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Problem Statement

This research project has involved studying methods for Synthesis and Simulation
of robotic motions. The emphasis has been on the development of a scientific foundation
for design synthesis as well as computer graphics based high performance simulation for
multi-degree of freedom motions in general and robotic systems and components in
particular.

Background

Military applications of robot manipulators are usually different from the
commercial manufacturing applications in that robots are used in the unstructured field
operations where there is a need for long reach, redundant degrees of freedom, high
payloads and on site calibration and targeting. Commercially available robots are usually
designed for the more structured manufacturing applications and therefore are not
suitable for such field operations. Military robots are therefore custom designed for each
application. This means that there is a need for a set of scientific design and planning
tools that can be used in the initial design and the subsequent field testing of military
robots. This research deals with development of scientific fundamentals that can provide
the foundation for the development of such tools.

Summary of Results

The main results of this research has been published (or is being published) in the
technical literature. A summary of these publications is provided in the next section.
Here, we provide a summary of some of the main results.

The work performed under this project can be divided into two parts: one dealing
with issues associated with motion synthesis meaning design synthesis of robotic
motions, sub-components, and systems and one dealing with high performance computer
graphics simulation of robotic and general multi-degree-of-freedom motions. Several
results have been derived and development in each of these broad areas that have not only
extended the state of knowledge in robotics and mechanical system design but have also
provided impact in other areas such as computer graphics and computational geometry.
Each of these two parts are described in separate sub-sections below.

Results in Design Synthesis

In the area of design synthesis we have published seven technical papers (Papers 1-
7 in the next section). We have developed a general computational geometric structure
for mechanical motion synthesis that can be used to design mechanical linkages (see
publication No. 1). Since spherical linkages can be used to model robotic wrists, we have
applied this technique to the design of spherical linkages representing robotic wrists
mechanisms.

In the case of redundant manipulators, we have developed a set of kinematics
design criterion that can be used to generate singularity free motion trajectories.
Kinematic design arrangements have been studied for redundant manipulators that would
produce singularity free trajectories within the workspace. Redundant manipulators have
extra degrees of freedom that can be used in reaching around objects or in avoiding
singularities. These manipulators are specially useful in Army applications involving,
for example, camouflage painting of Army vehicles or in rapid repair of Army facilities.
In the past there exists very little knowledge on how to globally design such manipulators
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to assure that singularity free trajectories will exist for any set of path requirements within
the workspace of the manipulator. In this research an approach based on Lie algebra is
used and the kinematic problem for a redundant robot is formulated as a control problem.
This problem is then used to define a set of kinematic design criterion that can be used to
check suitability of a design for singularity avoidance. The results are summarized in
publication No. 2.

Another, general set of results in design synthesis has dealt with motion design for
instantaneous performance. A powerful tool used in instantaneous kinematic design is
the set of so-called "instantaneous invariants". These quantities are used to either study
differential properties of motions or to design for certain differential kinematic
performance. The problem for applying instantaneous invariants to three dimensional
linkages such as robot manipulators is that their derivation is based on the use of the so-
called canonical coordinate system which is difficult to derive for spatial linkages. In this
research we have developed a method for the derivation of instantaneous invariants which
are independent of the use of canonical coordinate system. This is described in
publication No. 3.

In terms of more specialized research in design synthesis, our emphasis in this work
has been on the design of drive systems and their components for robotic systems.
Several applications of robotic for military field operations require design of specialized
drive systems. This includes for example design and development of specialized
automatic weapon loading systems. Here we have developed a set of scientific
techniques for design and sizing of the drive system of robot manipulators including the
joint actuators and ball screw type drive mechanisms.

In this area, we have developed a method for sizing the joint actuators of a robot
manipulator. The problem is formulated as an optimization problem where the actuators
are selected to achieve a desired dynamic load carrying capacity of the manipulator over
an entire trajectory. Worst case trajectories in the robot workspace are then used to
generalize the results to joint actuator selection over the entire robot workspace.
Appropriate constraints are included in the problem formulation to prevent actuators from
being overloaded and to limit their sizes. The results are summarized in publication No.
4.

In most robotic systems, electric actuators are usually coupled with some form of
geared transmission mechanism. There has been some previous work on gearing systems
but very little work exist in understanding of ball screw mechanisms which are also
commonly used in several robotic systems. These mechanisms are also used in other one
or two degree of freedom automation systems used by the US Army such as the tilt table
ammunition loading system. We have developed the basic kinematic model of the ball
screw mechanism and have shown that much of the existing results in the literature are
based on false assumptions. We have also included in our model the effect of contact
deformation and have identified the pattern of sliding lines of contact for wear and finite
element analyses. We have used the results of our kinematic analysis to develop methods
for design and efficiency analysis of such mechanisms. The work developed under this
project represents the first comprehensive and mathematically correct treatment of the
subject. The results are summarized in two separate publications No. 5 and 6.

Since every drive system for a robot manipulator has to use some sort of a ball
bearing, this research has also looked into some aspects of the analysis of the high speed
thrust Ball Bearings. A method is developed for design of Ball Bearings that would
results in optimum contact angle and minimum friction. The method is specially useful
for high speed applications and is described in detail in publication No. 7.

Results in High Performance Computer Graphics Simulation
In the area of simulation of robotic motions, this research has made several
fundamental contributions in both kinematics and dynamics simulation as well as in the
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area of calibration and referencing for simulation purposes. The results in addition to
their applications in robotics are considered as fundamental contributions to the fields of
Computer Aided Geometric Design, Computer Graphics, Kinematics and Dynamics.

IN the area of kinematic simulation of robotic motions, a scientific foundation is
developed for motion interpolation based on the use of a kinematic mapping for spatial
kinematics. Both analytical (publication No. 8) as well as discrete computational
geometric methods (publication No. 9) are developed for design of Bezier type motions
that can interpolate a series of control configurations of an end-effector. In robotics,
generation of Cartesian trajectories requires interpolation of specified target
configurations of the end-effector. In computer simulation of large mechanical systems,
generation of tightly spaced displacements of a moving body along its trajectory may not
be cost effective. Instead, a series of displacements are generated using the dynamic
equations of motion and then the in-between displacements can be constructed using
appropriate motion inteprolants. In computer graphics, motion interpolation is a
fundamental problem in animation. In this research we have development the first very
fundamental analysis of the motion interpolation problem (publications No. 8 and 9) and
for the first time have developed a completely coordinate independent method for
interpolation of rotations (publications No. 10 and 11). We have also been able to
develop the first generation of the so-called Bezier curves in nonlinear or curved spaces
of manifolds of rigid body motion (publications No. 10 and 11). In dealing with
simulation of robotic motions, the kinematic inteprolation techniques developed would
allow smooth animation of robot motions without the need for solving the differential
equations of motions at all display sampling intervals. This results in a simulation
capability that would require much less computer power as the more traditional
approaches.

Any CAD (Computer Aided Design) based robotic simulation system requires some
level of calibration capability before it can be utilized for military field applications. As
part of this research, a method is developed for field calibration and targeting of robot
manipulators. The calibration approach would allow a robot to use targets in a site to
reference itself to its operational field environment. The algorithm developed uses
Clifford algebra to exploit the geometry of the CAD model and uniquely assigns a body
fixed coordinate system to the computer model of the object. This is important in
World Model calibration for off-line robot programming and simulation (see
publication No. 12) where the computer model has to update its object models
automatically from sensor measurements. The results, in addition to their robotic
applications, can also be useful in artillery aiming and target acquisition problems in
smart Weapon systems. In addition, we have studied the mechanics of automatic
targeting using different sensor arrangements and have developed a method for
reconstructing object or target locations based on redundant sensor measurements of
different geometric features (see publication No. 13). Although the problem lends itself
to a non-linear least squares problem, we have been able to develop a formulation that
reduces the problem into a linear problem suitable for fast computations. The results, in
addition to their application in calibration of robotic and mechanical system simulation
software packages have applications in automatic targeting for smart weapon systems.

The method, in a specialized form, has been tested by a specialized medical
instrument manufacturer (Accuray in Silicon Valley, California) for a robotic system
for Stereolaxic Radiosurgery. The results have been promising and has the potential in
improving the accuracy of their system and reducing the calibration requirements for
their device.

Al ] of the work described so far in this section has dealt with kinematic simulation.
In the area of dynamic simulation, our activities have focused on development of
methods for the formulation of dynamical equations of motion for computational
purposes and dynamic interpolation of motion trajectories. In terms of formulation of
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equations of motion for dynamical systems, we have developed a method that would
result in first order decoupled equations of motion for multi body mechanical systems.
Such equations can then be more easily integrated resulting in the computational
performance needed for high performance computer graphic simulation. The results
developed apply to not only robotic systems but also to the more general class of
mechanical systems with multiple degrees of freedom, and made of multiple bodies.
The decoupling method involves an algorithm for selecting the generalized coordinates
used to define the configuration of a dynamical system. This choice of the so-called
generalized coordinates guarantee that the resulting dynamical equations of motion
become decoupled in the highest derivative terms. The algorithm uses congruency
transformation and constraint relaxation to achieve the first order decoupling of the
resulting equations of motion. In the case of the more complex dynamical systems
where the appropriate congruency transformation may be difficult to obtain, a method is
developed based on the use of orthogonal complements that still achieves the needed
computational efficiency. The results have been used to simulate the dynamic
equations of motion for a robotic system on a moving base. This is the kind of robotic
system useful in Army field applications where a robot for ammunition loading for
example can be mounted on the back of an Army truck. The work is published in
publication No. 14.

In the area of dynamic interpolation, a method is developed for generation of
dynamic equations of motion that interpolates two end positions of an end-effector.
The problem is formulated as a two pointy boundary value problem and is solved using
a numerical method. The results are summarized in publication No. 15 and have
applications again in robotic system simulation and computer graphics animation of
rigid body motion.
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A Computational Geometric Approach to Motion Synthesis
Q. J. Ge® and B. Ravani®

®Department of Mechanical Engineering, University of New Orleans,
New Orleans, Louisiana 70148, U.S.A.

*Computer Integrated Design and Manufacturing Laboratory,
Department of Mechanical, Aeronautical and Materials Engineering,
University of CaIifomia-Davis, Davis, California 95616, U.S.A.

1 INTRODUCTION

This paper combines concepts from the field of computational geometry and kinematics.
It develops a computational geometric structure that forms the basis for solving a class of
mechanical design synthesis problems. The geometric structure presented allows formu-
lation and application o various computational algorithms and software systems to solve

or an analytic motion program, for example, for Joint actuators of a robot manipulator
for a prescribed end-effector trajectory.
The basic idea is to transform, the mechanical design synthesis problem into a geo-

then be more readily developed for the mechanical problem taking advantage of existing
algorithms and methods in the fields of computational geometry and computer algo-
rithms. The ideas presented here are extensions of the ideas in Ravani and Roth (1983)
and (1984) taking advantage of more recent computational geometric results in Ge and
Ravani (1991). The basic approach involves transforming the mechanical design prob-
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Preface

This volume contains a selection of papers presented at the 13th World Congress on
Computation and Applied Mathematics. This Congress was organized by IMACS in Dublin,
Ireland on July 22-26, 1991. The best papers in the areas of artificial intelligence, expert
systems, and symbolic computing were selected along with applications to scientific com-
puting. About one-third of the papers presented in these areas at the World Congress were
selected.

These 48 papers provide an excellent overview of the dynamic state of these closely related
fields. We foresee that scientific computation will involve symbolic and artificial intelligence
tools more and more as these software systems become more and more sophisticated. The
future systems of computational science and engineering will be problem solving environ-
ments created with components from numerical analysis, computational geometry, symbolic
computing, and artificial intelligence. The historical separation.of these fields will gradually
blur as they come together to create the high level, natural systems of the future.

We thank Georgia Connarce and Counie Wilson for their excellent help in organizing
the correspondence for the papers in this book. We also thank Robert Vichnevetsky for his
eucouragement to us in editing this volume.

Elias N. Houstis and John R. Rice
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lem into the problem of geometric curve design problem. This is made possible using a
geometric mapping introduced by Ravani and Roth (1984). The mapping transforms a
mechanical motion in the Euclidean space into a curve in a non-Euclidean space referred
to as the image space of the mapping. Ravani and Roth used the mapping and solved
the infinite dimensional form of the linkage design problem by a curve fitting procedure.
In practice, the number of specified points for the curve fitting procedure is usuelly small
not allowing global control on the entire motion of the designed linkage. In this paper,
the geometric interpolation method developed for synthesis of analytic motions is used to
generate additional desired points for the curve fitting procedure. Research is presently
underway to fully eliminate the curve fitting procedure. This is not presently tractable
since many mechanism motions can not be easily described by piecewise parametric rep-
resentations used in Computer Aided Geometric Design (CAGD).

In this paper the kinematic mapping introduced by Ravani and Roth (1984) is made
orientable making it more suitable for computational geometric algorithms. Using this
oriented form of the mapping and generalizing techniques from the field of CAGD, meth-
ods are developed for geometric design of piecewise parametric curves that are approx-
imations of analytic motions. In this manner, controlling the shape of a curve allows
dimensional synthesis of analytic motions. In the case of dimensional synthesis for a
mechanical linkage, the problem is considered in two stages. The first stage uses the
geometric interpolation to generate enough specifications for a desired motion to have
more global control on the design of the linkage. The second stage uses a curve fitting
procedure to determine dimensional parameters of the desired linkage. The approach pro-
vides for a computational geometric method for mechanical design synthesis with global
control over the entire range of the motion of the linkage.

The purpose of this paper is only to introduce the idea and develop some of the
required mathematics. The paper does not attempt to provide a complete solution of the
problem or work out general cases for every kind of motion approximation. In the case

of synthesis of analytic motions only Hermite interpolation is discussed. In relation to
* dimensional synthesis of mechanical linkages, only a simple example involving dimensional
synthesis of special spherical linkage is presented. _

The outline of the paper is as follows. We first provide a brief description of the
oriented image space of kinematic mapping. This provides for a geometric representation
for displacements and motions in terms of points and curve segments, respectively, in
the image space. Then we develop a method for Hermite interpolation for spherical
motions. This can be used to synthesize analytic spherical motions. The approach is
then combined with a curve fitting procedure for design of spherical linkages. The results
are only presented for a special spherical four bar linkage.

2 THE ORIENTED MAPPING

A screw displacement in Euclidean three-space is a rotation about and a translation
along a line in the space called the screw axis. A general displacement of an object
from one position to another is equivalent to two oppositely oriented (namely “forward”
and “backward”) screw displacements about two coincident but oppositely oriented screw

axes. The forward and backward screw displacements define two sets of oppositely signed

‘
e
!
i
(3
3




195

dual Euler parameters X = ()21,)22,)23,)24) and —X = (—f(l, - X5, - X, —)24) (see Ge
and Ravani 1991) where
X, = 4, sin(6/2),
X, = 3,sin(6/2),
X3 = 33sin(6/2),
Xs = cos(6/2).

The symbol “” denotes numbers of the form & = a + €a®, called dual numbers, where
¢ has the property € = 0. The dual numbers §; = s; + €s¥ (i = 1,2,3) are Plicker line
coordinates representing the screw axis; the dual number § = 6 + ed is the dual angle
representing the amount of a screw displacement. The sine and cosine functions of a dual
angle are defined as

(1)

sin(6/2) = sin(0/2) + e(d/2) cos(8/2),
cos(8/2) = cos(6/2) — €(d/2) sin(8/2).

More details on dual numbers, Pliicker coordinates and dual Euler parameters can be
found in Bottema and Roth (1979).
The dual Euler parameters (1) can also be written in the form of X; = X; + eX?,

i=1,2,3,4, where

X, = s;15in(8/2),

X = s95in(8/2), @

X3 = s38in(0/2),

X4 =cos(6/2)
and
: X9 = 5,(d/2) cos(8/2) + s3sin(6/2),
X9 = s,(d/2) cos(6/2) + s3sin(8/2),
X3 = s3(d/2) cos(6/2) + s3sin(8/2),
X9 = —(d/2)sin(6/2).

The parameters X = (X, Xy, X3, X4) are the Euler parameters of a rotation and the
parameters X° = (X7, X3, X3, XJ) represents a translation after the rotation X.

Study (1891) used the dual Euler parameters in the form of (X, X°) and developed a
geometric representation for a spatial displacement in terms of Study vectors which repre-
sent oriented lines in a space of four dimensions called the Soma space. A recent account
of the Study vectors can be found in Bottema and Roth (1979). Ravani and Roth (1984)
used the dual Euler parameters in the form of (1) as a set of four homogeneous coordi-
nates to define a geometric mapping of displacements into points of a three dimensional
projective space with a dual metric called the image space. Thus a one-degree-of-freedom
mechanical motion is mapped into an image space curve; and a two-degree-of-freedom
motion is mapped into a two dimensional surface in the image space. They then solved
the linkage dimensional synthesis problem by a curve-fitting procedure for an algebraic
curve.

Ge and Ravani (1991) made the geometric mapping of Ravani and Roth orientable
by considering the signed dual Euler parameters as the signed homogeneous coordinates
of an image point. Instead of identifying the points X and WX (where @ = w + eu® is
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a nonpure dual number) completely, Ge and Ravani distinguished them according to the
sign of w. They are considered to be identical if w > 0; and they are two antipodal points
if w < 0. Two antipodal points are two distinct points occupying the same position in the
image space but with “opposite orientations”, namely “forward” and “backward”. In this
way & general displacement, which can be performed either by a forward or a backward
screw displacement, corresponds not to one image point but two antipodal points. The
image space consists of such antipodal points is called the oriented image space. It is a
double covering of the original image space.

The introduction of orientation into the image space makes it possible to unambigu-
ously define the distance between two image points, and the directed line joining from one
point to another. Let X = (X, X3, X3, Xy) and Y = (¥}, 13, Y5, Y4) denote two oriented
points. The distance between them is the dual angle @ = o + ¢l (where 0 < o < )
obtained from: o

XY
(j( . )‘()1/2(3‘( . {()1/2’
where the inner product, X- ¥ = X,V + Xtz + Vs + ) AZRE signed dual number.

The norm of X is VX - X and )‘(.is said to have normalized coordinates when X-X = 1.

The line joining from X to Y is given by the wedge product X AY. The symbol
“A” denotes the vector wedge product which generalizes to higher dimensions the vector
cross product, see Flanders (1963). The components of X A Y are the signed Pliicker
coordinates of a line. Here the sign is significant because —X A ¥ = ¥ A X represents
a line joining from Y to X. They define two coincident but oppositely oriented lines.
Similarly, the orientations of a plane defined by three oriented points and a tetrahedron
defined by four points can also be unambiguously defined.

(3)

cos@ =

3 INTERPOLATING ROTATIONS

Recent works on rotation interpolation that are related to our approach are Shoemake
(1985, 1987), Duff (1986), and Pletinckx (1989). They developed subdivision methods for
interpolating rotations using unit quaternions. Ge and Ravani (1991) built on their works
and developed analytical methods for interpolating general displacements (including both
rotations and translations) with higher order continuities. This section applies the re-
sults in Ge and Ravani (1991) to Hermite interpolation of rotations which correspond to
spherical motions.

Given two distinct orientations of an object in space together with two instantaneous
rotation axes at these orientations, a cubic parametric motion can be designed using
Hermite interpolation. Essential to Hermite interpolation is the ability to define the
“tangent direction” of an orientation. In this paper, we define the tangent direction using
the notion of absolute polarity since the image space is a projective three space with an
elliptic metric. Let an orientation be represented by an image point X = (X1, Xz, X3, Xe)
where X; (i = 1,2,3,4) are given by (2). Its tangent direction is then defined by a point X
on the polar plane of X with respect to the absolution 2 = X-X = 0, that is X’ is defined
such that X'- X = 0. Let p = (p1,p2,ps) denote the coordinates of the instantaneous
axis at the orientation X. Then the corresponding polar point X' = (X}, X3, X%, X%) is
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given by
X1 0 =-p3 P2 m X1
XK0_|p 0 -pop Xz (4)
X3 -2 0 p3|| Xs
Xﬁ -p1 —p2 —p3 O X4

The skewsymmetry of the matrix in (4) results in X’- X = 0 for an arbitrary p. Readers
are referred to Coxeter (1961) for more explanations on the absolute polarity of the elliptic
geometry.

We now turn to the Hermite interpolation of orientations. Let X, and.X, denote
the coordinates of the image points for two given orientations, respectively. In order for
the interpolation to be unique, these coordinates are required to satisfy X, - X; = 1,
XXy = 1, and X, - X; > 0. Geometrically, this means that the coordinates are
normalized and the angular distance between X, and X, is less than m/2. Let py and
p2 denote, respectively, the coordinates of two given instantaneous axes. Then the two
corresponding points X} and X polar to X; and X, respectively, with respect to 2 =0,
are can be obtained using (4). The image curve for the cubic motion that starts from
the orientation X, with the initial instantaneous axis p; and ends at the orientation X,
with the final instantaneous axis p; is obtained by the following Hermite interpolation

wlxl
143 42 w X _
‘LU2X2
where [M}] is the Hermite basis matrix:

2 1 1 =2
-3 -2 -1 3
M= o ] 0 0
1 0 0 0

The Hermite cubic image curve in normalized coordinates is given by
X(t) = P(t)/w(t) (5)

where w(t) is the norm of P(t). The weighting factors wi, w/ (i = 1, 2) provides additional
adjustments to the shape of the cubic curve.

In this manner an analytic spherical motion can be designed using Hermite interpola-
tion based on specifications of a set of discrete orientations together with an instantaneous
axis at each orientation. The resulting piecewise Hermite interpolation is automatically
C! continuous. Using the differential geometry of the image space (McCarthy and Ravani
1986), the instantaneous poles can be chosen such that the interpolated motion possess
higher order continuities (Ge and Ravani 1991). '

This approach is not restricted to Hermite interpolation. Other forms of interpolation
can also be utilized. For example, rather than specifying two displacements together with
two instantaneous poles, four displacements can be specified and interpolated using Bézier
interpolation. Ge and Ravani (1991) developed a general mathematical framework for
designing parametric motions by generalizing techniques in the field of CAGD.
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Figure 1: A spherical kite linkage

4 SPHERICAL KITE MOTION

The spherical kite linkage is a spherical four bar mechanism with two pairs of neighboring
links having the same angular length, see Figure 1. Let the angular length of each link be
denoted by ~ for the ground link, 7 for the coupler and py, p2 for the two cranks. In this
paper it is assumed that v = pi and 1 = p,. The kite linkage has two folding positions,
the left and the right.

It is known in the theory of kinematic mapping that the image curve for the coupler
motion of a spherical kite linkage consists of alineand a cubic curve, see Ge and McCarthy
(1991). They correspond to two “modes” of the coupler motion: the line represents the
continuous rotation of the coupler about a fixed pivot; and the cubic represents the cubic
rotational motion of the coupler. The line and the cubic intersect at two points which
correspond to the left and right folding positions. '

To derive the constraint equations needed for the design of a kite linkage, we consider
the coupler 7 to be the link common to the two two-link open chains on the left and on
the right. We assume the fixed and moving pivots of the linkage to lie on a unit sphere
and we attach & moving frame M to the coupler and a fixed frame F to the ground.

‘Let the unit vectors w; = (ui,v;,w;) (i = 1,2) define the positions of two fixed pivots
in F, and m; = (ms,ni, ki) (i = 1,2) define the positions of two moving pivots in M.
Let X = (X;, X2, X3, X4) denote the coordinates of the image point for & rotation of the
coupler link. Then the coupler as the link common to the two open chains is constrained
by the following two equations quadratic in X:

Qi : XT[Q)X=0, i=1,2 (6)




where the coefficient matrices [Qi] (i = 1,2) are given by

myu; — Nav; — liwi — €os pi na M
Qi = UM —mi; + 74 — liw;i — oS i
(@l = L +maws L +niwi
naw;— L L —myw;
Liug +maw; nw; — v
l,-v,~+n,-w; l,"U.,' — T W;
—mits; — Ui+ liwi — €os i v — il
Miv; — TH My -+ 1+ liwi — 008 i
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The set of image points X satisfying (6) are said to define 2 quadric surface in the image
space, see Ravani and Roth (1984). The quadric surface can be further interpreted as
a right circular real hyperboloid of one sheet (Ge and McCarthy 1991). The size of
the hyperboloid is determined by the crank length pi; the position of the hyperboloid is

determined by the locations of the fixed and moving pivots w; and m.

The intersection of the two hyperboloids defined by equations (6) is the image curve
of a general four-bar motion. It is a quartic curve of the first kind (A quartic curve of
the second kind lies only on one quadric), see Snyder and Sisam (1941). The problem of
dimensional synthesis of a spherical four bar linkage is then translated into a geometric
problem of adjusting the sizes and the relative positions of the two hyperboloids such
that their intersection approximates the image curve of a desired motion. In the case of a
spherical kite linkage, the size of each hyperboloid is not an independent design variable.
This is due to the two special conditions among its link dimensions: ¥ = p1 and 7 = p2.

These conditions result in the following relationships among the design variables:

CoS py = Uy + ViV2 T W1We,
COS P2 = T M2 + nyng + Ly,

(8)

Therefore the shape and location of the two hyperboloids and thus their intersection
curve is determined by eight independent variables from the unit vectors uy, ug, My and
m,. The substitution of (8) into (7) results in the equations for two special hyperboloids,
denoted by Qi(ui,my,uz) and Qa(uz, ma, my), respectively. These two special hyper-
boloids always have a line in common. The rest of their intersection is & twisted cubic
curve, denoted as K (X; uy, ua, my,my). The problem of dimensional synthesis for a kite
linkage is then reduced to that of selecting the unit vectors w;, Iy (¢ = 1,2) such that

K(X;u),uz, my, ms,) approximates the image curve of a desired motion.

5 DESIGN SYNTHESIS OF A KITE LINKAGE

Traditionally, & desired motion is specified by a set of discrete positions so that the
actual coupler motion may best guide through them. This specification, however, does
not have much global control over the coupler motion. In this section, we apply the
~ Hermite interpolation method for design of an analytic cubic motion. We then use this

« analytic motion as a desired motion and use a curve fitting procedure to design the linkage

parameters. We have chosen the kite spherical four-bar linkage since its image curve is
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a cubic curve and the Hermite interpolation method that we have developed is also for
cubic curves. In theory, the results can be generalized to any linkage, for example, by
using Bézier , B-spline or Cardinal spline approximation/interpolation.

We start the specification of a desired motion by a set of image points representing
discrete positions. We then design a cubic curve of desired shape by piecewise Hermite
interpolation of these points. The resulting polar points at each given point is then used
as additional design specifications for the desired coupler motion.

Let Y; (i =1,2,---,n) denote a set of image points representing desired orientations,
and let Y’ denote the polar points representing the desired tangent directions. Then the
problem of designing a kite linkage is to choose the unit vectors u;, ug, my, and m;y such
that at least one measure of the approximation error of Y; and Y! from the twisted cubic
K(X;u;,up, my, my) is minimized.

Ravani and Roth (1983) defined the approximation error at a desired image point as
the normal deviation of the point from the actual image curve and developed a normal
curve-fitting technique for motion approximation. In what follows we modify the approxi-
mation error defined by Ravani and Roth to include the prescribed tangent requirements.

Let X:, X/ denote, respectively, a point of the twisted cubic K and its polar point
with respect to K. Let AX; = X; ~Y; and AX) = X!~ Y/ denote the deviation vectors
where Y; and Y;' are the desired image point and its polar point. The normal deviation
defined by Ravani and Roth (1983) satisfy the following linear equation:

[A]AX; = q; (9)
where
2YT Q1
[A] = 2YiT[Q2]
2Y7T
and

a = [-YTIQIY: — YT [Q]Y: 07

Eq.(9) is a linear approximation of K near the desired image point Y.
The polar point X/ of X; with respect to the cubic K is defined by the four dimensional

unit vector: .

_ (QUXA QX AKY)

I ([QUX: A [Q2)Xs A X))

The symbol “” denotes the star operator for multivectors which transforms, in this case,
a multivector of rank 3 into a vector, see Flanders (1963). The symbol [ - | denote the
Euclidean norm of a vector. By substituting X} = Y} + AX} and X; = Y; + AX; into
(10), we expand (10) about the polar point Y! at Y;. This yields, after discarding higher
order terms involving AX; and AX],

QY AQ2 YiAAX) +* (YA QI YNQ]AX) + ([Q]YAY: AQ1AX:) +CAK, =2Pi);
11

XI

(10)

where
pi = CY} =" ([QYiA[Qa]Y: ATYS)

JRTEo T N
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and

C = ["([Q]Y:A Q] Yi A Y.

Eq.(11) which approximates the specified polar point can also be rewritten as

Eq.(9) together with (12) is a system of seven linear equations with eight unknowns.
The minimum norm solution, (AX?, AX'), of this system is the one that minimizes the
following Lagrangian function:

L= AXTAX: + AXTAXY + AT (A]AX: — qi) + A ([B]AX: + CAX; - pi),

where )\, and A, are vectors of Lagrange’s multipliers. The approximation error function
at cach point Y; that includes both orientation and tangent requirements is thus defined
as

e = AXTAX; + AX/;TAX'.

The total error is obtained by summing over all points Y (i=1,2,---,n):
E = S(AX;TAX; + AXTAXY).
i=1
Standard routines for nonlinear least squares optimization can then be applied to obtain

the design parameters w;, my (i = 1,2).

CONCLUSIONS

This paper demonstrated that methods from continuous computational geometry can be
used with the aid of an orientable kinematic mapping for mechanical motion synthesis.
The initial ideas presented form the basis for more research that would bring together
the fields of computational geometry and kinematic design.
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A Kinematic Design Criterion for
Singularity—Avoidance in Redundant Manipulators

R.M. Sardis
B. Ravani
R.M.C. Bodduluri

University of California, Davis

Abstract

In this paper, we study a set of conditions that de-
fines a kinematic design criterion for a redundant robotic
- manipulator in order that it can genenze singularity-free
trajectories. The design criterion is enforced on a scalar
function on the joint space that is positive everywhere
‘except at singular configurations where it vanishes, and
2 normal ‘véctor funchon that Lifts the paths away from
"the singular oonﬁguntm Atheoremuatatedcpeafy
ing the deagn éritetion on the functions and is proved for
a general m degre¢ of freedom robot in‘an n dimensional -
space. The conditions are global in the sense that when
these conditions are met for 3 given robot, any path in
its workspace can be generated avoiding singularities. An
example is presented that demonstrates how to identify
the functions to evaluate a design..

Keywords: Redundant Robot Manipulators, Design of
Robots, Singularities, Singularity-Free Control, Kine-
matic Control.

1 Introduction

The control of redundant manipulators has become a popular
topic of research’in the field of robotics. Redundant robot ma-
. nipulators have been considered the solutions.to the problems
of trajectory planning which is often. plagued by singularities in
. case of nontredundant robots. The idea 'is that the available ex-
tra degrees of freedom can be used to avoid singularities. In this
-paper, we develop a kinematic criterion to evaluate the design
of a robot in a global sense in terms of lts abﬂ.lty to genera.te
ungula.nty -free paths. ~ b
-Past research in mbotzos has focussed in’ developmg “algo-
nthms to -avoid- mngnlanhes for redunda.nt robots. - Whitney

{(1969) first proposed resolving redunda.ncles “in- robots” nnng‘

pseudoinverse techniques which were exte.nded by ‘miany re-
‘searchers such as Klein and Huang (1983), ‘Klein (1984); Holler-
bach and Sub'(1985). In particular, Yoshikawa' (1984, 85) de-
ﬁnes a ‘ma.mpnla.bmty mde)g based on the Ja.oobxa.n of the robot.
.away from them. By maximizing the mainpulability index at
every point of the trajectéry, his algonthm kéeps the robot as
far as possible from the singular configurations. Long and Paul
(1992) develop an algorithm that treats the redundant robot
as a nonredundant robot by locking the extra joints. When
‘the equivalent nonredundant robot reaches its singular config-
urations, the extra degrees-of-freedom are used to move away
from the singularities in an algorithmic fashion. In both these
.cases, the singularity-avoidance is guaranteed locally if there
exists such a path. However, there is no a priori information
on-the existence or nonexistence of such paths, nor there is any
singularity-avoidance in a global sense. In this paper, we focus
our attention to the conditions that identify robot designs that
can always provide singularity-free movements. We show that in
our general and global treatment of the problem, we encompass
Yoshikawa’s result as well.

A designer’s approach .to avoiding singularities is to design
a singularity-free robot. There have been many attempts in the
past in designing robots with minimum number of singularities.
Soon it -became obvious that singularity-free workspaces are
nonexistant in nonredundant as well as redundant robots (which
is proved using topological arguments by Gottlieb 1986, and fol-
lowed by Wampler 1987, 89, and Baker and Wampler 1987, 88).
However, one can expect that certain designs-have the capa-
bility of avoiding singularities for any path in the workspace.
This paper. presents conditions that would allow testing a kine-
miatic designto seeif it has the capability to produce, globally,
singularity-free: tragectones

_In what follows; we first- formula-te the problem of inverse
kinematics of a general m degree of freedom robot as a control
problem in the velocity domain. Then we present the functions
that play the key role in our result followed by some examples
on how to choose these functions. A theorem is then stated
and proved that enumerates the conditions these functions have
to meet that guarantees the existence of nonsingular paths. A
second theorem follows as'a modxﬁca.tlon of the first theorem to
ease the computahonal a.spects Finally, we consider the exam-
ple of a'four jointed sphencal wrist (considered by Yoshikawa.
1984, 85 and Ipng and Paul 1992 Longet al 1992) and evalute
its deslgn usmg our ]nnematxc demg;n cntenon

2 . The Inverse 'thematicsA»Pfoblem

A robot ma.mpulator oonsmts of sevexal ngad bod.les oonnected
by various types of Jomts Several representatxons have heen
developed in. the robotxcs hteraxure to represent ‘the mter-
oonnecnons of these ngld bodxes, a.nd the rela.txonslnp of ‘the
end-eﬂ'ector to the base of the robot One of them seemed to
ha.ve emerged as m_oxfe popular as we]l ag geom tnc, 4 X 4 ma.-
tnoes using the,kDenavut-Ha.rtenberg pa.ra.metets . We use thxs
representa,txon in what follows, however, the theory is vety gen-
L of the representatxon scheme .

" Let'us oonmder a robot .with m degrees of ﬁ'eedom Each
degree of freedom denotes the capability of one deg:ee of free-
dom joint, In general, each joint can either be revolute or pns—
matic. ‘If thére are r revolute joints and p pnsmatlc joints
where m~= p + r, and the joint variables are denoted by
g,t = 1,2,...,m, then the 4 x4 transformatior matrix that
defines the location and orientation of the end-effector to the
frame is given by the kinematic equation:

T=Ty(@):(@)  Tmlgn) (D)

where T;is a4 x4 transformation matrix describing the kine-
matic relationship between the ith link and its next onme, the
(i+1)th. Its actual form depends on the geometry of the robot,
and is given by

cosf; —sinb;cosa; sinf;sine; a;cosb;

sinf; cosf;coso; —cosb;sina; a,sm0
T; = . , (2)
0 §in oy cos o )
0 0 0 1




Figure 1: Denavit-Hartenberg- pa.rameters assoua.ted with a

robot.

where a;,a; are the link parameters, and 'd;,6; are the joint
parameters together kmown as Deriavit-Hartenberg Parameters
(Figure 1 shows these parameters). - The -degree’of freedom: ¢;
will be equal to 0 xf the sth‘joi.n’t is’ revolute or to d, 1f it is
prismatic. <

The matrix T deﬁnes the lomtlon and orientation’ o{ the
end-effector of the robot with’ regpect-to its base, that i is, it in-
volves a 3 x 3 rotation matrix; and a translation vector:: There-
fore, this matrix, in general, spans:the space:of -three dimen-
sional displacements, known' as Euclidean Group<E(3), which is
a composition of the group of rotatxons 50(3) and the group of
translatxons T(3), therefore :

E(3) = S03) xT(3). @

This group of spatial displa.oements can be parameterized by
six mdependent pa.ra.meters, typlca!.ly by three a.ugles of rota-
- tion about mdependent axes and three tra.nslatxon parameters,

and hence represent a G-dxmensxonal mamfold 'known as config-
uration mamfold of E(.?), or'in tlus case con mtwn m.amfold
of the end-eﬁ'ector The, functxons that deﬁne the displacement
matrix are infinitely differentiable with respect to the parame-
ters, therefore the ma.mfold is smooth. :

A set'thatis botha gioup and & smooth mamfold on whxd:
oompost'uon and inversion appear as smooth maps 1s a Lie
group.  The oonﬁgurahon manifold of the end effector is a group
a.nd a’&mooth’ mamfold moreover, the oompomtlon ‘aiid inver-
aon are deﬁned in terms of the ma.tnx mnltxphcaxxon and ma~

from M- N or’ symbohca!ly,

W=I@ @

where y denotes the posmon of the end-effector, a.nd z denotes
the values of the joint degrees of freedom. The mapping f,
known as forward kinematics, relates the joint variables to the
end-effector position, and its inverse f~!, inverse kinematics,
maps the position of the end-effector to the joint variables. As
is very well-known in the robotics literature, the forward kine-
matics is single-valued, whereas the inverse kinematics is not,
due to the non-linearity of the equations, therefore, f: M — N
is an onto mapping.
We differentiate Eq. (4) with respect to time ¢ to obtain

y=dflcz ()

where the () denotes the derivative with respect to t and df|, =
df/dz. Note that now we have transformed the problem into
the velocity domain, that is, the mapping d f|; relates the points
in the tangent space T'M of the joint space to the tangent space
T N of the configuration space of the end-effector, d f|; : TM —
TN.

Both Eqs. (4) and (5) represent the inverse kinematics prob-
lem. Given a path in y(2) in the configuration space, the goal
of inverse kinematics problem is to find z(t) for all ¢. However,
at some locations, the mapping f becomes singular, that is )
may not be in the image of df as it is not of full rank at sin-
gularities. Our goal is to find z(t) such that it does not pass
through any of the singularities. -

Therefore, we state the problem of inverse kinematics as
follows: ’

Given y(t) € N, find z(t) = f~1(y(t)) € M\ S for all ¢, where
M\ S is the joint space exdud.mg the singular configurations §
defined as

S={zeM| ra.nk (df]:) < n}.

3 Inverse Kinematics as a ‘_Co’ntrol“ﬁProb-

We transform the above mentionéd jnverse kinematics problem
into a oontrol problem wluch even ually yleld.s the
terion we have been logking for., Moreover, this approach also
results in 2. control that avoids. smgulantres, though the topic of
this paper is just to present the design criterion. ~ --

We first define three functxons that are needed in the follow-
ing theory

1. a scalar function or a parameter p : M — [0,00) with
p(z)=0ifandonlyifz€S; -

2. a vector lifting function A : (M \8)xTN — TM such
that

(a) A(z(t),(t)) is a right-invariant vector field on M,
and : AN o

® .

L REERY) _;ylf(,,, e

(a) B(t) isa nght-mvanant vec’oor ﬁeld on- M and -

) £
B(‘)l:(:) € kﬂ'(df l:(!))r A (7)

The nght-mvana.noe of the vector ﬁelds 4\ a.nd B is: not‘ nec-
essary, for. the: proofs of the theorems prwented in this. paper.
However, they are’ useful in, developmg he-actual. control that
tracks sxngnlanty—free trajectones, which is the mbject of afu-
ture paper.! - i .. I T R .
.-Thei inverse hnema.tws problem js'to be able to rdenhfy =(t)
therefore, z(t) can heexpressed ag .

0= A(z(z),u(t))w(t) @

Substltmng for Z from.th.\ ] .qua.tlon in the ngbt haid side of
Eq. (5), weseetha.t o

“dflz4(2) = dflz'\(z(t), v(i)) +dflB(t)

which can be simplified using the definitions of the functions
(Eqs. 6 and 7) to

dfled(t) = §(¢) + 0.

" Therefore, the solution z(t) of the differential equation (8) is in

fact the solution of the inverse kinematics problem specified in
Eq. (5).

Our goal in solvmg the inverse kinematics problem is to find
the control B(t) such that the solution z(t) € M \ § starting
from z(0) = f~}(y(0)) for all ¢.
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Examples of Choice of p and A
Example 1: Define

#z) = de(J(2)I7(2)),
Xz,9) = J*,
B(t) = b(t)(I—J"J)%,

where J* = JT(JJT)~! and J is the jacobian of the robot. Note
that the scalar function p is zero only when z € § and otherwise
is positive. The vector function A satisfies its properties as well.
This, as a matter of fact, is Yoshikawa’s algorithm.

Example 2: The following gives a more computationally effi-
cient method of finding p and A:

o define p(z) = |v;| where v; is the smallest eigenvalne of

H

o define A by solving the equation d fl,(A(z, y)) ¢ by sin-
_ gular value decomposition.

p is now only continuous, not smooth. X'is the same as
before, but howeyver this definition does not require the. compu-
tation of the matrix, J‘ and is defined even when z € I3

4 Conditions for the . Existence of
- Singularity-Free Paths

The follorwmgtheorem lists the conditons on;tjle existence of

singularity-free paths for a given design of robot:,

Theorem 1 Let f:M—=N,p:M —[0,0), and A as before,
and assume that f satisfies the following three conditions:

1. ¢>0;
2. there is an integer i such that xoM(y) = u fory € N;

3. there is an open neighborhood W of the identity element of
M such that for any y € N and any z € M, the translate
zW of W intersects M(y) in at most one point;

where o and M(y) are defined by

= mf{ p p(E)}
A . f x()
and
M(v) ={z€f 1(!!) Ip(z) .. ;up )P(f)}

for each y e N and where to(M(y)) is th numbcr oprath
comiponiants of the sét:M| (y)

Let § : [0,00) — TN"be'a coritinsous functwn. JI7zen, given
any € > 0, tbenuabontmlvectorB(t)mchﬂxat‘tfzo is
in- M(f(z5)) ‘then the’ solutzon to Bq (8) satxsﬁes P(=(2)) >
(1= ¢€)o; for allt [

.. The first.of the conditions is a necessary condmon for the
existence of a singularity-free solution. g will be stnctly greater
than 0 if and only. if, for every y €.N,.f71(y) contains points
lying outside the sigular set S, as at the smgulantxes pis iden-
tically equal to zero as per its definition. The second condition
requires that the number of maximal points of p restricted to
F~}(y) be constant for all y € N.. This number is the number
of paths available as the nonsingular paths. Finally, the third
condition guarantees that these different nonsingular paths are
nonintersecting which guarantees that there is tubular range
around each of these paths that are nonsingular.

When all these conditions are met, the theorem states that
starting from zo € f~(yo) one can follow 2 path arbitraily
close to p(z) = o for all y € N. A brief proof is presented in

“the Appendix A (see Sardis 1988 for a more rigorous proof).

Note that when a robot satisfies these conditions for any
arbitrary choice of the functions p and A, the robot is guaranteed
to follow any trajectory in its workspace avoiding singularities.

Fxg'\ii'e'2: Schemaﬁc of a four'joi’nted spherical wrist.

Therefore, these condmons can be conmdered as the criterion to
evalua.te the design of an existing robot or as the design criterion
the process of desxgmng a new robot.

T practxce, the hypotheses of Theorem 1 are too, restnctxve
for typxczl real robots they can, hovVever, be relaxed somewhat
as we show in the foliowing Theorem.

Thearem 2 Suppose M = M, UM, with p constant on M; and
f(M3) contained in a submanifold of N of dimension at most
(m-2). Write Ny = f(M1). Define o as before and assume

1.0>0;
2. xoM(y)=p forally € Ny;

3. there is an open neighborhood W of the idenitity element
of M such that for any y € N; and z € M, the translate
zW of W intersects M(y) in at most one point.

Then, given y(t) and € > 0, there is a control vector - B(t) such
that if 2o € M( f(=), the solutwn to Eq. (8) satisfies p(z(t)) >
(1-¢€a far all t.

Notice that this theorem is a slight morhﬁcatxon of the earlier
one. The second and third conditions deal with only part of the
configuration manifold of the end-effector instead of the:whole
manifold, that is, Ny instead of N. This is possible because the
parameter. p is constant on M;.' We.do not present ‘the proof
for.this theorem in this paper, however it is similar to the proof
of Theorem 1. The followmg examplea demonstrate how. this
theoremca.nbeused RTINS . . .

5 An Example '
- 1

Figure 2 shows a four )omted sphencal wrist. Note thax the
four axes intersect at one point which is known as the wrist
center’ pomt (WCP). Therefore, the last link (the end-effector)
only Totates (does not translate) with respect to the first link
(the base). The configuration manifold is hence SO(3) and is
of 3 dimensions. The transformation that denotes the position
of the end-effector relative to the base is given by - -

cos8 01 —sin 01 0 1 0 0
y = | sin; cos#y O [} 0 cosf, —sind,
0 0 1 ‘0 sinf; cosby
cosf; O sinb; cosfy —sinby O
0 1 0 sinfy cosé, 0] (9)
—sinfz 0 "cosés 0 0 1

The right hand side of the above equation denotes the mapping
f : M — N where z = (01,92,03,0().

We now need to define the parameter p, it has to be positive
valued everywhere in M except at the singularities where it




vanishes. Singularities occur for this robot when two pairs of
joint axes line up, that is when TN loses its rank from 3 to 2.

We will use a different parameter than those given by earlier
examples. Choose unit vectors a;, a3, a3, and a4 parallel to the
joints of the wrist, and define

p(z) = max(lay x a3}, faz X ay]) (10)

where g;,1 = 1,2,3,4 are funcitions of z. Note that this ex-
pression becomes zero only when @; is parallel to a3 and a; to
ay, otherwise it is equal to the maximum of the absolute values
of the sines of the angles between the two pairs of the axes.
This is the same condition for the singularities as the four axes
becoming coplanar.

For a given y and a value of §;, the inverse kinematics prob-
lem yields two solutions, analogous to elbow-up and elbow-down
configurations of a three link manipulator. Therefore, as we vary
6, through its range, the inverse kinematics solution of the four
degree of freedom spherical wrist are obtained as two curves in
the joint space, both parameterized by 0, These are also known
as fibers associated with the mapping f-1 : N — M. Note
that p(z) attains maximum when the angles between ay,a3, and
az,q beoome :i:90" which implies that's = 1 Hence!'the func-
tion p(z) remi4ins constant and equil ‘to Tif af 18 pua]le] 1
and otherwlse a.tta.ms four local i maxima on “each fiber." ¢

Now,"if y is’ an ‘ofientation havmg ai para!l' ) a;'the_u
p(f- () is eonsta.nt and non-zu'o, thexefore we efix

Mz = {zlalxa( 0}1
M, M\Mz A

1t can be seen that p has a constant valne 1on all of M’;, and
J(M3) has the dimension 1 as it is the set of all rotations about
) or a4. )

# = xoM(y) is the number of local maxima for all YEM
which is four on each of the two fibers, that is s = 8. Finally, if
we define

W={z]|6]<45° lozl <90°}

the third condition of Thereom 2 is satisfied as well. There-
fore, accordmg to Theorem 2, ngen any smooth trajectory v(t)
we can track y(2) by & continuous change ‘of oon.ﬁ.guratlon z(1)
which will keep p(z) arbitraily. close to 1, that i 1s, ‘the wrist ml]
never encounter a xmgulax oonﬁgn.ratxon i .

