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PREFACE 
1994 Interface Proceedings 

The 26th Symposium on the Interface of Computing Science and Statistics was held on June 15-18, 1994 at the 
Sheraton Imperial Hotel in Research Triangle Park, NC. The conference theme was "Computationally Intensive 
Statistical Methods." The theme is especially appropriate as computational power has increased dramatically in 
the last few years and the use of resampling techniques has boomed. 

The Interface was scheduled between two other statistics conferences in the same area: the Spring Research 
Conference on Statistics in Industry, hosted by the National Institute of Statistical Sciences, and the Third 
World Congress-Bernoulli Society-IMS meetings, at the University of North Carolina in Chapel Hill. 

The conference attracted 365 attendees. There were 23 invited sessions, 21 contributed paper sessions, 9 poster 
presentations, 4 short courses, 2 practical tutorials, several statistical tutorial sessions, one keynote speech, one 
banquet presentation, and 2 tours. 

Conference Events 
The conference started Wednesday afternoon with 4 short courses, followed by a mixer that evening. The short 
courses were organized by Tom Devlin, who is continuing education coordinator for the Statistical Computing 
Section of ASA. The courses were: Modern Nonparametric Regression and Classification, by Trevor Hastie 
and Rob Tibshirani, Resampling-Based Multiple Testing, by P. H. Westfall and S. S. Young, Algorithms for 
Estimation and Visualization of Multivariate Density Functions with Applications to Clustering, by David W. 
Scott, and Data Analysis using Interactive Dynamic Graphics: An Introduction to XGobi, by Di Cook, Martin 
Koschat, and Deborah Swayne. 

On Thursday morning, the keynote address was presented by G. W. "Pete" Stewart professor in the Computer 
Science Department and Research Professor in the Institute for Advanced Computer Studies at the University of 
Maryland. Pete talked about "Gauss, Statistics, and Gaussian Elimination," in which Gauss is seen as a 
statistician inventing numerical methods in the service of fitting data. Pete Stewart is a well-known authority in 
the field of numerical linear algebra. Originally a student of Alston Householder, he is the author of over ninety 
papers on various aspects of numerical analysis and matrix computation. His books include Introduction to 
Matrix Computation and, with J. G. Sun, Matrix Perturbation Theory. He is a co-author of the UNPACK 
package for linear algebra. Pete was introduced by Bob Funderlic, North Carolina State University. 

On Thursday evening, there were tours to the UNC Graphics and Image Lab in Chapel Hill, and to SAS 
Institute in Cary. The feature at the UNC lab was virtual reality and the Pixelplanes 5 parallel graphics 
computer. The feature at SAS Institute was the new 400,000 square foot research building. 

On Friday, a banquet dinner was held with music by the Bluegrass Retreat. Interface business manager Ruth 
Lee played bass guitar. Dinner was followed by a presentation on computer animation by Wayne Lytle, an 
award-winning computer graphics animator from the Cornell University Theory Center. Wayne's presentation 
featured scientific animations describing the recent breakthrough discovery of planets in a distant star system. 
Particularly enjoyable were a humorous animation on glitziness overload in scientific presentations, and a 
segment on music animation. 

The Conference Organization 
Interface Conferences are sponsored by the Interface Foundation of North America. IFNA is a nonprofit 
educational corporation founded in 1987 to sponsor the symposium and publish the proceedings. IFNA also co- 
publishes the Journal of Computational and Graphical Statistics. 

in 



The conference is undertaken with the support and cooperation of the following societies: the American 
Statistical Association, the Institute for Mathematical Statistics, the International Association for Statistical 
Computing, the Society for Industrial and Applied Mathematics, and the Operations Research Society of 
America. 

SAS Institute hosted this year's conference, with John Sail serving as program chair. SAS Institute is a 
software company specializing in statistical computing, and is located in nearby Cary, NC. SAS Institute 
provided personnel and services free of charge for the meeting. 

The program committee and session organizers, were Stephen G. Eick, J. S. Marron, Russ Wolfinger, Sally 
Morton, Mike West, S. Stanley Young, Raoul LePage, Ron Gallant, Alex Georgiev, Bill DuMouchel, Cyrus R. 
Mehta, Chris Portier, Ed Wegman, David Rocke, Iain Johnstone, Peter Munson, Tim Hesterberg, Richard 
Smith, Francoise Seillier-Moiseiwitsch, Forrest Young, and John Elder. Featured speakers included Adrian 
Smith, Andrew Barron, and Mary Ellen Bock. Additional tutorials were given by Tim Arnold and Phil Spector. 

Session chairs included Jianqing Fan, Lisa LaVange, James L. Rosenberger, Mark Little, Nick Fisher, Ming 
Tan, Wolfgang Hartmann, John Elder, Dave Dickey, Karen Kafadar, Phil Spector, Warren Sarle, John Nash, 
George Guirguis, Al Best, Forrest Young, Alan Genz, Phil Spector, Mary Ellen Bock, Cyrus R. Mehta, Chris 
Portier, Leonard B. Hearne, Bill Kemple, Feng Gao, Ying So, Deborah Swaine, Dennis Boos, and Gordon 
Johnston. 

Outside of the program, the people that put the conference together were: Ruth Lee, conference business 
manager, Susan Byrd, hotel coordinator, Armistead Sapp, equipment manager, Jane Pierce, abstracts editor, 
Stefanie Barber Mueller, Kristin Rinne, Marybeth Mahoney, Curt Yeo and SAS Institute Copy Center, for 
graphic arts, Lynn Fountain, Chris Gilmore, Bob Rodriguez for the SAS tour, Linda Houseman for the UNC 
tour. Interpath provided Internet connections. The IFNA head office with Ed Wegman and Pat Joyce did the 
printing, mailing, grant administration, and accounts payable. 

John Sail and Ann Lehman 

Editors 

Please plan to attend the next Interface Conference, scheduled for June 21-24 in Pittsburgh. It will be hosted by 
Carnegie Mellon University and the Pennsylvania State University with Michael Meyer and James Rosenberger 
as joint program chairs. For details: 

email: interface95@stat.cmu.edu 
Phone: (412)268-3108   Fax:(412)268-7828 

Mail: Interface '95 
Department of Statistics 
Carnegie Mellon University 

5000 Forbes Avenue 

Pittsburgh, PA 15213, USA. 
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G.W. Stewart    1 

Gauss, Statistics, and Gaussian Elimination 
G. W. Stewart 

Department of Comuter Science and 
Institute for Advanced Computer Studies 
University of Maryland at College Park 

1. Introduction 

Everyone knows that Gauss invented Gaussian elimina- 
tion, and, excepting a quibble, everyone is right.1 What 
is less well known is that Gauss introduced the proce- 
dure as a mathematical tool to get at the precision of 
least squares estimates. In fact the computational com- 
ponent in the original description is so little visible, that 
it takes some doing to see an algorithm in it. 

Gaussian elimination, therefore, was not conceived as 
a general numerical algorithm with applications in statis- 
tics and least squares. Rather it was a procedure that 
sprang from the interface of statistics and computation. 
Since the full story is known only to the few who have 
consulted the original sources, I hope my readers will be 
interested to see how Gauss did things. But there is more 
than the satisfaction of idle curiosity here. Gauss and 
Laplace were the premier statisticians of their day, and 
Gauss alone was the premier numerical analyst. Today 
we still have something to learn from observing Gauss's 
practices. 

2. Chronicles 

The principle of least squares arose from the problem 
of combining sets of overdetermined equations to form 
a square system that could be solved for the unknowns. 
The problem went under the name of the combination 
of observations, and has been well surveyed by Stigler 
[23] in his History of Statistics. By way of background, I 
will relate in chronological order the major events in the 
story of least squares, from Gauss's first discovery to his 
final treatment in the 1820's. 

In his correspondence, Gauss asserted that he had dis- 
covered the principle of least squares in 1824 (or 1825, 
the dates vary). Gauss seems to have had little regard 
for the principle itself, and even said he thought others 
must have used it before him. In June of 1828 Gauss 
[11, v. 10] made the following entry in the little diary 
of discoveries he kept from 1796 to 1814:  "Probability 

1The quibble is that in 1759, in the very first paper to appear 
in his collected works [14], Lagrange gave the basic computational 
formulas for Gaussian elimination. His purpose, however, was to 
determine if a critical point was a minimum, not to solve linear 
equations. There is no indication that the paper had any influence 
on Gauss, or anyone else. 

calculus defended against Laplace."2 Laplace, following 
Boscovich [1, 16], had suggested that observations be 
combined by minimizing the sum of the absolute values 
of the residuals subject to the condition that the resid- 
uals sum to zero. Gauss felt that this way of combining 
observations violated the dictates of probability theory, 
and his alternative was the first probabilistic justification 
of least squares. 

The following entry in the diary, also dated June 1898, 
contains the statement: "The problem of elimination re- 
solved in such a way that nothing more can be desired."3 

I take this entry to be the first reference to Gaussian 
elimination. But a decade was to pass before Gauss pub- 
lished either the probabilistic justification or the elimi- 
nation procedure. 

Although we tend to regard Gauss chiefly as a math- 
ematician, it was as an astronomer that he first made 
his mark. On New Year's Day of 1801, the astronomer 
Piazzi discovered the asteroid Ceres. The new planet be- 
came unobservable after only nine degrees of an arc had 
been recorded, and astronomers were faced with problem 
of determining where to look for it next. Gauss under- 
took the calculation, using new techniques in physical 
astronomy and presumably his principle of least squares. 
At the end of 1801, he predicted where in the heavens the 
asteroid would be found, and his reputation was made. 

Gauss, who was generally slow to publish, began work 
in 1805 on his Theoria Motus Corporum Coelestium, in 
which he described his techniques for computing orbits 
and gave his first probabilistic justification of the prin- 
ciple of least squares. He finished in 1806, but his pub- 
lisher, worried by German losses to Napolean, insisted he 
translate the treatise into Latin. In consequence it did 
not appear until 1809 [2]. In the meantime, Legendre 
[20] published and named the method of least squares 
(la methode des moindres quarres) in an appendix to a 
memoir appearing in 1805. When the Theoria Motus fi- 
nally appeared, Legendre found that Gauss had claimed 
the principle for his own, and he took exception. The 
result was a priority dispute, which need not concern us 
here. 4 

2In the original Latin: Calculus probabilitatis contra La Place 
defensus. 

3Problcma eliminationia iia aohtvm, lit nib.il ampliut desider- 
ari possit. 

4 Placket [21]  gives balanced survey with translations from 
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In the Theoria Motus, Gauss had assumed the errors 
in the observations were normally distributed. In 1811, 
Laplace [17] his central limit theorem give an essentially 
different justification of least squares. This is not the 
place to enter into details, but briefly Laplace showed 
that the solutions of a combination of equations were 
asymptotically normal and from this concluded that the 
least squares combination would minimize the mean ab- 
soluteierror in the solutions. Laplace's approach does 
not readily extend beyond two unknowns. 

The final chapter occurred in the 1820's when Gauss 
[5, 6, 8] published two memoirs on least squares. The 
first, in two parts, contains yet another justification of 
least squares—Gauss's famous minimum variance theo- 
rem. These papers also contain some nice algorithmics, 
which will concern us later. 

3. The Precision of Estimates 

The first appearance of Gaussian elimination in print 
occurs in Section 182 of the Theoria Motus. In order to 
understand what Gauss is about, we will have to sketch 
some background. 

Gauss (after a linearization) considers the model5 

y = Xb + e, 

where X is n x p. The errors e,- are assumed to be in- 
dependent randome variables with common distribution 
<p(e). Gauss introductes the function 

<p(yi - xjb)<p(y2 - xjb) • • • <p(yn - xjb),        (3.1) 

where the xf are the rows of X and uses a Bayesian 
argument with a uniform prior to argue that the value 
of b that maximizes (3.1) is the most probable value of 
the unknowns. 

Gauss now supposes the distribution of the e,- is nor- 
mal; that is, <p(e) oc e~h e . He identifies the parameter 
h with the precision6 of y. The function (3.1) now be- 
comes proportional to 

-fcan (3.2) 

where 
fl = (y-Xb)T(y-Xb) 

is the residual sum of squares. Thus, Gauss's most prob- 
able value is obtained by minimizing the residual sum 

Gauss's correspondence. 
5 We will make free vise of matrices in what follows, but only as 

means of abbreviating Gauss's scalar equations. 
6 We must not use terms like variance or standard deviation 

here. The number h is simply a parameter in a specific distribu- 
tion. Only in the Theoria. Combinationis will Gauss introduce the 
second moment of a general distribution as a measure of variation 

of squares, which justifies the principle of least squares. 
The normal equations can be derived as usual by differ- 
entiation. 

Gauss next turns to the problem of estimating the 
precision of the least squares estimates. His technique 
is to integrate all but the last unknown out of (3.2), 
after which the precision can be read off. However, to 
perform the required integrations Q must be expressed 
in a special form, and the tool for arriving at that form 
is Gaussian elimination. 

The procedure as given by Gauss is the following. Let 

1 öß _       L ui = ^ST~ = rnh + r12&2 + 1- ripbp ~ *i, 
2 Ö6i 

and let 

fii = Q- «L. 
rn 

Then clearly the derivative of fli with respect to &i is 
zero, so that ßi is independent of bi. 

One more step will illustrate the general procedure. 
Set 

1 dfii _       L 
«2 = 2~Äh~ = r22 2 "*" r23 3 "^ *"T2p p ~ S2' 

Then 
fi2 = fll _ J2. 

r22 

is independent of &i and b%. Continuing in this manner 
we arrive at the decomposition 

■ + />. 
pp 

in which u,- is independent of &i,... ,6,_i and p is con- 
stant. 

Gauss now considers the expression 

e-*3" = exp(-A2^) • expt-A2^2-) • • -exp( 
rn f22 

U2 

r, pp 
■)- 

and integrates with respect to b\ over the real line. Since 
the last p — 1 factors in this expression are free of &i, 
they remain unchanged by the integration. The first 
factor integrates to a constant. Thus Gauss is left with 
a distribution proportional to 

o-h'Cl!  _ 
= eXp(_Ä2jfl)...exp(-A2-^), 

T227 v        rpp' 

which is free of b\. Continuing this process of integrating 
out the parameters bi, Gauss finds that the distribution 
of bp is proportional to 

exp(-A2^-), 
rpp 
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where 
Up — »*PP   P ~~    P' 

Gauss concludes that the most probable value of bp, ob- 
tained by setting up = 0, is 

S -is- "p ~ rpp 

and its precision is 

'pp 

then the (p, p)-element of V is ■+-. Since the resulting 
expression for the precision clearly does not depend on 
the position of the unknown, Gauss concludes that the 
precision of any of the estimates 6,- is hy/vii- 

It is ironic that the Theoria Motus should have become 
the principle reference for Gaussian elimination as a com- 
putational tool. As we have seen, Gauss used elimination 
to give a derivation of one of the most important results 
of linear regression theory. He was certainly aware of 
the computational consequences of his elimination pro- 
cedure, and promises to describe them in a later work. 
But computational considerations are absent from the 
Theoria Motus itself. Gauss merely points out that the 
normal equations can be solved by ordinary elimination 
(eliminatio vulgaris), presumably a variant of what we 
now call Gauss-Jordan elimination. An extension, which 
Gauss will later call general elimination (eliminatio in- 
definite), can be used to pass from the normal equations 
(3.3) to the inverse system (3.4). 

4. The Scalar Connection 

In 1810, in Disquisitio de Elementis Ellipticis Palladis 
[3], Gauss gave the numerical details of his algorithm 
and illustrated it with an example. The formulas can 
be derived by observing that a homogeneous quadratic 
form is determined by its matrix of second derivatives. 
Specifically, if we set 

2dbidbj' 

then it follows from the formula 

1   dfi 

1 
an = -z 

fii =£2- 

that 
(x) _ 1 crfli  _      _ a,iaij 

av  =2db~db]~aij       au   • 

In the expression on the right, we recognize the formulas 
for performing one step of Gaussian elimination, as we 
understand it today, on a matrix whose elements are a,j. 
This is essentially the algorithm Gauss describes in the 
Disquisitio. 

To complete the solution of the normal equations by 
Gaussian elimination, note that since 

Gauss now goes on to show that if you write the nor- 
mal equations in the form 

Ab = c (3.3) 

and express b as a function of c in the form 

b = Vc, (3.4)      Since 

fi = 1 + —+ 
u' 

•+-äL + P, 
I'll       r22 rpp 

the function fi assumes its minimum value p when 

Ui = «2 = u„ ■ 0. 

0 = Up = Tppbp — Sp 

is a linear equation involving only bp, it can be solved 
immediately for bp. Having determined bp, one can solve 
for bp-i from the equation 

0 = tip-i = r bp-i + rp_iiP6p - sp-i. rp-ilP-iop 

Continuing in this manner, we can determine estimates 
for all the unknown bp. This of course is nothing more 
than the back substitution phase of Gaussian elimina- 
tion. 

5. The Matrix Connection 

The above description of the algorithm is incomplete, in 
the sense that it does not give formulas for the constant 
parts si of the functions «,-. To see where they come 
from, it will be useful to express the algorithm in terms 
of matrices. 

The function fl can be written in the form 

-o*->(£&) ft) 
-<*-»(£ t){-i) 

If we set 

R = 

Mi 
o 

»"12 

»"22 r2p 
and   s = 

\0      0     •••   rpp/ 

then it is easy to verify that 

/«A 
52 

2on öü»i 

/A    c\ _ fRT   0\ (D-1     0 \ /R   sNi 
^ v)-{^  p)\ o   rVVo  P)' 
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where 
D = diag(r11)r22,...,rpp). 

Thus Gaussian elimination, as practiced by Gauss, 
amounts to factoring the augmented cross-product ma- 
trix into a lower triangular matrix, a diagonal matrix, 
and the transpose of the lower triangular matrix. It 
is common practice today to work with the augmented 
cross-product matrix. 

The vector u whose components are the functions u,- 
can be'Written in the form 

u = Rb — s. 

The process sketched above of setting the «,• to zero and 
back-solving amounts to solving the triangular system 

Rb = s. 

6. The Computation of Variances 

Writing in 1821, Gauss [4] summarized his and Laplace's 
justifications of least squares as follows. 

From the foregoing we see that the two justifi- 
cations each leave something to be desired. The 
first depends entirely on the hypothetical form 
of the probability of the error; as soon as that 
form is rejected, the values of the unknowns 
produced by the method of least squares are 
no more the most probable values than is the 
arithmetic mean in the simplest case mentioned 
above. The second justification leaves us en- 
tirely in the dark about what to do when the 
number of observations is not large. In this 
case the method of least squares no longer has 
the status of a law ordained by the probabil- 
ity calculus and has only the simplicity of the 
operations it entails to recommend it. 

In the Pars Prior of his memoir Theoria Combinationis 
Observationum Erroribus Minimis Obnoxiae [7], Gauss 
resolved the dilemma by introducing the notion of mean 
square error as a measure of variance and showing that 
among all linear combinations of the observations that 
produced exact estimates in the absence of error the least 
squares estimates have least mean square error. 

In the Pars Posterior of the Theoria Combinationis 
[6], Gauss addresses the problem of computing variances. 
He points out that his elimination method gives only the 
variance of the last unknown. Since (he continues) a gen- 
eral elimination to invert the normal equations is expen- 
sive, some calculators have adopted the practice of per- 

forming the elimination with another unknown placed 
last.7 Gauss says that he will give a better way. 

Gauss actually gives two solutions to the problem. In 
the first he shows that if one inverts the system Rb = s 
to get Ts = b, then the matrix V obtained by passing 
from (3.3) to (3.4) can be written 

V = TDTT. 

Thus the diagonal elements of V can be computed as a 
weighted sum of squares of the rows of T. Gauss gives 
two algorithms for computing T, one of them particu- 
larly advantageous when only a few variances are to be 
computed. 

The second method is a very general result for com- 
puting the variance of an arbitrary linear combination 

t = gTb + K 

of the unknowns b. Specifically, if we pass from the 
variables b to the variables u, so that t assumes the 
form 

t = hTu-M, 

then t is the value of t at the least squares estimates of 
the unknowns,8 and its variance is proportional to 

hTDh. 

Moreover, h may be obtained by solving the triangular 
system 

RTh = g. 

Thus Gauss reduces the problem of computing a variance 
to that of solving a triangular system. 

A modern practice in numerical linear algebra is to 
compute a matrix decomposition and then use it in a 
variety of computations. Although it would be anachro- 
nistic to call Gauss a decompositionalist, he calculated 
like one. The results of his elimination serve as a com- 
putational platform from which both estimates and vari- 
ances can be obtained. 

7. Computational Complexity 

Did Gaussian elimination represent an improvement over 
the practices of the day? If we assume that people were 
using Gauss-Jordan elimination to solve systems, they 
would have performed roughly |JJ

3
 multiplications and 

7Laplace, for example, recommended a similar procedure in the 
first supplement to his Theorie Analytique ies Probahilitis [18]. 

8It has been asserted [22] that Gauss established that i enjoyed 
the same minimum variance properties as the components of h. 
Although the result is true, Gauss never proved it. 
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about the same number of additions. Gaussian elimina- 
tion, on the other hand, requires about |p3 multiplica- 
tions and additions. Thus Gaussian elimination repre- 
sents an improvement of a factor of about three. 

If variances are required, the inversion of the normal 
equations by Gauss-Jordan elimination would cost an 
additional |p3 multiplications and additions for a total 
of §p3. With Gauss's approach the total is |p3, an im- 
provement by a factor §. 

In an age in which a workstation can solve a system 
of order 100 with barely a hiccup, it is easy to be cav- 
alier about factors of three. To see what it might have 
meant to people who had to do their calculations by 
hand, consider the following quote from A Treatise on 
the Adjustment of Observations published in 1884 by T. 
W.Wright [24, p. 173]: 

Dr. Hügel, of Hessen, Germany, states that he 
has solved 10 normal equations in from 10-12 
hours, using a log. table, but that 29 equations 
took him seven weeks. 

Without Gaussian elimination Dr. HiigePs twelve hours 
would have stretched to a day and a half, and his seven 
weeks to almost half a year. 

8. Notation 

Gauss, like most mathematicians of his time, made spar- 
ing use of subscripts and superscripts, prefering to use 
primes or sequences of letters to distinguish variables. 
For example, Gauss writes his linear model in the form 

v = ax + by + ex + etc. + / 
t/ = a'x + b'y + c'x + etc. + /' 
v" = a"x + b"y + c"x + etc. +1" etc. 

Here x, y, z, etc. are the unknowns we have been de- 
noting by bi and the v's are the errors. Although this 
expansive notation appears awkward to us, in Gauss's 
hands it could be quite expressive. For example, here 
(slightly edited) is how he writes the normal equations. 

0 = [aa]x + [ab]y + [ac]z + etc. + [al\ 
0 = [ab]x + [bb]y + [bc]z + etc. + [bl\ 
0 = [ac]x + [bc]y + [ccjz + etc. + [c/] etc. 

Note the elegant way in which the notation [ab] suggests 
a sum of products from the a and b columns. 

Gauss's notation for elimination is equally well con- 
sidered. The following is from the Supplementum [8] to 

the Theoria Combinationis 

[&M]=[*&]-K 
[&c,i]=N-W 
[H1] = N_[f||a 

etc. 

K2]=[cc]-S-|$ 
[cd,2] = [cd\-^-^^ 

etc. 

Here as above, a pair of letters indicates the position in 
the normal equations. The appended numerals indicate 
the level of elimination. Incidentally, this seems to be 
the first appearance of the inner product form of the 
algorithm, in which the matrix R is generated row by 
row. It is the preferred form for hand calculation, since 
one need only record an array of |p2 numbers. 

9. Legacy 

The casting of Gauss's results in matrix notation in some 
sense trivializes them. With our knowledge of matrix 
algebra, we can leap ahead to results that researchers 
of Gauss's time could only arrive at by more pedestrian 
routes. Yet we must be careful not to be patronizing. 
Gauss and his successors accomplished a great deal with 
their techniques and notation. 

For example, Gauss's presentation of his algorithm as 
elimination in a quadratic form strikes us as unusual to- 
day. Yet it was the first of many reductions of quadratic 
and bilinear forms that later became our familiar matrix 
decompositions, including among others the LU decom- 
position, the Jordan canonical form, and the singular 
value decomposition. As Kline points out in his book 
Mathematical Thought from Ancient to Modern Times 
[13, Ch.33], by the time the use of matrices had become 
widespread, many of the principal results of matrix the- 
ory had already been established. 

Gauss's algorithms, written in his notation, sur- 
vived into the twentieth century, especially in books on 
geodesy. Thereafter, as people began to use present-day 
notation, his contributions became less visible. By 1959, 
when I first began working with computers, Gaussian 
elimination had come to mean any triangularization of 
a system of equations, symmetric or nonsymmetric, fol- 
lowed by a back substitution, and none of us had an idea 
of what Gauss had actually done. 

Yet what he did is worth recalling. Gauss worked with 
real-life problems and got his hands dirty solving them. 
He always looked for the best, most efficient algorithm; 
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and when he had it, he expressed it in a clean notation 
that suggested how to use it. These virtues are no less 
important today than in Gauss's time. 
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Abstract 

A simple algorithm for estimating the regression func- 
tion over the United States is introduced. The approach 
allows for data obtained from a complicated sampling 
design, as well as for the inclusion of a few additional 
covariates. The regression estimates are obtained from 
an associated probability density estimate, namely the 
averaged shifted histogram. The algorithm has proven 
especially successful over a large mesh, say 300 by 200 
nodes, in a data rich setting, even on a 486 computer 
running Splus. Commonly available alternative codes 
including kriging failed to produce useful estimates in 
this setting. 

1.    Introduction 

The problem of nonparametric regression has at- 
tracted a wealth of attention since the pioneering pa- 
pers of Nadaraya (1964) and Watson (1964); see Eu- 
bank (1988) and Härdle (1990). Available algorithms 
range from the simple running median, to variational 
formulations giving rise to spline estimates, to kernel es- 
timates, and finally local polynomial fitting. There has 
been a great deal of recent discussion about the right and 
wrong way to do nonparametric regression. Some have 
argued for the elegance of splines, while others find the 
local polynomial approach compelling, but some argue 
for one's personal preference. 

From our experience in the density estimation setting, 
we find that direct methods work well in 1 to 5 dimen- 
sions, but even in 3-5 dimensions, the size of the meshes 
is growing exponentially, and sufficient data often aren't 
available. In the regression setting, we find that the dis- 
cussion in the literature has focused too heavily on rel- 
atively small 1 and 2 dimensional data sets where most 
methods perform reasonably well. In this manuscript, 
we consider a more realistic and stressful problem deal- 
ing with farm data such as that routinely surveyed by 
the U.S.D.A. These surveys result in very large databases 

'Supported in part by NSF grant DMS-9306658. 

over nonuniform spatial meshes (see Figure 1), compli- 
cated by nonuniform weighting schemes as well as inter- 
est in several covariates. 

Large data sets and/or large mesh sizes result in prac- 
tical problems. Too many regression methods have so- 
lutions or algorithms whose exact form is determined by 
the number of data points (splines, kernels, etc.) that 
make computation infeasible even on 486 level comput- 
ers. The key to computational efficiency is the same as 
for density estimation: binning the multivariate data 
(Scott, 1992; Härdle and Scott, 1992; Fan and Marron, 
1994). 

Beyond 4 or 5 dimensions, direct mesh methods of any 
kind encounter practical difficulties resulting from the 
curse of dimensionality. Some form of advanced projec- 
tion technology or additive modeling has proven useful 
(Hastie and Tibsharani, 1990). 

However, "real data" can throw a curve at the best 
planned evaluation of even carefully constructed algo- 
rithms. We have mentioned the special problem of large 
samples. Here we would like to focus on problems re- 
sulting from a mixture of spatial and continuous vari- 
ables. They are: (1) irregular boundary definition, (2) 
data collected by a sampling design, and (3) a very large 
mesh required to have high spatial resolution. In princi- 
ple, an exact irregular boundary scheme can be handled 
(perhaps with great programming effort), and weighting 
can be introduced into the estimation phase. However, 
many simple-minded implementations run into numeri- 
cal instabilities with large meshes. 

We wish to show how simple the binned methods 
(specifically the ASH or WARP algorithms) can be mod- 
ified to handle such data, even with very fine 300 x 200 
spatial meshes, on a 486 level machine. 

We find that the common focus on boundary behavior 
is only a minor part of our thinking. Firstly, we are deal- 
ing with large samples and thus only a relatively small 
bandwidth is required. (By way of contrast, many sim- 
ulation examples involve n = 100 1-dimensional data 
where the bandwidth may span 1/4-1/2 of the data 
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interval, making boundary conditions dominant.) Sec- 
ondly, for mapping purposes, we find the boundary ef- 
fects and corrections of little practical importance to- 
wards understanding and summarizing our data explo- 
ration/presentation efforts. 

Ironically, we have found "internal boundary" situa- 
tions more of a practical nuisance. These occur in ar- 
eas internal to the USA, say, where there are no data 
(because there is no agriculture), inducing a boundary 
effect caused by sparseness rather than a physical exter- 
nal boundary. We identify this situation by observing 
how low the density falls in each region where we are 
evaluating the regression function (i.e., how close to 0 
is the denominator?). This is a multivariate version of 
the well-known practical problem of "extrapolation" of 
regression estimates beyond the support of the data. 

In our experience, many off-the-shelf kriging or regres- 
sion programs cannot handle large rectangular meshes of 
300 x 200 points covering a mercator projection of the 
lower 48 states. Rewriting such codes is always a possi- 
bility, but we have found that the simple ASH ideas pro- 
vide excellent estimates and dramatic correlation with 
actual photographic evidence. Carr (1990) has used raw 
(hexagonal histogram) bivariate binning techniques. We 
are interested in providing some additional smoothing 
(that will provide improved estimation quality) as well 
as handling additional covariates. 

2.    Algorithm Motivation 

We start with a simple description of the ideas and 
algorithms for handling (x,y,z) data where (x,y) rep- 
resents the center of one of our bivariate bins (approx- 
imately 10 miles by 10 miles) containing one or more 
U.S.D.A. sampling units. The variable z represents the 
quantity of interest; for example, total farm income or 
the fraction of Federal dollars in farm income. We seek to 
estimate E [Z(x, y)] or z(x, y) in areas where f(x, y) > 0. 

2.1.    Kernel Regression Estimation 

Let K be a symmetric kernel function with support 
on (—1,1) satisfying f_1K(t)dt = 1. Given a positive 
smoothing parameter h, define the scaled kernel function 
by 

Kh(t) Ms) 
We take as a starting point the well-known result (Scott, 
1992) that the Nadaraya-Watson bivariate regression es- 
timator 

m(x,y) 
E"=i Kh(x - xi)Kh(y - Vi) 

is the exact result of the computation 

rh{x,y)=  I zf(z\x,y)dz 
/ z/Qc, y, z) dz 

ff(x,y,z)dz 

where the trivariate product kernel density estimator is 
given by 

1   " 
f(x, y,z) = - ^ Kh(x - X{) Kh(y - t/,) Kh(z - z.). 

Clearly 

/l   " 
f(x, y, z) dz = - Y^ Kh(x - x{) Kh(y - yt) 

»=i 

nr=i 

since /Kh{z — Zi)dz = f Kh(z)dz = 1. 
Also, fzf(x,y,z)dz = Y.ziKh{x - Xi)Kh{y - yi), 

since 

/ zKh(z - Zi) dz=     (z + Zi)Kh(z) dz = Q + Zi, 

recalling that fzKh{z)dz = 0 (by symmetry). 
Clearly, different smoothing parameters hx, hy, hz 

could be chosen for each dimension. Interestingly, the 
particular choice of hz has no effect on the regression 
estimate! 

It is well-known (Härdle, 1990) that local polynomial 
regression (LPR) estimators and spline methods have 
equivalent kernel forms. LPR does have the advantage 
that the kernel adjusts properly at the boundary to re- 
duce bias (Fan, 1992). 

However, the practical gain of the bias correction is 
often small, as f(x) —* 0 near the boundary and/or 
m(x) —► 0 near the boundary. Many authors consider 
only cases where f(x) is nearly constant over a finite in- 
terval, or even the simplest case of a fixed equally-spaced 
mesh. These situations tend to accentuate boundary 
concerns and problems. 

2.2.    ASH Density Algorithm 

We mimic the simple Nadaraya-Watson idea except on 
a more computationally oriented estimator, the averaged 
shifted histogram (ASH), introduced by Scott (1983, 
1985, 1992). We remotivate the multivariate ASH. 

Let us slightly alter our notation so that 

x\,x2> 2/1,2/2, 12/nv Zl,Z2,. 

are the midpoints along each axis of a trivariate mesh of 
size nx x ny x nz with spacings 6x,6y,62. Thus 

Axi = Sx = 
mx 

Aj/,- = Sy = 
m„ 

Az{ =6Z=^- 
mz 
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for some integers rnx,my, mz and smoothing parameters 
»II <*J/) "£• 

Let Vjki denote the number of data points (x,y, z){ 
falling in bin Bjki- Note that ^Vjki = n, and we expect 
many of the i/jki to be 0. 

The "naive ASH" is constructed by "computing" mx x 
my xm, (different) trivariate histograms, each with rect- 
angular bin size hx xhy xhz, but with origins shifted by 
multiples of 6X, 6y, 8Z along the coordinate axes. To be 
specific, one bin is anchored at the point (jSx,kSy,lSz), 
as j, k, I each range from 0 to nx — 1, ny — 1, nz — 1. 

Scott (1985) showed that this was a special case of a 
general weighting scheme: 

1 
fjki = f(xj,yk,zi) = 

nSx6y6, yuz a,b,c 
Wabc"j+a,k+b,l+c 

where the sums range over — mx < a < mx, —my < b < 
tny, and —mz < c < mz, and 

Wabc = 

K Qfr)K (A) * Qfr) 

where K is supported on (—1,1) as before. Note that in 
an obvious notation, iua&c = waWbWc. This is a classic 
discretization scheme. The weights {wa, w\,,wc} need 
only be computed once. 

We first verify that the trivariate ASH is indeed a den- 
sity function. Clearly it is nonnegative. To prove that it 
has integral 1, we compute 

/// 
f(x,y,z)dxdydz = SxSy6z E E E ^' 

j     k     i 

j      k      I a      b      c 

be j      k      I 

ki 

\-a,k+b,l+c 

,k+b,l+c 
a      b      c 

b      e 

assuming a buffer of 0's around the edges of the {vjki} 
array, so that 

53 E E "i+a.t+V+e = 1    for a11 a,b,c- 

In practice, the array {fjki} is initialized to all 0's, and 
then the influence of every bin Bjki for which Vjki > 0 is 
added to the appropriate subset of fjki- 

We could define f(x,y,z) to be a spline surface in- 
terpolated from the above array, but for simplicity, we 
take it to be constant over each bin Bjki and assume it 
vanishes outside the mesh; that is, f(x, y, z) = 0 there. 

2.3.    ASH Regression Algorithm 

Following the Nadaraya-Watson motivation, the ASH 
regression estimator is found by computing 

rhjk = m(xj, yk) - E(Z\X -Xj,Y = yk) 

f   1, i         u       fzf(xj,yk,z)dz 
= / zf{z\xj,yk)dz=± jf- f—. 

J f(xj, yk) 

The numerator can be computed by integrating bin by 
bin along the z axis: 

»*      rzi+6,/2     ^ »« 

]C / *f{xi,Vk,z = zi)dz = ^2szzj(xj,yk,z,), 
./a z=i 

since / zdz = Szzi for the limits given (recall / is con- 
stant over each bin). Thus 

m,jfe 
E/ 6*z' {nsX** ^a ^ ^c W^U3+",k+b,l+ej 

J^n Ea El V>abVi+atk+b 

_ Ea Ei, wab Ec wc E"=l ZlVj+a.k+tJ+c 

EaEi^oi^'+o.Jfc+l 

Now the final sum in the numerator can be computed by 
observing that it is almost a conditional expectation: 

n. 
EVj+a,k+b,l+c 

Zl  • Vj+a,k+b = Zab Vj+a,k+b 
,= 1 Vj+a,k+b 

as we let mz —► oo (or equivalently let 8Z —» 0 with hz 

fixed), where 

Zab nab ,    Zrl„ 
{.x,y,z)i^.Bab 

Continuing, we note that J2wc = 1> so that we finally 
arrive at the final form of the ASH regression estimator 
as: 

TTljk —       _,    _ 
L,a L,b wabVj+a,k+b 

2.4.    ASH Regression Extensions 

REMARK 1: For the survey sampled data, each data 
point takes the extended form 

{(x,y,z,a)i,    i-l,...,n}, 

where or,- is the effective sampling weight. Previously, 
we have assumed that ati = 1 for all cases. Here, the 
frequency counts Vjki are replaced by the sum of these 
a,- weights rather than l's. 
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REMARK 2: Occasionally, our data will include other 
covariates and be of the form 

{(x,y,z,t,a)i,    i= l,...,n} , 

where t is some covariate of interest. Then we com- 
pute the ASH regression estimator rh(x,y, t) by simply 
adding another loop to the numerator and denominator 
of the rhjk equation above. The sampling weights are 
the same of course. What could be easier? Typically, we 
will map the estimate at several levels oft, for example, 
m(x,y,t = t0). 

REMARK 3: The 1-dimensional ASH regression pre- 
scription was first published in Härdle and Scott (1992) 
under the name WARPing. 

3. Mapping Details 

After the "usa()" is plotted, the regression ASH is 
computed over the entire 300 x 200 mesh and added to 
the figure by using either the Splus "contour" or "image" 
function and the argument "add=T". Typically, the con- 
tour lines will extend slightly outside the US borders. A 
simple trick removes those lines, by applying "polygon" 
to two pieces that outline half the borders of the US and 
the surrounding rectangles. This will be illustrated in 
the examples. 

The internal boundary solution is not handled in an 
elegant fashion currently. Thresholding could be applied, 
but we find the problem is relatively localized and have 
left it for the reader to discover. A bootstrap algorithm 
has been implemented to estimate the pointwise error. 
We have used this to replace or delete regions where the 
estimator behaves erratically. 

4. Examples 

The "real" data considered in this section come from 
the Farm Costs and Returns Survey. This is a stratified 
complex design survey which is used to measure finances 
and production of all U.S. agriculture. The weight of 
each observation was taken to be the inverse of the prob- 
ability of selection. We begin with a small bivariate sim- 
ulation. 

4.1.     A Simulation Example 

A surface with 3 bumps typical of those encountered 
in USDA work was constructed on a 50 x 50 mesh (not 
shown). The surface was contaminated twice: first with 
Gaussian noise and then with Cauchy noise. From this 
complete set of 2,500 points, 200 points were selected at 
random. The estimated ASH regression surface was com- 
puted with mx = my = 5. The trimodal structure was 
evident, but then so were some spurious peaks induced 

by the Cauchy noise.   Clearly, the raw ASH algorithm 
has no robustness component included. 

We next applied the loess (Cleveland, 1979) Splus 
function to these data. A coplot of x vs. z given y was 
computed and a perspective plot of the entire estimated 
surface examined. The loess surface is significantly bet- 
ter as it includes iteration to provide more robust an- 
swers to minimize the effects of the Cauchy noise. 

4.2.    Farm Costs and Returns Survey Example 

Asampleof n = 13,000 of 1.7 million farms was drawn. 
For these data, the FIPS code for each observation was 
known. Thus the exact location of each observation was 
assigned to the location of the population centroid of 
the county where the farm is located. The map of the 
3,100 centroids is shown in Figure 1. Observe that the 
resolution is much greater east of the Mississippi. 

When loess, kriging, and other methods were applied 
to these data, each failed to produce a usable surface 
from the data. The result was always a smooth surface 
for most of the country with an enormous peak at an 
edge. However, the ASH regression algorithm with mx = 
my = 5 produced excellent results. 

We first computed the estimate without using the sam- 
pling weights as shown in Figure 2, while the estimate 
with sampling weights is shown in Figure 3. This made a 
big difference, particularly in areas where there are many 
observations with small weights. 

As mentioned earlier, internal boundaries can cause 
problems for the algorithm. In Figure 4, we zoom in 
on one of the problem areas. The four corners region of 
the Southwest (Utah, Arizona, Colorado, and New Mex- 
ico) join at about the location where this peak occurs. 
The surface rises gradually to the peak, becomes a flat 
plateau, then drops off a cliff to an area of no data (where 
the regression estimator becomes 0/0). Use of zipcode 
centroids and adaptive bandwidths might solve this. 

Figure 5 captures our final estimate of the fraction of 
government payments to gross farm income. Note the 
contours are shown on a logarithmic scale. The bound- 
ary artifact in the four corners region can be searched 
out. Otherwise, no other glaring boundary problems ap- 
pear. For the most part, the value of the regression sur- 
face is quite small near the US borders, except in Texas 
and along a portion of the border with Canada (where 
government subsidies are even greater!). We do not find 
the bias incurred particularly misleading. 

Next, we included a surrogate variable t to capture the 
"size" of each farm. This was simply the total sales. We 
computed rh(x, y, t) using the extended ASH algorithm 
and computed 2 slices—one for small farms (Figure 6) 
and one for large farms (Figure 7). The highest subsidies 
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for small farms are concentrated primarily in the Mid- 
west and Plains states. For large farms, we see the rice 
farms along the Mississippi, for example. These patterns 
are quite interesting to policy makers. 

4.3.    Overlaying Maps 

A popular exercise is overlaying different maps to cap- 
ture a relationship. Conventionally, this is done follow- 
ing county boundaries. For example, Figure 8 displays 
such data. The viewer is required to form a "mental sur- 
face" or internal representation for these data. The ASH 
algorithm does this for the viewer, with the added ad- 
vantages of consistency and the application of objective 
statistical criterion to decide the contours of the surfaces. 
In Figure 9, 4 shades are indicated on the map coming 
from 2 ASH estimates. White areas indicate low activity 
on both scales. The darkest shaded areas indicate where 
both (1) farms are dependent on government payments 
and (2) the geographical areas are highly dependent on 
farm income. Such information is more easily gleaned 
from these smooth ASA estimates. 

5.     Discussion 

The naive ASH is not robust, but is easily adapted to 
handle weighted data and covariates with small compu- 
tational overhead. Elegant procedures without covariate 
handling have been considered by Tobler (1979). We 
have not taken advantage of possible small gains avail- 
able by considering spatial correlations. 

However, kriging and lowess both produced estimates 
with huge values at the boundary and outside the US 
borders. Apparently, the trick of placing a rectangular 
grid on the US extending outside the borders fails be- 
cause the algorithms require explicit knowledge of the 
boundary locations as input. 

The actual proximate reason for failure, interestingly 
enough, is due to the "adaptive" nature of these algo- 
rithms, which fit the LPR over a region with a certain 
fraction of the data. In places where the mesh extends 
offshore, the regression estimate is reaching far inland 
for any data to fit — the extrapolation problem once 
again. (Explicit boundary handling would fix this, pre- 
sumably). 

The ASH procedure used a fixed (or nonadaptive) 
neighborhood. The result is regions where the regres- 
sion estimate is undefined (0/0). However, we are more 
comfortable with such undefined regions than with pro- 
viding dubious estimates obtained by spanning empty 
spaces. 
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Figure 1. Population centroids of all U.S. counties. 

\tf& 

Figure 2. ASH estimates with equal weights a, = 1. Note the 
low values east of the Mississippi River. 
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Figure 3. Correctly weighted ASH estimate compared to Figure 2. 

Figure 4. Blowup of ASH estimate near an internal boundary. 
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greater than 0.3 
0.2-0.3 
0.1-0.2 
0.05-0.1 
0.01 - 005 

| 0.001 - 0.01 
less than 0.001 

Figure 5. Contours of the proportion of farm income from Federal estimated by the ASH. 

Figure 6. Conditional distribution of the variable in Figure 5 for "small" farms. 
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Figure 7. Data as in Figure 6 but for "large" farms. 

Figure 8. Data presented in the usual fashion, on county-by-county basis. 
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Farm and Payment dependent 

Farm dependent 

Payment dependent (> 0.1 of gross) 

Figure 9. Overlay of 2 ASH regression estimates (see text). 
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Abstract 

Naive implementations of local polynomial fits require 
almost 0(n2) operations. In this paper a fast 0{n)~ 
algorithm is presented. It is based on updating normal 
equations. Numerical stability is guaranteed by center- 
ing while moving, controlling ill-conditioned situations 
for small bandwidths and data-tuned restarting the up- 
dating procedure. "Exact binning" and restarting at ev- 
ery output point results in a moderately fast but highly 
stable 0(n7l5) algorithm. Applicability of algorithms is 
evaluated for estimation of regression curves and their 
derivatives. 

Some key words: Fast computation; Local polynomi- 
als; Nonparametric estimation; Nonparametric re- 
gression; Smoothing; Updating. 

AMS 1991 subject classification. Primary 65D10, Sec- 
ondary 62G07, 65D25. 

1    Introduction 

Nonparametric methods of curve estimation have be- 
come useful techniques. For applications fast algorithms 
which allow computation on personal computers and at 
the same time guarantee numerical stability are highly 
desirable. In particular, when choosing the bandwidth 
from the data or in bootstrapping schemes, multiple eval- 
uations of the estimators become necessary and a fast 
algorithm is even more desirable. Furthermore, due to 
technical progress, automatic recording of mass data has 
become easier. This puts higher demands on statistical 
algorithms. 

For various spline based regression estimators algo- 
rithms have been developed whose number of arithmetic 
operations grows only linearly with the number of data 

JThis work was part of the research program no. 21.-36042.92 
of the swiss NSF 

points n (see de Boor, 1978; Utreras, 1980, 1981; Silver- 
man, 1984; Hutchinson k de Hoog, 1985). In contrast, a 
naive implementation of a kernel estimator for regression 
or density estimation requires almost 0(n2) operations. 
Through averaging shifted histograms Scott (1985, 1986) 
proposed a fast density estimator approximating a ker- 
nel estimator which needs 0(n) operations. Härdle & 
Scott (1992) extended this idea through their concept of 
WARPING (weighted average of rounded points) to the 
regression case where their estimator approximates the 
Nadaraya-Watson kernel estimator. A fast algorithm 
for an exact convolution type kernel regression was sug- 
gested by Gasser & Kneip (1989). Seifert, Brockmann, 
Engel & Gasser (1994) presented two fast 0(n) algo- 
rithms and a highly stable but slightly slower 0(n7/5) 
version of the latter algorithm. The algorithms are ap- 
plicable to local polynomial regression and to kernel es- 
timation. 

This paper is based on Seifert et al. (1994). In sec- 
tion 2 the local polynomial regression estimator is briefly 
discussed. In section 3 a fast algorithm is derived. Its 
speed is based on updating normal equations and the 
idea of exact binning. Stability is obtained by several 
steps, centering while moving, control of ill-conditioned 
matrices and data-tuned restart of the updating proce- 
dure being the most important ones. Restarting at every 
output point results in a moderately fast 0(n7/5) algo- 
rithm, which is even more stable than the conventional 
one. A numerical evaluation is given in section 4 for esti- 
mation of regression curves and their derivatives in fixed 
and random designs. 

2    Local Polynomial Regression 

Let (Xi,Yi), ...,(Xn,y„) be a set of independent and 
identically distributed pairs of random variables where 
the Xi are scalar predictors and the Y{ are scalar re- 
sponses. The developments of this paper can, however, 
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be generalized to higher-dimensional design. 
In regression analysis a functional relationship be- 

tween predictor and response is assumed as 

point 2:0 by 

r(x)    =    E(Y|X = x), (1) 

Predictors following a fixed design can be treated sim- 
ilarly. The predictors are assumed to be sorted Xi < 
... < Xn. The goal is to estimate r(x0) or its u-th 
derivative r^(x0) = £*r{x)\x=Xo for some v. The lo- 
cal polynomial approach is based on the approximation 

'M - Y.^(*->)•'        P) E 
3=0 

provided x is close to xi, where r is at least (p+1) times 
differentiate. This representation suggests minimizing 

with respect to ß = (ßo, ■ ■ ■, ßp)' ■ Here K denotes a pos- 
itive and symmetric weight function and h is the band- 
width. Denote 

/ 1    (Xx - *i) 

X   = 

Y   = 

(Xx-XiY \ 

(X„-Xi)P /nx(p+1) 

w . d^ir(^) *(*f*)> 
■ ■ ■    Sn,p  \ 

■ ■ •     Sn,2p   / 

(4) 

(5) 

Then the solution of the least squares problem (3) is 
obtained as solution ß of the linear system 

Snß   =   T„. (6) 

The resulting local polynomial Yfj=o fa (x ~ x03 is inde" 
pendent of xt. We estimate the i/-th derivative of r at 

(»\x0) = v\J2(k)(*o-xi)k-'ßk. (7) 

We assume, that X has full rank, i.e. that there are at 
least p + 1 points in the local smoothing interval. Then 
r^Xxo) is unique. Algorithmically this is achieved by 
increasing the bandwidth locally until p + 1 points fall 
in the interval. 

