’ ¥

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pyplic re0OrUING OUTGEN 10T tNIS CONECTION O INTOFMATION 1S ESUIMATEA 10 average | nour Der respONse, INCILGING TRE TIME TOF FEVIEWING INSIFUCTIONS. S€ArCNING exIStING Qata sOurce:
p 2raIng this DUrGEN estiMate of any other aspect Of tn

qathening ang maintaining the aats 2na COMDIENING ana re q the COIIeCTION Of INtormation. Send comments re?
collection of intormation. including Suggestions tof requCIng this buraen. to Wasmngton Heaaauarters Services, Directorate for Information Ooerations and Reports, 1215 Jetterso

Davis rignway. Suite 1204, Ariington, VA 22202-4302. and t0 the Otfice of Management ana Budaet, Paperwork Reduction Project (3704-0188). Wasnington, DC 20503.

1. AGENCY USE ONLY (Leave dlank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 1995 Final 15 May 94 - 14 May 95
S. FUNDING NUMBERS

4. TITLE AND SUBTITLE
Conference on Computing Science & Statistics
Symposium on the Interface

6. AUTHOR(S)

) -94-G-0222
Edward Wegman (principal investigator) DAAKO4-3

8. PERFORMING ORGANIZATION

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
REPORT NUMBER

Interface Foundation of North America, Ipe%
Fairfax Station, VA 22039-7460

SORING / MONITORING

J'9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDREGW .
AGENCY REPORT NUMBER

U.S. Army Research Office

P.0. Box 12211
Research Triangle Park, NC 27709-2211

ARO 32588,1-MA-CF

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the

author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentatrion.
d : 12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 worgs)

The 26th Symposium on the Interface of Computing Science and Statistics was held on June 15-18, 1994 at the
Sheraton Imperial Hotel in Research Triangle Park, NC. The conference theme was "Computationally Intensive
Statistical Methods." The theme is especially appropriate as computational power has increased dramatically in
the last few years and the use of resampling techniques has boomed.

The Interface was s.ch.edqled between two other statistics conferences in the same area: the Spring Research
Conference on Statistics m.Indu.stry, hosted by the National Institute of Statistical Sciences, and the Third
World Congress--Bernoulli Society--IMS meetings, at the University of North Carolina in Chapel Hill.

The confgrence attracted 365 attendees. There were 23 invited sessions, 21 contributed paper sessions, 9 poster
presentations, 4 sl_xort courses, 2 practical tutorials, several statistical tutorial sessions, one keynote speech, one
banquet presentation, and 2 tours.

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Stanoard Form 298 (Rev. 2-89)
Oramcrocman mo AMEL Crd 730 10

T




Computing Science
and Statistics Volume 26

Computationally Intensive

Statistical Methods
Accesion For Editors
NTIS el g John Sall
Unarnounced ] Ann Lehman
By
Distribution] Proceedings of the
Availat?nity Codes 26th Symposium on the Interface
Dist Avas'},:gg,’ or
g1l |

19950703 216

INTERFACE FOUNDATION OF NORTH AMERICA

DTIC QUALITY INEPBEUTED 3




PUBLISHER'S FORWARD

Notices

The papers in this volume are printed exactly as they were submitted as a record of the conference and are
reproduced as received from the authors. These presentations are presumed to be essentially as given at the
26th Symposium on the Interface. The papers have not been reviewed and no claims are made by the editors
or publishers as to the originality or accuracy of their contents.

This volume is not copyrighted by the Interface Foundation of North America, Inc. although individual items
may be copyrighted by their authors. If no copyright notice is indicated, it is presumed that the author(s) have
not copyrighted their material and that you may freely copy the contents from this volume provided that you cite
the source. Publication in this volume does not preclude authors from submitting the papers to other
publications.

An example of the recommended citation of articles from this publication is
Heavlin, W.D. and Finnegan, G.P. (1994), "Dual space algorithms for designing space-filling
experiments," Computing Science and Statistics, 26, 41-47.
If more details are required, the editors and the publisher (Interface Foundation of North America, Inc.) may be
added.

Purchase of Previous Volumes

You may purchase this Volume and Volumes 20 through 25 (1988 through 1993) from S
Interface Foundation of North America, Inc. - RS
P.O. Box 7460 F T
Fairfax Station, VA 22039-7460.

Volume 22 (1990) is also available from .
Springer-Verlag, New York, Inc. "
175 Fifth Avenue - _— .
New York, NY 10010-3402 _ i

Volumes 18, 19, 20 and 21 (1986-1989) are available from
American Statistical Association
1429 Duke Street
Alexandria, VA 22314-3402
Interface '95 ' ' .
Please plan to attend the next Interface Symposium scheduled for June 21- 24 in Plttsburgh It will be hosted by
Carnegie Mellon University and the Pennsylvania State University with Michael Meyer and James Rosenberger
as joint program chairs. For details:

email: interface95@stat.cmu.edu
phone: (412) 268-3108 fax: (412) 268-7828
mail: Interface '95

Department of Statistics

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213 USA

Interface, Interface '94, Interface '95, Computing Science and Statistics, and the triangle logo are trademarks
of the Interface Foundation of North America, Inc.

ISBN 1-886658-00-5
PRINTED IN THE UNITED STATES OF AMERICA (1994)




PREFACE
1994 Interface Proceedings

The 26th Symposium on the Interface of Computing Science and Statistics was held on June 15-18, 1994 at the
Sheraton Imperial Hotel in Research Triangle Park, NC. The conference theme was "Computationally Intensive
Statistical Methods." The theme is especially appropriate as computational power has increased dramatically in
the last few years and the use of resampling techniques has boomed.

The Interface was scheduled between two other statistics conferences in the same area: the Spring Research
Conference on Statistics in Industry, hosted by the National Institute of Statistical Sciences, and the Third
World Congress--Bernoulli Society--IMS meetings, at the University of North Carolina in Chapel Hill.

The conference attracted 365 attendees. There were 23 invited sessions, 21 contributed paper sessions, 9 poster
presentations, 4 short courses, 2 practical tutorials, several statistical tutorial sessions, one keynote speech, one

banquet presentation, and 2 tours.

Conference Events

The conference started Wednesday afternoon with 4 short courses, followed by a mixer that evening. The short
courses were organized by Tom Devlin, who is continuing education coordinator for the Statistical Computing
Section of ASA. The courses were: Modern Nonparametric Regression and Classification, by Trevor Hastie
and Rob Tibshirani, Resampling-Based Multiple Testing, by P. H. Westfall and S. S. Young, Algorithms for
Estimation and Visualization of Multivariate Density Functions with Applications to Clustering, by David W.
Scott , and Data Analysis using Interactive Dynamic Graphics: An Introduction to XGobi, by Di Cook, Martin
Koschat, and Deborah Swayne.

On Thursday morning, the keynote address was presented by G. W. “Pete” Stewart professor in the Computer
Science Department and Research Professor in the Institute for Advanced Computer Studies at the University of
Maryland. Pete talked about "Gauss, Statistics, and Gaussian Elimination,” in which Gauss is seen as a
statistician inventing numerical methods in the service of fitting data. Pete Stewart is a well-known authority in
the field of numerical linear algebra. Originally a student of Alston Householder, he is the author of over ninety
papers on various aspects of numerical analysis and matrix computation. His books include Introduction to
Matrix Computation and, with J. G. Sun, Matrix Perturbation Theory. He is a co-author of the LINPACK
package for linear algebra. Pete was introduced by Bob Funderlic, North Carolina State University.

On Thursday evening, there were tours to the UNC Graphics and Image Lab in Chapel Hill, and to SAS
Institute in Cary. The feature at the UNC lab was virtual reality and the Pixelplanes 5 parallel graphics
computer. The feature at SAS Institute was the new 400,000 square foot research building.

On Friday, a banquet dinner was held with music by the Bluegrass Retreat. Interface business manager Ruth
Lee played bass guitar. Dinner was followed by a presentation on computer animation by Wayne Lytle, an
award-winning computer graphics animator from the Cornell University Theory Center. Wayne's presentation
featured scientific animations describing the recent breakthrough discovery of planets in a distant star system.
Particularly enjoyable were a humorous animation on glitziness overload in scientific presentations, and a
segment on music animation.

The Conference Organization

Interface Conferences are sponsored by the Interface Foundation of North America. IFNA is a nonprofit
educational corporation founded in 1987 to sponsor the symposium and publish the proceedings. IFNA also co-
publishes the Journal of Computational and Graphical Statistics.
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The conference is undertaken with the support and cooperation of the following societies: the American
Statistical Association, the Institute for Mathematical Statistics, the International Association for Statistical
Computing, the Society for Industrial and Applied Mathematics, and the Operations Research Society of

America.

SAS Institute hosted this year's conference, with John Sall serving as program chair. SAS Institute is a
software company specializing in statistical computing, and is located in nearby Cary, NC. SAS Institute
provided personnel and services free of charge for the meeting.

The program committee and session organizers were Stephen G. Eick, J. S. Marron, Russ Wolfinger, Sally
Morton, Mike West, S. Stanley Young, Raoul LePage, Ron Gallant, Alex Georgiev, Bill DuMouchel, Cyrus R.
Mehta, Chris Portier, Ed Wegman, David Rocke, Iain Johnstone, Peter Munson, Tim Hesterberg, Richard
Smith, Francoise Seillier-Moiseiwitsch, Forrest Young, and John Elder. Featured speakers included Adrian
Smith, Andrew Barron, and Mary Ellen Bock. Additional tutorials were given by Tim Arnold and Phil Spector.

Session chairs included Jianging Fan, Lisa LaVange, James L. Rosenberger, Mark Little, Nick Fisher, Ming
Tan, Wolfgang Hartmann, John Elder, Dave Dickey, Karen Kafadar, Phil Spector, Warren Sarle, John Nash,
George Guirguis, Al Best, Forrest Young, Alan Genz, Phil Spector, Mary Ellen Bock, Cyrus R. Mehta, Chris
Portier, Leonard B. Hearne, Bill Kemple, Feng Gao, Ying So, Deborah Swaine, Dennis Boos, and Gordon

Johnston.

Outside of the program, the people that put the conference together were: Ruth Lee, conference business
manager, Susan Byrd, hotel coordinator, Armistead Sapp, equipment manager, Jane Pierce, abstracts editor,
Stefanie Barber Mueller, Kristin Rinne, Marybeth Mahoney, Curt Yeo and SAS Institute Copy Center, for
graphic arts, Lynn Fountain, Chris Gilmore, Bob Rodriguez for the SAS tour, Linda Houseman for the UNC
tour. Interpath provided Internet connections. The IFNA head office with Ed Wegman and Pat Joyce did the
printing, mailing, grant administration, and accounts payable.

John Sall and Ann Lehman
Editors

Please plan to attend the next Interface Conference, scheduled for June 21-24 in Pittsburgh. It will be hosted by
Carnegie Mellon University and the Pennsylvania State University with Michael Meyer and James Rosenberger

as joint program chairs. For details: :

email: interface95 @stat.cmu.edu
Phone: (412) 268-3108 Fax: (412) 268-7828
Mail: Interface '95

Department of Statistics
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213, USA.
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1. Introduction

Everyone knows that Gauss invented Gaussian elimina-
tion, and, excepting a quibble, everyone is right.! What
is less well known is that Gauss introduced the proce-
dure as a mathematical tool to get at the precision of
least squares estimates. In fact the computational com-
ponent in the original description is so little visible, that
it takes some doing to see an algorithm in it.

Gaussian elimination, therefore, was not conceived as
a general numerical algorithm with applications in statis-
tics and least squares. Rather it was a procedure that
sprang from the interface of statistics and computation.
Since the full story is known only to the few who have
consulted the original sources, I hope my readers will be
interested to see how Gauss did things. But there is more
than the satisfaction of idle curiosity here. Gauss and
Laplace were the premier statisticians of their day, and
Gauss alone was the premier numerical analyst. Today
we still have something to learn from observing Gauss’s
practices.

2. Chronicles

The principle of least squares arose from the problem
of combining sets of overdetermined equations to form
a square system that could be solved for the unknowns.
The problem went under the name of the combination
of observations, and has been well surveyed by Stigler
[23] in his History of Statistics. By way of background, I
will relate in chronological order the major events in the
story of least squares, from Gauss’s first discovery to his
final treatment in the 1820’s.

In his correspondence, Gauss asserted that he had dis-
covered the principle of least squares in 1824 (or 1825,
the dates vary). Gauss seems to have had little regard
for the principle itself, and even said he thought others
must have used it before him. In June of 1828 Gauss
[11, v.10] made the following entry in the little diary
of discoveries he kept from 1796 to 1814: “Probability

1The quibble is that in 1759, in the very first paper to appear
in his collected works [14], Lagrange gave the basic computational
formulas for Gaussian elimination. His purpose, however, was to
determine if a critical point was a minimum, not to solve linear
equations. There is no indication that the paper had any influence
on Gauss, or anyone else.

calculus defended against Laplace.”? Laplace, following
Boscovich [1, 16], had suggested that observations be
combined by minimizing the sum of the absolute values
of the residuals subject to the condition that the resid-
uals sum to zero. Gauss felt that this way of combining
observations violated the dictates of probability theory,
and his alternative was the first probabilistic justification
of least squares.

The following entry in thé diary, also dated June 1898,
contains the statement: “The problem of elimination re-
solved in such a way that nothing more can be desired.”?
I take this entry to be the first reference to Gaussian
elimination. But a decade was to pass before Gauss pub-
lished either the probabilistic justification or the elimi-
nation procedure.

Although we tend to regard Gauss chiefly as a math-
ematician, it was as an astronomer that he first made
his mark. On New Year’s Day of 1801, the astronomer
Piazzi discovered the asteroid Ceres. The new planet be-
came unobservable after only nine degrees of an arc had
been recorded, and astronomers were faced with problem
of determining where to look for it next. Gauss under-
took the calculation, using new techniques in physical
astronomy and presumably his principle of least squares.
At the end of 1801, he predicted where in the heavens the
asteroid would be found, and his reputation was made.

Gauss, who was generally slow to publish, began work
in 1805 on his Theoria Motus Corporum Coelestium, in
which he described his techniques for computing orbits
and gave his first probabilistic justification of the prin-
ciple of least squares. He finished in 1806, but his pub-
lisher, worried by German losses to Napolean, insisted he
translate the treatise into Latin. In consequence it did
not appear until 1809 [2]. In the meantime, Legendre
[20] published and named the method of least squares
(la méthode des moindres quarrés) in an appendix fo a
memoir appearing in 1805. When the Theoria Motus fi-
nally appeared, Legendre found that Gauss had claimed
the principle for his own, and he took exception. The
result was a priority dispute, which need not concern us
here. 4

2In the original Latin: Calculus probabilitatis contre La Place
defensus.

3 Problema eliminationis ita solutum, ut nikil amplius desider-
ari possit,

4Placket [21] gives balanced survey with translations from
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In the Theoria Motus, Gauss had assumed the errors
in the observations were normally distributed. In 1811,
Laplace [17] his central limit theorem give an essentially
different justification of least squares. This is not the
place to enter into details, but briefly Laplace showed
that the solutions of a combination of equations were
asymptotically normal and from this concluded that the
least squares combination would minimize the mean ab-
soluteerror in the solutions. Laplace’s approach does
not readily extend beyond two unknowns.

The final chapter occurred in the 1820’s when Gauss
[5, 6, 8] published two memoirs on least squares. The
first, in two parts, contains yet another justification of
least squares — Gauss’s famous minimum variance theo-
rem. These papers also contain some nice algorithmics,
which will concern us later.

3. The Precision of Estimates

The first appearance of Gaussian elimination in print
occurs in Section 182 of the Theoria Motus. In order to
understand what Gauss is about, we will have to sketch
some background.

Gauss (after a linearization) considers the model®

y=Xb+e,

where X is n X p. The errors ¢; are assumed to be in-
dependent randome variables with common distribution
p(e). Gauss introductes the function

e(y1 — xIb)p(y2 —x3b)---p(yn —x3b),  (3.1)

where the xT are the rows of X and uses a Bayesian
argument with a uniform prior to argue that the value
of b that maximizes (3.1) is the most probable value of
the unknowns.

Gauss now supposes the distribution of the e; is nor-
mal; that is, p(e) o e~%"¢’. He identifies the parameter
h with the precision® of y. The function (3.1) now be-
comes proportional to

eV, (3.2)

where
2 = (y - Xb)(y — Xb)

is the residual sum of squares. Thus, Gauss’s most prob-
able value is obtained by minimizing the residual sum

Gauss’s correspondence.

5We will make free use of matrices in what follows, but only as
means of abbreviating Gauss's scalar equations.

6We must not use terms like variance or standard deviation
here. The nurnber k4 is simply a parameter in a specific distribu-
tion. Only in the Theoria Combinationis will Gauss introduce the
second moment of a general distribution as a measure of variation

of squares, which justifies the principle of least squares.
The normal equations can be derived as usual by differ-
entiation.

Gauss next turns to the problem of estimating the
precision of the least squares estimates. His technique
is to integrate all but the last unknown out of (3.2),
after which the precision can be read off. However, to
perform the required integrations £ must be expressed
in a special form, and the tool for arriving at that form
is Gaussian elimination.

The procedure as given by Gauss is the following. Let

160 _

u = 35, = r11b1 + r1gba + - F ripby — 81,
and let \
G =Q- 4
LSF

Then clearly the derivative of ©; with respect to by is
zero, so that Q, is independent of b;.

One more step will illustrate the general procedure.
Set

1dQ,
up = 3 db, = ragby + rogbs 4+ - - -+ ropby — 82,
Then 9
Uz
Q=0 ——=
r22

is independent of b; and b;. Continuing in this manner
we arrive at the decomposition

2 2 2
u u u
Q=-—1+-—2+"'+—P+p,
i1 T2 Tpp
in which u; is independent of by,...,b;—; and p is con-

stant.
Gauss now considers the expression

-B0 _ 2 Y3 . _z”g __2_“_3_
e exp(—h 7‘11) exp(—h 7.22) exp(—h rpp)‘
and integrates with respect to b; over the real line. Since
the last p — 1 factors in this expression are free of b,
they remain unchanged by the integration. The first
factor integrates to a constant. Thus Gauss is left with
a distribution proportional to

2
—-h30, _ 242 2 Yp
e =exp(—h°—=)---exp(—h*—=
p(-h'D0) - exp(-h2CE),
which is free of b;. Continuing this process of integrating

out the parameters §;, Gauss finds that the distribution
of b, is proportional to

u?
exp (—h? -'ﬁ) ,




where
up = Tppbp — Sp.
Gauss concludes that the most probable value of by, ob-
tained by setting u, = 0, is
- s
Tpp

and its precision is

Top
Gauss now goes on to show that if you write the nor-
mal equations in the form

Ab=c¢c (3.3)
and express b as a function of ¢ in the form
b = Ve, (3.4

then the (p, p)-element of V is r—. Since the resulting
expression for the precision clearly does not depend on
the posmon of the unknown, Gauss concludes that the
prec131on of any of the estimates b; is h/vii.

It is ironic that the Theoria Motus should have become
the principle reference for Gaussian elimination as a com-
putational tool. As we have seen, Gauss used elimination
to give a derivation of one of the most important results
of linear regression theory. He was certainly aware of
the computational consequences of his elimination pro-
cedure, and promises to describe them in a later work.

'But computational considerations are absent from the
Theoria Motus itself. Gauss merely points out that the
normal equations can be solved by ordinary elimination
(eliminatio vulgaris), presumably a variant of what we
now call Gauss-Jordan elimination. An extension, which
Gauss will later call general elimination (eliminatio in-
definite), can be used to pass from the normal equations
(3.3) to the inverse system (3.4).

4. The Scalar Connection

In 1810, in Disquisitio de Elementis Ellipticis Palladis
[3], Gauss gave the numerical details of his algorithm
and illustrated it with an example. The formulas can
be derived by observing that a homogeneous quadratic
form is determined by its matrix of second derivatives.
Specifically, if we set

1 o%*Q

2 0b;8b;°

then it follows from the formula

_1.60
2011 6b1

ag; =

Q=Q-
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that
a_ 10 _ Gi10y4

a'J 2 3b, (% = % a )

In the expression on the right, we recognize the formulas
for performing one step of Gaussian elimination, as we
understand it today, on a matrix whose elements are a;;.
This is essentially the algorithm Gauss describes in the
Disquisitio.

To complete the solution of the normal equations by
Gaussian elimination, note that since

2 2

'U u u.
Q=2 4+-24...4 L),

T 722 Tpp

the function Q assumes its minimum value p when

yp=up=---=up =0.

Since

0=1up = rppbp — 5p
is a linear equation involving only by, it can be solved
immediately for b,. Having determined b,, one can solve
for bp—y from the equation

0= tp-y = Tp-1,p-18p-1+ Tp-1,pbp = Sp-1.

Continuing in this manner, we can determine estimates
for all the unknown b,. This of course is nothing more
than the back substitution phase of Gaussian elimina-
tion.

5. The Matrix Connection

The above description of the algorithm is incomplete, in
the sense that it does not give formulas for the constant
parts s; of the functions u;. To see where they come
from, it will be useful to express the algorithm in terms
of matrices.

The function  can be written in the form

XTX XTy\ (Db
—(wT _
a=07 -1 (5x %2¥) (%)

=(bT -1) (f-? f;) (—bl)

If we set
i1 T2 vt Tip 51
0 ryp -0 T 82
R= and s= ,
0 0 .. rpp sP

then it is easy to verify that

(& 9=C= )% MG
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where
D = diag(r11,722,...,7pp)-

Thus Gaussian elimination, as practiced by Gauss,
amounts to factoring the augmented cross-product ma-
triz into a lower triangular matrix, a diagonal matrix,
and the transpose of the lower iriangular matrix. It
is common practice today to work with the augmented
cross-product matrix.

The vector u whose components are the functions u;
can be written in the form

u=Rb-s.

The process sketched above of setting the u; to zero and
back-solving amounts to solving the triangular system

Rb =s.

6. The Computation of Variances

Writing in 1821, Gauss [4] summarized his and Laplace’s
justifications of least squares as follows.

From the foregoing we see that the two justifi-
cations each leave something to be desired. The
first depends entirely on the hypothetical form
of the probability of the error; as soon as that
form is rejected, the values of the unknowns
produced by the method of least squares are
no more the most probable values than is the
arithmetic mean in the simplest case mentioned
above. The second justification leaves us en-
tirely in the dark about what to do when the
number of observations is not large. In this
case the method of least squares no longer has
the status of a law ordained by the probabil-
ity calculus and has only the simplicity of the
operations it entails to recommend it.

In the Pars Prior of his memoir Theoria Combinationis
Observationum Erroribus Minimis Obnoziae [7], Gauss
resolved the dilemma by introducing the notion of mean
square error as a measure of variance and showing that
among all linear combinations of the observations that
produced exact estimates in the absence of error the least
squares estimates have least mean square error.

In the Pars Posterior of the Theoria Combinationis
[6], Gauss addresses the problem of computing variances.
He points out that his elimination method gives only the
variance of the last unknown. Since (he continues) a gen-
eral elimination to invert the normal equations is expen-
sive, some calculators have adopted the practice of per-

forming the elimination with another unknown placed
last.” Gauss says that he will give a better way.

Gauss actually gives two solutions to the problem. In
the first he shows that if one inverts the system Rb =s
to get Ts = b, then the matrix V obtained by passing
from (3.3) to (3.4) can be written

V=TDTT,

Thus the diagonal elements of V can be computed as a
weighted sum of squares of the rows of T. Gauss gives
two algorithms for computing T, one of them particu-
larly advantageous when only a few variances are to be
computed.

The second method is a very general result for com-
puting the variance of an arbitrary linear combination

t=gTb+n

of the unknowns b. Specifically, if we pass from the
variables b to the variables u, so that ¢ assumes the

form
t=hTu+ f,

then { is the value of  at the least squares estimates of
the unknowns,® and its variance is proportional to

hTDh.

Moreover, h may be obtained by solving the triangular

system
RTh=g.

Thus Gauss reduces the problem of computing a variance
to that of solving a triangular system.

A modern practice in numerical linear algebra is to
compute a matrix decomposition and then use it in a
variety of computations. Although it would be anachro-
nistic to call Gauss a decompositionalist, he calculated
like one. The results of his elimination serve as a com-
putational platform from which both estimates and vari-
ances can be obtained.

7. Computational Complexity

Did Gaussian elimination represent an improvement over
the practices of the day? If we assume that people were
using Gauss-Jordan elimination to solve systems, they
would have performed roughly % p® multiplications and

7Laplace, for example, recommended a similar procedure in the
first supplement to his Théorie Analytique des Probabilités [18].

81t has been asserted [22] that Gauss established that f enjoyed
the same minimum variance properties as the components of b.
Although the result is true, Gauss never proved it.




about the same number of additions. Gaussian elimina-
tion, on the other hand, requires about %pa multiplica-
tions and additions. Thus Gaussian elimination repre-
sents an improvement of a factor of about three.

If variances are required, the inversion of the normal
equations by Gauss-Jordan elimination would cost an
additional %ps multiplications and additions for a total
of £p°. With Gauss’s approach the total is 3p°, an im-
provement by a factor 3.

In an age in which a workstation can solve a system
of order 100 with barely a hiccup, it is easy to be cav-
alier about factors of three. To see what it might have
meant to people who had to do their calculations by
hand, consider the following quote from A Treatise on
the Adjustment of Observations published in 1884 by T.
W. Wright [24, p.173):

Dr. Hiigel, of Hessen, Germany, states that he
has solved 10 normal equations in from 10-12
hours, using a log. table, but that 29 equations
took him seven weeks.

Without Gaussian elimination Dr. Hiigel’s twelve hours
would have stretched to a day and a half, and his seven
weeks to almost half a year.

8. Notation

Gauss, like most mathematicians of his time, made spar-
ing use of subscripts and superscripts, prefering to use
primes or sequences of letters to distinguish variables.
For example, Gauss writes his linear model in the form

v =az +by +cz +etc.+1
v =adz +bVy +cz +ete. + 1
v =a"z +b'y+ 'z + etc. + 1" etc.

Here z, y, z, etc. are the unknowns we have been de-
noting by b; and the v’s are the errors. Although this
expansive notation appears awkward to us, in Gauss’s
hands it could be quite expressive. For example, here
(slightly edited) is how he writes the normal equations.

0 = [aa]z + [ab]y + [ac)z + etc. + [al]
0 = [ab]z + [bbly + [be]z + ete. + [bl]
0= [ac]z + [be]y + [cc]z + ete. + [e]] ete.

Note the elegant way in which the notation [ab] suggests
a sum of products from the a and b columns.

Gauss’s notation for elimination is equally well con-
sidered. The following is from the Supplementum [8] to
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the Theoria Combinationis

[bb, 1] = [bb] — [2
[be, 1] = [be] — Lopllae
[bd, 1] = [bd] — [22lsdl
etc.

e, 2 =[eel - e —
o0 =[ed - 5 - s

ete.
2 2 2
[da, 3= [ad) - By — T - 2l
Here as above, a pair of letters indicates the position in
the normal equations. The appended numerals indicate
the level of elimination. Incidentally, this seems to be
the first appearance of the inner product form of the
algorithm, in which the matrix R is generated row by
row. It is the preferred form for hand calculation, since

one need only record an array of %pz numbers.

9. Legacy

The casting of Gauss’s results in matrix notation in some
sense trivializes them. With our knowledge of matrix
algebra, we can leap ahead to results that researchers
of Gauss’s time could only arrive at by more pedestrian
routes. Yet we must be careful not to be patronizing.
Gauss and his successors accomplished a great deal with
their techniques and notation.

For example, Gauss’s presentation of his algorithm as
elimination in a quadratic form strikes us as unusual to-
day. Yet it was the first of many reductions of quadratic
and bilinear forms that later became our familiar matrix
decompositions, including among others the LU decom-
position, the Jordan canonical form, and the singular
value decomposition. As Kline points out in his book
Mathematical Thought from Ancient to Modern Times
[13, Ch.33], by the time the use of matrices had become
widespread, many of the principal results of matrix the-
ory had already been established.

Gauss’s algorithms, written in his notation, sur-
vived into the twentieth century, especially in books on
geodesy. Thereafter, as people began to use present-day
notation, his contributions became less visible. By 1959,
when I first began working with computers, Gaussian
elimination had come to mean any triangularization of
a system of equations, symmetric or nonsymmetric, fol-
lowed by a back substitution, and none of us had an idea
of what Gauss had actually done.

Yet what he did is worth recalling. Gauss worked with
real-life problems and got his hands dirty solving them.
He always looked for the best, most efficient algorithm;
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and when he had it, he expressed it in a clean notation
that suggested how to use it. These virtues are no less
important today than in Gauss’s time.
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Abstract

A simple algorithm for estimating the regression func-
tion over the United States is introduced. The approach
allows for data obtained from a complicated sampling
design, as well as for the inclusion of a few additional
covariates. The regression estimates are obtained from
an associated probability density estimate, namely the
averaged shifted histogram. The algorithm has proven
especially successful over a large mesh, say 300 by 200
nodes, in a data rich setting, even on a 486 computer
running Splus. Commonly available alternative codes
including kriging failed to produce useful estimates in
this setting.

1. Introduction

The problem of nonparametric regression has at-
tracted a wealth of attention since the pioneering pa-
pers of Nadaraya (1964) and Watson (1964); see Eu-
bank (1988) and Hardle (1990). Available algorithms
range from the simple running median, to variational
formulations giving rise to spline estimates, to kernel es-
timates, and finally local polynomial fitting. There has
been a great deal of recent discussion about the right and
wrong way to do nonparametric regression. Some have
argued for the elegance of splines, while others find the
local polynomial approach compelling, but some argue
for one’s personal preference.

From our experience in the density estimation setting,
we find that direct methods work well in 1 to 5 dimen-
sions, but even in 3-5 dimensions, the size of the meshes
is growing exponentially, and sufficient data often aren’t
available. In the regression setting, we find that the dis-
cussion in the literature has focused too heavily on rel-
atively small 1 and 2 dimensional data sets where most
methods perform reasonably well. In this manuscript,
we consider a more realistic and stressful problem deal-

ing with farm data such as that routinely surveyed by

the U.S.D.A. These surveys result in very large databases

*Supported in part by NSF grant DMS-9306658.

over nonuniform spatial meshes (see Figure 1), compli-
cated by nonuniform weighting schemes as well as inter-
est in several covariates.

Large data sets and/or large mesh sizes result in prac-
tical problems. Too many regression methods have so-
lutions or algorithms whose exact form is determined by
the number of data points (splines, kernels, etc.) that
make computation infeasible even on 486 level comput-
ers. The key to computational efficiency is the same as
for density estimation: binning the multivariate data
(Scott, 1992; Hardle and Scott, 1992; Fan and Marron,
1994).

Beyond 4 or 5 dimensions, direct mesh methods of any
kind encounter practical difficulties resulting from the
curse of dimensionality. Some form of advanced projec-
tion technology or additive modeling has proven useful
(Hastie and Tibsharani, 1990).

However, “real data” can throw a curve at the best
planned evaluation of even carefully constructed algo-
rithms. We have mentioned the special problem of large
samples. Here we would like to focus on problems re-
sulting from a mixture of spatial and continuous vari-
ables. . They are: (1) irregular boundary definition, (2)
data collected by a sampling design, and (3) a very large
mesh required to have high spatial resolution. In princi-
ple, an exact irregular boundary scheme can be handled
(perhaps with great programming effort), and weighting
can be introduced into the estimation phase. However,
many simple-minded implementations run into numeri-
cal instabilities with large meshes.

We wish to show how simple the binned methods
(specifically the ASH or WARP algorithms) can be mod-
ified to handle such data, even with very fine 300 x 200
spatial meshes, on a 486 level machine.

We find that the common focus on boundary behavior
is only a minor part of our thinking. Firstly, we are deal-
ing with large samples and thus only a relatively small
bandwidth is required. (By way of contrast, many sim-
ulation examples involve n = 100 1-dimensional data
where the bandwidth may span 1/4-1/2 of the data




interval, making boundary conditions dominant.) Sec-
ondly, for mapping purposes, we find the boundary ef-
fects and corrections of little practical importance to-
wards understanding and summarizing our data explo-
ration/presentation efforts.

Ironically, we have found “internal boundary” situa-
tions more of a practical nuisance. These occur in ar-
eas internal to the USA, say, where there are no data
(because there is no agriculture), inducing a boundary
effect caused by sparseness rather than a physical exter-
nal boundary. We identify this situation by observing
how low the density falls in each region where we are
evaluating the regression function (i.e., how close to 0
is the denominator?). This is a multivariate version of
the well-known practical problem of “extrapolation” of
regression estimates beyond the support of the data.

In our experience, many off-the-shelf kriging or regres-
sion programs cannot handle large rectangular meshes of
300 x 200 points covering a mercator projection of the
lower 48 states. Rewriting such codes is always a possi-
bility, but we have found that the simple ASH ideas pro-
vide excellent estimates and dramatic correlation with
actual photographic evidence. Carr (1990) has used raw
(hexagonal histogram) bivariate binning techniques. We
are interested in providing some additional smoothing
(that will provide improved estimation quality) as well
as handling additional covariates.

2. Algorithm Motivation

We start with a simple description of the ideas and
algorithms for handling (z,y, z) data where (z,y) rep-
resents the center of one of our bivariate bins (approx-
imately 10 miles by 10 miles) containing one or more
U.S.D.A. sampling units. The variable z represents the
quantity of interest; for example, total farm income or
the fraction of Federal dollars in farm income. We seek to
estimate E [Z(z,y)] or Z(z, y) in areas where f(z,y) > 0.

2.1. Kernel Regression Estimation

Let K be a symmetric kernel function with support
on (—1,1) satisfying f_ll K(t)dt = 1. Given a positive
smoothing parameter h, define the scaled kernel function

by
Kn(t) = %K (%)

We take as a starting point the well-known result (Scott,
1992) that the Nadaraya-Watson bivariate regression es-
timator

Soieq 2 Kn(z — 2:)Kn(y — wi)
>oims Kn(z — ) Kn(y — %)

m(z,y) =
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is the ezact result of the computation
I zf(:c, y,2)dz
[ f(z,y,2)dz

where the trivariate product kernel density estimator is
given by

m(z,y) = /zf(zlz,y) dz =

f(:c,y, 2) = %Z Kp(z — ;) Kn(y — 4) Kn(z — 2).

i=1

Clearly
R 1&
[ fewade = 13K - 2 Ky - )

since [ Kp(z—2)dz = [Ki(2)dz = 1.

Also, fzf(z,y, 2)dz = Y ziKn(z — z5) Kn(y — %),
since

/th(z —z)dz = /(z + 2z)Kn(2)dz = 0+ 2,

recalling that [ zKx(z)dz = 0 (by symmetry).

Clearly, different smoothing parameters h;, hy, h;
could be chosen for each dimension. Interestingly, the
particular choice of h, has no effect on the regression
estimate!

It is well-known (Hardle, 1990) that local polynomial
regression (LPR) estimators and spline methods have
equivalent kernel forms. LPR does have the advantage
that the kernel adjusts properly at the boundary to re-
duce bias (Fan, 1992).

However, the practical gain of the bias correction is
often small, as f(z) — 0 near the boundary and/or
m(z) — 0 near the boundary. Many authors consider
only cases where f(z) is nearly constant over a finite in-
terval, or even the simplest case of a fixed equally-spaced
mesh. These situations tend to accentuate boundary
concerns and problems.

2.2, ASH Density Algorithm

We mimic the simple Nadaraya-Watson idea except on
a more computationally oriented estimator, the averaged
shifted histogram (ASH), introduced by Scott (1983,
1985, 1992). We remotivate the multivariate ASH.

Let us slightly alter our notation so that

1,22y, %n, yl,yg,...,yny 21,22,...42n,

are the midpoints along each axis of a trivariate mesh of
size ny X ny X n, with spacings 6;,06y,6;. Thus
hz hy h,

Arj=b=— Ay=6b,=— Az =6 =—
mg My m,
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for some integers mg, my, m, and smoothing parameters
hz,hy, h,.

