 
the notion of absolute polarity since the image space is a projective three space with an 
elliptic metric. Let an orientation be represented by an image point X = (Xx, X2, X3, X4) 
where Xi (i = 1,2,3,4) are given by (2). Its tangent direction is then denned by a point X' 
on the polar plane of X with respect to the absolution fi = XX = 0, that is X' is defined 
such that X' • X = 0. Let p = {px,P2,p3) denote the coordinates of the instantaneous 
axis at the orientation X. Then the corresponding polar point X' = (X[, X2, X^, X4) is 
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given by 
rx;i "   0 -P2 P2      Pi ' rXi 

xi P3 0 "Pi     P2 x2 
X'z -P2 Pi 0       P3 x3 

[x'A . -V\ -P2 -P3      0   J [x< 
(4) 

The skewsymmetry of the matrix in (4) results in X' • X = 0 for an arbitrary p. Readers 
are referred to Coxeter (1961) for more explanations on the absolute polarity of the elliptic 
geometry. 

We now turn to the Hermite interpolation of orientations. Let Xi and.X2 denote 
the coordinates of the image points for two given orientations, respectively. In order for 
the interpolation to be unique, these coordinates are required to satisfy Xj • Xi = 1, 

and X[ ■ X2 > 0.   Geometrically, this means that the coordinates are X2 • X2 = 1, .       . _ ..  _/i   ^ ^^ 
normalized and the angular distance between Xi and X2 is less than z/2. Let pi and 
p2 denote, respectively, the coordinates of two given instantaneous axes. Then the two 
corresponding points X\ and X2 polar to Xi and X2, respectively, with respect to fi = 0, 
are can be obtained using (4). The image curve for the cubic motion that starts from 
the orientation X, with the initial instantaneous axis Pi and ends at the orientation X2 

with the final instantaneous axis p2 is obtained by the following Hermite interpolation 

P(t) = {tU2tl}{Mh w2X'2 

. w2X2 

i = [0,l] 

where [Mh] is the Hermite basis matrix: 

[M„] = 

2      11-2 
-3   -2   -1      3 

0      10      0 
10      0      0 

(5) 

The Hermite cubic image curve in normalized coordinates is given by 

X(i) = P(t)/w(t) 

where w(t) is the norm of P(i). The weighting factors wi: v/{ (i = 1,2) provides additional 
adjustments to the shape of the cubic curve. 

In this manner an analytic spherical motion can be designed using Hermite interpola- 
tion based on specifications of a set of discrete orientations together with an instantaneous 
axis at each orientation. The resulting piecewise Hermite interpolation is automatically 
C1 continuous. Using the differential geometry of the image space (McCarthy and Ravani 
1986), the instantaneous poles can be chosen such that the interpolated motion possess 
higher order continuities (Ge and Ravani 1991). 

This approach is not restricted to Hermite interpolation. Other forms of interpolation 
can also be utilized. For example, rather than specifying two displacements together with 
two instantaneous poles, four displacements can be specified and interpolated using B&ier 
interpolation. Ge and Ravani (1991) developed a general mathematical framework for 
designing parametric motions by generalizing techniques in the field of CAGD. 
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Figure 1: A spherical kite linkage 

I 

4      SPHERICAL KITE MOTION 

The spherical kite linkage is a spherical four bar mechanism with two pairs of neighboring 
links having the same angular length, see Figure 1. Let the angular length of each link be 
denoted by 7 for the ground link, 77 for the coupler and pu p2 for the two cranks. In this 
paper it is assumed that 7 = Pl and r? = p2. The kite linkage has two folding positions, 
the left and the right. 

It is known in the theory of kinematic mapping that the image curve for the coupler 
motion of a spherical kite linkage consists of a line and a cubic curve, see Ge and McCarthy 
(1991) They correspond to two "modes" of the coupler motion: the line represents the 
continuous rotation of the coupler about a fixed pivot; and the cubic represents the cubic 
rotational motion of the coupler. The line and the cubic intersect at two points which 
correspond to the left and right folding positions. 

To derive the constraint equations needed for the design of a kite linkage, we consider 
the coupler 77 to be the link common to the two two-link open chains on the left and on 
the right. We assume the fixed and moving pivots of the linkage to lie on a unit sphere 
and we attach a moving frame M to the coupler and a fixed frame F to the ground. 

• Let the unit vectors u, = (tü.t/i.wO (* = 1,2) define the positions of two fixed pivots 
in F, and m, = (nu.rn.lO (* = 1.2) define the positions of two moving pivots in M. 
Let X = (Xi, Xi, X3, Xi) denote the coordinates of the image point for a rotation of the 
coupler link. Then the coupler as the link common to the two open chains is constrained 
by the following two equations quadratic in X: 

Q,  : XT[Q;]X = 0,    i = l,2 (6) 



199 

where the coefficient matrices [Q<) (: = 1,2) are given by 

• TUiUi - Tli Vi-liWi- COS Pi UiUi + TTliVi 
TUUi + TUiVi -nUUi + TUVi-liWi-COSPi 

$<1 = liUi+rriiWi Uvi+TiiWi 
mwi-hvi liUi-rmwi^ (7) 

liUi + TTliWi TliWi-liVi 

Uvi+riiWi liUi-nuvJi 
-miUi-ruvi + liWi-cospi TTUVi-riiUi 

rmvi-TiiUi rmui+niVi+liWi-cospi. 

The set of image points X satisfying (6) are said to define a quadric surface in the image 
JL see Ravanfand Roth (1984). The quadric surface^can be^^^ J 
a rieht circular real hyperboloid of one sheet (Ge and McCarthy 1991). Ihe size ot 
the hyperboläd is determined by the crank length *; the position of the hyperboloid is 
HptPrmined bv the locations of the fixed and moving pivots m and m*. 
^ TS int^tiL of the two hyperboloids defined by-equations(6) I. *££*£% 
of a general four-bar motion. It is a quartic curve of the first kind (A quartic curve or 
1 sfcond Wad lies only on one quadric), see Snyder and Sisam (1941)   The probkm o 

This s L to the ?wo special conditions among its link dim« 7 = p, and , - ft 
These conditions result in the following relationships among the design vanablea. 

COSPi = TXiU2 + ViV2 + WiVJ2, (8) 

cospi = m\mi +nin2 + l\k- 

Therefore the shape and location of the two hyperboloids and thus their intersection 
L"ei deter^inePd by eight independent variables from the unit ^^-^^ 

m, The substitution of (8) into (7) results in the ^^«JT^^Ä 

cut?Ä as K(X; u.u.m.m,). The problem of dimensional synthesis fo^a h 
linkage is then reduced to that of selecting the umt vectors u,  m, (. - 1,2) such 
J^(X;u1,u2,m1,m2) approximates the image curve of a desired motion. 

5      DESIGN SYNTHESIS OF A KITE LINKAGE 

Traditionally a desired motion is specified by a set of discrete positions so that the 
£tuJ[coupler moL may best guide through them. This specification, however does 
n^t havTmuch global control over the coupler motion. In this section we apply the 
Henn^e iSetolation method for design of an analytic cubic motiom We then us^u 

• analytic motion as a desired motion and use a curve fitting procedure to design the hntoge 
paramete"    We have chosen the kite spherical four-bar linkage since its unage curve is 
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a cubic curve and the Hermite interpolation method that we have developed is also for 
cubic curves. In theory, the results can be generalized to any linkage, for example, by 
using Bezier , B-spline or Cardinal spline approximation/interpolation. 

We start the specification of a desired motion by a set of image points representing 
discrete positions. We then design a cubic curve of desired shape by piecewise Hermite 
interpolation of these points. The resulting polar points at each given point is then used 
as additional design specifications for the desired coupler motion. 

Let Yj (i = 1,2, ■ • •, n) denote a set of image points representing desired orientations, 
and let Yj denote the polar points representing the desired tangent directions. Then the 
problem of designing a kite linkage is to choose the unit vectors m, ua, ml( and m2 such 
that at least one measure of the approximation error of Y* and YJ from the twisted cubic 
K{X; uj, u2, mi, m2) is minimized. 

Ravani and Roth (1983) defined the approximation error at a desired image point as 
the normal deviation of the point from the actual image curve and developed a normal 
curve-fitting technique for motion approximation. In what follows we modify the approxi- 
mation error defined by Ravani and Roth to include the prescribed tangent requirements. 

Let Xi X'- denote, respectively, a point of the twisted cubic K and its polar point 
with respect tö K. Let AX< = X - Y; and AX; = XJ - Y{ denote the deviation vectors 
where Y< and Yj' are the desired image point and its polar point. The normal deviation 
defined by Ravani and Roth (1983) satisfy the following linear equation: 

{A}AXi = q< (9) 

vhere 

[A} = 
2YTIQ 
2Yf{Q 

2YT 

and _ 
qi = [-YT[Qi]Yi -YflQJiYiOf. 

Eq (9) is a linear approximation of K near the desired image point Y<. 
The polar point X< of X with respect to the cubic K is defined by the four dimensional 

UnitVeCt0n „,      -([W A [Q2]XAX) (10)        i 
A ~|*ÜQi]XA[Q2]XAX)f 

The symbol "*" denotes the star operator for multivectors which transforms, in this case, 
a multivector of rank 3 into a vector, see Flanders (1963). The symbol | • | denote the        J 
Euclidean norm of a vector. By substituting X\ = Yj + AXJ and X = Y + AX into ;. 
(10), we expand (10) about the polar point Yj at Y;. This yields, after discarding higher 
order terms involving AX; and AX$, 

\[Ql}Y^{Q2}Yi^X0V{YAQi)YA{Q2]^Xi)V({Q2}YiAYiA[Q1}^Xi)+CAX!i = p.,        ] 

where ■; 
Pi = CY;-*([C?,]YiA[QalYiAYi) j 
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and 
C = r([Q,]YJA[Q2]YiAYi)|. 

Eq.(ll) which approximates the specified polar point can also be rewritten as 

[BjAXi + CAX'; = Pi. (12) 

Eq.(9) together with (12) is a system of seven linear equations with eight unknowns. 
The minimum norm solution, (AX?, AX'*), of this system is the one that minimizes the 
following Lagrangian function: 

L = AXf AX; + AX'fAX'i + A[([A]AX - q) + A^([5]AX; + C&K - Pi), 

where A, and A2 are vectors of Lagrange's multipliers. The approximation error function 
at each point Y< that includes both orientation and tangent requirements is thus denned 

a = AX*rAX* + AX';TAX'*. 

The total error is obtained by summing over all points Y{ (i = 1,2,      ,n): 

E = £(AX'rAX' + AX'fAX'*). 

Standard routines for nonlinear least squares optimization can then be applied to obtain 
the design parameters u;, m< (i = 1,2). 

CONCLUSIONS 

This paper demonstrated that methods from continuous computational geometry can be 
used with the aid of an orientable kinematic mapping for mechanical motion synthesis. 
The initial ideas presented form the basis for more research that would bring together 
the fields of computational geometry and kinematic design. 
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A Kinematic Design Criterion for 
Singularity-Avoidance in Redundant Manipulators 
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Abstract 

In this paper, we study a set of conditions that de- 
fines a kinematic design criterion for a redundant robotic 
manipulator in order that it :can generate singularity-free 
trajectories. The design criterion is enforced on a scalar 
function on the joint space that is positive everywhere 
except at «ingnlur configurations where it vanishes, and 
a normal vector function that lifts the paths away from 
the: singular configurations. A theorem is stated specify- 
ing'the design criterion on the functions and is proved for 
a general m degree of freedom robot inran n dimensional 
space. The conditions are global in the sense that when 
diese conditions are met for a given robot, any path in 
its workspace can be generated avoiding singularities. An 
example is presented that demonstrates how to identify 
the functions to evaluate a design. 

Keywords: Redundant Robot Manipulators, Design of 
Robots, Singularities, Singularity-Free Control, Kine- 
matic Control. 

1    Introduction 

The control of redundant manipulators has become a popular 
topic of research'in the field of robotics. Redundant robot ma- 
nipulators have been considered the solutions, to the problems 
of trajectory planning which is often plagued by singularities in 
case of nonredundant robots. The idea is that the available ex- 
tra degrees of freedom can be used to avoid singularities. In this 
paper, we develop a kinematic criterion to evaluate the design 
of a robot in a global sense in terms of its ability to generate 
singularity-free'paths.- - '"'-•.•"■ 

Past research is robotics has focussed in'developing'algo- 
rithms' to avoid singularities for redundant robots: Whitney 
(1969) first: proposed resolving: redundancies in • robots" using 
pseudoinverse techniques which were extended by many re- 
searchers'such as Klein and Huang (1983)rKlein(1984)VHoller- 
bach and Suh (1985). In particular, Yoshikawa (1984, 85) de- 
fines a 'manipulability index* based on the jacobian of the robot. 
This index vanishes at the singularities and assumes large values 
away from them. By maximizing the mainpulability index at 
every point of the trajectory,'his algorithm keeps the robot as 
far as possible from the singular configurations. Long and Paul 
(1992) develop an algorithm that treats the redundant robot 
as a nonredundant robot by locking the extra joints. When 
the equivalent nonredundant robot reaches its singular config- 
urations, the extra degrees-of-freedom are used to move away 
from the singularities in an algorithmic fashion. In both these 

. cases, the singularity-avoidance is guaranteed locally if there 
exists such a path. However, there is no a priori information 
on the existence or nonexistence of such paths, nor there is any 
singularity-avoidance in a global sense. In this, paper, we focus 
our attention to the conditions that identify robot designs that 
can always provide singularity-free movements. We show that in 
our general and global treatment of the problem, we encompass 
Yo8hikawa's result as well. 

A designer's approach to avoiding singularities is to design 
a singularity-free robot. There have been many attempts in the 
past in designing robots with minimum number of singularities. 
Soon it became, obvious that singularity-free workspaces are 
nonexistant in nonredundant, as well as redundant robots (which 
is proved using topological arguments by Gottlieb 1986, and fol- 
lowed by Wampler 1987,89, and Baker and Wampler 1987,88). 
However, one can expect that certain designs -have the capa- 
bility of avoiding singularities for.any path in the workspace. 
This paper presents conditions that would allow testing a kine- 
matic design-to.seeif it, has the capability to produce, globally, 
singularity-freetrajectories;;^...   .. ... ., 

In what follows'^ we first •formulate.the .'.problem of inverse 
kinematics'of a. general m'degree of freedom robot as a control 
problem in the velocity domain. Then we present the functions 
that play the key role in our result followed by some examples 
on how to choose these functions. A theorem is then stated 
and proved that enumerates the conditions these functions have 
to meet that guarantees the existence of nonsingular paths. A 
second theorem follows as a modification of the first theorem to 
ease the computational aspects. Finally, we consider the exam- 
ple of a'four jointed spherical wrist "(considered by Yoshikawa 
1984, 85. and Long and Paul 1992, Long et al 1992) and evalute 
its design using our "kinematic design criterion. 

2    The Inverse Kinematics,Problem 

A robot manipulator consisits of several rigid bodies connected 
by various types of joints. Several representations have been 
developed in.Jhe robotics literature to represent, the inter- 
connections of these rigid bodies, and; the: relationship of the 
endjeffector tothebase of .the robot. One of them seemed to 
have emerged, as more popular as well as geometric, .4 x4 ma- 
trices using the. Denaint-Hartenberg parameters...We,use this 
representation in. what follows, nowever, the theory is very gen- 
eral, and independent of the representation scheme. ... 

Let .us consider a robot with m degrees of freedom. Each 
degree of freedom denotes the capability of one degree of free- 
dom joint. In general, each joint can either be revolute or pris- 
matic. If there are r revolute joints and p prismatic joints 
where m = p + r, and the joint variables are denoted by 
5,-,t = 1,2,...,m, then the 4 x 4 transformation matrix that 
defines the location and orientation of the end-effector to the 
frame is given by the kinematic equation: 

T = Tl(9lyr2(92)--Tm(?m) (i) 

where T; is a 4 X 4 transformation matrix describing the kine- 
matic relationship between the tth link and its next one, the 
(»' + l)th. Its actual form depends on the geometry of the robot, 
and is given by 

Ti = 

cos ßi -sin ff; cos et; sin 0,-sin a; a,-cos0; 
sin Bi     cos $i cos a,- — cos $,- sin a,- a,- sin 0; 

0             since; cos a,-              4 
0                0 0                  1 

.   (2) 



Figure 1: 
robot. 
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Denavit-Hartenberg parameters associated with a 

where oi,cti are the link parameters, and <2,-,0t- are the joint 
parameters, together known as Denavit-Hartenberg Parameters 
(Figure 1 shows these parameters). The degree of freedom a; 
will be equal to 0; if the »th1 joint is revolute, or to d, if.-it is 
prismatic. ■"■'-   •"- 

Hie matrix T defines'the; location and-orientation' of the 
end-effector of the robot with respect to itr base, that is, it in- 
volves a 3 x 3 rotation matrix, and a translation vector:1 There- 
fore, this matrix, in general, spaas the "space of three dimen- 
sional displacements, known' as -Euclidean Group'£(3), which is 
a composition of the group bf rotations 50(3) and the group of 
translations T(3), therefore' : 

£(3) = 50(3) x T(3). (3) 

This group of spatial displacements can be parameterized by 
six independent parameters, typically by three angles of rota- 
tion about independent.axes and three translation parameters, 
and hence represent a 6-dimensional manifold, known as config- 
uration manifold of E(S),or'inthis case configuration manifold 
of the end-effector. The functions that define .the displacement 
matrix are infinitely differentiable with respect to the parame- 
ters, therefore the manifold is smooth. 

A set that is both a.'group and a smooth inanifold on which 
composition and inversion appear as smooth maps is a Lie 
group:: The configuration manifold of the end^effector is a group 
and a'smooth manifold, moreover, the composition and inver- 
sion are defined in terms of the matrix'multiplication and ma- 
trix inversion as smooth maps, hence*'it forms a' compact Lie 
group1; see ^Samuel etlal;(l991):for'möre';detaas. Tb'be'gen- 
eräl arid to include the cases'of planar," spherical, -arid spatial 
robots, we "note that the configuration^mamfold'can be: of any 
dimension',' riot' necessarily !at"6. Lei'the anVn^urätibn manifold 
be n-dimensic5al and be'denoted by JV. rSmflariy^ the joint 
space forms an m-dimenaonal manifold denoted by/Af, also a 
compact'Iie group.     '"' ' "■''  ■'   ■'   • '   ,   i ■■-  ■ ■ . 

\'Therefore'^ the'kinemaiic" equations (Eq'. 1) a a mapping 
from Af to N, or"symbolically, ' 

ST = /(x) • (4) 

where y denotes the position of the end-effector, and x denotes 
the values of the joint degrees of freedom. The mapping /, 
known as forward kinematics, relates the joint variables to the 
end-effector position, and its inverse f~l, inverse kinematics, 
maps the position of the end-effector to the joint variables. As 
is very well-known in the robotics literature,'the forward kine- 
matics is single-valued, whereas the inverse kinematics is not, 
due to the non-linearity of the equations, therefore, f : M -> N 
is an onto mapping. 

We differentiate Eq. (4) with respect to time t to obtain 

where the Q denotes the derivative with respect to t and d/|x — 
df/dx. Note that now we have transformed the problem into 
the velocity domain, that is, the mapping d/|x relates the points 
in the tangent space TM of the joint space to the tangent space 
TN of the configuration space of the end-effector, d/l* : TAf -» 
TN. 

Both Eqs. (4) and (5) represent the inverse kinematics prob- 
lem. Given a path in y(t) in the configuration space, the goal 
of inverse kinematics problem is to find x(t) for all t. However, 
at some locations, the mapping / becomes singular, that is (y) 
may not be in the image of d/ as it is not of full rank at sin- 
gularities. Our goal is to find x(t) such that it does not pass 
through any of the singularities. 

Therefore, we state the problem of inverse kinematics as 
follows: 
Given y(t) € N, find x(t) = /-1(y(0) 6 Af \ S for all t, where 
M \ S is the joint space excluding the singular configurations 5 
defined as 

S = {x € M | rank (d/|r) < n}. 

3    Inverse Kinematics as'-'a..Control.Prob- 
lem 

We transform the above mentioned inverse kinematics problem 
into a control problem which eventually yields,the design cri- 
terion we.have been looking for. Moreover, this approach also 
results in a. control that avoids singularities, though the topic of 
this paper is just to present the design criterion.     - 

We first define three functions that are needed in the follow- 
ing theory: 

1. a scalar function or a parameter p : M -* [0,oo) with 
p(x) = 0 if and only if x € S; 

2. a vector lifting function A : (Af \ S) x TN -* TM such 
that 

(a) \(x(t),y(t)) is a right-invariant vector field on Af, 
and .•.;.'=;■.• 

0>) . 
(6) d/lx^y))^»]/«;    ; 

3. B(t):[0,co)->TAf such thai:" !     ;: 

(a) B(t) is a right-invariant vector field on- Af, and - 
(b) ■■;■....> \:...-  .■■■■■        -r.:<... 

'JB(t)U(ij ekertd/l^«,); '     (7) 

The right-invariance of the vector fields, A and i? is not nec- 
essary. for. the proofs of the theoremS;presented in this.paper. 
However, they. are. useful in, developing'-the actual .control that 
tracks singularity-free trajectories, which is the subject of a'fu- 
ture paper.. |   ■ ;7j> ..,•;...   -'-.•■   .:■;-.-  <-\.'*'-r;f-<*'   -.-:/.-!■.'-■■>•.•■:.•'■'.■ 

.. The inverse kinematics problem is to be able to identify x(t) 
at every instant, therefore,.x(t) can be,expressed as :    . .. 

iW = A(I(0,?(<))^B(0, ,(») 

y = d/U (5) 

Substituing for'x from, this equation in the right hand side of 
Eq. (5), we see that 

d/|xx(t) = d/UA(x(t), y(t)) + d/UB(t) 

which can be simplified using the definitions of the functions 
(Eqs. 6 and  7) to 

d/|rx(t) = y(t) + 0. 

Therefore, the solution x(t) of the differential equation (8) is in 
fact the solution of the inverse kinematics problem specified in 
Eq. (5). 

Our goal in solving the inverse kinematics problem is to find 
the control B(t) such that the solution x(t) 6 Af \ 5 starting 
from x(0) = /_1(y(0)) for all t. 



Examples of Choice of p and A 

Example 1: Define 

P(z) 
A(*,j) 

Sit) 

det(J(I)Jr(I)), 

6(0(/-J+J)g, 

where/+ = •TT(7JT)~1 and Jis the jacobian of the robot. Note 
that the scalar function p is zero only when x 6 S and otherwise 
is positive. The vector function A satisfies its properties as well. 
This, as a matter of fact, is Yoshikawa's algorithm. 
Example 2: The following gives a more computationally effi- 
cient method of finding p and A: 

• define p(x) = |i/z| where cx is the smallest eigenvalue of 

* define A by solving the equation d/|t(A(z,y)) = y by sin- 
gular value decomposition. 

p is now only continuous, not smooth. A is the same as 
before, but .however this definition does not require the compu- 
tation of the matrix, j+, and is defined even when z € S. 

4    Conditions    for    the    Existence    of 
Singularity-Eree Paths 

The following theorem lists the conditons on-the existence of 
singularity-free paths for a given design of robot:. 

Theorem 1 Let f : M -> N, p : M -+ [0, oo), and A as before, 
and assume that f satisfies the following three conditions: 

1. a > 0; 

S. there is an integer y. such, that roM(y) = y. for y € N; 

3. there is an open neighborhood W of the identity element of 
M such that for any yeN and any x € M, the translate 
xW of W intersects M(y) in at most one point; 

where c and M(y) are defined by 

&:
~}2H{  

rap   p(W 

and 
.Mv) ==-{*erl(v)IK*) =,.. sup p(f)},;.... 

for each y € N, and where To(Af(v)) is the number of path 
com'ponants'oftheset:M{y). .-■.'■ ••'.,' i* Wrn''. ■ 

Let y: [0,co) -► TN'be a i^iinuiow fuhc^iMJJ1ten^ given 
any t > 0, 'there'is a control vector B(t) 'such thai'if^io is 
in M(f(xi)) then the solution to Eq. (8} satisfies p{x(t)) > 
(l-()o-,forallt.     '■ 

... The first,of the conditions is a necessary condition for the 
existence of.a singularity-free solution, or will be strictly greater 
than .0 if and only if, for every y €..Af, /"'(y).contains points 
lying outside the sigular set S, as at the singularities p is iden- 
tically equal to zero as per its definition. The second condition 
requires that the number of maximal points of p restricted to 
/-1(y) be constant for all y € JV. This number is the number 
of paths available as the nonsingular paths. Finally, the third 
condition guarantees that these different nonsingular paths are 
nonintersecting which guarantees that there is tubular range 
around each of these paths that are nonsingular. 

When all these conditions are met, the theorem states that 
starting from x0 € f~l(yo) one can follow a path arbitraily 
close to p(i) =" <7 for all y € N. A brief proof is presented in 
the Appendix A (see Sardis 1988 for a more rigorous proof). 

Note that when a robot satisfies these conditions for any 
arbitrary choice of the functions p and A, the robot is guaranteed 
to follow any trajectory in its workspace avoiding singularities. 

Figure 2: Schematic of a four jointed spherical wrist. 

Therefore, these conditions can be considered as the criterion to 
evaluate the design of an existing robot or as the design criterion 
to be used, in the process of designing a new robot. 

In practice, the hypotheses of Theorem 1 are too.restrictive 
for typical real robots; they can, however, be relaxed somewhat 
as we show in the following Theorem. 

Theorem 2 Suppose M = Afi U Mj with p constant on Mi and 
f(Mi) contained in a submanifold of N of dimension at most 
(m-S). Write Ni = J(M\). Define o as before and assume 

1. o- > 0; 

2. r0M(y) = p for all y € N\; 

S. there is an open neighborhood W of the idenitity element 
of M such that for any y 6 Ni and x e M, the translate 
xW of W intersects M(y) in at most one point. 

Then, given jr(t) and e > 0, rAere is a control vector B(t) such 
that ifx0 € M(f(x)), the solution to Eq. (8) satisfies p(z(t)) > 
(1 - f)orfor all t. 

Notice that this theorem is a slight modification of the earlier 
one. The second and third conditions deal with only part of the 
configuration manifold of the end-effector instead of the.whole 
manifold, that is, jVt instead of N. This is possible because the 
parameter p is constant on Mi. ■ We. do not present the proof 
for.this theorem in this paper, however it is similar to the proof 
of Theorem 1. The following examples demonstrate how this 
theorem can be used.. -•■,.-. 

5    An Example 

Figure 2 shows a four jointed spherical wrist. Note that the 
four axes intersect at one point which is known as the wrist 
center point (WCP). Therefore, the last link (the end-effector) 
only rotates (does hot' translate) with respect to the first link 
(the base). The configuration manifold is hence 50(3) and is 
of 3 dimensions. The transformation that denotes the position 
of the end-effector relative to the base is given by 

V   = 
cos öi    - sin 0i   0 ' 1       0 0 
sinfli     cos 0i     0 0    cos 02 - sin 02 

0            0        1 0   sin 02 COS 02 

cos S3    0   sin 03 COS 0< -sin 04   0 
0        1      0 sin 04 COS 04       0 

- sin 03   0   cos 03 0 0        1 
(9) 

The right hand side of the above equation denotes the mapping 
/ : M — N where x = (01,02,03,04). 

We now need to define the parameter p, it has to be positive 
valued everywhere in M except at the singularities where it 



vanishes.  Singularities occur for this robot when two pairs of 
joint axes line up, that is when TN loses its rank from 3 to 2. 

We will use a different parameter than those given by earlier 
examples. Choose unit vectors 01,03,03, and 04 parallel to the 
joints of the wrist, and define 

p(x) - maxflo, x o3|,|<jj x a,|; (10) 

where a,-,t = 1,2,3,4 are funcitions of x. Note that this ex- 
pression becomes zero only when 01 is parallel to 03 and 02 to 
04, otherwise it is equal to the maximum of the absolute values 
of the sines of the angles between the two pairs of the axes. 
This is the same condition for the singularities as the four axes 
becoming coplanar. 

For a given y and a value of 0j, the inverse kinematics prob- 
lem yields two solutions, analogous to elbow-up and elbow-down 
configurations of a three link manipulator. Therefore, as we vary 
Si .through its range, the inverse kinematics solution of the four 
degree of freedom spherical wrist are obtained as two curves in 
the joint space, both parameterized by o\. These are also known 
as fibers associated with the mapping /-1 : N — M. Note 
that p(x) attains maximum when the angles between ai,o3, and 
oj,04"be<xime±^,' which implies that:<7 -1; Henffi, the func- 
tion p(x) remains constant and equal tb'l'if oi is parallel to 04, 
and otherwise attains four local maxima on each fiber.' ' 

Now, if y is an orientation "having-oj parallel to'04 then 
p{f~1(y)) is constant and non-zero, therefore we can "define 

M*   =   ix I 01 * 04 - 0}, 
Mi   =   M\lMi.'." \ .-.y-t-r: ■ 

It can be seen that p has a constant value 1 on all of Af2, and 
/(Af2) has the dimension 1 as it is the set of all rotations about 
O! or 04. 

ix = T0M(y) is the number of local maxima for all y 6 Ni 
which is four on each of the two fibers, that is p = 8. Finally, if 
we define 

W = {* I l*i| < 45M«2| < 90°} 

the third condition of Thereom 2 is satisfied as well. There- 
fore, according to Theorem,2, given any smooth trajectory y(t), 
we can track y(i) by a-continuous change of configuration x(t) 
which will keep p(x) arbitraily close to 1, that isj the wrist will 
never encounter j..singular:configuration.-r  ■ .,•. *...-...,,.;.- 

6 ' Conclusion 

In this papery.we have formulated the inverse kinematics probr 
lem in a controls setting.- In this'setting,'our goal is to inves- 
tigate if the" redundant-'robot -can: track* any'trajectory-in its 
workspace avoiding the singularities:' Two theorems spedfy'the 
conditions that globally guarantee thV existence of such paths 
regardless of the pathof the end-effector under; consideration. 
We have also applied the theorems to the four^jomW'spherical 
wrist that has appearedJn the literature before.     : 

The existence of.the. control vector i?(i).is, guaranteed to 
avoid the sngularities.howeyer, we haven t determined the con- 
trol B(i) Äat actually guides the robot on the desired trajec- 
tory, This will be the topic of a future paper. 
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A    Proof of Theorem 1 

First we consider the following two Lemmas. 

Lemma 1 Suppose F is a smooth manifold, Xo(t),...,Xk(t) 
smooth vector fields em F, and assume that Xo\t),... ,Xk(t) 
span the tangent space TTF for all x € F and for all values 
of t. Let U be an open set in R" and let fa : U -> F be a 
continuous one-parameter family of open maps. Assume x0 € 
a\)(U). Then there are continuous control parameters uj(t) such 
that the solution to 

x   =   Xo(0 + «i(<)*i(<) + --- + «i(0-Xi(0 
x(0)   =   xo 

satisfies x(t) 6 6(17) for allt>0. 

Proof: Without loss of generality, X0(t) = 0 since'.the Xj 
span the tangent space of F. Take z€ U such that <A)(z) = x0 

and define a curve a(t) := fa{z). Then a(t) is a continuous 
curve, with a(t) 6 fa(U). Since fa(JJ) is open and fa{z) is 
continuous in t, a can be approximated by a smooth curve x(t) 
with x(0) = x0 and z(t) e fa(U). Define Ui(t) := X,-(t)(z(t)); 
then i(t) = E«i(t )*<(*), since X{ span^F. 

The connection between Lemma 1 and Theorem 1 is given 
by the following Lemmaand Definition. . ...,'<-. 

Lemma 2 for any S > 0 there is an open neighborhood V of 1 
in M, such that for any x in M and any'z € xV, \p\x) -p(z)\ < 
^■- ..-■■•:;. 

•"'-" Proof: First, for every z € Af take a neighbornooc? Wx of 1 
with \p(x) -p(z)| < S/2 whenever z e.x(Wty; thisis possible 
once p is a continouous function. Then {xWx}x€ifis an open 
cover of Id, and M is compact; so there is a finite"subcover 
{x1Wu...,xkWk}. Define V := WiC]...C\Wk: Now take an 
x in Af and a point z in xV. x € XjWj for some j; and so 
z € {xjWj)V < x^Wif. Then 

b(x) -p(z) < lp(i) -p(xj)| + |p(*i) -p(z)| < S/2 + S/2 = 6. 

Let / : M -> N and A be as before with 7 a smooth path in 
N. Pick a time t € [0,00) and let F be a subset of /"'(t). 

Assume.that F does not contain any singular points. Let 
It be a subinterval of (0,oo) containing t. Then if /< is small 
enough, for any x € F we can lift f[Tt] to a path 

7x(0)   =   x • .-,:■■ 

This gives a map f.Fx/,-* Af by ^(x,«) = %(s). Denote 
the image of if> by Tt. 

Definition 1 Tt is said to be a tubular' interval about F (with 
respect to f,\, andi)if$: F x It — M is a homeomorphism. 
"-•;;"<.•;--■■■'■•-   ■■•••■.■..:';■"     ---^ i-'i?" .V-. .- v *£* ■:•.' 

■Proof of Theorem 1: It is sufficient to prove the result for 
tin, anVarbitrary compact interval {0,ir].; -f i" r > ■;■ >■ -'"'U' 

'■■-■ -•■.iet.'J&S {(*,<);! <i6|Ü,T]^xeAf(y(t)j,:that^^4tfccset 
of all maximal points of p(x) in the.fibera, oyer;y in-the, space 
M k [0,r]. K is a closed set. Define projj : Af'.x [Q^r] ^[0,rj 
by projection. 

Suppose-^,- is a connected component of K; by the third con- 
dition of the theorem, proj2 is one-to-one on Ki, since [J^.'xU 
covers K{: Also, Ki is closed since K is. So projj gives a p-'fold 
cover of [O.fby closed sets.: ^r 

Now let Ko be the componant of if-containing the point 
(x0,0); we want to show that proj2(ür0) is all of [0,r]. So, 
suppose that proj2(ür0) = [0, r0] for some T0 < r. Define Kt to 
be the union of all other path componants of K containing a 
point in /~1('b)a:{ro}. But then 

•Ri   :=   proj2(ür0) 

R2   •■-   proj2(ür\ür,)\(r0,r) 

are disjoint closed sets whose union is all of [0,'r]; so since [0,r] 
is connected, proj2(ÜT0) is all of [0,r]. 

Now, since proj2(JT0) = [0,r] we can define a continuous 
function a : [0,r] -* Af by the relation (a(t),t) € K0 for t € 
[0,r]. 



We now define a set U and collections of smooth manifolds 
Fi and open maps <j>\ : U -» Fi, and apply Lemma 1. 

First, by Lemma 2, choose a neighborhood V of 1 in M such 
that for any i € M, \p(x) — p(z)| < crt whenever z € xV. In 
particular, if z 6 a(f )V for any t then 

J>0O   >   ?(«('))-«' 
>     <7-«T 

=     (I-«)»- 

Let U be an open set with 1 6 f and the closure of {7 contained 
in V. 

For every t 6 [0,*] choose an open interval It 

containing t such that /( defines a tubular interval T< 
about a(j)Vn/"l(y(0)> with J, sufficiently small that 
a(*)^n/"l(v(*)) is in T, for all a € It- Then /, is an 
open cover of the compact interval [0,r; take a finite sub cover 
In,Ia,~-,Itk, with 0 = to < <i ••• < <t = T. 

Define fi := a(«,)^H/-1 (yfr)) for i = 0,1,...,*. Also, 
define 4>\: U -* Ft for t € [t,-,t,+i] by #(to) := #(a(:)u>) where 
S,(t): T,; - /_1(y(0) by projection in T«, for t € [U,U+i]. 

For t € [ti,ti+i] define Xo(t) on Fi to be the projection of 
dj,(A). Pick vector fields Xi,...,.X* spanning Fi. 

Now define z(t) := j,-(t»)i(l); then z(t) is a function with 
image lying in Fi for t € [t,,<i+i]. By Lemma 1 there are scalaras 
«i,..., a* such that the solution to i = Xo + ]£ U.-.X,- lies inside 
#(tf) for all : € M.+i]. Define B(t) 6 TWO^D/"1^))) 
by ^ S(t) := dSi(t)£>X,). 

Then the solution z(l) to the equation i(t) = A(z(i), y(t ))+£(*) 
satisfies ff,(x(t)) € #(P) for all t € [:;,t;+i], or equivalently, 

x(t) e a(t)a 

for all t e [i;,ii+i]. Thus 

for all t € [t,-,ti+i]. Since this can be done for each t" = 
0,1,...,k, we have p(x(t)) > (1 - e)o for aU t. 
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Coordinate System Independent 
Form of Instantaneous Invariants 
in Spatial Kinematics 
This paper presents explicit equations for the instantaneous invariants of spatial 
kinematics that are coordinate systems independent. This eliminates the need for 
laborious coordinate transformations necessary in the determination of the canonical 
coordinate systems. It provides for a direct method for the calculation of instan- 
taneous invariants based on information specifying the rigid body motion in any 
arbitrary task coordinate systems. Explicit equations are presented for instantaneous 
invariants up to the third order for spatial and spherical motions.and up to the 
fourth order for planar motions. The results provide for a useful tool in design and 
analysis of mechanisms and motions based on instantaneous invariants. Examples 
are presented to illustrate the theory. 

Introduction 
Instantaneous invariants and canonical coordinate systems, 

since their introduction by Bottema (1961) and Veldkamp (1967 
and 1976), have become a powerful tool in differential kine- 
matic analysis and synthesis. Roth and Yang (1977) and Gupta 
(1978), among others, have applied them to analysis and syn- 
thesis of planar mechanisms.. Kirson and Yang (1978) as well 
as McCarthy and Roth (1982), Nayark and Roth (1981) have 
extended the concept of instantaneous invariants and canonical 
coordinate systems to a study of spatial rigid body motions 
and mechanisms. A detailed account of the concept of in- 
stantaneous invariants and the canonical coordinate systems 
for planar, spherical and spatial motions can be found in 
Bottema and Roth (1979). In robotics literature, Stanisic and 
Pennock (1986) have applied the concept to the study of dif- 
ferential motions of robot manipulators. 

All existing work on determination of instantaneous invar- 
iants require the use of the so-called canonical coordinate sys- 
tems. This usually involves tedious coordinate transformations 
necessary to represent the specified quantities in the canonical 
coordinate systems. In this paper, we present concise expres- 
sions for the instantaneous invariants using an arbitrary set of 
moving and fixed coordinate systems. This eliminates the need 
for the computations associated with the use of the canonical 
coordinate systems. The derivations are based upon the concept 
of kinematic mapping introduced by Ravani and Roth (1984). 
A rigid body motion,1 specified in any coordinate system, can 
be mapped into an image curve in the space of the mapping. 

In this work we are only considering single degree of freedom motions. 
Contributed by the Mechanisms Committee and presented at the Design Tech- 

nical Conference, Chicago, IL, Sept. 16-19, 1990, of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS. Manuscript received March 1990. 

The mapping is defined such that the intrinsic properties of 
the image curve are invariant with respect to coordinate trans- 
formations. This property then enables us to calculate the 
instantaneous invariants directly from the intrinsic properties 
of the resulting image curve. Although the intrinsic properties 
of an image curve can be used to characterize the corresponding 
rigid body motion instantaneously (see McCarthy and Ravani, 
1986), the use of the instantaneous invariants has been (at least 
up to the present) more familiar to kinematicians. This is why 
we are presenting the explicit expressions for the instantaneous 
invariants. The main contribution of this work is therefore in 
providing a set of explicit expressions for computations of the 
instantaneous invariants of a given rigid body motion without 
the need for the use of the canonical coordinate systems. This 
is useful for design and analysis of mechanisms as well as 
comparing rigid body motions. Expressions are presented for 
the instantaneous invariants of spatial and spherical kinematics 

' up to the third order and for the planar motions up to the 
fourth order. Numerical examples are used to illustrate the 
results. 

The organization of the paper is as follows: first, we give a 
very brief overview of kinematic mapping and derive the gov- 
erning equations in terms of the 3 x 3 duai matrix represen- 
tation of spatial displacements. We then derive the differential 
properties of the image curve of a motion in terms of the 
differential values of the elements of the 3 x 3 dual matrix 
representation of spatial displacements. This enables us, in a 
subsequent section, to directly arrive at the expressions for the 
dual instantaneous invariants (up to the third order) that are 
independent of the canonical coordinate systems. We then 
provide two examples, an epicyclic hypoid gear train and a 
RCCC mechanism, to illustrate the theory for spatial motions. 
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The spherical results can fall directly from our spatial results 
using the principle of transference (Kotelnikov, 1895, and 
Study, 1903). We have therefore eliminated any further dis- 
cussions for spherical motions. In the case of planar motions, 
we specialize the mapping and develop the results with the 
same detail as in the general spatial case. Since the mathematics 
is less tedious in this case, we develop the instantaneous in- 
variants up to the fourth order and use a numerical example 
for illustrative purpose. 

R = 

*i 

X2 

*3 

xt 

4*4 

7i-o? 

4*4 

4*» 

-Väi+fti + 73+l 

(4) 

Notations 
A dual number is denoted by an angle symbol on top of a 

letter. For example, ß = b + e 6 in which b and_o are referred 
to, respectively, as the real part and dual part of j§. The symbol 
6 designates the dual unit with the property e2 = 0. In the 
study of instantaneous kinematics we are interested in the 
motion of a rigid body at a particular instant, referred to as 
the zero-position (Veldkamp, 1967). The order of the time 
derivative of functions evaluated at zero position (t = 0), is 
denoted by the last subscript. For example R2 = R(0) = [*I2, 
*22, *32. *42]T, fe = K(0), «21 = ä2(0), etc. The value spec- 
ified in canonical system is denoted by a tilde symbol under 
a letter such as &23- 

Kinematic Mapping 
According to Chasles theorem, the displacement of a rigid 

body can be uniquely described by rotating a dual angle £ 
about a screw axis S = (Sx, S„ Sz). The rigid body displacement 
can then be mapped into a point in the dual image space E 
(see Ravani and Roth, 1984). The coordinates of the point are 
defined by 

R= (*i,*2>*}>*4) 

-(< 
S^Sin | .S^Sin | .SjSin - ,Cos -1 (I) 

Consider a rigid body in continuous motion in Euclidean 
space. In such a case, the screw axis S and the dual angle <j> 
are functions of time t. Equation (1) will then represent a dual 
curve in terms of the real parameter t in the dual image space 
£. We refer to the image curve R(t) as a dual image curve in 
the dual image space E. 

Let 9TC be an arbitrary chosen coordinate system attached 
to the moving body and SF be a system fixed in Euclidean space. 
The transformation from 311 to JF, which describes the rigid 
body motion, may be expressed as a dual matrix (Veldkamp, 
1976) 

Differential Properties of Image Curves 
In this section we review the differential properties of an 

image curve which are independent of the coordinate systems 
in Euclidean space. These geometric quantities are then used 
to derive the explicit expressions of the instantaneous invar- 
iants. The formal proof of the independent coordinate prop- 
erties of the kinematic mapping is given m Ravani and Roth 
(1984). For a description of the differential geometry of the 
image space, readers may refer to McCarthy and Ravani (1986) 
and McCarthy (1986 and 1987). 

Using prime to denote differentiation with respect to the 
dual arc-length q, we may write the Frenet formulas for the 
base frame (T, N, B, E) as    . 

A= 
«1   ßl 7i 

&2     ßl 72 

&i     & 73 

(2) 

where the dual-elements are continuous functions of the real 
parameter t. 

Using Rodrigues formula, we may show that the dual angle 
4> and the screw axis S = (Sxx Sy, Sz) may be expressed as the 
elements of the dual matrix Ä: 

cos<^(a!+.ft+73-n, s,=^&-72),    -(3) 

S'   2Sin£ 
(7i-ä3), 

1 
2Sin<*> 

(Ö2-&) 

rt'i 
N' 
B' 

= 

.£'. 

K 

0 
— T 

0 

0 -1' f 
f 0 N 
0 0 B 
0 o. .E 

(5) 

With the aid of Eq. (5), we obtain the derivatives of the image 
curve R with respect to t, namely: 

Substituting Eq. (3) into Eq. (1), we have the parametric 
form of the image curve~R(t) written in terms of the elements 
of the dual matrix Ä: 

R = E 

R=yf 

iU^T+tfrcN-^E (6) 

R = [v- (1 + 22)i53Tt + (3vvk + &K)N + V^KTB- "ivvt. 

where dot denotes differentiation with respect to the parameter 
dR 

t and v = q = 
dt 

From Eq. (6) we observe that the dual functions v, K and 
r characterize the differential geometry of R(t). Using the no- 
tations 

dnR 
dtn R(0) = Ro,   -rr = R„ 

1 = 0 

v(0) = vo dtn = vn etc. 
t = 0 

We may write the Taylor expansion of the column vector R(t) 
at a reference point (t = 0) as 

.     .       -  t2    -  t3 

R(t) = Ro + Rit + R2-+R3 g+ --- 

Using Eq. (6) the above equation may be written as 

'&2-&0O + K0)] 

- 3&0&1 

The above equation is an intrinsic representation of the 
image curve up to the third order. The values of ß0> öi» $2, *o> 
f0, KI in the above equation can be written in terms of the dot 
and the wedge products of Rj(j = 0, 1, 2, 3), namely 

0 i>o i>i 

0 0 t>0*0 t2 

+ r + —+ 
0 0 0 2 

1 0 -2 
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&o = (R.-R,)' 

R,.R2 
t>,=- 

vo 

Vl = 
Ri»R3 + R;»R2   (R,«R2)2 

"o el 
„     [(RIAR2AR0)'(RIAR^ARO)]

1 

*o = ^ =  

(8) 

.    det(Ri,R2,R3,Ro) 

VOKQ 

„     (RiAR2ARo).(RiAR3ARo)    , t5,_ 
"l= ZTZ 3 —K0 

where 

(R1AR2AR0)m.(RI AR3ARo)Ä = MTuMw + M234M234 

+M^nMla+MT2M124 

M?jk = 
XA x* Xk\ 

Xa XA Xia 
Xg) XjoXieo 

and M"jk= 

Xn Xn Xk\ 
xB xfl Xki 

Xß Xjo X/cO 

are the 

minors of the matrix [Ri,_R2, Ro]r and matrix [R,, R3, Ro]7" 
respectively, and det (R,, R2, R3, Ro) is the determinant of the 
matrix [R,, R2, R3, Ro]r. 

The detail of operations of wedge product in general form 
can be found in Flanders (1963) and McCarthy (1987). 

The values of R„ can be determined by differentiating Eq. 
(4) with respect to t and evaluating them at t = 0. We show 
the formulas for n = 0, 1, 2, 3, 4. 