Asymptotic properties are studied in Fan (1993), 
Ruppert & Wand (1992) and Fan et al. (1993). In the 
latter it is shown that f(")(z0) is an asymptotically mini- 
max efficient estimator among all linear estimators. The 
Epanechnikov weight function K(x) = (3/4) (1 - x2)+ 
is optimal for estimating the regression function r itself, 
as well as its v-th order derivative. Note that p — v > 0 
should be odd according to asymptotic theory, and that 
usually p—v is equal to 1 or at most 3 due to the local na- 
ture of the approximation. The local polynomial method 
automatically adapts to the boundary, the equivalent 
kernel is a boundary kernel as defined by Gasser et al. 
(1985). This feature of the local polynomial method 
saves extra computations at boundary points. 

3    Algorithms for Local Polyno- 
mial Fitting 

3.1    The conventional algorithm 

Using x\ = XQ we have 

"nj 
»=1 X 

' ",')(*-»(,y, 

i=l v ' 

(8) 

(9) 

Thus, finite moments with respect to the design points 
essentially determine the local polynomial fit. This is 
also true for higher dimensional design. 

Once Sn and T„ have been computed, the local poly- 
nomial fit is obtained by solving the linear system (6). 
The computational effort is independent of n. (We will 
approach the problem of solving the normal equations 
later on, using the Cholesky decomposition.) Hence a 
fast algorithm relies on the fast computation of Sn and 
Tn over the entire output grid. 

Usually, the output grid will consist of n points as the 
input grid (e.g. for cross-validation), or of a fraction of 
n, if n is large, or a multiple of n, if n is small (e.g. for 
graphical representation). If the number of points in the 
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output grid is thus m = 0(n), then a conventional imple- 
mentation of (6) will require 0(n2h) operations, based 
on weight functions with compact support. For standard 
regression estimation the optimal h is of order 0(n-1'5), 
leading to 0(n9/5) operations for a curve fit. However, 
for small bandwidths h = 0(n-1) (when the estimator is 
close to interpolation) the conventional implementation 
approaches 0(n) operations. 

Now we derive fast algorithms, based on a polynomial 
weight function 

K(x) = (£akx
k)I{-li+1](x) (10) 

Jt=0 

comprising in particular the optimal Epanechnikov 
K(x) = (3/4) (1 - x2)+ and the minimum variance (uni- 
form) weights. For simplicity we will present the algo- 
rithms only for Sn , since the computation of Tn is then 
straightforward. Moreover, we present the case of a con- 
stant or global bandwidth h, but in fact our algorithms 
work for local bandwidths h = h(xo) as well. 

3.2    A "naive" fast algorithm — the idea 
of updating 

Using the binomial formula in (8) and rearranging sum- 
mation we get 

Sn,j 

= E (l> (^r1)") hro-^o+nrnw-xoy 

= E h~k a« E (*•■ - x°y+k i[*o-Mo+*](*o    en) 
Jfc=0 i=l 

i+k 

4=0 1=0 ^ ' 

X{EX'WMO+*](*<)} (12) 

Given the value of Sn,j at xo, we can save a lot of 
computations by reusing the inner sums (in braces) over 
i when calculating Sn,j at the next output grid point zoi 
say. From the inner sum we subtract the terms that are 
not m[xoi — h,XQi+h], and add those terms which are in 
this interval, but dp not belong to [x0 -h,x0 + h]. This 
results in a fast 0(n) algorithm, which is reminiscent of 
the old add/subtract box car smoothing (compare e.g. 
Eddy, 1980). Independent of h and j one has to calcu- 
late the terms Xf, i = 1,..., n, 0 < £ < 1p + a only 

once. However, this algorithm is numerically instable. 
The main source of instability is the expansion of the 
term (X{ — xoy+k. The add/subtract idea then leads 
to an accumulation of numerical errors. The problem is 
comparable to the well known instability of the textbook 
one-pass algorithm for estimation of a variance. 

One way out is the use of centered quantities (X,- — 
xo)k only, or quantities centered by Xo, the mean of 
design points in the interval [xo—h, xo+h] (as is common 
use in polynomial regression and done in this paper). 

If we move towards the boundary, an increasing nu- 
merical instability is expected and observed. Then typ- 
ically the number of points in [XQ — h, xo + h] decreases, 
which leads to smaller quantities Snj , and hence in- 
creasing relative numerical errors. Also, the weights at 
the boundary become larger by order of magnitude. This 
difficulty is dealt with by running from both ends to the 
middle of the estimation interval. 

Our goals are the following: We would like to have 
a fast and stable algorithm over the entire domain of 
bandwidths, starting with an h containing the minimal 
number of design points which is p + 1 and going up to 
the maximal h. Numerical stability should be guaran- 
teed for the Epanechnikov and the uniform weight func- 
tion, i.e. a = 2 and a = 0. Of interest are the regression 
function itself (u = 0) and the first and second deriva- 
tive {v — 1,2), whereas v = 3,4 might be needed for 
estimating smooth functionals only, e.g. for selecting op- 
timal bandwidths (Gasser et al., 1991). Usually, we are 
satisfied to use a polynomial of order p — v +1, but for 
v = 0,1,2 the choice of higher order p also may be of 
interest. 

The above algorithmic steps will not be sufficient to 
reach these goals. The most important additional tech- 
niques consist of detecting ill-conditioned cases for small 
bandwidths and automatic restarting the 'updating pro- 
cedure, based on properties of the computed matrix Sn 

(see section 3.4 below). 

3.3    A fast and stable algorithm — the 
idea of centering while moving 

To avoid numerical instability of the naive fast algorithm 
based on (12), it is necessary to use centered quantities 
only. In Seifert et al. (1994) two stable algorithms using 
xi = XQ and 

E Xihxo-h,*o+h](Xi) 

X\ — XQ = 
t'=l 

E h*o-h,xo+h](Xi) 
i=l 
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were presented. Here, we present a fast algorithm us- 
ing xi = X0, the mean of design points to be used for 
estimation of Av\x0) . Then 

= E f Ea« (^jr1)") WMO+/»](*O ^ - x0y 
t=l  \Jt=0        ^ '    / 

«=1  Jfc=0 

X £ (^(Xi - X0)
J+l(Xo - X0)k-%o-h,sa+h](Xi) 

fc=0 1=0   v   ' 

x j£ (xt - x0y'+< i[»0-Mo+fc](^)| (13) 

This leads to a representation of local polynomials in 
central (sample) moments (in braces) 

n 

™i = E (Xi " ^°)J WMO+M(*0 •       (14) 
»=i 

What remains is to find a fast and stable updating for- 
mula for rrij . For this purpose we generalized a formula 
for pooling estimates of variance (j = 2) by Chan, Golub 
& LeVeque (1983). Their formula is known to be fast 
and stable. It has been independently introduced by 
Spicer (1972) for the computation of central moments 
(j = 1 to 4). Suppose we have two distinct subsam- 
ples Xn,...,Xi„t with means Xt and central moments 
rrijt ,£ = 1,2. Denote by X and rrij the mean and cen- 
tral moments of the union of both subsamples. Then the 
"add"-part of updating becomes 

X = X1 + n2(X2-X1)/(ni + n2) (15) 

and 

m} = f^ixu-xy+jrixv-xy 
i=l 

i 

t=i 

*=o 
= E!»-» m*,i 

ib=o ^ ' 

Note, that m^j = 0 and m0ii = rn . Denote 

d = X1-X. (17) 

We get X2 - X - -ni d/n2 and for j > 2 

+ ,„(!_(_£)-') (18) 
A subsample is removed ("subtract"-part of updating) 
bv 

Xi=X + na(X-X2)/ni (19) 

and 

= £ (Xu - xj + x; (X2i - x1y - X (x* - x,y 
f=l 1=1 «=1 

= E (j) (-rfrfc m> - E (0 (*» - ^);" «*.> • 
fc=0 v ' t=o  v ' 

Using X2- Xi = -(ni -f n2) d/n2, as before 

i-* 
mjfc,2 

;-l> 

(20) 

Updating the central moments (14) using these formulae 
results in an overall 0(n) algorithm. 

Figure 1 shows the numerical error of the resulting 
fast algorithm, compared with the conventional one. 
Note, that the fast algorithm starts at both ends and 
runs to the middle of the interval. It can be seen, that 
centering at xi = Xo may have numerical advantages 
over centering at a;i = «o , especially at the boundary. 

As can be seen, round-off errors may accumulate and 
restarting will be used to stabilize the updating proce- 
dure. The loss in computational speed is reduced by 
"Exact binning": Consider a hypothetical partition 
of the whole sample into subsamples Xn,..., Xin„ of 
length n0 (bins). If the algorithm is restarted at XQ , 
say, and h is large enough, the points in the interval 
[xo-h,xo + h] are divided into a left part with less than 
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Figure 1: Numerical error of the fast algorithm (with- 
out restarts), compared with the conventional one for the 
Epanechnikov weight function, p = 1, n = 1000 random 
uniform design points and h = 0.25. Solid line is fast, 
dots are conventional algorithm. 

no observations, the central part consisting of subsam- 
ples of length n0 (complete bins), and a remaining right 
part. Once a partition into bins has been chosen, the 
central moments of any bin are independent of the band- 
width h and the output point XQ . Hence storage of mo- 
ments leads to savings in computation time: Given that 
central moments of such a bin have been computed, they 
are stored and can be used for estimation if restarting at 
another output point, with another bandwidth or a new 
(smaller) polynomial order p since they are independent 
of these quantities. This option of binning is particu- 
larly attractive in case of iteration as e.g. for plug-in 
bandwidth selection (Gasser et al., 1991) or when the 
same design occurs repeatedly. The following argument 
is helpful when choosing a bin width no . If the moments 
of the central parts are already available, the computa- 
tion of rrij reduces from 0(nh) to 0{nhriQl) + O(no) 
operations. Consequently no should be 0((n/i)1/'2). In 
the usual binning only the first moments are retained 
which leads to an approximation error there. 

The add-part (15) and (18) of the updating formula 
allows the construction of a moderately fast but highly 
stable algorithm: Computation of central moments of 
bins of length no needs 0(n) steps. Restarting at every 
output point results in 0{mnhnäl) + O(mno) opera- 
tions. For m = 0{n), h = 0(n-1'5), and taking an op- 
timal n0 = 0(n2/5), we get an algorithm with 0(n7/5) 
operations compared to 0(n9/5) of the conventional one. 
The computation of central moments using exact binning 
is more stable than the standard two-pass algorithm, so 
we can expect an algorithm that is not only faster but 
also more stable than the conventional one. Like the con- 
ventional one this algorithm approaches 0(n) operations 

for small bandwidths h = (^{n'1). 

3.4    Solution of the normal equations and 
automatic restart 

Cholesky decomposition was used to solve the normal 
equations (6) for the following reasons: 

• The matrices of coefficients Sn are positive definite. 

• The Cholesky decomposition is fast. 

• The numerical stability is scale invariant and proved 
to be good for the cases of interest. This fact led 
to the decision not to use orthogonal polynomials, 
which would decrease computational speed. 

Also the Cholesky decomposition can be used to solve 
the following two numerical problems: 

• control the numerical condition of the normal equa- 
tions, 

• control the accuracy of the updating procedure for 
computing the normal equations by appropriate 
restarting. 

For this we need some theoretical analysis of Cholesky 
decomposition. 
Cholesky decomposition:  The decomposition is of 
the form 

Sn =LDL'. 

L = ((£jk)) is a lower triangular matrix with diagonal el- 
ements Ijj = 1. D = diag(dy) is the diagonal matrix of 
Cholesky factors. The normal equations are then solved 
step by step. The well known formulae for the decompo- 
sition use only the four fundamental rules of arithmetic: 

dj = s. •it 
k<3 

tjk= ( Sjk — 22 ijt hi dt 
\ t<k 

dk. 

(21) 

(22) 

Cholesky factors dj should be sufficiently away from 
zero compared to s;j- to avoid the loss of significant digits 
in (21). The ratios dj / Sjj are scale invariant. It will be 
shown, that they are hardly affected by the bandwidth 
h and by sample size n, whereas the local shape of the 
design density / may matter. Due to its sensitivity the 
last ratio dp+i / sp+iiP+i is used to assess stability and 
is henceforth called "stability factor". Note, that a scale 
transformation, e.g. to Sjj = 1, does not improve the 
numerical stability of the solution. 
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Figure 2: Stability factor of Sn in (4) for the Epanech- 
nikov weight, function, p = 3 and n — 1000 equidistant 
(above) and uniformly distributed (below) design points, 
depending on xn and h. 

Under common assumptions, from (8) we get an 
asymptotic representation 

Sjk 

= Sn,j+k-2 

= nj{u- x0y
+k-2 K (^p-) /(«) du (1 + o(l)) 

= n /(*«,) V+*-1 J *i+*-2 K(x) dz (1 + o(l)).  (23) 

Singularity: Formula (23) leads to theoretical val- 
ues of Cholesky factors dj and the stability factor 
dp+i j Sp+i,p+i of Sn ■ For finite samples, the term f(x0) 
in (23) has to be replaced by a value, which only depends 
on the shape of the design density in [x0 - h,x0 + h]. 
The Cholesky factors are of order dj = 0(n/*2i-1) as is 
Sjj . Consequently, if the number of points in the local 
smoothing interval is not too small, the stability factor 
of Sn is near to a value, which does not depend on n and 
h, but only on the weight function used. 

Figure 2 shows the stability factor of Sn in (4). As will 
be explained below, for minimal bandwidth the polyno- 
mial weight function is replaced by the uniform one. The 
figures show a plateau which is close to the theoretical 
value 0.229 even for small bandwidths. The approxi- 
mation is extremely good for the fixed design.  At the 
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Figure 3: Stability factor (above) of Sn in (4) for h = 
0.001, the uniform weight function, p = 3 and n = 100 
uniformly distributed design points. Solid line is stability 
factor for sing = 10-2, dashes are stability factor for sing 
_ ig-30. Below are corresponding numerical errors. 

boundaries — increasing with h — the stability factor 
changes. 

As to be expected a priori, and as shown by the fig- 
ures, singularity is only a problem for small bandwidths. 
Theoretically, p-f 1 points — already required in section 
2 — are sufficient to obtain a stable solution. However, 
in practice numerical problems may arise, basically due 
to two reasons. The first is that the polynomial weight 
function decreases the influence of points close to xo±^- 
As a first step we switch to uniform weights when there 
are only p+1 points in the interval. Then X and W are 
nonsingular (p+1) x (p+1) matrices, and from (6) the so- 
lution ß = X'1 Y is independent of the weight function. 
Thus, the estimator is not changed, but its computation 
is more stable. A second reason for stability problems 
is, that in the random design case design points may lie 
close together. The independence of the stability factor 
of n and h gives the possibility of controlling the stabil- 
ity of the normal equations. Sn is defined to be singular, 
if 

dp+i I Sp+i,p+i < sing x "theoretical value" , 

where the theoretical value is derived from (23) and 
"sing" can be choosen by the user. However, the size 
of the parameter is not critical. After careful evaluation 
the standard value was set sing = 0.01. The theoretical 
values used depend only on p and the weight function 
and are given in advance. If Sn is singular, the local 
smoothing interval is enlarged by one point. 
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Figure 4: Stability factor (above) of Sn in (4) for the 
Epanechnikov weight function, p — 5 and n = 1000 
equidistant design points. Solid line is numerical sta- 
bility factor without restart; dotted line is stability factor 
with restarts, graphically indistinguishable from the true 
stability factor. Below are numerical errors for v = 4 
without (solid line) and with (dots) restart. 

Figure 3 shows this modification when applied to the 
stable 0(n7/5) algorithm described in section 3.3. Us- 
ing sing = 0.01 only a few local smoothing intervals are 
changed, but the algorithm is much more stable. 
Stability of updating: As noted above, the updating 
procedure for computing moments in the matrix Sn may 
lead to substantial round-off errors. The aim is to detect 
such departures and to restart the updating procedure. 
The computation of the stability factor of Sn uses all 
moments m;- in a complex manner, and hence allows 
the possibility of controlling numerical stability of the 
updating algorithm. 

Figure 4 (above) shows the numerical stability factor 
of Sn in (4) without and with restarts. Note, that the 
algorithm starts at both ends and runs to the middle 
of the interval. Data are generated for a polynomial of 
order 5, so that a straight line for v = 4 is estimated. 
The figure illustrates, that the stability factor can serve 
as a device for detecting accumulation of round-off errors 
m.Sn. 

We use the stability factor at the last restart as bench- 
mark, and update, as long as 

1 "computed stability factor" 
stab      "stability factor at last restart" 

< stab 

The success of this restart rule using stab = 0.95 is 
demonstrated in figure 4 (below). Here is only 1 ad- 
ditional restart, but numerical stability is greatly im- 

proved. 

4    Evaluation of algorithms 

Two aims are pursued in this section: 

• to check and compare numerical stability, 

• to evaluate computational speed. 

The scope of the evaluation is as follows: 

• The range of bandwidths goes from the minimal to 
the maximal one. 

• Interest is focussed on derivatives of order u = 
0,1,2, while v — 3,4 are of interest to estimate 
smooth functionals of r("\ 

• Polynomial orders p = v + 1 are of prime interest 
and p — v + 3 is still of sufficient interest to warrant 
full evaluation. Higher order polynomials around 
p = 10 illustrate the range of applicability. 

4.1    Realization of algorithms 

The following three algorithms are considered: 

conventional: the conventional 0(n9/5) algorithm 
based on (11). In fact the conventional algorithm 
should use (8), but for polynomial weight functions 
(11) is only a slight modification. 

fast: the fast 0(n) algorithm derived in section 3.3, 
based on updating normal equations, exact binning, 
centering while moving, controlling ill-conditioned 
situations for small bandwidths and data-tuned 
restarting the updating procedure. 

stable: the superstable 0(n7/5) algorithm as "fast", but 
restarting at every output point (no updating). 

The algorithms were realized in Fortran 77 with dou- 
ble precision on a Sun IPX-workstation. They have ad- 
ditional common features: 

• To reduce numerical boundary problems, the algo- 
rithms start at both ends and run to the middle of 
the estimation interval. 

• The algorithms use Cholesky decomposition with 
parameters sing and stab described in section 3.4. 

• When solving the normal equations, the coefficient 
matrix Sn is assumed to be nonsingular. In theory 
this is fulfilled, if the number of observations in the 
local smoothing interval [XQ — h, XQ + h] is at least 
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Figure 5: Elapsed time (in seconds) of different algo- 
rithms for v — 0 and p — 1 depending on sample size 
n. Solid line is conventional, dashes are stable, and dots 
are fast algorithm. 

p+1. Consequently, in case of a numerically singu- 
lar matrix (see section 3.4), the local bandwidth is 
increased. 

• If the number of observations in the local smoothing 
interval is minimal, uniform weights are used. If 
this number is p + 1, this gives the same estimator 
as polynomial weights. However, the unweighted 
estimator is numerically more stable. 

• Updating saves computing time but possibly costs 
in numerical stability. We should restart if the situ- 
ationJs_extremely insiable or iLan update does not 
save time. Hence a restart is forced if the number of 
observations is minimal, or if an update would re- 
move more than one third of the observations used. 

4.2 The design of the case study 
The designs considered were fixed and random on [0,1] 
with uniform (/(x) = 1), linear (f(x) = 2x) and trun- 
cated normal (f(x) = <p(2x-1) /,(2 $(1) -1)) densities. 
The number of observations runs from n — 10 to 10000, 
focussing evaluations on n = 1000. Regression func- 
tions are polynomials, thereby avoiding problems with 
bias. Exact observations and observations with normal 
errors were used. The Epanechnikov weight function was 
chosen because of its optimality. 

4.3 Computational speed 
Figure 5 compares elapsed time of algorithms as a func- 
tion of sample size n for random uniform design on [0,1], 
equidistant output grid with m — n points, and band- 
widths ft(n) = 0.2 n"1/5. The stable and fast algorithms 
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Figure 6: Elapsed time (in seconds) of different algo- 
rithms for v = 0 and p = 1 depending on bandwidth (on 
logarithmic scale). Solid line is conventional, dashes are 
stable, and dots are fast algorithm. 

used bins containing about (2 n ft)1/2 observations. The 
fast algorithm is to a good approximation 0(n). From 
n = 1000 to 10000 elapsed time increased by a factor 14, 
slightly more than the factor 10 ideally expected. These 
results were confirmed for other situations. 

A further point of interest is computational speed 
with respect to bandwidth. For fixed sample size, 
elapsed time of the conventional algorithm is about pro- 
portional to h. The speed of fast algorithms is expected 
to be approximately independent of ft. 

Figure 6 illustrates how elapsed time depends on ft for 
equidistant design and output grid on [0,1] with m = 
n = 1000 points. The stable and fast algorithms used 
bins of same length as in figure 5, i.e. they contained 10 
observations. In fact, elapsed time of the fast algorithm 
is almost constant. For graphical reasons the time axis 
was cut. The conventional algorithm needed 6.9 seconds 
for ft = 0.5, compared with 0.1 seconds for fast and 
superstable algorithms. 

The elapsed time of the fast algorithm was compared 
with that of the fast Fourier transform (Rabiner k Gold, 
1975, p. 367). Evidently, the FFT is in general not ap- 
plicable to estimating the regression function r (or its 
derivatives) in model (1), due to inherent restrictions 
with respect to design, boundary problems etc. Due to 
its well-known good performance in terms of speed it 
can be taken as a benchmark in this respect. In the 
case whith n = 2k equidistant design points, v = 0 and 
m = n, which is ideal for the FFT, our fast algorithm 
needed only 70 % more time. 

The attractive computational efficiency of updating 
algorithms has also been confirmed by Fan k Marron 
(1993) in a comparison with existing fast algorithms. 
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Table 1: Maximal relative numerical errors rdist of 
algorithms over h for exact data, m = n = 1000 and 
p = v +1, using sing = 10~2 and stab = 0.99. 

Table 2: Maximal mean numerical errors mdist of al- 
gorithms over h for exact data, m = n = 1000 and 
p = v + 1, using sing = 10~2 and stab = 0.99. 

max/, rdist (h) 
design V convent stable fast 

fixed 0 0.19E-13 0.19E-14 0.27E-11 
uniform 1 0.24E-11 0.11E-11 0.18E-07 

2 0.23E-08 0.12E-09 0.28E-04 
3 0.23E-05 0.52E-06 0.23 E-02 
4 0.80E-02 0.23E-04 0.32 

random 0 0.19E-12 0.33E-14 0.30E-13 
uniform ' 1 0.55E-10 0.11E-09 0.11E-09 

2 0.57E-06 0.13E-07 0.13E-07 
3 0.57E-02 0.15E-05 0.15E-05 
4 0.31 0.71E-03 .0.71E-03 

fixed 0 0.55E-13 0.43E-14 0.17E-10 
linear 1 0.13E-11 0.57E-12 0.71E-08 

2 0.33E-08 0.61E-09 0.28E-08 
3 0.10 0.44E-06 0.80E-06 
4 1.9 0.14E-03 0.62E-03 

random 0 0.34E-13 0.13E-13 0.33E-13 
linear 1 0.40 E-10 0.63E-10 0.63E-10 

2 0.63E-01 0.83E-08 0.83E-08 
3 0.10 0.17E-05 0.17E-05 
4 2.0 0.27E-03 0.27E-03 

fixed 0 0.41E-13 0.27E-14 0.32E-11 
normal 1 0.18E-11 0.52E-12 0.31E-10 

2 0.29E-08 0.16E-09 0.69E-08 
3 0.27E-05 0.21E-06 0.53E-06 
4 0.97E-02 0.16E-04 0.19E-04 

random 0 0.13E-12 0.33E-14 0.14E-13 
normal 1 0.71E-10 0.10E-09 0.10E-09 

2 0.22E-01 0.32E-07 0.32E-07 
3 0.31E-01 0.46E-05 0.46E-05 
4 2.0 0.41E-03 0.41E-03 

max/, mdist(A) 
design V convent   |    stable fast 

fixed 0 0.14E-14 0.81E-15 0.40E-12 
uniform 1 0.26E-13 0.13E-13 0.15E-08 

2 0.80E-11 0.72E-11 0.77E-06 
3 0.65E-08 0.17E-08 0.56E-04 
4 0.23E-04 0.26E-06 0.53E-02 

random 0 0.19E-13 0.13E-14 0.39E-14 
uniform 1 0.75E-12 0.97E-12 0.97E-12 

2 0.14E-08 0.14E-09 0.14E-09 
3 0.94E-05 0.28E-07 0.28E-07 
4 0.39E-03 0.42E-05 0.42E-05 

fixed 0 0.37E-14 0.91E-15 0.20E-11 
linear 1 0.52E-13 0.36E-13 0.27E-09 

2 0.35E-10 0.27E-10 0.44E-10 
3 0.79E-03 0.11E-07 0.11E-07 
4 0.33E-02 0.17E-05 0.17E-05 

random 0 0.31E-14 0.80E-15 0.44E-14 
linear 1 0.64E-12 0.75E-12 0.76E-12 

2 0.27E-03 0.16E-09 0.16E-09 
3 0.13E-02 0.29E-07 0.29E-07 
4 0.11E-01 0.33E-05 0.33E-05 

fixed 0 0.26E-14 0.76E-15 0.86E-12 
normal 1 0.39E-13 0.39E-13 0.61E-11 

2 0.16E-10 0.95E-11 0.10E-08 
3 0.75E-08 0.31E-08 0.31E-08 
4 0.24E-04 0.37E-06 0.37E-06 

random 0 0.31E-14 0.11E-14 0.19E-14 
normal 1 0.67E-12 0.11E-11 0.12E-11 

2 0.53E-04 0.15E-09 0.15E-09 
3 0.59E-04 0.27E-07 0.27E-07 
4 0.21E-02 0.40E-05 0.40E-05 

4.4    Numerical stability 
To check numerical stability the relative distance in sup- 
norm is used 

rdist = 
max | r^(xj) — r^v\xj) \ 

i  
1   m   

(24) 

i=i 

where r("\x) denotes the "true" estimate, r^fe) is the 
result of an algorithm, and f (") is the mean of true esti- 
mates. Also the following mean distance 

m 

mdist =^ —— (25) 

is used. The weaker criterion "mdist" may be relevant 
in those cases where only a smooth functional of r^ is 
of interest, as is often the case for v = 3,4. 

When inspecting stability across many situations, 
problems can arise typically for small bandwidths. This 
result should be kept in mind when judging tables 1 and 
2, which give maximum numerical error across band- 
width h for supremum and for mean distance. 

Table 1 shows maximal relative numerical error rdist 
of algorithms over h = 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 
0.3, 0.4, 0.5 for n = 1000 design points and m — 1000 
equidistant output grid points. The regression functions 
are polynomials of order p = v + 1. The data are exact 
without random errors. The function A") to be esti- 
mated always is the straight line from — 1 to 1. 

Table 2 gives maximal mean numerical error mdist 
over h in the same situation. The numerical accuracy is 
good to very good for v ranging from 0 to 3. For v = 4 
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the fast algorithm may break down in terms of maxi- 
mal numerical error rdist, but still is useful in terms of 
mdist. This shows that there are only isolated problems 
with numerical accuracy and this has been confirmed 
graphically. 

For p = v + 3 the precision of the superstable and fast 
algorithms is reduced by a factor of about 10. The con- 
ventional algorithm has problems at the boundaries for 
higher order polynomials because of the ill-conditioned 
normal equations there. The superstable and fast algo- 
rithms, however, even work stably in terms of rdist for 
v = 1.....4, p = 10,11, such that p - v is odd. As 
expected, they are no longer fast then, and one might 
in these cases prefer the superstable algorithm from the 
beginning. The conclusions were confirmed by data with 
random noise and nonpolynomial regression functions. 

4.5    Conclusions 

We derived a fast algorithm, which is stable over the 
whole region of interest, i.e. up to polynomials of order 
about 10. The conventional algorithm has problems in 
terms of stability for very small bandwidths and at the 
boundary. The superstable algorithm proved to be more 
stable than the conventional one, and is at the same 
time much faster. It is attractive that the algorithms 
allow fitting of curves as well as derivatives, both for a 
global or local bandwidth choice. 
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Abstract 

Given random variables X € Md and Y such that 
E[y|X = x] = m(x), the average derivative <?o is defined 
as So = E[Vm(Y)], i.e., as the expected value of the 
gradient of the regression function. Average derivative 
estimation has several applications in econometric the- 
ory (Stoker, 1992) and thus it is crucial to have a fast 
implementation of this estimator for practical purposes. 

We present such an implementation for a variation 
known as density-weighted average derivative estima- 
tion. This algorithm is based on the ideas of binning 
or Weighted Averaging of Rounded Points (WARPing). 
The basic idea of this method is to discretize the original 
data into a d-variate histogram and to replace in the non- 
parametric smoothing steps the actual observations by 
the appropriate bincenters. The non-parametric smooth- 
ing steps become thus a (multi-dimensional) convolu- 
tion between the (discretized) data and the (discretized) 
smoothing kernel. 

A Monte-Carlo study demonstrates that with this 
binned implementation substantial reduction in comput- 
ing time can be achieved. But it will also become clear 
that in higher dimension the choice of how to bin is 
crucial. 

1    Introduction 

Average derivative estimation tries to estimate the mean 
slope of the conditional mean of the response variable, 
i.e., given a response variable Y, whose expectation is 
assumed to depend on a d-dimensional variable X via a 
smooth function m, the aim of average derivative esti- 
mation is to estimate the average slope of this function. 
In other words, if 

respect to the coordinates of X, the aim is to estimate 

60 = E[Vm(I)] 

respectively a weighted version 

6W = E[Vm(X)w(X)] 

(1) 

(2) 

where w(») is a non-negative weight function. If we 
choose as weight function w(x) = f(x), the marginal 
density of X, our estimand becomes: 

6   =    E[Vm(X)f(X)] 

=   -2E[YVf(X)] (3) 

Where (3) follows by partial integration. The prob- 
lem of estimating the density-weighted average deriva- 
tive, as given by (3), was studied by Powell, Stock and 
Stoker (1989). 

Average derivative estimation can be used in many 
econometric models (Stoker, 1992; Härdle, Hildenbrand 
and Jerison, 1991). As one example, we want to mention 
single-index models (also called one-term projection pur- 
suit models). In these models the regression function m 
has the form 

m{x) = g(xTß), (4) 

where g is an unknown univariate function and ß is a 
d-dimensional (projection) vector. Stoker (1986) gives 
an extensive discussion and motivation for models of the 
form (4). The semiparametric model (4) covers a broad 
range of important parametric models such as probit and 
logit models, censored regression, Tobit models etc. 

It is easy to see, that in this case we have 

Vm(z) = g'(xTß)ß 

E[Y\X = x] = m{x) and thus 

and V denotes the gradient of partial derivatives with 6Q = E[g'(XTß)]ß   and   6W = E[g'(XTß)w(X)]ß. 
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This means that (weighted) average derivative estima- 
tion allows us to estimate the unknown projection ß up 
to a scale constant. This is in fact the best we can do 
in the semiparametric single-index model given by (4). 
If the pair (g,ß) fulfills model (4) then for any c € R, 
c ^ 0, the pair (g, ß) with 

g(*) = g(*/c)    and   ß - cß 

does so too. 
The rest of this article is structured as follows, Sec- 

tion 2 will describe the density-weighted average deriva- 
tive estimator as proposed by Powell et al. (1989). In 
Section 3 we will propose how to implement this estima- 
tor using binning ideas and to achieve thus considerable 
run-time gains. Finally in Section 4 we will discuss some 
further points related to the binning method. 

2    Direct implementation 

2.1    Estimator for 6 

To estimate the density-weighted average derivative 8, 
Powell et al. (1989) propose to estimate the gradient of 
the marginal density of the X variables nonparametri- 
cally at each observation point by, say, V/(zi)- Their 
estimator for 8 is 

6 = --y>v/(*,) (5) 

which can be motivated as a method of moment estima- 
tor in which the unknown function V/ is replaced by a 
nonparametric estimate of it. 

To estimate the gradient of / nonparametrically, Pow- 
ell et al. (1989) use the gradient of a multivariate kernel 
density estimator (Silverman, 1986; Scott 1992). Given a 
d-variate kernel K (think of K as a d-variate density func- 
tion) and a d X d positive definite matrix H of smooth- 
ing parameters a nonparametric estimate of the marginal 
density / at a point x G Rd would be 

where x = (xi,..., Xdf and Xj = (XJI, ..., Xjd)T- 
Powell et al. (1989) do not use the nonparametric den- 

sity estimator given in (7) directly, but a leave-one-out 
version of it. (For this reason the estimator 6 has a U- 
statistic structure and can be easily analyzed.) Thus to 
estimate the marginal density / at the observation Xi, 
they drop xi from the sample and calculate fh(xi) from 
the remaining sample (of size n — 1). As a further simpli- 
fication they use only one bandwidth for all dimensions. 
So the estimator Vf(xi) which they use in (5) is: 

w(.) = ^E^'(^) (8) 

is*' 

/     dX!    \ 
t n      d 1 ' 

n — 1 ir-i f-~ 
V   dxi   I    \ 

with Kh{u) = K{u/h)/h. 

j=ifc=i 
3*i 

2.2    Asymptotic properties 

Powell et al. (1989) showed that under certain regularity 
conditions and a suitable choice for K and the rate with 
which h tends to zero, the estimator 8 given in (5) is 
consistent and has an asymptotic normal distribution. 
More specifically they proved that 

Vn («-«) -^N(0,E) 

where 

E    =   AE[r(X,Y)r{X,Y)T]-A68T, 

r(x,y)    =   /(aj)Vm(ar) - {y - m(ar)}V/(e). 

2.3    Estimator for the variance 

To estimate the asymptotic variance E of 6 Powell et 
al. (1989) propose to estimate r(x{, j/j) by: 

For numerical ease, a common choice is to take K 
as a product of d univariate kernels K, and to re- 
duce if to a diagonal matrix, so that we have only a 
d-dimensional vector h of smoothing parameters. Wand 
and Jones (1993) discuss for the two-dimensional case 
the implications of this simplification. With this choices 
(6) simplifies to 

and thus E by: 

7« 

E = 4 t=i ■ - 4P (io) 

A« 
l 

nh\.. .ha * EU* 
=1 k=\ 

Xk — Xjk 
(7) 

In the next section we will discuss how fast implemen- 
tations for 8 and E can be obtained by using binning 
techniques. 
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3    Binned implementation 

3.1    Basic idea 

The basic idea of binning methods is to replace each ob- 
servation of Xi by the nearest point bz from a regular 
spaced grid. To fix ideas consider kernel density estima- 
tion in the one-dimensional case, 

1   " 
(11) 

i=l 

and take the regular grid {6* : bz = zA, z e ZS} where A 
is a fixed constant, the binwidth. Replacing now each a;,- 
in (11) by the nearest bz, we see that we have to evaluate 
the kernel K only at integer multiple of A/A: 

--MT1 l = -L,...L (12) 

Here L is chosen such that AL/h fa 1 if K has com- 
pact support on [—1,1] (if K is the Gaussian kernel, i.e., 
the kernel has no compact support, Wand (1993) rec- 
ommends AL/h fa 4). If we denote further by nz the 
number of observations X{ which have bz as their nearest 
point in the grid, we see that we can approximate (11) 
by (let bz be the point nearest to a;,-): 

fh(Xi)    =    ~Y^Kh{xi-Xj) 

1   " 
fa    — 2_]wz-h>    ^'i 1S nearest to Xj 

1    L 

=   ;E Wz-im. 
l=-L 

The last formula is a discrete convolution between the 
vector of weights (the discretized kernel) and the vector 
of bincounts nz (the discretized data). 

Silverman (1982) uses a fast fourier transformation 
to calculate this discrete convolution. Another algo- 
rithm which does not use the fast fourier transform is 
given in Scott (1985) (see also Härdle and Scott, 1992; 
Härdle, 1991). Fan and Marron (1994) describe how to 
use these ideas for other nonparametric curve smoothers. 

Fan and Marron (1994) also quantify the run-time 
gains achievable using these ideas. These run-time gains 
are mainly due to two facts. First we have much less 
kernel evaluations, in fact we have to evaluate the ker- 
nel only once on a finite grid of points. Secondly, once 
the data is discretized the nonparametric curve smoother 
is estimated at the grid points bz and not at the origi- 
nal observations a:,-.  Usually the number of grid points 

at which the smoother is evaluated is (much) smaller 
than n. The estimate at an original observation x,- is ei- 
ther taken as the estimate at the nearest bz or obtained 
by linear interpolation between the estimates of the two 
nearest grid points (Jones, 1989). 

A 

3.2    Application to 8 

The ideas presented in Section 3.1 above are readily ex- 
tendable to the multivariate case (Wand, 1993) and to 
the estimator 6. 

Again we define a (multivariate) grid of equidistant 
points bz € Md and replace a:,- G Md by the near- 
est bz. To fix ideas let A = (Ai,..., Ad)T be a fixed 
d-dimensional vector and define bz by 

bz - zA = (ziAi,..., zdAd)T 

for each multi-index z = {z\,..., Zd)T £ "Zd. Note the 
pointwise multiplication of the vectors z and A above. 
In the rest of this article, if not indicated differently, we 
mean this kind of pointwise vector multiplication rather 
then the standard matrix multiplication when we multi- 
ply two vectors. 

For each z 6 ZSd, let again nz denote the number of 
observed a;,- for which bz is the nearest grid point. For a 
binned implementation of the estimator V/ we also need 
to discretize the derivative of the kernel K: 

»«=sHx') 
/ — — Lj,.. .,Lj 
j = l,...,d (13) 

and define w\j analogous to (12) by replacing A by A;-. If 
we define now for each multi-index / = (/i,..., ld)T G %d 

the corresponding weight w't £ Rd by: 

/   ÜhiWl22---Whd  \ 

Wi = 

\   WlllW,32---Wlid   ) 

we see that analogous to the example in Section 3.1 a 
binned version of the estimator V/ is: 

_ 1       h 

V/(t,) = —j- £<_'"'• (14) 

Note that the sum in (14) is actually a sum over d indices 
li,...,ld, each lj taking values from — Lj to Lj, j = 
l,...,d.  Also, the multi-index z — / in (14) is z — I = 
C*i -h,-.-,Zd-k)T- 

Thus a binned version of the density-weighted average 
derivative 6 is: 

6 = — X) n>y*^f{bz) (15) 
Z£Z* 
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where yz is the average over all observation yi such that 
bz is the nearest grid point to the corresponding X{. 
Note that the summation in (15) is actually only over 
all ze%d such that nz ^ 0 and is not an infinite sum. 
Furthermore, if we compare (5) with (15) we see that 
the only approximation error we do is due to replacing 
Vf(xi) by fj(bz). With respect to the y we "keep the 
full resolution". 

3.3    Application to S 

In this section we will discuss the implementation of a 
binned estimator for the asymptotic variance S given 
in Section 2.2. A naive way of implementing such an 
estimator would be to plug into (10) a binned estimate, 
say, f(bz) for r(a:,-,y,-), given in (9), to obtain: 

E = 4 

£ ?{b,)r(b,)T 

(16) 

with 6 from (15). The binned estimate f(bz) is easily 
derived in the same way as demonstrated in Section 3.1. 
Let bz be the grid point nearest to xit then we have: 

r(xi,yi) = 

3 = 1 

1 " « _ V«/;_,.(jfc - yj)Mj is nearest to x3- 
n— 1 •f—' ' 

3 = 1 

1 h 

  Y] w'2_,n,(yi - 9i) = r{b„yi) 

1    
L 

«  y\ w'z_,ni(yz - yi) = f(bz) 
n — 1 ,^—', \=-L 

Note that the only approximation error in f(bz, y») is due 
to replacing the x,- by the grid point bz. Thus for f(bz, y.) 
we have still the full resolution in the y-direction. Only 
if we go to f(bz) we make an approximation error in that 
direction too. The motivation for this approximation is, 
that if several xt exist which have bz as nearest grid point 
then we should average over the corresponding f(bz,yi) 
to get a unique estimate f(bz) at bz. 

However, the binned implementation which we get 
if we insert r(bz) in (16) does not work. The rea- 
son for this is explained and graphically illustrated in 
Proenca and Turlach (1994). On one side we make an 
approximation error in the y-direction by going from 
r(bz,yi) to r(bz). On the other side we want to approx- 
imate f(xi,yi)f(xi,yi)T which involves a squared term 

in y. Thus we have to take into account what Proen$a 
and Turlach (1994) call the within-bin-variability of y. 
This means that we can not find a binned estimator for 
r(xi,yi)r(xi,yi)T by finding one just for r(a;;,y8-), but 
that we really have to consider this product directly. 
Hence a "correct" binned estimator can be found by ob- 
serving that: 

r{xi>yi)Kxi>yif w 

«r(k,y.-)r(&z,y0 
2     L L f   1   \2   L     L 

^n      yJ    l=-Ll'=-L 

ni(yi -yi)nv(yi-yv) 
i     L 

IT 
-i™z-v X 

ni(yi -yz + yz- yi)nv(yi -yz+y*~ y>) j 

ninv(yi - yz)(2yz - yi - yv)> 

-ff-^-r)   ^^w'^w^nmviyi - yz)
2 

\n      l'    l,V=-L 

And thus the sum YA=I f{xu yi)f(xi,yi)T can be approx- 
imated as: 

n 

£r(z;,yi)r(:Ei,yi)T « 
t=i n 

ze^* 

(  )   y)Vti;,_/u>JL,.nini»n,(yJ - i£) ^ 

z€^i 

_ rrT 

Note that because of the summation over i the term 
which includes (y; - y*)(2y* - yi - yV) drops out, i.e^, 
the sum is zero. Also, y\ denotes the square of yz and y| 
denotes the mean of all yf such that^ x{ has bz as nearest 
grid point. This term, namely nz{yl -fz), measures the 
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variability of Y around the grid point 6*. This term is 
obtained by expanding (j/,- — yz)

2 and summing over i. 
Note that if we choose A so small, that each grid point bz 

has at most one observation x,- for which it is the nearest 
point then all of these within-bin-variability terms vanish 
and the binned estimator given in (16) would be correct. 

However, in general we have to take these terms into 
account. Thus a "correct" binned estimator for the vari- 
ance matrix is given by 

S = 4 
rrx 

4561 

with 6 from (15). 

4    Closing remarks 

In the previous section we demonstrated how the simple 
and intuitive basic binning idea can be applied to the 
density-weighted average derivative estimator 6 and the 
estimator of the asymptotic covariance matrix E. Some 
questions still remain which we would like to address 
here. 

From (14) we see that V/(6Z) is a discrete convolu- 

tion, the same is true for f(bz) and rrT. How should we 
calculate this discrete convolution? As mentioned above 
Silverman (1982) and Wand (1993) use a fast fourier 
transformation. However, this method is inappropriate 
in our situation since we are only interested to calculate 
these estimates at the points bz which have some ob- 
servation close enough to them, i.e., for which nz ^ 0. 
But a fast fourier transformation method would calcu- 
lated these estimates at all grid points bz. Just imagine 
the case where we have a two-dimensional X-variable 
and we choose our grid such that we have 100 different 
grid points in each dimension. The complete grid will 
have 10.000 points bz. In this case a fast fourier trans- 
form method would calculate V/(6*),... at all these grid 
points. Clearly this involves many unnecessary calcula- 
tions if the sample size is not too big. 

The fast fourier transform approach is feasible if we 
need estimates at all grid points for example if we want 
to make a plot. But it is also not clear if the fast fourier 
transform is the fastest method in such a case. Fan and 
Marron (1994) find that this approach is not the fastest 
for the one-dimensional case whereas Wand (1993) favors 
the fast fourier transform in the two-dimensional case. 
Scott (1992) describes alternative algorithms which do 
not use a fast fourier transform. These algorithm step 
through all grid points bz with nz ^ 0 and just do the 
necessary calculations at these points and in the neigh- 
borhood of bz (as defined by the Lj), i.e., also these al- 
gorithms calculate the estimates on the whole grid. For 

the discrete convolution necessary here we recommend to 
use specialized versions of the algorithms of Scott (1994) 
which step through all grid points bz with nz / 0 and 
do the necessary calculations only at these points. 

Closely related with the question "How to perform 
the discrete convolution?" is the question "How shall 
one discretize the data?". Until now we always used 
a kind of "histogram" binning in which nz was integer 
and each observation was shifted to (replaced by) the 
nearest grid point bz. For the one-dimensional density 
estimation Jones and Lotwick (1984) proposed an alter- 
native called "linear" binning. In this variation the nz 

are no longer integer and each observation is distributed 
onto the two nearest grid points. Hall and Wand (1993) 
propose further variations for the binning procedure and 
quantify the error which is introduced by using binning 
techniques (see also Gonzälez-Manteiga, Sanches-Sellero 
and Wand, 1994). 

But the use of such techniques in a higher-dimensional 
setting is problematic. A binning technique like "lin- 
ear" binning which distributes each observation in one- 
dimension on two grid points, will distribute each obser- 
vation in d-dimension onto 2d grid points. This could 
have the effect that we have more grid points bz with 
nz ^ 0 than observations! Take for example a two- 
dimensional standard normal variable and use linear bin- 
ning with a grid where A = (0.03, 0.03)T. If the sample 
size is n = 250 we have on the average 950 grid points bz 

at which nz ^ 0. The result of this is that, even if we use 
the algorithms described above for the discrete convolu- 
tion, the binned implementation using "linear" binning 
is slower than the direct implementation. 

This was verified in a Monte-Carlo study with a bi- 
variate X-variable (and Y generated according to a lin- 
ear model and a probit model). Using the adapted algo- 
rithms from Scott (1992) for the discrete convolution and 
"linear" binning hardly no run-time gains were observed 
and for a grid with small A the direct implementation 
was even faster. If "histogram" binning was used, how- 
ever, we observed run-time gains of a factor 10 over the 
direct implementation. 

Thus we recommend to use "histogram" binning and 
the (adapted) algorithms of Scott (1993) for functional 
estimation in higher dimensions. 
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Experiences With Derivative-Free REML 

L. Dale Van VIeck 
ARS-USDA, U.S. Meat Animal Research Center and 

University of Nebraska, Lincoln, NE 

Abstract Introduction 

A set of Fortran programs has been developed to 
obtain (co)variance estimates for multiple trait genetic 
analyses with different models for each trait using die sparse 
matrix package SPARSPAK, and a derivative-free algorithm 
to obtain REML estimates (MTDFREML). A typical 
analysis would include birth weight of all animals, weaning 
weight and yearling weight on those surviving. The model 
would include direct genetic and correlated maternal genetic 
effects for each animal and uncorrelated maternal 
environmental effects (a total of 33 (co)variance 
components) as well as other fixed or random effects 
associated with the traits. The simplex algorithm is used to 
search for components to minimize -2 log likelihood - 
FVALUE. The FVALUE for equations of order 60,000 or 
more can be evaluated on personal computers for each of the 
potentially thousands of rounds needed to obtain REML 
estimates. Efficiency depends on density of the mixed 
model equations. Nongenetic models are usually much more 
sparse than genetic models that incorporate numerator 
relationships among the animals. Scaling of variables is 
sometimes a problem due to rounding in calculation of 
FVALUE; e.g., multiplying categorical variables by 100 led 
to successful convergence. The search algorithm is stopped 
when variance for FVALUEs in the Simplex is from 10   to 

Q 
10" , often at a local minimum. With multiple trait analyses, 
several restarts may be needed to find the global maximum. 
An evolving strategy is: 

1. begin with only variances included to minimum local 
convergence. 

2. restart with (»variances included to minimum local 
convergence until FVALUE change is no more than 
a unit. 

3. restart with maximum local convergence (10 to 
10"8) until FVALUE change is only at second or 
third decimal when global maximum is declared. 

Successful analyses with MTDFREML require "art" as well 
as "science". 

Restricted maximum likelihood (Patterson and 
Thompson, 1972) has become the preferred method of 
animal breeders to estimate (co)variance matrices among and 
within traits described by mixed linear models. The 
traditional algorithms make use of identities based on 
Henderson's (e.g., 1963,1984) mixed model equations which 
have computational advantages including being based on a 
simple modification of least squares equations. Algorithms 
based on derivatives of the multivariate normal likelihood 
given the data have been limited in scope by requiring 
inverse elements of the coefficient matrix of the mixed 
model equations. For practical purposes, that has meant 
mixed model equations with order in the range of 1000- 
5000. 

Derivative-free algorithms that take advantage of the 
sparsity of the coefficient matrix have greatly expanded the 
number of equations that can be managed to the order of 
50,000 to 150,000. The purpose of this note is to outline 
briefly the science of DFREML and then to discuss some 
aspects of the "art" of DFREML as the numerical properties 
are not well understood, at least to most animal breeders. 