6 Conclusmn o

I.n tlns papa’, we ha.ve formulatea the inverse lnnematxes prob—
lem in-a controls sefting: In- thxs setting; onr goal is'to’ inives-
- tigate'if the-redundant-robot -can’track’ any trajectory in’ its

“workspace avoiding the smgnla.ntxes“ Two'theorems’ speufy the
conditions that’ globally guaranteée the existence of such paths
regardless of the’ pa.th of the end-effector. undet conslderatxon
We have also applied the théorems to the four- Jomted sphencal
wrist that has appeared in the literature before. ;

. The existence of the control vector B(t).is gua:anteed to
avoid the angula.ntxes ‘however, we haven’t determined the con-
trol B(t) that actually guides the robot on the desu-qd tra)ec-
tory, This will be the topic of a iuture paper.
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A Proof of Theorem 1

First we consider the following two Lemmas.

. by the following Lemma and Definition, .

Lemma 1 Suppose F' is a smooth manifold, Xo(t),...,Xx(t)
smooth vector fields on F, and assume that Xot),.. - Xi(t)
span the tangent space T F for all z € F and for aII values
of t. Let U be an open set.in R* and let ¢ : U — F be a
continuous one-pa ter family of open maps. Assume zo €
éo(U). Then there are continuous control parameters u; (t) such
that the solution to

2 = Xo(t)+ w()Xi(t) +--- + uk(t)Xk(t)
z(0)

satisfies z(t) € ¢(U) for allt > 0.

Proof: Without loss of generality, Xo(t) = 0 gince, ‘the X;
span the tangent space of F. Take z.€ U/ such that ¢o(z) =1z
and define a curve a(t) := ¢¢(z). Then aft) is a continuous
curve, with -a(t) € ¢(U). Since ¢:(U) is open and ¢(z) is
continuous in ¢, & can be approximated by a smooth curve z(t)
with 2(0) = zo and z(t) € ¢¢(U). Define w(t) := X; (t)(z(t)),
then #(t) = = ui(2)Xi(t), since X; span T F. -

The connection between Lemma 1 and Theorem i given

Lémmia 2 Forany6>0therc:sanopennaghborhood1/of1
in M, such that for'anyz in M and any z € 2V, [p(z) p(z)|<
é..

“* Proofs First, for every T € M take ane;ghbmh'o’o&‘ W, of 1
with {p(z) - p(z)l < §/2 whenever z €:2(W.; this:is posnble
since p is a continouous function. Then {zW,},Gu is an open
cover-of M, and M is compact 50 there is a'finite ‘subeover
{z:W,.. ,szg} Define V := Wi()...\Wi: Now take an
zin M and a point z in zV. z € z;W; forsomeJ, and so
2 € (2;W;)V < 2;(W; . Then

lp(2) = 2(2) < Ip(2) = p(z;)| + lp(z;) - p(2)] < 5/2 +é2=4.

Let f: M — N and A be as before with 7 2 smooth path in
N. Pick a time t € [0,00) and let F be a subset of f-1(z).

- Assume that F does not contain any singular points. Let
1; be a subinterval of [0,00) containing ¢. Then if I, is small
enough, for any-z € F we can lift [L;] to a path N

7=(0) A(’rz(f),‘r(i))

This gives a map ¢ : FxL — Mby ¥(z,8) = 7,(3) Denote
the image of ¢ by T¢.

Definition 1 Ty wsaxdtobeatubularmterval aboutF (untb
m.spectlof,:\ and1)xf¢z FxI,—oMtsahomeomorphwm

v Anns =

_ Proof of Theorem i: Itis suﬂi -en it 0 pMQme result, ibr
£in an’arbitrary’ compact interval [0;; :
= {(z,0)1t€ 0,7,z € M(y(£)), the

is
of a.ll ma.nmal -points of .p(z) in the fibers, over.y in the, spaoe

M X[0,7): K is a closed set. Deﬁnepmh M x[0; r] = [0,7] .
by projection.

Suppose.K; is a connected component of K; by the third con-
dition of the theorem, , Proj; i one-to-orie on Kj;, mnoe Usek! ‘20
covers K;: Also, K; is closed since K i is. So pxoh g;wes ‘a p-fold
cover of [0, 7'by closed sets.:

Now let Ko be the componant of K- -containing the point
(20,0); we want to show- that proj,(Ko) is all of [0,7]. So,
suppose that proj,(Ko) = [0, 7o) for some 13 < 7. Define K; to
be-the union of all other path componants of K containing a
point in f™}(75)z{7o}. But then

By = proj,(Kop)
Ry = proj,(K \ K1)\ (0,7)

are disjoint closed sets whose union is all of [0, 7); so since 0,7}
is connected, proj,(Ko) is all of [0, 7].

Now, since projy(Ko) = {0,7] we can define a continuous
function « : [0,7] — M by the relation {a(t),t) € K, for t €
[o,7]. ’




We now define a set U and collections of smooth manifolds
F; and open maps ¢} : U — F,, and apply Lemma 1.

First, by Lemma 2, choose a neighborhood V of 1in M such
that for any z € M, |p(z) - p(z)| < o€ whenever z € zV. In
particular, if z € a(t)V for any ¢ then

p(z) 2 pla(t)) —eo
2 og—¢o
= (1-¢)o.
Let U be an open set with 1 € U and the closure of U contained
inV.

For every t € [0,tf] choose an open interval I
containing ¢t such that I; defines a tubular interval T
about )V f1(y(t)), with I suffidently small that
a(s)UN f~2(y(s)) is in T, for all s € I;. Then I is an
open cover of the compact interval [0, 7; take a finite subcover
InJday... Iy, with 0=ty <t1--- <t =T.

Define F; := o)V f(y(t:)) for i = 0,1,...,k. Also,
define ¢} : U — F; for t € [ti,ti41) by ¢i(w) := gi(a(t)w) where
gi(t) : T = f~1(3(t)) by projection in Ty, for t € [ti,tis1]-

For t € [ti,ti1] define Xo(t) on F; to be the projection of
dg;(2). Pick vector fields Xj,...,X; spanning F.

Now define z(t) := gi(ti)z(t); then z(t) is a function with
image lying in F; for ¢ € [¢t;,t:+1)}. By Lemma 1 there are scalaras
u3,.--,u; such that the solution to Z = Xo + 3 w; X; lies inside
(V) for all ¢ € [t;,ti41]- Define B(t) € T(c(OV N fH3(1))

by
B(t) := dg:(t)(3_ wXi). -

Then the solution z(£) to the equation Z(t) = X(z(t), §(t))+B(t)
satisfies g;(z(t)) € ¢i(U) for all t € [t;, ti41], or equivalently,

z(t) € a(t)U
for all t € [ti,ti41). Thus
p(z(t)) 2 (1—¢€)o

for all ¢t € [ti,ti41]. Since this can be dome for each ¢ =
0,1,...,k, we have p(z(t)) > (1 €)o for all ¢.
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Coordinate System Independent

C. Lee
A. T. Yang

B. Ravani

Form of Instantaneous Invariants
in Spatial Kinematics

This paper presents explicit equations for the instantaneous invariants of spatial

kinematics that are coordinate systems independent. This eliminates the need for
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University of California, Davis,

: " Davis, CA 95616

laborious coordinate transformations necessary in the determination of the canonical
coordinate systems. It provides for a direct method for the calculation of instan-
taneous invariants based on information specifying the rigid body motion in any
arbitrary task coordinate systems. Explicit equations are presented for instantaneous
invariants up to the third order for spatial and spherical motions.and up to the

Sourth order for planar motions. The results provide for a useful tool in design and
analysis of mechanisms and motions based on, instantaneous invariants. Examples
are presented to illustrate the theory.

Introducﬁon .

Instantaneous invariants and canonical coordinate systems,
since their introduction by Bottema (1961) and Veldkamp (1967
and 1976), have become a powerful tool in differential kine-
matic analysis and synthesis. Roth and Yang (1977) and Gupta
(1978), among others, have applied them to analysis and syn-
thesis of planar mechanisms.. Kirson and Yang (1978) as well
as McCarthy and Roth (1982), Nayark and Roth (1981) have
extended the concept of instantaneous invariants and canonical
coordinate systems to a study of spatial rigid body motions
and mechanisms. A detailed account of the concept of io-
stantaneous invariants and the canonical coordinate systems
for planar, ‘spherical and spatial motions can be found in
Bottema and Roth (1979). In robotics literature, Stanisi¢ and
Pennock (1986) have applied the concept to the study of dif-
ferential motions of robot manipulators.

All existing work on determination of instantaneous invar-
iants require the use of the so-called canonical coordinate sys-
tems. This usually involves tedious coordinate transformations
necessary to represent the specified quantities in the canonical
coordinate systems. In this paper, we present concise expres-
sions for the instantaneous invariants using an arbitrary set of
moving and fixed coordinate systems. This eliminates the need
for the compurations associated with the use of the canonical
coordinate systems. The derivations are based upon the concept
of kinematic mapping introduced by Ravani and Roth (1984).
A rigid body motion,’ specified in any coordinate system, can
be mapped into an image curve in the space of the mapping.

'In this work we are only considering single degree of freedom motions.

Contributed by the Mechanisms Committee and presented at the Design Tech-
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The mapping is defined such that the intrinsic properties of

the image curve are invariant with respect to coordinate trans-
formations. This property then enables us to calculate the
instantaneous invariants directly from the intrinsic properties
of the resulting image curve. Although the intrinsic properties
of an image curve can be used to characterize the corrésponding
rigid body motion instantaneously (see McCarthy and Ravani,
1986), the use of the instantaneous invariants has been (at least
up to the present) more familiar to kinematicians. This is why
we are presenting the explicit expressions for the instantaneous
invariants. The main contribution of this work is therefore in
providing a set of explicit expressxons for computatxons of the
instantaneous invariants of a given rigid body motion without
the need for the use of the canonical coordinate systems. This
is useful for design and analysis of mechanisms as well as
comparing rigid body motions. Expressions are presented for
the instantaneous invariants of spatial and spherical kinematics

“up to the third order and for the planar motions up to the

fourth order. Numerical examples are used to illustrate the
results.

The organization of the paper is as follows: first, we give a
very brief overview of kinematic mapping and derive the gov-
erning equations in terms of the 3 X 3 dual matrix represen-
tation of spatial displacements. We then derive the differential
properties of the image curve of a motion in terms of the
differential values of the elements of the 3 X 3 dual matrix
representation of spatial displacements. This enabies us, in a
subsequent section, to directly arrive at the expressions for the
dual instantaneous invariants (up to the third order) that are
independent of the canonical coordinate systems. We then
provide two examples, an epicyclic hypoid gear train and a
RCCC mechanism, to illustrate the theory for spatial motions.
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The spherical results can fall directly from our spatial results
using the principle of transference (Kotelnikov, 1895, and
Study, 1903). We have therefore eliminated any further dis-
cussions for spherical motions. In the case of planar motions,
we specialize the mapping and develop the results with the
same detail as in the general spatial case. Since the mathematics
is less tedious in this case, we develop the instantaneous in-
variants up to the fourth order and use a numerical example
for illustrative purpose. :

Notations
A dual number is denoted by an angle symbol on top of a

letter. For example, 3 = b + ¢ b in which b and.ﬁare.referred
to, respectively, as the real part and dual part of B. The symbol
¢ designates the dual unit with the property ¢ = 0. In the
study of instantaneous kinematics we are interested in thé
motion ‘of a rigid body at a particular instant, referred to as
the zero-position (Veldkamp, 1967). The order of the time
derivative of functions evaluated at zero position (t = 0), is
denoted by the last subscript. For example R; = R(0) = [X},,
X2, X33, Xi2]', By = B3(0), cz1 = 2(0), etc. The value spec-
ified in canonical system is denoted by a tilde symbol under
a letter such as & ;.

Kinematic Mapping

According to Chasles theorem, the displacement of a rigid
body can be uniquely described by rotating a dual angle ¢
about a screw axis S = (S,, S,, S;). The rigid body displacement
can then be mapped into a point in the dual image space L
(see Ravani and Roth, 1984). The coordinates of the point are
defined by :

R=(X, ijs,XA)
= (S,Sin

»S,3in

wler
[SAR:3

ce ® o d
,5.5in 2 ,Cos 2) (43

_Consider a rigid body in continuous motion in Euclidean
space. In such a case, the screw axis S and the duat angle ¢
are functions of time t. Equation (1) will then represent 2 dual
curve in terms of the real parameter t in the dual image space
£. We refer to the image curve R(f) as a dual image curve in
the dual image space E. _

Let 9 be an arbitrary chosen coordinate system attached
to the moving body and & be a system fixed in Euclidean space.
The transformation from 9% to &, which describes the rigid
body motion, may be expressed as a dual matrix (Veldkamp,
1976) :

& B W
"A=| & l?z ¥2 . @
& B3 s :
where the dual-elements are continuous functions of the real
parameter t. :
Using Rodrigues formula, we may show that the dual angle

¢ and the screw axis S = (Sx; S,, S;) may be expressed as the
elements of the dual matrix A: '

1. . .

(&—By)

P D a
C05¢ ='2' (a; +432 +y3— 1)1 Sx=

S

1 o N
Fm(ﬁ—as)L S,

1
~ 2Siné

Substituting Eq. (3) into Eq. (1), we have the parametric
form of the image curve’R(t) written in terms of the elements
of the dual matrix A: :
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R |

r Bi—%2 1
4X,
X Yi—6s
N an 4X
R=| %] = e @
)fs &—Bi
X4 4.X—4
BNy

Differential Properties of Image Curves

In this section we review the differential properties of an
image curve which are independent of the coordinate systems
in Euclidean space. These geometric quantities are then used
to derive the explicit expressions of the instantaneous invar-
iants. The formal proof of the independent coordinate prop-
erties of the kinematic mapping is given in Ravani and Roth
(1984). For a description of the differential geometry of the
image space, readers may refer to McCarthy and Ravani (1986)
and McCarthy (1986 and 1987).

Using prime to denote differentiation with respect to the
dual arc-length §, we may write the Frenet formulas for the
base frame (T, N, B, E) as -

T 0o % o0 —1]fT
N’ - 0 7 O[|N
8 o -0 ollB ©)
E'l L1 o o o}lE]l-

With the aid of ‘Eq. (5), we obtain the derivatives of the image
curve R with respect to t, namely: :

e
] It I
:])v. 3’

+ &N - 7E )

R=[i- (1+RDPTE + Godr+ PN + F5B - 300E
where dot denotes differentiation with respect to'the parameter
dR -

tand o = .
ang v at

§=

From Eq. (6) we observe that the dual functions 7, k and
# characterize the differential geometry of R(t). Using the no-
tations :

. . dR .
R(0)=Ry, e l =R,
t=0
; . d% .
H0)="0o, o Lo—vn etc

“We may write the Taylor expansion of the column vector Re)

at a reference point (t = 0) as
- L 2 .
R(t)=Ro+Rit+R; —2—+R3 PR

Using Eq. {6) the above equation may be written as

0 B | B Bo— o1 +RY)
5 ol {0 o | £ | Stokodr + 0Bk | 10
RO={ o1 +| o |™*| o |2*] e |6 @
1 0 -0 — 3%,

The above equation is an intrinsic representation of the
image curve up to the third order. The values of 0o, Uy, U2, Ko»
%o, k1 in the above equation can be written in terms of the dot
and the wedge products of R;(j = 0, 1, 2, 3), namely
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[ Bo=(R,-RY""?

Xy = (C!n"'ﬁzx‘*“y;n)

Xo= (&12+ B+ 93— 8X2))

1
8 X

5 | PP - -
Xa’-m (&3 +Bo3 + 333 - 24X X) (10)

- 1 2 A v .. %X
X __.g}_:; @14+ Bas+ 34— 24X, — 32X X4)

Determination of Instantaneous Invariants

The dual matrices B,,-of the canonical systems in spatial
kinematics were derived by Kirson and Yang (1978). They are
the transformation matrices between the movmg and fixed
canonical systems.

by =R1: R,
Vo
. Ri*R;+R°R; (Ri°Ry)?
Uy = >y - 3
Up Vo (8)
1. _[RARARy)- (R;/\R»/\Ro)]”2
Ko = l)o
~ det(R],Rz,R3,R0)
°= UoKo
. _ RIARARp) (R ARAR,) i,
K= 5= -3 =%k
- UoKo Vo
where
(R AR AR ) Ry AR AR ), = M7 My + M55 M54
+ M3 M3+ M7 Mo
_ X A‘fj] I?kx ) )gn A:,jl )gkl
M;;'k= 1?,2 X,'z X | and MZ, = | X3 A,j; X3 | are the
X X_,nXm ’ Xo XJO Xio

minors of the matrix [R,, R;, Ro]” and matrix [R,, R;, Ro)”

respectively, and det (R+ R., R;, Ry) is the determinant of the
matrix [Rlv RZ’ R3: RO]

The detail of operations of wedge product in general form
can be found in Flanders (1963) and McCarthy (1987).

The values of R, can be determined by differentiating Eq.

(4) with respect to t and evaluating them at t = 0. We show
the formulas forn = 0, 1, 2, 3, 4.

S R £

=% (‘f-XuXm)

o 1l (2 i 6 o -

2=F (?—MMXA—XQX:'O)
J @ ©)

\]

]
]

- k-

(29—3X‘1X2— 3%, - X43X:o)

| epfe

|:.i>

%X sxx—4x3x-x“x>

F:N

1

(S

where i =1, 2, 3 and
Ay=Bs— T,
i =%1,— &3
Ay =8y— By,
j =1,2,3,4
and
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100 0 —&43 0

Bo={0 1 0] B,={&y 0 o0 11
0 01 0 0 0
[-a% &= o

B,=| &» -g}h -Ba»
i 0 Bx 0
- (12)

—3&nén —éx PRt

B;= &n -3&u8»n -8u

_—:213'*'3.@21332 83 0

where 6: 21s &22, &23, 5 32 333, i 13 are the dual instanta-

neous invariants of a given spatial rigid body motion at the
zero position and up to the third order.

Substituting Eqs (11) and (12) into (9) and (10), we have
Ro = [0,0,0, 117 and

] 1, ] g
3 B= ;B
1 . 3. .
0 ) 0 ) 5113‘;221_/3,32
» Ro= ) » R3= 1 g (13)
&2 5.@,72 5.@23"‘5@%1
1 3
0 2 a2 _2 - -
] "4 .°£21- L 2 Q2122 ]

Substituting the above Ry, R,, R, and R; into Eq. (8),
we have the dual instantaneous invariants in terms of functions
of R, (n = 0, 1, 2, 3)in an arbitrary pair of coordinate systems.
These equations are:

4 172
&2 =2<Z le) (14
i=1
4 &
& &—Z nXa2) 1s)
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Qsz——— ((MT)*+ (MBa) + (M7 + (MDD (16)

N 4 S o N o2 3 52 &%
Gun=7— ZXiIX:3+ Zsz -&y———-== A7

Bu=m7s— (MM +M3.Ms,
&2n8n :
+ MM+ MTuMe)  (19)
WhCI'CMz'I= X,z X,z X[(z andMZ-k= A’,‘; A’ﬂ Xk3
X-;o X}n Xm Xm XJO Xko

Equations (14-19) show the expressions of dual instanta-
neous invariants up to the third order for a given rigid body
motion in an arbitrary coordinate system. It is clear that if the
matrix A in Eq. (2) is given then R, (n = 0, 1, 2, 3) can be
calculated from Egs. (9 and 10). The instantaneous invariants,
up to the third order, can then be obtained directly from Eqs.
(14-19).-

For the case of a spherical motion, the image curve becomes
a real image curve. The procedure to derive the expressions of
instantaneous invariants for spherical motions can be obtained
by removing the dual components as stated by the principle
of Transference (Kotelnikov, 1895, and Study, 1903) and the
results are as follows:

373 (M ) + (M3)?

532_:4_1__
2(3; %)
i=1

3
3 B3

+ (M7 + (MBI (20)

2 det (Rth,Ra,Ro)
4 3
8% (Z Xfx)
i=]
(M123M 123 + M33M3ss + MT3aM 134 + M12M 124)

4 172
88 (Z X?:)

i=1

@D

§33=

4
383 ), (XuXz)
—— = (2

4 3/2
(%)
f=1

Numerical Examples

" Example 1. Figure 1 shows an epicyclic hypoid gear train
consisting of a pair of meshing hypoid gears (fixed sun gears
1, and planet gear 2) connected by a twisted rigid member
(carrier 3). Determine the instantaneous invariants which char-
acterize the geometric properties of the motion of the planet
gear 2 up to the third order.

As shown in Fig. 1, we use a moving coordinate system {b}
which is attached to the planetary gear 2 and a coordinate
system {f} fixed to the sun gear 1. The dimensions of the

hypoid gear train is given by the dual angle § = 6 + « 8
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Fig. 1 Epicyclic hypoid gear train

between the two gear axes f; and b ;. The line of contact of
the two hypoid gears forms the dual angle § = ¢ + € { with
f,and dual angle § = 4 + €7 with by. 6 and ¢ are the constant
angular velocities of the planet gear and the carrier, respec-
tively.

If the gear ratio ::_E_; = 2,8 = 60 deg. + ¢ 3, the zero
)
.. .- Sin¢
position 8, = ¢ = 0, and the angular velocities ¢; = Sing =

0.37796 and 6, = 2 ¢, (see Kirson, 1975, and Hsia, 1979).
The dual matrix A defining {b} relative to {f] is

Cé -S¢ 0l]1 0 0 c§d -S6 0
A=1S¢ Cp O0||0 C§ -S8{jS6e C8 O
0 0 1/}o0 S8 CB 0 0 1

CpCH—S¢pSCH —CpS8—SeCHICE  S¢SS
=| SpCh+ CPpSHCE —-S¢SO+ChCOICE —CoS3] (23)
S6S8 oS8 Cs

where C6 = Cosé, S¢ = Sing, etc.

From the dual matrix A in Eq. (23) and the given data, we
can calculate the R, (n = 0, 1, 2, 3) from Egs. (9 and 10).
Substituting-the values of R,(n = 0, 1, 2, 3) into Eqgs. (14~

19), we obtain the instantaneous invariants of the planet gear
as follows: _
& =1~¢€0.74231 : 332=0.247_44+e 0.42861

2=0 ¥ 13=0.31813 +¢ 0.23622

1R

&= —1.06122+¢ 1.96931 B33=0

The above values are in agreement with those given in Kirson
(1975) and Hsia (1979).
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Fig. 2 RCCC mechanism

Example 2. The RCCC mechanism (one revolute pair and
" three cylindrical pairs) is shown in Fig. 2. The dimensions of
the links are specified by four constant dual angles &, B, ¥,
and 3. The relative positions of the links are defined by four
time dependent dual angles: é. (dual part is constant since the
input member is a revolute pair), 8, #, and ¢. The angle ¢ is
the input and ¢ the output of the mechanism. Determine the
third order instantaneous invariants of the coupler link cor-
responding to a given value of input angle ¢,.

We choose the body system {b} attached to the coupler link
and the fixed system {f} attached to the frame as shown in
Fig. 2. The displacement, velocity, and acceleration of the
coupler link as functions of-input angle ¢ are derived in Hsia
(1979). The numerical zero-position values of the dual param-
eters are given as follows:

5=30°+e2,

=86.6° —¢ 2.9591 $o=0
0;=—1.9917—¢ 2.3066 ¢, =1.8155.
8,=0.05274+¢ 11.8924 ¢, =0.2443,
By=—7.51-¢ 13.77 ¢3=7.99.

The dual matrix A defining {b} relative to {f} is

Cé ~-S¢ 0|1 0 O c§d -s8 o
A=|S¢p Co¢ O0|]|0 C3 —-S8{ S8 Ch o
0 0 1|]o s& CB 0o 0 1

CoCh—S¢SBCS —CpSh—SeCHCS S¢S§A
=| S¢Ch+CHSHCS —S¢SH+CpCHCS - CpSS
S6S3 C6s8 Cs
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From the dual matrix A in Eq. (24) and the given data, we
can calculate the R, (n.=0,1,2,3) from Eqs (9, 10). Sub-
stituting the values of R, (# = 0, 1, 2, 3) into Egs. (14-19),
we obtain the dual instantaneous invariants of the coupler link,
up to the third order, as follows:

&n=1+e4.58358 Ban=1. 83126+ 9.96317
&n=—e5.21866 % 13=3.22836+¢ 15.25479
3,33=
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&23=0.3954~ ¢ 10.0621 0.37465 - ¢ 14.20382

™
%
(u, v)
‘ 7 —
O SIS X

Fig. 3 Arbitrary fixed and moving coordinates § and 9%

The above results are verified by using different coordinate
systems in describing the dual matrix A.

Instantaneous Invariants for Planar Motion
For the case of planar motions, the components of R(X >

- X,) will become pure dual numbers. The determination .of the

explicit expressions for instantaneous invariants needs some
special treatment. It means that we have to deal with the real
part and the dual part of the curvature and the torsion sep-
arately. Furthermore, the value of the det R,, Ry, R, Ro) will
vanish due to the existence of ¢ term. The torsion of the i image
curve is therefore obtained by a modified method. We describe
the derivation of instantaneous invariants for planar motion
as follows: i

Consider a plane M in continuous motion relative to a fixed
plane F. Let us choose, arbitrarily, two coordinate systems;
I (attached to. M) and F (fixed in F), as shown in Fig. 3. The
transformation matrix of 9 relative to & is given by the matrix:

Coe -S¢ O 0 0 v Co —-S¢ 0
A={Sye Cp 0| +e| 0 0 —ul|Se Co 0
0 0 1 -v.u 0 0 0 1
Cop -Se¢ Cev
= Se Co —eu| (25
e(USp—-vCy) e(uCp+vSp) 1

where d = [u, v, 0] is the position vector of the origin of M
with respect to §F and ¢ is the rotation angle of I relative to
F

We may exprésﬁ d as a function of the angle ¢. Consider a
planar motion given as functions of u(y) and v(g) in an ar-
bitrary chosen coordinate system up to the fourth order.

1 1
U’ += WP+ e + o) -

U(e) =g+ U+ =
@)=+ U 6" Ty

2

: : 1 1 1
V) =Vot Vig+3 vap' + = v+ 2 vep' +0(e)

where

$=0

From Eqgs. (4) and (25), we have the representation of the
image curve as
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1 2.y sin?))
26(11 Cosz+vSm 2)
X, 1e vCosf—u Sinf
.| X, 2 2 2
3 s P
A’4 SmE
. @
Cos = .
052

_ Using Egs. (9, 10, and 26), we can determine the values of
R, (» = 0,1, 2, 3, 4) at the reference position. Let § = v +
€,k =k + exand 7 =7 + e 7, the instantaneous invariant
b, can be obtained from the dual part of the curvature &.
From the Eq. (8), it follows that
[RIARAR) «(RARARY] 2 = [t + (30500x0 + Vko) ]

Now substituting the values of R, at the reference posmon
© in the above equatlon, we have v3 % = 0and

(vsxo)z—— [(Ul+uz) + (- vz)zl

1
Butvo—i wehavexo-—Oand

. l% 4[(014‘"2)24' ("1 02)2]
If we subsututethe mstamaneous mvanants of the amomul
* system (@= <by=a;= =b;= a= 0) into this last equauon, we have
- the formula for the mstantaneous mvanants b,.’

Cby= \/(V1+uz) +@=v

: @

From Eq. (26), we observe that X (; and Xz are pure dual
numbers The evaluation of det (Rl, Rz, R;, Ro) involves only
the € 2 term. If we remove the dual of X, and X;, det (R, R,,
. Ry, Ro) will be a real number only. The real part of torsmn

. can be obtained from the ¢ term of the 3%, which is v§xare,

and we have
det (_l_{_ _R_z R3,Ro>

To=""=

28)

692 -
VoKo -

From the values of R, that we have already determmed we
have

[vz-!- u2+4uzv, = 4uyty— 20405
+ 3u§- 2uyus + 313+ 2usv, - 2u3v5]  (29)

.Similarly, we substitute the instantaneous invariants of the
canonical system (ao bo=a,-b,—az—0) into Eqs (28) and
. (29) to obtain, .

o-—3 Zb—z or 33-" Tobz—'bz (30)

From Eqgs. (28, 29, and 30), we have the formula for the
instantaneous invariant a,.

a3 ="‘— [V2 + ul + 4‘12\’] - 4u.v2 2V1V3 + 3‘% - 2“)113‘"" 3U§

2b,
3
+ 2u3v, — 2uyv3) —'2' b, (31)
Using the same method, we can determine the instantaneous
invariant b; by evaluating the change of curvature and we
obtain &; = e4b; and
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-1
b3 ='6‘ (V1V2+U1U2+U3Vl —Uuvs +v2v3+u2u3) (32)
2
In a similar fashion, we determine the instantaneous invar-
iants a, and b, by evaluating the change of torsion and change
of change of curvature, respectively. We obtain the explicit

formulas for a4 and by as follows:
1. _
a=g [viva +ugup + 2(uzv; — ugvs + vav3 + Uus) — ugy
2

= ViVa+ UV —Uve] - 2by  (33)

1o,
b4=-bz~ [uz+ v% + ViVa+ Ujly + U3Vy — WpVa 4 UgVy — Uy Vy

2

2
+u2u4+v2v‘+u3+v2]— (—-b—2+b2+a3+b) 34

Numerical Example

In the following example we use the notations u(0) = uf,
v(0) = v§, ¢(0) = ¢, etc. Example' Design a four-bar linkage
so that the input crank OB rotates at a constant angular
velocity of 2 rad/sec (Clockwise) while the output crank O.C
rotates ‘with an angular velocity of § rad/sec (Counterclock-
wise) and angular acceleration of 21- rad/s%, the angular ac-
celeration decreases at a constantrate of 15 rad/s® (This example

" is taken from Roth and Yang, 1977 and Gupta, 1978). For
“convenience we choose the fixed frame F with origin at Ob,

and x-axis along 0,0, and the moving frame 9N with origin
at O, and x-axis along O.C (se¢:Fig. 6 of Roth and -Yang,
1977). The motion of link OCC relative to the mput hnk OB
may be expressed as

u(t)=Cos(2)=1- 452-+16 —+o(t5)

3
v(t)=Sin(2t)=2t—8 % +o(t))

e £
o(t)=Tt+21 -2'-15 E+O(t—)

From the above expressions we obtain the values of time de-
rivatives at t = O:

uf=0 Vl‘=2 - de=

w=-4 vi=0 ¢,=21

U3 =0 V3’=—'8 ¢3-=—15
=16 - vi=0-" bs=

After changmg the parameter t to @ we obtam

111 =0 . Vl —0.2857 ;
U= =0.0816 V== 0.12245
Uz= 0.104956 V3 =0.1466
u=-—0.2325 . {ve=-0.3309

Stbstituting the above values into Egs. (27), (31), and (32),
we have the instantaneous invariants

b,=0.2380 a;= —0.4247

2,=0.5504  b,=-0.2373

" The above results are identical to those given in Roth and
Yang (1977) and Gupta (1978). ) .

b;=—0.1324

Conclusion

We have derived explicit expressions for the instantaneous
invariants of rigid body motion in terms of arbitrary rather
than the canonical coordinate systems. Equations (14-22) give
the expressions of the instantaneous invariants for spatial and
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spherical motions up to the third order. Equations (27 and 31-
34) give the expressions of instantaneous invariants for planar
motions up to the fourth order. A few examples are used to
illustrate the results. These expressions are more explicit than
any existing methods in determining the instantaneous invar-
iants and they are useful in design and analysis of mechanisms
as well as in comparing rigid body motions. It is also hoped
that these expressions would facilitate the use of the instan-
taneous invariants in more practical mechanism design and
analysis problems
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NOMENCLATURE

T total torque at joint k (motor torque)

™ua  torque at joint k due to the dynamics of the
robot linkage .

T torque at joint k due to the dynamics of the
load

™ai  torque at joint k due to the dynamics of the
mass of actuator i ‘

m number of discretized points

n number of degrees of freedom of the robot
manipulator

k joint number .

i index on joint number

j index on 'the discretized point

Wi . weighting factor - = -

Trated  rated torque of the actuator

lated  D.C. motor rated current

K constant ,

v volume of the actuator

T ({(mxn)x 1) total joint torque vector

Ta ((mxn) x 1) joint torque vector due to the
dynamics of mass of the actuators

Tna  ((mxn) x 1) joint torque vector due to the
linkage dynamics :

T ((mxn) x 1) joint torque vector due to the load

) dynamics ,

Te extra torque; ((mxn) x 1) vector of deviation
of the portion of joint torque atlocated to load
T, from the load carrying capacity, "loadgoai”,
resolved into joint space

ABSTRACT

A procedure for sizing the joint actuators of a robot
manipulator in the design stage is developed. The problem
is formulated as an optimization problem where the actuators
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are selected to achieve a desired dynamic load carrying
capacity of the manipulator over an entire discretized
trajectory. Appropriate constraints on this optimization
prevent the actuators from being overloaded and limits their
sizes. Using worst case trajectories within the workspace, the
problem is generalized to actuator selection over the entire
workspace. The procedure proposed is illustrated by the.
choice of actuators for the Carnegie Melion University (CMU)
direct drive robot maniputator. :

1 INTRODUCTION

An important step in the mechanical design of robot
manipulators is sizing the joint actuators. This is usually
done after the design of the kinematic configuration of the
manipulator as well as structural considerations. Workspace
considerations and solvability of. kinematic equations are
usually used to choose an "appropriate kinematic
configuration and structural characteristics of a manipulator
are selected using strength and stiffness requirements. Once
these two steps in the mechanical design of a manipulator
are completed, then the joint actuators are selected.

Traditionally, robot actuator sizing have been based
largely on use of simple design methods, e.g. they are sized
to meet worst-case or average-case gravity and acceleration
torques or loads. Such procedures are too simplistic and
usually result in actuators which are far from optimal. A
formalized procedure for optimal selection of robot actuators
was developed by Vukobratovic, Potkonjak and Datic 1984.
Their approach, however, minimized the energy which is a
non-task oriented objective function. In addition, their
procedure was directed toward selection of hydraulic




actuators. In applications such as material handling robots
are used to carry a payload along a trajectory. In such a
situation, the robot actuators should be selected based on a
task oriented specification such as a desired maximum
payload. Thomas, Yuan-Chou and Tesar 1985 have
considered such a design selection strategy. Their approach,

however, sizes the actuators only locally in the neighborhood

of a configuration. Ideally, the actuators should be sized such
that the robot will be able to carry the maximum desired
payload throughout its workspace. This is the problem
considered in this technical note. First, selection of robot
actuators for a given trajectory and a maximum desired
payload is considered. Then, using worst case trajectories in
the workspace, the method is generalized to actuator sizing
for a manipulator based on a desired dynamic payload and
on a global basis (i.e. over the entire workspace). :

The method presented uses the Dynamic Load Carrying
Capacity (DLCC) of a robot (see Wang and Ravani 1988a) to
formulate an optimization problem for the selection of the joint
actuators. All joint actuators are sized simuitaneously and
worst case trajectories introduced in Wang and Ravani 1988b
are used to achieve actuator designs.that can dynamically
carry the desired payload over the entire workspace of the
robot.

2 DYNAMIC LOAD CARRYING CAPACITY FOR A GIVEN

TRAJECTORY '

The dynamic load carrying capacity of a robot manipulator
depends on the end-effector trajectory (position, velocity and
acceleration), and can be defined as the maximum load that
the manipulator can carry in executing the trajectory, without
exceeding the torque limits of the joint actuators (Wang and
Ravani 1988a).

If the continuous trajectory of the end-effector. is
discretized into m points along the trajectory, then the-total
torquefforce for each joint at every grid point will be obtained
by iinear superposition of the joint torques/forces due to the
dynamics of the robot linkages (excluding the masses of the
actuators), of the load, and the dynamics of the masses of the
joint actuators, i.e:

n
{Wj={Tenali (Tl 2 ad (1)
i=k+1

j=1,2,...,m.

The minimum value of {tKj}; over all joints (k), and entire
discretized trajectory (j) is the dynamic load carrying capacity
of the robot for that trajectory.
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The concept of DLCC defined by Equation (1) will be usedb
formulating optimal actuator sizing problem in Section 3.

3 OPTIMAL ACTUATOR SIZING FORMULATION

Since the most popular choice of the actuators for medium
and small size manipulators is d.c. motors (either permanent
magnet or shunt type), we limit our study to this type of
actuators. The approach, however, can easily be extended to
other kinds of drives.

Equation (1), gives the total joint torques which should be
supplied by the joint drives. These torques are bounded by
the rated torques of the motors. The torque that actuator can
supply. for carrying the load at each grid point,using equation
(1), is

{tj = {79 - {Tnialj - Zwa:h

"To evaluate TKa;, the mass of the actuators are needed.
Archer and Blenkinsop 1986, have developed the
relationship between the volume and rated torques of various
electric and hydraulic actuators. The general form of this
relationship is

log Teated = logV + [3
where a and B are the coefficients given in Archer and
Blenkinsop 1986. This last relationship will be used for
calculation of %5 The mass is directly related to volume with
electric-motor density of 3 to 4'gr/cm3, (and hydraulic motor
density of slightly higher).

D.C. motors in control applications, e.g. robotics, are
mostly current-driven (see_'Koren 1986). In such a case, the
actuator can be ideal_ized' as a,tofque source. - The output
torque of the actuator, Toutput ; Should be limited as

“Trated = -K lrated < Toutput S K lrated = Trates- (3
When voltage-driven d.c. motors are: used for the joint
actuators, the electrical dynamis of the unit should also be
considered in the constramt formulatlon

Equations (2) and (3) can be written in vector form over all
the joints,

@)

T= T-Tnta- Ta

~Trated < T < Trated -
We consider the selection of joint actuators for a desired load
or goal camrying capacity ("loadgoa”). In order to formulate the
objective function, we define the extra torque vector, Te,.
This torque vector is defined as the deviation of the portion of
joint torque vector, which is allocated to load (tj), from the
vector of load carrying capacity, "loadgoal”, resolved into joint
-space, (Tgoal), i-€.

(4)




Te=TI-Tgoal=(T-Tnla-Ta)- T goal
where T goa1 is a vector of (mx n ) x 1, resulting from resolving
the desired load to be carried , (“loadgoal™) into joint space,
over all the discretized points along the trajectory.

The optimization problem is then defined as the

minimization of the extra torque vector, Te, ie.

min (Te) = Min (T - T goa) = Min {(T - T nia - T a) - T goat H5)
constrained by

~Trated < T < Trateg - (6)

The constraint set (6) indicates that the absolute value of
each joint torque should be smaller than or equal to the rated
torque of the actuator at that joint. The design parameters are
T and Trated-r

The vector objective function (5), is converted to a scalar
objective function as shown in Equation (7). using sum of Lo
norms of weighted extra torque vector, Te, over the entire
discretized trajectory, namely

m 0 1/é
min ( E [ 21 ( wilze ()12) J
I=
=1
m 12
n . .. ..
min ( E [ 21 ( wi[(Ti - Tiingz - 1ily) - Tlgoat ]2) J )
=
j=1

@
Now in order to solve the optimization problem defined by the
. objective function (7) and the set of inequality constraints (6),
we use exterior inequality quadratic penalty function. A
computer program based on Quasi-Newton method is
developed to solve the resulting unconstrained problem.

3.1 Tra]ectory Selectlon .

The optnmal actuator sizing methodology developed in this
work, depends on the end-effector trajectory. In sizing the
actuators, it is desired to select smallest actuators that would
allow the robot to carry maximum payload in a desired cycle

time throughout its entire workspace. This means that the

actuators can be sized based on the worst-case trajectories
within the workspace.
corresponding set of actuators will be sized. Amongst these
‘sets of actuators, the one which provides the maximum
dynamic load carrying capacity[7], will be selected as the
optimal set of joint actuators. The worst-case trajectories
defined by Wang and Ravani {7}, is used in this work.

For each worst-case trajectory, a.
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4 Numerical Example

An example of optimal selection of robot actuators, based on
maximizing the dynamic load carrying capacity for worst-case
trajectory, is presented for a robot manipulator with the
structure of the Carnegie Mellon University (CMU) direct drive
arm Asada and Kanade 1983, as shown in Fig. 1. |
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Fig. 1. A three joint direct drive robot (Reprint from [7]).

The initial and final joint configurations of the robot for this
example are:
[0°, 0°, 0°)T and [0°, 90°,90° T, _

A cubic polynomial position trajeciory is used between these
two configurations. . The two end-points correspond to
minimum vertical and maximum horizontal positions of the
end-effector. The maximum horizontal position also happens
to be the terminal point (see Wang and Ravani. 1988b). This
trajectory satisfies the requirements stated in Wang and
Ravani 1988b for the worst-case trajectory. The total desired
cycle time for this motion is 1.5 second. This time period is
based on average speed of 50 in/sec, recommended for
industrial robots Asfahl 1985. The payload ("loadgoal™) is
taken to be 14 kg.

In order to guarantee the existence of a minima, rated
torque of the actuator of the last joint has been selected
apriori to be 40 Nm.




The trajectory is discretized into 10 equally spaced points.
Joint torques due to link dynamics, 7T nia. and due to carrying
the desired load, Tgoal, are evaluated and shown in Fig.'s 2
and 3.
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Fig. 2. Joint torques due to the robot's linkage dynamics.
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Flg 3. Joint torques due to dynamm of carrying the
desired load.

The rated torque of the actuators of 1omts 1 and 2,
optimized over the entire trajectory, is found to be 140 and 80
Nm. Moreover optimal rated torques of the first. and.the
second joint actuators at each discrete point along the
trajectory are calculated and shown in Fig. 4.

Ratd Torques (Nm)

Figure 4. Optimal actuators' rated torques at dlscrete '
points along.the trajectory.

Comparison of Fig. 4 with the result of optimization over
the entire trajectory (actuator rated torques of 140 and 80
Nm), indicates that this actuators would be overloaded at
some points along the trajectory. This is acceptable,
considering the fact that actuators, especially d.c. motors, are
made to take transient overloading.

If the transient overloading of the actuators .is not
desirable, one could select the actuators with maximum
Trated: Using Fig. 4. This would result in actuator rated torques
of 270 and 130 Nm and keeps the rated torque of the
selected actuators always higher than the maximum value of
total joint torques. '

The original actuators of jomts 1 and 2 of CMU arm have
the rated torques of 204 and 136 Nm.

5 CONCLUSIONS

A method is presented for sizing of robot joint actuators'

based on meeting a functlonal requnrement of a desnred
dynamlc payload over the entire robot workspace The
problem is formulated as an optlmlzatlon problem mmlmlzmg

‘the sum of L2 norms of welghted extra torque vector over the
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enttiré discretized worst case trajectories. The constraints are
based on prevention of joint actuators from excessive
overoading. )

‘Actuators are selected for worst case trajectories within
the workspace resulting in manipulator designs that can meet
a desired specification of dynamic payload. The algorithm
presented provides the basis for rational selection of joint
actuators in mechanical design of robot manipulators.
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Kinematics of thé Ball Screw
Mechanism

This paper studies the kinematics of the Ball Screw Mechanism (BSM) with the
aim of developing a foundation for understanding the motion of the balls and their
contact patterns with the contacting elements. It is shown that there is always slip
between the balls and the nut or screw, and therefore, the no-slip condition assumed
in the BSM literature is not attainable. The effect of contact deformation on the
motion of the balls is also studied and is used to develop the pattern of the constant
sliding lines of contact between the ball and the screw or the nut. The results have
applications in efficiency analysis, design, wear evaluation and finite element mod-

M. C. Lin
B. Ravaniv

S. A. Velinsky

Department of Mechanical and
Aeronautical Engineering,
University of California-Davis,
Davis, CA 95616

eling of the BSM.

1 Introduction

The reciprocating ball screw mechanism is a force and mo-
tion transfer device belonging to the family of power trans-
mission screws (Fig.- 1). Two of the most important features
of the mechanism are its positional accuracy and load carrying
capacity making it suitable as the drive mechanism for robot
manipulators or the feed-drive mechanism of machine tools.
The utilization of bearing balls in the mechanism replaces the
sliding friction of the conventional power screw with the rolling
friction of the balls. This results in minimal friction during
force and motion transmission and eliminates slipstick with
minimal wear,

This paper provides a theoretical study of the kinematics of
the ball screw mechanism. It derives relationships describing
the motion of the ball and shows that slipping takes place
between the ball and the nut (or the screw) at all times. This
means that the no-slip condition assumed in the literature (Levit,
1963; Drozdov, 1984) is unattainable. The proper slip condi-
tions are derived and the ball motion is studied.

In addition, the effect of elastic deformation at contact areas
between the ball and the nut (or the screw) on the kinematics

~

n A %‘i

l—l

S ENNWN

13
£

Fig. 1 A ball screw and nut mechanism
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of the mechanism is analyzed. The analysis is used to determine
the pattern of constant sliding lines of the ball in the contact
area. The contact line pattern is useful in wear and finite
element analyses of the ball screw mechanism. The work pre-
sented provides a theoretical framework for understanding the
motion of the ball in the BSM and sets the basis for efficiency
and design analysis of the mechanism. The application of the
results of this paper to efficiency and friction analysis of the
BSM is given in a companion paper (Lin, Velinsky, and Ravani,
1994).

In all the analyses presented right-hand screw threads and
a single nut are assumed.

2 Motion of the Ball

In this section, we study the motion of the ball by affixing
a Frenet coordinate system to the path of the center of the
ball. This will enable us to study the kinematics of the ball
motion and derive the slip conditions.

In a BSM, the center of the ball moves along the helical
groove of the screw. We introduce three sets of coordinate
systems. The first (world) coordinate system, ox’ y” z', is fixed
with its z* axis coincident with the axis of the screw. The second
(rotating) coordinate system, oxyz, also has its z axis coincident
with the screw axis (Fig. 2) but it rotates with the screw. The
third coordinate system is the Frenet frame moving with the
center of the ball along the trajectory of the ball center. This
trajectory, with respect to the frame oxyz, is a circular helical
line along a circular cylindrical surface with a mean radius r,,
(Fig. 2). The coordinate transformation between the first two
coordinate systems can be written as

X'=TX M
where X' = i’ j' k')", X = lijk],
Co -Sa O
TlE Sg CQ 0
0 0 1

SEPTEMBER 1994, Vol. 116 / 849




trajectory of

R ball centers

Fig. 2 The position of the ball center, O, in Cartesian coordinates and
Frenet coordinates

and Cp = cos()), Sqg = sin(Q), and Q denotes the angular
- displacement between the two coordinate systems.