Xn—-a-   I  , ~XtiXjo 
Xta \4 

Xa = -R 
1    (la 

2X*iXji — X^Xio 

Xa — ~zr I —     "iX^Xa — IXt/jXji — X^yXx)) 
A^o\4 ) 

v _  1  A« Xi4-xZ\~ 

(9) 

4A4iAffl — 6Ar42A,7—4X^yXn — Xt^X^ 1 

Xi\ =^~(&I 1+&I + 73l) 

0^1.40 

^« = ^-(a!3 + fe + 733-24X4Ä2) (10) 

-*"=U~ ("M +l§2< + 734-24^2-32^4,^43) 

Determination of Instantaneous Invariants 
The dual matrices B„ of the canonical systems in spatial 

kinematics were derived by Kirson and Yang (1978). They are 
the transformation matrices between the moving and fixed 
canonical systems. 

lo= 
1    0   0 
0   1    0 
0   0    1 

Si = 
0 -221 0 

221 0 0 
0 0 0 

(11) 

B2= 

83 = 

"221      -Ä22 0 

222 ~221      -$32 
0        £32        0 

(12) 

-3S2i&22 

223 

-£23 213 

-3S21222    -JI33 
• il3 + 3S2Ij§32 g33 0 

where a 2y ä2, S 23, £ 32, £ 33, •£ » are the dual instanta- 

neous invariants of a given spatial rigid body motion at the 
zero position and up to the third order. 
_ Substituting Eqs. (11) and (12) into (9) and (10), we have 
go = [0,0,0, lfand 

R.= 

r        1 -1 r 

0 2^32 

0 0 

1 _ 
2 221 

. §2 = 
1  . §3 = 

0 1  .2 

2 ^33 

1 .       3  .     s 
2 I»""  2210 32 

1 -      ^3   -3 2 223+7 «2i 

-^ 221222 

(13) 

where   i   =1,2, 3 and 

V2j=yij-öc3j, 

hj=äy-$\j 

j   =1,2,3,4 

and 
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Substituting the above R0, §1, R2 and R3 into Eq. (8), 

we have the dual instantaneous invariants in terms of functions 
ofR„ (n = 0,1,2,3) in an arbitrary pair of coordinate systems. 
These equations are: 

&2!=2(Sxä) 

2 22 = -;:— y\(xnXai 

(14) 

(15) 
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A 32 =-7- [(A4723)
2 + (A/2

m
M)

2 + Ww)2+ (JV/724)2]1/2     (16) 
a 

4 
3 23 = 

«21 
2_i XnXß + 2^i Xa SL-I5-!5   (17) 

s 2i   a 2i 

213 = 
S2ll 32 

■^11 -^21 -^31 -^41 

■^"l2 -^22 -^32 -^42 

•^13 -^23 -^33 -^43 

X\Q -^20 -^30 -^40 

+ 2« 2i £32     (18) 

16 
£ 33 = -rrs- (WmMia + Af^M^ 

2- 21 £ 32 

+ Mr34A?f34 + Mr24Af724)    (19) 

XA XA Xkl Xn x» Xk\ 

M?jk = Xa Xj7 Xki and Myic= Xa xß Xki 

XjQ Xjo Xko Xn XJO Xko 

Equations (14-19) show the expressions of dual instanta- 
neous invariants up to the third order for a given rigid body 
motion in an arbitrary coordinate system. It is clear that if the 
matrix Ä in Eq. (2) is given then R„ {n = 0, 1, 2, 3) can be 
calculated from Eqs. (9 and 10). The instantaneous invariants, 
up to the third order, can then be obtained directly from Eqs. 
(14-19).- 

For the case of a spherical motion, the image curve becomes 
a real image curve. The procedure to derive the expressions of 
instantaneous invariants for spherical motions can be obtained 
by removing the dual components as stated by the principle 
of Transference (Kotelnikov, 1895, and Study, 1903) and the 
results are as follows: 

£32=- 
1 

(M 
[(A/*23)2+ (MS4)2 

+ (MT34r+(MT24)
2]l/2   (20) 

3 2 det (RLR^Ra.Rp) 
2i3 = 2 £32 —       7-3— 

A M 
(MyzjM123 + M^gtMlM + M^yMw + Ml24M?24 ) 

£33= — 71/2 

8£ 32 ( 2j X,\ 

 372-    (22) / 4      V 

Numerical Examples 

Example 1. Figure 1 shows an epicyclic hypoid gear train 
consisting of a pair of meshing hypoid gears (fixed sun gears 
1, and planet gear 2) connected by a twisted rigid member 
(carrier 3). Determine the instantaneous invariants which char- 
acterize the geometric properties of the motion of the planet 
gear 2 up to the third order. 

As shown in Fig. 1, we use a moving coordinate system {b J 
which is attached to the planetary gear 2 and a coordinate 
system {f) fixed to the sun gear 1. The dimensions of the 
hypoid gear train is given by the dual angle 5 = 5 + 66 

2 
Planet gear 

Fig. 1    Epicyclic hypoid gear train 

between the two gear axes f3 and b 3. The line of contact of 
the two hypoid gears forms the dual angle f = f + e f with 
f3 and dual angle 7} = rj + e 17 with 63. 6 and <p are the constant 
angular velocities of the planet gear and the carrier, respec- 
tively. 

Sinf 
If the gear ratio 

Sin*/ 
= 2, 5 = 60 deg. + « 3, the zero 

Sinf 
(21)     position 60 = <po = 0, and the angular velocities <pj = „. . 

bmo 
0.37796 and 0, = 2 <p, (see Kirson, 1975, and Hsia, 1979). 
The dual matrix Ä defining (b) relative to (f) is 

A = 
C<p -S<p   0 

S<p c<t>   0 
0 0       1 

1 0 0 
0 cd -S5 
0 S5 C5 

C0 -se 0 
se ce 0 
0 0 1 

GpC0-S<pS0C6    -GpS0-S<pC0C3      S<pSS 

S<pC0 + CcpS0C5    -S<pS0 + GpC0C5    -GpS5 

S0S5 C0S5 C6 

(23) 

where C0 = Cos0, S<p =_Sin(p, etc. 
From the dual matrix Ä in Eq. (23) and the given data, we 

can calculate the R„ (n = 0, 1, 2, 3) from Eqs. (9 and 10). 
Substituting-the values of R„(n = 0, 1, 2, 3) into Eqs. (14- 
19), we obtain the instantaneous invariants of the planet gear 
as follows: 

&2i = l-« 0.74231 

2:2 = 0 

& 23 = -1.06122 + € 1.96931 

g 32 = 0.24744 + e 0.42861 

2l3 = 0.31813 + € 0.23622 

£33 = 0 

The above values are in agreement with those given in Kirson 
(1975) and Hsia (1979). 
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Flg. 2   RCCC mechanism 

Example 2. The RCCC mechanism (one revolute pair and 
three cylindrical pairs) is shown in Fig. 2. The dimensions of 
the links are specified by four constant dual angles a, j§, 7, 
and 6. The relative positions of the links are defined by four 
time dependent dual angles: £.(dual part is constant since the 
input member is a revolute pair), 9,77, and #. The angle <t> is 
the input and # the output of the mechanism. Determine the 
third order instantaneous invariants of the coupler link cor- 
responding to a given value of input angle <f>0. 

We choose the body system [ b} attached to the coupler link 
and the fixed system [f} attached to the frame as shown in 
Fig. 2. The displacement, velocity, and acceleration of the 
coupler link as functions of input angle 0 are derived in Hsia 
(1979). The numerical zero-position values of the dual param- 
eters are given as follows: 

5 = 30° +e2, 

§0 = 86.6° -e 2.9591 00 = 0. 

§,= -I.9917-e 2.3066 0! = 1.8155. 

62 = 0.05274 -He 11.8924 <fc = 0.2443.. 

§3=-7.51-e 13.77 tf>3 = 7.99. 

The dual matrix Ä defining {b} relative to {f} is 

A= 
Oj>    -S4>- 
S4>      C<f> 
0 0 

0 0 
C5 ~S§ 
S3 c§ 

ce -s§ 0 
sd c§   0 
0 0    1 

c<t>cd-s<t>sec6  -c<t>se-s<t>ceC8    s<t>S6 
stce+atseos  -s<t>si+c<t>cecl  -c<t>st 

S0S5 c§s3 c§ 
(24) 

From the dual matrix Ä in Eq. (24) and the given data, we 
can calculate the R„ (n = 0, 1, 2, 3) from Eqs. (9, 10). Sub- 
stituting the values of R„ (« = 0, 1, 2, 3) into Eqs. (14-19), 
we obtain the dual instantaneous invariants of the coupler link, 
up to the third order, as follows: 

S21 = l + e 4.58358 j§32= 1.83126 + e9.96317 

§22=-€ 5.21866 2i3 = 3-22836 + e 15.25479 

023 = 0.3954-6 10.0621    £33 = 0.37465-e 14.20382 

} 

(u,v) 

7 
0    -7-77-77-777-77 —x 

Fig. 3   Arbitrary fixed and moving coordinates ff and 3E 

The above results are verified by using different coordinate 
systems in describing the dual matrix Ä. 

Instantaneous Invariants for Planar Motion 

_ For the case of planar motions, the components of R(Ä'1, 
Äi) will become pure dual numbers. The determination of the 
explicit expressions for instantaneous invariants needs some 
special treatment. It means that we have to deal with the real 
part and the dual part of the curvature and the torsion sep- 
arately. Furthermore, the value of the det (R,, R2, R3, RQ) will 
vanish due to the existence of e2 term. The torsion of tie image 
curve is therefore obtained by a modified method. We describe 
the derivation of instantaneous invariants for planar motion 
as follows: 

Consider a plane M in continuous motion relative to a fixed 
plane F. Let us choose, arbitrarily, two coordinate systems; 
9TC (attached to.M) and 5 (fixed in F), as shown in Fig. 3. The 
transformation matrix of 311 relative to 5 is given by the matrix: 

Op -S<p   0 
Sip C<p ' 0 + 6 
0 0      1 

0 0 V 

0 0 — u 
— V u 0 

Op -Sv   0 
s* Op     0 
0 0       1 

Op -S<p ev 
S<p Op — eu 

e(uS<p-vOp)   e(uC*> + vS*>)      1 
(25) 

where d = [u, v, 0]T is the position vector of the origin of 3TC 
with respect to 5 and <p is the rotation angle of 9£ relative to 

We may express d as a function of the angle <p. Consider a 
planar motion given as functions of u(p) and v(^>) in an ar- 
bitrary chosen coordinate system up to the fourth order. 

1 
u(^) = u0 + u1^>+- U2<P +- u3<p ■+— U4<p4 + o(*>s) 

24 

1 
v(v) = v0 + vlV> + - v2<P + 2 v3Vi+— V4?4 + o(<«>5) 

where u,= 
£u 
d?' 

24 

, and v,=—. 
dip 

From Eqs. (4) and (25), we have the representation of the 
image curve as 
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R = X2 

x3 
X*. 

1 I       <p 
-e  u Cos-+v Sin 2 \ 2 

-e(vCos^-uSinx) 2   V 2 2/ 

Sin£ 
2 

Cosr 

(26) 

_ Using Eqs. (9, 10, and 26), we can determine the values of 
Rn (n = 0, 1, 2, 3, 4) at the reference position. Let v = v + 
ev,K = K + ei and f = V + e r, the instantaneous invariant 
t^ can be obtained from the dual part of the curvature k. 

From the Eq. (8), it follows that 

[(R,AR2ARo)*(R,AR2ARo)]1/2=[ük,+e(3^&()Ko + t^0)J 

Now substituting the values of R„ at the reference position 
in the above equation, we have VQ K<,' = 0 and 

(t4Ko)2=^I(«'i + "2)2+(«i-^)2] 

But vo = - , we have «o = 0 and.'-.'■■'■' 

:Jg=4[(t;1 + U2)
2-F(i/I^»2)

2l 
If we substirutethe instantaneous invariants of the canonical 

system (ao^bb=ax = bj = a2=0) into this last equation, we have 
the formula for the instantaneous invariants b2- 

b2=V(vi+ü2)2+(u1-v2)
i (27) 

From Eq. (26), we observe that Jtj and X2 are pure dual 
numbers. The evaluation of det (Ru R2, R3, Ro) involves only 
the e2 term. If we remove the dual of Xx and X%, det (R,, R2, 
R3, Ro) will be a real number only. The real part of torsion 
can be obtained from the € 2 term of the öo*o?0, which is 00*0^0» 
and we have 

det (f'f W0) 
T0 = - 

v&l 
(28) 

From the values of R„ that we have already determined, we 
have 

(R   R \ 1 ■ 
— ,— ,Rj,,Rb| = -— [üi+"«i+4w2t;i-4«,v2-2ü,i;3 

+ 3I^-2M,U3 + 3I^+2U3ü2-2«2ü}]   (29) 

. Similarly, we substitute the instantaneous invariants of the 
canonical system (a0=bo=aI = bi=a2=0) into Eqs. (28) and 
(29) to obtain.;. 

a, 1 3 
T0=-3-2^   or   aJ=--T0b2--b2 (30) 

From Eqs. (28, 29, and 30), we have the formula for the 
instantaneous invariant a3. 

a3=rr-[vi + u2+4u2v1-4u,v2-2v,V3+3vi-2uiU3 + 3u2 2D2 

+ 2u3v2-2u2v3]--b2   (31) 

Using the same method, we can determine the instantaneous 
invariant b3 by. evaluating the change of curvature and we 
obtain ici = e4b3 and 

b3=r~ (v^+uiUa + UjVi-u^ + v^j + u^)       (32) 
b2 

In a similar fashion, we determine the instantaneous invar- 
iants a4 and b4 by evaluating the change of torsion and change 
of change of curvature, respectively. We obtain the explicit 
formulas for a* and b4 as follows: 

Z4 = — [v1V2 + U,U2 + 2(U3V,-UiV3 + V2V3 + U2U3)-U1U4 
b2 

- v,v4 + U4V2 - u2v4] - 2b3 (33) 

b4=—• [u2+vf + vtv3 + U1U3+u3v2 - u2v3 + U4V[ - U]V4 
b2 

+ U2ttt + V2V4 + ^-(£^*4) (34) 

Numerical Example 
In the following example we use the notations ü(0) = uf, 

v(Ö) = vj, £(0) = <p2 etc. Example: Design a four-bar linkage 
so that the input crank C7JB rotates at a constant angular 
velocity of 2 rad/sec (Clockwise) while the output crank OcC 
rotates with an angular velocity of 5 rad/sec (Counterclock- 
wise) and angular acceleration of 21 rad/s2, the angular ac- 
celeration decreases at a constant rate of 15 rad/s3 (This example 
is taken from Roth and Yang, 1977 and Gupta, 1978). For 
convenience we choose the fixed frame JF with origin at Ob, 
and x-axis along 0&Oc and the moving frame UK with origin 
at Oc and x-axis along OeC (see Fig. 6 of Roth and Yang, 
1977). The motion of link OcC relative to the input link-O^B 
may be expressed as 

u(t) = Cos(2t) = 1 -4 -+16 ^+o(t5) 

v(t) = Sin(2t) = 2t - 8 - + o(t5) 
6 

*(t)=7t + 21--15^+o(t5-) 

From the above expressions we obtain the values of time de- 
rivatives at t = 0: 

After changing the parameter t to <p, we obtain 

ui = 0 
u2 =-0.0816 
Uj=0.104956 
U4=-0.2325 

v,=0.2857 
v2=-0.12245 

I v3=0.1466 
v4=-0.3309 

Substituting the above values into Eqs. (27), (31), and (32), 
we have the instantaneous invariants 

02=0.2380      a3=-0.4247      b3=-0.1324 

34 = 0.5504       b4=-0.2373 

The above results are identical to those given in Roth and 
Yang (1977) and Gupta (1978). 

Conclusion 
We have derived explicit expressions for the instantaneous 

invariants of rigid body motion in terms of arbitrary rather 
than the canonical coordinate systems. Equations (14-22) give 
the expressions of the instantaneous invariants for spatial and 
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spherical motions up to the third order. Equations (27 and 31- 
34) give the expressions of instantaneous invariants for planar 
motions up to the fourth order. A few examples are used to 
illustrate the results. These expressions are more explicit than 
any existing methods in determining the.instantaneous invar- 
iants and they are useful in design and analysis of mechanisms 
as well as in comparing rigid body motions. It is also hoped 
that these expressions would facilitate the use of the instan- 
taneous invariants in more practical mechanism design and 
analysis problems. 
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NOMENCLATURE 

&        total torque at joint k (motor torque) 
T^nia     torque at joint k due to the dynamics of the 

robot linkage 
torque at joint k due to the dynamics of the 
load 

torque at joint k due to the dynamics of the 
mass of actuator i 
number of discretized points 
number of degrees of freedom of the robot 
manipulator 
joint number 
index on joint number 
index on the discretized point 
weighting factor 
rated torque of the actuator 
D.C. motor rated current 
constant 
volume of the actuator 

((mxn) x 1) total joint torque vector 

((mxn) x 1) joint torque vector due to the 
dynamics of mass of the actuators 

((mxn) x 1) joint torque vector due to the 
linkage dynamics 

((mxn) x 1) joint torque vector due to the load 
dynamics 

Te extra torque; ((mxn) x 1) vector of deviation 
of the portion of joint torque allocated to load 
xi, from the load carrying capacity, "loadnoai", 
resolved into joint space 

ABSTRACT 

A procedure for sizing the joint actuators of a robot 

manipulator in the design stage is developed. The problem 

is formulated as an optimization problem where the actuators 

^nla 

Tl 

are selected to achieve a desired dynamic load carrying 

capacity of the manipulator over an entire discretized 

trajectory. Appropriate constraints on this optimization 

prevent the actuators from being overloaded and limits their 

sizes. Using worst case trajectories within the workspace, the 

problem is generalized to actuator selection over the entire 

workspace. The procedure proposed is illustrated by the. 

choice of actuators for the Carnegie Mellon University (CMU) 
direct drive robot manipulator. 

1 INTRODUCTION 

An important step in the mechanical design of robot 

manipulators is sizing the joint actuators. This is usually 

done after the design of the kinematic configuration of the 

manipulator as well as structural considerations. Workspace 

considerations and solvability of kinematic equations are 

usually used to choose an appropriate kinematic 

configuration and structural characteristics of a manipulator 

are selected using strength and stiffness requirements. Once 

these two steps in the mechanical design of a manipulator 

are completed, then the joint actuators are selected. 

Traditionally, robot actuator sizing have been based 

largely on use of simple design methods, e.g. they are sized 

to meet worst-case or average-case gravity and acceleration 

torques or loads. Such procedures are too simplistic and 
usually result in actuators which are far from optimal. A 

formalized procedure for optimal selection of robot actuators 

was developed by Vukobratovic, Potkonjak and Datic 1984. 

Their approach, however, minimized the energy which is a 

non-task oriented objective function. In addition, their 

procedure was directed toward selection  of hydraulic 
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actuators. In applications such as material handling robots 

are used to carry a payload along a trajectory. In such a 

situation, the robot actuators should be selected based on a 

task oriented specification such as a desired maximum 

payload. Thomas, Yuan-Chou and Tesar 1985 have 

considered such a design selection strategy. Their approach, 

however, sizes the actuators only locally in the neighborhood 

of a configuration. Ideally, the actuators should be sized such 

that the robot will be able to carry the maximum desired 

payload throughout its workspace. This is the problem 

considered in this technical note. First, selection of robot 

actuators for a given trajectory and a maximum desired 

payload is considered. Then, using worst case trajectories in 

the workspace, the method is generalized to actuator sizing 

for a manipulator based on a desired dynamic payload and 

on a global basis (i.e. over the entire workspace). 

The method presented uses the Dynamic Load Carrying 

Capacity (DLCC) of a robot (see Wang and Ravani 1988a) to 

formulate an optimization problem for the selection of the joint 

actuators. All joint actuators are sized simultaneously and 

worst case trajectories introduced in Wang and Ravani 1988b 

are used to achieve actuator designs.that can dynamically 

carry the desired payload over the entire workspace of the 

robot. 

2    DYNAMIC   LOAD CARRYING   CAPACITY  FOR  A GIVEN 

TRAJECTORY 

The dynamic load carrying capacity of a robot manipulator 

depends on the end-effector trajectory (position, velocity and 

acceleration), and can be defined as the maximum load that 

the manipulator can carry in executing the trajectory, without 

exceeding the torque limits of the joint actuators (Wang and 

Ravani 1988a). 

If the continuous trajectory of the end-effector, is 

discretized into m points along the trajectory, then the total 

torque/force for each joint at every grid point will be obtained 

by linear superposition of the joint torques/forces due to the 

dynamics of the robot linkages (excluding the masses of the 

actuators), of the load, and the dynamics of the masses of the 

joint actuators, i.e. 

{Xk}j={tknla}i+{Xkl}j+   B*tfi 
i=k+1 

(1) 

j=1,2 m. 

The concept of DLCC defined by Equation (1) will be used 

formulating optimal actuator sizing problem in Section 3. 

3 OPTIMAL ACTUATOR SIZING FORMULATION 

Since the most popular choice of the actuators for medium 

and small size manipulators is d.c. motors (either permanent 

magnet or shunt type), we limit our study to this type of 

actuators. The approach, however, can easily be extended to 

other kinds of drives. 

Equation (1), gives the total joint torques which should be 

supplied by the joint drives. These torques are bounded by 

the rated torques of the motors. The torque that actuator can 

supply for carrying the load at each grid point.using equation 

(DJs 

{^{^-{xWj-   I^aiJj- 
i=k+1 

(2) 

The minimum value of {Ttyj over all joints (k), and entire 

discretized trajectory (j) is the dynamic load carrying capacity 

of the robot for that trajectory. 

To evaluate xk
ai, the mass of the actuators are needed. 

Archer and Blenkinsop 1986, have developed the 

relationship between the volume and rated torques of various 

electric and hydraulic actuators. The general form of this 

relationship is 

log Trated = a log V + ß, 
where a and ß are the coefficients given in Archer and 

Blenkinsop 1986. This last relationship will be used for 

calculation of T^ai- The mass is directly related to volume With 

electric-motor density of 3 to 4 gr/cm3, (and hydraulic motor 

density of slightly higher). 

D.C. motors in control applications, e.g. robotics, are 

mostly current-driven (see Koren 1986). In such a case, the 

actuator can be idealized as a torque source. The output 

torque of the actuator,T0utput. should be limited as 

-Trated = -K Irated ^Toutput ^ K 'rated = Trated ■ (3) 
When voltage-driven d.c. motors are used for the joint 

actuators, the electrical dynamics of the unit should also be 

considered in the constraint formulation. 

Equations (2) and (3) can be written in vector form over all 

the joints, 

X|=X-Xnla-'Ca (4) 

-TratedST £Trated- 

We consider the selection of joint actuators for a desired load 

or goal carrying capacity ("loadgoaf )• In order to formulate the 

objective function, we define the extra torque vector, Te,- 

This torque vector is defined as the deviation of the portion of 

joint torque vector, which is allocated to load (Xi), from the 

vector of load carrying capacity, "loadgoaf. resolved into joint 

space, (Xgoal).ie- 
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*e*T I- Xgoa) = (X- X nla-Ta) - Tgoal 

where x goal is a vector of (m x n ) x 1, resulting from resolving 

the desired load to be carried , ("loadgoai") into joint space, 
over all the discretized points along the trajectory. 

The optimization problem is then defined as the 

minimization of the extra torque vector, Te, i.e. 

min (xe) = min (x i - x goai) = min {(x - x „la - T a) - X goal }(5) 
constrained by 

-Trated^t ^Trated- (6) 

The constraint set (6) indicates that the absolute value of 

each joint torque should be smaller than or equal to the rated 

torque of the actuator at that joint. The design parameters are 
X and Trated.. 

The vector objective function (5), is converted to a scalar 
objective function as shown in Equation (7). using sum of l_2 

norms of weighted extra torque vector, xe. over the entire 
discretized trajectory, namely 

min ( 

™ 1/2 

2, [   X ( W| [xe (i)]2)        ) = 

m 

min ( S(ä(" 
j=i 

1/2 

i [(*' - TÜnla " *ija) - ^goal ]2) 

Now in order to solve the optimization problem defined by the 

objective function (7) and the set of inequality constraints (6), 

we use exterior inequality quadratic penalty function. A 

computer program based on Quasi-Newton method is 

developed to solve the resulting unconstrained problem. 

3.1 Trajectory Selection 

The optimal actuator sizing methodology developed in this 

work, depends on the end-effector trajectory. In sizing the 

actuators, it is desired to select smallest actuators that would 

allow the robot to carry maximum payload in a desired cycle 

time throughout its entire workspace. This means that the 

actuators can be sized based on the worst-case trajectories 

within the workspace. For each worst-case trajectory, a 

corresponding set of actuators will be sized. Amongst these 

sets of actuators, the one which provides the maximum 

dynamic load carrying capacity[7], will be selected as the 

optimal set of joint actuators. The worst-case trajectories 
defined by Wang and Ravani [7], is used in this work. 

4    Numerical Example 

An example of optimal selection of robot actuators, based on 

maximizing the dynamic load carrying capacity for worst-case 

trajectory, is presented for a robot manipulator with the 

structure of the Carnegie Mellon University (CMU) direct drive 
arm Asada and Kanade 1983, as shown in Fig. 1. 

(7) Fig. 1. A three joint direct drive robot (Reprint from [7]). 

The initial and final joint configurations of the robot for this 
example are: 

[0o,0°,0°]Tand[0o,90o,90o]T 

A cubic polynomial position trajectory is used between these 

two configurations. The two end-points correspond to 

minimum vertical and maximum horizontal positions of the 

end-effector. The maximum horizontal position also happens 

to be the terminal point (see Wang and Ravani 1988b). This 

trajectory satisfies the requirements stated in Wang and 

Ravani 1988b for the worst-case trajectory. The total desired 

cycle time for this motion is 1.5 second. This time period is 

based on average speed of 50 in/sec, recommended for 

industrial robots Asfahl 1985. The payload ("loadgoai") is 
taken to be 14 kg. 

In order to guarantee the existence of a minima, rated 

torque of the actuator of the last joint has been selected 
apriori to be 40 Nm. 
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The trajectory is discretized into 10 equally spaced points. 

Joint torques due to link dynamics, T nia. and due to carrying 

the desired load, Tg0ai. are evaluated and shown in Fig.'s 2 

and 3. 

Tim» (sac) 

Joint «1 

Joint« 

Joint «3 

Fig. 2. Joint torques due to the robot's linkage dynamics. 

Time (sea) 

Joint #1 

Joint «2 

Joint «3 

Fig. 3. Joint torques due to dynamics of carrying the 
desired load. 

The rated torque of the actuators of joints 1 and 2, 

optimized over the entire trajectory, is found to be 140 and 80 

Nm. Moreover optimal rated torques of the first and.the 

second joint actuators at each discrete point along the 

trajectory are calculated and shown in Fig. 4. 

Tune (sec.) 

TratecM 

Trated 2 

Figure 4. Optimal actuators' rated torques at discrete 
points along the trajectory. 

Comparison of Fig. 4 with the result of optimization over 

the entire trajectory (actuator rated torques of 140 and 80 

Nm), indicates that this actuators would be overloaded at 

some points along the trajectory. This is acceptable, 

considering the fact that actuators, especially d.c. motors, are 

made to take transient overloading. 

If the transient overloading of the actuators is not 

desirable, one could select the actuators with maximum 

Trated. using Fig. 4. This would result in actuator rated torques 

of 270 and 130 Nm and keeps the rated torque of the 

selected actuators always higher than the maximum value of 

total joint torques. 

The original actuators of joints 1 and 2 of CMU arm have 

the rated torques of 204 and 136 Nm. 

5   CONCLUSIONS 

A method is presented for sizing of robot joint actuators 

based on meeting a functional requirement of a desired 

dynamic payioad over the entire robot workspace. The 

problem is formulated as an optimization problem minimizing 

the sum of 1.2 norms of weighted extra torque vector over the 

entire discretized worst case trajectories. The constraints are 

based on prevention of joint actuators from excessive 

overloading. 

Actuators are selected for worst case trajectories within 

the workspace resulting in manipulator designs that can meet 

a desired specification of dynamic payioad. The algorithm 

presented provides the basis for rational selection of joint 

actuators in mechanical design of robot manipulators. 

I 
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Kinematics of the Ball Screw 
Mechanism 
This paper studies the kinematics of the Ball Screw Mechanism (BSM) with the 
aim of developing a foundation for understanding the motion of the balls and their 
contact patterns with the contacting elements. It is shown that there is always slip 
between the balls and the nut or screw, and therefore, the no-slip condition assumed 
in the BSM literature is not attainable. The effect of contact deformation on the 
motion of the balls is also studied and is used to develop the pattern of the constant 
sliding lines of contact between the ball and the screw or the nut. The results have 
applications in efficiency analysis, design, wear evaluation and finite element mod- 
eling of the BSM. 

1   Introduction 
The reciprocating ball screw mechanism is a force and mo- 

tion transfer device belonging to the family of power trans- 
mission screws (Fig. 1). Two of the most important features 
of the mechanism are its positional accuracy and load carrying 
capacity making it suitable as the drive mechanism for robot 
manipulators or the feed-drive mechanism of machine tools. 
The utilization of bearing balls in the mechanism replaces the 
sliding friction of the conventional power screw with the rolling 
friction of the balls. This results in minimal friction during 
force and motion transmission and eliminates slipstick with 
minimal wear. 

This paper provides a theoretical study of the kinematics of 
the ball screw mechanism. It derives relationships describing 
the motion of the ball and shows that slipping takes place 
between the ball and the nut (or the screw) at all times. This 
means that the no-slip condition assumed in the literature (Levit, 
1963; Drozdov, 1984) is unattainable. The proper slip condi- 
tions are derived and the ball motion is studied. 

In addition, the effect of elastic deformation at contact areas 
between the ball and the nut (or the screw) on the kinematics 

Fig. 1    A ball screw and nut mechanism 

• Contributed by the Mechanisms Committee for publication in the JOURNAL 

OF MECHANICAL DESIGN. Manuscript received March 1991; revised Feb. 1994. 
Associate Technical Editor: G. L. Kinzel. 

of the mechanism is analyzed. The analysis is used to determine 
the pattern of constant sliding lines of the ball in the contact 
area. The contact line pattern is useful in wear and finite 
element analyses of the ball screw mechanism. The work pre- 
sented provides a theoretical framework for understanding the 
motion of the ball in the BSM and sets the basis for efficiency 
and design analysis of the mechanism. The application of the 
results of this paper to efficiency and friction analysis of the 
BSM is given in a companion paper (Lin, Velinsky, and Ravani, 
1994). 

In all the analyses presented right-hand screw threads and 
a single nut are assumed. 

2   Motion of the Ball 
In this section, we study the motion of the ball by affixing 

a Frenet coordinate system to the path of the center of the 
ball. This will enable us to study the kinematics of the ball 
motion and derive the slip conditions. 

In a BSM, the center of the ball moves along the helical 
groove of the screw. We introduce three sets of coordinate 
systems. The first (world) coordinate system, ox' y' z', is fixed 
with its z axis coincident with the axis of the screw. The second 
(rotating) coordinate system, oxyz, also has its z axis coincident 
with the screw axis (Fig. 2) but it rotates with the screw. The 
third coordinate system is the Frenet frame moving with the 
center of the ball along the trajectory of the ball center. This 
trajectory, with respect to the frame oxyz, is a circular helical 
line along a circular cylindrical surface with a mean radius rm 
(Fig. 2). The coordinate transformation between the first two 
coordinate systems can be written as 

X'=T,X (1) 
where X' = [/'/ Ar']r,   X = [ijkf, 

T,^ 

cB -So o" 
So cn 0 

0 0 1 
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Fig. 3   Location of contact points on the normal plane 

X = T,Y (8) 

where 

Flg.2   The position of the ball center, 0', in Cartesian coordinates and Y=[tnb]r,    and    T2 = 
Frenet coordinates 

CaCe 

-Ce SaSe 

So -SaCe 

0 C° 

and Co = cos(Q), Sa = sin(fi), and Q denotes the angular 
displacement between the two coordinate systems. 

Assume that a ball has moved through an angle 0k along 
the helical groove of a screw with lead L. The position vector 
of the ball center, R(0), can be expressed as 

TR(0) = RrX (2) 

where Rr = [rmCe rmS$ rJQ, Ce = cos(0), Se = sin(0), and 
the helix angle, a, is defined as ta = tan(a) = L/2nrm. The 
superscripts "r" and "W" ait used here to distinguish a vector 
with respect to the rotational and the world coordinate systems, 
respectively. 

By substituting Eq. (1) into Eq. (2), the position of the ball 
center can be expressed with respect to the world coordinate 
system as 

R,R = R7"Tf1X'. (3) 
By definition (Kreyszig, 1983), the triad of unit vectors de- 

scribing the Frenet Coordinate system of the ball center with 
respect to the rotating Cartesian system, oxyz, can be expressed 
as follows (Fig. 2): 
(a) Unit tangent vector 

t=[-kdSe   kdCe 

(b) Unit normal vector 
n=[-C9   -Sg 

(c) Unit binormal vector 
b = [rdSg    — rdCg 

where 

d   C~' 
curvature 

rd]X 

0]X 

kd]X 

(4) 

(5) 

(6) 

k=- 

and torsion 

The terms Sa and Ca denote sin(a) and cos(a), respectively. 
Now, Eq. (2) can be rewritten in terms of the Frenet frame of 
the ball center as 

TR = RrT2Y = rm[SatJ    -1    Cjad]Y. (9) 
It will be shown in the next section, that the ball can only 

move relative to the screw in the tangential direction of the 
Frenet frame of the ball center trajectory. This is because the 
ball is confined along the helical groove in directions parallel 
to the normal plane of the trajectory of the ball center. Phys- 
ically, this means that the contact points between the ball and 
the screw, as well as between the ball and the nut, must be 
located on this normal plane. 

In order to locate these contact points, the contact angle, 
(3, is defined as the angle between the unit normal vector and 
the contact vector. The contact vector is oriented from the ball 
center toward the contact point, as shown in Fig. 3. Points A 
and B represent the instantaneous contact points between the 
ball and the nut and between the ball and the screw, respec- 
tively. Note that ßA (Fig. 3) is considered positive when meas- 
ured clockwise from the negative side of the normal axis; 
whereas ßB (Fig. 3) is considered positive when measured clock- 
wise from the positive side of the normal axis. The angle ßA 
and ßB are always positive for a counterclockwise rotation of 
the screw (viewed from the end) and negative for a clockwise 
screw rotation. 

We now introduce apairofnew coordinate systems iX, Y) Z,, 
with i = A, B, between the ball and the raceway such that the 
Xi Yi plane lies on the plane of contact and the Z,-axis lies 
along the common normal of the two contacting bodies (Fig. 
3). These coordinate systems are used to describe the position 
of the contact point between the two contacting bodies. We 
also assume point contacts along a diagonal line between the 
ball and the screw and nut. The coordinate transformation 
between the Frenet frame of the ball center trajectory and the 
iX-, YjZ; coordinate system is 

X, = T3Y (10) 

6a    C0 (7) 

The coordinate transformation between the Frenet frame of 
the ball center and the rotational Coordinate system oxyz can 
be expressed as 

where 

X,= [i;   j,-   kJT   and   T3 = 

The position vector of the contact point B with respect to 
the ball center can thus be expressed as 

0 — Sßi   Cßi 

1 0        0 

0 Cßi     Sßi_ 
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where 

an arc on the base 
circle of the cylinder 

Fig. 4   Phase angle between two consecutive balls 

(b) Screw driving: cw 

Fig. 5   Slip velocities at steady state with no-slip along the tangential 
direction, for the conversion of rotary into linear motion 

RBO' = [0   0   rb)\B (11) 

where rb denote the ball radius. The position vectors of contact 
points A and B with respect to the rotational coordinate system 
can be expressed as 

rRA^
rR + RA0' (12) 

and 

T^TR+RBO'- (13) 
There is only one independent variable, 0, which describes 

the relative position of the center of the ball with respect to 
the screw in the equation of the circular helical line [Eq. (2)]. 
The relative position of the two consecutive ball centers can 
therefore be expressed as a function of a phase angle, <t>, shown 
in Fig. 4, as 

6R/='R(0-t-<£)-'R(0) 

= rm[CaS<t, + Sja<t>    1-Q   S„(*-S«)]Y. ■    (14) 

Furthermore, the minimal central distance between two con- 
secutive ball centers must be equal to the diameter, 2rb, of the 
balls; that is 

V 
or 

8Rf-8R, = 2rb 

(<j>ta)2 + 2(\-C*)=4a2 

am* 

By solving the above equation for the phase angle, <f>, the 
maximum number of balls per revolution, N, can be obtained: 

N= 
2TT 

(16) 

Furthermore, Eq. (14) can be expressed as 

8R, = 2rbnr. (17) 
Similarly, 

5Rj=2rbnj. (18) 

In these equations, n; and ny are unit vectors between two 
consecutive ball centers. Using the Frenet frame, the relative 
motion between the centers of the balls in contact with each 
other can be written as: 

Y(9 + 0) = 
CaC^-f-O,:, 

COSQ 

C«Sa(l-Ca) 

C«5$ C<A(1-Q) 

Wl 

(19) 

(15) 

The above equation is valid for balls which are both ahead 
(positive <f> values) and behind (negative 4> values). 

3   Slip Analysis 
Determination of the slip conditions between the recipro- 

cating balls and the nut or the screw is important in under- 
standing the motion of the ball in the ball screw mechanism. 
These conditions are also necessary for efficiency analysis and 
the design considerations (see Lin, Velinsky, and Ravani, 1994). 
A complete velocity analysis is necessary for determining slip 
directions and velocities. This section provides such an analysis 
and applies the results to a characterization of the slip con- 
ditions for the BSM. Previous works (see Levit, 1963; and 
Drozdov, 1984) have treated the kinematics of the BSM using 
the previous results from ball bearings (see, e.g., Harris, 1971; 
and Jones, 1959). This has resulted in incorrect results for the 
BSM since the angular velocities of different elements, namely 
the ball, the screw, and the nut are not additive as used in ball 
bearing analysis. 

The velocity of the ball center with respect to the rotational 
Cartesian Coordinates, oxyz, can be obtained by differentiat- 
ing Eq. (9) with respect to time; i.e., 

'R = [rfö   0   0]Y. (20) 
Note that in the above equation, the velocity of the ball 

center relative to the rotating coordinate system has only a 
tangential component. Physically, the ball cannot move in the 
normal plane since contacting surfaces would have to separate 
or crush together for motion in the normal plane to exist. 
Furthermore, the radius of motion of the ball center is d, which 
includes both the curvature and the torsion of the helix. 

The velocity of the ball center with respect to the world 
coordinate system, ox'y' z', can be obtained by differentiat- 
ing Eq. (3) with respect to time; i.e., 

wR=[dB+rmCji   0    -rmS„G]Y. (21) 
The above equation can also be obtained from M'R = ''R + 
QxrR. 

If we let co = [w, w„ oib] Y be the angular velocity of the 
ball, then the instantaneous velocity of the two points A and 
B (namely VAb and VBb) on the ball (which are coincident with 
the two contact points between the nut and the screw, respec- 
tively) can be expressed as 
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\Ah=
wR + o3XRAO' and 

dd + rm CaQ + rb(wb CBA - u„ SBA) 

rbO>,SßA 

-rmSaü-rbü>,CßA 

Va = VM-V*, 

(22) 

and 

\Bb=
wR + uxRB 

dd + rm CaQ + rb(oib C$B-w„ SSB) 

-rbüi,SßB 

-rmSaQ + rbü},CßB 

(23) 

We will now determine the velocity of the point on the nut 
which is coincident with the contact point for the case when 
the screw is driving. If the nut is driving, similar results can 
easily be obtained. We will only consider the conversion of 
rotary into linear motion. The cases involving the conversion 
of linear into rotary motion are merely the kinematic inversions 
of the cases presented here. 

As in the conventional power screw unit, if the nut is re- 
strained from rotating, it will move axially a distance ÜL/2-K 

along the screw for a screw rotation of angle Q. Hence, if the 
angular velocity of the screw is fik, then the velocity of any 
point on the nut with respect to the world coordinate system, 
ox'y'z' can be represented as 

V.„ = 0   0 
-QL 
2T 

= -rmSaQ[ta   0    1]Y. 
(24) 

The velocity of the contact point on the screw can similarly 
be obtained as follows. 

If the screw rotates with an angular velocity Qk, the velocity 
of point B on the screw (namely VBS) coincident with the 
contact point will be 

VBS=QkxrRB 

= Q 

(rm-rbCßB)Ca 

-rbSßBSa 

— (rm — rbCßB)Sa 

Y. 

(25) 

This velocity is with respect to the world coordinate system, 
ill 

ox y z . 
The slip velocities at contact points A and B (VSA and VSB, 

respectively) can now be determined as follows. 
From Eqs. (22), (23), (24), and (25), the slip velocities at 

points A and B are, respectively: 

Vsi = VJJ—V^„ Ab~ 

d{6+Q)+rb(ubCßA-u„SßA) 

rbu>,SßA 

-rba,CßA 

-rbo}, 

rf(Ö + fi)+r6(a)frCfl/,-o)„Se/4) 

0 

X, 

d$-rbl(ub-QCa) CßB-ü>nSßB) 

-rb(u,-QSa)SßB 

rb(o3,-ÜSa)CßB 

rb(<D,-QSa) 

dd - rb [(ub - QCa) CßB - a>„ S8B] 

0 

= VsBaSB (27) 

= VSAVSA (26) 

where n^ and n$B denote the unit vectors in the direction of 
the slip velocities at the instantaneous contact points A and 
B, respectively, and \SA and \SB are the magnitudes of these 
velocities (Fig. 5). 

Physically, contacting surfaces should have common nor- 
mals at their instantaneous points of contact. This means that 
the slip velocities should be perpendicular to the common nor- 
mal to the two surfaces, namely RA0> • VM = 0 and RB0, -\SB 

= 0. These conditions on slip velocities represent the physical 
contact requirement for the contacting surfaces not to separate 
or crush together. We should note that the unit vectors n^ 
and nSB are opposite in direction to the frictional forces on 
the ball at the contact points. 

The location of all contact points can be determined using 
these physical contact conditions. Suppose that the contact 
points are not located in the central normal plane. Since the 
balls are spherical, only two angles are. necessary to define the 
location of a contact point on a ball. Suppose these two angles 
are ßB and an angle ¥ off the central normal plane. Consider 
point B as an example to simplify the analysis. The position 
vector RB0' can be determined from geometry as 

R-Bo' = [ — rb$1r     rbC*CßB    rbC^SßB]\. 
Substituting this last equation into Eqs. (11), (13), (23), and 

(25), we can obtain \SB, which when substituted into the con- 
tact conditions result in: 

Rflo' 'Vsu= —rbdOSf = 0. 

Since rb d cannot be zero and 6 is not a geometric parameter, 
the offset angle, *, has to be zero to satisfy the contact con- 
dition. In other words, all the contact points must lie on the 
normal plane. 

Let us decompose the slip-velocity into two parts: (/) on the 
central normal plane, and (2) along the tangential direction of 
the Frenet frame of the ball center trajectory. Then, as we can 
see from the Eqs. (26) and (27), the magnitudes of the resultant 
slip-velocities on the central normal plane at the ball/nut and 
the ball/screw contact points are rft(«,-Saß) and rbu„ re- 
spectively. Accordingly, no a, value exists which causes the 
slip-velocities on the central normal plane at both contact points 
to vanish simultaneously. In other words, friction can never 
vanish at both contact points on the central normal plane unless 
the helix angle, a, equals zero. A method for calculating the 
frictional losses, which has been used as the basis for many 
subsequent studies, was given by Levit (1963) who defined the 
BSM friction angle to lie along the tangential direction of the 
Frenet frame of the ball center trajectory. This produces an 
inaccuracy due to the fact that it does not account for the 
effects of the torsion of the helix. 

4   Acceleration Analysis 

The acceleration of the ball center with respect to the ro- 
tational Cartesian coordinate system, oxyz, can be expressed 
as 
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rR=[dd   rmd2   0]Y (28) 

where S and rm6 represent components of tangential and 
centripetal acceleration of the ball center with respect to the 
rotational Coordinate System oxyz, respectively. The accel- 
eration of the ball center in the world coordinate system is 
expressed as 

lfR = ''R + Öx''R + QxQ xrR + 2ßx'R 

= [rf(Ö + C*Ö)   /-m(0+Q)2    -rraSaÖ]Y       (29) 

where the component along the normal direction, rm(6 + Q)2 

includes both the centripetal and Coriolis effects. The angular 
acceleration of the ball is given by the symbol a: 

T 
o>,-unCa(6+Q)+Sa{8 + Q) 

ün+(ü>,ca-ü,bsa)(e+6) 
wb + a„ + Sa(8 + Q)+Ca(6 + Q) 

- Y (30) 

where the first term in each component represents the change 
in magnitude and the second term represents the gyroscopic 
motion. 

5   The Kinematics of the BSM with Elastic Deformation 

Loads acting between the balls and raceways in the BSM 
develop only small areas of contact between the mating mem- 
bers. Consequently, although the elemental loading may only 
be moderate, stresses induced on the surfaces of the balls and 
raceways are usually large. Contact deformations are caused 
by contact stresses. Because of the rigid nature of the balls, 
these deformations are generally of a low order of magnitude. 
The classical solution for the local stress and deformation of 
two elastic bodies contacting at a single point is that of Hertz 
(1881) which has been applied to ball-bearing problems. Levit 
(1963) introduced the theory to the BSM. However, the kin- 
ematics of the BSM regarding elastic deformations has never 
been solved completely. It is the purpose of this section to 
develop the internal motions of the BSM, the relative slip- 
velocity between the ball and the nut/screw and the pattern 
of sliding lines of contact and thus set the foundation for 
further investigations on friction, wear and finite element anal- 
yses. 