The Science of DFREML 

The original algorithm for DFREML as developed in 
animal breeding traces to several sources including the 
realization that Gaussian elimination of augmented least 
squares (although in this case, mixed model) equations can 
be used to obtain the two computing intensive parts of the 
log likelihood (Smith and Gräser, 1986; Graser, Smith and 
Tier, 1987) as the keynote speaker for this conference 
described (Stewart, 1994). The other two developments were 
Hendersons' mixed model equations (e.g., 1963) and the 
discovery that the log of the likelihood can be written in 
terms of four components of the mixed model equations 
(Harville, 1977; Searle, 1979). 
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The general linear model in typical animal breeding 

notation is: 
y - Xß + Zu + e 

E[y] - Xß 

U 

e 
w 
0 R 

, and 

V(y) - V - ZGZ + R 

where y is the vector of observations; ß is me vector of 

fixed effects with association matrix, X; u is the vector of 
random effects with association matrix, Z; and (co)variance 

matrix, G; and e is the vector of residuals associated with 

the observations with (co)variance matrix, R. 
Henderson (e.g., 1984) showed that solutions to mixed 

model equations provide best linear unbiased estimators of 
estimable functions of fixed effects and best linear unbiased 

predictors of realized values of random effects. 

Henderson's mixed model equations (MME) are: 

\ / \    ( N 

XTl^X       X'R-!Z 

Z'R^X ZTR^Z + G'1 

In simpler notation: C s = r. 

u 

XTTV 

Z'R'V 

Note that except for the usual zero covariance between 

the u and e vectors, the mixed model equations are 

completely general and can encompass multiple traits, 

missing observations on some traits of some animals, 
different models for different traits and, for animal breeders, 
relationships among animals due to genes in common, A, 

and genetic (»variances among traits, GQ. 
Typical random factors in animal breeding models 

include animal's direct genetic value, mother's maternal 
genetic value (with genetic covariance between direct and 
maternal genetic values), animal permanent environmental 
effects when animals have repeated records, and maternal 

permanent environmental effects when mothers have more 
than one progeny with records. Other genetic models used 

by animal breeders may include instead of animal effects, 
sire transmitting ability (1/2 direct genetic value of sire), 
maternal grandsire effect and dam permanent environmental 

effect Other variations are also used. 
The large number of variances and (»variances to 

estimate from multiple trait models can be illustrated for 

traits with a direct and maternal  genetic  value  (with 

covariance) and two other random factors such as dam 
permanent environmental and a litter effect in addition to 
residual effects. A single trait analysis will involve five 

variances and one covariance. A two-trait analysis will 

involve those six elements twice plus seven other 

(»variances. A three-trait analyses would have 6 + 6 + 6 + 
7 + 7 + 7   «39 variance and covariance components to 

estimate. 
Harville (1977) and Searle (1979) showed that the 

multivariate normal likelihood given the data is: 
A      - -^[constant + log | R | +log | G | 

+log | C | + yTy] where 
C - coefficient matrix for MME and 

P . v"1 - v"1x(x'v"1x)"1x'v" 
Note that C and P depend on R and G as well as on X and 

Z. 

Derivative-Free Algorithms 

Derivative-free algorithms for REML are based on 

searching for the combination of individual variances and 

covariances associated with R and G that will maximize A 

or, more usually, will minimize, FVALUE - -2A. The 
original algorithm of Smith and Gräser (1986) and that used 

in the single trait program of Meyer (1988) which 

popularized use of DFREML was based on sparse matrix 
Gaussian elimination of C augmented with r with the total 
sum of squares in the corresponding diagonal. Gaussian 
elimination automatically produced a known multiple of yTy 

and log | C | , the difficult-to-compute terms in A. The 
simplex algorithm (Neider and Mead, 1965) is the usual 

choice to search for (co)variances to minimize -2A. 
Boldman and Van Vleck (1991) used subroutines in 

SPARSPAK (George, et al., 1980; Chu, et al., 1984) to 

decrease the time to calculate -2A by factors of 100 to 600 
from the times required by the original algorithm of Meyer 
(1988). SPARSPAK is based on Choleski factorization rather 

than Gaussian elimination and provides a more general form 

for calculation of yTy as well as log | C | . Both the 
Gaussian and Choleski based algorithms lead to general 
programs which are not model dependent, whereas 

derivative based algorithms are more difficult to generalize 
because of the requirements to calculate a quadratic in y for 

each (co)variance component and to calculate the expectation 
of the quadratic which is a function of corresponding 

elements of the inverse of the coefficient matrix. 
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Some general observations are that derivative based 
algorithms are slow to converge, that single trait DFREML 
converges quickly but that multi-trait analyses may converge 
slowly with DFREML. Many restarts may be needed if 
(»variances are estimated (Press, et al., 1989; Groeneveld 
and Kovak, 1990; Boldman and Van Vleck, 1990). 

The Choleski based algorithm used for the 
MTDFREML package (Boldman, et al., 1993) consists of 
two basic steps: 

1. a method (the simplex algorithm) to search for 
parameter estimates to minimize -2A and 

2. formation and solution of MME for parameter 
estimates chosen by the simplex algorithm by use 
of SPARSPAK subroutines to take advantage of 
the usual sparsity of the mixed model equations. 

Their package also includes a program to calculate the 
inverse of the relationship matrix among the animals to be 
used in forming the mixed model equations (Quaas, 1976) 
and a preparation program which recodes animal 
identification and fixed effect levels into equation numbers. 

Calculation of -2A 

If yj is the vector of observations on traits measured 
on animal i, then the residual covariance matrix for animal 
i is Rj. For the usual assumption that residuals from one 
animal to another are uncorrelated, then 

log | R | = E log | R; | where each Rj is dependent on 
the number of traits measured on animal i. All eigenvalues 
of RQ, the maximum order of any Rj, must be positive. 
Thus, one way to calculate log | R | is to calculate the sum 
of logarithms of eigenvalues for each type of Rj and 
multiply by the number of each type of Rj and then sum 
over all types of Rj. The log | G | can be calculated 
similarly and even more easily (e.g., Meyer, 1989, 1991). 

For example, if: 

(A®G0        0 0    N 

0        I,«CU        0 

IÄ M 
then 

log | G | = t log | A | +qlog|G0| 
+ nik>g |Cn| +- + nLlog |CLL| 

where t is the order of G   which is the genetic covariance 

matrix for genetic values of t traits of an animal; q is the 
number of animals in A which is the numerator relationship 
matrix; CJJ, .... C^L are the covariance matrices for the L 
random effects that are correlated across traits but 
uncorrelated across animals with nj, the number of sets of 
eachC 

The two computing intensive terms are calculated from 
the Choleski factorization of C as 2 £ log (€=,) where t« 
is the j diagonal element of the Choleski factor. The 
Choleski factor can be used to solve for s so that yTy is 
calculated as £yiRi"

1yi-s'r where the first term is 
calculated animal by animal. 

The basic steps with sparse matrix techniques are: 
1) Symbolically reorder elements of C (once) 
2) For each likelihood calculation 

a)   update G and R via simplex and calculate 
log | G |   and log | R | , 

b) update C, r, and Ey/RfVi from updated G, 
R, and original y, 

c) calculate log | C | and s'r as described above, 
d) check for convergence (based on change in 

-2A). 
Times required for these steps were 98 sec to reorder, 

44.60 sec to factor, and 1.32 sec to solve (time for a 
likelihood calculation - 44.60 + 1.32 - 44.92 sec) for a 
single trait model with direct and maternal genetic effects 
and maternal permanent effects involving 3,111 animals and 
7,303 equations. A traditional derivative method would 
require inversion of C with order 7,303 for each iteration. 

A three-trait example (Lucia Albuquerque, personal 
communication, 1994) introduces problems encountered with 
multiple trait analyses. The records were milk, fat and 
protein yields for New York Holsteins with measurements 
on up to three lactations per cow. The model included 
animal genetic (9,722) and animal permanent environmental 
effects (animals with records - 5,706) and management 
levels (1,509) associated with herd-year-season at initiation 
of each lactation. The table gives number of equations and 
computing times for one, two, and three trait analyses: 

Milk M,F M,F,P 

Equations(no.) 

Re-order(sec) 

Likelihood(sec) 

16,937 33,874 50,811 

18 61 129 

26 179 594 
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The advantage of spaisity is illustrated by a similar sample 
from California including 10,438 animals, 5,877 cows with 
records and only 225 H-Y-S of freshening. The smaller 
number of H-Y-S levels resulted in less reorder time and 
especially less time to calculate -2A; 14 sec to reorder for 
one trait; 103 sec to reorder for three traits and 11 and 143 
sec for each likelihood compared to times of 26 and 594 sec 
for the New York data. The increased time for each 
calculation of -2A combined with many restarts shows that 
convergence takes a long time with even three traits. 

California New York 

Number Milk M,FJ> Milk NW» 

Restarts 1 10 1 10 

A/Restart 88 400 95 410 

Total A 88 4000 95 4100 

Total time 16.4m 6.6d 41.5m 28.2d 

The single trait analyses took a matter of minutes to 
reach global convergence but the three-trait analyses took 
about a week for the California sample and about a month 
for the New York sample due to the time per likelihood 
calculation and the number of restarts that was needed. The 
increase in time for calculation of A for the New York 
sample is due to the increase in number of levels of H-Y-S. 

Starting values for multiple trait analyses are important 
with DFREML as illustrated by two analyses with different 
pairs of traits for the same animals. The first two traits were 
animal birth weight when born 1) to a young mother and 2) 
to an older mother. The model included direct and maternal 
genetic values (with covariance) and maternal permanent 
environmental effects as some older mothers had more than 
one calf. Thus, the total number of (co)variances was 15; 
3212 animals contributed to relationships, 765 and 1306 
calves were born to young and older mothers resulting in 
14,676 mixed model equations. Starting values for variances 
were based on single trait analyses except that a major input 
error went unnoticed for one maternal genetic variance. A 
total of 22 restarts (restarts were after 150 simplex rounds or 
variance of the simplex less than l.E-6*) was needed before 
-2A changed less than .01 from restart to restart The pattern 
of -2A after each restart was 11500 plus in turn: 34.23, 
29.79, 29.67, 29.28*. 26.82, 25.03, 24.55, 24.43*, 24.15*, 
23.87*, 23.56*, 20.99, 18.54, 18.07, 17.97, 17.91, 17.85, 
17.72*, 17.42, 17.06, 17.02 and 17.01* when global 
convergence was assumed. Several times the system seemed 
on the verge of convergence but would then continue to a 

better set of estimates. 
The similar analyses were with calving ease substituted 

for birth weight Calving ease is a trait that is categorically 
measured which often results in slow convergence. This 
time the starting values were correctly inputed and only 6 
restarts resulted in convergence with consecutive -2A of 
1007.12,994.99,992.04,987.62,986.35 and 986.35*. These 
analyses illustrate some of the frustrations with DFREML 
for multiple trait analyses and serve to introduce the "art" of 
DFREML. 

The "ART" of DFREML 

Convergence 

The question of how to proceed most efficiently to 
find solutions that are globally maximum causes many 
headaches, results in some degree of doubt about the 
reliability of DFREML, and is still basically an art form with 
few established rules. The simplex algorithm is not 
guaranteed to reach a global minimum (in this case for -2A). 
It may lead to a local minimum. Usually the stopping point 
after a start is based on the variance of the n + 1 log 
likelihood values retained in the simplex where n is the 
number of parameters. Common stopping points are when 
V(-2A) is less than a predetermined value such as l.E-4, 
l.E-6, or l.E-8. An alternative, based on experience, is to 
restart after a certain number of simplex rounds or when 
V(-2A) is less fr»" the predetermined constant. (Each 
simplex round requires on average about two likelihood 
evaluations.) Then -2A is examined for improvement from 
die previous start. If the improvement in -2A is less than .01 
to .05, then another restart usually results in litde additional 
improvement Another alternative is based on the previous 
one but includes an examination of variances as fractions of 
total variance as well as of correlations. If such proportions 
do not change in the second decimal, global convergence is 
likely. Nevertheless, experience as well as such ad hoc 
guidelines are needed until precise rules are developed. For 
example, should restarts be limited to a specific number of 
simplex updates, should restarts be terminated after the 
variance of simplex has fallen below a pre-determined value, 
or should some combination be used? What would be the 
best choices for number of simplex rounds and variances? 

The following table shows -2A at three convergence 
levels for 10 samples of milk records with first, second, and 

third lactations being considered separate traits (Lucia 

Albuquerque, personal communication, 1994). 
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-2A FOR THREE CONVERGENCE 
CRITERIA (10 samples) 

Convergence Criterion 

Sample l.E-4 l.E-6 l.E-9 

1 58601.32 58601.20 58601.07 
2 55087.71 55087.71 55087.69 
3 57122.57 57122.49 57122.49 
4 53185.73 53185.71 53185.65 
5 52942.48 52942.43 52942.14 

6 51778.50 51778.47 51778.46 

7 53446.38 53443.84 53443.84 

8 50851.60 50851.52 50851.43 
9 53778.04 53778.00 53777.97 

10 55685.27 55685.24 55685.06 
The table illustrates the art of deciding whether global 
convergence has been reached. For some samples, l.E-4 and 
l.E-6 led to similar -2A with l.E-6 always reaching a 
smaller (better) value. In other cases, continuing to l.E-9 
resulted in improvement. The importance of differences in 
-2A at the second decimal is difficult to quantify. 

Proportional estimates of the variances and correlations 
for the averages of the same 10 samples at convergence of 
l.E-6 and l.E-9 after many restarts are shown below. 

AVERAGES FOR TWO CONVERGENCE CRITERIA 

Convergence Criterion 

Lactations               l.E-6 l.E-9 

HERITABILITIES 
01                      .35 .35 
02                      .34 .34 
03                      .33 .32 

GENETIC CORRELATIONS 
(01x02)                  .87 .87 
(01x03)                  .81 .81 
(02x03)                  .97 .97 

ENVIRONMENTAL CORRELATIONS 
(01x02)                 .43 .43 
(01x03)                 .38 .38 
(01x03)                 -44(.444) .45(.445) 

PHENOTYPIC CORRELATIONS 
(01x02)                 .58 .58 
(01x03)                 .53 .53 
(01x03)                 .62 .62 

To two decimals the averages of proportions were 
essentially the same. For animal breeding applications even 
changes in fractional variances from, for example, .30 to .35 
are not often important. 

Experience has been that 1) for single trait analyses 
with no imbedded (»variances such as the direct-maternal 
genetic covariance global convergence is usually reached 
when V(-2A) is less than l.E-6, although one restart is a 
safety measure, 2) for a single trait analysis with a direct- 
maternal covariance at least one restart is needed and 3) for 
multiple trait analyses many restarts will be needed with die 
number dependent on starting values, the complexity of the 
model, and even the scale of measurements. The multiple 
trait "rule" is restart, restart, ..., until -2A does not change 
more than about .01. 

Boundary Conditions 

As with any REML algorithm, solutions outside the 
parameter space are not estimates. For example, variances 
must be greater than zero and absolute values of genetic and 
other correlations must not exceed unity. In addition, 
eigenvalues of matrices such as RQ and G which represent 
environmental and genetic covariance matrices for traits 
measured on an animal must be positive. As part of the 
simplex algorithm whenever an update of a solution is not 
allowed, a large value is assigned to -2A which forces a 
contraction of the simplex update. If necessary, other 
contractions are forced until the update is allowed. Such 
contractions are done before the expensive calculation of 
log | C | and /Py so that little time is wasted. Solutions 
near boundaries, however, often indicate many rounds will 
be needed as solutions may creep to the boundary of allowed 
estimates. 

Sign of Correlations 

The simplex operates by updating current solutions by 
increasingly smaller fractions of the current solutions. If a 
starting correlation (covariance) is positive and the optimum 
solution is negative, the search must pass from positive to 
negative values of the covariance. Experience indicates that 
the cross-over requires many rounds of likelihood 
evaluations. 
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Rounding in Calculation of -2A 

A problem that occasionally occurs is that 

convergence, i.e., variance of -2A in the simplex will never 

be less than l.E-6. In such cases, that variance typically 

bounces around at values larger than l.E-6. Rounding error 

in calculation of -2A from the four components of A is 

likely the reason. The amount of rounding error will be 
computer and possibly compiler dependent. The potential for 

rounding error is illustrated by -2A values in the range of 
190,000 for which V(-2A) is to be less than l.E-6 or l.E-8 

at convergence. 
Another experience also may be due to rounding error. 

At least one analysis has shown a cyclic fluctuation in -2A 

such as 24470, 24490, 24470, ... which insures that V(-2A) 
is large and convergence based on V(-2A) will not be 
attained. Examination of the solutions showed only slight 
differences even though the -2A for each set of solutions 

were quite different. A possible explanation is that parts of 

the likelihood involve logs of small eigenvalues which are 

then multiplied by a number such as the number of animals. 

Binomial data with values of 0 and 1 or 1 and 2 have 

led to the problem described in the previous paragraph 

When convergence has not been attained, two approaches 
have been followed. Multiplying the binomial values by 100 
sometimes seems to lead to better numerical properties. 
Another alternative has been to change to a sire model rather 

than to continue with an animal model. 

Starting Values 

The importance of starting values depends primarily on 

whether the analysis contains covariance terms. For a single 
trait analysis, the sum of components at the start should be 

reasonable, i.e., less than the raw variance. At least one 

analysis failed to reach convergence when, by oversight, the 

starting variances were all several times the true variances. 

With direct-maternal genetic covariance included for a single 

trait, choice of correct sign of the covariance is important as 

discussed earlier. The covariance should not be started as 
zero because the steps of the simplex algorithm are 

proportions of the previous solutions. A starting zero will 

remain zero. 
Multiple trait analyses take more time per round, more 

rounds to simplex convergence and, usually, many restarts 

to attain global convergence; thus good starting values are 

important One suggestion is: 1) do single trait analyses to 

determine variances and within-trait direct maternal 
(»variances, 2) start with across-trait (»variances 

corresponding to moderate correlations and the better guess 

of positive or negative sign while holding variances from 1) 

constant (an option in the MTDFREML program); and then 

3) let all (co)variance elements vary in the simplex with the 

prospect of several restarts. 

Conclusions 

Derivative-free REML with sparse matrix methods 

based on Henderson's mixed model equations has expanded 

the magnitude of single and multiple trait analyses to obtain 

REML estimates of variances and covariances. Single trait 
analyses converge quickly. The "art" of DFREML mainly 
involves rules for reducing time to global convergence for 
multiple trait analyses. Optimum starting values and restart 
strategies have not been determined, although obvious ad 

hoc rules have been evolving. Restarts to insure convergence 
to a global mavimnm for A (or minimum for -2A) are 

mandatory for multiple trait analyses. Help is needed 1) to 

develop an improved updating algorithm, 2) to determine 

starting strategies for multiple trait analyses, and 3) to design 
a general method for restarting to obtain most efficiently 
solutions that have converged to the global maximum of the 

likelihood given the data. 
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Abstract: For generating response surface 
designs, most general purpose ("D-optimal") 
algorithms work point by point in the design 
domain. We introduce a class of algorithms 
operating in the dual, factor/column space. Their 
basic operations exchange, randomly and sys- 
tematically, the rows of certain columns (factors) 
with respect to the rows of other columns. 

This dual space approach is especially suitable 
for designing computer experiments of Latin hyper- 
cube type. The experimenter can embed two- and 
three-level response surface designs, both to match 
a calibration subset and to achieve high efficiency. 
More centrally, the experimenter explicitly chooses 
the number of factor levels and their frequencies, 
ideal both for considering model-free goodness-of-fit 
and for establishing interpolation grids. 

1. Computer experiments 
Complicated physical phenomena are 

increasingly well modeled by computer simulators. 
The underlying physical theory usually involves 
two-to-four dimensional differential equations with 
boundary conditions, key complications consist of 
multiple materials, their interfaces and geometrical 
structures. Important methods encompass auto- 
matic grid generators, parallel computing algo- 
rithms, finite element analysis, and empirical 
metrology and calibration procedures. Typical 
simulator applications include verification and opti- 
mization of product designs and policies, diagnosis 
of problems and opportunities, evaluation of 
difficult-to-measure constructs, development of 
predictive models, and estimates of distributions. 

Experiments using computer simulators, so- 
called computer experiments, are a focus of 
statistical methods research. Among their special 
considerations are their ability to repeat perfectly, 
the increased feasibility to run larger experiments, 
and the opportunity to fit richer, more 
nonparametric models. Modeling approaches in- 
clude kriging (Matheron [1971], Sacks et al [1989]), 
nonparametric regression (Friedman [1991]), and 
neural networks (Cheng and Titterington [1994]). 
This work is shaped by target applications:   Sacks 

et al (1989) predict, then optimize analog 
integrated circuit performance. Friedman (1991) 
emphasizes graphical visualization and decom- 
position. Several authors perturb simulator inputs 
to project output distributions. Their methods 
range from Monte Carlo sampling (Kibarian and 
Strojwas [1991]), low-order moment estimation 
(Zaino and D'Errico [1988]), and Latin hypercube 
sampling (McKay et al. [1979]). 

This paper is on designing computer 
experiments, in particular using Latin hypercubes 
(LHCs). When introduced by McKay et al (1979), 
LHCs were constructed by random mechanisms, 
and have since been shown to be more efficient for 
distribution estimation than Monte Carlo sampling 
(Stein [1987], Owen [1992a]). LHCs' advantage is 
further increased by constructing them using 
orthogonal arrays (Owen [1992b], Tang [1993]). 

An alternative computer experiment design 
approach is that of Sacks et al (1989), who 
introduce a class of optimal experiments based on a 
kriging model, in the sense of minimizing 
integrated mean square error. Figure 1 shows the 
scatterplot matrix of their 32-run 6-factor design. 
Note that each projection into two dimensions 
shows a characteristic five-spot X-pattern. Many 
researchers have found this pattern objectionable, 
preferring the symmetry of Latin hypercubes. 

2. Problem Statement 
Like many others, our ultimate application is 

distribution estimation. The economics of 
simulation motivate our approach. Simulations are 
relatively slow, on the order of 12-24 hours each. 
This encourages us to build an intermediate model, 
one from which we can interpolate other values. 
Also, at certain points in the design domain we 
have empirical measurements, whose configuration 
forms a conventional 2^"P3P response surface 
design. To these we need to match their 
corresponding simulations, in order to calibrate the 
model correctly. The empirical measurements are 
also precious, and the time it takes to develop them 
ultimately bounds the number of simulations we 
can perform. 
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To summarize, the particular characteristics of 
our computer experiment are the following: (1) 
Computer simulations are time-consuming, hence 
precious, and efficient designs are therefore 
desirable. (2) The computer experiment is used to 
establish an interpolation grid, from which an easy- 
to-evaluate model can be developed. (Observe that 
the application of Latin hypercube sampling, by 
which a simulator is evaluated in order to estimate 
the distribution of an output parameter, is moved 
outside our scope. We can, of course, apply Latin 
hypercube sampling to our interpolated model.) 
(3) Some of the computer simulations are fixed a 
priori (to match empirical measurements for 
calibration, perhaps to improve the interpolation 
grid), and we would like take advantage of these 
runs. (4) The size of the experiment is small to 
moderate — for definiteness, say 50-100 runs of 
about 8-10 factors. (5) Beyond design optimality, 
we would like to preserve some sensitivity to 
detecting model lack of fit. 

3. Optimal Experiments and Design Repair 
Much of the theory of optimal designs is based 

on conventional linear models, with homogeneous, 
independent errors. This literature has two themes. 
By one theme, with respect to a particular model, 
one defines criteria by which one can compare 
designs. These are usually functions of the 
coefficients' variance-covariance matrix; the most 
common is the determinant, the so-called D- 
optimality criterion. By theme two, the design 
domain, in principle continuous, is reduced to a 
finite set. For example, with one factor, the 
optimal design of a linear model is well known to 
concentrate all points at the extremes of the 
feasible range. Similarly, optimal designs for 
quadratic models concentrate all design points at 
three levels. Atkinson and Donev (1993) give a 
contemporary account of optimal design literature. 
In practice, for computer experiments, the limited 
variety of points in the design domain has made 
conventional optimal designs unattractive. 

Our basic approach adapts the columnwise D- 
optimal algorithm of Heavlin and Finnegan (1993). 
The "design repair" algorithm presented therein 
uses the D-optimal criterion (theme one, above), 
but not the restricted design domain (theme two). 
Instead, the experimenter chooses each factor's 
levels, and the frequency with which they are used. 
For computer experiments of the Latin hypercube 
type, with n runs, this means the levels of each 
factor are the values 1,2,...,%', equal spacing is used 

to improve the interpolation grid. 
The design repair approach also uses 

conventional linear models, and homogeneous, 
independent errors. Its natural domain of 
applicability is sequential batch processes, e.g. 
semiconductor manufacturing. Applications include 
assigning interacting covariates, adapting experi- 
ments to lost experimental units (e.g. broken 
silicon wafers), designing responses with partially 
overlapping factor sets, and allocating noise-factor 
batch positions. For conventional response surface 
designs, design repair has proven useful for finding 
partially balanced incomplete block designs, 
combining mixture and nonmixture factors, cre- 
ating level-balanced response surface designs, and 
constructing loss resistant experimental designs. 

Design repair's primary data structures are two 
partial design matrices, W and X, and one model. 
Both W and X have n rows, and Fw and Fx 

columns respectively. In addition, for certain 
problems we wish to include certain experiments, 
certain complete rows. We denote these rows by 
WX0. Let W{ (Xf) denote the zth row of W (X). 
Let 7T denote a permutation of the row indices 
1,2,...,n. We would like to form the design matrix 
WX*, whose ith row is Wi and X^/^, and which 
includes the a priori rows WXg, that is, 

WX*    = 
w  xm 

wxn 

where X^ denotes the n x Fx matrix whose ith row 
is Xwßy From WX* we can develop a model 
matrix Af, whose «th row is Mf = m(WXf). For 
example, were W and X both one column matrices, 
and our desired model a full quadratic, the 
m(u,,u^) returns the row vector (1, ult us, «|«2> 
M?,M|J, corresponding to the constant, two linear, 
one interaction, and two quadratic terms. Hence, 
M? has the form 

M*   = 
w 

wxn 

I higher 
| order 
I   terms 

The design repair algorithm works to find the 
best 7T, or at least a good one, so that we can 
estimate by least squares the linear coefficients of 
Art*. We choose the D-optimality criterion, for 
which larger values are better: 

D(M) = ln(det(MTM)), for M non-singular, 
=   — oo, otherwise. 

With a quantitative measure (D) of a good 
design  specified,   the  design  repair  algorithm  is 
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easily imagined. It comes in two parts, a random 
starting point, called R-step, and a deterministic 
search over exchanges or transpositions of pairs of 
elements in ir, called E-step. 

R-step: 7r is selected at random from all possible 
permutations, WX* and M^ constructed, and 
D(M*) evaluated. This is repeated for nR iter- 
ations, keeping track of the best it. As the number 
of iterations increases, discovery of better permu- 
tations becomes less likely and R-step becomes 
inefficient.  This motivates E-step. 

E-step: As a starting point, E-step uses the best 
permutation found from R-step, say itR. All ( ) 
combinations formed by exchanging a pair of 
indicies are then considered, that with the largest 
D-value selected. In this way, E-step is repeated 
until no further improvement from pairwise 
exchanges of indices (rows of XK) is found. 

Specification of nR: For the optimum number of 
R-steps, nR, Heavlin and Finnegan (1993) develop 
an heuristic and approximate relationship: 
loglo(nh) — -0-71 + 2.12 log10(n). In one region 
of interest, n about 50, this implies nR = 800. 

4- Computer Experiment Test Case 
To use the design algorithm, one must specify 

the matrices W and X, and an appropriate model. 
For computer experiments, one usually needs to 
apply the design repair algorithm several times in 
series, building up the columns of the design in 
stages. Let W, X1, and m? denote these objects for 
the jth application of design repair. Denote by 
DR(W,X?,mi) the solution from the jth step. 
Three issues need addressing: 

1. Path: W1 = X1 = (1,2,...,n)T seems natural, 
as does W+1 = DR(W, JP, mj). How should JP be 
selected for j > 21 The fastest route is X? = W, 
which we call "doubling." This allows us to start 
initially with a column matrix, then obtain a two- 
column design, then four, then 8, and so on. The 
alternative is to choose X3 = X1 for all j. This 
builds up the design slowly, one column at a time. 
This path we call "add one." 

2. Bases: Should the model be described as a 
polynomial, or are there useful alternatives, such as 
using terms of a Fourier series? 

3i Models: What model, in particular which 
interactions, should be specified? At one extreme, 
one can specify a purely additive model, with no 
interactions among the factors; at the other 
extreme, one might pose as large a set of 
interactions as feasible. 

As a test case, we develop an 8-factor, 51-run 

Latin hypercube. There are several reasons for this 
choice. The size of this experiment is large enough 
to be practical, yet small enough for design repair 
to handle reasonably. 51 runs allow us to specify 
W1 = (- 1,-0.96,- 0.92,...,0, 0.04, ..., + l)T. 
Finally, Tang (1993) has published scatterplot 
matrices for a 49-run 8-factor LHC constructed 
using orthogonal arrays, giving us a good standard 
for comparison. To facilitate comparisons, we use 
no WX0 matrix. 

For this exercise, we follow both the doubling 
path, and the add-one path. For bases, we use a 7- 
degree (orthogonalized) polynomial, whose terms 
before orthogonalization correspond to w, w , w , 
vA, w5, w6, and w7; these seven columns comprise 
W1. As an alternative basis, we also consider seven 
terms of a Fourier series, corresponding to w, 
sin(Sirw), cos(2irw), sin(4itw), cos(4itw),sin(8itw), 
cos(8itw), also orthogonalized. To enhance 
comparability, for these four designs, we choose 
additive models, with no interactions; W is the 
same in all constructions, the attractive result of a 
design repair construction using the seven-term 
Fourier basis and a high-order interaction model. 

Judging from scatterplot matrices, the most 
satisfying design is that using the polynomial basis 
and add-one path (figure 2), comparable to Tang's 
figure 3 of an orthogonal array-based LHC. Space 
limitations prohibit showing scatterplot matrices of 
the other bases and paths, but the scatterplot 
matrices of both add-one constructions are more 
satisfying, with points well spread out and no large 
area unoccupied, than those from the doubling 
path. (This agrees with the authors' experiences in 
other computer experiment applications.) In both 
cases, the polynomial constructions are somewhat 
more pleasing than those using the Fourier series. 

Figure 3 is the scatterplot matrix of the 51-run 
7-factor design repair construction. Like that in 
figure 2, it is the result of the add-one path and the 
7-term polynomial basis. Unlike figure 2, it uses a 
series of rich models: Ws, a full six-order model 
(81 terms); W4, a full fifth-order model (124 
terms); W5, a fujl third-order model, plus all 
fourth-order terms involving the fifth factor, plus 
pure quartic terms for all five factors (127 terms); 
W6, a full cubic model, plus all pure fourth-order 
terms, plus all mixed interactions involving the 
sixth factor (99 terms); and W7, a full cubic model, 
plus pure quartic terms (77 terms). These models 
have more terms than runs; the D-criterion is 
modified to  ln(det(MrM+XI)), with A = 0.1. 

Under   the   constraints  of the  LHC  margins, 



44    Space-Filling Experiments 

figure 3 shows an X-pattern similar to that of 
Sacks et al (1989). One might speculate that the 
kriging model is related to interaction-rich models. 
An alternate interpretation is that the design repair 
approach to LHC construction should be applied 
only for additive models. 

5. Conclusions 
The design repair algorithm can construct Latin 

hypercube designs successfully. Conditions where 
this is appropriate are listed in section 2; the key 
ingredients are a design of moderate scope with 
some particular requirements. Based on reviewing 
scatterplot matrices of the resulting designs, 
polynomial models work at least as well as the 
alternatives. The add-one path allows the models 
to be specialized to each step of construction; for 
this reason, it is not unexpected that add-one 
designs have better esthetic properties than designs 
based on the doubling path. 

A well recognized analogy is on one hand with 
two-level factors, linear models, and resolution III 
projection properties and, on the other hand, with 
multilevel factors, additive models, and two- 
dimensional projections (called strength 2). For 
this reason, one might anticipate that additive 
models would give appealing scatterplots matrices, 
which are merely graphical strength 2 assessments. 
The similarity of X-patterns both in Sacks et al 
(1989) and figure 3's interaction-rich Latin 
hypercube construction is more tantalizing, perhaps 
pointing to some connection between the two 
approaches for high-dimensional designs. 

6. References 
Atkinson, AC, and Donev, AN (1992). Optimum 

Experimental Designs.  Clarendon Press, Oxford. 
Cheng, B, and Titterington, DM, (1994), "Neural 

networks: A review from a statistical per- 
spective," with discussion, Statistical Science, 9, 
1, pp2-54. 

D'Errico, JR, and Zaino, NA Jr, (1988), "Statisti- 
cal tolerancing using a modification of Taguchi's 
method," Technometrics, 30, pp397-405. 

Friedman, JH, (1991), "Multivariate adaptive 
regression splines," with discussion, Annals of 
Statistics, 19:1, ppl-141. 

Heavlin, WD, and Finnegan, GP, (1993), "Adap- 
ting experiments with sequentially processed 
factors," ASA Proceedings, Section on Physical 
and Engineering Science, August, San Francisco. 

Kibarian, JH, and Strojwas, AJ, "Using spatial 
information to analyze correlations between test 

structure data," IEEE Trans, on Semiconductor 
Manufacturing, 4, August, pp 219-225. 

Matheron, G (1971), The Theory of Regionalized 
Variables, Centre of Morphologie Mathematique 
de Fontainbleau. 

McKay, MD, Conover, WJ, and Beckman, RJ, 
(1979), "A comparison of three methods for 
selecting values of input variables in the analysis 
of output from a computer code," Technome- 
trics, 21: pp239-245. 

Owen, AB, (1992a), "A central limit theorem for 
Latin hypercube sampling," Journal of the Royal 
Statistical Society, Series B, 54, 2, pp541-551. 

Owen, AB, (1992b), "Orthogonal arrays for compu- 
ter experiments, integration and visualization," 
Statistica Sinica, 2:2, pp439-452. 

Sacks, J, Welch, WJ, Mitchell, TJ, and Wynn, HP 
(1989), "Design and analysis of computer 
experiments," with discussion, Statistical Sci- 
ence, 4:4, pp409-435. 

Stein, M (1987), "Large-sample properties of 
simulations using Latin hypercube sampling," 
Technometrics, 29, ppl43-151. 

Tang, B, (1993), "Orthogonal array-based Latin 
hypercubes," Journal of the American Statistical 
Association, 88:424, ppl392-1397. 

"■     i*. 

*               ** 

.*"           •* 

■';- '•*• 

,;'■  \ . 

* —                 «. 

•• •              *       * 
••    *    "•! 

* • 

\ • •     •■"" 

•        •          •    * 

Figure 1.   Scatterplot matrix of the 6-factor 
computer experiment of Sacks et al (1989).   The 
optimality criterion is minimum integrated mean 

square error; the model a kriging one. 



W.D. Heavlin and G.P. Finnegan    45 

■':\ . ;| i\ •. ■...;■ 

•.   •.       ».    .1   f ,■■•,    I   | i   l .    ."  I   !■. •   .—•—— 

"  V 

• * "   "   *■ 

'•* .      **   • 
'>-'.':•'' • * *  . 

," . • #       • 
' *     ' *• 

*       » * * • 

Figure S.  Scatterploi matrix of a 51-run 8-factor Latin hypercube using the design repair algorithm. 
The model is an additive 7-degree polynomial (no interactions); the factors are added one-by-one. 

T—;—r"v7~]rr^     ■ 

';.'■. Z."   ■/•'■:. 

■'.".* ■ .• ■ '.'■. •'•••. .■/'■ '• 

 »* -*  *« ■ 1   L...-,« *■-■ S- 

-—-, ——, . .—,..„„■,.,.. __ | — w~m-j—i   ——_, ,  

••.'•.••:•■• •■,'0;   •:•'■•/••...•' ■.^•-' 
>"- . ;•..••-.• V:-: '..:.    >•• •;:■ 

i.     .1 ■    .,.—luit-—..        *1 ■ ■    In    ■ ■      ii !i I   .      ■. '* .1  — 

; M    ,   . 
"       "         m  % 

*    -S            .• 

•""   "*   " 
"■' »; 7c— 

•* "•        * ■ 

*" V 

* •         ••    *• 

*     "*   • 
••   *» *" 

" ■ • *         -      * 

* * * • 

■            < 

Figure S.  Scatterploi matrix of a 51-run 7-factor Latin hypercube using the design repair algorithm. 
The model specifies high order interactions terms; the factors are added one-by-one. 



46    Space-Filling Experiments 

figure 3 shows an X-pattern similar to that of 
Sacks et al (1989). One might speculate that the 
kriging model is related to interaction-rich models. 
An alternate interpretation is that the design repair 
approach to LHC construction should be applied 
only for additive models. 

5. Conclusions 
The design repair algorithm can construct Latin 

hypercube designs successfully. Conditions where 
this is appropriate are listed in section 2; the key 
ingredients are a design of moderate scope with 
some particular requirements. Based on reviewing 
scatterplot matrices of the resulting designs, 
polynomial models work at least as well as the 
alternatives. The add-one path allows the models 
to be specialized to each step of construction; for 
this reason, it is not unexpected that add-one 
designs have better esthetic properties than designs 
based on the doubling path. 

A well recognized analogy is on one hand with 
two-level factors, linear models, and resolution III 
projection properties and, on the other hand, with 
multilevel factors, additive models, and two- 
dimensional projections (called strength 2). For 
this reason, one might anticipate that additive 
models would give appealing scatterplots matrices, 
which are merely graphical strength 2 assessments. 
The similarity of X-patterns both in Sacks et al 
(1989) and figure 3's interaction-rich Latin 
hypercube construction is more tantalizing, perhaps 
pointing to some connection between the two 
approaches for high-dimensional designs. 
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Abstract 

In recent years, modeling spatial processes on the sphere 
(e.g., mining, oil exploration, forestry, pollution, ozone 
levels, etc.) has become more abundant. But through it 
all, there has been no generally accepted global sam- 
pling plan and none for which a central limit theo- 
rem (CLT) nor resampling algorithm has been formu- 
lated. Some of the global sampling plans that have been 
used are either derived from experimental design meth- 
ods or geographical methods. In this paper, we out- 
line each of the above types of sampling plans, describ- 
ing their strengths and weaknesses, and then describe 
a global sampling plan called a stratified spherical sam- 
pling plan (Brown [1993a]) for which a CLT has been 
proved (Brown [1993b]) and bootstrap algorithm has 
been developed and strong uniform consistency of the 
sample mean has been proved (Brown [1993c]). 

Background 

Spherical data arises in many disciplines: astrophysics 
(star clusters), health sciences (MRI, contaminants), ge- 
ology (oil, earthquakes), meteorology (ozone, pollution), 
and geography (water levels, coast line) just to name a 
few. Sampling plans play a major role in characterizing 
a random field and the dependence structure of statis- 
tics defined on the random field. In particular, creating 
confidence intervals and conducting hypothesis tests on 
statistics are directly related to the sampling plan. 

Unfortunately there is no generally accepted way to 
gather spherical data. In particular, we would like a 
global sampling plan upon which we can prove a CLT 
and/or create a resampling algorithm. Up until 1993, 
the only sampling plan for which a CLT has been proved 
is for the continually indexed sphere (Leonenko and Ya- 
drenko [1979]). 

The most common way to prove a CLT for depen- 
dent data is to use a characteristic of the random field 
known as stationarity (translation invariance) and the 
big-block, little-block methodology and a-mixing to re- 
duce the problem to the iid setting.   Using these ideas 

when the sample size n is very large, if the small blocks 
are small in size compared to the big blocks, but still 
large enough to separate the big blocks by a substantial 
amount, then the big blocks act almost independently 
(a-mixing) while the small blocks are negligible com- 
pared with the big blocks. The stationary insures that 
the statistic defined on the big blocks are iid. Note that 
when working with spherical data, we assume that the 
random field is isotropic or rotation and translation in- 
variant. 

Resampling algorithms are usually employed when in- 
terest is in a parameter 9 of some distribution F and the 
estimate of 9 is cumbersome and the calculations of the 
distribution of the estimate are intractable. Usually one 
wishes to create confidence intervals for 9 and/or do hy- 
pothesis testing on 9; a resampling algorithm estimates 
the true distribution of the statistic and this estimated 
distribution is used in the inference. 

In this setting, we collect data (Xi, X2, ■ ■., Xn) = Xn 

from F, use a statistic tn = tn(Xn) that estimates $, and 
determine the distribution of tn. The field of resampling 
tries to estimate the distribution of tn by reusing the 
data at hand to create more samples and hence more 
statistics. We investigate the bootstrap here, but there 
are many other resampling methods. 

In 1979, Efron described an resampling method called 
the bootstrap for iid data. This method is paraphrased 
as follows: from data X\, X2, ■ ■., Xn, calculate the 
empircal distribution function of the data F„(x) = 
~YH=i^{-Xi < x}- Resample n observations iid from 

Fn(x) to create a bootstrap sample X%* = (-^l > -^2 > • • •> 
X*). Calculate 4* = tn(Xn) a bootstrap statistic of tn. 
Repeat this procedure B times and use the distribution 
of the i**s as an estimate of the distribution of tn. 

In fact, the true bootstrap estimate of the mean of tn 

is PBoot = Epn{t^\Xn} which is estimated by 

1    B 

—      V -fb* — T* fJ'Boot —   D / j % — ln> 
6=1 

and the true bootstrap estimate of the variance of tn is 
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'Boot Vp {tm\Xn} which is estimated by 

cBoot B 

1       B 

6=1 

J*\2 o 

Carlstein [1986] extended Efron's bootstrap to time- 
series data by creating the non-overlapping blockwise 
bootstrap. His method creates blocks with identical joint 
distributions (due to the stationarity of the time-series), 
the blocks are then treated as the X( in the iid setting. 
In particular, from the n observations of the time-series, 
let k = n/l and B{ = (Xu+i, -XJJ+2, ..., X^+iy) be 
the ith block of / observations. The stationarity insures 
that the statistics defined on the k blocks 5,- have the 
same joint distribution. We resample Ar blocks from Fi, 
the empirical disrtibution function of the length / blocks, 
and join them together to form a bootstrap time-series. 
Calculate the statistic on the bootstrap time-series and 
repeat B times. 

Kiinsch [1989] extended this method to the overlap- 
ping blocks case. Here there are n — l + 1 blocks of length 
/, B{ = (Xi+i, Xi+2, • • •, Xi+i), but the blocks now over- 
lap, whereas before they did not. We again resample k 
blocks from this collection and repeat the above process. 
In comparison to the nonoverlapping case, this method 
reduces the variance of the estimate of variance of the 
sample mean by 1/3. 

Therefore, in order to prove a CLT and create a block- 
wise resampling algorithm it is necessary for a global 
sampling plan to have separating blocks for the big- 
block, little-block theory and repeating patterns for the 
isotropy of the random field. 

Sampling Plans 

There are two basic approaches for creating global sam- 
pling plans: experimental design considerations and ge- 
ographical considerations. The experimental design ap- 
proach does not necessarily generate designs which have 
repeating patterns that are necessary in a blockwise re- 
sampling algorithm, but they have design optimality 
properties for certain models. On the other hand, ge- 
ographical sampling methods are used to create designs 
with repeating patterns, but do not have the design 
optimality property. Geographical sampling plans fall 
into one of two types: polyhedral tessellations and map- 
projections. 

Experimental Designs 

The experimental design approach begins with the fol- 
lowing setup: Consider the specific model with k vari- 

I-optimal      :    mintracejMMy1} 

A-optimal 
D-optimal 
E-optimal 

G-optimal 

where M = / f'(x)f(x)d/j,(x) 
JR 

mintrace{Mx } 
mindet{Mx}-1/p 

min max,- e^M^1) 
where e,(-) are the eigenvalues 
minmaxfl V{y(x)} 

Table 1: Optimality Criterion 

ables Xi,.. .,Xk,p= |(A;+l)(A;+2) unknown parameters 
0, and error term e with mean 0 and variance a2, 

k k k-l      k 

y = ßo + ^2ßiXi + Y,ßa^ + J2 Y, x<xJ+e- 
»=i t=i t=l j=i+l 

Let (xji,..., Xjk) be a design point in the region of op- 
erability O and X be the design matrix containing rows 
f(x) = (1, xi,..., xk,x\,..., x2

k,x1x2, ..., Xk-iXk). The 
moment matrix is then Mx = X'X/n and the prediction 
variance is V {y(x)} = f(x)Mx1f'(x)a2/n. If we let R 
be the modeling region and //(•) be a uniform measure 
over R with total measure 1, then we can then choose 
design points so as to minimize any one of the criterions 
in Table 1. 

In 1993, Hardin and Sloane introduced a computer 
algorithm called GÖSSET that used a modification of the 
pattern search method of Hooke and Jeeves [1961]. The 
algorithm uses the gradient of a differential function to 
find the minimum and hence it is able to find I-, A-, 
or D- optimal designs, not E- and G-optimal. It can 
be used with very complicated O and R (balls, cube, 
hyperplanes, and intersections and unions). 

We are interested in balls. Unfortunately, when the 
sample size gets large, the sampling plans created by 
GÖSSET do not have repeating patterns. 

Polyhedral Tessellations 

The polyhedral tessellation sampling plans usually start 
from one of the 5 platonic solids: tetrahedron, hexa- 
hedron (cube), octahedron, dodecahedron, and icosohe- 
dron. The solid is then inscribed in a sphere and its edges 
are projected onto the sphere as great arcs. Most of the 
tessellations then apply the alternate method of Gasson 
[1983]. His method states that each spherical triangle 
can be recursively subdivided into four subtriangles by 
placing vertices at the midpoint of an edge and joining 
the new vertices. This method has relation to geodesic 
domes (Popko [1968]). 
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Dutton [1989] uses the octahedron as a basis for a 
quaternary triangular mesh (QTM). Here each face is a 
spherical triangle and is recursively subdivided using the 
alternate method. Dutton points out that one can get 1 
meter resolution in 21 recursions. Goodchild and Shiren 
[1989] provided a conversion to the latitude-longitude 
scale since in this setting the "base" edges for the octa- 
hedron and its subdivisions are parallel to the equator. 
Unfortunately this method does not subdivide into equal 
area cells nor equal shapes. 

Wickman, Elvers, and Edvarson [1974] use the dodec- 
ahedron as basis for their method. Here, each face is a 
pentagon and is first subdivided into 5 isosceles triangles. 
One then recursively subdivides the isosceles triangles by 
the alternate method. The sphere can be subdivided into 
equal area pieces, but they have different shapes. 

Fekete [1990] uses the icosohedron as basis for a sphere 
quadtree (Samet [1984]). In his approach, each face is 
a triangle and the alternate method is applied to each. 
This quadtree does not subdivide into equal area pieces, 
but there is less distortion of size and shape than the 
QTM method. 

White, Kimerling, and Overton [1992] use the trun- 
cated icosohedron as a basis for their method. The trun- 
cated icosohedron has faces that are both pentagons and 
hexagons and is the common design for soccer balls. 
They begin by decomposing the pentagons into 5 tri- 
angles and the hexagons into 6 triangles. They then ap- 
ply the alternate method subdivision on each triangular 
face. Their method also does not subdivide into equal 
area pieces, but there is less distortion of size and shape 
than with the icosohedral method within each face type. 

Map-Projections 

The map-projection approaches, on the other hand, use 
the latitude-longitude grid as a starting point. Mark 
and Lauzon [1985] proposed a system based upon the 
Universal Transverse Mercator (UTM) which is used by 
most military agencies around the world. They begin 
by dividing the 60 UTM zones into north and south 
subzones. Each subzone is then subdivided into square 
patches within which they define a 256 X 256 array of 
cells. This method coexists nicely with present maps, 
however the boundaries between zones introduce slight 
unconformities. 

Tobler and Chen [1986] proposed a Lambert cylindri- 
cal equal-area projection. This method retains latitude- 
longitude ideas to create equal area cells. Unfortunately, 
the variation in shape is tremendous from nearly square 
at the equator to long, thin spherical rectangles near the 
poles. 

Brown [1993a] introduced the stratified spherical sam- 
pling plan (SSSP) which uses a latitude-longitude struc- 
ture and creates nearly equal area rectangles throughout 
the sphere. This method does not have the distortion of 
the Tobler and Chen method. Here, the sphere is cut 
into "wafers" that are cut parallel to the equator (such 
as the area between the 70 and 80 degree latitudinal 
lines on a globe). Upon each wafer a specific latitude- 
longitude grid is constructed to create almost equal area 
pieces where distance (horizontal and vertical) is asymp- 
totically preserved within and across wafers. 

Each SSSP is made up of 5 parts: the northern cap 
CN(r), the southern cap Cs(r), the northern hemisphere 
HN(r), the southern hemisphere Hs(r), and the equa- 
torial region E(r). The northern and southern caps and 
the equatorial region are used as little blocks and sep- 
arate the two hemispheres that drive the distribution 
theory. 