Let vjx1 denote the number of data points (z,y,2);
falling in bin Bjx;. Note that )" vjx = n, and we expect
many of the v;; to be 0.

The “naive ASH” is constructed by “computing” m; x
my xm, (different) trivariate histograms, each with rect-
angular bin size h; x hy X h;, but with origins shifted by
multiples of é,,6,,6, along the coordinate axes. To be
specific, one bin is anchored at the point (jé;,kéy,16,),
as j, k,l each range from 0 to np — 1,ny — 1,n, — 1.

Scott (1985) showed that this was a special case of a
general weighting scheme:

- R 1
fjkl = f(fj, Yk, Zl) = m G‘L/:cwabcyj+a,k+b,l+c

where the sums range over —m; < a < mgz, —my < b <
my, and —m, < ¢ < m,, and

b
() () (2)

S STk () K () & (%)
where K is supported on (—1, 1) as before. Note that in
an obvious notation, wgs. = wewpw,. This is a classic
discretization scheme. The weights {w,,wp, w.} need
only be computed once.

We first verify that the trivariate ASH is indeed a den-

sity function. Clearly it is nonnegative. To prove that it
has integral 1, we compute

///f(z,y,z)dmdydz:&,&ﬁ,Zzz.fjkz
i k1
= Y T Y wasa ks
j k i a b [
— % Z Z Z Wabe ZZ Zl/j+a,k+b,l+c
a b ¢ i k1
= ZZZ Wape = 1,
a b [

assuming a buffer of 0’s around the edges of the {1}
array, so that

Zzzl’j+a,k+b,l+c =1 foralla,b,ec.
i k1

In practice, the array { fJ ri} is initialized to all 0’s, and
then the influence of every bin Bj;; for which vj5 > 0 is
added to the appropriate subset of fj“.

We could define f‘(:c,y, z) to be a spline surface in-
terpolated from the above array, but for simplicity, we
take it to be constant over each bin Bjr; and assume it

vanishes outside the mesh; that is, f(:c, ¥, z) = 0 there.

Wabe =

2.3. ASH Regression Algorithm
Following the Nadaraya-Watson motivation, the ASH
regression estimator is found by computing

e = n(zj,u) = E(Z|1X = 2;,Y = )

= /Zf(zlzjxyk)dzz fzfng)ykyz)dz .
f(-"’j:yk)

The numerator can be computed by integrating bin by
bin along the z axis:

Ny 2146, /2 R Nz .
Z/ if(zj, 2= m)dze =Y 6:21f(zj, e, 21),
1=1 Ya=8:/2 1=1

since [zdz = 6,2 for the limits given (recall f is con-
stant over each bin). Thus

T2 { b T T S Wabe¥ita kb e §

__1 -
N850y 2 2ob WabVijta,k+b

_ Do b Wab X e We Doty AVjtakablde
220 208 WabVjta,k+b

Now the final sum in the numerator can be computed by
observing that it is almost a conditional expectation:

"

mjk =

n

z V'
F4a,k+bl+c =
2 2y Vi k+b = Zab Vita,k+b
=1 Vitak+d

as we let m, — oo (or equivalently let §, — 0 with h,
fixed), where

_ 1
Zab = ;— Z 25 .
ab (xlylz)l'eBab

Continuing, we note that ) w. = 1, so that we finally
arrive at the final form of the ASH regression estimator

as:

iy = e Db FabWablitakth
? D0 b WabVitak+d

2.4. ASH Regression Extensions
REMARK 1: For the survey sampled data, each data
point takes the extended form

{(z,9,2z,2)i, i=1,...,n},

where «; is the effective sampling weight. Previously,
we have assumed that a; = 1 for all cases. Here, the
frequency counts vji; are replaced by the sum of these
a; weights rather than 1’s.




REMARK 2: Occasionally, our data will include other
covariates and be of the form

{(:c,y,z,t,a),-, i=1,...,n},

where ¢ is some covariate of interest. Then we com-
pute the ASH regression estimator m(z,y,t) by simply
adding another loop to the numerator and denominator
of the i equation above. The sampling weights are
the same of course. What could be easier? Typically, we
will map the estimate at several levels of ¢, for example,
m(z,y,t =1g).

REMARK 3: The 1-dimensional ASH regression pre-
scription was first published in Hirdle and Scott (1992)
under the name WARPing.

3. Mapping Details

After the “usa()” is plotted, the regression ASH is
computed over the entire 300 x 200 mesh and added to
the figure by using either the Splus “contour” or “image”
function and the argument “add=T". Typically, the con-
tour lines will extend slightly outside the US borders. A
simple trick removes those lines, by applying “polygon”
to two pieces that outline half the borders of the US and
the surrounding rectangles. This will be illustrated in
the examples.

The internal boundary solution is not handled in an
elegant fashion currently. Thresholding could be applied,
but we find the problem is relatively localized and have
left it for the reader to discover. A bootstrap algorithm
has been implemented to estimate the pointwise error.
We have used this to replace or delete regions where the
estimator behaves erratically.

4. Examples

The “real” data considered in this section come from
the Farm Costs and Returns Survey. This is a stratified
complex design survey which is used to measure finances
and production of all U.S. agriculture. The weight of
each observation was taken to be the inverse of the prob-
ability of selection. We begin with a small bivariate sim-
-ulation.

4.1. A Simulation Example

A surface with 3 bumps typical of those encountered
in USDA work was constructed on a 50 x 50 mesh (not
shown). The surface was contaminated twice: first with
Gaussian noise and then with Cauchy noise. From this
complete set of 2,500 points, 200 points were selected at
random. The estimated ASH regression surface was com-
puted with m, = my = 5. The trimodal structure was
evident, but then so were some spurious peaks induced

eSS
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by the Cauchy noise. Clearly, the raw ASH algorithm
has no robustness component included.

We next applied the loess (Cleveland, 1979) Splus
function to these data. A coplot of x vs. z given y was
computed and a perspective plot of the entire estimated
surface examined. The loess surface is significantly bet-
ter as it includes iteration to provide more robust an-
swers to minimize the effects of the Cauchy noise.

4.2. Farm Costs and Returns Survey Example

A sample of n = 13,000 of 1.7 million farms was drawn.
For these data, the FIPS code for each observation was
known. Thus the exact location of each observation was
assigned to the location of the population centroid of
the county where the farm is located. The map of the
3,100 centroids is shown in Figure 1. Observe that the
resolution is much greater east of the Mississippi.

When loess, kriging, and other methods were applied
to these data, each failed to produce a usable surface
from the data. The result was always a smooth surface
for most of the country with an enormous peak at an
edge. However, the ASH regression algorithm with m, =
my = 5 produced excellent results.

We first computed the estimate without using the sam-
pling weights as shown in Figure 2, while the estimate
with sampling weights is shown in Figure 3. This madea
big difference, particularly in areas where there are many
observations with small weights.

As mentioned earlier, internal boundaries can cause
problems for the algorithm. In Figure 4, we zoom in
on one of the problem areas. The four corners region of
the Southwest (Utah, Arizona, Colorado, and New Mex-
ico) join at about the location where this peak occurs.
The surface rises gradually to the peak, becomes a flat
plateau, then drops off a cliff to an area of no data (where
the regression estimator becomes 0/0). Use of zipcode
centroids and adaptive bandwidths might solve this.

Figure 5 captures our final estimate of the fraction of
government payments to gross farm income. Note the
contours are shown on a logarithmic scale. The bound-
ary artifact in the four corners region can be searched
out. Otherwise, no other glaring boundary problems ap-
pear. For the most part, the value of the regression sur-
face is quite small near the US borders, except in Texas
and along a portion of the border with Canada (where
government subsidies are even greater!). We do not find
the bias incurred particularly misleading.

Next, we included a surrogate variable ¢ to capture the
“size” of each farm. This was simply the total sales. We
computed 7(z, y,t) using the extended ASH algorithm
and computed 2 slices—one for small farms (Figure 6)
and one for large farms (Figure 7). The highest subsidies
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for small farms are concentrated primarily in the Mid-
west and Plains states. For large farms, we see the rice
farms along the Mississippi, for example. These patterns
are quite interesting to policy makers.

4.3. Overlaying Maps

A popular exercise is overlaying different maps to cap-
ture a relationship. Conventionally, this is done follow-
ing county boundaries. For example, Figure 8 displays
such data. The viewer is required to form a “mental sur-
face” or internal representation for these data. The ASH
algorithm does this for the viewer, with the added ad-
vantages of consistency and the application of objective
statistical criterion to decide the contours of the surfaces.
In Figure 9, 4 shades are indicated on the map coming
from 2 ASH estimates. White areas indicate low activity
on both scales. The darkest shaded areas indicate where
both (1) farms are dependent on government payments
and (2) the geographical areas are highly dependent on
farm income. Such information is more easily gleaned
from these smooth ASA estimates.

5. Discussion

The naive ASH is not robust, but is easily adapted to
handle weighted data and covariates with small compu-
tational overhead. Elegant procedures without covariate
handling have been considered by Tobler (1979). We
have not taken advantage of possible small gains avail-
able by considering spatial correlations.

However, kriging and lowess both produced estimates
with huge values at the boundary and outside the US
borders. Apparently, the trick of placing a rectangular
grid on the US extending outside the borders fails be-
cause the algorithms require explicit knowledge of the
boundary locations as input.

The actual proximate reason for failure, interestingly
enough, is due to the “adaptive” nature of these algo-
rithms, which fit the LPR over a region with a certain
fraction of the data. In places where the mesh extends
offshore, the regression estimate is reaching far inland
for any data to fit — the extrapolation problem once
again. (Explicit boundary handling would fix this, pre-
sumably).

The ASH procedure used a fixed (or nonadaptive)
neighborhood. The result is regions where the regres-
sion estimate is undefined (0/0). However, we are more
comfortable with such undefined regions than with pro-
viding dubious estimates obtained by spanning empty
spaces.
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Figure 1. Population centroids of all U.S. counties.

2000
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Figure 2. ASH estimates with equal weights o; = 1. Note the
low values east of the Mississippi River.
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Figure 3. Correctly weighted ASH estimate compared to Figure 2.

Figure 4.

Blowup of ASH estimate near an internal boundary.
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Figure 5. Contours of the proportion of farm income from Federal estimated by the ASH.

Figure 6. Conditional distribution of the variable in Figure 5 for “small” farms.
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Figure 7. Data as in Figure 6 but for “large” farms.

Figure 8. Data presented in the usual fashion, on county-by-county basis.
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Figure 9. Overlay of 2 ASH regression estimates (see text).
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Abstract

Naive implementations of local polynomial fits require
almost O(n?) operations. In this paper a fast O(n)-
algorithm is presented. It is based on updating normal
equations. Numerical stability is guaranteed by center-
ing while moving, controlling ill-conditioned situations
for small bandwidths and data—tuned restarting the up-
dating procedure. “Exact binning” and restarting at ev-
ery output point results in a moderately fast but highly
stable O(n"/®) algorithm. Applicability of algorithms is
evaluated for estimation of regression curves and their
derivatives.

Some key words: Fast computation; Local polynomi-
als; Nonparametric estimation; Nonparametric re-
gression; Smoothing; Updating.

AMS 1991 subject classification. Primary 65D10, Sec-
ondary 62G07, 65D25.

1 Introduction

Nonparametric methods of curve estimation have be-
come useful techniques. For applications fast algorithms
which allow computation on personal computers and at
the same time guarantee numerical stability are highly
desirable. In particular, when choosing the bandwidth
from the data or in bootstrapping schemes, multiple eval-
nations of the estimators become necessary and a fast
algorithm is even more desirable. Furthermore, due to
technical progress, automatic recording of mass data has
become easier. This puts higher demands on statistical
algorithms.

For various spline based regression estimators algo-
rithms have been developed whose number of arithmetic
operations grows only linearly with the number of data

1This work was part of the research program no. 21.-36042.92
of the swiss NSF
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Universitat Zirich
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points n (see de Boor, 1978; Utréras, 1980, 1981; Silver-
man, 1984; Hutchinson & de Hoog, 1985). In contrast, a
naive implementation of a kernel estimator for regression
or density estimation requires almost O(n?) operations.
Through averaging shifted histograms Scott (1985, 1986)
proposed a fast density estimator approximating a ker-
nel estimator which needs O(n) operations. Hardle &
Scott (1992) extended this idea through their concept of
WARPING (weighted average of rounded points) to the
regression case where their estimator approximates the
Nadaraya—Watson kernel estimator. A fast algorithm
for an exact convolution type kernel regression was sug-
gested by Gasser & Kneip (1989). Seifert, Brockmann,
Engel & Gasser (1994) presented two fast O(n) algo-
rithms and a highly stable but slightly slower O(n?/%)
version of the latter algorithm. The algorithms are ap-
plicable to local polynomial regression and to kernel es-
timation.

This paper is based on Seifert et al. (1994). In sec-
tion 2 the local polynomial regression estimator is briefly
discussed. In section 3 a fast algorithm is derived. Its
speed is based on updating normal equations and the
idea of exact binning. Stability is obtained by several
steps, centering while moving, control of ill-conditioned
matrices and data—tuned restart of the updating proce-
dure being the most important ones. Restarting at every
output point results in a moderately fast O(n"/®) algo-
rithm, which is even more stable than the conventional
one. A numerical evaluation is given in section 4 for esti-
mation of regression curves and their derivatives in fixed
and random designs.

2 Local Polynomial Regression

Let (X1,Y1),...,(Xn,Ys) be a set of independent and
identically distributed pairs of random variables where
the X; are scalar predictors and the Y; are scalar re-
sponses. The developments of this paper can, however,
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be generalized to higher-dimensional design.
In regression analysis a functional relationship be-
tween predictor and response is assumed as

o) = E(Y|X=2). (1)

Predictors following a fixed design can be treated sim-
ilarly. The predictors are assumed to be sorted X3 <
... < X,. The goal is to estimate r(zo) or its v—th
derivative r(*)(zq) = %r(z)’mx for some v. The lo-
cal polynomial approach is based on the approximation

LA E)) .
r(z) = E—Jt’:(!z—l)(z—m)’ (2)

i=0
provided z is close to z; , where r is at least (p+1) times

differentiable. This representation suggests minimizing

n

2
P g
3 (Y;—J;ﬁj (Xi—z1)j)» k(E2)

=1

with respect to 8 = (8o, - -, ﬁp)' . Here K denotes a pos-
itive and symmetric weight function and h is the band-

width. Denote

1 (X1—-—:01) (X1—:c1)p
x=1: : :
1 (Xn—z1) (Xn =21 / xioany
Y
Y = ,
Yn

W = diag(K (XI;”") U ¢ (-XLEE))

Spno --- Snp
S, = X'WX = : : ; 4
Sn,p Sn,2p
and
Tn,{)
T, = XXWY=| : ()
Top

Then the solution of the least squares problem (3) is
obtained as solution # of the linear system

Snﬂ = Ty. (6)

The resulting local polynomial Y% _, Bi(= -z Y is inde-
pendent of x; . We estimate the v-th derivative of r at

point zg by

P

We assume, that X has full rank, i.e. that there are at
least p + 1 points in the local smoothing interval. Then
#*)(zo) is unique. Algorithmically this is achieved by
increasing the bandwidth locally until p + 1 points fall
in the interval. '

Asymptotic properties are studied in Fan (1993),
Ruppert & Wand (1992) and Fan et al. (1993). In the
latter it is shown that #(*)(zo) is an asymptotically mini-
max efficient estimator among all linear estimators. The
Epanechnikov weight function K(z) = (3/4) (1 — %)+
is optimal for estimating the regression function r itself,
as well as its v-th order derivative. Note that p—v > 0
should be odd according to asymptotic theory, and that
usually p—v is equal to 1 or at most 3 due to the local na-
ture of the approximation. The local polynomial method
automatically adapts to the boundary; the equivalent
kernel is a boundary kernel as defined by Gasser et al.
(1985). This feature of the local polynomial method
saves extra computations at boundary points.

3 Algorithms for Local Polyno-
mial Fitting

3.1 The conventional algorithm

Using x; = zo we have

gK(Xi;zo)(Xi"”O)j’ (8)

Sn,j

Tn; = gK(X’—;—”—") (Xi—zof Yi. (9)

Thus, finite moments with respect to the design points
essentially determine the local polynomial fit. This is
also true for higher dimensional design.

Once S, and T, have been computed, the local poly-
nomial fit is obtained by solving the linear system (6).
The computational effort is independent of n. (We will
approach the problem of solving the normal equations
later on, using the Cholesky decomposition.) Hence a
fast algorithm relies on the fast computation of S, and
T, over the entire output grid.

Usually, the output grid will consist of n points as the
input grid (e.g. for cross—validation), or of a fraction of
n, if n is large, or a multiple of n, if n is small (e.g. for
graphical representation). If the number of points in the
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output grid is thus m = O(n), then a conventional imple-
mentation of (6) will require O(n?h) operations, based
on weight functions with compact support. For standard
regression estimation the optimal h is of order O(n~1/%),
leading to O(n®/%) operations for a curve fit. However,
for small bandwidths A = O(n~!) (when the estimator is
close to interpolation) the conventional implementation
approaches O(n) operations.

Now we derive fast algorithms, based on a polynomial
weight function

K@) =3 sy (10)
k=0 '

comprising in particular the optimal Epanechnikov
K(z) = (3/4) (1 —z?)4+ and the minimum variance (uni-
form) weights. For simplicity we will present the algo-
rithms only for S, , since the computation of T}, is then
straightforward. Moreover, we present the case of a con-
stant or global bandwidth &, but in fact our algorithms
work for local bandwidths k = h(zp) as well.

3.2 A “naive” fast algorithm — the idea
of updating

Using the binomial formula in (8) and rearranging sum-
mation we get

Sn,i
n a X: — k .
=3 ( ag ('—h-ﬂ) Iz~ 20481 (X:) (Xi — o)
i=1 \k=0
a n .
=Y h%ar Y (Xi = 20) * Iipomhwosn) (Xi) (11)
k=0 i=1
a itk 4.
- +k -
- h kak z: (.7 ‘ )(_zo)g-)-k L
k=0 £=0
n
x { > Xt I[zo—h,zo+h1(Xi)} (12)
=1

Given the value of S, ; at zp, we can save a lot of
computations by reusing the inner sums (in braces) over
i when calculating Sy, ; at the next output grid point zo;
say. From the inner sum we subtract the terms that are
not in [zo1—h, o1+ A, and add those terms which are in
this interval, but do not belong to [zq — k, zo + k]. This
results in a fast O(n) algorithm, which is reminiscent of
the old add/subtract box car smoothing (compare e.g.
Eddy, 1980). Independent of h and j one has to calcu-
late the terms Xf,i=1,...,n, 0 < £ < 2p+ a only

once. However, this algorithm is numerically instable.
The main source of instability is the expansion of the
term (X; — zo)’**. The add/subtract idea then leads
to an accumulation of numerical errors. The problem is
comparable to the well known instability of the textbook
one—-pass algorithm for estimation of a variance.

One way out is the use of centered quantities (X; —
zo)* only, or quantities centered by X;, the mean of
design points in the interval [zo—hk, 2o+h] (as is common
use in polynomial regression and done in this paper).

If we move towards the boundary, an increasing nu-
merical instability is expected and observed. Then typ-
ically the number of points in [zg — h, zg + h] decreases,
which leads to smaller quantities S, ;, and hence in-
creasing relative numerical errors. Also, the weights at
the boundary become larger by order of magnitude. This
difficulty is dealt with by running from both ends to the
middle of the estimation interval.

Our goals are the following: We would like to have
a fast and stable algorithm over the entire domain of
bandwidths, starting with an h containing the minimal
number of design points which is p + 1 and going up to
the maximal h. Numerical stability should be guaran-
teed for the Epanechnikov and the uniform weight func-
tion, i.e. ¢ = 2 and @ = 0. Of interest are the regression
function itself (¥ = 0) and the first and second deriva-
tive (v = 1,2), whereas » = 3,4 might be needed for
estimating smooth functionals only, e.g. for selecting op-
timal bandwidths (Gasser et al., 1991). Usually, we are
satisfied to use a polynomial of order p = v+ 1, but for
v = 0,1,2 the choice of higher order p also may be of
interest.

The above algorithmic steps will not be sufficient to
reach these goals. The most important additional tech-
niques consist of detecting ill-conditioned cases for small
bandwidths and automatic restarting the ‘'updating pro-
cedure, based on properties of the computed matrix S,
(see section 3.4 below).

3.3 A fast and stable algorithm — the
idea of centering while moving

To avoid numerical instability of the naive fast algorithm
based on (12), it is necessary to use centered.quantities
only. In Seifert et al. (1994) two stable algorithms using

z1 = o and

> Xilgo-hoo4n)(X:)
)= XO = i=1n

> T hzor i (Xi)

i=1
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were presented. Here, we present a fast algorithm us-
ing z; = Xo, the mean of design points to be used for
estimation of r(*)(zo). Then

Sn.j
n a Xi—-to k .
= }: ax ( A ) Iizo—h,zo+h] (Xi) (Xi — Xo)
t=1 \k=0
n a
= R~k ay
i=1 k=0

k
k o
XD ( )(X,- — oY (Ko — 20)* oo z0+h)(Xi)

TS (’;) (%o — o)~

k=0 L=

x {En: (Xi = Xo) * Iigo-h,zoth] (X,-)} (13)

=1

This leads to a representation of local polynomials in
central (sample) moments (in braces)

mj =3 (Xi — XoY Ypomnootn(Xi) . (19)

i=1

What remains is to find a fast and stable updating for-
mula for m; . For this purpose we generalized a formula
for pooling estimates of variance (j = 2) by Chan, Golub
& LeVeque (1983). Their formula is known to be fast
and stable. It has been independently introduced by
Spicer (1972) for the computation of central moments
(j = 1 to 4). Suppose we have two distinct subsam-
ples Xy1,- .., Xen, with means X, and central moments
mjs, £ =1,2. Denote by X and m; the mean and cen-
tral moments of the union of both subsamples. Then the
“add”-part of updating becomes

X 2}-(1 + ng ()—(2—)?1)/(111+n2) (15)

and

ni na
mj = Z(XN—X)J-FZ(Xzi—X)j
i=1 i=1

+>

J .
Zs (i}) (Xz - X)j—k mg,2 . (16)

Note, that my ¢ = 0 and mq ¢ = n,. Denote
d=X-X. (17)
We get X3 — X = —nyd/np and for j > 2

J N i~k
m; = Z (Z) 4k (mk,l + (—%) mk,2>

k=2

+ding (1 - (—%)H) (18)

A subsample is removed (“subtract”—part of updating)
by

X1=X+n2()2—-)—(2)/n1 (19)

and
mj,l

ny . na B . na _ .
=Y Xu-X) +) X —-Xiy - 3 (Xai = XnY

i=1 i=1 i=1

L (i ik L\ 5 ik
- —dy- _ - Xy

g (k) ( d) mg k;ﬂ (k) (X2 Xl) mg,2-

Using X3 — X; = —(n1 + nz)d /na, as before

mj

£ Qe (2

j—1
4+ (=d) (1 +m) (1—("—‘1'2)’ ) (20)

ng

Updating the central moments (14) using these formulae
results in an overall O(n) algorithm.

Figure 1 shows the numerical error of the resulting
fast algorithm, compared with the conventional one.
Note, that the fast algorithm starts at both ends and
runs to the middle of the interval. It can be seen, that
centering at z; = Xp may have numerical advantages
over centering at z; = x¢ , especially at the boundary.

As can be seen, round—off errors may accumulate and
restarting will be used to stabilize the updating proce-
dure. The loss in computational speed is reduced by
“Exact binning”: Consider a hypothetical partition
of the whole sample into subsamples Xy1,..., X, of
length ng (bins). If the algorithm is restarted at =zo,
say, and h is large enough, the points in the interval
[zo—h, zo+ k] are divided into a left part with less than
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Figure 1: Numerical error of the fast algorithm (with-
out restarts), compared with the conventional one for the
Epanechnikov weight function, p = 1, n = 1000 random
uniform design points and h = 0.25. Solid line is fast,
dots are conventional algorithm.

ng observations, the central part consisting of subsam-
ples of length ng (complete bins), and a remaining right
part. Once a partition into bins has been chosen, the
central moments of any bin are independent of the band-
width & and the output point z5. Hence storage of mo-
ments leads to savings in computation time: Given that
central moments of such a bin have been computed, they
are stored and can be used for estimation if restarting at
another output point, with another bandwidth or a new
(smaller) polynomial order p since they are independent
of these quantities. This option of binning is particu-
larly attractive in case of iteration as e.g. for plug-in
bandwidth selection (Gasser et al., 1991) or when the
same design occurs repeatedly. The following argument
is helpful when choosing a bin width ng . If the moments
of the central parts are already available, the computa-
tion of m; reduces from O(nh) to O(nhng') + O(no)
operations. Consequently ng should be O((n h)!/2). In
the usual binning only the first moments are retained
which leads to an approximation error there.

The add-part (15) and (18) of the updating formula
allows the construction of a moderately fast but highly
stable algorithm: Computation of central moments of
bins of length ng needs O(n) steps. Restarting at every
output point results in O(mn hng') + O(mng) opera-
tions. For m = O(n), h = O(n~1/5), and taking an op-
timal ng = O(n?/®), we get an algorithm with O(n"/%)
operations compared to O(n®/®) of the conventional one.
The computation of central moments using exact binning
is more stable than the standard two-pass algorithm, so
we can expect an algorithm that is not only faster but
also more stable than the conventional one. Like the con-
ventional one this algorithm approaches O(n) operations

for small bandwidths b = O(n™1).

3.4 Solution of the normal equations and
automatic restart

Cholesky decomposition was used to solve the normal
equations (6) for the following reasons:

¢ The matrices of coefficients S,, are positive definite.
e The Cholesky decomposition is fast.

o The numerical stability is scale invariant and proved
to be good for the cases of interest. This fact led
to the decision not to use orthogonal polynomials,
which would decrease computational speed.

Also the Cholesky decomposition can be used to solve
the following two numerical problems:

o control the numerical condition of the normal equa-
tions,

e control the accuracy of the updating procedure for
computing the normal equations by appropriate
restarting.

For this we need some theoretical analysis of Cholesky
decomposition.
Cholesky decomposition: The decomposition is of

the form
Spn=LDL'.

L = ((¢x)) is a lower triangular matrix with diagonal el-
ements £;; = 1. D = diag(d;) is the diagonal matrix of
Cholesky factors. The normal equations are then solved
step by step. The well known formulae for the decompo-
sition use only the four fundamental rules of arithmetic:

dj = sj; — Y £ dy, (21)
k<j
lix = (Sjk - Z Lie Lre dt) / di . (22)
<k

Cholesky factors d; should be sufficiently away from
zero compared to sj; to avoid the loss of significant digits
in (21). The ratios d; / s;; are scale invariant. It will be
shown, that they are hardly affected by the bandwidth
h and by sample size n, whereas the local shape of the
design density f may matter. Due to its sensitivity the
last ratio dp41 /Sp41,p41 is used to assess stability and
is henceforth called “stability factor”. Note, that a scale
transformation, e.g. to s;; = 1, does not improve the
numerical stability of the solution.
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Figure 2: Stability factor of S, in (4) for the Epanech-
nikov weight function, p = 3 and n = 1000 equidistant
(above) and uniformly distributed (below) design points,
depending on zq¢ and h.

Under common assumptions, from (8) we get an
asymptotic representation

Sjk

= Snlj+k_2

/(u — 2oy ti-2K (

n f(zo) W +-1 / A2 K(2)dz (1+0(1)) . (23)

) F(u)du (1 +0(1))

Singularity: Formula (23) leads to theoretical val-
ues of Cholesky factors d; and the stability factor

dp+1/ 5p+1,p+1 Of Sy . For finite samples, the term f(zo)
in (23) has to be replaced by a value, which only depends
on the shape of the design density in [zo — h,z0 + h]
The Cholesky factors are of order d; = O(n h2i- 1) as is
sj; . Consequently, if the number of points in the local
smoothing interval is not too small, the stability factor
of S, is near to a value, which does not depend on n and
h, but only on the weight function used.

Figure 2 shows the stability factor of S, in (4). As will
be explained below, for minimal bandwidth the polyno-
mial weight function is replaced by the uniform one. The
figures show a plateau which is close to the theoretical
value 0.229 even for small bandwidths. The approxi-
mation is extremely good for the fixed design. At the
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Figure 3: Stability factor (above) of S, in (4) for h =
0.001, the uniform weight function, p =3 and n = 100
uniformly distributed design points. Solid line is stability
factor for sing = 10~2, dashes are stability factor for sing
= 1039, Below are corresponding numerical errors.

boundaries — increasing with h — the stability factor
changes.

As to be expected a priori, and as shown by the fig-
ures, singularity is only a problem for small bandwidths.
Theoretically, p+ 1 points — already required in section
2 — are sufficient to obtain a stable solution. However,
in practice numerical problems may arise, basically due
to two reasons. The first is that the polynomial weight
function decreases the influence of points close to zo+h.
As a first step we switch to uniform weights when there
are only p+ 1 points in the interval. Then X and W are
nonsingular (p+ 1) x (p+1) matrices, and from (6) the so-
lution 8= X~1Y is mdependent of the weight function.
Thus, the estimator is not changed, but its computation
is more stable. A second reason for stability problems
is, that in the random design case design points may lie
close together. The independence of the stability factor
of n and h gives the possibility of controlling the stabil-
ity of the normal equations. Sy, is defined to be singular,
if

dp+1/ Sp+1,p+1 < sing x “theoretical value” ,

where the theoretical value is derived from (23) and
“sing” can be choosen by the user. However, the size
of the parameter is not critical. After careful evaluation
the standard value was set sing = 0.01. The theoretical
values used depend only on p and the weight function
and are given in advance. If S, is singular, the local
smoothing interval is enlarged by one point.
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Figure 4: Stability factor (above) of S, in (4) for the
Epanechnikov weight function, p = 5 and n = 1000
equidistant design points. Solid line is numerical sta-
bility factor without restart; dotted line is stability factor
with restarts, graphically indistinguishable from the true
stability factor. Below are numerical errors for v = 4
without (solid line) and with (dots) restart.

Figure 3 shows this modification when applied to the
stable O(n"/%) algorithm described in section 3.3. Us-
ing sing = 0.01 only a few local smoothing intervals are
changed, but the algorithm is much more stable.
Stability of updating: As noted above, the updating
procedure for computing moments in the matrix S, may
lead to substantial round-off errors. The aim is to detect
such departures and to restart the updating procedure.
The computation of the stability factor of S, uses all
moments m; in a complex manner, and hence allows
the possibility of controlling numerical stability of the
updating algorithm.

Figure 4 (above) shows the numerical stability factor
of S, in (4) without and with restarts. Note, that the
algorithm starts at both ends and runs to the middle
of the interval. Data are generated for a polynomial of
order 5, so that a straight line for ¥ = 4 is estimated.
The figure illustrates, that the stability factor can serve
as a device for detecting accumulation of round—-off errors
in S,.

We use the stability factor at the last restart as bench-
mark, and update, as long as

1 “computed stability factor”

, tab
stab ~ “stability factor at last restart” < sta

The success of this restart rule using stab = 0.95 is
demonstrated in figure 4 (below). Here is only 1 ad-
ditional restart, but numerical stability is greatly im-

proved.

4 Evaluation of algorithms

Two aims are pursued in this section:
¢ to check and compare numerical stability,
o to evaluate computational speed.

The scope of the evaluation is as follows:

¢ The range of bandwidths goes from the minimal to
the maximal one.

o Interest is focussed on derivatives of order v =
0,1,2, while v = 3,4 are of interest to estimate
smooth functionals of r(*).

e Polynomial orders p = v + 1 are of prime interest
and p = v+ 3 is still of sufficient interest to warrant
full evaluation. Higher order polynomials around
p = 10 illustrate the range of applicability.

4.1 Realization of algorithms
The following three algorithms are considered:

conventional: the conventional O(n%°®) algorithm
based on (11). In fact the conventional algorithm
should use (8), but for polynomial weight functions
(11) is only a slight modification.

fast: the fast O(n) algorithm derived in section 3.3,
based on updating normal equations, exact binning,
centering while moving, controlling ill-conditioned
situations for small bandwidths and data—tuned
restarting the updating procedure.

stable: the superstable O(n"/®) algorithm as “fast”, but
restarting at every output point (no updating).

The algorithms were realized in Fortran 77 with dou-
ble precision on a Sun IPX-workstation. They have ad-
ditional common features:

e To reduce numerical boundary problems, the algo-
rithms start at both ends and run to the middle of
the estimation interval.

e The algorithms use Cholesky decomposition with
parameters sing and stab described in section 3.4.

o When solving the normal equations, the coefficient
matrix S, is assumed to be nonsingular. In theory
this is fulfilled, if the number of observations in the
local smoothing interval [zq — h,zo + k] is at least
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Figure 5: Elapsed time (in seconds) of different algo-
rithms for v = 0 and p = 1 depending on sample size
n. Solid line is conventional, dashes are stable, and dots
are fast algorithm.

p+ 1. Consequently, in case of a numerically singu-
lar matrix (see section 3.4), the local bandwidth is
increased.

o If the number of observations in the local smoothing
interval is minimal, uniform weights are used. If
this number is p + 1, this gives the same estimator
as polynomial weights. However, the unweighted
estimator is numerically more stable.

o Updating saves computing time but possibly costs
in numerical stability. We should restart if the situ-
ation is extremely instable or if an update does not
save time. Hence a restart is forced if the number of
observations is minimal, or if an update would re-
move more than one third of the observations used.

4.2 The design of the case study

The designs considered were fixed and random on [0, 1]
with uniform (f(z) = 1), linear (f(z) =2z ) and trun-
cated normal (f(z) = ¢(22—1)/(2@(1)—1) ) densities.
The number of observations runs from n = 10 to 10000,
focussing evaluations on n = 1000. Regression func-
tions are polynomials, thereby avoiding problems with
bias. Exact observations and observations with normal
errors were used. The Epanechnikov weight function was
chosen because of its optimality.

4.3 Computational speed

Figure 5 compares elapsed time of algorithms as a func-
tion of sample size n for random uniform design on [0, 1},
equidistant output grid with m = n points, and band-
widths h(n) = 0.2n~1/5. The stable and fast algorithms

g ‘conventional
@
£ ~
-
2o superstable
g <= VN
a \
£ \
g 0 \
o o “
o ]
o |== fosl
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0.001 0.010 0.100 0.500
bandwidth

Figure 6: Elapsed time (in seconds) of different algo-
rithms for v =0 and p =1 depending on bandwidth (on
logarithmic scale). Solid line is conventional, dashes are
stable, and dots are fast algorithm.

used bins containing about (2n h)!/2 observations. The
fast algorithm is to a good approximation O(n). From
n = 1000 to 10000 elapsed time increased by a factor 14,
slightly more than the factor 10 ideally expected. These
results were confirmed for other situations.

A further point of interest is computational speed
with respect to bandwidth. For fixed sample size,
elapsed time of the conventional algorithm is about pro-
portional to h. The speed of fast algorithms is expected
to be approximately independent of h.

Figure 6 illustrates how elapsed time depends on A for
equidistant design and output grid on [0,1} with m =
n = 1000 points. The stable and fast algorithms used
bins of same length as in figure 5, i.e. they contained 10
observations. In fact, elapsed time of the fast algorithm
is almost constant. For graphical reasons the time axis
was cut. The conventional algorithm needed 6.9 seconds
for h = 0.5, compared with 0.1 seconds for fast and
superstable algorithms.

The elapsed time of the fast algorithm was compared
with that of the fast Fourier transform (Rabiner & Gold,
1975, p. 367). Evidently, the FFT is in general not ap-
plicable to estimating the regression function r (or its
derivatives) in model (1), due to inherent restrictions
with respect to design, boundary problems etc. Due to
its well-known good performance in terms of speed it
can be taken as a benchmark in this respect. In the
case whith n = 2¥ equidistant design points, ¥ = 0 and
m = n, which is ideal for the FFT, our fast algorithm
needed only 70 % more time.