Assume that a ball has moved through an angle 6k along
the helical groove of a screw with lead L. The position vector
of the ball center, R(6), can be expressed as

RO =R"X ¥))

where R” = [1,,Cy 7mSp rmbls), Cs = cos(), Sy = sin(f), and
the helix angle, a, is defined as ¢, = tan(e) = L/27r,. The
superscripts “r’’ and ‘W’ are used here to distinguish a vector
with respect to the rotational and the world coordinate systems,
respectively.

By substituting Eq. (1) into Eq. (2), the position of the ball
center can be expressed with respect to the world coordinate
system as '

"R=R'T{'X’. [€)

By definition (Kreyszig, 1983), the triad of unit vectors de-
scribing the Frenet Coordinate system of the ball center with
respect to the rotating Cartesian system, oxyz, can be expressed

as follows (Fig. 2):
(a) Unit tangent vector

t=[-kdS; kdC, 7d)X 4)
(b) Unit normal vector _
n=[-C; -S; 0)X )
(¢) Unit binormal vector
b={rdSy —1dC, kdlX 6)
where
r,
d=-=2,
Ca
curvature
C‘2
= ; N
and torsion
T= Sa Ca 0
rl’l

The coordinate transformation between the Frenet frame of

the ball center and the rotational Coordinate system oxyz can
be expressed as

850 / Vol. 116, SEPTEMBER 1994

Fig. 3 Location of contact points on the normal plane

. X=T,Y : ®
where
—CoSs —Co  Su$
Y=[tnb)?, and To=| C.Co -Ss -S.Cs|-

S 0 C

The terms S, and C, denote sin(a) and cos(c), respectively.
Now, Eq. (2) can be rewritten in terms of the Frenet frame of
the ball center as

TR=RTIY=r,[Sate —1 Caut0Y. 9

It will be shown in the next section, that the ball can only
move relative to the screw in the tangential direction of the
Frenet frame of the ball center trajectory. This is because the
ball is confined along the helical groove in directions parallel
to the normal plane of the trajectory of the ball center. Phys-
ically, this means that the contact points between the ball and
the screw, as well as between the ball and the nut, must be
located on this normal plane.

In order to locate these contact points, the contact angle,
B, is defined as the angle between the unit normal vector and
the contact vector. The contact vector is oriented from the ball
center toward the contact point, as shown in Fig. 3. Points A
and B represent the instantaneous contact points between the
ball and the nut and between the ball and the screw, respec-
tively. Note that 8, (Fig. 3) is considered positive when meas-
ured clockwise from the negative side of the normal axis;
whereas 8 (Fig. 3) is considered positive when measured clock-
wise from the positive side of the normal axis. The angle 84
and Bp are always positive for a counterclockwise rotation of
the screw (viewed from the end) and negative for a clockwise
screw rotation.

We now introduce a pair of new coordinate systems iX;Y:Z;,
withi = A, B, between the ball and the raceway such that the
X;Y; plane lies on the plane of contact and the Z-axis lies
along the common normal of the two contacting bodies (Fig.

3). These coordinate systems are used to describe the position
of the contact point between the two contacting bodies. We
also assume point contacts along a diagonal line between the
ball and the screw and nut. The coordinate transformation
between the Frenet frame of the ball center trajectory and the
iX;Y;Z; coordinate system is

X,=T;Y (10)
where
0 —Ss Cp
X;=[; j; kI’ and T;= |1 0 0
0 Cu Su

The position vector of the contact point B with respect to
the ball center can thus be expressed as

Transactions of the ASME




trajectory of

an arc on the base
circle of the cylinder

Fig. 4 Phase angle between two consecutive balls

(b) Screw driving: cw

Fig. 5 Slip velocities at steady state with no-slip along the tangential
direction, for the conversion of rotary into linear motion

Rpo’ =0 0 rp)Xp (11)

where r, denote the ball radius. The position vectors of contact
points A and B with respect to the rotational coordinate system
can be expressed as _
’RA =rR+RAo' (12)
and .
PRB='R+R50’. (13)

There is only one independent variable, 8, which describes
the relative position of the center of the ball with respect to
the screw in the equation of the circular helical line [Eq. (2)].
The relative position of the two consecutive ball centers can
therefore be expressed as a function of a phase angle, ¢, shown
in Fig. 4, as

8R;="R(6 + ¢) — R(6)

=rulCaSe+Sata® 1-Cy S.(0—S,)1Y. . (14)

Furthermore, the minimal central distance between two con-
secutive ball centers must be equal to the diameter, 2ry, of the

balls; that is
A/ 6R?-6R;=2r,

or

(D) +2(1 - Cy) =4a* (15)

Journal of Mechanical Design

where
r

a=—.

rm
By solving the above equation for the phase angle, ¢, the
maximum number of balls per revolution, N, can be obtained:

=2._7_r. (16)
]
Furthermore, Eq. (14) can be expressed as
OR;=2rn,. 17
Similarly, )
SR,=2rpn,. (18)

In these equations, n; and n, are unit vectors between two
consecutive ball centers. Using the Frenet frame, the relative
motion between the centers of the balls in contact with each
other can be written as:

CiCi+SL  ~C.Ss C.S(i-C,)
Y(0 + ¢) = C(,S¢ C¢‘ - SQS¢ Y(o).
C(xSoz(l - ca) Sthd: Sczxcé + Ci
(19

The above equation is valid for balls which are both ahead
(positive ¢ values) and behind (negative ¢ values). '

3 Slip Analysis

Determination of the slip conditions between the recipro-
cating balls and the nut or the screw is important in under-
standing the motion of the ball in the ball screw mechanism.
These conditions are also necessary for efficiency analysis and
the design considerations (see Lin, Velinsky, and Ravani, 1994).
A complete velocity analysis is necessary for determining slip
directions and velocities. This section provides such an analysis
and applies the results to a characterization of the slip con-
ditions for the BSM. Previous works (see Levit, 1963; and
Drozdov, 1984) have treated the kinematics of the BSM using
the previous results from ball bearings (see, e.g., Harris, 1971;
and Jones, 1959). This has resulted in incorrect results for the
BSM since the-angular velocities of different elements, namely
the ball, the screw, and the nut are not additive as used in ball
bearing analysis. . -

The velocity of the ball center with respect to the rotational
Cartesian Coordinates, oxyz, can be obtained by differentiat-
ing Eq. (9) with respect to time; i.e.,

R=[d§ 0 O]Y. 20)

Note that in the above equation, the velocity of the ball
center relative to the rotating coordinate system has only a
tangential component. Physically, the ball cannot move in the
normal plane since contacting surfaces would have to separate
or crush together for motion in the normal plane to exist.
Furthermore, the radius of motion of the ball center is d, which
includes both the curvature and the torsion of the helix.

The velocity of the ball center with respect to the world
coordinate system, ox’ ¥’ z’, can be obtained by differentiat-
ing Eq. (3) with respect to time; i.e.,

"R=[dO+rnC@ 0 -r,SQIY. Q1)

'The above equation can also be obtained from "R="R+

Ox"R. . ‘
Ifweletw = [w, w, ws] Y be the angular velocity of the
ball, then the instantaneous velocity of the two points A and
B (namely V4, and V) on the ball (which are coincident with
the two contact points between the nut and the screw, respec-

- tively) can be expressed as
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Var="R+wxRs0’

dB +rmCaQ+rb(wagA
= rba.),SﬂA Y
—Im S —

—Wp SBA)

ryw; Cga
(22)

and
Vo= WR'FUXRBO
dé+rmCaQ+rb (“’bCBB"“’nSﬁB)
—rbw,SﬁB Y
—rmSa(i+rbw,CBB

it

(23)

We will now determine the velocity of the point on the nut
which is coincident with the contact point for the case when
the screw is driving. If the nut is driving, similar results can
easily be obtained. We will only consider the conversion of
rotary into linear motion. The cases involving the conversion
of linear into rotary motion are merely the kinematic inversions
of the cases presented here.

As in the conventional power screw unit, if the nut is re-
strained from rotating, it will move axially a distance QL/2x
along the screw for a screw rotation of angle Q. Hence, if the
angular velocity of the screw is Qk, then the velocity of any
point on the nut with respect to the world coordinate system,
ox’y 'z’ can be represented as

Van [0 0 ——QEZI X’
2x
= —-r,,,S,,Q[ta 0 1Y.
(24)
The velocity of the contact point on the screw can similarly
be obtained as follows.
If the screw rotates with an angular velocity Ok, the velocity

of point B on the screw (namely Vjgs) coincident with the
contact point will be

V3s=f2kX’R5
_ T
(rm—ryCgp) Co
_rbSBBSa ’ Y. .
= (rm—ryCgg) S,
(25)

Thls veloc1ty is with respect to the world coordinate system,
ox'y'z’.

The slip velocmes at contact points A and B (Vs4 and Vg,

respectively) can now be determined as follows.
From Eqgs. (22), (23), (24), and (25), the slip velocities at
points A and B are, respectively:

YSA'_‘VAb"vAn
[ d(6 +8)+ry(wpCos—wnSsa) |
= ryw;Sga Y
i — Iy Cpa
[ ;"bwt 17
=] d(6+92)+ry(wsCoa—waSsa) | Xa
0

= Vsalgy (26)
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and

Vss=Vg—Vgn

0C,) Csp—wnSssl |
0S,)Sss Y
0S,) Css

[ d6 —ryl (wp—
= =ry(w,—

ry(w,—
ro(wr— 0Sg)

= | d6 — 1y [(wp—0Ca) Cos—nSs) | Xs
0

= Vspnsg 27)
where ngy and ngp denote the unit vectors in the direction of
the slip velocities at the instantaneous contact points A and
B, respectively, and Vg4 and Vg are the magnitudes of these
velocities (Fig. 5).

Physically, contacting surfaces should have common nor-
mals at their instantaneous points of contact. This means that
the slip velocities should be perpendicular to the common nor-
mal to the two surfaces, namely R4 -Vs4 = 0and Rgp. -Vgp
= 0. These conditions on slip velocities represent the physical
contact requirement for the contacting surfaces not to separate
or crush together. We should note that the unit vectors ngy
and ngsp are opposite in direction to the frictional forces on
the ball at the contact points.

The location of all contact points can be determined usmg
these physical contact conditions. Suppose that the contact
points are not located in the central normal plane. Since the
balls are spherical, only two angles are necessary to define the
location of a contact point on a ball. Suppose these two angles
are 8g and an angle ¥ off the central normal plane. Consider
point B as an example to simplify the analysis. The position
vector Rpp’ can be determined from geometry as

qu'=[—rbS* rbC\yC5g rqu55B]Y.

Substituting this last equation into Egs. (11), (13), (23), and
(25), we can obtain Vg, which when substituted into the con-
tact conditions result in:

Rgo' ‘VSB=’ ‘—rbdéS\p=0.

Since 7, d cannot be zero and # is not a geometric parameter,
the offset angle, ¥, has to be zero to satisfy the contact con-
dition. In other words, all the contact points must lie on.the
normal plane.

Let us decompose the slip-velocity into two parts: (1) on the
central normal plane, and (2) along the tangential direction of
the Frenet frame of the ball center trajectory. Then, as we can
see from the Eqs. (26) and (27), the magnitudes of the resultant
slip-velocities on the central normal plane at the ball/nut and
the ball/screw contact points are r,(w,~S.,Q2) and rpw,, re-
spectively. Accordingly, no «, value exists which causes the
slip-velocities on the central normal plane at both contact points
to vanish simultaneously. In other words, friction can never
vanish at both contact points on the central normal plane unless
the helix angle, «, equals zero. A method for calculating the
frictional losses, which has been used as the basis for many
subsequent studies, was given by Levit (1963) who defined the
BSM friction angle to lie along the tangential direction of the
Frenet frame of the ball center trajectory. This produces an
inaccuracy due to the fact that it does not account for the
effects of the torsion of the helix.

4 Acceleration Analysis

The acceleration of the ball center with respect to the ro-
tational Cartesian coordinate system, oxyz, can be expressed
as
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"R=[d6 rn6% 0]Y (28)
where dé and r,8? represent components of tangential and
centripetal acceleration of the ball center with respect to the
rotational Coordinate System oxyz, respectively. The accel-
eration of the ball center in the world coordinate system is
expressed as

MR="R+QOx"R+OXQx R+20x'R
=[d(B+CL0) rm(6+9Q) -r.SAY (29

where the component along the normal direction, r,,,(é +f2)2
includes both the centripetal and Coriolis effects. The angular
acceleration of the ball is given by the symbol a:

iy —waCal 8 +0) +S,(6+0) 7
a= | o+ (0Ca—wpS)(6+02) |- Y
@p+ @+ Sal(0 + Q) +Co (6+0)

(30

where the first term in each component represents the change
in magnitude and the second term represents the gyroscopic
motion.

5 TheKinematics of the BSM with Elastic Deformation

Loads acting between the balls and raceways in the BSM
develop only small areas of contact between the mating mem-
bers. Consequently, although the elemental loading may only
be moderate, stresses induced on the surfaces of the balls and
raceways are usually large. Contact deformations are caused
by contact stresses. Because of the rigid nature of the balls,
these deformations are generally of a low order of magnitude.
The classical solution for the local stress and deformation of
two elastic bodies contacting at a single point is that of Hertz
(1881) which has been applied to ball-bearing problems. Levit
(1963) introduced the theory to the BSM. However, the kin-
ematics of the BSM regarding elastic deformations has never
been solved completely. It is the purpose of this section to
develop the internal motions of the BSM, the relative slip-
velocity between the ball and the nut/screw and the pattern
of sliding lines of contact and thus set the foundation for
further investigations on friction, wear and finite element anal-
yses. :

5.1 Position of the Contact Point. To specify the position
"of a contact point between two deformed bodies, a coordinate
system, i X;Y;Z;,i = A, B, is introduced between the ball and
the raceway (at each contact point as before). In this coordinate
system, the X; Y; plane lies on the plane of contact and the Z-
axis is the common normal of the two contacting bodies. Figure
6 shows a ball contacting the screw raceway such that the

Qxg . vg)

g © screw

Fig. 6 Ball-screw contact

mation between the Frenet frame and the [ X; Y; Z; system is

X;=T,Y €29

where w
0 -Sg Ca
Xi=[i; ji k1" and T3=|1 0 0
T 10 G S

The position vector of an arbitrary point Q, on the X Yp
plane with respect to the origin B, can be expressed as Rgg =
{xs »¥s 0]Xjpand the position vector of point B with respect
to the ball center is Rgp” = [0 0 rp) Xp. The radius of
curvature of the screw raceway groove is

rg=\/R§—x§—\/R§—a§+\/r§—a§, (32)
and the radius of curvature of the deformed surface as defined
by Hertz is

2firs
Rj=— 33
Tl (33)
where
fi=2, i=A, B.
Ty

Therefore, the position vector of point Q with respect to the
world coordinates is

Roo’ =Rgz+Rpo’ + "R.

5.2 Velocity of BSM with Deformation. The derivation
of the velocity of the BSM with deformation is similar to the
procedure in Section 3, from which, the following equations
can be determined:

5.2.1 Velocity of Any Contact Point P/Q on lhg Ball

(34)

Ves="R+wXxRpo’

[d(6 +C2Q) + (x4 Spa+7aCoa)wp+ (X4 Coa—raSpa)eon T

~ (x4 Csa—TaSpa)w+yawsy Y @39

— I Se@ — (X4 Spa + 74 Coa)wr—Ya

Vor="R+wxRoo’

normal force between the ball and the screw is distributed over
an elliptical surface defined by the projected major and minor
semi-axes, ap and bg, respectively. The coordinate transfor-
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-d(9+CiQ) + (XBSBB—r5C5B)wb+ (XBCBB+rBSBB)°’n T

— (xg Cgp+raSgp)w;+ypwp Y (36)

I Se = (x5 Sgp+rp Cap)w +Ypwn

5.2.2 Velocity of Any Contact Point P on the Nut

Von= —rnSeQ {ta 0 1Y (37
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5.2.3 Velocity of Any Contact Point Q on the Screw
Vos= 0K X Rgo

(Fm=r5Caa+x5Ss5) Col? 4

= yéCaQ— (I'BSﬁB'FXBCﬂB)SaQ Y
= (rm—rsCgp+XxzSgp) Sor_ﬁ
(38)

5.3 Slip Velocities at Contact Points P and Q

Vsp=Vpy~Vp,

d(0+9)+ (XASBA-I-I'A CﬁA)wb+ (X4 CgA—f,qS,gA)wn T

= (x4 Cpa—TaSgadon+yawy
= (X4 Spa+7a Cpa)w—Yswn

~Ya(Sgawp+ Cpgwn) —rgw

—Xq0;+Y4(Cgawp— Spawn)

VSQ = va - vQS

= (x5 Cap+75Sp8) (S ~ () +¥5(wp— Caf)
L (xpSge—TreCps) (SeQ—w) —Ypwn

—ylSpa(ws— Cat) + Capwnl — r5(Sa@— ;)

x5(Sa @~ w,) +y5[Cas(wp— Culd) — Spp0n

L

Note that the equations derived in this section can be reduced
to the corresponding equations in Section 3, without consid-
ering elastic deformations, where r; = ryand x; = y; = 0.

5.4 Slip Velocity and Pattern of Constant Sliding
Lines. The pattern of constant sliding lines of ball bearings
in the elliptical contact area was investigated by Lundberg
(1954) and presented by Harris (1984) in his book. Here a
pattern of sliding lines are derived for the BSM directly from

the equations of slip-velocity obtained from the previous sec-
" tion. Since the pattern of constant sliding lines are similar for
different types of motions, only the case with screw driving
and conversion of rotary into linear motion is shown as an
example. In accordance with the Hertzian radius of contact in
the direction transverse to the motion, the contact surface has
a harmonic mean profile radius. This implies that the contact
surface is not straight but generally curved. The no-slip con-
dition along the common normal of the contact surfaces be-
tween the ball and the nut is obtained from the Z,-component
of Eq. (39) as follows:

—Xagw+Ya (0p Cga—wnSpa) =0.

@én

This equation represents a straight line, referred to as the

stagnation line, on the X4 Y, plane. This line passes through

g}e o;igin A, with a slip of «,/(w, Cgs — w,Sg4), as shown in
ig. 7.

We first assume that the nut is fixed in space. Thus, it tends
to “‘cut-in’’ the contact surface for every contact point on the
ball lying on one side of the stagnation line in the contact
ellipse and “‘leave-from’’ the contact surface for every point
!ying on the opposite side of the line. There is a special case,
in which w, Cg4 ~ w, Sg4 =0, which indicates that the resuitant

854 / Vol. 116, SEPTEMBER 1994

T

-dG + (X533B—f3055) (wb—-CaQ) + (xBCBB""rBSﬂB)wn T

= XB[SBB(Ub_CaQ)+CBBwn]+dé_rB[CBB(wb_Cad)—SﬁBwn] Xp

stagnation line

Fig. 7 \Slagnation line, line of no-slip along the common normal of the
contact surfaces

spinning velocity on the normal plane is along the common
normal of the contact surfaces. In this case, the common nor-
mal has been referred to as the ‘‘spinning axis’’ in the ball-

xA(SBAwb+CBAw,)+d(é+Q)+rA(CﬁAwb—SﬂAw") X,,

(39

Y

.(40)

bearing literature. Additionally, the “‘stagnation line’’ becomes
the Y4-axis (x4, = 0)-which is true because pure spin will not
change the depth of “‘cut-in’’ of a certain point. Similarly, if
w, = 0, the “‘stagnation line’’ becomes the X -axis (y4 = 0)
because the rolling motion changes the depth of ‘‘cut-in.”
The equation of constant sliding lines can now be obtained

from the X,- and Y,4-components of Eq. (39); that is
(Xa—Pa)+ (Ya—gqa)’=C 42)

where

d(é+fi)+rA(waBA—w,,SBA)
Pa=— s

W SﬁA + wp, CﬂA

T4
A=~ >
“’bSBA+wnCﬁA

and

_ constant
(wp Spa+ @ Caa)*

Equation (42) represents a family of circles on the X, Y4-
plane with center located at (p4, g4), where the no-slip con-
dition on the X, Y4-plane occurs, as shown in Fig. 8. It is
interesting that the point, (p4, g4), will not lie on the stagnation
line [Eq. (41)} unless the term, § + Q, vanishes which is
impossible except for the static situation. In other words, a
point with no-slip is not possible within the contact ellipse.
Note that r, can also be defined as a variable from Hertzian
contact theory and Eq. (42) remains valid. In such a case, Eq.
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°
Fig. 8 Pattern of constant sliding lines at constant surfaces

(42) results in a family of non-coplanar circles representative
of the true contact surface shape.
As one can see from Eq. (42), under the special case where

(43)

the slip-velocity on the X, Y4-plane is an invariant which is
exactly the same as the slip-velocity at point A without elastic
deformation if r; = r,. The line defined by Eq. (43), which is
aline on the normal plane perpendicular to the common normal
of the contact surfaces, has been called the “‘rolling axis’’ in
the case of ball-bearings. It is obvious from Eq. (42) that the
no-slip condition is not possible even when spinning is absent.

A similar analysis can be applied to the contact area between
the ball and the screw, and the corresponding resultant equa-
tions are:

Equation of stagnation line:

wp Sga+wa Cga =0,

xp(S.8~ )+ gl (ws— Coll) Cop— 0, Sgpl =0 (44)
Equation of constant sliding lines:
(Xg=ps)’+ (y5—g5)*=C (45)
where )
pg= 20 =r6l(8s= Cu) Cip — i Syl
(05— Cof) S+ waCpg
s (sad - wl)
ds=— - P
(wp—Co)Spp+w, Cgp
and
_ constant
[(ws— Ca)Sap + w, Cps)
Equation of “‘pure rolling”’:
(@5 = Ca) Sgp+wn Cpz=0 (46)
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Equation of “‘pure spinning’’:
(wp— Co) Cgp— 3, Sgp=0 47

Note that the corresponding equations at the ball-nut contact
area are independent of the helix angle of the BSM, whereas
those at the ball-screw contact area are dependent on the helix
angle. . :

Conclusions

In this paper, we have studied the kinematics of the ball
screw mechanism with the aim of understanding the slip con-
ditions and pattern of contact points between the elements.
We have derived the general slip conditions and have shown
that the condition of no-slip in the central normal plane as-
sumed in the previous literature is theoretically unattainable.
The effect of contact deformation on the motion of the balls
was also studied and used to determine the pattern of sliding
lines of the balls in contact areas.

The results, in addition to their theoretical interest, provide
the basis for efficiency analysis, design, wear analysis, and
finite element modeling of the ball screw mechanism.
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Design of the Ball Screw
Mechanism for Optimal Efficiency

This paper develops theories for evaluating the efficiency of the ball screw mechanism
and additionally, for designing this mechanism. Initially, a quasi-static analysis,
which is similar to that of the early work in this area, is employed to evaluate
efficiency. Dynamic forces, which are neglected by the quasi-static analysis, will
have an effect on efficiency. Thus, an exact theory based on the simultaneous solution
of both the Newton-Euler equations of motion and the relevant kinematic equations
is employed to determine mechanism efficiency, as well as the steady-state motion
of all components within the ball screw. However, the development of design methods
based on this exact theory is difficult due to the extensive computation necessary
and thus, an approximate closed-form representation, that still accounts for the ball
screw dynamics, is derived. The validity of this closed-form solution is proven and
it is then used in developing an optimum design methodology for the ball screw
mechanism based on efficiency. Additionally, the self-braking condition is examined,

as are load capacity considerations.

Introduction

The ball screw mechanism (BSM) has been used for many
years in a wide variety of applications. The most referred to
work on the BSM is due to Levit (1963a, 1963b). In his work,
Levit has both reviewed the literature prior to his, as well as
providing a series of calculations for designing this mechanism.
Levit’s work has provided the foundation for most of the
subsequent work on the design and manufacture of this mech-
anism including that of Belyaev and associates (1971, 1973,
1974a, 1974b, 1981, 1983), Drozdov (1984) and Mukhortov
(1982), to name a few. Unfortunately, Levit includes several
improper assumptions causing his results, as well as those based
on his results, to be questionable. These errors are noted by
Lin et al. (1994), who have taken a fundamental approach in
examining the kinematics of the BSM. Basically, Levit does
not account for the torsion of the helical path of the individual
ball center.

In this paper, we will first examine the efficiency of the BSM
using a quasi-static approach much like Levit’s, but with the
proper kinematics. Since dynamic forces are neglected by the
quasi-static analysis, a more exact approach will be taken. In
this approach, we will consider the steady-state motion of the
ball for a three-point-contact profile (Gothic profile) without
deformation by numerically solving the Newton-Euler equa-
tions and the relevant kinematic equations simultaneously.
While the efficiency of the BSM actually varies as a function
of time, the steady-state simplification is valid for many ap-
plications and additionally, it can be more easily applied for
developing design methods. Closed-form solutions are even
more easily applied to the development of design methods and
such solutions are derived in this paper. These closed-form

Contributed by the Mechanisms Committee for publication in the JOURNAL
oF MEcHANICAL DEsIGN. Manuscript received March 1990; revised Feb. 1994.
Associate Technical Editor: G. L. Kinzel.
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solutions, which account for the dynamic forces, are shown
to be valid through close agreement with the results of the
steady-state theory. A detailed design methodology for the
BSM based on the closed-form theory is then presented.

In general, the analysis of the ball screw motion can be
divided into two different categories according to the driving
component; i.e., nut driving or screw driving. Additionally,
each of these categories can be further divided according to
the type of input motion; i.e., conversion of rotary into linear
motion or conversion of linear into rotary motion. Since the
procedures for analyzing the different types of motion are
similar and all types of motion are kinematic inversions of
each other, in this paper, we will only examine the cases with
the screw as the driving component. :

Quasi-Static Efficiency Analysis

Levit, in his classic work on the BSM, assumes that there
is no-slip between the balls and the nut and screw. Thus, he
derives the quasi-static ball screw efficiency by assuming that
there is only rolling resistance at the ball/screw and ball/nut
contact points. Levit’s results imply that the upper bound on
ball screw efficiency should be unity. However, recent detailed
examination of the kinematics of the BSM proves that the no-
slip condition is not attainable and that there must be slip on
the normal plane of at least one contact point; see Lin et al.
(1994). Therefore, in this work, we have used the correct kin-
ematics and have assumed both slip on the normal plane and
rolling resistance in the tangent direction at the contact points
in order to determine the quasi-static efficiency of the BSM.
Additionally, we assume that there are two contact points
between an individual ball and the screw and nut.

For the case of screw driving, suppose that a moment, MKk,
is acting on the screw in order to overcome an axial load Fk
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applied on the nut. By considering static equilibrium of the
screw, the ball and the nut, respectively, we arrive at the fol-
lowing relations:

M=ern{San[Sﬂ+f(a_ CB)] +C<2Sa] »
Qa=Qs=Qy, and

Fa= —Qn[Can(SB—fCB) "SorSp] (1)
where

the torque applied on the screw or the nut,

the axial force applied on the screw or the nut,

the normal force at the contact points between the
ball and nut and screw, respectively,

and the corresponding subscripts:

A and B denote the points between the ball and the
nut and between the ball and the screw, respectively,
the Coulomb coefficient of friction at the contact
points,

mean radius of the helical path of the ball centerline,
ball radius,

T b/ Tmy

helix angle of the path of the ball centerline,
cosine and sine functions, respectively, with the angle
denoted by the subscript, and we will later use
tangent function with the angle denoted by the sub-
script.

o7
nonon

Qi

<
f

hwnnu

o
]

The friction angle, p, is used to represent the dissipated energy
due to rolling friction between the contact surfaces and can
be represented by the following expression, which was derived

by Levit:
1| S :
p=tan [_r bsﬁ] 2)

where f; denotes the rolling coefficient of friction. We addi-
tionally assume that the contact angles between the ball and
the screw and nut, 84 and B;, respectively, are equal; i.e., 84
=Bz =B.

The efficiency is equal to the ratio of the work done by the
output forces to the work done by the input and can be rep-
resented. as

Ja+1t,/(C.S,)
Sﬁ +f(i1— Cg) + tp/ta.
Using a similar approach for the case of nut driving, the ef-
ficiency can be simply\exp:e_sged as
_fla+2Gs) +4,/(CoS,)

n=1- 3)

=1 (4)_

SB"E'.f(lI"l-Cg)'l‘[‘,/tcr ’

A More Exact Efficiency Analysis’

The quasi-static analysis of the preceding section provides
an approximation to the ball screw’s efficiency since dynamic
forces, which will have an effect, have been neglected. In
actuality, ball screw efficiency will vary as a function of time
due to the system dynamics and the time-dependent nature of
the input torque. In order to design with utmost care, one
would need to solve the general equations of motion in order
to calculate the time varying efficiency, and corresponding
design methods could be developed that consider either a max-
imum or a mean value of efficiency. However, such an ap-
proach would be quite tedious and results may be difficult to
use for design purposes. By considering steady-state ball screw
motion, an approximation of the equations of motion is ob-
tained that still accounts for some of the dynamic forces. This

approximation provides a basis for developing a simplified -

design method and it is valid for many ball screw applications.
Since the steady-state theory results in an approximate effi-
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Fig.1 The position of the ball center, O, in Carteslian coordinates and

Frenet-Serret coordinates ;

i

ciency, in certain instances, the designer may elect to integrate
the general equations of motion in order to monitor the time
varying efficiency.

To develop the equations of motion, we first consider the
position of the ball center and we employ the following three
coordinate frames: a fixed Cartesian frame, ox'y'z’, a Carte-
sian frame rotating with the screw, oxyz, and a Frenet-Serret
coordinate frame along the ball trajectory, o’ nbt, as shown
in Fig. 1. We then arrive at the Newton-Euler equations which
represent the ball motion. The steady-state form of these equa-
tions of motion, for the case of converting rotary into linear
motion, follow. :

S(Q8Syn+ QuSya+QarSyar) =0 (50)
Qa(Cs~f56Cy4) — Qp(Cp+ fS5Cys) o
: + Q4 (Ca+fSsCya")=mrn (6 +Q)* (5b)

Qu(Sg+SCsCya) — Qa(Sg—fCsCyp) — Qu’ (Sg—fCsCpa’) =0
: (5¢)

Jro(QsCua~QaCyua—Qu'Cyysr) = —{(éffi)wnca (5d)
JroSe(QsSys—QaSya+Qa'Syar) =1(0 + Q) (w0, Cs— wpSs)
(5e)

_frbcﬁ(QBS\&B"QASwA—QA'S\M')=I(0.+d)°’r;Sa ¢N

where:

¥; = the angle between the direction of the friction
force and the normal plane at the contact points,
and the corresponding subscripts:

A and A’ denote the major and minor contact
point between the ball and the nut, respectively,
and B denotes the major contact point between
the ball and the screw,

mass of an individual ball,

mass moment of inertia of the ball relative to
its mass center,

the angular velocity of the ball relative to the
screw along the helical path,

~ 3

o

.
Il
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the angular velocity of the screw, and

the angular velocity of the ball with respect to
its center of mass in the normal, tangential and
binormal directions of the helical path.

won

Note that these equations assume a three-point contact profile
between the ball and the nut and screw. With the three-point
contact, there are two major contact points, A and B, through
which the majority of the load is transferred. Additionally, a
minor contact point, A, must exist in order to equilibrate the
centripetal force and adequately constrain the ball. We ad-
ditionally assume that the contact angles between the ball and
the screw and nut, 84, 84, and Bp, respectively, in this case,
areequal;ie., B4 = Ba’ = Bz = B- From a design perspective,
equal contact angles result in consistent Joading over all of the
contact points helping prevent local failure and premature
fatigue. Theoretically, the contact angle can be between 0 deg.
and 90 deg. In actuality, the contact angle is limited by ge-
ometry and manufacturing techniques and is most often be-
tween 45 deg. and 60 deg. The interested reader is again referred
to Lin et al. (1994) for a more detailed derivation of these
equations, as well as those to follow.

The slip angles, the angles between the friction force direc-
tions and the normal plane at the contact points, are better

defined as
V .
= -1 2y
Yi=7+tan ( Vx')

where Vy; and V); denote the magnitude of the velocity in the
normal plane and the tangential direction, respectively, with
respect to the local coordinate systems at the contact points;
see Fig. 2. Through a study of the kinematics (see Lin et al.,
1994), the following slip velocities result:

©®

For the ball/nut contact point:
Via= ~ryw; and Vya=d (6 + Q) +ry(0pCs—nSg) (1)
and for the ball/screw contact point:
Vig=rp(w,— Qs,) and
V,5=db —ryl(wp—QCo)Cs—wnSsl  (8)
where d = rn/Ca.
By imposing static equilibrium on the screw and nut, we
have the following expressions which can be used to relate the

torque applied to the screw (or nut) to the axial load acting
on the nut (or screw):

M= (R;xF;+Ry» xFi") ok
=Tl Wi Q1" — 0)SaSp + ST~ Sa( QiCyi+ Qi* Cyi)wa + Cp)
+Co (QiSyi+ Qi Syir (1 + waCp)]} and
F,= (F;+Fi")°k _ -
=wi(Qi— Qi")CuSs+ NICaCp(QCyi+ Qi* Cyi?)
+8,(0iSyi+ Qi Syi*)); i=A, B. (9)
where

"R; = the position vector of contact point i with respect to
the rotational Cartesian coordinate system (see Fig. 1),

F; = the force vector applied on the ball at contact point /,
and

the weighting function, w,, allows distinction between the var-
ious contact points and is defined as

w= 1 fori=A (A denotes the ball/nut contact)

= -1 for i=B (B denotes the ball/screw contact).

Equation (9) provides two simultaneous equations for either
the screw driving or the nut driving case. When a torque is
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Fig. 2 Coordinate systems at the contact points

applied to the nut, the subscript i = A4 will apply for the
moment equation and the subscript i = B will apply for the
force equation since an axial force will be acting on the screw.
When the torque is applied to the screw, i = B applies for the
moment equation and i = A applies for the force equation.

Equations (5)-(9) have been solved numerically for the screw
driving case with the following ball screw parameter values:
r, = 4.37 mm (0.172 in.), r, = 24.3 mm (0.956 in.), Q=
2000 rpm, and « = 10 deg. for varying contact angles or 8
= 45 deg. for varying helix angles. The coefficient of friction,
f, is assumed equal to 0.075, a value representative of the
contact conditions normally found in the BSM and this value
will be used for the remainder of the paper. Additionally, it
is assumed that an axial load, F,, equal to 2113 Nt (475 1b) is
resisting motion of the nut. Figures 3 and 4 depict the results.
We show the relationships between efficiency and contact angle
and helix angle in Fig. 3. Figure 4 displays the normal loads
as a furnction of contact angle. In this figure, the curve rep-
resents the load at the major contact points, A and B, which,
for all practical purposes, are equal, and the load at the minor
contact point, 4°, which is orders of magnitude smaller, is
not distinguishable from the abscissa.

The Approximate Closed-Fofm Solution

The theory developed above involves the numerical solution
of the set of equations representing the steady-state motion of
the ball screw and designing ball screw mechanisms using this
theory is obviously quite cumbersome. The current section
derives an approximate closed-form solution for the ball screw
motion and considerable insight is gained into the sensitive
design parameters. This solution also allows us to investigate
the optimal design of the BSM.

For the mechanism operating at relatively low speed, which
is true for most BSM currently used in industry, it is reasonable
to assume that the centripetal force is very small compared
with the normal loads. Additionally, from the numerical results
above, we recognize that the normal load at the minor contact
point is very small compared to the normal loads at the two
major contact points. The third contact point is necessary to
provide a stable system, but has only little effect on the re-
sultant motion at these relatively low speeds. Thus, Q4 = O,
indicating that a two-point-contact model is a reasonable ap-
proximation. For the particular size of balls used in this model,
we find that this approximation is valid for screw speeds as
high as 2,000 rpm.

With the assumption that Q4+ = 0, from Eq. (54), we obtain
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which implies that Y4 = = + . Note that this result also
agrees well with the numerical results.

We note that the nut moves a distance equal to —QL/2x =
—Qrnt, (where L denotes the lead of the screw) as the screw
rotates through an angle . Thus, from the above assumptions
and Eq. (9), the efficiency of the BSM, 11, can now be written
in closed-form as

= 10

Sﬂ—f(C5C¢A+S¢Ala)
SB+f[C¢,g(a C,g) +S¢g( 1 —aCB)/ta]

Itis now simple to observe the effects of the various parameters
on efficiency.

Figure 5 shows the variation in efficiency with respect to the
slip angle at the screw/ball contact point, ;. In this figure,
the following parameter values are used: ¢ = 0.1 and ¢ = 10
deg. The curve indicates that the friction along the tangential
direction dissipates more energy than that on the normal plane.

(11)

In other words, the component of frictional force along the .

tangential direction plays a more important role, from the
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Efficiency, n
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Fig.5 Efficlency as a function of the slip angle between the ball and
the screw

efficiency point of view, than that on the normal plane. Thus,
the upper and lower limits of efficiency are at ¥z = 0 deg.
(normal plane) and Y5 = 90 deg. (tangential direction), re-
spectively. We note that we could arrive at the same conclusions
by using the slip angle at the screw/ball contact point, ¥4,
sincey = x + ¥p.

Furthermore, the following equation is obtained by dividing

Eq. (5/) by Eq. (5d):

cot(Y4) +cot(yp) =— (12)
By combining Egs. (10) and (12), we have
‘\I/B=z[z4—1r=[an"<é—°;). (13)
Therefore, Eq (11) can be further simplified to
n=1- d (14)

C‘ZQSB[V C§+ti+f36]

and we note that the only parameters affecting efficiency from
this equation are the coefficient of friction, the helix angle and
the contact angle.

Using Eq. (14), we find that the efficiencies generated are
nearly identical to the numerical results obtained from the
steady-state solution of the Newton-Euler equations shown in
Fig. 3 where the maximum difference between the theories for
the efficiency versus helix angle relationship is 0.33 percent
and between the theories for the efficiency versus contact angle
relationship is 0.86 percent. Thus, Eq. (14) is a valid repre-
sentation of the efficiency of the BSM for this type of motion.

- Further investigation of Fig. 3 reveals that an optimum contact

angle exists for peak efficiency. This existence of an optimum
can be explained as follows. If one considers only the friction
on the normal plane, the efficiency is proportional to the con-
tact angle, which can be observed through Eq. (11). However,
from Fig. S, the component of frictional force along the tan-
gential direction, which dissipates more energy than that on
the normal plane, becomes more important at higher contact
angles. Hence, a peak efficiency exists at a contact angle at
which the two frictional components reach some particular
ratio. To obtain the optimum contact angle mathematically,
we differentiate the denominator of Eq. (14) with respect to
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optimal efficiency

the contact angle and set the derivative equal to zero, resulting
in the following expression.

Ci+2+2fS\ G+ 2=55 1s)

One notes, from this equation, that the optimum contact angle
can be expressed as a function of helix angle. The resultant
relationship is depicted in Fig. 6. This curve indicates that the
peak efficiency exists only at lower helix angles and higher
contact angles. The optimum efficiency is arrived at by merely
solving Egs. (14) and (15) simultaneously. The resulting op-
timal efficiency value is 86.1 percent for all helix angles and
the corresponding contact angle from Eq. (15), and the coef-
ficient of friction equal to 0.075.

Self-braking is that condition in which it is kinematically
impossible for the mechanism to perform useful work and is,
of course, highly undesirable. The self-braking condition is
determined by combining Eqs. (11) and (13) and results when
the numerator of Eq. (11) becomes negative; i.c.,

Se<N G+ 2. (16)

The shaded region below the curve in Fig. 7a represents the
design space in which self-braking occurs. We note that self-
braking takes place for designs with low contact angles for the
helix angles normally used and additionally, that the self-brak-
ing condition always takes place at the driven side of the mech-
anism.

Conversion of Linear into Rotary Motion. Employing a
similar procedure as above, we obtain the efficiency for the
case of converting linear into rotary motion as

S

7=1- B
C%[Sa\/cé+t§+f(0§+t§)]

It is again easy to develop relationships between efficiency and
contact angle and helix angle. For this case, the trends are the
same as the case of converting rotary into linear motion, but
with slightly different values. Now, the peak efficiency occurs
when the following expression holds:

Ch+=55+2/5s (18)
and the resulting relationship between contact angle and helix

angle is additionally shown in Fig. 6. This curve also indicates
that the peak efficiency exists only at lower helix angles and
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Fig. 7(a) The self-braking design space—conversion of rotary into lin-
ear motion
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Fig. 7(b) The self-braking design space—conversion of linear into ro-
tary motion

higher contact angles. The optimum efficiency is arrived at by
merely solving Eqgs. (17) and (18) simultaneously. As in the
case of conversion of rotary to linear motion, the optimal
efficiency value is 86.1 percent for all helix angles and the
corresponding contact angle from Eq. (18), and the coefficient
of friction equal to 0.075. In this case, the self-braking con-

dition occurs when
fSe=\/ Co+ 2 (19)

The shaded region above the curve in Fig. 7(b) depicts the
design space for self-braking and this takes place only for
designs with low helix angles and high contact angles.

Load Capacity Considerations

The normal load transmitted through the contact surfaces
should be designed to be as low as possible for a given loading

Transactions of the ASME




condition to attain the highest possible load capacity. For the
case of conversion of rotary into linear motion, we consider
a constant load F,. Then, by neglecting the friction force terms
which result in surface tractions as opposed to normal loads,
from Eq. (9), we notice that causing C,Ss to be as high as
possible results in the lowest normal loads. This implies that
designs with small helix angles and large contact angles give
the BSM the maximum load capacity. With the ball-screw
designed such that it operates at its maximum efficiency, we
find that the term C,S; is constant for all helix angles and the
corresponding contact angle from Eq. (15), and thus, the load
carrying capacity cannot be improved for this optimum case.

For the case of conversion of linear into rotary motion,
assuming constant load M, Eq. (9) reveals that the lowest
normal loads occur for a high r,,S,Ss term. This indicates that
with large mean radius, helix angle and contact angle, the BSM
has the highest load capacity. Additionally, we note that the
parameter a (ratio of ball radius to mean radius) is not a critical
parameter within the range found in most industry applica-
tions; i.e., usually, 0.07 < a < 0.2. Thus, for this case, one
would like to choose the highest contact angle that is possible
given manufacturing constraints and select the corresponding
helix angle from Eq. (18) for optimum efficiency in order to
design the most efficient, highest load carrying ball screw
mechanism.

Design Procedure

Based on the results arrived at in the preceding analysis, the
following methodology is recommended for the design of the
BSM:

(1) Select a preliminary helix angle based on the discussion
related to load capacity and the corresponding motion.

(2) Determine the contact angle for optimal efficiency from
either Eq. (15) or (18).

(3) Choose the screw length according to the application
requirements.

(9) Determine the mean radius such that r,, = screw length/
60, as noted by Levit (1963b).

(5) Select the ball size such that 0.07 < a < 0.2.

(6) Determine the thread profiles such that 0.95 < ry/r,
< 0.97, where r, = the radius of curvature of the thread
profile for the nut or screw.

(7) Determine the approximate contact force from the
specified resistive force or moment and the equations shown
below, which were derived from Eq. (9) with friction neglected.

For the conversion of rotary into linear motion:

F,
= 20)
o=zt ¢
For the conversion of linear into rotary motion:
M
= 21)
Q S5y (

(8) Determine the relative motion between the screw and
the nut from the following relationship:

advance distance = (r,) (angular displacement).

(9) Calculate the maximum contact stress using the ap-
proximate contact load, the ball radius, the thread radius of
curvature and Hertz’ theory.

Journal of Mechanical Design

(10) Determine the efficiency of the BSM from Eqgs. (14)
or (17). .

This procedure should be an iterative process with a new set
of ball screw dimensions selected if any of the criteria are
violated. For instance, if the contact stresses determined from
the Hertzian theory are too high, most likely larger dimensions
are necessary. Similarly, if the relative motion is not appro-
priate (size constraints are violated), a new helix angle, as well
as other dimensions, may be necessary. Additionally, this pro-
cedure has not discussed the speed requirements nor the avail-
able motor power of the application. Obviously, these factors
will also affect the final design.

Conclusions

This paper provides a powerful set of tools for analyzing
and designing the ball screw mechanism. The exact steady-
state motion within the ball screw mechanism has been deter-
mined by numerically solving the Newton-Euler equations of
motion and the kinematic equations simultaneously. This pa-
per has developed a simplified closed-form solution for ball
screw motion and has employed this theory in considering the
optimum design of this mechanism. In terms of efficiency, the
driving component does not have an effect. That is, only the
type of motion conversion is important. Thus, the necessary
relationship between contact angle and helix angle for optimum
efficiency has been formulated for all types of ball screw mo-
tion. Additionally, the conditions for self-braking have been
discussed as well as the load capacity of the BSM. The results
of the closed-form solution have been presented in a dimen-
sionless manner allowing this work to be applied to the design
of any ball screw mechanism. Finally, a complete design pro-
cedure for the BSM has been developed.
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Abstract. In this paper, a complete solution of the steady-state Newton-Euler equations describing the motion
of the balls in high speed thrust ball bearings is presented. Kinematic equations are derived and used as
ancillary equations to obtain the numerical solution of the Newton-Euler equations. This differs from
previously reported work where extraneous assumptions (instead of kinematic analysis) are used to allow

solutions of these equations. It is shown that the no-slip condition for the ball motion reported

in the literature

is based on an unnecessary assumption. The correct form of the condition is developed and used in the
analysis of the ball motion. The analysis shows the importance of contact angle on both ball motion and
contact force. An approximate theory is then developed for determining the optimum contact angle that would
result in minimum contact force in high speed ball bearings. The results are compared with experimental data,

and theory is illustrated by an example.

Keywords. Thrust ball bearings; high speed; kinematics; design.
INTRODUCTION o = mean radius of the path of the ball center,
J'I'he ballgm;tion within ball bearings was first investigated Ty = ball radius, and
by Jones (1959) where he derived equations governing the = : ; i
steady-state motion of the ball. Jones did not solve the O ;h;;l;gular velocity of the ball with respect to its

equations that he derived and only used them to investigate
frictional effects in ball bearings. Subsequently, Harris (1971)
made several simplifying assumptions that made it possible to
solve Jones' equations obtaining numerical resuits for the
motion of the ball. Harris' technique, also presented in Harris
(1984), includes an assumption that there is a sufficiently large
static coefficient of friction between the ball and the raceway to
prevent ball rotation due to the gyroscopic moment.
Additionally, he assumed that there is no-slip at the contact
points in certain directions. Later, Gupta (1975, 1979)
determined the complete solution to the differential equations of
motion of the ball by including contact deformations. He also
considered full elastohydrodynamic lubrication.