5.1 Position of the Contact Point. To specify the position 
of a contact point between two deformed bodies, a coordinate 
system, iXjYjZjJ = A, B^is introduced between the ball and 
the raceway (at each contact point as before). In this coordinate 
system, the Xi Y} plane lies on the plane of contact and the Z,- 
axis is the common normal of the two contacting bodies. Figure 
6 shows a ball contacting the screw raceway such that the 

Fig. 6   Ball-screw contact 

mation between the Frenet frame and the iXt Y,Zi system is 

X, = T3Y (3D 

where 

0 Sßi cBi 
1 0 0 

0 cSi Sßi 

X,-=[// j,   k,]T   and   T3 = 

The position vector of an arbitrary point Q, on the XB YB 

plane with respect to the origin B, can be expressed as ReB = 
[xB yB 0] Xfl and the position vector of point B with respect 
to the ball center is RB0' = [0 0 rb]XB. The radius of 
curvature of the screw raceway groove is 

rB=y] Ri-xl-y] R\-aB + ^ r\-a\, (32) 

and the radius of curvature of the deformed surface as defined 
by Hertz is 

/?,= 
2f,rb (33) 

where 

fi=-L,i=A,B. 
rb 

Therefore, the position vector of point Q with respect to the 
world coordinates is 

RQO' =Rgs+Rßo' +  R- (34) 

5.2 Velocity of BSM with Deformation. The derivation 
of the velocity of the BSM with deformation is similar to the 
procedure in Section 3, from which, the following equations 
can be determined: 

5.2.1    Velocity of Any Contact Point P/Q on the Ball 

Vw="'R + uxRro' 

*Qbz 

d(6+C2
aQ) + (xASBA + rA CßA )o>b + (xA CBA - rA SBA )u„ 

- (xA CßA - rA SBA)u,+yA <cb 

- rm Sjl - (xA SßA + rA CßA )u,-yAoin 

V
R + OIXRQO' 

d(B +Cl6) + (xBSBB-rBCßB)üib+ (xBCgB + rBSBB)oi„ 

- (xBCBB + rBSBB)w,+yBwb 

- rm Sjl - {xBSBB + rB CBB)u>,+yBoi„ 

(35) 

(36) 

normal force between the ball and the screw is distributed over 
an elliptical surface defined by the projected major and minor 
semi-axes, aB and bB, respectively. The coordinate transfor- 

5.2.2   Velocity of Any Contact Point P on the Nut 

Vpn=-rmSaQ[ta   0    1]Y (37) 
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5.2.3    Velocity of Any Contact Point Q on the Screw 

VQS=fiKxReo 

(rm-rBCßB + xBSgs) CaQ 

yBCa6- {rBSßB+xBCßB)SaQ 

~ (rm~rB CßB + Xß SßB) Sa Ü 
(38) 

stagnation line 

Fig. 7   Stagnation line, line of no-slip along the common normal of the 
contact surfaces 

5.3   Slip Velocities at Contact Points P and Q 

VSP=\Pb-\pn 

d( 6 + fi) + (xA SeA + rA CßA)oib + {xA CBA -rA SßA)oi„ 

- (xACßA-rASßA)oi,+yAo3b 

- (xA SeA + rA CßA )u,-yA u„ 

-yA^SßA Ub+CßA <*>n) - rA <0, 

xA {SßA oib + CBAoin)+d(6 + Q) + rA{ CßA oib - SeAoi„) 

-xAo},+yA(CßAü}b-SßAu„) 

spinning velocity on the normal plane is along the common 
normal of the contact surfaces. In this case, the common nor- 
mal has been referred to as the "spinning axis" in the ball- 

(39) 

Vs<? = V, Qb~ 
fQS 

dd + (xBSßB-rBCßB)(o>b-CaQ) + {xBCeB + rBSßB)un 

(xBCBB + rBSßB) (Safl -03,) +yB(wb-CaÜ) 

(XBSßB-rBCßB)(Saä-u,)-yBu„ 

-yBlSßB(.^b-Caä) + CßBo>n) - rB(Saü - «,) 

xB[SßB(oib-Caü) + CeBu„] + dd -rB[CßB(«6- CttQ) -SBBu„] 

xB(Sa öi-oi,) +yB[CßB(ub-C*ä) - SßBoi„ 

Note that the equations derived in this section can be reduced      
to the corresponding equations in Section 3, without consid- 
ering elastic deformations, where r-, = rb and x-, = yt = 0. 

5.4 Slip Velocity and Pattern of Constant Sliding 
Lines. The pattern of constant sliding lines of ball bearings 
in the elliptical contact area was investigated by Lundberg 
(1954) and presented by Harris (1984) in his book. Here a 
pattern of sliding lines are derived for the BSM directly from 
the equations of slip-velocity obtained from the previous sec- 
tion. Since the pattern of constant sliding lines are similar for 
different types of motions, only the case with screw driving 
and conversion of rotary into linear motion is shown as an 
example. In accordance with the Hertzian radius of contact in 
the direction transverse to the motion, the contact surface has 
a harmonic mean profile radius. This implies that the contact 
surface is not straight but generally curved. The no-slip con- 
dition along the common normal of the contact surfaces be- 
tween the ball and the nut is obtained from the Z^-component 
of Eq. (39) as follows: 

-xAw,+yA(oibCßA-oi„SßA)=0. (41) 

This equation represents a straight line, referred to as the 
stagnation line, on the XA YA plane. This line passes through 
the origin A, with a slip of oi,/(oibCßA-oi„SßA), as shown in 
Fig. 7. 

We first assume that the nut is fixed in space. Thus, it tends 
to "cut-in" the contact surface for every contact point on the 
ball lying on one side of the stagnation line in the contact 
ellipse and "leave-from" the contact surface for every point 
lying on the opposite side of the line. There is a special case, 
in which ub CBA - con SBA = 0, which indicates that the resultant 

.(40) 

bearing literature. Additionally, the "stagnation line" becomes 
the y^-axis {xA = 0) which is true because pure spin will not 
change the depth of "cut-in" of a certain point. Similarly, if 
oi, = 0, the "stagnation line" becomes the A^-axis (yA = 0) 
because the rolling motion changes the depth of "cut-in." 

The equation of constant sliding lines can now be obtained 
from the XA- and y>components of Eq. (39); that is 

(42) (xA -pA )2 +{yA- qA )2 = C 

where 

PA=- 

QA=~ 

d(6 + ä)+rA(oibCßA-oinSßA) 

<">* SßA + <*>/! CgA 

rAu, 

and 

<">* SBA + oi„ CBA 

constant 

(ülb SßA + 6l„ CßA ) 

Equation (42) represents a family of circles on the XA YA- 
plane with center located at (pA, qA), where the no-slip con- 
dition on the XA JVplane occurs, as shown in Fig. 8. It is 
interesting that the point, (pA, qA), will not lie on the stagnation 
line [Eq. (41)] unless the term, 6 + Q, vanishes which is 
impossible except for the static situation. In other words, a 
point with no-slip is not possible within the contact ellipse. 
Note that rA can also be defined as a variable from Hertzian 
contact theory and Eq. (42) remains valid. In such a case, Eq. 
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Flg. 8   Pattern of constant sliding lines at constant surfaces 

(42) results in a family of non-coplanar circles representative 
of the true contact surface shape. 

As one can see from Eq. (42), under the special case where 

ü>bSBA + ü}nCßA=Q, (43) 

the slip-velocity on the XA J^-plane is an invariant which is 
exactly the same as the slip-velocity at point A without elastic 
deformation if r, = rb. The line defined by Eq. (43), which is 
a line on the normal plane perpendicular to the common normal 
of the contact surfaces, has been called the "rolling axis" in 
the case of ball-bearings. It is obvious from Eq. (42) that the 
no-slip condition is not possible even when spinning is absent. 

A similar analysis can be applied to the contact area between 
the ball and the screw, and the corresponding resultant equa- 
tions are: 
Equation of stagnation line: 

xB(Sa6-wl)+yB[(ub-Ca6)CßB-aaSßB]=0      (44) 

Equation of constant sliding lines: 

where 

(xB-pBf+(yB-gB)2=C 

d8-rbUdb-CaQ)CBB-ü,nSßB] 
PB= : , 

(wB - CaQ) SßB + wn CßB 

(45) 

QB = 
rB(s«Q-u,) 

(wb-CaQ)SßB + o>„ CßB 

and 

C=- 
constant 

[(o>ö-CaQ)SßB + UnCßB)2 

Equation of "pure rolling": 

(<■>» - CaQ) SßB + o>„ CßB = 0 (46) 

Equation of "pure spinning": 

(ü>b-CaQ)CSB-u„SßB = 0 (47) 

Note that the corresponding equations at the ball-nut contact 
area are independent of the helix angle of the BSM, whereas 
those at the ball-screw contact area are dependent on the helix 
angle. 

Conclusions 

In this paper, we have studied the kinematics of the ball 
screw mechanism with the aim of understanding the slip con- 
ditions and pattern of contact points between the elements. 
We have derived the general slip conditions and have shown 
that the condition of no-slip in the central normal plane as- 
sumed in the previous literature is theoretically unattainable. 
The effect of contact deformation on the motion of the balls 
was also studied and used to determine the pattern of sliding 
lines of the balls in contact areas. 

The results, in addition to their theoretical interest, provide 
the basis for efficiency analysis, design, wear analysis, and 
finite element modeling of the ball screw mechanism. 
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Design of the Ball Screw 
Mechanism for Optimal Efficiency 
This paper develops theories for evaluating the efficiency of the ball screw mechanism 
and additionally, for designing this mechanism. Initially, a quasi-static analysis, 
which is similar to that of the early work in this area, is employed to evaluate 
efficiency. Dynamic forces, which are neglected by the quasi-static analysis, will 
have an effect on efficiency. Thus, an exact theory based on the simultaneous solution 
of both the Newton-Euler equations of motion and the relevant kinematic equations 
is employed to determine mechanism efficiency, as well as the steady-state motion 
of all components within the ball screw. Ho wever, the development of design methods 
based on this exact theory is difficult due to the extensive computation necessary 
and thus, an approximate closed-form representation, that still accounts for the ball 
screw dynamics, is derived. The validity of this closed form solution is proven and 
it is then used in developing an optimum design methodology for the ball screw 
mechanism basedon efficiency. Additionally, the self-braking condition is examined, 
as are load capacity considerations. 

Introduction 
The ball screw mechanism (BSM) has been used for many 

years ina wide variety of applications. The most referred to 
work on the BSM is due to Levit (1963a, 1963b). In his work, 
Levit has both reviewed the literature prior to his, as well as 
providing a series of calculations for designing this mechanism. 
Levit's work has provided the foundation for most of the 
subsequent work on the design and manufacture of this mech- 
anism including that of Belyaev and associates (1971, 1973, 
1974a, 1974b, 1981, 1983), Drozdov (1984) and Mukhortov 
(1982), to name a few. Unfortunately, Levit includes several 
improper assumptions causing his results, as well as those based 
on his results, to be questionable. These errors are noted by 
Lin et al. (1994), who have taken a fundamental approach in 
examining the kinematics of the BSM. Basically, Levit does 
not account for the torsion of the helical path of the individual 
ball center. 

In this paper, we will first examine the efficiency of the BSM 
using a quasi-static approach much like Levit's, but with the 
proper kinematics. Since dynamic forces are neglected by the 
quasi-static analysis, a more exact approach will be taken. In 
this approach, we will consider the steady-state motion of the 
ball for a three-point-contact profile (Gothic profile) without 
deformation by numerically solving the Newton-Euler equa- 
tions and the relevant kinematic equations simultaneously. 
While the efficiency of the BSM actually varies as a function 
of time, the steady-state simplification is valid for many ap- 
plications and additionally, it can be more easily applied for 
developing design methods. Closed-form solutions are even 
more easily applied to the development of design methods and 
such solutions are derived in this paper. These closed-form 
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solutions, which account for the dynamic forces, are shown 
to be valid through close agreement with the results of the 
steady-state theory. A detailed design methodology for the 
BSM based on the closed-form theory is then presented. 

In general, the analysis of the ball screw motion can be 
divided into two different categories according to the driving 
component; i.e., nut driving or screw driving. Additionally, 
each of these categories can be further divided according to 
the type of input motion; i.e., conversion of rotary into linear 
motion or conversion of linear into rotary motion. Since the 
procedures for analyzing the different types of motion are 
similar and all types of motion are kinematic inversions of 
each other, in this paper, we will only examine the cases with 
the screw as the driving component. 

Quasi-Static Efficiency Analysis 
Levit, in his classic work on the BSM, assumes that there 

is no-slip between the balls and the nut and screw. Thus, he 
derives the quasi-static ball screw efficiency by assuming that 
there is only rolling resistance at the ball/screw and ball/nut 
contact points. Levit's results imply that the upper bound on 
ball screw efficiency should be unity. However, recent detailed 
examination of the kinematics of the BSM proves that the no- 
slip condition is not attainable and that there must be slip on 
the normal plane of at least one contact point; see Lin et al. 
(1994). Therefore, in this work, we have used the correct kin- 
ematics and have assumed both slip on the normal plane and 
rolling resistance in the tangent direction at the contact points 
in order to determine the quasi-static efficiency of the BSM. 
Additionally, we assume that there are two contact points 
between an individual ball and the screw and nut. 

For the case of screw driving, suppose that a moment, Mk, 
is acting on the screw in order to overcome an axial load F„k 
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applied on the nut. By considering static equilibrium of the 
screw, the ball and the nut, respectively, we arrive at the fol- 
lowing relations: 

M=rmQn[SaCp[SB+f(a- Ce)} + CaS„), 

QA = QB = Qn, and 

F„= -QACaCp(Sß-fCß) -SaSp] (1) 
where 

M 
Fa 

Qi 

the torque applied on the screw or the nut, 
the axial force applied on the screw or the nut, 
the normal force at the contact points between the 
ball and nut and screw, respectively, 
and the corresponding subscripts: 
A and B denote the points between the ball and the 
nut and between the ball and the screw, respectively, 
the Coulomb coefficient of friction at the contact 
points, 
mean radius of the helical path of the ball centerline, 
ball radius, 
rb/l'm, 

helix angle of the path of the ball centerline, 
cosine and sine functions, respectively, with the angle 
denoted by the subscript, and we will later use 
tangent function with the angle denoted by the sub- 
script. 

The friction angle, p, is used to represent the dissipated energy 
due to rolling friction between the contact surfaces and can 
be represented by the following expression, which was derived 
by Levit: 

/ = 

rm = 
rb = 
a = 
a = 

,S, = 

P = tan -i 

[rtSß\ (2) 

where fr denotes the rolling coefficient of friction. We addi- 
tionally assume that the contact angles between the ball and 
the screw and nut, ßA and ßB, respectively, are equal; i.e., ßA 
= ßB = ß. 

The efficiency is equal to the ratio of the work done by the 
output forces to the work done by the input and can be rep- 
resented as 

v = l~: Jfc±V(C<A) 
(3) Sß+f{a-Cß) + tp/ta- 

Using a similar approach for the case of nut driving, the ef- 
ficiency can be simply expressed as 

l   f(a+2CB) + tD/(CaSa) 
Se+f(a+Ce) + tp/ta ■ (4) 

A More Exact Efficiency Analysis 
The quasi-static analysis of the preceding section provides 

an approximation to the ball screw's efficiency since dynamic 
forces, which will have an effect, have been neglected. In 
actuality, ball screw efficiency will vary as a function of time 
due to the system dynamics and the time-dependent nature of 
the input torque. In order to design with utmost care, one 
would need to solve the general equations of motion in order 
to calculate the time varying efficiency, and corresponding 
design methods could be developed that consider either a max- 
imum or a mean value of efficiency. However, such an ap- 
proach would be quite tedious and results may be difficult to 
use for design purposes. By considering steady-state ball screw 
motion, an approximation of the equations of motion is ob- 
tained that still accounts for some of the dynamic forces. This 
approximation provides a basis for developing a simplified 
design method and it is valid for many ball screw applications. 
Since the steady-state theory results in an approximate effi- 

trajectory of 
ball centers 

Fig. 1   The position of the ball center, 0', in Cartesian coordinates and 
Frenet-Serret coordinates 

ciency, in certain instances, the designer may elect to integrate 
the general equations of motion in order to monitor the time 
varying efficiency. 

To develop the equations of motion, we first consider the 
position of the ball center and we employ the following three 
coordinate frames: a fixed Cartesian frame, ox'y'z , a Carte- 
sian frame rotating with the screw, oxyz, and a Frenet-Serret 
coordinate frame along the ball trajectory, o'nbt, as shown 
in Fig. 1. We then arrive at the Newton-Euler equations which 
represent the ball motion. The steady-state form of these equa- 
tions of motion, for the case of converting rotary into linear 
motion, follow. 

/(ÖAW* + QAM + Ö4'S,M')=0 (5a) 

QA(Cß-/S0CM)-QB(Cg+fSßC^) 

+ QA'(Oß+SSßCM>) = mrm(8 + 6)2   (5b) 
QA (Sß +fCßCM) - QB(Sß -fCßCw) -QA'(Sß -fCßCM 0 = 0 

(5c) 

frb ( QBC+B - QAC*A -QA'CM>)=-I(6+ ß )«„Ca    (5d) 
frbSß(QBSt3-QAStA + QA'S+A>)=I(6+Q)(o,lCa-ubSa) 

(5e) 
-fr„Cß(QBStB - QASM -QA>SM-) = I(6 + Ü )o>nSa (5/) 
where: 

yj/i = the angle between the direction of the friction 
force and the normal plane at the contact points, 
and the corresponding subscripts: 
A and A' denote the major and minor contact 
point between the ball and the nut, respectively, 
and B denotes the major contact point between 
the ball and the screw, 

m = mass of an individual ball, 
/ = mass moment of inertia of the ball relative to 

its mass center, 
6  = the angular velocity of the ball relative to the 

screw along the helical path, 
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Q = the angular velocity of the screw, and 
= the angular velocity of the ball with respect to 

its center of mass in the normal, tangential and 
binormal directions of the helical path. 

Note that these equations assume a three-point contact profile 
between the ball and the nut and screw. With the three-point 
contact, there are two major contact points, A and B, through 
which the majority of the load is transferred. Additionally, a 
minor contact point, A', must exist in order to equilibrate the 
centripetal force and adequately constrain the ball. We ad- 
ditionally assume that the contact angles between the ball and 
the screw and nut, ßA,ßA', and ßB, respectively, in this case, 
are equal; i.e., ßA = ßA' = ßß = |3. From a design perspective, 
equal contact angles result in consistent loading over all of the 
contact points helping prevent local failure and premature 
fatigue. Theoretically, the contact angle can be between 0 deg. 
and 90 deg. In actuality, the contact angle is limited by ge- 
ometry and manufacturing techniques and is most often be- 
tween 45 deg. and 60 deg. The interested reader is again referred 
to Lin et al. (1994) for a more detailed derivation of these 
equations, as well as those to follow. 

The slip angles, the angles between the friction force direc- 
tions and the normal plane at the contact points, are better 
defined as 

^,= ir + tan -© (6) 

where K„- and Vyi denote the magnitude of the velocity in the 
normal plane and the tangential direction, respectively, with 
respect to the local coordinate systems at the contact points; 
see Fig. 2. Through a study of the kinematics (see Lin et al., 
1994), the following slip velocities result: 

For the ball/nut contact point: 
VxA=-rbw,znd VyA = d(6 + Q) + rb(üibCß-w„Sß)     (7) 

and for the ball/screw contact point: 

KxB=rd(o),-nSC[) and 
VyB = d6-rb[(o>b-QCa)Cß-oi„Sß]   (8) 

where d = rm/Ca. 
By imposing static equilibrium on the screw and nut, we 

have the following expressions which can be used to relate the 
torque applied to the screw (or nut) to the axial load acting 
on the nut (or screw): 
M=('R,xF,+'R,'XF,-)«k 

= rm{wl{Q,'-Qi)SaSB+f{-Sa{QiC^+Q,'C^'){Y/fl + Cß) 

+ Ca(QiS«+ Q,'V)U + ™flCß)\) and 

F„= (F,+F,')'k 

= w,(Q,- Qr )C0Sß+yiCaCß(QA/+ Q/'Q,') 

+ S,,<aStf+Gf'V>]:   i='A,B.   (9) 
where 
Tt, = the position vector of contact point / with respect to 

the rotational Cartesian coordinate system (see Fig. 1), 
F; = the force vector applied on the ball at contact point /, 

and 
the weighting function, w,, allows distinction between the var- 
ious contact points and is defined as 

M>/=    1   for i = A (A denotes the ball/nut contact) 

= -1   for i=B (B denotes the ball/screw contact). 

Equation (9) provides two simultaneous equations for either 
the screw driving or the nut driving case. When a torque is 

Fig. 2   Coordinate systems at the contact points 

applied to the nut, the subscript / = A will apply for the 
moment equation and the subscript / = B will apply for the 
force equation since an axial force will be acting on the screw. 
When the torque is applied to the screw, i = B applies for the 
moment equation and / = A applies for the force equation. 

Equations (5)-(9) have been solved numerically for the screw 
driving case with the following ball screw parameter values: 
rb = 4.37 mm (0.172 in.), rm = 24.3 mm (0.956 in.), Q = 
2000 rpm, and a = 10 deg. for varying contact angles or ß 
= 45 deg. for varying helix angles. The coefficient of friction, 
/, is assumed equal to 0.075, a value representative of the 
contact conditions normally found in the BSM and this value 
will be used for the remainder of the paper. Additionally, it 
is assumed that an axial load, F„, equal to 2113 Nt (475 lb) is 
resisting motion of the nut. Figures 3 and 4 depict the results. 
We show the relationships between efficiency and contact angle 
and helix angle in Fig. 3. Figure 4 displays the normal loads 
as a function of contact angle. In this figure, the curve rep- 
resents the load at the major contact points, A and B, which, 
for all practical purposes, are equal, and the load at the minor 
contact point, A', which is orders of magnitude smaller, is 
not distinguishable from the abscissa. 

The Approximate Closed-Form Solution 
The theory developed above involves the numerical solution 

of the set of equations representing the steady-state motion of 
the ball screw and designing ball screw mechanisms using this 
theory is obviously quite cumbersome. The current section 
derives an approximate closed-form solution for the ball screw 
motion and considerable insight is gained into the sensitive 
design parameters. This solution also allows us to investigate 
the optimal design of the BSM. 

For the mechanism operating at relatively low speed, which 
is true for most BSM currently used in industry, it is reasonable 
to assume that the centripetal force is very small compared 
with the normal loads. Additionally, from the numerical results 
above, we recognize that the normal load at the minor contact 
point is very small compared to the normal loads at the two 
major contact points. The third contact point is necessary to 
provide a stable system, but has only little effect on the re- 
sultant motion at these relatively low speeds. Thus, QA ~ QB, 
indicating that a two-point-contact model is a reasonable ap- 
proximation. For the particular size of balls used in this model, 
we find that this approximation is valid for screw speeds as 
high as 2,000 rpm. 

With the assumption that QA ■ =0, from Eq. (5a), we obtain 
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QB       S+A 
(10) 

which implies that i[rA « x + ipB. Note that this result also 
agrees well with the numerical results. 

We note that the nut moves a distance equal to - fiL/2x = 
- Qrmta (where L denotes the lead of the screw) as the screw 
rotates through an angle Q. Thus, from the above assumptions 
and Eq. (9), the efficiency of the BSM, TJ, can now be written 
in closed-form as 

Sß+ÄCiB{a-CB)+S^\-aCB)/taX 
It is now simple to observe the effects of the various parameters 
on efficiency. 

Figure 5 shows the variation in efficiency with respect to the 
slip angle at the screw/ball contact point, ^s. In this figure, 
the following parameter values are used: a = 0.1 and a = 10 
deg. The curve indicates that the friction along the tangential 
direction dissipates more energy than that on the normal plane. 
In other words, the component of factional force along the 
tangential direction plays a more important role, from the 

efficiency point of view, than that on the normal plane. Thus, 
the upper and lower limits of efficiency are at ^B = 0 deg. 
(normal plane) and yj/B = 90 deg. (tangential direction), re- 
spectively. We note that we could arrive at the same conclusions 
by using the slip angle at the screw/ball contact point, ^, 
since tyA = x + fo- 

Furthermore, the following equation is obtained by dividing 
Eq. (5/) by Eq. (Sd): 

cot(^) + cot(^) = 
2CB 

By combining Eqs. (10) and (12), we have 

ta = ^,4-ir = tan~11 

# 

Therefore, Eq. (11) can be further simplified to 

/ „ = 1- 
CLSe V<3+d+/% 

(12) 

(13) 

(14) 

and we note that the only parameters affecting efficiency from 
this equation are the coefficient of friction, the helix angle and 
the contact angle. 

Using Eq. (14), we find that the efficiencies generated are 
nearly identical to the numerical results obtained from the 
steady-state solution of the Newton-Euler equations shown in 
Fig. 3 where the maximum difference between the theories for 
the efficiency versus helix angle relationship is 0.33 percent 
and between the theories for the efficiency versus contact angle 
relationship is 0.86 percent. Thus, Eq. (14) is a valid repre- 
sentation of the efficiency of the BSM for this type of motion. 
Further investigation of Fig. 3 reveals that an optimum contact 
angle exists for peak efficiency. This existence of an optimum 
can be explained as follows. If one considers only the friction 
on the normal plane, the efficiency is proportional to the con- 
tact angle, which can be observed through Eq. (11). However, 
from Fig. 5, the component of frictional force along the tan- 
gential direction, which dissipates more energy than that on 
the normal plane, becomes more important at higher contact 
angles. Hence, a peak efficiency exists at a contact angle at 
which the two frictional components reach some particular 
ratio. To obtain the optimum contact angle mathematically, 
we differentiate the denominator of Eq. (14) with respect to 
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the contact angle and set the derivative equal to zero, resulting 
in the following expression. 

c|+£+?/Wc§+£=sS (15) 
One notes, from this equation, that the optimum contact angle 
can be expressed as a function of helix angle. The resultant 
relationship is depicted in Fig. 6. This curve indicates that the 
peak efficiency exists only at lower helix angles and higher 
contact angles. The optimum efficiency is arrived at by merely 
solving Eqs. (14) and (15) simultaneously. The resulting op- 
timal efficiency value is 86.1 percent for all helix angles and 
the corresponding contact angle from Eq. (15), and the coef- 
ficient of friction equal to 0.075. 

Self-braking is that condition in which it is kinematically 
impossible for the mechanism to perform useful work and is, 
of course, highly undesirable. The self-braking condition is 
determined by combining Eqs. (11) and (13) and results when 
the numerator of Eq. (11) becomes negative; i.e., 

Sß</VC| + £. (16) 
The shaded region below the curve in Fig. 7a represents the 
design space in which self-braking occurs. We note that self- 
braking takes place for designs with low contact angles for the 
helix angles normally used and additionally, that the self-brak- 
ing condition always takes place at the driven side of the mech- 
anism. 

Conversion of Linear into Rotary Motion. Employing a 
similar procedure as above, we obtain the efficiency for the 
case of converting linear into rotary motion as 

> 
Wcl+£+/«*+£) 

(17) 

It is again easy to develop relationships between efficiency and 
contact angle and helix angle. For this case, the trends are the 
same as the case of converting rotary into linear motion, but 
with slightly different values. Now, the peak efficiency occurs 
when the following expression holds: 

Cg + £ = Sg + 2/5# (18) 

and the resulting relationship between contact angle and helix 
angle is additionally shown in Fig. 6. This curve also indicates 
that the peak efficiency exists only at lower helix angles and 

0 12 3 4 
Helix Angle, a (degrees) 

Fig. 7(b)   The self-braking design space—conversion of linear into ro- 
tary motion 

higher contact angles. The optimum efficiency is arrived at by 
merely solving Eqs. (17) and (18) simultaneously. As in the 
case of conversion of rotary to linear motion, the optimal 
efficiency value is 86.1 percent for all helix angles and the 
corresponding contact angle from Eq. (18), and the coefficient 
of friction equal to 0.075. In this case, the self-braking con- 
dition occurs when 

The shaded region above the curve in Fig. 7(ft) depicts the 
design space for self-braking and this takes place only for 
designs with low helix angles and high contact angles. 

Load Capacity Considerations 
The normal load transmitted through the contact surfaces 

should be designed to be as low as possible for a given loading 
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condition to attain the highest possible load capacity. For the 
case of conversion of rotary into linear motion, we consider 
a constant load Fa. Then, by neglecting the friction force terms 
which result in surface tractions as opposed to normal loads, 
from Eq. (9), we notice that causing CaSs to be as high as 
possible results in the lowest normal loads. This implies that 
designs with small helix angles and large contact angles give 
the BSM the maximum load capacity. With the ball-screw 
designed such that it operates at its maximum efficiency, we 
find that the term CaSe is constant for all helix angles and the 
corresponding contact angle from Eq. (15), and thus, the load 
carrying capacity cannot be improved for this optimum case. 

For the case of conversion of linear into rotary motion, 
assuming constant load M, Eq. (9) reveals that the lowest 
normal loads occur for a high rmSaSe term. This indicates that 
with large mean radius, helix angle and contact angle, the BSM 
has the highest load capacity. Additionally, we note that the 
parameter a (ratio of ball radius to mean radius) is not a critical 
parameter within the range found in most industry applica- 
tions; i.e., usually, 0.07 < a < 0.2. Thus, for this case, one 
would like to choose the highest contact angle that is possible 
given manufacturing constraints and select the corresponding 
helix angle from Eq. (18) for optimum efficiency in order to 
design the most efficient, highest load carrying ball screw 
mechanism. 

Design Procedure 
Based on the results arrived at in the preceding analysis, the 

following methodology is recommended for the design of the 
BSM: 

(/) Select a preliminary helix angle based on the discussion 
related to load capacity and the corresponding motion. 

(2) Determine the contact angle for optimal efficiency from 
either Eq. (15) or (18). 

(3) Choose the screw length according to the application 
requirements. 

(-0 Determine the mean radius such that rm > screw length/ 
60, as noted by Levit (1963b). 

(5)   Select the ball size such that 0.07 < a < 0.2. 
(<5) Determine the thread profiles such that 0.95 < rb/r2 

< 0.97, where r2 = the Fadius of curvature of the thread 
profile for the nut or screw. 

(7) Determine the approximate contact force from the 
specified resistive force or moment and the equations shown 
below, which were derived from Eq. (9) with friction neglected. 

For the conversion of rotary into linear motion: 

&= cjst 

For the conversion of linear into rotary motion: 

M 

(20) 

(21) 
rmSaSp 

(8) Determine the relative motion between the screw and 
the nut from the following relationship: 

advance distance = (rm/a) (angular displacement). 

(9) Calculate the maximum contact stress using the ap- 
proximate contact load, the ball radius, the thread radius of 
curvature and Hertz' theory. 

(10) Determine the efficiency of the BSM from Eos H4} 
or (17). *■'   > 

This procedure should be an iterative process with a new set 
of ball screw dimensions selected if any of the criteria are 
violated. For instance, if the contact stresses determined from 
the Hertzian theory are too high, most likely larger dimensions 
are necessary. Similarly, if the relative motion is not appro- 
priate (size constraints are violated), a new helix angle, as well 
as other dimensions, may be necessary. Additionally, this pro- 
cedure has not discussed the speed requirements nor the avail- 
able motor power of the application. Obviously, these factors 
will also affect the final design. 

Conclusions 
This paper provides a powerful set of tools for analyzing 

and designing the ball screw mechanism. The exact steady- 
state motion within the ball screw mechanism has been deter- 
mined by numerically solving the Newton-Euler equations of 
motion and the kinematic equations simultaneously. This pa- 
per has developed a simplified closed-form solution for ball 
screw motion and has employed this theory in considering the 
optimum design of this mechanism. In terms of efficiency, the 
driving component does not have an effect. That is, only the 
type of motion conversion is important. Thus, the necessary 
relationship between contact angle and helix angle for optimum 
efficiency has been formulated for all types of ball screw mo- 
tion. Additionally, the conditions for self-braking have been 
discussed as well as the load capacity of the BSM. The results 
of the closed-form solution have been presented in a dimen- 
sionless manner allowing this work to be applied to the design 
of any ball screw mechanism. Finally, a complete design pro- 
cedure for the BSM has been developed. 

Acknowledgment 
This research was supported in part by US Army Research 

Office grant number DAAL03-90-G-005 and the California 
Department of Transportation through the AHMCT program. 

References 
Belyaev, V. C, 1971, "Re-entry of Balls in Recirculating Ball-screw-and-nut 

Mechanisms," Russian Engineering Journal, Vol. LI, No. 11, pp. 30-34. 
Belyaev, V. G., and Kogan, A. I., 1973, "Effect of Geometrical Errors of 

Ball Contact Angle in Ball-Screw Transmissions," Machines & Tooling, No. 5, 
pp. 25-29. 

Belyaev, V. G., and Drobashevskii, G. S., 1974a, '^Recirculating Ball Nut 
and Screw Transmissions with Arched and Semi-circular Thread Profiles," Rus- 
sian Engineering Journal, Vol. LIV, No. 9, pp. 18-21. 

Belyaev, V. G., and Kogan, A. I., 1974b, "Effect of Screw Diameter Vari- 
ations on Accuracy and Stiffness of Recirculating Bali Nut-Screw Pairs," Ma- 
chines & Tooling, Vol. XLV, No. 9, pp. 16-18. 

Belyaev, V. G., and Turavinov, V. P., 1981, "Positioning Accuracy of Ball- 
Screw Mechanism," Soviet Engineering Research, Vol. I, No. 5, pp. 34-36. 

Belyaev, V. G., and Malyuga, V. S., 1983. "The Force Transfer Factor in 
the Return Channel of a Ball and Screw Mechanism," Sower Engineering Re- 
search, Vol. 3, No. 2, pp. 78-80. 

Drozdov, Y. N., 1984, "Calculating the Wear ofaScrewandNutTransmission 
with Sliding Friction," Sow« Engineering Research, Vol. 4, No. 5, pp. 6-8. 

Levit, G. A., 1963a, "Recirculating Ball Screw and Nut Units," Machines 
and Tooling, Vol. XXXIV, No. 4, pp. 3-8. 

Levit, G. A., 1963b, "Calculations of Recirculating Ball Screw and Nut Trans- 
missions," Machines and Tooling, Vol. XXXIV, No. 5, pp. 9-16. 

Lin, M. C, Ravani, B., and Velinsky, S. A., 1994, "Kinematics of the Ball 
Screw Mechanism," ASME JOURNAL OF MECHANICAL DESIGN, in press. 

Mukhortov, V. N., 1982, "Increasing the Life of Anti-Friction Screw-and- 
Nut Transmissions," Sower Engineering Research, Vol. 2, No. 10, pp. 86-87. 

Journal of Mechanical Design SEPTEMBER 1994, Vol. 116/861 



EIGHTH    WORLD   CONGRESS    ON   THE   THEORY   OF   MACHINES   AND   MECHANISMS.   PRAGUE,   CZECHOSLOVAKIA.   AUGUST   2«   -   31,   t, 

ON THE ANALYSIS AND DESIGN OF HIGH SPEED 

THRUST BALL BEARINGS 

M.C. LIN, S.A. VELINSKY, B. RAVANI 
Department of Mechanical Engineering, University of California-Davis, 
Davis, CA, USA 

Absaact In this paper, a complete solution of the steady-state Newton-Euler equations describing the motion 
of the balls in high speed thrust ball bearings is presented. Kinematic equations are derived and used as 
ancillary equations to obtain the numerical solution of the Newton-Euler equations. This differs from 
previously reported work where extraneous assumptions (instead of kinematic analysis) are used to allow 
solutions of these equations. It is shown that the no-slip condition for the ball morion reported in the literature 
is based on an unnecessary assumption. The correct form of the condition is developed and used in the 
analysis of the ball motion. The analysis shows the importance of contact angle on both ball motion and 
contact force. An approximate theory is then developed for determining the optimum contact angle that would 
result in minimum contact force in high speed ball bearings. The results are compared with experimental data, 
and theory is illustrated by an example. 

Keywords. Thrust ball bearings; high speed; kinematics; design. 

INTRODUCTION 
The ball motion within ball bearings was first investigated 

by Jones (1959) where he derived equations governing the 
steady-state motion of the ball. Jones did not solve the 
equations that he derived and only used them to investigate 
frictional effects in ball bearings. Subsequently, Harris (1971) 
made several simplifying assumptions that made it possible to 
solve Jones' equations obtaining numerical results for the 
motion of the ball. Harris' technique, also presented in Harris 
(1984), includes an assumption that there is a sufficiently large 
static coefficient of friction between the ball and the raceway to 
prevent ball rotation due to the gyroscopic moment. 
Additionally, he assumed that there is no-slip at the contact 
points in certain directions. Later, Gupta (1975, 1979) 
determined the complete solution to the differential equations of 
motion of the ball by including contact deformations. He also 
considered full elastohydrodynamic lubrication. 

In this paper, we show that neither the so called race control 
assumption of Jones and Harris nor the inclusion of the contact 
deformation are necessary for obtaining solutions to the 
equations representing ball motion in high speed thrust ball 
bearings. For such devices, one can assume three points of 
contact between the ball and the raceways and solve the 
equations of motion. This is accomplished through the use of 
kinematic analysis to develop ancillary equations, which when 
combined with the steady-state equations, allow for numerical 
solutions describing the motion of the ball. In performing the 
kinematic analysis, we develop theoretically correct no-slip 
conditions and show that they differ from those in the literature; 
see, e.g., Palmgren (1945), Allen (1964), Houghton (1976), 
Hamrock and Dowson (1981), and Harris (1984). We then 
apply the results and develop an approximate, but closed-form, 
theory suitable for design purposes. This approximate theory is 
used to develop a design strategy for optimum contact angle. 

KINEMATICS OF THRUST BALL BEARINGS 
Classical ball bearing kinematics assumes that the velocity of the 
ball center can be obtained as the mean of the inner and outer 
raceway velocities, and additionally, the relative angular velocity 
between the inner raceway and the ball is defined as (to -co). 
Accordingly, previous researchers have developed the following 
relationship between angular velocities for the no-slip condition: 

(«^-»iXv b) = rbcab (1) 

rm = mean radius of the path of the ball center, 
rb = ball radius, and 

co,, = the angular velocity of the ball with respect to its 
center. 

However, the arms of rotation of the ball and the raceways 
are different such that the angular velocities of the various 
elements of the bearing are not additive. Hence, the correct 
equation for angular velocities with the no-slip condition is 
actually 

(2) W %%'(**• rb)°>i 

where, here, we define 
com = me orbital angular velocity, and 

cijj = the angular velocity of the inner raceway with 
respect to the ground. 

By comparing the above two equations, we recognize that the 
arm of rotation of the ball center from Eqn. (2) is equal to rm as 
opposed to (i^-r^ indicated by Eqn. (1). Depending on the 
relative size of the balls and the raceway, the error associated 
with use of Eqn. (1) could be considerable. 

where 

+*i 

Fig. 1. The coordinate systems employed for 
the kinematics of thrust ball bearings. 

We now study the kinematics of the thrust ball bearing for 
the case in which the outer raceway is fixed and the inner 
raceway is rotating. The case with the inner raceway fixed is 
merely a kinematic inversion of this case. We employ the 
following three coordinate frames: a fixed Cartesian frame, 
oxjyjZj, a Cartesian frame rotating with the inner raceway, 



~k 
0X2^2Z2>an<*a '"^ centered coordinate frame moving along the 
ball trajectory, o'xjyjZj, as shown in Fig. 1. Fig. 2 shows the 
local coordinate system, Bx^z,,, at the contact point between 
the ball and the inner raceway which will be used in developing 
the slip velocities at this point 

-raceway >N 
Ks\\\\\ 
\ outer-raceway 

Fig. 2. Local coordinate systems at the contact point 

With the assumption of rigid body motion, we arrive at the 
following velocity of the contact point on the ball: 

VBb = *a+ oxrbk4 

where 

rJe+^-r^Sp+ca.Cp (3) 

CD=   K     «V     «fcjXy     X3=   [i3     j3     k3]
T,     X4=   [14    j4     k4]

T, 

Re = the absolute velocity of the origin of the ball 
centered coordinate system, 

8 = the angular velocity of the ball along its circular 
path relative to the inner-raceway, 

il = the angular velocity of the inner-raceway, 
tox, o>y, coz = the angular velocity of the ball with respect to its 

center of mass in the x3, y3, Zj  directions, 
respectively, of the ball centered coordinate 
system, 

= cosine and sine functions, respectively, with the 
angle denoted by the subscript, and 

ß = the contact angle at die hall/inner raceway contact 
point 

Likewise, the velocity of the contact point on the inner 
raceway can be expressed as 

VB.= Gk2x *B = 

where 

rm-rbCß ). (4) 

and RB denotes the position of the contact point with respect to 
the fixed coordinate system. 

Thus, the slip velocity at contact point B between the ball 
and the inner raceway can be expressed as 

VSB = VBb-VBi=[VxBVyBVzB] 

rm«y 
T 

" 0 

X4 (5) 

In a similar manner, the slip velocity at the ball/outer raceway 
contact point A, can be represented as 

VSA=lVxA VyA VzA. 

-rbffly 

rra(9 + ÖWb(coxSß+a>2Cß) (6) 

COy   =   0 

and from the y-direction slip velocities: 

No-slip conditions can now be derived from these last two 
equations. From the x-direction slip velocities: 

(7) 

(8) 

(9) 

(10) 

ox = 0 

Q + il 
l±aC, 

ß 

n 
aCptl 

2aC„ 

where (8+Q)/Q can be thought of as the orbital velocity of the 

ball, (äJQ. as the spinning velocity of the ball, a = r,/rm, the ratio 
of the ball size to the mean radius of its path, and the "+" sign 
applies for outer-raceway driving and the "-" sign applies for 
inner-raceway driving. 

DYNAMICS OF BALL MOTION 
By considering equilibrium of the individual ball, we write the 
steady-state Newton-Euler equations governing ball motion in 
thrust ball bearings as follows: 

«QBV^S^-KU5¥A.) = 0 (1 la) 

QA(C^-fSpC¥AKJB(Cp-fSpCvB)+QA.(Cp-fSpC¥A.) 

=mrm(e+i2)2 (b) 

QA(Sp + flCpC^K^Sa - fCpC^-Q^Sp - fCpC^.) = 0 (c) 

frb(QBC¥B-QAC
¥A-QA^¥A) = I(^-Ö)0)x (d) 

WQBVQASyA+QA-V) = I(9+Q)(0y (e) 

-frbCpff^B-QAVQ*V> - ° ® 
where: 
Qi = the normal force at the contact points between the 

ball and outer- and inner-raceway, respectively, 
V; = the angle between the direction of the friction 

force and the normal plane at the contact points, 
and the corresponding subscripts: 

A and A' denote the major and minor contact 
point between the ball and the outer-raceway, 
respectively, and B denotes the major contact 
point between the ball and the inner-raceway, 

f = the Coulomb coefficient of friction at the contact 
points, 

m = mass of an individual ball, and 
I = mass moment of inertia of the ball relative to its 

mass center. 
Note that we assume that there are three points of contact 
between the ball and the inner and outer raceways, and mat the 
contact angles are equal at these contact points; i.e., ßA = ßA. = 

ßg = ß. Additionally, we note that these governing equations 
are identical to those of Jones (1959). Also, the above equations 

are valid for the case of the inner raceway fixed by allowing £2 to 
represent the outer raceway angular velocity. 

The slip angles, the angles between the friction force 



directions and the normal plane at the contact points, are better 
defined as 

\y. = n + tan" v. (12) 

where Vxi and V^ denote the magnitude of the slip velocity in 
the normal plane and the tangential direction, respectively, with 
respect to the local coordinates at the contact points; see Fig. 2. 
These slip velocities have been derived in the preceding section 
and appear in Eqns. (5) and (6). Equation (12), which is based 
on the kinematic analysis, dictates the directions of the friction 
forces at the contact points. These equations are the ancillary 
conditions which allow the solution of the Newton-Euler 
equations without additonal simplifying assumptions. We note 
that the kinematics employed assumes rigid body motion, but 
that it would be reasonably simple to extend this to include 
contact deformation. 

Now, assume that the thrust load, Fa) is applied by the 
shaft By imposing static equilibrium on the inner-raceway, one 
obtains the following equation: 

F,=QB(Sp-fCpCvB). (13) 

Steady-state ball motion is then determined by the simultaneous 
solution of the ten nonlinear algebraic equations (11-13) which 

determines the ten unknowns: 6, d)x, co , ü)z, QA, QA, QB, VA, 

\fK and yB. We have obtained solutions of these equations 
using a modified Newton's method; see Forsythe, Malcolm and 
Moler (1977). Results of the numerical solution are shown in 
Fig. 3 in which we compare ball velocities to the experimental 
results of Poplawski and Mauriello (1969). We employ the 
following parameter values: rb = 4.37 mm (11/64 in.), rm = 

24.27 mm (0.9555 in.), ß = 24.5°, f = 0.075, and Q = 35000 
rpm. 

Recognizing that the contact angle plays a critical role in the 
resultant characteristics of high-speed thrust ball-bearings, we 
employ the above equations and show the variation in ball 
motion with respect to contact angle in Fig. 4. We have 
additionally shown the effect of contact angle on the normal load 
at the ball/outer-raceway contact point in Fig. 5. In addition to 
the noted parameter values, Figs. 4 and 5 are based upon: Ft = 

1780 N (400 lb) and shaft speed, Q = 27,500 rpm. Of 
considerable interest in Fig. 5 is that a minimum of the normal 
load QA exists at some contact angle. Should the thrust bearing 
be designed at such a contact angle, its load capacity and life 
could be maximized. 
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Fig. 3. Comparison with the experimental data of 
Poplawski and Mauriello (1969). 

APPROXIMATE THEORY FOR DESIGNING 
HIGH-SPEED THRUST BEARINGS 

The theory developed above involves the numerical solution of a 
set of equations and the design of ball bearings using this theory 
is obviously quite cumbersome. In this section, we provide an 
approximation to the theory that allows a closed-form solution 
and the development of a simple methodology for determining 
the optimum contact angle. 

First, consider the no-slip conditions, Eqns. (7)-(10), 
derived earlier in this paper. These conditions provide a closed- 

10 80 20     30     40     50     60 
Contact angle, ß [degrees] 

Fig. 4. Orbital speed vs contact angle. 

form representation of the ball motion and results are 
additionally shown in Fig. 3. Evidently, with the low 
coefficient of friction normally found in ball bearings, the no- 
slip assumption seems to provide accurate results and thus, it 
can be quite useful for developing a design methodology. 

We now recognize that the normal load consists of two 
major components: one from the thrust force and the other from 
the centripetal force. Therefore, 

Q =£L+CF 
^A- s„    2C„ 

(14) 

where the centripetal force, CF = mrm(0+Q)2. The first, term of 
the above equation is obtained from equation (13) by neglecting 
the friction effect (which is small) and the second term is a result 
of the centripetal force which is shared by the two contact points 
between the ball and the outer-raceway (see Fig. 6). As we can 
see from Eqn. (14), the thrust load plays a greater role at lower 
contact angles, whereas, the centripetal force is more important 
at higher contact angles. Thus, the optimal contact angle 
depends on the ratio between thrust load and centripetal force. 