They can be explicitly calculated by using func- 
tions -yi(r),<l>(r),0w{r), and integer sequences Jr and 
vr, where 9w(r) and <j>(r) are the horizontal and ver- 
tical generating angles of the latitude-longitude grid on 
wafer w; Jr, and vr are the number of <f>(r) vertical an- 
gular increments in each wafer and equatorial region, 
respectively, and 7*(r) is used to calculate the top of the 
first wafer. From these quantities, we can calculate Wr, 
the number of wafers that the sphere is partitioned into, 
nw<r, the number of 0w(r) angles that go around wafer 
w, and jw(r), the vertical angle to the top of wafer w. 

Denote a point P on a sphere of radius r by its spheri- 
cal coordinates P = (r, 9, <f>) where 6 is the angle between 
the positive x-axis and the ray from the origin to P*, the 
projection of P onto the xy-pl&ne, and (j> is the angle be- 
tween the positive r-axis and the ray from the origin to 
P. 

Given functions ~f*(r),<f>(r), 6w(r), and integer se- 
quences Jr and vr, calculate Wr,nWir, and jw(r), math- 
ematically, by first calculating 

Ur = 
<t>{r)Jr 

■{ir-27l*(r)} 
Jr 

and then put Wr = Ur - 2z*, where z* G [0,1) is chosen 
so that Wr is an even integer. Then define the vertical 
angle to the top of the first wafer as jx(r) = j*(r) 4 
z*Jr<t>(r). For 1 < w < Wr/2, define the vertical angle to 
the top of wafer w and the number of 6W (r) angles that go 
around wafer w as 7«,(r) = 71 (r) + (w-l)Jr<f>(r), nw>r = 
nWr+i-w,r = L27r/Mr)J> and for the equatorial region, 
tsir) = 7iW + wr JrHr)/2 and nB,r = LVMr)J- 

For the hemispherical and equatorial regions, we 
sample at the vertices of the wafer-specific, latitude- 
longitude grid. Since the shape of each cap is topologi- 
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cally different than that of the wafers, we use a mod- 
ified hexagonal sampling plan (Matern [1986]), which 
provides circular symmetry within the cap. 

Define 

WT/2Jr-lnw,r-l 

HN(V)    =     U   U     U   ^Mand 
«) = 1   j=0     »=0 

Wr/2Jr-ln„,r-l 

Bs{r)   =     U   U    U   ^+1~» 
U)=l   j=0     i=0 

where in this range for w, P™j(r) = (r, i0w(r), jw(r) + 

ji>(r)) and P^+1~w(r) = (r, 'iOw(r), x-(7«(r)+#(r))). 
Define 

«P-l ng,r-l 

E(r) = U     U   ^5 W 
j=0     »=0 

where Pij(r) = (r, 10B (r), 7B(r) + J>(r)). Define 

(L7i(r)/*(r)J-l6>-l \ 

U U ^!5(p) I   and 

/L7i(r)Mr)J-16i-l \ 

Cs(r)    =    (r,0,i)U U LM»J 

where /^J(r) = (r, «r/(3j), #(r)) and P£(r) = (r, 
»T/(3J), x — j(j>(r)). A SSSP can now be given by 7? 
= CV(r) U ffjv(r) U £(r) U Hs(r) U Cs(r). 

The SSPSs are the only finite global sampling plans 
upon which a CLT has been proved (Brown [1993b]). 
In addition, this is the only global sampling plan upon 
which a resampling (overlapping bootstrap) algorithm 
has been designed and strong uniform consistency has 
been proved for the sample mean (Brown [1993c]). 
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Abstract 
The covering method algorithm can be used to calculate 

power-law feature vectors based on the local texture in an 
image. These features can then be used for distinguishing 
between different types of textures. We present a new 
method of calculating local fractal-based features in the pres- 
ence of a continuous-valued, irregular and/or incomplete 
segmentation by use of a Dijkstra potential map. This 
method produces more accurate power-law features for pix- 
els near a segmentation boundary by altering the size and 
shape of the local neighborhood in which the calculations 
take place, thereby producing a more texturally pure neigh- 
borhood. This leads to improved texture discrimination since 
the contribution of multiple textures to the calculation of a 
given feature vector is reduced or eliminated. 

1. Introduction 
To oversimplify, those who have studied the utility of 

using fractal dimension for discriminant analysis in, say, bio- 
logical images can be grouped into one of two categories. 
There are those who feel the information inherent in the frac- 
tal dimension of a texture should be useful for distinguishing 
certain classes of tissue even though few conclusive studies 
have yet been presented, and those for whom the results 
obtained thus far are unconvincing enough to warrant a deci- 
sion to move on to other approaches. The optimists feel a 
system utilizing fractal dimension in conjunction with other 
information and techniques will be superior to a system 
which fails to utilize any type of textural information. This 
paper presents one reason why the results obtained thus far 
are less impressive than some have expected, introduces a 
new methodology for extracting fractal dimesion features 
which circumvents this cause, and indicates, finally, that this 
modified approach to fractal dimension does indeed live up 
to the potential for which the optimists' have long held out. 

Section 2 presents a description of a modification of the 
covering method algorithm for estimating fractal dimension 

which incorporates segmentation boundaries. A qualitative 
comparison of the procedure with the standard covering 
method is presented in Section 3. Probability density esti- 
mates for the extracted feature vectors are developed and 
compared. Examples are presented for a standard texture 
benchmark and for tumor detection in X-ray mammography. 
It is shown that there is significantly more discriminatory 
information in the texture features when they are extracted 
via the new method. 

2. Approach 
Richardson's power law (Mandelbrot, 1977) provides a 

functional relation between a measured property of a fractal 
and a measurement scale. The function is given by 

M(e) = Kt(d-D\ (1) 

where Af(e) is a measured property of a fractal at scale e, K is 
a constant of proportionality, d and D are the topological and 
fractal dimensions, respectively. Taking the logarithm of Eq. 
(1) provides the slope and y-intercept of a best-fit line 
through log(M(Ej)) for a set of scales {£;} as a set of power 
law features. 

The property M(e) we wish to measure is the surface 
area of the image about a pixel and can be estimated using 
the covering method (Peleg, et al., 1984). The covering 
method typically consists of three steps: recursive applica- 
tion of dilation and erosion operators to calculate upper, U, 
and lower, L, bounding surfaces for scales e0,..., e ; cal- 
culation of an averaged surface area, A, at each scale from U 
and L; and calculation of power law features from A. When 
two or more textures are present in an image the morpholog- 
ical operators and the averaging process will both lead to 
erroneous estimates of A and thus the derived features if 
boundaries between textures are not accounted for. To rem- 
edy the errors due to the dilation and errosion operators we 
utilize the modified dilation and erosion operators (Rogers, 
et al. 1993, and Min et al. 1994) 
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if. +.l = max 

and 

Li •    = min 

ru£;+i. 

[^_u5(_u+^(l-5,-u)], 

^j+AJ+l + ifu(i-su+i)]> 

U^-^.^ + ^-d-s,^,)] 

.(2a) 

if -1 

[Lty+i5u+1+L^(l-Su + 1)], 

.(2b) 

based on Dijkstra potentials (Dijkstra, 1959). In this 
approach a potential is calculated about every pixel in the 
image from costs denned below. The potential is then uti- 
lized in constructing a kernel for computing the average area 
about each pixel. 

In the current calculations two types of costs are consid- 
ered. The first is the cost based on the shortest possible path 
from the current pixel to the window's central pixel. The dis- 
tance used for the current calculations is based not on the 
(physical) distance between pixel centers, but rather on the 
number of steps required to move from the current pixel to 
the central pixel. This cost is dependent upon the type of 
connections we allow between pixels. For example, the cost 
of connecting pixel k+1, l+l to k,l would be 2 if we constrain 
connections to the north, east, west, south four nearest neigh- 
bors (first we must move to k,l+l, or k+1,1, then to k,l). 

The second type of cost is that of being coincident or 
adjacent to a boundary pixel. For a binary boundary (5=0 or 
1 only) this cost is set to an arbitrarily large value. If a pixel 
is not adjacent to a boundary pixel this cost is zero. For con- 
tinuously valued segmentaion boundaries we utilize the cost 
function 

where if is the upper surface if the lower surface at scale e 
and i,j are the row and column indices respectively. 5 is a 
continously valued segmentation map with Se [0.1], where 
5 = 0 for the strongest possible segentation boundary and 
5 = 1 for no boundary. 

The upper and lower surfaces at scale zero are given by 

^ = 4, = GU' (3) 

where G; • is the original gray scale image. 
It is customary to utilize the average area formula of 

Peli (Peli, 1990), 

Ä 

where 

k, 16 Wu 

lf.-LE. 
E     _       '../ l.J 

'•} 2E 

(4) 

(5) 

to reduce the variation of the area from pixel to pixel. In this 
method the averaging window W = W(e) such that at scale 
m the window about i,j should be larger than 
(2m + 1) x (2m + 1) so that the window contains sufficient 

uncorrelated values. However, when the window encom- 
passes multiple textures the averaging process is a source of 
error. 

To reduce or eliminate the effects of averaging multiple 
textures we introduce a boundary observing adaptive kernel 

Ci.= a(.l-min(SiJ,Si,j.)), (6) 

where the prime denotes pixels within the neighborhood and 
a is a parameter describing the amount of information 
allowed to cross the boundary. Other types of costs or cost 
functions are easily implemented. 

Once the costs have been computed the four nearest- 
neighbor recursive potential update equation, 

KV=> 
rv" vk,l< 

Ai-i + Cfei-i.^i + i+^i + i 

(7) 

V k, I 6 W,j 

is iterated to convergence. Here v£ ;is the potential at step a 
and Ck t the sum of costs at pixel k,l with 

*M- 
0 if k,l = ij 

otherwise 
(8) 

In the present study we have utilized a window of fixed 
"radius," r, i.e. the window is of size (2r+1) x (2r+ 1), as 
opposed to the variable window of Peli. We feel that this is 
appropriate as long as r > zmax. We note that it will be possi- 
ble for the kernel to be smaller than the window in the vicin- 
ity of a boundary. 
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We may now utilize the Dijkstra potentials in the calcu- 
lation of the area about pixel i,j by performing a weighted 
summation over the window using 

AU =  ^T 

L    allwk,l 
(9) 

*•'e wu 
vhl 

where ak l is the area calculated by Eqn. (5) at pixel k,l and 
w is a weight function based on the Dijkstra potential given 
by, say, 

yk,l otherwise, 
(10) 

for a square kernel where X is a parameter. In Section 3 
below we use e 5, r = 8 , and a = X = 16. 

3. Results 
In this section we present the results of using the above 

technique on two illustrative examples. The first consists of 
considering the estimate of the y-intercept value from two 
Brodatz texture patches (Brodatz, 1966). The ability to 
obtain a good estimate in the region of transition between the 
two textures yields superior performance in a change point 
detection scenario. The second example presented considers 
an x-ray mammogram and investigates the ability to distin- 
guish a tumorous region from the healthy tissue. Here we 
consider the estimate of the fractal dimension itself. In both 
examples the incorporation of boundary information into the 
calculation of our features is vital to obtaining an acceptable 
level of performance. Probability density functions are 
developed using the method of adaptive mixtures (Priebe and 
Marchette, 1993) and utilize the imposed measure methodol- 
ogy (Priebe, et al., 1994). 

3.1 Example 1 
Given two textures from Brodatz (Fig 1.1) we consider 

three regions. The leftmost box (box 1) superimposed on the 
textures in Figure 1.1 is well within the interior of the left tex- 
ture and can reasonably be considered a region of pure texture 
1 (D17 of Brodatz). Similarly, the rightmost box (box 3) is a 
region of pure texture 2 (D24 of Brodatz). The middle box 
(box 2) stradles the boundary between the two textures. This 
border region contains some pixels from texture 1 and some 
from texture 2, as well as the boundary. 

Figure 1.2 shows (as solid lines) the pdfs obtained from 
the pure textures in boxes 1 and 3, calculated separately. 
These pdfs for the different textures are well separated when 
the regions considered are far from the border and hence uni- 

form in texture. The dashed line in Figure 1.2 shows, how- 
ever, that when we consider a border region (box 2) the errors 
arising from calculating power law features over a region 
containing two distinct textures makes it impossible to deter- 
mine the structure of the region. This pdf does not convey the 
fact that the region considered contains exactly two distinct 
textures. The dotted curve in Figure 1.2 indicates the pdf of 
the border region (box 2) when a priori boundary information 
(S = 0 or 1) is incorporated into the calculation of the power 
law features. It is obvious from this pdf that the region being 
considered is simply made up of two subregions with charac- 
teristics corresponding to those in boxes 1 and 3. This supe- 
rior information is easily translated into superior performance 
in discriminant analysis or change point detection scenarios. 
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Figure 1.1. 
Two adjacent texture patches and the three regions 
(numbered 1 through 3 from the left) used in Example 1. 
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Figure 1.2. 
Pdfs of the y-intercept feature for the three regions from 
Figure 1.1. 

3.2 Example 2 
For example 2 we consider the mammogram shown in 

Figure 2.1. We will focus on the boxed region in the upper 
right. This region contains a tumorous region (biopsy veri- 
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with the radiologist's boundary drawn in. We consider two 
disjoint regions. The tumorous region (region 1) is the region 
within the radiologist's boundary. The healthy region (region 
2) is the area simultaneously within the box and outside the 
tumorous region. 

Nevertheless, it generally marks the edge of the tumorous 
region. When this boundary is used in the feature extraction 
the resultant pdfs are depicted in Figure 2.5. We see that the 
separation of the two classes is maintained to a degree similar 
to that obtained when the radiologist's boundary was 
employed. Discriminant analysis could be successfully pur- 
sued here, as in Figure 2.2, while Figure 2.3 (the no boundary 
case) leaves little hope. 
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Figure 2.1 
Mammogram used in Example 2 with radiologist's 
boundary of tumorous region overlaid. 

Figures 2.2 and 2.3 show, respectively, pdfs for the two 
regions when the true boundary has been incorporated into 
the calculation of the features (2.2) and when no boundary is 
used (2.3). We clearly see that the presence of the boundary 
in the feature extraction is vital to the utility of the features for 
distinguishing tumorous tissue from healthy tissue. 

Unfortunately, obtaining a true boundary like that shown 
in Figure 2.1 and used in Figure 2.2 is costly and time con- 
suming. Furthermore, the ultimate utility of this procedure 
for a real application depends on the ability to automatically 
generate a boundary that will be useful in this context. Figure 
2.4 shows the radiologist's boundary superimposed on a par- 
ticular wavelet segmentation map. This wavelet map is by no 
means perfect. The boundary is not closed, it is not necessar- 
ily exactly coincident with the radiologist's boundary, it is 
continuously valued rather than binary, and there is noise. 

20- 
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0 

Figure 2.2 
Pdfs for fractal dimension from Example 2, calculated using 
the radiologist's boundary. Solid curve is tumorous tissue, 
dashed curve is healthy tissue. 
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Figure 2.3 
Pdfs for fractal dimension from Example 2, calculated with 
no boundary information. Solid curve is tumorous tissue, 
dashed curve is healthy tissue. 
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Figure 2.4 
Incomplete, grayscale wavelet segementation map with 
radiologist's boundary overlaid.   This continuous valued 
map is used for Figure 2.5. 
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Figure 2.5 
Pdfs for fractal dimension from Example 2, calculated 
using the continuous valued wavelet boundary boundary 
from Figure 2.4.  Solid curve is tumorous tissue, dashed 
curve is healthy tissue. 

4. Discussion 
The examples presented in Section 3 indicate that the 

utility of fractal dimension features for texture discrimination 
hinges on calculating the features in regions of uniform tex- 
ture. For applications in which one necessarily must consider 
border regions between different textures the standard calcu- 
lations do not provide the necessary capabilities. Incorporat- 
ing a segemntation boundary into the calculation of the 

texture features, whether it be a true boundary known a priori 
or a boundary map estimated through a wavelet or other algo- 
rithm, greatly improves the discrimination capabilities one 
can expect. 

It is argued that this modificaiton must be considered in 
any evaluation of the utility of power law features for dis- 
criminant analysis, change point detection , or homogeneity 
analysis whenever texture boundaries come into play. 
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Abstract1 

Feedforward neural networks are widely used as a black 
box prediction technique. Recent work of Barron (1991) 
shows that these models are very well suited to approx- 
imating structure in high dimensions. This raises the 
issue of how well they find spurious structure in noise. 

This paper presents a diagnostic based on Aldous's 
Poisson clumping heuristic that describes the extent to 
which nets can overfit, where in the data such spurious 
overfitted units are likely to arise and how many local 
optima the sum of squared error surface (as a function 
of the network weights) is expected to have. 

The diagnostic is simplest for the case of a single hid- 
den unit, but extends in principle to more general prob- 
lems. 

1    Introduction 

We consider a nonlinear regression model of the form 
Y — fJt(X) + e. Here the response variable Y is the sum 
of a signal fi(X) and a noise random variable e with 
mean 0 and variance a2. The signal is a function of X, 
a vector of predictor variables. The form of the signal is 

p(X) = wo+ '%2uj4j(X,0j) (1) 
i=i 

where the Wj are scalar parameters ("weights"), the <f>j 
are real valued "activation" functions and the 9j are vec- 
tor valued parameters. 

The model (1) is an example of an artificial neural 
network model. This special case is known as a feed- 
forward network with a single hidden layer and a lin- 
ear output unit. See Hertz, Krogh and Palmer (1991, 
Chapters 5,6) for an introduction to these models. Com- 
monly used activations are sigmoids such as <f>(X, 0) = 

1This work supported by NSF grants DMS-9011074 and 94- 
04594 

(1 + exp(-X'ö))-1 and Gaussian radial basis functions 
such as </>(X,9) = exp(-||X - 0||2/2r2). In the sigmoid 
above, X usually includes a component that is always 1 
and the corresponding intercept component of 6 is known 
as a "bias". In the radial basis function the parameter r 
is a measure of scale that could either be subsumed into 
0 or held fixed. 

2    Asymptotics   and   Redundant 
Units 

Estimation of model (1) is usually based on training data 
consisting of n independent observations (Xi,Yi). Let 
9j and Wj denote estimates of the parameters and ß(X) 
denote the resulting estimate of signal. 

If model (1) holds, then mild assumptions on the dis- 
tribution of € and identifiability assumptions on WJ , <f>j, 6j 
produce the usual asymptotics as n —► oo for ß estimated 
by minimizing squared error J2?=i 0^* ~ß(^i ))2 • The pa- 
rameters are estimated consistently (up to some permu- 
tations of labels which don't matter) and are asymptot- 
ically normally distributed. The mean squared error on 
the training data is smaller than a2, but this optimism 
is simply accounted for by adjusting for the degrees of 
freedom used in fitting the model. For details see White 
(1989). 

These asymptotics are suspect for the problem at 
hand. Partly this is because typical applications use a 
very large number of parameters. When a large number 
of parameters are in use, the identifiability assumption 
becomes questionable. The model (1) is not identifiable, 
if for example wj = 0, for then the corresponding 0j has 
no effect on Y. There is thus no "true value" for 9j and 
estimates of it have nothing to converge to. This un- 
dermines the usual approach to asymptotic theory. The 
unit <j)j(X,0j) is said to be redundant, and the corre- 
sponding estimate <j>j(Xt6j) is said to be spurious. 

It is unlikely in practice that an exactly redundant 
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unit will be encountered. But in a model with many 
units it is reasonable that some of the u>j will be close to 
zero and hence that some units are nearly redundant. 

Redundant unit asymptotics are like those of broken 
line regression. Here X is a scalar and 

H(X) =u>o + uiX + u2{X - 9)+ (2) 

where z+ denotes max(z, 0), and the only nonlinear pa- 
rameter is a scalar 9. When w2 = 0, the signal is linear 
in X, and minimizing J2?=i(Yi ~ ß(xi))2 over all bro- 
ken line regressions reduces squared error by more than 
it would in a four parameter linear model. The nonlin- 
ear parameter 9 "uses up" approximately 2 degrees of 
freedom, according to simulations in Hinkley (1969) and 
asymptotics in Owen (1991). The maximizing value 9 
can appear anywhere but it is more likely that spurious 
bends will appear near the ends of the observed range of 
XiS. 

The questions for neural networks are: 

Ql How many degrees of freedom do the nonlinear pa- 
rameters in (1) use up? 

Q2 Where are the spurious units most likely to appear? 

Q3 Which units if any are less prone to overfitting? 

3    One Nonlinear Unit 

To examine these issues we consider the simplified prob- 
lem of training a single hidden unit. The model 

rtX) = A(X)ß + u<fi{X,9) (3) 

has one hidden unit to train, and when w = 0 that one 
unit is redundant. The term A{X)ß is a linear model in 
some non-adaptive basis functions A{X) with coefficients 
ß. This might be simply a constant, or a linear model 
in X, or it might include units Wj(j){X,9j) with their 
nonlinear parameters 9j frozen at some values and with 
Uj subsumed into ß. The model without the redundant 
unit is: 

p(X) = A{X)ß (4) 

Even when (4) is true, the sum of squared errors under 
(3) will be smaller. For any fixed 0 the reduction is 

S{9) = SSE{4) - SSE(3)(9) ~ (72X(i) (5) 

The x2 result in (5) is exact for normally distributed 
errors and is an asymptotic approximation otherwise. 
The reduction of the squared error of model (3) over (4) 
is 

S = sup S(9) 
0£0 

(6) 

and S does not have a Xi+d distribution, with d = 
dim(0), as one might have expected based on linear 
model theory. 

It is convenient to define a signed root process via 

Z(6) = ±S(9)1/2~N(0,(T2) (7) 

where the sign of Z(9) is the same as that of w when 
fitting (3) with 6 fixed. Let Zmsx = supSe0 Z{9). For 
large y>0, P(S > y) = 2P(Zm&x > y1/2). 

Suprema of Gaussian random fields, such as Z(9), 
have been well studied. At any 9, for smooth processes, 
Z and its first two derivatives have a joint Gaussian dis- 
tribution. A local maximum of Z above ZQ is a point 6 
such that Z(9) > ZQ , the gradient of Z vanishes at 9 and 
the Hessian of Z is negative definite at 6. A standard 
tail approximation is 

P(Zn > Zo<r)    =    i?(#Local Maxima > Z0<r) 

\(9)d9 *£ 
where \{9) is the intensity of high local maxima of Z 
near 9. 

For one dimensional intervals 0 of finite length, this 
formula is the expected number of "upcrossings" of the 
level ZQ(T by the process Z(9). If one adds the prob- 
ability that Z exceeds Zoa at one end of 0 one gets 
Rice's formula which is in this case an upper bound on 
P(Zmax > ZQ<T). For stationary fields, this formula re- 
duces to the volume of 0 times an intensity that is con- 
stant in 9. See Adler (1981, Chapter 6). The formula 
above is taken from Aldous (1989, Chapter J7). This for- 
mula is the lead term in the more accurate but more diffi- 
cult formulas obtained by Siegmund and Knowles (1989). 
The more accurate formulas take more care around the 
boundary of 0. 

The intensity function is 

\{fi) = (2n)^d+iy2Zt1e-z°/2\A(9)\1'2 

where |A| denotes the determinant of A and 

A(flo) 
d2 

d9d9' 
7E(v-2Z(90)Z(9))\e=9o 

is the Hessian of the correlation matrix of Z(9) evaluated 
at (?o. 

Owen (1993a, Theorem 2) gives an expression for the 
rs entry of A(0). Let $ be the vector of n values <j>(Xi,9), 
let $r be the vector of d<f>(Xi, 9)/d9r, and let M be the 
projection matrix on the space spanned by the matrix 
with n rows given by A(X{). Define the inner product 
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< g,h>= g'(I - M)h and define jr =< $r,$ > / < 
$,$>. Then 

Ars=<$r-7r$,$*-7,$ >/<$,$>•     (8) 

This equation may be better understood as an al- 
gorithm: Construct the vectors $,$r,$ä by evaluating 
4>(Xi,0) and its gradient with respect to 9. Then replace 
them by their residuals after fitting linear model on the 
predictors A(X). Then find the partial correlation of the 
resulting $r and $, variables after adjusting for $. 

The result provides Ars(0). Doing this for all r and s 
and taking the determinant allows one to calculate the 

intensity A(0). 
Thus for one nonlinear unit, we have a way to approx- 

imately answer the questions raised above: 

Al Integrate A over 6 and compare with chisquare tail 
probabilities. 

A2 Maximize or plot A (or |A|1/2) over 0. 

A3 Compare  A   (or   |A|1/2)  for  different   activations 
4>(X,0). 

In A2 and A3 the use of |A|1/2 is a little simpler since 
unlike A(0), it does not depend on Z0. 

4    Results and Examples 

The intensity function A(0) can be evaluated either nu- 
merically or theoretically. Based on this, one can find 
predictions of the Poisson clumping heuristic: 

PI Long tailed units <j> lead to fewer local maxima and 
use fewer degrees of freedom in noise. 

P2 Spurious bent planes are more likely near the convex 
hull of the X's. 

P3 Spurious sigmoidal units are more likely to pass 
through the middle of the X's. 

P4 Spurious radial basis units are more likely when the 
radius is small. 

P5 Those small radius units are likely to be found near 
voids in the X's. 

Since the method works by estimating the expected 
number of high local maxima, it also sheds some light on 
which types of units are likely to make global optimiza- 
tion difficult. 

Figure 1 shows 216 predictors X £ R? for a synthetic 
data set. For a Gaussian radial basis function model 
<j>(X,9) = exp(-||X - ef/2r2) in (3). With this model 

form, 0 is in the same space as the X,. Figure 2 shows 
|A(0)|1/2 for this model taking r = 0.5, A(X) = 1 and 
a2 = 1. We use a2 = 1 in all examples in this section. 

The peak of A(0) is in the middle of the X4- set. There 
is a second peak between the main body of the data and 
a small cluster near (3,1). There are ridges extending 
away from the data along lines equidistant from pairs of 
points on the convex hull of the X,-. For smaller r the 
function A(0) generally increases and the ridges become 
very high and sharp. The ridges correspond to 0-regions 
in which small changes in one unit can explain either of 
two potential outliers, or perhaps both of them, if they 
have the same sign. For small r large spikes can appear 
over the centers of gaps in the point cloud. In these 
locations small changes in 9 can make big changes in 
what the unit explains. 

In order to plot the results for sigmoidal units and 
other activations which are functions of projections of 
the data, we turn to polar coordinates. For 9 = (0i, 92)', 
let 

■K{XU 9) = X,i cos(0) + Xi2 sin(0!) - 92. 

so that öi is an angle and 92 is a radius. Figure 3 shows 
A(0) for a sigmoidal radial basis unit 

4>{Xi,e) = (1 +expHr(Xi,0)/r))-1. 

Here r = 0.5 and A(X) = 1. The points in the plot trace 
out the convex hull of the data from Figure 1. That is 
for a list of angles 9\, the maximum and minimum of 
X.-i cos(0i) + X.-2 sin(0i) over the X; is plotted. Figure 
3 shows that spurious sigmoids are more likely to have 
their linear regions passing through the center of the 
data than near the convex hull of the data. Decreasing 
T makes the sigmoids approach "threshold" units, and 
this generally increases |A|. (With threshold units, the 
process Z{9) is not smooth enough to apply Theorem 
2 of Owen (1993a), but the Poisson clumping heuristic 
may be applied in another form.) 

Figure 4 shows |A(0)|1/2 for crease units of the form 
<j>(Xi,9) = 7r(Xi,0)+. Again A(X) = 1, but for this ac- 
tivation, the spurious events are much more likely near 
the convex hull of the predictors. Note that taking 
A(X) = (1,X') makes models (4) and (3) into a plane 
and bent plane respectively. 

Figure 5 shows A(0) for hyperbolic fold units of the 
form <P(Xi,9) = 7r(X,-,9)/2 + (r2 + *(*,-,9f/Afl2. For 
Figure 5, r = 0.5. Note that as T decreases to zero, the 
hyperbolic folds become bent plane creases. 

For Figure 6 a sigmoidal unit is considered with 
A(X) = (1, <I>(X, 90)) where 90 = (TT/4, 1). That is, a 
second sigmoidal unit is being trained while the first one 
is held with it's angle at 7r/4 and it's radius at 1.0. The 
resulting plot of |A|1/2 shows that the second unit being 
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trained has a tendency to be close to the first one be- 
ing held fixed. This suggests that, if units are trained 
sequentially, that spurious units might arise near units 
already included in the model. This behavior arises for 
radial basis unit and for crease units too. It is somewhat 
weaker for the hyperbolic folds. 

Owen (1993b) makes some simplifying assumptions 
(large n, X spherical Gaussian in d dimensions) and de- 
velops an approximation of the form 

p(s > y) ~ sv-Wptfw > y) (9) 

for units <j>{X, 0) with fixed radius \\0\\. In this case the 
multiplier 8 depends on the radius and of course on the 
type of unit. The main conclusion is that short tailed 
units have larger values of 6. For some long tailed units 
the resulting 6 is close to one, indicating that, for such 
units, redundancy does not make large changes to the 
asymptotics. Short tailed sigmoidal units are ones where 
the distribution function corresponding to the sigmoid 
used has short tails. For example the Cauchy distribu- 
tion has very long tails, the uniform distribution function 
has very short tails and the widely used logistic sigmoids 
have tail lengths between these extremes. Fold units that 
approximate creases are defined through the integral of 
a sigmoidal function. The fold has short or long tails 
according to whether the sigmoid does. 

5    Many Units 

It is possible to extend this method to problems with 
many units, though it is harder to find simple descrip- 
tions of the results. Suppose that for j = 1,..., J we 
have Oj G Qj ■ Let ©o be the unit hemisphere in J dimen- 
sions, with a positive J'th component. Let (#oi, • • •, QQJ)' 

be a point in ©o- Then we may write (1) as 

j 

H(X)    =    wo+w^oM*,^) (10) 
;=i 

=   u0 + u<p{X,d) (11) 

where $ € ©o x ©i x • • • x 0/ subsumes all the nonlinear 
parameters 0j and all but one degree of freedom of u>i 
through wj and ip is a nonlinear function of X. 

Sun (1989) uses this construction in studying p values 
for projection pursuit regression. 

Figure Captions 

Figure 1   Shown are 216 points Xi G R2. These are 
a synthetic data set of predictors. 

Figure 2 The points are those of Figure 1. The 
contours are those of \Al^2\ for a Gaussian radial basis 
function with radius r = 0.5. 

Figure 3 The contours are those of (A.1/2), in polar 
coordinates, for a sigmoidal unit with inverse slope r = 
0.5. The points describe the convex hull of the data set 
in Figure 1. 

Figure 4 The contours are those of |A1/,2|, in polar 
coordinates, for a crease (bent-plane) unit. The points 
describe the convex hull of the data set in Figure 1. 

Figure 5 The contours are those of |A1/,2|, in polar 
coordinates, for a hyperbolic unit with inverse slope r = 
0.5. The points describe the convex hull of the data set 
in Figure 1. 

Figure 6 The contours are those of |A1/,2|, in polar 
coordinates, for a sigmoidal unit with inverse slope r = 
0.5. Another sigmoidal unit, with nonlinear parameter 
frozen at 0 = (7r/4,1.0) is included in the linear portion 
of the model. The points describe the convex hull of the 
data set in Figure 1. 
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Abstract 

The use of likelihood profiles for exploring and mea- 
suring non-identifiabiliy and near non-identifiability is 
discussed. The method is then applied to the estima- 
tion of normal-gamma stochastic frontier models used 
in econometrics. It is shown that these models are 
practically non-identifiable for samples sizes up to sev- 
eral hundreds of observations. 
Keywords: Frontier models 

1.    Introduction 

This paper deals with the following problem fre- 
quently encountered in practice. A standard paramet- 
ric model exists for a certain type of data sets, but the 
researcher has the impression that the choice of this 
model is somewhat arbitrary and that a more flexi- 
ble extension might be more appropriate. The natural 
move is to add a parameter to increase flexibility and 
to estimate this parameter together with the quanti- 
ties one is interested in from the data. Unfortunately, 
this can easily turn a well-posed problem into a non- 
identifiable or nearly non-identifiable one. Likelihood 
profiles can be used to explore such situations. 

The tool, profiling, is not new and ample literature 
exists on various of its aspects. However, except for the 
work of Bates and Watts (1988) authors have mostly 
concentrated on the properties of profiles in the con- 
text of elimination of nuisance parameters (Barndorff- 
Nielsen, 1983; Barndorff-Nielsen, 1986) and less on 
their value for the purpose of exploration (Ritter and 
Bates, 1993). 

The paper begins with an introduction of the nota- 
tion of the problem and of the terminology of like- 
lihood profiles. In Section 3, a concrete problem, 
the estimation of normal-exponential and normal- 
gamma stochastic frontier models (Aigner, Lovell and 
Schmidt, 1977; Stevenson, 1980; Meeusen and van den 
Broeck, 1977; Greene, 1990) is described. In Section 
4, a strategy for using likelihood profiles to study this 
problem is laid out. In Section 5, the results of a sim- 
ulation are reported. The paper is concluded by a 
discussion of the results. 

2.    Notations and Terminology 

We suppose that data are generated as continuous 
random variables from a parametric model as 

xfiFgW; 0 e e c R* (2-1) 

where 6 is a nice connected domain, and where F 
has density / which is twice continuously differen- 
tiable in 0. The corresponding likelihood is denoted 
by L(8\x) = fe(x.) and the log-likelihood by /(0|x). 

Moreover, we assume that inference is conducted 
by maximum likelihood. That is, for a sample x = 
(xi,..., xn) the point-estimate of 0 is obtained by 

6 = argmaxgL(0|x) (2.2) 

and confidence regions are computed by either using 
the inverse information matrix 

S=[JDelogI(0|x)|0=0]_1 (2.3) 

or the x2 approximation of the log-likelihood. 
If we are worried that the model might not be suf- 

ficiently flexible, we can try to find an extension by 
incorporating an additional parameter i/>. We denote 
the likelihood after adding V> as L(9, V>|x). Frequently, 
the original model corresponds to a particular choice of 
V> = ipo for which L(0, V>o|x) « L(0\x). If L(6,i>\x) is 
smooth in the joint parameter vector and if tpo is in the 
interior of the domain of rp, the usual likelihood-ratio 
test can be used to check whether the data require the 
extended model or not. 

Frequently, however, maximum likelihood estimates 
are much harder to find for the extended model than 
for the original one. The information contained in 
common finite samples may not suffice to pin down ip 
and the estimates of the components of 0 may strongly 
depend on ■$. In this situation, virtually all precision 
in the estimation of 0 is lost by going from the original 
to the extended model. That is, the extended model 
becomes practically non-identifiable. 

In order to assess how adding ip to the model affects 
the estimation of 0 we can try to compute the profile 
trace 

0(t/>) = argmax0L(0,V'|x) (2.4) 
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and the profile value of the log-likelihood 

Ity) = max/(0, V|x) = i(B^)} ^|x). 
o 

(2.5) 

If a joint maximum likelihood estimate (9, ij>), exists, 
we can carry this out by re-maximizing the likelihood 
for discrete values of tp starting at ip and gradually 
moving outward. This assures that good starting val- 
ues for the re-maximization are always available. Al- 
ternatively, if no joint maximum can be found but if 
the original model is a special case of the extended 
model at ^o one can start with the estimates of the 
original model and move gradually away from ^o- If 
no obvious starting point is available, a grid of i/> val- 
ues has to be laid out and the conditional optimiza- 
tions have to be attempted directly. Once the profile 
trace and the profile values have been computed for a 
sufficiently far reaching and fine grid of tp values, inter- 
mediate values can be obtained by spline interpolation. 
The existence of profiles can only be guaranteed un- 
der severe regularity conditions and the reader should 
keep in mind that computing profiles is an exploratory 
technique which will work in many but not all situa- 
tions. 

3.    A Stochastic Frontier Model 

A typical case where practical non-identiflability is 
observed is the transition from a normal-exponential to 
a normal-gamma stochastic frontier model for econo- 
metric data. Such frontier model have the structure 

Yi = n + x'iß-zi +i/i, (3.1) 

where Yi represents the observed output (passenger 
miles for airlines, for example) and fj, + x</3 the op- 
timal output which can be obtained from the vector 
of inputs x, = (xi;i,...,xiip) (which could be labor, 
capital, fuel, etc.).  The parameters p and ß are un- 
known and have to be estimated from the data. The 
two error terms z, and */,- represent the inefficiency of 
unit i and the measurement error. The component z,- 
is restricted to be positive, while i/,- is usually treated 
as normally distributed with an unknown variance a2. 
There are several choices for a distribution of the z,-. 
Good estimation properties can be obtained using an 
exponential or a half-normal distribution. The disad- 
vantage of these choices are that the shape of the dis- 
tribution of the inefficiencies is imposed without sci- 
entific reason. On can avoid such a hard choice by us- 
ing a gamma distribution for the inefficiencies instead 
(Greene, 1990). Gamma distributions are very flexible 
and contain the exponential distribution as a special 
case when the shape parameter is equal to one. Un- 
fortunately, maximum likelihood estimation is much 
more difficult for the normal-gamma model than for 
the normal-exponential model. 

In the following discussion, we denote the variance 
of the normally distributed noise component V{ by cr2, 
the scale parameter of the exponential or gamma inef- 
ficiencies by A, and the shape parameter of the gamma 
distribution by a. We assume that the z,- and the Vi 
are all independent. 

4.    Analyzing      the      Normal-Gamma 
Model by Likelihood Profiles 

Figure 1: Profile values for the normal-gamma model 
of the American Electric Utilities (Greene, 1990)]. The 
evaluated points are joined by an interpolating spline. 

The transition from the normal-exponential to the 
normal-gamma stochastic frontier model is a show-case 
for the use of likelihood profiles. Suppose that the like- 
lihood of the normal-gamma model has been optimized 
for fixed values »i < a2 < ■ ■ ■ < ap covering a range 
from distributions more extreme than the exponen- 
tial (i.e., a < 1) to distributions close to normal (i.e., 
a » 1) and that the corresponding profile trace and 
the profile values of the log-likelihood are 91} 92, •••, 9P 

and h,h,---,lp (here 9 denotes the combined param- 
eter vector (fi,ß',<T2,\)). Suppose also that the joint 
maximum likelihood estimate (9, d) was found and is 
among those values. By the x2 approximation of the 
likelihood ratio statistic we obtain 

l(9,&)-l(9,a) ■■xl (4.1) 

This enables us to define likelihood intervals J{i_w} for 
a with approximate 1 — w coverage by 

I{l-u,} = < a   /(a ■)>i(*,&)-zxl(i -«)}■   (4- 2) 

In practice, for a coverage probability of 95%, we can 
plot the profile values 2/,- versus the a,- and draw a line 
Xi(.95)2 » 3.84 below the observed maximum 11. The 
range of a values corresponding to points above the 



C. Ritter    65 

,,„HJ-.,v.V.7.V":.V.^ b 

-*■**                                                     .*" .-zJtfi^                \ ~ "« 
b""                            ^-J-^-*^^ "^*"~~        "****■•<> \ a: n- 100 , rho=1/3 
a ~~                J'      / s' X1* 

>'?    '  y >B b: n= 200 , rho»1/3 
>' / / / 

o: n» 400 , rho-1/3 
•'/     / 

/    i/ / d:n=800 ,rho=1/3 

/ / e: n= 400 , rho=1/5 

/ / f: IT 400 ,rho=1/9 

/' / 
/// 

/      :7  /"TZ 
/          1 

J          :■/ 

2 

alpha 

Figure 2: Medians of 2(fj(a,-) - k;j) for each combination of n and p. The abscissa is on a logarithmic scale and 
the evaluated points are joined by interpolating splines. 

line provides an approximate confidence interval for a 
and also a simple graphical means for judging whether 
a is well-determined by the data. Figure 1 shows such 
a plot for a normal-gamma model of the efficiencies of 
American Electrical Utilities analyzed by Christensen 
and Greene (1976) and Greene (1990). 

We see that 21 exceeds considerably the lower line 
for all chosen values of a. None of those values is 
therefore rejected by the likelihood ratio test. This 
indicates that the data (123 records) do not contain 
sufficient information to tie down a. Ritter and Simar 
(1993) show that the imprecision in the estimation of 
a carries over to the quantities of econometric interest. 

5.    Simulation of Special Cases 

In this section, we use simulations from a specific but 
typical normal-gamma model to show how the sample 
size and the share of the total variance attributed to 
the noise component v% affect the estimation properties 
of a. 

The special case considered here is the normal- 
gamma model 

Yi = p-Zi + v{ (5.1) 

with frontier fi = 0 and shape parameter a = 2. The 
choice of the shape parameter corresponds to a distri- 

bution which is clearly not exponential, but still far 
from normal. The parameters characterizing the esti- 
mation properties are the sample size n and the ratio 
p = cr2/(aA2 + <r2), the proportion of "noise" in the 
total variance. For example, the choice p — 1/3 im- 
plies that 1/3 of the total variability comes from the 
noise component and 2/3 from the inefficiencies. An 
allocation of 1/5 to 1/2 of the total variance to the 
noise component is typical and has for example been 
observed with the the American Electric Utility data. 

For any choice of n and p data sets can be simulated. 
These data sets can then be analyzed by maximum 
likelihood and, in particular, their profile traces and 
values can be computed with respect to a. 

Recall that the true parameters are known and thus 
provide the likelihoodjo = 1(8, a\x). For fixed a = 2, 
the profile value ^ = J(2) relates to lo via the approx- 
imation 2(/2 — lo) ^ xl with a x2 distribution with 
three degrees of freedom. For each simulated data set, 
the true likelihood /o can be computed and used to off- 
set the profile values l(oti) thus allowing comparisons 
of the profile values across data sets. 

For example, rt]J- = 2(fj(a,) - /o;;) can be computed 
for simulated data sets j = l,...,m and summaries, 
such as medians and quartiles can be retained for each 
position en. A graphical superposition of the medians 
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for each of the settings above can provide a convenient 
assessment of the estimation properties of a. 

6.    Results of The Simulation Study 

p = a2/(a2 + aX2) 
n 1/9 1/5 1/3 1/2 
100 X    X 

200 X 

400 XXX 

800 X 

Table 1: Scenarios for simulation. 

For each scenario indicated in Table 1, 60 data sets 
were simulated for each of them the profile of the 
log-likelihood with respect to a was computed. Fig- 
ure 2 shows the medians of 2(/;- (a,) — loj) for each sce- 
nario. The medians for the same scenario are joined by 
smooth curves. The solid line represents the expected 
value of the median of a \3 distribution with three 
degrees of freedom; the dashed line x?(0-95) = 3.84 
units below denotes the cutoff corresponding to a 95% 
confidence likelihood region. As we expect the ob- 
served medians for a = 2 are close to the theoretical 
median of the xl distribution. Moreover, all points 
except for a - 0.5 of the cases (800,1/3), (400,1/9), 
and (400,1/5) lie above the dashed line. This suggests 
that the estimation of a is very poor when the sample 
size is small and when there is a considerable amount 
of noise. 

7.    Discussion 

Profiles can provide convenient tools for explor- 
ing likelihoods in situations of near non-identifiability. 
The results can be displayed using simple graphics and 
are easy to interpret. In the context of normal-gamma 
stochastic frontier models, this approach yielded the 
insight that in general large sample sizes are needed 
to estimate a well. Sample sizes of 100 or 200 ob- 
servations, which are common in practice, are clearly 
insufficient. 

Gradually, profiling algorithms are finding their way 
into standard statistical software packages. Explicit 
profiling algorithms are already available in S and 
Splus. In other packages, profiling is an implicit in- 
gredient in procedures for Bayesian inference. This is 
the case in Xlispstat, where the procedure for comput- 
ing the Laplacian approximation of a marginal relies 
on the computation of a profile. 
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ABSTRACT 

The evaluation of statistical procedures in the 
area of finance requires powerful and rich com- 
puter environments. Requirements for such 
environments are stated and their need illus- 
trated with the example of geometric Brown- 
ian motion. 

1    Introduction 
Computer intensive methods and the inter- 
face between statistics and computing seem to 
carry nowdays a specific and rather restrictive 
meaning, that of single statistical techniques 
or methods which rely heavily on the computer 
for implementation. Thus LMS (Least Median 
of Squares) regression [13] requires that many 
systems of linear equations be solved. Many 
problems in statistics have their source outside 
of it and require that broad arrays of math- 
ematical, statistical and numerical techniques 
be put to bear on sizeable areas of a particular 
discipline or set of such. The discipline consid- 
ered here for illustration is that area of finance 
which deals with contingent claims [4] and, 
in it, the simplest model, geometric Brown- 
ian motion (GBM henceforth), shall be chosen. 

Research support is provided by the Swiss Na- 
tional Science Foundation, Contrat No. 12-36209.92 

The computer intensive aspect of this prob- 
lem area is due to two basic factors. The first 
is the high number of mathematical, statis- 
tical and programming techniques that must 
be marshalled to progress towards a solution. 
The second is the limitation inherent in all an- 
alytical developments when numerical answers 
are required: one must, in fine, resort to sim- 
ulations. In such situations, significant "prac- 
tical" progress towards workable solutions is 
often dependent on the quality of the "infor- 
mation system" which is available and which 
always must encompass much more than a set 
of statistical tools, even when packaged into 
an organic whole. Such considerations justify 
the second part of the title which is borrowed 
from the CASE (Computer Aided Systems En- 
gineering) technology discourse: it sees solving 
a problem (building an information system) as 
a set of tasks which are grouped into activ- 
ities which constitute processes. These yield 
in turn the solution (the information system). 
In that world tasks require tools, activities, 
workbenches, and processes, environments [6]. 
It is claimed that there is a need for analogous 
concerns and means in the area of computer 
intensive methods of interest here and a set of 
"minimal" requirements is given that would 
provide an adequate environment for the pur- 
suit of such problems. Similar needs arise in 
certain areas of engineering [1]: the difference 
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is mostly with the type of mathematical mod- 
els that are used. 

2    An example:   Statistical 
fit of GBM 

GBM is of interest in the financial area be- 
cause it is intimately linked to the Black- 
Scholes formula, a formula that allows pric- 
ing of an option [4]. To actually use the for- 
mula one must obtain an estimate of a param- 
eter which is the diffusion parameter of the 
GBM which describes the behaviour of the as- 
set supporting the option. A GBM St is de- 
scribed [10] implicitly by the stochastic differ- 
ential equation 

dSt = uStdt + aStdWt, 

where W is a standard Wiener process, and 
explicitly by the expression 

5t = 5oe("-^+^'. 

The statistical problem consists in estimating 
/i and (x from the observation of a path f(t) of 
the process S at a finite number of time points 

ti = 0 < tx < ■ ■ ■ < tn = T. 

A number of estimators are available [2, 3, 7, 
12], but there seems to be little comparative 
work in settings which are "realistic" (as de- 
scribed in [4] for example), which means in 
particular that the number of observations is 
small (between 50 and 200 is "typical"), and 
often that T = n. These constraints raise a 
number of questions for which there are few 
analytical answers (it should be stressed that 
the case of GBM is almost the simplest one 
could conceive). The recourse is thus simu- 
lations. Most methods known so far, and in 
particular those mentioned here, are, at best, 
supported by partial simulations which are 

usually limited to the method presented, and 
which avoid comparisons with other methods. 
No systematic statistical investigations exist, 
which is easily understood, given the complex- 
ity of the estimators considered. 

One possible method of estimation of /z and 
a consists in computing the Radon-Nikodym 
derivative of the law of S with respect to that 
of So + crW, and of deriving from it estima- 
tors which are then "discretized at the obser- 
vations" [2]. One gets 

/>    _ if/W-/('i--) 

TQV2 

f(ti)-f(U-x) 

Wi-i) 

These estimators are, in general, sums of in- 
dependent, non identically distributed random 
varaibles whose law is not exactly express- 
ible analytically. So typically, one must com- 
pute moments and derive an asymptotic re- 
sult. Such calculations require that high order 
moments (order six in this case) be evaluated. 
To that end one introduces expressions of the 
form 

EekNi = SW
t *, *(*-!) 

where 
?g = «*•"+"? 

and Ni is a normal random variable with pa- 
rameters fii = (fi — %-)(<,• — t»_i) and <Tf  = 

2 

<r2(ti — ti-x)(vi = ßi + ^-). A typical expres- 
sion is then 

Vifty,) JV K^4,6 ■54,2) 

4(53,3 - S3ix) + 4 (S2,x-S2,o)] 

Here is a list of what a systematic simulation 
should yield to allow evaluation of such esti- 
mators. First, one should distinguish the case 
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of an exact model and that of a model which 
is approximate. For an exact model, at least 
the following questions should be answered: 

• Does the value of ike parameter to be es- 
timated influence the quality of the esti- 
mator? 

It would indeed not be surprising if very 
small or very large values of the parame- 
ters to be estimated would influence, pos- 
itively or negatively, the quality of some 
of the estimators to be considered. 