In this paper, we show that neither the so called race control
assumption of Jones and Harris nor the inclusion of the contact
deformation are necessary for obtaining solutions to the
equations representing ball motion in high speed thrust bali
bearings. For such devices, one can assume three points of
contact between the ball and the raceways and solve the
equations of motion. This is accomplished through the use of
kinematic analysis to develop ancillary equations, which when
combined with the steady-state equations, allow for numerical
solutions describing the motion of the ball. In performing the
kinematic analysis, we develop theoretically correct no-slip
conditions and show that they differ from those in the literature;
see, e.g., Palmgren (1945), Allen (1964), Houghton (1976),
Hamrock and Dowson (1981), and Harris (1984). We then
apply the results and develop an approximate, but closed-form,
theory suitable for design purposes. This approximate theory is
used to develop a design strategy for optimum contact angle.

KINEMATICS OF THRUST BALL BEARINGS

Classical ball bearing kinematics assumes that the velocity of the
ball center can be obtained as the mean of the inner and outer
raceway velocities, and additionally, the relative angular velocity
between the inner raceway and the ball is defined as (O,-0;).
Accordingly, previous researchers have developed the following
relationship between angular velocities for the no-slip condition:

(©n ©) @ 7,) = 1,0, M

where

However, the arms of rotation of the ball and the raceways
are different such that the angular velocities of the various
clements of the bearing are not additive. Hence, the correct
equation for angular velocities with the no-slip condition is

actually

T 5%, = (T Tp) @ @
where, here, we define
a, = the orbital angular velocity, and
o, = the angular velocity of the inner raceway with
respect to the ground.

By comparing the above two equations, we recognize that the
arm of rotation of the ball center from Eqn. (2) is equal tor,, as
opposed to (r,-r,) indicated by Eqn. (1). Depending on the
relative size of the balls and the raceway, the error associated
with use of Eqn. (1) could be considerable.

Fig. 1. The coordinate systems employed for
the kinematics of thrust ball bearings.

We now study the kinematics of the thrust ball bearing for
the case in which the outer raceway is fixed and the inner
raceway is rotating. The case with the inner raceway fixed is
merely a kinematic inversion of this case. We employ the
following three coordinate frames: a fixed Cartesian frame,
0X,Y¥,Z,, a Cartesian frame rotating with the inner raceway,




OX,¥,2,, and a ball centered coordinate frame moving along the
ball trajectory, 0'X3¥4Z;, as shown in Fig. 1. Fig. 2 shows the
local coordinate system, Bx,y,z,, at the contact point between
the ball and the inner raceway which will be used in developing
the slip velocities at this point. g

NN\
outer-raceway

Y 3

z

)

Fig. 2. Local coordinate systems at the contact point.

With the assumpﬁoﬂ of rigid body motion, we arrive at the
following velocity of the contact point on the ball:

VBb=R0,+ oxrk,

T
Tp%y
=| 1,(6 + Q) - rh[mxsﬂaf mzCBJ X, 3)
0
where
3 . T 3 . T
. Q= [mx @y mZ] X3, X3= ['3 ) k3] ’ X4= ['4 3 k4] ’
Ry = the absolute velocity of the origin of the ball
centered coordinate system,
6 = the angular velocity of the ball along its circular
path relative to the inner-raceway,
Q = the angular velocity of the inner-raceway,

©,, ®, @, = the angular velocity of the ball with respect to its
center of mass in the x,, y;, z; directions,
respectively, of the ball centered coordinate

system,
C, §; = cosine and sine functions, respectively, with the
angle denoted by the subscript, and
i} = the contact angle at the ball/inner raceway contact

point.
Likewise, the velocity of the contact point on the inner
raceway can be expressed as

0
Vg = @k, xRy = {rm- rbCB] Qlx, @

0
where

T
and Ry denotes the position of the contact point with respect to
the fixed coordinate system.
Thus, the slip velocity at contact point B between the ball
and the inner raceway can be as

T
Vs= Voo~ Vi = [va Vs st]

rma)y
=| 9 +rbcﬂfz- r@Sgracy | X, Q)

0

In a similar manner, the slip velocity at the ball/outer raceway
contact point, A, can be represented as

T
Vea =[va Vya va]
-rbmy

= rm(é-bQ\,-l' (I)xs

N
0

5+ mzCB) X + 6)

No-slip conditions can now be derived from these last two
equations. From the x-direction slip velocities:

w, =0 0))
and from the y-direction slip velocities:

,=0 ) ®
é + Q - 1+ aCB (9)

Q 2

aC_ t1
.

B

where (8+Q)/Q can be thought of as the orbital velocity of the

ball, /< as the spinning velocity of the ball, a = r,/r_, the ratio
of the ball size to the mean radius of its path, and the "+" sign
applies for outer-raceway driving and the "-" sign applies for
inner-raceway driving.

DYNAMICS OF BALL MOTION
By considering equilibrium of the individual ball, we write the

steady-state Newton-Euler equations governing ball motion in
thrust ball bearings as follows:

f(QgSya+QuSya*QuSya) =0 (11a)
Qu(CyfS5Cyal-Qp(CyfSgCyp*+Qu(Ca-S3Cya)
=mr,_ (6+2) ®)
Qa(Sp + FCyCyr)-Qp(Sg - FCHCyp)-Qu(Sg - FC5Cya) =0(©)
£r,(QeCy-QuCya-QuCya) = 1B+, @
r,Sp(QpSya-QaSya*QuSya) = 1B+, ©
“HpCa(QaSya-QuSya-QuSya) =0 ®
where: ' .
Q = the normal force at the contact points between the

ball and outer- and inner-raceway, respectively,
the angle between the direction of the friction
force and the normal plane ar the contact points,
and the corresponding subscripts:
A and A' denote the major and minor contact
point between the ball and the outer-raceway,
respectively, and B denotes the major contact
point between the ball and the inner-raceway,
f = the Coulomb coefficient of friction at the contact
points,
mass of an individual ball, and
mass moment of inertia of the bail relative to its
mass center.
Note that we assume that there are three points of contact
between the ball and the inner and outer raceways, and that the

contact angles are equal at these contact points; i.e., §, =8, =
Bg=P. Additionally, we nots that these governing equations
are identical to those of Jones (1959). Also, the above equations
are valid for the case of the inner raceway fixed by allowing Q to

represent the outer raceway angular velocity.
The slip angles, the angles between the friction force

¥

m
I




directions and the normal plane at the contact points, are better
defined as

v
v, =n+ a7 (12)

X1

where V; and Vyi denote the magnitude of the slip velocity in
the normal plane and the tangential direction, respectively, with
respect to the local coordinates at the contact points; see Fig. 2.
These slip velocities have been derived in the preceding section
and appear in Eqns. (5) and (6). Equation (12), which is based
on the kinematic analysis, dictates the directions of the friction
forces at the contact points. These equations are the ancillary
conditions which allow the solution of the Newton-Euler
equations without additonal simplifying assumptions. We note
that the kinematics employed assumes rigid body motion, but
that it would be reasonably simple to extend this to include
contact deformation.

Now, assume that the thrust load, F,, is applied by the
shaft. By imposing static equilibrium on the inner-raceway, one
obtains the following equation:

F,=Qy(Sg- £ CgCyp)- (13)

Steady-state ball motion is then determined by the simultaneous
solution of the ten nonlinear algebraic equations (11-13) which

determines the ten unknowns: 8, @, o, ®,, Q,, Qa» Qps Was
¥, and yg. We have obtained solutions of these equations
using a modified Newton's method; see Forsythe, Malcolm and
Moler (1977). Results of the numerical solution are shown in
Fig. 3 in which we compare ball velocities to the experimental
results of Poplawski and Mauriello (1969). We employ the
following parameter values: r, = 4.37 mm (11/64 in.), 1, =

24.27 mm (0.9555 in.), B = 24.5°, f = 0.075, and Q = 35000
pm.

Recognizing that the contact angle plays a critical role in the
resultant characteristics of high-speed thrust ball-bearings, we
employ the above equations and show the variation in ball
motion with respect to contact angle in Fig. 4. We have
additionally shown the effect of contact angle on the normal load
at the ball/outer-raceway contact point in Fig. 5. In addition to
the noted parameter values, Figs. 4 and 5 are based upon: F, =

1780 N (400 1b) and shaft speed, Q@ = 27,500 rpm. Of
considerable interest in Fig. 5 is that 2 minimum of the normal
load Q, exists at some contact angle. Should the thrust bearing
be designed at such a contact angle, its load capacity and life
could be maximized.

0.6]
05 No-slip
) condition e s 00 e -
<l 047
EI Nurerical
-g 03 results
@ 0.2]
E ]
& 017 Shaft speed=35,000 rpm
1 ° Experimental data
00% 100 200 300 400
Thrust Load (Ibs)

Fig. 3. Comparison with the experimental data of
Poplawski and Mauriello (1969).

APPROXIMATE THEORY FOR DESIGNING
HIGH-SPEED THRUST BEARINGS

The theory developed above involves the numerical solution of a
set of equations and the design of ball bearings using this theory
is obviously quite cumbersome. In this section, we provide an
approximation to the theory that allows a closed-form solution
and the development of a simple methodology for determining
the optimum contact angle.

First, consider the no-slip conditions, Egns. (7)-(10),
derived earlier in this paper. These conditions provide a closed-

0.41

Orbital Speed, %“;—Q
o o
W H
$ .3

o
w
o0

10 20 30 40 S0 60 70 80
Contact angle, [degrees]

o
(%

Fig. 4. Orbital speed vs contact angle.

form representation of the ball motion and results are
additionally shown in Fig. 3. Evidently, with the low
coefficient of friction normally found in ball bearings, the no-
slip assumption seems to provide accurate results and thus, it
can be quite useful for developing a design methodology.

We now recognize that the normal load consists of two
major components: one from the thrust force and the other from
the centripetal force. Therefore,

F, . CF
Q=&+ : (14)
Sg 2C,

where the centripetal force, CF = rrn'm(9+Q)2. The first. term of
the above equation is obtained from equation (13) by neglecting
the friction effect (which is small) and the second term is a result
of the centripetal force which is shared by the two contact points
between the ball and the outer-raceway (see Fig. 6). As we can
see from Eqn. (14), the thrust load plays a greater role at lower
contact angles, whereas, the centripetal force is more important
at higher contact angles. Thus, the optimal contact angle
depends on the ratio between thrust load and centripetal force.
Since, the no-slip condition along the tangential direction is
a reasonable approximation for determining the motion in ball
bearings, we substitute Eqn. (9) into (14) and set the first
derivative of Q4 with respect to the contact angle equal to zero.
Thus, we arrive at this condition for minimizing the normal load:

8F, _ 2~21.3
e (l-a CB}B 15)

mr Q

where tg denotes the tangent of the contact angle, B. By

recognizing that azcg << 1, we arrive at the following
expression for the optimum contact angle:

8F

a

2.
mr Q

B =rtanl? (16)

Fig. 7 shows a plot of the optimum contact angle based on
the above equation. Note that Eqn. (16) is valid for both inner-

S

300001

Maximum Load, Q (Newtons)

10 20 30 40 S0 60 70 80
Contact Angle B {degrees]

Fig. 5. Maximum contact load as a function of contact angle.




Fig. 6. Free-body diagram of the ball.

and outer-raceways driving. However, according to the no-slip
conditions derived above, the orbital speed is about 14% higher
for outer-raceway driving as opposed to inner-raceway driving.
Thus, the centripetal force is about 29% higher for the outer-
raceway driving case. This could be crucial when operating at
extremely high speeds. Since the no-slip assumption
overestimates the centripetal force compared to the exact
solution, the desired contact angle should be slightly larger than
that obtained from Eqn. (16).

The dimensionless parameter, 8F /mr, (2, is représentative
of the ratio between the thrust load and the centripetal force. For
extreme cases, as the parameter approaches zero, the optimal
contact angle should approach zero. As the parameter
approaches infinity, the optimal contact angle approaches 90°.
Finally, when this parameter equals one, the optimal contact
angle is 45°,

EXAMPLE

As an example, we use the beaﬁng dimensions used earlier. The
closed-form solution, Eqn. (16), arrives at an optimum contact

angle B = 22.1°. Using the exact theory represented by Eqns.

(11-13) and much computation, the optimum contact angle p =
25° as shown in Fig. 5. The approximate closed-form solution
has underestimated the optimum contact angle by about 10% for
the conditions examined. However, the difference in the
resultant contact force is almost insignificant. Additionally, one
notices from Fig. 5 that the selection of a contact angle equal to
350° would result in a maximum load approximately 22% higher.
For an actual design, we recommend the use of the closed-form
solution to arrive at an approximate contact angle and contact
load. If the result were physically realizable, the designer would
then employ the exact theory to evaluate additional details of the
design. As a matter of interest, the Poplawski and Mauriello
bearing's contact angle was equal to 24.5° and this bearing
operated at speeds as high as 35,000 rpm.

o]

Contact Angle, B (degrees)
wh
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5 <100 -5 0 5 10 15
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Fig. 7. Optimum contact angle as a function of dimensionless
thrust load/axial force ratio.

, CONCLUSIONS

This paper has provided a kinematic analysis of ball bearings
and has applied the results of this analysis to provide the
necessary ancillary equations to allow the solution of the steady-
state Newton-Euler equations governing ball motion in thrust
ball bearings. Previous researchers have applied numerous
extraneous assumpdons to solve these equations and thus, their
results are not accurate. Addidonally, we have presented the no-
slip conditions for ball bearings based on the kinematic analysis
correcting those that have appeared in the literature for many
years. Interestingly eno: zh, we have shown that the no-slip
assumption leads to reasonable results for the low coefficients of
friction commonly found in ball bearings.

Through our analysis, we have shown the importance of
contact angle on both ball motion and contact force. We have
also developed an approximate closed-form solution and have
utilized it in determining the optimal contact angle to be used in
high-speed ball bearings for minimum contact force. Finally,
we have used a simple example to illustrate the usefulness of the
theory.

This work, like any other, has some shortcomings. First,
we have not considered fluid-film lubrication nor the effects of
frictional heating in the contact locations. Additionally, we have
assumed Coulomb friction whereas in reality, friction is a
complex function of a number of variables. Finally, we have
assumed rigid body motion and have not considered the effects
of contact deformation. However, we believe that the design
method developed can be quite useful in light of the agreement
between the developed theory and previously published
experimental data. Furthermore, we would hope that the basic
theory would be extended in the near future to allow
consideration of each of the effects mentioned.
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The approach uses a mapping of spatial kinematics to convert the problem of
interpolating displacements to that of interpolating points in the space of the map-
ping. To facilitate the point interpolation, the previously unorientable mapping space
is made orientable. Methods are then developed for designing spline curves in the
mapping space with tangent, curvature and torsion continuities. The results have
application in computer animation of three-dimensional objects used.in computer

graphics, computer vision and simulation of mechanical systems.

1 Introduction

This paper deals with computational geometry of motion.
Kinematicians and machine theorists have, for many years,
studied problems in kinematic geometry of machines and mo-
tions (see, for example, Hunt, 1978; Bottema and Roth, 1979;
and McCarthy, 1990). Computer scientists and mathematicians
have developed geometric algorithms and methods for prob-
lems in computer graphics and computer aided design (see, for
example, Faux and Pratt, 1979; Farin, 1993). There has been,
however, no merging of the two fields. This paper.combines
and modifies concepts from kinematics and from the field of
Computer Aided Geometric Design (CAGD) and provides a
solution to one of the most basic problems in computational
geometry of motion. The problem, here referred to as motion
interpolation, is that of finding in-between displacements from
a set of given displacements to provide a desired, possibly,
smooth; animation of a rigid body for its full range of motion.
In computer simulation of large mechanical systeins (see, for
example, Tsai and-Haug, 1991), generation of ‘tightly spaced
displacements of a moving body along its trajectory may-not
be Cost effective. Instead, a series of displacemients are generated
using the dynariic equations of motion and theri the in-between
displacements can-be constructed using appropriate motion in-
terpolants. In robotics, generation of Cartesian'trajectories re-
quires interpolation of specified target configurations' of the
end-effector.’In computer vision and computer graphics (see,
for example, Turner et al., 1991), reconstructing motion of a
moving object or a camera that views the scene also requires
interpolating’in-between discrete images of the object or the
scene. . :

There are two basic issues in design of motion interpolants.
The first one is very basic to kinematics and concerns repre-
sentation of displacements. The second basic issue is com-
putational geometric in nature and is related to

! Positions and orientations.
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parameterization and piecing of motion interpolants. The tra-
ditional approach for computer animation of three-dimen-
sional objects has separated the interpolations of translations
and rotations (Reeves, 1981). Although the handling of trans-
lation is straightforward, rotation interpolation has proved to
be difficult. If orthogonal rotation matrices are used, for ex-
ample, their interpolation is not in general orthogonal and
therefore does not represent a rotation. Early approaches have
involved independent interpolation of the Euler angles. This
is cumbersome resulting in speeding up or slowing down the
motion and depends on temporal relationships. More recently,
Shoemake (1985), Duff (1986) and Pletinckx (1989) used qua-
térnions for animating rotations. I this paper we extend these
works to achieve sécond order continuity in motion interpo-
lation. We also use a kinematic mapping of ‘spatial kinematics
to develop a general framework for geometric design of com-
plete motion interpolants (including both translations and ro-
tations)." The kinematic ‘mapping was introduced by Ravani
and Roth (1984) for.solving .problems-in spatial kinematics
and mechanisms -and is used, in this paper, to transform the
problem of designing motion intefpolants into that of inter-
polating points ina special projective three-space called the
image space of the mapping. In this manner, a piecewise par-
ametric motion is represented by curve segments in the image
space. Continuity conditions for piecing motion segments then
correspond to geometric continuity conditions for the corre-
sponding curve segments in the image space. The image space,
however, is not Euclidean but has an elliptic dual metric. In
addition, it is not orientable and as a result point interpolation
in this space cannot be defined unambiguously. We modify
the image space so that it is orientable and then develop meth-
ods for interpolation and approximation in this space with not
only tangent (first order) continuity but also higher order con-
tinuities of curvature and torsion.

The outline of the paper is as follows. We first provide a
brief description for the image space of kinematic mapping.
We then introduce an orientable version of the image space
by replacing a point with two coincident but oppositely oriented
copies. Section 3 presents a linear interpolation in the image
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space, which corresponds to a screw motion of the animated
body. Section 4 describes the generalization of these linear
results to cubic interpolation of displaceme’nts. Section 5 de-
velops the differential geometry of the image curves in so far
as it is needed for developing continuity conditions required
in design of piecewise parametric motions. The results of this
section -are then used in Section 6 to design cubic splines in
the image space with tangent or first order continuity and with
higher order continuities of curvature and torsion.

2 Displacements as Points in the Image Space

This section first reviews the image space of kinematic map-
ping (Ravani and Roth, 1984) as a geometric representation
of a spatial displacement and then extends the results to the
representation of oriented displacements.

2.1 The Classical Image Space. The general displacement
of a rigid body in physical space (E?) is commonly represented
by a configuration M= ([R], d)of a moving frame with respect
to a fixed frame, where [R] is a 33 rotation matrix and

d=(d,, d,, d;) is a translation vector. The matrix [R], when
written’ in" terms. of the Euler. parameters .of the rotation,

X= (X,, X, X3, X4), is given by (Bottema and Roth,.lv979):

. Xi-X3-Xx3+ X
RI=%| 20X, +X:X,) ¥
SR 20X - i
2XXe=X6X)) 20X+ XoX))
“ X+ X3-X3+ X 26X-XX) |, (D)
2K+ XX) X=X+ X5+ X]
where A*= X2+ X2+ X} + X}. The Euler parameters are de-
fined by the rotation angle 6 and the direction vector s= (s,

_ Sy, 5) of the rotation axis as .

X =5.5in(6/2), X;=s5,5in(6/2),

TR 2
. Xy=ssin(8/2), Xe=cos(0/2).. @

- Since the:motion of a rigid body in E* has:six degrees of -

freedom, the gedmetry for which a displacement as an element
is'six-dimensional. ‘This has led to the idea of using-a set of
six independent: parameters such as' (X1/ Xy, Xo/ X Xa/ Xy,
dirdyi d;) to-represent a'displacement: as a point.in'a six-
dimensional space. A well-known extension of this idea is the
notion of “‘configuration space”” in the context of robot motion
planning (Lozano-Perez, 1981; and Canny, 1986).- .

-~ More elégant representations of a displacement exist where
the Eiiler parameters X = (X;, X3,'X3, X{) and the translation

Cooh i

vector d=(d;d,, d;)-are considered ds'defining the direction

and location of a line in a space of four dimensions, respec-
tively. This idea was.first: introduced-by Study in 1891 who
developed a geometric representation for spatial displacements
in terms of what is now referred to as"Study vectors. Study
vectors are a pair of vectors (X, ~ 2X°) that generalize to four
dimensions Pliicker vectors of line in three-dimensional space,
where, X denotes .the vector of Euler parameters .and

X°=(x0, X3, X3, X{) is given by
0 -d, d,-d|[ X
d, 0 -dedy|| X
-d, d. 0 d;||X:|
—dy — dy -d, 0 X

1
=3 &)

2% 2

The four-dimensional space of lines defined by Study vectors
is called the Soma space, see Bottema and Roth (1979).
Ravani and Roth (1984) introduced a more compact rep-
resentation of the Soma space by rewriting the Study vectors
as a four-dimensional vector of dual numbers, X = (X,, X2,
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X, X4), where X;=X;+eX? (i=1, 2, 3, 4). These dual num-
bers were interpreted as a set of homogeneous coordinates that
defines a geometric mapping of displacements into points of
a projective space with three dual dimensions. This mathe-
matical space is referred to as the image space-of spatial kin-
ematics and each point in the space, called the image point,
represents a spatial displacement. The image space is an uno-
rientable projective space, for the points X and — X are con-
sidered to be identical.

The parameters X;, X; (i=1, 2, 3, 4).are not independent
but must satisfy the fundamental relation:

XX+ X X3+ X X0+ X, X3=0. @

An image point with coordinates satisfying (4) is said to have
normalized coordinates. A general set of four dual numbers
to be used as homogeneous coordinates of an image point may
not satisfy (4) and theréfore must be normalized. A simple
normalizing procedure is provided in Appendix A such that
not only (4) is satisfied but the real part has unit length as
well. For therest of the paper, it is assumed that the coordinates
of an image point are normalized and have unit length unless
explicitly. stated otherwise. e ‘

.~ The.image space of Ravani and Roth has been shown to be
a‘uiseful tool for analysis, synthesis, and classification of spatial
motions (Ravani and Roth,-1984; Ge.and McCarthy, 1991a).
It has also been used for obtaining an explicit-representation
of joint-space obstacles for robot motion planning (Ge and
McCarthy, 1990) and for characterizing functional constraints
in a manufactured assembly (Ge and McCarthy,: 1991b). The
image space in.its original form, however, is not quite suitable
for computer aided:gedmetric design of motion interpolants,
for it is not orientable. This means that there is no consistent
way of defining “‘left”” or *‘right”’ handedness of a coordinate
tetrahedron for the space. It also means that there does not
exist the niotion of “‘betweenness’ and as a result one cannot
define a line-segment uniquely. These are serious problems to
proper interpolation of a point set. In the next section, we
present an orientable version of this image space to resolve
these problems. T ' T

- 2.2 The Orientable Image Space. - We start the introduc-
tion of the ‘orientable image space by:revisiting the rotation
matrix [R}: Given [R], the rotation angle 6-and rotation axis
s may' be extracted from its elements, 'se¢ Bottema:=and Roth
(1979),Paul (1981) or:Shoemake (1985). Therestltis; however,
not unique. For a given [R];:there corresponds-a pair of op-
positely oriented rotations, one is about the axis s with rotation
angle 6 and-is termed a “‘forward’’ rotation; the other is about
the axis: s with rotation‘angle 27 =6 and is termed-a *‘back-
ward” rotation: .. L e oo Doty ST TN

- Inview of (2), we conchide:that:the:two oppositely: oriented
rotations can be representéd by the signed- Euler; parameters
X=(Xj, Xz, X35, Xs) and: =X =(=Xy; = X3,4= X3, = X)),
respectively. It follows that.a general configuration M= ([R}],
d). may be obtained by either ‘'of two oppositely.orientéd dis-
placements: one is a ““forward”’ displacement and consists of
a rotation X and a‘translation d; the other is-a-*‘backward”
displacement and consists of a rotation —X'and:a translation'
d. In view of (3), these two oppositely oriented displacements
can be represented by.two sets -of image space coordinates,
X and - X, respectively. This leads naturally to the notion of
signed homogeneous coordinates for the image space. Instead
of identifying X and — X, we treat them as defining two distinct
points which occupy the same position in the image space but
with “‘opposite orientations,’’ namely ‘‘forward’’ and “‘back-
ward.” To borrow a term from spherical geometry, we may
call these two points antipodal points. Thus a general dis-
placement corresponds to not one image point but fwo anti-
podal points. The image space consists of such pairs of
coincident but oppositely oriented points is here referred to as
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the orientable image space and is denoted as . In general, the
signed homogeneous coordinates X and wX, where w=w + ew®
is a nonpure dual number, are considered to defined the same
point if w>0; they define two antipodal points if w<0.

Specialists in projective geometry will notice that geometry
of the orientable image space L i 1s equlvalent to geometry of
a unit hyperspace (denoted by H°) in a space of four dual
dimensions, with oriented points and oriented lines in T cor-
responding to points and oriented great circles on H*, respec-
tively. The classical image space is topologically different from
L. Geometry of the classical image space is-identical to uno-
riented spherical geometry of three dual dimensions, for one
point in the space corresponds to two diametrically opposxte
points on an unorientable unit dual hyperspace..

The distance between two points XandVinEZisin general

a dual number and is defined analogous to the angular distance '

in elhptlc geometry of real three-space .The dual-number dis-
tance is the dual angle d=¢+eh obtamed from:

. X.Y s .
T ©

where X-Y =X7 +X2Y2 +X3 Y, +X4Y4 is the standard scalar
product. The dual angle ¢ is uniquely defined, provided that
thereal angle ¢ is restricted to the range [0, ] (see the Appendix
A).-Kinematically, thedual angle.specifies the magnitude .of
a relative screw drsplaoement between the-displacements. rep-
resented by X and ¥: 2¢ is the angle: of rotation :about thé
screw axis of the relative displacement :and 24 i$ the distance
of translation along the'same axis.. When two image points
satisfy Xo¥ = 0, the distance between them is.#/2 and they are
said to be a pair of polar.points. The corresponding displace-
ments are related by a half tum (a pure rotatlon with angle
7).

cos ¢

23 Curves and Planes in the Image Space Smce thei im-
age space T has three dual dimensions, a general curve inLis
a one-dual-dimensional curve or a twofold curve. A general
plane in ¥ has two dual drmensxons and is here referred to as
a twofold plane. A twofold curve is the mapping of a two-
degree-of-freedom motion. A one-degree-of-freedom motion
maps into a special curve in L-called a unifold curve. A twofold
‘plane is:the mapping of a four-degree-of-freedom motion.-

- The simplest twofold curve in L is an oriented twofold stralght
line. Given. two :Griented . points X and .¥;-the.twofold: line
joining. from X -to. ¥ is"unique and can:be:represented. by a
directed bivector XAY, wheré.the symbol ““A’’ denotes the
vector: wedge product which generalizes:to ,hrgher .dimensions
the vector cross product of three-dimensional. vectorralgebra,
see Flanders (1963) and McCarthy (1990).-The six components
of XAY are the signed Pliicker-coordinates of-the:line. The
line joining from ¥ to.X:is givenby. the bivector:¥AX and has
the opposite sense'direction tothe-line XAY. Kinematically; a
twofold line XAY is the mapping of a: two-degree-of-freedom
" screw motion that contains:the displacements represented by

and'¥: :The screw.motion consists of two'independent simple
motions: about the fixed scréw axis; arotation and a translation.

. If:the translation is-made dependént on the rotation, then the
resulting motion.bécomes a one-degree-of-freedom screw mo-
tion which maps into a unifold-line in-Z. - o

A general twofold plane is the mappmg of a four-degree-

of-freedom line-symmetric motion. To see this, we consider a

plane P defined by three oriented points X, ¥-and Z. It can
be represented by the directed trivector RKAYAZ. Since the T
space is an oriented projective dual three-space, a formal dual-
ity exists between oriented points and oriented twofold planes.

It follows that the four components, ¥ = (£, £, £, F,), of
the trivector XAY/\Z define the pole of the plane P. Any point
of the plane, say G, satisfies the relation e G 0 and thus the
two displacements represented by ¥ and G are related by a
half-turn. Therefore the twofold plane XAYAZ represents a
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four-degree-of-freedom lme-symmemc motion.that: contains
the displacements X, ¥ and Z. A planar twofold curve is the
mapping of a two-degreé-of-freedom line-symmetric motion
and a planar unifold curve is the mapping of a one-degree-of-
freedom line-symmetric motion.

The point coordinates of a unifold image curve depend on
a real parameter (. They are- denoted by W) =w()X (1)
where W () = (W, (2), W2 (1), W;(1),. W4(t)) represents the
nonnormalized coordinates, X ()= (X,(2), Xa(t), X:(1),
X.(t)) represents the unit-normalized coordinates, and w(t)
denotes the normalizing factor (see Appendix.B). If the co-
ordinates W;(¢) (i=1, 2, 3, 4) are specified by finear, quad-
ratic, or cubic functions of ¢, the correspondmg ‘unifold image
curve is a’ strarght line, 2 conic, ‘or a cubic, respectlvely The
resulting motion is termed linear, comc, or “cubic motions,
respectxvely Physrcally, a linear motion is a scréw motion and
a conic motion is-a line-symmetric motion.

The velocity d1str1but10n of a spatial motion is detenmned
by the dual velocity V, which can be expressed in terms of the
point coordinates of an image curve. X and its first denvatlve

X(t) using quaternion: algebra. Let (i, ], k;. l) denote the
quatermon basis. Then the. dua] velocnty is glven by ‘the. qua-
ternion product:: i B . .
VZXX" S ©®
where X= X|I+XZJ+X;|(+X4 is"a unit’ quatermon and
X 1=~ Xji- X,j— Xk + X, is its inverse: “This Tesult i§ ob-
tained from dualization of a similar .formula: for sphencal
kmemancs presented in Bottema and Roth (1979) :

3 Lmear Interpolauon of Two Dlsplacements

Two dlsplacements Dy and D, of a rigid body correspond
to two configurations My and M, of a moving frame with
respect to a fixed frame, whichi in‘turn correspond to two | palrs
of oppositely oriented points +X, and tﬁ,, respecuvely, in
the orientable image space L. In this paper.we choose orien-
tations (or signs) of the image points Xo and X such that
Xo+X,;=0. GeOmetncalIy, this means that the angular distance
¢ between X, and X is in the range [0, x/2]. Two such oriented

points are referred to as similarly oriented points.;In this.way;

the problem of hnearly mterpolatmg two. drsplaoements D,, and
D, becomes that of: f'mdmg a;uxufold lme-segment that Joms

wheré 1% = W(O) an W(I) can be aﬂntrary dual ﬁumbers
In practice wé’ Tequire W, and Wl to have positive ] ‘real parts 5o
that all dlsplacements of the linear motion are similarly ori-
ented. The normalizing factor W(¢) is obtained from (9) as

W(0) = [(1 1) 20 + 27 + 261~ £) b, (Ko K12 (10
The unifold lxne-segment (9) is the image curve of a screw
motion that interpolates through the configuratlons M, and

M.
To see the effect of the dual-number faetors W, and W, on

2For the sake of convenience, we sometimes use the words “‘displacements”
and “‘configurations’’ interchangeably in this paper.
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the velocity distribution of the animated body, we use (6) to
obtain the dual velocity:

RiKe! - Kok an
(1= 1)2 (Bo/ W) + 2 (/W) + 211 — 1) (X X))
where the term (X, X5 ' — X,X 1Y) is a vector quaternion. Equa-
tion (11) shows that the screw axis is fixed (as anticipated for
a screw motion) but in general both the angular velocity and
the pitch of the screw motion are functions of the parameter
t and the ratio wo/W;. The choice of Wy/W; influences the
angular velocity and the pitch of the screw motion but it is
impossible to choose the ratio such that the pitch or angular
velocity remains constant throughout the screw motion.

V=

4 Cubic Interpolation of Displacements .f o

In the preceding section, we dealt with the‘problem of two-
configuration interpolation using a linear motion interpolant.
In this section, we develop cubic parametric motions that in-
terpolate through not only two given configurations but two
instantaneous dual velocities as well. This is referred as as first
order motion interpolation.

4.1° First Order End Conditions. In the image space L,
the two configurations My, M, are represented by two similarly
oriented image points X,, X,, respectively. Let the dual velocity
at M; (i=0; 1) be V-_zﬁe,, where 20;=2(Q;+ %) (@20, Q;

9= 0) is the dual speed and 9; is the unit dual vector representing
the instantaneous screw axis. We define the ‘“tangent”” of the
desired interpolating motion at M; (i=0, 1) in terms of the
derivative-of the image curve X (7) of the motion. In"view of
(6), the derivative of X () at M; (i=0, 1) is given by the
quaternion product:

X (1/2)vx =01

where T;=¢X,. It is not difficult to show that T; sansﬁes
T;oT;=1a2nd T,-X;=0. Therefore &;is a polar point of X; and
can be interpreted as a ‘‘tangent vector” at X; with T, being
a “‘unit tangent vector’” and §; being its magnitude.

-The problem of finding a moti‘on that interpolates through
configurations Mo, M; as well as the dual velocities Vo, ¥,
becomes that of finding>a unifold curve X (¢) in T such that
the fol}omng mterpola&on condmons are satlsﬁed

X0)= %0 “RO)=0To, -
- XM=X, &AD)=0T. . - .
The conditions (12) have Smulannes to Herm.\te iriterpolation

conditions in CAGD and aretherefore termed Hermtte type
motion interpolation conditions;: . :: -

(12)

4.2 Hermte Type, I.nterpolatlon. A umfold cubic para-
metnc curve in thc image space I is of the form

W(z) w(t)X(t) §o+§1t+ﬁztz+ﬁgt3 (13)
where, W(t) denotes general coordmates of a point on the
cubic, X (7) denotes its normahzed coordmates ‘and w(t) de-

notes the normalizing factor. We seek to determine the vectors
of -coefficients &; (i=0, 1, 2, 3) such that the condltlons (12)

are satisfied. Since the first derivative W= WX+ wX the Her—
mite condmons (12) are eqluvalent to

W(O) WO)Xo, W(l) WX,
W)= ¥ (0)X, + W(0)QoTo, W(l) (DX, + w8 T

From (13) and (14), the coefficient vector & (i1=0,1,2,3)can
be solved to yield the following cubic interpolant:

wO0)X,
%(0)Xo+ Ww(0)QT,
(DX, + w1, T,

W)X,

(14)

W(t)={1t 2 £][My] 15)

Journal of Mechanical Design

'matnx, 1s given by

where [M,] is the standard Hermite basis matrix (see Faux and
Pratt, 1979): v

1 0 0 0
01 0 0

M) =

Mhl=| 3 5 _1 3
2 1 1 -2

The interpolant (15) is here referred to as a Hermite type cubic

motion interpolant. For a given set of Hermite conditions (12),

the corresponding interpolant is not unique, because the dual

numbers w(0), w(l), w(0), w(1) can be arbltra:y chosen. In

practice we require w(0) and w(1) to have positive ‘feal parts.
The Hermite type interpolant (15) can be rewritten as

WO)X,
w(0)To
W T, |
WX,

AW =RORO =1 1 PFIM) (16)

where the matrix [My], called the generalized Hermzte basis

(IS

1 o0 o0 07
% 1 0 0
~3-2 =2 ~1 34,
2+%, 1 1 -'2+‘Y[‘

where Yo= W(O)/w(O) and 71—W(1)/w(l) are arbm-ary dual
numbers.

M= an

4.3 Bemnstein-Bézier Type Interpolation. Let BO—XO
b;=X,. Then the Hermite interpolation (16) can be put into
the following form:

W(O)Bo ‘
< o W(0)3ob;
W) =w()X () =[1 1 2 £}[M, p 18
O =w)X(1)=1 1iM5] v‘v(l)_ﬁlﬁz-_. 18)
= . Ll TN W(l)sj ‘A
where the matrix [Mj] is given by - .
1,070 o7 .
-3+%% 3 0. 0| -
PEI=1 3 25 —6 3 -
_ » —l+'yo 3 —3 l+'y| .
and 5 X0+To/3 by —XL 'i‘,/3 are points on t.he tangent
lines XoATo; XIATI, respectively. The matrix [MB] becomes

the standard Bernstein-Bézier Dbasis math when 4= 70-0
” 1 0 00

-3 3 o0 T
=] il 19
L "]_ 3 -6 30 , ( )

-1 3'-31' ’

Therefore, the matrix [Mjp] is termed generalized cubic Bern-
stein-Bézier basis -matrix and the interpolant (18) is termed
generalized Bernstein-Bézier type motion interpolant.

The generalized Bernstein-Bézier mterpolant can be rewrit-
ten as:

W) =w)X () =1 t 2 PIIM,) 20

where [M,] is given by (19) and

SEPTEMBER 1994, Vol. 116/ 759




Wo = W(0), Wy = w(0)oo,
Wy = w38, w3=w(1),

Bi=[B: +(Go/3)bol/0. £o= 1By +(Ho/3)Bol,
by=[b; - (31/3)b3/&o,  £1=1B; +(F0/3)Bs1.
Note that by, b, are arbitrary points on the tangents bo/\b, s
bz Ab,, respectively. Note also that the Bézier mterpolant (20)

is invariant to change of both fixed and movmg coordinate
frames.

5 Differential Properties and Smoothnes's_ Conditions

In this section, we first summarize, in the language of ori-
entable image space I, the differential properties of image
curves, which were developed by McCarthy and Ravani (1986)
for the case of the classical image" space. We then apply the
results to the problem of ‘smooth j Jommg of two motions seg-
ments.

5.1 Differential Properties. The differential geometry of
curves in I is developed analogous to the differential geometry
of curves in Euclidean three-space. Let X(t) denote the signed
unit-normalized coordinates of an image curve. The funda-
mental result’is the Frenet equations. which charactenze the
curve in terms of the differential motion of a “special tetra-
hédron with oriented points T, N, B, X as'its verticés:

: di/ds= iN- X :
dN/ds= —-x'i"+‘r§ el *(él)
dﬁ/ds— -3, . S
. d®/dE=T. e s

The dual numbers §, & and 7 are the dual arc-length curvature

and torsion of X(¢), respectively. The vertex T:is defined in -

the same way as the unit tangent vector of a Euclidean curve:
- dX dX/di

a5 aXsan”

The vertices N and B are defined in such a way that the four
points X, T, N, B form a self-polar tetrahedron called the
Frenet tetrahedron. The manner: of defining N, B issimilar to
that of the normal and binormal vectors of a.curve in Euchdean
three-space, see DoCarmo (1976). and McCarthy (1987). :

The tangent lme-segment of X(t) is gwen by the: followmg
bivector: i

(22)

23)

where 0= ldf(/dtl and T is the polar pornt deﬁned by (22)
The curvature fun on e ostulating plané by

The wedge prodt cts of the above denvatrves canbeex ressed
in terms of the no; nnorrnahzed coordmates W(t) W (8):

o XAR = (1/W POWAW, - o+ et
XAXAX (1/W3)WAW/\W
XAXAXAX - (1/ W )WAWAWAW

5.2 Smoothness Condmons Consider two cubrc curve
segments X and X, that are smoothly joined together. We
may think of each segment as existing by itself, with local
parameters f_, ¢., respectively, defined over the interval [0,
1]. We may also think of the two as two segments of one
composite curve, with a global parameter u defined over the
interval [u-, u,]. The “left” segment X _ is defined over [u_,
uo), while the “right”” segment X, ‘is defined over [uo, u.].
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Then the local parameters f_, ¢, are related to the global

parameter u by
U—u._
Ug—Uu_

u—u_ ‘e U—uy  u—1uuy

A_ ’. * u+—u0— A, '

The differential operators for local and global parameters ¢
and u are related by

d.1d & 18 & 14
du"Adf 2" A'dr® di Adr
In what follows, we present smoothness condmons of a com-
posite cubic Hermite image curve in terms:of the continuities
of the tangent vector, curvature and torsion. We always assume
that the two given segments are continuous at the junction
point, i.e., X_ Q)= X,,(O)

The continuity of the tangent vector at ¥= uo of the two
curve segments X _, X, requires that the first derivative with
respect to a global parameter u is continuous-at the Junctton
point:

d¥ ()
du uo—A'

u=

_=

1 X (1) |
dr_

=_l_ X+'(t+) -
A, dty

4 =0

@9

1_=1

Tkus is equrvalent to - .', .
X (l)AX (H=a% (O)Ax (0) “ (27")‘

where &=A_ /A . If &is any other dual number w1th posmve
real -part, then (27)- represents the contxnmty of  unit tangent
vectors. - : :

For curvature: connnuxty, in addmon to (27), the curvature

3-vectorlsrequ1red to be continuous: ... .: ns. - wd
X: (I)AX (l)/\X m=&X (O)AX (O)AX (0) (28)

For torsion continuity, in addition to (27) and (28), ‘the torsion
4-vector is also requrred to be continuous: .

L AR (AL _ (AR M
-—a6X+(0)/\X (0)AX+(0)/\X+(0)

(29)

53 Cublc Parametnc Curves Given an unage curve as-
_socr_ated with a cubic interpolation of four distinct drsplace-
ments, we can obtain the.differential properties_in. terms of
control points and weight factors and then use these properties
to characterize the smoothness.of the resulting motion. In what

- follows we only provxde these propertres at end points of the

cubic Hermite type interpolation given by (16).
The tangent lme-segments at the end pomts of the Hermite
type image curve (16) are grven by - (,, R

Let W= w(O) and wl
end points dre given' by

X(O)AX(O)AX(O) 690 XOATOA [ (1 ——) X-= ﬁl‘r,] .

AUSIRETRR L s : (32
R T I A A S Wo ﬁ
KMAL (AR 1) =68, 7[ ( >xo+ To] AxlAT,
1
o 33

The torsion properties‘a't the end points are given by

o T Y
XOAXOAX(O)AX(0) = 12% 00, XATAX AT,

. v e 2o
KOARWAR AR () = 121"—'z 800, KA TAK AT,

Let X_y, &_T_;, X, and QoT, denote the four control points
of the ““left” cubic segment X _ (¢_), and X,, §,T,, X,, and
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0, T, denote those of the “‘right”’ cubic segment X, (¢, ). Then
the substitution of (30) and (31) into (27) yields &= 1. The
curvature continuity condition is given by

Y-1\ o 1 - P
W-I[ <1+‘%)X_1+§Q_1T_|:| /\XO/\TO

PN 1. Y1\ o
= W XoAToA [ -3+ <1 - %) xi] .
Note that the weight W, and the dual speed & have no influence

on the curvature continuity at Xo The condition (34) can be
further reduced to

- @ T+ ZAXonTo =0, (39)
where
o IT-1+ L(+5-0%1- G- 5.0%.  (36)

Equation (35) indicates’ that the three points (T, + Zo), Xo,
and T, are collinear. In other words, (&, T, + Zy) is expressible
as a linear combination of X,, and To:

QITI + z0 Coﬂo +é&To, ‘ @3N
where Eos co are two arbrtrary dual numbers.
The condition for torsion contmurty at X, is given by
W2 IQ lx-ll\'i'—ll\xo/\'n WX ATAX AT (39)
Note that the wetght Wo and the dual spwd have no influence
on the torsion continuity at X,. Eliminate T, from (38) using
(34) to obtain
0. (W 1X_1 + WIXI)AT— lAXo_/\To .
=B +5- )X AKAXAT,.  (39)

6 A Piecewise Cubic Hermite Interpolation

This section solves the followmg problem:

Given: Image points X,, X, -+ , X; - representing L con-
figurations of a rigid body in physrcal space.

Find: A- precewrse cubic motion-of the object that passes
through the given configurations such that the correspondmg
image ctirve has curvature and torsion’ continuities:< © ~ -

The given 1mage pomts arechosen as Junc'uon Hermite points
of the piecewise’ ‘eubic mterpolatxon' The oal is to determine
a tangent véctor {;T; at each image point X;; where §; denotes
half of the dual speed and ‘T; denotes the polar. point; such
that the resulting interpolation has the prescribed continuities.

Consider three cubic segments with the junction points de-’

noted by X;-;, X, X;i1;'and X; 45, where i=1,2, ---, L-3.
Assume that the tangent vectors: ﬂ,_ 1T, O are known from
the continuity conditions of thé" preceding cubic segments. In
what follows we develop a method for deterrmnmg the tangent
- vector §;,;T;, 1 such that these cubic pieces satisfy the con-
dmons for curvature continuity at X; and torsion continuity
) ,.‘ ThJS 8 ‘the ‘essential part of ‘the proposed algonthm
forg neratmg cublc Hermite mterpolanng spline motions."

Position and tangent continuities are implied by-the Hermite
1nterpolatron In view of (36) and (37), the curvature continuity
at X; is glven by :

QH'ITH-I_CIX +C1T z

(40)
where

Xi-1— G —Fie 0 Kis1-

The choice of &, & must be such that T, is a polar point of
X;.1 and that the cubic segments satisfy torsion continuity
condition at X,H

The point T, , is a polar point of X, 1if Tir X1 =0 which
yields, after the substitution of (40):

w;o .
ZFT‘"Q’- 1Tim
Wia
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EXiRia w6 T X1 =20 Xin 1 (41)

In view of (39), the condmon for torsion continuity at X;. , is
given by :

Q (wlx + wl+2xl+2)AT AXI+IAT1+I

= WH- 2(3 + ‘Yl)x AX-H- ZAXH- IATH- 1- (42)
After the subs_titutronvof (40)_,_ Eq. 42) becomes
R @é-G+ T?i)éillxn'/\gif "X A Ti=Q, 43)
where I, e :
Q= ﬁ'(‘_w,__ X+ an)'_/\x 1/\T:/\Z
EN Wi‘+‘2 t ’ t" -_.fr‘
' 3+ vJX AX.+ IAX.qu 4

Equation (43) is essentrally a scalar equation, and together
with (41), we have a system of two dual-number equanons
with two dual-number unknowns, namely, ¢; and é. Once 6
and & c, are solved Eq (40) can be used to determme Q,+1 and

conunmty ‘at Xi 1,'
the inbetween "points: X
the’ ﬁrst two tangent ve
left wlth two tasks of specx i
selectﬁo o,

tinuous at XL 5 ¢ bt S
To obtain the first two tangent vectors QO’I‘O, ,Tl‘, we spec1fy
two unit dual vectors Vo, ¥ that represent the instantaneous
screw a.xes at ‘configurations X X, respectively, and then
compute 1o, T, from the following quaternion product

To=1/2)%X,, Ti=(1/2)%.X:.
To achleve torsion continuity at X,, we obtam the dual speed

Qo

ﬁ‘;; 9403450 RiAARAT L
I (Wox()'i' WZXZ)ATOAX]/\TI

in view of (39)- ‘The dual speed "B can be arbxtrary chosen To
obtmn the last tangent vectors, we specrfy an additional image
pomt X, and then compute’ QL ,TL Tusing (4T) and (43) so
that curvaturé continuity at X,_ 2 can be achieved. It should
be noted that the path of the interpolating’ motion is very
sensitive to the choice of these end conditions. Further research
is needed to obtain a set of “opnmal” end conditions, such
as those that would produee uot only smooth but aJso naturally
lodking métions. Y

. The weights #; (i=-1, 0, L= l) have posmve real
parts a.nd can be set to w; =1 mmally .The. weiglits ¥; (i= —~1,
0, , L—1) are arbitrary dual numbers and‘can be set to
¥i= 0 mmally These parameters can be adjusted to fine-tune
the interpolating motion. Figure 1 shows a set of seven ‘input
configurations and Fig. 2 shows a piecewise cubic Hermite
motion with curvature and torsion continuities.