The attractive computational efficiency of updating
algorithms has also been confirmed by Fan & Marron
(1993) in a comparison with existing fast algorithms.
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Table 1: Mazimal relative numerical errors rdist of  Table 2: Mazimal mean numerical errors mdist of al-

algorithms over h for exact date, m = n = 1000 and
p=v+1, using sing = 1072 and stab = 0.99.

maxp rdist (k)
design | v | convent | stable | fast
fixed 0 | 0.19E-13 | 0.19E-14 | 0.27E-11
uniform | 1 | 0.24E-11 | 0.11E-11 { 0.18E-07
2 | 0.23E-08 { 0.12E-09 | 0.28E-04
3 | 0.23E-05 | 0.52E-06 | 0.23E-02
4 | 0.80E-02 | 0.23E-04 0.32
random | 0 | 0.19E-12 | 0.33E-14 | 0.30E-13
uniform | 1 | 0.55E-10 | 0.11E-09 | 0.11E-09
2 | 0.57TE-06 | 0.13E-07 | 0.13E-07
3 | 0.57E-02 | 0.15E-05 | 0.15E-05
4 0.31 0.71E-03 | 0.71E-03
fixed 0 | 0.55E-13 | 0.43E-14 { 0.17TE-10
linear 1{ 0.13E-11 | 0.57E-12 | 0.71E-08
2 | 0.33E-08 { 0.61E-09 | 0.28E-08
3 0.10 0.44FE-06 | 0.80E-06
4 1.9 0.14E-03 | 0.62E-03
random | 0 | 0.34E-13 | 0.13E-13 | 0.33E-13
linear 1 | 0.40E-10 | 0.63E-10 | 0.63E-10
2 | 0.63E-01 | 0.83E-08 | 0.83E-08
3 0.10 0.17E-05 | 0.17E-05
4 2.0 0.27E-03 | 0.27E-03
fixed 0 | 0.41E-13 | 0.27E-14 | 0.32E-11
normal 1| 0.18E-11 | 0.52E-12 { 0.31E-10
2 | 0.29E-08 | 0.16E-09 | 0.69E-08
3 | 0.27E-05 | 0.21E-06 | 0.53E-06
4 | 0.97E-02 | 0.16E-04 | 0.19E-04
random | O | 0.13E-12 | 0.33E-14 | 0.14E-13
normal | 1 | 0.71tE-10 | 0.10E-09 | 0.10E-09
2 | 0.22E-01 | 0.32E-07 | 0.32E-07
3 { 0.31E-01 | 0.46E-05 | 0.46E-05
4 2.0 0.41E-03 | 0.41E-03

4.4 Numerical stability

To check numerical stability the relative distance in sup-
norm is used

max | #)(z;) - #)(z;) |
rdist = [ = , (24)
m 2 170 =7

where #(*)(z) denotes the “true” estimate, #*)(z) is the
result of an algorithm, and #(*) is the mean of true esti-
mates. Also the following mean distance

m
317 (5) = #(z;) |
mdist = 2= (25)

m

Z (V)(,,, _,.(u)'

gorithms over h for ezact data, m = n = 1000 and
p=v+1, using sing = 10~2 and stab = 0.99.

maxy, mdist{h)

design | v | convent | stable | fast
fixed 0 | 0.14E-14 | 0.81E-15 | 0.40E-12
uniform | 1 | 0.26E-13 | 0.13E-13 | 0.15E-08
2 | 0.80E-11 | 0.72E-11 | 0.77E-06

3 | 0.65E-08 | 0.17E-08 | 0.56E-04

4 { 0.23E-04 | 0.26E-06 | 0.53E-02
random | 0 | 0.19E-13 | 0.13E-14 | 0.39E-14
uniform | 1 | 0.75E-12 | 0.97E-12 | 0.97E-12
2 | 0.14E-08 | 0.14E-09 | 0.14E-09

3 | 0.94E-05 | 0.28E-07 | 0.28E-07

4 | 0.39E-03 | 0.42E-05 | 0.42E-05

fixed 0 | 0.37E-14 | 0.91E-15 | 0.20E-11
linear 1 | 0.52E-13 | 0.36E-13 | 0.27E-09
2 | 0.35E-10 { 0.27E-10 | 0.44E-10

3 | 0.79E-03 | 0.11E-07 | 0.11E-07

4 | 0.33E-02 | 0.17E-05 | 0.17E-05
random | 0 | 0.31E-14 | 0.80E-15 | 0.44E-14
linear 1| 0.64E-12 | 0.75E-12 | 0.76E-12
2 | 0.27E-03 | 0.16E-09 | 0.16E-09

3 | 0.13E-02 | 0.29E-07 | 0.29E-07

4 | 0.11E-01 | 0.33E-05 | 0.33E-05

fixed 0 | 0.26E-14 | 0.76E-15 | 0.86E-12
normal 1 | 0.39E-13 | 0.39E-13 | 0.61E-11
2 | 0.16E-10 | 0.95E-11 | 0.10E-08

3 | 0.75E-08 | 0.31E-08 | 0.31E-08

| 4| 0.24E-04 | 0.37E-06 | 0.37E-06
random | 0 | 0.31E-14 | 0.11E-14 | 0.19E-14
normal { 1 | 0.67E-12 | 0.11E-11 | 0.12E-11
2 | 0.53E-04 | 0.15E-09 | 0.15E-09

3 | 0.59E-04 | 0.27E-07 | 0.27E-07

4 { 0.21E-02 | 0.40E-05 | 0.40E-05

is used. The weaker criterion “mdist” may be relevant
in those cases where only a smooth functional of #(*) is
of interest, as is often the case for v = 3, 4.

When inspecting stability across many situations,
problems can arise typically for small bandwidths. This
result should be kept in mind when judging tables 1 and
2, which give maximum numerical error across band-
width h for supremum and for mean distance.

Table 1 shows maximal relative numerical error rdist
of algorithms over h = 0.001, 0.005, 0.01, 0.05, 0.1, 0.2,
0.3, 0.4, 0.5 for n = 1000 design points and m = 1000
equidistant output grid points. The regression functions
are polynomials of order p = v+ 1. The data are exact
without random errors. The function r(*) to be esti-
mated always is the straight line from —1 to 1.

Table 2 gives maximal mean numerical error mdist
over h in the same situation. The numerical accuracy is
good to very good for v ranging from 0 to 3. For v =4
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the fast algorithm may break down in terms of maxi-
mal numerical error rdist, but still is useful in terms of
mdist. This shows that there are only isolated problems
with numerical accuracy and this has been confirmed
graphically.

For p = v+ 3 the precision of the superstable and fast
algorithms is reduced by a factor of about 10. The con-
ventional algorithm has problems at the boundaries for
higher order polynomials because of the ill-conditioned
normal equations there. The superstable and fast algo-
rithms, however, even work stably in terms of rdist for
v =1,...,4, p = 10,11, such that p— v is odd. As
expected, they are no longer fast then, and one might
in these cases prefer the superstable algorithm from the
beginning. The conclusions were confirmed by data with
random noise and nonpolynomial regression functions.

4.5 Conclusions

We derived a fast algorithm, which is stable over the
whole region of interest, i.e. up to polynomials of order
about 10. The conventional algorithm has problems in
terms of stability for very small bandwidths and at the
boundary. The superstable algorithm proved to be more
stable than the conventional one, and is at the same
time much faster. It is attractive that the algorithms
allow fitting of curves as well as derivatives, both for a
global or local bandwidth choice.
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Abstract

Given random variables X € R? and Y such that
E[Y|X = 2] = m(z), the average derivative &g is defined
as 8o = E[Vm(X)], i.e., as the expected value of the
gradient of the regression function. Average derivative
estimation has several applications in econometric the-
ory (Stoker, 1992) and thus it is crucial to have a fast
implementation of this estimator for practical purposes.

We present such an implementation for a variation
known as density-weighted average derivative estima-
tion. This algorithm is based on the ideas of binning
or Weighted Averaging of Rounded Points (WARPing).
The basic idea of this method is to discretize the original
data into a d-variate histogram and to replace in the non-
parametric smoothing steps the actual observations by
the appropriate bincenters. The non-parametric smooth-
ing steps become thus a (multi-dimensional) convolu-
tion between the (discretized) data and the (discretized)
smoothing kernel.

A Monte-Carlo study demonstrates that with this
binned implementation substantial reduction in comput-
ing time can be achieved. But it will also become clear
that in higher dimension the choice of how to bin is

crucial.

1 Introduction

Average derivative estimation tries to estimate the mean
slope of the conditional mean of the response variable,
i.e., given a response variable Y, whose expectation is
assumed to depend on a d-dimensional variable X via a
smooth function m, the aim of average derivative esti-
mation is to estimate the average slope of this function.
In other words, if

E[Y|X = z] = m(z)

and V denotes the gradient of partial derivatives with

respect to the coordinates of X, the aim is to estimate
8o = E[Vm(X)] (1)
respectively a weighted version
6w = E[Vm(X)w(X)] (2)

where w(e) is a non-negative weight function. If we
choose as weight function w(z) = f(z), the marginal
density of X, our estimand becomes:

5

E[Vm(X)f(X)]
= —2E[YVf(X)] ()

Where (3) follows by partial integration. The prob-
lem of estimating the density-weighted average deriva-
tive, as given by (3), was studied by Powell, Stock and
Stoker (1989).

Average derivative estimation can be used in many
econometric models (Stoker, 1992; Hardle, Hildenbrand
and Jerison, 1991). As one example, we want to mention
single-indez models (also called one-term projection pur-
suit models). In these models the regression function m
has the form

m(z) = g(=" f), 4)

where g is an unknown univariate function and 8 is a
d-dimensional (projection) vector. Stoker (1986) gives
an extensive discussion and motivation for models of the
form (4). The semiparametric model (4) covers a broad
range of important parametric models such as probit and
logit models, censored regression, Tobit models etc.

It is easy to see, that in this case we have

Vm(z) = g'(a:Tﬂ)ﬁ
and thus
6 = E[g'(XTB)]8 and 6, = Ely'(XT B)w(X)]B.




This means that (weighted) average derivative estima-
tion allows us to estimate the unknown projection 8 up
to a scale constant. This is in fact the best we can do
in the semiparametric single-index model given by (4).
If the pair (g,0) fulfills model (4) then for any ¢ € R,
¢ # 0, the pair (g, 8) with

j(s) =g(e/c) and B=cp

does so too.

The rest of this article is structured as follows, Sec-
tion 2 will describe the density-weighted average deriva-
tive estimator as proposed by Powell et al. (1989). In
Section 3 we will propose how to implement this estima-
tor using binning ideas and to achieve thus considerable
run-time gains. Finally in Section 4 we will discuss some
further points related to the binning method.

2 Direct implementation

2.1 Estimator for ¢

To estimate the density-weighted average derivative 6,
Powell et al. (1989) propose to estimate the gradient of
the marginal density of the X variables nonparametrl—
cally at each observation point by, say, V f(x.) Their
estimator for 6 is

zlw

Z f(=i) (5)

which can be motivated as a method of moment estima-
tor in which the unknown function Vf is replaced by a
nonparametric estimate of it.

To estimate the gradient of f nonparametrically, Pow-
ell et al. (1989) use the gradient of a multivariate kernel
density estimator (Silverman, 1986; Scott 1992). Given a
d-variate kernel K (think of K as a d-variate density func-
tion) and a d x d positive definite matrix H of smooth-
ing parameters a nonparametric estimate of the marginal
density f at a point = € IR?% would be

;;m’c (H Mz —=z)). (6)

For numerical ease, a common choice is to take K
as a product of d univariate kernels K, and to re-
duce H to a diagonal matrix, so that we have only a
d-dimensional vector h of smoothing parameters. Wand
and Jones (1993) discuss for the two-dimensional case
the implications of this simplification. With this choices
(6) simplifies to

fa(z) =

n d

EHK( ”””‘) (7)

z—lk 1

falz) =
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where z = (21, .. .,22)7 and z; = (zj1,...,2j2)7 -

Powell et al. (1989) do not use the nonparametrlc den-
sity estimator given in (7) directly, but a leave-one-out
version of it. (For this reason the estimator 6 has a U-
statistic structure and can be easily analyzed.) Thus to
estimate the marginal density f at the observation z;,
they drop z; from the sample and calculate fu(x;) from
the remaining sample (of size n—1). As a further simpli-
fication they use Oll\ly one bandwidth for all dimensions.
So the estimator V f(z;) which they use in (5) is:

o~ 1 i i Tip — &
Vf(-’”i)-:n_lz hd+1’CI( A Jk) (8
—
?#i
o
XA 1 n d
= : n_lanh(zik—l‘jk)
9 i=1 k=1
LT i
with Kp(u) = K(u/h)/h.

2.2 Asymptotic properties

Powell et al. (1989) showed that under certain regularity
conditions and a suitable choice for K and the rate with
which k tends to zero, the estimator § given in (5) is
consistent and has an asymptotic normal distribution.
More specifically they proved that

Jn (5—5) LN (0,3)
where

)
r(z,y)

i

4E[r(X,Y)r(X,Y)T] - 4667,
f(z)Vm(z) — {y — m(z)}V f(z)-

2.3 Estimator for the variance

To estimate the asymptotic variance ¥ of § Powell et
al. (1989) propose to estimate r(z;, ;) by:

1 <« 1 T — T
12 hd+1’CI( h J)(yi‘yj) 9
-
7

7:(17;, yi) =-

and thus X by:

n
Z f‘(mii yi)f'(-’b'i, y‘i)T

HEpL — 4667, (10)
In the next section we will discuss how fast implemen-
tations for 4 and ¥ can be obtained by using binning

techniques.

n
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3 Binned implementation

3.1 Basic idea

The basic idea of binning methods is to replace each ob-
servation of z; by the nearest point b, from a regular
spaced grid. To fix ideas consider kernel density estima-
tion in the one-dimensional case,

fulzi) = %Zf{h(l'i - z;), (11)

and take the regular grid {b, : b, = zA, z € Z} where A
is a fixed constant, the binwidth. Replacing now each z;
in (11) by the nearest b, we see that we have to evaluate
the kernel K only at integer multiple of A/h:

wy = %K (%1) , I=~L,...L (12)

Here L is chosen such that AL/h =~ 1 if K has com-
pact support on [—1, 1] (if K is the Gaussian kernel, i.e.,
the kernel has no compact support, Wand (1993) rec-
ommends AL/h ~ 4). If we denote further by n, the
number of observations z; which have b, as their nearest
point in the grid, we see that we can approximate (11)
by (let b, be the point nearest to z;):

fazs) = -};E Kn(z: — z;)
j=1

R

1 .
- E Wy—1;, bi; is nearest to z;
n

i=1

The last formula is a discrete convolution between the
vector of weights (the discretized kernel) and the vector
of bincounts n, (the discretized data).

Silverman (1982) uses a fast fourier transformation
to calculate this discrete convolution. Another algo-
rithm which does not use the fast fourier transform is
given in Scott (1985) (see also Hérdle and Scott, 1992;
Hardle, 1991). Fan and Marron (1994) describe how to
use these ideas for other nonparametric curve smoothers.

Fan and Marron (1994) also quantify the run-time
gains achievable using these ideas. These run-time gains
are mainly due to two facts. First we have much less
kernel evaluations, in fact we have to evaluate the ker-
nel only once on a finite grid of points. Secondly, once
the data is discretized the nonparametric curve smoother
is estimated at the grid points b, and not at the origi-
nal observations x;. Usually the number of grid points

at which the smoother is evaluated is (much) smaller
than n. The estimate at an original observation z; is ei-
ther taken as the estimate at the nearest b, or obtained
by linear interpolation between the estimates of the two
nearest grid points (Jones, 1989).

3.2 Application to é

The ideas presented in Section 3.1 above are readily ex-
tendable to the multivariate case (Wand, 1993) and to
the estimator 4.

Again we define a (multivariate) grid of equidistant
points b, € R? and replace z; € R? by the near-
est b,. To fix ideas let A = (Ay,...,Aq)T be a fixed
d-dimensional vector and define b, by

b, =zA = (zlAl,...,szd)T

for each multi-index z = (21,...,24)7 € Z9. Note the
pointwise multiplication of the vectors z and A above.
In the rest of this article, if not indicated differently, we
mean this kind of pointwise vector multiplication rather
then the standard matrix multiplication when we multi-
ply two vectors.

For each z € Z*, let again n, denote the number of
observed z; for which b, is the nearest grid point. For a
binned implementation of the estimator 6}' we also need
to discretize the derivative of the kernel K:

.1 (A l=-L;,...,L;

by = 7 K (T) ' j=t.,a 13
and define wy; analogous to (12) by replacing A by A;. If
we define now for each multi-index! = (Iy, ..., Id)T €z
the corresponding weight w} € R by:

Wi 1Wy,2 - Wied
Wy, 1Wy,2 * - Wid

W 1Wi,2 -+ Wigd

we see that analogous to the example in Section 3.1 a
binned version of the estimator Vf is:

—~ 1 &
Vi) = — 3wl (14)
==L
Note that the sum in (14) is actually a sum over d indices
l,...,14, each l; taking values from —L; to L;, j =
1,...,d. Also, the multi-index z ~ l in (14) is z — I =
(21 - 11, veeyld — Id)T.

Thus a binned version of the density-weighted average
derivative 6 is:

R 2 —
b=~= > n.5:VF(b.) (15)
2€Z¢




where 7, is the average over all observation y; such that
b, is the nearest grid point to the corresponding ;.
Note that the summation in (15) is actually only over
all z € Z¢ such that n, # 0 and is not an infinite sum.
Furthermore, if we compare (5) with (15) we see that
the only apgloximation error we do is due to replacing
V f(z;) by Vf(b;). With respect to the y we “keep the
full resolution”.

A

3.3 Application to &

In this section we will discuss the implementation of a
binned estimator for the asymptotic variance ¥ given
in Section 2.2. A naive way of implementing such an
estimator would be to plug into (10) a binned estimate,
say, 7(b;) for #(zi, ), given in (9), to obtain:

> #(6)(b:)T

$ = 42827 — 4367 (16)

n

with § from (15). The binned estimate 7(b;) is easily
derived in the same way as demonstrated in Section 3.1.
Let b, be the grid point nearest to z;, then we have:

f(mi’yi) =
1 < 1 T — s
]
=—n—-12hd+1lcl< h J) (v ~ ¥)
j=1
1 n
e Zw;—l,-(yi — y;), bi; is nearest to z;
i=1
1 &
=Tno1 > whomiy — @) = #(6s, %)
l=—L
1 &
n e 3wl — @) = F(b:)
l=—L

Note that the only approximation error in #(b;, ;) is due
to replacing the z; by the grid point b,. Thus for 7(bz, ¥s)
we have still the full resolution in the y-direction. Only
if we go to #(b,) we make an approximation error in that
direction too. The motivation for this approximation is,
that if several x; exist which have b, as nearest grid point
then we should average over the corresponding #(bz, %)
to get a unique estimate #(b;) at b;.

However, the binned implementation which we get
if we insert #(b,) in (16) does mot work. The rea-
son for this is explained and graphically illustrated in
Proenca and Turlach (1994). On one side we make an
approximation error in the y-direction by going from
#(b;, i) to #(b;). On the other side we want to approx-
imate f'(a:,-,yi)f'(a:,-,yi)T which involves a squared term

B. Turlach 31

in y. Thus we have to take into account what Proenga
and Turlach (1994) call the within-bin-variability of y.
This means that we can not find a binned estimator for
f'(m,-,yi)f’(:c,:,y,-)T by finding one just for #(z;,y:), but
that we really have to consider this product directly.
Hence a “correct” binned estimator can be found by ob-
serving that:

(e, v (s, w)T ~
& ﬁ(bZ) yi)’ﬁ(bzx yZ)
1 2 L L
= (n_— 1) Z Z 'U);__Iwgl_'_p X
==L V'=-L
iy — G)nw (Y — Gir)

1 \2
= (n— 1) EZ{w;_,wf’:,, X

LWW=~L

(Y — P + Yz — gl)nf’(yi - ¥, +Y: — ﬂl')}
= (b, )7 (b:)T +

1 2 L
() S {uowm

Li=—L

(Y — §:)(28: — v — yp)}

1\
* (n - 1> Zzw;—lw;’{pnxnl’(yi —_ gz)Z

LWl=-L

And thus the sum Y1, #(2:, i )7(2i, ;)T can be approx-
imated as:

n

> #wi, 5, ui) "
i=1
> > #(ba, %)7(02, w)”

z€Zdi=1

P4

=y, {i-(b,)ﬁ(b,,)T+
zeZ4
1\ —
( 1) Zzwz~IW§£umnl'nz(y§—173)}
n-= L=—L
= 3 {30607 + 0. - 2)TT0ITIG:Y
2€Z1¢
=T

Note that because of the summation over i the term
which includes (¥ — 9)(29, — & — ir) drops out, i.e.,
the sum is zero. Also, 72 denotes the square of g, and 2
denotes the mean of all y? such that z; has b, as nearest
grid point. This term, namely 7, @?— 7?), measures the
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variability of Y around the grid point b,. This term is
obtained by expanding (y; — #,)? and summing over i.
Note that if we choose A so small, that each grid point b,
has at most one observation z; for which it is the nearest
point then all of these within-bin-variability terms vanish
and the binned estimator given in (16) would be correct.

However, in general we have to take these terms into
account. Thus a “correct” binned estimator for the vari-
ance matrix is given by
$= 4T _ 4347

n

with & from (15).

4 Closing remarks

In the previous section we demonstrated how the simple
and intuitive basic binning idea can be applied to the
density-weighted average derivative estimator § and the
estimator of the asymptotic covariance matrix 3. Some
questions still remain which we would like to address
here. .

From (14) we see that V f(b;) is a discrete convolu-
tion, the same is true for #(b,) and rrT. How should we
calculate this discrete convolution? As mentioned above
Silverman (1982) and Wand (1993) use a fast fourier
transformation. However, this method is inappropriate
in our situation since we are only interested to calculate
these estimates at the points b, which have some ob-
servation close enough to them, i.e., for which n, # 0.
But a fast fourier transformation method would calcu-
lated these estimates at all grid points b,. Just imagine
the case where we have a two-dimensional X-variable
and we choose our grid such that we have 100 different
grid points in each dimension. The complete grid will
have 10.000 points b,. In this/fase a fast fourler trans-
form method would calculate V f(b.), .. . at all these grid
points. Clearly this involves many unnecessary calcula-
tions if the sample size is not too big.

The fast fourier transform approach is feasible if we
need estimates at all grid points for example if we want
to make a plot. But it is also not clear if the fast fourier
transform is the fastest method in such a case. Fan and
Marron (1994) find that this approach is not the fastest
for the one-dimensional case whereas Wand (1993) favors
the fast fourier transform in the two-dimensional case.
Scott (1992) describes alternative algorithms which do
not use a fast fourier transform. These algorithm step
through all grid points b, with n, # 0 and just do the
necessary calculations at these points and in the neigh-
borhood of b, (as defined by the L;), i.e., also these al-
gorithms calculate the estimates on the whole grid. For

the discrete convolution necessary here we recommend to
use specialized versions of the algorithms of Scott (1994)
which step through all grid points b, with n, # 0 and
do the necessary calculations only at these points.

Closely related with the question “How to perform
the discrete convolution?” is the question “How shall
one discretize the data?. Until now we always used
a kind of “histogram” binning in which n, was integer
and each observation was shifted to (replaced by) the
nearest grid point b,. For the one-dimensional density
estimation Jones and Lotwick (1984) proposed an alter-
native called “linear” binning. In this variation the n,
are no longer integer and each observation is distributed
onto the two nearest grid points. Hall and Wand (1993)
propose further variations for the binning procedure and
quantify the error which is introduced by using binning
techniques (see also Gonzdlez-Manteiga, Sdnches-Sellero
and Wand, 1994).

But the use of such techniques in a higher-dimensional
setting is problematic. A binning technique like “lin-
ear” binning which distributes each observation in one-
dimension on two grid points, will distribute each obser-
vation in d-dimension onto 2¢ grid points. This could
have the effect that we have more grid points b, with
n, # 0 than observations! Take for example a two-
dimensional standard normal variable and use linear bin-
ning with a grid where A = (0.03,0.03)7. If the sample
size is n = 250 we have on the average 950 grid points b,
at which n, # 0. The result of this is that, even if we use
the algorithms described above for the discrete convolu-
tion, the binned implementation using “linear” binning
is slower than the direct implementation.

This was verified in a Monte-Carlo study with a bi-
variate X-variable (and Y generated according to a lin-
ear model and a probit model). Using the adapted algo-
rithms from Scott (1992) for the discrete convolution and
“linear” binning hardly no run-time gains were observed
and for a grid with small A the direct implementation
was even faster. If “histogram” binning was used, how-
ever, we observed run-time gains of a factor 10 over the
direct implementation.

Thus we recommend to use “histogram” binning and
the (adapted) algorithms of Scott (1993) for functional
estimation in higher dimensions.
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Experiences With Derivative-Free REML

L. Dale Van Vieck
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Abstract

A set of Fortran programs has been developed to
obtain (co)variance estimates for multiple trait genetic
analyses with different models for each trait using the sparse
matrix package SPARSPAK, and a derivative-free algorithm
to obtain REML estimates (MTDFREML). A typical
analysis would include birth weight of all animals, weaning
weight and yearling weight on those surviving. The model
would include direct genetic and correlated maternal genetic
effects for each animal and uncorrelated  maternal
environmental effects (a total of 33 (co)variance
components) as well as other fixed or random effects
associated with the traits. The simplex algorithm is used to
search for components to minimize -2 log likelihood =
FVALUE. The FVALUE for equations of order 60,000 or
more can be evaluated on personal computers for each of the
potentially thousands of rounds needed to obtain REML
estimates. Efficiency depends on density of the mixed
model equations. Nongenetic models are usually much more
sparse than genetic models that incorporate numerator
relationships among the animals. Scaling of variables is
sometimes a problem due to rounding in calculation of
FVALUE; e.g., multiplying categorical variables by 100 led
to successful convergence. The search algorithm is stopped
when variance for FVALUEs in the Simplex is from 104 to
10'8, often at a local minimum, With multiple trait analyses,
several restarts may be needed to find the global maximum.
An evolving strategy is:

1. begin with only variances included to minimum local
convergence.

2. restart with covariances included to minimum local
convergence until FVALUE change is no more than
a unit.

3. restart with maximum local convergence (10'6 to
10'8) until FVALUE change is only at second or
third decimal when global maximum is declared.

Successful analyses with MTDFREML require “art” as well
as “science”.

Introduction

Restricted maximum likelihood  (Patterson and
Thompson, 1972) has become the preferred method of
animal breeders to estimate (co)variance matrices among and
within traits described by mixed linear models. The
traditional algorithms make use of identities based on
Henderson's (e.g., 1963, 1984) mixed model equations which
have computational advantages including being based on a
simple modification of least squares equations. Algorithms
based on derivatives of the multivariate normal likelihood
given the data have been limited in scope by requiring
inverse elements of the coefficient matrix of the mixed
model equations. For practical purposes, that has meant
mixed model equations with order in the range of 1000-
5000. |

Derivative-free algorithms that take advantage of the
sparsity of the coefficient matrix have greatly expanded the
number of equations that can be managed to the order of
50,000 to 150,000. The purpose of this note is to outline
briefly the science of DFREML and then to discuss some
aspects of the “art” of DFREML as the numerical properties
are not well understood, at least to most animal breeders.

The Science of DFREML

The original algorithm for DFREML as developed in
animal breeding traces to several sources including the
realization that Gaussian elimination of augmented least
squares (although in this case, mixed model) equations can
be used to obtain the two computing intensive parts of the
log likelihood (Smith and Graser, 1986; Graser, Smith and
Tier, 1987) as the keynote speaker for this conference
described (Stewart, 1994). The other two developments were
Hendersons’ mixed model equations (e.g., 1963) and the
discovery that the log of the likelihood can be written in
terms of four components of the mixed model equations
(Harville, 1977; Searle, 1979).




The general linear model in typical animal breeding
notation is:
y=XB+Zu+t+e
Efy] = XB
u

=[G o]’and
e OR

V() =V =ZGZ +R
where y is the vector of observations; B is the vector of
fixed effects with association matrix, X; u is the vector of
random effects with association matrix, Z; and (co)variance
matrix, G; and e is the vector of residuals associated with
the observations with (co)variance matrix, R.

Henderson (e.g., 1984) showed that solutions to mixed
mode! equations provide best linear unbiased estimators of
estimable functions of fixed effects and best linear unbiased
predictors of realized values of random effects.

Vv

Henderson’s mixed model equations (MME) are:

_|XRy
ZRly

XR1X XRZ
ZRX ZRZ + G

o

=>

In simpler notation: C s = 1.

Note that except for the usual zero covariance between
the u and e vectors, the mixed model equations are
completely general and can encompass multiple traits,
missing observations on some traits of some animals,
different models for different traits and, for animal breeders,
relationships among animals due to genes in common, A,
and genetic covariances among traits, G

Typical random factors in animal breeding models
include animal's direct genetic value, mother's maternal
genetic value (with genetic covariance between direct and
maternal genetic values), animal permanent environmental
effects when animals have repeated records, and maternal
permanent environmental effects when mothers have more
than one progeny with records. Other genetic models used
by animal breeders may include instead of animal effects,
sire transmitting ability (1/2 direct genetic value of sire),
maternal grandsire effect and dam permanent environmental
effect. Other variations are also used.

The large number of variances and covariances to
estimate from multiple trait models can be illustrated for
traits with a direct and maternal genetic value (with
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covariance) and two other random factors such as dam
permanent environmental and a litter effect in addition to
residual effects. A single trait analysis will involve five
variances and one covariance. A two-trait analysis will
involve those six elements twice plus seven other
covariances. A three-trait analyses would have 6 + 6 + 6 +
7 +7 + 7 =39 variance and covariance components to
estimate.

Harville (1977) and Searle (1979) showed that the
multivariate normal likelihood given the data is:
A =-5[constant +log [ R | +log | G |

+log | C | + yPy] where
C = coefficient matrix for MME and
p=vvixavin v

Note that C and P depend on R and G as well as on X and
Z.

Derivative-Free Algorithms

Derivative-free algorithms for REML are based on
searching for the combination of individual variances and
covariances associated with R and G that will maximize A
or, more usually, will minimize, FVALUE = -2A. The
original algorithm of Smith and Graser (1986) and that used
in the single trait program of Meyer (1988) which
popularized use of DFREML was based on sparse matrix
Gaussian elimination of C augmented with r with the total
sum of squares in the corresponding diagonal. Gaussian
elimination automatically produced a known multiple of y'Py
and log | C|, the difficult-to-compute terms in A. The
simplex algorithm (Nelder and Mead, 1965) is the usual
choice to search for (co)variances to minimize -2A.

Boldman and Van Vleck (1991) used subroutines in
SPARSPAK (George, et al., 1980; Chu, et al., 1984) to
decrease the time to calculate -2A by factors of 100 to 600
from the times required by the original algorithm of Meyer
(1988). SPARSPAK is based on Choleski factorization rather
than Gaussian elimination and provides a more general form
for calculation of yPy as well as log | C|. Both the
Gaussian and Choleski based algorithms lead to general
programs which are not model dependent, whereas
derivative based algorithms are more difficult to generalize
because of the requirements to calculate a quadratic in y for
each (co)variance component and to calculate the expectation
of the quadratic which is a function of corresponding
elements of the inverse of the coefficient matrix.
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Some general observations are that derivative based
algorithms are slow to converge, that single trait DFREML
converges quickly but that multi-trait analyses may converge
slowly with DFREML. Many restarts may be needed if
covariances are estimated (Press, et al., 1989; Groeneveld
and Kovak, 1990; Boldman and Van Vleck, 1990).

The Choleski based algorithm wsed for the
MTDFREML package (Boldman, et al., 1993) consists of
two basic steps:

1. a method (the simplex algorithm) to search for

parameter estimates to minimize -2A and

2. formation and solution of MME for parameter

estimates chosen by the simplex algorithm by use
of SPARSPAK subroutines to take advantage of
the usual sparsity of the mixed model equations.

Their package also includes a program to calculate the
inverse of the relationship matrix among the animals to be
used in forming the mixed model equations (Quaas, 1976)
and a preparation program which recodes animal
identification and fixed effect levels into equation numbers.

Calculation of -2A

If y; is the vector of observations on traits measured
on animal i, then the residual covariance matrix for animal
i is R;. For the usual assumption that residuals from one
animal to another are uncorrelated, then

log |R| =Xlog | R;| where each R; is dependent on
the number of traits measured on animal i. All eigenvalues
of R, the maximum order of any R;, must be positive.
Thus, one way to calculate log | R | is to calculate the sum
of logarithms of eigenvalues for each type of R; and
multiply by the number of each type of R; and then sum
over all types of R;. The log| G| can be calculated
similarly and even more easily (e.g., Meyer, 1989, 1991).

For example, if:
AcG 0 0

0 I,eC 0
G - 1 11 ' .
I eC

then
log |G| =tlog | A| +qlog | G, |
+mlog |Cyy | +-+mlog | Cpy |

where t is the order of G,, which is the genetic covariance

matrix for genetic values of t traits of an animal; q is the
number of animals in A which is the numerator relationship
matrix; Cigs = CLL are the covariance matrices for the L
random effects that are correlated across traits but
uncorrelated across animals with n;, the number of sets of
The two computing intensive terms are calculated from
the Choleslcl factorization of Cas 2 Xlog (¢;) where b
is the J diagonal element of the Choleski factor. The
Choleski factor can be used to solve for s so that yPy is
calculated as TyR'y,-sr where the first term is
calculated animal by animal.
The basic steps with sparse matrix techniques are:
1) . Symbolically reorder elements of C (once)
2) For each likelihood calculation
a) update G and R via simplex and calculate
log| G| andlog | R},
b) update C,r,and TyRy, from updated G,
R, and original y,
c) calculate log | C | and s'r as described above,
d) check for convergence (based on change in
-2A).

Times required for these steps were 98 sec to reorder;
44.60 sec to factor, and 1.32 sec to solve (time for a
likelihood calculation = 44.60 + 1.32 = 44.92 sec) for a
single trait model with direct and maternal genetic effects
and maternal permanent effects involving 3,111 animals and
7,303 equations. A traditional derivative method would
require inversion of C with order 7,303 for each iteration.

A three-trait example (Lucia Albuquerque, personal
communication, 1994) introduces problems encountered with
multiple trait analyses. The records were milk, fat and
protein yields for New York Holsteins with measurements
on up to three lactations per cow. The model included
animal genetic (9,722) and animal permanent environmental
effects (animals with records = 5,706) and management
levels (1,509) associated with herd-year-season at initiation
of each lactation. The table gives number of equations and
computing times for one, two, and three trait analyses:

Milk MJF MJEP
Equations(no.) 16,937 33,874 50,811
Re-order(sec) 18 61 129
Likelihood(sec) 26 179 594




The advantage of sparsity is illustrated by a similar sample
from California including 10,438 animals, 5,877 cows with
records and only 225 H-Y-S of freshening. The smaller
number of H-Y-S levels resulted in less reorder time and
especially less time to calculate -2A; 14 sec to reorder for
one trait; 103 sec to reorder for three traits and 11 and 143
sec for each likelihood compared to times of 26 and 594 sec
for the New York data. The increased time for each
calculation of 2A combined with many restarts shows that
convergence takes a long time with even three traits.

California New York
Number Milk M,EP Milk M,F,P
Restarts 1 10 1 10
AJRestart 88 400 95 410
Total A 88 4000 95 4100
Total time 16.4m 6.6d 41.5m 28.2d

The single trait analyses took a matter of minutes to
reach global convergence but the three-trait analyses took
about a week for the California sample and about a month
for the New York sample due to the time per likelihood
calculation and the number of restarts that was needed. The
increase in time for calculation of A for the New York
sample is due to the increase in number of levels of H-Y-S.