• What is the influence of the number of 
observations on the quality of the estima- 
tors? 

What is meant by "number of observa- 
tions" can be many sided: it may be the 
absolute number of observations, but it 
also may be the density of observations 
(absolute number over time observed, or 
number per unit of time). In [12] it means 
four strongly typed observations per day: 
the question then becomes, how many 
days? 

The question may also depend on the type 
of statistical result expected: the number 
of observations required to obtain a good 
estimator may be less than that necessary 
to a validation of the fit. If one's only 
recourse is a central limit result, when 
(in terms of absolute numbers or density) 
does this limit effect take place? 

One may finally ask for "optimal" combi- 
nations to insure "overall quality", such 
as absolute number together with a given 
duration. 

• Does the regularity of observations mat- 
ter? 

Does one need observations taken at reg- 
ular times, or are observations registered 

when possible sufficient? In the latter 
case, is there a "minimum time interval" 
beyond which estimators become useless? 

• Are there better methods of estimation? 

In other words can one produce prescrip- 
tions for estimation which ensure "qual- 
ity" of the results? 

• What is the law of the price of the option ? 
Is it sensitive to the estimation procedure, 
or to any of the potentially disrupting fac- 
tors? 

It should be clear that one would need in 
practice some kind of confidence interval 
for the price! 

In case of a process which does not behave 
according to the model, a number of obvious 
questions come to mind. Here are a few: 

• Are the estimators robust? 

One could ask for the kind of robustness 
which is expected: the really important 
one would seem to be that of the law of 
the price! An associated question would 
be: are the validation procedures suffi- 
cient to at least alert the user to a "depar- 
ture" from the model, such as a process 
with sample paths which could be pro- 
duced by geometric Brownian motion, but 
which, in reality, are not? 

• Are there procedures which could be used 
to detect, or to adapt the statistical proce- 
dures to, a change in the model? 

The simplest case would be, for geometric 
Brownian motion, a change in the values 
of the drift and the diffusion parameters. 
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3 A wish list of compo- 
nents for an adequate 
environment 

Evaluation of statistical methods in finance 
should be performed as a two stage procedure: 
during the first, one would only be concerned 
with the purely statistical performance of the 
method, that is one would want to make sure 
the method is statistically sound. During the 
second stage, one would want to check that 
the method works well for the financial ana- 
lyst (not the statistician). The latter requires 
that one has access to databases with financial 
information, and that a prerequired set of sta- 
tistical operations be performed. A flexible en- 
vironment would accept commands which list 
the operations and the data, and carry out 
the retrievals and the computations. This is a 
purely a technical matter for a computer ex- 
pert. Only the first stage is of interest here. 

In the chosen example, there are. many ways to 
estimate the parameters and a number of "di- 
mensions" according to which the evaluation 
of these estimates should be carried out. The 
dimensions correspond to the questions raised 
in section 2. Practically one carries out the 
simulation as follows. 

One begins with simulations of the process 
(GBM here). To that end one must have at 
least two tools: an "augmented" random "ob- 
jects" generator and tools to manage the re- 
sults of the simulations. Traditional random 
"objects" generators simulate "objects" whose 
complexity is that of a random variable (ran- 
dom numbers generators). For finance one 
must be able to simulate well at least paths 
of diffusions with state spaces strictly smaller 
than the real line (assets typically do not have 
negative values). As shown with the expert 
systems ADAGIO and PRESTO [9] (PRESTO 
is an expert-system which performs automatic 

generation of complete Fortran programs solv- 
ing Stochastic Differential Systems, from data 
provided by a user supposed to have no pre- 
requisite knowledge either in Numerical Analy- 
sis of these systems, nor in programmation), a 
useful generator must be coupled with an "AI 
language" (Lisp in PRESTO) and a symbolic 
manipulator (REDUCE in PRESTO). In fact, 
it would be extremely useful to have, among 
the capacities provided by the symbolic ma- 
nipulator, facilities which automate stochastic 
calculus, in the spirit of [8]. Furthermore, the 
simulator should come with "automatic" tools 
to check the quality of the paths (if an estimate 
is computed on a path, one must make sure 
that what is observed is the behavior of the 
estimator, and not the behaviour of the simu- 
lated path). "Exhaustive" simulation of paths 
of stochastic processes requires on the other 
hand that one benefits from facilities to man- 
age the versions, such as "semi-automatic" la- 
beling of files, recording of seeds, and so forth. 
One should then be able to browse "easily" 
through these simulations. 

Once the paths are available, one needs a 
"sampler" for at least two purposes. It has 
been argued that time is an important ele- 
ment for the statistics of financial models. One 
should thus be able to test the potential es- 
timates against the possible time dimensions 
as described above. But also some estimation 
procedures may require specific time sampling. 
For example, the estimation procedure inves- 
tigated in [12] requires the first and last daily 
values of the asset, as well as the largest and 
the smallest during the day. Thus, to extract 
from a simulated path different types of sam- 
ples and associated caracteristics should be an 
easy operation. Finally, since financial data 
is "historical" data, the basic assessment tech- 
nique will eventually be the bootstrap [5] or an 
adaptation of it (it is thus necessary to pro- 
duce, from a sampled path, the law of a so 
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that the law of the price may be exhibited). 

In the area of diffusions many complex objects, 
such as stochastic integrals, require numeri- 
cal approximations and it would be useful to 
have those pre-programmed with quality algo- 
rithms as it seems clear that numerical quality 
is essential for the successful implementation 
of these rather complicated procedures. Fur- 
thermore certain estimation techniques such 
as filtering [11] ultimately require that numer- 
ical schemes for ordinary differential equations 
be used. 

Of course a large array of "ordinary" statisti- 
cal techniques should be available (for density 
estimation, for example). These, as hinted in 
section 2, also require a symbolic calculator to 
calculate moments explicitly (see the formula 
for the variance), and other similar calcula- 
tions. The user of the system should have fa- 
cilities to enrich and complete it with his or her 
favourite techniques (access to programming 
languages and expert systems shells). Reports 
should be easy to produce (integration of facil- 
ities for "intelligent" graphic presentations). 

At the present time, tools are available. One 
needs workbenches and environments! 
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Abstract: The distribution of independent Bernoulli trials 
is investigated in the case where the probability of success 
is different at each trial. Expressions for the factorial 
moments and cumulants are given. These expressions are 
used to construct the closed form of the probability mass 
function. The method is shown to be ill-conditioned and 
Tikhonov regularization is used to compute the probabilities. 
Formulas for the cumulants and moments are also developed 
and the probability function approximated by an expansion 
in the orthogonal polynomials associated with a Binomial 
distribution. 

1. Introduction: In this report, three methods for the 
computation of the probability mass function of the random 
variable X, which counts the number of successes in N 
independent trials, will be considered. In section 2, a direct 
approach based on exhaustive enumeration will be 
considered. It will be shown to be impractical in all but the 
simplest cases. In section 3, formulas for the factorial 
moments are given. These are used with the formula of 
Laurent [4] to give a closed form representation of the 
probability mass function. It is shown that this approach is 
very ill-conditioned, but that good results can be obtained by 
Tikhonov regularization. In section 4, an alternative 
approach based on using moments to approximate the 
probability mass function by an expansion in orthogonal 
polynomials is presented. It is found that this approach 
becomes ill-conditioned as higher moments are used, but that 
it gives good results in general. Finally, in section 5, a table 
of results is given for a number of tests of the methods and 
some comments are made. In what follows, the binomial 
coefficients will be denoted by C(n,k), vectors by small 
letters underlined and matrices by capital letters. Small 
letters with subscripts will denote the elements of vectors 
and matrices where appropriate. 

2. The Direct Method: In this section a formal solution to 

the problem is presented and analyzed as an approach to 
computing the probability mass function. Let pj be the 
probability of a success on the i-th trial and let k be the 
number of successes in N trials. Let IC<N,IO be the set of z e 
9lN such that (i). z-, e (0,1), for j=l,2,...,N and (ii), 

N 

E*j = k 
J=I 

Then the probability , Pr(X=k), that the random variable X 
equals k is given by, 

N 
(i) £  n^V'^xi-p,)] 

'■cur.k) 

Each value of the probability mass function requires the 
summation of C(N,k) products each of which can be 
expressed as N-l multiplications. In addition, the 
computation requires C(N,k)-l additions. Thus the 
total number of floating point calculations is 
(N-l)C(N,k)+C(N,k)-l for any value of k. Summing over k 
yields an operations count of N2N - (N-l) = CXN2N), so that 
although simple fast algorithms exist to generate the set of 
all combinations, the exponential complexity class of the 
algorithm makes this unfeasible except at the tails of the 
distribution and for small N. In the evaluation of the 
methods developed in sections 3 and 4 we will use this 
calculation procedure to estimate the probabilities for 
comparison purposes. 

3. The Probability Mass Function in Terms of The 
Factorial Moments: Noting that the factorial moments of 
a discrete random variable X, X e {0,1,2, ...,N}, with 
probability mass function, f(x), are defined by the equation, 
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N 

ji[x] = 2X(JC-1) ... (x-(r-D)f(x) 
x=o »«-Ti^rS«-1»' 

w 

m=l 

i+1 W, r-J 

it was shown by Laurent [4] that f(x) has the equation, 

N 

fix)   = £ (-l)x+JC(j,x)-^f- 
J=X 

The derivation of this result is simple and 
instructive. If the defining equation for the r-th factorial 
moment is divided by r!, and r is varied from 0 to N, the 
resulting system of N+l linear equations for f(x) is upper 
triangular with ij-th element equaling C(j-l,i-l) when j>i and 
0 when j<i.(note that i,j=l,2,...,N+l). It is easily seen that 
the columns of this matrix are just the rows of Pascal's 
triangle. The elements of the inverse matrix are just (-1)1+J 

times the elements of this matrix and so Laurent's formula 
follows immediately. Examination of this formula reveals 
potential problems in «he computations. In particular, the 
coefficients of the quantities |j[r]/r! grow rapidly with N and 
alternate in sign. In order for the resulting sum to be small 
cancellations must occur and so it is unlikely that the 
function can be calculated with good relative precision. The 
fact that the coefficient matrix has positive elements and is 
upper triangular suggests solving for the values of f(x) by 
back substitution. Unfortunately, the matrix is very ill- 
conditioned with condition number K, = 22N. Thus assuming 
that the quantities ^/r! can be found, they will be subject to 
rounding error and we will be considering a classic discrete 
ill-posed problem. We shall see that this problem can be 
successfully solved by application of Tikhonov 
regularization. If we define the factorial cumulants in a 
manner analogous to the usual cumulants and denote the r-th 
such quantity by K[r], it can be shown that for the 
distribution of interest, 

K[r] = (-l)r+1(r-D! $>/ 
J=I 

Next let w, = u^/r! and vr = Klr]/r! so the w, can be 
generated from the vr by the following recursion, 

J=I J 

As indicated above, the system of equations for the 
probability mass function, given the factorial moments 
becomes increasingly ill-conditioned as N increases. For this 
reason we apply the method of Tikhonov regularization and 
restate the problem as a constrained least squares problem: 

subject to the constraints, 

Vj(0 <; j <L N) ,fj * 0 ; Y,fj = 1 

j=o 

The matrix A in these equations is the original upper 
triangular matrix for the system with the first row and 
column deleted. The idea of Tikhonov regularization is to 
choose a suitable value of A, by some criterion. A number of 
ways of choosing this parameter are described in Hansen [2]. 
We have considered one of those and also one of our own 
which is particular to this problem. For reference purposes, 
these will be denoted by 

(1). The Generalized Cross Validation Method 
(GCV) of Golub, Heath and Wahba [1]. 

(2). MSRE in which the Mean Square Relative 
Error is calculated by comparing the factorial moment 
solution to a few "true" values calculated by the direct 
method at each end of the solution vector. 

It should be noted in this context that even when N is fairly 
large, the first few values of the probability mass function in 
each tail of the distribution are easily calculated. In either 
case, a 1-dimensional nonlinear optimization problem for A. 
is solved which requires repeated solution of the following 
constrained linear least squares problem: 

Let jibe the N-vector with components fjtl],...,|nIN]/Ni 
and IN be the N x N identity matrix, then for each A, we 
solve, 

Wr+1    (r+1) 

for r > 0. Combining these two equations yields, 
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A 

A- Q. 

ject to the constraints 

fh Z 0 , j=i, ,N 

N N 

i=i      j=i 

where pj is the known probability of a success on the j-th 
trial. 

The results of computational experiments with this 
approach are given in section 5. It will be shown there that 
both of the methods indicated above for choosing the 
parameter X give satisfactory results. However, the GCV 
method, which requires the computation of the Singular 
Value Decomposition of the matrix A, appears to give 
slightly poorer results. 

4. Approximation By Expansion In Orthogonal 
Polynomials: The technique to be used here is applicable 
to any discrete distribution and will be described in very 
general terms. 

Let f(x) be the discrete distribution to be 
approximated and let f(x) be defined on the set fl, 
A^x^Xj»....^}. Let p(x) be a second known discrete 
distribution with domain fi. Finally let {hj(x),j=0,l,...} be a 
set of polynomials orthogonal to each other with respect to 
p(x)'on Q; that is such that 

x=xa \      J P\x) 

By matching moments we shall find coefficients % a^ %,... 
such that 

fix) *p(x) [a^a^ (x) +a2h2 (x) +. . . ] 

X 

1 xn *«? 
1   X1   JCi 

1   X, 4 

1   xm  Xm 

Xi 

and D=diag(p(x0),p(x1), ..., p(xj). Let A = D1/2X have QR 
factorization, 

A = Q 
R li 

0 
,   A,   6 Rir*l)x[r*l) 

Then the columns of the matrix B=D"1/2Q are orthogonal 
with respect to the weight matrix D and are the orthogonal 
polynomials h0(x), h^x), ... ^(x) evaluated on Q. 
Furthermore, if ^ is the vector composed of the 0-th moment 
and the first r moments of f(x) then the coefficients % in the 
expansion are the solutions to the system of equations 
RnTa = ä- 

Again formulas for the moments and cumulants of the 
distribution under study are easily calculated as functions of 
the known probabilities of success on individual trials. To 
this end, for each Pj, let dn+1(j) be defined by, dt = p} 

dD+1(j)=pj[l-YtC(n,k)dn+1_j(j)] 
i«l 

then the cumulants Kj are given by 

N 

*r  =  £dr(J) 
J'-1 

The moments are then found from the cumulants by the well 
known formula, 

If an approximation utilizing the first r terms of this 
expansion is to be generated, then the following result can 
be easily derived, 

THEOREM: Let X e R«"»»**1) and D 6 R<*»«"0»i> be 
defined as 

The matrix Rn tends to become ill-conditioned as 
r increases because the matrix D1/2X becomes ill-conditioned. 
The degree of ill conditioning  is a function of the 
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Table I. 
Comparison of the directly computed CDF to those obtained by the GCV, MSRE and series approximation method for the 
case of N=20 and 100 simulations. The table entries are relative differences. 

GCV (N=20) 100 trials 

lower tail upper tail 

1% 5% 10% 1% 5% 10% 

Max 5.5 x Iff5 2.2 x Iff5 1.3 x Iff5 3.5 x 10"7 3.9 x lO"7 1.3 x Iff6 

Q3 3.1 x Iff6 2.9 x 10s 1.4 x Iff6 8.5 x 10* -4.5 x Iff9 1.7 x 107 

Med 5.4 x lO"7 1.0 x 10"7 3.0 x Iff7 2.3 x Iff8 -5.1 x Iff8 3.5 x Iff8 

Ql -4.9 x 10"7 -5.3 x lO"7 -1.4 x Iff7 -3.1 x lO"9 -1.6 x 10"7 -3.6 x Iff« 

Min -6.0 x 10s -8.9 x 106 -8.5 x Iff5 -6.2 x Iff8 -7.3 x Iff7 -5.9 x lO"7 

MSRE (N=20) 100 trials 4 end points 

lower tail upper tail 

1% 5% 10% 1% 5% 10% 

Max 1.1 x 10"7 2.1 x 109 3.4 x Iff8 1.4 x 10"9 8.9 x Iff10 4.4 x Iff9 

Q3 1.4 x lO"8 5.9 x lO9 4.9 x Iff9 1.6 x Iff10 5.3 x Iff11 4.4 x Iff10 

Med 1.1 x 10"9 1.5 x lO10 4.9 x Iff10 2.9 x 10" -1.6 x Iff10 5.4 x Iff11 

Ql -6.6 x 10"' -3.6 x 10"9 -1.5 x 10"9 . -4.7 x Iff11 -3.6 x Iff10 -2.7 x Iff10 

Min -5.7 x 10"7 -4.7 x 10* -7.6 x Iff8 -6.3 x Iff10 -2.9 x Iff9 -2.9 x Iff9 

SERIES (N=20) 100 trials 

lower tail upper tail 

1% 5% 10% 1% 5% 10% 

Max 4.1 x lO"2 5.4x10-" 1.9 x Iff3 6.3 x lO"4 3.4 x lO"4 3.8 x Iff4 

Q3 2.1 x 10"3 -2.0 x 10'4 1.0 x lO"4 -1.5 x lO"4 7.1 x Iff5 6.3 x Iff5 

Med 3.7 x lO"4 -7.9 x lO"4 -1.5 x 10"4 1.6 x 10"5 3.0 x lO'5 2.0 x 10"5 

Ql -1.3 x 10"3 -2.1 x 103 -5.9 x 10"4 -1.6 x 10* 1.3 x 10"5 -6.5 x 10"7 

Min -2.6 x 10* -2.8 x lO"2 -6.3 x Iff3 -1.4 x 10"4 -1.3 x Iff4 -4.4 x Iff4 
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distribution p(x). The degree of ill-conditioning can be 
controlled by the choice of r. It is expected that the quality 
of the approximation will improve as the number of 
moments r increases. In fact, if m is finite, then using m 
moments will give an exact result On the other hand, as the 
number of moments increases, so does the condition number 
of Ru and so a reasonable balance between accuracy and 
conditioning must be found. Since Rn is upper triangular, 
the condition number is easily calculated to help in this 
decision. 

5.    Computational    Results    and    Conclusions:    All 
computations presented were performed in DEEE Binary 
Rounded Double Precision floating point arithmetic on an 
Intel Pentium processor. The codes were written in 
WATCOM FORTRAN 7732 and run under the OS/2 2.11 
operating system. The constrained least squares problems 
were solved using the codes of Hanson and Haskell, TOMS 
Algorithm 587 [3]. In all cases, the values of the cumulative 
distribution function resulting from the computed probability 
mass functions found by the methods of sections 3 and 4 
were compared to like values found by the direct method of 
section 2. The values presented in Table I are for the relative 
differences between the computed values. It should be noted 
that the values computed directly are also subject to error. In 
particular, although a value calculated directly is an unbiased 
(with respect to the distribution of the rounding errors) 
estimate of the true value, its variance grows as N grows 
and so any confidence interval grows as well. Thus we will 
refer to these as relative differences in the computed values 
but not as relative errors. Rather than give mean relative 
differences in Table I, we give a five number display which 
includes the extremes, the quartiles and the median. In 
addition, we give results for "nominal" 1%, 5% and 10% 
critical points in both tails of the distribution. Since the 
distribution is discrete, these levels are not exact and 
represent the relative difference at the point on the CDF 
which is closest to the indicated probability level. 

Results are presented for the case of N=20 for the 
GCV method and for the MRSE method. These are based on 
100 randomly generated sets of probabilities of success. For 
the MSRE method, results are given for the cases of 4 
directly calculated values used at each end to estimate the 
Mean Square Relative Error. The MSRE method for N=25 
and 4 points at each end gave similar results and is not 
shown due to space limitations. The values in the table 
indicate that all methods of choosing the lambda yield 
satisfactory results while the MSRE method gives results 
which are slightly better than those found by the GCV 
method. The advantage of the GCV method is that it 
requires no direct calculations of the tails of the distribution. 

The disadvantage is that it requires the calculation of the 
Singular Value Decomposition (SVD) of one matrix. In our 
experience, the extreme ill-conditioning of the matrix caused 
the SVD code to fail when N approached about 50. It should 
be noted that this is the point at which the elements, C(N,k), 
of the matrix can no longer be represented exactly in the 
floating point system. 

For the orthogonal expansion approximation 
method, results are given for N=20 using 8 moments and the 
Binomial distribution with p chosen so the its mean matches 
that of the target distribution. Again results are given for 100 
simulations. Like any such expansion, the values in the tail 
area are particularly sensitive to the number of moments 
used. However, the simulation results indicate that even 
though some of the probability estimates in the tails can be 
negative (and small) the values of the CDF at the 
approximate 1%, 5% and 10% levels are not badly effected. 
The overall results can be improved slightly if the most 
extreme few probabilities are calculated directly. 

In conclusion we note that any of the methods 
described can yield values of the CDF which are satisfactory 
for practical work. The method based on the factorial 
moments is more computationally intensive and can be 
expected to yield more accurate results. The approximation 
method yields less accurate results in general unless all 
moments are used in which case the results are comparable. 
The approximation method was tested for randomly chosen 
pj on (0,1). Intuitively, we would expect it to perform better 
in situations where the pj are different but are on a narrower 
interval. 
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Abstract: 

Kokoska (1987) suggested a set of maximum 
likelihood estimators relevant to the analysis of the 
Inhibition/Promotion (I/P) mammary cancer 
chemoprevention experiment. This set of estimators 
has been extended and studied in various detail in a 
number of related papers, Kokoska (1988a, 1988b), 
Hsu (1990), Kokoska, Hardin, Hsu, and Grubbs 
(1993). Often, however, investigators have some 
prior knowledge of a compound tested in such 
experiments due to its chemical structure and 
similarity to related compounds. In such situations, 
experimenters often wish to exploit this prior 
knowledge in order to reduce the costs of 
experimentation. Thus, this paper examines 
Bayesian estimators for this purpose and numerical 
algorithms, based on the Gibbs sampler (Gelfand and 
Smith, 1990) and the rejection method (Smith and 
Gelfand, 1992), with which to compute the posterior 
distribution. The methodologies are illustrated with 
experimental data taken from Grubbs (1993). 

1. Introduction. 

The Inhibition/Promotion (I/P) Cancer 
Chemoprevention Experiment is designed to investigate 
the effect of compounds that can be given in the diet on 
incidence rates of cancer. These experiments are often 
administrated by the National Cancer Institute. The 
primary purpose of the experiment is to isolate and 
identify potential cancer inhibiting or promoting 
substances in human. Variables of interest in these 
experiments are the incidence of tumors in the animals, 
the number of tumors per animal, and the rate at which 
tumors develop. The Chemoprevention Branch, 
Division of Cancer Prevention and Control, in the 
National Cancer Institute has issued guidelines for 
statistical analysis such as log-rank test and Armitage 
test. However, difficulty in analyzing these 
experiments may occur due to the fact that the 
experiment is terminated before all the induced tumors 
have  been  observed  (i.e.,  right censored data). 

Therefore, a confounding of fewer observed tumors in 
treatment group compared to control could be the result 
of a decreased number of induced tumors, a decreased 
growth rate of tumor, or both occur. The problem 
results from the fact that the number of induced tumor 
(M) in each animal is dependent upon the time to tumor 
detection (T). Current statistical methods do not 
account for this confounding since they do not test the 
number of induced tumor and the time to tumor 
detection simultaneously. 

Kokoska (1987) suggested a set of maximum 
likelihood estimators relevant to the analysis of the 
mammary cancer chemoprevention experiment. This 
set of estimators have been extended and studied in 
various detail in a number of related papers, Kokoska 
(1988a, 1988b), Hsu (1990), Kokoska, Hardin, Hsu, 
and Grubbs (1993). In this paper the basic idea of 
Kokoska's method will be reviewed. 

2. Mathematical Model of Kokoska's Approach 

Kokoska proposed modelling the number of 
induced tumors, M, as a Poisson distribution, and the 
time to tumor detection, T, as a gamma distribution. 
Suppose that a treatment group consists of n animals, 
and m, (i-1,2,..., n) is the number of promoted tumors 
in animal/. Let fö be the observed time to detection of 
tumor i in animal i (/' = 1, 2,..., m,), and let J(tJ be the 
number of observed tumors for the animal i at the time 
t{. Further, denote the mean and variance of X uM and 
o2

M, respectively. Let F(t) be the cumulative density 
function (cdf) of T. Kokoska (1987) has shown that 
JftJ has mean nMF(ti) and variance (o^-n^F^tJ 
+\iMF(ti). These result demonstrate mathematically the 
dependence of the number of detectable tumors at time 
r,- on the mean number of induced tumors and the time 
to tumor detection. 

The log-likelihood function of J(t) can be 
shown as below. 
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LL(A,a,ß) = -A2?ml F(t';a,ß) + s,{ln(A) - aln(ß) - 
bi(r[a))} + s2(a-l) - s/ß - ln(K) 

where F(t{*;; *) denotes cumulative density function of 
T, and j, = 27/L, m» h = 2?=12f=1 tip and u^i^m,!, 
and all the animals are sacrificed at the end of the 
experiment t*. 
This log-likelihood can be numerically optimized to 
obtain the MLE.'s of interest using the IMSL 
FORTRAN library subroutine DBCONF. The mean 
number of induced tumors per animal can be estimated 
via the MLE k . However, the parameter |i, the mean 
time to tumor detection, is of more biological 
significance than the estimates of the parameters 
associated with each of the continuous distributions. 
An MLE of u can be easily obtained using the 
invariance A       property of MLE's, 
i.e.,  fi = &P  (Roussas, 1973). 

This parametric model has been extended 
using various assumptions to eight models (Kokoska, 
1988; Hsu, 1990; Hardin and Hsu, 1991; Kokoska et 
al., 1993) for different kinds of data assumptions. In 
this paper, however, Poisson and gamma distributions 
for the number of induced tumors in each animal and 
their times to tumor detection, respectively, are 
examined in comparison to the estimates using the 
Bayesian approaches. 

3. Bayesian Methods 

Since investigators may have some prior 
knowledge of a compound tested in such experiments 
due to its chemical structure and similarity to related 
compounds, they may wish to exploit this prior 
knowledge to reduce the duration of the experiment or 
to lessen the number of experimental animals due to the 
cost of experimentation. This section examines 
Bayesian estimators, based on the Gibbs sampler 
(Gelfand and Smith, 1990) and the rejection method 
(Smith and Gelfand, 1992), are both presented. These 
techniques are applied to an actual experimental data. 

Gibbs sampling has allowed the computation 
of complicated statistical models based on Bayesian 
posterior inference. Additionally, the rejection method 
of Smith and Gelfand is a straightforward sampling- 
resampling perspective that allows the computation of 
Bayesian estimators using easily implemented 
calculation strategies. The methodologies are 
introduced as follows. 

(1) Gibbs sampling method 

Suppose that X, Y, and Z are the random 

variables, and their conditional distributions, 
fxiY,z(x\y,z),fm,2(ylx-z)>fzix,Y(rtx>y) are known. If initial 
values of x0', y0' are specified, then a "Gibbs sequence 
of value" of the random variables, X0', Y0', Z0\ X,', Y/, 
Z/, ..., Xk, Yk\ Z*', can be obtained iteratively by 
alternately generating values from 

X/~W*ir/=y/,Z,.'=<; and 

Zi'-fm^zW^YMi') 

It turns out that under reasonably general 
conditions, the distribution of XK' converges to f^x), 
which is the true marginal of X as k -°° (Casella and 
George, 1992). Thus for k large enough the final 
observation Xk'=xk' is effectively a sample fromfx(x). 
So are the observations fy(y) and fyz). 

In this paper the conditional probabilities of 
the parameters of interest are assumed as follows. 

f(A\a, ß) ~ Gamma(ß/a, 1), and 
f(a\ß, A) ~ Normallßj'A, A), and 
ßßa, A) ~ Normal(aA, A). 

One thousand iterations were made to get the marginal 
distributions for the parameters, and 10,000 sample 
sizes were generated. 

(2) Rejection Method 

For fixed & let fjß xj = l(ß x)p(ß where 
l(ß xj is the likelihood function of 6 and p(ß is the 
prior distribution of fi. If 8. is theM.L.E. of 6_, and M 
= l(ß xj. The first step of this method involves the 
generation of 6 from p(6) and also the generation u 
from continuous uniform distribution (0, 1). Second, 
evaluate the following procedure 

u * f^xjl (Mp(ß) => accept ß 
u > Mxjl(Mp(ß) => reject ß 

Thus a sample of the posterior distribution of 
the parameter 9. can be obtained if the above procedures 
are applied repeatedly. In this paper uniform 
distributions were used for the prior distributions of the 
parameters, a, ß, and X, and 10,000 simulations were 
generated. 

4. Application 

In a study (Grubbs, 1993), sixty female 
Sprague-Dawley rats were randomly divided into 2 
groups. In Group 1 the rats were treated by retinoid 
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vehicle, and the rats in Group 2 were treated by RTBE 
(934 mg/kg of diet). Then the MNU was administrated 
to every animal. In both experiments, the animals were 
palpated for the detection of mammary tumors. The 
investigation was terminated 182 days after the 
injection of carcinogen. Tables 1 and 2 give the 
survival times, the numbers of induced tumors, and the 
times of development of mammary cancer for each 
group. 

5. Discussion 

Tables 1 and 2 present the maximum 
likelihood estimates for the mean number of induced 
tumors per animal and for the mean time to tumor 
detection and the corresponding 95% confidence 
intervals and 95% credibility intervals using classical 
approach and the Bayesian techniques for each group. 

Clearly, the estimates {LM and Ar using Kokoska 

approach and the rejection method of Smith and 
Gelfand are very close; and their 95% confidence 
intervals and credibility intervals are similar, as well. 
However, the estimates using the rejection method seem 
to be a slightly better than that of the classical 
approach since the credibility intervals are narrower 
than the corresponding confidence intervals. The 
estimates of the parameters of interest using the Gibbs 
sampling techniques are not good compared to the 
estimates using either the classical or the rejection 
methods. This might be due to the selection of 
inappropriate prior conditional distributions for the 
parameters of interest. Work is currently undergoing to 
incorporate researchers' experience to obtain better 
prior conditional densities for the parameters. 

Table 1. Estimates and 95% Confidence/Credibility Intervals of the Parameters for Group 1 (Control Group) 

Kokoska's method Gibbs's Sampler Rejection Method 

A 

Estimate 15.66 8.69 15.81 

95% Confidence 
/Credibility Interval (13.15,18.46) (5.14,18.57) (13.30,17.65) 

M 

Estimate 185.83 241.25 187.76 

95% Confidence 
/Credibility Interval (171.92,199.75) (26.14,579.43) (173.05,203.79) 

Table 2. Estimates and 95% Confidence/Credibility Intervals of the Parameters for Group 2 (Treatment Group) 

Kokoska's method Gibbs's Sampler Rejection Method 

A 

Estimate 9.19 8.71 9.32 

95% Confidence 
/Credibility Interval (7.46,11.07) (5.15,18.50) (7.70,10.67) 

M 

Estimate 15530 242.17 154.55 

95% Confidence 
/Credibility Interval (143.03,167.56) (26.25, 590.10) (138.13,170.49) 
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an Application to Molecular Similarity Analysis 
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ABSTRACT. Molecular similarity analysis in- 
volves the analysis of data based on complex data 
types used to represent the information in molec- 
ular structures. With many complex data types, 
we lose many nice features of vector spaces, but 
retain the concept of proximity. Let X be a ran- 
dom variable with density / defined on a space ft. 
Let flt be any other density denned on 0. Define 
the relative aggregation <x(f\g) of / with respect 
to g by 

"(/Iff)  
Ufa) 

2' 

Suppose X = (X\,X2) with marginal densities 
/i and /j. Define g = \f + 5/1/2- Define the 
dependence coefficient S{X\,Xi) by 6(XitXi) = 
a(f\g)/a(f) where a(f) is the relative aggrega- 
tion of / with respect to itself. We show that 
if / is the bivariate normal density, then the 8- 
coefficient varies monotonically with the correla- 
tion coefficient. The ^-coefficient can be estimated 
using random quadrat sampling when a suitable 
proximity measure is defined on 0. Two repre- 
sentations used in computing molecular similarity 
are shown to have a high delta coefficient. 

1. Introduction 

Statisticians continue to encounter increas- 
ingly complex data types. In our application of 
molecular similarity analysis to drug discovery re- 
search, examples include binary vectors represent- 
ing the presence or absence of up to 300 molec- 
ular fragments, labeled graphs representing the 
bonding structures of molecules, and scalar fields 
in 1R3 for representing the electrostatic fields of 
molecules (Johnson, 1989, Johnson and Maggiora, 
1990). Problems associated with high dimension- 
ality abound, and in some cases, we even lose 
the natural definitions of such concepts as coordi- 
nates, location, and linear transformations. One 
important concept that remains is proximity. If 
two objects are represented by the same data type, 
we can virtually always measure how similar one 
is to the other. 

Recently, Cheng and Johnson (1994a,1994b) 

proposed the concept of relative aggregation co- 
efficients as a method of developing statistical in- 
ference on probability spaces in which a proximity 
measure has been defined. Here we illustrate the 
use of relative aggregation coefficients in develop- 
ing a general measure of dependence between two 
random variables. Although our approach gener- 
alizes directly to arbitrary probability spaces, the 
discussion will be limited to Euclidean spaces. Af- 
ter defining relative aggregation coefficients and 
presenting a moment estimator for them, we de- 
velop a coefficient of dependence and show its re- 
lationship to the bivariate normal correlation co- 
efficient. We then compute the dependence coeffi- 
cient for two high-dimensional vector representa- 
tions used for measuring molecular similarity. 

2. Relative Aggregation Coefficients 

Let / and g be probability density functions 
defined on ffi* such that J f2g exits. Then the 
relative aggregation coefficient (RAC) oc(f\g) of/ 
with respect to g is defined by 

«(/Is) = Sf2g 
(Sf9)2 

If g = /, then we write a(f) for oc(f\g), and we 
all a(/) the self aggregation coefficient of /. 

Some insight into aggregation coefficients is 
gained by viewing these integrals as moments of 
f{Z) where g is the density of Z. Write Eg[f(Z)] 
for J f*g and call it the i'th-relative moment of / 
with respect to g, or simply the i'th self moment 
of / if g = /. Then the RAC of / with respect to g 
is simply the second relative moment of/ with re- 
spect toflf divided by the square of the correspond- 
ing first relative moment. It follows immediately 
that a{f\g) > 1. 

What would make this ratio large? Consider 
any other density h for which / fh < ej f2. Let 
g be the mixture pf + qh where p + q = 1. Then 
Jf29 > P//3, and ffg< Jf2(p + qe). It fol- 
lows that a(f\g) > pa(f)/(p + qe)2 which goes to 
p_1o;(/) as e —► 0. Since a(f) > 1, we can always 
find a g so as to make a(f\g) arbitrarily large. 
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3. A Coefficient of Dependence 

Let X and Y be two random variables denned 
on IR*1 and IR*3 where h\ + &2 = k. Let / denote 
the joint density of (X, Y), and let f\ and f% de- 
note the respective marginals of /. Let h be the 
product density /1/2. Then X and V are indepen- 
dent if and only if / = h. Define g = \f + |A, 
and define the dependence coefficient S(X, Y) by 

6(X,Y) = <*(f\9) 

Clearly if / = h, then S(X, Y) = 1. On the 
other hand, we see from the preceding section that 
8(X, Y) ~ 2 whenever ffh~0. 

Figure 1 plots the dependence coefficient in 
the case / is the bivariate normal for various val- 
ues of the correlation coefficient. A distinct mono- 
tonic relationship is obtained. The correlation co- 
efficient in the figure could be replaced by its abso- 
lute value as aggregation coefficients are invariant 
under a particular subclass of linear transforma- 
tions on IR*, as is now demonstrated. 

Figure 1. Dependence coefficient versus the 
log of one minus the correlation coefficient. 
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Define T by 

r = 
0 Lvl 

where Ta and Ty are square-nonsingular matrices 
with *i and &2 rows respectively.  Let x0 and y0 

be fixed vectors of length hi, and &]•  Then the 
density / of T(X - x0, Y - y0) is given by 

f = \(T-l)\f(T-\X-x0,Y-y0)) 

= \T-l\\Ty-
l\f(T-l(X - x0),T;l{Y - y0)). 

It then follows that the marginal densities of/ are 
given by \T~l\h{T~\X - x0) and 
|T~1|/i(T~1(X - x0).  Straight forward calcula- 
tions give S(X,Y) = 6(Tx(X),Ty{Y)). 

4. A Consistent Estimator 

Let X, Y, f, /1, ft, and A be as defined. We 
seek a consistent estimator of 6(X, Y) which is 
a ratio of two RACs. Since the denominator is 
bounded away from zero, it follows that the ra- 
tio of consistent estimators of the numerator and 
denominator of S(X, Y) is a consistent estimator 
of 6(X, Y). A consistent moment estimator of a 
RAC is presented in Cheng and Johnson (1994c) 
elsewhere in this volume. Briefly, it is constructed 
as follows: Let 5 = {(xi, j^),...,(««-, yjf)} be a 
dataset of N independent samples from /, and let 
zi,...zm, be m independent samples from density 
g where g is any other density defined on IR*. Let 
d be any proximity measure defined on IR*. Define 

BT(z) = {(x,y)\d{(x,y),z)<r}. 

and define n, (z<), i = 1,..., m, to be the cardinal- 
ity of the set 

{{x,y)\(x,y) e Br(zi) ,(x,y) € S,&nd(x,y) ^ Zi}. 

Let xr and ** be the sample mean and variance of 
nT(zi), i — 1, ...,m, and define Ar = tr/xT. Then 
Cheng and Johnson show that 

«(/W = FTT 
x -=-?— 

is a consistent estimator of a(f\g) under the as- 
sumption that 

f      f{t)dt = f{z)[      dt + o([      dt). 
JBr(i) JBr(z) JBr(z) 

(The optimal estimation of a(f\g) is the subject 
of another study.) 

In spatial statistics, the neighborhood Br(zi) 
is called a quadrat centered at z<, and gives rise 
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to the term "random quadrat sampling", when 
Zi represents the outcome of a random variable. 
Random quadrat sampling requires the definition 
of a proximity measure. Interestingly, proximity 
measures do not figure into the definition of RACs, 
but often enter into the picture when RACs are be- 
ing estimated. With a consistent estimator now in 
hand, all that remains is to clarify how one defines 
quadrat sampling with respect to densities / and 
h. 

As in the example that follows, usually one 
has proximity measures d\ and di associated with 
X and Y and must construct a proximity measure 
d for (X, Y). There are many ways. The follow- 
ing definition is convenient from a computational 
standpoint 

d((»i.yi),(*2ilö)) =max[di(a!1,32),d2(yi)y2)]. 
(1) 

To illustrate this convenience, write z = (u, v) 
where u and v and k\ and ^-dimensional vec- 
tors. Define Br,i(u) = {x\di(x,u) < r} and 
2?r2(u) = {x\d2(x,v.) < r}. Now consider our 
problem in estimating the numerator of S(X, Y). 
We must count the number of points in S which 
fall in the quadrat when half of the time the cen- 
ter of the quadrat is drawn according to the joint 
density / and the other half of the time the cen- 
ter is drawn from the product density h. In either 
case, the cardinality n,(z,-), t = 1,..., m, when d is 
defined by equation 1, is simply the cardinality of 
the intersection of the following two sets: 

{{x,y)\x €BTti(ui),(x,y) 6 5, and x £ u<}. 

and 

{(x,y)|y € -Br,2(i>i) ,(sB,y) G S.andy # v{}. 

We assure that Zi, Zi = (ui,Vi), is drawn accord- 
ing to /, by drawing z< at random from 5. We 
assure that z,- is drawn according to h by drawing 
«,- at random from the set {x\(x, y) 6 5} and then 
drawing t>< at random from the set {y\(x, y) € 5}. 

5. An Example 

There is an increasing use of molecular sim- 
ilarity measures in the pharmaceutical industry 
(Johnson and Maggiora, 1990). Similarity search- 
ing is a frequent application in which one searches 

a large databases of molecular structures for struc- 
tures similar to some query structure of pharma- 
ceutical interest. The desire is to find related com- 
pounds in the database which might also be ex- 
pected to be of related interest. See Willett (1987) 
for detailed coverage of the issues and many of the 
proximity measures being used in this regard. One 
expects most of these proximity measures to be 
highly related. In this example, we study the re- 
lationship between two proximity measures, topo- 
logical index (TI) distance and fragment represen- 
tation (FR) similarity, used at our company for 
fast similarity searching. 

In mathematical chemistry, a topological in- 
dex is simply a number calculated on the bonding 
structure of a molecule. A simple count of the 
number of atoms serves as an example of a topo- 
logical index, although most topological indices 
are considerably more sophisticated. The repre- 
sentation for our TI distance is the first 10 princi- 
pal components of 90+ topological indices (Basak, 
et al., 1988). The TI distance is simply the Eu- 
clidean distance in IB.10. Our fragment represen- 
tation of a molecular structure is a binary vec- 
tor x in which each bit represents the presence or 
absence of at least one structural fragment (con- 
nected substructure) in a fragment group. Over 
300 groups of fragments are used. The similarity 
measure is the Jacard coefficient (usually called 
the Tanimoto coefficient in chemistry) defined by 
x'y/fc'x + y'y-x'y)- 

These two proximity measures are highly re- 
lated although it may not be immediately appar- 
ent from the disparity in the forms of the infor- 
mation captured by their underlying vector repre- 
sentations. This relatedness becomes immediately 
apparent when one performs similarity searches 
using a common query structure. If the common 
query structure is a prostaglandin (a particular 
class of molecular structures), all of the most sim- 
ilar compounds in the databases by either prox- 
imity measure will be prostaglandins; if the com- 
mon query structure is a benzodiazepine, all of the 
most similar compounds will be benzodiazepines, 
etc..However, such notions of relatedness between 
the two proximity measures presupposes an abil- 
ity to define classes of compounds. Moreover, any 
basis of quantifying relatedness using these classes 
would reflect the idiosyncrases of the classification 
criteria. 

Before illustrating the 5-dependence measure, 
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it is informative to look at some counts employed 
in its computation. We selected 600 query struc- 
tures at random from our database of over 100,000 
structures. Both TI and FR similarity searches 
were performed for each query structure. For each 
query structure, we recorded the number of struc- 
tures, excluding the query structure, in each simi- 
larity neighborhood (quadrat) as well as in the in- 
tersection of the neighborhoods. In this way, 600 
3-tuples of counts were generated. All 600 simi- 
larity searches used a fixed cut-off value for the TI 
distance and another fixed cut-off value for the FR 
similarity. The experiment was then repeated for 
the same 600 query structures, but with different 
cutoff values for the two proximity measures. In 
the following discussion, only the results for a cut- 
off value of 0.25 for the TI distance and for a cutoff 
value of 0.97 for the FR similarity are presented. 

Our first surprise was the complete lack of 
correlation seen in Figure 2 between the pairs of 
counts based on the TI and FR proximity mea- 
sures. Since the 600 neighborhoods for each prox- 
imity measure share a common cut-off value or 
radius, one expects a high count to reflect a re- 
gion (defined by the position in space of the query 
structure) with a relatively high value for the 
density function.    Let fai and fan denote the 

density functions associated with how the struc- 
tures are positioned in space under the TI and 
FR representations. Figure 2 suggests two things. 
First, for both densities, by far the largest pro- 
portion of density is associated with a very low 
density value, but occasionally one encounters 
an extremely dense region. Second, let TI(z) 
and FR(z) denote the TI and FR representa- 
tions of structure z. Then the random vari- 
able fai{TI(Z)) has virtually no correlation with 
fpii(FR(Z)) where Z denotes a randomly selected 
structure. 

At first, this second finding totally surprised 
us. However, the apparent lack of correlation 
between the random variables foi(TI(Z)) and 
fpR(FR(Z)) does not imply a lack of correlation 
between TI(Z)) and FR(Z). To see this, imag- 
ine a transformation that differentially stretches a 
space on which a density function is defined with- 
out seriously altering neighboring relationships. 
Such a transformation would preserve the con- 
tiguous positioning of structures within a struc- 
tural class by both proximity measures while at 
the same time allowing the two proximity mea- 
sures to differ in how they "stretched out" the 
regions defining each structural class. 

Figure 2. (-.45,.45)-Jittered plot of 600 count pairs using two different proximity measures. 
The triples give the two counts and the intersection count. 
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Although Figure 2 does not suggest any cor- 
relation between the low and high dense regions 
under TI distance with the low and high dense 
regions under FR similarity, it is not difficult to 
establish that their neighboring relationships are 
related using the counts of the number of struc- 
tures in intersections of particular pairs of neigh- 
borhoods. For example, the point in Figure 2 with 
coordinates (24,9) corresponds to a pair of neigh- 
borhoods whose intersection contains 9 structures, 
i.e. the FR-similarity neighborhood is a subset of 
the TI-distance neighborhood. Suppose that the 
structures are distributed in "FR space" indepen- 
dently of their distribution in "TI space". If we 
had 100,000 structures in the database, the prob- 
ability a randomly selected structure would fall in 
this TI neighborhood is 25/100,000 and the cor- 
ressponding probability for the FR neighborhood 
is 9/100,000. If these two events are independent, 
the probability of a randomly selected structure 
falling in the intersection is the product of these 
two probabilities. It follows that the expected 
number of counts associated with two randomly 
selected neighborhoods of this size is roughly es- 
timated by 25 x 9/100,000 = 0.00225. One can 
view the intersection counts as a Poisson random 
variable with mean 0.00225. Thus, our seeing an 
intersection count of 9 is extremely improbable 
under the assumption that the random variables 
fTi(TI(Z)) and fFR(FR(Z)) are independent. 

Although interesting, this particular test does 
not provide a calibrated measure of dependence. 
For that we turn to the 6 coefficient calibrated in 
Figure 1. With fai and fFR playing the roles of 
/i and /2 in the preceding section, we obtain the 
estimates and confidence intervals for the RACs 
given in Table 1. A sense for the histogram of the 
counts making up the two self-aggregation coeffi- 
cients can be obtained from Figure 2. The dis- 
tribution of the intersection counts for the joint 
density fpRxTi is given by 

count     0      1234569 
freq    525    57   7    5    2    2    1    1 

All 600 counts in which the product density was 
the design density were zeros. These were pooled 
with the preceding 600 intersection counts when 
estimating a(fFRxTi\g)- The bootstrap confi- 
dence intervals were developed from 500 bootstrap 
samples from the sample quantile function of the 
observed counts. 

Table 1 

RAC Estimate 95% CI 
S(/Fä) 14.71 (12.3, 17.2) 
«(/TJT) 3.95 (3.65, 4.25) 
a(fFRxTl) 8.12 (5.7, 10.5) 
2(/pÄxTl|ff) 16.2 (11.3, 21.2) 

S(fFRxTl) 2.04 (1.31, 2.94) 

It is easily shown that if /FäXTJ = fFR x fn, 
then a(fFRxTi) = <*(/Fä) x a(fyi). Clearly, 
this is not the case, although we are still un- 
sure of the meaning and significance of the fact 
that a(fFRxTi) is so much less than the prod- 
uct of the self-aggregation coefficients. However, 
«(/pAxTllff) is twice that of a(fFRxTi), giving 
an estimate of two for 6(FR(Z),TI(Z)). Based 
on the calibration of Figure 1, there is an extreme 
dependence FR(Z) and TI(Z). 
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Abstract 
Robust empirical and hierarchical Bayes estimators for 
exchangeable normal means with heterogeneous vari- 
ances are developed. The robust empirical Bayes estima- 
tor is obtained by using robust (or hierarchical) priors 
and the Newton-Ralphson algorithm. The robust hier- 
archical Bayes estimator is developed through * (partic- 
ularly the Cauchy) priors with the computation being 
performed through the Gibbs sampler. It is shown that 
such robust estimators preserve the gain of shrinkage 
in the presence of extreme individual component esti- 
mators. Efron and Morris's classic example of estimat- 
ing the toxoplasmosis prevalence rates is reconsidered. 
The method is then applied to the estimation of rates 
of change in longitudinal studies and is illustrated with 
an example. Further, the estimators are compared with 
those obtained via BLUP estimators of the random ef- 
fects in SAS PROC MIXED through a simple random 
coefficient growth curve model. 