Conclusions

In this paper we have presented a new approach for smooth
motion mterpolatlon based on an orientable kinematic map-
ping. The mapping reduces the problem of motion interpo-
lation to that of designing an interpolating curve in an orientable
projective dual three-space. Methods for cubic interpolation
and piecewise cubic interpolation of displacements have been
developed taking advantage of existing techniques in CAGD.
The results, in addition to their theoretical interest in com-
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Fig. 2 A piecewise cublc Hemﬁte inte!

rpolating motion with curvature
and torsion continuities o

putational geometry of motion, have a number of applications
in engineering and computer science.’
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APPENDIX A

Dual Angle

Let X =X + X% and ¥ = Y + ¢Y° denote the unit-normalized
coordinates of two image points. Then the dual. distance
& =0 +¢eh (where ¢ = [0, x]) between them may be symbolically

- Pl

given by ¢ =cos™'(X-¥). If XY, then we have. ... - ...

cos ™' X+ V) =cosTI(X V) — (X Y+ X0 Y)/(1 ~X.Y)'2,
In the special case when X =Y, the displacements X and ¥ are
related by.2 pure translation of distance 2/ Y°Y ™! - X°%~!|,
where 1Y°Y"'—X°X 7!l denotes the magnitude of the vector
quaternion (Y'Y'~X°X~"). Therefore we .may define
cos ! X¥) as ’ . B

s cos'l(X-Y)=e|Y°Y"._x°X"l .

"APPENDIX:B }

Normalization - I A
.General image space coordinates, W = W + W', may be tior-
malized such that the corresponding normalized coordinates,
X=X + €X', satisfy X+X = 1 and X +X°= 0. This involves com-
puting the norm, Ww=w+ew’, of W: | o
w=(WeW)'2 wo= (WeW%/w
and follows by dividing W with w:
X=W/W= ( Wl/ﬁ, Wz/w, Wg/W, W4/W).
Division of a dual number W= W;+¢W} by w is possible and
unambiguous if w0 (Bottema and Roth, 1979):
WiteW) Wi whi-w'W,
=—+¢ 5 ]
W+ ew w

w
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Introduction

~ One of the basic problems in computer aided animation of
three-dimensional objects is that of motion approximation.
This is the problem of finding a motion that approximates a
sequence of arbitrary displacements or configurations' of an
"object.” If 'the motion is made to interpolate through these
configurations (called key configurations), then the problem
of motion approximation becomes that of motion interpola-
tion. Such motion approximation methods are of fundamental
importance in computer animation of three-dimensional ob-
jects and have applications in computer graphics, computer
vision and simulation of mechanical systems. T

Our work, in this paper, is motivated by the work by Taylor
(1979) and Shoemake (1985) who used quaternions to develop
methods for animating rotations. Taylor (1979) used quater-
nions for linear interpolations of rotations. Shoemake (1985)
interpreted quaternions as defining a hypersphere and used the
déCasteljau-algorithm to obtain the so-called spherical Bézier
curves for animating rotations. The work of Shoemake was
further refined and extended by Duff (1986) at AT&T, and
Pletinckx (1989). These researchers, however, did not study
some of the fundamental properties of the resulting motions.
Shoemake (1985) raised several unanswered questions on the
characteristics of the resulting spherical Bézier curves. Here
we develop a theoretical framework that enables us to study
the basic characteristics of the resulting motion and provide

that a motion obtained by application of deCasteljau con-
struction is not in general of Bernstein form and is nonalge-
braic. Furthermore, such a motion does not have the subdivision

! positions and orientations.

Contributed by the Design Automation Committee for publication in the
JOURNAL OF MECHANICAL DESIGN. Manuscript received Feb. 1992; revised Jan.
1994. Associate Technical Editor: G. A. Gabricle.
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answers to some of these questions. We show, for example, -

This paper deals with discrete ‘computational geometry of motion. It combines
concepts from the fields of kinematics and computer aided geometric design and
develops a computational geometric framework for geometric construction of mo-
tions useful in mechanical systems animation, robot trajectory planning and key
framing in computer graphics. In particular, screw motion interpolants are used in
conjunction with deCasteljau-type methods to construct Bézier motions. The prop-
erties of the resulting Bézier motions are studied and it is shown that the Bézier
motions obtained by application of the deCasteljau construction are not, in general,
of polynomial type and do not possess the useful subdivision property of Bernstein-
Bézier curves. An alternative form of deCasteljau algorithm is presented that results
in Bézier motions with subdivision property and Bernstein basis function. The results
are illustrated by examples.

property of Bernstein-Bézier curves. We then present a mod-
ification of this algorithm that results in Bézier motions with
subdivision property and basis functions which are of Bernstein
form. This paper compliments the analytical results presented
in our companion paper (Ge and Ravani, 1994) in providing
discrete (rather than continuous) computational algorithms for
motion interpolation and approximation. P

The organization of the paper is as follows. First we discuss
geometric representation of spatial displacements in terms of
an image space of a kinematic mapping (see Ravani and Roth,
1984). Section 2 deals with the simplest form of motion in-
terpolation namely that of constant speed screw motions. Sec-
tion 3 presents a deCasteljau construction algorithm baséd on
repeated screw-motion interpolations for the design of non-
‘algebraic Bézier motions. In this section, we also study the
kinematic properties of the resulting Bézier motions. In Section
4, we will present a slightly modified form of the deCasteljau
algorithm using special proj ection that results in Bézier motions
which are of Bernstein form. - )

1. Geometric Representation of Displacements

It is well known that a general displacement in a Euclidean
three-space (denoted by .E’) has a fixed line, call the screw
axis. The position and direction of the screw axis in E° remains
the same before and after the displacement. The sense of di-
rection. of the axis is, however, undetermined. The spatial
displacement is commonly characterized as an unoriented screw
displacement, which is a rotation about and a translation along
an undirected screw axis.

A screw axis with a uniquely defined sense of direction is
called a directed screw axis or a spear (see Bottema and Roth,
1979). A screw displacement about a directed screw-axis is an
oriented screw displacement. Two screw displacements are con-
sidered to be ‘‘oppositely oriented”’ if their screw axes occupy
the same position in space but with opposite sense of direction.
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Fig. 1 Three contigurations (M,, M, and M,) belonging to a motion of
body M in physical space F. Lines S;, S; and S, denote, respectively,
the screw axes for displacements F—M,, F—M,, and F—M,.

In this way, a general displacement can be reduced to one of
.the two oppositely oriented screw displacements. These two
displacements are geometrically equivalent but topologically
different; one may be called a ‘‘forward’’ screw displacement
and the other may be called a ‘‘backward’’ screw displacement.
The orientation of a screw displacement is not an issue when
only discrete displacements are considered. When a set of screw
displacements are used to construct a continuous motion, how-
ever, one has to pay special attention to their orientation.
Consider a motion of a rigid body in the Euclidean three-space
E*. We attach coordinate frames M and F to the body and
the space, respectively. Then each of the configurations that
the body attains during the motion is represented by a screw
displacement from Fto M, see Fig. 1. To reconstruct a smooth
and natural motion from these screw displacements, one has
to choose the sense of direction of the corresponding screw
axes consistently throughout the motion. - :
Algebraically, an undirected screw axis S is commonly rep-
‘resented by a pair of normalized Pliicker vectors (s, So where
§=(5x Sy, S7) i a unit vector a.long S and sp= (52, Sy» sz) is
the momem of s about the origin of a ﬁXed reference frame

in E3. They must satisfy the condition s+s°=0. If the dual--

number unit ¢ (defined by &= 0) is used, Pliicker vectors can
be written as a dual vector or a vector of dual numbers

$=s+es’= (§,, sy,f) m

where §;=s;+es? (i=x,y, z) are dual numbers. The dual vector
§ has the property §+§=1 and is termed a unit line vector.

A directed screw axis S can be represented algebrmca.lly by
a directed unit line vector. By this we mean that § and —§
represent a pair of oppositely directed screw axes instead of
the same axis. The use of directed screw axis instead of un-
directed screw axis removes the ambiguity in defining the mag-
nitude of a screw displacement. The magnitude is defined in
terms of the dual angle 6=0+ el between two directed lines
m,, m; that are perpendicular to the directed screw axis S,
where 8 is the angle from m, to m, about S, according to the
right-hand screw rule, and / is the signed distance from m; to
m, along S. For a pair of oppositely oriented but geometncally
equivalent screw dlsplacements their dual angles § and 8’ are
related by the ange 27, i.e., §+8’ =2x. Thus a spatial dis-
placement may be represented either by a forward screw dis-
placement about the screw axis § with a-dual angle # or by a
backward screw displacement about the screw axis — §with a
dual angle 27 —3.

Although a directed screw axis 8 and a dual angle 8 com-
pletely prescribe an oriented screw displacement, they are sel-
domly used directly as a representation of the displacement.
Instead, they are often used to define the dual Euler param-
eters, denoted by X = (X;, X,, X, X,), as (see Bottema and
Roth, 1979): =
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Fig.2 A screw motion M(f) from M, to M, corresponds to aline-segment
(or geodesic) Xor(D) from 110 g in L.

X] =§| sin (9/2),
X3=38sin(6/2),

X,=8,5in (8/2),
X,=cos(8/2), )
where

sin (8/2) = sin (6/2) + e (I/2) cos (6/2),

cos (8/2) = cos (8/2)— e(1/2)sin (6/2).

These parameters are considered to be signed, for a backward
screw displacement, prescribed by —§ and 2x~ 8, corresponds
to the dual Euler parameters — X = (-X,, J? 2 — X3~ X).

In this paper, we consider the signed dual Euler parameters
as a set of four signed homogeneous coordinates that define
an oriented point in a projective space with three dual dimen-
sions. By this we mean that the dual Euler parameters
X (X],X ,X;, X4) and wX- (WXI, WXz, WX3, WX;),WherC
W=w+ew" is a nonpure dual number, represent one and the
same point for all w>0, and that, they represent a pair of
oppositely oriented points for all w<0. In particular, the two
points, X and — X, known as antipodal points,’ are considered
to be two distinct points which occupy the same posmon in
the space but with opposite orientations. In this way, a ge_neral
displacement, which is geometrically equivalent to 2 pair of
oppositely oriented screw displacements, corresponds to not
one point but fwo antipodal points in this projective dual three-
space. The resulting image space of spatial displacements is
the orientable version of the kinematic mapping discussed by
Ravani and Roth (1984) and is described in more detail in Ge
and Ravani (1994).

2 Geometric Construction of Screw Motions

This section presents a method for geometric construction
of an interpolating screw motion that enables the designer to
control the speed of the interpolation. This forins the basis
for developing a deCasteljau construction algorithm for mo-
tion interpolation and approximation.

2.1 Starting From a Reference Configuration. A finite
displacement of a rigid body M from an initial configuration
M to the next configuration M, is shown in Fig. 2. For the
time being, we choose the fixed reference frame F to be coin-
cident with M. Then the configuration M is represented by
the identity displacement F— M, which corresponds to a special
point I=(0, 0, 0, 1), called the identity point, in the image
space L. The next configuration M, with respect to F is rep-
resented by a forward screw displacement F—M,. Its screw
axis, Sq;, is represented by a directed unit line vector
8o = (8x 3y, ;) and its magnitude is given by the dual angle
2¢ =2¢ + e(2h). These screw parameters define the image point,
g1, of the forward screw displacement F—M,:

o1 = ($,;sin @, $,sin @, $,sin b, cos §).
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;Ig(. )3 Two oppositely oriented screw motion interpolants, Xq(f) and
orlt .

Now the problem of determining the interpolating screw
motion M () becomes that of determining a unjfold line-seg-
ment (or geodesic) Xoi(?) in T such that Xq(0)=I and
Xo1(1) = o1, see Fig. 2. The Plucker coordinates of ghis line is
given by the vector wedge product Indg = (§,sind, §sing,
§,sing, 0, 0, 0). This indicates that the dual vector 8o = ($x,
$), §;) represents the direction of the line-segment Xpi(2). In
view of the addi}ional fact that the length of the line segment
is the dual angle ¢, we obtain the following parametric equation
for the line-segment (or geodesic) from I to §o1:

Xor (1) = (Gusin (u(1+€p)), §8in (u(1+p)9),
&sin (u(1+ep)d), cos (u(1+ep)d), @

where u=u(t) is a real-valuéd, timing function defined such
that u(0)=0 and u(1)=1; and-p = p(2) is another real valued
function defined such that p(0)=p(1)=0. The function u(f)
allows control of angular .yélbcit"y’* of the resulting scréw motion

Ve Mo

and p(¢) allows varidtion of the pitch, p(¢) + h/¢, of the screw
motion. In this paper we choose u(?) =t and p(t) =0 so that
the screw motion defined by (3) has not only a constant angular
velocity but also a constant pitch. In this case, (3) becomes

Koy (£) = (S,sin (1), §sin (£3), S.sin (1), cos (1) (4)
and is called a uniform-speed screw interpolant.2 ]

Note that in representing the configuration M, with respect
to F, the choice of a backward screw displacement — §o, instead
qf’ the forward displacement §o results in a screw interpolant
X1 (2) that has opposite orientation to Xo; (#) (Fig. 3).

Quaternion algebra is an elegant tool for handling trans-
formations in elliptic three-space (Sommerville, 1914) and,
consequently, in the image space (Ravani and Roth, 1984). If
the image point §o: is represented by a quaternion, then
Ko (2) given by (4) is expressible as a power of the quaternion
dn. Let @ J, Kk, 1) ‘denote the quaternion Dbasis, then
do1 =80 sinp+cos ¢ where §o; = §i+§,j +$k is a vector qua-
termion. Since &; = — (§2+§ +§2) = —1, de Moivre’s theorem
shows that ' '

Ko (£) =801 sin (23)+cos (18) =qor- %
In view of the dual-velocity formula V=2(dX/dX"" (Ge
and Ravani, 1994), it can be shown that the dual velocity of
the screw interpolant (5) is given by V =¢8¢,. This confirms
that X, (¢) corresponds to 2 constant-speed screw motion.

2.2 Starting From an Arbitrary Configuration. We now
study the screw motion from configuration M, to M, for the
case when the fixed frame F is not coincident with M, (see Fig.
4). Let o and b, denote the image points-of the configurations
M, and M, relative to F, respectively. Let o denote the image
point of the displacement My—M, measured with respect to
M,. The fact that the displacement F— M, is the composition

2f{ere the term *‘screw” is used instead of “linear”* to differentiate the linear
motion of the form (26).
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Fig.4 A screw motion M(t) from M, to M, comresponds to a line segment
X(f) from b, to by inZ

of the displacements F—M) and My—M, can be expressed by
the quatgrnion prpduct b, =byfie;- From this we obtain
do =bo 'by where bg 1 is the inverse of the unit quaternion

bg. Thus the constant-speed screw interpolant from M, to M,
described with respect to F is given by
K (£) =bolthy =bo(bs 'b))', =10, 11. ©
Kinematically, Eq. (6) means that the intermediate displace-
ment represented by X () is the composition of the two dis-
placements F—M, and M,—M(1), respectively. The screw
interpolant (6) is invariant with respect to change of both the
moving and fixed-coordinate frames.
When the two configurations bg and b, are not related by
a pure translation, the formula for screw ingerpplation given
by the right hand side of (6), denoted by L(bo, by; 1), can be
put into the following vector form
PR sin(1-0)@) o . sin(19) -
bo, by; £) = ——hot+t——=b 7
L(b, by; 7) sing e O )]
where d=0+eh (9#0)is the dual distance between the points.
b, and b, see Fig. 4. Note that the real part of (7) is the
spherical linear interpolation used in'Shoemake (1985) and can
be obtained directly using analytical elliptic geometry (see Som-

_merville, 1914).

When the two configurations are related by a pure trans-
lation, i.e., when ¢=0, Eq. (7) becomes a linear interpolation:

L(bo, b; )=(1— tbo+1b; ®)
since § '
S0, BB ©)
=0 sin¢ ? ¢—0 sing

This treatment is necessary since division by a pure dual number

¢h is not defined (Bottema and Roth, 1979). Let d,, d;, and
d(¢) denote the vectors in the fixed frame F which represent
the origins of the body-fixed coordinate frames at Mo, M1,
and M(#), respectively. It is easy to show that Eq. (8) is equiv-

alent to linear interpolation of the origins:
d(f)=(-t)do+1d;.

3 Nonalgebraic Bézier Motions ‘

The screw interpolant in the preceding section can be applied
repeatedly for constructing curves in'the image space in a
manner similar to the deCasteljau construction known in com-
puter aided geometric design (see Farin, 1993). This idea starts
with Shoemake (1985) who constructed the so-called spherical
Bézier curves in the space of unit quaternions for animating
rotations. The following deCasteljau algorithm may be con-
sidered as a dual form of Shoemake’s spherical deCasteljau
algorithm. :

31 A DeCasteljau Algorithm for Bézier Motions. Let
b,i=0,1,--+,ndenoten+1 image points of spatial displace-
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0 t 1
Fig. 5 A deCasteljau algorithm in T

ments. They form a control polygon in the image space L, see
Fig. 5 for the case when n=3. For r=1,2, -+, n, i=0, 1,

-+, n—rand 0=<:x<1, an intermediate point on each screw
interpolant is given by the recursive formula:

b7 (1) =B~ (O [(B]~ (1)) "Bz ()Y, (10)
where b = b;, 7= ¢,. The points b7~ (), bJ| (1), b} (r) denote,
respectively,}he starting point, end point and intermediate
point. Let ¢~ '=¢7" 1+e:-(<1>°)’ ' denote the dual distance

between b’~ ’(t) and b7} (r). Equation (10) is equivalent to

the followmg unifold dual-spherical linear interpolation when
&' #0:

: —nerh. : 3r-iy
by =R UZDE Doy S iy
sin ¢; Sin ¢@;
When ¢;"'=0, Eq. (10) reduces to the linear interpolation

bl (1) =(1—-1)b;™"(¢) + b7 (2). (12)

By varying the parameter ¢ in the range {0, 1], the point
bj (1) traces out a curve in T with control points b (i=0, 1,

-+, n). In Section 3.3, we will see that although bo(t) is in
genreal not a polynomial curve, it satisfies end-point inter-
polation conditions in a manner similar to the Bézier curves
in E>. We, therefore, call this curve a Bézier image curve of
rank n. The corresponding motion is termed a Bézier motion
of rank n. Figure 6 shows four control configurations of a
robot gripper together with several configurations belonging
to the Bézier motion of rank 3. Figure 7 shows the entire Bézier
motion resulting from the application of the above de-
Casteljau’s construction.

We note that if all control points are collinear in L, the
Bézier image curve degenerates into a unifold geodesic line-
segment which corresponds to a screw motion. If all control
points are coplanar, the Bézier image curve becomes a unifold
planar curve which corresponds to a line-symmetric motion.

3.2 TheDerivatives of Bézier Image Curves. If weexpand
the derivative of the screw interpolant (11) using the chain rule,
we obtain

B,’-(r)=5;—1f‘;(,)+M}‘__’,)_‘{>'___)~, o
sin ¢;
M r-1 -1 cos((l—r)&;,'.",r_l
iyl SO A GO )
cos ™! .
—_ — r 3
snag 10 “)) 13
where
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Fig. 6 Four Bézier control configurations together with a few config-
urations belonging to the Bézier motion

Fig. 7 The entire Bézier motion of rank 3

cos (1¢]~ ')b,+1(t)—c05((l—t)¢>,’ PLUAN!
sm¢>,

is a polar point on the line-segment bl (¢t), for T7(¢) bl (1) =
and /(1) -TH(r) =1. The image space can be interpreted, at
least locally, as a hypersphere in a spacce of four dual di-
mensions (see McCarthy and Ravani, 1986). Then if b;{¢) is
interpreted as a great circular arc on the hypersphere, T;(r)
is the unit tangent vector to the arc at ¢.

The derivative of a Bézier image curve may be obtained
using the recursive formula (13). The explicit formula for the
derivative is in general rather complicated except at the end
points =0 and f=1. When =0, we have ¢ '(0)=¢,

&7 '(0) =0, T/(0)=T}(0) and therefore Eq. (13) is reduced to
b7(0) =4,T/(0)+ b/~ '(0). (15)

When 1 = 1, we have &, (1) = &;.,.., &/~'(1) = 0, T(1)
=T!,,_1(1) and Eq. (13) is reduced to

b(l) ¢:+r IT1+! I(I)+b1+l(l) (16)

From (15) and (16) we obtain the derivatives of a Bézier image
curve at t=0and t=1:

T/ = (14)

b3(1)=ndoTH0), B3 =nd,_,Ti (D) (17)
where T4(0), Th-,(1) are unit tangent vectors given by
bocos . b,cos d, n
Ty Poc0sdy g ) Bacosdi b gy
Sin ¢yq Sing,_,

For a Bézier image curve of rank 3, its tangent bivector can
also be given in terms of its control points as

B3(0)AD3(0) =3 S0 Bonb,, (19)
. nég
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=3 s3y 2 P2 o oo .
by(DATy(1) =3 Snd, b,Ab;, (20)
where o, $, are the dual angular distances between bo, b, and
by, bs, respectively.

The second derivative of the screw interpolant (11) is ob-
tained by differentiating (13). The resulting recursive formula
can be used to obtain the second derivative of a Bézier image
curve. The derivation is rather lengthy and is not included in
this paper. At =0, the recursive formula for computing the

second derivative is given by
bj(0) = — ddbi+ & (0)T}(0) + 26D}(0) + b]'(0),

where

(21)
bf: }(0)— b~'(0) cos &
sin ¢,

Equation (21) can be used to determine the curvature 3-vector
of a Bézier image curve of rank 3 at t=0:

D{(0)=

Fob1
/\b /\b 0 —18-— /\b 2
b3(0)Ab3(0)AD(0) S 3osin g, boAbAD,. | (22)
Similarly, the curvature 3-vector at t=1 is obtained as
. " e
Ba(1)ABJ(1)AbY(1) = ——WM—
a(DAb(1)Abg(1) = 18 = 23,503, bAbAD;.  (23)
The dual curvature x(¢) at £=0 is given by
IB3O)ABIOIADRO) 23, :
2(0) = o((i)3 o ;)3 o1 _ _ ?xs‘}ano _ 24
Ib3(0)Aby(0) | 3¢ sin ¢p sin ¢

where }o is the dual angular distance from the point b, to the
line bob,.

It is interesting to note, in the limiting case when ¢;—0 (i=0,
1), the tangent and curvature properties of the Bézier image
curves of rank 3 at £=0 and ¢=1 approach to those of Bézier
cubics in Euclidean three-space at =0 and ¢ =1, respectively.
- For example, at =0, the tangent bivector (19) becomes
3beAD,, the curvature 3-vector (22) becomes 18boAb AD,, and
the dual curvature becomes 2¢o/3¢3.

3.3 More Properties of Bézier Motions. Equations (17)
and (18) show that, similar to Bézier curves in’ Euclidean three-
space, the image curve bo(t) is tangent to the first leg bob,
and the last leg b, b, of its control polygon. In addition, the
magnitude of the tangent is n times that of the le% nself
Furthermore, it can be shown that the segment b~ ' tis
tangent to the curve bj(¢). Kinematically, this means that the
corresponding Bézier-motion of rank n (denoted by b2(r)) has
the followxng properties:

(1) End configuration mterpolanon
(2) At end conﬁgurauons bo and b,, the instantaneous
screw axes of bg(?) are given by the screw axes of screw
motions bo(t) and b,, 1 (1), respectively.
(3) The initial speed of ba () at configuration by is » times
that of the screw motion bo(t) and the final speed of
?(t) at b, is n times that of the screw motion
n l(t)
(4) The instantaneous screw axis at the configuration
ba(¢) is the same as that of the screw motion from
configuration b ~! to b7~

Bézier motions, obtained in this fashion, are also coordinate-
frame invariant since screw motion interpolants are coordmate—
frame invariant.

Figure 8 shows an entire Bézier motion of rank 3 and three
constant-speed screw motions defined by the four given control
configurations. Clearly, the screw motion from bo to b, is
‘““tangent’’ to the Bézier motion at b, and the screw motion
from b, to b; is ““tangent” to the Bézier motion at b;.

In addition to the aforementioned end-point interpolation
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Fig. 8 Bézier motion of rank 3 and the three constant speed screw
motions

properties, in the special case when all configurations share
the same orientation,. the Bézier image curve b (¢) reduces to
a Bernstein-Bézier polynomial curve, for it is the result of
repeated linear interpolations of form (12). The corresponding
motion is translational motion and end point of the rigid body
undergoing the motion traces out a Bernstem Bézier polyno-
mial curve in the Euclidean three-space £°.

In genreal, however, the Bézier image curve ba(r) 1s fun-
damentally different from a Bernstem Bézier curve in E>. First,
while a Bernstein-Bézier curve in E? is a polynomial curve, the
image curve b3(t) is in general not algebraic but transcenden-
tal, for it has in general infinitely many intersections with a
properly oriented twofold plane in the image space. Second,
while a Bernstein-Bézier curves in E? has subdivision property,
the image curve b2 (¢) in general does not possess this useful
property of subdivision (see Appendix A for the proof). Con-
sequently, the i image curve traced out by the point b2(¢) when
t varies from 0 to 1 is in general different from the image curve
resultmg from subdividing the control polygon formed by b;
(1-—0 1, ,n).

It is noted here that the real part of the image curve bg(?)
is the same as the ““spherical Bézier curve”’ presented by Shoe-
make (1985). Pottmann (1992) has also pointed out the lack
of subdivision property of the Bézier curves described in Shoe-
make (1985).

4 Bernstein-Bézier Polynomial Motions

This section develops a deCasteljau type algorithm for Bézier
motions which have Bernstein polynomial basis functions. Such
Bernstein-Bézier type motions have been developed analytically
in our companion paper (Ge and Ravani, 1994) and have the
useful subdivision property.

From Ge and Ravani (1994), we know that a unifold image
curve in the image space L may be expressed in terms of non-
normalized coordinates (denoted by W(¢)) or, equivalently,
in terms of unit- normahzed coordinates (denoted by X ().
They are related by W () =w()X (¢) where w(?) is a dual-
number normalizing function. The normalizing function
w(¢) may be mterpreted geometrically as a projection operator.
A general curve W (?) in the image space T does not necessarily
represent a rigid body motion. It represents a motion (denoted
by X(t)) when it has umt-normalxzed coordinates. We shall
refer to W(¢) as the preimage of X (£). This geometric inter-
pretation is useful in explaining the subdivision property as-
sociated with Bézier polynomial image curves to be developed
in this section.

The Bézier cubic curves in the image space T are given by
(Ge and Ravani, 1994)
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Wobo
wib,

W) =w(nNX () =1 1 1 £)[M)) (25)

WZB_Z
W3b3
where b; (i=1, 2, 3, 4) denote the Bézier control points in
that represent the key configurations, and w; (i=1, 2, 3, 4)
denote the dual-number weight factors. Eq. 925) can also be
expressed in terms of Bernstein polynomials Bi(1):

3
W () =W)X (1) = whB} ()
i=0

and is said to define Bernstein-Bézier cubic motions.

Similar to a Bernstein-Bézier curve in a Euclidean three-
space E3, a Bernstein-Bézier unifold image curve X () given
by Eq. (25) can be alternatively generated by repeated linear
interpolation of its control image points. Given the control
points b, and the weights w; (i=0,1, ---, n), the deCasteljau
algorithm for constructing a Bernstein-Bézier polynomial mo-
tion (of degree n) proceeds as follows:

(I) For i=0, 1, ---, n, set Wi=1b;;
(2) Forr=1,2, ---,nand i=0, 1, --+, n—r, set

Wi=(1-0)Wi T+ Wi (26)

(3) Then X (1) =Wg/IWg! where {W2| denotes the mag-
nitude of Wg.

In the above, each intermediate point b is given by
Wi/ WL, )

This deCasteljau algorithm may be used to subdivide a Bern-
stein-Bézier image curve. The algorithm subdivides the prei-
mage W () of theimage curveX (7). Theintermediate preimage
points, W/b}, may be projected onto the curved image space
to provide us with the control polygons for the ““left”’ and
“right’’ curve segment. :

One important drawback for the above Bernstein-Bézier mo-
tion is that it is difficult to adjust the speed of the motion
intuitively, for it is very difficult (if not impossible) to select
the constant weights W; such that the linear motion of the form
(26) has constant angular velocity or pitch (Ge and Ravani,
1994).

Conclusions

This paper has provided a theoretical foundation for con-
struction of deCasteljau algorithms for motion approximation.
. It has shown that Bézier motions obtained by the application
of deCasteljau’s construction are not of Bernstein form and
lack the subdivision property of Bernstein-Bézier curves used
in CAGD. Certain differential and kinematic properties of the
Bézier motions have also be studied. An alternative form of
deCasteljau algorithm was presented that results in Bernstein-
Bézier motions with subdivision property. The results have
applications in motion animation, kinematics and CAD/CAM.
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APPENDIX A

This appendix proves that the deCasteljau algorithm for
constructing the nonalgebraic Bézier image curves ‘does not
possess the subdivision property. For convenience, we consider
only the construction of a nonalgebraic Bézier image curve of
rank 2 using three.control points. C

Let bg, by, b, be the Bézier control points in the image space
T and let s, ¢ be two parametes such that 0<s<t<1l. Then
the deCasteljau algorithm yields two parametric points on the
Bézier image curve (Fig. 9):

B3(s) =BY()[(Be(5)) "B ()T, @n

B3(0) =B [(Bo(1)) ~'BL(D)". (28)

Let & denote the intersection point of the two lines joining

Bi(s) to bi(s) and By(2) to bi(r). If the subdivision property

exists for the deCasteljau algorithm, then the point bj(s) can

be alternatively generated by subdividing the triangle formed

by the three points by, Bl(2), and b3(?) in the ratio (s/1):1.

This leads to the following

&=bh(O[(B3(1) 'BH(NT,

_ b3 (s) =bb(s)[(Bo(s)) ~'&".
Substitute (28) into (29) to obtain

29
(30)

Fig.9 A deCasteljau algorithm In T does not possess subdivision prop-
erty
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e=by()[(bo(r)) 'BI(A)T. (€]9)]
From (27) and (30), we obtain
e=b§(s)[(bs(s)) ~'BI(s)]" (32

In what follows we show that in general (31) and (32) cannot
hold simultaneously and therefore conclude that the de-
Casteljau algorithm in £ does not in general possess subdivision
property. Let ¥ 5 ¥ denote the dual angular lengths of the
segments bo(s)bl(s) and bo(t)bl(t), respectwely Then Eqgs.
@3, (32) mean that & divides the segment b}(#)bi(¢) in the
ratio _sin (sw},)/sm((l s)@,} and- divides the segment
bo(s)b,(s) in the ratio sin (t{lz )/sm((l t)\Z,), respectively. If
thlS is true then the triangle bo(t)b bi(7) and its transversal
bo(s)bl (s) must satisfy the Menalaus’ theorem of collinearity:

Journal of Mechanical Design

sin((1~s)¢o) _sin (s§) _ sin ((£-5)$)

sin ((£~s)do) sin((1-5)¥).  sin (sp))
where &0, &, are the angular lengths of the segments bobl,
b,b,, respectively (Details on Menelaus’ theorem in non-Eu-
clidean geometry can be found in Sommerville, 1914). In the
special case when ¢p=¢, =0, i.e., when three given configu-
rations share the same orientation, Eq. (33) holds and it reduces
to:

=1, (33)

l-s 5 t-s

-sl-5 s ’

by virtue of Eq. (9). In general, however, Eq. (33) does not
hold. Thus we conclude that (31) and (32) do not hold si-
multaneously for arbitrary spaced control points by, b,, and

b,. This completes the proof.
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‘Bézier Curves on Riemannian
Manifolds and Lie Groups with
Kinematics Applications

In this article we generalize the concept of Bézier curves to curved spaces, and
illustrate this generalization with an application in kinematics. We show how De
Casteljau’s algorithm for constructing Bézier curves can be extended in a natural
way to Riemannian manifolds. We then consider a special class of Riemannian
manifold, the Lie groups. Because of their group structure Lie groups admit an
elegant, efficient recursive algorithm for constructing Bézier curves. Spatial dis-
placements of a rigid body also form a Lie group, and can therefore be interpolated
(in the Bézier sense) using this recursive algorithm. We apply this alogorithm to
the kinematic problem of trajectory generation or motion interpolation for a moving
rigid body. The orientation trajectory of motions generated in this way have the
important property of being invariant with respect to choices of inertial and body-

fixed reference frames.

1 Introduction

One of the cornerstones of geometric design has been the
work of P. Bézier on the free-form curve design method that
bears his name. Bézier curves are not only flexible and easy
to generate, but offer a simple geometric representation of a
curve in terms of its control polygon, as well as a firm math-
ematical foundation based on Bernstein polynomials. In ap-
plying the Bézier method to the kinematic problem of trajectory
generation or motion interpolation for a moving rigid body,
however, the classical geometric design techniques need to be
extended to curved spaces. In principle one can obtain a col-
lection of local coordinate charts for a given curved space, and
apply existing Euclidean interpolation techniques to these co-
ordinates. The resulting curves, however, will depend on the
choice of local coordinates, which clearly leaves something to
be desired from both a mathematical as well as an engineering
perspective. Another requirement motivated by the moving
rigid body problem is that, to the extent possible, the resulting
motions should not depend on the choice of inertial or body-
fixed reference frames; in the language of Lie groups this can
be phrased as the question of whether a group admits a bi-
invariant Riemannian metric. Using standard results from Lie
theory it can be shown that bi-invariant orientation trajectories
can be constructed, but that in general there is no bi-invariant
metric for the spatial displacements (see, e.g., Park et al.,
1993).

The goal of this article is to generalize the concept of Bézier
curves to curved spaces. The existing theory of Bézier curves
has been formulated only for curves in Euclidean space, and
only recently have attempts been made at extending Bézier’s
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original construction to particular curved spaces. Shoemake
(1985) presents a class of methods for generating curves on
rotations that are based on unit quaternion representation.
Although unit quaternions have certain well-known advantages
over other representations of rotations (e.g., Euler angles),
Shoemake’s approach is essentially coordinate dependent: the
resulting motions are not invariant with respect to choice of
inertial and body-fixed frames, and his methods-do. not ade-
quately address the underlying geometry of the space of ro-
tations (e.g., the 2-1 nature of the unit quaternion
representation). In more recent work, Ge and Ravani (1991,
1994) have recognized these geometric issues, and formulated
rigid body motion interpolation in terms of the image space
manifold of kinematic mapping (see e.g., Bottema and Roth,
1979 or Ravani and Roth, 1984). In particular, the 2-1.am-
biguity is resolved by defining an orientation on the space of
unit quaternions, and trajectories are constructed in terms of
the first fundamental form of the image space with bi-invariant
rotation parts. Juettler (1994) has provided a theoretical eval-
uation of several approaches for motion interpolation and has
discussed coordinate frame dependency of some of these ap-
proaches.

In this article, we formulate a general framework for con-
structing Bézier curves on Riemannian manifolds, and then
focus specifically on a special class of Riemannian manifold,
the compact Lie groups. This class covers a wide range of
curved spaces that arise frequently in kinematics: for example,
the group of proper rotations SO(n) lies at the heart of the
rigid-body motion interpolation problem, and the special un-
itary group SU(2) can also be identified with unit quaternions.

This article is organized as follows. In Section 2 we show
how Bézier curves can be generalized to arbitrary Riemannian
manifolds, and discuss some of the computational issues. In




Section 3 we present a method of constructing Bézier curves
on compact Lie groups, based on a generalization of De Cas-
teljau’s algorithm. In Section 4 we apply these curve generation
techniques to the design of smooth trajectories on the rigid-
body motions.

2 Bézier Curves on Riemannian Manifolds

2.1 A Geometric Interpretation of Classical Bézier
Curves. Before laying down the mathematical framework for
Riemannian manifolds, it is instructive to review the geometric
interpretation of Bézier curves from the perspective of both
Bézier’s original construction and of De Casteljau’s algorithm
(1963), which, incidentally, precedes Bézier’s work. Bézier
(1963) geometrically defines a curve from four ordered ver-
texes—the polygon formed by these vertexes is called the con-
trol polygon—subject to a set of geometric constraints.
Specifically, let the ordered vertices be {(, 0, 0), (1,0, 0), (1,
0, 1), (1, 1, 1)}, and let €: [0, 1]—®* be a curve such that

* C(0)=(0,0,0)and C(1)=(1, 1, 1).

* The tangent at €(0) is parallel to the x-axis, and the
tangent at C(1) is parallel to the z-axis.

* The osculating plane at C(0) is parallel to the x-y plane,
and the osculating plane at C(1) is parallel to the y-z
plane.

The curve satisfying these constraints is given by a cubic pol-
ynomial. Reversing the order of the vertexes results in the same
curve. It is important to note that the resulting curve is de-
termined entirely from geometric constraints, and that the
method of construction can be extended naturally to an ar-
bitrary number of vertexes arranged randomly in Euclidean
space. The Bézier curve can also be viewed as an approximation
to the control polygon in terms of Bernstein polynomials (as
discovered later by R. Forrest, 1972).

De Casteljau presents another method of constructing a
smooth curve given a control polygon, which turns out to be
identical to the Bézier curve, but directly exploits the rela-
tionship with Berstein polynomials. This algorithm is perhaps
best ﬂlustrated by F1g 1. Specifically, let the ordered set of
vertices in ®* be given by { Do» D1s - - - » Pn), and define the
polynomials

pHOY = —t)pkt+pk-!

where p?:pi. The curve given by p;(t), 0 = t =< 1 then
corresponds to the Bézier curve. Geometrically De Casteljau’s
algorithm constructs the curve by successive linear interpola-
tion between the vertexes of the control polygon.

That Bézier’s original construction and De Casteljau’s al-
gorithm are equivalent is remarkable, and can fundamentally
be traced to the fact that the curve lies in Euclidean space.
The polynomial representation of these curves, which makes
them computationally attractive, is also due to the underlying
space being Euclidean. In order to generalize these two methods
of curve construction to curved spaces one must first generalize
the underlying geometric concepts. In the De Casteljau method
the concept of linear interpolation between two points in a
curved space needs to be defined; this can be readily done on
a Riemannian manifold, where the minimal geodesic plays the
role of the straight line for curved spaces, and lengths can be
measured in terms of the Riemannian metric. Bézier’s con-
struction, however, does not seem to generalize in a natural
way to the Riemannian setting. Although tangency between
curves is well-defined, the notion of an osculating plane relies
inherently on the manifold being embedded in some larger
ambient Euclidean space, and in general there is no natural
way to do this. It is also more desirable to define a Bézier
curve in terms of the intrinsic geometry of the manifold, rather
than the underlying space in which it lies. For Riemannian
manifolds, therefore, the natural way to define Bézier curves

Fig. 1 The De Casteljau algorithm for N = 4

is by generalizing De Casteljau’s algorithm. Naturally for cer-
tain manifolds the minimal geodesic between two points may
not always be unique, so that a number of subtleties (addressed
below) will arise.

Before proceeding some clarification on what we mean by
‘‘geometric’’ may help justify our emphasis on the so-called
‘‘geometric’’ construction of Bézier curves. In principle any
differentiable manifold of dimension n can be locally repre-
sented by a set of coordinates (xj, . . . , x,). One might there-
fore be tempted to simply construct Bézier curves in terms of
these local coordinates, and regard the corresponding curve
on the manifold as the generalized Bézier curve. The flaw with
this construction, of course, is that the resulting curves depend
on the choice of local coordinates. Any geometric scheme for

-generalizing Bézier curves must by definition be coordinate- -

invariant. For Lie groups we shall impose an additional re-
quirement of bi-invariance.

2.2 Bézier Curves on Riemannian Manifolds. Clearly the
key to generalizing De Casteljau’s algorithm to curved spaces
is the notion of linear interpolation, or even more fundamen-
tally, lines. On a Riemannian manifold the geodesics (with
respect to the given Riemannian metric) play the role of lines.
We now formally review these concepts.

Let M be a Riemannian manifold of dimension n, with local
coordinates (xy, X5, ..., X,), and Riemannian metric
ds*=g; . (x)dx;dx; (we adopt the physicists’ convention of sum-
mation over repeated indices). If a curve € on M is given in
local coordinates by x(¢), 0 < ¢t < 1, then the length of the
curve is given by the integral

! dx; dx\ '\
L-‘—‘S i = dt
0 <g’(x)dz dt)

Just as a line in Euclidean space can be considered as the
shortest path between two points, on a Riemannian manifold
the minimum length curve joining two points can be regarded
as the analog of the straight line. A parametrized curve € is
a geodesic if it is a critical point of the energy functional

1
i dx;
E‘Sog”( )dt a

and is a minimal geodesic if it minimizes E. Observe that the
integrands of E and L differ by a square: the length L is
invariant with respect to reparametrizations of €, whereas E
clearly depends on the parametrization. Interestingly, the curves
minimizing E also minimize L, and moreover are parametrized
with respect to arc-length. In local coordinates the geodesics
satisfy the system of differential equations

dx, 9%
Zrk(xm)—-—w 0

dt dt

forl < i < n, where

TR 0gu 98y g
[ il oU  ZoJK
Jx 2 ; § <6x, an ax,




and (g") = (g;)~". The I}, are known as the Christoffel sym-
bols of the second kind.

Local existence and uniqueness of solutions for the Euler-
Lagrange equations of geodesics can be shown for a given set
of initial conditions (see, e.g., Gallot et al., 1990). This result
implies that any two points which are ““close enough’’ to each
other are joined by a unique minimal length geodesic. This
property is generally not global; for example, the geodesics on
the two-sphere S? are given by the great circles, and any two
antipodal points will have any number of minimal geodesics.
If any geodesic on M can be extended to a geodesic defined
on all of ®, then the manifold is said to be geodesically com-
plete. A theorem of Hopf-Rinow asserts that if a manifold is
geodesically complete, then any two points of M can be joined
by a minimal geodesic; note that the theorem does not claim
that this geodesic is unique. For the purposes of this paper we
shall only consider geodesically complete manifolds. The in-
terested reader is referred to Gallot et al. (1990) for the technical
requirements of such manifolds.

Having established the minimal geodesics as the Riemannian
analog of straight lines, Bézier curves can now be easily gen-
eralized via De Casteljau’s algorithm. Let the n ordered points
of M forming the control polygon be labelled {po, py, - - - ,
D). Represent the minimal geodesic between any two points
P, q € M by the curve exp(p, ¢, 1), 0 < t < 1, where exp(p,
g,0) = pand exp(p, q, 1) = g. Define the sequence of curves
on M

pit)=exp(f=! (1), ¥t (1), 1)
Here p¥¢) = pi- The Bézier curve is then given by

Pa(t) =exp(prZi(1), pi7i (1), 1)
which is analogous to the De Casteljau algorithm for Euclidean
space.

It is clear that constructing Bézier curves on Riemannian
manifolds by this algorithm is computationally more involved
than for the Euclidean case: computing the geodesic between
any two points involves the solution of the nonlinear differ-
ential equation ([1]), a two-point boundary value problem (and
therefore more difficult than integrating a differential equation
with only initial conditions). Even if we assume that the geo-
desics forming the control polygon have been precomputed
and stored in a table, for each instant ¢ the geodesic equations
still need to be solved (n — 1)(n —2)/2 times. Clearly this
presents difficulties for interactive design applications.

One method of obtaining approximate Bézier curves in real-
time is to compute only a discrete set of points on the curve,
and to interpolate between these points using local coordinates.
Specifically, the Bézier curve p(¢) can be sampled N times at
uniformly-spaced intervals of ¢ using the algorithm given above.
Labelling these points P(i), i = 1, ..., N, one can then
obtain smooth interpolants between adjacent points P(i — 1)
and P({) in terms of local coordinates. While any convenient
interpolating spline can be chosen, care must be taken to ensure
continuity of the proper order at the knot points. The obvious
drawback of this approach, of course, is that the resulting
curve depends on the choice of local coordinates. Nevertheless,
it is a practical means of designing curves on Riemannian
manifolds in real-time that are nearly coordinate-invariant.

3 Bézier Curves on Lie Groups

3.1 Lie Groups. We now specialize to a special class of
Riemannian manifold, the matrix Lie groups. A Lie group' G
is a differentiable manifold and an algebraic group whose
operation (x, y)—xy ~! is smooth. Some well-known examples
of Lie groups include Gl(n), the general linear group of nxn

'Fora comprehensive account of applications of Lie groups in kinematics the
reader is referred to Karger and Novak ( 1985).

real nonsingular matrices, and Sk(n), the special linear group
of nx n real nonsingular matrices of unit determinant.

Let p be a point on a matrix Lie group G, and X () a smooth
curve on G defined over some open interval of 0 such that
X(0) = p. The derivative X(0) is said to be a tangent vector
to G at p; the set of all tangent vectors at p, denoted 7,G,
forms a vector space, called the zangent space to G at p. The
tangent space at the identity p = Iis given a special name,
called the Lie algebra of G, and denoted by a lower-case g.
On a matrix Lie group the Lie algebra is also given by matrices.
For example, the Lie algebra of SO(3), denoted so(3), is the
set of 3 X 3 real skew-symmetric matrices (see, e.g., Belinfante
and Kolman, 1972).

More generally a Lie algebra is a vector space, V, together
with a bilinear map [-,-]: VX V—V (called the Lie brackef)’
that satisfies, for any X, Y, Z € V, (i) [X, X] = 0, and (ii)
X, [Y, Z)+(2, [X, Y]]+[Y, [Z, X]] = 0. For matrix.Lie
algebras the Lie bracket is given by the matrix commutator:
if X, Y € g are square matrices, then [X, Y] = XY — YX.

Defined on each Lie algebra is the exponential mapping into
the corresponding Lie group. On matrix groups the exponential
mapping corresponds to the usual matrix exponential, i.e., if
A€g,thenexpAd =T+ A + A%2! + ... is an element of
G. Observe that ', ¢ € R, itself forms a group, in this case
a subgroup of the Lie group. Such groups are called one-
parameter subgroups of a Lie group, and play a special role
in the description of minimal-length paths on Lie groups as
we show below. Before lengths of paths can be defined we
first need to examine Riemannian metrics on Lie groups.