Starting values for multiple trait analyses are important
with DFREML as illustrated by two analyses with different
pairs of traits for the same animals. The first two traits were
animal birth weight when born 1) to a young mother and 2)
to an older mother. The model included direct and maternal
genetic values (with covariance) and maternal permanent
environmental effects as some older mothers had more than
one calf. Thus, the total number of (co)variances was 15;
3212 animals contributed to relationships, 765 and 1306
calves were born to young and older mothers resulting in
14,676 mixed model equations. Starting values for variances
were based on single trait analyses except that a major input
error went unnoticed for one maternal genetic variance. A
total of 22 restarts (restarts were after 150 simplex rounds or
variance of the simplex less than 1.E-6¥) was needed before
-2A changed less than .01 from restart to restart. The pattern
of -2A after each restart was 11500 plus in turn: 34.23,
29.79, 29.67, 29.28*, 26.82, 25.03, 24.55, 24.43*, 24.15%,
23.87*, 23.56*, 20.99, 18.54, 18.07, 17.97, 1791, 17.85,
17.72*, 17.42, 17.06, 17.02 and 17.01* when global
convergence was assumed. Several times the system seemed
on the verge of convergence but would then continue to a
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better set of estimates.

The similar analyses were with calving ease substituted
for birth weight. Calving ease is a trait that is categorically
measured which often results in slow convergence. This
time the starting values were correctly inputed and only 6
restarts resulted in convergence with consecutive -2A of
1007.12, 994.99, 992.04, 987.62, 986.35 and 986.35*. These
analyses illustrate some of the frustrations with DFREML
for multiple trait analyses and serve to introduce the “art” of
DFREML.

The *"ART" of DFREML
Convergence

The question of how to proceed most efficiently to
find solutions that are globally maximum causes many
headaches, results in some degree of doubt about the
reliability of DFREML, and is still basically an art form with
few established rules. The simplex algorithm is not
guaranteed to reach a global minimum (in this case for -2A).
It may lead to a local minimum. Usually the stopping point
after a start is based on the variance of the n + 1 log
likelihood values retained in the simplex where n is the
number of parameters. Common stopping points are when
V(-2A) is less than a predetermined value such as 1.E-4,
1.E-6, or 1.E-8. An alternative, based on experience, is to
restart after a certain number of simplex rounds or when
V(-2A) is less than the predetermined constant. (Each
simplex round requires on average about two likelihood
evaluations)) Then -2A is examined for improvement from
the previous start. If the improvement in -2A is less than .01
to .05, then another restart usually results in little additional
improvement. Another alternative is based on the previous
one but includes an examination of variances as fractions of
total variance as well as of correlations. If such proportions
do not change in the second decimal, global convergence is
likely. Nevertheless, experience as well as such ad hoc
guidelines are needed until precise rules are developed. For
example, should restarts be limited to a specific number of
simplex updates, should restarts be terminated after the
variance of simplex has fallen below a pre-determined value,
or should some combination be used? What would be the
best choices for number of simplex rounds and variances?

The following table shows -2A at three convergence
levels for 10 samples of milk records with first, second, and
third lactations being considered separate traits (Lucia

Albuquerque, personal communication, 1994).
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-2A FOR THREE CONVERGENCE
CRITERIA (10 samples)

Convergence Criterion

_ Sample 1E-4 1L.E-6 LE9D
1 58601.32  58601.20  58601.07
2 55087.71  55087.71  55087.69
3 5712257  57122.49  57122.49
4 53185.73  53185.71  53185.65
5 5204248  52042.43  52942.14
6 51778.50  51778.47  51778.46
7 5344638  53443.84  53443.84
8 50851.60  50851.52  50851.43
9 53778.04  53778.00  53771.97
10 55685.27 _ 55685.24 _ 55685.06

The table illustrates the art of deciding whether global
convergence has been reached. For some samples, 1.E-4 and
1.E-6 led to similar -2A with 1.E-6 always reaching a
smaller (better) value. In other cases, continuing to 1.E-9
resulted in improvement. The importance of differences in
-2A at the second decimal is difficult to quantify.
Proportional estimates of the variances and correlations
for the averages of the same 10 samples at convergence of
1.E-6 and 1.E-9 after many restarts are shown below.

AVERAGES FOR TWO CONVERGENCE CRITERIA

Convergence Criterion

Lactations 1.E-6 1.E-9
HERITABILITIES
01 35 35
02 34 34
03 33 32
GENETIC CORRELATIONS
(01x02) 87 87
(01x03) 81 81
(02x03) 97 97
ENVIRONMENTAL CORRELATIONS
(01x02) 43 43
(01x03) 38 38
(01x03) 44(.444) A45(.445)
PHENOTYPIC CORRELATIONS
(01x02) 58 58
(01x03) 53 33

(01x03) .62 .62

To two decimals the averages of proportions were
essentially the same. For animal breeding applications even
changes in fractional variances from, for example, .30 to .35
are not often important.

Experience has been that 1) for single trait analyses
with no imbedded covariances such as the direct-maternal
genetic covariance global convergence is usually reached
when V(-2A) is less than 1.E-6, although one restart is a
safety measure, 2) for a single trait analysis with a direct-
maternal covariance at least one restart is needed and 3) for
multiple trait analyses many restarts will be needed with the
number dependent on starting values, the complexity of the
model, and even the scale of measurements. The multiple
trait “rule” is restart, restart, ..., until -2A does not change
more than about .01.

Boundary Conditions

As with any REML algorithm, solutions outside the
parameter space are not estimates. For example, variances
must be greater than zero and absolute values of genetic and
other correlations must not exceed unity. In addition,
eigenvalues of matrices such as R, and G, which represent
environmental and genetic covariance matrices for traits
measured on an animal must be positive. As part of the
simplex algorithm whenever an update of a solution is not
allowed, a large value is assigned to -2A which forces a
contraction of the simplex update. If necessary, other
contractions are forced until the update is allowed. Such
contractions are done before the expensive calculation of
log | C| and yPy so that little time is wasted. Solutions
near boundaries, however, often indicate many rounds will
be needed as solutions may creep to the boundary of allowed
estimates.

Sign of Correlations

The simplex operates by updating current solutions by
increasingly smaller fractions of the current solutions. If a
starting correlation (covariance) is positive and the optimum
solution is negative, the search must pass from positive to
negative values of the covariance. Experience indicates that
the cross-over requires many rounds of likelihood
evaluations.




Rounding in Calculation of -2A

A problem that occasionally occurs is that
convergence, i.e., variance of -2A in the simplex will never
be less than 1.E-6. In such cases, that variance typically
bounces around at values larger than 1.E-6. Rounding error
in calculation of -2A from the four components of A is
likely the reason. The amount of rounding error will be
computer and possibly compiler dependent. The potential for
rounding error is illustrated by -2A values in the range of
190,000 for which V(-2A) is to be less than 1.E-6 or 1.E-8
at convergence.

Another experience also may be due to rounding error.
At least one analysis has shown a cyclic fluctuation in -2A
such as 24470, 24490, 24470, ... which insures that V(-2A)
is large and convergence based on V(-2A) will not be
attained. Examination of the solutions showed only slight
differences even though the -2A for each set of solutions
were quite different. A possible explanation is that parts of
the likelihood involve logs of small eigenvalues which are
then multiplied by a number such as the number of animals.

Binomial data with values of 0 and 1 or 1 and 2 have
led to the problem described in the previous paragraph.
When convergence has not been attained, two approaches
have been followed. Multiplying the binomial values by 100
sometimes seems to lead to better numerical properties.
Another alternative has been to change to a sire model rather
than to continue with an animal model.

Starting Values

The importance of starting values depends primarily on
whether the analysis contains covariance terms. For a single
trait analysis, the sum of components at the start should be
reasonable, ie., less than the raw variance. At least one
analysis failed to reach convergence when, by oversight, the
starting variances were all several times the true variances.
With direct-maternal genetic covariance included for a single
trait, choice of correct sign of the covariance is important as
discussed earlier. The covariance should not be started as
zero because the steps of the simplex algorithm are
proportions of the previous solutions. A starting zero will
remain zero.

Multiple trait analyses take more time per round, more
rounds to simplex convergence and, usually, many restarts
to attain global convergence; thus good starting values are
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important. One suggestion is: 1) do single trait analyses to
determine variances and within-trait direct maternal
covariances, 2) start with across-trait covariances
corresponding to moderate correlations and the better guess
of positive or negative sign while holding variances from 1)
constant (an option in the MTDFREML program); and then
3) let all (co)variance elements vary in the simplex with the
prospect of several restarts.

Conclusions

Derivative-free REML with sparse matrix methods
based on Henderson's mixed model equations has expanded
the magnitude of single and multiple trait analyses to obtain
REML estimates of variances and covariances. Single trait
analyses converge quickly. The “art” of DFREML mainly
involves rules for reducing time to global convergence for
multiple trait analyses. Optimum starting values and restart
strategies have not been determined, although obvious ad
hoc rules have been evolving. Restarts to insure convergence
to a global maximum for A (or minimum for -2A) are
mandatory for multiple trait analyses. Help is needed 1) to
develop an improved updating algorithm, 2) to determine
starting strategies for multiple trait analyses, and 3) to design
a general method for restarting to obtain most efficiently
solutions that have converged to the global maximum of the
likelihood given the data.

References

Boldman, K. G. and L. D. Van Vleck. 1990. Effect of
different starting values on parameter estimates by DF-
REML and EM-REML in an animal model with maternal
effects. J. Anim. Sci. 68(suppl. 2):71 (abstr.).

Boldman, K. G. and L. D. Van Vleck. 1991, Derivative-
free restricted maximum likelihood estimation in animal
models with a sparse matrix solver. J. Dairy Sci
74:4337. |

Boldman, K. G., L. A. Kriese, L. D. Van Vleck, and S. D.
Kachman. 1993. A Manual for Use of MTDFREML. A
set of programs to obtain estimates of variances and
covariances. USDA-ARS, Roman L. Hruska U.S. Meat
Animal Research Center, Clay Center, NE.

Chu, E,, A. George, J. Liu, and E. Ng. 1984. SPARSPAK:
Waterloo sparse matrix package users guide for
SPARSPAK-A. CS-84-36, Dept. Computer Sci., Univ.
Waterloo, Waterloo, ON, Canada.




40 Experiences with DFREML

George, A., J. Liu, and E. Ng. 1980. User guide for
SPARSPAK: Waterloo sparse linear equations package.
CS-78-30, Dept. Computer Sci., Univ. Waterloo, ON,
Canada.

Graser, H. -U.,, S. P. Smith, and B. Tier. 1987. A
derivative-free approach for estimating variance
components in animal models by restricted maximum
likelihood. J. Anim. Sci. 64:1362.

Groeneveld, E. and M. Kovac. 1990. A note on multiple
solutions in multivariate restricted maximum likelihood
covariance component estimation. J. Dairy Sci. 73:2221.

Harville, D. A. 1977. Maximum likelihood approaches to
variance component estimation and to related problems.
J. Amer. Stat. Assoc. 72:320.

Henderson, C. R. 1963. Selection index and expected
genetic advance. In: Statistical Genetics in Plant
Breeding. NAS-NRC publication 982.

Henderson, C. R. 1984. Application of linear models in
animal breeding. U. Guelph, Guelph, ON, Canada.
Meyer, K. 1988. DFREML. A set of programs to estimate
variance components under individual animal model. J.

Dairy Sci. 71(suppl. 2):33.

Meyer, K. 1989. Restricted maximum likelihood to estimate
variance components for animal models with several
random effects using a derivative-free algorithm. Genet.
Sel. Evol. 21:317.

Meyer, K. 1991. Estimating variances and covariances for
multivariate animal models by restricted maximum
likelihood. Genet. Sel. Evol. 23:67.

Nelder, J. A. and R. Mead. 1965. A simplex method for
function minimization. Computer J. 7:308.

Patterson, H. D. and R. Thompson. 1971. Recovery of
inter-block information when block sizes are unequal.
Biometrika 58:545.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling.  1989.  Numerical recipes. Cambridge

~ University Press, New York.

Quaas, R. L. 1976. Computing the diagonal elements and
inverse of a large numerator relationship matrix.
Biometrics 32:949.

Searle, S. R. 1979. Notes on variance component
estimation: A detailed account of maximum likelihood
and kindred methodology. Paper BU-673-M, Biometrics
Unit, Cornell Univ.

Smith, S. P. and H. -U. Graser. 1986. Estimating variance
components in a class of mixed models by restricted
maximum likelihood. J. Dairy Sci. 69:1156.

Stewart, G. W, 1994, Gauss, statistics, and Gaussian
elimination. Keynote address, these proceedings.




W.D. Heavlin and G.P. Finnegan 41

Dual Space Algorithms for Designing Space-Filling Experiments

William D Heavlin, G Paul Finnegan
Advanced Micro Devices, MS 152
POBox 3453, Sunnyvale, California 94088-3453
Internet: bill.heavlin@amd.com

Key words: computer experiments, D-optimality, goodness of fit, Latin hypercubes

Abstract: For generating response surface
designs, most general purpose (“D-optimal”)
algorithms work point by point in the design
domain. We introduce a class of algorithms
operating in the dual, factor/column space. Their
basic operations exchange, randomly and sys-
tematically, the rows of certain columns (factors)
with respect to the rows of other columns.

This dual space approach is especially suitable
for designing computer experiments of Latin hyper-
cube type. The experimenter can embed two- and
three-level response surface designs, both to match
a calibration subset and to achieve high efficiency.
More centrally, the experimenter explicitly chooses
the number of factor levels and their frequencies,
ideal both for considering model-free goodness-of-fit
and for establishing interpolation grids.

1. Computer ezperiments

Complicated physical phenomena are
increasingly well modeled by computer simulators.
The underlying physical theory usually involves
two-to-four dimensional differential equations with
boundary conditions, key complications consist of
multiple materials, their interfaces and geometrical
structures. Important methods encompass auto-
matic grid generators, parallel computing algo-
rithms, finite element analysis, and empirical
metrology and calibration procedures. Typical
simulator applications include verification and opti-
mization of product designs and policies, diagnosis
of problems and opportunities, evaluation of
difficult-to-measure constructs, development of
predictive models, and estimates of distributions.

Experiments using computer simulators, so-
called computer experiments, are a focus of
statistical methods research. Among their special
considerations are their ability to repeat perfectly,
the increased feasibility to run larger experiments,
and the opportunity to fit richer, more
nonparametric models. Modeling approaches in-
clude kriging (Matheron [1971], Sacks et al [1989]),
nonparametric regression (Friedman [1991]), and
neural networks (Cheng and Titterington [1994]).
This work is shaped by target applications: Sacks

et al (1989) predict, then optimize analog
integrated circuit performance. Friedman (1991)
emphasizes graphical visualization and decom-
position. Several authors perturb simulator inputs
to project output distributions. Their methods
range from Monte Carlo sampling (Kibarian and
Strojwas [1991]), low-order moment estimation
(Zaino and D’Errico [1988]), and Latin hypercube
sampling (McKay et al. [1979]).

This paper is on designing computer
experiments, in particular using Latin hypercubes
(LHCs). When introduced by McKay et al (1979),
LHCs were constructed by random mechanisms,
and have since been shown to be more efficient for
distribution estimation than Monte Carlo sampling
(Stein [1987], Owen [1992a]). LHCs’ advantage is
further increased by constructing them using
orthogonal arrays (Owen [1992b], Tang [1993]).

An alternative computer experiment design
approach is that of Sacks et al (1989), who
introduce a class of optimal experiments based on a
kriging model, in the sense of minimizing
integrated mean square error. Figure 1 shows the
scatterplot matrix of their 32-run 6-factor design.
Note that each projection into two dimensions
shows a characteristic five-spot X-pattern. Many
researchers have found this pattern objectionable,
preferring the symmetry of Latin hypercubes.

8. Problem Statement

Like many others, our ultimate application is
distribution estimation. The economics of
simulation motivate our approach. Simulations are
relatively slow, on the order of 12-24 hours each.
This encourages us to build an intermediate model,
one from which we can interpolate other values.
Also, at certain points in the design domain we
have empirical measurements, whose configuration
forms a conventional 27237 response surface
design. To these we need to match their
corresponding simulations, in order to calibrate the
model correctly. The empirical measurements are
also precious, and the time it takes to develop them
ultimately bounds the number of simulations we
can perform.
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To summarize, the particular characteristics of
our computer experiment are the following: (1)
Computer simulations are time-consuming, hence
precious, and efficient designs are therefore
desirable. (2) The computer experiment is used to
establish an interpolation grid, from which an easy-
to-evaluate model can be developed. (Observe that
the application of Latin hypercube sampling, by
which a simulator is evaluated in order to estimate
the distribution of an output parameter, is moved
outside our scope. We can, of course, apply Latin
hypercube sampling to our interpolated meodel.)
(3) Some of the computer simulations are fixed a
priori (to match empirical measurements for
calibration, perhaps to improve the interpolation
grid), and we would like take advantage of these
runs. (4) The size of the experiment is small to
moderate — for definiteness, say 50-100 runs of
about 8-10 factors. (5) Beyond design optimality,
we would like to preserve some sensitivity to
detecting model lack of fit.

3. Optimal Experiments and Design Repair

Much of the theory of optimal designs is based
on conventional linear models, with homogeneous,
independent errors. This literature has two themes.
By one theme, with respect to a particular model,
one defines criteria by which one can compare
designs.  These are usually functions of the
coefficients’ variance-covariance matrix; the most
common is the determinant, the so-called D-
optimality criterion. By theme two, the design
domain, in principle continuous, is reduced to a
finite set. For example, with one factor, the
optimal design of a linear model is well known to
concentrate all points at the extremes of the
feasible range. Similarly, optimal designs for
quadratic models concentrate all design points at
three levels. Atkinson and Donev (1993) give a
contemporary account of optimal design literature.
In practice, for computer experiments, the limited
variety of points in the design domain has made
conventional optimal designs unattractive.

Our basic approach adapts the columnwise D-
optimal algorithm of Heavlin and Finnegan (1993).
The “design repair” algorithm presented therein
uses the D-optimal criterion (theme one, above),
but not the restricted design domain (theme two).
Instead, the experimenter chooses each factor’s
levels, and the frequency with which they are used.
For computer experiments of the Latin hypercube
type, with n runs, this means the levels of each
factor are the values 1,2,...,n; equal spacing is used

to improve the interpolation grid.

The design repair approach also uses
conventional linear models, and homogeneous,
independent errors. Its natural domain of

applicability is sequential batch processes, e.g.
semiconductor manufacturing. Applications include
assigning interacting covariates, adapting experi-
ments to lost experimental units (e.g. broken
silicon wafers), designing responses with partially
overlapping factor sets, and allocating noise-factor
batch positions. For conventional response surface
designs, design repair has proven useful for finding
partially balanced incomplete block designs,
combining mixture and nonmixture factors, cre-
ating level-balanced response surface designs, and
constricting loss resistant experimental designs.

Design repair’s primary data structures are two
partial design matrices, W and X, and one model.
Both W and X have n rows, and Fy; and Fy
columns respectively. In addition, for certain
problems we wish to include certain experiments,
certain complete rows. We denote these rows by
WX, Let W; (X;) denote the ith row of W (X).
Let m denote a permutation of the row indices
1,2,...,n. We would like to form the design matrix
WXT, whose ith row is W, and X i and which
includes the a priori rows WX, that is,

W X
WXT = | ———)
WX,

where X, denotes the nx Fy matrix whose ith row
is Xﬂ.(,-). From WX" we can develop a model
matrix ‘M", whose ith row is MT = m(WX"). For
example, were W and X both one column matrices,
and our desired model a full quadratic, the
m(u,,u,) returns the row vector (1, u;, uy u,u,,
uf,u?), corresponding to the constant, two linear,
one interaction, and two quadratic terms. Hence,
MT has the form

M =

W X

WX,

The design repair algorithm works to find the
best m, or at least a good one, so that we can
estimate by least squares the linear coefficients of
MT. We choose the D-optimality criterion, for
which larger values are better:

D(M) = In(det(M* M)), for M non-singular,

= —00, otherwise.

l higher
| order |
| terms

With a quantitative measure (D) of a good
design specified, the design repair algorithm is




easily imagined. It comes in two parts, a random
starting point, called R-step, and a deterministic
search over erchanges or transpositions of pairs of
elements in , called E-step.

R-step: w is selected at random from all possible
permutations, WX and M™  constructed, and

D(M™) evaluated. This is repeated for np iter-
ations, keeping track of the best 7. As the number
of iterations increases, discovery of better permu-
tations becomes less likely and R-step becomes
inefficient. This motivates E-step.

E-step: As a starting point, E-step uses the best
permutation found from R-step, say 7p. All ( )
combinations formed by exchanging a pair of
indicies are then considered, that with the largest
D-value selected. In this way, E-step is repeated
until no further improvement from pairwise
exchanges of indices (rows of X”) is found.

Specification of np: For the optimum number of
R-steps, np, Heavlin and Finnegan (1993) develop
an heuristic and approximate relationship:
log o(ny) = —0.71 + 2.12 logm(n) In one region
of interest, n about 50, this implies n} & = 800.

4. Computer Ezperiment Test Case

To use the design algorithm, one must specify
the matrices W and X, and an appropriate model.
For computer experiments, one usually needs to
apply the design repair algorithm several times in
series, building up the columns of the design in
stages. Let W7, X?, and m’ denote these objects for
the jth application of design repair. Denote by
DR(W,X?,m’) the solution from the jth step.
Three issues need addressing:

L Path: W= X'= (1 2,...,n)T seems natural,
as does Wit! = DR(W3, X, mf) How should X’ be
selected for j> 27 The fastest route is X =Ww,
which we call “doubling.” This allows us to start
initially with a column matrix, then obtain a two-
column des1gn, then four, then 8, and so on. The
alternative is to choose X = XI for all j. This
builds up the design slowly, one column at a time.
This path we call “add one.”

2. Bases: Should the model be described as a
polynomial, or are there useful alternatives, such as
using terms of a Fourier series?

3. Models: What model, in particular which
interactions, should be specified? At one extreme,
one can specify a purely additive model, with no
interactions among the factors; at the other
extreme, one might pose as large a set of
interactions as feasible.

As a test case, we develop an 8-factor, 51-run
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Latin hypercube. There are several reasons for this
choice. The size of this experiment is large enough
to be practical, yet small enough for design repair
to handle reasonably. 51 runs allow us to specify
W!=(—-1,-0.96,—0.92...,0, 0.04, ..,+1)%.
Finally, Tang (1993) has published scatterplot
matrices for a 49-run 8-factor LHC constructed
using orthogonal arrays, giving us a good standard
for comparison. To facilitate comparisons, we use
no WX, matrix.

For this exercise, we follow both the doubling

‘ path, and the add-one path. For bases, we use a 7-

degree (orthogonalized) polynomial, whose terms
before orthogonalization correspond to w, w?, o,
wt, w’, w% and w’; these seven columns comprise
W!. As an alternative basis, we also consider seven
terms of a Fourier series, corresponding to w,
sin(2nw), cos(2rw), sin({ww), cos(4ww) sin(8rw),
cos(8mw), also orthogonalized. To enhance
comparability, for these four designs, we choose
additive models, with no interactions; W? is the
same in all constructions, the attractive result of a
design repair conmstruction using the seven-term
Fourier basis and a high-order interaction model.
Judging from scatterplot matrices, the most
satisfying design is that using the polynomial basis
and add-one path (figure 2), comparable to Tang’s
figure 3 of an orthogonal array-based LHC. Space
limitations prohibit showing scatterplot matrices of
the other bases and paths, but the scatterplot
matrices of both add-one constructions are more
satisfying, with points well spread out and no large
area unoccupied, than those from the doubling
path. (This agrees with the authors’ experiences in
other computer experiment applications.) In both
cases, the polynomial constructions are somewhat
more pleasing than those using the Fourier series.
Figure 3 is the scatterplot matrix of the 51-run
7-factor design repair construction. Like that in
figure 2, it is the result of the add-one path and the
7-term polynomial basis. Unlike figure 2, it uses a
series of rich models: W’ a full six-order model
(81 terms); W4, a full fifth-order model (124
terms); W°, a full third-order model, plus all
fourth-order terms involving the fifth factor, plus
pure quartic terms for all five factors (127 terms);
W? a full cubic model, plus all pure fourth-order
terms, plus all mixed interactions involving the
sixth factor (99 terms); and W7, a full cubic model,
plus pure quartic terms (77 terms). These models
have more terms than runs; the D-criterion is
modified to In(det(M™ M + AI)), with A = 0.1.
Under the constraints of the LHC margins,
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figure 3 shows an X-pattern similar to that of
Sacks et al (1989). One might speculate that the
kriging model is related to interaction-rich models.
An alternate interpretation is that the design repair
approach to LHC construction should be applied
only for additive models.

5. Conclusions

The design repair algorithm can construct Latin
hypercube designs successfully. Conditions where
this is appropriate are listed in section 2; the key
ingredients are a design of moderate scope with
some particular requirements. Based on reviewing
scatterplot matrices of the resulting designs,
polynomial models work at least as well as the
alternatives. The add-one path allows the models
to be specialized to each step of construction; for
this reason, it is not unexpected that add-one
designs have better esthetic properties than designs
based on the doubling path.

A well recognized analogy is on one hand with
two-level factors, linear models, and resolution III
projection properties and, on the other hand, with
multilevel factors, additive models, and two-
dimensional projections (called strength 2). For
this reason, one might anticipate that additive
models would give appealing scatterplots matrices,
which are merely graphical strength 2 assessments.
The similarity of X-patterns both in Sacks et al
(1989) and figure 3’s interaction-rich Latin
hypercube construction is more tantalizing, perhaps
pointing to some connection between the two
approaches for high-dimensional designs.

6. References

Atkinson, AC, and Donev, AN (1992). Optimum
Ezperimental Designs. Clarendon Press, Oxford.

Cheng, B, and Titterington, DM, (1994), “Neural
networks: A review from a statistical per-
spective,” with discussion, Statistical Science, 9,
1, pp2-54.

D’Errico, JR, and Zaino, NA Jr, (1988), “Statisti-
cal tolerancing using a modification of Taguchi’s
method,” Technometrics, 30, pp397-405.

Friedman, JH, (1991), “Multivariate adaptive
regression splines,” with discussion, Annals of
Statistics, 19:1, ppl-141.

Heavlin, WD, and Finnegan, GP, (1993), “Adap-
ting experiments with sequentially processed
factors,” ASA Proceedings, Section on Physical
and Engineering Science, August, San Francisco.

Kibarian, JH, and Strojwas, AJ, “Using spatial
information to analyze correlations between test

structure data,” IEEE Trans. on Semiconductor
Manufacturing, 4, August, pp 219-225.

Matheron, G (1971), The Theory of Regionalized
Variables, Centre of Morphologie Mathématique
de Fontainbleau.

McKay, MD, Conover, WJ, and Beckman, RJ,
(1979), “A comparison of three methods for
selecting values of input variables in the analysis
of output from a computer code,” Technome-
trics, 21: pp239-245.

Owen, AB, (1992a), “A central limit theorem for
Latin hypercube sampling,” Journal of the Royal
Statistical Society, Series B, 54, 2, pp541-551.

Owen, AB, (1992b), “Orthogonal arrays for compu-
ter experiments, integration and visualization,”
Statistica Sinica, 2:2, pp439-452.

Sacks, J, Welch, W], Mitchell, TJ, and Wynn, HP
(1989), “Design and analysis of computer
experiments,” with discussion, Statistical Sci-
ence, 44, pp409-435.

Stein, M (1987), “Large-sample properties of
simulations using Latin hypercube sampling,”
Technometrics, 29, pp143-151.

Tang, B, (1993), “Orthogonal array-based Latin
hypercubes,” Journal of the American Statistical
Association, 88:424, pp1392-1397.

. ‘-
(Y -
- "’
3 g .
.
- d " -
+ 0
? S . e 12 .
.
~ ‘., P - .
o LN LA
-’ . ' -
- o - '.- - X '
- '-’_' . » ]
e r ~ N =2
. ~ d ~* (] LR "
[Fas T 5 [y s, e < RO P
}
> 0 ) o o v . 1 !
- . . . . . -1
' l

Figure 1. Scatterplot matriz of the 6-factor
compuler ezperiment of Sacks et al (1989). The
optimality criterion is minimum inlegrated mean

square error; the model a kriging one.




W.D. Heavlin and G.P. Finnegan 45

L .
. .
.
* .
.
0 T
C..‘ *
. -
.
3 4
. o
e 7 -
.
. .. .
G MR . .
~ LI °
.
. Wt e P
.o, P i
* ‘. A o
N . % .
. . S s .t e
L Y
_'.'-- *e S e
LRSI £ . .
N CE .
- . - L 4
o o
. .
he e oL T -
: 0 a . "
H .. . 0 .
. '.. . -‘ . "'..l.
. . N
L kK ' * e . LY P
.y .
s° . s o e
o . LI A R [
; A . JbNLe S,
> e e e O - . 0 > "y
R LI TR . el et P, .
. . . K
PP S - - .l . ,
) S FLEN S o
- .
. ‘., . , el . N
3 .« b . . L W
. L 2 AP Ld of g .0
+ - .
Cey oo e I“ N . ve’ ": * \
" .o PO Y . . L.
L 7 o Sea! L i
LN . U e, I' N i
NS L . . . i
b, o . . . LY . . .
2N s Vo . Ny AT
. . . t . 3
’ .'.! o L) o L, a S '9‘.. s e te e

Figure 2. Scatterplol malriz of a 51-run 8-factor Latin hypercube using the design repair algorithm.

The model is an additive 7-degree polynomial (no interactions); the factors are added one-by-one.

‘e
. -
b .
.
.
. .l - ..
o. R . p'l
.2 .
K .
I.. s . - .. o
) LA ..
.
.~
1
) . . B
St L. AP | R
0 R
.
. .
L ] e ) s Fl
. . . . .
. . o,
s . ke .
- v <
b el -.-'..L-" IR >
.
s el L R Y R
. . 0 o o
R ﬁ ! ., w?® B
PR > o ° s Xa
DL N ot . o <. . te s M
. o wil oo . . b . e,
:. . ot o] ..D' . . .‘ut
vy Ol \J g o
e * el : LR | R | A " . e
. " N . B R e, A
.
e el . RN, o et
. Y
" 3 -'...‘.. . " . e N ~, .
.-, o o . ‘e .. K, .
. 2] e .t A " ¢ .
LY " a b Z “t - S .
Cam N — Ol N v v X Ol .
. * . 2! e . ..l * . . L .‘-. L * \" ‘.‘ -.‘. AN
AN R o ot R e Qfee - R et e T, L e
ety o . : o, " o . o AL . ")
S Lt a Ve, el o N
. FURAE | L M, N Ol L v, A L
. X ot . - - ” . e ®e L
» . . ) L. . 0 X . . e * % -
. o o) . Y[ . s % . P el ) R

Figure 3. Scatierplot matriz of a 51-run 7-factor Lalin hypercube using the design repair algorithm.
The model specifies high order interactions terms; the faclors are added one-by-one.




46  Space-Filling Experiments

figure 3 shows an X-pattern similar to that of
Sacks et al (1989). One might speculate that the
kriging model is related to interaction-rich models.
An alternate interpretation is that the design repair
approach to LHC construction should be applied
only for additive models.

5. Conclusions

The design repair algorithm can construct Latin
hypercube designs successfully. Conditions where
this is appropriate are listed in section 2; the key
ingredients are a design of moderate scope with
some particular requirements. Based on reviewing
scatterplot matrices of the resulting designs,
polynomial models work at least as well as the
alternatives. The add-one path allows the models
to be specialized to each step of construction; for
this reason, it is not unexpected that add-one
designs have better esthetic properties than designs
based on the doubling path.

A well recognized analogy is on one hand with
two-level factors, linear models, and resolution III
projection properties and, on the other hand, with
multilevel factors, additive models, and two-
dimensional projections (called strength 2). For
this reason, one might anticipate that additive
models would give appealing scatterplots matrices,
which are merely graphical strength 2 assessments.
The similarity of X-patterns both in Sacks et al
(1989) and figure 3’s interaction-rich Latin
hypercube construction is more tantalizing, perhaps
pointing to some connection between the two
approaches for high-dimensional designs.
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Large Sampling Plans On The Sphere

Jason. J. Brown
Department of Statistics
222 Math Sciences Columbia, MO, 65211

Abstract

In recent years, modeling spatial processes on the sphere
(e.g., mining, oil exploration, forestry, pollution, ozone
levels, etc.) has become more abundant. But through it
all, there has been no generally accepted global sam-
pling plan and none for which a central limit theo-
rem (CLT) nor resampling algorithm has been formu-
lated. Some of the global sampling plans that have been
used are either derived from experimental design meth-
ods or geographical methods. In this paper, we out-
line each of the above types of sampling plans, describ-
ing their strengths and weaknesses, and then describe
a global sampling plan called a stratified spherical sam-
pling plan (Brown [1993a]) for which a CLT has been
proved (Brown [1993b]) and bootstrap algorithm has
been developed and strong uniform consistency of the
sample mean has been proved (Brown [1993c]).

Background

Spherical data arises in many disciplines: astrophysics
(star clusters), health sciences (MRI, contaminants), ge-
ology (oil, earthquakes), meteorology (ozone, pollution),
and geography (water levels, coast line) just to name a
few. Sampling plans play a major role in characterizing
a random field and the dependence structure of statis-
tics defined on the random field. In particular, creating
confidence intervals and conducting hypothesis tests on
statistics are directly related to the sampling plan.

Unfortunately there is no generally accepted way to
gather spherical data. In particular, we would like a
global sampling plan upon which we can prove a CLT
and/or create a resampling algorithm. Up until 1993,
the only sampling plan for which a CLT has been proved
is for the continually indexed sphere (Leonenko and Ya-
drenko [1979]).

The most common way to prove a CLT for depen-
dent data is to use a characteristic of the random field
known as stationarity (translation invariance) and the
big-block, little-block methodology and a-mixing to re-
duce the problem to the iid setting. Using these ideas

when the sample size n is very large, if the small blocks
are small in size compared to the big blocks, but still
large enough to separate the big blocks by a substantial
amount, then the big blocks act almost independently
(c-mixing) while the small blocks are negligible com-
pared with the big blocks. The stationary insures that
the statistic defined on the big blocks are iid. Note that
when working with spherical data, we assume that the
random field is isotropic or rotation and translation in-
variant.

Resampling algorithms are usually employed when in-
terest is in a parameter 8 of some distribution F' and the
estimate of § is cumbersome and the calculations of the
distribution of the estimate are intractable. Usually one
wishes to create confidence intervals for # and/or do hy-
pothesis testing on 0; a resampling algorithm estimates
the true distribution of the statistic and this estimated
distribution is used in the inference.

In this setting, we collect data (X1, Xa, ..., Xn) = Xn
from F, use a statistic t, = t,(X,) that estimates 6, and
determine the distribution of ¢,,. The field of resampling
tries to estimate the distribution of ¢, by reusing the
data at hand to create more samples and hence more
statistics. We investigate the bootstrap here, but there
are many other resampling methods.

In 1979, Efron described an resampling method called
the bootstrap for iid data. This method is paraphrased
as follows: from data X, X3, ..., X,, calculate the
empircal distribution function of the data F,(z) =
L5 I{X; < z}. Resample n observations iid from
F (z) to create a bootstrap sample X7 X = (X5, X5, ..
X?). Calculate t¥* = t,,(X2*) a bootstrap statistic of 2.
Repeat this procedure B times and use the distribution
of the t”*s as an estimate of the distribution of ¢,.

In fact, the true bootstrap estimate of the mean of ¢,
is pBoot = Ep_ {tle } which is estimated by

ﬂBoot = .B th* = t_f*“
b=1

and the true bootstrap estimate of the variance of 2, is




Thoot = Vp, {th | X} which is estimated by

1 Z(tb* t*

Carlstein [1986] extended Efron’s bootstrap to time-
series data by creating the non-overlapping blockwise
bootstrap. His method creates blocks with identical joint
distributions (due to the stationarity of the time-series),
the blocks are then treated as the X; in the iid setting.
In particular, from the n observations of the time-series,
let ¥ = n/l and B; = (Xuy1, Xitga, -- -, X(i+1)l) be
the ith block of I observations. The stationarity insures
that the statistics defined on the k blocks B; have the
same joint distribution. We resample k blocks from F7,
the empirical disrtibution function of the length I blocks,
and join them together to form a bootstrap time-series.
Calculate the statistic on the bootstrap time-series and
repeat B times.