Since, the no-slip condition along the tangential direction is 
a reasonable approximation for determining the motion in ball 
bearings, we substitute Eqn. (9) into (14) and set the first 
derivative of QA with respect to the contact angle equal to zero. 
Thus, we arrive at this condition for n^nimizing the normal load: 

8F, 

mrmä 
l-a2dt? (15) 

where to denotes the tangent of the contact angle, ß.  By 

recognizing that a2^  « 1, we arrive at the following 
expression for the optimum contact angle: 

ß = tan-1 
8F. 

mrmG 
(16) 

Fig. 7 shows a plot of the optimum contact angle based on 
the above equation. Note that Eqn. (16) is valid for both inner- 
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Fig. 5. Maximum contact load as a function of contact angle. 
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Fig. 6. Free-body diagram of the ball. 
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and outer-raceways driving. However, according to the no-slip 
conditions derived above, the orbital speed is about 14% higher 
for outer-raceway driving as opposed to inner-raceway driving. 
Thus, the centripetal force is about 29% higher for the outer- 
raceway driving case. This could be crucial when operating at 
extremely high speeds. Since the no-slip assumption 
overestimates the centripetal force compared to the exact 
solution, the desired contact angle should be slightly larger than 
that obtained from Eqn. (16). 

The dimensionless parameter, SFJwrmC^, is representative 
of the ratio between the thrust load and the centripetal force. For 
extreme cases, as the parameter approaches zero, the optimal 
contact angle should approach zero. As the parameter 
approaches infinity, the optimal contact angle approaches 90°. 
Finally, when this parameter equals one, the optimal contact 
angle is 45°. 

EXAMPLE 
As an example, we use the bearing dimensions used earlier. The 
closed-form solution, Eqn. (16), arrives at an optimum contact 
angle ß = 22.1°. Using the exact theory represented by Eqns. 
(11-13) and much computation, the optimum contact angle ß = 
25° as shown in Fig. 5. The approximate closed-form solution 
has underestimated the optimum contact angle by about 10% for 
the conditions examined. However, the difference in the 
resultant contact force is almost insignificant Additionally, one 
notices from Fig. 5 that the selection of a contact angle equal to 
50° would result in a maximum load approximately 22% higher. 
For an actual design, we recommend the use of the closed-form 
solution to arrive at an approximate contact angle and contact 
load. If the result were physically realizable, the designer would 
then employ the exact theory to evaluate additional details of the 
design. As a matter of interest, the Poplawski and Mauriello 
bearing's contact angle was equal to 24.5° and this bearing 
operated at speeds as high as 35,000 rpm. 

CONCLUSIONS 
This paper has provided a kinematic analysis of ball bearings 
and has applied the results of this analysis to provide the 
necessary ancillary equations to allow the solution of the steady- 
state Newton-Euler equations governing ball motion in thrust 
ball bearings. Previous researchers have applied numerous 
extraneous assumptions to solve these equations and thus, their 
results are not accurate. Additionally, we have presented the no- 
slip conditions for ball bearings based on the kinematic analysis 
correcting those that have appeared in the literature for many 
years. Interestingly eno: jh, we have shown that the no-slip 
assumption leads to reasonable results for the low coefficients of 
friction commonly found in ball bearings. 

Through our analysis, we have shown the importance of 
contact angle on both ball motion and contact force. We have 
also developed an approximate closed-form solution and have 
utilized it in determining the optimal contact angle to be used in 
high-speed ball bearings for minimum contact force. Finally, 
we have used a simple example to illustrate the usefulness of the 
theory. 

This work, like any other, has some shortcomings. First, 
we have not considered fluid-film lubrication nor the effects of 
frictional heating in the contact locations. Additionally, we have 
assumed Coulomb friction whereas in reality, friction is a 
complex function of a number of variables. Finally, we have 
assumed rigid body motion and have not considered the effects 
of contact deformation. However, we believe that the design 
method developed can be quite useful in light of the agreement 
between the developed theory and previously published 
experimental data. Furthermore, we would hope mat the basic 
theory would be extended in the near future to allow 
consideration of each of the effects mentioned. 
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Computer Aided Geometric Design 
of Motion Interpolants 
This paper studies continuous computational geometry of motion and develops a 
method for Computer Aided Geometric Design (CAGD) of motion interpolants. 
The approach uses a mapping of spatial kinematics to convert the problem of 
interpolating displacements to that of interpolating points in the space of the map- 
ping. To facilitate the point interpolation, the previously unorientable mapping space 
is made orientable. Methods are then developed for designing spline curves in the 
mapping space with tangent, curvature and torsion continuities. The results have 
application in computer animation of three-dimensional objects used in computer 
graphics, computer vision and simulation of mechanical systems. 

1   Introduction 
This paper deals with computational geometry of motion. 

Kinematicians and machine theorists have, for many years, 
studied problems in kinematic geometry of machines and mo- 
tions (see, for example, Hunt, 1978; Bottema and Roth, 1979; 
and McCarthy, 1990). Computer scientists and mathematicians 
have developed geometric algorithms and methods for prob- 
lems in computer graphics and computer aided design (see, for 
example, Faux and Pratt, 1979; Farm, 1993). There has been, 
however, no merging of the two fields. This paper combines 
and modifies concepts from kinematics and from the field of 
Computer Aided Geometric Design (CAGD) and. provides a 
solution to one of the most basic problems in computational 
geometry of motion. The problem, here referred to as motion 
interpolation, is that of finding in-between displacements from 
a set of given displacements to provide a desired, possibly, 
smooth, animation of a rigid body for its full range of motion. 
In computer simulation of large mechanical systems (see, for 
example, Tsai andHaug, 1991),-generation of tightly spaced 
displacements of a moving body along its trajectory may hot 
be cost effective. Instead,-a series of displacemente are generated 
using the dynamic equations of motion and then the in-between 
displacements can be constructed using appropriate motion in- 
terpolants. In robotics, generation of Cartesian' trajectories re- 
quires interpolation of specified target configurations1 of the 
end-effector.; In computer vision and computer graphics (see, 
for example, Turner et al., 1991), reconstructing motion of a 
moving object or a camera that views the scene also requires 
interpolatingin-between discrete images of the object or the 
scene. 

There are two basic issues in design of motion interpolants. 
The first one is very basic to kinematics and concerns repre- 
sentation of displacements. The second basic issue is com- 
putational   geometric   in   nature   and   is   related   to 

' Positions and orientations. 
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parameterization and piecing of motion interpolants. The tra- 
ditional approach for computer animation of three-dimen- 
sional objects has separated the interpolations of translations 
and rotations (Reeves, 1981). Although the handling of trans- 
lation is straightforward, rotation interpolation has proved to 
be difficult. If orthogonal rotation matrices are used, for ex- 
ample, their interpolation is not in general orthogonal and 
therefore does not represent a rotation. Early approaches have 
involved independent interpolation of the Euler angles. This 
is cumbersome resulting in speeding up or slowing down the 
motion and depends on temporal relationships. More recently, 
Shoemake (1985), Duff (1986) and Pletinckx (1989) used qua- 
ternions for animating rotations, iri this paper we extend these 
works to achieve second order continuity in motion interpo- 
lation. We also use a kinematic mapping of spatial kinematics 
to develop a general framework for geometric design of com- 
plete motion interpolants (including both translations'and ro- 
tations)! The kinematic mapping was introduced by Ravani 
and Roth (1984) for solving,problems in spatial kinematics 
and mechanisms and is used, in this paper, to transform the 
problem of designing motion interpolants into that of inter- 
polating points in a special projective three-space called the 
image space of the mapping. In this manner, a piecewise par- 
ametric motion is represented by curve segments in the image 
space. Continuity conditions for piecing motion segments then 
correspond to geometric continuity conditions for the corre- 
sponding curve segments in the image space. The image space, 
however, is not Euclidean but has an elliptic dual metric. In 
addition, it is not orientable and as a result point interpolation 
in this space cannot be defined unambiguously. We modify 
the image space so that it is orientable and then develop meth- 
ods for interpolation and approximation in this space with not 
only tangent (first order) continuity but also higher order con- 
tinuities of curvature and torsion. 

The outline of the paper is as follows. We first provide a 
brief description for the image space of kinematic mapping. 
We then introduce an orientable version of the image space 
by replacing a point with two coincident but oppositely oriented 
copies. Section 3 presents a linear interpolation in the image 
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space, which corresponds to a screw motion of the animated 
body. Section 4 describes the generalization of these linear 
results to cubic interpolation of displacements. Section 5 de- 
velops the differential geometry of the image curves in so far 
as it is needed for developing continuity conditions required 
in design of piecewise parametric motions. The results of this 
section are then used in Section 6 to design cubic splines in 
the image space with tangent or first order continuity and with 
higher order continuities of curvature and torsion. 

2   Displacements as Points in the Image Space 
This section first reviews the image space of kinematic map- 

ping (Ravani and Roth, 1984) as a geometric representation 
of a spatial displacement and then extends the results to the 
representation of oriented displacements. 

2.1 The Classical Image Space. The general displacement 
of a rigid body in physical space (£3) is commonly represented 
by a configuration M= ([R], d) of a moving frame with respect 
to a fixed frame, where [R] is a 3 x 3 rotation matrix and 
d= (d„ dy, dz) is a translation vector. The matrix [R], when 
written in terms of the Euler parameters of the rotation, 
X= (Xu X2, Xi, X4), is given by (Bottema and Roth,.1979): 

[R]=Ä> 

xf-xl-xj+xi 

2{XlXi-X2X4) 

2 (*,*,+X2XA) 
2(X2X3-X1XA) 

' -xl+xl+xl 
(1) 

(2) 

2{XyX2- XiXA) 
-x\+xl-xl+xl 

2(X2X3+XlX4)       -X\ 

where A2-Xf+X2+X2+XJ. The Euler parameters are de 
fined by the rotation angle 6 and the direction vector s= (sx 

sy, sz) of the rotation axis as 
AT, = 'sxsin(e/2),   A^s, sin (0/2), 
Xj=szsin(e/2),   A"4 = cos(0/2).. 

Since the motion of a rigid body in E3 hassix degrees of 
freedom, the geometry for which a displacement as an element 
is six-dimensional. This has led to the idea of using a set of 
six independent; parameters such as (X\/X4, X2/X4, X3/X4, 
dxl-dyi dz) to represent a'displacement-as:& point in a six- 
dimensional space. A well-known extension of this idea is the 
notion of * 'configuration space'' in the context of robot motion 
planning (Lozano-Perez, 1981; and Canny, 1986). i: 
'-■'-' More elegant representations of a displacement exist where 
theEulef r>ärarnetersX= (Xx,Xi,Xj,Xi) andfthetranslation 
vector i=\dx^äy\äifait'63ts\dcicd as'definihg the direction 
and location of ä line in a space of four dimensions, respec- 
tively. This idea was.'first introduced' by Study in 1891 who 
developed a geometric representation for spatial displacements 
in terms' of what* is now referred to äs Study vectors. Study 
vectors' are a pair of vectors(X, - 2X°) that generalize to four 
dimensions Plücker vectors of line in threejcUmensional space, 
where. X denotes -the vector of Euler "parameters .and 
X0='(X^,X^,X^,X^) is given by 

(3) 

xf 0    -dz   dydx Xi 

xl 1 dz     0    -dx dy x2 

x\ 2 — dydx     0    dz x3 

xl — dx —dy —dz 0 xA 

The four-dimensional space of lines defined by Study vectors 
is called the Soma space, see Bottema and Roth (1979). 

Ravani and Roth (1984) introduced a more compact rep- 
resentation of the Soma space by rewriting the Study vectors 
as a four-dimensional vector of dual numbers, X= (Xu X2, 

Xj, X4), where X,=Xi+eXf (/= 1, 2, 3, 4). These dual num- 
bers were interpreted as a set of homogeneous coordinates that 
defines a geometric mapping of displacements into points of 
a projective space with three dual dimensions. This mathe- 
matical space is referred to as the image space of spatial kin- 
ematics and each point in the space, called the image point, 
represents a spatial displacement. The image space is an uno- 
rientable projective space, for the points X and - X are con- 
sidered to be identical. 

The parameters X„ X? (/= 1, 2, 3, 4) are not independent 
but must satisfy the fundamental relation: 

XyXl + XiXZ + XyXt + XtXZ^O. (4) 

An image point with coordinates satisfying (4) is said to have 
normalized coordinates. A general set of four dual numbers 
to be used as homogeneous coordinates of an image point may 
not satisfy (4) and therefore must be normalized; A simple 
normalizing procedure is provided in Appendix A such that 
not only (4) is satisfied but the real part has unit length as 
well. For the rest of the paper, it is assumed that the coordinates 
of an image point are normalized and have unit length unless 
explicitly stated otherwise. 

The image space of Ravani and Roth has been shown to be 
a useful tool for analysis, synthesis, and classification of spatial 
motions (Ravani and Roth, 1984; Ge and McCarthy, 1991a). 
It has also been used for obtaining an explicit representation 
of joint-space obstacles for robot motion planning (Ge and 
McCarthy, .1990) and :for characterizing functional constraints 
in a manufactured assembly (Ge and McCarthy, 1991b). The 
image space inits original form, however, is not quite suitable 
for computer aided geometric design of motion interpolants, 
for it is not orientable. This means that there is no consistent 
way of defining "left" or "right" handedness of a coordinate 
tetrahedron for the space. It also means that there does not 
exist the notion of "betweenness" and as a result one cannot 
define a line-segment uniquely. These are serious problems to 
proper interpolation of a point set. In the next section, we 
present an orientable version of this image space to resolve 
these problems. . ' ■ 

2.2 The Orientable Image Space. We start the introduc- 
tion of the orientable image space by revisiting the rotation 
matrix [R]: Given [R], the rotation angle 0 and rotation axis 
s may be extracted from its elements, see Bottema^md Roth 
(1979),Paul (1981) or Shoemake (1985): The result is .however, 
not unique. For a given [Ä], there corresponds a pair of op- 
positely oriented rotations, oneis about the axis s with rotation 
angle 0 and is termed a "forward" rotation; the other is about 
the axis -s with rotation angle 2x^6 and is termed a -'back- 
ward"'rotation.  :•■ ':.   ;'--..:.'..   '?/'".'I-'. ~ ".-•-?";■  V  * 

In view' of (2), we conclude that-thfeitwo oppositely, oriented 
rotations can be represented ;by< the signed Eulen parameters 
X= {Xu X2, Xi, ^4) and +X = (-*Xi;<~X2$-Xi^X4), 
respectively. It follows that a general configuration M = ([/?], 
d) may be obtained by either of two oppositely oriented dis- 
placements: one is a "forward" displacement' and consists of 
a rotation X and atranslation d; the.other is:a "backward" 
displacement and consists of a rotation -X anda translation 
d. In view of (3), these twooppositely oriented displacements 
can be represented by two sets of image space coordinates, 
X and -X, respectively/This leads naturally to the notion of 
signed homogeneous coordinates for the image space. Instead 
of identifying X and - X, we treat them as defining two distinct 
points which occupy the same position in the image space but 
with "opposite orientations," namely "forward" and "back- 
ward." To borrow a term from spherical geometry, we may 
call these two points antipodal points. Thus a general dis- 
placement corresponds to not one image point but two anti- 
podal points. The image space consists of such pairs of 
coincident but oppositely oriented points is here referred to as 
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the orientable image space and is denoted as E. In general, the 
signed homogeneous coordinates X and wX, where w = w+ ew° 
is a nonpure dual number, are considered to defined the same 
point if w>0; they define two antipodal points if w<0. 

Specialists in projective geometry will notice that geometry 
of the orientable image space E is equivalent to geometry of 
a unit hyperspace (denoted by //3) in a space of four dual 
dimensions, with oriented points and oriented lines in E cor^ 
responding to points and oriented great circles on H3, respec- 
tively. The classical image space is topologically different from 
E. Geometry of the classical image space is identical to uno- 
riented spherical geometry of three dual dimensions, for one 
point in the space corresponds to.two diametrically opposite 
points on an unorientable unit dual hyperspace.. 

The distance between two points X and Y in E is in general 
a dual number and is defined analogous to the angular distance 
in elliptic geometry of real three-space. The dual-number dis- 
tance is the dual angle 4>=<t>.+th obtained from: 

7      .       X.Y   -- 
*ps*~(*.X)1/J(*!;*),/2" (5) 

where X» Y=fC, f, +^2^2+^3 %+-&£i is the standard scalar 
product. The dual angle <t> is uniquely defined, provided that 
the real angle <f> is restricted to the range [0, r] (see the Appendix 
A). Kinematically, the dual angle .specifies the majgnitude of 
a relative screw displacement between the displacements rep- 
resented by X and Y: 24> is the angle of.rotation :about the 
screw axis of the relative displacement and 2A is the distance 
of translation along the same'axis. When :two image points 
satisfy X«Y = 0, the distance between them is T/2 and they are 
said to be a pair of polar points. The corresponding displace- 
ments are related by a half turn (a pure rotation with angle 
T). 

2.3 Curves and Planes in the Image Space. Since the im- 
age space E has three dual dimensions, a general curve in E is 
a one-dual-dimensional curve or a twofold curve.. A general 
plane in E has two dual dimensions and is here referred to as 
a twofold plane. A twofold curve is the mapping of ä twor 
degree-of-freedpm motion. A one-degree-of-freedom motion 
maps into a special curve in E called a unsold curve. A twofold 
plane is the mapping of ä four-degree-oWreedom motion.:; 

The simplest twofold curve in E is an oriented twofoldstraight 
lined Given two oriented.points X and :Yj: the^twofoliJine 
joining from X to/Y is unique and can be represented by a 
directed bivector XAY, ,where\the symbol "A" denotes the 
vector wedge product which generalizesto higher dimensions 
the vector cross product of three-dimensional vectorialgebra, 
see Flanders (1963) and McCarthy (1990). The;six components 
of XAY. are the signed PlfickeT.;Coordiiiates.'Of'''the:-line/:The 
line joining from Y to.Xris givenby, the bivector;YA& and. has 
the opposite seiise d^e^on tqvtherlinerXA^; -kinematically; a 
twofold line XAY is the mapping of a twördegree-of-freedom 
screw motion that, contains >the displacements represented by 
X and: Y^The screw motion consists_oftwo'.independ,ent simple 
motions about the fixed screw axisj a rotation and a translation. 
If the translation is made dependent on the rotation, then the 
resulting motion-becomes a one-degree-ofrfreedom screw mo- 
tion which mapsinto a unifold -line in E.::/, ■.<• 

A general twofold plane is the mapping of a four-degree- 
of-freedom line-symmetric motion. To see this, we consider a 
plane P defined by three oriented pointsJX, Y.and Z. It can 
be represented by the directed trivector XAYAZ. Since the E 
space is an oriented projective dual three-space, a formal dual- 
ity exists between oriented points and oriented twofold planes. 
It follows that the four components, F= (Fu P2> ^s. £»). of 
the trivector XAYAZ define the pole of the plane P. Any point 
of the plane, say G, satisfies the relation F«G = 0 and thus the 
two displacements represented by F and_G are related by a 
half-turn. Therefore the twofold plane XAYAZ represents a 

four-degree-of-freedom line-symmetric motion that contains 
the displacements X, Y and Z. A planar twofold curve is the 
mapping of a two-degree-of-freedom line-symmetric motion 
and a planar unifold curve is the mapping of a one-degree-of- 
freedom line-symmetric motion. 

The point coordinates of a unifold image curve depend on 
a real parameter t. They are denoted by W.(*) = #(:)X(0 
where W(f) = (Wx(t), W^W^W^t), W.*(t)) represents the 
nonnormalized coordinates, X(r) = (Xi(t), •&(')> Xj(t), 
XA(t)) represents the unit-normalized coordinates, and w(t) 
denotes the normalizing factor (see Appendix.B). If the co- 
ordinates fVi(t) (;=1, 2, 3, 4) are specified by linear, quad- 
ratic, or cubic functions of /, the corresponding unifold image 
curve is a straight line, a conic, or a cubic, respectively. The 
resulting motion is termed linear, conic, or cubic motions, 
respectively. Physically.a linear motion is a screw motion and 
a conic motion is a line-symmetric motion. 

The velocity distribution of a spatial, motion is determined 
by the dual velocity V, which can be expressed in terms of the 
point coordinates of an image curve X (t) and its first derivative 
X(f) using quaternion algebra. Let ;(i,-j, k^l) denote the 
quaternion basis. Then the dual velocity is given by the qua- 
ternion product:       .    .,       ... 

V=2XX:1, . (6) 

where %=Xi\+X1\
JrX^ls.+XA is a unit quaternion and 

X~'= -Xii-Xii-XJu+Xt is its mverse.-ThisTesvilt.is ob1 

tained from dualization of a similar .formulaz.fpr spherical 
kinematics presented in Bottema and Roth (1979). 

3   Linear Interpolation of Two Displacements 
Two displacements D0 and D\ of a rigid body correspond 

to two configurations M0"'and Af\ of a moving frame with 
respect to a fixed frame, which ihturn correspond to two pairs 
of oppositely oriented points ±Xo and iXj, respectively, in 
the orientable image space E. In this paper" we choose orien- 
tations (or signs) of the image points Xp and Xi such that 
Xo'X! > 0. Geometrically, this means that the angular distance 
<£ between Xo and $L\ is in the range [0, x/2]. Two such oriented 
points are referred to.as similarly oriented points^Jn this way; 
the problem of linearly interpolating two. displacements Dp and 
D\ becomes &at of;fmding a^unifoldline-segment.that Joins 
two similarly orientedipomtsjX^and Xj. I^t^e unifbldjine^ 
segment be given by;^-v:: ":■;<<■■ •' . .-?';;'   .. :-".--;J

:;. 

'"\\h :^tO=:^(r)X.(0 = fio+fiir :];;      *\ M (7) 
■ ■'-i-i.' . ■'iu-.H^? l>i •..;.■:. A: ■  „-...v. :--':K>.;:..;i Sii;:' TU~ 

where ;W.(r),. Jt(t),:denote;the general and unit-normalized 
.coprcynates, riespectiy^ 
factor. We seek to^etera^e^teairo 
.l),such.that.;; .'.- f-;::;^r-'W^^^v-f;f^^^^^^'v^: 

■ .;v :•:-:;"  -X(0^^o:iA(l)=Xi;^ ^;%f:':#(8) 

The result is the^followinguiüföld linear interpolanti; .. 
^(«^^(rJX^oia^lj^+^i,, Zt=ipM::M 

where W0=^0y^ *?M^1) can be arbitrary duäihumbers. 
In practice wereqüire 1^0 and i^i to have positive'real parts so 
that all displacements of the linear motion are similarly ori- 
ented. The normalizing factor w(t) is obtained from (9) as 

w(0 = [(1 ^024+ t2wl+2t(l - Otfo*i (*o'.X,)]1/2.    (10) 
The unifold line-segment (9) is the image curve of a screw 
motion that interpolates through the configurations2 M0 and 
Mi. 

To see the effect of the dual-number factors w0 and *i on 

2 For the sake of convenience, we sometimes use the words "displacements" 
and "configurations" interchangeably in this paper. 
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the velocity distribution of the animated body, we use (6) to 
obtain the dual velocity: 

V = - 
XiXo   — XoXi 

"(l-/)2(»v0/w1) + /2(H'l/w0)+^(l-0(Xo'X1)     
(11) 

where the term (XjXo ' — X,Xf') is a vector quaternion. Equa- 
tion (11) shows that the screw axis is fixed (as anticipated for 
a screw motion) but in general both the angular velocity and 
the pitch of the screw motion are functions of the parameter 
t and the ratio w0/u>,. The choice of K*0/^I influences the 
angular velocity and the pitch of the screw motion but it is 
impossible to choose the ratio such that the pitch or angular 
velocity remains constant throughout the screw motion. 

4   Cubic Interpolation of Displacements 

In the preceding section, we dealt with the problem of two- 
configuration interpolation using a linear motion interpolant. 
In this section, we develop cubic parametric motions that in- 
terpolate through not only two given configurations but two 
instantaneous dual velocities as well. This is referred as as first 
order motion interpolation. 

4.1' First Order End Conditions. In the image space S, 
the, two configurations M0l Mx are represented by two similarly 
oriented image points Xo, Xlt respectively. Let the dual velocity 
at Mi 0=0, 1) be-t,=2Ö,v„ where 2Ö/=2(Q,+eQ?) (0^0, Q, 
°£ 0) is the dual speed and v; is the unit dual vector representing 
the instantaneous screw axis. We define the "tangent"- of the 
desired interpolating motion at Mi'0=0, 1) in terms of the 
derivativeof the image curve X(/) of the motion. In view of 
(6), the derivative of X(r) at Mt (i'=0, 1) is given by the 
quaternion product: 

%=(l/2)\,Xi=Ülti    ; 

where t;=V;X,-. It is not difficult to show that T,- satisfies 
f ,-T;= 1 and t,-X,=0. Therefore X,- is a polarjjoint of X,and 
can be interpreted as ä "tangent vector" at X,- with f, being 
a "unit tangent vector" and fi,- being its magnitude. 

The problem of finding a motion that interpolates through 
configurations Mo, Mj as well as the dual velocities V0> Vi 
becomes that of finding a unifold curve X(f) in E such that 
the following interpolation conditions are satisfied: 

.V": "!£ .     x(o)=.xo,;^(ö)=ßoto, ■:;: ".  : ■:, 
• x(i)=x1,x(i)^ß1f1;   ;.   o.uz; 

The conditions (12) have similarities to Hermite interpolation 
conditions in CAGD and are therefore termedHermite type 
motion interpolation conditions:        .-- 

,1-4.2 Hermite Type. Interpolation. A unifold cubic para- 
metric curve in the.image space E is of the form   •„ 

^(r)='tf(OXM=^ •••■:     (13) 

where^ty{0 denotes general coordinates of a point on the 
cubicj X(f) denotes its normalized "coordinates,'and w(t) de- 
notes the normalizing factor. We seek to determine the vectors 
of coefficients S, (/=0, 1, 2, 3) such that the conditions (12) 
are satisfied. Since the first derivative W=tfX+ w% the Her- 
mite conditions (12) are equivalent to 

,^(0) = *(0)X0, W(l) = w(l)X1, 
W(0)=w(0)Xo + w(0)Ö0To,   W(l)=w(l)X,-Hv(l)ß1t1. 

From (13) and (14), the coefficient vector I,- (/=0,1, 2, 3) can 
be solved to yield the following cubic interpolant: 

W(/) = [lr/2f3][A/ft] 

*(0)Xo 

w(0)Xo+H-(0)fioto 

w(l)X, + w(l)Q,f, 

w(l)Xj 

(15) 

where [Mi,] is the standard Hermite basis matrix (see Faux and 
Pratt, 1979): 

1 0     0     0 

0     10     0 

-3 -2 -1   3 

2 11-2 

[M„: 

The interpolant (15) is here referred to as a Hermite type cubic 
motion interpolant. For a given set of Hermite conditions (12), 
the corresponding interpolant is not unique, because the dual 
numbers w(0), *v(l), #(0), tf(l) can be arbitrary chosen. In 
practice we require w(0) and w(l) to have positive real parts. 

The Hermite type interpolant (15) can be rewritten as 

*(0)Xo 

.W(0 = H-(OX(0 = [Wr¥l[A/w] *(0)äolo 
tfWfiiT, 

(16) 

IMH] = (17) 

where the matrix [MH], called the generalized Hermite basis 
matrix, is given by 

1 0     0       0 

7o 10       0 

-3-25-0 —2 —1 3-7i 

2 + 7o 1      1  -2+7 ij 

where 70=#(0)/#(0) and yi = M.^VM\) are arbitrary dual 
numbers. 

_ 4.3_ Bernstein-B&ier Type Interpolation. Let 60=Xo, 
b3=Xi. Then the Hermite interpolation (16) can be put into 
the following form: 

w(0)60 

W(/) = w(0X(0 = [Wrz/3][MB] 
H^Ojfiob,' 

w(l)fii62' 

w(l)bY 

(18) 

where the matrix [MB] is given by 

1        0 

[MB] = 

0 

0 

3 
-3+70  -3 
3-270   -6   3     -7i 

-1+70/3 ;;-3 l+7._ 

and 6V =Xo+to/3, b2' =Xi-t,/3 are points on the tangent 
lines XoATot XiATi, respectively. The matrix [MB\ .becomes 
the standard Bemstem-B6rier basis matrix when 70=70=0: 

10 6 Ö" 
-3   3     0,. 0 

3 -6 3 0 

-1   3-3 1 

[M6] = (19) 

Therefore, the matrix [MB\ is termed generalized cubic Bern- 
stein-Bezier basis matrix and the interpolant .08) is termed 
generalized Bernstein-Bizier type motion interpolant. 

The generalized Bernstein-Bezier interpolant can be rewrit- 
ten as: 

W(r) = w(OX(/) = [lff2r3][M6] 

where [Mb] is given by (19) and 

#0b0 

w,bi 

M-,62 

W363 

(20) 
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w0=w(0), #1 = #(0)0010. 

*V2=tf(l)Slgl, #3 = ^(1), 

b, = [b,' + (7o/3)b0]/io.   lo = 16,' + (7o/3)b01, 

b2 = [b2' - (7i/3)6j]/|o.   £i = 162' + (7o/3)b31. 
Note that 61, b2 are arbitrary points on the tangents boAbi, 
b2 Ab3, respectively. Note also that the Bezier interpolant (20) 
is invariant to change of both fixed and moving coordinate 
frames. 

5   Differential Properties and Smoothness Conditions 
In this section, we first summarize, in the language of ori- 

entable image space £, the differential properties of image 
curves, which were developed by McCarthy and Ravani (1986) 
for the case of the classical image space. We then apply the 
results to the problem of smooth joining of two motions seg- 
ments. 

5.1 Differential Properties. The differential geometry of 
curves in E is developed analogous to the differential geometry 
of curves in Euclidean three-space. Let X(/).denote the signed 
unit-normalized coordinates of an, image curve. The funda- 
mental result is the Frenet equations which characterize the 
curve in terms of the differential motion of a special tetra- 
hedron with oriented points t, N, ß, X äs its vertices: 

r  .r   tff/ctf=KN-X,   •;. 
dÜ/ds^-it+fö, 

d&/ds=-m, - ' 

The dual numbers s, ic and f are the dual arc-length, curvature 
and torsion of X(r), respectively. The vertex T is .defined in • 
the same way as the unit tangent vector of a Euclidean curve: 

d%/dt      ■ (11) 
" ds~'\dX/dt\" 

The vertices N and B are defined in such a way that the four 
points X, T, N, ß form a self-polar tetrahedron called the 
Frenet tetrahedron. The mannerofdefiriing N, fi is:similar to 
that of the normal and binormal vectors of acurve in Euclidean 
three-space, see DoCarmo(1976) and McCarthy (1987). 

The tangent line-segment .of X(/) is given by the following 
bivector: - .,-•• ' :'i-i.-:"- 

' ^j. , XAX=üXAt,'; . (23) 

where v= IcTX/drl. and.t' is the pojarpoint defined by. (22). 
The curvature functionand tile osculating plane are given by 
the following 3-vectbr:        '■''■.'^^^.:i,-:''^",i '''. '     ':; 

''' I^A'X^^ATAÄ^^- V
^ 

The torsion property is.given by 

XAXAXAX = O^TXAT ANAß. 

(24) 

(25) 

The wedge products of the above derivatives can be expressed 
in terms of the nönnormalized coordinates W(f) = #X(f): 

♦XAX==(1/H-2)WAW, <■   ■:«.-•-■ 
; XAXAX = (l/v>3) WAWAW, 

XAiAXÄX = (l/)V4)WAWAWAW.   . 

5.2 Smoothness Conditions. Consider two cubic curve 
segments X- and X+ that are smoothly joined together. We 
may think of each segment as existing by itself, with local 
parameters f_, r+, respectively, defined over the interval [0, 
1]. We may also think of the two as two segments of one 
composite curve, with a global parameter u defined over the 
interval [w_, U+]. The "left" segment X_ is defined over [«_, 
u0], while the "right" segment X+ is defined over [«0. "+]• 

Then the local parameters t. 
parameter u by 

u — u.    u — u_ 
t.=- 

t+ are related to the global 

/+ = 
U-Up      U-U0 

u0-u.      A_ "+-«o     A+ 
The differential operators for local and global parameters / 
and u are related by 

d_ 
du 

1£ 
Adt' du2'' A2 dt2 

dl 
du3" A3 dt' y 

In what follows, we present smoothness conditions of a com- 
posite cubic Hermite image curve in terms of the continuities 
of the tangent vector, curvature and torsion. We always assume 
that the two given segments are continuous at the junction 
point, i.e., X_(l) = X+(0). 

The continuity of the tangent vector at u=u0 of the two 
curve segments X_, X+ requires that the first derivative with 
respect to a global parameter u is continuous at the junction 
point: ... 

tfX(u) 
du 

="0 

1  rfX-(f-) 
A_      dt- "At      :A* 

(26) 
This is equivalent to 

X-(1)AX_(1) = &X+(0)AX+(OJ ;|■;   V      (27) 
where« = A_/A+. If Sis any other dual dumber with positive 
real part, then (27) represents the continuity of unit tangent 
•vectors. .,•,.■•.■"■"..■.'■• :r:\,-^:.:\ \.       -..: 

For curvature continuity, in addition to (27), the curvature 
3-vector is required to be continuous: ili:.; -,;   :& £ .      -1.; 

X:(1)AX:_(1)AX_(1) = a3X+(0)AX+(0)AX+(0).     (28) 

For torsion continuity, in addition to (27) and (28), the torsion 
4-vector is also required to be continuous: 
X_(1)AX_(1)AX_(1)AX_(1) 

= S<X+(0)AX+(0)AX+(0)AX+(0).    (29) 

5.3 Cubic Parametric Curves. Given an image curve as- 
sociated with a cubic interpolation of four distinct displace 
ments, we can obtain the-differential properties.in terms of 
control points and weight factors and then use these properties 
to characterize the smoothness.of the resulting motion. In what 
follows we only provide'these properties at end points of the 
cubic Hermite type interpolation given by (16). 

The tangent line-segments at the end points of the Hermite 
type image curve (16) are given by ,   . ,   ".[■■'. 

■-      X(0)AX(0)=fioXoAfoi^;.^<r. (30) 

.■-;; -\v,;- X(l)AX(l) = Ö,XiAtT:;    :^     :   > (31) 

Let w0= V5<0) and "ft, = ft(l)v Trie curvature properties atthe 
end points aregivenbyi,-■&* ■■ ■ ~1    ^■'■-:■'■ ■■'■.'■••*■? 

X(0)AX(0)AX(Q) = 6fio^^^r/l-|^X1-|blf1l, 

.'.•'■''■■;■     ~   ■   -s.'"' .   .',"''■■-. .   "■"''.   "=   ■        . .    V  (32) 

X(1)AX((I5AX(1)=6Ö1 if[ (l+|\xo+"|folAX.AT,. 

(33) 
The torsion properties at the end points are given by 

X(0)AX(0)AX(0)AX(0) = 12^5 ÖoßjXoAfoAX,AT,, 
^o 

  yj? 
X(l)AX(l)AX(l)AX(I)=12-5fioßlXoAToAX,AT,, 

Let X_i, fi_if _i, X0, and fi0To denote the four control points 
of the "left" cubic segment X_(f_), and X0, fi0t0, X,, and 
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Oil, denote those of the "right" cubic segment X+ (t +). Then 
the substitution of (30) and (31) into (27) yields &=1. The 
curvature continuity condition is given by 

y-A-c- 1 
l+YjX-i + jfi-.t-, AXOAT0 

= Ä-^oAToA -*«,+(.-*)* 

Note that the weight w0 and the dual speed Ö0 have no influence 
on the curvature continuity at Xo- The condition (34) can be 
further reduced to 

(Ö^ + Z^AXoAT^O, (35) 

where 

W-li w-i. 

c,X,-.X/+-i+pf,-X;tl = 2,-.X,+ 1. (41) 

In view of (39), the condition for torsion continuity at X,+1 is 
given by 

Ö/(#/X,-+ W,+2X,+2)Af,AX,+ IAf,+i 

.= w/+2(3:+7;)X,AX1+2AX,+ iAf,+ i.     (42) 

After the substitution of (40), Eq. (42) becomes 

tfi(C; - (3 + y $]%*&+1AX/+2AT,=Q„ (43) 

20=-^Ö_lf.1+^
i(3 + Y_I)X_1-(3-7+,)X1.     (36) 

Equation (35) indicates that the three points^fiifi + Zo), Xo, 
and f0 are collinear. In other words, (Oili + Zo) is expressible 
as a linear combination of Xo, and T0: 

ö,t, + io=fl)*o+Ä'to. (37) 
where cb, c^' are two arbitrary dual numbers. 

The condition for torsion continuity at Xo is given by 
wi,Ö_,X_,Al['_,AXoAfo=V^Ö1XoAfoAX1Af j.     (38) 

Note that the weight #0 and the dual speed finhave no influence 
on the torsion continuity at Xo. Eliminate Ti from (38) using 
(34) to obtain 

Q.itw^X-i + ^XOAf.iAXoATo ..   ., 

= w1(3 + 7_1)X_IAXIAX0Af0.     (39) 

6   A Piecewise Cubic Hermite Interpolation 
This section solves the following problem: 
Given: Image points Xo, Xi, • • •, X^t representing L con- 

figurations of a rigid body in physical, space. 
Find: A piecewise cubic motion of the object that passes 

through the given configurations such that the corresponding 
image curve has curvature and torsion continuities; 

The given image points are chosen as junction Hermite points 
of the piecewise'cubic interpolation'. The goal is to determine 
a tangent vector Ö/t,- at each image point %; where 0,- denotes 
half of the dual speed and T,- denotes the polar point, such 
that the resulting interpolation has the prescribed continuities. 

Consider three cubic segments with the junction points de- 
noted by X,_i, X,-, X/+i, and X,-+2, where-/= 1,2, • • •, Z--3. 
Assume that the tangent vectors Ö,-iT,--1, Ö/f/ are known from 
the continuity conditions'of 'the preceding cubic segments. In 
what follows we develop a method for determining the tangent 
vector fiI+iT/+i such that these cubic pieces satisfy the con- 
ditions for curvature continuity at X,- and torsion continuity 
at Xgr'i.' This is the essential part of the'proposed algorithm 
for geberatihg cubiC'Herinite interpolating spline motions. 

Position and tangent continuities are implied by the Hermite 
interpolation. In view of (36) and (37), the curvature continuity 
at X; is given by 

fi,-+it/+, = ÖXf+cYf;-Z,- (40) 

where 

Z,=^Ö,_1f,-.1+^(3 + 7,_1)X;.1-(3-7l+1)X;+1. 

The choice of c,-, c/ must be such that f,-+1 is a polar point of 
X,v, and that the cubic segments satisfy torsion continuity 
condition at X,+ i. 

The point f,+, is a polar point of X,+, if f,+ x «X+, = 0 which 
yields, after the substitution of (40): 

where 

Q, = fi, h^~ X, + X,-+2)AX(+1 At,-AZ; 

-(3 + 7j)X;AX/l,AX7+2AZ;.    (44) 

Equation (43) is essentially a scalar equation, and together 
with (41), we have a system of two dual-number equations 
with two dual-number unknowns, namely, c-, and c/. Once c, 
and el are solved,;Eq/(40)"can beused to determine fi,+i and 

With the above method, one can generate the^angeht vectors 
S;f,(/^2,3, "-> -^-^suchthätiheresultin^piecövrisecubic 
Hernute image (curvehas?<rurvature^^continuiiyja^i, torsion 
continuity"at X£^2?and turyitur&and tqrsiön|continuities at 
the mbeiween'pointsi;X^(/=^3,">'f ,.^:|3)|protfdecl that 
the first two. tangent -'V^QrS^l^llitL^^i^^^e.'-now 
left with Iwo tasks of speajfyirigthe end tondltiora'one is to 
select^ßptot öilj^suchthatthei'ire^t^;i|M&;cur^'B.tcw?äon- 
conÜnüous'kPXi; and th? other is tö^e^tSe'last tangent 
vector fiL^if£|.-i such that the ünage'cury^is^c^ 
tinuous at Xi,_:

2v'" ,'^     -:r;:;v---    "~^:?:^    -""" 
To obtain the first two tangent vectors Ö0f olÖiTi, we specify 

two unit dual vectors y0, v, that represent the instantaneous 
screw axes 'at'configurations Xo, X|, respectively, and then 
compute f0, f { from the following quaternion product: 

T0 = (l/2)voXo,   f, = (l/2)v1X1. 
To achieve torsion continuity at Xlt we obtain the dual speed 
So 

a2(3+7o)IXoAX2AXiATil 
00=1 (M>OXO+ tf2X2)AToAXiAf i 

in view of (39). the dual speed'ßr'can be arbitrary chosen. To 
obtain the last tangent vectors, we1 specify an additional image 
point"JCL and then compute ßt_,fx_'i'using(4i) and (43) so 
that curvature continuity at X/._2 can be achieved. It should 
be noted that the path of the interpolating motion is very 
sensitive to the choice of these end conditions. Further research 
is needed to obtain a set of "optimal" end conditions^; such 
as those that would produce not only smooth but also natiiräuy 
looking motions. ■■^ -      - <■ •■••.< 

The weights #,' (/=-l, 0, -.-.:, L-lj have.positive real 
parts and can be set to Vv,= 1 initiaÜyöThe weights 7,- (/= -1, 
0, •••,;£—1)-are arbitraiy dual numbers and" can be "set to 
7,=0 initially.v These parameters can be adjusted.to finerturie 
the interpolating motion. Figure 1 shows a set of seven input 
configurations and Fig. 2 shows a piecewise cubic Hermite 
motion with curvature and torsion continuities. 

Conclusions 
In this paper we have presented a new approach for smooth 

motion interpolation based on an orientable kinematic map- 
ping. The mapping reduces the problem of motion interpo- 
lation to that of designing an interpolating curve in an orientable 
projective dual three-space. Methods for cubic interpolation 
and piecewise cubic interpolation of displacements have been 
developed taking advantage of existing techniques in CAGD. 
The results, in addition to their theoretical interest in corn- 
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Flfl. 1   A set of seven configurations of an object 

Fig. 2   A plecewise cubic Hermlte Interpolating motion with curvature 
and torsion continuities 

putational geometry of motion, have a number of applications 
in engineering and computer science. 
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A P P E N D I X A 

Dual Angle 

Let X = X + eX° and Y = Y + eY° denote the unit-normalized 
coordinates of two image points. Then the dual distance 
# = (j> + eh (where <j> = [0, *■]) between them may be symbolically 
given by £ = cos~'(X.Y). If X^Y, then we have.  . 

cos-I(X.t) = cos-1(X.Y)-£(X.Yc-i-X0.Y)/(l^X.Y)1^f 
In the special case when X = Y, the displacements X an&IJPare 
related bya pure translation of distance-21 Y0Y~,^-X°X~11, 
where IY°Y~1-X°X~:M denotes the magnitude of the vector 
quaternion (Y°Y ~' ^ X°X"'). Therefore we . may define 
cos-1(x.Y)as :''":.""': ''; ;. 

cos-'CX.lb^elY'Y-'-X^-'.l; 
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A P J» E N D I X ;B; ■ -A:- 

Normalization 

: (General image space coordinates, $=\y+eW°, may be nor- 
malized such that the corresponding normalized wqrdinates, 
X = X + eX°, satisfy X«X= 1 andX«X°=ö.;TWsmvöiyes'corn- 
puting the norm, # = .w+ew°, of tV: 

w=(W.W)l/2,   w°=(W.W°)/w 
and follows by dividing 'vV with w: 

X = W/>V =(rVx/w,  rV2/$,   lV3/iV,  &</#). 

Division of a dual number Wt= Wi+eWf by »v is possible and 
unambiguous if w^0 (Bottema and Roth, 1979): 

Wj + irVf     Wi       wW?-W0Wi 
W+€W 

- = — +£- 
W w 

762 / Vol. 116, SEPTEMBER 1994 
Transactions of the ASME 



Q. J. Ge 
Assistant Professor, 

Department of Mechanical Engineering, 
State University of New York 

at Stony Brook, 
Stony Brook, NY 11794 

B. Ravani 
Professor, 

Department of Mechanical and 
Aeronautical Engineering, 

University of California at Davis, 
Davis, CA 95616 

Geometric Construction of Bezier 
Motions 
This paper deals with discrete computational geometry of motion. It combines 
concepts from the fields of kinematics and computer aided geometric design and 
develops a computational geometric framework for geometric construction of mo- 
tions useful in mechanical systems animation, robot trajectory planning and key 
framing in computer graphics. In particular, screw motion interpolants are used in 
conjunction with deCasteljau-type methods to construct Bezier motions. The prop- 
erties of the resulting Bezier motions are studied and it is shown that the Bezier 
motions obtained by application of the deCasteljau construction are not, m general, 
of polynomial type and do not possess the useful subdivision property ofBernstem- 
Bizier curves. An alternative form of deCasteljau algorithm is presented that results 
in Bezier motions with subdivision property and Bernstein basis function. The results 
are illustrated by examples. 

Introduction 
One of the basic problems in computer aided animation of 

three-dimensional objects is that of motion approximation. 
This is the problem of finding a motion that approximates a 
sequence of arbitrary displacements or configurations of an 
object. If the motion is made to interpolate through these 
configurations (called key configurations), then the problem 
of motion approximation becomes that of motion interpola- 
tion. Such motion approximation methods are of fundamental 
importance in computer animation of three-dimensional ob- 
jects and have applications in computer graphics, computer 
vision and simulation of mechanical systems. 

Our work, in this paper, is motivated by the work by Taylor 
(1979) and Shoemake (1985) who used quaternions to develop 
methods for animating rotations. Taylor (1979) used quater- 
nions for linear interpolations of rotations. Shoemake (1985) 
interpreted quaternions as defining a hypersphere and used the 
deCasteljau algorithm to obtain the so-called spherical Bezier 
curves for animating rotations. The work of Shoemake was 
further refined and extended by Duff (1986) at AT&T, and 
Pletinckx (1989). These researchers, however, did not study 
some of the fundamental properties of the resulting motions. 
Shoemake (1985) raised several unanswered questions on the 
characteristics of the resulting spherical Bezier curves. Here 
we develop a theoretical framework that enables us to study 
the basic characteristics of the resulting motion and provide 
answers to some of these questions. We show, for example, 
that a motion obtained by application of deCasteljau con- 
struction is not in general of Bernstein form and is nonalge- 
braic. Furthermore, such a motion does not have the subdivision 

1 Positions and orientations. 
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property of Bernstein-Bezier curves. We then present a mod- 
ification of this algorithm that results in Bezier motions with 
subdivision property and basis functions which are of Bernstein 
form. This paper compliments the analytical results presented 
in our companion paper (Ge and Ravani, 1994) in providing 
discrete (rather than continuous) computational algorithms for 
motion interpolation and approximation. 