If X (¢t) is a differentiable curve on G as before, then X ¢
T,G. One can exploit the group structure of G to represent X
as an element of the Lie algebra as follows. Let g, h € G, and
define the left and right translation maps L,-1: G—G, R,-1:
G—~GbyL,-1(g) = h™'gand Ry-1(g) = gh™!, respectively.
It follows that their derivatives dL,~1 and dR),-1 are mappings
from T;-1 G to 7,G = g. By applying these two maps to X »
it can be seen that X~' X and XX~ ! are elements of g. Any
tangent vector can therefore be identified with an element of
g by either left or right translation. Since g is 2 vector space,
any inner product on g will define a Riemannian metric for

.Let Q be a quadratic form on g, and X(¢) a curve on G.
Then X € TxG,and X~ 'X A ¥, and XX~ 'A Vj are elements
of g. Observe that Vi and V are related by V; = XV, X!
A Adx(V;). Q defines an inner product on g, which in turn
defines two classes of Riemannian metric on G:

<X.7 X)L é

N—= N

(X, Xyp A

{-,-)rand (-,-)garethe left- and right-invariant Riemannian
metrics on G defined by Q. If (-,-); = (-,-)p the metric is
said to be bi-invariant. Any Lie group admits a left- or right-
invariant metric from the construction above, but not all Lie
groups admit a bi-invariant metric. One well-known condition
in which a bi-invariant metric is always guaranteed to exist is
if the Lie group is compact. In this case the geodesics of G
(with respect to the bi-invariant metric) are the one-parameter
subgroups of G and its translates, i.e., if A € g and ¢ € ®,
then e* is a geodesic as is He** and e* H for any H € G.
On compact G it is known that any g € G lies on a one-
parameter subgroup. Hence, given any two points in G there
always exists a geodesic (with respect to the bi-invariant metric)
connecting them. To find the minimal geodesic we must con-
sider the inverse of the exponential map exp: g—G. If G is

.compact then it is well-known that exp is onto, but typically




its inverse map will be multiple-valued. We therefore define
log: G—g by

log(A)=a

such that a” Qa is minimal among all possible @ € g satisfying
exp(a) = A. The minimal geodesic between 4 and B is then
given by X(¢) = A exp(Q), 0 < ¢t < 1, where © = log(4~!
B). Moreover, if A and B are left-translated by some constant
C'to CA and CB, then the minimal geodesic is given by CX'(¢).
Similarly, the minimal geodesic between AB and ACis X (¢)C.
These properties follow from the bi-invariance of the Rie-
mannian metric, and can be verified by an elementary calcu-
lation.

3.2 The De Casteljau Algorithm on Compact Lie
Groups. Having established that the geodesics on compact
Lie groups (with respect to the bi-invariant Riemannian metric)
are the one-parameter subgroups and its translates, we now
describe the algorithm for generating Bézier curves on such
spaces. Let G be the Lie group with Lie algebra g, exp: g—G
the exponential map, and log: G—g the inverse map that pro-
vides the minimal norm value as described above. Let {p,, p;,

- » P} be the ordered set of points in G that form the
control polygon. The Bézier curve is now defined recursively
as before:

pE() =pfol (texp(t oglo=!) ()17 p5~ (1)), p2(1) =p;
and the Bézier curve is given by
Pr(t)=paZi(t)exp(t logl(paz}) ()]~ 'p2~ (1))

We now restrict our attention to the rotation group SO(3) in
the next section.

4 Kinematics Application: Bézier Curves on SO(3)

The rotation group SO(3), consisting of the 3x 3 real or-
thogonal matrices with unit determinant, forms a Lie group,
with its Lie algebra so(3) given by the vector space of 3x3
real skew-symmetric matrices of the form

0 — w3 Wy
WA o 0 -
— [SF] 0

The following explicit formulas for the exponential and log-
arithm mappings on SO(3) and so(3) are well-known:
Lemma 1 Given 8 € s0(3),

sinlwi 1—cosllwl
Hwll lol?
where [w] is the skew-symmetric matrix representation, and

Bl the standard Euclidean norm.
Lemma 2 Given © € SO(3) such that Tr(0) # — 1. Then

explw] =TI+ o] + [w)?

ee® _a_aT
loge—zsin¢(9 09

where ¢ satisfies | + 2cos ¢ = Tr(f), ¢! < x. Furthermore,
flog B1% = ¢

Remark 1 When Tr(0) = —1, log © can have two possible
values on the closed ball of radius =; if & is a unit lengih
eigenvector of © associated with the eigenvalue 1, then a simple
calculation shows that log © = + x[&].

Remark2 Lemmas 1 and 2 suggest the standard visualization
of SO(3) as a solid ball of radius , centered at the origin with
the antipodal points identified; a point w in the ball represents
a rotation by an angle lwll about the line passing from the
origin through w. The rotations whose traces equal —1 have
arotation angle of 7, and correspond to points on the boundary
of the solid ball.

Remark 3 It is clear from above that the logarithm on SO(3)

Fig. 2 Four control configurations of an end-etfector

is multiple-valued: given © € SO(3) such that [w] = log ©,
fwl <, then the set of all possible values of log O is

[w] + 27n[&], neZ

where & = w/lwl. This is akin to the situation in the complex
plane, where if e is a point on the unit circle for some 0 <
¢ =< 2, then €*?* corresponds to the same point for any
integer n.

SO(@3) is a compact Lie group and as such admits a bi-
invariant Riemannian metric (-,-). To see how the metric is
applied, let ©(¢) be a curve on SO(3), and 676 = [w,], 66~!
= [w]. Then (8, ©) = cw] w, = cw! w,, where cis a positive
constant scale factor; the Riemannian metric is therefore de-
termined by the quadratic form Q = c¢f on so(3). For con-
venience we shall henceforth set ¢ = 1.

In terms of the bi-invariant metric the geodesics on SO(3)
are given by the translates of the one-parameter subgroups ¢/,
A € 50(3) and ¢ € ®R. The minimal geodesic between two ele-
ments O, 8, € SO(3) is given by the curve

6(t)=6,e"%, 0=t=]
where Q;; = log(©1' 6,), or, equivalently,
e(t)=e'9,, 0=<r<1

where Q= log(6,977).

With this simple characterization of the minimal geodesics,
Bézier curves can now be constructed in a straightforward
manner on SO(3). For example, with 3 control points 8,, 6,,
and ©,, the Bézier curve is given by

6(1) = Bpelortgloste™ 00 'e1e 20

for 0 < ¢ < 1, where Qg = log(645'0,) and 0, = log(©['8,).
The general case with n control points is as follows. Let 69,
0?, . . ., 0% be the ordered set of control points, and define

_ k=1, k-1
9{5(,)=9f l(t)e(los((ei yTieL

where k ranges from 1to n, and i from 0 to n — k. The Bézier
curve is then given by 6§(¢).

Remark 4 The above construction can also be applied to
design Bézier curves in SE(3), where the one-parameter
subgroups ¢*' are now the screw motions. It is well-known,




Fig. 3 A continuous motion interpolating the control configurations

however, that SE(3) does not admit a bi-invariant Riemannian
metric (see, e.g., Duffy, 1990), and that the one-parameter
subgroups on SE(3) are no longer geodesics with respect to
any left- or right-invariant Riemannian metric. Rather, in this
case the geodesics on SE(3) are simply the projections of the
geodesics on ®* x SO(3) (Park, Murray, and McCarthy, 1993).
Hence, given a particular left- or right-invariant Riemannian
metric on SE(3), the corresponding Bézier curve can be con-
structed by combining the appropriate Bézier curves in ®* and
SO(3). From a physical viewpoint this is more appealing, since
there is nothing natural about the screw motions from the
point of view of dynamics. In fact, in the absence of external
forces one would expect the motion of the center of mass of
a rigid body to be linear, while the orientation is governed by
Euler’s equations.

4.1 Example. = The Cartesian space trajectory of a robot
is to be designed such that it interpolates between the two end
configurations of the end-effector shown in Fig. 2. Four con-
trol configurations are used (as shown in Fig. 2) and the tra-
jectory of the end-effector is generated using the Bézier curves
in ®* and SO(3) as discussed above. The resulting motion or
trajectory of the end-effector is shown in Fig. 3.

5 Conclusion

By generalizing the notion of straight lines to curved spaces,
Bézier curves can be defined on Riemannian manifolds by a
suitable generalization of De Casteljau’s algorithm. In the case
when the Riemannian manifold is a compact Lie group ap-
pealing formulas exist for the minimal geodesics, which are
given by matrix exponentials. The algorithm has been illus-
trated for the particular case of SO(3), with explicit formulas
given for the matrix exponential and logarithm. The resulting
orientation trajectories are invariant with respect to the choice
of inertial or body-fixed reference frames for the rigid body.
These results have direct applications to kinematics and ani-
mation of rigid body motions, as well as to any problem in
which the physical aspects are described by a Lie group.
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Abstract

This paper presents a variational method for smooth interpolation of the rotation
group SO(8). By viewing SO(8) as a Lie group equipped with a natural Riemannian
metric, we apply the coordinate-invariant methods of Riemannian geometry to construct
spline curves that are invariant with respect to both left and right translations and gen-
erate curves that approrimately minimize a measure of smoothness. Such spline curves,
in the context of moving rigid bodies, generate orientation trajectories that are indepen-
dent of the choice of inertial or body-fized reference frames and are smooth. Based on
this construction, a computationally efficient algorithm for interpolating multiple points
in SO(8) is presented.

1 Introduction

One of the frequently encountered problems in applications ranging from computer graphics
and animation to robot trajectory planning is the interpolation of smooth curves in SO(3),
the space of rotations. In this paper we address the following problem: given an ordered

set of n rotation matrices {R1, Ry, ..., R,} (the knot points), and a set of n scalars t; <




ty < -+ < tn (the knot times), find a C? curve R : [t1,t,] — SO(3) such that R(t;) = R;,
t=1,2,...,n. Our goal is to find a computationally efficient method of spline interpolation
in SO(3) that produces reasonably smooth curves.

Well-established techniques exist for spline interpolation in vector spaces, but for the
most part these techniques have yet to be generalized in a uniform, coordinate-free way to
curved spaces like SO(3). Cubic splines, for example, are useful because of their simplicity

and computational efficiency, and are further justifed by the physical argument that they
minimize the smoothness criterion

[aipat )
To generalize this approach to curved spaces, one might begin by formulating the corre-
sponding second-order smoothness measure; more precisely, the curved space operator that
plays the role of the second derivative needs to be defined. In principle one could choose
a set g\)f local coordinates for the space and, proceeding exactly as in Euclidean space, con-
struct cubic splines in terms of these coordinates. However, cﬁrves generated in this fashion
are known to depend on the choice of coordinates, so that this method is geometrically ill-
defined. An even more subtle issue that arises in the SO(3) case is the question of translation
invariance: given two ordered sets {Ry,..., Rn} and {Ry,..., Rn} in SO(3), where R; and
R; are related by R; = QR;S for Q, S constant SO(3) matrices, it is reasonable to demand
that the interpolating curves through these two sets, denoted R(t) and R(t), respectively,
be related by R(t) = QR(t)S. Physically this reflects the fact that the choice of inertial and
body-fixed reference frames for a rigid body should not influence the orientation trajectory
of the 'interpolated motion.

In this paper we present a variational method for smooth interpolation in SO(3) that
is both left and right translation invariant (or bi-invariant), and generates curves that
approximately minimize a certain geometrically-defined measure of smoothness. - In our
approach SO(3) is regarded as a Lie group with a natural Riemannian metric, and the
role of the second-order derivative operator is played by the symmetric covariant derivative
compatible with this metric. On Riemannian manifolds this covariant derivative is the
natural coordinate-invariant generalization of second-order derivatives in Euclidean space,
and in SO(3) the corresponding second-order smoothness functional turns out to be simply

the integral of the squared-norm of the angular acceleration. We review the specific form




of the functional and its associated Euler-Lagrange equations for SO(3). In particular, our
analysis relies on using the canonical coordinates of the first kind as local coordinates on
SO(3). Because solving the Euler-Lagrange equations is impractical for interactive CAD
applications, a method based on the canonical coordinates is presented that preserves bi-
invariance, yet produces simple solutions that approximately minimize the second-order
smoothness functional. These curves, as will be seen, properly reduce to the minimal
geodesics under appropriate boundary conditions.

The paper is organized as follows. In Section 2 we review the geometry of SO(3) as a Lie
group, and derive the corresponding canonical coordinates of the first kind. In Section 3 we
express the second-order smoothness functional in terms of the canonical coordinates, and
show that under some mild assumptions, the optimal curves are given by the exponential
of a cubic matrix polynomial. To illustrate the efficiency of this approach the case of two
point interpolation is considered in some detail. In Section 4 the two point interpolation
result\s are extended to an algorithm for multiple point interpolation. We conclude with
some remarks on how the interpolation of rigid body motions might be addressed within
the given geometric framework.

Before proceeding we mention some of the relevant previous work in SO(3) interpolation.
One of the more widely cited approaches is the work of Shoemake (1985), who presents a
class of interpolation schemes based on the unit quaternion representation for rotations.
While the unit quaternions are known to provide a globally nonsingular four-parameter
representation for rotations, Shoemake’s algorithm essentially applies existing Euclidean
interpolation techniques to this particular set of coordinates, so that the resulting curves
will not in general be bi-invariant and the interpolated motions are not necessarily Eu-
clidean. Also, some of the expected characteristics are not preserved in the resulting Bézier
curves. A more careful geometric analysis of Quaternion curves is given by Ge and Ravani
(1994a, 1994b), in which the underlying curved geometry of the space of quaternions was
considered in performing the interpolation and actual Euclidean motions were generated
with a proper analysis and evaluation of the characteristics of the resulting Bézier represen-
tations. Jutler (1994) has presented a similar investigation working with dual quaternion
curves and discussing some of the issues associated with the dependence of the existing

methods on coordinate system used. Hart, Francis and Kauffman (1994) have presented




an interesting method for visualization of quaternion curves representing three dimensional
rotations.

The unit quaternions, in fact, can be identified with the Lie group SU(2) of the 2 x 2
special unitary matrices, so that the methods described here can be extended in an straight
forward manner to SU(2). The present circle of geometric ideas has also been applied to
formulate Bézier curves on SO(3) and general compact Lie groups (Park and Ravani 1995).
Other relevant work in motion interpolation include the work of Barr (1993), Wagner and
Jutler (1994), Pottmann and Wagner (1993).

None of these authors, however, have considered the problem of motion design in the
genera] frame work of minimizing a certain measure of smoothness on SO(3). Furthermore,
they have not utilized Riemanian geometry to deal with the inherent curved nature of the
underlying space of three dimensional rotations producing interpolated motions that are
completely coordinate independent.

This paper builds upon the formulation presented in Park and Ravani (1995); but de-
velops a variational method for design of cubic splines for interpolating multiple points in
SO(3) generating smooth multi-segment rotations which are independent of the choice of

the coordinate system.

2 The Geometry of SO(3)

We begin with a review of the necessary background on SO(3) as a matrix Lie group; the
development closely parallels that of (Park and Ravani 1994), and additional background
can be found in, e.g., (Belinfante and Kolman 1972).

SO(3) as a Lie Group

Recall that SO(3) is the set of all 3 x 3 real orthogonal matrices with unit determinant.
SO(3) has the structure of a group and a differentiable manifold, and is an example of a
Lie group. The rigid-body motions SE(3) can also be regarded as a Lie group under matrix

multiplication, with elements of the form




where R € SO(3) and b € R3. Some other well-known examples of matrix Lie groups include
Gl(n), the general linear group of n x n real nonsingular matrices, and the special linear
group Sl(n), which is a subgroup of Gl(n) whose elements have unit determinant.

More generally let G denote a matrix Lie group, and let X (t) be a differentiable curve
in G defined over some open interval containing 0 such that X (0) = p. The derivative X (0)
is said to be a tangent vector to G at p; the set of all tangent vectors at p, denoted TpG,
forms a vector space, called the tangent space to G at p. The tangent space at the identity
p = I is given a special name, called the Lie algebra of G, and denoted by the lower-case g.
On SO(3) it is easily seen that the Lie algebra so(3) consists of the 3 x 3 skew-symmetric
matrices: if R(¢) is a curve in SO(3) such that R(0) = I, then differentiating both sides of
RT(t)R(t) = I, it follows that RT(0) + R(0) = 0, so that elements of so(3) are matrices of

the form

'\ MEl s 0 -n 3)
—T9 T 0

where r € R3. Note that an element [r] € so(3) can also be represented as a vector r € R%;
if it is clear from the context which representation is meant then an element of so(3) will

simply be denoted as 7.
More generally a Lie algebra is a vector space, V, together with a bilinear map [-,] :
V X V — V (called the Lie bracket) that satisfies, for every n,u,& € V, (i) [n,7] = 0, and
@) [n, [, €] + [€, [, 2] + [, [€,m]] = 0. From (i) and the bilinearity property it follows
that [n, u] = —[u,7n]. For matrix Lie groups and Lie algebras the corresponding Lie bracket
reduces to the standard matrix commutator: if  and u are square matrices, then [n, u] =
nu — pn. In particular, on so(3) it is easily verified that the Lie bracket of two elements

corresponds to their vector product: [r1,79] = [ri]{re] — [ra][r1] = [r1 x r2].

- The Exponential Mapping

An important connection between a Lie group and its Lie algebra is the exponential mapping,
defined on each Lie algebra is the exponential mapping into the corresponding Lie group.
On matrix groups the exponential mapping is given by the usual matrix exponential, i.e.,

if A is an element of the Lie algebra, thenexp A =T+ A+ %!z_ + ... is an element of the Lie




group. On so(3) the exponential mapping is onto, i.e., for every R € SO(3) there exists an
[r] € so(3) such that exp[r] = R. On SO(3) and its Lie algebra well-known explicit formulas
exist for the exponential and its inverse: if [r] € so(3), then

sin ||r|| 1— cos |||

T ———— 7'2
A Y @

where ||r| is the standard Euclidean norm. Alternatively, if R € SO(3) such that Tr(R) #
~1, then

exp[r] = I +

__ ¢
log B = o—— ¢(R—RT) (5)

where ¢ satisfies 1+ 2cos ¢ = Tr(R) and | log R||?> = ¢°. In the case when Tr(R) = —1 two
possible solutions for log R are as follows: if 7 is a unit length eigenvector of R associated
with the eigenvalue 1, then log R = +n[f].

From the above formulas SO(3) can be visualized as a solid ball of radius 7, centered at
the orégin with the antipodal points identified; a point r in the ball represents a rotation by
an wéle lr|| about the line passing from the origin through r. Conversely, any R € SO(3)
can be represented by the set of points corresponding to log R. Note that this representation
is unique when restricted to the interior of the solid ball. In general, if [r] is one solution
to log R, then R = ewm-ﬁ) for any integer k. The exponential mapping provides a set
of local coordinates for a Lie group over a neighborhood of the identity; Chevalley (1946)
calls these coordinates the canonical coordinates (of the first kind). On SO(3) we see that
‘the canonical coordinates are obtained from the logarithm formula.

The Lie algebra so(3) can be viewed as providing local coordinates for SO(3) via the
exponential map. Another useful interpretation involves angular velocities. If R(t) is a curve
in SO(3) describing the orientation of a rigid body relative to an inertial reference frame,
then it is not difficult to see that both RR~! and R~!R are skew-symmetric, and therefore
elements of s0(3). R™1R is in fact the angular velocity of the rigid body in body-fixed frame

coordinates, whereas RR™! is the angular velocity in inertial frame coordinates.

SO(3) as a Riemannian Manifold

Let M be a Riemannian manifold! of dimension n, with local coordinates (z1,xs, ... ,Zn),

and Riemannian metric ds? = > i.j 9ii(x)dz;dx;. Ifacurve on M is given in local coordinates

1See (Gallot et al 1990) for a comprehensive introduction to Riemannian manifolds.




by z(t), 0 <t < 1, then the length of the curve is given by the integral
da:z dz;
L= 1) dt
/ Z (g"( @t dt > (©)
Just as a line in Euclidean space can be considered as the shortest path between two points,

on a Riemannian manifold the minimum length curve joining two points can be regarded

as the analog of the straight line. However, instead of L one usually considers the energy
dx, dxj

The curves that minimize F are called minimal geodesics. It can be shown that the curves
minimizing E also minimize L, and are automatically parametrized according to arc-length.

In local coordinates the minimal geodesics must satisfy the system of differential equations

d :I:k k d:r,' de _
' Z 9 d O ®
i
for k=1,2,...,n, where
1 391 ag il agz
ko 2§ k(9% 5 j

and (g*) = (gr) ™"

Clearly the minimal geodesics depend strongly on the choice of Riemannian metric.
In general one cannot hope to find a “natural” Riemannian metric for a given manifold,
in the sense that the metric is determined by the geometry of the space. However, on
compact Lie groups such as SO(3) there does exist a natural metric determined by the
requirement of bi-invariance. Recall from earlier that both R~1R £ [w,] and BR~! £ w]
are elements of so(3) that correspond to the angular velocity in body-fixed and inertial
frame coordinates, respectively. Since any tangent vector R can be identified with an
element of so(3) by either left or right translation, any inner product on so(3) defines two
distinct Riemannian metrics on SO(3). Let this inner product be given by the symmetric
positive-definite quadratic form @. The left-invariant Riemannian metric induced from
Q is then (R, R); = 2wb TQuyp; similarly, the right-invariant Riemannian metric is given
by (R, R)T = %ngws. —ws TQuw, = 2wb T Quwp, then Q is said to deﬁne a bi-itnvariant
Riemannian metric. Clearly equality holds if and only if @ = cI, for ¢ > 0 any scalar

constant.




Not all Lie groups have bi-invariant Riemannian metrics (e.g., SE(3)), but for compact
Lie groups like SO(3) one is always guaranteed to exist. In this case the geodesics (with
respect to the bi-invariant metric) are the one-parameter subgroups and its translates: on

SO(3), for example, the minimal geodesic between R; and Rj is given by
R(t) = Rle[TIZ]i — e[TZl]tRl’ 0<t <1 (10)

where [r1o] is the minimum norm value of log(R; 1 Ry), and [ro1] = Ry[ri2]RT.

3 Two Point Interpolation

Bi-invariant Solutions

On Riemannian manifolds second derivatives are generalized by the symmetric covariant

derivative compatible with the Riemannian metric,? denoted by the symbol V. The equiv-
{ ‘

alent energy functional to Equation (1) is then given by

J(z) = / (V 2,V o) dt (11)

where z(t) denotes the curve and (-,-) the Riemannian metric. In local coordinates V 2 z
is just the left-hand side of Equation (8), where the Riemannian metric is given by g;;(z).
Since J(z) is a second-order functional, four boundary conditions are required to specify a
unique solution. In general the geodesics will not be admissible curves, but when they are
the integrand vanishes, so that the geodesics minimize J(z),
The Euler-Lagrange equations for J(z) (sometimes referred to as the equations for
geodetic deviation) are
V3 i+ R(Vaz,)(&)=0 (12)
3t a3t )
(Noakes et al 1989, Milnor 1969) where R is the Riemannian curvature tensor of V. These
equations are quite complex when expressed in local coordinates. For matrix Lie grbups
with a left- or right-invariant Riemannian metric it is often more convenient to derive the
equations directly from the first-order necessary conditions. Specifically, let G and g be the

matrix Lie group and its corresponding Lie algebra, respectively, and (-, ) an inner product

2 Again, see (Gallot et al 1990) for a complete discussion of covariant derivatives.




on g defining a left-invariant metric. The objective then is to find a curve U(t) in g that
minimizes
N
J(U) = /O W, 0) dt (13)
subject to
X(@) = XUt (14)

with X(0), X(1), U(0), and U(1) given. (If the right-invariant metric were used instead the
constraint would then be X (t) = U(t)X (t).)

On SO(3) the smoothness functional with respect to the bi-invariant metric turns out
to be the integral of the squared Euclidean norm of the angular acceleration. In order to
express the functional in terms of the canonical coordinates the following result is needed.
Let R(t) be a curve in SO(3) parametrized in canonical coordinates by R(t) = Rexp[£(t)],
where £(t) is a curve in R and R € SO(3) is some given constant. It can be shown that

the arigular velocity in body coordinates, denoted w(t), is
. 1 .
R OR() = (0] = [ KO0 ds (15)
0

which can be further simplified to the vector equation w(t) = A(£)£(t), where

[1€1l — sin [|€]]

L—cos lell g g (16)

€11

The smoothness functional in canonical coordinates is then

AQ)=1-

10 = [ I15@a©8l a7

We now show that the solutions that minimize J(¢) are “invariant” (in a sense to be
made precise below) with respect to right- and left-translations of the boundary values.
This result is not surprising considering that J(£) is defined in terms of the bi-invariant
Riemannian metric on SO(3). Nevertheless, the actual calculations turn out to be useful
for deriving the form of the cubic spline solution. In what follows it may be helpful to bear
in mind the actual engineering problem being addressed, which is to interpolate a smooth
orientation trajectory for a rigid body between two given orientations, subject to angular
velocity constraints at both endpoints. Suppose that inertial and body-fixed reference
frames have been chosen. The interpolation problem can then be stated mathematically

as follows: find a curve R(t) in SO(3) that minimizes J(£), while satisfying the boundary
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conditions R(0) = Ry, R(1) = Ry, R™}0)R(0) = [wo], and R~Y1)R(1) = [w,], where
Ro,R; € SO(3), wo,w1 € R® are given. For convenience we parametrize the admissible

curves according to R(t) = Roel®)], where £(t) is a curve in ®3. ¢ (t) must then satisfy

() £0)=0 (18)
(i) [£(1)] = log(R5* Ry) (19)
(id) £(0) = wo (20)
()  A(EQ)EQR) = w1 (21)

where A(€) is as given in Equation (16). If now a different body-fixed frame is chosen,
the boundary values Ro and R; are then right-translated by some © € SO(3) t6 Ry =
Ro® and R; = R0, respectively, while the velocity vectors wp and w; are transformed
to © 1wy and ©~lwy, respectively. The new curve R(t) = Roel€®] must then minimize

T = 13 | (AE)8)12dt while satisfying

(1) £(0)=0 (22)
(&) [E(1)] =log(R3*R1) = log(0~ Ry R10) = ©7'[¢(1)]© (23)
) £(0) = 02w (24)
(i) AELED) = 071wy (25)

If we consider £(t) to be of the form ©~1¢(t), then the above boundary conditions are
identical to those of Equations (18)-(21). Moreover, since A(€) = ©~1A4(¢)©, it follows that
A(€ )5~ = O LA(€)E, or J(€) = J(£). Therefore, if £(t) is a solution to the original variational
problem, then £(t) = ©~1£(t) is a solution to the latter. Using standard matrix exponential
identities one can now show that R(t) = Roel® 60 = Ry©eO7'EMI® = Rk®lo = R(t)0
as claimed.

In a similar fashion one can show that if Ry and R; are left-translated by some constant
© € S0(3) to ©Rp and OR;, respectively (corresponding to a change in the inertial frame),
then the new solution is © R(t), the left-translate of the original solution. Observe that the

geodesics on SO(3) are special cases when £(t) is linear in t.

10




3.1 A Cubic-Spline Solution

For interactive applications, solving the above two-point boundary value problem is not
practical. However, if the two endpoints are assumed reasonably close to one another then
the solution curve simplifies to a cubic polynomial in canonical coordinates. Specifically, let
Ro and R; denote the endpoints, and assume || log(Rg ' Ry)| is small. Then the interpolating
curve R(t) = Roelé®! will be such that £(t) can also be assumed of small magnitude, and
A(&) =~ I. Therefore the smoothness functional of Equation (17) can be approximated by

[ e (26)

whose solutions are clearly cubics. SO(3) curves whose image in the canonical coordinates
are cubics will be referred to as cubic splines in SO(3).

The cubic spline solution to the two-point interpolation problem on SO(3) is as follows.
Given, the boundary conditions R(0) = Rp, R(1) = Ry, R™Y(0)R(0) = [wo), R™}(1)R(1) =

[w1], the solution curve is R(t) = Roelet®+b°+etl where a,b,c € R3 are constants satisfying
e a+b+c=¢, where [¢] = log(Ry*Ri)

® c=uwp

o A(e)(3a+2b+ c) = wi, where A(e) =1 — f-(ﬁ—i-‘l"vfﬂ[e] + lel_:iln II€I[6]2.

Using calculations analogous to those of the previous section, it can be shown that the cubic
splines are left-invariant. That is, if R(t) is a cubic spline satisfying the above boundary
conditions, then the cubic spline R(t) that satisfies the new boundary conditions R(0) =
©Ry, R(1) = ORy, B*(0)R(0) = [wo], and R} (1)R(1) = [wy], is given by OR(t). Right-
invariance can also be shown similarly. The cubic splines on SO(3), therefore, are bi-
invariant.

The following matrix identities are instrumental in determining the coefficients of right-
or left-translated cubic splines. First, for any matrix A, PeAP~! = ¢PAP™' Secondly, if
R € SO(3), then R[w]RT = [Ruw] for any w € R3. With these identities it can be shown
that if R(t) = Roelet*+?+e] then R(£)© = RoOel® (0% +et)] ;¢ the coefficients of
the right-translated cubic spline are given by & = ©71a, b=0"1b, and é = ©~Lc. Finally,

observe that when wo = wi, the cubic splines reduce to geodesics. This feature, along with
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the bi-invariance property and computational efficiency, is what makes cubic splines an

attractive choice for interpolating trajectories on SO(3).

4 Interpolation of Multiple Points

We now present a complete algorithm for interpolating through multiple points in SO(3)
using cubic splines. Analogous to the Euclidean case, the interpolated curve in SO(3)
maintains continuity of both angular velocities and accelerations at the knot points. The
algorithm we present requires the following as inputs: an ordered set of n + 1 rotation
matrices {Rp, Ri,...,Rn} (the knot points), a set of n + 1 scalars tg < ;3 < -++ < t,
(the knot times), an initial angular velocity wy € R3, and an intial angular acceleration
ap € R3. Both wy and og are expressed in body-fixed reference frame coordinates. This
set of inputs, while a slight departure from the usual set for Euclidean cubic splines, is
chosen for convenience; for different inputs (e.g., specifying final velocities rather than
initial accelerations) the corresponding algorithm can be derived using results from the
following analysis.

The interpolated curve is of the form

Ri(t) = Roeler®)] to<t<t
R(t) = : ; (27)
Ra(t) = Ro1elll 6, <t<t,
where , )
wo=a(zmz) v (G=m) ~6G50) )
Herea;, bi,ci, i = 1,...,n, are constant vectors in ®3 that are determined using the following

formulas for the angular velocity and acceleration. The angular velocity in body-fixed

coordinates is, from Equation (16),
wi(t) = A1()&i(t), to<t<t
w(t) = : : | (29)
wn(t) = An(B)én(t), tn-1 St <ty

where

Al) = I-E%gﬂ[&(t)] N "&(t)illlﬁ—i(ll)slilg&(t)” o )
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&) = 3a (t_ti—l )2 + 2b; (t—ti_l ) + ¢ (31)

ti—ti—a t; —ti1
The angular acceleration is
ar(t) =wi(t), to<t<t
ot) = : : (32)
an(t) = wn(t), th-1<t<tn
where

a;(t)

& — 456 (cos €] - el sim 161l = 1)(6 x &) — peptlie x &)
68 (3sin ¢ — I1€]] cos [1€]l — 2UIEM (€ x (€ x 6)) (33)
Lol Vel € x (¢ x €) + € x (€ x &)

Here (-,-) denotes the Euclidean norm in %3, ¢; and &; are as above, and

&(t) = 6a; (tt i

The initially known quantities are, in addition to the knot points and knot times, w; (tg) = wo

+ o+

) +2b; (34)

i —ti-1

and a;(tp) = ap. From these initial conditions a3, b1, and ¢; can be uniquely determined,
from which w1(t1) = w1 and a;(t1) = o1 can in turn be determined. By the continuity
requirements wj (£1) = we(t1) and ai(t1) = az(t1), the vector coefficients ag, by, and c; can
now be determined. This procedure is repeated until all the coefficients a;, b;, ¢, 1 = 1,...,n

have been found. We now present the complete algorithm.

¢ Given:
{Ro, R1,...,Rn} = knot points

{to,tl, - ,tn} = knot times
wo = angular velocity at tp in body-fixed coordinates

o = angular acceleration at gy in body-fixed coordinates

e Preprocessing: for i =1 to n find
e = 1°g(RzT-1Ri)

A = - el 4 el dsnal e

o Initialization:

Ci = Wy
bl = 010/2
a; = €;— bl —C1

13




e Recursion: for i =2 to n do

s = Je&| (temp. var.)

t = 3a;—1+2bi—1+ci-1 (temp. var.)
u = 6a;—1+2b—; (temp. var.)

¢ = Ai_1ci

b = §(u— fekcos sl - llsllsin sl - 1)(s x £) — 25754l (s x w)

+{54k (3sin [|s|| - [|s{| cos [s] - 2llsl)(s x (s x t))

lelrslol (¢ (s x ) + 5 x (s x )

a = €—b—q

e Result: for t;—1 <t <t

R(t) = Ri—1 expla; (t—ti)?’ +b; (‘t-':ﬁ:l—)z + ¢ (t—_zl‘:l)]

ti — i1 t; — i1 ti— 11

The €, are found from the log formula of Equation (5). In cases where ¢; has two possible
values (corresponding to the two antipodal points on the sphere of radius ), either value
will still generate the same orientation trajectory in SO(3). The interpolated curve R(t) is

then evaluated using the exponential formula of Equation (4).

Example

In this section we provide a simple example to illustrate the utility of the interpolation
technique developed in this paper. Figure 1 shows several positions of an end effector of a
robot manipulator. These positions are used as control positions and a cubic interpolation
is performed on SO(3) to generate the motion of the end effector depicted in Figure 2. We
have separately interpolated the orientations from the position of a point on the end effector.
The techniques presented in this paper are used for the interpolation of the orientation parts

of the trajectory.

5 Conclusions

By viewing SO(3) as a Lie group equipped with a natural Riemannian metric, we have
presented an algorithm for interpolating through multiple points in SO(3) that can be in-

terpreted as a type of generalized cubic spline in rotation space. The main advantage of
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this approach is that bi-invariant curves can now be generated in a computationally efficient
way. In the context of moving rigid bodies, bi-invariance ensures that the orientation trajec-
tories are independent of choice of inertial or body-fixed reference frames. Rotational cubic
splines are also an effective compromise between the computational needs for interactive
CAD versus greater curve smoothness.

In extending the rotational cubic spline techniques to the interpolation of general mo-
tions for rigid bodies, several additional issues need to be addressed. First, it is a well-known
classical result that SE(3), the Lie group of rigid-body displacements, does not admit a bi-
invariant Riemannian metric. One physical consequence of this fact is that there is no
interpolation scheme that is bi-invariant; if one were to imagine infinitely large rigid bodies,
then any method of motion interpolation will ultimately depend on the choice of inertial or
body-fixed reference frame. It is possible, however, to relax the requirement of bi-invariance,
in wh?ch case left- or right-invariant motions can be generated using the above construction.
The IIllOSt straightforward approach is to interpolate the orientation and position (of some
special point on the rigid body) trajectories separately. Alternatively, the exponential and
logarithm mappings on SE(3) and its Lie algebra (see, e.g., Park et al 1993) can be applied
to construct cubic splines in the same way as for SO(3). The difference between the two
approaches is best illustrated by the problem of interpolating between two configurations of
a rigid body. Assuming the body-fixed frame has been attached to the center of mass, and
the initial generalized velocities and accelerations are given, the former approach results
in a linear motion of the center of mass. The latter method, however, produces a screw
motion as the final trajectory. Intefpola.ting the positions and orientations separately would

therefore seem more natural from the point of view of dynamics.
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Abstract

This paper deals with calibrating spatial relationships
among CAD models of objects used in off line robot
programming. An approach based on a Clifford alge-
bra is used and simple algorithms are developed for this
kinematic localization problem. The position and ori-
entation of each object in a workcell are represented
by multivectors of different ranks and the localization
problem is converted into that of solving a set of mul-
tivector equations. Given locations of points in two
frames, an averaging process is developed which yields
the best orientation as the root of four linear equations
and the best position as a linear combination of the
best rotation and the centroids of two point systems.
If normal vectors are also sensed, the Clifford algebra
representation facilitates definition of a measure of ori-
entation error compatible with the position error.

Introduction

CAD-based graphical off-line robot programming and
simulation requires a computer representation of the
robot workcell environment. This representation, called
the world model, provides the necessary information
about the robot workeell for a task planner to generate
appropriate robot motion control. comumands. Errors
in task execution are due to inaccuracies of the world
model and uncertainties introduced by sensors and ac-
tuators during execution. The latter set of errors.can
be eliminated or reduced by sensory control. The first
set of errors may be corrected by calibrating the world
model before task execution. This paper deals with the
first level of world model calibration which involves cal-
culation of location of coordinate frames attached to a
CAD model and is here referred to as the kinematic
localization problem.

CH2969-4/91/0000/0584$01.00 © 1991 IEEE

Calibration of the world model first requires sensory
interactions with the robot workeell. In the past there
have been several studies related to sensory monitoring
of the robot workcell environment, see Grossman and
Taylor (1978), and Ishii et al (1988). Any of the sys-

‘tems proposed in these papers can be used with a kine-

matic localization algorithm for calibration purposes.
Kinematic localization problems have mostly been con-
sidered in the field of computer vision for calculation
of position and orientation of objects (see, for example,
Grimson and Lozano-Perez (1984), Faugeras and Her-
bert (1986) and Gunnarsson and Prinz (1987)). These
works however have not been used for world model cal-
ibration and more importantly have not completely ex-
ploited the geomietric nature and the kinematic struc-
ture of the problem. The resulting algorithms therefore
have suffered from unnecessary nonlinearities or com-
putational requirements.

In this paper, a representation based on Clifford al-
gebra is used for the kinematic relationship between
two frames. Clifford algebra was proposed by Clif-
ford (1876). For recent account of Clifford algebra, see
Hestenes and Sobczyk (1984), McCarthy (1990). The
Clifford algebra formulation converts the localization
problem into that of solving a set of multivector equa-
tions. When unit vector normals are also measured,
in addition to point measurements, this representation
facilitates definition of a measure of orientation error
compatible with the position error. More importantly,
it also facilitates exploitation of the geometric nature
and kinematic structure between two point system mea-
sured with respect to the world frame and to the natural
frame. This results in an averaging process which re-
duces the localization problem to that of solving a set
of four linear equations. The orientation of an object

obtained as the root of the equations is shown to be a

least squares solution and the best position of the ob-
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ject is a linear combination of the optimal orientation
and the centroids of the point systems in two frames.

1 The Clifford Algebra

The Clifford algebra C(R?) of a 3-dimensional vector
space (R3) is generated from elements of the space by
a product operation called the geometric product. This
product is linear and associative, and in addition, the
products of basis vectors of R3 satisfy the following
properties (see McCarthy 1990 and Ge 1990):

_ | —eqe, for m#n,
Cmen = { 1 for m = n, (1)

where e,,, m = 1,2, 3, are the basis vectors of R® such
that e,, has a 1 in the m*® position and zeroes else-
where. :

The geometric product epe, is not a vector nor a
scalar but a new entity called rank 2 multivector or
bivector. In Clifford algebra, a scalar is considered as a
rank 0 multivector and a vector is a rank 1 multivector.
The geometric product of all three basis vectors

1= ejeqes, (2)

1s a rank 3 multivector or irivector. It has the property
that 2 = —1 and commutes with every vector in the
space. Furthermore, it facilitates representation of basis
bivectors in terms of basis vectors: ‘

€93 = iel, €3e; = iez, ej1€es = ie3. (3)

The geometric product of two general vectors, x =
zi1e; + zoex + z3e3 and y = y1€; + yae2 + yzes, Is a
combination of a scalar and a bivector:

Xy =x-y+ixxy), (4)

where x -y is the vector scalar product and x x y is the
vector cross product.

A general element of the Clifford algebra of R® is a
combination of multivectors with ranks from 0 to 3. It
includes a scalar term, a vector term with three basis
vectors e, m = 1,2,3, a bivector term with three ba-
sis bivectors ie,,, and a trivector term ¢ = ejeses. The
set of elements of as combinations of scalars and bivec-
tors constitutes the even subalgebra of C'(R3). The set
of elements of as combinations of vectors and trivec-
tors constitutes the odd subalgebra. The conjugates
for these elements are obtained by replacing ¢ with —~z.

The product of a vector x = z,e; + zoe5 + z3e3 with
an even element q = ig1e; + igoes + igzes + g4 can be
expressed in matrix form as

*

xq=[z7]q", qx=[z¥]q",

where q* = (—ql,—qg,qu.Q4) is the conjugate of q
and [t~], [z7] are 4 x 4 skew symmetric matrices given

by

r 9
0 I3 —Zo I
- —zz 0 I I
[z7]= ,
Ty —I 0 z3
- - -z
| —Z1 —Z2 3 0 )
0 —-r3 9 I
T3 0 —I1 I3
[*]=
—-Z2 Zy 0 . z3
—-ZXy =Tz -—I3 0

The product of these two matrices commutes, 1i.e.
[z7)[z*] = [z*][z"]. In addition, we have [z*][zt] =
[z7][z~] = —|x|?*[I] where |x|? is the length square of
the vector x and [I] is the 4 x 4 identity matrix.

It can also be shown that the product of three ele-
ments, x (a vector), q (an element of C*(R®)) and y
(another vector) can be expressed in matrix form as

xqy = —[z*][y"]q, (6)

where [y~] is obtained from [z~] by replacing x with
y.

2 Kinematic Relationships in
the World Model

A world model usually includes geometrical, relational
as well as physical descriptions of the workcell. The
world model RWORLD proposed by Ravani (1988) uses
a multi-primitive representation of the workcell environ-
ment at an abstract level. Frame primitive is used to
mark the position and orientation of a fixed reference
frame in space (called the world frame). It can be used
to mark the location of an object or device, in which
case they are referred to as natural frames. It can also
be used to mark feature locations on objects or devices,
in which case they are referred to as auziliary frames.

This section identifies the spatial relationship be-
tween a natural frame and a world frame (or between a
auxiliary frame and a natural frame) with an element of
the Clifford algebra of R®. The Clifford algebra repre-
sentation is closely related to the quaternion representa-
tion of transformations, see Bottema and Roth (1979),
McCarthy (1990) and Ge (1990). '

The kinematic relationship between two frames con-
sists of an orientation relationship and a positional re-
lationship. The orientation relationship is represented
by the following even element (Ge 1990):

q = issin(6/2) + cos(8/2), (7)

where s = sye; +5y€2+5;€3 is the unit vector along the
axis of rotation and @ the angle of rotation. The four
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components of ¢ = (g1, 92,3 q4) given by (7) satisfy
the relation
2 2 2 2 A
G+eE+ata=1 (8)

and are called the Euler parameters of rotation.

If the location of the origin of one frame relative to
another is known, say it is specified by the vector d=
die, + doey + daes, then the positional relationship is
represented by the following geometric product

° = (1/2)ad, 9)

where q is the orientation defined by (7). In general,
the positional relationship is given by

q® = (1/2)(ax’ — xq), (10)

where x = z1€; + Z2€2 + T3e3 and x' = zle; + zhe2 +
zhes are the coordinate. vectors of a point measured
relative to the natural frame and to the world frame. q°
is an element of the odd subalgebra, i.e. 2 combination
of a vector and a trivector.

Thus the pair of elements, (q, q°), uniquely deter-
mine the kinematic relationship between two frames.
Note that the pair (—q,—q°) represents the same re-
lationship as (q,q°). Furthermore, the definition of q°
implies that the components of q and q° satisfy

— 10 — 293 — 4343 + 9493 = 0. (11)

For orientation relationship, the element q° = 0 since
— 0. Therefore, the pair of unit vectors (u : u’)
represents the direction of a line in both frames satisfy

qu —uq=0. (12)

3 Minimal Solution

To calibrate the kinematic relationship between two
frames for CAD models is to determine the real trans-
formation from one frame to another. In the Clifford
algebra representation, it is to determine the pair of
elements (q,q°) corresponding to the transformation.
This section focuses on calibrating the kinematic re-
Jationship between an object’s natural frame and the
world frame. We first discuss the minimum informa-
tion required for the calibration with the assumption
that the sensory information about geometric features
in both frames are available. We then provide an algo-
rithm for calibration with point measurements only in
the world frame.

3.1 Minimum Sensory Information

To determine the orientation relationship g, directions
of two distinct lines are required. Let the two directions

be given by two pairs of unit vectors (u : u') and (v : v')
where u, v are measured relative to the object’s natural
frame and u’, v’ are measured relative to the world
frame. Each pair satisfies (12), 1.e.

qu’' —uq =0, (13)
qv' —vq=0. (14)
The substitution of q = issin(6/2) + cos(#/2) into

-(13) yields, after some algebra

sin(8/2)s x (u' +u) — cos(6/2)(u’ — u) (15)
‘ —isin(f/2)s - (W' —u)=0.

Eq.(15) separates into a vector equation
sin(6/2)s x (u' +u) — cos(6/2)(0 —u)=0. (16)

and a scalar equation sin(6/2)s - (' —u) = 0. The
vector equation is the well-known Rodrigues’ equation
and the scalar equation indicates that the rotation axis
s is perpendicular to the vector (v —u).

Taking the cross product of both sides of (16) with
(v = v) yields

- (v =v)x (' —u)
pP= tan(i)s - (vl — V) . (11/ + u) .

(17)

Note that in obtaining (17) we have used the fact that
s - (v/ —v) = 0 which can be derived from (14), see
also Bottema and Roth (1979). Thus the orientation
relationship is specified by

q = (1+p)/(VT+pP),

where |p| is the length of the vector p.

To obtain the positional relationship q°, the location
for one point of the object is required. Let (x: x') be a
pair of vectors for the locations of a given point relative
to the two frames. Then q° is given by (10).

For point measurements, a minimum number of three
non-collinear points are required to determine both q
and q°. This is evident by the fact that two direction
vectors can be constructed to determine q and one of
the three points can be used to further determine q°.

3.2 Calibration with Information only
in the World Frame

Given a set of point locations in the world frame, any
transformation (q. q°) can be used to map these loca-
tions to the natural frame. Therefore, the uniqueness
of the relationship (q, q°) is not a meaningful topic of
discussion. The focus here is on how to select a natu-
ral frame for a given set of point locations in the world
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frame. We have obtained formulas for uniquely deter-
mining (q,q°) in terms of locations of the minimum
number of points measured in both the natural frame
and the world frame. These formulas can be regarded
as defining (q,q°) as functions of the unknown point
locations in the natural frame. The number of the un-
knowns can be considered as the “degree of freedom”
of the calibration system which allows us to select a
specific natural frame. In what follows we propose a
special choice of natural frame for a given set of point
measurements.