1    INTRODUCTION 
With the recent development of computational tools 
such as the Gibbs sampler, complex data can be an- 
alyzed through a comprehensive Bayesian hierarchical 
model. In this paper, however, we consider some im- 
portant estimation properties in the basic model of esti- 
mating exchangeable normal means (or random-effects), 
such as the the estimator's robustness with respect to 
prior misspecifications and outlying observations. Such 
estimation is often needed in practice, as is demonstrated 
in Morris (1983), Breslow (1990) and Louis (1991), and 
can be summarized as estimating ßi,..., ßk simulta- 
neously starting with their independent unbiased esti- 
mators &i,..., bfc.   Often it is assumed that bi \ ßi ~ 

N(ßi,dj), i = 1,..., k, independently. It is now well 
known that shrinkage estimators (Morris, 1983) can gen- 
erally improve upon the usual maximum likelihood esti- 
mator (bi) for ßi in terms of achieving smaller squared er- 
ror risk. And the shrinkage estimators are often derived 
from a Bayes approach by assuming that the /3,'s are 
from a certain probabilistic distribution. This method 
has been shown to be useful in problems where the sci- 
entific objectives were not directly one of simultaneous 
estimation, e.g., it provides a way to correct for the effect 
of regression to the mean and gives estimators of regres- 
sion coefficients which yield uniformly smaller prediction 
mean square error in linear and logistic regression (Co- 
pas, 1983); and it also gives estimators with uniformly 
smaller variances in discrete event simulation with con- 
trol variates (Tan and Gleser, 1992) and estimators of 
common odds ratio using concordant pairs (Liang and 
Zeger, 1988). 

In the simpliest case when d? = <r2 for all i = 1,..., 
k, bi | ßi ~ N(ßi,cr2) with a conjugate (Gaussian) prior 
ßi ~ N(ß, A), the shrinkage estimator of ßi for i = 1,..., 
k as proposed in Morris (1983) is of the form 

ßi = h •mm 
fc-3      (k - 3)tr2 

(bi-b),   (1.1) 

where b is the grand mean of the 6,'s. This estimator has 
smaller squared error risk than the maximum likelihood 
estimator, provided that k > 4. When the variances d? 
are not equal, an iterative algorithm is needed to cal- 
culate the empirical Bayes estimator. Tan and Gleser 
(1992) have studied the magnitude of potential improve- 
ment of these estimators. The gain would be substantial 
if the individual means are reasonably similar. 

However, the conjugate priors are not necessarilly ro- 
bust (with respect to possible misspecifications of pri- 
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ors). In fact, as pointed out in Berger (1985, Chapter 4), 
when the likelihood function is concentrated in the tail 
of the prior distribution, conjugate priors should prob- 
ably be avoided. Although the usual normal conjugate 
prior for estimating the normal means is robust within 
the class of all prior distributions with finite first two 
moments (Morris, 1983), the moments depend on the 
tail of the distribution and are thus highly variable. For 
instance, two priors may be virtually indistinguishable 
but may have quite different moments (Berger, 1985), 
and some highly robust priors (such as the Cauchy pri- 
ors) do not have moments. Sometimes the estimator us- 
ing the conjugate Gaussian prior (such as 1.1) has been 
referred to as being robust in a conservative sense in that 
if the prior is fully wrong or if one 6; is outlying (thus in 
violation of exchangeability), the empirical Bayes (EB) 
estimates would collapse back to the usual maximum 
likelihhod estimators, resulting in no harm but nullify- 
ing the potential gain. Therefore estimators that pre- 
serve the gain of shrinkage in the presence of outlying 
components are very appealing because the rest of the 
components (the individual ßCs ) can still benefit from 
borrowing strength from the ensemble. This refined ro- 
bustness can be achieved by using flat-tailed priors or by 
hierarchical modeling (Berger, 1985, Angers and Berger, 
1991). When the variances are not equal, the first stage 
parameter estimators in the hierarchical model can be 
derived from Angers (1992) when the degrees of free- 
dom of the t-prior is odd. In general when the variances 
are heterogeneous, analytic solutions with t-priors seem 
extremely difficult to obtain. With the computation be- 
ing performed via Gibbs sampler, such robust estimates 
of random effects can be easily extended to the general 
mixed-effects model of Laird and Ware (1982). 

The purpose of this paper is to develop empirical and 
hierarchical Bayes estimators with the refined robust- 
ness. The class of t-priors (the Cauchy prior in particu- 
lar) is used to obtain the robust heirarchical estimators 
with computation being performed using the Gibbs sam- 
pler (Geman and Geman, 1984, Gelfand et al., 1990). 

As a quicker alternative, we first use the robust prior 
in Berger (1985) to derive robust empirical Bayes esti- 
mators through use of the Newton-Ralphson algorithm 
in §2.1. Hierarchical Bayes modeling via the Gibbs sam- 
pler is considered in §2.2. A data set from the literature 
(Efron and Morris, 1975) is reconsidered in §2.3. In §3, 
the method is applied to longitudinal studies where es- 
timation of the rates of individual change is of interest 
and is illustrated with a real life example. The paper is 
concluded with a discussion in §4. 

2    ROBUST ESTIMATES 

2.1    Robust empirical Bayes estimates 
The robust prior developed in Berger (1985) is based 
on the consideration of the admissibility of the Bayes 
estimators (Strawderman and Cohen, 1971). Using this 
prior, the model can be given as 

bt ~ N{ßi,d1), and ßi ~ JV(/i,B(A,)), (2.1) 

where JB(AJ) = (d2 + A)/(2A,) - d?, and A,- has density 
7r(A,) = 0.5\A7^(o,i)(Ai). Given \i and A, the posterior 
mean and variance of ßi are: 

*»> = bi ~ WU (]j4 - 5KF3l) <* ~ ">• 

xr i  i'2|N|2 -1\--U (2-2) 

where ||6,||2 = {b{ - /i)2/(d? + A). The marginal distri- 
bution of b{ is 

m(bi\n,A) 
1-e-IIM 

2^sß(TA    IMP 
Parameters fi and A can be estimated using the maxi- 
mum likelihood method via the Newton-Ralphson algo- 
rithm. 

Another advantage of the above estimator is that 
it easily yields subjective hierarchical Bayes estimates 
(Berger and Robert, 1990) for any plausible fj, and A. 
However this prior should be used with caution. It may 
cause the estimator to collapse back to b,- when A/df is 
too big. In other words, the prior may be so flat such 
that its effect on the estimators is essentially the same 
as that of a uniform (noninformative) prior. 

2.2    Robust Hierarchical Bayes Estimate 
The robust hierarchical Bayes estimate has many ad- 
vantages over the empirical Bayes estimate (Berger and 
Robert, 1990). A main advantage is that it takes into 
account the error due to the estimation of the hyperpa- 
rameters, whereas the empirical Bayes method ignores 
such error. Another advantage is that in the hierarchical 
model the marginal posterior distributions can be esti- 
mated via Gibbs sampling (Gelfand et al, 1990). Thus, 
standard errors and confidence intervals can be devel- 
oped easily. 

As shown in Berger (1985, pages 195-196), a Cauchy 
prior is more reasonable in terms of the posterior robust- 
ness and Bayesian risk if we are uncertain as to which 



88    Means and Rates in Longitudinal Studies 

priors best describe our prior belief. We now consider 
the following hierarchical model 

bi\ßi ~ N(ßi,d2
{),   and /J,-|/i,a2 ~ h(ft,a2,v0) 

ft ~ N(r), C),   a2 ~ Gamma{p, q), (2.3) 

where the (multivariate) ^-distribution, with location pa- 
rameter fi and scale matrix cr2I and dimension k, de- 
noted by u ~ tk(fi,(T2I,Vo), has density of the form: 

fk(u\fi,a2,v0) = 
9(vo) 1 

a-   ^J.("-^"-^))^' («0 + 

where vo,o"2 > 0,g(wo) = const. Of particular interest 
are the two special cases: 1) if vo = 1, k = 1, then 
/i(«|/i, tr2) is the Cauchy prior with median ft and quar- 
tiles fi ± A; 2) and if v0 = °o, /&("!/•«> "'2) = A/fe(/i, <r2/P), 
is the Gaussian prior. Since the ^-distribution is a mix- 
ture of the Gaussian and inverse gamma distributions, 
all conditional distributions used in the Gibbs sampling 
have closed forms and thus the algorithm is very efficient. 
In fact, the ^-distribution can be decomposed into 

U\T
2
 ~ Np(ft,r

2I), and r2 ~ /G(|, ^f), 

where 

IG(v0/2,u0/2) = (uo/2)"°/2e-u°/2wtr(ü°/2+1)r-1(t>o/2) 

is the density function of the inverse Gamma distribu- 
tion. So all the conditional distributions are given as 
follows: 

[/?,.|T
2
,^

2
, (fc)] ~ N(-^bt + ^ft, ^y), 

F \{ßi),ti,tr ,{bi)\    ~    IG( —-—»-2- + £ '' 

M(#),rV2,(b,)]   ~   N(^-dß + 

rv2 
kr2 + C^ ' fcr2 + c'7' 

Cr2 

fcr2 + Cy 

[<72|(/?i),T2,ji,(6;)]    ~    Gamma(p, 
1 

(2T
2
)-

1+ g + g-W- 

Then the Gibbs sampling can be applied to the hierar- 
chical model specified in (2.1). Given the data (6,-), one 
can obtain the needed marginal distribution (say 7r(/3,|6,) 
) from the Gibbs sampling. 

A comparison between empirical and hierarchical 
Bayes estimators is given in Kass and Steffey (1989) in 
which approximations of the posterior variances are also 

given. Applying the approximation to the model given 
by equations (2.1) and (2.3), one can see that the addi- 
tional term needed to take into account the estimation 
of the hyperparameters fi and A in (2.1) and ft and a 
in (2.3) is of order 0(l/[n2k]) while the main term is 
of order (^(n,"1). Consequently, equation (2.2) or the 
conditional variance based on w(ßi\data, A) is a good ap- 
proximation of the posterior variance when n,- is rela- 
tively small and k is large. In this case the empirical 
Bayes estimators can serve as an adequate approxima- 
tion to those obtained from the hierarchical model. How- 
ever, the robust hierarchical Bayes model gives estimates 
which are resistant to both misspeducation of the prior 
and outlying component estimates, as mentioned earlier. 

2.3    Estimating toxoplasmosis prevalence 
rates 

We now consider an example taken from Efron and Mor- 
ris (1975), in which the prevalence rates of toxoplasmosis 
in 36 El Salvadorian cities were estimated. The preva- 
lence rates in Table 1 are standardized and the variances 
are known from the binomial distribution, and differ be- 
cause of unequal number of patients sampled in different 
cities. Table 1 gives the robust empirical and hierarchical 
Bayes estimates, as well as the empirical Bayes estimates 
developed in their paper as a comparison. The maximum 
likelihood estimate via the Newton-Ralphson algorithm 
converged at fi — 0.024, and A = 3.26 after 55 iterations 
starting from the mean and variance of the 36 prevalence 
rates. The Gibbs sampling algorithm converged roughly 
with 160 cycles of m = 50 drawings in that there was lit- 
tle change in the successive posterior distributions there- 
after at 200,240 cycles. In fact, the change in quartiles 
of the posterior distributions was less than 10-8. The 
initial values were »70 = —0.0419, Co = 12, po = 0.2, 
and go = 0.001, indicating rather vague prior knowledge 
about these parameters. It seems in this example that 
the normal prior is indeed quite robust, as the robust hi- 
erarchical Bayes estimators and Efron and Morris's em- 
pirical Bayes estimators are very similar except for only 
a few cities in which the prevalence rates are more at 
the extremes. This similarity is what is expected of the 
(refined) robust hierarchical estimators. The robust em- 
pirical Bayes estimates, however, are essentially the same 
as the original estimated prevalence rates. It is probably 
too conservative in that the information between cities 
did not add any new information about the prevalence 
rates. In fact, min(A/d2) = 655 is quite large in this 
case. 
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3    RATES IN LONGITUDINAL 
STUDIES 

Often in longitudinal studies the rate of change of the re- 
sponse over time is of primary interest, and such change 
is often approximately linear (possibly after some trans- 
formations, and/or over a short period of follow-up). 
For instance, the decline of lung and renal functions 
is linear for certain patient populations. In this case, 
it is reasonable to reduce the data to slopes and their 
standard deviations by linear regression for each indi- 
vidual (Hui and Berger, 1983). Because the subjects 
under study share some common characteristics (belong- 
ing to a certain population), it is reasonable to assume 
that their individual rates of change come from a com- 
mon probability distribution. Consequently, shrinkage 
estimators of the individual rates are desirable (Morris, 
1983). This approach ignores the intercept and thus loses 
some information in comparison with the the Gaussian 
random effects model (Laird and Ware, 1982) or more 
generally a repeated measures model of Jennrich and 
Schluchter(1986) which allows the modelling of various 
within-subject correlation structures. 

We now consider a prospective study in ophthalmology 
where intraocular gas was used in complex retinal surg- 
eries to provide internal tamponade of retinal breaks in 
the eye. An important issue was to estimate the kinetics 
(e.g., decay rate, half-life, and so on) of the disappear- 
ance of the gas. After gas was injected into their eyes, 
31 patients were seen three to eight (average of 5) times 
over a three-month period, and the volume of the gas in 
their eyes was recorded. 

Let yij be the jth gas volume for the ith individual 
at day XJJ. Some initial analysis suggested that the vol- 
ume (in percent) of the intraocular expansile gas (CzFg) 
decreases slowly in the first few days after maximal ex- 
pansion, then it decreases more rapidly and finally more 
slowly (producing an S-shaped curve). Thus a logit 
transformation was first made on the gas volume: 

(   y.j+0.05   ^ 
2ii = logVi-yo + o.o5j' 

where 0.05 was added to avoid zero denominators. Then 
a linear model can be assumed: 

Zij = aj + ßiXij + eij, 

where e,j is the Gaussian error term with mean 0 and 
variance of. Separate linear regressions using each sub- 
ject's data are used to obtain the quantities: 

bi~N(ßi,<%),    df = 
E?=i(*O-*02 (3.1) 

and     «? ~ afxl,-a. 

where df is the usual variance estimate of the slope &,• 
and of is estimated from the s?. Hui and Berger (1983) 
also use the empirical Bayes estimates of of's as a com- 
promise between s?/(n,—2), the individual estimate, and 
Es?/En,-, the pooled estimate. Both estimates are inde- 
pendent of the 6,'s. However, we only use the individual 
estimates of of to illustrate the method. 

The goal is to find an improved estimator for each in- 
dividual decay rate /?,• to get a better idea of the variabil- 
ity of these rates. Robustness considerations are partic- 
ularly relevant here because previous studies suggested 
the gas decay rate was highly variable (Meyers et al., 
1992). A Cauchy prior with median \x and quantiles 
H ± o seems to be plausible. Further, a normal hyper- 
prior on n and a gamma prior on a2 is used. The ini- 
tial values were given by rj0 = —0.08, Co = 12, po = 
0.2, go = 0.0001 indicating a rather vague prior knowl- 
edge about these parameters was assumed. Different 
starting values were used for different cycles (iterations). 
The convergence was achieved roughly with 240 cycles of 
m = 40 drawings in that there was little change in the 
histograms of the posterior distributions thereafter at 
240,300,360,400,420 cycles. The changes in quartiles 
were less than 10~6. The decay rates were estimated 
based on the data after 420 cycles of iterations. The 
robust hierarchical model gives improved estimators of 
the decay rates and their standard errors by borrowing 
strength from the ensemble and thus provides a more 
accurate picture of the variation of the individual gas 
decay rates. This can be more clearly shown by looking 
at the plot of these rates over the cases (not shown here). 
Table 2 gives the least square slopes, RHB estimates and 
their standard errors and a 90 % confidence interval for 
each individual decay rate. 

In this data set, the decay rate for case 30 is outlying, 
being beyond 1.5 times the interquartile range. We have 
found that the RHB estimates are quite close to those 
obtained when the outlier is removed (see Table 2). Thus 
our estimate is indeed quite robust with respect to out- 
lying rates. 

Finally we fitted a random coefficient growth curve 
model. The estimated best linear unbiased predictors 
(BLUPs) of the individual rates of decline are obtained 
using SAS PROC MIXED. Since these estimators are in 
fact shrinkage estimators of the slopes using normal pri- 
ors, they may not have the refined robustness ( with re- 
spect to outlying individual slopes) and could give BLUP 
estimators which are more or less the same as the orig- 
inal least square slopes. Thus the possible gain of using 
the random effects model is diminished. This indeed ap- 
pears to be the case (see Table 2). 
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4    DISCUSSION 

In summary, we used hierarchical modeling (through use 
of a Cauchy prior in particular) to obtain estimators of 
normal means (or random effects) which are robust with 
respect to prior misspecifications and outlying individ- 
ual means. Thus the gain of shrinkage is preserved. It 
is worth pointing out that the same problem with Gaus- 
sian priors persists in the linear mixed-effects models of 
Laird and Ware (1982) for analyzing longitudinal data. 
The effect of assuming a Gaussian random effect is that 
the potential advantage of a random-effects model may 
vanish simply because of one outlying individual's ran- 
dom effects. It is however easy to incorporate the robust 
priors studied in this paper into these models if the com- 
putation is performed using the Gibbs sampler as is in 
Gilks et al.(1993). 
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Abstract 

Recursive partitioning methods, also known are tree or 
CART models, have been applied to several kinds of 
data, including the cases where the response y is a con- 
tinuous variable, a category or class, a survival time, and 
a longitudinal response pattern. In this work we extend 
the methods to the prediction of an observed response 
rate (number of events)/(time observed). The building 
and ordering of a tree model work well, but there are 
some open issues in cross-validation of the final model. 
Finally, some connections are noted to other work on 
trees for survival data. 

1    Introduction 

Recursive partitioning is a method for growing binary 
decision trees, where each node or split represents a de- 
cision, e.g., go to the left if age < 40, and the termi- 
nal leaves give the predicted values. These methods 
date back to the AID (Automatic Interaction Detec- 
tion) program developed by Morgan and Sonquist in the 
early 1960s, and received a strong theoretical boost with 
the CART (Classification and Regression Trees) work of 
Brieman, et.al. in the 1980s [1]. A famous example is 
the digit recognition problem. 

Consider the segments of an unreliable digital readout 

X5 

X, X2 

where each light is correct with probability 0.9, e.g., if 

A 
Xi X2 2 X4 

A      A     A 
1 7 3 Xi 0 X3 

A     A 
4 X5 6 8 

A 
5 11 

Figure 1: Optimally pruned tree for the stochastic digit 
recognition data 

the true digit is a 2, the lights 1, 3, 4, 5, and 7 are on with 
probability 0.9 and lights 2 and 6 are on with probability 
0.1. Construct test data where Y € {0,1,...,9}, each 
with proportion 1/10 and the X{, i = 1,..., 7 are i.i.d. 
bernoulli variables with parameter depending on Y. Xg — 
X24 are generated as i.i.d bernoulli P{X{ = 1} = .5, and 
are independent of Y. They correspond to embedding 
the readout in a larger rectangle of random lights. A 
sample of size 200 was generated accordingly and the 
CART procedure applied to build the tree. The results 
are shown in figure 1. 

Tree methods have been applied to regression and 
classification problems [1], survival analysis [3], longi- 
tudinal analysis [6] and others. The goal of this research 
is to extend the methodology to event rate data. The 
model in this case is 

A = /(*) 

where A is an event rate and x is some set of predic- 
tors. As an example consider hip fracture rates. For 
each county in the United States we can obtain 



TM. Therneau     93 

• number of fractures in patients age 65 or greater 
(from Medicare files) 

• population of the county (US census data) 

• potential predictors such as 

- socio-economic indicators 

- number of days below freezing 

- ethnic mix 

- physicians/1000 population 

- etc. 

Such data would usually be approached by using Pois- 
son regression; can we find a tree based analogue? 

2    Recursive partitioning ingredi- 
ents 

A tree based method has four main ingredients 

1. A split criteria. This is used to determine the "best" 
available split of a node into two daughter nodes. 

2. An impurity criteria. This is used to measure the 
"homogeneity" of a node, and is used to order 
the possible sub-trees (sub-models) of the full tree 
model. 

3. Labeling: An "average response" for each node. 

4. Prediction error: The error in prediction for a new 
observation, should it be predicted using this node. 
This is needed for cross-validation but not for build- 
ing or ordering the tree. 

For tree based regression, these are 

1. the between groups sum of squares, 

2. the within node sum of squares, 

3. the mean and variance of a node, 

4. {y-yf- 
For tree based classification there are several variations. 
Choices include 

1. One of 

• the likelihood ratio test for H0 : Pi = P2, where 
pi and p2 are the vector of proportions in the 
two daughter nodes. 

• the Gini criterion 

• the twoing criterion (see [1]) 

2. One of 

• the binomial deviance within the node 

• the risk of a node, based on priors and a loss 
matrix 

3. The predicted class for the node, or the vector of 
class probabilities 

4. One of 

• the prediction loss ^(observed class, predicted 
class), where £ is the loss matrix 

• the predicted contribution to the deviance. 

(Many other choices have been explored for this prob- 
lem). 

In adding criteria for rates regression to this ensem- 
ble, the guiding principle was the following: the between 
groups sum-of-squares is not a very robust measure, yet 
tree based regression works very well. So do the simplest 
thing possible. 

Let c,- be the observed event count for observation i, 
U be the observation time, and x^J = 1,.. -,P be the 
predictors. 

Labels: The observed event rate and the within-node 
deviance 

A    = 
# events 

total time 

D = ^Liog^)-(«-**<) 

Splitting rule: The likelihood ratio test for two Pois- 
son groups 

-^parent ~~ (Aeft son + -°right sonj 

Purity: The within node deviance. 
Prediction: The deviance contribution for a new ob- 

servation, using A of the node as the predicted rate. 

3    Improving the method 

There is a problem with the criterion just proposed, how- 
ever: cross-validation of a model often produces an in- 
finite value for the deviance. The simplest case where 
this occurs is easy to understand. Assume that some 
terminal node of the tree has 20 subjects, but only 1 of 
the 20 has experienced any events. The cross-validated 
error (deviance) estimate for that node will be 

...+ c,-log(ci/0*tj) + ... 
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which is infinite for c,- > 0. The problem is that when 
A = 0 the occurrence of an event is infinitely improba- 
ble, and, using the deviance measure, the corresponding 
model is infinitely bad. 

One might expect this phenomenon to be fairly rare, 
but unfortunately it is not so. One given of tree-based 
modeling is that a right-sized model is arrived at by pur- 
posely overfitting the data and then pruning back the 
branches. A program that aborts due to a numeric ex- 
ception during the first stage is embarrassing to say the 
least. 

Of more concern is that this edge effect does not seem 
to be limited to the pathologic case detailed above. Any 
near approach to the boundary value A = 0 leads to 
large values of the deviance, and the procedure tends to 
discourage any final node with a small number of events. 

An ad hoc solution is to use the revised estimate 

A = max I A 

where k is 1/2 or 1/6. This is similar to the starting 
estimates used in the GLM program for a Poisson re- 
gression. This is unsatisfying, however, and we propose 
instead using a shrinkage estimate. 

Assume that the true rates A;- for the leaves of the 
tree are random values from a Gamma(/z, <r) distribution. 
Set n to the observed overall event rate EC»7]C^»> an(^ 
let the user choose as a prior the coefficient of variation 
k = <T/H. A value of k = 0 represents extreme pessimism 
("the leaf nodes will all give the same result"), whereas 
Ar = oo represents extreme optimism. The Bayes esti- 
mate of the event rate for a node works out to be 

\   _ a + E °i 
ß + ZW 

where a = 1/k2 and ß = a/Ä. 
This estimate is scale invariant, has a simple interpre- 

tation, and shrinks least those nodes with a large amount 
of information. In practice, a value of k = 10 does es- 
sentially no shrinkage. All tests were done with k = 1. 

4    Examples 

As an example, we consider a variant of the digit recogni- 
tion problem. Let Xi to X7 be the segments of a digital 
readout, as in the earlier example, where each segment 
is in error 20% of the time. Let Ui to Uio and B\ to 
.Bio be extraneous predictors with uniform(0,l) and bi- 
nomial(.5) distributions, respectively. The true class of 
the observations is evenly divided over the digits 0-9, 
but the true class is not observed.   Instead we observe 

0 Xi 

2,3 
U7 

4 
U5 

X7 ** 

5,4,8 9 
X5 

Figure 2: Rates recognition 

a Poisson count with rate A = .34 for class 0 and raie 
A = 3.4 for class 9, the true rates are evenly spaced on a 
logarithmic scale. The number of observations and the 
total time on test was varied between simulations. 

A typical tree for n = 1000 and U ~ U(.b, 1.5) is 
shown in figure 2. With this choice for n and t there were 
on average 1000 events, which is a fairly large sample. 

Each internal node of the tree is labeled with the vari- 
able used to split at that node. The nodes marked with 
a double asterisk are retained if one uses the minimum 
cross-validated error rule, and those with an asterisk are 
retained if the "1 SE" rule is used. Each leaf is labeled 
with the class(es) that would be routed to that leaf if Xi 
were measured without error; for some of the leaves we 
also show the next variable that was chosen by the split- 
ting rule (although the split was not retained). In ten 
independent runs of this simulation, the same qualitative 
results were obtained. 

First, this is a hard problem. A plot (not shown) of 
the observed event rates Ci/U versus the class shows con- 
siderable overlap. Classes 1-3 were never well resolved, 
and the high error rate for the true predictors makes 
deep trees difficult for this sample size. 

Secondly, even with shrinkage the cross-validation cri- 
teria seems to recommend trees that are too small. The 
'best' tree, i.e., the one with lowest cross-validation error, 
sometimes missed informative splits, such as the split on 
X5 at the bottom of figure 2 (it also sometimes included 
an uninformative split). The '1 SE' rule, however, con- 
sistently trimmed off 1-2 informative splits from the best 
tree. 

Third,   the  method  is   asymptotically  consistent. 
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When the average time of observation U was increased 
to 10, keeping the same event rates (so we have 10 times 
the information), a perfect model was always found. The 
best tree was the same as the 1-se tree, and was based 
on 9 informative splits. 

Further research needs to be done with this example, 
including 

• other values of the shrinkage parameter k 

• the effect of increasing observation time per subject, 
versus increasing the number of subjects. 

• shrinking trees, as in Hastie [2] 

• other measures of prediction error 

One other measure of prediction error was examined 
briefly. We know that in the multinomial classification 
problem the same edge effect can occur when the de- 
viance is used as the error measure and an observed rate 
is near zero or one. This can be ameliorated by using 
the simple sums of squares error || p,- - p ||2, where p is 
the predicted probability vector for a node and pt is the 
observed vector for a subject (zeros with a single 1). By 
analogy, we might expect (ci/U - A)2 to avoid some of 
the problems with skewness associated with the Poisson 
deviance measure. Sadly, this did not hold true. 

5    Relation to other work 

One obvious use of this software is for survival data. 
The censoring indicator 6 = 0,1 becomes the number of 
events for a subject, and the follow-up time is used as the 
time on test. In this case the likelihood ratio test for two 
Poisson subsamples is equivalent to the likelihood ratio 
test for two exponentials, and our splitting rule is the 
one proposed by Davis [4]. He also noticed the problem 
with nodes that have only a few events, leading to an 
infinite estimate of cross-validated error, and proposed 
an ad hoc shrinkage estimate for A. His final suggestion 
is to use the cross-validation results only as a guide to 
choosing the right tree. 

LeBlanc and Crowley [5] also consider the case of sur- 
vival data, but base their splitting rule on the local full 
likelihood. This procedure is equivalent to the following: 

• Rescale the time values within the node so that the 
cumulative hazard is linear, i.e., replace each t; with 
H(ti) where H is a piecewise linear estimate of the 
cumulative hazard. 

• Use the usual exponential deviance statistic, but 
with the rescaled time values 

As a practical matter, they suggest only rescaling the 
data once, at the first split. Thus, our procedure can 
mimic theirs simply by prescaling the data before calling 
the routine. 

6    Software 

A standalone program that implements this tech- 
nique is available from statlib. Send the mes- 
sage "send rpart from general" to the fictitous user 
statlib@lib.stat.cmu.edu. The routine also can handle 
categorical data using the Gini criteria and regression 
problems using the between groups sum of squares. 

A set of S functions for the same task should be sub- 
mitted to statlib soon (some documentation is unfin- 
ished). People who wish to try out an early release can 
send mail to the author at therneau@mayo.edu. 
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A Bayesian Approach to Additive Nonparametric Regression 

Michael Smith and Robert Kohn, Australian Graduate School of Management 
University of New South Wales, PO Box 1, Kensington 2033, Australia 

Abstract 
A regression model is estimated nonparamet- 

rically using regression splines to model non- 
linear components with the dependent variable 
transformed using a Box-Cox transformation. 
The knots for each component, the regression 
variables and the data transformation are se- 
lected using a Bayesian approach with the com- 
putation carried out using the Gibbs sampler. 
This extends previous work on Bayesian vari- 
able selection which assumes that variables en- 
ter linearly. The performance of the proposed 
nonparametric estimator is applied to a number 
of examples and shown to work well in prac- 
tice. By exploiting the special features of a 
spike and slab prior for the regression coeffi- 
cients, our variable selection algorithm is much 
faster than previous Bayesian variable selection 
algorithms. 

1    Introduction 

We estimate a regression model semiparamet- 
rically using cubic regression splines to model 
nonlinear components. In this paper we confine 
the discussion to additive regression models but 
the approach extends in a straightforward way 
to a regression model with interactions.   We 
conjecture that most nonlinear regressors ob- 
served in practice are well approximated by a 
regression spline with just a few knots, if those 
knots are carefully selected. If too many knots 
are used to estimate a nonlinear function which 
is observed with noise then a poor smooth with 
high local variance can result. Because, in gen- 
eral, we do not know how to optimally place 
the knots for each variable, we use many knots 
for each variable and select the important knots 
using Bayesian variable selection. We note that 
our approach selects which independent vari- 
ables enter the regression and so extends pre- 
vious work on variable selection in linear re- 
gression by Mitchell and Beauchamp (1988) and 

George and McCulloch (1993, 1994). We also 
allow the dependent variable to be transformed 
using a Box-Cox transformation taking a dis- 
crete number of values. 

We show that our procedure works well on a 
number of simulated examples. In the one di- 
mensional case we compare the nonparametric 
smooth obtained by Bayesian variable selection 
with that obtained by the kernel based locally 
linear least squares smoother, with the band- 
width parameter estimated by the direct plu- 
gin procedure developed Ruppert, Sheather and 
Wand (1993). This plugin estimator is among 
the best performing bandwidth estimators for 
locally linear least squares kernel regression. 

Because of the large number of variables in- 
volved, the computation is carried out using the 
Gibbs sampler with the error variance, the re- 
gression parameters and the Box-Cox parame- 
ter integrated out. We place a slab and spike 
prior on the regression parameters and exploit 
this prior to obtain a fast Bayesian variable se- 
lection algorithm. When the number of vari- 
ables selected is substantially smaller than the 
number available, which is almost always the 
case in our applications, then our approach can 
be substantially faster than that proposed by 
George and McCulloch (1994) who also inte- 
grate out the error variance and the regres- 
sion parameters. A more detailed comparison 
of our approach with that of George and Mc- 
Culloch (1993, 1994) is given in Section 7. 

Our approach to nonparametric regression 
has a number of advantages over previous work. 
First, we just use a linear regression frame- 
work which is easy to understand and allows the 
usual Hnear regression diagnostics to be carried 
out after the model is estimated. Most opti- 
mal nonparametric regression estimators such 
as splines and kernel based nonparametric esti- 
mators are quite esoteric to the general user, es- 
pecially when smoothing parameters need to be 
estimated as well. Second, our approach is very 
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general and can handle additive models with 
interaction terms and can select the significant 
independent variables. At present, kernel based 
methods cannot handle additive models when 
reliable bandwidth estimation is also required. 
There do not seem to be at present reliable ways 
of doing variable selection using spline smooth- 
ing with the exception of some ad-hoc meth- 
ods such as the Bruto algorithm proposed in 
Hastie and Tibshirani (1990, p. 262). Friedman 
and Silverman (1989) and Friedman (1991) also 
use regression splines for nonparametric regres- 
sion and select the knots by a cross-validation 
procedure. This is computationally very in- 
tensive and makes it difficult to traverse all 
possible knot combinations when seeking opti- 
mal knot allocation. Hastie (1989) notes that 
the knot selection procedure in Friedman and 
Silverman (1989) can produce unsatisfactory 
model fits. A third advantage of our procedure 
is that it is very fast compared to many other 
nonparametric regression estimators. Except 
for an initial 0{n) calculation, our procedure 
is independent of sample size. Spline smooth- 
ing using either generalised cross-validation or 
marginal likelihood to estimate the smoothing 
parameter generally requires 0(n3) operations, 
e.g. Gu and Wahba (1991) with some savings 
available for specialised models. Kernel based 
nonparametric regression requires 0(n2) oper- 
ations but can be considerably speeded up by 
using binning as in Fan and Marron (1994). Fi- 
nally, our approach allows the dependent vari- 
able to be transformed as an integral part of the 
estimation. This can only be done on an ad-hoc 
basis using spline or kernel fitting. 

The paper is structured as follows. Section 2 
describes variable selection for linear regression 
and explains how the Gibbs sampler is used to 
find the model with the highest posterior prob- 
ability. Section 3 presents our approach to non- 
parametric regression in the univariate case and 
empirically compares its performance to ker- 
nel based locally linear least squares smooth- 
ing. Section 4 generalises the treatment in Sec- 
tion 2 to include transformation of the depen- 
dent variable as part of the Bayesian analysis. 

Section 5 deals with semiparametric additive re- 
gression. Section 6 gives implementation de- 
tails for variable selection and transformation 
of the dependent variable in a linear regression 
model. Section 7 compares our approach to 
variable selection with that of George and Mc- 
Culloch (1993, 1994). 

2    Variable selection in a linear 
regression model 

In this section we review variable selection in 
the linear regression model as it is the basis of 
our nonparametric procedure. We consider the 
linear regression model 

y = Xß + e (2.1) 

where y is the n x 1 vector of observations, X 
is the n x r design matrix, e ~ N(Q,cr2In) is 
the error vector and ß = (ßi,...,ßT)' is the 
r x 1 vector of regression coefficients. Let 7 
be the r x 1 vector of indicator variables with 
/th element 7,- such that 7; = 0 means that 
3i = 0 and 7,- = 1 means that /?,• ^ 0. Given 7, 
let ßy consist of all the nonzero elements of ß 
and let Xy be the columns of X corresponding 
to those elements of 7 that are equal to one. 
Given 7 and a2, we take the prior for ßy as 

J7|7,o-2 ~ Ar(o,ca2(X^X7)
_1), where c is a 

positive scale factor specified by the user. In 
the empirical work we take c = 100 and find 
it performs well and makes the prior /?7|7,<72 

almost diffuse. We take the prior of a2 given 
7 as p{<r2\l) a 1/a2. Finally, we take the 7; 
as apriori independent with ^(7,- = 1) = x,-, 
0 < 7T,- < 1, for i = 1,...,r. In our appli- 
cations we take the 7r,- = | which means that 
each model 7 has a prior probability equal to 
2"r. Taking the 7r,- smaller than \ will result 
in a more parsimonious model. Our aim in this 
paper is to select the model with the highest 
posterior probability, that is the highest value 
of p(7|j/). This is equivalent to maximising 
p{y\l)p(l)- By integrating ßy and a2 out we 
obtain that 

K»l7)«(l + c)^5(7)- (2.2) 
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where g7 = YZ=i li 1S the number of nonzero 
elements of ß and 

S{1) = y'y--^-y'X,{X'^)-1X^   (2.3) 
1 + c 

so that 

KTly) oc (l + C)^s(7)-*n n ^(i - ^i)1-71' 

To obtain the model with the highest poste- 
rior probability it is necessary to search over 2r 

models. This can be done directly if r is small. 
In our applications r will usually be large so 
a direct search is not feasible and we use the 
Gibbs sampler (Gelfand and Smith, 1990) to 
traverse the parameter space. Our use of the 
Gibbs sampler can be described as follows. 
Gibbs  sampler (i) Choose an initial value 

7^ = (7i > • • • > 7r ) of 7 perhaps by generat- 
ing it from some distribution, (ii) Successively 
generate from p(7t|y57j^i)- Step (ii) is carried 
out many times and in two stages. The first 
stage is a warmup period at the end of which 
it is assumed that the sampler has converged 
to the joint distribution of p(f\y). The second 
stage is a sampling period and the 7; collected 
during this period are used for inference. 

We note that as the 7,- are generated, the pos- 
terior probability p(f\y) is also calculated (up to 
a constant independent of 7) so that of the mod- 
els generated thus far the one with the highest 
posterior probability can be recorded. 

The Gibbs sampler can be executed very effi- 
ciently because usually q1 will be much smaller 
than r in our problems. Implementation details 
are given in Section 6. 

3    Univariate     nonparametric 
regression 

Suppose that 

V* = f(xi) + ei    i = !»• • • 1n (3-1) 

where j/t- is the th observation, e,- is an inde- 
pendent iV(0,<72) error sequence and f(x) is a 

smooth function.   We propose to approximate 
f(x) by the cubic regression spline 

m 

b0 + bxx + b2x
2 + b3x

3 + £ ßj(x -xk)3
+,  (3.2) 

k=i 

where i\,..., xm are the m 'knots' placed along 
the domain of the independent variable x, such 
that min(:c;) < X\ < ... < xm < max(z,), while 
(z)+ = max(0, z). By replacing f(x) in (3.1) by 
its approximation (3.2) the nonparametric re- 
gression can be rewritten as a linear regression. 
Let r = m + 4, ß = (60,61, b2,63, ßu • •., An)', 
x = (xi,...,xn)' and let 1 be a vector of 
n l's. Also, let the n x r matrix X = 
(l,x,x2,x3,(x-15i)3,...,(x-lxm)3). 
Then, with f(x) replaced by (3.2), we can write 
(3.1) as (2.1) 

The   most  important   question   associated 
with fitting regression splines is the choice of 
both the number and location of the knots 
xu..., xm; see, for example, Friedman and Sil- 
verman (1989) and Friedman (1991).    If the 
knots are badly located, details of the curve can 
be missed, while if too many knots are included 
the fitted spline based on these knots will have 
high local variance. One way solve the problem 
is to introduce a large number of potential knots 
from which a significant subset can be selected, 
e.g. Friedman and Silverman (1989, pp. 9-11). 
The problem then becomes one of variable selec- 
tion where each knot corresponds to a column 
of a design matrix from which a significant sub- 
set is to be determined. Although the number 
of knots selected, m, will typically be large so 
that r will be large, the number of significant 
variables q required to obtain a good approxi- 
mation will usually be quite small. This is what 
makes our algorithm so fast. 

We look at the performance of our approach 
and compare it to local linear smoothing for 
data sets generated from the following three 
curves. 

yi = 2xi + e,- (3.3) 

where e:- ~ iidiV(0,0.52), 

yi = sin(87ra;t) + e,- (3.4) 
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where et~ iidiV(0,0.52), and 

Vi = g(xi) + ei (3.5) 

where g(x) = lOe"1037' + 2 + e; if x; < \ and 
y(x) = 3cos(10ira;,-) + e,- if if a* > |- In (3.5) the 
errors e; ~ iidiV(0,22). One hundred observa- 
tions were drawn from a Uniform(0,l) distribu- 
tion, forming the independent variable for each 
of the three functions. The errors were also ran- 
domly generated, while the knots were chosen to 
follow the density of the independent variable, 
one every three observations. This produced a 
total of m = 33 knots and r = 37 columns in X 
from which to select. The Gibbs sampler was 
run for a warmup period of 300 iterations and 
a sampling period of 3000 iterations, with arbi- 
trary initial condition 7^ = (1,0,. ..,1,0,1)'. 
Convergence seems to have occurred within a 
dozen iterations for each of the three functions. 
When the variables selected by the Bayesian 
approach were placed in a linear least squares 
routine they were all significant at the 1% level. 
Figures l(a)-l(c) show plots of the least squares 
fits, based on the obtained model estimates, 
against each set of generated data and respec- 
tive true curve. Figures 2(d)-(f) show the corre- 
sponding fits obtained to the same data sets us- 
ing local linear kernel based regression. Smith 
and Kohn (1994) repeat the above simulation 
100 times and show that the three data sets gen- 
erated are typical data sets for the models (3.3)- 
(3.5). The six plots in Figure 1 show that the 
regression spline estimator performs well and is 
smoother than the local linear estimator. This 
has also been our experience with other data 
sets. 

A more extensive set of simulations and com- 
parisons with locally linear least squares is given 
by Smith and Kohn (1994). 

4    Data transformation 

We now generalise the model (2.1) by allowing 
the dependent variable to be transformed using 
a Box-Cox transformation. Given the indicator 
vector 7, the linear model becomes 

where t/,,A = y/1 if A 7^ 0 and yi<x = log(j/t) if 
A = 0. As is normal when using the Box-Cox 
transformation, we assume that the dependent 
variable r/,- is positive. Otherwise, some positive 
number is added to all the observations to make 
this so. In order to carry out both variable se- 
lection and transformation selection using the 
Gibbs sampler it will be necessary to integrate 
out A. To facilitate this we allow A to take on 
just a small set of values denoted by A. In our 
examples we take A = {-2,-1,-|,0, |, 1,2}, 
which will be adequate for most applications. 
Our aim is to find the values of A and 7 that 
give the highest posterior probability p(X,j\y). 
To find this combination of A and 7 we run 
the Gibbs sampler as in Section 2 by generat- 
ing from p{~fi\y, 7j#), i = 1,.. •, r. To evaluate 

p{i\y)we note *na* 

p(i\y)= X]p(A>7b)« SIW.TM^MT) 
AeA AeA 

and p(y\\,l) = P(2/A|A,7)A
A
). 

where J(X) is 

the Jacobian of the transformation y —► y\ and 
is equal to [#=1 |A|^_1 if A # 0 and n?=i £ if 
A = 0. From (2.2) and (2.3) we obtain 

p(2/|A,7) oc (1 + c)^S(A,7)-» V(A)     (4.2) 

where 

yx = AT7/?7 + e (4.1) 

s(\,7) = y'xyx - n^*7 (*;*7)   X>. 
(4.3) 

The prior for 7 is the same as in Section 2 and 
in our applications we take a uniform prior on 
A€ A. 

We found it necessary to integrate A out when 
generating 7. The Gibbs sampler generating 
7*I»»Tj9tf,A, i = l,...,r and A|y,7 tended to 
get stuck, because of the high correlation be- 
tween the A and 7 iterates. If A takes on only a 
small number of values then the variable selec- 
tion algorithm can be very fast as the terms 
y\y\ and y'xX can all be precalculated. For 
each of the models generated by the Gibbs sam- 
pler it is straightforward to calculate the den- 
sity p(Kl\y) oc KyAl7,A)J(A)p(7)p(AX up to 
a constant independent of A and 7, which en- 
ables us to keep track of the values of A and 7 
maximising the posterior density. 
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To illustrate the performance of our approach 
to simultaneously determining 7 and A we gen- 
erated 100 observations from (3.3)-(3.5) as in 
Section 3. For the data generated from (3.3) we 
transformed j/,- -► (m + l)~ä, for the data gen- 
erated from (3.4) we transformed y,- -»■ exp(y,+ 
2.5) and for the data generated from (3.5) we 
transformed y,- -> (y,- + 7)-2. Figure 5 plots 
the transformed data in the left panels and the 
original data, together with the curve estimate 
and the true curve, in the right hand panels for 
each of the three functions. It is clear, that at 
least for these realisations, the nonparametric 
approach with variable selection performs very 
well. Further simulations indicated that this 
combined approach is highly effective. 

5    Additive      semiparametric 
regression 

Because regression splines are linear models it 
is possible to employ them in an additive model 
context by constructing a single design matrix 
made up of columns of the individual design 
matrices of the type outlined in the previous 
section. Model selection can then be performed 
simultaneously on the knots (and other polyno- 
mial terms) associated with each independent 
variable modelled by a regression spline, by se- 
lecting from the columns of this new design ma- 
trix. 

The next example illustrates the performance 
of our approach to variable selection and data 
transformation on a four component additive 
regression model. Two hundred observations 
were generated from 

Vi   =   exp (/afaü)+ /2(s2f) + /3(a>3i)+ 

/*(»«) + e«). 

The errors e,- are independent iV(0,0.52), 
fa{z) = sm(2irz),fa(z) = -1.5z,f3(z) = 
cos(6wz) and fa is null. The independent vari- 
ables xu,..., X4i, i = 1,..., n, are each gener- 
ated from a uniform distribution. Figures 6(a)- 
6(d) plot 2/,- against each of the independent re- 
gressors and show that it is difficult to deter- 
mine the functional forms fa,..., fa from these 

plots. The additive model 

Vi,x = /i(xi,-) + fa{x2i) + /3(a?3t) + fa(x4i) + et- 

was fitted to the data using the Bayesian ap- 
proach explained above, with A taking the 7 
values given in Section 4.    Each function fa 
was approximated by a regression spline with 
13 knots, one every 15 observations.   We ran 
the Gibbs sampler with the initial value of 7 = 
(1,0,1...,, 0,1), a warmup period of 300 itera- 
tions and a sampling period of 3000 iterations. 
The posterior mode of A and 7 produced a log 
transformation, the estimate of fa included lin- 
ear and quadratic terms together with two ex- 
tra knots, the estimate of fa was linear, the esti- 
mate of fa required the squared and cubic terms 
plus six extra knots and the estimate of fa was 
null.   This means that out of r = 65 poten- 
tial regressors, q = 14 were selected.   The B? 
for this model was 0.867. Figure 6(e) plots the 
transformed data (scatter plot), the true value 
of fa (solid line) and its estimate (dashed line) 
against xU- Figures 6(f), 6(g) and 6(h) are sim- 
ilar plots for fa to fa, with fa null. These plots 
show that for this simulated data set our ap- 
proach selects the correct data transformation 
and provides good estimates of the components. 
In particular, the null component fa is omitted 
from the model. 

6    Implementing    the    Gibbs 
sampler 

We outline how to efficiently implement the 
Gibbs sampler described in Section 2 and ex- 
tend the result to the data transformation case 
discussed in Section 4. Before running the sam- 
pler the terms y'y, X'y and X'X are computed. 
To generate 7,-, we note that p(ii\y,ij#) is bi- 
nomial withp(7,- = l\y,fj£i) = l/(l + h), where 

h (c+ 1)2 -■     ' 
■Ki .9(7°) ov 

„1 V = (7i.---.7t-i.7t = l,7t+i,..-,7r) and 
7° = (7i.---.7i-i.7t- = 0,7i+i,...,7r). Sup- 
pose  that  7   =   70  before  7^   is  generated. 
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Then S(j°) is known and it is necessary 
to obtain 5'(71). The main computational 
difficulty   in   obtaining   5(7a)   is   evaluating 

y'X^i (x'^X^y1 X'^y. This is done by fac- 

toring X'iXyi as L\L'X, where L\ is lower 
triangular, using the Cholesky decomposition 
and then computing L^X'^y. We note that 
X'iXyi and XyjXyj differ by only one row and 
column so that L\ can be readily obtained from 
LQ, where LoL'0 is the Cholesky decomposition 
of X'oXyo; see Dongarra, Moler, Bunch and 

Stewart (1979, Ch. 10). If 7 = 71 before 7; 
is generated, then LQ can similarly be obtained 
from L\. From Dongarra et al. (1979), generat- 
ing 7i requires q\ operations. Hence generat- 
ing 7 requires 0(rq2) operations, where q is the 
typical number of regressors required. We refer 
the reader to Dongarra et al. (1979) for a dis- 
cussion of fast and stable methods for updating 
a Cholesky decomposition. 

When the dependent is transformed as well, 
we first obtain the terms y'xy\,X'y\ and X'X 
for each value of A € A. Fast calculation of 
5(A,7) is done as above. 

7    Discussion of related work 

Differences in approaches to Bayesian model 
selection revolve primarily around the specifi- 
cation of the conditional prior ß\j, a1 because 
it introduces the indicator variables into the 
model. Mitchell and Beauchamp (1988, p. 1024) 
use a uniform prior, letting ßYi,o2 ~ 
Uniform(—a,-,ot), with a,- large for each t. The 
decision of how large to choose the values of a,- 
is left to the user. 

George and McCulloch (1993) use the non- 
conjugate normal prior /?,|7,CT

2
 ~ N(0,T?) if 

7i = 0 and #|7,<r2 ~ W(0,c2r?) if 7,- = 1. The 
constants T{ and c,- are chosen so that Ti is small 
and Ci is large. George and McCulloch (1993) 
make some suggestions on suitable choices for 
c, and Ti and use the following Gibbs sampler 
to generate models of high probability: Gen- 
erate from (a) pG%,aa,7); (b) P(<*2|y>/?i7); 
(c) p(li\y,ß, <r2,ljiti) for » = 1,...,n We have 

found this sampler difficult to implement for 
our problems because of the high correlation be- 
tween ß and 7. If Ti is chosen too small then 
the sampler is nearly degenerate and tends to 
get stuck. If T{ is chosen too large, significant 
terms are omitted and high local bias is experi- 
enced. We note that this sampler requires 0(r3) 
operations to generate ß which can be consid- 
erably slower than our algorithm if q is much 
smaller than p. 