The organization of the paper is as follows. First we discuss 
geometric representation of spatial displacements in terms of 
an image space of a kinematic mapping (see Ravani and Roth, 
1984). Section 2 deals with the simplest form of motion in- 
terpolation namely that of constant speed screw motions. Sec- 
tion 3 presents a deCasteljau construction algorithm based on 
repeated screw-motion interpolations for the design of non- 
algebraic Bezier motions. In this section, we also study the 
kinematic properties of the resulting B6zier motions. In Section 
4, we will present a slightly modified form of the deCasteljau 
algorithm using special projection that results in Bezier motions 
which are of Bernstein form. 

1.  Geometric Representation of Displacements 
It is well known that a general displacement in a Euclidean 

three-space (denoted by.£3) has a fixed line, call the screw 
axis. The position and direction of the screw axis in E remains 
the same before and after the displacement. The sense of di- 
rection of the axis is, however, undetermined. The spatial 
displacement is commonly characterized as an unoriented screw 
displacement, which is a rotation about and a translation along 
an undirected screw axis. 

A screw axis with a uniquely defined sense of direction is 
called a directed screw axis or a spear (see Bottema and Roth, 
1979). A screw displacement about a directed screw axis is an 
oriented screw displacement. Two screw displacements are con- 
sidered to be "oppositely oriented" if their screw axes occupy 
the same position in space but with opposite sense of direction. 
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Fig. 1 Three configurations (M0, M, and MJ belonging to a motion of 
body M in physical space F. Lines So, S, and Sj denote, respectively, 
the screw axes for displacements F—M0, F—Mu and F—M2. 

In this way, a general displacement can be reduced to one of 
the two oppositely oriented screw displacements. These two 
displacements are geometrically equivalent but topologically 
different; one may be called a "forward" screw displacement 
and the other may be called a "backward" screw displacement. 

The orientation of a screw displacement is not an issue when 
only discrete displacements are considered. When a set of screw 
displacements are used to construct a continuous motion, how- 
ever, one has to pay special attention to their orientation. 
Consider a motion of a rigid body in the Euclidean three-space 
E*. We attach coordinate frames M and F to the body and 
the space, respectively. Then each of the configurations that 
the body attains during the motion is represented by a screw 
displacement from F to M, see Fig. 1. To reconstruct a smooth 
and natural motion from these screw displacements, one has 
to choose the sense of direction of the corresponding screw 
axes consistently throughout the motion. - . 

Algebraically, an undirected screw axis Sis commonly rep- 
resented by a pair of normalized Plücker vectors (s, SQ) where 
s= (sx, sy, sz) is a unit vector along S and So= (sx, Sy, sz) is 
the moment of s about the origin of a fixed reference frame 
in E3. They must satisfy the condition s«s()=0. If the dual- 
number unit e (defined by e2 = 0) is used, Plücker vectors can 
be written as a dual vector or a vector of dual numbers: 

s = s + es = {§„ Sy, Sz) (1) 

where f,=s, + es? (/=x, y, z) are dual numbers. The dual vector 
§ has the property §•§= 1 and is termed a unit line vector. 

A directed screw axis S can be represented algebraically by 
a directed unit line vector. By this we mean that s and - s 
represent a pair of oppositely directed screw axes instead of 
the same axis. The use of directed screw axis instead of un- 
directed screw axis removes the ambiguity in defining the mag- 
nitude of a screw displacement. The magnitude is defined in 
terms of the dual angle § = 0 + e/ between two directed lines 
ffi|, m2 that are perpendicular to the directed screw axis S, 
where 0 is the angle from mt to m2 about S, according to the 
right-hand screw rule, and / is the signed distance from mt to 
m2 along S. For a pair of oppositely oriented but geometrically 
equivalent screw displacements, their dual angles 0 and 0' are 
related by the ange 2T, i.e., § + §' =2x. Thus a spatial dis- 
placement may be represented either by a forward screw dis- 
placement about the screw axis § with a dual angle § or by a 
backward screw displacement about the screw axis — S with a 
dual angle 2ir-0. 

Although a directed screw axis s and a dual angle 0 com- 
pletely prescribe an oriented screw displacement, they are sel- 
domly used directly as a representation of the displacement. 
Instead, they are often used to define the dual Euler param- 
eters, denoted by X = (Xu X2, Xi, X4), as (see Bottema and 
Roth, 1979): 

Fig. 2   A screw motion M{f) from M„ to M, corresponds to a line-segment 
(or geodesic) Xo,(/) from I to <j„i in £- 

Xi = st sin 0/2),   X2 = s2 sin 0/2), 

X3=s3sm0/2),   X* = cos 0/2), (2) 

sin 0/2) = sin 0/2) +1 (1/2) cos 0/2), 

cos 0/2) = cos (0/2) - e (1/2) sin (0/2). 

where 

These parameters are considered to be signed, for a backward 
screw displacement, prescribed by - s and 2x- 6, corresponds 
to the dual Euler parameters - X = (-Xit -X2, -Xj-X*). 

In this paper, we consider the signed dual Euler parameters 
as a set of four signed homogeneous coordinates that define 
an oriented point in a projective space with three dual dimen- 
sions. By this we mean that the dual Euler parameters 
X = (Xi, Xi, X3, XA) and tfX = (wXu wX2, wX,, wX<), where 
iv = w+ew is a nonpure dual number, represent one and the 
same point for all w>0, and that, they represent a pair of 
oppositely oriented points for all w<0. In particular, the two 
points, X and -X, known as antipodal points, are considered 
to be two distinct points which occupy the same position in 
the space but with opposite orientations. In this way, ä general 
displacement, which is geometrically equivalent to a pair of 
oppositely oriented screw displacements, corresponds to not 
one point but two antipodal points in this projective dual three- 
space. The resulting image space of spatial displacements is 
the orientable version of the kinematic mapping discussed by 
Ravani and Roth (1984) and is described in more detail in Ge 
and Ravani (1994). 

2   Geometric Construction of Screw Motions 
This section presents a method for geometric construction 

of an interpolating screw motion that enables the designer to 
control the speed of the interpolation. This forms the basis 
for developing a deCasteljau construction algorithm for mo- 
tion interpolation and approximation. 

2.1 Starting From a Reference Configuration. A finite 
displacement of a rigid body M from an initial configuration 
M0 to the next configuration Mt is shown in Fig. 2. For the 
time being, we choose the fixed reference frame F to be coin- 
cident with M0. Then the configuration M0 is represented by 
the identity displacement F—M0 which corresponds to a special 
point I = (0, 0, 0, 1), called the identity point, in the image 
space E. The next configuration Mi with respect to Fis rep- 
resented by a forward screw displacement F—M\. Its screw 
axis, 50i, is represented by a directed unit line vector 
Soj= (sx, Sy, sz) and its magnitude is given by the dual angle 
20 = 2<£ + e(2A). These screw parameters define the image point, 
q„,, of the forward screw displacement F— Mt: 

Qoi = (£xsin0, SySm4>, szsin<i>, cos0). 
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of the displacements F-Mfi and M0-M can be expressed by 
the quaternion product b, = b0qo,. From this we obtain 
Z=K% where bo"' is the inverse of the unit quaternion 
bo. Thus the constant-speed screw interpolant from M0 to M, 
described with respect to F is given by 

X(0=boAO. = bo(bo1b1)',   f = [0. U- (6> 

Kinematically, Eq. (6) means that the ^^^S^" 
ment represented by X(/) is the composition of the two dis- 
pTac ments F-M0 and M0-M(t), respectively. TtaMjw 
interpolant (6) is invariant with respect to change of both the 
moving and fixed-coordinate frames.     _ 

When the two configurations b0 and b, are no related by 
a pure translation, the formula for ^rew interpolation given 
by the right hand side of (6), denoted by L(b0, b,; t), can be 
put into the following vector form 

Now the problem of determining the interpolating screw 
motion M{t) becomes that of determining a unifod line-seg- 
ment (or geodesic) *,,,</) in E such that Xoi(0) = I and 
Xoi(D=Aoi. see Fig. 2. The Plücker coordinates of this line is 
given by the vector wedge product lAq0i = (&sin«,_ fsin«, 
s sin«, 0, 0, 0). This indicates that the dual vector^ = (sx, 
/ §,) represents the direction of the line-segment X0i(0- In 
view of the additional fact that the length of the line segment 
is the dual angle «, we obtain the following parametric equation 
for the line-segment (or geodesic) from I to fa: 

*oi (r) = (4sin (M(1 + ep)4>), S?sin (w(1 + tp)4>), 

fzsin (u(l + ep)«), cos (K(1+«P)«)). (3) 

where «=«(0 is a real-välueU timing function defined such 
that w(0)=0 and u(l) = 1; and />=/>(') is another real valued 
function defined such thatp(0)%p{l)=q.The function «(f) 
allows controlof angular velodtybfthe resulting screw motion 
ando(f) allows variation of the pitch, p U) +h/<f>, of the screw 
motion. In this paper we choose u(t) = t and p(t) =0 so that 
the screw motion defined by (3) has not only a constant angular 
velocity but also a constant pitch. In this case, (3) becomes 

Xo,(0 = (fxsin■(/#),■ i>sin (f«), £sin (f«), cos (f«))    (4) 
and is called a uniform-speed screw interpolant} 

Note that in representing the configuration M, with respect 
toF the choice of a backward screw displacement -fainsteaa 
of the forward displacement fa results in a screw interpolant 
xli(f) that has opposite orientation to Xoi(f) (Fig. 3). 

Quaternion algebra is an elegant tool for handling trans- 
formations in elliptic three-space (SommerviUe 19 4) and, 
consequently, in the image space (Ravani and Roth, 1984) it 
the image point fa; is represented by a quaternion, then 
Xn, <t) given by (4) is expressible as a power of the quaternion 
am Let (i, j, k, 1) denote the quaternion basis, then 
fi°0 =3oishU + cos* where §0,=,^+^+^ is a vector qua- 
ternion. Since Ig, = - (£+i*+£) = -1. de Moivre's theorem 
shows that 

Xoi(f)=soisin($) + cos W) = qoi- _ ^ 
In view of the dual-velocity formula V = 2(dX/d/)X-1 (Ge 
and Ravani, 1994), it can be shown that the dual velocity of 
the screw interpolant (5) is given by ¥ = «§0,. This confirms 
that Xoi(0 corresponds to a constant-speed screw motion. 

2.2   Starting From an Arbitrary Configuration.   We now 
study the screw motion from configuration M0 to M, for the 
case when the fixed frame F is not coincident with M0 (see Fig. 
4) Let 6o and b, denote the image points of the configurations 
MÖ and M, relative to F, respectively. Let fa denote the image 
point of the displacement M0-M, measured with respect to 
M0. The fact that the displacement F-Mx is the composition 

JHere the term "screw" is used instead of "linear" to differentiate the linear 

motion of the form (26). 

Journal of Mechanical Design 

L(b0> bi; t) = 
sin((l-f)«)£    sin(f«) 

sin« 
b0 + sin« 

(7) 

h and b, see Fig. 4. Note that the real part of (7) is the 
serial linear interpolation used in Shoemake (1985) and can 
£ obtained directlyusing analytical elliptic geometry (see Som- 

mWhen thetwo configurations are related by a pure trans- 
lation, i.e., when « = 0, Eq. (7) becomes a linear interpolation. 

L(b0, b1;0=(l-Obo+'bI 

since 
,-   sin ((1-Oft   ,    , 
*_o      sin« 

,. sin (f«) , 
hm—r~2~-t- 
4,_o sin« 

(8) 

(9) 

This treatment is necessary since division by a pure dual number 
el.TU not defined (Bottema and Roth, 1979). Let do, d„ and 
d(0 denote the vectors in the fixed frame F which represent 
the origins of the body-fixed coordinate frames at MQ,M 
and M(t), respectively. It is easy to show that Eq. (8) is equiv 
alent to linear interpolation of the origins: 

d(0 = (l-Odo + /di. 

3   Nonalgebraic BSzier Motions 
The screw interpolant in the preceding section can be applied 

repeatedly for constructing curves in the image space m a 
manner similar to the deCasteljau construction known m com- 
puter aided geometric design (see Farm, 1993). This idea_ starts 
with Shoemake (1985) who constructed the so-called spherical 
Bezier curves in the space of unit quaternions for animating 
rotations. The following deCasteljau algorithm majr be con- 
sidered as a dual form of Shoemake's spherical deCasteljau 
algorithm. 

3 1 A DeCasteljau Algorithm for Bezier Motions. Let 
6,-.i=0, 1, • • •, n denote n +1 image points of spatial displace- 

SEPTEMBER 1994, Vol. 116 / 751 



SV 
SV 

_(i-t)<t>0 ;A 

Fig. 6    Four Bezier control configurations together with a few config- 
urations belonging to the Bezier motion 

0 t 1 

Fig. 5    A deCasteljau algorithm in I 

merits. They form a control polygon in the image space E, see 
Fig. 5 for the case when /i = 3. For r- 1, 2, ■ ■ -, n, i=0, 1, 
• • •, n-r and 0</< 1, an intermediate point on each screw 
interpolant is given by the recursive formula: 

6?(o=6r'(o[(6r '(o) ■^,:\{t) (10) 

where b-=b,-,0? = 0,-. The points b-  '(t), b/+,'(r), b'(/) denote, 
respectively, __the starting point, end point and intermediate 
point. Let <£;"' =0'"_1 + e(0?)'"' denote the dual distance 
between b/"'(/) and 6j7i (')•' Equation (10) is equivalent to 
the following unifold dual-spherical linear interpolation when 

lr- W 

tt(t) = 
sin((l -/)*;-) 

b; ,(0+!inM: 
-b,+ i (/)•     (11) sin <!>)'' sm <£,■" 

When #~l=0, Eq. (10) reduces to the linear interpolation 

6;(0 = (i-/)6r'(0 + r6j;,'(/). (12) 

By varying the parameter / in the range [0, 1], the point 
b5(/) traces out a curve in E with control points b^ (; = 0, 1, 
• • •, n). In Section 3.3, we will see that although bj(/) is in 
genreal not a polynomial curve, it satisfies end-point inter- 
polation conditions in a manner similar to the Bezier curves 
in £3. We, therefore, call this curve a Bezier image curve of 
rank n. The corresponding motion is termed a Bezier motion 
of rank n. Figure 6 shows four control configurations of a 
robot gripper together with several configurations belonging 
to the Bezier motion of rank 3. Figure 7 shows the entire Bezier 
motion resulting from the application of the above de- 
Casteljau's construction. 

We note that if all control points are collinear in E, the 
Bezier image curve degenerates into a unifold geodesic line- 
segment which corresponds to a screw motion. If all control 
points are coplanar, the Bezier image curve becomes a unifold 
planar curve which corresponds to a line-symmetric motion. 

3.2 The Derivatives of Bezier Image Curves. If we expand 
the derivative of the screw interpolant (11) using the chain rule, 
we obtain 

bf(0=*r't?(0 + 
sin((l ■t)4>'-1) 

sin<£>,~ 

sin (/#"')jy.,..*,. 
+lkiFrb'-+,(')+0'- 

where 

6/_,(0 

~r COS((l - O*;"1 -, 
t%(t)+—u .,_,    b? 

sin^;" 
'</) 

cos< 

sin 4>j' 
br(0        (13) 

tf(0 = 

Fig. 7    The entire Bezier motion of rank 3 

cos (t&~')bf;,'(/)-cos((l-/)0r')6r'(/) 
sinäp1 (14) 

is a polar point on the line-segment bf(/), for f'(0 -b'(0 =0 
and T/(/)-f/(') = l- The image space can be interpreted, at 
least locally, as a hypersphere in a spacce of four dual di- 
mensions (see McCarthy and Ravani, 1986). Then if b'(0 is 
interpreted as a great circular arc on the hypersphere, T'(0 
is the unit tangent vector to the arc at t. 

The derivative of a Bezier image curve may be obtained 
using the recursive formula (13). The explicit formula for the 
derivative is in general rather complicated except at the end 
points  J = 0 and  t=\.  When  r = 0,  we  have  &~'(0) = &, 

&-1(0) = 0, tf(0) = f'(0) and therefore Eq. (13) is reduced to 

bKO) = 0,f,1(O) + 6r'(O). (15) 

When t = 1, we have &"'(1) = 4>i+r.u &~'(1) = 0, f-(l) 
= f,!

+r_i(l) and Eq. (13) is reduced to 

6j(i) = $/+,_liJ„_,(i)+6f;,,(i). (16) 
From (15) and (16) we obtain the derivatives of a Bezier image 
curve at / = 0 and /.= 1: 

bg(l) = «0oti(O),    bS(l) = «*J,-,ti_,(l) 
where T0(0), fi_i(l) are unit tangent vectors given by 

Ti(0) = - 
bi - bncos( 

i(D = 
b„ cos <£>„_, -b„. 

(17) 

(18) 
sm<t>o   sin <£„_, 

For a Bezier image curve of rank 3, its tangent bivector can 
also be given in terms of its control points as 

bg(0)AbJ(0) = 3 
sin^o 

brjAb), (19) 
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figCDA-tgCD = 3 
02   -    - 

.   2 b2Ab3, sin02 
(20) 

where 0O, 02 are the dual angular distances between 60, 6t and 
62, b3, respectively. 

The second derivative of the screw interpolant (11) is ob- 
tained by differentiating (13). The resulting recursive formula 
can be used to obtain the second derivative of a Bezier image 
curve. The derivation is rather lengthy and is not included in 
this paper. At f = 0, the recursive formula for computing the 
second derivative is given by 

b?(0)= -^,*/+^rl(O)fJ(O) + 20(D?(O) + 6r1(O)>    (21) 

where   • 

07(0) = 
_6?;,1(0).-6r1(Q)cos$, 

sin 0,- 

Equation (21) can be used to determine the curvature 3-vector 
of a Bezier image curve of rank 3 at if = 0: 

6J(0)Ab^(0)AbJ(0)=18 0o0i 
sin ^0 sin 0i 

r-b0AbiAb2.       (22) 

Similarly, the curvature 3-vector at f = 1 is obtained as 

bä(l)Abä(l)Ab;5(l)=18- 0201 6[Ab2Ab3 
sin 02 sin 0i 

The dual curvature 2(f) at f = 0 is given by 

I bg(0)A6g(0)Abg(0) I _     20, sin& 

|6?(0)A6J(0)I 
2(0) = 30o sin 0o sin 0i 

(23) 

(24) 

where £0 is the dual angular distance from the point b2 to the 
line b0bi. 

It is interesting to note, in the limiting case when 0,-0 (/=0, 
1), the tangent and curvature properties of the Bezier image 
curves of rank 3 at / = 0 and t = 1 approach to those of Bezier 
cubics in Euclidean three-space at f = 0 and f = 1, respectively. 
For example, at f = 0, the tangent bivector (19) becomes 
3b0Abi, the curvature 3-vector (22)_becomes 18b0AbiAb2, and 
the dual curvature becomes 2^o/30o- 

3.3 More Properties of Bezier Motions. Equations (17) 
and (18) show that, similar to Bezier curves in Euclidean three- 
space, the image curve 60(f) is tangent to the first leg 606i 
and the last leg bn_ib„ of its control polygon. In addition, the 
magnitude of the tangent is n times that of the_ leg itself. 
Furthermore, it can be shown that the segment bo~ b""1 is 
tangent to the curve 63(f). Kinematically, this means that the 
corresponding Bezier motion of rank n (denoted by bj (t)) has 
the following properties: 

(2) End configuration interpolationv 
(2) At end configurations 60 and b„, the instantaneous 

screw axes of bo (0 are given by the screw axes of screw 
motions 60(f) and 6J,_i(f), respectively. 

(3) The initial speed of 60(f) at configuration 60 is n times 
that of the screw motion b0(f) and the final speed of 
bn(0  at 6„ is n times that of the screw motion 
bl_,(0. 

(4) The instantaneous screw axis at the configuration 
60 (O is the same as that of the screw motion from 
configuration bj"' to b""'. 

Bezier motions, obtained in this fashion, are also coordinate- 
frame invariant since screw motion interpolants are coordinate- 
frame invariant. 

Figure 8 shows an entire Bezier motion of rank 3 and three 
constant-speed screw motions defined by the four given control 
configurations. Clearly, the screw motion from b0 to 61 is 
"tangent" to the Bezier motion at b0 and the screw motion 
from 62 to b3 is "tangent" to the Bezier motion at 63. 

In addition to the aforementioned end-point interpolation 

Fig. 8   Bezier motion of rank 3 and the three constant speed screw 
motions 

properties, in the special case when all configurations share 
the same orientation,, the Bezier image curve 60(f) reduces to 
a Bernstein-Bezier polynomial curve, for it is the result of 
repeated linear interpolations of form (12). The corresponding 
motion is translational motion and end point of the rigid body 
undergoing the motion traces out a Bernstein-Bezier polyno- 
mial curve in the Euclidean three-space E3. 

In genreal, however, the Bezier image curve 60(f) is fun- 
damentally different from a Bernstein-Bezier curve in E3. First, 
while a Bernstein-Bezier curve in E3 is a polynomial curve, the 
image curve 60(f) is in general not algebraic but transcenden- 
tal, for it has in general infinitely many intersections with a 
properly oriented twofold plane in the image space. Second, 
while a Bernstein-Bezier curves in E3 has subdivision property, 
the image curve 60(f) in general does not possess this useful 
property of subdivision (see Appendix A for the proof)- Con- 
sequently, the image curve traced out by the point 60(f) when 
f varies from 0 to 1 is in general different from the image curve 
resulting from subdividing the control polygon formed by 6, 
(/=0, 1, •'••,/!). 

It is noted here that the real part of the image curve b0(f) 
is the same as the "spherical Bezier curve" presented by Shoe- 
make (1985). Pottmann (1992) has also pointed out the lack 
of subdivision property of the Bezier curves described in Shoe- 
make (1985). 

4   Bernstein-Bezier Polynomial Motions 
This section develops a deCasteljau type algorithm for Bezier 

motions which have Bernstein polynomial basis functions. Such 
Bernstein-Bezier type motions have been developed analytically 
in our companion paper (Ge and Ravani, 1994) and have the 
useful subdivision property. 

From Ge and Ravani (1994), we know that a unifold image 
curve in the image space E may be expressed in terms of non- 
normalized coordinates (denoted by W(f)) or, equivalently, 
in terms of unit-normalized coordinates (denoted by X(f)). 
They are related by W(f) = w(f)X(f) where w(f) is a dual- 
number normalizing function. The normalizing function 
w(t) may be interpreted geometrically as a projection operator. 
A general curve W (t) in the image space E does not necessarily 
represent a rigid body motion. It represents a motion (denoted 
by X(f)) when it has unit-normalized coordinates. We shall 
refer to W(f) as the preimage of X(f-). This geometric inter- 
pretation is useful in explaining the subdivision property as- 
sociated with Bezier polynomial image curves to be developed 
in this section. 

The Bezier cubic curves in the image space E are given by 
(Ge and Ravani, 1994) 
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W(/) = w(/)X(/) = [l 112 t3)[Mb] 

w0b0 

w,bi 

iv2b2 

W3S3 

where 6,- (/= 1, 2, 3, 4) denote the Bezier control points in E 
that represent the key configurations, and w, (;=1, 2, 3, 4) 
denote the dual-number weight factors. Eq. 925) can also be 
expressed in terms of Bernstein polynomials B](t): 

3 

;=o 

and is said to define Bernstein-Bezier cubic motions. 
Similar to a Bernstein-Bezier curve in a Euclidean three- 

space E3, a Bernstein-Bezier unifold image curve X(0 given 
by Eq. (25) can be alternatively generated by repeated linear 
interpolation of its control image points. Given the control 
points b0 and the weights w, (/ = 0,1, ■••,«), the deCasteljau 
algorithm for constructing a Bernstein-Bezier polynomial mo- 
tion (of degree n) proceeds as follows: 

(7) For /=0, 1, • • •, n, set W?=w-,b,; 
(2) Forr=l, 2, •••, n and i=0, 1, •■•, n-r.set 

W^d-OWp'+JW;;,1; (26) 
(3) Then X(/)=WS/IWgl where IWJI denotes the mag- 

nitude of Wg. 
In the above, each intermediate point 6/ is given by 
WJ/IW-I. 

This deCasteljau algorithm may be used to subdivide a Bern- 
stein-Bezier image curve. The algorithm subdivides the prei- 
mageW(f) of the image curveX(/). The intermediate preimage 
points, wfö, may be projected onto the curved image space 
to provide us with the control polygons for the "left" and 
"right" curve segment. 

One important drawback for the above Bernstein-Bezier mo- 
tion is that it is difficult to adjust the speed of the motion 
intuitively, for it is very difficult (if not impossible) to select 
the constant weights w, such that the linear motion of the form 
(26) has constant angular velocity or pitch (Ge and Rävani, 
1994). 
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Conclusions 
This paper has provided a theoretical foundation for con- 

struction of deCasteljau algorithms for motion approximation. 
It has shown that Bezier motions obtained by the application 
of deCasteljau's construction are not of Bernstein form and 
lack the subdivision property of Bernstein-Bezier curves used 
in CAGD. Certain differential and kinematic properties of the 
Bener motions have also be studied. An alternative form of 
deCasteljau algorithm was presented that results in Bernstem- 
B6zier motions with subdivision property. The results have 
applications in motion animation, kinematics and CAD/CAM. 
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APPENDIX A 
This appendix proves that the deCasteljau algorithm for 

constructing the nonalgebraic Bdzier image curves does not 
possess the subdivision property. For convenience, we consider 
only the construction of a nonalgebraic Bezier image curve of 
rank 2 using three control points. 

Let b0, bi, b2 be the Bezier control points in the image space 
£ and let s, t be two parametes such that 0<5<f<l. Then 
the deCasteljau algorithm yields two parametric points on the 
BSzier image curve (Fig. 9): 

b0(5)=b0(5)[(buU))-,b!(5)]J, (27) 

b§(/)=bo(0['(bo(0)_lb!(f)]'- (28) 
Let c denote the intersection point of the two lines joining 
b0(5) to b}(5) and b0(O to 61(0- If the subdivisionjproperty 
exists for the deCasteljau algorithm, then the point bo(s) can 
be alternatively generated by subdividing the triangle formed 
by the three points b0) b0(O, and bJUO in the ratio (s/t):l. 
This leads to the following 

£ = bo(/)[(b0(0) -1C2 b?(01 ,s/t 

bo(5) = bo(5)[(bo(5))'Icr/'. 

Substitute (28) into (29) to obtain 

(29) 

(30) 
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Fig. 9   A deCasteljau algorithm In E does not possess subdivision prop- 
erty 
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*=ßS(/)[(6i(o)",fi!c)r. 

From (27) and (30), we obtain 

c = bj(s)[(bj(s))-'b!(s)]'. 

(31) 

(32) 

In what follows we show that in general (31) and (32) cannot 
hold simultaneously and therefore conclude that the de- 
Casteljau algorithm in E does not in general possess subdivision 
property. Let \^, ^, denote the dual angular lengths of the 
segments 60(5)61(5) and bö(/)öl(f), respectively ^ Then Eqs. 
(31), (32) mean that c divides the segment 6i(r)bi(/) in the 
ratio _ sin(5$,)/sin((l-5)$,) and- divides the segment 
bö(5)6|(s) in the ratio sin (r^)/sin((l -/)&), respectively. If 
this istrue then the triangle bö(r)bi6}(0 and its transversal 
bo(5)bj (5) must satisfy the Menalaus' theorem of collinearity: 

sin((l-s)£o)     sin ($,)     sin ((r-5)^) 
sin((/-5)^0)'sin((l-5)^,)'    sin (s$,) '     (33) 

where ^0» ^i are the angular lengths of the segments bobj, 
b|b2, respectively (Details on Menelaus' theorem in non-Eu- 
clidean geometry can be found in Sommerville, 1914). In the 
special case when <£0 = 4>i = 0, i.e., when three given configu- 
rations share the same orientation, Eq. (33) holds and it reduces 
to: 

1-5    5    t-s 
t-s  1-5    5 

by virtue of Eq. (9). In general, however, Eq. (33) does not 
hold. Thus we conclude that (31) and (32) do not hold si- 
multaneously for arbitrary spaced control points b0, b], and 
62. This completes the proof. 
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Bezier Curves on Riemannian 
Manifolds and Lie Groups with 
Kinematics Applications 
In this article we generalize the concept of Bezier curves to curved spaces, and 
illustrate this generalization with an application in kinematics. We show how De 
Casteljau's algorithm for constructing Bezier curves can be extended in a natural 
way to Riemannian manifolds. We then consider a special class of Riemannian 
manifold, the Lie groups. Because of their group structure Lie groups admit an 
elegant, efficient recursive algorithm for constructing Bezier curves. Spatial dis- 
placements of a rigid body also form a Lie group, and can therefore be interpolated 
(in the Bezier sense) using this recursive algorithm. We apply this alogorithm to 
the kinematic problem of trajectory generation or motion interpolation for a moving 
rigid body. The orientation trajectory of motions generated in this way have the 
important property of being invariant with respect to choices of inertia! and body- 
fixed reference frames. 

1   Introduction 
One of the cornerstones of geometric design has been the 

work of P. Bezier on the free-form curve design method that 
bears his name. Bezier curves are not only flexible and easy 
to generate, but offer a simple geometric representation of a 
curve in terms of its control polygon, as well as a firm math- 
ematical foundation based on Bernstein polynomials. In ap- 
plying the Bezier method to the kinematic problem of trajectory 
generation or motion interpolation for a moving rigid body, 
however, the classical geometric design techniques need to be 
extended to curved spaces. In principle one can obtain a col- 
lection of local coordinate charts for a given curved space, and 
apply existing Euclidean interpolation techniques to these co- 
ordinates. The resulting curves, however, will depend on the 
choice of local coordinates, which clearly leaves something to 
be desired from both a mathematical as well as an engineering 
perspective. Another requirement motivated by the moving 
rigid body problem is that, to the extent possible, the resulting 
motions should not depend on the choice of inertial or body- 
fixed reference frames; in the language of Lie groups this can 
be phrased as the question of whether a group admits a bi- 
invariant Riemannian metric. Using standard results from Lie 
theory it can be shown that bi-invariant orientation trajectories 
can be constructed, but that in general there is no bi-invariant 
metric for the spatial displacements (see, e.g., Park et al., 
1993). 

The goal of this article is to generalize the concept of Bezier 
curves to curved spaces. The existing theory of Bezier curves 
has been formulated only for curves in Euclidean space, and 
only recently have attempts been made at extending Bezier's 
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original construction to particular curved spaces. Shoemake 
(1985) presents a class of methods for generating curves on 
rotations that are based on unit quaternion representation. 
Although unit quaternions have certain well-known advantages 
over other representations of rotations (e.g., Euler angles), 
Shoemake's approach is essentially coordinate dependent: the 
resulting motions are not invariant with respect to choice of 
inertial and body-fixed frames, and his methods do not ade- 
quately address the underlying geometry of the space of ro- 
tations (e.g., the 2-1 nature of the unit quaternion 
representation). In more recent work, Ge and Ravani (1991, 
1994) have recognized these geometric issues, and formulated 
rigid body motion interpolation in terms of the image space 
manifold of kinematic mapping (see e.g., Bottema and Roth, 
1979 or Ravani and Roth, 1984). In particular, the 2-1.am- 
biguity is resolved by defining an orientation on the space of 
unit quaternions, and trajectories are constructed in terms of 
the first fundamental form of the image space with bi-invariant 
rotation parts. Juettler (1994) has provided a theoretical eval- 
uation of several approaches for motion interpolation and has 
discussed coordinate frame dependency of some of these ap- 
proaches. 

In this article, we formulate a general framework for con- 
structing Bezier curves on Riemannian manifolds, and then 
focus specifically on a special class of Riemannian manifold, 
the compact Lie groups. This class covers a wide range of 
curved spaces that arise frequently in kinematics: for example, 
the group of proper rotations SO(n) lies at the heart of the 
rigid-body motion interpolation problem, and the special un- 
itary group SU(2) can also be identified with unit quaternions. 

This article is organized as follows. In Section 2 we show 
how Bezier curves can be generalized to arbitrary Riemannian 
manifolds, and discuss some of the computational issues. In 



Section 3 we present a method of constructing Bezier curves 
on compact Lie groups, based on a generalization of De Cas- 
teljau's algorithm. In Section 4 we apply these curve generation 
techniques to the design of smooth trajectories on the rigid- 
body motions. 

2   Bezier Curves on Riemannian Manifolds 

2.1 A Geometric Interpretation of Classical Bezier 
Curves. Before laying down the mathematical framework for 
Riemannian manifolds, it is instructive to review the geometric 
interpretation of Bezier curves from the perspective of both 
Bezier's original construction and of De Casteljau's algorithm 
(1963), which, incidentally, precedes Bezier's work. Bezier 
(1963) geometrically defines a curve from four ordered ver- 
texes—the polygon formed by these vertexes is called the con- 
trol polygon—subject to a set of geometric constraints. 
Specifically, let the ordered vertices be {(0, 0, 0), (1, 0, 0), (1, 
0, 1), (1, 1, 1)), and let 6: [0, 1]-(R3 be a curve such that 

• 6(0) = (0, 0, 0) and 6(1) = (1, 1, 1). 
• The tangent at 6(0) is parallel to the *-axis, and the 

tangent at 6(1) is parallel to the z-axis. 
• The osculating plane at 6(0) is parallel to the x-y plane, 

and the osculating plane at 6(1) is parallel to the y-z 
plane. 

The curve satisfying these constraints is given by a cubic pol- 
ynomial. Reversing the order of the vertexes results in the same 
curve. It is important to note that the resulting curve is de- 
termined entirely from geometric constraints, and that the 
method of construction can be extended naturally to an ar- 
bitrary number of vertexes arranged randomly in Euclidean 
space. The Bezier curve can also be viewed as an approximation 
to the control polygon in terms of Bernstein polynomials (as 
discovered later by R. Forrest, 1972). 

De Casteljau presents another method of constructing a 
smooth curve given a control polygon, which turns out to be 
identical to the Bezier curve, but directly exploits the rela- 
tionship with Berstein polynomials. This algorithm is perhaps 
best illustrated by Fig. 1. Specifically, let the ordered set of 
vertices in (ft3 be given by [p0, P\, . . . , pn], and define the 
polynomials 

p!U)={l-t)pfl{ + tp?-1 

where P;=p,-. The curve given by p"„(t), 0 < t < 1 then 
corresponds to the Bezier curve. Geometrically De Casteljau's 
algorithm constructs the curve by successive linear interpola- 
tion between the vertexes of the control polygon. 

That Bezier's original construction and De Casteljau's al- 
gorithm are equivalent is remarkable, and can fundamentally 
be traced to the fact that the curve lies in Euclidean space. 
The polynomial representation of these curves, which makes 
them computationally attractive, is also due to the underlying 
space being Euclidean. In order to generalize these two methods 
of curve construction to curved spaces one must first generalize 
the underlying geometric concepts. In the De Casteljau method 
the concept of linear interpolation between two points in a 
curved space needs to be defined; this can be readily done on 
a Riemannian manifold, where the minimal geodesic plays the 
role of the straight line for curved spaces, and lengths can be 
measured in terms of the Riemannian metric. Bezier's con- 
struction, however, does not seem to generalize in a natural 
way to the Riemannian setting. Although tangency between 
curves is well-defined, the notion of an osculating plane relies 
inherently on the manifold being embedded in some larger 
ambient Euclidean space, and in general there is no natural 
way to do this. It is also more desirable to define a Bezier 
curve in terms of the intrinsic geometry of the manifold, rather 
than the underlying space in which it lies. For Riemannian 
manifolds, therefore, the natural way to define Bezier curves 

P, 
The De Casteljau algorithm for N = 4 

is by generalizing De Casteljau's algorithm. Naturally for cer- 
tain manifolds the minimal geodesic between two points may 
not always be unique, so that a number of subtleties (addressed 
below) will arise. 

Before proceeding some clarification on what we mean by 
"geometric" may help justify our emphasis on the so-called 
"geometric" construction of Bezier curves. In principle any 
differentiable manifold of dimension n can be locally repre- 
sented by a set of coordinates (xlt. . . , x„). One might there- 
fore be tempted to simply construct Bezier curves in terms of 
these local coordinates, and regard the corresponding curve 
on the manifold as the generalized Bezier curve. The flaw with 
this construction, of course, is that the resulting curves depend 
on the choice of local coordinates. Any geometric scheme for 
generalizing Bezier curves must by definition be coordinate- 
invariant. For Lie groups we shall impose an additional re- 
quirement of bi-invariance. 

2.2 Bezier Curves on Riemannian Manifolds. Clearly the 
key to generalizing De Casteljau's algorithm to curved spaces 
is the notion of linear interpolation, or even more fundamen- 
tally, lines. On a Riemannian manifold the geodesies (with 
respect to the given Riemannian metric) play the role of lines. 
We now formally review these concepts. 

Let Mbe a Riemannian manifold of dimension «, with local 
coordinates (xlt x2, .... x„), and Riemannian metric 
ds1=gij{x)dxidxj (we adopt the physicists' convention of sum- 
mation over repeated indices). If a curve 6 on M is given in 
local coordinates by;c(f),0<f<l, then the length of the 
curve is given by the integral 

•=!><*>££P< 
Just as a line in Euclidean space can be considered as the 
shortest path between two points, on a Riemannian manifold 
the minimum length curve joining two points can be regarded 
as the analog of the straight line. A parametrized curve e is 
a geodesic if it is a critical point of the energy functional 

4*<*2 , dxj 
dt 

dt 

and is a minimal geodesic if it minimizes E. Observe that the 
integrands of E and L differ by a square: the length L is 
invariant with respect to reparametrizations of 6, whereas E 
clearly depends on the parametrization. Interestingly, the curves 
minimizing E also minimize L, and moreover are parametrized 
with respect to arc-length. In local coordinates the geodesies 
satisfy the system of differential equations 

iJc 
dt2 dt dt (1) 

for 1 < / < n, where 

dgm   dgij 
dxj    dxk 

dgjk 
dxi 



and C?'') = (gii) '. The T'Jk are known as the Christoffel sym- 
bols of the second kind. 

Local existence and uniqueness of solutions for the Euler- 
Lagrange equations of geodesies can be shown for a given set 
of initial conditions (see, e.g., Gallot et al., 1990). This result 
implies that any two points which are "close enough" to each 
other are joined by a unique minimal length geodesic. This 
property is generally not global; for example, the geodesies on 
the two-sphere S2 are given by the great circles, and any two 
antipodal points will have any number of minimal geodesies. 
If any geodesic on M can be extended to a geodesic defined 
on all of (R, then the manifold is said to be geodesically com- 
plete. A theorem of Hopf-Rinow asserts that if a manifold is 
geodesically complete, then any two points of M can be joined 
by a minimal geodesic; note that the theorem does not claim 
that this geodesic is unique. For the purposes of this paper we 
shall only consider geodesically complete manifolds. The in- 
terested reader is referred to Gallot et al. (1990) for the technical 
requirements of such manifolds. 

Having established the minimal geodesies as the Riemannian 
analog of straight lines, Bezier curves can now be easily gen- 
eralized via De Casteljau's algorithm. Let the n ordered points 
of M forming the control polygon be labelled [p0, /?,,..., 
p„ ]. Represent the minimal geodesic between any two points 
p, q € M by the curve exp(p, q, t), 0 < t < 1, where expf>, 
q, 0) = p and exp(p, q, 1) = q. Define the sequence of curves 
onM 

A-(/)=exp(pf_-,1 (0,p?-' (t),t) 
Here pt{t) = ph The Bezier curve is then given by 

p"(0=exp(P::!(r),prI(0,0 
which is analogous to the De Casteljau algorithm for Euclidean 
space. 

It is clear that constructing Bezier curves on Riemannian 
manifolds by this algorithm is computationally more involved 
than for the Euclidean case: computing the geodesic between 
any two points involves the solution of the nonlinear differ- 
ential equation ([1]), a two-point boundary value problem (and 
therefore more difficult than integrating a differential equation 
with only initial conditions). Even if we assume that the geo- 
desies forming the control polygon have been precomputed 
and stored in a table, for each instant t the geodesic equations 
still need to be solved (n - l)(/j -2)/2 times. Clearly this 
presents difficulties for interactive design applications. 

One method of obtaining approximate Bezier curves in real- 
time is to compute only a discrete set of points on the curve, 
and to interpolate between these points using local coordinates. 
Specifically, the Bezier curve p"(t) can be sampled N times at 
uniformly-spaced intervals of t using the algorithm given above. 
Labelling these points P(i), i = 1, .... N, one can then 
obtain smooth interpolants between adjacent points P(i - 1) 
and P(i) in terms of local coordinates. While any convenient 
interpolating spline can be chosen, care must be taken to ensure 
continuity of the proper order at the knot points. The obvious 
drawback of this approach, of course, is that the resulting 
curve depends on the choice of local coordinates. Nevertheless, 
it is a practical means of designing curves on Riemannian 
manifolds in real-time that are nearly coordinate-invariant. 

3   Bezier Curves on Lie Groups 

3.1 Lie Groups. We now specialize to a special class of 
Riemannian manifold, the matrix Lie groups. A Lie group1 G 
is a differentiable manifold and an algebraic group whose 
operation (x,y)—xy~l is smooth. Some well-known examples 
of Lie groups include GI(n), the general linear group of nxn 

For a comprehensive account of applications of Lie groups in kinematics the 
reader is referred to Karger and Novak (1985). 

real nonsingular matrices, and SI(n), the special linear group 
of nxn real nonsingular matrices of unit determinant. 

Let p be a point on a matrix Lie group G, and X( t) a smooth 
curve on G defined over some open interval of 0 such that 
X(0) = p. The derivative X(0) is said to be a tangent vector 
to G at p; the set of all tangent vectors at p, denoted TPG, 
forms a vector space, called the tangent space to G at p. The 
tangent space at the identity p = / is given a special name, 
called the Lie algebra of G, and denoted by a lower-case g. 
On a matrix Lie group the Lie algebra is also given by matrices. 
For example, the Lie algebra of SO(3), denoted so(3), is the 
set of 3 x 3 real skew-symmetric matrices (see, e.g., Belinfante 
and Kolman, 1972). 

More generally a Lie algebra is a vector space, V, together 
with a bilinear map [-,•]: VxV-V (called the Lie bracket) 
that satisfies, for any X, Y, Z € V, (/") [X, X] = 0, and (//') 
[X, [Y, Z]) + [Z, [X, Y]) + [Y, [Z, X]] = 0. For matrix.Lie 
algebras the Lie bracket is given by the matrix commutator: 
if A', 7 € g are square matrices, then [X, Y] = XY - YX. 

Defined on each Lie algebra is the exponential mapping into 
the corresponding Lie group. On matrix groups the exponential 
mapping corresponds to the usual matrix exponential, i.e., if 
A € g, then expA = I + A + A2/2l + ... is an element of 
G. Observe that e*', t € (R, itself forms a group, in this case 
a subgroup of the Lie group. Such groups are called one- 
parameter subgroups of a Lie group, and play a special role 
in the description of minimal-length paths on Lie groups as 
we show below. Before lengths of paths can be defined we 
first need to examine Riemannian metrics on Lie groups. 

If X{t) is a differentiable curve on G as before, then X € 
TPG. One can exploit the group structure of G to represent X 
as an element of the Lie algebra as follows. Let g, h € G, and 
define the left and rigfa translation maps Lh-\: G-G, Rh-v. 
G—GbyLh-\{g) = h~lgandRh-\(g) = gh~\ respectively. 
It follows that their derivatives dLh~ I and dRh- I are mappings 
from Th-1 G to TeG = g. By applying these two maps to X 
it can be seen that X~l X and XX~l are elements of g. Any 
tangent vector can therefore be identified with an element of 
g by either left or right translation. Since g is a vector space, 
any inner product on g will define a Riemannian metric for 
G. 

Let Q be a quadratic form on g, and X(t) a curve on G. 
Then X 6 7>G, and X~ lX A yL and XX~' A VR are elements 
of g. Observe that VR and VL are related by VR = XVLX~l 

A. Ad^{Vi). Q defines an inner product on g, which in turn 
defines two classes of Riemannian metric on G: 

<X, X}« A I v\QVR 

< •, • )L and < •, ■ }R are the left- and right-invariant Riemannian 
metrics on G defined by Q. If <-,->i = <-,->* the metric is 
said to be bi-invariant. Any Lie group admits a left- or right- 
invariant metric from the construction above, but not all Lie 
groups admit a bi-invariant metric. One well-known condition 
in which a bi-invariant metric is always guaranteed to exist is 
if the Lie group is compact. In this case the geodesies of G 
(with respect to the bi-invariant metric) are the one-parameter 
subgroups of G and its translates, i.e., if A € g and : € (R, 
then e*' is a geodesic as is He*' and e*' H for any H € G. 

On compact G it is known that any g € G lies on a one- 
parameter subgroup. Hence, given any two points in G there 
always exists a geodesic (with respect to the bi-invariant metric) 
connecting them. To find the minimal geodesic we must con- 
sider the inverse of the exponential map exp: g—G. If G is 
compact then it is well-known that exp is onto, but typically 



its inverse map will be multiple-valued. We therefore define 
log: G—g by 

log(v4)=a 

such that aTQa is minimal among all possible a € g satisfying 
exp(af) = A. The minimal geodesic between A and B is then 
given by X(t) = A exp(Qt), 0 < / < 1, where fi = log(A~l 

B). Moreover, if A and B are left-translated by some constant 
C to CA and CB, then the minimal geodesic is given by CX( t). 
Similarly, the minimal geodesic between AB and A C is X( t) C. 
These properties follow from the bi-invariance of the Rie- 
mannian metric, and can be verified by an elementary calcu- 
lation. 

3.2 The De Casteljau Algorithm on Compact Lie 
Groups. Having established that the geodesies on compact 
Lie groups (with respect to the bi-invariant Riemannian metric) 
are the one-parameter subgroups and its translates, we now 
describe the algorithm for generating Bezier curves on such 
spaces. Let G be the Lie group with Lie algebra g, exp: g—G 
the exponential map, and log: G—g the inverse map that pro- 
vides the minimal norm value as described above. Let [p0, plt 
. . . , p„] be the ordered set of points in G that form the 
control polygon. The Bezier curve is now defined recursively 
as before: 

pHt) =JP?-"i1(/)exp(rlog[(pf.-1
,)(/)]-1pf-1(0),Jp?(/)=A 

and the Bezier curve is given by 
p"(0=p::i(Oexp(rlog[^:!)(/))-|prI(0) 

We now restrict our attention to the rotation group SO(3) in 
the next section. 