Three non-collinear pomts X, y and z measured rel-
ative to the world frame, determines a plane. The cross
product of two vectors on this plane, u = z — x and
v = y — X, yields the unit normal for the plane:

_uxv
T x|

We select the orientation of the. natural frame such

that its z-axis (e3) is parallel to the unit normal w and
its x-axis (e;) is parallel to the vector u. Thus the two
pairs of direction vectors (w, e3) and (u/lu], e;) can
be used to determine the orientation q. Furthermore,
if the point x is selected as the origin of the natural
frame, then the position is given by q° = (1/2)gqx.

3.3 Calibration of Kinematic Relation-
ship Between Any Two Frames

To calibrate the kinematic relationship between any two
frames, we calibrate first the spatial relationship of each
frame relative to the world frame and then derive the
relationship between the two given frames from it. Let
(a1,4q]) represent the location of one frame N; relative
to the world frame and (q2, q3) represent the location
of another frame N, Flgure 1. Let x, x; and x; be the
coordinate vectors for a point measured relative to the
world frame, the frame N; and the frame N,, respec-
tively. They are related by the transformations  (10)
as

@x—X1q: = 247, - (19
Q2% — X2q2 = 2q5. ©(19)
Eliminate x from these two equations to obtain
(a297%1 —X2q2q7) = 2(a54; — 92(q7)*),

The pair of elements (q, q°) representing the transfor-
mation from Nj to Ny is therefore given by

q=q2q}, q°=qdq} ~a:(q})".

World Frame

Figure 1: The composition of kinematic relationships.

4 Least Squares Solution

In the presence of measurement errors, greater accu-
racy in determining (q,q°) may be attained by mea-
suring more than three points. This section presents
an averaging process which filters the measurement er-
rors and yields a solution that is symmetric to the in-
put data. The process exploits the geometric nature
and kinematic structure between two measured point
systems to convert the kinematic localization problem
to that of solving a set of linear equations. The solu-
tion to the problem is also optimal in the sense that it
minimizes the squares of the position errors. Further-
more, if unit vector normals are also measured then the
Clifford algebra representation facilitates definition of
a metric measure of orientation error compatible with
the position error.

4.1 Point Measurements

Let n vectors, x; where i = 1,2,---,n, represent n po-
sitions of points relative to object’s natural frame, and
the measured values of the n position vectors be de-
noted as X; with i = 1,2,---,n. The kinematic local-
ization problem is to obtain the orientation q and the
position q° of the natural frame, such that they best
satisfy the following transformation equations:

g% —xiq—2q°=0, i=12---,n. (20
Sum all n equations in (20) and we have
= (1/2)(gX. — x.q), (21)

where the vectors X, and x, defined by

1 n
:—Zx,, :':-T;Z;x;, (22)

i=1
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represent the centroids of two systems of position vec-
tors, x; and x; where 1 = 1,2, ... n.

After the substitution of (21) into (20), the kinematic
localization problem becomes that of finding the rota-
tion q that best satisfies the n equations

QX — %)~ (xi —x.)q=0, i=12,---,n. (23)
Postmultiply both sides of (23) with %; to obtain
ql%;]? — qR.%; — XigX; + x.q%; = 0. (24)
Premultiply both sides of (23) with x; and we have
X;qX; — XiqX — |x;|°q + x;x.q = 0. (25)
The subtraction of (24) from (25) yields

2x;qX%; — (xiq%. + x.qX;) +°qic5ci FXiXeq (26)
=(%:]* + |x:]*)q = 0.

Sum all equations of the form (25) for i = 1,2,---,n
and in view of (22), we obtain

n n
2> (x:q% —x.q%,) = DR = e+ il = o) q.
i=1 i=1

(27)
The best fit orientation q is the solution of the multi-
vector equation (27). Using (6), this equation can be
put in the matrix form

[Ala=Aq (28)

where [A] is the 4 x 4 symmetric matrix given by
[4] =2 ([=1)[z7] - (=D, (29)
i=1

A is a scalar given by

n

A== (%2 = R + i = xc[2). (30)

i=1

The matrices in (29), [7], [z}] and [27], [z?] are skew-.

symmetric matrices obtained from (5) by replacing x
with X;, x;, X. and x., respectively. The matrix (4]
is symmetric since the matrix products in (29) com-
mute. Since q can not be a zero vector, the matrix
[A] = A[1], where [I] is a 4 x 4 identity matrix, must be
singular. This indicates that ) is also an eigenvalue of
the symmetric matrix [A] and q is the corresponding
elgenvector.

In the remainder of this section we prove that the
kinematic relationship (q,q°) obtained in the above
fashion is also the least squares solution to the set of n
equations (20), which can be put in matrix form as:

[Pla"-2¢°=0, i=1,2--n. (31)

where [P;] is a 4 x 4 skew symmetric matrix given by
[P]=[&]- 7). (32)

The least squares solution to (31) is to minimize the
sum of the error squares

kel

E:=) ([Pla"-2¢°)"([Pla" - 20°),  (33)

i=1
by variation of q* and q° subject to (8) and (11), i.e.

(@)7q =1 ()¢ =0 (39)
These two conditions, however, are not real constraints
on the problem. The condition (q*)7q’ =0 is implied
by the skew symmetry of [P;], and the optimal solution

" (q*,q°) is proportional to the length 1/(q*)7 q* since q°

1s a linear function of the components of q as indicated

by (9). Therefore, the localization problem is reduced

to a unconstrained least squares problem.
Differentiate E, first with respect to q° and ‘we have

~4> ([Plqa~ - 2q°) = 0.
i=1

This leads to

<’ = (1/2)[P]a", - (35)
where the matrix [P.] = L "7 [P)]. It is obvious that

(35) is the matrix form of (21).
Now differentiate E, with respect to q* to obtain

2 (APl - 200 =0 (30)
i=]

Substitute (33) into (36) and we have, after rewriting
the result in multivector form:

=1 (37)
Taking conjugation on both sides of (37) yields the de-
sired (27).

In view of (35) and (36), it can be shown that the
minimum error E; = 0. This completes the proof that
the result of the averaging process outlined by (21),
(23), (26) and (27) is the least squares solution.

4.2 Including Normal Vector Measure-
ments

_ Let the measured values of m unit vectors u; be denoted
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as u; where j = 1,2,---,m. We seek to find q and

ORI,

22('5ciq'xi-—5ccq"xc) = Z(Iii P =% [>+lxi [P~ xc|?)q"
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q° such that they best satisfy both the point and the
direction equations:

for points: [P]q" —2¢° =0, i=1,2,---,n (38)

i=1,2---,m. (39)
In (38), the matrix [P ] is given by (32) and [D;] =
(@ +] — [u;] where [4; H, [u;] are obtained from (5) by
replacmg T with 4;, u], respectlvely

The least squares solution to (38) and (39) is the pair
q* and q° that minimizes the sum:

E= Ez-— az(P]q _2q0)T([P] 2Q) (40)
+E 1 B (ID;1a*)7 ([D;]q*),
where a; and f; are the weighting factors.
The same procedure as the localization based on

point measurements is applied to reduce the problem
to that of solving the following linear equations

[B]q =Aq (41)
where [B] is a 4 x 4 symmetric matrix given by

2Za. EENE]| "“])+2Zﬁ1

for directions: [D;lq* =0,

(42)
and A is a scalar given by

A= =) e P Pe 2= 85 (18 Py 7)-

i=1 j=1
A (43)
The vectors X. and x. defined by

n ~
S Zizlaix" — 2?:1 Qi Xy (44)
- n ] c = n 3
Yz @ Dim @ _
are the weighted centroids of points measured relative

to the world frame and to the natural frame, respec-
tively.

Conclusion

This paper develops simple algorithms for calibrating
the kinematic relationships among the CAD models of
objects based on a Clifford algebra. This formulation
converts the kinematic localization problem into that
of solving a set of multivector equations. It facilitates
definition of a metric measure of orientation error com-
patible with the position error. The geometric and kine-
matic structures of two measured point systerns are ex-
ploited in an averaging process which reduces the prob-
lem to that of solving four linear equations. The so-

lution to the problem is symmetric to input data and
minimizes the squares of position and orientation er-
rors. The averaging process presented in this paper is
directly applicable to localization problems in computer
vision.
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Computation of Spatial
Displacements from Redundant
Geometric Features

This paper follows a previous one on the computation of spatial displacements (Ravani
and Ge, 1993). The first paper dealt with the problem of computing spatial
displacements from a minimum number of simple features of points, lines, planes, and
their combinations. The present paper deals with the same problem using a redundant
set of the simple geometric features. The problem for redundant information is
formulated as a least squares problem which includes all simple features. A Clifford
algebra is used to unify the handling of various feature information. An algorithm for
determining the best orientation is developed which involves finding the eigenvector
associated with the least eigenvalue of a 4 X 4 symmetric matrix. The best translation is
found to be a rational cubic function of the best orientation. Special cases are discussed
which yield the best orientation in closed form. In addition, simple algorithms are
provided for automatic generation of body-fixed coordinate frames from various feature
information. The results have applications in robot and world model calibration for

Introduction

A solution of the problem of computing a spatial displace-
ment from position data of a minimum number of simple
features of points, lines, planes, and their combinations is
provided by Ravani and Ge (1993). In practical applications,
however, redundant features are measured to filter errors in
sensor measurements and to improve reliability of the mea-
suring system. This paper formulates this case as a least
squares problem and determines the solution in closed form
taking advantage of the geometric structure of the problem
and considering different features of points, lines, planes and
their combinations.

The problem of computing a spatial displacement has
been studied by many researchers using only point features.
Most researchers used position data of three noncollinear
points, see for example, Beggs (1966), Bottema and Roth
(1979), Laub and Shiflett (1982), and Angeles (1986). A
comparison of these methods can be found in Fenton and Shi
(1990). When more than three points are considered, least
squares approximation methods are commonly adopted.
Spoor and Veldpaus (1980) developed a least squares method
for computing spatial displacements of which rotations were
represented by orthonormal matrices. The orthonormality of
rotation matrices (or rigidity) were enforced through the use
of Lagrange multipliers. Although not explicitly stated, the
best translation vector was obtained as the difference be-
tween the centroid of the coordinates in one system and the
displaced centroid of the coordinates in the other system.
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off-line programming and computer vision.

Computation of the best rotation matrix was more involved
including the solution of an eigenvector problem of a 3 X 3
symmetric matrix and matrix multiplication. But the solution
was of closed-form and no iteration was required. Hom
(1987) presented a more general least squares method which
included the scaling factor (for applications in photogramme-
try) and obtained the same results for the best translation as
Spoor and Veldpaus (1980) but with a clearer geometric
interpretation. He also showed that if unit quaternions were
used to represent rotations, the best rotation was the quater-
nion obtained as the eigenvector associated with the most
positive eigenvalue of a 4 X 4 symmetric matrix. All the
above works, however, have only dealt with computation of
displacements from point features and have not included
other simple geometric features of lines, planes, and their
combinations with points.

Ravani and Ge (1993) developed a general framework for
computing spatial displacements from position data of simple
geometric features which include not only points but also
lines, planes and their combinations with points. They dis-
cussed issues related to uniqueness of the computation and
minimum number of required features and observed that for
the duality between points and planes to be valid, orienta-
tions of these features need be considered. They concluded
that if orientation information was not specified than specifi-
cation of four (rather than three) points features was neces-
sary for computation of a unique displacement. They repre-
sented simple features of points, lines, and planes by multi-
vectors and provided equations for displacements of these
features using a Clifford algebra of multivectors.

This paper builds on the work of Ravani and Ge (1993) to
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study the problem of computing spatial displacements from
redundant position data of point, line, and plane features
and their combinations. Here orientation is not an important
issue since redundant rather than minimum position data is
considered. A least squares approach is adopted and all
simple features are represented in homogeneous coordinates
and are manipulated as multivectors. The use of homoge-
neous coordinates allows representations of the features that
are independent of the measuring techniques employed. An
algorithm for determining the best orientation is then devel-
oped which involves finding the eigenvector associated with
the least eigenvalue of a 4 X 4 symmetric matrix. The best
translation is found to be a rational cubic function of the best
orientation. Special cases are also discussed which yield the
best orientation in closed form. In addition, simple algo-
rithms are developed for automatic generation of body-fixed
coordinate frames from various feature information.

In practical applications, the position data of all simple
features of points, lines, and planes can be determined, by
using feature extraction algorithms, from visual data gener-
ated by computer vision hardware. Point and line features
can also be measured directly by using, for example, a touch-
trigger probe and a theodolite, respectively. This method for
computing spatial displacements from point features has
found a number of applications in various fields. In robotics
and automation, it can be used to estimate the pose (position
and orientation) of a workpiece to be grasped by a robot
(Chen et al., 1980) and to determine a part location in CAD
model-based flexible manufacturing (Gunnarsson and Prinz,
1987); in artificial intelligence, it can be used for object
identification and localization (Grimson and Lozano-Perez,
1984) and for rigid-body motion estimation (Luo and Yang,
1990); in biomechanics; it can be used for kinematic analysis
of bone movements (Spoor and Veldpaus, 1980); and in
photogrammetry it can be used to recover the transformation
between two coordinate systems (Horn, 1987). The results in
this paper, in addition to their theoretical interest in compu-
tational geometry of motions, facilitate the use of measuring
systems for the aforementioned applications that can handle
not only point features but also lines and plane features.

The outline of the paper is as follows. We first formulate
the problems of computing spatial displacements from points,
lines, and planes, individually. We then put them together to
obtain a formulation that applies to all cases. The result is a
constrained least squares problem and a Lagrange multiplier
technique is employed for the solution. Special cases are then
discussed from which closed-form solutions are obtained.
The last section presents simple algorithms for automatic
generation of body-fixed coordinate frames.

1 Preliminaries
This section gives a brief account on representations of

simple features of points, lines, planes and uses a Clifford
algebra to represent displacements of these simple features.

1.1 Representations of Simple Featores. The position
data of a point feature can be obtained directly by using 2
coordinate measuring machine; it can also be computed from
the position data of line and plane features, as the intersec-
tion of a line with a plane or the intersection of three planes.
The location of a line feature can be determined from the
position data of two distinct points, or a point and a direc-
tion, or two planes. The location of a plane feature is
determined by measuring the normal direction and the dis-
tance from the origin. It can also be determined indirectly by
measuring a point and a line or three points on the plane.

In projective geometry, points and planes are represented
by homogeneous coordinates and lines are represented by
Pliicker coordinates so that the principle of duality can be
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applied when manipulating these features. Ravani and Ge
(1993) used a Clifford algebra of projective three-space and
associated point, line, and plane features with multivectors of
rank 1, 2, and 3. In this way, the geometric operations such as
meet and joint of these features can be carried out alge-
braically by using the wedge product and dual operation of
multivectors. This allows for conversion of various represen-
tations of point, line, and plane features (due to different
measuring techniques) to their respective standard homoge-
neous form. This facilitates unified handling of these features
that are independent of the measuring techniques.

In what follows, points are represented by homogeneous
coordinates of the form (x, 1) where x = (x;, x,, x3) are the
Cartesian coordinates; lines are represented by the Pliicker
coordinates of the form (u, u®) where u = (u,, u,, u;) is a
unit vector along the line and w® = (u?, 3, uJ) is the
moment of u about the origin; and planes are represented by
homogeneous coordinates of the form A = (a, a,) where
a = (a,, a,, a3) is the unit vector normal to the plane and a,
is the distance of the plane from the origin.

1.2 _ Spatial Displacements of Simple Features. Let P
and P denote, respectively, two coordinate systems repre-
senting two distinct positions of a rigid body in space. The
displacement from P to P is a combination of a rotation and
a translation. The rotation about an axis S with an angle 6 is
given by a set of four numbers, q = (g;, g, g3, q4) (called
the Euler parameters) where:

(8 (6
¢I1=$15m(5), 412‘_‘525111(‘5),

(8 8
q3=$35m('§), g4 = COS E N

and s = se; + S,e, + 5;€; is a unit vector along S. The
translation is given by another set of four numbers, q = (g%,
g3, 45, q2) where

g7 0 -d; dy di||q
a3 _ _1_ dy 0 -d; 4y || e 1)
a3 2y —-d, 4, 0 ds || g3
q? -d, —d; —-d; 0]|qs

and d = d,e, + d,e, + dse; is the translation vector from P
to P. The pair of vectors q and q° satisfy the relation

q’q® = q:9{ + 9,43 + 4543 + 4498 = 0 @
and are called the Study vectors (Bottema and Roth, 1979).
Note that the Euler parameters are normalized such that

da=gi+gi+ai+qi=1 ®3)
A special algebra, called the Clifford algebra, is used by
Ravani and Ge (1993) to manipulate the study vectors (g, q°)
and the coordinates of simple geometric features of points,
lines, and planes. Clifford algebra is an associative algebra
introduced by Clifford (1876) for manipulating not only vec-
tors (representing points) but also multivectors (representing
lines and planes). In this algebra, q is represented by an even
element (a combination of a bivector and a scalar):

6 6
q = (s.e5€, + 5,€.83 + 53€5€;) sin(—z-) + cos(-z-) 4)

where the geometric products of the unit vectors are defined

as:
2

e, e, = —ee, , form#n, e=el=el=1
In terms of the geometric product, the definition (1) becomes

q® = (1/2)dq. (5)
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Fig. 1 A point, a line, and a plane at two different positions P and
P

The “square” of a vector x =x e1 + xze2 + x3e5, x?, is sim
ply xx = x|* where x| = (x2 + xZ + x2)/? js the Euclidean
norm of x. More details about Clifford algebra can be found
in Hestenes (1986) and McCarthy (1990).

At the position P, the homogeneous coordinates of a
point, a lme, and the polar point of a plane are denoted by
(x, 1), (u,u’), and (a, a,), respectively; and at the position P,
the homogeneous coordmates of the corresponding features
are denoted by (%, 1), (&, & ) and (a, 4,), respectively, see Fig.
1. The displacements (q, g°) of these features from P and P
are given by the following multivector equations (Ravani and
Ge, 1993).

For points features, we have

Xq —gqx —2q°=0; (6)
For line features, we have
i iaq — qu = 0; @)
ii’q ~ qu® + 6q° — q®u = 0; ®)
For plane features, we have
49 —qa=0; ©)
d,—a,— 2(qa)-q° = 0. (10)

The product of a vector x = x,e, + x,e, + x;e; with the
even element q defined by (4) can be conveniently expressed
in the matrix form

=[x"]q, qx=[x"]q,
where [x*] and [x7] are 4 X 4 skew-symmetric matrices
given by

0 x X, X4
x -x; X
[x*] = 3 0 1%
-X, X 0 x;
—x1 "xZ —X3 0
0 X3 —x?_ x1
[x]= —X3 0 -x x a1)
Xy =X 0 x;
-X; —x; =x3 0

The product of these two matrices commutes, i.e., [x " J[x*]
= [x*)x~]. The product of a vector X, an even element g,
and another vector x is given by

xqx = —[27][x7]q,
where [X7*] is obtained from [x™*] by replacing x with k.

(12)

2 Sums of Squares of Errors

This section uses Clifford-algebra equations for displace-
ments of points, lines, and plane features to obtain the sums
of squares of errors for these features. The results are then
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combined together to form the sum of squares of errors. for
all three types of features.

2.1 Sum of Squares of Errors for Point Features. [Let
the coordinate of n points at the two positions P and P be
given by the Cartesian vectors x; and %;, where i = 1,2, ...,
n. The displacement of each of these point features is given
by the multivector equation of the form (6). Due to measure-
ment error, it is impossible to find q and q° such that (6) is
satisfied for each point. Instead there will be in general a
residual error:

E;=%,q - gqx; — 2¢°. (13)
An overall measure of the error as a function of q and q°,

denoted by E(g,q", is given by the sum of squares of these
erTors

n
Y E;-E,.

i=]

E(q,q°) =

Expand the above to obtain

Ea.%) = ~2F (%) - (ax:) — 4n(Req - qx.) - ¢°
i=1

n
+4nq®-q° + (Zb‘(

n

2+ Zb‘."z)q q
i=1

where

(14)

are the centroids of two systems of position vectors and [k;),
Ix;| are the Euclidean norms of x;, x;, respectively. In matrix
form, the error function is given by

T
E(a.9") =d'[4,]a + q"[B.]q° + 4n(q°) ¢’ (15)
where [A,] is 2 4 X 4 symmetric matrix given by

= 2_2[;:][::;] + (é&ih éix,—lz)[l] (16)

and [B,] is a 4 X 4 skew-symmetric matrix given by

= —an([2] - [x2]). 17)
In the above, [I] denotes the 4 X 4 identity matrix; the
skew-symmetric matrices [%;], [£2] [x]], and [x]] are
defined by (11).

2.2 Sum of Squares of Errors for Line Features. Let the
coordinates of m lines at the two posmons P and P be given
by the Pliicker vectors (u;,u?) and (@;, &%), respectively, where

=1,2, ...,m.The dxsplacement of a line (u,u®) from P to
Pis glven by (7) and (8). Since the position data are imper-
fect, there will be errors in both orientation and position:

E, =1,q9-qu

and

E,= ﬁ?q - qu? + ﬁiqo - qoui- (18)
An overall measure of the orientation error is given by

E, @)= L E, E,
i=1-

which can be expanded to obtain
Ej(q) = =2 % (#,9) - (qu;) + ( Ll + Zluilz)q q

i=1 i=1 i=1
In matrix form the equation above is given by

E,(q9) =d'[4,]q (19)
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where

(4, =2 % [ ][] + ( 5+ f:ruf)[z] 20)
i=1 i=1 i=1

is a 4 X 4 symmetric. matrix.
An overall measure of the position error is given by

m
Ep(q,qo) =X E i E,
i=1
which can be expanded and put into the following matrix
form

T
E(a.9°) =d’[4,]q + q"[B,]q° + (¢°)'[C,]q".
The coefficient matrices [ 4 »b [C,] are symmetric matrices
given by
m

[4,] =2 % [(2)"][(0)7]

i=1

+ (8917 + i f* + Wf? + o, 2)[ 7],
[C.]= 22[&?][“?]-

and the matrix [ B,] has both symmetric and skew-symmetric
parts, [B,] and [B_], which are given by

5.1 =2 (@) T + 1)),
(1= =2 £ ([(@)" Jtur 1 + [ Jrer).

An overall measure of both the position and orientation
error is given by the folidwing combination:

Eu(q’ qO) = BEo(q) + Ep(q7qo)

=q"[4,]Ja+ q7[BJe + () [C.J° (21)
where B is a positive weight and [4,] = g[4,] + [4,].

23 Sum of Squares of Errors for Plane Features. Let
A;=(a;,a)andA; =@E,4d,)(E=1,2, ..., k) be the coordi-
nate of k planes at P and P, respectively. Similar to the
measure of orientation errors of line features, an overall
measure of the orientation errors of the plane features is
given by q’[ A4, Jq where [4,] is obtained from (20) by replac-
ing u;, @; with a,, 3, respectively.

The errors in the locations of the plane features are given
by (10) as

€ =8, —ay; — 2(qa;) - ¢°.

The square of the errors of this form results in a error
function that is quartic in (g, q°), which is difficult to handle
for the least squares solution method proposed by this paper.
For this reason, we use instead the points and lines of
intersection among the given planes to determine the loca-
tion errors of the planes. In this way, the sum of squares of
errors for plane features is reduced to a combination of the
sums of squares of errors for point and line features. For the
rest of this paper, we focus our attention to the least squares
solution for computing a spatial displacement from redun-
dant point and line features.

24 Sum of Squares of Errors for Points and Lines.
Combining the results in Sections 2.1 and 2.2, we obtain the
sum of squares of errors for combinations of points and lines:

E(q,q°%) = o.E(q,q°) + a,E(q,4%
where a,, a, are positive weights. The substitutions of (15)
and (21) into the above yields

E(q.9°) = q’[4)q + ¢[B]e® + (¢°)"[Cle® (22)
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where [A] and [C] are 4 X 4 symmetric matrices given by

[A4] = af4.] + a[4,], [C]=daen[I] +a[C,],

respectively, and [B] is a general 4 X 4 matrix given by

[B] = &[B,] + ,[B,].
It is clear that the grand sum of squares of errors for
combinations of points, lines, and planes can be put into the
same form as (22).

The problem of computing spatial displacements from
redundant position data of points, lines, planes, and their
combinations is reduced to that of minimizing E(g,q°) by
variation of q and q° subject to the constraints (3) and (2),
ie.,

dq=1, q'¢"=0. (23)

3 An Algorithm for the Least Squares Solution

This section deals with the constrained minimization prob-
lem in the preceding section using Lagrange multipliers and
develops a simple algorithm for solving the least squares
problem.

3.1 Conditions for Minimum. The Lagrangian function
to be minimized is as follows
L(q,9% 1, X% = E(q,9°) - A(q"q — 1) — A°(q"q").
(24)
The conditions for minimum, i.e, 4L/dq =0 and JL/3q°
= 0, lead to
2[A]q+ [Blg® —2aq - X" = (25)
and
[B]"q +2[Clq° - A°%q = 0. (26)

These two vector equations are linear in q and qﬁ Together

with the two quadratic constraint equations q’q = 1 and
q’q = 0, they constitute a system of ten equations needed to
solve the ten unknowns, q, q°, A, and A°.

To solve these ten equations, we first represent the best
translation q° in terms of the best orientation q. In view of
(26), we obtain

¢’ = =(1/)[CI[B) a + (1/2)[C]'qX.  (27)
Substitute (27) into (25) to obtain the following equation:
4 4)q~4rq+2°[Bla- (X)[C] g =0, (28)
where [4'] and [B'] are symmetric matrices given by
[4]1=[4]- (/9[BICIT[BY,  (29)
[B]=[BIC]™ + [cI (BT (30)

The Lagrange multipliers, A and A% in (28) are obtained as
homogeneous functions of g:

_qlCI'(8Yq

* d[Cl7q U
yo $lAla  TIBICI (BT q[B]IC] g
q’q 49q 4q’q

(32)

The substitution of (31) and (32) into (28) results in four

nonlinear equations in the components of q and therefore, in

general, the best orientation q does not seem to exist in

closed form. The best translation q°, however, is a rational

cubic function of the best orientation q, in view of (27) and
(31).

32 A Simple Algorithm. We now develop a simple al-
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gorithm for computing the best orientation q. We first rewrite
(28) in the following form:

[D(1%)]q = Aq (33)
where [D(A%)] is a symmetric matrix given by

[DOO] = [41+ /s8] - (1/9()1C] ™
(34)

This indicates that the best orientation q corresponds to one
of the unit eigenvectors of the 4 X 4 symmetric matrix
[D(A%)], provided that A° is known. Since there are four real
eigenvectors for the real symmetric matrix [ D(A%)], there are
four local optimal orientations for the least squares problem.
The global optimal orientation q is the eigenvector associated
with the Jeast eigenvalue of [ D(A%)], see Appendix A.

The eigenvalues of [D(A%)] are the solutions of the quartic
characteristic equation

det[ D(A%) ~ AI] = 0.

The eigenvalues can be obtained in closed form. Once the
least eigenvalue A is selected, the corresponding unit eigen-
vector q is obtained by solving the homogeneous equation

[D(2%) = Al]q=0. (35)

Appendix B provides a simple solution method for (35) using
vector wedge product.

The solution method for obtaining the eigenvalues and
eigenvectors for the 4 X 4 real symmetric matrix (34) is the
core of the following simple algorithm for determining the
best orientation q. The algorithm proceeds as follows:

(I) Compute two constant symmetric matrices [4'] and
[B’] using (29) and (30), respectively.

(2) Select an initial orientation as represented by a unit
quaternion q.

(3) Compute the value of A%g) using (31) and then deter-
mine the matrix function [ D(1°)] using (34).

(4) Find the least eigenvalue A and the associated unit
eigenvector q, of the matrix [D(A%)].

(5) Compute ¢ = cos™!(q, - q) and let the new q be

(9 +q4)/(2c05(¢/2)).
(6) If the norm |4 is sufficiently small, stop; otherwise go
to step 3 and repeat the procedure.

The issue of choosing an initial orientation for the above
algorithm will be discussed in the next section.

4 Special Cases

This section discusses special cases of the least squares
problem when only point features or line features are consid-
ered. The kinematic and geometric insight gained by studying
these special cases is then incorporated into the choice of an
initial orientation for the least square algorithm developed in
the preceding section.

4.1 Point Features. When only ~ point features are
considered, the matrices [A], [B], and [C] become [4,],
[B.], and 4n[ I}, respectively. The matrix [B,] given by (17) is
skew-symmetric and therefore the Lagrange multiplier A°
given by (31) is no longer a function of q but equals to zero,
ie., A°=0. Thus the least square algorithm yields the best
orientations q in one step and no iteration is required. The
solution is of closed form and is summarized as follows.

The best orientation q is the unit eigenvector associated
with the least eigenvalue of the matrix [4,] = [4,]
+ 76:(B.IB,]. The eigenvalue problem is given by

(ade+ (BNBJa=2a (6
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This is essentially the same result as that provided by Horn
(1987).
The best translation given by (27) is reduced to

1
o = /Bn(Bla=5((#]-[xDa @)
This can be recast in the multivector form as

qO = (1/2)()—‘4“1 - Qxc) (38)
where X, and x, are the centroids of two systems of position
vectors. This indicates the best translation q° is given by the
translational offset of the two centroids, a well-known result
provided by Spoor and Veldpaus (1980) and Hom (1987).

Note that (36) can be written in the following multivector
form after the substitution of (16) and (17):

m
-2 Z (iiqxi - i,cqxc)

im 1
+ 2 (BP + b — R - & )g = Aq. (39)
i=1

This will be used later for comparison with the result ob-
tained from an averaging process.

4.2 An Averaging Process. It turns out the closed-form
solution above is related to the solution obtained from an
averaging process. The residual error for each point is given
by (13). Sum all these errors to obtain

n .
E Ei = i::q - qx, — 2q0 (40)
i=1

where X, and x, are the centroids given by (14). This means
that the best translation ¢° makes the sum of errors, L7, 1Ei
vanishes.

The substitution of (38) into (13) yields

E;=¥%4q-qy (41)
where vectors §; and y; are measured with respect to their
respective centroids:

Yi=X-%, ¥i=x-x. (42)
Equations (41) and (42) lead to

Y (GE-Ey) = ¥ (62 +b)a - 2 5 sy (43)
I ] IS i=1

Substituting (42) back into (43) and in view of (14), we
obtain

Z (XE; - E;x;)

i=1

(R* + l* - & )a— 2 T (Riax, = %.9x.).

1 i=1

i=

. (44)

The comparison of (44) with (39) results in the following
interesting result

Y (X%E; - Ex;) = Aq. (45)
im1

In the ideal case when all data are perfect, ie., E; = 0 for all
i=1,2, ..., n, Eq. (45) yields A = 0, This agrees with the
result (48) in Appendix A.

4.2 Line Features. When only line features are consid-
ered, the Lagrange multiplier A° is a function of q since [B,]
is not skew-symmetric and [C,] is not a multiple of [/].
Therefore, the closed-form solution to the problem of simul-
taneously minimizing the orientation and position errors does
not seem to exist.

However, in the special case when all lines are represented
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Table 1 The position data of six points and six lines at two distinct Table 2 The imperfect position data of six points and six lines at

configurations the displaced configuration
At the initial configuration At the displaced configuration (with 10% random error)

Poiats (x.) Lines (u.) Lines (u7) (<7.0906. 13.6219. -3.9716) | (0.7342. 0.2015. -0.6367) | (-5.9510. -7.2802. -9.2668)
(8.0.6.0.2.0) (0.1972. 0.1267. 0.9721) (4.9874. -3.1136. -0.6058) (-7.6305. 7.6276. -10.0261) | (0.8607. 0.4553, -0.2274) | (5.5116. -13.7610. -6.6875)
(3.0.0.0. 4.0) {0-2248. 0.5846. 0.7793) (-8.3797. 04647, 2.0687) (-7.9875. 13.1092. 5.3780 ) | (0.3758. 0.5808. -0.6604) | (-0.4700. -13.4988. -12.2117)
(20.11.0.-6.0} (0.5765. 0.1627. 0.8006) (-2.4020. -4.8040. 2.7061) (-2.5652. 13.1537. -8.2065) | (0.7236. 0.0194. -0.6898) | {-6.9683. -1.8993. -7.3631)
(5.0.6.0. 7.0) (0.0609. 0.0000. 0.9981) (9.9813. -0.1829. -0.6099) (-0.3259. 12.4703. -7.6607) | (0.6974. -0.2970. -0.6521) | (1.2022. -1.1932. 1.8290)
(4.0.7.0.9.0) (-0.1937. -0.1549. 0.968T) | {4.993649. 9.493558. 2.518699) -9.1206. 9.6892. -5.1000) | (-0.6743. 0.7303.1 -0.1088; | {14.6192. 14.9200. 9.5499)
(43. 3.0. 0.0) {0.8899. -0.1001. -0.4439) | (2.0023. 21.8033, -0.9010}

At the displaced confizuration
(0.7386. 0.1980. -0.6443)
(0.8591, 0.4543. -0.2353)
{0.5169. 0.5520. -0.6542)
(0.7240. 0.0162. -0.6895)
(0.6876. -0.2805. -0.6697)
(-0.6616. 0.7414. -0.1119)

(-7.3801. 14.8362. -5.6198)
(-8.2420. 8.3324. -9.2195)
(-8.5317. 12.3697. 5.2240
(-2.7462. 12,0418, -7.7921)
{-0.3589. 11.5897. -8.1025)
(-9.5559. 10.3030. -4.7979)

(-6.0525. -7.3061. -9.1842)
(5.4624. -13.7875. -6.6742)
(-0.6225. -13.6783. -12.0351)
(-6.9688. -1.8993. -7.3627)
(1.2463. -1.2115. 1.7870)
(14.8335. 14.6844. 9.5872)

by points and unit vectors rather than the Pliicker coordi-
nates, the least squares solution can be found in the closed
form. In this case, the equations for position errors (18) are
replaced by point equations of the form (13). The resulting
least squares problem is essentially the same as that of point
features and a closed-form solution can be obtained.

4.4 Choice of Initial Orientation. Now turn back to the
general least squares problem of computing spatial displace-
ments from combinations of point, line, and plane features.
A good choice of initial orientation is the unit eigenvector
associated with the least eigenvalue of the matrix [4'] given
by (29). This orientation is “quasi-optimal” in the sense that
it minimizes the combination of errors in point measure-
ments, and orientation errors in line and plane measure-
ments.

4.5 An Example. {We now present an example problem
of computing a spatial displacement from the position data of
six points and six lines at two distinct configurations. To
generate the position data for these features, we first select a
spatial displacement (q, q°) and the position data of the point
and line features at the initial configuration. We then gener-
ate the position data of the given features at the displaced
configuration using forward kinematics equations. The rota-
tional component of the spatial displacement is given by a
unit quaternion q = (0.466609, 0.784751, 0.190885, 0.360561);
the translational component of the displacement is given by
the vector d = (—10.0, 5.0, —5.0) which can be used to
compute q° using (5). The position data of the point and line
features before and after the spatial displacement are given
by Table 1).

We have implemented the algorithm presented in Section
3.2 and have found that, for the position data given in Table
1, the algorithm yields the given displacement q = (0.4666,
0.7847, 0.1908, 0.3605) and d = (-10.0, 5.0, —5.0) in one
step. This is expected since all position data are perfect. To
see how well the algorithm handles imperfect position data,
we then add 10 percent random error to the position data of
the geometric features at the displaced configuration and
find that the algorithm converges to a least squares solution
in no more than four iterations. For the imperfect position
data shown in Table 2, the algorithm converges in two
iterations and the result is presented in Table 3. In obtaining
the result, we used weights 8 = 1.0, ¢, = 1.0, and ¢, = 100.0
Adjustment of these weights allows for change of accuracy
requirement of a given set of the geometric features.

5 Automatic Generation of Natural Frames

This section presents simple geometric algorithms for au-
tomatic generation of body-fixed coordinate frames (called
natural frames) from geometric features of points, lines,
planes, and their combinations. This is important in applica-
tions such as world model calibration for off-line robot pro-
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Table 3 Computing a spatial displacement from imperfect position
data
Iterations | The least eigenvalue
1 23.078678
2 23.085560
The best translation

The best orientation
(0.462546. 0.787129. 0.192708. 0.359642)
(0.462549. 0.787127. 0.192709. 0.359642)
d = 2q7q~" = (~10.061083. 4.947477. —4.973046)

gramming, since the computer model of each object has to be
automatically updated from the sensory interaction with the
actual object, see Ravani (1988). Automatic construction of
natural frames from point features have been discussed pre-
viously by Angeles (1986) where he used mass distribution to
locate a natural frame.

In what follows, the orientation of a natural frame is
represented by a set of three orthonormal unit vector, de-
noted by e}, €, and €5, and the origin of the natural frame is
represented by a vector denoted by p. This section presents
simple formulas for determining the origin p and the coordi-
nate axes e}, e5. The €, axis is then given by €, = ¢’; X €.

5.1 Oriented Features. An oriented line is given by the
signed normalized Pliicker coordinates @ = (u, u®). By the
signed Pliicker coordinates, we mean & and - represent
two distinct lines having the same position in space but with
opposite sense of orientation. An oriented plane is given by
the plane vector A = (a, a,) where a is the unit normal to the
plane and a, is the distance from the origin to the plane. The
two plane vectors A and —A represent two planes with the
same position but opposite sense of orientation.

In what follows, the notion of oriented features is also
applied to point features in order to determine uniquely an
oriented plane from three noncollinear points. An oriented
point is represented by the homogeneous coordinates of the
form X = (x, o) where x is the Cartesian vector of the point
and o = 1 (0 = —1) denotes the positive (negative) orienta-
tion of the point (Stolfi, 1989; Ge and Ravani, 1993). Simple
formulas for computing the coordinate axes €7, €; and the
origin p are presented in Table 4.

52 Nonoriented Features. For all the cases presented
in Table 4, if simple geometric features are specified without
information about the sense of orientation, an additional
simple feature may be needed to construct a natural frame.
Table 5 contains all possible combinations of nonoriented
features of points, lines, and planes required to specify a
natural frame completely.

Let us first consider the construction of a natural frame
using nonoriented point features. In this case, the direction
of the unit vector e is given by g,, = X Xy +yXz+z X
x) where x, y, and z denote the vectors of the Cartesian
coordinates of three given points (Table 4). The sense of
direction for e, however, can be specified with additional
information about the order of the three points (resulting in
oriented points) or with an additional point (denoted as t)
which is not coplanar with the three given points. Using the
point t, the sense of direction for e is given by sign of
(t-—p)-g,,wherep=(x+y+12z)/3

All other cases listed in Table 5 can be reduced to four
noncoplanar points by obtaining one or more of the follow-
ing: (1) the intersection point between a line and a plane; (2)
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Table 4 Formulas for naturai-frame generation using oriented fea-
tures

[Features G-g/lgle =h/Landp
Three points Normal to the plane

X=(x,0.) |8 spanned by the three points
Y = (y,0y) g = (020y0:)gno Where
Z = (2,0;) Bro =XXY+yXz+2XX
h h=z-p
p p=(x+y+2)/3
Two lines g=uXxyv is along the common
i = (u,u?) perpendicular W = (w,w%)
v=(v,v% |g where w=(axv)/luxvl
and wO=(ux v +u’ xv)/luxvl
h h=u
P = (Cy + ¢y)/2 is the midpoint of the
P two feet of perpendicular
ce=uxu+u-(wxwlu
c,=vxvi+[v.(wxwiv
Three planes | g g=Db
A=(aq) |h h=axb
B = (b,b;) Point of intersection
C=(c.ci) |P P = p;/[c- (a x b)) where
pr=cs{ax b) +by(b x ¢) + ¢4(c x a)
A point Normal to the plane spanned
and a line g by the point and the line
X = (x,0;) g=uw~-xxu
i=(u,u’ [h h=u

p | The feet of perpendicular from X to &
p=uxu’+(u-x)u

Two points | g g=ax({y—x)
and aplane | h h=a

X =(x,0.) |i

Y=(v.0) |P p=(x+y)/2
A= (a, 0.4)

Apointand | g g=axb
two planes h h=a

X =(x,0z)

A=(a,a) |P p=x

B= (b‘b‘l)

A line and g g=axu

a plane h h=a
a=(uu’) [p Point of intersection
A = (a.aq) p = (aqu+axu)/(a-u)

Table 5 Minimum number of nonoriented features for generating a
natural frame

Combinations [ a[f o[ clidlle| fHollhf i} 71 &
Points 4flof31ff2fof2f0f1ffof1
Lines oflojofiofiog3ffrjagaf2aju
Planes of4f1l3f2fofof2foli1]1

the intersection point of three planes; (3) the feet of perpen-
dicular from a point to a line; (4) and the feet of common
perpendicular to two lines. The formulas for these geometric
operations are found in Table 4.

Conclusions

In this paper we have presented a least squares solution to
the problem of computing spatial displacements from a re-
dundant set of simple features of points, lines, planes, and
their combinations. With the aid of a Clifford algebra, the
best orientation is obtained by an iterative procedure which
involves finding the eigenvector associated with the least
eigenvalue of a 4 X 4 real symmetric matrix. The best trans-
lation is a simple rational cubic function of the best orienta-

Journal of Mechanical Design

tion. It is also discussed that the closed-form solution exists
for the best orientation when all features are represented by
points and unit vectors. In addition, simple algorithms are
provided for automatic generaticn of body-fixed coordinate
frames from various feature information. It is hoped that the
results in this paper will facilitate the use of measuring
systems for determining spatial displacements that can han-
dle not only point features but also line and plane features.
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APPENDICES

A:  Absolute Minimum of the Error Function

Let g, be the best orientation and q° be the best transla-
tion in Clifford-algebra form. The minimum total error is
obtained by substituting (27) into (22):

E(a,%) = dl[ 4la, - ~q7[B][C] " [BTq,

4
1
+7400C1 0. (46)
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This can be rewritten as
E(q,,9%) = ¢} [D(X)]q, + R(q,, 1°).
where [D(A%)] is given by (34) and

1
R(q,, ) = = 7(@,)[B a2 + (1/2a7[C] 'q, (2"

The term R(q,, A°) vanishes after the substitution of (30),
(31) and in view of the fact

- - T
(0" [BI[C] "a, = ()" [C]'[BY q.-

Let A, be one of the eigenvalues of the matrix [.D( A%)]. Then
we have q7[D(A%)q = A, and consequently

E(4,,95) = A, (48)
This concludes that all eigenvalues of the matrix [ D(A%)] are
non-negative and that the total error E{(q,, q°) is at absolute
minimum when A, is the least eigenvalue of [ D(A®)]. In the

ideal case when all data are perfect, the total error E(q,,q%)
= 0 and consequently, A, = 0.

(47)

B: Finding the Eigenvector

The four eigenvalues can be solved in closed form from
the quartic characteristic equation. Once the least eigenvalue
A, has been determined, the corresponding eigenvector is
obtained by solving the homogeneous equation

[D']g, =0 (49)
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where [D'] = [D(A%)] ~ A[I]is a singular matrix. Let a, b, ¢,
and d denote the four row vectors of the matrix [D’]. Then
Eq. (49) implies

a.qS=0, b'q:zo, c-qszo, d_~qs=0' (50)

When the least eigenvalue A, is distinct, only three of the
four equations above are independent and the unit eigenvec-
tor q, is unique. Although any three of these equations can
be used to solve for q, it is numerically more stable for a
solution to-use all of the four equations. We first obtain the
following trivector

Q=anAnbAc+ancand+bArcAad+anbad

where “A” denotes the vector wedge product. Wedge prod-
uct generalizes to higher dimensions the vector cross prod-
uct, see Flanders (1963). The coordinates of this trivector,
Q= (01, O, O3, Qu), can then be normalized to yield the
unit eigenvector q..

When A, is a double eigenvalue, only two of the four
equations (50) are independent and the unit eigenvector q,is
not unique. In fact g, traces out a unit circle.- The plane
containing the unit circle is given by

P=aAb+aAc+and+bAc+bAad+ecAad.
Any vector in this plane can be normalized 10 yield a desired
eigenvector q;.

When A, is a triple eigenvalue, any unit vector perpendic-
ular to a + b + ¢ + d is a desired eigenvector.
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On First-Order Decoupling of
Equations of Motion for
Constrained Dynamical Systems

In this paper we present a method for obtaining first-order decoupled equations of
motion for multirigid body systems. The inherent flexibility in choosing generalized
velocity components as a function of generalized coordinates is used to influence the
structure of the resulting dynamical equations. Initially, we describe how a congruency
transformation can be formed that represents the transformation between generalized
velocity components and generalized coordinate derivatives. It is shown that the proper
choice for the congruency transformation will insure generation of first-order decoupled
equations of motion for holonomic systems. In the case of nonholonomic systems, or
holonomic systems with unreduced configuration coordinates, we incorporate an
orthogonal complement in conjunction with the congruency transformation. A pair of
examples illustrate the results. Finally, we discuss numerical implementation of
congruency transformations to achieve first-order decoupled equations for simulation

purposes.

Introduction

Constrained multirigid body systems refers to systems of
interconnected bodies and particles which are subjected to
various motion constraints. Such systems are abundantly rele-
vant in engineering for modeling a wide variety of mechanical
systems. Much attention has been focused on formulation
procedures to yield the differential equations describing the
motion of multibody systems (Crandall et al., 1968; Gibbs,
1879; Gibbs, 1961; Hartog, 1948; Huston, 1990; Kane and
Levinson, 1985; Roberson and Schwertassek, - 1988; Scott,
1988; Storch and Gates, 1989). In most cases the resulting
equations are numerically integrated to obtain trajectories
characterizing the system’s motion. In addition, the equations
of motion are often analyzed directly to determine the nature
of the nonlinear behavior. This paper demonstrates a method,
using Kane’s' equations (Kane and Levinson, 1985), for gen-
erating equations of motion which are decoupled in the
highest derivative terms. We will refer to such equations as
being first-order decoupled. Nonlinear differential equations

It has been pointed out (see Desloge, 1987 and Huston, 1987) that
these equations are actually a particular form of the Gibbs-Appell equa-
tions (see Gibbs, 1879 and 1961).
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of this form are more easily integrated numerically, as well as
better fit for analysis. The procedure of generalized velocity
component selection based on a congruency transformation
(Wade, 1951) is developed and used to achieve first-order
decoupled form of the equations of motion.

Considerable attention has been placed on contending
with holonomic and nonholonomic, linear and nonlinear mo-
tion constraints on multirigid body systems (Kamman and
Huston, 1984; Kane, 1972; Nikravesh and Haug, 1983; Wang
and Huston, 1988; Wehage and Haug, 1982; Wampler et al.,
1985; Xu et al., 1990). A common way to deal with con-
straints is to impose them at an early stage of the analysis by
reducing the set of dependent generalized coordinates to an
independent one. If the constraints are nonholonomic the

generalized coordinate derivatives are reduced accordingly.