George and McCulloch (1994) consider the 
conjugate prior /?,|7,<72 ~ jV(0,<72r2) if 7,- = 0 
and /3,|7,o-2 ~ iV(0, <r2c2r,2) if 7,- = 1 and ob- 
tain p(i\y) by integrating out ß and a1. Given 
Ci and Ti they use the Gibbs sampler in Sec- 
tion 2 to generate the 7^. The computations re- 
quired are carried out efficiently using the fast 
Cholesky updates in Dongarra et al. (1979). Be- 
cause all variables remain in the regression for 
each value of 7, the fast Cholesky implementa- 
tion in George and McCulloch (1994) requires 
0(r3) operations to generate 7, which can be 
substantially slower than our approach which 
requires 0(rq2) operations. 
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for Determining Protein Construct Storage Conditions 
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Glaxo, Inc. 5 Moore Drive, Research Triangle Park, NC 27709, U.S.A. 

Abstract 
Space filling experimental designs evenly distribute design 
points throughout a design Space. These designs are useful 
for applications where optimums are thought to exist in 
distinct areas. A space filling design was carried out to 
determine a best set of storage conditions for a particular 
protein construct. The design consisted of 96 points and 
tested the effect of eight experimental variables on protein 
activity. The analysis of the results was performed using 
linear regression, recursive modeling, and picking the set 
of conditions from the experimental results which produced 
the highest result. None of the analysis methods were found 
to be completely satisfactory for the analysis of these data. 
This experiment, while operationally successful, 
demonstrates the need for better algorithms and analysis 
methods for generating and assessing space filling 
experimental designs. 

Introduction 
Experimental designs are used in industrial applications to 
determine optimal process conditions by varying many 
factors simultaneously. It is difficult to apply classical 
experimental designs when the experimental space is 
irregular in shape, certain experimental combinations are 
not physically possible, or where many of the experimental 
factors are categorical. Computer generated exact D- 
optimal designs are often used in these situations (Snee, 
1985). D-optimal designs are based upon a model of the 
process, usually linear, 

Y = Xß + e, 

where Y is a column vector of responses, X is a design 
matrix, ß is a column vector of coefficients to be estimated 
and e is a column vector of errors from the linear model. 
Exact D-optimal algorithms are computer intensive; they 
start with a random design and then delete points from the 
current design and add specific points from the 
experimental space to maximize the determinate of the XX 
matrix. The selected points tend to be on the extremes of 

the experimental space and it is assumed that the linear 
model can be used to interpolate conditions in the space. 

In some situations, the experimenter is not willing to 
assume a model beyond saying that points near one another 
are going to respond similarly. In such a situation it is 
natural to place points throughout the space, hence the 
term space filling designs. Space filling designs have no 
underlying model and try to best fill the n-dimensional 
space with a finite number of points. Some algorithms for 
space filling experimental designs are becoming available, 
Kennard and Stone (1969) and SAS/QC (1993), however 
little attention has been given to the subsequent analysis for 
these designs. If there are local regions of high activity, 
then use of linear models is likely to be unsatisfactory. In 
many industrial settings, experimenters have often found 
that only a few of the hypothesized important factors turn 
out to have much of an effect, a situation called effect 
sparsity. If effect sparsity holds in situations where space 
filling designs are used, then the analysis method should 
find which factors are important and what regions in these 
subspaces have good results. There do not seem to be 
standard methods for finding compact regions of similar 
response in a high dimensional space. 

We used a space filling experimental design to determine a 
set of storage conditions for a purified protein construct. In 
this design we were concerned with near neighbor 
predictability, dealing with an irregular sample space and 
estimating the pure error inherent in the assay. Various 
methods of analysis were used to examine the resulting 
dataset, including linear regression, recursive modeling 
and picking the maximum value from the results. While 
the experiment was operationally successful (a good set of 
conditions was found), many problems with the 
construction of the design and analysis were raised. 

Description of Experiment 
The purification and characterization of proteins is an 
important process in the first stages of the drug discovery 
process. Biotechnology is used to identify important regions 
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of DNA and these DNA segments are spliced into a vector 
for expression. The resulting protein constructs are small 
purified segments of protein which include the active site 
and have the same activity as the complete parent protein. 
The use of purified protein constructs is becoming 
instrumental for determining the functionality of 
biochemical processes, investigating the effects of novel 
pharmaceuticals and solving tertiary structures of large 
proteins, Cunningham and Wells (1991). 

In order to stabilize the constructs and maintain biological 
activity, purified protein constructs are stored in a buffered 
solution containing other chemical additives such as 
detergents, reducing agents, and salts. The correct 
combination of chemicals that make up these solutions is 
usually found by performing a series of experiments where 
the different solution additives are varied one at a time. 
This method requires a large number of experiments, does 
not have the ability to determine how the different 
experimental factors interact, and does not provide an 
estimate of experimental variation. 

The factors and their ranges thought likely to contain the 
optimum stability conditions for a protein construct were 
selected by a team of protein chemists. The final list 
contained a total of eight storage variables. These variables 
and their settings were chosen based on previous 
experience and recent experimentation. For continuous 
variables a practical experimental range was determined 
from which three or more settings were chosen. The 
spacing of the settings were selected so that the gaps 
between settings were small enough that a narrow optimum 
would not be missed. In cases where only three settings 
were to be tested the low and high values were set inside 
the extreme possible conditions. Conditions were selected 
so that they would not interfere with subsequent 
experimental processes such as protein crystallography or 
biological assay. 

The selected conditions are given in Table 1; the total 
number of combinations of all variables and levels 
produced a candidate set of 18,144 possible experimental 
conditions. Next, buffer/pH combinations which were not 
biologically or chemically practical were excluded from the 
candidate set. For example the MES buffers at pH higher 
that 6.5, the TRIS buffers at pH higher than 8.0 and the 
HEPES buffers where pH was below 6.5 or higher than 8.0. 
The exclusion of these combinations reduced the candidate 
set to 9720 possible experimental conditions. 

Table 1 
Experimental factors and ranges considered 
important for the optimal storage condition of 
purified protein constructs 

Buffers Tris, POA > Mes, Hepes 

pH 6-9 

Protein 
Concentration 

100-1000 ug/ml 

Reducing 
Agents 

BME, TCEP, DTT 

Detergents Tween, Ethylene glycol 
NP-40, Octylglucoside 

Temperature -80, -20,4 °C 

Nad 100-1000 mM 

MgCl Yes/No 

Number of                          18,144 
Possible Experiments 

Number of Experiments        96 
Performed 

Design Generation and Experimental Results 
The D-optimal exchange algorithm of Mitchell and Miller 
(1970) as coded in Proc Optex of SAS® was used to 
choose design conditions from the candidate set. Main 
effects, quadratic effects and two way interactions were 
included in the model to force the algorithm to fill the 
experimental space. Algorithms such as those available in 
version 6.07 of SAS Proc Optex fill a multidimensional 
design space more efficiently. However at the time this 
experiment was performed, a satisfactory set of design 
points using these algorithms was unobtainable because of 
the large number of class variables in the design. A 
reference set of conditions was forced into the design and 
run in triplicate to give both an experimental "gold 
standard" and allow an estimate of pure error. The sample 
size for the experiment was set at 96, 93 separate 
conditions along with 3 replications of a "gold standard" 
set of conditions. 

The protein activity of each of the 96 samples was 
determined once a week for a total of four weeks. The 
activity recorded after the fourth week was used for the 
analysis. 
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Table 2 
Design Generation Results 
Two dimensional views of the numerical variables showed 
that in most cases there were representative points for each 
factor (Figure 1). However in some cases the interior areas 
of the design space were not well represented Currently 
there are no criterion for assessing how well points fill a 
space. 

Linear Regression Results 

Rgural Quantitative Factors 

pH . • • 
■ • • • 

Nad 

.       . • • 

Pro<_Con 

MgCL 

T*mp 

Analysis: Linear Regression 
Analysis of the dataset using linear regression produced a 
predictive model with a large number of statistically 
significant predictor variables; results of this analysis are 
given in Table 2. Numerous two way interaction and 
quadratic terms were found making simple interpretation of 
specific experimental factors difficult. Other causes of 
concern were the possibility overfitting and the apparent 
violation of effect sparsity. Table 3 gives the predicted 
responses and cross validation results for the best predicted 
conditions. These results demonstrate that while in some 
cases the model was able to predict within assay error, in 
other cases the predicted response was erroneous, thus 
demonstrating the relative importance of using local points 
to predict in the sparse design space. 

Source df SSq F ratio pVc 
C. Total 95 38.46 
Buffer 3 1.47 6.12 0.0013 

Buffer XNaCI 3 0.82 3.43 0.0245 

Buffer X RecLAgent 6 1.45 3.01 0.0142 
Buffer X Detergent 9 2.49 3.45 0.0025 
Buffer X Temp 3 1.58 6,59 0.0008 

NaCI 1 0.23 2.82 0.0996 

NaCI XNaCI 1 0.61 7.49 0.0087 

ProtConc 1 2.84 35.49 0.0001 
ProtConc X ProtConc 1 0.85 10.61 0.0021 

ProtConc X Detergent 3 1.65 6.86 0.0006 

Red_agent 2 0.68 4.28 0.0196 

Red_agent X Detergent 6 1.02 2.12 0.0689 

Red_agent X Temp 2 0.82 5.10 0.0099 

Detergent 3 7.85 32.64 0.0001 

Detergent X Temp 3 1.93 8.03 0.0002 

Temp 1 0.84 10.59 0.0021 

Residual 47 3.76 

Analysis: Recursive Modeling 
Recursive modeling (FIRM, Hawkins) is based on 
partitioning the data into two or more groups according to 
the range of values of one predictor. Once an initial 
partition is obtained, each one of the partitioned groups is 
divided into two or more groups based upon one the 
remaining predictors. The partitioning stops when the 
group size becomes too small to be partitioned or the group 
becomes homogenous. A recursive model of our data 
showed that the data first split with regard to which type of 
detergent was used. These subgroups were then split with 
regard to whichever variable was important (Figure 2). 
The optimum predicted result from the FIRM analysis had 
a mean predicted activity of 1.55±.31. This group of 
observations had higher protein concentrations, were stored 
at high temperatures and contained n-octoglucoside. 
While recursive modeling is considered useful for finding 
complicated interactions in large data sets, it does have 
some disadvantages. FIRM creates trees by forward 
selection. The analysis stops when there is a non- 
significant split thus possibly hiding significant 
interactions below non-significant main effects. 
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Analysis: Pick the Winner 
Several of the experimental values obtained from the 
design points were superior to those obtained in the 
laboratory prior to this experiment (Table 3). The 
maximum result demonstrated a higher activity when 
compared to the gold standard value. This area of the 
design space should be further investigated 

Tables 
Linear Regression Model of 

Observed and Predicted Values of 
Standards and Best Experimental 

Results 

Run Observed 

Linear 
Model 
Prediction 

Cross 
Validation 
Prediction 

37 2.11 2.05 1.92 
76 2.06 2.03 2.01 
90 1.94 1.90 1.84 
20 1.88 1.55 1.01 
38 1.81 1.17     ' 0.89     * 
65 1.79 1.83 1.91 
27 1.79 1.78 1.77 
79 1.73 1.70 1.67 
29 1.72 1.54    * 1.44    ' 
68 1.69 1.35    • 0.84    * 

stdl 1.44 1.39 1.37 
std2 1.31 1.39 1.42 
std3 1.25 1.39 1.45 

Discussion 
Numerous methods are available for constructing space 
filling designs. Cluster analysis has been previously used 
for this purpose, Zemroch (1986). The addition of higher 
order terms in D-optimal methods can also be used For 
example, the insertion of a quadratic term into the model 
will force three levels of the factor into the design. 
Indicator variables for categorical variables will force each 
category into the design. Thus a D-optimal strategy was 
used to construct this space filling design; now that more 
direct algorithms are available, they should be used It is an 
open question as to which algorithms are "best" and indeed 
how to even measure best. 

The sample size of 96 observations was chosen as the 
maximum amount of protein material and assay resources 
that were available. There was no attempt to reason how 
many samples were necessary to fill the sample space 
adequately. Such reasoning would depend upon the degree 
subspace considered important, effect sparsity, and the size 
of the gaps expected to be tolerable. Univariate gaps were 
considered in selecting the candidate space, but higher 
dimension gaps were not considered. The many categorical 
variables in this experiment appear to exacerbate sample 
size determination. The logic for selection of sample size 
for space filling designs remains an interesting problem. 

The use of space filling experimental designs is appealing 
for use in industrial applications where a localized 
maximum or "spiked" response is expected. We were able 
to construct a space filling design for determining a set of 
storage conditions for a purified protein construct. By 
demonstrating superior activity to previously used 
conditions at several areas of the design space, we were 
operationally successful; however we uncovered a number 
of problems. At the present time the theory and software 
for the construction of space filling designs is not well 
developed. Additionally, traditional analysis procedures 
may not adapt well to these designs. Some of the problems 
that will have to be overcome include: Effect sparsity, 
overfitting or multiplicity, design space predictability, 
sample size determination and a criterion for comparing 
designs. 
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Abstract 

In this paper we evaluate the usefulness of the following 
nonparametric regression methods for the analysis of a 
space-filling design: Gaussian stochastic process models, 
thin-plate splines, single hidden layer neural networks, 
generalized additive models and multiple adaptive re- 
gression splines. The space-filling design on which the 
evaluation is based was used to optimize the buffer for 
a DNA amplification method. The methods were eval- 
uated based on how well they fit the data and on the 
reasonableness of the resulting multidimensional struc- 
tures. The methods of Gaussian stochastic processes and 
thin-plate splines seemed most useful for this data set. 

1    Introduction 

Space-filling designs have been primarily used for com- 
puter experiments [1] [2]. However, we believe that these 
designs should also be useful in physical experiments in 
the pharmaceutical and biotechnology industries. For 
example, the use of a space-filling design has been re- 
ported by Menius and Young [3] where it was used to 
discover storage buffer conditions that preserved the ac- 
tivity of a protein construct, and Van Cleve [4] carried 
out the space-filling design which we analyze in this pa- 
per in order to optimize buffer conditions for a DNA 
amplification method. 

One of the assumptions motivating the use of a space- 
filling design is that the response surface is likely to be 
highly nonlinear. Thus, a low order polynomial model, 
as traditionally used for a response surface design, will 
not be sufficiently flexible to capture the relevant struc- 
ture of the underlying surface. Consequently, flexibility 
in the regression model is critical. In this paper we ex- 
plore the use of several methods which can loosely be 
classified as nonparametric regression surfaces because 
of the highly flexible nature of their regression models. 
These methods include Gaussian stochastic processes, 
thin-plate splines, single hidden layer neural nets,* gener- 
alized additive models, and multiple adaptive regression 
surfaces. 

The goal of the analysis of a space-filling design is to 
fit a model 

Y = f(x)+e 

where Y is a response variable and x = (xi, X2,..., Xd)T 

is the set of experimental or predictor variables. In the 
context of process optimization, it is of interest to find 
the best settings of the subset of important variables and 
to predict the response value at these optimum settings. 
Scientists and engineers may also gain insight into the 
underlying mechanisms by examining the structure of 
the surface generated by /. 

Two fundamental obstacles to this process are that 
the form of the function / is generally unknown and that 
d is usually large. Because the form of / is unknown, 
an approximating function of some sort must be used. 
Consider the case in which / is approximated by a mth 

order polynomial; then / will have 

(m:d) 

terms, growing like md. The exponential increase in 
terms as a function of the dimension is known as the 
curse of dimensionality and this difficulty affects all ap- 
proaches to the problem. 

In order to be useful for the analysis of a space-filling 
design, a nonparametric regression model must be flexi- 
ble enough to capture the multidimensional structure of 
the surface. In this paper, we evaluate the nonparamet- 
ric regression models with this criterion in mind. The 
example used for the evaluation is described in the next 
section. In Section 3 we provide a brief description of 
each of the regression models we evaluated. Section 4 
presents the results of the model fitting and makes com- 
parisons among the different methods. Finally, Section 
5 provides some brief conclusions. 

2    Strand Displacement Amplifica- 
tion 

Strand displacement amplification (SDA) is a method 
for DNA amplification that was invented at the Becton 
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Dickinson Research Center [5] and [6]. SDA is an isother- 
mal amplification method that utilizes the ability of an 
enzyme to nick an unmodified strand of a hemiphospho- 
rothioate form of DNA at its recognition site. DNA poly- 
merase extends the nicked site and displaces the down- 
stream DNA strand. Exponential amplification results 
from coupling sense and antisense reactions in which 
strands displaced from a sense reaction serve as a tar- 
get for an antisense reaction and vice versa. 

A space-filling design was conducted to study the ef- 
fects of buffer composition on strand displacement ampli- 
fication by Van Cleve [4]. Four buffer components were 
systematically varied in a space-filling design; namely, 
KC1, KP04, MgCl2 and dNTP. The two components 
KC1 and KPO4 are thought to affect amplification pri- 
marily via their contribution to the ionic strength of the 
buffer. Ionic strength affects DNA hybridization and 
enzyme activity. Each enzyme in the system is likely to 
have its own optimal salt concentration so there may well 
be several local optima. The variable dNTP (deoxyri- 
bonucleotides) represents the micromolar concentration 
of each of the four basic building blocks of DNA needed 
for extending the nicked site. dNTP binds Mg+2 one a 
one-to-one basis so MgCl2 must be present in at least 
equal molar concentration as the total dNTP concentra- 
tion in order for extension to take place. Since Mg+2 is 
also a cofactor for the restriction enzyme, it needs to be 
in excess of the total dNTP concentration. 

The design was constructed in three stages. First, a 
2000 run Latin hypercube design was generated. Second, 
each factor was rounded to 20 levels. These 2000 runs 
were the candidate set of design points. Third, the best 
settings from previous experiments were specified as a 
fixed point and 55 additional design points were selected 
based on an approximation to the maximin criteria of 
Johnson, Moore, and Ylvisaker [8]. The software ALEX 
(ALgorithms for Efficient experiments, Welch [9]) was 
used to generate the design. Some of the runs were repli- 
cated and a total of 89 response values on the 56 different 
buffers were available for analysis 

The response value is the counted intensity of an ap- 
propriate band on an electrophoresis gel evaluated on a 
Phosphorlmager (Molecular Dynamics Model 425E). Be- 
cause not all of the experimental buffers could be eval- 
uated on one gel, two replicates of a control condition 
were run on each gel. The control condition represented 
the best buffer from previous experiments. (The corre- 
sponding settings were included as the fixed point when 
generating the design as described above.) The values 
were normalized for each gel as follows: 

„normalized 
Vij 

where c is the average of all of the control runs, and Cj 
is the average of the control runs from gel j. Because 
of the exponential amplification, it makes sense to an- 
alyze the response values on the log scale in order to 
get at the actual amplification rate. In this context, the 
normalization can be regarded as a forced additive day 
effect. 

3    Nonparametric Regression Mod- 
els 

Nonparametric regression can be thought of as a general 
class of methods that provide very flexible approximat- 
ing functions. In this section we describe the methods 
that were used to model the data from the experiment 
described in the previous section. 

3.1 Polynomial Models 

The polynomial regression model can be expressed as 
follows 

y = pT(x)/3 + e, 

where p is a vector of polynomial linear model terms, ß 
are the usual linear regression parameters and e is the 
random error. An mth order polynomial will include 
power and cross terms up to order m. As m increases, 
the flexibility of the polynomial model increases at the 
expense of possible overfitting. The Im function in S- 
PLUS [7] was used to fit the polynomial models. 

3.2 Gaussian stochastic processes 

In the Gaussian stochastic process model, we model Y 
by 

Y = pT(x)/3 + Z(x) + e, 

where p is a vector of linear model terms, ß is the vector 
of corresponding (unknown) coefficients, Z(-) is assumed 
to be a univariate Gaussian stochastic process on the 
design space, and e, representing random measurement 
error, is assumed independent of Z(-) and Gaussian with 
mean zero. In the model fit in this work, pT(x)/3 is 
simply lßü- In this case, systematic dependence of Y on 
x is captured solely by the Z{~x) term. 

Flexible specification of Z(-) is key to capturing the 
features of complex response surfaces. We consider only 
mean zero Gaussian stochastic processes with correlation 
functions of the form, 

Vij- 
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R(x,x')    =   Coi(Z(x),Z(x')) 
d 

*=i 

Previous work, Sacks, Welch, Mitchell, and Wynn 
[1] and Welch, Buck, Sacks, Wynn, Mitchell, and Morris 
[2], has found this structure to be sufficiently flexible to 
capture quite complicated response surfaces. McMillan, 
Sacks, Welch and Gao [10] also reported the successful 
use of this method to analyze a space-filling design. The 
essential idea behind this covariance structure is that 
points "near" each other in the design space should be 
more correlated than points "far" from each other with 
the measure of "nearness" being individually scaled in 
each dimension of the design space. We note that this 
model is a universal kriging model with the covariance 
structure specified via R rather than the traditional var- 
iogram. (See Cressie [11] for a review of kriging.) The 
correlation function, R, is more general than variograms 
typically found in the kriging literature (where d is only 
2 or 3) as R does not assume isotropy. 

Now operationally, suppose we have n observations 
of the system, (Yi,xi), • • • ,{Yn,xn)- Let the vector of 
responses, (Yi, ■ • •, Y„)T be denoted by Y. The model 
we've described for this data can be written in matrix 
notation as 

Y = P/3 + Z + c, 

where P is the expanded design matrix with pT(x») in 
the ith row, Z = (Z(xi), ■ • ■, Z(xn))T is the vector of 
stochastic process values at the n experimental settings, 
and e — (ei, ■ • •, e„)T is the vector of random errors. 
We assume Z ~ N(0,cr|R), where the n x n matrix 
R has R(x{,Xj) as the (i,j) element, e ~ N(0,o-2I), 
and Z and e are independent. These assumptions imply 
Y ~ N(P/3, cr2C), where <r2 = a\ + a2, and the n x n 
correlation matrix C is given by (<r|R + cr2I)/cr2. 

When R and <T
2
/<T

2
 are assumed known, the best 

linear unbiased predictor (BLUP) of Y(x) is 

Y(x) = pT(x)ß + c(x)TC"1(Y - Fß). 

2 

Here c(x) is a vector with element i given by -$R(x, x,), 
the correlations between the Y's at x and the n experi- 
mental runs. The vector of coefficients, ß, is the general- 
ized least squares estimator, ß = (PTC-1P)_1PTC-1 Y. 

We use the estimator Y to make predictions regard- 
ing the response surface for optimization purposes. First, 
though, we must handle the difficulty that the param- 
eters of the covariance structure, 8 = (Q\, • ■ ■, 0<j), p = 

(Pir • • >Pd)> °"|i an(l o'2) are not known. Available soft- 
ware (ALEX [9] - implemented by Welch) performs max- 
imum likelihood estimation of these quantities. Esti- 
mates of 6, p, <r|, and a2, thus obtained, are used in 
Y for optimization of the predictor. 

As one last issue about this model we evaluate the 
fit of the model to the data by an empirical measure of 
MSE averaged over the design points, 

The "hat" matrix, H, is defined by 

H   =   (I-(<72/(72)RC-1)P(PTC-1P)-1PTC-1 

+(<r2/<r2)RC-1. 

We use the trace of the "hat" matrix as a surrogate 
for the degrees of freedom in the model as suggested by 
Wahba [12] for splines. 

3.3    Thin-plate splines 

The mth-order thin-plate splines approximating function 
/ is the minimizer of the following quantity 

£tf) = £ X> - / (x'))2 + PJ™M) 
n i=i 

where p > 0, / has square integrable partial derivatives 
up to degree m, 

JmXf) = 

^oi+. .+ai=m 
m 

oci.. .a<i )j{esrfs!?ftoY dx 

and Jm}d(f) < oo (Wahba [12] and Nychka, Ellner Mc- 
Caffrey and Gallant [13]). J7m,d(/) is a general (rotation) 
invariant measure of the roughness in the function / and 
by varying the value of p we can control the smoothness 
of the regression surface. The value of p is usually chosen 
by cross-validation. 

The solution to the thin-plate spline minimization 
m + d- problem will be a linear combination 

-( 
M m        J 

monomials up to degree m - 1 and n radial basis func- 
tions. The coefficients in this linear combination are lin- 
ear functions of Y. Therefore, there exists an implicit 
smoother matrix S(p) such that Y = S(p)Y where S(p) 
depends on p, m, d and the x,'s but not on Y. The 
effective degrees of freedom for the regression model can 
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be approximated by ti(S(p)) and the mean square error 
estimated as in a similar manner as described for the 
Gaussian stochastic process model (Nychka [14]). The 
thin-plate spline model was fit using a FORTRAN func- 
tion callable from S-PLUS (tpsreg [15] - implemented by 
Nychka). 

For the purposes of interpretation, the thin-plate spline 
model can be thought of as a limiting case of the Gaus- 
sian stochastic process model. In particular, if we take 
Qi = 6 and pi = 2 in the Gaussian stochastic process 
model, the thin-plate spline model arises as we take the 
limit as 9 —► 0. The order of the thin-plate spline is by 
default m = (d + 2)/2 so that the polynomial part of the 
model pT is of degree m. 

3.4    Neural Networks 
Single hidden layer neural networks can be viewed as 
nonlinear regression models; namely, 

where each function / is a nonparametric smoothing 
function. It is also possible to specify a family for the 
error distribution, and we used the standard gaussian 
family in this example. A variety of smoothing functions 
can be used, and we used smoothing splines with 4 de- 
grees of freedom where the degrees of freedom is equal to 
tr(S) — 1 where S is the implicit smoother matrix. Note 
that it is also possible to include products of the smooth- 
ing functions in the model to fit a more complex surface. 
We considered models involving up to linear-by-linear 
interactions and quadratic functions of the smoothers to 
fit this example. The generalized additive models were 
fit using the function gam [19] in S-PLUS [7]. 

3.6    Multiple Adaptive Regression Splines 
Multiple adaptive regression splines (MARS) models were 
proposed by Friedman [20]. The regression surface is ap- 
proximated by a function of the following form: 

j=i k=i 

where the function / simulates the on/off firing of a 
single neuron. It is important that it is sigmoidal and 
bounded. We take / to be the the usual squashing func- 
tion (logistic distribution function) f(u) = eu/(l + eu) 
and j = 1,..., m are units (nodes) in a single hidden 
layer, jjk are the input weights for each node, ßj are the 
weights of the hidden units, and ßo and jjo are bias ad- 
justments (constants). The neural network model was 
fit using a FORTRAN program callable from S-PLUS 
(nnreg [15] - implemented by Nychka). 

The neural net seems to be a good model for many 
problems including nonlinear regression (Cheng and Tit- 
terington [16], Geman, Bienenstock, and Doursat [17] 
and Nychka, Ellner, McCaffrey, and Gallant [13]). How- 
ever, the (1 + m(d + 2)) parameters are estimated by 
nonlinear least squares and it is often difficult to find a 
global minimizer. Dimension reduction occurs because of 
the ability to look at linear combinations of many vari- 
ables. There is similarity to the method of projection 
pursuit in which / is replaced by arbitrary functions. 

3.5    Generalized Additive Models 
An generalized additive model (GAM) [18] approximates 
the regression surface by a function of the following form: 

d 

Y = a + £/i(a:i) + e 

Y = #> + £/% II M*«ü,O) +e 

where the hji are piecewise linear basis functions. The 
value of v(j, I) is an index of the predictor used in the 
/th term of the jth product. The basis functions hji are 
defined in pairs: 

hji(x) 
hj,i+i(x) 

[x - tjl] + 
[tjt - x]+ 

for 1 an odd integer, where the knot value is one of the 
unique values of £«(j,i)- The model is constructed in a 
forward stepwise manner followed by pruning of the least 
important terms. The degree of the MARS fit specifies 
the maximum number of terms allowed in any product 
and so controls the level of interactions among predictor 
variables. MARS takes advantage of any low order struc- 
ture in the response surface and generally adds terms to 
the model parsimoniusly. The MARS models were fit 
using the mars function in the fda library implemented 
in S-PLUS [7] by Hastie, Tibshirani and Buja [21]. 

4    Model Fitting Results 

Each of the nonparametric regression models described 
in the previous section was fit to the experimental data. 
In cases where there were choices regarding the degree 
of the model, a number of alternatives were considered; 
in particular, polynomial models of degree 1-4 were fit, 
neural nets were fit with 2-5 hidden units, generalized ad- 
ditive models (GAM) with were fit with linear smooths, 
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cross-products of linear smooths and powers of linear 
smooths, and multiple adaptive regression spline (MARS) 
models of degree 1-5 were fit. 

The best model fitting results for each method are 
given in Table 1. The polynomial, Gaussian stochastic 
process, thin-plate splines and single hidden layer neural 
network models each give a satisfactory fit to the data. 
However, the GAM and MARS models do not appear to 
be flexible enough to adequately represent the data. 

Table 1: Model Fitting Results 

process surface suggests that there is a local optima in 
addition to the global optima. The local optima is close 
to the location of the previous best runs (control set- 
tings) and so seems plausible. The neural net surface 
(Figure 3) apparently is not sufficiently flexible to rep- 
resent the optimum and instead suggests a rising ridge. 
(This is why the predicted optimum moved away from 
the best run.) Finally, the polynomial model (Figure 4) 
introduces large variations in the surface away from the 
data points in order to obtain a good fit. The overall 
surface, consequently, is not reasonable due to the over- 
fitting. 

Model Desc.    DFr    DFe    RMSE      R2 

Polyn. Degree=4 55 34 0.83 94% 
GaSP 44 45 0.83 93% 
TPS Order=3 53 36 0.83 94% 
NNet Units=5 31 58 0.77 91% 
GAM lin. + tfi 28 61 1.41 84% 
MARS Degree=3 12 77 1.66 48% 
Pure Error 33 0.84 

In order to further compare the four best models on 
how well they capture the multidimensional structure of 
the example, we ran an optimization routine (to maxi- 
mize the predicted response) starting at the conditions 
of the best design point. The results are shown in Ta- 
ble 2. Note that Gaussian stochastic process model and 
thin-plate splines give results which are quite similar to 
the settings of the best run. However, the neural net 
and polynomial models find optimal settings that are far 
from the starting point and have implausible predicted 
response values. 

Table 2: Optimization Results for Best Models 

Model        KCL    MgCl2    KPQ4    dNTP    yopt 

best run 35 6 20 1000 13.7 
GaSP 36 6.2 21 975 13.4 
TPS 34 6.1 20 975 13.4 
NNet(5) 17 7 21 1500 22.6 
Polyn(4) 50 6.8 45 650 454 

Further insight into the usefulness of the models can 
be gained by examining response surface and contour 
plots for each of the four best models. These can be 
seen in Figure 1-4. The Gaussian stochastic process sur- 
face (Figure 1) and the thin-plate spline surface (Figure 
2) are quite similar.   However the Gaussian stochastic 

5    Conclusions 

The analysis of space-filling designs is challenging be- 
cause of the flexibility required in the approximating 
function. It is important to fit the observed data well 
while avoiding overfitting and at the same time provid- 
ing a reasonable representation of the multidimensional 
structure of the surface. In this paper we used a num- 
ber of very flexible models which we loosely classified as 
nonparametric regression models to fit the data from a 
buffer optimization example. 

Due to the wide range of surfaces which might be 
encountered, it is unlikely that there is one best method 
for the analysis of space-filling designs. In this example, 
the methods of Gaussian stochastic processes, thin-plate 
splines, single hidden layer neural networks and polyno- 
mial models all provided good fits to the data. Gener- 
alized additive models and multiple adaptive regression 
splines did not fit the data well. A more detailed exam- 
ination of the multidimensional structure of the fitted 
surfaces showed that only the Gaussian stochastic pro- 
cess and thin-plate spline models provided reasonable 
surfaces. 

In conclusion, we feel that the use of space-filling 
designs provides a promising approach for a wide class 
of problems in the pharmaceutical and biotechnology 
industries in which it is necessary to model complex 
nonlinear surfaces. As we gain more experience with 
these designs and their analysis, we hope to be able 
to more clearly identify their strengths and weaknesses, 
offer guidelines for their effective use, and recommend 
methods for nonparametric regression methods for mod- 
eling the surface structure. 
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Figure 1. Response Surface for GaSP Model 
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Figure 2. Response Surface for Thin-Plate Spline Model 
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Figure 3. Response Surface for Neural Net Model 

o 
CM 

> 

Q. 
I- 
Z -a 

o o 
CM 

o o 
CO 

o o 

MgCI2 



120    Analysis of Space-Filling Designs 

Figure 4. Response Surface for Polynomial Model 
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Abstract 

In this work, we develop a method to estimate the 
observed information matrix when using Monte Carlo 
E M, for a class of mixed models for partially ob- 
served/grouped data. We propose a Monte Carlo sequel 
to Louis' method [3]. Our method includes a Gibbs step 
to generate variates from the appropriate densities. We 
illustrate the computations involved through two exam- 
ples. 

1    Introduction 

A computational drawback of the E M algorithm is that 
often the E step involves hefty, sometimes insurmount- 
able calculations (e.g., high dimensional integration). 
For some problems, it may be feasible to perform these 
calculations using direct numerical integration [4], al- 
though for more complicated models, this might not be a 
computationally tractable option. Tanner [6] outlined a 
Monte Carlo E M algorithm, where the idea is to replace 
the integrals involved in the E step with a Monte Carlo 
estimate. We develop a Monte Carlo sequel to Louis' 
[3] method to estimate the observed information matrix 
within the M C E M framework. Although this approach 
works quite generally, we have worked out the details for 
a class of mixed models for partially observed/grouped 
data. By partially observed data, we refer to censored 
or truncated data; by grouped data we refer to ordered 
categorical data. Our method includes a Gibbs step to 
generate variates from the appropriate densities. The 
computations involved are illustrated through two ex- 
amples. 

In Section 2, we outline Louis' method and describe a 
Monte Carlo implementation of his method. In Section 
3, we formulate the class of mixed models of interest 
and describe the computations involved. In Section 4, 
we apply the methods developed in Section 3 to probit 
normal regression and censored regression. 

2    Louis' Method 

In the usual E M terminology, we define Y to be the 
latent/complete data with probability density or mass 
function denoted by [Y 10], where 6 is the unknown pa- 
rameter vector and [.] denote densities. However, we do 
not observe Y; instead we observe a measurable func- 
tion of Y, namely, W ~ [W\0]. The goal of E M is to 
find the maximum likelihood estimate of 0 based on the 
observed data W. The E M method is only attractive 
in situations where finding the complete data maximum 
likelihood estimator and the observed information ma- 
trix is straightforward, but the problem based on the 
observed data requires an iterative solution. 

Define the set K = {y : w(y) = w}, i.e., 11 is the set 
of complete data Y that could have led to the observed 
data W. Louis [3] proved that the observed information 
matrix Iw (0) satisfies the following identity: 

IW{0)   =   E{-j^\n[Y\0]\Y en)- 

Var(^ln[Y|0]|Y € 11) (1) 

The first term in Iw (0) is simply the conditional ex- 
pected information matrix of the complete data Y and 
is typically easy to compute. Louis proved that the sec- 
ond term is the expected information of the conditional 
distribution of Y given that Y lies in the set U. In some 
applications, it may be computationally intractable to 
calculate the expectations in (1). Tanner [6] suggested 
a Monte Carlo approach to Louis' method by replacing 
the expectations with a Monte Carlo estimate, in the 
following way: 

Aid [Y\Y 6 11, 0],toT 1) Generate yu y2, —,yn 

m suitably large. 
2) Replace    the    first    term    in    Iw   (0)    by 

-±ET=i&la|»lfl«te- 
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We now formulate the model of interest and illustrate 
the computations involved. 

3    The Model 

We consider the standard analysis of variance model for 
variance components estimation: 

Y   =   Xß + Y^ZkUk + e 
k=i 

e 

Nqk(0,o-ll) 

Nn (0, crl I) 
(3) 

(4) 

where Y G 5Rn x 1 is the data vector which is par- 
tially observed or completely unobserved. X G 5Rra xp 

is the design matrix associated with the unknown fixed 
effects vector ß G W x 1 and Zk G ft" * 9k is the inci- 
dence matrix corresponding to the random effects vector 
uk, (k = 1, ... , r). We use the random effects structure 
as a convenient way to model the correlation among Y. 
The parameters of interest are 6 = {ß,a\,o\, ..., of, o^). 

We say a component of Y, Yi is unobserved, if the 
only data information available is that it lies in some 
interval (a,-, 6,) where — oo < a,- < 6,- < oo, and at 
least one of a,-, 6,- is finite. Such applications arise when 
"experimental conditions or measuring devices permit 
sample points to be trapped only within specified limits" 
[1] as in censored or truncated data. 

To put this model in the E M framework, we define the 
vector Y to be the complete data, since given Y, finding 
the maximum likelihood estimates and their standard 
errors is a normal linear regression problem, which is 
easy. We define the set 1Z — {Yi : Yj = y,-, i G U; Yi : 
a,- < Yi < bi, i G C} where C is the set of indices 
corresponding to the unobserved components of Y and 
U that for the observed components of Y. 

The complete-data log likelihood is given by: 

ln[Y|0]    (x    -\ln\V\ 

-~(Y - X /?)'V-1 (Y - X ß) 

where V = £Lo <r\ ZkZ'k> «% = <r2e and Z0 = In. 

The first term in (1) is a matrix whose components 
require the calculation of expectations of the following 
form: 

.E((Y -Xß)) 

• E((Y - X /?)' V-1 Zk Z'k V-1 Zi Z\ V-1 (Y - X /?)), 
k,l = 0, ...,r 

where all expectations are conditional on Y G %. 
The second term involves expectations of the following 
form: 

(2)       • E((Y - X ß) (Y - X ß)') 

• E((Y - X ß)> V-1 Zk Z'k V-1 (Y - X /?)), 
fc = 0, ...,r 

• E((Y - X ß) (Y - X ß)' V-1 Zk Z'k V-1 (Y - X /?)), 
k = 0, ...,r 

• E((Y  - X /?)' V-1 Zk Z'k V-1 (Y  - X ß) (Y  - 
x ßyv-1 z, z\ v-1 (Y - X /?)),   k, l, = 0, ..., r 

where all expectations are conditional on Y £ U. So, 
in order to obtain a Monte Carlo estimate of Iw (0), we 
need to generate yi, j/2, •••, ym ~ [Y|Y G 11, 0] and then 
replace the expectations above by sums. It is interesting 
to note that we do not need to compute the first two 
expectations above separately, since E((Y — Xß)' A(Y — 
Xß)) = trace^-EftY - Xß) (Y - X/?)')), for any 
matrix A. 

The density [Y | Y G Tt, 0] is not trivial to generate 
from, since it is the density of a multivariate normal 
constrained to lie within a certain set TZ. We propose 
the use of the Gibbs sampler to generate variates from 
this distribution. 

3.1    The Gibbs Sampler 

We now outline the use of the Gibbs sampler. In order 
to generate a sample of Y's from the conditional dis- 
tribution of [Y | Y G 71, 0], we only need to generate 
the unobserved components from their full conditional 
distributions: 

[Yi,i eC\Yj,JiL i] 

which is a univariate truncated normal distribution, us- 
ing standard results on normal theory.  More formally, 
we have: 
Step 0) Obtain starting values for Yi, i E C. 

Step 1) For each f G C, calculate 

o*m    =   V&T(Yi\Yj = yj,j £ i) 
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and the covariance /?,• | (,) = cov (Yj, Y(,)), where Y(,) = 
(YUY2, ...,Yi-i,Yi+i, ...,Yn)'. 

Step 2) For each i e C, calculate 

/,<,(,.)    =    E(Yi\Yhj #i) 

=    *.-/? + Ä|(o(y(0--y(0/?) 

where Xu\ = X with row i deleted and a;,- is the ith row 

ofX. 

Step 3) Simulate Yi, z* € C from a truncated normal dis- 
tribution with mean /*< | (i) and standard deviation <r,-1 (,), 
truncated between (<z:-, 6j). 

Repeat Steps 2 and 3 a large number of times, NREP 
to get VW, ... ,y(JVBBJ>). Discard a suitable number 
NBURN of the Yü) from the beginning of the sequence 
and then retain every NSKIPth one. Ofcourse, we only 
need to run the Gibbs sequence one time to generate a 
sample from [Y \ Y € H, 9]. The advantages of this 
Gibbs sampling approach are two-fold. Firstly, we only 
ever need to generate variates from univariate truncated 
normal distributions, and fast acceptance-rejection algo- 
rithms exist to generate from truncated distributions [5]. 
Secondly, most of the computational effort is expended 
in repeating Steps 2 and 3 a large number of times. Thus, 
complicated random effects structures have little impact 
on the computational time, because they only affect Step 
1. We verify our results on two data sets to illustrate the 
feasibility of the computations. 

4    Examples 

4.1    Probit Normal Regression 

We consider a latent variable genesis of the probit nor- 
mal model for binary data by postulating the existence 
of an underlying/latent variable Y. We assume that Y 
satisfies the linear mixed model in (2-4), with the er- 
ror variance a\ = 1, without loss of generality [2]. We 
observe a binary variable W{ = I(Yi > 0); i.e., an indi- 
cator of whether Y crosses a threshold of 0. An example 
of a situation where such a threshold model might be 
appropriate is with regard to the financial health of a 
firm. The observed variable is an indicator of whether 
the firm is bankrupt (1/0), while the underlying variable 
represents the true health of the firm. It is unimportant 
whether we actually believe in the underlying variable, 
or merely use it as a device to estimate the parameters 
in the model. The advantage of this threshold model is 

that it automatically lends itself to a data augmentation 
approach such as the E M algorithm. 

It is easy to see that TZ is simply the intersection of 
n half-lines; if W; = 1, then we consider the half-line 
[0, oo) while if Wt = 0, we consider (-co, 0]. Thus, 
in Step 3) of the Gibbs sampler, we generate Y,- from 
a normal distribution, truncated above 0 if W, = 1 
and truncated below 0 if Wi = 0. We numerically 
verified our results on the Weil data set [7]. This data set 
has a treatment and control group and a single nested 
random effect. The response is survival status of rats 
and the random effect is litter. The observed data is 
binary indicating survival/death, and we assume it arises 
from a true underlying variable in the following way: 
WiJk = I(Yijk > 0) where 

Yijk 
= ßi +  Uij   + Ujk 

Uij rv N(0, of I) 
Ujk <"V^ N(0, 1) 

where i indexes treatment/control 
ib indexes the rat within the litter 

j indexes litter and 
So, ßi is the group 

mean on the latent scale and the Uij are the random 
litter effects. The following table shows the estimates of 
the standard errors of the maximum likelihood estimates 
obtained by numerical integration (Gaussian quadrature 
with 20 points) and our approach. 

Group SE (M L E) 
Numerical          M C Louis 

Treatment ßi 0.309 0.304 (0.002) 
0.291                  0.297 (0.008) 

Control 
0-2 

0.169 0.167 (0.007) 
0.301                  0.302 (0.028) 

The Monte Carlo estimate is the average of 35 inde- 
pendent runs and each run is based on a Gibbs sample of 
size 1500. The numbers in parenthesis are the standard 
errors of the Monte Carlo estimate. We can see that 
our estimates agree substantially with those obtained by 
numerical integration. 

4.2    Censored Regression 

We consider the case where some of the Y are right cen- 
sored. This can occur when the response is a waiting 
time and a typical member of the population of physical 
or biological units is observed till an event of interest 
(or censoring) occurs. Such data arise in medical appli- 
cations (time till the first tumor), reliability (repairable 
systems and software reliability) or labor economics (pe- 
riod of successive layoffs). 
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The observed data is tue pair (mm(Yi, a,), / (Yi < 
a»), i — 1, ..., n). The response vector Y is assumed to 
satisfy the mixed model in (2-4). To put this model in 
the E M framework, we define Y to be the complete data. 
It is easy to see that % = {Yi = j/,-, i € U,Yi > at,i € C} 
where U is the set of indices of uncensored observations 
and C that for censored observations. Again, in Step 3) 
of the Gibbs sampler, we simply generate the censored 
Yi from a normal distribution, truncated above a,-. We 
applied our method to a matched pairs skin graft data set 
analyzed by Petitt [4]. This data concerns the survival 
of closely and poorly matched skin grafts on the same 
person. The model postulated for the logarithm of of 
the ith survival time on the jth subject, denoted by Yij 
is: 

Yij    =   fi + ßj + jg(j + €ij 

ßi N(0, 

N(0, 
4) 
*2) 

where ßj is a single nested individual effect, fi is the 
overall mean, 7 is a fixed regression parameter and <7,j is 
an indicator variable (-1 for a poor match and +1 for a 
good match). There were 2 censored observations in this 
data set. We compared our results on the standard er- 
rors of the fixed effects parameters, with those obtained 
by Petitt and they are displayed below. 

Parameter S E (M L E) 
Petitt                   M C Louis 

/< 0.15                     0.149 (5.027e-05) 
7 0.082                   0.086 (6.297e-05) 
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pendent runs and each run is based on a Gibbs sample 
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5    Conclusion 

In this paper, we develop a method to estimate the stan- 
dard errors of the maximum likelihood estimates for a 
class of mixed models for incomplete data. Our approach 
is a valuable contribution to the existing literature on 
likelihood inference, since we are now able to make in- 
ferential statements in situations where it may not even 
be possible to compute the likelihood function with any 
reasonable degree of precision. In addition to the exam- 
ples discussed here, we have implemented our method for 
the Ordinal Probit model, Tobit regression and obtained 
satisfactory results. 
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ABSTRACT 

The state-space representation of a regression model 
for longitudinal data simplifies the handling of missing 
data and measurement error. In this model, a continuous 
response depends on the lagged response and both time- 
dependent and time-independent covariates. The baseline 
response depends only on covariates. Both the EM 
algorithm and Gibbs sampling are used to fit the model. In 
EM, the E-Step uses the Kaiman filter and associated 
filtering algorithms to update the unknown true response 
and predictor series for the observed data. The M-Step uses 
standard closed-form expressions for Gaussian data. Gibbs 
sampling offers a straightforward way to compute Bayesian 
answers and some extensions to the model. 

1. INTRODUCTION 

Longitudinal data, common in many scientific fields, 
consist of a collection of short times series taken on 
different units or individuals. Often, this collection of times 
series may be related to other collections of short series by 
regression. The regression model defines the conditional 
multivariate mean and covariance structure of the 
collection of response series given the predictor series and 
possibly fixed covariates. Since observations taken on the 
same individual at different times are usually correlated, 
the covariance structure can be quite complex. 

First-order autoregressive, AR(1), models are attractive 
for longitudinal models with short series since they require 
only one correlation parameter and possess geometric rates 
of decay. We shall consider a form in which the response 
itself takes an autoregressive form as a function of the 
lagged response and both time-varying and time-invariant 
covariates. This form allows a time-varying covariate to 
affect all responses during and after the time at which the 
covariate is measured. 

This model quite naturally generalizes the 
autoregressive time series model to include terms for trend 
which describe a regression on covariates. It has been 
called by a variety of different names in the literature 
including the state dependence model (Anderson and 
Hsaio, 1982), the conditional autoregressive model (Rosner 
and Munoz, 1992) and the transition (Markov) model 
(Zeger and Liang, 1992). Interpretation of the model 

parameters requires some care since the lagged response 
appears on the right side of the regression equation 
(Schmid, 1994). 

Schmid, Segal, and Rosner (1994) showed how to 
calculate maximum likelihood estimates for this model 
using a Newton-Raphson algorithm when the response and 
the possibly time-varying covariates were subject to 
quantifiable random Gaussian measurement error. This 
implementation had several limitations, however. It 
involved complex analytic derivative calculations, could not 
handle missing values, did not provide any intuition into 
the sequential nature of the longitudinal data, and finally 
could not be easily extended to more general models. 

A state-space representation of the longitudinal model 
treating the unobserved true series as missing data helps to 
rectify these problems. Considering the longitudinal 
regression model as a time series model with a trend 
component, this state-space representation can be thought 
of as a generalization of the one proposed by Shumway and 
Stoffer (1982) for time series. The state equation describes 
the regression model of the true series and the observation 
equation describes the measurement error in observing 
these series. Any truly missing observations in any of the 
observed series can be adjusted for in the observation 
equation. This representation leads to straightforward 
sequential computation by both the EM algorithm and 
Gibbs sampling allowing for Gaussian missing data and 
measurement error models. These iterative numerical 
algorithms can be easily extended to other models. Section 
2 sets forth the state-space model, Section 3 describes the 
EM algorithm and Section 4 lays out the Gibbs sampler and 
some potential extensions of the model. Section 5 presents 
an application to the measurement of pulmonary function. 