4   Kinematics Application: Bezier Curves on SO(3) 
The rotation group SO(3), consisting of the 3 x 3 real or- 

thogonal matrices with unit determinant, forms a Lie group, 
with its Lie algebra so(3) given by the vector space of 3x3 
real skew-symmetric matrices of the form 

M i 
0 — 0)3        Ci>2 

0>3 0 — CJi 

— 6>2 ü>i 0 

The following explicit formulas for the exponential and log- 
arithm mappings on SO(3) and so(3) are well-known: 
Lemma 1   Given ß € so(3), 

exp[w] .   sinM l-cosHa>H r ,, 
=/+ . . •[<■>]+—r^i—H" >i Do 

where [a] is the skew-symmetric matrix representation, and 
IcoB the standard Euclidean norm. 
Lemma 2   Given 0 € 50(3) such that Tr(0) * - 1. Then 

log6=-4—(9-er) 
2 sin <£ ' 

where<f>satisfies 1 + 2cos <£ = Tr(0), \<t>\ < ir. Furthermore, 
iiog en2 = <j>2. 
Remark 1 When Tr(9) = -1, log 0 can have two possible 
values on the closed ball of radius TT; if öI is a unit length 
eigenvector of 0 associated with the eigenvalue 1, then a simple 
calculation shows that log 0= ± *•[<£>]. 
Remark 2 Lemmas 1 and 2 suggest the standard visualization 
of SO(3) as a solid ball of radius TT, centered at the origin with 
the antipodal points identified; a point w in the ball represents 
a rotation by an angle toll about the line passing from the 
origin through w. The rotations whose traces equal - l have 
a rotation angle of ir, and correspond to points on the boundary 
of the solid ball. 
Remark 3   It is clear from above that the logarithm on SO(3) 

Fig. 2   Four control configurations of an end-effector 

is multiple-valued: given 0 6 SO(3) such that [u] = log 0, 
Hull <T, then the set of all possible values of log 0 is 

[ü)] + 2irfl[ü], 726Z 

where Si = to/Bull. This is akin to the situation in the complex 
plane, where if e1* is a point on the unit circle for some 0 < 
<t> < 2ir, then e^*2™' corresponds to the same point for any 
integer n. 

SO(3) is a compact Lie group and as such admits a bi- 
invariant Riemannian metric <-,•>• To see how the metric is 
applied, let 0(0. be a curve on SO(3), and©"'0 = [oA],00-1 

= [uj. Then <0, 0> = culu/, = cwjo>s, where eis a positive 
constant scale factor; the Riemannian metric is therefore de- 
termined by the quadratic form Q = cl on so(3). For con- 
venience we shall henceforth set c = 1. 

In terms of the bi-invariant metric the geodesies on SO(3) 
are given by the translates of the one-parameter subgroups &*', 
A 6 so(3) and t e <R. The minimal geodesic between two ele- 
ments 0h 02 6 SO(3) is given by the curve 

0(r) = 0,eni2',   0<r<l 

where Q,2 = log(0f' 02), or, equivalent^, 

0(r) = e°2''0,,   0<r<l 

where ß2i = log(020i~;). 
With this simple characterization of the minimal geodesies, 

Bezier curves can now be constructed in a straightforward 
manner on SO(3). For example, with 3 control points 0O, ©i, 
and 92, the Bezier curve is given by 

0(0 = e0eo°1'e(teg('"D°1'eö,ei,!'ni2'»' 

forO < / < 1, whereQoi = log(0o"Iei)andfi12 = log(0r'02). 
The general case with n control points is as follows. Let 6°, 

©i ©° be the ordered set of control points, and define 

©?(r) = 0f-1(r)e(log«e1"1»"l9*;{»" 

where k ranges from 1 to n, and / from 0 to n - k. The Bezier 
curve is then given by 03(0- 
Remark 4 The above construction can also be applied to 
design Bezier curves in SE(3), where the one-parameter 
subgroups e"' are now the screw motions. It is well-known, 



Fig. 3   A continuous motion interpolating the control configurations 

however, that SE(3) does not admit a bi-invariant Riemannian 
metric (see, e.g., Duffy, 1990), and that the one-parameter 
subgroups on SE(3) are no longer geodesies with respect to 
any left- or right-invariant Riemannian metric. Rather, in this 
case the geodesies on SE(3) are simply the projections of the 
geodesies on (R3 x SO(3) (Park, Murray, andMcCarthy, 1993). 
Hence, given a particular left- or right-invariant Riemannian 
metric on SE(3), the corresponding Bezier curve can be con- 
structed by combining the appropriate Bezier curves in (R3 and 
SO(3). From a physical viewpoint this is more appealing, since 
there is nothing natural about the screw motions from the 
point of view of dynamics. In fact, in the absence of external 
forces one would expect the motion of the center of mass of 
a rigid body to be linear, while the orientation is governed by 
Euler's equations. 

4.1 Example. The Cartesian space trajectory of a robot 
is to be designed such that it interpolates between the two end 
configurations of the end-effector shown in Fig. 2. Four con- 
trol configurations are used (as shown in Fig. 2) and the tra- 
jectory of the end-effector is generated using the Bezier curves 
in (R3 and SO(3) as discussed above. The resulting motion or 
trajectory of the end-effector is shown in Fig. 3. 

5   Conclusion 
By generalizing the notion of straight lines to curved spaces, 

Bezier curves can be defined on Riemannian manifolds by a 
suitable generalization of De Casteljau's algorithm. In the case 
when the Riemannian manifold is a compact Lie group ap- 
pealing formulas exist for the minimal geodesies, which are 
given by matrix exponentials. The algorithm has been illus- 
trated for the particular case of SO(3), with explicit formulas 
given for the matrix exponential and logarithm. The resulting 
orientation trajectories are invariant with respect to the choice 
of inertial or body-fixed reference frames for the rigid body. 
These results have direct applications to kinematics and ani- 
mation of rigid body motions, as well as to any problem in 
which the physical aspects are described by a Lie group. 
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Abstract 

This paper presents a variational method for smooth interpolation of the rotation 

group S0(3). By viewing SO(S) as a Lie group equipped with a natural Riemannian 

metric, we apply the coordinate-invariant methods of Riemannian geometry to construct 

spline curves that are invariant with respect to both left and right translations and gen- 

erate curves that approximately minimize a measure of smoothness. Such spline curves, 

in the context of moving rigid bodies, generate orientation trajectories that are indepen- 

dent of the choice of inertial or body-fixed reference frames and are smooth. Based on 

this construction, a computationally efficient algorithm for interpolating multiple points 

in SO(3) is presented. 

1    Introduction 

One of the frequently encountered problems in applications ranging from computer graphics 

and animation to robot trajectory planning is the interpolation of smooth curves in SO (3), 

the space of rotations. In this paper we address the following problem: given an ordered 

set of n rotation matrices {i?i, R2, ■ ■ ■, Rn} (the knot points), and a set of n scalars t\ < 



ti < • ■ ■ < tn (the knot times), find a C2 curve R : [t\,tn] —> S0(3) such that R(t{) = Ri, 

i = 1,2,..., n. Our goal is to find a computationally efficient method of spline interpolation 

in SO(3) that produces reasonably smooth curves. 

Well-established techniques exist for spline interpolation in vector spaces, but for the 

most part these techniques have yet to be generalized in a uniform, coordinate-free way to 

curved spaces like SO(3). Cubic splines, for example, are useful because of their simplicity 

and computational efficiency, and are further justifed by the physical argument that they 

minimize the smoothness criterion 

' Pll2* (1) /i 
To generalize this approach to curved spaces, one might begin by formulating the corre- 

sponding second-order smoothness measure; more precisely, the curved space operator that 

plays the role of the second derivative needs to be defined. In principle one could choose 

a set of local coordinates for the space and, proceeding exactly as in Euclidean space, con- 

struct cubic splines in terms of these coordinates. However, curves generated in this fashion 

are known to depend on the choice of coordinates, so that this method is geometrically ill- 

defined. An even more subtle issue that arises in the SO(3) case is the question of translation 

invariance: given two ordered sets {JRi,..., Rn} and {Ri,..., Rn} in SO(3), where Ri and 

Ri are related by R\ = QRiS for Q, S constant SO(3) matrices, it is reasonable to demand 

that the interpolating curves through these two sets, denoted R(t) and R(t), respectively, 

be related by R(t) = QR(t)S. Physically this reflects the fact that the choice of inertial and 

body-fixed reference frames for a rigid body should not influence the orientation trajectory 

of the interpolated motion. 

In this paper we present a variational method for smooth interpolation in SO (3) that 

is both left and right translation invariant (or bi-invariant), and generates curves that 

approximately minimize a certain geometrically-defined measure of smoothness. In our 

approach SO (3) is regarded as a Lie group with a natural Riemannian metric, and the 

role of the second-order derivative operator is played by the symmetric covariant derivative 

compatible with this metric. On Riemannian manifolds this covariant derivative is the 

natural coordinate-invariant generalization of second-order derivatives in Euclidean space, 

and in SO (3) the corresponding second-order smoothness functional turns out to be simply 

the integral of the squared-norm of the angular acceleration. We review the specific form 



of the functional and its associated Euler-Lagrange equations for SO(3). In particular, our 

analysis relies on using the canonical coordinates of the first kind as local coordinates on 

SO(3). Because solving the Euler-Lagrange equations is impractical for interactive CAD 

applications, a method based on the canonical coordinates is presented that preserves bi- 

invariance, yet produces simple solutions that approximately minimize the second-order 

smoothness functional. These curves, as will be seen, properly reduce to the minimal 

geodesies under appropriate boundary conditions. 

The paper is organized as follows. In Section 2 we review the geometry of SO(3) as a Lie 

group, and derive the corresponding canonical coordinates of the first kind. In Section 3 we 

express the second-order smoothness functional in terms of the canonical coordinates, and 

show that under some mild assumptions, the optimal curves are given by the exponential 

of a cubic matrix polynomial. To illustrate the efficiency of this approach the case of two 

point interpolation is considered in some detail. In Section 4 the two point interpolation 

results are extended to an algorithm for multiple point interpolation. We conclude with 

some remarks on how the interpolation of rigid body motions might be addressed within 

the given geometric framework. 

Before proceeding we mention some of the relevant previous work in SO (3) interpolation. 

One of the more widely cited approaches is the work of Shoemake (1985), who presents a 

class of interpolation schemes based on the unit quaternion representation for rotations. 

While the unit quaternions are known to provide a globally nonsingular four-parameter 

representation for rotations, Shoemake's algorithm essentially applies existing Euclidean 

interpolation techniques to this particular set of coordinates, so that the resulting curves 

will not in general be bi-invariant and the interpolated motions are not necessarily Eu- 

clidean. Also, some of the expected characteristics are not preserved in the resulting Bezier 

curves. A more careful geometric analysis of Quaternion curves is given by Ge and Ravani 

(1994a, 1994b), in which the underlying curved geometry of the space of quaternions was 

considered in performing the interpolation and actual Euclidean motions were generated 

with a proper analysis and evaluation of the characteristics of the resulting Bezier represen- 

tations. Jutler (1994) has presented a similar investigation working with dual quaternion 

curves and discussing some of the issues associated with the dependence of the existing 

methods on coordinate system used.  Hart, Francis and Kauffman (1994) have .presented 



an interesting method for visualization of quaternion curves representing three dimensional 

rotations. 

The unit quaternions, in fact, can be identified with the Lie group SU(2) of the 2x2 

special unitary matrices, so that the methods described here can be extended in an straight 

forward manner to SU(2). The present circle of geometric ideas has also been applied to 

formulate Bezier curves on SO(3) and general compact Lie groups (Park and Ravani 1995). 

Other relevant work in motion interpolation include the work of Barr (1993), Wagner and 

Jutler (1994), Pottmann and Wagner (1993). 

None of these authors, however, have considered the problem of motion design in the 

general frame work of minimizing a certain measure of smoothness on SO (3). Furthermore, 

they have not utilized Riemanian geometry to deal with the inherent curved nature of the 

underlying space of three dimensional rotations producing interpolated motions that are 

completely coordinate independent. 

This paper builds upon the formulation presented in Park and Ravani (1995); but de- 

velops a variational method for design of cubic splines for interpolating multiple points in 

SO (3) generating smooth multi-segment rotations which are independent of the choice of 

the coordinate system. 

2    The Geometry of SO(3) 

We begin with a review of the necessary background on SO (3) as a matrix Lie group; the 

development closely parallels that of (Park and Ravani 1994), and additional background 

caii be found in, e.g., (Belinfante and Kolman 1972). 

SO(3) as a Lie Group 

Recall that SO(3) is the set of all 3 x 3 real orthogonal matrices with unit determinant. 

SO(3) has the structure of a group and a differentiable manifold, and is an example of a 

Lie group. The rigid-body motions SE(3) can also be regarded as a Lie group under matrix 

multiplication, with elements of the form 

R   b 
(2) 

0    1 



r l A 
r = 

where R G S0(3) and b G 5R3. Some other well-known examples of matrix Lie groups include 

Gl(n), the general linear group ofnxn real nonsingular matrices, and the special linear 

group Sl(n), which is a subgroup of Gl(n) whose elements have unit determinant. 

More generally let G denote a matrix Lie group, and let X(t) be a differentiable curve 

in G defined over some open interval containing 0 such that X(0) = p. The derivative X(0) 

is said to be a tangent vector to G at p; the set of all tangent vectors at p, denoted TPG, 

forms a vector space, called the tangent space to G at p. The tangent space at the identity 

p = I is given a special name, called the Lie algebra of G, and denoted by the lower-case g. 

On SO (3) it is easily seen that the Lie algebra so(3) consists of the 3x3 skew-symmetric 

matrices: if R(t) is a curve in SO (3) such that R(0) — I, then differentiating both sides of 

RT(t)R(t) = I, it follows that RT(0) + R{0) = 0, so that elements of so(3) are matrices of 

the form 
0     — rs     T2 

r3       0      -ri (3) 

-r2     T\       0 

where r G 5R3. Note that an element [r] G so(3) can also be represented as a vector r £&*; 

if it is clear from the context which representation is meant then an element of so(3) will 

simply be denoted as r. 

More generally a Lie algebra is a vector space, V, together with a bilinear map [•, •] : 

V x V —► V (called the Lie bracket) that satisfies, for every 77, p, £ G V, (i) [77,77] = 0, and 

(ii) [77, [p, £]] + [£, [77, p]] + [fi, [£, 77]] = 0. Prom (i) and the bilinearity property it follows 

that [77,/x] = — (JLt, 77]. For matrix Lie groups and Lie algebras the corresponding Lie bracket 

reduces to the standard matrix commutator: if 77 and p are square matrices, then [77, p] — 

r]p — pr). In particular, on so(3) it is easily verified that the Lie bracket of two elements 

corresponds to their vector product: [ri,T2] = [rijfo] — foHri] = [*"i x r<^. 

The Exponential Mapping 

An important connection between a Lie group and its Lie algebra is the exponential mapping; 

defined on each Lie algebra is the exponential mapping into the corresponding Lie group. 

On matrix groups the exponential mapping is given by the usual matrix exponential, i.e., 

if A is an element of the Lie algebra, then exp A = I + A + ^- +... is an element of the Lie 



group. On so(3) the exponential mapping is onto, i.e., for every R G SO(3) there exists an 

[r] G so(3) such that exp[r] = R. On SO (3) and its Lie algebra well-known explicit formulas 

exist for the exponential and its inverse: if [r] G so(3), then 

,,      r     sinllrll    . .     1 — cos llrll   r l9 
eXPW IMI    ' M +       llrll2       " [r] (4) 

where ||r|| is the standard EucHdean norm. Alternatively, if R G SO(3) such that Tr(Ä) ^ 

—1, then 

logR=^-(R-RT) (5) 
Z sm q> 

where 4> satisfies 1 + 2cos</> = Tr(i?) and || logi?||2 = 4>2. In the case when Tr(R) = —1 two 

possible solutions for log R are as follows: if r is a unit length eigenvector of R associated 

with the eigenvalue 1, then logÄ = ±7r[f|. 

From'the above formulas SO(3) can be visualized as a solid ball of radius ir, centered at 

the origin with the antipodal points identified; a point r in the ball represents a rotation by 
i 

an angle ||r|| about the line passing from the origin through r. Conversely, any R G SO(3) 

can be represented by the set of points corresponding to log R. Note that this representation 

is unique when restricted to the interior of the solid ball. In general, if [r] is one solution 

to logiZ, then R = el Urii; for any integer k. The exponential mapping provides a set 

of local coordinates for a Lie group over a neighborhood of the identity; Chevalley (1946) 

calls these coordinates the canonical coordinates (of the first kind). On SO(3) we see that 

the canonical coordinates are obtained from the logarithm formula. 

The Lie algebra so(3) can be viewed as providing local coordinates for SO(3) via the 

exponential map. Another useful interpretation involves angular velocities. If R(t) is a curve 

in SO (3) describing the orientation of a rigid body relative to an inertia! reference frame, 

then it is not difficult to see that both jRi?-1 and R~lR are skew-symmetric, and therefore 

elements of so(3). R^R is in fact the angular velocity of the rigid body in body-fixed frame 

coordinates, whereas RR-1 is the angular velocity in inertial frame coordinates. 

SO(3) as a Riemannian Manifold 

Let M. be a Riemannian manifold1 of dimension n, with local coordinates (xi, X2) ■ • •»xn)> 

and Riemannian metric ds2 = YHJ 9ij(,x)dxidxj. If a curve on M is given in local coordinates 

1See (Gallot et al 1990) for a comprehensive introduction to Riemannian manifolds. 



by x(t), 0 < t < 1, then the length of the curve is given by the integral 

Just as a line in Euclidean space can be considered as the shortest path between two points, 

on a Riemannian manifold the minimum length curve joining two points can be regarded 

as the analog of the straight line. However, instead of L one usually considers the energy 

*-£?><*>%£* (7) 
The curves that minimize E are called minimal geodesies. It can be shown that the curves 

minimizing E also minimize L, and are automatically parametrized according to arc-length. 

In local coordinates the minimal geodesies must satisfy the system of differential equations 

d2xk  , v^ Vk dxi dxj _ n /ON 

*j 

for k = 1,2,..., n, where 

rH^t^"' (9) 

and (gkl) = (gki)  1. 

Clearly the minimal geodesies depend strongly on the choice of Riemannian metric. 

In general one cannot hope to find a "natural" Riemannian metric for a given manifold, 

in the sense that the metric is determined by the geometry of the space. However, on 

compact Lie groups such as SO (3) there does exist a natural metric determined by the 

requirement of bi-invariance. Recall from earlier that both R~XR = [wj and RR-1 = UJS] 

are elements of so(3) that correspond to the angular velocity in body-fixed and inertial 

frame coordinates, respectively. Since any tangent vector R can be identified with an 

element of so(3) by either left or right translation, any inner product on so(3) defines two 

distinct Riemannian metrics on SO (3). Let this inner product be given by the symmetric 

positive-definite quadratic form Q. The left-invariant Riemannian metric induced from 

Q is then (R,R)i = \ulQu>b', similarly, the right-invariant Riemannian metric is given 

by (R,R)r = jujQu}s. If ^UJQUJS = \ujQujf,, then Q is said to define a bi-invariant 

Riemannian metric. Clearly equality holds if and only if Q = cl, for c > 0 any scalar 

constant. 



Not all Lie groups have bi-invariant Riemannian metrics (e.g., SE(3)), but for compact 

Lie groups like SO(3) one is always guaranteed to exist. In this case the geodesies (with 

respect to the bi-invariant metric) are the one-parameter subgroups and its translates: on 

SO(3), for example, the minimal geodesic between Ri and R2 is given by 

R(t) = Rje^rt = etr21l*fii, 0 < t < 1 (10) 

where [7-12] is the minimum norm value oi log(Ri1 R2), and fai] = Äifr^-Rf. 

3    Two Point Interpolation 

Bi-invariant Solutions 

On Riemannian manifolds second derivatives are generalized by the symmetric covariant 

derivative compatible with the Riemannian metric,2 denoted by the symbol V. The equiv- 
i 

alent energy functional to Equation (1) is then given by 

J(x)= ((V a_x,VJLX) dt (11) 
J dt dt 

where x(t) denotes the curve and (•, •) the Riemannian metric. In local coordinates V a x 

is just the left-hand side of Equation (8), where the Riemannian metric is given by gij{x). 

Since J(x) is a second-order functional, four boundary conditions are required to specify a 

unique solution. In general the geodesies will not be admissible curves, but when they are 

the integrand vanishes, so that the geodesies minimize J(x), 

The Euler-Lagrange equations for J(x) (sometimes referred to as the equations for 

geodetic deviation) are 

V3
8i + i?(Va x, x) (x) = 0 (12) 

Si "Si 

(Noakes et al 1989, Milnor 1969) where R is the Riemannian curvature tensor of V. These 

equations are quite complex when expressed in local coordinates. For matrix Lie groups 

with a left- or right-invariant Riemannian metric it is often more convenient to derive the 

equations directly from the first-order necessary conditions. Specifically, let G and g be the 

matrix Lie group and its corresponding Lie algebra, respectively, and (•, •) an inner product 

2 Again, see (Gallot et al 1990) for a complete discussion of covariant derivatives. 



on g defining a left-invariant metric. The objective then is to find a curve U(t) in g that 

minimizes 

J(U)= f (Ü,Ü)dt (13) 
Jo 

subject to 

X(t) = X(t)U(t) (14) 

with X(0), X(l), f7(0), and U(l) given. (If the right-invariant metric were used instead the 

constraint would then be X(t) = U(t)X(t).) 

On SO (3) the smoothness functional with respect to the bi-invariant metric turns out 

to be the integral of the squared Euclidean norm of the angular acceleration. In order to 

express the functional in terms of the canonical coordinates the following result is needed. 

Let R(t) be a curve in SO(3) parametrized in canonical coordinates by R(t) = i?exp[£(£)], 

where £(t) is a curve in 8ft3 and R £ SO(3) is some given constant. It can be shown that 

the angular velocity in body coordinates, denoted ui(t), is 

R-1(t)R(t) = Ut)]= [ e-£Ws[£(t)]etiW$ ds (15) 
Jo 

which can be further simplified to the vector equation u(t) — A(£)£(t), where 

l-cosl|e||       ,   ||fl|-sin||g||f,l2 AW = I [?7M2— Is] + HTP &] (16) 

The smoothness functional in canonical coordinates is then 

d m = f1 
Jo 

dt(Am\\2dt (17) 

We now show that the solutions that minimize J(£) are "invariant" (in a sense to be 

made precise below) with respect to right- and left-translations of the boundary values. 

This result is not surprising considering that J(£) is defined in terms of the bi-invariant 

Riemannian metric on SO(3). Nevertheless, the actual calculations turn out to be useful 

for deriving the form of the cubic spline solution. In what follows it may be helpful to bear 

in mind the actual engineering problem being addressed, which is to interpolate a smooth 

orientation trajectory for a rigid body between two given orientations, subject to angular 

velocity constraints at both endpoints. Suppose that inertial and body-fixed reference 

frames have been chosen. The interpolation problem can then be stated mathematically 

as follows: find a curve R(t) in SO (3) that minimizes J(£)> while satisfying the boundary 



conditions Ä(0) = Äo, -R(l) = fii, Ä-x(0)Ä(0) = [WO], and ir^l^l) = [Ul], where 

-Re-Si € SO(3), wo,wx G 5J3 are given. For convenience we parametrize the admissible 

curves according to R(t) = Äoe^, where £(£) is a curve in 5ft3. £(i) must then satisfy 

(0 <£(0) = 0 (18) 

(«) [ai))=log(Rö1Ri) (19) 

(«») £(0) = w0 (20) 

(iv) A(£(l))e(l)=W! (21) 

where A(£) is as given in Equation (16). If now a different body-fixed frame is chosen, 

the boundary values Ro and Ri are then right-translated by some O € SO (3) to Äo = 

i?o© and R\ = R\Q, respectively, while the velocity vectors w0 and wi are transformed 

to ©-1w0 and 0-1w1, respectively. The new curve R[t) = RQ^Wi must then minimize 

J(Ö =f /o1 \\i(A(£)b\\2dt while satisfying 

(0 1(0) = 0 (22) 

(it) [|(1)] = log^ö1^) = log(9-1i?o-1E10) = e-^ODie (23) 

(m) 1(0) = 0-^0 (24) 

H A(£(l))'äl) = 0-^! (25) 

If we consider £(t) to be of the form ©_1£(i), then the above boundary conditions are 

identical to those of Equations (18)-(21). Moreover, since A(£) = 0-1A(OO, it follows that 

MQt = Q-1-A(0£> or «7(0 = «7(0- Therefore, if £(£) is a solution to the original variational 

problem, then £(£) = 0-1£(t) is a solution to the latter. Using standard matrix exponential 

identities one can now show that R(t) = jfoel9"1^ = JfoGe8"1^*)]© = Roe^G = R(t)B 

as claimed. 

In a similar fashion one can show that if RQ and Ri are left-translated by some constant 

0 € SO(3) to 0Äo and 0i?i, respectively (corresponding to a change in the inertia! frame), 

then the new solution is QR(t), the left-translate of the original solution. Observe that the 

geodesies on SO(3) are special cases when £(t) is linear in t. 
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3.1    A Cubic-Spline Solution 

For interactive applications, solving the above two-point boundary value problem is not 

practical. However, if the two endpoints are assumed reasonably close to one another then 

the solution curve simplifies to a cubic polynomial in canonical coordinates. Specifically, let 

Ro and Ri denote the endpoints, and assume || log(i?^"1Jfli)|| is small. Then the interpolating 

curve R(i) = Roe^^ will be such that £(*) can also be assumed of small magnitude, and 

A(£) « I. Therefore the smoothness functional of Equation (17) can be approximated by 

[l\m)\\2dt (26) 
Jo 

whose solutions- are clearly cubics. SO (3) curves whose image in the canonical coordinates 

are cubics will be referred to as cubic splines in SO(3). 

The cubic spline solution to the two-point interpolation problem on SO (3) is as follows. 

Given,the boundary conditions R{0) = Ro, R(l) = Rx, R~l{0)R(0) = [w0], Ä_1(l)-R(l) = 

[CJI], the solution curve is R(t) = Roe^at +bt +ct\ where a, b, c G 9ft3 are constants satisfying 

• a + b + c = e, where [e] = \og(RQ1Ri) 

• c = cuo 

. A{e)(3a + 2b + c)= ult where A(e) = I - Sgf#[e] + '|6'lffll*H [e]2. 

Using calculations analogous to those of the previous section, it can be shown that the cubic 

splines are left-invariant. That is, if R(t) is a cubic spline satisfying the above boundary 

conditions, then the cubic spline R(t) that satisfies the new boundary conditions R(0) = 

QRo, R(l) = 9Ä1, Ä-x(0)Ä(0) = [wo], and Ä~1(1)E(1) = [wj, is given by BR(t). Right- 

invariance can also be shown similarly. The cubic splines on SO (3), therefore, are bi- 

invariant. 

The following matrix identities are instrumental in determining the coefficients of right- 

or left-translated cubic splines. First, for any matrix A, PeAP~l = ePAP~ . Secondly, if 

R € SO(3), then R[u]RT = [RJ\ for any u> € 3ft3. With these identities it can be shown 

that if R{t) = i?oe[at3+6t2+ctl, then R(t)B = Äo0e[e_1(at3+6t2+ct)], i.e., the coefficients of 

the right-translated cubic spline are given by ö = 0-1a, b = Q~1b, and c = 0-1c. Finally, 

observe that when WQ = wi, the cubic splines reduce to geodesies. This feature, along with 
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the bi-invariance property and computational efficiency, is what makes cubic splines an 

attractive choice for interpolating trajectories on SO (3). 

4    Interpolation of Multiple Points 

We now present a complete algorithm for interpolating through multiple points in SO (3) 

using cubic splines. Analogous to the Euclidean case, the interpolated curve in SO (3) 

maintains continuity of both angular velocities and accelerations at the knot points. The 

algorithm we present requires the following as inputs: an ordered set of n + 1 rotation 

matrices {Ro, Ri,..., Rn} (the knot points), a set of n + 1 scalars to < t\ < ■•• < tn 

(the knot times), an initial angular velocity UJQ € §?3, and an intial angular acceleration 

ao GSR3. Both U>Q and ao are expressed in body-fixed reference frame coordinates. This 

set of inputs, while a slight departure from the usual set for Euclidean cubic splines, is 

chosen for convenience; for different inputs {e.g., specifying final velocities rather than 

initial accelerations) the corresponding algorithm can be derived using results from the 

following analysis. 

The interpolated curve is of the form 

Ri(t)    =   RoefaW, t0<t<ti 

R(t) = i (27) 

Rn(t)     =    iJn-iet^*)],    tn-i<t<tn 

where 
3 / + _+.. \2 

Here at, bi, Ci, i = 1,..., n, are constant vectors in 3ft3 that are determined using the following 

formulas for the angular velocity and acceleration. The angular velocity in body-fixed 

coordinates is, from Equation (16), 

wi(i) = Ai (*)&(<),      t0<t<h 

aj(t) = < (29) 

Un(t) = An(t)in(t),     tn-i < t < tn 

where 
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The angular acceleration is 

' a1(t) = ü1(t),     t0<t<ti 

a(t) (32) 

an(t) = d)n(t),    tn-i <t<tn 

where 

<t)   =   6-^(coB||e||-|ia8in||e||-l)«xf)-^gJ£ll(fx|) 
+   P(3sin||e||-||el|cos||a-2||e||)(ex(exÖ) (33) 

Here (•, •) denotes the Euclidean norm in 9t3, & and & are as above, and 

^t) = 6ai{j^t~[)+2bi (34) 

The initially known quantities are, in addition to the knot points and knot times, UJ\ (to) = ^o 

and ai(to) = ao- Prom these initial conditions ai,b\, and c\ can be uniquely determined, 

from which wi(ii) = u>\ and ai(ii) = ai can in turn be determined. By the continuity 

requirements wi(ii) = W2(tj.) and ai(ii) = 0:2(*i), the vector coefficients 02,621 and C2 can 

now be determined. This procedure is repeated until all the coefficients a», 6j, Cj, i = 1,..., n 

have been found. We now present the complete algorithm. 

• Given: 
{RQ, J?I, ..., Rn} = knot points 

{to, *i,. • •, tn} = knot times 

wo = angular velocity at to in body-fixed coordinates 

cto = angular acceleration at to in body-fixed coordinates 

• Preprocessing: for i = 1 to n find 

[£i]     =     log^Ä,) 

• Initialization: 

C\     =     Cdo 

61    =   a0/2 

«l    =   ei - 61 - ci 
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• Recursion: for i = 2 to n do 

s    =    ||€j||     (temp, var.) 

t     =   3ai_i + 26i_i + Cj_i     (temp, var.) 

u    =   6cii-i + 26i_i     (temp, var.) 

d    =   Ai_iCi_i 

*    =   ^(n-^(cos||5||-||S||sin||S||-l)(Sxi)-i^g|^(Sxn) 

+j$(3sin ||«|| - ||«|| cos ||«|| - 2||«||)(« x (s x t)) 

di     =     €i — b{ — Ci 

• Result: for U-i <t<U, 

*«=*-H!^)'+<££)'+<££)i 
The ei are found from the log formula of Equation (5). In cases where e, has two possible 

values (corresponding to the two antipodal points on the sphere of radius ir), either value 

will still generate the same orientation trajectory in S0(3). The interpolated curve R(i) is 

then evaluated using the exponential formula of Equation (4). 

Example 

In this section we provide a simple example to illustrate the utility of the interpolation 

technique developed in this paper. Figure 1 shows several positions of an end effector of a 

robot manipulator. These positions are used as control positions and a cubic interpolation 

is performed on SO (3) to generate the motion of the end effector depicted in Figure 2. We 

have separately interpolated the orientations from the position of a point on the end effector. 

The techniques presented in this paper are used for the interpolation of the orientation parts 

of the trajectory. 

5    Conclusions 

By viewing SO (3) as a Lie group equipped with a natural Riemannian metric, we have 

presented an algorithm for interpolating through multiple points in SO(3) that can be in- 

terpreted as a type of generalized cubic spline in rotation space.  The main advantage of 
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this approach is that bi-invariant curves can now be generated in a computationally efficient 

way. In the context of moving rigid bodies, bi-invariance ensures that the orientation trajec- 

tories are independent of choice of inertial or body-fixed reference frames. Rotational cubic 

splines are also an effective compromise between the computational needs for interactive 

CAD versus greater curve smoothness. 

In extending the rotational cubic spline techniques to the interpolation of general mo- 

tions for rigid bodies, several additional issues need to be addressed. First, it is a well-known 

classical result that SE(3), the Lie group of rigid-body displacements, does not admit a bi- 

invariant Riemannian metric. One physical consequence of this fact is that there is no 

interpolation scheme that is bi-invariant; if one were to imagine infinitely large rigid bodies, 

then any method of motion interpolation will ultimately depend on the choice of inertial or 

body-fixed reference frame. It is possible, however, to relax the requirement of bi-invariance, 

in which case left- or right-invariant motions can be generated using the above construction. 
i 

The most straightforward approach is to interpolate the orientation and position (of some 

special point on the rigid body) trajectories separately. Alternatively, the exponential and 

logarithm mappings on SE(3) and its Lie algebra (see, e.g., Park et al 1993) can be applied 

to construct cubic splines in the same way as for SO (3).  The difference between the two 

approaches is best illustrated by the problem of interpolating between two configurations of 

a rigid body. Assuming the body-fixed frame has been attached to the center of mass, and 

the initial generalized velocities and accelerations are given, the former approach results 

in a linear motion of the center of mass.  The latter method, however, produces a screw 

motion as the final trajectory. Interpolating the positions and orientations separately would 

therefore seem more natural from the point of view of dynamics. 
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Abstract 
This paper deals with calibrating spatial relationships 
among CAD models of objects used in off line robot 
programming. An approach based on a Clifford alge- 
bra is used and simple algorithms are developed for this 
kinematic localization problem. The position and ori- 
entation of each object in a workcell are represented 
by multivectors of different ranks and the localization 
problem is converted into that of solving a set of mul- 
tivector equations. Given locations of points in two 
frames, an averaging process is developed which yields 
the best orientation as the root of four linear equations 
and the best position as a linear combination of the 
best rotation and the centroids of two point systems. 
If normal vectors are also sensed, the Clifford algebra 
representation facilitates definition of a measure of ori- 
entation error compatible with the position error. 

Introduction 
CAD-based graphical off-line robot programming and 
simulation requires a computer representation of the 
robot workcell environment. This representation, called 
the world model, provides the necessary information 
about the robot workcell for a task planner to generate 
appropriate robot motion control, commands. Errors 
in task execution are due to inaccuracies of the world 
model and uncertainties introduced by sensors and ac- 
tuators during execution. The latter set of errors can 
be eliminated or reduced by sensory control. The first 
set of errors may be corrected by calibrating the world 
model before task execution. This paper deals with the 
first level of world model calibration which involves cal- 
culation of location of coordinate frames attached to a 
CAD model and is here referred to as the kinematic 
localization problem. 

Calibration of the world model first requires sensory 
interactions with the robot workcell. In the past there 
have been several studies related to sensory monitoring 
of the robot workcell environment, see Grossman and 
Taylor (1978), and Ishii et al (1988). Any of the sys- 
tems proposed in these papers can be used with a kine- 
matic localization algorithm for calibration purposes. 
Kinematic localization problems have mostly been con- 
sidered in the field of computer vision for calculation 
of position and orientation of objects (see, for example, 
Grimson and Lozano-Perez (1984), Faugeras and Her- 
bert (1986) and Gunnarsson and Prinz (1987)). These 
works however have not been used for world model cal- 
ibration and more importantly have not completely ex- 
ploited the geometric nature and the kinematic struc- 
ture of the problem. The resulting algorithms therefore 
have suffered from unnecessary nonlinearities or com- 
putational requirements. 

In this paper, a representation based on Clifford al- 
gebra is used for the kinematic relationship between 
two frames. Clifford algebra was proposed by Clif- 
ford (1876). For recent account of Clifford algebra, see 
Hestenes and Sobczyk (1984), McCarthy (1990). The 
Clifford algebra formulation converts the localization 
problem into that of solving a set of multivector equa- 
tions. When unit vector normals are also measured, 
in addition to point measurements, this representation 
facilitates definition of a measure of orientation error 
compatible with the position error. More importantly, 
it also facilitates exploitation of the geometric nature 
and kinematic structure between two point system mea- 
sured with respect to the world frame and to the natural 
frame. This results in an averaging process which re- 
duces the localization problem to that of solving a set 
of four linear equations. The orientation of an object 

. obtained as the root of the equations is shown to be a 
least squares solution and the best position of the ob- 
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ject is a linear combination of the optimal orientation 
and the centroids of the point systems in two frames. 

1    The Clifford Algebra 

The Clifford algebra C(R3) of a 3-dimensional vector 
space (R3) is generated from elements of the space by 
a product operation called the geometric product. This 
product is linear and associative, and in addition, the 
products of basis vectors of R3 satisfy the following 
properties (see McCarthy 1990 and Ge 1990): 

6ni6n — 
—enem    for m ^ n, 
1 for m = n, (1) 

where em, m = 1,2,3, are the basis vectors of R3 such 
that em has a 1 in the mth position and zeroes else- 
where. 

The geometric product eme„ is not a vector nor a 
scalar but a new entity called rank 2 multivector or 
bivector. In Clifford algebra, a scalar is considered as a 
rank 0 multivector and a vector is a rank 1 multivector. 
The geometric product of all three basis vectors 

i = eie2e3, (2) 

is a rank 3 multivector or trivector. It has the property 
that i2 = —1 and commutes with every vector in the 
space. Furthermore, it facilitates representation of basis 
bivectors in terms of basis vectors: 

e2e3 = iei, e3ei = ie2, e^ = te3. (3) 

The geometric product of two general vectors, x = 
xiei + x2e2 + x3e3 and y = j/xei + y2e2 -f y3e3, is a 
combination of a scalar and a bivector: 

xy = x • y + i(x x y) (4) 

where x y is the vector scalar product and x x y is the 
vector cross product. 

A general element of the Clifford algebra of R3 is a 
combination of multivectors with ranks from 0 to 3. It 
includes a scalar term, a vector term with three basis 
vectors em, m = 1,2,3, a bivector term with three ba- 
sis bivectors iem, and a trivector term i = e\e2e3. The 
set of elements of as combinations of scalars and bivec- 
tors constitutes the even subalgebra of C(R3). The set 
of elements of as combinations of vectors and trivec- 
tors constitutes the odd subalgebra. The conjugates 
for these elements are obtained by replacing i with —i. 

The product of a vector x = xxei + x2e2 + x3e3 with 
an even element q = %ei + iq2e2 + iq3e3 + g4 can be 
expressed in matrix form as 

where q* = (-qi, -q2, -qz-q*) is the conjugate of q 
and [x~], [x+] are 4 x 4 skew symmetric matrices given 

by 

(5) 

The product of these two matrices commutes, i.e. 
[x~][a;+] = [a;+][i,_]. In addition, we have [x+][x+] = 
[x-][.r_] = —|x|2[7] where |xp is the length square of 
the vector x and [I] is the 4x4 identity matrix. 

It can also be shown that the product of three ele- 
ments, x (a vector), q (an element of C+(R3)) and y 
(another vector) can be expressed in matrix form as 

0 •E3 — X2 Xi 

-X3 0 Xl x2 

x2 -Xl 0 x3 

-*1 -x2 -*3 0 
0 -*3 22 Xi 

x3 0 -Xi x2 

-X2 Xi 0 . x3 

~Xl -*2 -Z3 0 

xqy = -[x+][j/"]q, (6) 

where [y~] is obtained from [x~] by replacing x with 

y- 

2    Kinematic Relationships in 
the World Model 

A world model usually includes geometrical, relational 
as well as physical descriptions of the workcell. The 
world model RWORLD proposed by Ravani (1988) uses 
a multi-primitive representation of the workcell environ- 
ment, at an abstract level. Frame primitive is used to 
mark the position and orientation of a fixed reference 
frame in space (called the world frame). It can be used 
to mark the location of an object or device, in which 
case they are referred to as natural frames. It can also 
be used to mark feature locations on objects or devices, 
in which case they are referred to as auxiliary frames. 

This section identifies the spatial relationship be- 
tween a natural frame and a world frame (or between a 
auxiliary frame and a natural frame) with an element of 
the Clifford algebra of R3. The Clifford algebra repre- 
sentation is closely related to the quaternion representa- 
tion of transformations, see Bottema and Roth (1979), 
McCarthy (1990) and Ge (1990). 

The kinematic relationship between two frames con- 
sists of an orientation relationship and a positional re- 
lationship. The orientation relationship is represented 
by the following even element (Ge 1990): 

q=z'ssin(0/2)+cos(0/2). (7) 

xq = [x   Jq ,     qx [x-V 
where s = sxei +sye2+s:e3 is the unit vector along the 
axis of rotation and 9 the angle of rotation. The four 
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components of q = («1,42,«3, «4) given by (7) satisfy 

the relation ,       ■> 
ql + ql + <l3 + <li = !.. (b) 

and are called the Euler parameters of rotation. 
If the location of the origin of one frame relative to 

another is known, say it is specified by the vector d - 
diei + d2e2 + d3e3, then the positional relationship is 
represented by the following geometric product 

q° = (l/2)qd, (9) 

where q is the orientation defined by (7).  In general, 
the positional relationship is given by 

q° = (l/2)(qx' - xq), (10) 

where x = ziei + z2e2 + x3e3 and x' = x'^ + x2e2 + 
x3e3 are the coordinate vectors of a point measured 
relative to the natural frame and to the world frame, q 
is an element of the odd subalgebra, i.e. a combination 
of a vector and a trivector. 

Thus the pair of elements, (q,q°), uniquely deter- 
mine the kinematic relationship between two frames. 
Note that the pair (-q, -q°) represents the same re- 
lationship as (q,q°). Furthermore, the definition of q 
implies that the components of q and q° satisfy 

- «19? - ?2?2 - 93^3 + 949° = °- (ID 

be *iven bv two pairs of unit vectors (u : u') and (v : v 
where u, v are measured relative to the object's natural 
frame and u', v' are measured relative to the world 
frame. Each pair satisfies (12), i.e. 

qu' - uq = 0, (13) 

qv'-vq = 0. (I4) 

The substitution of q = issin(0/2) + cos(0/2) into 
. (13) yields, after some algebra 

sin(0/2)s x (u' + u) - cos(0/2)(u' - u) (15) 
-isin(fl/2)s-(u'-u) = 0. 

Eq.(15) separates into a vector equation 

sin(0/2)s x (u' + u) - cos(0/2)(u' - u) = 0.     (16) 

and a scalar equation sin(0/2)s ■ (u' - u) = 0. The 
vector equation is the well-known Rodrigues equation 
and the scalar equation indicates that the rotation axis 
s is perpendicular to the vector (u' - u). 

Taking the cross product of both sides of (16) with 

(v' _ v) yields 

For orientation relationship, the element q° = 0 since 
d = 0. Therefore, the pair of unit vectors (u : u') 
represents the direction of a line in both frames satisfy 

qu' - uq = 0. (12) 

3    Minimal Solution 

To calibrate the kinematic relationship between two 
frames for CAD models is to determine the real trans- 
formation from one frame to another.   In the Clifford 
algebra representation, it is to determine the pair of 
elements (q,q°) corresponding to the transformation. 
This section focuses on calibrating the kinematic re- 
lationship between an object's natural frame and the 
world frame.   We first discuss the minimum informa- 
tion required for the calibration with the assumption 
that the sensory information about geometric features 
in both frames are available. We then provide an algo- 
rithm for calibration with point measurements only in 

the world frame. 

3.1    Minimum Sensory Information 

To determine the orientation relationship q, directions 
of two distinct lines are required. Let the two directions 

0     _ (v' - v) x (u' - u) 
p = tan(-)s -   (v, _ v) . (U/ + U) (i7; 

Note that in obtaining (17) we have used the fact that 
s . (v' - v) = 0 which can be derived from (14), see 

also Bottema and Roth (1979). 
relationship is specified by 

Thus the orientation 

q=(l + ip)/(V/l + |p|2)- 

where |p| is the length of the vector p. 
To obtain the positional relationship q°, the location 

for one point of the object is required. Let (x : x be a 
pair of vectors for the locations of a given point relative 
to the two frames. Then q° is given by (10). 

For point measurements, a minimum number of three 
non-collinear points are required to determine both q 
and q° This is evident by the fact that two direction 
vectors can be constructed to determine q and one of 
the three points can be used to further determine q . 

3.2    Calibration with Information only 
in the World Frame 

Given a set of point locations in the world frame, any 
transformation (q,q°) can be used to map these loca- 
tions to the natural frame. Therefore, the uniqueness 
of the relationship (q,q°) is not a meaningful topic ot 
discussion. The focus here is on how to select a natu- 
ral frame for a given set of point locations in the world 

586 



frame. We have obtained formulas for uniquely deter- 
mining (q, q°) in terms of locations of the minimum 
number of points measured in both the natural frame 
and the world frame. These formulas can be regarded 
as defining (q, q°) as functions of the unknown point 
locations in the natural frame. The number of the un- 
knowns can be considered as the "degree of freedom" 
of the calibration system which allows us to select a 
specific natural frame. In what follows we propose a 
special choice of natural frame for a given set of point 
measurements. 

Three non-collinear points, x, y and z measured rel- 
ative to the world frame, determines a plane. The cross 
product of two vectors on this plane, u = z — x and 
v = y — x, yields the unit normal for the plane: 

Frame N, 

World Frame 

Frame Nj 

Figure 1: The composition of kinematic relationships. 

w 

':«' 
* 

U X V 

|u x v|' 

We select the orientation of the natural frame such 
that its z-axis (e3) is parallel to the unit normal w and 
its x-axis (ej) is parallel to the vector u. Thus the two 
pairs of direction vectors (w, eß) and (u/|u|, ei) can 
be used to determine the orientation q. Furthermore, 
if the point x is selected as the origin of the natural 
frame, then the position is given by q° = (l/2)qx. 

3.3    Calibration of Kinematic Relation- 
ship Between Any Two Frames 

To calibrate the kinematic relationship between any two 
frames, we calibrate first the spatial relationship of each 
frame relative to the world frame and then derive the 
relationship between the two given frames' from it. Let 
(qi, qj) represent the location of one frame Ni relative 
to the world frame and (q2,q2) represent the location 
of another frame i\T2, Figure 1. Let x, xi and x2 be the 
coordinate vectors for a point measured relative to the 
world frame, the frame Ni and the frame JV2, respec- 
tively.   They are related by the transformations (10) 
as 

qix-xiqi.= 2qj, 

q2x - x2q2 = 2q2
l 

(18) 

12- (19) 

Eliminate x from these two equations to obtain 

(q2qjxi - x2q2qj) = 2(q§qJ - q2(q?)*), 

The pair of elements (q, q°) representing the transfor- 
mation from Ni to AT2 is therefore given by 

q=q2qi,   q = q2<h-<mqi) • 

4    Least Squares Solution 

In the presence qf measurement errors, greater accu- 
racy in determining (q, q°) may be attained by mea- 
suring more than three points. This section presents 
an averaging process which niters the measurement er- 
rors and yields a solution that is symmetric to the in- 
put data. The process exploits the geometric nature 
and kinematic structure between two measured point 
systems to convert the kinematic localization problem 
to that of solving a set of linear equations. The solu- 
tion to the problem is also optimal in the sense that it 
minimizes the squares of the position errors. Further- 
more, if unit vector normals are also measured then the 
Clifford algebra representation facilitates definition of 
a metric measure of orientation error compatible with 
the position error. 