Kiinsch [1989] extended this method to the overlap-
ping blocks case. Here there are n—1{+1 blocks of length

B; = (Xiy1, Xit2, - - -, Xit1), but the blocks now over-
lap, whereas before they did not. We again resample &
blocks from this collection and repeat the above process.
In comparison to the nonoverlapping case, this method
reduces the variance of the estimate of variance of the
sample mean by 1/3.

Therefore, in order to prove a CLT and create a block-
wise resampling algorithm it is necessary for a global
sampling plan to have separating blocks for the big-
block, little-block theory and repeating patterns for the
isotropy of the random field.

UBoot -

Sampling Plans

There are two basic approaches for creating global sam-
pling plans: experimental design considerations and ge-
ographical considerations. The experimental design ap-
proach does not necessarily generate designs which have
repeating patterns that are necessary in a blockwise re-
sampling algorithm, but they have design optimality
properties for certain models. On the other hand, ge-
ographical sampling methods are used to create designs
with repeating patterns, but do not have the design
optimality property. Geographical sampling plans fall
into one of two types: polyhedral tessellations and map-
projections.

Experimental Designs

The experimental design approach begins with the fol-
lowing setup: Consider the specific model with k& vari-
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I-optimal mintrace{M My}

where M = / F(2)f(z)dp(z)
A-optimal min trace{M "}
D-optimal mindet{Mx}~1/?
E-optimal minmax; e; (M ;1)

where e;(-) are the eigenvalues
G-optimal minmaxg V {§(z)}

Table 1: Optimality Criterion

ables 21, ...,2k, p= 1(k+1)(k+2) unknown parameters
2

B, and error term ¢ with mean 0 and variance ¢2,

y= ﬂO'*‘Z:,Bzwz‘l'Zﬂuz +E E TiT; + €.

=1 =1 j=i41

Let (zj1,...,2;1) be a design point in the region of op-
erability O and X be the design matrix containing rows
f(z)=(,z1,..., 2,23, ..., z},2120, ..., Zg—124). The
moment matrix is then Mx = X’X/n and the prediction
variance is V {§(z)} = f(z)Mz'f'(z)o?/n. If we let R
be the modeling region and x(-) be a uniform measure
over R with total measure 1, then we can then choose
design points so as to minimize any one of the criterions
in Table 1.

In 1993, Hardin and Sloane introduced a computer
algorithm called GOSSET that used a modification of the
pattern search method of Hooke and Jeeves [1961]. The
algorithm uses the gradient of a differential function to
find the minimum and hence it is able to find I, A-,
or D- optimal designs, not E- and G-optimal. If can
be used with very complicated O and R (balls, cube,
hyperplanes, and intersections and unions).

We are interested in balls. Unfortunately, when the
sample size gets large, the sampling plans created by
GOSSET do not have repeating patterns.

Polyhedral Tessellations

The polyhedral tessellation sampling plans usually start
from one of the 5 platonic solids: tetrahedron, hexa-
hedron (cube), octahedron, dodecahedron, and icosohe-
dron. The solid is then inscribed in a sphere and its edges
are projected onto the sphere as great arcs. Most of the
tessellations then apply the alternate method of Gasson
[1983]. His method states that each spherical triangle
can be recursively subdivided into four subtriangles by
placing vertices at the midpoint of an edge and joining
the new vertices. This method has relation to geodesic
domes (Popko [1968]).
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Dutton [1989] uses the octahedron as a basis for a
quaternary triangular mesh (QTM). Here each face isa
spherical triangle and is recursively subdivided using the
alternate method. Dutton points out that one can get 1
meter resolution in 21 recursions. Goodchild and Shiren
[1989] provided a conversion to the latitude-longitude
scale since in this setting the “base” edges for the octa-
hedron and its subdivisions are parallel to the equator.
Unfortunately this method does not subdivide into equal
area cells nor equal shapes.

Wickman, Elvers, and Edvarson [1974] use the dodec-
ahedron as basis for their method. Here, each face is a
pentagon and is first subdivided into 5 isosceles triangles.
One then recursively subdivides the isosceles triangles by
the alternate method. The sphere can be subdivided into
equal area pieces, but they have different shapes.

Fekete [1990] uses the icosohedron as basis for a sphere
quadtree (Samet [1984]). In his approach, each face is
a triangle and the alternate method is applied to each.
This quadtree does not subdivide into equal area pieces,
but there is less distortion of size and shape than the
QTM method.

White, Kimerling, and Overton [1992] use the trun-
cated icosohedron as a basis for their method. The trun-
cated icosohedron has faces that are both pentagons and
hexagons and is the common design for soccer balls.
They begin by decomposing the pentagons into 5 tri-
angles and the hexagons into 6 triangles. They then ap-
ply the alternate method subdivision on each triangular
face. Their method also does not subdivide into equal
area pieces, but there is less distortion of size and shape
than with the icosohedral method within each face type.

Map-Projections

The map-projection approaches, on the other hand, use
the latitude-longitude grid as a starting point. Mark
and Lauzon [1985] proposed a system based upon the
Universal Transverse Mercator (UTM) which is used by
most military agencies around the world. They begin
by dividing the 60 UTM zones into north and south
subzones. Each subzone is then subdivided into square
patches within which they define a 256 X 256 array of
cells. This method coexists nicely with present maps,
however the boundaries between zones introduce slight
unconformities.

Tobler and Chen [1986] proposed a Lambert cylindri-
cal equal-area projection. This method retains latitude-
longitude ideas to create equal area cells. Unfortunately,
the variation in shape is tremendous from nearly square
at the equator to long, thin spherical rectangles near the
poles.

Brown [1993a] introduced the stratified spherical sam-
pling plan (SSSP) which uses a latitude-longitude struc-
ture and creates nearly equal area rectangles throughout
the sphere. This method does not have the distortion of
the Tobler and Chen method. Here, the sphere is cut
into “wafers” that are cut parallel to the equator (such
as the area between the 70 and 80 degree latitudinal
lines on a globe). Upon each wafer a specific latitude-
longitude grid is constructed to create almost equal area
pieces where distance (horizontal and vertical) is asymp-
totically preserved within and across wafers.

Each SSSP is made up of 5 parts: the northern cap
Cn(r), the southern cap Cs(r), the northern hemisphere
Hpy(r), the southern hemisphere Hs(r), and the equa-
torial region E(r). The northern and southern caps and
the equatorial region are used as little blocks and sep-
arate the two hemispheres that drive the distribution
theory.

They can be explicitly calculated by using func-
tions v(r), (r), 0w (r), and integer sequences J. and
v,, where 0,(r) and ¢(r) are the horizontal and ver-
tical generating angles of the latitude-longitude grid on
wafer w; Jy, and v, are the number of ¢(r) vertical an-
gular increments in each wafer and equatorial region,
respectively, and () is used to calculate the top of the
first wafer. From these quantities, we can calculate W,
the number of wafers that the sphere is partitioned into,
Nw,r, the number of 6, (r) angles that go around wafer
w, and 7, (r), the vertical angle to the top of wafer w.

Denote a point P on a sphere of radius r by its spheri-
cal coordinates P = (r, 8, ¢) where 8 is the angle between
the positive z-axis and the ray from the origin to P*, the
projection of P onto the zy-plane, and ¢ is the angle be-
tween the positive z-axis and the ray from the origin to
P.

Given functions 7}(r), #(r),0w(r), and integer se-
quences J» and v,, calculate W;, ny r, and yu (r), math-
ematically, by first calculating

* Ur
U = o Ar =2} = 7

1
¢(T)Jr
and then put W, = U, — 2z}, where 2} € [0, 1) is chosen
so that W, is an even integer. Then define the vertical
angle to the top of the first wafer as 71(r) = 7i(r) +
22 Jr¢(r). For 1 < w < W, /2, define the vertical angle to
the top of wafer w and the number of 8, (r) angles that go
around wafer w as 7 (1) = 71 (r) + (w=1)Jr¢(r), nw,r =
nw,+1-ws = |27/0w(r)], and for the equatorial region,
ve(r) = n(r) + WrJr¢(r)/2 and ng,, = |27 /0g(r)]-

For the hemispherical and equatorial regions, we
sample at the vertices of the wafer-specific, latitude-
longitude grid. Since the shape of each cap is topologi-




cally different than that of the wafers, we use a mod-
ified hexagonal sampling plan (Matérn [1986]), which
provides circular symmetry within the cap.

Define

Wr/Z Jr=1 ﬂw,r"l

Hv = U U U PY(r)and
w=l j=0 i=0
Wef2J, =10y, r~1

B = U U U BFm

w=1l j=0 =0

where in this range for w, P%(r) = (r, 0w (r), 10 (r) +
j#(r)) and P+ () = (r, i, (r), 7—(yu (r)+id(r)))-
Define

vp—1 nB,r"'l

n=U U »50

j=0 =0

where PE(r) = (r, #05(r), 7e(r) + j(r)). Define

() é(r)f-165-1
Cn(r) = (r,0,0)U( U Uﬂ');(r)) and
j=1 =1
L7 (r)/$(r))~165-1
Cs(r) = (r,0,1r)U( U U P,.?j(r))
j=1 i=1

where PN(r) = (r, in/(3j), jé(r)) and PZi(r) = (r,
in/(37), # — j¢(r)). A SSSP can now be given by B
= Cn(r) U Hn(r) U E(r) U Hs(r) U Cs(r).

The SSPSs are the only finite global sampling plans
upon which a CLT has been proved (Brown [1993b]).
In addition, this is the only global sampling plan upon
which a resampling (overlapping bootstrap) algorithm
has been designed and strong uniform consistency has

been proved for the sample mean (Brown [1993c]).
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Abstract

The covering method algorithm can be used to calculate
power-law feature vectors based on the local texture in an
image. These features can then be used for distinguishing
between different types of textures. We present a new
method of calculating local fractal-based features in the pres-
ence of a continuous-valued, irregular and/or incomplete
segmentation by use of a Dijkstra potential map. This
method produces more accurate power-law features for pix-
els near a segmentation boundary by altering the size and
shape of the local neighborhood in which the calculations
take place, thereby producing a more texturally pure neigh-
borhood. This leads to improved texture discrimination since
the contribution of multiple textures to the calculation of a
given feature vector is reduced or eliminated.

1. Introduction

To oversimplify, those who have studied the utility of
using fractal dimension for discriminant analysis in, say, bio-
logical images can be grouped into one of two categories.
There are those who feel the information inherent in the frac-
tal dimension of a texture should be useful for distinguishing
certain classes of tissue even though few conclusive studies
have yet been presented, and those for whom the results
obtained thus far are unconvincing enough to warrant a deci-
sion to move on to other approaches. The optimists feel a
system utilizing fractal dimension in conjunction with other
information and techniques will be superior to a system
which fails to utilize any type of textural information. This
paper presents one reason why the results obtained thus far
are less impressive than some have expected, introduces a
new methodology for extracting fractal dimesion features
which circumvents this cause, and indicates, finally, that this
modified approach to fractal dimension does indeed live up
to the potential for which the optimists’ have long held out.

Section 2 presents a description of a modification of the
covering method algorithm for estimating fractal dimension

which incorporates segmentation boundaries. A qualitative
comparison of the procedure with the standard covering
method is presented in Section 3. Probability density esti-
mates for the extracted feature vectors are developed and
compared. Examples are presented for a standard texture
benchmark and for tumor detection in X-ray mammography.
It is shown that there is significantly more discriminatory
information in the texture features when they are extracted
via the new method.

2. Approach

Richardson’s power law (Mandelbrot, 1977) provides a
functional relation between a measured property of a fractal
and a measurement scale. The function is given by

M(e) = ke“ D), M

where M(g) is a measured property of a fractal at scale g, K is
a constant of proportionality, d and D are the topological and
fractal dimensions, respectively. Taking the logarithm of Eq.
(1) provides the slope and y-intercept of a best-fit line
through log(M(g;)) for a set of scales {g;} as a set of power
law features.

The property M(g) we wish to measure is the surface
area of the image about a pixel and can be estimated using
the covering method (Peleg, et al., 1984). The covering
method typically consists of three steps: recursive applica-
tion of dilation and erosion operators to calculate upper, U,
and lower, L, bounding surfaces for scales ¢, ...,¢, ; cal-
culation of an averaged surface area, A, at each scale from U
and L; and calculation of power law features from A. When
two or more textures are present in an image the morpholog-
ical operators and the averaging process will both lead to
erroneous estimates of A and thus the derived features if
boundaries between textures are not accounted for. To rem-
edy the errors due to the dilation and errosion operators we
utilize the modified dilation and erosion operators (Rogers,
et al. 1993, and Julin et al. 1994)




C.E. Priebe, E.G. Julin, G.W. Rogers, D.M. Healy, J. Lu, J.L. Solka, and D.J. Marchette 53

(Up+1, ~
[UE+1] l+1]+lﬁ (1 S,.g.]j)],

U'e‘-;-l = max{ [U;_ 18- 11+UE (1=5,_; )1t L (2a)
[UEJ+1S11+1+Uzj(1" ,;j.,.])],
‘[Uej 1S11 1+U‘Zj(1"s,',j_1)]‘

and

[ L?j-l, \
[Ll+1_] 1+11+L (1= l+|'j)]s

Lf.;l = min [Ll 1] i— 1;+L (1= , l.j)]’ 9(2b)

[Li,j+lsi,j+l+Li,j(1_

13
CLLy 1555

S+ 1
1+L2j(1—Si’j_1)]‘

where U® is the upper surface L° the lower surface at scale €
and i,j are the row and column indices respectively. S is a
continously valued segmentation map with S e [0,1], where
S = 0 for the strongest possible segentation boundary and
S = 1 for no boundary.

The upper and lower surfaces at scale zero are given by

Uy =Li;=Gyp ©)
where G, ; is the original gray scale image.

It is customary to utilize the average area formula of
Peli (Peli, 1990),

€ A
Ay= 2 A @
kle W‘.".
where
£
al:: = U?J_ Li.j (5)
B 2e

to reduce the variation of the area from pixel to pixel. In this
method the averaging window W = W (€) such that at scale
m the window about ij  should be larger than
(2m+1) X (2m+1) so that the window contains sufficient
uncorrelated values. However, when the window encom-
passes multiple textures the averaging process is a source of
eITor.

To reduce or eliminate the effects of averaging multiple
textures we introduce a boundary observing adaptive kernel

based on Dijkstra potentials (Dijkstra, 1959). In this
approach a potential is calculated about every pixel in the
image from costs defined below. The potential is then uti-
lized in constructing a kernel for computing the average area
about each pixel.

In the current calculations two types of costs are consid-
ered. The first is the cost based on the shortest possible path
from the current pixel to the window’s central pixel. The dis-
tance used for the current calculations is based not on the
(physical) distance between pixel centers, but rather on the
number of steps required to move from the current pixel to
the central pixel. This cost is dependent upon the type of
connections we allow between pixels. For example, the cost
of connecting pixel k+1,/+1 to k,l would be 2 if we constrain
connections to the north, east, west, south four nearest neigh-
bors (first we must move to k,I+1, or k+1,1, then to &,0).

The second type of cost is that of being coincident or
adjacent to a boundary pixel. For a binary boundary (S=0 or
1 only) this cost is set to an arbitrarily large value. If a pixel
is not adjacent to a boundary pixel this cost is zero. For con-
tinuously valued segmentaion boundaries we utilize the cost
function

C,;=a(l-min(S, »5; ), (6)
where the prime denotes pixels within the neighborhood and
o is a parameter describing the amount of information
allowed to cross the boundary. Other types of costs or cost
functions are easily implemented.

Once the costs have been computed the four nearest-
neighbor recursive potential update equation,

Vi
VZ7‘=min Ve-r1¥Ceorp Vienj* Cevrr o
Viki-1+C 1ot Ve 11+ Cirnn
Vkle W,

is iterated to convergence. Here Vg jis the potential at step o
and C, , the sum of costs at pixel kI with

V2,1= {(L,

In the present study we have utilized a window of fixed
“radius,” r, i.e. the window is of size (2r+1) x (2r+1), as
opposed to the variable window of Peli. We feel that this is
appropriate as long as r2¢_ . We note that it will be possi-
ble for the kernel to be smaller than the window in the vicin-
ity of a boundary.

if k,1=1j
otherwise

®)
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We may now utilize the Dijkstra potentials in the calcu-
lation of the area about pixel i,j by performing a weighted
summation over the window using

e _kleWy ©)

where a; , is the area calculated by Eqn. (5) at pixel £, and
w is a weight function based on the Dijkstra potential given

by, say,

1
Wi = 0

for a square kernel where A is a parameter. In Section 3
belowweusee ~=5,r=8,and o =2 =16.

Vk,[<)\.

otherwise,

(10)

ax

3. Results
In this section we present the results of using the above

technique on two illustrative examples. The first consists of
considering the estimate of the y-intercept value from two
Brodatz texture patches (Brodatz, 1966). The ability to
obtain a good estimate in the region of transition between the
two textures yields superior performance in a change point
detection scenario. The second example presented considers
an x-ray mammogram and investigates the ability to distin-
guish a tumorous region from the healthy tissue. Here we
consider the estimate of the fractal dimension itself. In both
examples the incorporation of boundary information into the
calculation of our features is vital to obtaining an acceptable
level of performance. Probability density functions are
developed using the method of adaptive mixtures (Priebe and
Marchette, 1993) and utilize the imposed measure methodol-
ogy (Priebe, et al., 1994).

3.1 Example 1
Given two textures from Brodatz (Fig 1.1) we consider

three regions. The leftmost box (box 1) superimposed on the
textures in Figure 1.1 is well within the interior of the left tex-
ture and can reasonably be considered a region of pure texture
1 (D17 of Brodatz). Similarly, the rightmost box (box 3) is a
region of pure texture 2 (D24 of Brodatz). The middle box
(box 2) stradles the boundary between the two textures. This
border region contains some pixels from texture 1 and some
from texture 2, as well as the boundary.

Figure 1.2 shows (as solid lines) the pdfs obtained from
the pure textures in boxes 1 and 3, calculated separately.
These pdfs for the different textures are well separated when
the regions considered are far from the border and hence uni-

form in texture. The dashed line in Figure 1.2 shows, how-
ever, that when we consider a border region (box 2) the errors
arising from calculating power law features over a region
containing two distinct textures makes it impossible to deter-
mine the structure of the region. This pdf does not convey the
fact that the region considered contains exactly two distinct
textures. The dotted curve in Figure 1.2 indicates the pdf of
the border region (box 2) when a priori boundary information
(S=0or 1) is incorporated into the calculation of the power
law features. It is obvious from this pdf that the region being
considered is simply made up of two subregions with charac-
teristics corresponding to those in boxes 1 and 3. This supe-
rior information is easily translated into superior performance
in discriminant analysis or change point detection scenarios.

Figure 1.1.
Two adjacent texture patches and the three regions
(numbered 1 through 3 from the left) used in Example 1.

15

10

Figure 1.2.
Pdfs of the y-intercept feature for the three regions from
Figure 1.1.

3.2 Example 2

For example 2 we consider the mammogram shown in
Figure 2.1. We will focus on the boxed region in the upper
right. This region contains a tumorous region (biopsy veri-
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with the radiologist’s boundary drawn in. We consider two
disjoint regions. The tumorous region (region 1) is the region
within the radiologist’s boundary. The healthy region (region
2) is the area simultaneously within the box and outside the
tumorous region.

Figure 2.1
Mammogram used in Example 2 with radiologist’s
boundary of tumorous region overlaid.

Figures 2.2 and 2.3 show, respectively, pdfs for the two
regions when the true boundary has been incorporated into
the calculation of the features (2.2) and when no boundary is
used (2.3). We clearly see that the presence of the boundary
in the feature extraction is vital to the utility of the features for
distinguishing tumorous tissue from healthy tissue.

Unfortunately, obtaining a true boundary like that shown
in Figure 2.1 and used in Figure 2.2 is costly and time con-
suming. Furthermore, the ultimate utility of this procedure
for a real application depends on the ability to automatically
generate a boundary that will be useful in this context. Figure
2.4 shows the radiologist’s boundary superimposed on a par-
ticular wavelet segmentation map. This wavelet map is by no
means perfect. The boundary is not closed, it is not necessar-
ily exactly coincident with the radiologist’s boundary, it is
continuously valued rather than binary, and there is noise.

Nevertheless, it generally marks the edge of the tumorous
region. When this boundary is used in the feature extraction
the resultant pdfs are depicted in Figure 2.5. We see that the
separation of the two classes is maintained to a degree similar
to that obtained when the radiologist’s boundary was
employed. Discriminant analysis could be successfully pur-
sued here, as in Figure 2.2, while Figure 2.3 (the no boundary
case) leaves little hope.

20-

Figure 2.2
Pdfs for fractal dimension from Example 2, calculated using
the radiologist’s boundary. Solid curve is tumorous tissue,
dashed curve is healthy tissue.

20-

Figure 2.3
Pdfs for fractal dimension from Example 2, calculated with
no boundary information. Solid curve is tumorous tissue,
dashed curve is healthy tissue.
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Figure 2.4
Incomplete, grayscale wavelet segementation map with
radiologist’s boundary overlaid. This continuous valued
map is used for Figure 2.5.

20~

Figure 2.5
Pdfs for fractal dimension from Example 2, calculated
using the continuous valued wavelet boundary boundary
from Figure 2.4. Solid curve is tumorous tissue, dashed
curve is healthy tissue.

4. Discussion
The examples presented in Section 3 indicate that the

utility of fractal dimension features for texture discrimination
hinges on calculating the features in regions of uniform tex-
ture. For applications in which one necessarily must consider
border regions between different textures the standard calcu-
lations do not provide the necessary capabilities. Incorporat-
ing a segemntation boundary into the “calculation of the

texture features, whether it be a true boundary known a priori
or a boundary map estimated through a wavelet or other algo-
rithm, greatly improves the discrimination capabilities one
can expect.

It is argued that this modificaiton must be considered in
any evaluation of the utility of power law features for dis-
criminant analysis, change point detection , or homogeneity
analysis whenever texture boundaries come into play.
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Abstract!

Feedforward neural networks are widely used as a black
box prediction technique. Recent work of Barron (1991)
shows that these models are very well suited to approx-
imating structure in high dimensions. This raises the
issue of how well they find spurious structure in noise.

This paper presents a diagnostic based on Aldous’s
Poisson clumping heuristic that describes the extent to
which nets can overfit, where in the data such spurious
overfitted units are likely to arise and how many local
optima the sum of squared error surface (as a function
of the network weights) is expected to have.

The diagnostic is simplest for the case of a single hid-
den unit, but extends in principle to more general prob-
lems.

1 Introduction

We consider a nonlinear regression model of the form
Y = p(X) + ¢. Here the response variable Y is the sum
of a signal y(X) and a noise random variable ¢ with
mean 0 and variance o?. The signal is a function of X,
a vector of predictor variables. The form of the signal is

J
p(X) = wo + ) _wii(X,6;) (1)
j=1

where the w; are scalar parameters (“weights”), the ¢;
are real valued “activation” functions and the 8; are vec-
tor valued parameters.

The model (1) is an example of an artificial neural
network model. This special case is known as a feed-
forward network with a single hidden layer and a lin-
ear output unit. See Hertz, Krogh and Palmer (1991,
Chapters 5,6) for an introduction to these models. Com-
monly used activations are sigmoids such as ¢(X,0) =

1This work supported by NSF grants DMS-9011074 and 94-
04594

(1 + exp(—X'8))~! and Gaussian radial basis functions
such as ¢(X,0) = exp(—||X — 6||?/27?%). In the sigmoid
above, X usually includes a component that is always 1
and the corresponding intercept component of 8 is known
as a “bias”. In the radial basis function the parameter 7
is a measure of scale that could either be subsumed into
@ or held fixed.

2 Asymptotics and Redundant
Units

Estimation of model (1) is usually based on training data
consisting of n independent observations (X;,Y;). Let
f; and @; denote estimates of the parameters and A(X)
denote the resulting estimate of signal.

If model (1) holds, then mild assumptions on the dis-
tribution of € and identifiability assumptions on wj, ¢;, ;
produce the usual asymptotics as n — oo for j estimated
by minimizing squared error 3 ;_; (Yi—(X;))?. The pa-
rameters are estimated consistently (up to some permu-
tations of labels which don’t matter) and are asymptot-
ically normally distributed. The mean squared error on
the training data is smaller than o2, but this optimism
is simply accounted for by adjusting for the degrees of
freedom used in fitting the model. For details see White
(1989).

These asymptotics are suspect for the problem at
hand. Partly this is because typical applications use a
very large number of parameters. When a large number
of parameters are in use, the identifiability assumption
becomes questionable. The model (1) is not identifiable,
if for example wy = 0, for then the corresponding #y has
no effect on Y. There is thus no “true value” for 8y and
estimates of it have nothing to converge to. This un-
dermines the usual approach to asymptotic theory. The
unit ¢7(X,0;) is said to be redundant, and the corre-
sponding estimate ¢7(X, é]) is said to be spurious.

It is unlikely in practice that an exactly redundant
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unit will be encountered. But in a model with many
units it is reasonable that some of the w; will be close to
zero and hence that some units are nearly redundant.

Redundant unit asymptotics are like those of broken
line regression. Here X is a scalar and

;I.(X) =wy+wi1 X + wz(X - 9)+ (2)

where z; denotes max(z,0), and the only nonlinear pa-
rameter is a scalar §. When wy = 0, the signal is linear
in X, and minimizing 3 i, (¥; — 2(X;))? over all bro-
ken line regressions reduces squared error by more than
it would in a four parameter linear model. The nonlin-
ear parameter § “uses up” approximately 2 degrees of
freedom, according to simulations in Hinkley (1969) and
asymptotics in Owen (1991). The maximizing value g
can appear anywhere but it is more likely that spurious
bends will appear near the ends of the observed range of
X;s.
The questions for neural networks are:

Q1 How many degrees of freedom do the nonlinear pa-
rameters in (1) use up?

Q2 Where are the spurious units most likely to appear?

Q3 Which units if any are less prone to overfitting?

3 One Nonlinear Unit

To examine these issues we consider the simplified prob-
lem of training a single hidden unit. The model

H(X) = A(X)B + w(X,0) 3)

has one hidden unit to train, and when w = 0 that one
unit is redundant. The term A(X)g is a linear model in
some non-adaptive basis functions A(X) with coefficients
B. This might be simply a constant, or a linear model
in X, or it might include units w;¢(X,0;) with their
nonlinear parameters 6; frozen at some values and with
w; subsumed into 8. The model without the redundant
unit is: ,
HX) = A(X)B (4)

Even when (4) is true, the sum of squared errors under
(3) will be smaller. For any fixed @ the reduction is

S(6) = SSE(s) — SSE@)(6) ~ o’ x(1y- (5)

The x? result in (5) is exact for normally distributed
errors and is an asymptotic approximation otherwise.
The reduction of the squared error of model (3) over (4)
is

S = sup S(9) (6)
)

and S does not have a x} ,; distribution, with d =
dim(©), as one might have expected based on linear
model theory.

It is convenient to define a signed root process via

Z(6) = £S(6)*/? ~ N(0,0?) (7)

where the sign of Z(f) is the same as that of & when
fitting (3) with 0 fixed. Let Zmax = supyee Z(#). For
large y > 0, P(S > y) = 2P(Zmax > y'/?).

Suprema of Gaussian random fields, such as Z(9),
have been well studied. At any 8, for smooth processes,
Z and its first two derivatives have a joint Gaussian dis-
tribution. A local maximum of Z above Zj is a point
such that Z(6) > Zy, the gradient of Z vanishes at § and
the Hessian of Z is negative definite at . A standard
tail approximation is

P(Zmax > Zoo) = E(#Local Maxima > Zo0)

- /@ A(6)d8

where A(f) is the intensity of high local maxima of Z
near 6.

For one dimensional intervals © of finite length, this
formula is the expected number of “upcrossings” of the
level Zoo by the process Z(8). If one adds the prob-
ability that Z exceeds Zpo at one end of © one gets
Rice’s formula which is in this case an upper bound on
P(Zmax > Zoo). For stationary fields, this formula re-
duces to the volume of © times an intensity that is con-
stant in . See Adler (1981, Chapter 6). The formula
above is taken from Aldous (1989, Chapter J7). This for-
mula is the lead term in the more accurate but more diffi-
cult formulas obtained by Siegmund and Knowles (1989).
The more accurate formulas take more care around the
boundary of ©.

The intensity function is

A(0) = (2m)~ D2 Z3=1e= 232 A (9)[! 1

where |A| denotes the determinant of A and

32
~ 5006’

is the Hessian of the correlation matrix of Z(#) evaluated
at 6.

Owen (1993a, Theorem 2) gives an expression for the
rs entry of A(9). Let ® be the vector of n values ¢(X;, 0),
let ®, be the vector of d¢(X;, 6)/00,, and let M be the
projection matrix on the space spanned by the matrix
with n rows given by A(X;). Define the inner product

A(6o) = E(0™2Z(60)Z(6))lo=0,




< g,h >= ¢'(I — M)h and define 7, =< &,,@ > / <
®,® >. Then

Ay =< &, — 7,9, 8,— 72> /<D, 2>. (8)

This equation may be better understood as an al-
gorithm: Construct the vectors ®, P, ®, by evaluating
#(X;,0) and its gradient with respect to 6. Then replace
them by their residuals after fitting linear model on the
predictors A(X). Then find the partial correlation of the
resulting @, and @, variables after adjusting for @.

The result provides Ars(f). Doing this for all r and s
and taking the determinant allows one to calculate the
intensity A(6).

Thus for one nonlinear unit, we have a way to approx-
imately answer the questions raised above:

A1l Integrate A over © and compare with chisquare tail
probabilities.

A2 Maximize or plot A (or |A]*/2) over ©.

A3 Compare A (or |A|'/2) for different activations
¢(X,6).

In A2 and A3 the use of |A]1/2 is a little simpler since
unlike A(f), it does not depend on Zo.

4 Results and Examples

The intensity function A() can be evaluated either nu-
merically or theoretically. Based on this, one can find
predictions of the Poisson clumping heuristic:

P1 Long tailed units ¢ lead to fewer local maxima and
use fewer degrees of freedom in noise.

P2 Spurious bent planes are more likely near the convex
hull of the X’s.

P3 Spurious sigmoidal units are more likely to pass
through the middle of the X’s.

P4 Spurious radial basis units are more likely when the
radius is small.

P5 Those small radius units are likely to be found near
voids in the X’’s.

Since the method works by estimating the expected
number of high local maxima, it also sheds some light on
which types of units are likely to make global optimiza-
tion difficult.

Figure 1 shows 216 predictors X € R2 for a synthetic
data set. For a Gaussian radial basis function model
#(X,0) = exp(—||X — 6]|?/2r?) in (3). With this model
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form, # is in the same space as the X;. Figure 2 shows
[A(6)|1/2 for this model taking 7 = 0.5, A(X) = 1 and
o2 = 1. We use o2 = 1 in all examples in this section.

The peak of A(6) is in the middle of the X; set. There
is a second peak between the main body of the data and
a small cluster near (3,1). There are ridges extending
away from the data along lines equidistant from pairs of
points on the convex hull of the X;. For smaller 7 the
function A(f) generally increases and the ridges become
very high and sharp. The ridges correspond to f-regions
in which small changes in one unit can explain either of
two potential outliers, or perhaps both of them, if they
have the same sign. For small 7 large spikes can appear
over the centers of gaps in the point cloud. In these
locations small changes in @ can make big changes in
what the unit explains.

In order to plot the results for sigmoidal units and
other activations which are functions of projections of
the data, we turn to polar coordinates. For = (61, 6.),
let

W(Xi, 9) = X5 COS(G) + Xis Sin(el) —0,.

so that 6; is an angle and 0, is a radius. Figure 3 shows
A(0) for a sigmoidal radial basis unit

$(X:,60) = (1 +exp(—m(X;,0)/7))~".

Here 7 = 0.5 and A(X) = 1. The points in the plot trace
out the convex hull of the data from Figure 1. That is
for a list of angles 6;, the maximum and minimum of
X1 cos(61) + Xiz sin(f1) over the X; is plotted. Figure
3 shows that spurious sigmoids are more likely to have
their linear regions passing through the center of the
data than near the convex hull of the data. Decreasing
T makes the sigmoids approach “threshold” units, and
this generally increases |A|. (With threshold units, the
process Z(6) is not smooth enough to apply Theorem
2 of Owen (1993a), but the Poisson clumping heuristic
may be applied in another form.)

Figure 4 shows |A(6)[*/2 for crease units of the form
#(Xi,0) = 7(X;,0)+. Again A(X) = 1, but for this ac-
tivation, the spurious events are much more likely near
the convex hull of the predictors. Note that taking
A(X) = (1, X") makes models (4) and (3) into a plane
and bent plane respectively.

Figure 5 shows A() for hyperbolic fold units of the
form ¢(X:,0) = (X, 0)/2 + (7% + 7(X;, 6)2/4)*/2. For
Figure 5, 7 = 0.5. Note that as 7 decreases to zero, the
hyperbolic folds become bent plane creases.

For Figure 6 a sigmoidal unit is considered with
A(X) = (1,4(X, 60)) where 6o = (m/4,1). That is, a
second sigmoidal unit is being trained while the first one
is held with it’s angle at 7/4 and it’s radius at 1.0. The
resulting plot of |A|*/? shows that the second unit being
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trained has a tendency to be close to the first one be-
ing beld fixed. This suggests that, if units are trained
sequentially, that spurious units might arise near units
already included in the model. This behavior arises for
radial basis unit and for crease units too. It is somewhat
weaker for the hyperbolic folds.

Owen (1993b) makes some simplifying assumptions
(large n, X spherical Gaussian in d dimensions) and de-
velops an approximation of the form

P(S > y) = 6@ D2P(xty > y) 9)

for units ¢(X, 8) with fixed radius [|f]]. In this case the
multiplier § depends on the radius and of course on the
type of unit. The main conclusion is that short tailed
units have larger values of 6. For some long tailed units
the resulting 6 is close to one, indicating that, for such
units, redundancy does not make large changes to the
asymptotics. Short tailed sigmoidal units are ones where
the distribution function corresponding to the sigmoid
used has short tails. For example the Cauchy distribu-
tion has very long tails, the uniform distribution function
has very short tails and the widely used logistic sigmoids
have tail lengths between these extremes. Fold units that
approximate creases are defined through the integral of
a sigmoidal function. The fold has short or long tails
according to whether the sigmoid does.

5 Many Units

It is possible to extend this method to problems with
many units, though it is harder to find simple descrip-
tions of the results. Suppose that for j = 1,...,J we
have §; € ©;. Let ©¢ be the unit hemisphere in J dimen-
sions, with a positive J'th component. Let (fo1,...,005)
be a point in @y. Then we may write (1) as

i

J
#(X) wo+w Y Bo;6(X,06;) (10)
i=1

= wo+we(X,V) (11)

where ¥ € ©p x ©; x - - - x Oy subsumes all the nonlinear
parameters §; and all but one degree of freedom of w;
through w;s and ¢ is a nonlinear function of X.

Sun (1989) uses this construction in studying p values
for projection pursuit regression.

Figure Captions

Figure 1 Shown are 216 points X; € R2. These are
a synthetic data set of predictors.

3-10

———

Figure 2 The points are those of Figure 1. The
contours are those of |A1/2| for a Gaussian radial basis
function with radius 7 = 0.5.

Figure 3 The contours are those of |[A!/2], in polar
coordinates, for a sigmoidal unit with inverse slope 7 =
0.5. The points describe the convex hull of the data set
in Figure 1. :

Figure 4 The contours are those of [A1/2], in polar
coordinates, for a crease (bent-plane) unit. The points
describe the convex hull of the data set in Figure 1.

Figure 5 The contours are those of |[A1/?], in polar
coordinates, for a hyperbolic unit with inverse slope 7 =
0.5. The points describe the convex hull of the data set
in Figure 1.