However, many consider it to be more effective to first
perform the dynamical analysis for the unconstrained system,
and then reduce the resulting equations to a consistent set
with the constraint equations. For example, Kamman and
Huston (1984), using Kane’s formulation, show that the pro-
jection of existing equations of motion onto an orthogonal
complement yields the desired reduced equations. An orthog-
onal complement, say C, of matrix B would satisfy the equa-
tion BC = 0. Ben-Israel and Greville (1974) and Lawson and
Hanson (1974) discuss the mathematical significance of the
orthogonal complement. The ‘use of the orthogonal comple-
ment to impose motion constraints is illustrated by Hemami
and Weimer (1981), Huston (1990), Kamman and Huston
(1984), Wang and Huston (1988), and Xu et al. (1990).
Hemami and Weimer (1981) use the orthogonal complement
similarly for contracting equations generated by the Lagrange
formulation. Wampler et al. (1985) discuss a method for
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reductioa of existing equations of motion subject to addi-
tional constraints by recombining terms from the original
equations. A numerical procedure for imposing constraints
during integration based on generalized coordinate partition-
ing is presented by Nikravesh and Haug (1983) and Wehage
and Haug (1982). One common element of each of these
methods is the application of the constraints after conducting
the dynamical analysis. Conversely, we illustrate a method
that imposes constraints at an intermediate step of the kine-
matical analysis to enable decoupling for nonholonomic sys-
tems, or systems where the holonomic constraints are yet to
be applied.

The following discussion addresses the use of generalized
velocity component selection to achieve first-order decou-
pling of multirigid body systems. The idea of the congruency
transformation is explained and utilized here. A simple ex-
ample is conducted to clarify the procedure for finding the
congruency transformation for holonomic systems. Next, a
procedure is discussed for decoupling of systems with non-
holonomic constraints, or holonomic systems with unreduced
configuration coordinate descriptions. The result, using or-
thogonal complements, is a modified nonsquare transforma-
tion between generalized coordinate time derivatives and a
reduced set of generalized velocity components. Decoupling
using the orthogonal complement is demonstrated by relax-
ing a constraint from the first example. Lastly, we discuss the
numerical application of congruency transformations.

Dynamics of Holonomic Multirigid Body-Systems

First-Order Decoupled Equations of Motion. In the pro-
cess of formulating equations of motion, for example, using
Kane’s method, the analyst must choose a linear combination
of first time derivatives of generalized coordinates to define
generalized velocity components. These, in a general form,
were initially introduced by Gibbs (1879, 1961), but were
exploited in more detail by Kane (see, for example Kane
(1972) and Kane and Levinson (1985)). Kane and his cowork-
ers have referred to these quantities as “generalized speeds.”
Some of the problems for such a term have been pointed out
by Papastavridis (1992), who considers either “nonholonomic
components of the velocity vector” or “quasi-velocities” to be
more appropriate terms. Singh and Likins (1985) mention the
term “derivatives of quasicoordinates”as an alternative. Here,
for lack of a better name, we shall simply call them general-
ized velocity components. The resulting equations of motion,
using the generalized velocity components, in matrix nota-
tion, are of the form '

Mi =g(q,u) €Y

where u and q are vectors of generalized velocity components
and generalized coordinates, respectively. M is a matrix whose
elements are functions of generalized coordinates and the
inertia properties of the system, and g is 2 nonlinear vector
function of generalized velocity components and generalized
coordinates. The technique presented here will generate
equations of this form where M can be made diagonal by
judicious selection of generalized velocity components. Non-
linear differential equations of this form are dramatically
easier to numerically integrate, as the need for computing
M-! at each iteration is eliminated. In addition, performing
various analyses of nonlinear behavior—tests for stability,
nature of critical points, chaos, etc.—is facilitated if the
system equations are written in state plane form. A diagonal
M matrix in Eq. (1) satisfies this requirement.

Kane’s Equations. Consider a system of p rigid bodies
whose configuration can be described completely by the set
of n generalized coordinates (g1 825 ++ s Grs «+«» Gn)s OF
a=1q1 92> - - +» Gr» - - -» 4n)’- Kane’s equations (Kane and
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Levinson, 1985) are formed by letting the sum of generalized
active forces and generalized inertia forces equal zero. These
equations are actually a particular form of the Gibbs-Appell
equations (see Desloge, 1987; Huston, 1987). Kane (1972)
originally referred to them as Lagrange’s form of D’Alembert’s
principle. In these equations the generalized active force
vector can be expressed as

P
F= ) [Vt + ] @)
i=1
where fis the resultant active force acting at the mass center
of the ith body, and 7; is the resultant moment. Vand T; are
the partial velocity and partial angular velocity matrices,
which are written as :

v, oY, 3
€ X’n) o’ ' @
and -
r dw; @
i T o
(3 xn) du

These partial velocities are taken with respect to the general-
ized velocity component vector u. The generalized velocity
components are a linear combination of the first time deriva-
tives of generalized coordinates. For ease of substitution this
relation is expressed as

q = Tu. (%)

We shall refer to the matrix T as the rate transformation
matrix. Since we are considering holonomic systems here, T
is a square matrix of order n. The generalized inertia force
vector is written as

P
F* = - ¥ [m¥7a, + I7H)] ©)
i=1
where a; is the mass center acceleration of the ith body and
H, is the time rate of change of angular momentum of body {
with respect to the Newtonian reference frame. Finally, n
dynamical equations of motion are obtained by letting the
vector sums from Egs. (2) and (6) equal the zero vector:

F+F*=0 . @)

Equation (7) is the matrix form of the so-called Kane’s
equations. It should be pointed out that in this paper, as with
other references on constrained multibody systems (see, for
example, Huston, 1990), we shall use the term configuration

coordinates in addition to generalized coordinates. In con-
strained multibody systems configuration coordinates refer to
the variables that uniquely describe a system’s configuration,
but may be dependent upon one another. Generalized coor-
dinates represents reduced, of independent configuration
coordinates.

The Influence of Generalized Velocity Component Selec-
tion. Since our goal in this paper is to prescribe a choice of
generalized velocity components that would yield decoupled
equations of motion, it is first necessary to reveal the influ-
ence of such a selection on the resulting dynamical equa-
tions. In other words, we would like to expose the location of
the matrix T, from Eq. (5), within Kane’s equations. The
acceleration of the mass center of the ith body can be written
as

a, = Via + V. ®)

We also know the angular acceleration of body i can be
expressed as

@, = T + i ©)
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From this we can write the derivative of angular momentum
as

H, = I8 + LTu + WL,

!

(10)

where I, is the central inertia matrix and W, is the angular
velocity matrix associated with the ith body, and written in
terms of body i’s natural frame. Thus, the generalized inertia
force becomes

P
F* = ~ ¥ [m¥7 Vi + m¥]Vu + [T L
im1 )
+I7LTu + riTvviIiwi]' (11

From the relation depicted in Eq. (5), it is easily shown that
the partial velocity matrix of Eq. (3) can be expressed as

—s = —T=—%T 12)

where is r; the Euclidean position of body i’s mass center
with respect to the inertial reference frame. We can write

this as
V,=J,T (13)

where J; is the partial derivative of r; body’s mass center
position with respect to the vector of the generalized coordi-
nates. Similarly, Eq. (4) is

dw; 19w‘-T 14
oul  9al (14)

or
L,=0Q7T (15)

where Q; is the partial derivative of body i’s angular velocity
with respect to the time derivative of the generalized coordi-
nate vector. Substitution of Eqs. (13) and (15) into Eq. (6)
gives the following expression for the equations of motion:

L d
-) [m,.TTJ,?'J,.Tﬁ +mT7yT —-t-(J,-T)u

i=]1
. d
+TTQ7TL,Q,Ta + TTOZ'I,--d—t(Q,-T)u
+TTQTW1, 0, — TTITE, — TTQTE, ~ TTQ,.TT,.] =0. (16)
By letting A

. P
A= - Y [m33+ 0710,

i=1

a7

a complete set of equations of motion can be expressed as

. 14
T™ATi — )

i=1

d
[miTTJiT a @ Tu

d
+TTQ,-TI,.—t-(Q,-T)u + TTQTWI, w;

~T7)7f, — TTQ,.TT,.] =0 (18a)

and
(18b)

It is now clear that T manifests itself in the transformation
TTAT in the first term of the left-hand side of Eq. (18a), as
far as first-order generalized velocity components are con-
cerned. We now wish to explain how the analyst can choose
the rate transformation matrix T in Eq. (18b) to assure that

q = Tu.

ASME Journal of Applied Mechanics

the coefficient matrix for the first-order generalized speed
vector in Eq. (184) is diagonal.

Selecting T for Decoupling. Clearly, from the above re-
sults, first-order decoupled equations of motion will be gen-
erated if TTAT is a diagonal matrix. Therefore, we first
consider how this transformation can be influenced by T to
satisfy this condition. Notice that if the eigenvectors of A are
used as the columns of T, a diagonal matrix results under the
similarity transformation T~'AT. Moreover, A is symmetric,
hence, its eigenvectors can be chosen to be orthogonal. With
orthogonal eigenvectors we know that T™' =T, and the
similarity transformation effectively appears as the leading
matrix for the first-order terms of Eq. (18a). Thus, a suffi-
cient condition for obtaining first-order decoupled equations
of motion is that the rate transformation matrix T be com-
prised of the eigenvectors of A. However, it should be em-
phasized that it is not a necessary condition for decoupling.
In fact it can be much less laborious to choose the elements
of T to satisfy a congruency transformation than to symboli-
cally determine the eigenvectors of A. We will now show that
decoupling can be achieved by satisfying an alternative suffi-
ciency condition. That is, if T is chosen to fulfill a specific
congruency transformation, Eq. (184) will be decoupled in
first-order terms. Consider the following definition (see, for
example, Wade, 1951). If for two given matrices A and N
there exists a nonsingular matrix T that satisfies the relation

T'AT = N (19)

then A and N are said to be congruent. Furthermore, we
shall utilize a theorem (sece Wade, 1951) stating that a sym-
metric matrix can be reduced by a congruency transformation
to a diagonal matrix of the same rank. The principal motiva-
tion behind employing congruency transformations to achieve
decoupling is that the rdte transformation matrix can be
formed directly with various combinations of the elements of
the A matrix. At this point we propose an algorithm for
obtaining the matrix T that yields a diagonal matrix under
the congruency transformation of Eq. (19). This, in turn,
would be used in Eq. (185) as a rate transformation matrix.
Consider the symmetric A matrix written as

ay ap Qin
a a cee e

A= 12 2 . (20)
aln Qnn

The transformation matrix T will be composed of m factors,

such that it can be written

T= T1T2T3. . .Tm (21)

where m is the number of degrees-of-freedom less one
{(m = n — 1). T, would be constructed as follows:

1 —ap/ay —ay/ay —a1,/ay
0 1 . ces R 0
T,=|. . 1 - . .
0 0 0 1
(22)
When the congruency transformation
TIAT, = A’ (23)

is performed, the resulting A’ is a matrix with zero elements
in row one and column one, except for the element a,; (see
Eg. (24)). In other words, it will be block diagonal with the
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Fig.1 A sliding pendulum

lower right m by m submatrix remaining undiagonalized, and
is given here as ‘
a; 0 o ... 0
0 by by bim
A=TAT,= | 0 by by by, |- (24)
0 bml me .. bmm

The same procedure is performed on this result, except T, is
constructed as . :

1 0 .. 0
0 1 -—byp/by =bym/bn
T,=10 0 1 o 0 (25)
0 O cee 0 1
The congruency transformation is performed again:
TITIAT,T, = A" (26)

This is repeated until a total of m transformations have been
completed, and the A matrix is converted to diagonal form.
One additional requirement is that T be nonsingular. How-
ever, this is assumed since the final diagonal matrix is of the
same rank as the original A matrix. Therefore, T must be of
full rank. Before discussing the use of the orthogonal com-
plement, an example is presented to illustrate decoupling
with the congruency transformation.

Example of Decoupling With the Congruency Transforma-
tion. Consider the following system of two particles con-
nected by a rigid, massless rod. Sliding mass m, is con-
strained to move along the horizontal axis n,, and the mass
m, must stay on the constant radius arc with respect to m, in
the n, — n, plane, as shown in Fig. 1.

Using the generalized coordinates g, and g,, the matrix A
is assembled using J, and J, for each of the masses. This

gives ‘
00
=9 9] @
and
0 -rsq,
J2 = [1 ’CqZ] (28)
. which can be combined according to Eq. (17) to obtain
—my—my  Tmereq;
A= [ —myreq,  —mor? ] 29)

Equation (19) is used to form the congruency transformation
for A as :

T= [(1) —mareqy/ f”" * ’"2)]. (30)
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For this system the resultant applied force vectors for each

mass are
fl [ ) ]
0

f,= [m(;g]. (32)

The above matrices can then be assembled using Eq. (184) to
yield the following dynamical equations:

—my; —m; 0
0 2 2

(3D

and

a
myr= — miric?q,/(m; — mz)]

0 0
= -+ N
[ —m§ricqysqyus/(my + mz)] [ _ng"s‘h] (33)

The complete set of equations of motion are Eq. (33) ard the
following equation using the rate transformation matrix given
in Eq. (30):

q= [(1) ‘mz’CQz/l(ml + mz)]u_ (34)

Equation (34) shows that the generalized velocity compo-
nents obtained using the congruency transformation include
mass terms. This is slightly different from the definition of
the relationship between u and §, as defined by Kane (1985)
to be a function of q and time, and not of the mass properties
of the system. It also indicates another problem with the
term “generalized speeds,” or even “generalized velocity
components,” for the elements of the vector u, since they
depend on mass properties in the more general context used
in this paper. We shall, however, continue using “generalized
velocity components” since the term “generalized” may be
interpreted that u is not just like 2 common velocity vector.

Dynamics of Nonholonomic Multibody Systems

The equations of motion given in Egs. (18a) and (186)
become invalid if the multibody system includes constraints
which are nonholonomic. If this is the case, the constraints
can be applied to the system with an orthogonal complement,
and the transformation between generalized coordinate
derivatives and generalized velocity components is no longer
one-to-one. Additionally, situations might arise where a
model is given with unreduced configuration coordinates
along with holonomic constraint equations that are yet to be
applied. Again, the orthogonal complement is used to impose
such constraints. These ideas are discussed next, and illus-
trated with an example.

The Orthogonal Complement. Huston (1990) shows that
if the motion constraint equations, either holonomic or non-
holonomic, are written as

By =0 (35)

and the unconstrained equations of motion are as depicted in
Eq. (1), a valid set of reduced equations describing the
dynamics of the constrained system is

C™™4 = CTg(q, q) (36)
where C is the orthogonal complement of B. Recall C is the
orthogonal complement of B if BC = 0 is satisfied. C can be
thought of as a non-square transformation between the unre-

duced generalized coordinate derivative vector §, and a re-
duced generalized coordinate derivative vector, say Z:

(37
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Let us rewrite Eq. (36) in similar form to Eq. (16) by first
‘writing .

-

i1

rd

[m,-CTJ,-TJifl + mCTJ] @ J)a

d
+CTQTL,Q.4 + CTQ,TI,.E;

Q)4
+CTQT W1, 0, — CTITE, - CTQ,.TTi] =0. (38)

We can substitute the expression for § given in Eq. (37) into
Eq. (38) to establish equations of motion in terms of the new
reduced generalized coordinate vector z and its derivatives:

-¥

i=1

d
{m,.cTJ,T J,Ci + m,CTY7 yn 3.0z + CTQl1,Q,Ci
d
+CTQ,TI,.Z(Q,-C)i + CTOTW1, 0,

. =CTyrt, - CTQ,.TT,.] =0. (39

One can see that the role of the matrix C in Eq. (39) is
equivalent to that of T in Eq. (16). Hence, we can view

J,C= 3;7.- (40)
and
dw;
Q,C= 537 (41)

as special partial velocity matrices. Generalized velocity com-
ponents can be introduced easily using the transformation

(42)

With this, the transformation between unreduced general-
ized coordinate derivatives and reduced generalized velocity
components is written as

z = Tu.

q = CTu. (43)
A new set of equations of motion in terms of reduced
generalized velocity components can now be given as

2

i J.CThu

14
-y [miTTCTJfJiCTﬁ +mTTCTy
im1
d
+T7CTQT1,Q,CTa + TTCTQZI,E (Q,Chu

+TTCTQT W, w; — TTCTITE, + TTCTQ?'T‘] =0 (44)

which are accurate in describing the behavior of the con-
strained system. Note that the matrix product CT shown in
Eq. (43) represents a modified, nonsquare, rate transforma-
tion matrix.

There are several procedures for determining the orthogo-
nal complement matrix as demonstrated by Huston (1990)
and Hemami and Weimer (1981). Here, we will consider the
zero-eigenvalue approach discussed by Huston. If there are
m motion constraints imposed on a system that has n de-
grees-of-freedom, the m by n matrix B from Eq. (35) will be
of rank m. B premultiplied by its transpose will be a symmet-
ric n by n matrix also of rank m. Hence, BTB will have
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(n — m) independent eigenvectors associated with the zero
eigenvalues. If the columns of C are comprised of these
eigenvectors we have

BTBC = 0. (45)
Premultiplying by C7 gives
C™B'BC =10 (46)
or
BC = 0. (47)

Therefore, C is the orthogonal complement of B. With C
specified, we can now focus on the coefficient matrix for
generalized velocity component derivatives from Eq. (44) by
grouping all other terms into the function h. This gives

T7C7ACTa = h(qg, u). (48)

The matrix A is the same as defined in Eq. (17). To obtain
first-order decoupled equations for the constrained system
we simply choose T to be the proper congruency transforma-
tion, this time for CTAC, using the procedure outlined ear-
lier.

Example: Unreduced Configuration Coordinates. We
will now repeat the example carried out above, but now using
the dependent configuration coordinates shown in Fig. 2.

The constraint imposed by the rigid rod is temporarily
removed. The position Jacobians for the two masses now

appear as
{000
= [1 0 0] .(49)
and ,
_{0o 1 0
I = [ 10 1 ] (50)
The resulting A matrix is
—nmy; — my 0 —m,
A= 0 -m, 0 (51)
—-m, 0 —my .

Now we must find the orthogonal complement to reimpose
the constraint. Therefore, - the constraint representation
should be put in the form of Eq. (35). For the simple
pendulum this constraint is written as

Bg=[0 g, g¢;la=0. (52)

To find an orthogonal complement the zero eigenvectors of
B”B must be found. However, for this problem the vectors
comprising C can be obtained even more simply, using the
Gram-Schmidt process, for example. The orthogonal comple-
ment is found to be

1 0
C=|0 -g, (53)
0 g
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We can form C7AC to allow determination of T as

T = [1 —mygy/(my + mz)]_ (54)
0 1

The necessary components are now available to produce the
constrained dynamical equations of motion using Eq. (44).
The applied force vectors remain the same as in the previous
example. The dynamical equations in terms of the reduced
generalized velocity component vector are

-my —m, 0 .
0 —-m3q3/(my + my) + myr? :

o - 0
= + 1. (55
[ —m3qsq,u3/(my + m2)] [’"28‘13] G3)
The additional equations of motion stemming from the trans-
formation between configuration coordinates and reduced
generalized velocity components are

. |1 —mygy/(my + my)
q_[o 292 ll 2 ]ﬂ. (56)

Numerical Implementation of Congruency Transfor-
mations

Very often one must analyze large-scale systems where it
would be very tedious to symbolically obtain the proper
congruency transformation. For this reason, we now discuss
numerical implementation of the congruency transformation
so that it may be used on more complicated systems. Recall
the expression for the equations of motion shown in Eq. (16),
except here we do not require the matrix T to be a diagonal-
izing congruency transformation. In this case T may be any
matrix that yields a valid vector of generalized velocity com-
ponents. The equations of motion for a holonomic system are

P d :
-r [m,-TTJ.-TJiTﬁ +mITI— (T

im]

d
+T7Q71,Q,Ta + TTQ,TIi-—t(Q,-T)u

+TTQTWIL. w, — TTITE, — TTQ% | = 0. (57
1 11 (3 : 1 't

Notice that the derivative of the rate transformation matrix T
appears in two of the terms in Eq. (57). Even though it would
be possible to select T to be a diagonalizing congruency
transformation at each iteration of the numerical integration,
we would be left with the cumbersome task of specifying its
time derivative as well. Hence, the following development
allows selection of a matrix ¥ which is independent of the
original dynamical equations (Eq. (57)), and does not appear
in derivative form. However, one must still choose a valid
linear combination of generalized coordinate derivatives
(prescribed by T) to define generalized velocity components,
as usually done with conventional application of Kane’s equa-
tions. For example, it is common to choose a trivial set of
generalized velocity components by selecting T as the identity
-matrix. Denote the matrix products premultiplying u fro

Eq. (57) as :

P T.
A= TT( - Y [m 373+ 01,0

i=1

(58)
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and the remaining vector sum as h(q, u) so the equations of
motion can be written as

Al = h(q, u). (59)
Let us introduce the vector x in the following expression:
’ i=¥x. (60)
Substituting this into Eq. (59) yields
A¥x = h(q, u). (61)

We can now premultiply both sides of Eq. (61) by ¥7 giving
us

Y7AYx = ¥Th(q, u). (62)

However, notice the left-hand side of Eq. (62) is a congru-
ency transformation on the symmetric matrix A. If ¥ is
chosen as prescribed earlier, ¥7A¥ will be diagonal. Let
L = ¥TAV¥ so Eq. (62) becomes

Lx = ¥7h(q, u). (63)
Vector x can be written as
x = L-'¥Th(g, u) (64)

when the inverse of L is simply comprised of the reciprocals
of its diagonal elements. Finally, the resulting first-order
decoupled form in terms of u is

i = YL '¥Th(q, u). (65)
We see that Eq. (65) is well structured for direct numerical
integration without inversion of the A matrix.

Conclusion

We have proposed and demonstrated a method for creat-

ing rigid-body equations of motion that are decoupled in
first-order terms. This is achieved by properly choosing a
congruency transformation that specifies generalized velocity
components. For nonholonomic systems, or holonomic sys-
tems with unreduced configuration coordinates, the congru-
ency transformation is used in conjunction with an orthogo-
nal complement to the constraint array. In both cases, the
resulting equations are in a form that make it convenient for
nonlinear behavior analyses. Moreover, it becomes an easy
matter to implement general integration routines for first-
order differential equations to obtain generalized coordinate
trajectories for simulation purposes.

Acknowledgment

The financial support of this work by US Army Research
Office grant no. DAAL-03-90-G-0005 is gratefully acknowl-
edged. : '

References

Ben-Israel, A., and Greville, T. N. E., 1974, Generalized Inverses: Theory
and Applications, John Wiley and Sons, New York.

Crandall, S. H., Kamnopp, D. C,, Kurtz, E. F., Jr., and Pridmore-Brown,
D. C., 1968, Dynamics of Mechanical and Electromechanical Systems,
Robert E. Krieger, Malabar, FL.

Desloge, E. A., 1987, “Relationship Between Kane's Equations and the
Gibbs-Appell Equations,” Engineering Notes, Journal of Guidance, Con-
trol and Dynamics, Vol. 10, Jan.-Feb., pp. 120-122.

Gibbs, J. W., 1879, “On the Fundamental Formulac of Dynamics,”
American Journal of Mathematics, Vol. I, pp. 49-64.

Gibbs, J. W., 1961, The Scientific Papers of J. Willard Gibbs, Vol. Ii,
Dover, New York. ’

Hartog, J. P. D., 1948, Mechanics, Dover Publications, New York.

Hemami, H., and Weimer, F. C., 1981, “Modeling of Nonholonomic
Dynamic Systems With Applications,” ASME JOURNAL OF APPLIED ME-
CHANICs, Vol. 48, pp. 177-182. '

Huston, R. L., 1990, Multibody Dynamics, Butterworth-Heinemann,
Boston.

Huston, R. L., 1987, “On the Equivalence of Kane's Equations and

Transactions of the ASME

o
:’ 1l
{ 4
g
Q
O
~
—
S
t
¢
N
GO
S TR




Gibbs® Equations for Multibody Dynamics Formulations,™ Mechanics Re-
search Communications, Vol. 14, No. 2, pp. 123-131,

Kamman, J. W,, and Huston, R. L., 1984, “Dynamics of Constrained
Multibody Systems,” ASME JOURNAL OF APPLIED MECHANICS, Vol. 51,
pp- 899-903.

Kane, T. R., 1972, Dynamics, Stanford, CA.

Kane, T. R,, and Levinson, D. A, 1985, Dynamics: Theory and Applica-
tions, McGraw-Hill, New York.

Lawson, C. L., and Hanson, R. J., 1974, Solving Least Squares Problems,
Prentice-Hall, Englewood Cliffs, N.J. :

Nikravesh, P. E., and Haug, E. J., 1983, “Generalized Coordinate
Partitioning for Analysis of Mechanical Systems with Nonholonomic Con-
straints,” ASME Journal of Mechanisms, Transmissions, and Automation in
Design, Vol. 105, pp. 379-384.

Papastavridis, J. G., 1992, “Discussion on the Paper Entitled: Dynamics
of Nonholonomic Mechanical Systems Using a Natural Orthogonal Com-
plement,” ASME JOURNAL OF APPLIED MECHANICS, Vol. 59, pp. 242-244.

Papastavridis, J. G., 1988, “On the Nonlinear Appell’s Equations and
the Determination of Generalized Reaction Forces,” Int. J. Engng. Sci.,
Vol. 26, No. 6, pp. 609-625.

Roberson, R. E., and Schwertassek, R., 1988, Dynamics of Multibody
Systems, Springer-Verlag, Berlin.

Scott, D., 1988, “Can a Projection Method of Obtaining Equations of

ASME Journal of Applied Mechanics

Motion Compete with Lagrange’s Equations,™ American Journal of Physics,
Vol. 56, May, pp. 451-456.

Singh, R. P,, and Likins, P. W., 1985, “Generalized Coordinate Parti-
tioning for Constrained Dynamical Systems,” ASME JOURNAL OF APPLIED
MECHANICS, Vol. 52, pp. 943-948.

Storch, J., and Gates, S., 1989, “Motivating Kane's Method for Obtain-
ing Equations of Motion for Dynamic Systems,” Engineering Notes, Jour-
nal of Guidance, Control and Dynamics, Vol. 12, July~Aug., pp. 593~595.

Wade, T. L., 1951, The Algebra of Vectors and Matrices, Addison-Wes-
ley, Cambridge, MA.

Wang, J. T., and Huston, R. L., 1988, “Computational Methods in
Constrained Multibody Dynamics: Matrix Formalisms,” Computers and
Structures, Vol. 29, No. 2, pp. 331~338.

Wehage, R. A, and Haug, E. J,, 1982, “Generalized Coordinate Parti-
tioning for Dimension Reduction in Analysis of Constrained Dynamic
Systems,” ASME Joumal of Mechanical Design, Vol. 104, pp. 247-255.

Wampler, C., Buffinton, K., and Shu-hui, J., 1985, “Formulation of
Equations of Motion for Systems Subject to Constraints,” ASME Jour-
NAL OF APPLIED MECHANICS, Vol. 52, pp. 465-470.

Xu, M, Liy, C, and Huston, R. L., 1990, “Analysis of Nonlinearly
Constrained Non-Holonomic Multibody Systems,” Intemational Journal of
Non-Linear Mechanics, Vol. 25, No. 5, pp. 511-519.

March 1995, Vol.62/ 7




DE-Vol. 69-1, Advances in Design Automation - 1994

Volume 1
ASME 1994

MOTION INTERPOLATION USING DYNAMICS

T. A. Loduha and B. Ravani
Department of Mechanical and Aeronautical Engineering
University of California, Davis
Davis, California

ABSTRACT

In this paper we present a method for dynamically interpo-
lating the motion of a rigid body in space between known
end-positions. We begin by creating an image space repre-
sentation of the equations of motion for a rigid body. These

equations are written as a system of first-order state equa-.

tions whose trajectory is optimized based on the minimiza-
tion of a certain performance index. This leads to a set of
boundary-value equations between the end positions, which
when solved give the interpolated motion. Finally, a pro-
gram developed to perform such interpolations numerically
is utilized by generating a trajectory between given terminal
states. ’

INTRODUCTION

Within the field of computer graphics, especially as it ap-
plies to mechanical system simulation and computer anima-
tion the problem of finding a mathematical representation
of a rigid body motion that approximates a sequence of ar-
bitrary displacements is commonly encountered. In other
words the end-positions of a rigid body spatial trajectory
are known, but the trajectory itself is unknown. Through-
out this paper, the term ‘position’ refers to the position of a
point on a rigid body, as well as the orientation of the body.
The problem of determining the intermediate positions has
been referred to as key framing, or geometric design of mo-
tion interpolants (see Ravani and Ge (1994)). It has ap-
plications in computer graphics, computer vision, robotics,
bio-mechanics, other fields. Figure 1 illustrates the inter-
polated trajectory of a rigid body. Many researchers have
explored methods to interpolate the unknown motion of the
body. Traditionally, the problem has been separated into in-
terpolations of translations and rotations. Dealing with the
translation is straight forward, however the rotation inter-
polation poses considerable difficulties. Initially, attempts
were made at individual interpolation of the Euler angles,
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initial position

Figure 1: Dynamically Interpolated Motion

but the resulting motions seemed to speed up or slow down.
More recently, Shoemake (1985) and Pletickx (1989) investi-
gated subdivision methods using quaternions to interpolate
rotations. Ravani and Ge (1994) transform the motion in-
terpolation problem into a point interpolation in the image
space, and extend the results of Shoemake by properly con-
sidering the geometry of the underlying space of three di-
mensional displacements. Needless to say, the common trait
of these developments is their kinematic foundation. That
is, these methods have provided ways to create the unknown
trajectory without regard to the dynamics of the motion of
the rigid body being animated. The motivation behind the
developments in this paper is to dynamicallyinterpolate the
motion of the body between the given end-positions for ani-
mation and other purposes. Thus the result is a dynamically
consistent specification of the pathway followed by the body,
as well as its velocity distribution.

To solve the problem of dynamically-based interpolation,
an image space representation of the equations of motion for
a single rigid body is first created. These equations become
the system equations for a trajectory optimization based on
the minimization of a certain performance index. The solu-
tion of the optimization problem describes the pathway of an
image point, and the velocity of that point along the path.




This can then be resolved into finite and infinitesimal rigid
body displacement information specifying the reconstructed
motion.

MOTION REPRESENTATION

In this section we convert all kinematical entities such as
Euclidean point position and velocity, rigid body orienta-
tion parameters, and angular velocity of the body to an
image space representation. The new kinematical descrip-
tion is used to generate a unique set of equations of motion
in terms of an image space state vector. We see that the
image space allows us to treat the position and orientation
of a rigid body in space as a single point in a dual four-
dimensional space. More importantly, the time derivative
of this image space point position gives us an unambiguous
representation of the rate of change in orientation of the
body. Hence, we can introduce a sixteenth order state vec-
tor that contains the orientation and time rate of change
of orientation data. In an essence, the image space helps
us circumvent the incomplete analogy between velocity and
angular velocity. By “incomplete analogy” we mean that
in the Euclidean space of three dimensions velocity can be
found from the derivative of a position vector, but angular
velocity, in general, can not be determined from the deriva-
tive of an orientation vector. With the mapping to the image
space, position and orientation are captured as one entity -
the image space position. The derivative of this point gives
us the velocity and angular velocity of the body. The image
space equations of motion then become the first order state
space system whose trajectory is optimized based on effort
minimization.

Newton—-Euler Equations in the Image Space

Our goal in this section is to map the equations describing
the dynamical motion of a rigid body to the image space.
The kinematic advantages of the image space are illustrated
by Ravani and Ge (1994), and here we will demonstrate vari-
ous dynamic benefits of this representation. Using the image
space representation, the components of a point position in
the image space become the configuration coordinates, as
opposed to the Euclidean position and angular orientation
coordinates ordinarily used. The final results of this section
are the equations of motion for a single rigid body in state
space form. They will be first-order nonlinear equations in
terms of a state vector z (to be defined later). The com-
ponents of this vector completely encompass the rigid body
displacement and time rate of change of displacement infor-
mation. Here, we begin with the well-known Newton-Euler
equations of motion for a rigid body, and transform them
to a system of sixteen first order equations.

The Newton-Euler equations for a rigid body with a body
fixed coordinate system aligned in the principal directions
and located at the center of mass are written as

f1 = m‘il

2 =md,
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fr=mds (1)
and

n = Lo — (I — Iz)waws
T2 = Ipwz — (I3 — I )wzw;

T8 = Izws — (I) — I2)wyw; (2)

where f; and 7 (i = 1,2,3) are the applied moments and
forces in the e1, e; and e; directions of a body-fixed co-
ordinate frame. I; , I, and I are the principal centroidal
moments of inertia and w; (1 =1, 2, 3) are the angular veloc-
ity components expressed in terms of the body-fixed frame.
We can now convert all kinematical entities to the image
space. If the image space point % is written in quaternion
form as :

X = %11+ £2] + 23k + 24 3)
the dual velocity distribution of the body can be expressed
as the following quaternion product: '

V = 2%%* (4)

where X* is the conjugate of the dual quaternion. This dual
velocity entity can be thought of as a dual number combi-
nation of angular and linear velocity and written as

cllelel e

where w is the angular velocity of the body and 4 is the
velocity vector of the origin of the body-fixed frame. The
dual quaternion product can be expanded in terms of the
dual Euler parameters and their derivatives, and written in
matrix form as

V =2Dx% (6)
where the dual matrix D is written as
D =D +¢D°. (N
The real part of D is
—Z4 3 —Z2 I3
D= —I3 —I4 zy z2 (8)
T2 —Z1 —ZT4 I3
z z2 z3 T4
and the dual ‘p‘a.rt is
—zg 3 —:gg zg
0 _ =3 —T40 z; z2 9
D" = 23 -2} —z§ 2§ |- (®)
zd 5 3zl

The real and dual parts of the first three components of V
comprise, respectively, the angular velocity and the velocity
of the origin of the body’s fixed frame, as stated in Equation
5. The matrix product of Equation 6 can be separated into
real and dual parts as

V = 2Dx + 2¢(Dx° + D). (10)

y
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e e
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Therefore, using this relation and Eqﬁation 5, the angular
and linear velocity terms become

K

] =2(Dx" + D°x).

] = 2Dx (11)

and .
d
12
[ ) (12)
From these we can obtain the necessary derivatives and
products @y, w2 and w3, di, d2 and d3, and wows, wiw:
and wiw, in terms of image space components to be substi-

tuted into Equations 1 and 2. However, before doing this,
it is helpful to define a sixteen element state vector z as

Xi
x? N0 L O
z = xf = 2¢(Dx” +D'x). (13)
x?
We also deﬁne
Za = [ 21 22 eeees 28 ]T (14)
and r
Zp = [ 29 210 e z16 ] (15)

25 can be thought of as the position of a point in an eight-
dimensional vector space. This position corresponds to a
homogeneous representation of the position and orientation
of the rigid body in three dimensions. Analogously, z. is
the velocity of that point (note z. = 2), and defines the
time rate of change of position and orientation of the body.

Equation 11 is expanded and elements of state vector z
are substituted to get the components of the angular velocity
vector as

wy = 2(—2429 + 23210 — 22211 + 21212)
wp = 2(~z329 — zs210 + 21211 + 22212)

wy = 2(222¢ — 21210 — 24211 + 23212).

(16)
These expressions are time differentiated to yield, after some
simplification,

W1 = 2(—2429 + 23210 — F2211 + £1212)

Wy = 2(—2329 — Zs210 + £1211 + 22212)

(17

In a similar manner we obtain the velocity and acceleration
components of the origin of the body-fixed frame:

ws = 2(2229 — 21210 — Za211 T #3212)-

dy = 2(—24213 + 23214 — 22215 + 21216 —
2829 + 27210 — 26211 + 25212) .
dz = 2(—z3z13 — zaz14 + 21715 + 22216 —
z7z9 — 28210 + 25211 + Z6212)
ds = 2(22213 — 21214 — Z4215 + 23216 +

(18)

2629 — 2Z5210 — 28211 + 27212)
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and, upon time differentiation,

dy = 2(~24213 + 23214 — 2215 + 21216 —
| Zgz9 + 27210 — ZeZ11 + Z5212)
dy = 2(—23213 — 34214 + Z1215 + 22216 —
Zr29 — 28210 + 25211 + Z6712)
ds = 2(22z13 — 21214 — 24215 + 23216 +
(19)

Finally, we denote the angular velocity product quantities
as:

2629 — Zsz10 — 28211.+ 27212).

hi2 = wiwz
haz = wows

hiz = wiws

(20)

The above quantities are substituted into Equations 1 and
2, and the six Newton-Euler equations become

uy = 2m(—24218 + #3214 — 22215 + 21216 —
2329 + 27210 — Z62Z11 + Z5212)

uz = 2m(—23213 — 24214 + 21215 + 22216 —
2729 — 28210 + 25211 + Z6212)

us = 2m(Z2z13 — 21214 — 24215 + 23216 +

2629 — 35210 — 28211 + Z7212) (21)

and

wq = 2I1(—2420 + 23210 — 22211 + 21212) —

(I2 — Is)h2s
us = 2Ip(—2329 — 24210 + 21211 + 22212) —
(Is — I1)hay
ug = 2I3(2220 — 21210 — Zs211 + Z3212) —
(Iy = I2)h12 (22)

where u is simply a vector of applied forces and torques,
and is written here as

u=[f1‘ f2 fsa noT ™ ]T- (23)

Since the equations of motion are now written in terms of
eight configuration coordinates, we need an additional two
equations to have a complete set. These can be generated
from the image space constraints given in (Ravani and Ge,
1994). We rewrite them here in terms of the state vector z
as ,

4zt =1 (24)
and
(25)
If we time differentiate each of these equations twice we
obtain the two additional state equations as

29213 + 210214 + 211215 + 212216 = 0.

21213 + 2529 + 22214 + 26210 +
23215 + 27210 + Zaz16 + 28212 +

2(z125 + 2226 + 2327 + z423) =0

(26)




and
Z1213 + 2520 + 22214 + 26210 + 23 + 25 + 2E + 27 = 0. (27)

Equations 21, 22, 26 and 27 can be ordered, and put int
matrix format, yielding '

Hi,=g . (28)
where
[ ws/20 4+ (12 — L)hes/2L, 7]
us /2l + (Is — I1)hay [21;
ue/203 + (N1 — I2)h12 /215
B e e e )
g= uy/2m [ - (
uz /2m
uz/2m
L —2(z125 + 2226 + 2327 + z428) |
The coefficient matrix H is partitioned as
C o
H= [ A B ] (30)
where _
~216 215 —214 2313
A= —215 —216 213 214 , (31)
214 —Zz13 ~z16 213
L 213 214 215 216
[ 212 —z11 zio 2
B= z11 212 —z9 —210 (32)
—Z210 29 212 ~2Z11
2 210 Z11 Z12
and
C =B. (33)

The advantage of this particular ordering becomes clear
when we consider one of the Schur formulas for the inverse
of a partitioned matrix (see, for example, Brewer {Brewer,
1990)). This formula states that the matrix H partitioned
as shown in Equation 30 has the inverse

c-! 0 ]

-B-'AC—! B! (34)

H!= [
Symbolic inversion of H becomes even easier when we utilize
the fact that B is an orthogonal matrix. It is a simple matter
to verify the orthogonality of B by realizing it satisfies the
following two conditions: the inner products between each of
the column vectors, or between each row vectors comprising
B are zero, and each row or column vector is of unit length.
The first condition can be visually verified and the second
follows from Equation 24. Therefore B™! = B7T, and H™!
can be written as

- BT 0
H = _BTABT BT ] . (35)
Hence, we can rewrite quiation 28 as
zo=H g (36)
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keeping in mind that numerical inversion of H is not neces-
sary. The complete equations of motion are

3= { H:g } . (37)

Notice these equations are first-order decoupled - a charac-
teristic that is necessary to initiate the development of the
optimal control problem in the next section.

OPTIMAL TRAJECTORY GENERATION

If the image space rigid body equations of motion are viewed
as a nonlinear state space system we can cast the dynamic
interpolation problem into the determination of an optimal
trajectory based on optimal control theory. In this paper
the optimal rigid body trajectory is the one that minimizes
the total force and torque applied to the body, as well as
their derivatives, over a certain time period. Other perfor-
mance indices could be chosen, such as power or total energy
minimization. However, we restrict our analysis to applied
force and torque minimization in the following development.
The equations of motion depicted in Equations 1 and 2 can
be written as

z = a(z,u) (38)
where, according to Equation 37

a(z,u) = ,: H™g ] . (39)

Za

The performance measure we wish to minimize is

M= [Tawa @)
where 2
‘g(u) = guTu.

(41)
It is convenient to use the function M, referred to as the

Hamiltonian, which is defined as (see, for example, Bryson
and Ho (1975) and Kirk (1970))

H =g(u)+ A\"a (42)

where A is a vector of Lagrange multipliers. From this we
can state the necessary conditions to determine an optimal
trajectory as

=M
N’
(which is equivalent to Equation 38)

_9H
oz

Z (43)

(44)

and

_0H
=30
Equations 43, 44 and 45 comprise a set of thirty two bound-
ary value equations, which when solved, give us the opti-
mal state trajectories of the body. These states translate to
mass center position and velocity, and orientation and rate

(45)

1




of change of orientation trajectories for the body between
the given endpoints. Naturally, these trajectories satisfy the
boundary conditions imposed by the analyst. However, it
must be emphasized that Equations 43, 44 and 45 do not
require the force and torque components to satisfy any spe-
cific boundary conditions. Hence, Equation 38 should be
modified to make the necessary force and moment accom-
modations. We can append the relation
a=w

(46)
to Equation 38 to obtain

z = a(z,w) (47)
where the state vector z is now a 22-element vector contain-
ing the original sixteen states along with the components of
force and torque. With this adjustment the forces and mo-
ments are now treated as states, and w, the time derivative
of the applied force vector, becomes the control vector. The
vector a is rewritten as

H g
a(z,w) = Za . (48)
w
We also alter g to include the new control vector:
glu,w) = %(uTu +wlw) (49)

Equation 44 remains the same as given, keeping in mind
that z and H have changed. Equation 45 becomes
oH
0= 5w
The modified set of boundary value equations given by
Equations 47, 44 and 50 allow the additional specification of
the force state at each endpoint, and the resulting force tra-
jectory must satisfy these conditions. The modification of
g to include the time derivative of the u will help minimize
sharp changes in the applied forces to the body. We continue
by further analyzing the form of the co-state equations.
For notational ease define the Lagrange multiplier vectors

da=[ A A e 2 ]T, (51)
Ap = [ As A0 eeeee A1s ] (52)
and : r
Ae=[ M7 Mg e Az | (53)
thus,
=2 1 x| A (54)
Next, we partition z similarly as
z={za | 2o | 2z ]T (55)
thus,
20. = H—lg, (56)
Zy = Za (57)

(50) |
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and

Ze=W. (58)
The partial derivative given in Equation 43 can now be sep-
arated, taking advantage of the differing composition of the
sub-components of z. The first portion is comprised of the

first eight elements of X, and is written as

9z
==\T 59
32T (59)
or o3 o3 93
-T Za zZ Ze
Ao (AT6T+AT8" X 5 7) (60)

Upon substitution of expressions from Equations 56, 57 and
58 ‘the last equation becomes

r3(H'g)
(Xa 9zT 0z3

H and w are not functions of the first eight elements of z,
which comprise za, so we simplify Equation 61 into

)\T 3zT +/\T ow

) (6

T -1 08
- =—-(IH™ T+)\b)

= (62)

The second partial derivative portion is

9z
A= aT 22 52T (63)
o 8 H 3 8
Za w
= (AT ( g) ATa T + T ) (64)

Here, we can use some matrix mampula.tlon and the kro-
necker product “®” to rewrite Equation 64, devoid of the
partial derivative of H™?, .as

)“Z‘ =-AT(-H™! W(I QH ) ®g)+
H-! 5_2%;) (65)

Finally, since performance measure g is a function of u we

must write ]
T oz

Ao = ——2= — 66
¢ 9zT = 7 0zt (66)
or
T
'\c =21 uTu __()\T +
N G

Recall that z7 is actually the applied force vector u so Equa-
tion 67 is written as

T _ . Te-10g  18u’u
Ao =-XH uT ~ 2 4uT (68)
which becomes
3= aTH 28 T (69)

aT—.u .

Equations 62, 65 and 69, often referred to as the co-state
or adjoint equations (1975; 1970), complete the set of forty




_k

Figure 2: Initial and Final Positions

four boundary value equations. However, notice that the
control vector w appears explicitly in vector a in the state
equations. Since this vector is unknown prior to the inte-
gration of the boundary equations, it must be replaced with
components of z and A. The condition stated in Equation 45
provides the relationship to enable this substitution. Equa-
tion 45 can be expanded to give

_ 9g(u,w) r 0% :
0= o e A T (70)
This becomes
10wTw T Ow
0= 2 owT ¢ owT (71)
or _
wT ==aT. (72)

Equation 72 is the explicit expression for the control vector
enabling elimination of w from the state equations and co-
state equations. We illustrate these ideas with the following
example.

EXAMPLE

The ideas developed in this paper are demonstrated here
through numerical integration of the boundary value equa-
tions just derived. We will perform dynamic interpolation
of a rigid body motion between an initial and final state.
The information comprising these states are the image space
velocity z,, the image space position zs and the vector of
applied forces and torques u. For the initial state we have

0.0 ] - 0.0 7
0.0 0.0 0.0
0.0 0.0 0.0
0 ) .

Za = g.o Z = 01.205 u= gg ’ (73)
0.0 0.25 0.0 o
0.0 0.25 0.0

L 0.0 | L 0.0
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and at the final state

- 0.37 T - 0.55 1
0.37 0.55 3.1
0.38 0.55 3.1
_ |20 |, | os0 | |30 .
Za= | _jq | % 048 | =32 ] ()
~1.9 0.47 3.1
~1.9 0.47 3.2
| _8.3 ] | —2.5 ]

The initial and final positions of the rigid body appear as
shown in Figure 2.

The elapsed time during the motion interpolation is a
user-defined parameter. For this example we shall choose
At = 2.0 seconds. The resulting graphical representation
of the dynamically interpolated motion is illustrated in Fig-
ure 3.

Figure 3: . Dynamically Interpolated Motion

CONCLUSION

We have proposed and demonstrated a method for dynam-
ically interpolating the spatial motion of a rigid body. The
method relies on generating the equations of motion for a

rigid body using image space kinematic entities. The bound- -

ary value equations that result from the trajectory optimiza-
tion yield a rigid body motion that is dynamically consistent
between the given terminal states.
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