4.1    Point Measurements 

Let n vectors, Xj where i = 1,2, • • •, n, represent n po- 
sitions of points relative to object's natural frame, and 
the measured values of the n position vectors be de- 
noted as X,- with i = 1,2,•••, n. The kinematic local- 
ization problem is to obtain the orientation q and the 
position q° of the natural frame, such that they best 
satisfy the following transformation equations: 

qx,--x,q-2q° = 0,    * = 1,2,---, 

Sum all n equations in (20) and we have 

q° = (l/2)(qxc-xcq), 

where the vectors xc and xc defined by 

1" 1   n 

xc = -2_)xi,    xc = -2^xi> 

n. (20) 

(21) 

(22) 
«=i «=i 
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represent the centroids of two systems of position vec- 
tors, x; and x; where i = 1,2, • ■ ■, n. 

After the substitution of (21) into (20), the kinematic 
localization problem becomes that of finding the rota- 
tion q that best satisfies the n equations 

q(xi-xe)-(xj-xe)q=0, i = 1,2, • • •, n. (23) 

Postmultiply both sides of (23) with x,- to obtain 

q|x,-12 - qxcx, - Xiqx,- + xcqxs = 0. (24) 

Premultiply both sides of (23) with x, and we have 

x.qxi - x.-qxc - |x;|2q + x2xcq = 0. (25) 

The subtraction of (24) from (25) yields 

2x,qxj - (xtqxc + xcqx:) + qxcxt + x.Xcq 
-(|x,|2 + |x,f)q = 0. (26) 

Sum all equations of the form (25) for i = 1,2, • • •, n 
and in view of (22), we obtain 

n n 

2£(xjqx,-xeqxe) = ^(|xi|
2-|xc|

2 + |x1-|2-|xc|
2)q. 

>'=1 

(27) 
The best fit orientation q is the solution of the multi- 
vector equation (27). Using (6), this equation can be 
put in the matrix form 

[A]q = Aq (28) 

where [A] is the 4 x 4 symmetric matrix given by 

n 

•   M = 2£(K+Pr]-[^pc-]), (29) 
»=i 

A is a scalar given by 

n 

* = -DN2-l*=l2 + W2-H2).      (30) 
i=l 

The matrices in (29), for], [xf] and [x~], [xf] are skew- 
symmetric matrices obtained from (5) by replacing x 
with x,-, x,-, xc and xc, respectively. The matrix [,4] 
is symmetric since the matrix products in (29) com- 
mute. Since q can not be a zero vector, the matrix 
[A] - A[7], where [7] is a 4 x 4 identity matrix, must be 
singular. This indicates that A is also an eigenvalue of 
the symmetric matrix [A] and q is the corresponding 
eigenvector. 

In the remainder of this section we prove that the 
kinematic relationship (q,q°) obtained in the above 
fashion is also the least squares solution to the set of n 
equations (20), which can be put in matrix form as: 

where [Pi] is a 4 x 4 skew symmetric matrix given by 

[*] = [if] - [*n- 02) 

The least squares solution to (31) is to minimize the 
sum of the error squares 

n 

E* = EÜW - 2q°)T([W - 2q°), (33) 
f=i 

by variation of q* and q° subject to (8) and (11), i.e. 

(q-)Tq* = l,     (q*)Tq° = 0. (34) 

These two conditions, however, are not real constraints 
on the problem. The condition (q*)Tq° = 0 is implied 
by the skew symmetry of [Pi], and the optimal solution 
(q*,q°) is proportional to the length \/(q*)Tq* since q° 
is a linear function of the components of q as indicated 
by (9). Therefore, the localization problem is reduced 
to a unconstrained least squares problem. 

Differentiate Ex first with respect to q° and we have 

-4^(.[Pt-]q*-2qo) = 0. 
t=i 

This leads to 
q° = (l/2)[Pc]q*, (35) 

where the matrix [Pc] = ^J2?=i[Pi\- ^ 's obvious that 
(35) is the matrix form of (21). 

Now differentiate Ex with respect to q* to obtain 

2£[P]TÜW-2q°) = 0. (36) 
i = X 

Substitute (35) into (36) and we have, after rewriting 
the result in multivector form: 

n n 

2^(xJ-q-xi-xcq*xc) = ^(|xil
2-|xc|

2+|x1|
2-|xc|

2)q*. 
»=i »=i 

[W-2q0 = 0,     i = 1,2, •, n. (31) 

(37) 
Taking conjugation on both sides of (37) yields the de- 
sired (27). 

In view of (35) and (36), it can be shown that the 
minimum error Ex = 0. This completes the proof that 
the result of the averaging process outlined by (21), 
(23), (26) and (27) is the least squares solution. 

4.2    Including Normal Vector Measure- 
ments 

Let the measured values of in unit vectors Uj be denoted 
as üj where j = 1,2, •••,m.   We seek to find q and 
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q° such that they best satisfy both the point and the 
direction equations: 

for points:   [Pi]q* - 2q° = 0,    i=l,2,---,n     (38) 

for directions:  [Dj]q* = 0,    j = 1,2, • ■ •, m.     (39) 

In (38), the matrix [P,-] is given by (32) and [£>,-] = 
[üt] — [u~] where [fit], [uj"] are obtained from (5) by 
replacing x with üj, Uj, respectively. 

The least squares solution to (38) and (39) is the pair 
q* and q° that minimizes the sum: 

E = £•■=! a,([P,]q* - 2q°)T([Pi]q* " 2q°)       ,,Q) 

where a,- and ßj are the weighting factors. 
The same procedure as the localization based on 

point measurements is applied to reduce the problem 
to that of solving the following linear equations 

[B]q = Aq (41) 

where [B] is a 4 x 4 symmetric matrix given by 
n m 

[B] = 2$>([*+][*r] + [*t][*7]) + 25>[«+][«7], 

(42) 
and A is a scalar given by 

n ro 

A = -^a,-(|xi|
2-lxc|2+|x,-|2-|xc|2>-EÄ(liiil2+iuil2)- 

(43) 
The vectors xc and xe defined by 

-     _   Et=l a'^' Y    _   I2.-=l Q'X' (A*\ 

are the weighted centroids of points measured relative 
to the world frame and to the natural frame, respec- 
tively. 

Conclusion 

This paper develops simple algorithms for calibrating 
the kinematic relationships among the CAD models of 
objects based on a Clifford algebra. This formulation 
converts the kinematic localization problem into that 
of solving a set of multivector equations. It facilitates 
definition of a metric measure of orientation error com- 
patible with the position error. The geometric and kine- 
matic structures of two measured point systems are ex- 
ploited in an averaging process which reduces the prob- 
lem to that of solving four linear equations. The so- 
lution to the problem is symmetric to input data and 
minimizes the squares of position and orientation er- 
rors. The averaging process presented in this paper is 
directly applicable to localization problems in computer 
vision. 
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Computation of Spatial 
Displacements from Redundant 
Geometric Features 
This paper follows a previous one on the computation of spatial displacements (Ravani 
and Ge, 1993). The first paper dealt with the problem of computing spatial 
displacements from a minimum number of simple features of points, lines, planes, and 
their combinations. The present paper deals with the same problem using a redundant 
set of the simple geometric features. The problem for redundant information is 
formulated as a least squares problem which includes all simple features. A Clifford 
algebra is used to unify the handling of various feature information. An algorithm for 
determining the best orientation is developed which involves finding the eigenvector 
associated with the least eigenvalue of a 4 X 4 symmetric matrix. The best translation is 
found to be a rational cubic function of the best orientation. Special cases are discussed 
which yield the best orientation in closed form. In addition, simple algorithms are 
provided for automatic generation of body-fixed coordinate frames from various feature 
information. The results have applications in robot and world model calibration for 
off-line programming and computer vision. 

Introduction 
A solution of the problem of computing a spatial displace- 

ment from position data of a minimum number of simple 
features of points, lines, planes, and their combinations is 
provided by Ravani and Ge (1993). In practical applications, 
however, redundant features are measured to filter errors in 
sensor measurements and to improve reliability of the mea- 
suring system. This paper formulates this case as a least 
squares problem and determines the solution in closed form 
taking advantage of the geometric structure of the problem 
and considering different features of points, lines, planes and 
their combinations. 

The problem of computing a spatial displacement has 
been studied by many researchers using only point features. 
Most researchers used position data of three noncollinear 
points, see for example, Beggs (1966), Bottema and Roth 
(1979), Laub and Shiflett (1982), and Angeles (1986). A 
comparison of these methods can be found in Fenton and Shi 
(1990). When more than three points are considered, least 
squares approximation methods are commonly adopted. 
Spoor and Veldpaus (1980) developed a least squares method 
for computing spatial displacements of which rotations were 
represented by orthonormal matrices, the orthonormality of 
rotation matrices (or rigidity) were enforced through the use 
of Lagrange multipliers. Although not explicitly stated, the 
best translation vector was obtained as the difference be- 
tween the centroid of the coordinates in one system and the 
displaced centroid of the coordinates in the other system. 

Contributed by the Design Automation Committee for publication in 
the JOURNAL OF MECHANICAL DESIGN. Manuscript received Oct. 1993; 
revised May 1994. Associate Technical Editor: D. A. Hoeltzel. 

Computation of the best rotation matrix was more involved 
including the solution of an eigenvector problem of a 3 x 3 
symmetric matrix and matrix multiplication. But the solution 
was of closed-form and no iteration was required. Horn 
(1987) presented a more general least squares method which 
included the scaling factor (for applications in photogramme- 
try) and obtained the same results for the best translation as 
Spoor and Veldpaus (1980) but with a clearer geometric 
interpretation. He also showed that if unit quaternions were 
used to represent rotations, the best rotation was the quater- 
nion obtained as the eigenvector associated with the most 
positive eigenvalue of a 4 x 4 symmetric matrix. All the 
above works, however, have only dealt with computation of 
displacements from point features and have not included 
other simple geometric features of lines, planes, and their 
combinations with points. 

Ravani and Ge (1993) developed a general framework for 
computing spatial displacements from position data of simple 
geometric features which include not only points but also 
lines, planes and their combinations with points. They dis- 
cussed issues related to uniqueness of the computation and 
minimum number of required features and observed that for 
the duality between points and planes to be valid, orienta- 
tions of these features need be considered. They concluded 
that if orientation information was not specified than specifi- 
cation of four (rather than three) points features was neces- 
sary for computation of a unique displacement. They repre- 
sented simple features of points, lines, and planes by multi- 
vectors and provided equations for displacements of these 
features using a Clifford algebra of multivectors. 

This paper builds on the work of Ravani and Ge (1993) to 
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study the problem of computing spatial displacements from 
redundant position data of point, line, and plane features 
and their combinations. Here orientation is not an important 
issue since redundant rather than minimum position data is 
considered. A least squares approach is adopted and all 
simple features are represented in homogeneous coordinates 
and are manipulated as multivectors. The use of homoge- 
neous coordinates allows representations of the features that 
are independent of the measuring techniques employed. An 
algorithm for determining the best orientation is then devel- 
oped which involves finding the eigenvector associated with 
the least eigenvalue of a 4 x 4 symmetric matrix. The best 
translation is found to be a rational cubic function of the best 
orientation. Special cases are also discussed which yield the 
best orientation in closed form. In addition, simple algo- 
rithms are developed for automatic generation of body-fixed 
coordinate frames from various feature information. 

In practical applications, the position data of all simple 
features of points, lines, and planes can be determined, by 
using feature extraction algorithms, from visual data gener- 
ated by computer vision hardware. Point and line features 
can also be measured directly by using, for example, a touch- 
trigger probe and a theodolite, respectively. This method for 
computing spatial displacements from point features has 
found a number of applications in various fields. In robotics 
and automation, it can be used to estimate the pose (position 
and orientation) of a workpiece to be grasped by a robot 
(Chen et al., 1980) and to determine a part location in CAD 
model-based flexible manufacturing (Gunnarsson and Prinz, 
1987); in artificial intelligence, it can be used for object 
identification and localization (Grimson and Lozano-Perez, 
1984) and for rigid-body motion estimation (Luo and Yang, 
1990); in biomechanicsi it can be used for kinematic analysis 
of bone movements (Spoor and Veldpaus, 1980); and in 
photogrammetry it can be used to recover the transformation 
between two coordinate systems (Horn, 1987). The results in 
this paper, in addition to their theoretical interest in compu- 
tational geometry of motions, facilitate the use of measuring 
systems for the aforementioned applications that can handle 
not only point features but also lines and plane features. 

The outline of the paper is as follows. We first formulate 
the problems of computing spatial displacements from points, 
lines, and planes, individually. We then put them together to 
obtain a formulation that applies to all cases. The result is a 
constrained least squares problem and a Lagrange multiplier 
technique is employed for the solution. Special cases are then 
discussed from which closed-form solutions are obtained. 
The last section presents simple algorithms for automatic 
generation of body-fixed coordinate frames. 

1   Preliminaries 
This section gives a brief account on representations of 

simple features of points, lines, planes and uses a Clifford 
algebra to represent displacements of these simple features. 

1.1 Representations of Simple Features. The position 
data of a point feature can be obtained directly by using a 
coordinate measuring machine; it can also be computed from 
the position data of line and plane features, as the intersec- 
tion of a line with a plane or the intersection of three planes. 
The location of a line feature can be determined from the 
position data of two distinct points, or a point and a direc- 
tion, or two planes. The location of a plane feature is 
determined by measuring the normal direction and the dis- 
tance from the origin. It can also be determined indirectly by 
measuring a point and a line or three points on the plane. 

In projective geometry, points and planes are represented 
by homogeneous coordinates and lines are represented by 
Pliicker coordinates so that the principle of duality can be 

applied when manipulating these features. Ravani and Ge 
(1993) used a Clifford algebra of projective three-space and 
associated point, line, and plane features with multivectors of 
rank 1, 2, and 3. In this way, the geometric operations such as 
meet and joint of these features can be carried out alge- 
braically by using the wedge product and dual operation of 
multivectors. This allows for conversion of various represen- 
tations of point, line, and plane features (due to different 
measuring techniques) to their respective standard homoge- 
neous form. This facilitates unified handling of these features 
that are independent of the measuring techniques. 

In what follows, points are represented by homogeneous 
coordinates of the form (x, 1) where x = (xls x2, x3) are the 
Cartesian coordinates; lines are represented by the Pliicker 
coordinates of the form (u, u°) where u = (M,, U2, U3) is a 
unit vector along the line and u° = (u°, u2, u3) is the 
moment of u about the origin; and planes are represented by 
homogeneous coordinates of the form A = (a, a4) where 
a = (flj, a2, a3) is the unit vector normal to the plane and a4 
is the distance of the plane from the origin. 

\2   Spatial Displacements of Simple Features.   Let P 
and P denote, respectively, two coordinate systems repre- 
senting two distinct positions of a rigid body in space. The 
displacement from P to P is a combination of a rotation and 
a translation. The rotation about an axis S with an angle 6 is 
given by a set of four numbers, q = (qv q2, <?3, q*) (called 
the Eider parameters) where: 

q2 = s2srnl ?i = *i sm| - 

93 = 53sin^-j,   <74 = cos^- 

and s = sfa + s2e2 
+ 53e3 is a UIUt vector along S. The 

translation is given by another set of four numbers, q = (<??, 
?°. <?3°. ?4°) where 

r«?i 
4 
?3° 

i 
= 2 

94° 

0 

d3 

-d2 

-d3 

0 

dx 

-d2 

ui 

0 

dx' ?i 

d2 ?2 

d3 93 

0 .q*. 

(1) 

and d = dtet + d2e2 + d3e3 is the translation vector from P 
to P. The pair of vectors q and q° satisfy the relation 

qV = ?i?? + ?2?2° + ?3?3° + ?4?4° = 0 (2) 
and are called the Study vectors (Bottema and Roth, 1979). 
Note that the Euler parameters are normalized such that 

q7q = q\ + ?! + ?32 + ?42 = 1. (3) 
A special algebra, called the Clifford algebra, is used by 

Ravani and Ge (1993) to manipulate the study vectors (q, q°) 
and the coordinates of simple geometric features of points, 
lines, and planes. Clifford algebra is an associative algebra 
introduced by Clifford (1876) for manipulating not only vec- 
tors (representing points) but also multivectors (representing 
lines and planes). In this algebra, q is represented by an even 
element (a combination of a bivector and a scalar): 

q = (s!e3e2 + ^e^ + s^^) sin fc(|)+co.(|) (4) 

where the geometric products of the unit vectors are defined 
as: 

e„e„ = -e„e„ for m*n,   e2 = e2 e? = l. 

In terms of the geometric product, the definition (1) becomes 

q° = (l/2)dq. (5) 
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Fig- 
p 

A point, a line, and a plane at two different positions P and 

The "square" of a vector x = xfa + x2t2 + x3e3, x2, is sim 
ply xx = M2 where |x| = (xf +x\+ x2)1/2 is the Euclidean 
norm of x. More details about Clifford algebra can be found 
in Hestenes (1986) and McCarthy (1990). 

At the position P, the homogeneous coordinates of a 
point, a line, and the polar point of a plane are denoted by 
(x, 1), (u, u°), and (a, a4), respectively; and at the position P, 
the homogeneous coordinates of the corresponding features 
are denoted by (x, 1), (ü,ü°), and (ä, ä4), respectively, see Fig. 
1. The displacements (q, q°) of these features from P and P 
are given by the following multivector equations (Ravani and 
Ge, 1993). 

For points features, we have 

xq - qx - 2q° = 0; (6) 
For line features, we have 

\       üq - qu = 0; (7) 

ü°q - qu° + üq° - q°u = 0; (8) 
For plane features, we have 

äq - qa = 0; (9) 

54-a4-2(qa)-q° = 0. (10) 

The product of a vector x = x^ + x2e2 + x3e3 with the 
even element q defined by (4) can be conveniently expressed 
in the matrix form 

xq=[*+]q,   qx=[x-]q, 
where [x+] and [x~] are 4x4 skew-symmetric matrices 
given by 

[*+] 

[*-] = 

0 *3 
x2 xl 

X3 0 ~X\ x2 

~x2 xl 0 X3 

_~xl 

0 

-x2 

x3 

"*3 

~X2 

0 

Xl' 

~*3 0 ~Xl x2 

x2 -*1 0 x3 

.~Xl ~x2 ~x3 0 

(11) 

The product of these two matrices commutes, i.e., [x~][^+] 
= [x+][x-]. The product of a vector x, an even element q, 
and another vector x is given by 

xqx= ~[x+][x-]q, (12) 
where [x+] is obtained from [x+] by replacing x with x. 

2    Sums of Squares of Errors 
This section uses Clifford-algebra equations for displace- 

ments of points, lines, and plane features to obtain the sums 
of squares of errors for these features. The results are then 

combined together to form the sum of squares of errors for 
all three types of features. 

2.1   Sum of Squares of Errors for Point Features.   Let 
the coordinate of n points at the two positions P and P be 
given by the Cartesian vectors xs and x;, where i = 1, 2, ..., 
n. The displacement of each of these point features is given 
by the multivector equation of the form (6). Due to measure- 
ment error, it is impossible to find q and q° such that (6) is 
satisfied for each point. Instead there will be in general a 
residual error: 

E; = x,q - qx,- - 2q°. (13) 

An overall measure of the error as a function of q and q°, 
denoted by £x(q, q°), is given by the sum of squares of these 
errors 

£,(q,q°)= EE,-E,.. 
i-i 

Expand the above to obtain 

Ex(q,q°) = -2 E (x,-q) • (qx,) - 4n(xcq - qxc) • q° 
;=i 

+ 4«q°-q°+|Elx,-l2+ EW2|q-q 
w i—1 /'=! 

where 

- l V - 1 V (14) 
i=\ i=i 

are the centroids of two systems of position vectors and |x;|, 
Ix,! are the Euclidean norms of %■„ x£, respectively. In matrix 
form, the error function is given by 

£x(q,q°) = q^Jq + q^Bjq« + 4n(q°)V   (15) 

where [^4^] is a 4 X 4 symmetric matrix given by 

1=1 \i=l :=1 / 

and [Bx] is a 4 X 4 skew-symmetric matrix given by 

[*,]--4i,([ie
+]-[*e-]). (17) 

In the above, [/] denotes the 4 X 4 identity matrix; the 
skew-symmetric matrices [x*], [x^], [x~], and [x~] are 
defined by (11). 

22   Sum of Squares of Errors for Line Features.   Let the 
coordinates of m lines at the two positions P and P be given 
by the Plticker vectors (u;, u°) and (ü,-, ü°), respectively, where 
i = 1,2, ..., m. The displacement of a line (u, u°) from P to 
P is given by (7) and (8). Since the position data are imper- 
fect, there will be errors in both orientation and position: 

EOI = u,q - qu, 
and 

Epi = u°q - qu? + ü,q° - q0
U/. (18) 

An overall measure of the orientation error is given by 
m 

£,(q) = L Eoi • Eoi 
i=i 

which can be expanded to obtain 
m t   m m \ 

£.(q) = -2 E (ü,q) • (qu,) +   E ft,!2 + E Kl2 q■ q- 
;-i \i=i i-i      / 

In matrix form the equation above is given by 

EM = qrMJq (19) 
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where 
"! Im m \ 

M-2 £[« + ][«:-]+     Elü,l2+ EKI2  [/]   (20) 

is a 4 x 4 symmetric, matrix. 
An overall measure of the position error is given by 

£,(q.q°)= EVE,; 

which can be expanded and put into the following matrix 
form 

*,(q,q°) = qrK]q + qT[Bu)q° + (q^^Cjq0. 
The coefficient matrices [Ap], [CJ are symmetric matrices 
given by 

K]=2E[(<f] [(<f] 
J = 1 

+ (fc?|2 + |üi|
2 + i<|2 + H2)[/], 

[CJ = 2E [ü?][u-]. 
i-i 

and the matrix [£J has both symmetric and skew-symmetric 
parts, [£+] and [B_], which are given by 

[s+] = 2E([("?)+][Mr] + [«n[(«?)"]), 
i- 1 

[*-]--2E([(fii°)+]K]+ [(«f)"][«r]). 

An overall measure of both the position and orientation 
error is given by the following combination: 

£a(q,q°)=/3£o(q)+£,(q,q0) 

= qrMJq + qr[5jq° + (q°)r[Cjq«   (21) 
where ß is a positive weight and [Au] = ß[A0] + [Ap\ 

23   Sum of Squares of Errors for Plane Features.   Let 
A,- = (a,-, a4) and A; = (ä, ä4) (z = 1, 2, ..., k) be the coordi- 
nate of k planes at P and P, respectively. Similar to the 
measure of orientation errors of line features, an overall 
measure of the orientation errors of the plane features is 
given by qT[Aa]q where [Aa] is obtained from (20) by replac- 
ing u;, fi, with &a, ä„ respectively. 

The errors in the locations of the plane features are given 
by (10) as 

e,- = «« - «4/ - 2(qa,) • q°. 
The square of the errors of this form results in a error 
function that is quartic in (q, q°), which is difficult to handle 
for the least squares solution method proposed by this paper. 
For this reason, we use instead the points and lines of 
intersection among the given planes to determine the loca- 
tion errors of the planes. In this way, the sum of squares of 
errors for plane features is reduced to a combination of the 
sums of squares of errors for point and line features. For the 
rest of this paper, we focus our attention to the least squares 
solution for computing a spatial displacement from redun- 
dant point and line features. 

2.4   Sum of Squares of Errors for Points and Lines. 
Combining the results in Sections 2.1 and 2.2, we obtain the 
sum of squares of errors for combinations of points and lines: 

£(q,q°)=ax£x(q,q'')+aa£(i(q)qO) 

where ax, au are positive weights. The substitutions of (15) 
and (21) into the above yields 

£(q,q°) = qrMh + qT[£]q° + (q°)r[cjq°  (22) 

where [A] and [C] are 4 X 4 symmetric matrices given by 
[A] = ax[Ax] + au[Au],    [C] = 4a,n[7] + aJCj, 

respectively, and [B] is a general 4x4 matrix given by 

[B] = ax[Bx] + au[Bu}. 

It is clear that the grand sum of squares of errors for 
combinations of points, lines, and planes can be put into the 
same form as (22). 

The problem of computing spatial displacements from 
redundant position data of points, lines, planes, and their 
combinations is reduced to that of minimizing £(q, q°) by 
variation of q and q° subject to the constraints (3) and (2), 
i.e., 

qrq=l,   qrq° = 0. (23) 

3   An Algorithm for the Least Squares Solution 
This section deals with the constrained minimization prob- 

lem in the preceding section using Lagrange multipliers and 
develops a simple algorithm for solving the least squares 
problem. 

3.1 Conditions for Minimum. The Lagrangian function 
to be minimized is as follows 

L(q,q°, A, A°) = £(q,q°) - A(qrq - 1) - A°(qV)- 
(24) 

The conditions for minimum, i.e., BL/dq = 0 and <?L/<?q° 
= 0, lead to 

2[^]q + [B]q0-2Aq-A°q0 = 0 (25) 
and 

[i?fq + 2[C]q0-A0q = 0. (26) 
These two vector equations are linear in q and q°. Together 
with the two quadratic constraint equations q'q = 1 and 
qrq = 0, they constitute a system of ten equations needed to 
solve the ten unknowns, q, q°, A, and A0. 

To solve these ten equations, we first represent the best 
translation q° in terms of the best orientation q. In view of 
(26), we obtain 

q° = -(lAXCV'lBfq + (l^tCr'qA0.    (27) 
Substitute (27) into (25) to obtain the following equation: 

4[A'] q - 4Aq + X°[B')q - (A0)2[C]_1q = 0, (28) 
where [A'] and [B'\ are symmetric matrices given by 

[A] = [A] - (l/VWlcyW, (29) 
[5'] = [B][C]-1 + [C]-1[B]r. (30) 

The Lagrange multipliers, A and A0, in (28) are obtained as 
homogeneous functions of q: 

, flcrw, 
qr[c]-!q   ' 

, _ qrMq      1T[B][C]-l[B]Tq      W[B][C]-lq 
A = —= 1- A  =  

n'n 4n'n AnT„ 

(31) 

q q 4q'q 4q'q 
(32) 

The substitution of (31) and (32) into (28) results in four 
nonlinear equations in the components of q and therefore, in 
general, the best orientation q does not seem to exist in 
closed form. The best translation q°, however, is a rational 
cubic function of the best orientation q, in view of (27) and 
(31). 

3.2   A Simple Algorithm.   We now develop a simple al- 
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gorithm for computing the best orientation q. We first rewrite 
(28) in the following form: 

[Z)(A°)]q = Aq (33) 

where [Z)(A0)] is a symmetric matrix given by 

[D(A°)] = [A] + (1/4)A°[5'] - (l^XA^cr1. 
(34) 

This indicates that the best orientation q corresponds to one 
of the unit eigenvectors of the 4 X 4 symmetric matrix 
[£>(A0)], provided that A0 is known. Since there are four real 
eigenvectors for the real symmetric matrix [£>(A0)], there are 
four local optimal orientations for the least squares problem. 
The global optimal orientation q is the eigenvector associated 
with the least eigenvalue of [Z)(A0)], see Appendix A. 

The eigenvalues of [D(A0)] are the solutions of the quartic 
characteristic equation 

det[Z>(A°) - A/] = 0. 

The eigenvalues can be obtained in closed form. Once the 
least eigenvalue A is selected, the corresponding unit eigen- 
vector q is obtained by solving the homogeneous equation 

[D(A°) = A/]q = 0. (35) 

Appendix B provides a simple solution method for (35) using 
vector wedge product. 

The solution method for obtaining the eigenvalues and 
eigenvectors for the 4 X 4 real symmetric matrix (34) is the 
core of the following simple algorithm for determining the 
best orientation q. The algorithm proceeds as follows: 

(1) Compute two constant symmetric matrices [Ä] and 
[£'] using (29) and (30), respectively. 

(2) Select an initial orientation as represented by a unit 
quaternion q. 

(3) Compute the value of A°(q) using (31) and then deter- 
mine the matrix function [£>(A0)] using (34). 

(4) Find the least eigenvalue A and the associated unit 
eigenvector qd of the matrix [£>(A0)]. 

(5) Compute <j> = cos-1(q^ ■ q) and let the new q be 
(q + qd)/(2cos(4>/2)). 

(6) If the norm \<f>\ is sufficiently small, stop; otherwise go 
to step 3 and repeat the procedure. 

The issue of choosing an initial orientation for the above 
algorithm will be discussed in the next section. 

4   Special Cases 
This section discusses special cases of the least squares 

problem when only point features or line features are consid- 
ered. The kinematic and geometric insight gained by studying 
these special cases is then incorporated into the choice of an 
initial orientation for the least square algorithm developed in 
the preceding section. 

4.1 Point Features. When only n point features are 
considered, the matrices [A], [B], and [C] become [Ax], 
[Bx\ and 4n[I], respectively. The matrix [Bx] given by (17) is 
skew-symmetric and therefore the Lagrange multiplier A0 

given by (31) is no longer a function of q but equals to zero, 
i.e., A0 = 0. Thus the least square algorithm yields the best 
orientations q in one step and no iteration is required. The 
solution is of closed form and is summarized as follows. 

The best orientation q is the unit eigenvector associated 
with   the   least   eigenvalue   of  the   matrix  [A'x] = [Ax] 
+ iklBxftBx]- The eigenvalue problem is given by 

1 [>lJq + I5bCjB*Mq = Aq- (36) 

This is essentially the same result as that provided by Horn 
(1987). 

The best translation given by (27) is reduced to 

q° = (l/8n)[Bx]q = i([*+] ~ [*7])<l-       (37) 

This can be recast in the multivector form as 

q° = (l/2)(xcq - qxc) (38) 
where xc and xc are the centroids of two systems of position 
vectors. This indicates the best translation q° is given by the 
translational offset of the two centroids, a well-known result 
provided by Spoor and Veldpaus (1980) and Horn (1987). 

Note that (36) can be written in the following multivector 
form after the substitution of (16) and (17): 

m 

-2 E (*i<Pi - Wc) 
«•-1 

+ E (ix,-l2 + W2 - K\2 - K\2)<i = Aq.   (39) 
i= i 

This will be used later for comparison with the result ob- 
tained from an averaging process. 

4.2 An Averaging Process. It turns out the closed-form 
solution above is related to the solution obtained from an 
averaging process. The residual error for each point is given 
by (13). Sum all these errors to obtain 

E E, = M - qxc - 2q° 
«»1 

(40) 

where xc and xc are the centroids given by (14). This means 
that the best translation q° makes the sum of errors, E".jE,-, 
vanishes. 

The substitution of (38) into (13) yields 

E, = m - qy; (4i) 
where vectors y,- and y; are measured with respect to then- 
respective centroids: 

Equations (41) and (42) lead to 
(42) 

E (yfE,- - E/yi) = E (fcl2 + W2)q - 2 E h<Bi-   (43) 
i-l «-1 i=l 

Substituting (42) back into (43) and in view of (14), we 
obtain 

n 

E (x.-E,. - E,x,.) 
;=i 

£ (tx,!2 + W2 - R/)q - 2 £ (W,. = xcq*<). 
i=l i-l 

(44) 

The comparison of (44) with (39) results in the following 
interesting result 

E (x,E,. - E,.x,.) = Aq. 
i-l 

(45) 

Journal of Mechanical Design 

In the ideal case when all data are perfect, i.e., E,- = 0 for all 
1 = 1,2, ..., n, Eq. (45) yields A = 0, This agrees with the 
result (48) in Appendix A. 

4.2 Line Features. When only line features are consid- 
ered, the Lagrange multiplier A0 is a function of q since [Bu] 
is not skew-symmetric and [Cu] is not a multiple of [/]. 
Therefore, the closed-form solution to the problem of simul- 
taneously minimizing the orientation and position errors does 
not seem to exist. 

However, in the special case when all lines are represented 
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Table 1   The position data of six points and six lines at two distinct 
configurations 

At the initial configuration 
Points (x,) Lines (u,)            |                Lines (u") 

(S.O. 6.0. 2.0) (0.1972. 0.1267. 0.9721) (4.9S74.-3.1136.-0.6058) 
(4.0. 0.0. 4.0) (0.2248. 0.5846. 0.7795) (-8.3797. 0.4647. 2.06S7) 

(2.0. 11.0.-6.0) (0.5765. 0.1627. 0.SOO6) (-2.4020.-4.8040.2.7061) 
(5.0. 6.0. 7.0) (0.0609. 0.0000. 0.99S1) (9.9813. -0.1829. -0.6099) 
(4.0. 7.0. 9.0) (-0.1937. -0.1549. 0.96S7) (4.99S649. 9.493558. 2.518699) 
(4.4. 3.0. 0.0) (0.8899. -0.1001. -0.4449) (2.0023. 21.8033. -0.9010) 

At the displaced configuration 
(-7.3801. 14.8362. -5.6198) (0.7386. 0.1980. -0.6443) (-6.0525. -7.3061. -9.1842) 
(-8.2420. 8.3324. -9.2195) (0.8591. 0.4543. -0.2353) (5.4624. -13.7875. -6.6742) 
(-8.5317. 12.3697. 5.2240) (0.5169. 0.5520. -0.6542) (-0.6225.-13.6783.-12.0351) 
(-2.7462. 12.0418. -7.7921) (0.7240. 0.0162. -0.6895) (-6.9688.-1.8993.-7.3627) 
(-0.3589. 11.5897. -8.1025) (0.6876. -0.2805. -0.6697) (1.2463. -1.2115. 1.7870) 
(-9.5559. 10.3030. -4.7979) (-0.6616. 0.7414. -0.1119) !     (14.8335. 14.6844. 9.5872) 

Table 2   The imperfect position data of six points and six lines at 
the displaced configuration 

by points and unit vectors rather than the Plücker coordi- 
nates, the least squares solution can be found in the closed 
form. In this case, the equations for position errors (18) are 
replaced by point equations of the form (13). The resulting 
least squares problem is essentially the same as that of point 
features and a closed-form solution can be obtained. 

4.4 Choice of Initial Orientation. Now turn back to the 
general least squares problem of computing spatial displace- 
ments from combinations of point, line, and plane features. 
A good choice of initial orientation is the unit eigenvector 
associated with the least eigenvalue of the matrix [A'] given 
by (29). This orientation is "quasi-optimal" in the sense that 
it minimizes the combination of errors in point measure- 
ments, and orientation errors in line and plane measure- 
ments. 

4.5 An Example. (We now present an example problem 
of computing a spatial displacement from the position data of 
six points and six lines at two distinct configurations. To 
generate the position data for these features, we first select a 
spatial displacement (q, q°) and the position data of the point 
and line features at the initial configuration. We then gener- 
ate the position data of the given features at the displaced 
configuration using forward kinematics equations. The rota- 
tional component of the spatial displacement is given by a 
unit quaternion q = (0.466609, 0.784751, 0.190885, 0.360561); 
the translational component of the displacement is given by 
the vector d = (-10.0, 5.0, -5.0) which can be used to 
compute q° using (5). The position data of the point and line 
features before and after the spatial displacement are given 
by Table 1). 

We have implemented the algorithm presented in Section 
3.2 and have found that, for the position data given in Table 
1, the algorithm yields the given displacement q = (0.4666, 
0.7847, 0.1908, 0.3605) and d = (-10.0, 5.0, -5.0) in one 
step. This is expected since all position data are perfect. To 
see how well the algorithm handles imperfect position data, 
we then add 10 percent random error to the position data of 
the geometric features at the displaced configuration and 
find that the algorithm converges to a least squares solution 
in no more than four iterations. For the imperfect position 
data shown in Table 2, the algorithm converges in two 
iterations and the result is presented in Table 3. In obtaining 
the result, we used weights ß = 1.0, ax = 1.0, and au = 100.0 
Adjustment of these weights allows for change of accuracy 
requirement of a given set of the geometric features. 

5   Automatic Generation of Natural Frames 
This section presents simple geometric algorithms for au- 

tomatic generation of body-fixed coordinate frames (called 
natural frames) from geometric features of points, lines, 
planes, and their combinations. This is important in applica- 
tions such as world model calibration for off-line robot pro- 

(-7.0906. 14.6219. -5.9716) 
At the displaced configuration (with 10% random error) 

i77\     = rt-rici  I    ir\ 7HO   nodi:     r\ MCTI    I     r c nz~r\     r~' 

(-7.6305. 7.6276. -10.0261) 
(-7.9875. 13.1092. 5.3780 ) 
(-2.5652. 13.1537. -S.2065) 
(-0.3259. 12.4703. -7.6607 
(-9.1206. 9.6892. -5.1000) 

(0.7442. 0.2015. -0.6367) 
(0.8607. 0.4553. -0.2274) 
(0.4758. 0.5808. -0.6604) 
(0.7236. 0.0194. -0.6898) 
(0.6974. -0.2970. -0.6521) 

(-0.6743. 0.7303.1 -0.108S) 

(-5.9570. -7.2802. -9.2668) 
(5.5116. -13.7610. -6.6875) 

(-0.4700. -13.498S. -12.2117) 
(-6.9683. -1.8993. -7.3631) 
(1.2022. -1.1932. 1.8290) 

(14.6192. 14.9200.9.5499) 

Table 3   Computing a spatial displacement from imperfect position 

Iterations The least eigenvalue The best orientation 
1 23.078678 (0.462546. 0.787129. 0.192708. 0.359642) 
2 23.085560 (0.462549. 0.787127. 0.192709. 0.359642) 

The best translation d = 2qV' = (-10.061083.4.947477. -4.974046) 

gramming, since the computer model of each object has to be 
automatically updated from the sensory interaction with the 
actual object, see Ravani (1988). Automatic construction of 
natural frames from point features have been discussed pre- 
viously by Angeles (1986) where he used mass distribution to 
locate a natural frame. 

In what follows, the orientation of a natural frame is 
represented by a set of three orthonormal unit vector, de- 
noted by e'j, e'2 and e'3, and the origin of the natural frame is 
represented by a vector denoted by p. This section presents 
simple formulas for determining the origin p and the coordi- 
nate axes e'j, e'3. The e'2 axis is then given by e'2 = e'3 X e\. 

5.1 Oriented Features. An oriented line is given by the 
signed normalized Plücker coordinates ü = (u, u°). By the 
signed Plücker coordinates, we mean ü and — ü represent 
two distinct lines having the same position in space but with 
opposite sense of orientation. An oriented plane is given by 
the plane vector A = (a, a4) where a is the unit normal to the 
plane and aA is the distance from the origin to the plane. The 
two plane vectors A and —A represent two planes with the 
same position but opposite sense of orientation. 

In what follows, the notion of oriented features is also 
applied to point features in order to determine uniquely an 
oriented plane from three noncollinear points. An oriented 
point is represented by the homogeneous coordinates of the 
form X = (x, a) where x is the Cartesian vector of the point 
and <r = 1 (o- = —1) denotes the positive (negative) orienta- 
tion of the point (Stolfi, 1989; Ge and Ravani, 1993). Simple 
formulas for computing the coordinate axes e'3, e'] and the 
origin p are presented in Table 4. 

52, Nonoriented Features. For all the cases presented 
in Table 4, if simple geometric features are specified without 
information about the sense of orientation, an additional 
simple feature may be needed to construct a natural frame. 
Table 5 contains all possible combinations of nonoriented 
features of points, lines, and planes required to specify a 
natural frame completely. 

Let us first consider the construction of a natural frame 
using nonoriented point features. In this case, the direction 
of the unit vector e3 is given by gno = (x X y + y x z + z x 
x) where x, y, and z denote the vectors of the Cartesian 
coordinates of three given points (Table 4). The sense of 
direction for e'3, however, can be specified with additional 
information about the order of the three points (resulting in 
oriented points) or with an additional point (denoted as t) 
which is not coplanar with the three given points. Using the 
point t, the sense of direction for e'3 is given by sign of 
(t - p) - gno where p = (x + y + z)/3. 

All other cases listed in Table 5 can be reduced to four 
noncoplanar points by obtaining one or more of the follow- 
ing: (i) the intersection point between a line and a plane; (2) 
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Table 4   Formulas for natural-frame generation using oriented fea- 
tures 

Features        |     |        e'3 = g/|g|, e\ = h/|h|, and p 

Three points 
X=(X,<7X) 
Y = (y,ay) 
Z = (z,o-,) 

g 

Normal to the plane 
spanned by the three points 

g = (<rx"yOz)Sno where 
gno = xxy + yxz + zxx 

h h = z — p 

P p = (x + y + z)/3 

Two lines 
ü = (u,u°) 
v= (v,v°) g 

g = u x v is along the common 
perpendicular w = (w,w°) 
where w = (u x v)/1 u x v 1 

and w0 = (uxv0 + u°xv)/luxvl 

h h = u 

P 

P = (Cu + cv)/2 is the midpoint of the 
two feet of perpendicular 

c„ = u x u° + [u • (w x w°)]u 
cv = v x v° + [v • (w x w°)]v 

Three planes 
A = (a. a4) 
B=(b,64) 
C = (c.c4) 

g g = b 
h h = a x b 

P 

Point of intersection 

P = P//[c ■ (a x b)] where 
P/ = c4(a x b) + 64(b x c) + c4(c x a) 

A point 
and a line 
X = (x, <rx) 
u=(u,u°) 

g 

Normal to the plane spanned 
by the point and the line 

g = u° — X x u 
h h = u 

P The feet of perpendicular from X to ü 
p = u x u° 4- (u • x)u 

Two points 
and a plane 
X = (x. <rx) 
Y = (y,ay) 
A = (a, a4) 

g g = a x (y - x) 
h h = a 
i 

p P=(x + y)/2 

A point and 
two planes 
X=(x,<7,) 
A = (a, a4) 
B = (b,64) 

g g = a x b 
h h = a 

P p = x 

A line and 
a plane 
ü=(u,u°) 
A = (a. a4) 

g g = a x u 
h h = a 

P Point of intersection 
p = (a4u 4- a x u)/(a ■ u) 

Table 5   Minimum number of nonoriented features for generating a 
natural frame 

Combinations a b\\c d « / 9\\h i j k 
Points 4 0 3 1 2 0 2 0 1 0 1 
Lines 0 0 0 0 0 3 1 1 2 2 1 

Planes 0 4 1 3 2 0 0 2 0 1 1 

the intersection point of three planes; (3) the feet of perpen- 
dicular from a point to a line; (4) and the feet of common 
perpendicular to two lines. The formulas for these geometric 
operations are found in Table 4. 

tion. It is also discussed that the closed-form solution exists 
for the best orientation when all features are represented by 
points and unit vectors. In addition, simple algorithms are 
provided for automatic generation of body-fixed coordinate 
frames from various feature information. It is hoped that the 
results in this paper will facilitate the use of measuring 
systems for determining spatial displacements that can han- 
dle not only point features but also line and plane features. 
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APPENDICES 

Conclusions 
In this paper we have presented a least squares solution to 

the problem of computing spatial displacements from a re- 
dundant set of simple features of points, lines, planes, and 
their combinations. With the aid of a Clifford algebra, the 
best orientation is obtained by an iterative procedure which 
involves finding the eigenvector associated with the least 
eigenvalue of a 4 X 4 real symmetric matrix. The best trans- 
lation is a simple rational cubic function of the best orienta- 

A:   Absolute Minimum of the Error Function 
Let qs be the best orientation and q° be the best transla- 

tion in Clifford-algebra form. The minimum total error is 
obtained by substituting (27) into (22): 

EMs) = <£[Ahs-j<£[B][Cr[B]T
qs 

+ ^[Cr1qJ(A
0)2.    (46) 
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This can be rewritten as 

£(qJ,q°) = qnD(A0)]qJ+Ä(qJ,A°). (47) 
where [Z)(A0)] is given by (34) and 

K(q,. A°) = - ^(q,)7[F]q,A° + (l/2)qr
t[C]-lqt(A°)2. 

The term R(qs, A0) vanishes after the substitution of (30), 
(31) and in view of the fact 

(qy[5][C]-1qJ = (qy[C]-1[B]rqJ. 
Let Aj be one of the eigenvalues of the matrix [D(A0)]. Then 
we have qT

s[D(\°)q = As and consequently 

E(qs,q°s) = \s, (48) 

This concludes that all eigenvalues of the matrix [D(A0)] are 
non-negative and that the total error E(qs, q°s) is at absolute 
minimum when \s is the least eigenvalue of [D(A0)]. In the 
ideal case when all data are perfect, the total error £(q„ q^) 
= 0 and consequently, A^ = 0. 

B:   Finding the Eigenvector 
The four eigenvalues can be solved in closed form from 

the quartic characteristic equation. Once the least eigenvalue 
Aj has been determined, the corresponding eigenvector is 
obtained by solving the homogeneous equation 

[D']qs = 0 (49) 

where [£>'] = [D(X0)] - \S[I] is a singular matrix. Let a, b, c, 
and d denote the four row vectors of the matrix [£>']. Then 
Eq. (49) implies 

a-q, = 0,   b-q, = 0,   c ■ q, = 0,   d-q, = 0.   (50) 

When the least eigenvalue \s is distinct, only three of the 
four equations above are independent and the unit eigenvec- 
tor qs is unique. Although any three of these equations can 
be used to solve for q^, it is numerically more stable for a 
solution to use all of the four equations. We first obtain the 
following trivector 

Q=aAbAc+aAcAd+bAcAd+aAbAd 

where " A " denotes the vector wedge product. Wedge prod- 
uct generalizes to higher dimensions the vector cross prod- 
uct, see Flanders (1963). The coordinates of this trivector, 
Q = (öi. Ö2. Ö3. Ö4). can then be normalized to yield the 
unit eigenvector q^. 

When A, is a double eigenvalue, only two of the four 
equations (50) are independent and the unit eigenvector q^ is 
not unique. In fact q, traces out a unit circle. The plane 
containing the unit circle is given by 

Any vector in this plane can be normalized to yield a desired 
eigenvector q^. 