Figure 6 The contours are those of |A1/2|, in polar
coordinates, for a sigmoidal unit with inverse slope 7 =
0.5. Another sigmoidal unit, with nonlinear parameter
frozen at 6 = (7/4,1.0) is included in the linear portion
of the model. The points describe the convex hull of the
data set in Figure 1.
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Abstract

The use of likelihood profiles for exploring and mea-
suring non-identifiabiliy and near non-identifiability is
discussed. The method is then applied to the estima-
tion of normal-gamma stochastic frontier models used
in econometrics. It is shown that these models are
practically non-identifiable for samples sizes up to sev-
eral hundreds of observations.

Keywords: Frontier models

1. Introduction

This paper deals with the following problem fre-
quently encountered in practice. A standard paramet-
ric model exists for a certain type of data sets, but the
researcher has the impression that the choice of this
model is somewhat arbitrary and that a more flexi-
ble extension might be more appropriate. The natural
move is to add a parameter to increase flexibility and
to estimate this parameter together with the quanti-
ties one is interested in from the data. Unfortunately,
this can easily turn a well-posed problem into a non-
identifiable or nearly non-identifiable one. Likelihood
profiles can be used to explore such situations.

The tool, profiling, is not new and ample literature
exists on various of its aspects. However, except for the
work of Bates and Watts (1988) authors have mostly
concentrated on the properties of profiles in the con-
text of elimination of nuisance parameters (Barndorff-
Nielsen, 1983; Barndorff-Nielsen, 1986) and less on
their value for the purpose of exploration (Ritter and
Bates, 1993).

The paper begins with an introduction of the nota-
tion of the problem and of the terminology of like-
lihood profiles. In Section 3, a concrete problem,
the estimation of normal-exponential and normal-
gamma stochastic frontier models (Aigner, Lovell and
Schmidt, 1977; Stevenson, 1980; Meeusen and van den
Broeck, 1977; Greene, 1990) is described. In Section
4, a strategy for using likelihood profiles to study this
problem is laid out. In Section 5, the results of a sim-
ulation are reported. The paper is concluded by a
discussion of the results.

2. Notations and Terminology

We suppose that data are generated as continuous
random variables from a parametric model as

X %Fg(x); 8€0©CR, (2.1)

where © is a nice connected domain, and where F'
has density f which is twice continuously differen-
tiable in 8. The corresponding likelihood is denoted
by L(8]x) = fg(x) and the log-likelihood by (6x).
Moreover, we assume that inference is conducted
by maximum likelihood. That is, for a sample x =
(z1, ..., n) the point-estimate of 8 is obtained by

6 = argmaxg L(8}x), (2.2)

and confidence regions are computed by either using
the inverse information matrix
. -1
%= (D} 1ogL(e|x)| o 9] C(23)
or the x? approximation of the log-likelihood.

If we are worried that the model might not be suf-
ficiently flexible, we can try to find an extension by
incorporating an additional parameter . We denote
the likelihood after adding ¥ as L(8, ¥|x). Frequently,
the original model corresponds to a particular choice of
% = vy for which L(8,%o|x) o L(8|x). If L(8,¥|x) is
smooth in the joint parameter vector and if 1g is in the
interior of the domain of %, the usual likelihood-ratio
test can be used to check whether the data require the
extended model or not.

Frequently, however, maximum likelihood estimates
are much harder to find for the extended model than
for the original one. The information contained in
common finite samples may not suffice to pin down ¥
and the estimates of the components of # may strongly
depend on %. In this situation, virtually all precision
in the estimation of 8 is lost by going from the original
to the extended model. That is, the extended model
becomes practically non-identifiable.

In order to assess how adding ¢ to the model affects
the estimation of 8 we can try to compute the profile
trace

é(z/;) = argmaxgL(8, [x) (2.4)
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and the profile value of the log-likelihood

() = meaxl(O, Plx) = (8(), ¥]x). (2.5)

If a joint maximum likelihood estimate (8, ), exists,

we can carry this out by re-maximizing the likelihood
for discrete values of ¢ starting at ¢ and gradually
moving outward. This assures that good starting val-
ues for the re-maximization are always available. Al-
ternatively, if no joint maximum can be found but if
the original model is a special case of the extended
model at ¥y one can start with the estimates of the
original model and move gradually away from 1. If
no obvious starting point is available, a grid of 1 val-
ues has to be laid out and the conditional optimiza-
tions have to be attempted directly. Once the profile
trace and the profile values have been computed for a
sufficiently far reaching and fine grid of ¢ values, inter-
mediate values can be obtained by spline interpolation.
The existence of profiles can only be guaranteed un-
der severe regularity conditions and the reader should
keep in mind that computing profiles is an exploratory
technique which will work in many but not all situa-
tions.

3. A Stochastic Frontier Model

A typical case where practical non-identifiability is
observed is the transition from a normal-exponential to
a normal-gamma stochastic frontier model for econo-
metric data. Such frontier model have the structure

Yi=p+eiB—2+u, (3.1)

where Y; represents the observed output (passenger
miles for airlines, for example) and p + x!8 the op-
timal output which can be obtained from the vector
of inputs x; = (2i;1,...,%i;p) (which could be labor,
capital, fuel, etc.). The parameters z and 8 are un-
known and have to be estimated from the data. The
two error terms z; and v; represent the inefficiency of
unit 7 and the measurement error. The component z;
is restricted to be positive, while »; is usually treated
as normally distributed with an unknown variance o2.
There are several choices for a distribution of the z;.
Good estimation properties can be obtained using an
exponential or a half-normal distribution. The disad-
vantage of these choices are that the shape of the dis-
tribution of the inefficiencies is imposed without sci-
entific reason. On can avoid such a hard choice by us-
ing a gamma distribution for the inefficiencies instead
(Greene, 1990). Gamma distributions are very flexible
and contain the exponential distribution as a special
case when the shape parameter is equal to one. Un-
fortunately, maximum likelihood estimation is much
more difficult for the normal-gamma model than for
the normal-exponential model.

In the following discussion, we denote the variance
of the normally distributed noise component v; by ¢,
the scale parameter of the exponential or gamma inef-
ficiencies by A, and the shape parameter of the gamma
distribution by . We assume that the z; and the y;
are all independent.

4. Analyzing the Normal-Gamma
Model by Likelihood Profiles

136
1

134
1

2 log-likelihood

132
s

130

0.1 0.2 05 1.0 2.0 4.0
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Figure 1: Profile values for the normal-gamma model
of the American Electric Utilities (Greene, 1990)]. The
evaluated points are joined by an interpolating spline.

The transition from the normal-exponential to the
normal-gamma stochastic frontier model is a show-case
for the use of likelihood profiles. Suppose that the like-
lihood of the normal-gamma model has been optimized
for fixed values a; < g < --- < ap covering a range
from distributions more extreme than the exponen-
tial (i.e.,, & < 1) to distributions close to normal (i.e.,
o >> 1) and that the corresponding profile trace and
the proﬁle values of the log-likelihood are 8, 8,, .. ,Op
and I, 0, ... I (here 6 denotes the combined param-
eter vector (p B’ 0%, ). Suppose also that the joint
maximum likelihood estimate (0 &) was found and is
among those values. By the x? approximation of the
likelihood ratio statistic we obtain

2 [z(é, &) - 1(8, a)] ~ ¥l (4.1)
This enables us to define likelihood intervals Iy for
a with approximate 1 — w coverage by

I_wy = {a

In practice, for a coverage probability of 95%, we can
plot the profile values 2I; versus the o; and draw a line
x1(.95)% ~ 3.84 below the observed maximum 2{. The
range of o values corresponding to points above the

(@) >1(6,4) - %xf(l —w) } . (4.2)

]
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Figure 2: Medians of 2(7J () = lo;5) for each combination of n and p. The abscissa is on a logarithmic scale and

the evaluated points are joined by interpolating splines.

line provides an approximate confidence interval for «
and also a simple graphical means for judging whether
o is well-determined by the data. Figure 1 shows such
a plot for a normal-gamma model of the efficiencies of
American Electrical Utilities analyzed by Christensen
and Greene (1976) and Greene (1990).

We see that 21 exceeds considerably the lower line
for all chosen values of . None of those values is
therefore rejected by the likelihood ratio test. This
indicates that the data (123 records) do not contain
sufficient information to tie down «. Ritter and Simar
(1993) show that the imprecision in the estimation of
o carries over to the quantities of econometric interest.

5. Simulation of Special Cases

- In this section, we use simulations from a specific but
typical normal-gamma model to show how the sample
size and the share of the total variance attributed to
the noise component v; affect the estimation properties
of a.

The special case considered here is the normal-
gamma model

Yi=p—z+vy (5.1)

with frontier g = 0 and shape parameter o = 2. The
choice of the shape parameter corresponds to a distri-

bution which is clearly not exponential, but still far
from normal. The parameters characterizing the esti-
mation properties are the sample size n and the ratio
p = o2/(ad? + o?), the proportion of “noise” in the
total variance. For example, the choice p = 1/3 im-
plies that 1/3 of the total variability comes from the
noise component and 2/3 from the inefficiencies. An
allocation of 1/5 to 1/2 of the total variance to the
noise component is typical and has for example been
observed with the the American Electric Utility data.

For any choice of n and p data sets can be simulated.
These data sets can then be analyzed by maximum
likelihood and, in particular, their profile traces and
values can be computed with respect to a.

Recall that the true parameters are known and thus
provide the likelihood Iy = (6, a|x). For fixed o = 2,
the profile value I, = I(2) relates to Iy via the approx-
imation 2(ls — lp) ~ x3 with a x? distribution with
three degrees of freedom. For each simulated data set,
the true likelihood lp can be computed and used to off-
set the profile values I{a;) thus allowing comparisons
of the profile values across data sets.

For example, r; ; = 2(T; (@) —lo;;) can be computed
for simulated data sets j = 1,...,m and summaries,
such as medians and quartiles can be retained for each
position ;. A graphical superposition of the medians
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for each of the settings above can provide a convenient
assessment of the estimation properties of a.

6. Results of The Simulation Study

p=0%/(c% + al?)
n {1/9 1/5 1/3 1/2
100 X X
200 X
400 | x X X
800 X

Table 1: Scenarios for simulation.

For each scenario indicated in Table 1, 60 data sets
were simulated for each of them the profile of the
log-likelihood with respect to o was computed. Fig-
ure 2 shows the medians of 2(I;(c;) —lo,; ) for each sce-
nario. The medians for the same scenario are joined by
smooth curves. The solid line represents the expected
value of the median of a x% distribution with three
degrees of freedom; the dashed line x%(0.95) = 3.84
units below denotes the cutoff corresponding to a 95%
confidence likelihood region. As we expect the ob-
served medians for & = 2 are close to the theoretical
median of the x3 distribution. Moreover, all points
except for o« = 0.5 of the cases (800,1/3), (400,1/9),
and (400, 1/5) lie above the dashed line. This suggests
that the estimation of « is very poor when the sample
size is small and when there is a considerable amount
of noise.

7. Discussion

Profiles can provide convenient tools for explor-
ing likelihoods in situations of near non-identifiability.
The results can be displayed using simple graphics and
are easy to interpret. In the context of normal-gamma
stochastic frontier models, this approach yielded the
insight that in general large sample sizes are needed
to estimate a well. Sample sizes of 100 or 200 ob-
servations, which are common in practice, are clearly
insufficient.

Gradually, profiling algorithms are finding their way
into standard statistical software packages. Explicit
profiling algorithms are already available in S and
Splus. In other packages, profiling is an implicit in-
gredient in procedures for Bayesian inference. This is
the case in Xlispstat, where the procedure for comput-
ing the Laplacian approximation of a marginal relies
on the computation of a profile.
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Statistical fit of financial models: tools,
workbenches and environments
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ABSTRACT

The evaluation of statistical procedures in the
area of finance requires powerful and rich com-
puter environments. Requirements for such
environments are stated and their need illus-
trated with the example of geometric Brown-
ian motion.

1 Introduction

Computer intensive methods and the inter-
face between statistics and computing seem to
carry nowdays a specific and rather restrictive
meaning, that of single statistical techniques
or methods which rely heavily on the computer
for implementation. Thus LMS (Least Median
of Squares) regression [13] requires that many
systems of linear equations be solved. Many
problems in statistics have their source outside
of it and require that broad arrays of math-
ematical, statistical and numerical techniques
be put to bear on sizeable areas of a particular
discipline or set of such. The discipline consid-
ered here for illustration is that area of finance
which deals with contingent claims [4] and,
in it, the simplest model, geometric Brown-
ian motion (GBM henceforth), shall be chosen.

1Research support is provided by the Swiss Na-
tional Science Foundation, Contrat No. 12-36209.92

The computer intensive aspect of this prob-
lem area is due to two basic factors. The first
is the high number of mathematical, statis-
tical and programming techniques that must
be marshalled to progress towards a solution.
The second is the limitation inherent in all an-
alytical developments when numerical answers
are required: one must, in fine, resort to sim-
ulations. In such situations, significant “prac-
tical” progress towards workable solutions is
often dependent on the quality of the “infor-
mation system” which is available and which
always must encompass much more than a set
of statistical tools, even when packaged into
an organic whole. Such considerations justify
the second part of the title which is borrowed
from the CASE (Computer Aided Systems En-
gineering) technology discourse: it sees solving
a problem (building an information system) as
a set of tasks which are grouped into activ-
ities which constitute processes. These yield
in turn the solution (the information system).
In that world tasks require tools, activities,
workbenches, and processes, environments [6].
It is claimed that there is a need for analogous
concerns and means in the area of computer
intensive methods of interest here and a set of
“minimal” requirements is given that would
provide an adequate environment for the pur-
suit of such problems. Similar needs arise in
certain areas of engineering [1]: the difference
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is mostly with the type of mathematical mod-
els that are used.

2 An example: Statistical
fit of GBM

GBM is of interest in the financial area be-
cause it is intimately linked to the Black-
Scholes formula, a formula that allows pric-
ing of an option [4]. To actually use the for-
mula one must obtain an estimate of a param-
eter which is the diffusion parameter of the
GBM which describes the behaviour of the as-
set supporting the option. A GBM S; is de-
scribed [10] implicitly by the stochastic differ-
ential equation

dSt = [.lStdt + O'StdWh

where W is a standard Wiener process, and
explicitly by the expression

St = Soe (“- "—:-)t+aW¢ .

The statistical problem consists in estimating
4 and o from the observation of a path f(t) of
the process S at a finite number of time points

h1=0<thi<---<t, =T.

A number of estimators are available [2, 3, 7,
12], but there seems to be little comparative
work in settings which are “realistic” (as de-
scribed in [4] for example), which means in
particular that the number of observations is
small (between 50 and 200 is “typical”), and
often that T" = n. These constraints raise a
number of questions for which there are few
analytical answers (it should be stressed that
the case of GBM is almost the simplest one
could conceive). The recourse is thus simu-
lations. Most methods known so far, and in
particular those mentioned here, are, at best,
supported by partial simulations which are

usually limited to the method presented, and
which avoid comparisons with other methods.
No systematic statistical investigations exist,
which is easily understood, given the complex-
ity of the estimators considered.

One possible method of estimation of u and
o consists in computing the Radon-Nikodym
derivative of the law of S with respect to that
of Sp + oW, and of deriving from it estima-
tors which are then “discretized at the obser-
vations” [2]. One gets

LS f() = f(tiy)
ﬂML—Té———_f(ti_l) !

52— Ly~ [ft) = ft-n)]?
MG T;[ f(ti-1) ]

These estimators are, in general, sums of in-
dependent, non identically distributed random
varaibles whose law is not exactly express-
ible analytically. So typically, one must com-
pute moments and derive an asymptotic re-
sult. Such calculations require that high order
moments (order six in this case) be evaluated.
To that end one introduces expressions of the
form )
EekNi = S,E.t)ﬂ%:l)_ s

where © .
2) . Jkvitlo;
Sk,, =e

and N; is a normal random variable with pa-
2
rameters p; = (g — % )(ti — ti—1) and o? =
2
o%(t; —ti—1)(vs = pi + ). A typical expres-
sion is then

. 1
V(6dy,) = T2 [(S4,6 — Sa,2) —

4(Ss,3 — S3,1) +4(S2,1 — S2,0)]

Here is a list of what a systematic simulation
should yield to allow evaluation of such esti-
mators. First, one should distinguish the case




of an exact model and that of a model which
is approximate. For an exact model, at least
the following questions should be answered:

o Does the value of the parameter lo be es-
timated influence the qualily of the esti-
mator?

It would indeed not be surprising if very
small or very large values of the parame-
ters to be estimated would influence, pos-
itively or negatively, the quality of some
of the estimators to be considered.

o What is the influence of the number of
observations on the qualily of the estima-
tors?

What is meant by “number of observa-
tions” can be many sided: it may be the
absolute number of observations, but it
also may be the density of observations
(absolute number over time observed, or
number per unit of time). In [12] it means
four strongly typed observations per day:
the question then becomes, how many
days?

The question may also depend on the type
of statistical result expected: the number
of observations required to obtain a good
estimator may be less than that necessary
to a validation of the fit. If one’s only
recourse 18 a central limit result, when
(in terms of absolute numbers or density)
does this limit effect take place?

One may finally ask for “optimal” combi-
nations to insure “overall quality”, such
as absolute number together with a given
duration.

e Does the regularity of observations mat-
ter?

Does one need observations taken at reg-
ular times, or are observations registered
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when possible sufficient? In the latter
case, is there a “minimum time interval”
beyond which estimators become useless?

Are there betier methods of estimation?

In other words can one produce prescrip-
tions for estimation which ensure “qual-
ity” of the results?

What is the law of the price of the option?
Is it sensitive to the estimation procedure,
or to any of the potentially disrupting fac-
tors?

It should be clear that one would need in
practice some kind of confidence interval
for the price!

In case of a process which does not behave
according to the model, a number of obvious
questions come to mind. Here are a few:

e Are the estimators robust?

One could ask for the kind of robustness
which is expected: the really important
one would seem to be that of the law of
the price! An associated question would
be: are the validation procedures suffi-
cient to at least alert the user to a “depar-
ture” from the model, such as a process
with sample paths which could be pro-
duced by geometric Brownian motion, but
which, in reality, are not?

Are there procedures which could be used
to detect, or to adapt the statistical proce-
dures to, a change in the model?

The simplest case would be, for geometric
Brownian motion, a change in the values
of the drift and the diffusion parameters.
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3 A wish list of compo-
nents for an adequate
environment

Evaluation of statistical methods in finance
should be performed as a two stage procedure:
during the first, one would only be concerned
with the purely statistical performance of the
method, that is one would want to make sure
the method is statistically sound. During the
second stage, one would want to check that
the method works well for the financial ana-
lyst (not the statistician). The latter requires
that one has access to databases with financial
information, and that a prerequired set of sta-
tistical operations be performed. A flexible en-
vironment would accept commands which list
the operations and the data, and carry out
the retrievals and the computations. This is a
purely a technical matter for a computer ex-
pert. Only the first stage is of interest here.

In the chosen example, there are many ways to
estimate the parameters and a number of “di-
mensions” according to which the evaluation
of these estimates should be carried out. The
dimensions correspond to the questions raised
in section 2. Practically one carries out the
simulation as follows.

One begins with simulations of the process
(GBM here). To that end one must have at
least two tools: an “augmented” random “ob-
jects” generator and tools to manage the re-
sults of the simulations. Traditional random
“objects” generators simulate “objects” whose
complexity is that of a random variable (ran-
dom numbers generators). For finance one
must be able to simulate well at least paths
of diffusions with state spaces strictly smaller
than the real line (assets typically do not have
negative values). As shown with the expert
systems ADAGIO and PRESTO [9](PRESTO

1s an ezpert-system which performs automatic

generation of complete Fortran programs solv-
ing Stochastic Differential Systems, from data
provided by a user supposed to have no pre-
requisite knowledge either in Numerical Analy-
sis of these systems, nor in progremmation), a
useful generator must be coupled with an “Al
language” (Lisp in PRESTQ) and a symbolic
manipulator (REDUCE in PRESTO). In fact,
it would be extremely useful to have, among
the capacities provided by the symbolic ma-
nipulator, facilities which automate stochastic
calculus, in the spirit of [8]. Furthermore, the
simulator should come with “automatic” tools
to check the quality of the paths (if an estimate
is computed on a path, one must make sure
that what is observed is the behavior of the
estimator, and not the behaviour of the simu-
lated path). “Exhaustive” simulation of paths
of stochastic processes requires on the other
hand that one benefits from facilities to man-
age the versions, such as “semi-automatic” la-
beling of files, recording of seeds, and so forth.
One should then be able to browse “easily”
through these simulations.

Once the paths are available, one needs a
“sampler” for at least two purposes. It has
been argued that time is an important ele-
ment for the statistics of financial models. One
should thus be able to test the potential es-
timates against the possible time dimensions
as described above. But also some estimation
procedures may require specific time sampling.
For example, the estimation procedure inves-
tigated in [12] requires the first and last daily
values of the asset, as well as the largest and
the smallest during the day. Thus, to extract
from a simulated path different types of sam-
ples and associated caracteristics should be an
easy operation. Finally, since financial data
is “historical” data, the basic assessment tech-
nique will eventually be the bootstrap [5] or an
adaptation of it (it is thus necessary to pro-
duce, from a sampled path, the law of & so




that the law of the price may be exhibited).

In the area of diffusions many complex objects,
such as stochastic integrals, require numeri-
cal approximations and it would be useful to
have those pre-programmed with quality algo-
rithms as it seems clear that numerical quality
is essential for the successful implementation
of these rather complicated procedures. Fur-
thermore certain estimation techniques such
as filtering [11] ultimately require that numer-
ical schemes for ordinary differential equations
be used.

Of course a large array of “ordinary” statisti-
cal techniques should be available (for density
estimation, for example). These, as hinted in
section 2, also require a symbolic calculator to
calculate moments explicitly (see the formula
for the variance), and other similar calcula-
tions. The user of the system should have fa-
cilities to enrich and complete it with his or her
favourite techniques (access to programming
languages and expert systems shells). Reports
should be easy to produce (integration of facil-
ities for “intelligent” graphic presentations).

At the present time, tools are available. One
needs workbenches and environments!
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Abstract: The distribution of independent Bernoulli trials
is investigated in the case where the probability of success
is different at each trial. Expressions for the factorial
moments and cumulants are given. These expressions are
used to construct the closed form of the probability mass
function. The method is shown to be ill-conditioned and
Tikhonov regularization is used to compute the probabilities.
Formulas for the cumulants and moments are also developed
and the probability function approximated by an expansion
in the orthogonal polynomials associated with a Binomial
distribution.

1. Introduction: In this report, three methods for the
computation of the probability mass function of the random
variable X, which counts the number of successes in N
independent trials, will be considered. In section 2, a direct
approach based on exhaustive enumeration will be
considered. It will be shown to be impractical in all but the
simplest cases. In section 3, formulas for the factorial
moments are given. These are used with the formula of
Laurent [4] to give a closed form representation of the
probability mass function. It is shown that this approach is
very ill-conditioned, but that good results can be obtained by
Tikhonov regularization. In section 4, an altemnative
approach based on using moments to approximate the
probability mass function by an expansion in orthogonal
polynomials is presented. It is found that this approach
becomes ill-conditioned as higher moments are used, but that
it gives good results in general. Finally, in section 5, a table
of results is given for a number of tests of the methods and
some comments are made. In what follows, the binomial
coefficients will be denoted by C(nk), vectors by small
letters underlined and matrices by capital letters. Small
letters with subscripts will denote the elements of vectors
and matrices where appropriate.

2. The Direct Method: In this section a formal solution to

the problem is presented and analyzed as an approach to
computing the probability mass function. Let p, be the
probability of a success on the i-th trial and let k be the
number of successes in N trials. Let Iy, be the setof z €
RN such that (i). z € (0,1), for j=1,2,...N and (i),

N
Z z; =k
=

Then the probability , Pr(X=k), that the random variable X
equals k is given by,

N 3 [}
L [z,9py+(1-2/") (1-p;) ]
1

zWelopy,y I

Each value of the probability mass function requires the
summation of C(NkK) products each of which can be
expressed as N-1 multiplications. In addition, the
computation requires C(Nk)-1 additions. Thus the
total number of floating point calculations is
N-1)CMN,k)+CINk)-1 for any value of k. Summing over k
yields an operations count of N2~ - (N-1) = O(N2Y), so that
although simple fast algorithms exist to generate the set of
all combinations, the exponential complexity class of the
algorithm makes this unfeasible except at the tails of the
distribution and for small N. In the evaluation of the
methods developed in sections 3 and 4 we will use this
calculation procedure to estimate the probabilities for
comparison purposes.

3. The Probability Mass Function in Terms of The
Factorial Moments: Noting that the factorial moments of
a discrete random variable X, X € {0,1,2, ...N}, with
probability mass function, f(x), are defined by the equation,




(x-(r-1)) £f(x)

N
=) x(x-1)...

x=0

B

it was shown by Laurent [4] that f(x) has the equation,

N . .
filx) = Z (—l)"“-’C(j,z‘:)—F.Ifl
5% -

The derivation of this result is simple and
instructive. If the defining equation for the r-th factorial
moment is divided by r!, and r is varied from O to N, the
resulting system of N+1 linear equations for f(x) is upper
triangular with ij-th element equaling C(j-1,i-1) when j>i and
0 when j<i.(note that i,j=1,2,...N+1). It is easily seen that
the columns of this matrix are just the rows of Pascal’s
triangle. The elements of the inverse matrix are just (-1)*
times the elements of this matrix and so Laurent’s formula
follows immediately. Examination of this formula reveals
potential problems in the computations. In particular, the
coefficients of the quantities p/r! grow rapidly with N and
alternate in sign. In order for the resulting sum to be small
cancellations must occur and so it is unlikely that the
function can be calculated with good relative precision. The
fact that the coefficient matrix has positive elements and is
upper triangular suggests solving for the values of f(x) by
back substitution. Unfortunately, the matrix is very ill-
conditioned with condition number K, = 22N, Thus assuming
that the quantities p,/r! can be found, they will be subject to
rounding error and we will be considering a classic discrete
ill-posed problem. We shall see that this problem can be
successfully solved by application of Tikhonov
regularization. If we define the factorial cumulants in a
manner analogous to the usual cumulants and denote the 1-th
such quantity by K, it can be shown that for the
distribution of interest,

N
K, = (-1) 7 (-1t Y p,”
=

Next let w, = p/r! and v, = Kj/r! so the w, can be
generated from the v, by the following recursion,

r
=1 E ;
Wz+1—TEHT{ G =1 () Vj+1wr-j}

for r > 0. Combining these two equations yields,
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r-j

As indicated above, the system of equations for the
probability mass function, given the factorial moments
becomes increasingly ill-conditioned as N increases. For this
reason we apply the method of Tikhonov regularization and
restate the problem as a constrained least squares problem:

min

£eRv 1AL, - i + MUE 1B

subject to the constraints,

N
Jj=0

The matrix A in these equations is the original upper
triangular matrix for the system with the first row and
column deleted. The idea of Tikhonov regularization is to
choose a suitable value of A by some criterion. A number of
ways of choosing this parameter are described in Hansen [2].
We have considered one of those and also one of our own
which is particular to this problem. For reference purposes,
these will be denoted by

(1). The Generalized Cross Validation Method
(GCV) of Golub, Heath and Wahba [1].

(2). MSRE in which the Mean Square Relative
Error is calculated by comparing the factorial moment
solution to a few "true" values calculated by the direct
method at each end of the solution vector.

It should be noted in this context that even when N is fairly
large, the first few values of the probability mass function in
each tail of the distribution are easily calculated. In either
case, a 1-dimensional nonlinear optimization problem for A
is solved which requires repeated solution of the following
constrained linear least squares problem:

Let u be the N-vector with components pyy,....tyn/N!
and I be the N x N identity matrix, then for each A we
solve,
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A
AL,

B
f*=|u|

subject to the constraints
fz, >0, 7=1,...,N

N N
>, h, = 1] 2-pp
=1 751

where p; is the known probability of a success on the j-th

The results of computational experiments with this
approach are given in section 5. It will be shown there that
both of the methods indicated above for choosing the
parameter A give satisfactory results. However, the GCV
method, which requires the computation of the Singular
Value Decomposition of the matrix A, appears to give
slightly poorer results.

4. Approximation By Expansion In Orthogonal
Polynomials: The technique to be used here is applicable
to any discrete distribution and will be described in very
general terms.

Let f(x) be the discrete distribution to be
approximated and let f(x) be defined on the set €,
Q={xg,X,,....X,,}. Let p(x) be a second known discrete
distribution with domain Q. Finally let {h,(x),j=0,1,...} be a
set of polynomials orthogonal to each other with respect to
p(x)‘on Q; that is such that

0, i+7j

Y, p(x) By (%) By (x) = {uhjnz , iy

X=X, p(x)

By matching moments we shall find coefficients a,, a,, a,, ...
such that

£(x) =p(x) [a,+a,h, (x) +a,h, (x) +...]
If an approximation utilizing the first r terms of this

expansion is to be generated, then the following result can
be easily derived,

THEOREM: Let X € R®UX#) apd D e RE#Uxm+) pe
defined as

1 X, X2 ... X

1 x XX .. X

= 2 r
X=11x x ... x;
1 X, X, Xa

and D=diag(p(xy),p(x), ..., p(x,)). Let A = D"2X have QR
factorization,

Rll

A= Q , R11 € R(r+1)x(r+1)

Then the columns of the matrix B=D"2Q are orthogonal
with respect to the weight matrix D and are the orthogonal
polynomials hy(x), h,(x), h(x) evaluated on Q.
Furthermore, if p is the vector composed of the 0-th moment
and the first r moments of f(x) then the coefficients a; in the
expansion are the solutions to the system of equations
RTa=p

Again formulas for the moments and cumulants of the
distribution under study are easily calculated as functions of

the known probabilities of success on individual trials. To
this end, for each p;, let d,,,,(j) be defined by, d, = p,

dp (7)) =p;[1-Y Cln, k) d,,; ;(5)]
i=1

then the cumulants K are given by
N
K, =Y d. (7)
=1

The moments are then found from the cumulants by the well
known formula,

r
l"lr-i-l = E C(rlj)fg+1ur-j
j=0

The matrix R,; tends to become ill-conditioned as
r increases because the matrix DX becomes ill-conditioned.
The degree of ill conditioning is a function of the
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Table 1.
Comparison of the directly computed CDF to those obtained by the GCV, MSRE and series approximation method for the
case of N=20 and 100 simulations. The table entries are relative differences.

GCV (N=20) 100 trials
lower tail upper tail
5% 5%
Max 55x 10° 22x10° 1.3 x 10° 3.5x 107 39 x 107 13x 10°¢
Q3 3.1x10° 29 x 10°¢ 14 x 106 85x 10°® -4.5x 10° 1.7 x 107
Med 5.4 x 107 1.0 x 107 3.0 x 107 23 x 10® -5.1x 10°® 3.5x 10*
Q1 -4.9 x 107 -5.3x 107 -14 x 107 -3.1x 10° -1.6 x 107 -3.6 x 10°®
Min -6.0 x 10° -89 x 10° -85 x 10° -6.2 x 10°® 1.3 x 107 -5.9 x 107
| MSRE (IN=20) 100 trials 4 end points
lower tail upper tail
1% 5% 10% 1% 5% 10%

Max 1.1 x 107 2.1 x 107 34x10°® 14 x 10° 89 x 107 44 x 10°
Q3 14 x 10® 59x 10° 49 x 10° 1.6 x 10 53 x 10 44 x 10
Med 1.1x 10° 1.5 x 10 49 x 10 29 x 10" -1.6 x 10 54 x 10"
Q1 -6.6 x 10° -3.6 x 10° -1.5x 10° .-47x 10" | -3.6x 10" 2.7 x 101
Min -5.7 x 107 -4.7 x 10 <16 x 10°® -6.3 x 10 -29x 10° 2.9 x 10°

SERIES (N=20) 100 trials

lower tail upper tail

5% 5%

Max 4.1 x 107 54 x10* 19 x 10° 6.3 x 10 34 x 10* 3.8x 10*
Q3 2.1x10° 2.0 x 10* 1.0 x 10* -1.5 x 10" 7.1 x 10° 6.3 x 10°
Med 3.7 x 10* -19 x 10 -1.5 x 10 1.6 x 10° 3.0x 10° 2.0x 10°
Q1 -1.3x 10? -2.1x10° -59 x 10* -1.6 x 10°¢ 13 x 10° -6.5 x 107
Min 2.6 x 107 2.8 x 107 -6.3 x 10° -14 x 10 -13x 10* -4.4 x 10
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distribution p(x). The degree of ill-conditioning can be
controlled by the choice of r. It is expected that the quality
of the approximation will improve as the number of
moments t increases. In fact, if m is finite, then using m
moments will give an exact result. On the other hand, as the
number of moments increases, so does the condition number
of R, and so a reasonable balance between accuracy and
conditioning must be found. Since R,, is upper triangular,
the condition number is easily calculated to help in this
decision.

5. Computational Results and Conclusions: All
computations presented were performed in IEEE Binary
Rounded Double Precision floating point arithmetic on an
Intel Pentium processor. The codes were written in
WATCOM FORTRAN 77°? and run under the OS/2 2.11
operating system. The constrained least squares problems
were solved using the codes of Hanson and Haskell, TOMS
Algorithm 587 [3]. In all cases, the values of the cumulative
distribution function resulting from the computed probability
mass functions found by the methods of sections 3 and 4
were compared to like values found by the direct method of
section 2. The values presented in Table I are for the relative
differences between the computed values. It should be noted
that the values computed directly are also subject to error. In
particular, although a value calculated directly is an unbiased
(with respect to the distribution of the rounding errors)
estimate of the true value, its variance grows as N grows
and so any confidence interval grows as well. Thus we will
refer to these as relative differences in the computed values
but not as relative errors. Rather than give mean relative
differences in Table I, we give a five number display which
includes the extremes, the quartiles and the median. In
addition, we give results for "nominal" 1%, 5% and 10%
critical points in both tails of the distribution. Since the
distribution is discrete, these levels are not exact and
represent the relative difference at the point on the CDF
which is closest to the indicated probability level.

Results are presented for the case of N=20 for the
GCV method and for the MRSE method. These are based on
100 randomly generated sets of probabilities of success. For
the MSRE method, results are given for the cases of 4
directly calculated values used at each end to estimate the
Mean Square Relative Error. The MSRE method for N=25
and 4 points at each end gave similar results and is not
shown due to space limitations. The values in the table
indicate that all methods of choosing the lambda yield
satisfactory results while the MSRE method gives results
which are slightly better than those found by the GCV
method. The advantage of the GCV method is that it
requires no direct calculations of the tails of the distribution.

The disadvantage is that it requires the calculation of the
Singular Value Decomposition (SVD) of one matrix. In our
experience, the extreme ill-conditioning of the matrix caused
the SVD code to fail when N approached about 50. It should
be noted that this is the point at which the elements, C(N,k),
of the matrix can no longer be represented exactly in the
floating point system.

For the orthogonal expansion approximation
method, results are given for N=20 using 8§ moments and the
Binomial distribution with p chosen so the its mean matches
that of the target distribution. Again results are given for 100
simulations. Like any such expansion, the values in the tail
area are particularly sensitive to the number of moments
used. However, the simulation results indicate that even
though some of the probability estimates in the tails can be
negative (and small) the values of the CDF at the
approximate 1%, 5% and 10% levels are not badly effected.
The overall results can be improved slightly if the most
extreme few probabilities are calculated directly.

In conclusion we note that any of the methods
described can yield values of the CDF which are satisfactory
for practical work. The method based on the factorial
moments is more computationally intensive and can be
expected to yield more accurate results. The approximation
method yields less accurate results in general unless all
moments are used in which case the results are comparable.
The approximation method was tested for randomly chosen
p; on (0,1). Intuitively, we would expect it to perform better
in situations where the p, are different but are on a narrower
interval.
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Abstract:

Kokoska (1987) suggested a set of maximum
likelihood estimators relevant to the analysis of the
Inhibition/Promotion (I/P) mammary cancer
chemoprevention experiment. This set of estimators
has been extended and studied in various detail in a
number of related papers, Kokoska (1988a, 1988b),
Hsu (1990), Kokoska, Hardin, Hsu, and Grubbs
(1993). Often, however, investigators have some
prior knowledge of a compound tested in such
experiments due to its chemical structure and
similarity to related compounds. In such situations,
experimenters often wish to exploit this prior
knowledge in order to reduce the costs of
experimentation. Thus, this paper examines
Bayesian estimators for this purpose and numerical
algorithms, based on the Gibbs sampler (Gelfand and
Smith, 1990) and the rejection method (Smith and
Gelfand, 1992), with which to compute the posterior
distribution. The methodologies are illustrated with
experimental data taken from Grubbs (1993).

1. Introduction.

The Inhibition/Promotion (I/P) Cancer
Chemoprevention Experiment is designed to investigate
the effect of compounds that can be given in the diet on
incidence rates of cancer. These experiments are often
administrated by the National Cancer Institute. The
primary purpose of the experiment is to isolate and
identify potential cancer inhibiting- or promoting
substances in human. Variables of interest in these
experiments are the incidence of tumors in the animals,
the number of tumors per animal, and the rate at which
tumors develop. The Chemoprevention Branch,
Division of Cancer Prevention and Control, in the
National Cancer Institute has issued guidelines for
statistical analysis such as log-rank test and Armitage
test.  However, difficulty in analyzing these
experiments may occur due to the fact that the
experiment is terminated before all the induced tumors
have been observed (i.e., right censored data).

Therefore, a confounding of fewer observed tumors in
treatment group compared to control could be the result
of a decreased number of induced tumors, a decreased
growth rate of tumor, or both occur. The problem
results from the fact that the number of induced tumor
(M) in each animal is dependent upon the time to tumor
detection (T). Current statistical methods do not
account for this confounding since they do not test the
number of induced tumor and the time to tumor
detection simultaneously.

Kokoska (1987) suggested a set of maximum
likelihood estimators relevant to the analysis of the
mammary cancer chemoprevention experiment. This
set of estimators have been extended and studied in
various detail in a number of related papers, Kokoska
(1988a, 1988b), Hsu (1990), Kokoska, Hardin, Hsu,
and Grubbs (1993). In this paper the basic idea of
Kokoska's method will be reviewed.

2. Mathematical Model of Kokoska's Approach

Kokoska proposed modelling the number of
induced tumors, M, as a Poisson distribution, and the
time to tumor detection, T, as a gamma distribution.
Suppose that a treatment group consists of # animals,
and m, (i=1, 2, ..., n} is the number of promoted tumors
in animal i. Let #;be the observed time to detection of
tumor 7 in animal i G = 1, 2, ..., m;), and let J(1,) be the
number of observed tumors for the animal i at the time
t,. Further, denote the mean and variance of X py, and
oy, respectively. Let F() be the cumulative density
function (cdf) of T. Kokoska (1987) has shown that
J(1) has mean p,F(ti) and variance (o%y-p)F(t)
+HF(t,). These result demonstrate mathematically the
dependence of the number of detectable tumors at time
t, on the mean number of induced tumors and the time
to tumor detection.

The log-likelihood function of J(t) can be
shown as below,
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LL(A,a,B) = -AZ", F(ti." a,B) + s,{in(4) - aln(p) -
In(a))) + s)(a-1) - s/ - In(K)

where F(t*; », +) denotes cumulative density function of
T,and s, = X' m;, 5= & Z}W;I t;, and K=1I7_m,!,
and all the animals are sacrificed at the end of the
experiment ¢*.

This log-likelihood can be numerically optimized to
obtain the MLE.s of interest using the IMSL
FORTRAN library subroutine DBCONF. The mean
number of induced tumors per animal can be estimated
viathe MLE A . However, the parameter i, the mean
time to tumor detection, is of more biological
significance than the estimates of the parameters
associated with each of the continuous distributions.
An MLE of p can be easily obtained using the
invariance property of MLE's,
ie, fp = &P (Roussas, 1973).

This parametric model has been extended
using various assumptions to eight models (Kokoska,
1988; Hsu, 1990; Hardin and Hsu, 1991; Kokoska et
al., 1993) for different kinds of data assumptions. In
this paper, however, Poisson and gamma distributions
for the number of induced tumors in each animal and
their times to tumor detection, respectively, are
examined in comparison to the estimates using the
Bayesian approaches.

3. Bayesian Methods

Since investigators may have some prior
knowledge of a compound tested in such experiments
due to its chemical structure and similarity to related
compounds, they may wish to exploit this prior
knowledge to reduce the duration of the experiment or
to lessen the number of experimental animals due to the
cost of experimentation. This section examines
Bayesian estimators, based on the Gibbs sampler
(Gelfand and Smith, 1990) and the rejection method
(Smith and Gelfand, 1992), are both presented. These
techniques are applied to an actual experimental data.

Gibbs sampling has allowed the computation
of complicated statistical models based on Bayesian
posterior inference. Additionally, the rejection method
of Smith and Gelfand is a straightforward sampling-
resampling perspective that allows the computation of
Bayesian estimators using easily implemented
calculation strategies. The methodologies are
introdnced as follows.

(1) Gibbs sampling method

Suppose that X, Y, and Z are the random

variables, and their  conditional distributions,
FaxzX19,2), fax AY1%.2), fax(zlx,y) are known. If initial
values of x,’, y," are specified, then a "Gibbs sequence
of value" of the random variables, X', ¥,', Z,', X,', Y,
Z', ... X\ Y/ Z/' can be obtained iteratively by
alternately generating values from

X' ~ forzxY'=y,, Z/'=z/) and
Y ~ faez(YX'=X, Z'=z)) and
Z ~ faep(dX'=x, Y/'=y,)

It turns out that under reasonably general
conditions, the distribution of X' converges to fy(x),
which is the true marginal of X as k —e (Casella and
George, 1992). Thus for k large enough the final
observation X,'=x,' is effectively a sample from fy(x).
So are the observations f{(y) and f(z).

In this paper the conditional probabilities of
the parameters of interest are assumed as follows.

fille, B) ~ Gamma(pf/e, 1), and
flelB, A) ~ Normal( /A, ), and
fifa, A) ~ Normal(ad, A).

One thousand iterations were made to get the marginal
distributions for the parameters, and 10,000 sample
sizes were generated.

(2) Rejection Method

For fixed g, let f (G x) = (& x)p(&) where
I(@ x) is the likelihood function of 6 and p(g) is the
prior distribution of §. If s the M.L.E. of §, and M
= (@, x). The first step of this method involves the
generation of 8 from p(6) and also the generation u
from continuous uniform distribution (0, 1). Second,
evaluate the following procedure

u s flx)l (Mp(9) => accept @
u > flx)l (Mp(Q) => reject @

Thus a sample of the posterior distribution of
the parameter @ can be obtained if the above procedures
are applied repeatedly. In this paper uniform
distributions were used for the prior distributions of the
parameters, o, B, and A, and 10,000 simulations were
generated.

4. Application
In a study (Grubbs, 1993), sixty female

Sprague-Dawley rats were randomly divided into 2
groups. In Group 1 the rats were treated by retinoid




vehicle, and the rats in Group 2 were treated by RTBE
(934 mg/kg of diet). Then the MNU was administrated
to every animal. In both experiments, the animals were
palpated for the detection of mammary tumors. The
investigation was terminated 182 days after the
injection of carcinogen. Tables 1 and 2 give the
survival times, the numbers of induced tumors, and the
times of development of mammary cancer for each
group.

S. Discussion

Tables 1 and 2 present the maximum
likelihood estimates for the mean number of induced
tumors per animal and for the mean time to tumor
detection and the corresponding 95% confidence
intervals and 95% credibility intervals using classical
approach and the Bayesian techniques for each group.
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Clearly, the estimates fi,, and fi, using Kokoska

approach and the rejection method of Smith and
Gelfand are very close; and their 95% confidence
intervals and credibility intervals are similar, as well.
However, the estimates using the rejection method seem
to be a slightly better than that of the classical
approach since the credibility intervals are narrower
than the corresponding confidence intervals. The
estimates of the parameters of interest using the Gibbs
sampling techniques are not good compared to the
estimates using either the classical or the rejection
methods. This might be due to the selection of
inappropriate prior conditional distributions for the
parameters of interest. Work is currently undergoing to
incorporate researchers' experience to obtain beiter
prior conditional densities for the parameters.

Table 1. Estimates and 95% Confidence/Credibility Intervals of the Parameters for Group 1 (Control Group)

Kokoska's method Gibbs's Sampler Rejection Method
Estimate 15.66 8.69 15.81
A | 95% Confidence
[Credibility Interval (13.15, 18.46) (5.14, 18.57) (13.30, 17.65)
Estimate 185.83 241.25 187.76
p | 95% Confidence
/Credibility Interval (171.92, 199.75) (26.14, 579.43) (173.05, 203.79)

79

Table 2. Estimates and 95% Confidence/Credibility Intervals of the Parameters for Group 2 (Treatment Group)

Kokoska's method Gibbs's Sampler Rejection Method
Estimate 9.19 8.71 9.32
A | 95% Confidence
/Credibility Interval (7.46, 11.07) (5.15, 18.50) (7.70, 10.67)
Estimate 155.30 242.17 154.55
p | 95% Confidence
/Credibility Interval (143.03, 167.56) (26.25, 590.10) (138.13, 170.49)
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ABSTRACT. Molecular similarity analysis in-
volves the analysis of data based on complex data
types used to represent the information in molec-
ular structures. With many complex data types,
we lose many nice features of vector spaces, but
retain the concept of proximity. Let X be a ran-
dom variable with density f defined on a space Q.
Let g be any other density defined on Q. Define
the relative aggregation a(f|g) of f with respect

to g by
[ g

(J79)*

Suppose X = (X;,X;) with marginal densities
f1 and f,. Define g = %f + %flfz. Define the
dependence coefficient §(X1, X,) by §(X1,X;) =
a(flg)/a(f) where a(f) is the relative aggrega-
tion of f with respect to itself. We show that
if f is the bivariate normal density, then the é-
coefficient varies monotonically with the correla-
tion coefficient, The §-coefficient can be estimated
using random quadrat sampling when a suitable
proximity measure is defined on Q. Two repre-
sentations used in computing molecular similarity
are shown to have a high delta coefficient.

a(flg) =

1. Introduction

Statisticians continue to encounter increas-
ingly complex data types. In our application of
molecular similarity analysis to drug discovery re-
search, examples include binary vectors represent-
ing the presence or absence of up to 300 molec-
ular fragments, labeled graphs representing the
bonding structures of molecules, and scalar fields
in IR® for representing the electrostatic fields of
molecules (Johnson, 1989, Johnson and Maggiora,
1990). Problems associated with high dimension-
ality abound, and in some cases, we even lose
the natural definitions of such concepts as coordi-
nates, location, and linear transformations. One
important concept that remains'is proximity. If
two objects are represented by the same data type,
we can virtually always measure how similar one
is to the other.

Recently, Cheng and Johnson (1994a,1994b)

proposed the concept of relative aggregation co-
efficients as a method of developing statistical in-
ference on probability spaces in which a proximity
measure has been defined. Here we illustrate the
use of relative aggregation coefficients in develop-
ing a general measure of dependence between two
random variables. Although our approach gener-
alizes directly to arbitrary probability spaces, the
discussion will be limited to Euclidean spaces. Af-
ter defining relative aggregation coefficients and
presenting a moment estimator for them, we de-
velop a coefficient of dependence and show its re-
lationship to the bivariate normal correlation co-
efficient. We then compute the dependence coeffi-
cient for two high-dimensional vector representa-
tions used for measuring molecular similarity.

2. Relative Aggregation Coeflicients

Let f and g be probability density functions
defined on IR* such that [ f2g exits. Then the
relative aggregation coefficient (RAC) a(flg) of f
with respect to g is defined by

J 29 .
(f 19)*

If g = f, then we write a(f) for a(f|g), and we
all a(f) the self aggregation coefficient of f.

Some insight into aggregation coefficients is
gained by viewing these integrals as moments of
F(Z) where g is the density of Z. Write E,[f*(Z)]
for [ fig and call it the i’th-relative moment of f
with respect to g, or simply the i’th self moment
of fif g = f. Then the RAC of f with respect to g
is simply the second relative moment of f with re-
spect to g divided by the square of the correspond-
ing first relative moment. It follows immediately
that a(flg) > 1.

What would make this ratio large? Consider
any other density h for which [ fh < € [ f2. Let
g be the mixture pf + gh where p+ q = 1. Then
S 29> pf £ and [fg < [F(p+ge). It fol-
lows that «(f|g) > pa(f)/(p + ge)? which goes to
P la(f) as € — 0. Since a(f) > 1, we can always
find a g so as to make a(f|g) arbitrarily large.

a(flg) =
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3. A Coeflicient of Dependence

Let X and Y be two random variables defined
on IR** and IR*s where k; + k3 = k. Let f denote
the joint density of (X,Y), and let f; and f> de-
note the respective marginals of f. Let k be the
product density f; f2. Then X and ¥ are indepen-
dent if and only if f = h. Define g = %f + %h,
and define the dependence coefficient §(X,Y’) by

a(flg)
a(f)

Clearly if f = h, then §(X,Y) = 1. On the
other hand, we see from the preceding section that
§(X,Y) ~ 2 whenever [ fh~0.

Figure 1 plots the dependence coefficient in
the case f is the bivariate normal for various val-
ues of the correlation coefficient. A distinct mono-
tonic relationship is obtained. The correlation co-
efficient in the figure could be replaced by its abso-
lute value as aggregation coefficients are invariant
under a particular subclass of linear transforma-
tions on IR¥, as is now demonstrated.

§(X,Y) =

Figure 1. Dependence coefficient versus the
log of one minus the correlation coefficient.
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Define T by

. ©
7= (% 2]

where T, and T, are square-nonsingular matrices
with k) and k; rows respectively. Let 2, and y,

be fixed vectors of length ki, and k;. Then the
density f of T(X — 2,,Y — y,) is given by

F=ITDATHX ~20,Y — 1))
= [T HT AT (X = 20), T HY = o))

It then follows that the marginal densities of f are
given by | T,V f1(T7 (X — 20) and

|T5 (T (X — ). Straight forward caleula-
tions give §(X,Y) = §(To(X), Ty (Y)).

4. A Consistent Estimator

Let X, Y, f, f1, f2, and h be as defined. We
seek a consistent estimator of §(X,Y) which is
a ratio of two RACs. Since the denominator is
bounded away from zero, it follows that the ra-
tio of consistent estimators of the numerator and
denominator of §(X,Y) is a consistent estimator
of §(X,Y). A consistent moment estimator of a
RAC is presented in Cheng and Johnson (1994c)
elsewhere in this volume. Briefly, it is constructed
as follows: Let S = {(21,%),...,(2n5,yn)} be a
dataset of N independent samples from f, and let
21,..-Zm, be m independent samples from density
g where g is any other density defined on R*. Let
d be any proximity measure defined on IR*. Define

B, (z) = {(=, v)|d((2,9), 2) < *}.

and define n,(2;), ¢ = 1, ..., m, to be the cardinal-
ity of the set

{(=, v)(=,y) € B: () (2,y) € S ,and(z,y) # %}

Let %, and s? be the sample mean and variance of
ns(2), i = 1, ..., m, and define A, = s2/%,. Then
Cheng and Johnson show that
~ N  2-7+7
a(flg)=N_1x . -z-z

is a consistent estimator of a(f|g) under the as-
sumption that

/ f(t)dt = £(2) / d+ol[ ).
B.(2) Ba(s) B.(2)

(The optimal estimation of a(f|g) is the subject
of another study.)

In spatial statistics, the neighborhood B,({z;)
is called a quadrat centered at z;, and gives rise
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to the term “random quadrat sampling”, when
z; represents the outcome of a random variable.
Random quadrat sampling requires the definition
of a proximity measure. Interestingly, proximity
measures do not figure into the definition of RACs,
but often enter into the picture when RACs are be-
ing estimated. With a consistent estimator now in
hand, all that remains is to clarify how one defines
quadrat sampling with respect to densities f and
h.

' As in the example that follows, usually one
has proximity measures dy and d; associated with
X and Y and must construct a proximity measure
d for (X,Y). There are many ways. The follow-
ing definition is convenient from a computational
standpoint

d((=1, 1), (22, ¥2)) = max(di(21,22), d2(n1, yz)(]-)
1

To illustrate this convenience, write z = (u,v)
where 4 and v and k; and k;-dimensional vec-
tors. Define B,1(u) = {z|di(z,u) < r} and
B, 2(u) = {z|ds(=,u) < r}. Now consider our
problem in estimating the numerator of § (X, Y).
We must count the number of points in S which
fall in the quadrat when half of the time the cen-
ter of the quadrat is drawn according to the joint
density f and the other half of the time the cen-
ter is drawn from the product density A. In either
case, the cardinality n,(z;),i=1,...,m, when dis
defined by equation 1, is simply the cardinality of
the intersection of the following two sets:

{(=,9)|z € B,1(u),(2,9) € S,and 2 # u;}.
and

{(z’ y)ly € Br,z('vi) :(3, y) € S,andy # v,-}.

We assure that z;, z; = (u;,v;), is drawn accord-
ing to f, by drawing z; at random from S. We
assure that z; is drawn according to k by drawing
u; at random from the set {z|(2,y) € S} and then
drawing v; at random from the set {y|(=,y) € S}.

5. An Example

There is an increasing use of molecular sim-
ilarity measures in the pharmaceutical industry
(Johnson and Maggiora, 1990). Similarity search-
ing is a frequent application in which one searches

a large databases of molecular structures for struc-
tures similar to some query structure of pharma-
ceutical interest. The desire is to find related com-
pounds in the database which might also be ex-
pected to be of related interest. See Willett (1987)
for detailed coverage of the issues and many of the
proximity measures being used in this regard. One
expects most of these proximity measures to be
highly related. In this example, we study the re-
lationship between two proximity measures, topo-
logical index (TT) distance and fragment represen-
tation (FR) similarity, used at our company for
fast similarity searching.

In mathematical chemistry, a topological in-
dex is simply a number calculated on the bonding
structure of a molecule. A simple count of the
number of atoms serves as an example of a topo-
logical index, although most topological indices
are considerably more sophisticated. The repre-
sentation for our TI distance is the first 10 princi-
pal components of 90+ topological indices (Basak,
et al.,, 1988). The TI distance is simply the Eu-
clidean distance in IR'®. Our fragment represen-
tation of a molecular structure is a binary vec-
tor x in which each bit represents the presence or
absence of at least one structural fragment (con-
nected substructure) in a fragment group. Over
300 groups of fragments are used. The similarity
measure is the Jacard coefficient (usually called
the Tanimoto coefficient in chemistry) defined by
x'y/(x'x+y'y - x'y).

These two proximity measures are highly re-
lated although it may not be immediately appar-
ent from the disparity in the forms of the infor-
mation captured by their underlying vector repre-
sentations. This relatedness becomes immediately
apparent when one performs similarity searches
using a common query structure. If the common
query structure is a prostaglandin (a particular
class of molecular structures), all of the most sim-
ilar compounds in the databases by either prox-
imity measure will be prostaglandins; if the com-
mon query structure is a benzodiazepine, all of the
most similar compounds will be benzodiazepines,
ete..However, such notions of relatedness between
the two proximity measures presupposes an abil-
ity to define classes of compounds. Moreover, any
basis of quantifying relatedness using these classes
would reflect the idiosyncrases of the classification
criteria.

Before illustrating the §-dependence measure,
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it is informative to look at some counts employed
in its computation. We selected 600 query struc-
tures at random from our database of over 100,000
structures. Both TI and FR similarity searches
were performed for each query structure. For each
query structure, we recorded the number of struc-
tures, excluding the query structure, in each simi-
larity neighborhood (quadrat) as well as in the in-
tersection of the neighborhoods. In this way, 600
3-tuples of counts were generated. All 600 simi-
larity searches used a fixed cut-off value for the T1
distance and another fixed cut-off value for the FR
similarity. The experiment was then repeated for
the same 600 query structures, but with different
cutoff values for the two proximity measures. In
the following discussion, only the results for a cut-
off value of 0.25 for the TI distance and for a cutoff
value of 0.97 for the FR similarity are presented.

Our first surprise was the complete lack of
correlation seen in Figure 2 between the pairs of
counts based on the TI and FR proximity mea-
sures. Since the 600 neighborhoods for each prox-
imity measure share a common cut-off value or
radius, one expects a high count to reflect a re-
gion (defined by the position in space of the query
structure) with a relatively high value for the
density function. Let frr and frpr denote the

density functions associated with how the struc-
tures are positioned in space under the TI and
FR representations. Figure 2 suggests two things.
First, for both densities, by far the largest pro-
portion of density is associated with a very low
density value, but occasionally one encounters
an extremely dense region. Second, let TI(z)
and FR(z) denote the TI and FR representa-
tions of structure z. Then the random vari-
able frr(TI(Z)) has virtually no correlation with
Jrr(FR(Z)) where Z denotes a randomly selected
structure.

At first, this second finding totally surprised
us. However, the apparent lack of correlation
between the random variables fry(TI(Z)) and
frr(FR(Z)) does not imply a lack of correlation
between TI(Z)) and FR(Z). To see this, imag-
ine a transformation that differentially stretches a
space on which a density function is defined with-
out seriously altering neighboring relationships.
Such a transformation would preserve the con-
tiguous positioning of structures within a struc-
tural class by both proximity measures while at
the same time allowing the two proximity mea-
sures to differ in how they “stretched out” the
regions defining each structural class.

Figure 2. (-.45,.45)-Jittered plot of 600 count pairs using two different proximity measures.

The triples give the two counts and the intersection count.
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Although Figure 2 does not suggest any cor-
relation between the low and high dense regions
under TI distance with the low and high dense
regions under FR similarity, it is not difficult to
establish that their neighboring relationships are
related using the counts of the number of struc-
tures in intersections of particular pairs of neigh-
borhoods. For example, the point in Figure 2 with
coordinates (24,9) corresponds to a pair of neigh-
borhoods whose intersection contains 9 structures,
i.e. the FR-similarity neighborhood is a subset of
the TI-distance neighborhood. Suppose that the
structures are distributed in “FR space” indepen-
dently of their distribution in “TI space”. If we
had 100,000 structures in the database, the prob-
ability a randomly selected structure would fall in
this TI neighborhood is 25/100,000 and the cor-
ressponding probability for the FR neighborhood
is 9/100,000. If these two events are independent,
the probability of a randomly selected structure
falling in the intersection is the product of these
two probabilities. It follows that the expected
number of counts associated with two randomly
selected neighborhoods of this size is roughly es-
timated by 25 x 9/100, 000 = 0.00225. One can
view the intersection counts as a Poisson random
variable with mean 0.00225. Thus, our seeing an
intersection count of 9 is extremely improbable
under the assumption that the random variables
JFr1(TI(Z)) and frr(FR(Z)) are independent.

Although interesting, this particular test does
not provide a calibrated measure of dependence.
For that we turn to the § coefficient calibrated in
Figure 1. With fry and frg playing the roles of
f1 and f, in the preceding section, we obtain the
estimates and confidence intervals for the RACs
given in Table 1. A sense for the histogram of the
counts making up the two self-aggregation coeffi-
cients can be obtained from Figure 2. The dis-
tribution of the intersection counts for the joint
density frrxrr is given by

count 0 1

2 3 45 6 9
freq 525 57 T 5 2 2 1 1

All 600 counts in which the product density was
the design density were zeros. These were pooled
with the preceding 600 intersection counts when
estimating a(frrxrr|g)- The bootstrap confi-
dence intervals were developed from 500 bootstrap
samples from the sample quantile function of the
observed counts.

Table 1
RAC Estimate 95% CI
a(fFR) 1471 (12.3717.2)
&(frr) 3.95 (3.65, 4.25)
&(frrxrr)  8.12 (5.7, 10.5)
a(frrxrrlg)  16.2 (11.3, 21.2)
6(frrx1I) 2.04 (1.31, 2.94)

It is easily shown that if frrxrr = frr x frr,
then a(frrxrr) = a(frr) X a(frr). Clearly,
this is not the case, although we are still un-
sure of the meaning and significance of the fact
that a(frrx7r) is so much less than the prod-
uct of the self-aggregation coefficients. However,
a(fpgxrjlg) is twice that of a(.fF'RxTI); giving
an estimate of two for §( FR(Z),TI(Z)). Based
on the calibration of Figure 1, there is an extreme
dependence FR(Z) and TI(Z).
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Abstract

Robust empirical and hierarchical Bayes estimators for
exchangeable normal means with heterogeneous vari-
ances are developed. The robust empirical Bayes estima-
tor is obtained by using robust (or hierarchical) priors
and the Newton-Ralphson algorithm. The robust hier-
archical Bayes estimator is developed through ¢ (partic-
ularly the Cauchy) priors with the computation being
performed through the Gibbs sampler. It is shown that
such robust estimators preserve the gain of shrinkage
in the presence of extreme individual component esti-
mators. Efron and Morris’s classic example of estimat-
ing the toxoplasmosis prevalence rates is reconsidered.
The method is then applied to the estimation of rates
of change in longitudinal studies and is illustrated with
an example. Further, the estimators are compared with
those obtained via BLUP estimators of the random ef-
fects in SAS PROC MIXED through a simple random
coefficient growth curve model.

1 INTRODUCTION

With the recent development of computational tools
such as the Gibbs sampler, complex data can be an-
alyzed through a comprehensive Bayesian hierarchical
model. In this paper, however, we consider some im-
portant estimation properties in the basic model of esti-
mating exchangeable normal means (or random-effects),
such as the the estimator’s robustness with respect to
prior misspecifications and outlying observations. Such
estimation is often needed in practice, as is demonstrated
in Morris (1983), Breslow (1990) and Louis (1991), and
can be summarized as estimating fi,..., O¢ simulta-
neously starting with their independent unbiased esti-
mators by,..., br. Often it is assumed that b; | i ~

N(Bi,d?), i = 1,..., k, independently. It is now well
known that shrinkage estimators (Morris, 1983) can gen-
erally improve upon the usual maximum likelihood esti-
mator (b;) for §; in terms of achieving smaller squared er-
ror risk. And the shrinkage estimators are often derived
from a Bayes approach by assuming that the §;’s are
from a certain probabilistic distribution. This method
has been shown to be useful in problems where the sci-
entific objectives were not directly one of simultaneous
estimation, e.g., it provides a way to correct for the effect
of regression to the mean and gives estimators of regres-
sion coefficients which yield uniformly smaller prediction
mean square error in linear and logistic regression (Co-
pas, 1983); and it also gives estimators with uniformly
smaller variances in discrete event simulation with con-
trol variates (Tan and Gleser, 1992) and estimators of
common odds ratio using concordant pairs (Liang and
Zeger, 1988).

In the simpliest case when d? = o% forall i = 1,...,
k, b; | Bi ~ N(B;,0%) with a conjugate (Gaussian) prior
Bi ~ N(B, A), the shrinkage estimator of §; for i = 1,...,
k as proposed in Morris (1983) is of the form

k-3 (k—3)o?
k=15 (b = b)

where b is the grand mean of the b;’s. This estimator has
smaller squared error risk than the maximum likelihood
estimator, provided that k > 4. When the variances d;
are not equal, an iterative algorithm is needed to cal-
culate the empirical Bayes estimator. Tan and Gleser
(1992) have studied the magnitude of potential improve-
ment of these estimators. The gain would be substantial
if the individual means are reasonably similar.
However, the conjugate priors are not necessarilly ro-
bust (with respect to possible misspecifications of pri-

Bi = b; — min ( 2) (b; =), (1.1)




ors). In fact, as pointed out in Berger (1985, Chapter 4),
when the likelihood function is concentrated in the tail
of the prior distribution, conjugate priors should prob-
ably be avoided. Although the usual normal conjugate
prior for estimating the normal means is robust within
the class of all prior distributions with finite first two
moments (Morris, 1983), the moments depend on the
tail of the distribution and are thus highly variable. For
instance, two priors may be virtually indistinguishable
but may have quite different moments (Berger, 1985),
and some highly robust priors (such as the Cauchy pri-
ors) do not have moments. Sometimes the estimator us-
ing the conjugate Gaussian prior (such as 1.1) has been
referred to as being robust in a conservative sense in that
if the prior is fully wrong or if one b; is outlying (thus in
violation of exchangeability), the empirical Bayes (EB)
estimates would collapse back to the usual maximum
likelihhod estimators, resulting in no harm but nullify-
ing the potential gain. Therefore estimators that pre-
serve the gain of shrinkage in the presence of outlying
components are very appealing because the rest of the
components (the individual 8;’s ) can still benefit from
borrowing strength from the ensemble. This refined ro-
bustness can be achieved by using flat-tailed priors or by
hierarchical modeling (Berger, 1985, Angers and Berger,
1991). When the variances are not equal, the first stage
parameter estimators in the hierarchical model can be
derived from Angers (1992) when the degrees of free-
dom of the t-prior is odd. In general when the variances
are heterogeneous, analytic solutions with ¢-priors seem
extremely difficult to obtain. With the computation be-
ing performed via Gibbs sampler, such robust estimates
of random effects can be easily extended to the general
mixed-effects model of Laird and Ware (1982).

The purpose of this paper is to develop empirical and
hierarchical Bayes estimators with the refined robust-
ness. The class of t-priors (the Cauchy prior in particu-
lar) is used to obtain the robust heirarchical estimators
with computation being performed using the Gibbs sam-
pler (Geman and Geman, 1984, Gelfand et al., 1990).

As a quicker alternative, we first use the robust prior
in Berger (1985) to derive robust empirical Bayes esti-
mators through use of the Newton-Ralphson algorithm
in §2.1. Hierarchical Bayes modeling via the Gibbs sam-
pler is considered in §2.2. A data set from the literature
(Efron and Morris, 1975) is reconsidered in §2.3. In §3,
the method is applied to longitudinal studies where es-
timation of the rates of individual change is of interest
and is illustrated with a real life example. The paper is
concluded with a discussion in §4.
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2 ROBUST ESTIMATES

2.1 Robust empirical Bayes estimates

The robust prior developed in Berger (1985) is based
on the consideration of the admissibility of the Bayes
estimators (Strawderman and Cohen, 1971). Using this
prior, the model can be given as

bi ~ N(8;,d?), and B; ~ N(p, B(\)), (2.1)

where B()\;) = (d? + A)/(2);) — &2, and A; has density
m(A) = 0.5v/Xil(p 1)(Ai). Given p and A, the posterior
mean and variance of f3; are:

o2 [ 1 1

d+ A (”bi”2 T ellbillr = 1) (i =),

2d4
AbY = 2 — ——1 .
var(B;|b) = d? Fr A

A A B
X1omE —1 \T = e=ltl? — TN

where [|b;||2 = (b; — p)?/(d? + A). The marginal distri-
bution of b; is

E(Bi|b) = b; —

(b, A) 1 1 1—elbl?
m(b;|u, =
# VA +A bl

Parameters y and A can be estimated using the maxi-
mum likelihood method via the Newton-Ralphson algo-
rithm.

Another advantage of the above estimator is that
it easily yields subjective hierarchical Bayes estimates
(Berger and Robert, 1990) for any plausible x4 and A.
However this prior should be used with caution. It may
cause the estimator to collapse back to b; when A/d? is
too big. In other words, the prior may be so flat such
that its effect on the estimators is essentially the same
as that of a uniform (noninformative) prior.

2.2 Robust Hierarchical Bayes Estimate

The robust hierarchical Bayes estimate has many ad-
vantages over the empirical Bayes estimate (Berger and
Robert, 1990). A main advantage is that it takes into
account the error due to the estimation of the hyperpa-
rameters, whereas the empirical Bayes method ignores
such error. Another advantage is that in the hierarchical
model the marginal posterior distributions can be esti-
mated via Gibbs sampling (Gelfand et al, 1990). Thus,
standard errors and confidence intervals can be devel-
oped easily.

As shown in Berger (1985, pages 195-196), a Cauchy
prior is more reasonable in terms of the posterior robust-
ness and Bayesian risk if we are uncertain as to which
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priors best describe our prior belief. We now consider
the following hierarchical model

bi|8; ~ N(B;,d?), and Bilu,0* ~ t1 (s, 07, v0)

(2.3)

where the (multivariate) ¢-distribution, with location pa-
rameter u and scale matrix ¢2] and dimension k, de-
noted by u ~ tx(u, 021, v,), has density of the form:

e~ N(ﬂ, C)’ o’ ~ Gamma( ,Q),

g(vt!)

fk(ull"az’UO) =

vo + (u—p)’ gu—p!)"*‘_’.‘” ’

where vg,02 > 0,9(vo) = const. Of particular interest
are the two special cases: 1) if v = 1, k = 1, then
fi(u]p, 0?) is the Cauchy prior with median p and quar-
tiles p % A4; 2) and if vp = o0, Fe(ulp, 0'2) = Ni(u, azlp)a
is the Gaussian prior. Since the ¢-distribution is a mix-
ture of the Gaussian and inverse gamma distributions,
all conditional distributions used in the Gibbs sampling
have closed forms and thus the algorithm is very efficient.
In fact, the t-distribution can be decomposed into

vo Vo2

u[T ~N(u,7’ I), and 72 ~IG( -—2—),

where
IG(v0/2,u0/2) = (uo/2)”°/2e'“°/2”v"(”°/2+1)1"1(vo/2)

is the density function of the inverse Gamma distribu-
tion. So all the conditional distributions are given as

follows:
d2 d2r?
[ﬂil"'z’l‘aaza( )]NN(d2+ 2b1+d2+‘r2 ’d2+,,.2)a

2
)t @) ~ T6(EE BT Pkl
kT 2
[ﬂ‘l(ﬂi)’rz’027(bi)] ~ N(k 2+Cﬂ+ k7‘2+07’
Cr?
W AC)
[e%1(B:), 7,1, (B:)] ~ Gamma(p, (2*‘57——*:7)

Then the Gibbs sampling can be applied to the hierar-
chical model specified in (2.1). Given the data (b;), one
can obtain the needed marginal distribution (say m(3;|b;)
) from the Gibbs sampling.

A comparison between empirical and hierarchical
Bayes estimators is given in Kass and Steffey (1989) in
which approximations of the posterior variances are also

given. Applying the approximation to the model given
by equations (2.1) and (2.3), one can see that the addi-
tional term needed to take into account the estimation
of the hyperparameters 4 and A in (2.1) and p and o
in (2.3) is of order O(1/[n?k]) while the main term is
of order O(n;!). Consequently, equation (2.2) or the
conditional variance based on 7 (8;|data, ) is a good ap-
proximation of the posterior variance when n; is rela-
tively small and % is large. In this case the empirical
Bayes estimators can serve as an adequate approxima-
tion to those obtained from the hierarchical model. How-
ever, the robust hierarchical Bayes model gives estimates
which are resistant to both misspecification of the prior
and outlying component estimates, as mentioned earlier.

2.3 Estimating toxoplasmosis prevalence
rates

‘We now consider an example taken from Efron and Mor-
ris (1975), in which the prevalence rates of toxoplasmosis
in 36 El Salvadorian cities were estimated. The preva-
lence rates in Table 1 are standardized and the variances
are known from the binomial distribution, and differ be-
cause of unequal number of patients sampled in different
cities. Table 1 gives the robust empirical and hierarchical
Bayes estimates, as well as the empirical Bayes estimates
developed in their paper as a comparison. The maximum
likelihood estimate via the Newton-Ralphson algorithm
converged at ¢t = 0.024, and A = 3.26 after 55 iterations
starting from the mean and variance of the 36 prevalence
rates. The Gibbs sampling algorithm converged roughly
with 160 cycles of m = 50 drawings in that there was lit-
tle change in the successive posterior distributions there-
after at 200,240 cycles. In fact, the change in quartiles
of the posterior distributions was less than 1078, The
initial values were 1y = —0.0419, Cp = 12, po = 0.2,
and go = 0.001, indicating rather vague prior knowledge
about these parameters. It seems in this example that
the normal prior is indeed quite robust, as the robust hi-
erarchical Bayes estimators and Efron and Morris’s em-
pirical Bayes estimators are very similar except for only
a few cities in which the prevalence rates are more at
the extremes. This similarity is what is expected of the
(refined) robust hierarchical estimators. The robust em-
pirical Bayes estimates, however, are essentially the same
as the original estimated prevalence rates. It is probably
too conservative in that the information between cities
did not add any new information about the prevalence
rates. In fact, min(A4/d?) = 655 is quite large in this
case,




3 RATES IN LONGITUDINAL
STUDIES

Often in longitudinal studies the rate of change of the re-
sponse over time is of primary interest, and such change
is often approximately linear (possibly after some trans-
formations, and/or over a short period of follow-up).
For instance, the decline of lung and renal functions
is linear for certain patient populations. In this case,
it is reasonable to reduce the data to slopes and their
standard deviations by linear regression for each indi-
vidual (Hui and Berger, 1983). Because the subjects
under study share some common characteristics (belong-
ing to a certain population), it is reasonable to assume
that their individual rates of change come from a com-
mon probability distribution. Consequently, shrinkage
estimators of the individual rates are desirable (Morris,
1983). This approach ignores the intercept and thus loses
some information in comparison with the the Gaussian
random effects model (Laird and Ware, 1982) or more
generally a repeated measures model of Jennrich and
Schluchter(1986) which allows the modelling of various
within-subject correlation structures.