When Aj is a triple eigenvalue, any unit vector perpendic- 
ular toa + b + c + disa desired eigenvector. 
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On First-Order Decoupling of 
Equations of Motion for 
Constrained Dynamical Systems 
In this paper we present a method for obtaining first-order decoupled equations of 
motion for multirigid body systems. The inherent flexibility in choosing generalized 
velocity components as a function of generalized coordinates is used to influence the 
structure of the resulting dynamical equations. Initially, we describe how a congruency 
transformation can be formed that represents the transformation between generalized 
velocity components and generalized coordinate derivatives. It is shown that the proper 
choice for the congruency transformation will insure generation of first-order decoupled 
equations of motion for holonomic systems. In the case of nonholonomic systems, or 
holonomic systems with unreduced configuration coordinates, we incorporate an 
orthogonal complement in conjunction with the congruency transformation. A pair of 
examples illustrate the results. Finally, we discuss numerical implementation of 
congruency transformations to achieve first-order decoupled equations for simulation 
purposes. 

Introduction 
Constrained multirigid body systems refers to systems of 

interconnected bodies and particles which are subjected to 
various motion constraints. Such systems are abundantly rele- 
vant in engineering for modeling a wide variety of mechanical 
systems. Much attention has been focused on formulation 
procedures to yield the differential equations describing the 
motion of multibody systems (Crandall et al., 1968; Gibbs, 
1879; Gibbs, 1961; Hartog, 1948; Huston, 1990; Kane and 
Levinson, 1985; Roberson and Schwertassek, 1988; Scott, 
1988; Storch and Gates, 1989). In most cases the resulting 
equations are numerically integrated to obtain trajectories 
characterizing the system's motion. In addition, the equations 
of motion are often analyzed directly to determine the nature 
of the nonlinear behavior. This paper demonstrates a method, 
using Kane's1 equations (Kane and Levinson, 1985), for gen- 
erating equations of motion which are decoupled in the 
highest derivative terms. We will refer to such equations as 
being first-order decoupled. Nonlinear differential equations 

'it has been pointed out (see Desloge, 1987 and Huston, 1987) that 
these equations are actually a particular form of the Gibbs-Appell equa- 
tions (see Gibbs, 1879 and 1961). 
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of this form are more easily integrated numerically, as well as 
better fit for analysis. The procedure of generalized velocity 
component selection based on a congruency transformation 
(Wade, 1951) is developed and used to achieve first-order 
decoupled form of the equations of motion. 

Considerable attention has been placed on contending 
with holonomic and nonholonomic, linear and nonlinear mo- 
tion constraints on multirigid body systems (Kamman and 
Huston, 1984; Kane, 1972; Nikravesh and Haug, 1983; Wang 
and Huston, 1988; Wehage and Haug, 1982; Wampler et al., 
1985; Xu et al., 1990). A common way to deal with con- 
straints is to impose them at an early stage of the analysis by 
reducing the set of dependent generalized coordinates to an 
independent one. If the constraints are nonholonomic the 
generalized coordinate derivatives are reduced accordingly. 
However, many consider it to be more effective to first 
perform the dynamical analysis for the unconstrained system, 
and then reduce the resulting equations to a consistent set 
with the constraint equations. For example, Kamman and 
Huston (1984), using Kane's formulation, show that the pro- 
jection of existing equations of motion onto an orthogonal 
complement yields the desired reduced equations. An orthog- 
onal complement, say C, of matrix B would satisfy the equa- 
tion BC = 0. Ben-Israel and Greville (1974) and Lawson and 
Hanson (1974) discuss the mathematical significance of the 
orthogonal complement. The use of the orthogonal comple- 
ment to impose motion constraints is illustrated by Hemami 
and Weimer (1981), Huston (1990), Kamman and Huston 
(1984), Wang and Huston (1988), and Xu et al. (1990). 
Hemami and Weimer (1981) use the orthogonal complement 
similarly for contracting equations generated by the Lagrange 
formulation. Wampler et al. (1985) discuss a method for 
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reduction of existing equations of motion subject to addi- 
tional constraints by recombining terms from the original 
equations. A numerical procedure for imposing constraints 
during integration based on generalized coordinate partition- 
ing is presented by Nikravesh and Haug (1983) and Wehage 
and Haug (1982). One common element of each of these 
methods is the application of the constraints after conducting 
the dynamical analysis. Conversely, we illustrate a method 
that imposes constraints at an intermediate step of the kine- 
matical analysis to enable decoupling for nonholonomic sys- 
tems, or systems where the holonomic constraints are yet to 
be applied. 

The following discussion addresses the use of generalized 
velocity component selection to achieve first-order decou- 
pling of multirigid body systems. The idea of the congruency 
transformation is explained and utilized here. A simple ex- 
ample is conducted to clarify the procedure for finding the 
congruency transformation for holonomic systems. Next, a 
procedure is discussed for decoupling of systems with non- 
holonomic constraints, or holonomic systems with unreduced 
configuration coordinate descriptions. The result, using or- 
thogonal complements, is a modified nonsquare transforma- 
tion between generalized coordinate time derivatives and a 
reduced set of generalized velocity components. Decoupling 
using the orthogonal complement is demonstrated by relax- 
ing a constraint from the first example. Lastly, we discuss the 
numerical application of congruency transformations. 

Dynamics of Holonomic Multirigid Body-Systems 

First-Order Decoupled Equations of Motion. In the pro- 
cess of formulating equations of motion, for example, using 
Kane's method, the analyst must choose a linear combination 
of first time derivatives of generalized coordinates to define 
generalized velocity components. These, in a general form, 
were initially introduced by Gibbs (1879, 1961), but were 
exploited in more detail by Kane (see, for example Kane 
(1972) and Kane and Levinson (1985)). Kane and his cowork- 
ers have referred to these quantities as "generalized speeds." 
Some of the problems for such a term have been pointed out 
by Papastavridis (1992), who considers either "nonholonomic 
components of the velocity vector" or "quasi-velocities" to be 
more appropriate terms. Singh and Likins (1985) mention the 
term "derivatives of quasicoordinates"as an alternative. Here, 
for lack of a better name, we shall simply call them general- 
ized velocity components. The resulting equations of motion, 
using the generalized velocity components, in matrix nota- 
tion, are of the form 

Levinson, 1985) are formed by letting the sum of generalized 
active forces and generalized inertia forces equal zero. These 
equations are actually a particular form of the Gibbs-Appell 
equations (see Desloge, 1987; Huston, 1987). Kane (1972) 
originally referred to them as Lagrange'sform of D'Alembert's 
principle. In these equations the generalized active force 
vector can be expressed as 

F= E[vf
rf,- + r,rr,] (2) 

i-i 

where f is the resultant active force acting at the mass center 
of the ith body, and T, is the resultant moment. V and r, are 
the partial velocity and partial angular velocity matrices, 
which are written as 

(3Xn) 

and 

Ti      = Tu7' 

(3) 

(4) 
(3Xn) 

These partial velocities are taken with respect to the general- 
ized velocity component vector u. The generalized velocity 
components are a linear combination of the first time deriva- 
tives of generalized coordinates. For ease of substitution this 
relation is expressed as 

q = Tu. (5) 

We shall refer to the matrix T as the rate transformation 
matrix. Since we are considering holonomic systems here, T 
is a square matrix of order n. The generalized inertia force 
vector is written as 

F* = - E [mtfa, + I/O,-] (6) 

Mü = g(q, u) (1) 

where u and q are vectors of generalized velocity components 
and generalized coordinates, respectively. M is a matrix whose 
elements are functions of generalized coordinates and the 
inertia properties of the system, and g is a nonlinear vector 
function of generalized velocity components and generalized 
coordinates. The .technique presented here will generate 
equations of this form where M can be made diagonal by 
judicious selection of generalized velocity components. Non- 
linear differential equations of this form are dramatically 
easier to numerically integrate, as the need for computing 
M"1 at each iteration is eliminated. In addition, performing 
various analyses of nonlinear behavior—tests for stability, 
nature of critical points, chaos, etc.—is facilitated if the 
system equations are written in state plane form. A diagonal 
M matrix in Eq. (1) satisfies this requirement. 

Kane's Equations. Consider a system of p rigid bodies 
whose configuration can be described completely by the set 
of n generalized coordinates (<?i, g2> • • ■ > <?r. ■ • • > <7nX or 

q = [qv q2,...,qr,..., qnV- Kane's equations (Kane and 
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where a, is the mass center acceleration of the ith body and 
H, is the time rate of change of angular momentum of body i 
with respect to the Newtonian reference frame. Finally, n 
dynamical equations of motion are obtained by letting the 
vector sums from Eqs. (2) and (6) equal the zero vector: 

F + F* = 0 (7) 

Equation (7) is the matrix form of the so-called Kane's 
equations. It should be pointed out that in this paper, as with 
other references on constrained multibody systems (see, for 
example, Huston, 1990), we shall use the term configuration 
coordinates in addition to generalized coordinates. In con- 
strained multibody systems configuration coordinates refer to 
the variables that uniquely describe a system's configuration, 
but may be dependent upon one another. Generalized coor- 
dinates represents reduced, or independent configuration 
coordinates. 

The Influence of Generalized Velocity Component Selec- 
tion. Since our goal in this paper is to prescribe a choice of 
generalized velocity components that would yield decoupled 
equations of motion, it is first necessary to reveal the influ- 
ence of such a selection on the resulting dynamical equa- 
tions. In other words, we would like to expose the location of 
the matrix T, from Eq. (5), within Kane's equations. The 
acceleration of the mass center of the ith body can be written 
as 

=   V;Ü   +   V;U. (8) 

We also know the angular acceleration of body i can be 
expressed as 

a, = r,ü + f iu. (9) 
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From this we can write the derivative of angular momentum 
as 

H, = Ir,ü + I,f,u + Wi*i (10) 

where I,- is the central inertia matrix and W, is the angular 
velocity matrix associated with the ith body, and written in 
terms of body i's natural frame. Thus, the generalized inertia 
force becomes 

F* = - £ [mtfVp + mtf%u + ifl^n 
i- 1 

+ri
Ti,f/u + r^.i,.w,.]. (ii) 

From the relation depicted in Eq. (5), it is easily shown that 
the partial velocity matrix of Eq. (3) can be expressed as 

<?v; <?v,. <?r,- 

<?qr <?qr 
(12) 

where is r, the Euclidean position of body i's mass center 
with respect to the inertial reference frame. We can write 
this as 

V, = J,T (13) 

where J, is the partial derivative of r, body's mass center 
position with respect to the vector of the generalized coordi- 
nates. Similarly, Eq. (4) is 

or 
r, = n.T 

(14) 

(15) 

where £1,- is the partial derivative of body i's angular velocity 
with respect to the time derivative of the generalized coordi- 
nate vector. Substitution of Eqs. (13) and (15) into Eq. (6) 
gives the following expression for the equations of motion: 

p 

-E 
i-i 

m,TT3Tj,T& + m,Trjr-(J,T)u 

+Trnfl,flJTä + Trnf I,—(ßj)u A 

+TTnj"wii1.»1. - Tiff, - TTaJtt - Trnjv; 

By letting 
p 

= 0.   (16) 

(17) 
i-i 

a complete set of equations of motion can be expressed as 

TrATü - £ 
i-l 

m/Tlf-(J,T)u 

and 

+Trnfi,-(fi,T)u + TTaJyf,i,ai 

-TTjf f£. - TTti$r, 

q = Tu. 

the coefficient matrix for the first-order generalized speed 
vector in Eq. (18a) is diagonal. 

Selecting T for Decoupling. Clearly, from the above re- 
sults, first-order decoupled equations of motion will be gen- 
erated if TrAT is a diagonal matrix. Therefore, we first 
consider how this transformation can be influenced by T to 
satisfy this condition. Notice that if the eigenvectors of A are 
used as the columns of T, a diagonal matrix results under the 
similarity transformation T_1AT. Moreover, A is symmetric, 
hence, its eigenvectors can be chosen to be orthogonal. With 
orthogonal eigenvectors we know that T-1 = T , and the 
similarity transformation effectively appears as the leading 
matrix for the first-order terms of Eq. (18a). Thus, a suffi- 
cient condition for obtaining first-order decoupled equations 
of motion is that the rate transformation matrix T be com- 
prised of the eigenvectors of A. However, it should be em- 
phasized that it is not a necessary condition for decoupling. 
In fact it can be much less laborious to choose the elements 
of T to satisfy a congruency transformation than to symboli- 
cally determine the eigenvectors of A. We will now show that 
decoupling can be achieved by satisfying an alternative suffi- 
ciency condition. That is, if T is chosen to fulfill a specific 
congruency transformation, Eq. (18a) will be decoupled in 
first-order terms. Consider the following definition (see, for 
example, Wade, 1951). If for two given matrices A and N 
there exists a nonsingular matrix T that satisfies the relation 

TrAT = N (19) 

then A and N are said to be congruent. Furthermore, we 
shall utilize a theorem (see Wade, 1951) stating that a sym- 
metric matrix can be reduced by a congruency transformation 
to a diagonal matrix of the same rank. The principal motiva- 
tion behind employing congruency transformations to achieve 
decoupling is that the rate transformation matrix can be 
formed directly with various combinations of the elements of 
the A matrix. At this point we propose an algorithm for 
obtaining the matrix T that yields a diagonal matrix under 
the congruency transformation of Eq. (19). This, in turn, 
would be used in Eq. (186) as a rate transformation matrix. 
Consider the symmetric A matrix written as 

A = 

'12 'In 

'In 

(20) 

The transformation matrix T will be composed of m factors, 
such that it can be written 

T-TXTJTJ. (21) 

where m  is the number of degrees-of-freedom less one 
(m = n - 1). Ji would be constructed as follows: 

T, 

1       -012/011 

0 1 

0 0 

_al*/all -«l„/öll 
0 

0   (18a) 

(186)    When the congruency transformation 

It is now clear that T manifests itself in the transformation 
TrAT in the first term of the left-hand side of Eq. (18a), as 
far as first-order generalized velocity components are con- 
cerned. We now wish to explain how the analyst can choose 
the rate transformation matrix T in Eq. (186) to assure that 
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T/ATj = Ä 

(22) 

(23) 

is performed, the resulting Ä is a matrix with zero elements 
in row one and column one, except for the element an (see 
Eq. (24)). In other words, it will be block diagonal with the 
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For this system the resultant applied force vectors for each 
mass are 

Fig. 1    A sliding pendulum 

lower right m by m submatrix remaining undiagonalized, and 
is given here as 

Ä = TfAT, = 

'11 0 0 

0 bn bn 
0 b2\ £>22 

0 

bi, 
b 2m 

0     b„,    bml     . .     b. 

(24) 

The same procedure is performed on this result, except T2 is 
constructed as 

(25) 

1 
0 

0 
1 -b12/bn    . . 

0 
•     -blm/bn 

0 0 1 0 

0    0 0 

The congruency transformation is performed again: 

T|"TrAT,T2=/I" (26) 

This is repeated until a total of m transformations have been 
completed, and the A matrix is converted to diagonal form. 
One additional requirement is that T be nonsingular. How- 
ever, this is assumed since the final diagonal matrix is of the 
same rank as the original A matrix. Therefore, T must be of 
full rank. Before discussing the use of the orthogonal com- 
plement, an example is presented to illustrate decoupling 
with the congruency transformation. 

Example of Decoupling With the Congruency Transforma- 
tion. Consider the following system of two particles con- 
nected by a rigid, massless rod. Sliding mass mx is con- 
strained to move along the horizontal axis n2, and the mass 
m2 must stay on the constant radius arc with respect to ml in 
the n, - n2 plane, as shown in Fig. 1. 

Using the generalized coordinates qx and q2, the matrix A 
is assembled using J! and J2 for each of the masses. This 
gives 

(27) 

and 

J2 = 
0 -rsq2 

1 rcq2 
(28) 

which can be combined according to Eq. (17) to obtain 

A = 
—mx — m2     —m2rcq2 

—m2rcq2       —m2r
2 

T = 
1     -m2rcq2/(ml + m2) 

0 1 

f! = 

and 

™i£ 
0 

0 

(31) 

(32) 

(29) 

The above matrices can then be assembled using Eq. (18a) to 
yield the following dynamical equations: 

0 -m, ■ Ttl'y 

nio r
2 - mir2c2g2/(m, - m2) 

-mlr2cq2sq2ul/(ml + m2) -m2grsq2 
(33) 

The complete set of equations of motion are Eq. (33) and the 
following equation using the rate transformation matrix given 
in Eq. (30): 

-m2rcq2/(mx + m2) ^ 4 

Equation (34).shows that the generalized velocity compo- 
nents obtained using the congruency transformation include 
mass terms. This is slightly different from the definition of 
the relationship between u and q, as defined by Kane (1985) 
to be a function of q and time, and not of the mass properties 
of the system. It also indicates another problem with the 
term "generalized speeds," or even "generalized velocity 
components," for the elements of the vector u, since they 
depend on mass properties in the more general context used 
in this paper. We shall, however, continue using "generalized 
velocity components" since the term "generalized" may be 
interpreted that u is not just like a common velocity vector. 

Dynamics of Nonholonomic Multibody Systems 
The equations of motion given in Eqs. (18a) and (186) 

become invalid if the multibody system includes constraints 
which are nonholonomic. If this is the case, the constraints 
can be applied to the system with an orthogonal complement, 
and the transformation between generalized coordinate 
derivatives and generalized velocity components is no longer 
one-to-one. Additionally, situations might arise where a 
model is given with unreduced configuration coordinates 
along with holonomic constraint equations that are yet to be 
applied. Again, the orthogonal complement is used to impose 
such constraints. These ideas are discussed next, and illus- 
trated with an example. 

The Orthogonal Complement. Huston (1990) shows that 
if the motion constraint equations, either holonomic or non- 
holonomic, are written as 

Bq = 0 (35) 

and the unconstrained equations of motion are as depicted in 
Eq. (1), a valid set of reduced equations describing the 
dynamics of the constrained system is 

CTMq = C7"g(q, q) (36) 

Equation (19) is used to form the congruency transformation 
for A as 

(30) 

where C is the orthogonal complement of B. Recall C is the 
orthogonal complement of B if BC = 0 is satisfied. C can be 
thought of as a non-square transformation between the unre- 
duced generalized coordinate derivative vector q, and a re- 
duced generalized coordinate derivative vector, say z: 

q = Cz. (37) 

n. 

<3 
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Let us rewrite Eq. (36) in similar form to Eq. (16) by first 
writing 

p 

-E 
«-I L 

miC
rJ[J,q + m,.CrJ[-(J,.)q 

+c7"nj"w,ii»/ - 
cT^i - Cftfo = 0.    (38) 

We can substitute the expression for q given in Eq. (37) into 
Eq. (38) to establish equations of motion in terms of the new 
reduced generalized coordinate vector z and its derivatives: 

p 

-E 
i-l 

m^jfj.Cz + mf-C
rj7"-(J,C)z + Crflfl,n,Cz 

-cTnfi1-(n,c)z + crn[w;i,<o,. 
at 

= 0.   (39) 

One can see that the role of the matrix C in Eq. (39) is 
equivalent to that of T in Eq. (16). Hence, we can view 

<?v; 
J'C - I? 

and 

n,c = I? 

(40) 

(41) 

as special partial velocity matrices. Generalized velocity com- 
ponents can be introduced easily using the transformation 

i = Tu. (42) 

With this, the transformation between unreduced general- 
ized coordinate derivatives and reduced generalized velocity 
components is written as 

q = CTu. 

A new set of equations of motion in terms of reduced 
generalized velocity components can now be given as 

-E 
£-1 L 

m/T'C'j/j.CTÜ + mIT
rCrj/--(J,CT)u 

+TTcrnfiJ.n1-crü + TrcTnfi,—(n,cr)u 

+T7'CTn[W,.I,.a,I. - TrCrjff,- + T7C7ft]ri = 0    (44) 

Fig. 2   A sliding pendulum with unreduced configuration coordi- 
nates 

(n - m) independent eigenvectors associated with the zero 
eigenvalues. If the columns of C are comprised of these 
eigenvectors we have 

BrBC = 0. 

Premultiplying by Cr gives 

C7"BTBC = 0 
or 

which are accurate in describing the behavior of the con- 
strained system. Note that the matrix product CT shown in 
Eq. (43) represents a modified, nonsquare, rate transforma- 
tion matrix. 

There are several procedures for determining the orthogo- 
nal complement matrix as demonstrated by Huston (1990) 
and Hemami and Weimer (1981). Here, we will consider the 
zero-eigenvalue approach discussed by Huston. If there are 
m motion constraints imposed on a system that has n de- 
grees-of-freedom, the m by n matrix B from Eq. (35) will be 
of rank m. B premultiplied by its transpose will be a symmet- 
ric n by n matrix also of rank m. Hence, BTB will have 
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BC = 0. 

(45) 

(46) 

(47) 

Therefore, C is the orthogonal complement of B. With C 
specified, we can now focus on the coefficient matrix for 
generalized velocity component derivatives from Eq. (44) by 
grouping all other terms into the function h. This gives 

TTC7ACTü = h(q,u). (48) 

The matrix A is the same as defined in Eq. (17). To obtain 
first-order decoupled equations for the constrained system 
we simply choose T to be the proper congruency transforma- 
tion, this time for CrAC, using the procedure outlined ear- 
lier. 

Example:   Unreduced   Configuration   Coordinates.   We 
will now repeat the example carried out above, but now using 
the dependent configuration coordinates shown in Fig. 2. 

The constraint imposed by the rigid rod is temporarily 
removed. The position Jacobians for the two masses now 
appear as 

(49) 

(43)    and 

A = 

'.-[? 0    0' 
0    0. 

*-!; 
1    0' 
0    1. • 

atrix is 

—mj — m2 0 —m2 

0 —tn2 0 
-m2 0 —m2 

(50) 

(51) 

Now we must find the orthogonal complement to reimpose 
the constraint. Therefore, the constraint representation 
should be put in the form of Eq. (35). For the simple 
pendulum this constraint is written as 

Bq = [0    q2    <?3]q = 0- (52) 

To find an orthogonal complement the zero eigenvectors of 
BrB must be found. However, for this problem the vectors 
comprising C can be obtained even more simply, using the 
Gram-Schmidt process, for example. The orthogonal comple- 
ment is found to be 

1       0 
0     -q3 

0      q2 

(53) 

v$Ö 
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We can form C7AC to allow determination of T as 

T 
1     -m2q2/(m1 + m2) 

0 1 
(54) 

The necessary components are now available to produce the 
constrained dynamical equations of motion using Eq. (44). 
The applied force vectors remain the same as in the previous 
example. The dynamical equations in terms of the reduced 
generalized velocity component vector are 

-/Wj — m2 0 

0 ~m2?2/(ml + ml) + m2r7 

-m2
2q3q2ul/(m1 + m2) 

0 
(55) 

The additional equations of motion stemming from the trans- 
formation between configuration coordinates and reduced 
generalized velocity components are 

q = 
1     -m2q2/(m1 + m2) 

0 1 
(56) 

Numerical Implementation of Congruency Transfor- 
mations 

Very often one must analyze large-scale systems where it 
would be very tedious to symbolically obtain the proper 
congruency transformation. For this reason, we now discuss 
numerical implementation of the congruency transformation 
so that it may be used on more complicated systems. Recall 
the expression for the equations of motion shown in Eq. (16), 
except here we do not require the matrix T to be a diagonal- 
izing congruency transformation. In this case T may be any 
matrix that yields a valid vector of generalized velocity com- 
ponents. The equations of motion for a holonomic system are 

p 

E 
i-l 

m,Trj7j,TÜ + m/TJ/—(J,T)u 
at 

+TTnfl,.ß/Tü + Trnjl,. j (fl,T)u 

+TTClJWi"i - T^ff, TTClJr, = 0.    (57) 

Notice that the derivative of the rate transformation matrix T 
appears in two of the terms in Eq. (57). Even though it would 
be possible to select T to be a diagonalizing congruency 
transformation at each iteration of the numerical integration, 
we would be left with the cumbersome task of specifying its 
time derivative as well. Hence, the following development 
allows selection of a matrix ¥ which is independent of the 
original dynamical equations (Eq. (57)), and does not appear 
in derivative form. However, one must still choose a valid 
linear combination of generalized coordinate derivatives 
(prescribed by T) to define generalized velocity components, 
as usually done with conventional application of Kane's equa- 
tions. For example, it is common to choose a trivial set of 
generalized velocity components by selecting T as the identity 
•matrix. Denote the matrix products premultiplying u from 
Eq. (57) as 

A = T 
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r(-_EKj,TJi + ßflA]) (58) 

and the remaining vector sum as h(q, u) so the equations of 
motion can be written as 

Aü = h(q,u). (59) 

Let us introduce the vector x in the following expression: 

ü = ¥x. (60) 

Substituting this into Eq. (59) yields 

A^x = h(q,u). (61) 

We can now premultiply both sides of Eq. (61) by ¥r giving 
us 

¥rA^x = ¥Th(q,u). (62) 

However, notice the left-hand side of Eq. (62) is a congru- 
ency transformation on the symmetric matrix A. If ¥ is 
chosen as prescribed earlier, yTX9 will be diagonal. Let 
L = yTA<lr so Eq. (62) becomes 

Lx = ¥rh(q, u). (63) 

Vector x can be written as 

x = L-,*rh(q, u) (64) 

when the inverse of L is simply comprised of the reciprocals 
of its diagonal elements. Finally, the resulting first-order 
decoupled form in terms of ü is 

ü = ¥L-1¥7'h(q,u). (65) 

We see that Eq. (65) is well structured for direct numerical 
integration without inversion of the A matrix. 

Conclusion 
We have proposed and demonstrated a method for creat- 

ing rigid-body equations of motion that are decoupled in 
first-order terms. This is achieved by properly choosing a 
congruency transformation that specifies generalized velocity 
components. For nonholonomic systems, or holonomic sys- 
tems with unreduced configuration coordinates, the congru- 
ency transformation is used in conjunction with an orthogo- 
nal complement to the constraint array. In both cases, the 
resulting equations are in a form that make it convenient for 
nonlinear behavior analyses. Moreover, it becomes an easy 
matter to implement general integration routines for first- 
order differential equations to obtain generalized' coordinate 
trajectories for simulation purposes. 
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ABSTRACT 

In this paper we present a method for dynamically interpo- 
lating the motion of a rigid body in space between known 
end-positions. We begin by creating an image space repre- 
sentation of the equations of motion for a rigid body. These 
equations are written as a system of first-order state equa- 
tions whose trajectory is optimized based on the minimiza- 
tion of a certain performance index. This leads to a set of 
boundary-value equations between the end positions, which 
when solved give the interpolated motion. Finally, a pro- 
gram developed to perform such interpolations numerically 
is utilized by generating a trajectory between given terminal 
states. 

INTRODUCTION 

Within the field of computer graphics, especially as it ap- 
plies to mechanical system simulation and computer anima- 
tion the problem of finding a mathematical representation 
of a rigid body motion that approximates a sequence of ar- 
bitrary displacements is commonly encountered. In other 
words the end-positions of a rigid body spatial trajectory 
are known, but the trajectory itself is unknown. Through- 
out this paper, the term 'position' refers to the position of a 
point on a rigid body, as well as the orientation of the body. 
The problem of determining the intermediate positions has 
been referred to as key framing, or geometric design of mo- 
tion interpolants (see Ravani and Ge (1994)). It has ap- 
plications in computer graphics, computer vision, robotics, 
bio-mechanics, other fields. Figure 1 illustrates the inter- 
polated trajectory of a rigid body. Many researchers have 
explored methods to interpolate the unknown motion of the 
body. Traditionally, the problem has been separated into in- 
terpolations of translations and rotations. Dealing with the 
translation is straight forward, however the rotation inter- 
polation poses considerable difficulties. Initially, attempts 
were made at individual interpolation of the Euler angles, 

initial position 

Figure 1: Dynamically Interpolated Motion 

but the resulting motions seemed to speed up or slow down. 
More recently, Shoemake (1985) and Pletickx (1989) investi- 
gated subdivision methods using quaternions to interpolate 
rotations. Ravani and Ge (1994) transform the motion in- 
terpolation problem into a point interpolation in the image 
space, and extend the results of Shoemake by properly con- 
sidering the geometry of the underlying space of three di- 
mensional displacements. Needless to say, the common trait 
of these developments is their kinematic foundation. That 
is, these methods have provided ways to create the unknown 
trajectory without regard to the dynamics of the motion of 
the rigid body being animated. The motivation behind the 
developments in this paper is to dynamtca/Zyinterpolate the 
motion of the body between the given end-positions for ani- 
mation and other purposes. Thus the result is a dynamically 
consistent specification of the pathway followed by the body, 
as well as its velocity distribution. 

To solve the problem of dynamically-based interpolation, 
an image space representation of the equations of motion for 
a single rigid body is first created. These equations become 
the system equations for a trajectory optimization based on 
the minimization of a certain performance index. The solu- 
tion of the optimization problem describes the pathway of an 
image point, and the velocity of that point along the path. 
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This can then be resolved into finite and infinitesimal rigid 
body displacement information specifying the reconstructed 
motion. 

MOTION REPRESENTATION 

In this section we convert all kinematical entities such as 
Euclidean point position and velocity, rigid body orienta- 
tion parameters, and angular velocity of the body to an 
image space representation. The new kinematical descrip- 
tion is used to generate a unique set of equations of motion 
in terms of an image space state vector. We see that the 
image space allows us to treat the position and orientation 
of a rigid body in space as a single point in a dual four- 
dimensional space. More importantly, the time derivative 
of this image space point position gives us an unambiguous 
representation of the rate of change in orientation of the 
body. Hence, we can introduce a sixteenth order state vec- 
tor that contains the orientation and time rate of change 
of orientation data. In an essence, the image space helps 
us circumvent the incomplete analogy between velocity and 
angular velocity. By "incomplete analogy" we mean that 
in the Euclidean space of three dimensions velocity can be 
found from the derivative of a position vector, but angular 
velocity, in general, can not be determined from the deriva- 
tive of an orientation vector. With the mapping to the image 
space, position and orientation are captured as one entity - 
the image space position. The derivative of this point gives 
us the velocity and angular velocity of the body. The image 
space equations of motion then become the first order state 
space system whose trajectory is optimized based on effort 
minimization. 

Newton-Euler Equations in the Image Space 

Our goal in this section is to map the equations describing 
the dynamical motion of a rigid body to the image space. 
The kinematic advantages of the image space are illustrated 
by Ravani and Ge (1994), and here we will demonstrate vari- 
ous dynamic benefits of this representation. Using the image 
space representation, the components of a point position in 
the image space become the configuration coordinates, as 
opposed to the Euclidean position and angular orientation 
coordinates ordinarily used. The final results of this section 
are the equations of motion for a single rigid body in state 
space form. They will be first-order nonlinear equations in 
terms of a state vector z (to be defined later). The com- 
ponents of this vector completely encompass the rigid body 
displacement and time rate of change of displacement infor- 
mation. Here, we begin with the well-known Newton-Euler 
equations of motion for a rigid body, and transform them 
to a system of sixteen first order equations. 

The Newton-Euler equations for a rigid body with a body 
fixed coordinate system aligned in the principal directions 
and located at the center of mass are written as 

/i = md\ 

J2 = md.2 

/» = md3 (i) 

and 

1 = hüi — (h — h)u>2^3 

T2 = I2Ü2 — (h — h)u>3Ui 

n = /3W3 - [h - h)wiW2 (2) 

where /; and r,- (i = 1,2,3) are the applied moments and 
forces in the ei, e2 and e3 directions of a body-fixed co- 
ordinate frame, h , I2 and J3 are the principal centroidal 
moments of inertia and w,- (i = 1,2,3) are the angular veloc- 
ity components expressed in terms of the body-fixed frame. 
We can now convert all kinematical entities to the image 
space. If the image space point x is written in quaternion 
form as 

x = iii + f2J + X3k + x4 (3) 

the dual velocity distribution of the body can be expressed 
as the following quaternion product: 

V = 2xx* (4) 

where x* is the conjugate of the dual quaternion. This dual 
velocity entity can be thought of as a dual number combi- 
nation of angular and linear velocity and written as 

V = 
w 
0 + e d 

0 (5) 

where u is the angular velocity of the body and d is the 
velocity vector of the origin of the body-fixed frame. The 
dual quaternion product can be expanded in terms of the 
dual Euler parameters and their derivatives, and written in 
matrix form as 

V = 2Dx (6) 

where the dual matrix D is written as 

D = D + eD°. 

The real part of D is 

D; 

—Xi X3 —X2 Xl 

— X3 —Xi         Xl X2 

X2 —Xl —Xi X3 

Xl X2    X3 X4 

(?) 

(8) 

and the dual part is 

-r° 4 -0 -x2 
_0 0 

-*3 —Xt0 *1 

X°2 -r° xi -xl 
_0 0 0 
Xl X2 *3 

xi 
X°2 

xl 
x\ 

(9) 

The real and dual parts of the first three components of V 
comprise, respectively, the angular velocity and the velocity 
of the origin of the body's fixed frame, as stated in Equation 
5. The matrix product of Equation 6 can be separated into 
real and dual parts as 

V = 2Dx + 2e(Dx°+D0x). (10) 
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Therefore, using this relation and Equation 5, the angular 

and linear velocity terms become 

0 
= 2Dx 

and 
d 
0 

2(Dx° + D°x). 

(11) 

(12) 

From these we can obtain the necessary derivatives and 

products wi, ö>2 and Ü3, d\, d.2 and ^3, and «2^3, W3W1 
and W1W2 in terms of image space components to be substi- 
tuted into Equations 1 and 2. However, before doing this, 
it is helpful to define a sixteen element state vector z as 

x, 
*? 
X; 

2e(Dx°+D°x). 

We also define 

and 

z1     22 Zi 

(13) 

(14) 

Zfc =   [   29       210              216   j      - (15) 

Z6 can be thought of as the position of a point in an eight- 
dimensional vector space. This position corresponds to a 
homogeneous representation of the position and orientation 

of the rigid body in three dimensions. Analogously, za is 
the velocity of that point (note za = Zb), and defines the 
time rate of change of position and orientation of the body. 

Equation 11 is expanded and elements of state vector z 
are substituted to get the components of the angular velocity 

vector as 

Ul\ = 2(—Z4Z9 + Z3Z10 — Z2211 + 21^12) 

0)2 = 2(—23Z9 — Z4210 + Z1Z11 + 22212) 

UI3 = 2(z2Zg — Z1Z10 — Z4ZH + Z3Z12)- (16) 

These expressions are time differentiated to yield, after some 

simplification, 

cl»i = 2(—Z4Z9 + 23210 — Z2211 + Z1Z12) 

W2 = 2(-2329 - 242l0 + ZlZll + 22Z12) 

ö>3 = 2(2229 — 21Z10 — 24Z11 + 23212). (17) 

In a similar manner we obtain the velocity and acceleration 
components of the origin of the body-fixed frame: 

d\  = 2( —24213 + 23214 — 22215 + Z1Z16 — 

2829 + Z7Z10 — 26Zll + 25212) 

d2 = 2(—23213 — Z4Z14 + Z1Z15 -(- z2zie — 

Z7Z9 — ZgZio + Zs2u + 26Z12) 

d3 = 2(22213 — 2l2i4 — Z4Z15 + Z3Z16 + 

2629 - Z5Z10 - Z8Zll +Z7212) (18) 

and, upon time differentiation, 

il  = 2(-242l3 + Z3Z14 - 22215 + Z1Z16 - 

2829 + 27210 - 26Z11 + 25Z12) 

d2 = 2( —Z3Z13 — 24Z14 + Z1Z15 + 22216 — 

2729 — 28Z10 + 25Z11 + Z6Z12) 

d3 = 2(i2Zl3 — Zl2i4 — Z4Z15 + Z3Z16 + 

2629 — Z5Z10 — 2»2ll.+ Z7Z12). (19) 

Finally, we denote the angular velocity product quantities 

hl2 — 0J\U12 

/l23 = W2W3 

h\z — W1W3 (20) 

The above quantities are substituted into Equations 1 and 

2, and the six Newton-Euler equations become 

tii = 2m(—Z4Z13 + Z3Z14 — Z2Z15 + Z1216 — 

Z8Z9 + 27 210 — 26211 + 25212) 

U2 = 2m( — Z3213 —.24214 + 21Z15 + 22216 — 

2729 — 28Z10 + Z5Z11 + Z6212) 

U3 = 2m(z2Zl3 — 2i 214 _ 24Z1S + 23216 + 

26Z9 - ZsZio - ZgZll + Z7Z12) (21) 

and 

U4 = 27l(-Z429 + 23Z10 - 22«11 + Z1Z12) 

(h — h)h.2i 

«5 = 2l2(—23Z9 - Z4Z10 + ZlZu + Z2212) 

(h-Ii)h31 

U6 = 2/3(2229 — 21210 — 24211 + Z3Z12) 

(Ji - 72)&w (22) 

where u is simply a vector of applied forces and torques, 

and is written here as 

(23) u = [ /1    h    h T\    r2    r3 

Since the equations of motion are now written in terms of 
eight configuration coordinates, we need an additional two 
equations to have a complete set. These can be generated 
from the image space constraints given in (Ravani and Ge, 
1994). We rewrite them here in terms of the state vector z 

as 
z| + 2?0 + Zu + Z?2 = 1 (24) 

and 
Z9Z13 + Zl0Zl4 + Zu 215 + Z12Z16 = 0. (25) 

If we time differentiate each of these equations twice we 
obtain the two additional state equations as 

21213 + Z5Z9 + 22 214 + 26Zio + 

Z3Z15 + Z7Z11 + Z4Z16 + Z8Z12 + 

2(ziZ5 + Z226 + 2327 + Z4Z8) = 0 (26) 
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and 

ZlZl3 + 2529 + 22ZU + 26210 + z\ + z\ + z\ + z\ = 0.   (27) 

Equations 21, 22, 26 and 27 can be ordered, and put into 
matrix format, yielding 

where 

Hza =g 

U4/2/1 + {h - h)h23/2h 
«s/272 + (h - Ii)h3i/2I2 

us/2/3 + (/1 - h)h12/2I3 

-z2 - 72 -  72 _ r2 
—Zj —22—23—24 

«i/2m 
U2/2m 
«3/2m 

-2(2l25 + Z226 + 23Z7 + ZiZ$) 

(28) 

(29) 

The coefficient matrix H is partitioned as 

H = 
C     0 
A    B 

where 

A = 

B = 

-216 215 -214 213 

-215 -Z16 213 214 

214 -213 -216 215 

213 214 215 216 

212 -211 210 -29 

211 212 -29 — 210 

— 210 29 212 -2u 

29 210 211 212 

(30) 

(31) 

(32) 

and 

C = B. (33) 

The advantage of this particular ordering becomes clear 
when we consider one of the Schur formulas for the inverse 
of a partitioned matrix (see, for example, Brewer (Brewer, 
1990)). This formula states that the matrix H partitioned 
as shown in Equation 30 has the inverse 

H" 
c-1 

-B^AC-1 
0 

B-1 (34) 

Symbolic inversion of H becomes even easier when we utilize 
the fact that B is an orthogonal matrix. It is a simple matter 
to verify the orthogonality of B by realizing it satisfies the 
following two conditions: the inner products between each of 
the column vectors, or between each row vectors comprising 
B are zero, and each row or column vector is of unit length. 
The first condition can be visually verified and the second 
follows from Equation 24. Therefore B-1 = Br, and H_1 

can be written as 

-BTABT    B7 

Hence, we can rewrite Equation 28 as 

Za=H"1g 

(35) 

(36) 

keeping in mind that numerical inversion of H is not neces- 
sary. The complete equations of motion are 

z = 
Za 

(37) 

Notice these equations are first-order decoupled - a charac- 
teristic that is necessary to initiate the development of the 
optimal control problem in the next section. 

OPTIMAL TRAJECTORY GENERATION 

If the image space rigid body equations of motion are viewed 
as a nonlinear state space system we can cast the dynamic 
interpolation problem into the determination of an optimal 
trajectory based on optimal control theory. In this paper 
the optimal rigid body trajectory is the one that minimizes 
the total force and torque applied to the body, as well as 
their derivatives, over a certain time period. Other perfor- 
mance indices could be chosen, such as power or total energy 
minimization. However, we restrict our analysis to applied 
force and torque minimization in the following development. 
The equations of motion depicted in Equations 1 and 2 can 
be written as 

z = a(z,u) (38) 

where, according to Equation 37 

a(z, u) = H^g 
Za 

The performance measure we wish to minimize is 

•7(u) = / ' g(n)dt 

where 
■   1   \      l   T 
9W = 2U u- 

(39) 

(40) 

(41) 

It is convenient to use the function H, referred to as the 
Hamiltonian, which is defined as (see, for example, Bryson 
and Ho (1975) and Kirk (1970)) 

U = g(n) + ATa (42) 

where A is a vector of Lagrange multipliers. From this we 
can state the necessary conditions to determine an optimal 
trajectory as 

.      dH 

(which is equivalent to Equation 38) 

A-"5z" 

and 

(43) 

(44) 

-ST. («) 
Equations 43, 44 and 45 comprise a set of thirty two bound- 
ary value equations, which when solved, give us the opti- 
mal state trajectories of the body. These states translate to 
mass center position and velocity, and orientation and rate 
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of change of orientation trajectories for the body between 
the given endpoints. Naturally, these trajectories satisfy the 
boundary conditions imposed by the analyst. However, it 
must be emphasized that Equations 43, 44 and 45 do not 
require the force and torque components to satisfy any spe- 
cific boundary conditions. Hence, Equation 38 should be 
modified to make the necessary force and moment accom- 
modations. We can append the relation 

u = w 

to Equation 38 to obtain 

z = a(z,w) 

(46) 

(47) 

where the state vector z is now a 22-element vector contain- 
ing the original sixteen states along with the components of 
force and torque. With this adjustment the forces and mo- 
ments are now treated as states, and w, the time derivative 
of the applied force vector, becomes the control vector. The 
vector a is rewritten as 

a(z,w) = Za 
W 

(48) 

and 
zc = w. (58) 

The partial derivative given in Equation 43 can now be sep- 
arated, taking advantage of the differing composition of the 
sub-components of z. The first portion is comprised of the 
first eight elements of A, and is written as 

dzl 

xa 
T dib    ,   XT ^Zc . vrdZq _ 

dzl "•■ "b dzl " "c dzl' 
l\T        a   -L. \J °   -L \J —1 -</o a„T i" Äb a„T "l"A'= a„T >■ 

(59) 

(60) 

Upon substitution of expressions from Equations 56, 57 and 
58 the last equation becomes 

Ar=-(Ar?o)+A^+A^).   (61) T 9w_ 
dzl    ^^ dzl ' Acdzl> 

H and w are not functions of the first eight elements of z, 
which comprise zQ, so we simplify Equation 61 into 

Aa = — (AQH    T-^+Afc). 

The second partial derivative portion is 

(62) 

We also alter g to include the new control vector: 

p(u,w)=|(uTu + wTw) (49) 

Equation 44 remains the same as given, keeping in mind 
that z and H have changed. Equation 45 becomes 

dU 
3w' 

(50) 

The modified set of boundary value equations given by 
Equations 47, 44 and 50 allow the additional specification of 
the force state at each endpoint, and the resulting force tra- 
jectory must satisfy these conditions. The modification of 
g to include the time derivative of the u will help minimize 
sharp changes in the applied forces to the body. We continue 
by further analyzing the form of the co-state equations. 

For notational ease define the Lagrange multiplier vectors 

•T _      T dz 
b ~ dzj 

(63) 

'l^ + Aim        (64) 
dzr 

Here, we can use some matrix manipulation and the kro- 
necker product "®" to rewrite Equation 64, devoid of the 
partial derivative of H_1, as 

AT- -A^-H"1 f££(I8 ® H-1)(I8 ® g) + 

(65) 

Finally, since performance measure g is a function of u we 
must write 

dg T ra 
Ac _    dzl     X   dzl 

(66) 

and 

thus, 

Aa = [ Ai     A2 

At = [ A9     A10 

Ac = [ A17    Ais 

A = [ Aa    I    A6 

Next, we partition z similarly as 

Z=       Za Z6 

thus, 

As ¥ 

Ai6 

A22 

AcT 

Za = H^g, 

Zfc = Za 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

\T -      8UT,U _ (AT
^

H
"M^ + AC    — f,7T VAa gZT f azl 

izf 
At> Ä7? + A<= äz?)- 

\T ew ■ 
ezj 

(67) 

Recall that z^ is actually the applied force vector u so Equa- 
tion 67 is written as 

1 9uTu 
Ac   —       AaXl        Q^J, 2 duT 

which becomes 

Xc =-AaH    ^r-u  • 

(68) 

(69) 

Equations 62, 65 and 69, often referred to as the co-state 
or adjoint equations (1975; 1970), complete the set of forty 
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■ and at the final state 

Figure 2: Initial and Final Positions 

four boundary value equations. However, notice that the 
control vector w appears explicitly in vector a in the state 
equations. Since this vector is unknown prior to the inte- 
gration of the boundary equations, it must be replaced with 
components of z and A. The condition stated in Equation 45 
provides the relationship to enable this substitution. Equa- 
tion 45 can be expanded to give 

0 = 
dg(u.w)   ,    T dz 

dwr' 

This becomes 

ldwT 

2  5w^ 
w       T dw 

(70) 

(71) 

r 0.37 -j r  0.55  1 
0.37 0.55 3.1 
0.38 0.55 3.1 
-2.0 
-1.9 

Zb = 
0.30 
0.48 

u = 
3.0 
3.2 

-1.9 0.47 3.1 
-1.9 0.47 3.2 

. -8.3 J . -2.5 J 

(74) 

The initial and final positions of the rigid body appear as 
shown in Figure 2. 

The elapsed time during the motion interpolation is a 
user-defined parameter. For this example we shall choose 
At = 2.0 seconds. The resulting graphical representation 
of the dynamically interpolated motion is illustrated in Fig- 
ure 3. 

wT = -Af. (72) 

Equation 72 is the explicit expression for the control vector 
enabling elimination of w from the state equations and co- 
state equations. We illustrate these ideas with the following 
example. 

EXAMPLE 

The ideas developed in this paper are demonstrated here 
through numerical integration of the boundary value equa- 
tions just derived. We will perform dynamic interpolation 
of a rigid body motion between an initial and final state. 
The information comprising these states are the image space 
velocity za, the image space position zt and the vector of 
applied forces and torques u. For the initial state we have 

(73) 

r °-° i r o.o -j 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 
0.0 zb = 

1.0 
0.25 

u = 
0.0 
0.0 

0.0 0.25 0.0 
0.0 0.25 0.0 

L o.o . L o.o J 

Figure 3: Dynamically Interpolated Motion 

CONCLUSION 

We have proposed and demonstrated a method for dynam- 
ically interpolating the spatial motion of a rigid body. The 
method relies on generating the equations of motion for a 
rigid body using image space kinematic entities. The bound- 
ary value equations that result from the trajectory optimiza- 
tion yield a rigid body motion that is dynamically consistent 
between the given terminal states. 
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