We now consider a prospective study in ophthalmology
where intraocular gas was used in complex retinal surg-
eries to provide internal tamponade of retinal breaks in
the eye. An important issue was to estimate the kinetics
(e.g., decay rate, half-life, and so on) of the disappear-
ance of the gas. After gas was injected into their eyes,
31 patients were seen three to eight (average of 5) times
over a three-month period, and the volume of the gas in
their eyes was recorded.

Let y;; be the j** gas volume for the ith individual
at day z;;. Some initial analysis suggested that the vol-
ume (in percent) of the intraocular expansile gas (Cs3Fs)
decreases slowly in the first few days after maximal ex-
pansion, then it decreases more rapidly and finally more
slowly (préducing an S-shaped curve). Thus a logit
transformation was first made on the gas volume:

yij +0.05
=1 _Jijg v uud
#j = 108 (1 ~ 4 +0.05)
where 0.05 was added to avoid zero denominators. Then
a linear model can be assumed:

zij = a; + Bixij + eij,
where e;; is the Gaussian error term with mean 0 and
variance o7. Separate linear regressions using each sub-

ject’s data are used to obtain the quantities:

o}

Yoy (i — %:)?

2 2.2
and 87 ~ 0{Xn,—2s

b ~ N(B;,d?), di=

(3.1)
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where d? is the usual variance estimate of the slope b;
and o? is estimated from the s?. Hui and Berger (1983)
also use the empirical Bayes estimates of ¢7’s as a com-
promise between s? /(n;—2), the individual estimate, and
¥s?/Tn;, the pooled estimate. Both estimates are inde-
pendent of the b;’s. However, we only use the individual
estimates of o to illustrate the method.

The goal is to find an improved estimator for each in-
dividual decay rate B; to get a better idea of the variabil-
ity of these rates. Robustness considerations are partic-
ularly relevant here because previous studies suggested
the gas decay rate was highly variable (Meyers et al.,
1992). A Cauchy prior with median p and quantiles
p £ o seems to be plausible. Further, a normal hyper-
prior on p and a gamma prior on o? is used. The ini-
tial values were given by 7o = —0.08, Co = 12, po =
0.2, go = 0.0001 indicating a rather vague prior knowl-
edge about these parameters was assumed. Different
starting values were used for different cycles (iterations).
The convergence was achieved roughly with 240 cycles of
m = 40 drawings in that there was little change in the
histograms of the posterior distributions thereafter at
240, 300, 360, 400,420 cycles. The changes in quartiles
were less than 10~%. The decay rates were estimated
based on the data after 420 cycles of iterations. The
robust hierarchical model gives improved estimators of
the decay rates and their standard errors by borrowing
strength from the ensemble and thus provides a more
accurate picture of the variation of the individual gas
decay rates. This can be more clearly shown by looking
at the plot of these rates over the cases (not shown here).
Table 2 gives the least square slopes, RHB estimates and
their standard errors and a 90 % confidence interval for
each individual decay rate.

In this data set, the decay rate for case 30 is outlying,
being beyond 1.5 times the interquartile range. We have
found that the RHB estimates are quite close to those
obtained when the outlier is removed (see Table 2). Thus
our estimate is indeed quite robust with respect to out-
lying rates.

Finally we fitted a random coefficient growth curve
model. The estimated best linear unbiased predictors
(BLUPs) of the individual rates of decline are obtained
using SAS PROC MIXED. Since these estimators are in
fact shrinkage estimators of the slopes using normal pri-
ors, they may not have the refined robustness ( with re-
spect to outlying individual slopes) and could give BLUP
estimators which are more or less the same as the orig-
inal least square slopes. Thus the possible gain of using
the random effects model is diminished. This indeed ap-
pears to be the case (see Table 2).
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4 DISCUSSION

In summary, we used hierarchical modeling (through use
of a Cauchy prior in particular) to obtain estimators of
normal means (or random effects) which are robust with
respect to prior misspecifications and outlying individ-
ual means. Thus the gain of shrinkage is preserved. It
is worth pointing out that the same problem with Gaus-
sian priors persists in the linear mixed-effects models of
Laird and Ware (1982) for analyzing longitudinal data.
The effect of assuming a Gaussian random effect is that
the potential advantage of a random-effects model may
vanish simply because of one outlying individual’s ran-
dom effects. It is however easy to incorporate the robust
priors studied in this paper into these models if the com-
putation is performed using the Gibbs sampler as is in
Gilks et al.(1993).
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Abstract

Recursive partitioning methods, also known are tree or
CART models, have been applied to several kinds of
data, including the cases where the response y is a con-
tinuous variable, a category or class, a survival time, and
a longitudinal response pattern. In this work we extend
the methods to the prediction of an observed response
rate (number of events)/(time observed). The building
and ordering of a tree model work well, but there are
some open issues in cross-validation of the final model.
Finally, some connections are noted to other work on
trees for survival data.

1 Introduction

Recursive partitioning is a method for growing binary
decision trees, where each node or split represents a de-
cision, e.g., go to the left if age < 40, and the termi-
nal leaves give the predicted values. These methods
date back to the AID (Automatic Interaction Detec-
tion) program developed by Morgan and Sonquist in the
early 1960s, and received a strong theoretical boost with
the CART (Classification and Regression Trees) work of
Brieman, et.al. in the 1980s [1]. A famous example is
the digit recognition problem.

Consider the segments of an unreliable digital readout

1

2 3
4

5 6
7

where each light is correct with probability 0.9, e.g., if

N
A NIAN
JANVANRVAN

VANRWA

5/5\11

Figure 1: Optimally pruned tree for the stochastic digit
recognition data

the true digit is a 2, the lights 1, 3, 4, 5, and 7 are on with
probability 0.9 and lights 2 and 6 are on with probability
0.1. Construct test data where Y € {0,1,...,9}, each
with proportion 1/10 and the X;,i = 1,...,7 are i.i.d.
bernoulli variables with parameter depending on Y. Xg—
X4 are generated as i.i.d bernoulli P{X; =1} = .5, and
are independent of Y. They correspond to embedding
the readout in a larger rectangle of random lights. A
sample of size 200 was generated accordingly and the
CART procedure applied to build the tree. The results
are shown in figure 1.

Tree methods have been applied to regression and
classification problems [1}, survival analysis [3], longi-
tudinal analysis [6] and others. The goal of this research
is to extend the methodology to event rate data. The
model in this case is

A= f(z)

where ) is an event rate and z is some set of predic-
tors. As an example consider hip fracture rates. For
each county in the United States we can obtain




e number of fractures in patients age 65 or greater
(from Medicare files)

e population of the county (US census data)
e potential predictors such as

— socio-economic indicators

number of days below freezing
ethnic mix

physicians/1000 population

|

— etc.

Such data would usually be approached by using Pois-
son regression; can we find a tree based analogue?

2 Recursive partitioning ingredi-
ents

A tree based method has four main ingredients

1. A split criteria. This is used to determine the “best”
available split of a node into two daughter nodes.

2. An impurity criteria. This is used to measure the
“homogeneity” of a node, and is used to order
the possible sub-trees (sub-models) of the full tree
model.

3. Labeling: An “average response” for each node.

4. Prediction error: The error in prediction for a new
observation, should it be predicted using this node.
This is needed for cross-validation but not for build-

ing or ordering the tree.
For tree based regression, these are
1. the between groups sum of squares,
9. the within node sum of squares,
3. the mean and variance of a node,
4. (y—-9)>

For tree based classification there are several variations.
Choices include

1. One of

e the likelihood ratio test for Hy : p1 = p2, where
p1 and p; are the vector of proportions in the
two daughter nodes.

e the Gini criterion
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e the twoing criterion (see [1])
2. One of

e the binomial deviance within the node

e the risk of a node, based on priors and a loss
matrix

3. The predicted class for the node, or the vector of
class probabilities

4. One of

e the prediction loss L(observed class, predicted
class), where L is the loss matrix

e the predicted contribution to the deviance.

(Many other choices have been explored for this prob-
lem).

In adding criteria for rates regression to this ensem-
ble, the guiding principle was the following: the between
groups sum-of-squares is not a very robust measure, yet
tree based regression works very well. So do the simplest
thing possible.

Let ¢; be the observed event count for observation i,
t; be the observation time, and ;5,5 = 1,...,p be the
predictors.

Labels: The observed event rate and the within-node
deviance

#events Y ¢
total time ~ ) t;

= oe ()0

i

D =

Splitting rule: The likelihood ratio test for two Pois-
son groups

Dparent — (Dleft son T D right son)

Purity: The within node deviance.
Prediction: The deviance contribution for a new ob-
servation, using A of the node as the predicted rate.

3 Improving the method

There is a problem with the criterion just proposed, how-
ever: cross-validation of a model often produces an in-
finite value for the deviance. The simplest case where
this occurs is easy to understand. Assume that some
terminal node of the tree has 20 subjects, but only 1 of
the 20 has experienced any events. The cross-validated
error (deviance) estimate for that node will be

A c;log(c,-/o *t,;)—i—‘..
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which is infinite for ¢; > 0. The problem is that when
X = 0 the occurrence of an event is infinitely improba-
ble, and, using the deviance measure, the corresponding
model is infinitely bad.

One might expect this phenomenon to be fairly rare,
but unfortunately it is not so. One given of tree-based
modeling is that a right-sized model is arrived at by pur-
posely overfitting the data and then pruning back the
branches. A program that aborts due to a numeric ex-
ception during the first stage is embarrassing to say the
least.

Of more concern is that this edge effect does not seem
to be limited to the pathologic case detailed above. Any
near approach to the boundary value A = 0 leads to
large values of the deviance, and the procedure tends to
discourage any final node with a small number of events.

An ad hoc solution is to use the revised estimate

2 « k
A = max (x\,—z—t—i-)

where k is 1/2 or 1/6. This is similar to the starting
estimates used in the GLM program for a Poisson re-
gression. This is unsatisfying, however, and we propose
instead using a shrinkage estimate.

Assume that the true rates A; for the leaves of the
tree are random values from a Gamma(y, o) distribution.
Set p to the observed overall event rate 3 ¢;/ > t;, and
let the user choose as a prior the coefficient of variation
k = o/p. A value of k = 0 represents extreme pessimism
(“the leaf nodes will all give the same result”), whereas
k = oo represents extreme optimism. The Bayes esti-
mate of the event rate for a node works out to be

5 a+ e
Ap = —
k ,B‘I"Eti’

where o = 1/k? and 8 = o/ X.

This estimate is scale invariant, has a simple interpre-
tation, and shrinks least those nodes with a large amount
of information. In practice, a value of k = 10 does es-
sentially no shrinkage. All tests were done with k& = 1.

4 Examples

As an example, we consider a variant of the digit recogni-
tion problem. Let X7 to X7 be the segments of a digital
readout, as in the earlier example, where each segment
is in error 20% of the time. Let U; to Uiy and B; to
Bio be extraneous predictors with uniform(0,1) and bi-
nomial(.5) distributions, respectively. The true class of
the observations is evenly divided over the digits 0-9,
but the true class is not observed. Instead we observe

P
1/ \X7** 0 / \Xl*
7/\23 " 4/\

] X7 *k
Ur Us

/N

5,4,8 9
X5

Figure 2: Rates recognition

a Poisson count with rate A = .34 for class 0 and rawe
A = 3.4 for class 9, the true rates are evenly spaced on a
logarithmic scale. The number of observations and the
total time on test was varied between simulations.

A typical tree for n = 1000 and t; ~ U(.5,1.5) is
shown in figure 2. With this choice for n and ¢ there were
on average 1000 events, which is a fairly large sample.

Each internal node of the tree is labeled with the vari-
able used to split at that node. The nodes marked with
a double asterisk are retained if one uses the minimum
cross-validated error rule, and those with an asterisk are
retained if the “1 SE” rule is used. Each leaf is labeled
with the class(es) that would be routed to that leaf if X;
were measured without error; for some of the leaves we
also show the next variable that was chosen by the split-
ting rule (although the split was not retained). In ten
independent runs of this simulation, the same qualitative
results were obtained.

First, this is a hard problem. A plot (not shown) of
the observed event rates ¢; /t; versus the class shows con-
siderable overlap. Classes 1-3 were never well resolved,
and the high error rate for the true predictors makes
deep trees difficult for this sample size.

Secondly, even with shrinkage the cross-validation cri-
teria seems to recommend trees that are too small. The
‘best’ tree, i.e., the one with lowest cross-validation error,
sometimes missed informative splits, such as the split on
Xs at the bottom of figure 2 (it also sometimes included
an uninformative split). The ‘1 SE’ rule, however, con-
sistently trimmed off 1-2 informative splits from the best
free.

Third, the method is asymptotically consistent.




When the average time of observation ; was increased
to 10, keeping the same event rates (so we have 10 times
the information), a perfect model was always found. The
best tree was the same as the 1-se tree, and was based
on 9 informative splits.

Further research needs to be done with this example,
including

e other values of the shrinkage parameter k

e the effect of increasing observation time per subject,
versus increasing the number of subjects.

e shrinking trees, as in Hastie [2]
e other measures of prediction error

One other measure of prediction error was examined
briefly. We know that in the multinomial classification
problem the same edge effect can occur when the de-
viance is used as the error measure and an observed rate
is near zero or one. This can be ameliorated by using
the simple sums of squares error || p; — p ||?, where p is
the predicted probability vector for a node and p; is the
observed vector for a subject (zeros with a single 1). By
analogy, we might expect (c;/t; — 3)? to avoid some of
the problems with skewness associated with the Poisson
deviance measure. Sadly, this did not hold true.

5 Relation to other work

One obvious use of this software is for survival data.
The censoring indicator § = 0,1 becomes the number of
events for a subject, and the follow-up time is used as the
time on test. In this case the likelihood ratio test for two
Poisson subsamples is equivalent to the likelihood ratio
test for two exponentials, and our splitting rule is the
one proposed by Davis [4]. He also noticed the problem
with nodes that have only a few events, leading to an
infinite estimate of cross-validated error, and proposed
an ad hoc shrinkage estimate for ). His final suggestion
is to use the cross-validation results only as a guide to
choosing the right tree.

LeBlanc and Crowley [5] also consider the case of sur-
vival data, but base their splitting rule on the local full
likelihood. This procedure is equivalent to the following:

e Rescale the time values within the node so that the
cumulative hazard is linear, i.e., replace each t; with
H(t;) where H is a piecewise linear estimate of the
cumulative hazard.

o Use the usual exponential deviance statistic, but
with the rescaled time values
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As a practical matter, they suggest only rescaling the
data once, at the first split. Thus, our procedure can
mimic theirs simply by prescaling the data before calling
the routine.

6 Software

A standalone program that implements this tech-
nique is available from statlib. Send the mes-
sage “send rpart from general” to the fictitous user
statlib@lib.stat.cmu.edu. The routine also can handle
categorical data using the Gini criteria and regression
problems using the between groups sum of squares.

A set of S functions for the same task should be sub-
mitted to statlib soon (some documentation is unfin-
ished). People who wish to try out an early release can
send mail to the author at therneau@mayo.edu.
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Abstract

A regression model is estimated nonparamet-
rically using regression splines to model non-
linear components with the dependent variable
transformed using a Box-Cox transformation.
The knots for each component, the regression
variables and the data transformation are se-
lected using a Bayesian approach with the com-
putation carried out using the Gibbs sampler.
This extends previous work on Bayesian vari-
able selection which assumes that variables en-
ter linearly. The performance of the proposed
nonparametric estimator is applied to a number
of examples and shown to work well in prac-
tice. By exploiting the special features of a
spike and slab prior for the regression coeffi-
cients, our variable selection algorithm is much
faster than previous Bayesian variable selection
algorithms.

1 Introduction

We estimate a regression model semiparamet-
rically using cubic regression splines to model
nonlinear components. In this paper we confine
the discussion to additive regression models but
the approach extends in a straightforward way
to a regression model with interactions. We
conjecture that most nonlinear regressors ob-
served in practice are well approximated by a
regression spline with just a few knots, if those
knots are carefully selected. If too many knots
are used to estimate a nonlinear function which
is observed with noise then a poor smooth with
high local variance can result. Because, in gen-
eral, we do not know how to optimally place
the knots for each variable, we use many knots
for each variable and select the important knots
using Bayesian variable selection. We note that
our approach selects which independent vari-
ables enter the regression and so extends pre-
vious work on variable selection in linear re-
gression by Mitchell and Beauchamp (1988) and

George and McCulloch (1993, 1994). We also
allow the dependent variable to be transformed
using a Box-Cox transformation taking a dis-
crete number of values.

We show that our procedure works well on a
number of simulated examples. In the one di-
mensional case we compare the nonparametric
smooth obtained by Bayesian variable selection
with that obtained by the kernel based locally
linear least squares smoother, with the band-
width parameter estimated by the direct plu-
gin procedure developed Ruppert, Sheather and
Wand (1993). This plugin estimator is among
the best performing bandwidth estimators for
locally linear least squares kernel regression.

Because of the large number of variables in-
volved, the computation is carried out using the
Gibbs sampler with the error variance, the re-
gression parameters and the Box-Cox parame-
ter integrated out. We place a slab and spike
prior on the regression parameters and exploit
this prior to obtain a fast Bayesian variable se-
lection algorithm. When the number of vari-
ables selected is substantially smaller than the
number available, which is almost always the
case in our applications, then our approach can
be substantially faster than that proposed by
George and McCulloch (1994) who also inte-
grate out the error variance and the regres-
sion parameters. A more detailed comparison
of our approach with that of George and Mc-
Culloch (1993, 1994) is given in Section 7.

Our approach to nonparametric regression
has a number of advantages over previous work.
First, we just use a linear regression frame-
work which is easy to understand and allows the
usual linear regression diagnostics to be carried
out after the model is estimated. Most opti-
mal nonparametric regression estimators such
as splines and kernel based nonparametric esti-
mators are quite esoteric to the general user, es-
pecially when smoothing parameters need to be
estimated as well. Second, our approach is very




general and can handle additive models with
interaction terms and can select the significant
independent variables. At present, kernel based
methods cannot handle additive models when
reliable bandwidth estimation is also required.
"There do not seem to be at present reliable ways
of doing variable selection using spline smooth-
ing with the exception of some ad-hoc meth-
ods such as the Bruto algorithm proposed in
Hastie and Tibshirani (1990, p. 262). Friedman
and Silverman (1989) and Friedman (1991) also

use regression splines for nonparametric regres-

sion and select the knots by a cross-validation
procedure. This is computationally very in-
tensive and makes it difficult to traverse all
possible knot combinations when seeking opti-
mal knot allocation. Hastie (1989) notes that
the knot selection procedure in Friedman and
Silverman (1989) can produce unsatisfactory
model fits. A third advantage of our procedure
is that it is very fast compared to many other
nonparametric regression estimators. Except
for an initial O(n) calculation, our procedure
is independent of sample size. Spline smooth-
ing using either generalised cross-validation or
marginal likelihood to estimate the smoothing
parameter generally requires O(n?) operations,
e.g. Gu and Wahba (1991) with some savings
available for specialised models. Kernel based
nonparametric regression requires O(n?) oper-
ations but can be considerably speeded up by
using binning as in Fan and Marron (1994). Fi-
nally, our approach allows the dependent vari-
able to be transformed as an integral part of the
estimation. This can only be done on an ad-hoc
basis using spline or kernel fitting.

The paper is structured as follows. Section 2
describes variable selection for linear regression
and explains how the Gibbs sampler is used to
find the model with the highest posterior prob-
ability. Section 3 presents our approach to non-
parametric regression in the univariate case and
empirically compares its performance to ker-
nel based locally linear least squares smooth-
ing. Section 4 generalises the treatment in Sec-
tion 2 to include transformation of the depen-
dent variable as part of the Bayesian analysis.
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Section 5 deals with semiparametric additive re-
gression. Section 6 gives implementation de-
tails for variable selection and transformation
of the dependent variable in a linear regression
model. Section 7 compares our approach to
variable selection with that of George and Mec-
Culloch (1993, 1994).

2 Variable selection in a linear
regression model

In this section we review variable selection in
the linear regression model as it is the basis of
our nonparametric procedure. We consider the
linear regression model

y=XpB+e (2.1)

where y is the n X 1 vector of observations, X
is the n x r design matrix, e ~ N(0,0%l,) is
the error vector and 8 = (f1,...,0,) is the
r x 1 vector of regression coefficients. Let v
be the r x 1 vector of indicator variables with
ith element 7; such that 4; = 0 means that
3; = 0 and v; = 1 means that §; # 0. Given 7,
let S, consist of all the nonzero elements of §
and let X, be the columns of X corresponding
to those elements of 4 that are equal to one.
Given v and o2, we take the prior for 8, as
3yly,02 ~ N (O,caz(X.’,X,,)‘l), where ¢ is a
positive scale factor specified by the user. In
the empirical work we take ¢ = 100 and find
it performs well and makes the prior 8,]v,o?
almost diffuse. We take the prior of o2 given
~ as p(o?y) « 1/o% Finally, we take the ¥;
as apriori independent with p(y; = 1) = m,
0<m <1 fori=1,...,r. In our appl-
cations we take the m; = % which means that
each model v has a prior probability equal to
2-". Taking the m; smaller than % will result
in a more parsimonious model. Our aim in this
paper is to select the model with the highest
posterior probability, that is the highest value
of p(vly). This is equivalent to maximising
p(yl7)p(7). By integrating B, and o? out we
obtain that

plyly) « (L4 ¢)79S5(7)""  (22)
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where ¢, = > 7_,; 7 is the number of nonzero
elements of § and

[ —_
S(Y)=1y'y- 1—+cy' (XX, XLy (2.3)

so that

p(7ly) o (1 + ¢)3918(7) 3" [ 7F(1 — w1

1=1

To obtain the model with the highest poste-
rior probability it is necessary to search over 2"
models. This can be done directly if r is small.
In our applications » will usually be large so
a direct search is not feasible and we use the
Gibbs sampler (Gelfand and Smith, 1990) to
traverse the parameter space. Qur use of the
Gibbs sampler can be described as follows.
Gibbs sampler (i) Choose an initial value
Al = (7{0],. . .,7,[-01) of v perhaps by generat-
ing it from some distribution. (ii) Successively
generate from p(7;|y,¥;j2i). Step (ii) is carried
out many times and in two stages. The first
stage is a warmup period at the end of which
it is assumed that the sampler has converged
to the joint distribution of p(y|y). The second
stage is a sampling period and the 7; collected
during this period are used for inference.

We note that as the ; are generated, the pos-
terior probability p(y|y) is also calculated (up to
a constant independent of v) so that of the mod-
els generated thus far the one with the highest
posterior probability can be recorded.

The Gibbs sampler can be executed very effi-
ciently because usually ¢, will be much smaller
than 7 in our problems. Implementation details
are given in Section 6.

3 Univariate nonparametric
regression
Suppose that
vi=f(zi)+e it=1,...,n (3.1)

where y; is the th observation, e; is an inde-
pendent N (0, 0?) error sequence and f(z) is a

smooth function. We propose to approximate
f(z) by the cubic regression spline

m
bo + by + byz? + baz® + Z Bi(z - )3, (3.2)
k=1

where Z1,...,%, are the m ‘knots’ placed along
the domain of the independent variable z, such
that min(z;) < £1 < ... < &, < max(z;), while
(2)+ = max(0, z). By replacing f(z) in (3.1) by
its approximation (3.2) the nonparametric re-
gression can be rewritten as a linear regression.
Let r = m + 4, :B = (bO, bl) b2’ b3,ﬂ1a s sﬂm)l7
x = (21,...,2,)" and let 1 be a vector of
n 1’s. Also, let the n X r matrix X =
(1,%,x%,%% (x = 1£1)3,...,(x — 13,)3).
Then, with f(z) replaced by (3.2), we can write
(3.1)as (2.1)

The most important question associated
with fitting regression splines is the choice of
both the number and location of the knots
Z1y...,%m; see, for example, Friedman and Sil-
verman (1989) and Friedman (1991). If the
knots are badly located, details of the curve can
be missed, while if too many knots are included
the fitted spline based on these knots will have
high local variance. One way solve the problem
is to introduce a large number of potential knots
from which a significant subset can be selected,
e.g. Friedman and Silverman (1989, pp. 9-11).
The problem then becomes one of variable selec-
tion where each knot corresponds to a column
of a design matrix from which a significant sub-
set is to be determined. Although the number
of knots selected, m, will typically be large so
that r will be large, the number of significant
variables ¢ required to obtain a good approxi-
mation will usually be quite small. This is what
makes our algorithm so fast.

We look at the performance of our approach
and compare it to local linear smoothing for
data sets generated from the following three
curves.

Y = 2z; + e (3.3)
where e; ~ iid N (0, 0.52),
yi = sin(8rz;) + e; (3.4)




where e; ~ iidN(0,0.5%), and

yi = g(:) + & (3.5)

where g(z) = 10e710% 4 2 4 ¢; if 2; < % and

g(z) = 3 cos(10mz;) +e; if if 2; > §. In (3.5) the
errors e; ~ iidN(0,22%). One hundred observa-
tions were drawn from a Uniform(0,1) distribu-
tion, forming the independent variable for each
of the three functions. The errors were also ran-
domly generated, while the knots were chosen to
follow the density of the independent variable,
one every three observations. This produced a
total of m = 33 knots and r = 37 columns in X
from which to select. The Gibbs sampler was
run for a warmup period of 300 iterations and
a sampling period of 3000 iterations, with arbi-
trary initial condition 7/ = (1,0,...,1,0,1)"
Convergence seems to have occurred within a
dozen iterations for each of the three functions.
When the variables selected by the Bayesian
approach were placed in a linear least squares
routine they were all significant at the 1% level.
Figures 1(a)-1(c) show plots of the least squares
fits, based on the obtained model estimates,
against each set of generated data and respec-
tive true curve. Figures 2(d)-(f) show the corre-
sponding fits obtained to the same data sets us-
ing local linear kernel based regression. Smith
and Kohn (1994) repeat the above simulation
100 times and show that the three data sets gen-
erated are typical data sets for the models (3.3)-
(3.5). The six plots in Figure 1 show that the
regression spline estimator performs well and is
smoother than the local linear estimator. This
has also been our experience with other data
sets.

A more extensive set of simulations and com-
parisons with locally linear least squares is given
by Smith and Kohn (1994).

4 Data transformation

We now generalise the model (2.1) by allowing
the dependent variable to be transformed using
a Box-Cox transformation. Given the indicator
vector v, the linear model becomes

g = Xofy + e (4.1)
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where y;x = ¥} if A # 0 and ;) = log(y:) if
A = 0. As is normal when using the Box-Cox
transformation, we assume that the dependent
variable y; is positive. Otherwise, some positive
number is added to all the observations to make
this so. In order to carry out both variable se-
lection and transformation selection using the
Gibbs sampler it will be necessary to integrate
out A. To facilitate this we allow A to take on
just a small set of values denoted by A. In our
examples we take A = {——2,—1,—%,0,%,1,2},
which will be adequate for most applications.
Our aim is to find the values of A and < that
give the highest posterior probability p(A,v|y).
To find this combination of A and 7 we run
the Gibbs sampler as in Section 2 by generat-
ing from p(7ily, 7j2i), ¢ = 1,...,7. To evaluate
p(7]y) we note that

p(7ly) = 3 p(M7ly) « D p(yIX 1)P(A)p(7)
AEA AEA

and p(y|A,7) = p(yralX,7)J(X), where J(A) is

the Jacobian of the transformation y — y) and

is equal to [T [Ay? 1 if A 5 0 and [Tl - if

A = 0. From (2.2) and (2.3) we obtain ‘

p(yIN ) o (L+ )3 SN, 1) I(N)  (4:2)
where

-1
S(A7) = yaya — ﬁ;y&Xﬁ, (X.’,X»,) X!y
(4.3)
The prior for v is the same as in Section 2 and
in our applications we take a uniform prior on
A€ A
We found it necessary to integrate A out when
generating y. The Gibbs sampler generating
vy, Yigir Ay © = 1,...,7 and Aly,7 tended to
get stuck, because of the high correlation be-
tween the A and 7 iterates. If A takes on only a
small number of values then the variable selec-
tion algorithm can be very fast as the terms
yhyx and y, X can all be precalculated. For
each of the models generated by the Gibbs sam-
pler it is straightforward to calculate the den-
sity p(A,7ly) « p(yaly, A)J(A)p(7)p(A), up to
a constant independent of A and v, which en-
ables us to keep track of the values of A and 7
maximising the posterior density.
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To illustrate the performance of our approach
to simultaneously determining v and X we gen-
erated 100 observations from (3.3)-(3.5) as in
Section 3. For the data generated from (3.3) we
transformed g; — (g + 1)"%, for the data gen-
erated from (3.4) we transformed y; — exp(y; +
2.5) and for the data generated from (3.5) we
transformed y; — (3% 4 7)~2. Figure 5 plots
the transformed data in the left panels and the
original data, together with the curve estimate
and the true curve, in the right hand panels for
each of the three functions. It is clear, that at
least for these realisations, the nonparametric
approach with variable selection performs very
well. Further simulations indicated that this
combined approach is highly effective.

5 Additive semiparametric

regression

Because regression splines are linear models it
is possible to employ them in an additive model
context by constructing a single design matrix
made up of columns of the individual design
matrices of the type outlined in the previous
section. Model selection can then be performed
simultaneously on the knots (and other polyno-
mial terms) associated with each independent
variable modelled by a regression spline, by se-
lecting from the columns of this new design ma-
trix.

The next example illustrates the performance
of our approach to variable selection and data
transformation on a four component additive
regression model. Two hundred observations
were generated from

exp (fi(z1i) + fo(z2:) + fa(zai)+
fa(z4i) +e:).

The errors e; are independent N(0,0.5%),
fi(2) sin(27z), fa(2) —1.52, f3(z)

cos(67z) and fy is null. The independent vari-
ables z1;,...,Z4;, ¢t = 1,...,n, are each gener-
ated from a uniform distribution. Figures 6(a)-
6(d) plot y; against each of the independent re-
gressors and show that it is difficult to deter-
mine the functional forms fi,..., f4 from these

¥ =

plots. The additive model
¥ix = f1(210) + fo(z2:i) + fo(zai) + fa(zai) + ¢;

was fitted to the data using the Bayesian ap-
proach explained above, with A taking the 7
values given in Section 4. Each function f;
was approximated by a regression spline with
13 knots, one every 15 observations. We ran
the Gibbs sampler with the initial value of y =
(1,0,1...,,0,1), a warmup period of 300 itera-
tions and a sampling period of 3000 iterations.
The posterior mode of A and 7y produced a log
transformation, the estimate of f; included lin-
ear and quadratic terms together with two ex-
tra knots, the estimate of f, was linear, the esti-
mate of f3 required the squared and cubic terms
plus six extra knots and the estimate of f; was
null. This means that out of » = 65 poten-
tial regressors, ¢ = 14 were selected. The R2
for this model was 0.867. Figure 6(e) plots the
transformed data (scatter plot), the true value
of fi (solid line) and its estimate (dashed line)
against z;;. Figures 6(f), 6(g) and 6(h) are sim-
ilar plots for f; to f4, with f4 null. These plots
show that for this simulated data set our ap-
proach selects the correct data transformation
and provides good estimates of the components.
In particular, the null component f; is omitted
from the model.

6 Implementing the Gibbs

sampler

We outline how to efficiently implement the
Gibbs sampler described in Section 2 and ex-
tend the result to the data transformation case
discussed in Section 4. Before running the sam-
pler the terms y'y, X'y and X'X are computed.
To generate v;, we note that p(7y;|y,v;:) is bi-
nomial with p(v; = 1|y, v;%i) = 1/(1+h), where

-5(7 )

h= 1)2

= (71,~-°’71'—1’7i = 1,7i+1,“-771') and
= (71)"'771’-—1771’ = Oy’}’i+1,~--,7r)- Sup-

pose that 7 = 7° before 4; is generated.




Then S(y°) is known and it is necessary
to obtain S(7!). The main computational
difficulty in obtaining S(4!) is evaluating
¥y X (X;, X,,,x) ‘X ,'71 y. This is done by fac-
toring X', X1 as L1Lj, where L; is lower
triangular, using the Cholesky decomposition
and then computing Ly lX;ly. We note that
X1 Xy and X 10X differ by only one row and
column so that L; can be readily obtained from
Ly, where LoLj is the Cholesky decomposition
of X,’10 .0; see Dongarra, Moler, Bunch and
Stewart (1979, Ch. 10). If v = 7! before v;
is generated, then Lo can similarly be obtained
from L;. From Dongarra et al. (1979), generat-
ing +; requires qf/l operations. Hence generat-
ing v requires O(rg¢?) operations, where ¢ is the
typical number of regressors required. We refer
the reader to Dongarra et al. (1979) for a dis-
cussion of fast and stable methods for updating
a Cholesky decomposition.

When the dependent is transformed as well,
we first obtain the terms yiyy, X'yy and X'X
for each value of A € A. Fast calculation of
S(),7) is done as above.

7 Discussion of related work

Differences in approaches to Bayesian model
selection revolve primarily around the specifi-
cation of the conditional prior 8|v,0? because
it introduces the indicator variables into the
model. Mitchell and Beauchamp (1988, p.1024)
use a uniform prior, letting fly,0%2 ~
Uniform(—a;, a;), with a; large for each i. The
decision of how large to choose the values of a;
is left to the user.

George and McCulloch (1993) use the non-
conjugate normal prior Bily,0% ~ N(0,72) if
9; = 0 and Bily,0% ~ N(0,c272) if v; = 1. The
constants 7; and c¢; are chosen so that 7; is small
and ¢; is large. George and McCulloch (1993)
make some suggestions on suitable choices for
¢; and 7; and use the following Gibbs sampler
to generate models of high probability: Gen-
erate from (a) p(Bly,o%7); (b) p(o?ly,B,7);
(¢) p(7ily, B, 0%,7zi) for i = 1,...,n We have
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found this sampler difficult to implement for
our problems because of the high correlation be-
tween B and 7. If 7; is chosen too small then
the sampler is nearly degenerate and tends to
get stuck. If 7; is chosen too large, significant
terms are omitted and high local bias is experi-
enced. We note that this sampler requires O(r3)
operations to generate § which can be consid-
erably slower than our algorithm if ¢ is much

smaller than p.

George and McCulloch (1994) consider the
conjugate prior Bily,0? ~ N(0,0%?) if v; = 0
and Bily,0% ~ N(0,0%?7?) if 7; = 1 and ob-
tain p(7y|y) by integrating out B and o2. Given
¢; and 7; they use the Gibbs sampler in Sec-
tion 2 to generate the ;. The computations re-
quired are carried out efficiently using the fast
Cholesky updates in Dongarra et al. (1979). Be-
cause all variables remain in the regression for
each value of v, the fast Cholesky implementa-
tion in George and McCulloch (1994) requires
O(r®) operations to generate v, which can be
substantially slower than our approach which
requires O(rq?) operations.
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