2. THE STATE-SPACE MODEL 

A general conditional first-order autoregressive model 
for the outcome, yit, of the ith individual at the tth time 
incorporating measurement error can be written 

yit = a+yyit_i + ßTx# + 8Tz,- + §Ts/f + eit (1) 

where i indexes the N individuals, t indexes the T distinct 
times of measurement, and the sit are random errors 
independent for all times and individuals with a common 
N(0,cr2) distribution. Here xrt is a vector of Nx time- 
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dependent and time-independent covariates measured 
without error; z, is a vector of Nz time-independent 
covariates measured with error; s,Y is a vector of Ns time- 
dependent covariates measured with error at time t. The 
model parameters are o2, a, y, ß, 5 and £. The first three 
are scalars and the last three are vectors of length Nx, Nz 

and N$, respectively. 
At the baseline visit, the outcome for the ith individual, 

yi0, is solely a function of the covariates at that visit given 
by 

m = a0 + ßox*0 + 5Szi + §o"» + e»0. (2) 

The baseline regression parameters are a^, cc0, ß, 5 and 
£ with the last three vectors of length Nx, Nz and Ns, 

respectively. The si0 are random errors independent of 
each other and of the su for t > 0 and follow a N(0,cr^) 
distribution. 

Because of the measurement error and missing data, 
the covariates z, and sit are also stochastic quantities that 
we model as 

»ff = as+T j»tf-l +ßJxÄ +5]zi +esit 

S/0 = as0 + ßJo*iO +8jo^ +Bm 

(3) 

(4) 

(5) 

with independent errors esit ~ JV(0,E,), esi0 ~ N(0,'LSQ ) 
and s- ~ iV(0,Z2). In (3) - (5), the regression parameters 
(with dimensions) are as (Nsxl),ys (NsxNs), ßs (Nsx 
j\y, 5S (Ns x Nz), aSo (Ns x 1), ß5() (Ns x Nx), SSQ (NS X 
Nz), az (Nz x 1), ßr (N2 x NJ, Zs (Ns x Ns), XSQ (NS X 
Ns) and Ez (Nz x Nz). Together, equations (1) - (5) may be 
combined into the state equations 

Pu = Fp«-i + Gd,, + Qe,., t = 1,2 T      (6) 

and       Pio=G0d,.o+Qoei0 t = 0 (7) 

with plt = (yatuzt), d„ =(lx„), eit =(8ff8w)~AT(0,Z) 
and e/0=(e;oe,/0s,.)~iV(0,Eo)- F (1+Ns+Nz) x 

(l+Ng+lSy, G (1+Ng+Nz) x (1+NX), Q (l+Ng+N^ x 
(1+Ng), G0 (l+Ns+N^) x (1+NX) and Q0 (l+Ng+N^ x 
(l+Ng+N^ are transition matrices derived from equations 
(1) - (5). It is worth emphasizing that equations (1) - (5) 
describe an autoregressive process based on true rather than 
observed data. 

To complete the state-space model, we relate the 
observed series p* to the unobserved series prt by the 
observation equations 

p.t = Apa + 4>dit +Clit t = 1, 2,..., T     (8) 

and       p*0=A0p/o+<M»0+^;o    t = 0 (9) 

where p,* =(y*ts*t), p*0 =O>*0s*0z*). Q,, ~W(0,EQ) and 
Q/0 ~^(0,Xfio). A (1+Ng) x (l+Ng+N^, O (1+Ng) x 
(1+NX), A0 (l+Ng+N^ x (l+Ng+N^ and <D0 

(l+Ng+N^ x (1+NX) are the transition matrices relating 
the observed and true series. 

The observation equations (8) and (9) describe a 
systematic measurement error model with the observed 
values related to the true values by a linear regression. The 
regression errors Q# may be correlated across covariates 
for the same individual, but are independent across 
individuals. The random measurement error model is a 
special case with all elements of the transition matrices 
zero except the diagonal elements of A and AQ. 

We shall assume that the transition matrices and 
covariance matrices EQ and SQQ in the observation 
equations are known. Otherwise, they may be estimated if 
multiple observed data series are available. When multiple 
measurements are unavailable, we can investigate the effect 
of different measurement error models through sensitivity 
analyses or by incorporating information from some 
external data source, possibly by averaging over a given 
measurement error distribution (Schmid and Rosner, 1993). 

3. FITTING BY THE EM ALGORITHM 

The EM algorithm maximizes the expected complete- 
data likelihood where the expectation is taken with respect 
to the distribution of the missing data. In this problem, the 
complete data consist of the observed series p*t and xit and 
the unobserved true series p#. To simplify notation for 
writing the Gaussian complete-data log likelihood, express 
the right-hand sides of equations (1) - (5) as, respectively, 
Bynyr ByoBy^, 9^, 6^HJ0( and 0rHv In these 
expressions, the 8's represent the model parameters and the 
H's represent the model covariates. Twice the negative log 
likelihood is then written 

N(logag +Tloga2 +Iog|Z^|+Tlog|S5|+lng|X:z|) 

N 
+2,{(ym -e,0H,o, )T(Xo -0,oH,o, )/<*o 

1=1 

+(s,0 -e^H^ )T sjo1 (s,0 -e,0Hi0/) 

+fcr-e1Hli)
IE;I<z,-eJHJt) 
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+£(y,,-8,H,i)
T(;y,,-e,H,()/a

2 

t=\ 

+2<«*-eAl)
Ts;1(»«-eJHJt) 

t=i 

+(P*o ~ AoP,o - <M,o )T Ea (P*o - AoP« ~ «Mio) 

f=l 

(10) 

Assuming known parameters in the observation equation, 
the parts of the log likelihood above coming from the 
observation equation are absorbed into the constant, so that 
the expectation of the log likelihood with respect to the 
missing data distribution is proportional to the first six 
lines of (10). 

The sufficient statistics when the expectation of this 
complete-data log likelihood is taken with respect to the 
missing data distribution are then the conditional first and 
second moments of the state vector pit given the observed 
data. For example, £(PjO|r) represents the conditional 
expectation of the state vector at time 0 given all the 
observed data (i.e., through time T). Schmid (1994) 
provides the details of these expressions. 

The E-Step calculates the conditional means, variances 
and covariances of p# given the observed data involved in 
these sufficient statistics by applying the Kaiman filter 
(Brown and Schmid, 1994; Meinhold and Singpurwalla, 
1983), fixed interval smoothing algorithm (Ansley and 
Kohn, 1982) and state-space covariance algorithm (DeJong 
and MacKinnon, 1988) to each individual in the study. 
First, the Kaiman filter sequentially computes the 
conditional moments of each pit given the observed data 
through time t, e.g., E(pit^), as 

£(P*H) = EE(ptf_i*-l) + Gdit 

V(Vitl-l) = mPit-l\t-l)*T +<F(e*)QT 

K, = K(pff|M )AT [AF(pök_i)AT + SQ ]" 

£(P/#) = E(Pit\t-l)+Kr[p* - AE(prtM) - <Mit ] 

V(Vit\t) = V(Vit]t-l) - K, AF(P/,H) 

where V (eit) is a block diagonal matrix having elements 
{CT

2
,£S}. The generalized inverse is necessary in the 

computation of Kt because rows and columns of the matrix 
corresponding to z,- will be all zeroes for t > 0. To initialize 
the filter, set E(pi0) = G0d,0 and V (pi0) = Q0V (ei0)QT

0 

with F(e,o) a block diagonal matrix having elements 
{OTO,E,S ,SZ}. The final forward step gives the correct 
expectation and covariance for p,^, but the estimated 
moments for pit for t < T are incompletely updated, using 
only data up to time t. 

To complete the E-Step, work backward with the fixed 
interval smoothing and covariance algorithms from time T 
to time 0, updating the moments of pit for p*u and xiu 

when u > t by 

E(Vit-l\T) = £(Pif-|-l) +*t-llE(Vit\T) -E(Pit\t-l)] 
V(Pit-l\T) = v(Pit-l\t-l) 

+Jit-l[V(Pit\T)-V(m-MJl-l 

and 

Cov(p,Y-i,p/r|r) = Jif-iVCpap-) 

Each calculation in the backward step requires only output 
from the previous step of the backward filter and the tth 
step of the forward filter. 

Application of standard Gaussian techniques in the M- 
Step then gives maximum likelihood estimates. Again, 
details may be found in Schmid (1994). 

When values in the observed series are missing, the 
corresponding values in the true series become unknown 
even if they are not measured with error. Hence, any series 
with missing values must be part of pir. If the series has no 
observational error, then the appropriate elements of EQ 
are set to zero. In the filter algorithms, both the missing 
values in p,* and the corresponding rows of A and AQ are 
set to zero. This gives the proper estimates assuming that 
the data are missing at random (Shumway and Stoffer, 
1982). Because the state vector consists of conditionally 
Gaussian random variables, missing data on discrete or 
other non-Gaussian variables cannot be handled by these 
algorithms. Further details of this EM algorithm may be 
found in Schmid (1994). 

4. FITTING BY GIBBS SAMPLING 

Gibbs sampling has become a popular tool for 
numerically computing the posterior distribution in 
Bayesian models. It works by sequentially drawing from the 
conditional distribution of each random variable given the 
latest drawn values from all the other random variables in 
the model. In a problem with complete data Y and 
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parameters 8, the algorithm involves iteratively drawing 
from the distribution of Y|0 and then from 0|Y until 
convergence is achieved. The final drawn values will be 
from the correct conditional distributions under some 
general conditions (Geman and Geman, 1984). The correct 
implementation of the Gibbs algorithm requires knowing: 
1) the conditional distributions Y|9 and 9|Y; 2) how to 
draw from these distributions; and 3) how to assess 
convergence. We shall not address the third point here but 
refer the reader to the literature (e.g., Gelman and Rubin, 
1992; Roberts, 1992). 

In this longitudinal regression model, 
Y = {Pft.P*/.Xö> for alii, tand9 = {6,, 9,0, 9„ 9i0, 9„ 
a2, CTQ, Ei; Z^, Ez}. Using a suitable prior distribution 
for 9,  Gibbs  sampling then  involves  calculating the 
distributions of (1) Pß|pff-i.Pa+l.Pö.

x«»xa+l.e» <2) 
p.t IP,-,,xft ,9 and (3) 9|p,p*,x where p, p* and x represent 
the collection of all p„, p*t and \it, respectively. Working 
directly with the distributions of p,, and p,* is more 
efficient than working with the distributions of the 
individual components of p„ that follow from equations 
(l)-(5). By collecting all terms involving p„ in the 
likelihood,     we     can     show     the     distribution     of 
Vit IP«-1 ,P«+1 >P;* .*« .*ff+l .e t0 be N(Bb> B) where 

B = [Z^ +F
T
X-

1
F+A

T
0(V02Q0^)-

,
AO] 

b = E^God/o +FTE-1(pn -Gd(1) 

Tx-1, 
+A

1
0(V0SQ0M'O)   (P/0-°od,o) 

ift = 0; 

B = [ZQ1 + F' E"'F + A1 (VEn y ' r1 A]- r=rT-1-i-irTy""1i7 4. AT/■»■■*•—T^ *'"1 

b = Z"1 (Fp,M - Gd„)+F^"1 (p,f+1 - Gkfcn) 

+AT(vXnv1r](P*t-<Mit) 
ift=l,2 T-l; 

and 

B ■L»T T\-l A 1-1 = [S-1+Al(VSnV
irA] 

-1/ b = ZgCFptfM -Gd/T)+A' (VKSQXK
1
 )-(p/T -<M;T) 

ift = T. 

Likewise, the distribution of p,*o|p,o>x,o>0 f°r missing 
values follows a normal distribution with mean 
AQP,O+*od,o   ^d  variance   EQ ,   while   that   for 

P« IP« > xit' &   is   normal   with   mean   Ap# + <Mit   and 
variance EQ. 

Under the standard noninformative (constant) prior, 

Qy\p,p'^a2 ~ N[(By
TKyy\Ry

Ty),cr1{Ry
Tnyr) 

8,0|p,p*,x,o3 ~ ^[(Hy0
TH,0)-'(Hy0

Tyo),^(H/H^)-'] 

ejp,p*,x,E, ~ ^[(H/S;
1
HJ)-

,
(H/S;

,
.),(H/L;

,
H,)^] 

e,0|p,p',1,2,0 ~ JV[(Hj0
TSäHj0r (HÄ'ioMHÄ'H*)-] 

e^p.p'.x.E.-iVKH/ZJ^rCH/E^.CH/Z^H,)-] 

where y, y0, s, s0, z, H,, H>o, H„ Hv and Hz, are 

formed by stacking their respective elements. 
The posterior distributions of a2 |p,p*,x and 

Og\p,p*,x are inverse chi-square distributions under the 
standard noninformative prior for variances and those of 
E,|p,p\x, E,0|p,p*,x and EJp,p*,x, are inverse 
Wishart distributions (Box and Tiao, 1973). The Gibbs 
sampler then consists of repeated sequential draws from 
these conditional Gaussian and Wishart distributions. 

The flexibility of Gibbs sampling can facilitate 
computation in extensions of this model. One extension 
incorporates between-individual variability not captured by 
the regression covariates by letting the regression intercepts 
be random effects varying across individuals. Another uses 
higher-order autoregressive and moving average terms in 
an ARMA structure with trend given by covariates. Non- 
Gaussian errors and non-linear terms are other possible 
extensions (Carlin, Poison and Stoffer, 1992) 

5. EXAMPLE 

Using EM, the model was successfully applied to fit 
six years of pulmonary function measurements on 158 
children in the Childhood Respiratory Disease Study 
(Redline, Tager, Segal, Gold, Speizer, and Weiss 1989) 
despite a substantial number of missing observations. The 
response forced vital capacity (FVC), the greatest volume of 
air a subject can forcefully expel in 6 seconds from total 
lung expansion, was expressed as a function of a child's 
age, sex, height and airways response to a cold air 
challenge. A total of 38 percent of the airways response, 7 
percent of the height and 12 percent of the FVC 
measurements were missing. Details of the analysis may be 
found in Schmid (1994) which also describes an analysis 
adjusting for measurement error in FVC and airways 
response that was measured externally (Redline, Tager, 
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Speizer, Rosner, and Weiss 1989). 
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REML in Generalized Linear Models: a Conditional Approach 
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Abstract 

Residual maximum likelihood estimation (REML) is of- 
ten now the preferred method for estimating parameters 
in linear models with correlated or heteroscedastic er- 
rors. This note shows that the residual likelihood is a 
conditional likelihood where the conditioning is on an 
appropriate sufficient statistic to remove dependence on 
nuisance parameters. This interpretation allows a very 
concise derivation of the REML likelihood without the 
need for transformation and generalizes naturally and 
exactly to non-normal models in which there is a minimal 
sufficient statistic for the fitted values. The conditional 
interpretation of REML is applied to dispersion mod- 
elling in generalized linear models. It is also applied to 
estimate the index parameter in a power-variance family 
of generalized linear models. 

1    Introduction 

Consider the general linear model 

y = Xß + e 

where y is an 7i x 1 vector of responses, X is an n x p 
design matrix of full column rank and e ~ JV(0, Q) is 
a random vector. The variance matrix fi is a function 
of a g-dimensional parameter 7, and is assumed positive 
definite for 7 in a neighbourhood of the true value. For 
any given value of 7, maximum likelihood or generalized 
least squares lead to the estimator 

ß = (XTQ-1X)-1XTn-1y 

for ß. The problem considered in this paper is the esti- 
mation of 7. 

Patterson and Thompson (1971) introduced residual 
maximum likelihood estimation as a method of estimat- 
ing variance components in the case of unbalanced in- 
complete block designs. The actual derivation of the 
likelihood function was somewhat involved, and this 
prompted Harville (1974), Cooper k Thompson (1977) 
and Verbyla (1990) to give alternative derivations. In 
all of these the residual likelihood is represented as the 

marginal likelihood of the error constrasts. This makes 
generalization of the residual likelihood principle to non- 
linear models or non-normal distributions difficult since 
zero mean error contrasts do not generally exist. The 
purpose of this note is to show that the residual likeli- 
hood can be viewed also as a conditional likelihood where 
the conditioning is on an appropriate sufficient statistic 
to remove dependence on the nuisance parameters. This 
interpretation may be of use in teaching because it clar- 
ifies the motivation for residual maximum likelihood es- 
timation and because it allows a very concise derivation 
of the REML likelihood without the need for transfor- 
mation of the data. It generalizes naturally and exactly 
to non-normal models in which there exists a minimal 
sufficient statistic for the fitted values. 

The plan of this paper is as follows. Conditional like- 
lihoods are discussed briefly in Section 2. The condi- 
tional derivation of REML is given in Section 3, and its 
generalization to generalized linear models in Section 4. 
Section 5 discusses dispersion estimation in generalized 
linear models, including the case where the dispersion is 
modelled using a link-linear model as in Smyth (1989). 
Section 6 discusses the estimation of parameters in the 
variance function, in a case where the exact likelihood 
can be specified. Emphasis in Sections 5 and 6 is given 
to the one-way experimental layout, since in this case 
the conditional likelihood can be written down in closed 
form. In other cases numerical evaluation or asymptotic 
approximation is necessary, and methods to do this are 
discussed also. 

2     Conditional Likelihood 

Consider an arbitrary likelihood function L(y;ß,f) 
where ß is a vector of nuisance parameters. If there 
exists a statistic t(y;7), possibly depending on 7, that 
is sufficient for ß then the nuisance parameters can be 
eliminated from the likelihood by conditioning on t. If 
the maximum likelihood estimation of ß is a one-to-one 
function oft, then it can be argued that there is no avail- 
able information in t about 7 in the absence of knowl- 
edge of/3, i.e., the information in t is entirely consumed 
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in estimating ß. Therefore there should be no informa- 
tion loss in the conditional approach. The parameter of 
interest, 7, can be estimated by maximizing the condi- 
tional log-likelihood 4,|t(y; 7) = ty{y\ßn) -*t{y\ß,i) 
which does not depend on ß. 

The idea of conditioning to remove nuisance param- 
eters is an old one (Bartlett, 1936, 1937). Kalbleisch 
and Sprott (1970) give an extensive discussion including 
the case in which t depends on 7. General expressions 
for approximate conditional likelihoods based on saddle 
point approximations have been developed by Barndorff- 
Nielsen (1983) and Cox and Reid (1987). A long chain 
of related work is referenced in Cox and Reid (1987) and 
McCullagh and Neider (1989, Chapter 7). Specific ap- 
plication to generalized linear models in made by Davi- 
son (1988). 

3    A Conditional Derivation 

ty{y;ß,t) -^(y;/3,7) = 
i(y - Xß)TÜ-l(y - Xß) + 

Let y and ß be as in Section 1. For any Q, ß 
is complete and minimal sufficient for ß, so we can 
eliminate ß from the likelihood by conditioning on ß. 
Since ß ~ N\ß,(XTü-1X)-1], the conditional log- 
likelihood is ^(y;7) 
-flog(2x)-Ilog|fi|- 
§ log(27r) - \ log \XTn~lX\ + \{ß - ß)TXTü-'X{ß - 
ß) = r^\og{2-K)-\\og\ü\-\\og\XTü-'X\-\yTPy 
where P = fi"1 -ß-1X(XTfi-1X)"1Xrfi-1. This dif- 
fers from the likelihood function given by Harville (1974) 
and Cooper and Thompson (1977) only in that it lacks 
the constant Jacobian term, -ilog|XTX|, since no 
transformation of the data has been used. 

That the conditional likelihood is equivalent to the 
marginal distribution of the error contrasts can be seen 
by transforming y to ß and y2 = LTy where L is a 
nx(n—p) matrix of full column rank satisfying LTX = 0. 
Conditionally, ß is constant, so maximizing the condi- 
tional likelihood of y is equivalent to maximizing the 
conditional likelihood of y2. Furthermore, y2 and ß are 
independent so the conditional distribution of y2 is the 
same as its marginal distribution. 

In the above derivation, £y is decomposed as the sum 
of a marginal and a conditional likelihood. Estimation 
of 7 proceeds by maximizing the conditional and then ß 
is estimated by maximizing the marginal £ß. 

4    Generalized Linear Models 

The generalization of REML to generalized linear mod- 
els can now be stated. Consider the probability density 

function defined by 

f(y; e, 4>) = exP[{t/0 - «(<?)}/<£ + c(y, <f>)} 

For given values of <j>, this is a linear exponential fam- 
ily density function. Following J0rgensen (1987), the 
distribution defined by f(y; 0, <j>) is called an exponen- 
tial dispersion model with dispersion parameter (j>, and 
is denoted ED(p,<f>) where fi = E(y) - k(&). Let 
yi ~ ED(//,-,0j), i = l,...,n, be independent random 
variables. A generalized linear model arises if a link- 
linear model is assumed for the means, g(m) = xjß 
where x,- is a vector of covariates, ß is an unknown p- 
vector of regression parameters and g() is a known link 
function. We assume also that the dispersions <j>i depend 
on an unknown parameter vector 7, for example through 
a link-linear model /i(<£.) = zff as in Smyth (1989), 
where z< is a vector of covariates. 

Let $ = diag(^j) and X be the n x p matrix with 
xf as fth row. We assume g() to be the canonical link 
function such that g{m) = 9i; so that t = XT$-1y is a 
complete sufficient statistic for ß. We define the REML 
estimate of 7 to be that which maximizes the conditional 
likelihood of y given t. 

REML can also be used to estimate parameters in 
the variance function of a generalized linear model if 
the probability density can be completely specified. Let 
ip be a parameter vector which indexes a family of 
exponential dispersion models, ED^,(//, <f>), and assume 
y, ~ ED^(fii,<j>i) with m and fc as given above. In gen- 
eral the functions K(), C() and £() will depend on i/>, and 
var(y) = <j>iv{m,$) where v(p,tj)) = k(9). We define the 
REML estimates of t/> and 7 to be those which maximize 
the conditional likelihood of y given t. 

The next two sections of this paper work out REML 
estimates for certain generalized linear models in which 
the conditional likelihood can be obtained in closed form. 

5    Dispersion Estimation 

5.1    The one-way layout 

Consider a generalized linear model with means de- 
scribed by a one-way classification, i.e., let y^, i = 
1,..., b, j = 1,..., Hi, be independent random variables 
with y,j ~ ED(/?j, 7). The group mean y, is sufficient for 
ßi and is distributed as EB(ßi,j/ni). The conditional 
log-likelihood is 

If 
»=1 [j=i 
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b     [   n. 

= E1E c(^'' ri - c(y{ > iini) 
t=i [j=i 

For example suppose the y,- are normally distributed. 
In that case c(y, 7) = -\ log7 - \y2 - \ log 27r (McCul- 
lagh and Neider, 1989), so 

1 „, N     N-b.    „ lA, 
27 «=i 

where JV = J2n* anc^ ^(y) = JKVij ~ 2A')2- The condi- 
tional maximum likelihood estimator is 7 = D(y)/(N — 
b), which is the usual residual mean square estimator of 
the variance in one-way analysis of variance. 

If  the   Yi   are   inverse-Gaussian,   then   c(y, 7)    = 
1/(272/) - \ log7 - § logy - 5 log 2A-. In that case 

1 n, ,     AT-6,    „ 
^    =   --D(y)-^-log2*7 

- 2 £ £log yi> ~log»J ~ 2 53log n* 

where 

b     r»i 6     n. ,-..\2 

The REML estimator of 7 is the residual mean square 
deviance, 7 = D(y)/(N — b). 

In both normal and inverse-Gaussian cases, the REML 
estimator 7 is uniform minimum variance unbiased for 
7, and (N — 6)7/7 ~ Xjv-6 independently of the y,-. 

For the gamma distribution we have c(y, 7) = 
Iog(j//7)/7 - logy - logT(l/7) so 

J b    / m 

+E log r(n,/7) - E 53losy« -lo«y» 
.=1 \i=l »=1 

This is an exponential family likelihood with canon- 
ical parameter v =   I/7, sufficient statistic D(y)  = 

Z)»=i J2]Li l°8(^t'i/^-) an^ cumulant function A(^) = 
A^logr(i/) - £,6

=1 logr(n,i/). The REML estimator of 
7 is obtained by equating D(y) to its expectation, 

D(y) = A(„) = JV^(iz) -^«i^!/) 

where V'O is the digamma function. This can be com- 
pared to maximum likelihood estimation of 7 which 
would have log(i/) in place of ^{riiv) in the last term. 
Compare with Cox and Reid (1987, p. 12) and McCul- 
lagh and Neider (1989, p. 295). 

5.2    Dispersion Modelling 

Now consider the one-way layout with a link-linear 
model for the dispersion, i.e., suppose that the Yij ~ 
ED(ßi,<f>ij) and the faj are a function of a q-vector of 
parameters 7. The log-likelihood is 

*y  =  EE  rM-*W] + «(«f.W 

= E|-^-
K

(
ö
«)]+53

C
(^'^)[ 

i=i [ai 3=1       J 

where a,- = CC^i^1)-1, U = «:E"4i #}*!/»> and 
/?,• = K(0,). Each U is sufficient for /?,• and is distributed 
as ED(/?,-,a,). The conditional log-likelihood of y given 
the U is 

b    ( m 
£y\* = E ) 53 c(yii' hi) ~ c(*«»a0 

«=1 

5.3    General Mean Models 

We now leave the one-way layout and consider gen- 
eral link-linear models for the //,-. Suppose that y,- ~ 
ED(^;, </>i), i — 1,..., n, with link-linear models for both 
Hi and <f>i as described in Section 3. The sufficient statis- 
tic for ß is t = XTi~1y, and this has cumulant function 

«*(/*) = 5>r1«(xf/3) 
*=i 

where K() is the cumulant function of the y,-. The cumu- 
lant generating function oft is K(s) = Kt(ß + s) — Kt(ß), 
so the probability density function of t is given by 

/(«) = / exp 
"   /c(xf(/3 + s))-Kt(xT/3)     =Tt 

.»=1 
& 

Us 

The required conditional log-likelihood is 

t9\t = iy(r,ß,ir)-iogf(t) 

which doesn't depend on ß. Except in the normal case, 
the cumulant generating function oft is difficult to invert 
analytically, so either numerical evaluation or approxi- 
mation will generally be necessary. 
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One possible approximation is to use, following a sug- 
gestion of A. T. James (James and Wiskich, 1993), the 
asymptotic normal approximation to the distribution 
of ß. This leads to the approximate conditional log- 
likelihood 

Ari*  = ty(r,ß,t) + ^ogi*-Uog\xTwx\ 

+ l-(ß-ß)XTWX{ß-ß) 

where W — diag{<^,- 1v(/j.i)} and vQ is the variance func- 
tion defined by v(/.i) = k(0). This expression depends on 
ß, but only slightly, so we can set ß = ß, yielding the 
approximation 

£y(y,ß,7) + -log2ir-Uog\XTWX\ (1) 

i.e., the log-profile likelihood for 7 adjusted by the log- 
determinant of the covariance matrix of ß. This method 
is applicable even when the link function g() is not 
canonical, although then t is not sufficient so it is im- 
possible to entirely eliminate ß from the estimation of 

7- 
Another approach which leads to the same approxima- 

tion in this case is to use the modified profile likelihood 
of Barndorff-Nielsen (1983) together with a suggestion 
of Cox and Reid (1987) for orthogonal parameters. The 
modified profile likelihood for 7 is 

ly (y; ßy, Tf) - 0 los Mßß I + Ios 
dß 

0/3- 

where ß1 is the maximum likelihood estimator for ß for 

given 7, ß is the unrestricted maximum likelihood es- 
timator, jßß is the observed information matrix for ß 
evaluated at ßy, and iy(y;ßy,t) is the log-profile like- 

lihood for 7. Since ß and 7 are orthogonal, /37 varies 

only slowly with 7 so the derivative term dß/dßy can 
be neglected. For the current model we have 

jßß = XTWX 

and the modified profile likelihood is, apart from con- 
stants, the same as (1). 

For normal linear models, the approximate conditional 
likelihood (1) is precisely the same as the standard resid- 
ual likelihood given in Section 3. When the j/j are 
inverse-Gaussian and 7 is scalar, modified profile like- 
lihood leads to the residual mean deviance as the esti- 
mator of the dispersion. In other cases, the effectiveness 
of the approximation needs to be evaluated. This is not 
done here as our primary intention is to clarify the exact 
conditional approach. 

Table 1: Simulation results for estimating 7 and <f>. One 
thousand data sets were generated. True values are 7 = 
1.5 and <£ = 1.0. 

(a) Estimation of 7 

Mean Std MSE 
Maximum likelihood 
REML 
Extended Quasi-Lik. 
Pseudo-Likelihood 

1.4731 
1.4873 
1.2345 
1.5494 

0.0711 
0.0769 
0.0961 
0.1894 

0.0058 
0.0061 
0.0798 
0.0383 

(b) Estimation of <j> 

Mean Std MSE 
Maximum likelihood 
REML 
Extended Quasi-Lik. 
Pseudo-Likelihood 

0.9010 
0.9915 
1.0008 
0.9015 

0.1809 
0.2048 
0.2057 
0.1904 

0.0425 
0.0420 
0.0423 
0.0460 

6 Variance Function Estimation 

Suppose that 7 is an unknown parameter than indexes 
a family of generalized linear models. That is, suppose 
that W ~ EDy(fii,(j>), i = l,...,n where </(/*,•) = xjß 
and var(y,-) = <ßv((ii,y). The REML estimators of 7 
and <f> are those which maximize the conditional like- 
lihood of y given XTy. The purpose of this section 
is to consider a potentially important example, that of 
the compound Poisson exponential dispersion models in- 
troduced by J0rgensen (1987). The compound Poisson 
models have power variance functions v(fi, 7) = yP1 with 
7 between one and two. The compound Poisson distri- 
butions converge to Poisson as 7 —► 1 and to gamma as 
7 —► 2, and so may be viewed as intermediate between 
the Poisson and gamma families. They are also posi- 
tive and continuous except for mass at zero. Compound 
Poisson generalized linear models have potential appli- 
cations in modelling continuous data with exact zeros, 
such as weather variables, insurance claims and waiting 
times, but the problem of estimating 7 has not been sat- 
isfactorily solved (Burridge, 1987; Gilchrist, 1987). 

The compound Poisson density function has been de- 
rived by J0rgensen (1992). See also Tweedie (1984). It 
has 9 = //2_7/(2 - 7), K(9) = it1-"1/{I - 7) and 

c(y,0) = log]>3 
{a(a+l)a+1<j>-a-1yay 

iirO'a) 

where a = (2 - 7)/(7 - 1). Tweedie (1984, p. 586) has 
identified expc(j/, <f>) as an instance of Wright's (1933) 
generalized Bessel function. It is not expressible however 
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in terms of the more common Bessel functions. 
A simulation experiment was conducted to compare 

four estimators of <j> and 7. These were maximum 
likelihood estimation, REML, extended quasi-likelihood 
(Neider and Pregibon, 1987) and pseudo-likelihood (Da- 
vidian and Carroll, 1987). Data was simulated from 
a one-way classification with m = ... = 715 = 10, 
ß = (0.1,0.5,1,2,5)T, <f> = 1 and 7 = 1.5. One thou- 
sand such data sets were generated and, for each, 7 and 
<f> were estimated using the four methods. The results 
are tabulated in Table 1. 

REML had the smallest bias for estimating 7. Maxi- 
mum likelihood had the smallest standard deviation, and 
also the smallest mean square error, although this was 
not significantly different from that of REML. Pseudo- 
likelihood was also approximately unbiased, but with a 
largest standard deviation. Extended quasi-likelihood 
had a competitive standard deviation, but was biased 
down giving it the largest mean square error. Experi- 
mentation showed that the bias was due to the offset of 
1/6 for zero observations. Positive and negative biases 
could be achieved by relatively small changes to this off- 
set. 

REML and extended quasi-likelihood were almost 
equally effective for estimating <f>. The maximum like- 
lihood estimator had again the smallest standard devi- 
ation and a mean square error not significantly greater 
than REML and extended quasi-likelihood, but was bi- 
ased down by about 10%, as expected given the group 
size of ten. The pseudo-likelihood estimator was also 
biased down by about the same amount, despite incor- 
porating a correction for degrees of freedom as recom- 
mended by Davidian and Carroll (1987). 

We conclude that REML, in its conditional likelihood 
guise, is successful in reducing the bias of the maximum 
likelihood estimator while incurring minimal inflation 
to its standard deviation. Neither of its competitors, 
extended-quasi and pseudo likelihood, were as successful 
in doing this. 
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Abstract 
Bayesian statistical applications often present high di- 
mensional integration problems that require Monte 
Carlo integration. Simple Monte Carlo, in contrast to 
fixed integration rules, does not exploit the smooth- 
ness that one would expect from a posterior distribu- 
tion. Two techniques are used to construct hybrid ran- 
dom multidimensional integration rules. First random 
orthogonal transformations are used to reduce the in- 
tegration to one dimension. Then, random integration 
rules are derived for infinite integration intervals, gen- 
eralizing rules developed by Siegel and O'Brien (1983) 
for finite intervals. These new rules are constructed for 
both Normal and Student-t weight functions. Both the 
combined methods produce random rules for multidi- 
mensional integrals over infinite regions with Normal or 
Student-t weights. Example results are presented to il- 
lustrate the effectiveness of the new rules for estimating 
integrals that arise in Bayesian statistical computation. 

1    Introduction 
A standard problem in Bayesian analysis is to numeri- 
cally compute integrals in the form 

/oo     ^oo ro 

■00 J — oo       J — < 

g(e)p{e)demd6m-1...dß1, 

with 0 = {6i,92,...,9my. The function p(0) is an un- 
normalised posterior density function and g(0) is some 
function for which an approximate expected value is 
needed. We will assume that the posterior density 
p(0) is unimodal and approximately multivariate nor- 
mal (0 ~ Nm(fi, £), or multivariate Student-t (0 ~ 
<m(fi,£)). usually, expectations for several ff(0)'s are 
needed, and a typical practical calculation might use a 

•Partially supported by NSF grant DMS-9211640. 

vector g(0) = (1,0,00*), so that a normalizing constant 
and the approximate mean and covariance matrix for 0 
could be determined. 

This type of integration problem has traditionally 
been handled using Monte-Carlo algorithms. The sim- 
plest forms of these algorithms have low accuracy and 
slow convergence, so a number of refinements have been 
proposed (see the book by Davis and Rabinowitz, 1984, 
and the more recent paper by Evans and Swartz, 1992). 
One strategy that is usually effective for Monte-Carlo 
error reduction is importance sampling. With this strat- 
egy, p(0) is approximated by some function h(6), which 
is relatively easy to sample from. The original integral 
is then approximated by 

N 

^|>(0i)(p(0;)/M0i)), 

where sample points {0j} are drawn randomly with den- 
sity h(0). The standard error from the sample provides 
a robust error estimate for the integral. If h(9) is a good 
approximation to p(0), then the sample variance is sig- 
nificantly reduced (along with the error), compared to 
Monte-Carlo without importance sampling. 

Our new method can be considered a refinement of 
Monte-Carlo with importance sampling, but it should be 
better than simple Monte-Carlo with importance sam- 
pling because the resulting integration rule will give the 
exact result whenever the importance modified integrand 
g{0){p(8)/h(B)) is a cubic polynomial. Simple Monte- 
Carlo with importance sampling results are exact when- 
ever the importance modified integrand is constant, so 
the new method is expected to be significantly more 
accurate than simple importance sampled Monte-Carlo 
whenever the importance modified integrand is not con- 
stant, but still has a reasonably accurate low degree poly- 
nomial approximation. 

Our method uses a multivariate normal or a multivari- 



136    Random Integration Rules 

ate Student-t approximation to p[9). For these approxi- 
mations, we assume that a standardizing transformation 
in the form 6 = fi + Cx has been determined for our 
problem, using numerical optimization if necessary. We 
have used /J to denote the point where log(p(0)) is max- 
imized, £ to denote the inverse of the negative of the 
Hessian matrix for log(p(0)) at (i, and C to denote the 
lower triangular Cholesky factor for £ (E = CC'). Then 
the transformed integrals that we consider take the form 

1(f) 
J—oo J—oo       J—oo 

where /(x) = g(n + Cx)p(n + Cx)/iu(||x||), and 
w(IMI) = e-x'x/2, or u»(||x||) = (1 + ^-(«M-O/a. 
If our approximation to the posterior density is a good 
one, then we expect /(x) to be well approximated by a 
low degree polynomial in x, and this motivates our con- 
struction of random multimensional integration rules for 
polynomials. These rules are generalizations of the de- 
gree three rules derived for the interval [-1,1], with weight 
w(r) = 1, developed by Siegel and O'Brien (1983). Ear- 
lier work by Hammersley and Handscomb (1964) also 
considered the construction of random integration rules 
for finite intervals. 

Our development of the random multidimensional in- 
tegration rules requires an additional change of variables 
to a radial-spherical coordinate system. We let x = rz, 
with z*z = 1, so that x*x = r2, for r G [0, oo). Then 

/(/)    =        f    f   w(r)rm-7(rz)dzdr 

z«z=i 

=    \   j   j" v>{r)\r\m-lf{rz)dzdr/2. 
z«z=i 

We want to compute numerical approximations to /(/) 
so we need integration rules for the surface of the unit 
m-sphere defined by zxz = 1, and for the radial interval 
[-co, oo]. For the spherical surface integrals we use 

1    m f SQ(s)=—^2(s(-Qej) + s{+Qej))Ki   j   s(z)dz, 
;'=i .«i=i 

where e, = (0,..., 0,1,0,..., 0)' and Q is an m x m ran- 
dom orthogonal matrix.. The integration rule SQ(S) is 
a degree three rule (see Stroud, 1971, p. 294) for the 
surface of the unit m-sphere. If Q is chosen uniformly 
(see Stewart, 1980), SQ is an unbiased random degree 
three rule for the surface of the unit m-sphere. Deäk 
(1990) useB a transformation to a similar spherical coor- 
dinate system with random orthogonal transformations 

to develop a method for computing multivariate nor- 
mal probabilities. We still need random degree three 
rules for integrals of the form f^ |r|m-1e_r l2h(r)dr, 
or IT«, IHm-1(l + £)-(m+")/3Mr)dr. We discuss these 
degree three radial rules in the next section. We then 
show how the radial rules can be combined with the 
spherical surface rules to produce random rules for /(/). 
In the section three, we demonstrate the use of the new 
rules with two test Bayesian computation problems. 

2    Random Radial Rules 

We define a basic radial integration rule Rp(h) by 

R,(h)   =   h(0)+^(h(p) + h(-p)-2h(0)) 

-F r|m-1u;(r)/i(r)dr, 

where p is a positive real number, w(r) is now nor- 
malized so that /^ |r|m_1iu(r)dr = 1, and a = 

/_ \r\m+1w(r)dr. We can prove (see Genz and Mona- 
han, 1994) the following theorem, which establishes two 
important properties of the rules Rp(h). 

Theorem 1 If p is a random variable on (0, oo), with 
density ^rm+1w(r), then 

Rp(h) = j" li-n-MrWiOdr, 
J — OO 

whenever h is cubic polynomial, and 

E{Rp(h)} = ^ Irr-^WM')*, 
J—oo 

for any integrable h. 

For the two specific weight functions that we are inter- 
ested in, we have determined that a = m when w(r) ~ 
e-r'l2, and a = ^ when w(r) ~ (1 + £)-("»+")/2. 

A random degree three radial rule Rp can now be com- 
bined with a random degree three spherical rule SQ to 
produce a random degree three rule for 1(f). We first 
let Dp(f,x) = (/(pa.) + f(-px) - 2/(0))/(2pa). Then 
our combined random spherical radial integration rule 
for 1(f) is given by 

SRQ,P(f)    =    5^D  {f<0) + aDp(f,Qej)) 
>=i 

+ {f(0)+aDf(f,-Qei))  ) 
m 

=   /(o) + £X>«ta>- 
i=i 
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It is easy to establish the following (Genz and Monahan, 
1994) 

Theorem 2 If p is a random variable on (0, oo) with 
density -rm+1w(r), and Q is anmxm uniform random 
orthogonal matrix, then 

SRQM)=r r - r «awo/oo^ 
J—oo J—oa       J—oo 

whenever f is cubic polynomial, and 

E{SRQM)}=r r - r »(IMD/W«** 
J—oo J—oo       J—oo 

for any integrable f. 

The unbiased degree three rules SR.QtP(f) form the 
basis for the following algorithm: 

Spherical-Radial Rule Integration Algorithm 

1. Input e, m, /, w and Nmax- 

2. Set N = 0, J = 0, V = 0 and compute a and /(0). 

3. Repeat 

(a) Set SR = 0. 

(b) Generate a uniformly random orthogonal TO X 

m matrix Q. 

(c) Generate p from the density |rm+1tu(r). 

(d) For j = 1,2,..., m set 

5Ä = SR + (/(pQe,-) + /(-/»Qe;) - 2/(0))/(2p2). 

(e) Set SR = /(0) + aSÄ/m, N = N + 1, 
D = (SR- I)/N, J = 7 + U and 
V = V + (JV - l)i\TDa. 

Until ^V/(N(N - 1)) < e or JV = i\TmM. 

4. Output J w /(/), <T = y/V/(N(N - 1)) and JV. 

The input e is an error tolerance, the input Nmax pro- 
vides a limit on the time for the algorithm, and the out- 
put a is the standard error for the integral estimate I. 

3    Examples 

The first example is a three dimensional nonlinear regres- 
sion problem from the time series book by Puller (1976). 
The posterior is given by 

12 

with 6 € (-co, oo)3. We model p(0) with a multivariate 
normal approximation, so we use 

f{x) = üTextx/2p(M + C(xi, x3, x3)% 

after computing the mode p. and C for log(p). The con- 
stant K is chosen to prevent underflow in the numer- 
ical evaluation of /. For this example K — e30. In 
the following table we show results from the SR rules. 
For comparison, we also show results from simple im- 
portance sampled Monte-Carlo rules, where the compo- 
nents for the sample points x are random drawn from 
2V(0,1). The entries in the error columns are the stan- 
dard errors obtained from the random samples for the 
respective methods.. 

Test Results with 10,000 / Values 

Simple M-C SR Rules 

/ Hf} Error E{f} Error 
p/w 0.5773 0.0403 0.5277 0.0103 

Oip/w 140.6531 9.5358 141.1459 2.7229 
03p/iu -83.7048 6.0097 -83.5633 1.6003 

03P/V> 1.4968 0.1487 1.4242 0.0334 

The standard errors for the simple Monte-Carlo rules are 
3-4 times larger than those for SR rules. This indicates 
that approximately ten times more computer time would 
be needed for the crude Monte-Carlo rules to achieve an 
accuracy level similar to that achieve by the SR rules. 

For our second example we use a seven dimensional 
proportional hazards model problem discussed by Del- 
laportas and Wright (1992) and Lawless (1982). The 
posterior is given by 

48 65 

Kp^nyrv^n e^ß 

t=i «=i 

p(0) = (i°+£(y.-*i-^c~M<)2) -93tn2\-6.1 

t=l 

with p > 0 and ß G (—00, oo)6. After we first transform 
p using xi = log(p), we model p(0) with a multivariate 
normal approximation. So we use 

f{x) = Ke*,x<2e*>p(p + C{e'\z2,.... »r)*), 

after computing the mode /i and C for log(p) + log(p). 
For this example K = e215. In the following table we 
show results for the SR rules and simple importance 
sampled Monte-Carlo rules. 
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Test Results with 75,000 / Values 

Simple M-C SR Rules 

/ E{f} Error E{f} Error 
p/w 0.3918 0.0026 0.3907 0.0015 
pp/w 1.1747 0.0086 1.1737 0.0047 
ßip/w -4.0611 0.0319 -4.0573 0.0169 
ßip/w 1.9680 0.0194 1.9438 0.0065 
ßsp/w -0.1217 0.0008 -0.1216 0.0005 
ßip/w -0.0192 0.0002 -0.0193 0.0001 
ßsp/w -0.0418 0.0033 -0.0418 0.0008 
ßep/w 0.1251 0.0013 0.1251 0.0004 

For this example the SR rule results have standard er- 
rors that are approximately half as large as those for 
the simple Monte-Carlo. These results are not as good 
as those for the three dimensional problem, but the SR 
rules are still approximately four times more efficient 
than the simple Monte-Carlo rules. 

In order to monitor, and possibly improve, the con- 
vergence of the SR rules, we have considered the de- 
velopment of convergence diagnostics for the simple SR 
integration algorithm described in the previous section. 
The integrand /(x) for a given integration problem could 
have more (or less) variation around the spherical sur- 
face than it does along radial directions. If we had di- 
agnostics to determine these differences in variation, our 
simple algorithm could be modified to increase sampling 
in either the spherical or radial directions, in order to to 
adapt to these differences. 

A natural diagnostic for the spherical variation for a 
fixed radius p is the sample variance for the SR aver- 
age that is accumulated in the loop at step 3(d) in the 
algorithm. Alternately, with Q fixed, a loop could be 
introduced at step 3(c) so that several different p's could 
be used and the variance in the resulting SR rules could 
be used as a diagnostic for radial variation. A relatively 
large variation in the radial direction might indicate that 
a multivariate normal model was not valid. Therefore a 
multivariate Student t model might be more appropri- 
ate, and/or the number of samples in the radial direction 
could be increased. Alternatively, a relatively large vari- 
ance for the SR average would suggest that more Q's 
should be used for each p. This could be accomplished 
by interchanging steps 3(b) and 3(c) and adding a loop 
at the modified step 3(c) that would allow several dif- 
ferent Q'B to be generated for each p. A more general 
algorithm could have nested loops at both steps 3(b) and 
3(c), with lengths dynamically adjusted to balance the 
radial and spherical variances. 

4    Concluding Remarks 

We have described degree three random integration rules 
that can be used to numerically estimate integrals over 
infinite regions. Results from two examples suggest that 
averages of samples of these rules can provide more ac- 
curate integral estimates than simpler Monte-Carlo im- 
portance sampling methods. However, in contrast to 
traditional polynomial rules for numerical integration, 
the standard errors from the random rule samples can 
be used for robust error estimation. 

For future work with these rules we intend to consider 
more examples, and develop and implement heuristics to 
automate the incorporation of the variance diagnostics 
into our algorithm. We also hope to extend our work to 
include random degree five rules for infinite regions. 
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Abstract 

PVM is a software that allows a heterogeneous net- 
work of parallel and serial computers to use distributed 
memery to do concurrent computation. Due to lack of 
accessing a parallel computer to do complicated compu- 
tation, we show how to parallelize the Beaton's sweep op- 
eration on computation of the analysis of regression and 
designed experiments, therefore the analysis of repeated 
measurement designs under PVM tool. The performance 
of the parallelized sweep operator will be evaluated. 

1.    Introduction 

Parallel processing is increasingly important in scien- 
tific fields such as statistical computing. In statistically 
computational intensive area such as regression analysis 
and analysis of experimental designs, existing sequen- 
tial algorithms should be parallelized so that applica- 
tions can be processed by parallel computers to speed 
up the computation. However, parallel computers are 
too costly for most colleges to be obtained. 

A high level programming environment, called PVM 
(Parallel Virtual Machine), can be utilized in clusters of 
heterogeneous networked Unix workstations and paral- 
lel computers to do parallel processing without calling 
low level Unix utilities from communication layer such 
as socket([l],[4],[7]). PVM is an on going project, started 
in the summer of 1989 at Oak Ridge National Lab. Ba- 
sically, PVM generates a series of tasks, like Unix pro- 
cesses. They are synchronized by using message-passing 
technique to pass data between them and solve a prob- 
lem in parallel. The applications can be programmed in 
either Fortran 77 or C. 

In computation of analysis of regression and designs 
of experiments a common method used to solve a nor- 
mal equation in most statistical software is the Beaton's 
sweep operation ([2],[3]). In addition, this method also 
gives insight into the least square method. Some impor- 
tant statistical measures are the products of the process 
of sweeping. However, the sweep operation is designed 
to be sequential and it is difficult to utilize the power of 
parallel computers while sweeping. 

In this paper a method is proposed to parallelize 
the sweep operation.    The algorithm is implemented 

in Fortran 77 under PVM 3.1  and the speed-up is 
evaluated([8]). 

2. Sweep Operation 

The most fundamental operation in regression anal- 
ysis and analysis of variance is Beaton's sweep oper- 
ation. It is one of the most simple methods to solve 
the normal equation and also a process of matrix inver- 
sion by bordering([3]). Beaton's sweep operation sweeps 
through a positive semidefinite matrix, the design matrix 
X'X or S matrix, and produces sum of square of resid- 
uals and regression coefficients for a regression model, 
or sum of squares for the residuals and all effects for a 
model of designed experiments ([6]). 

The algorithm of the sweep operation is described as 
follows: 

Sweep on i th row of the S=(Sij) matrix and resulting 
a matrix T=(Tij): 

If SH £ 0, then Tu = —fc and Tti = fjj, for j ? i. 
Also Tjt = Sjk - Sji x f£, for k # i and j # i, else 
Tu = 0 and ly = 0, for j £ i. Also Tjk = Sjk, for k £ i 
and j ^ i. 

The sweep operator has the properties of associativity 
and commutativity. The operation is purely designed as 
sequential, that is, the matrix which is used for the cur- 
rent sweep completely depends on the resulting matrix 
of the previous sweep. In order to parallelize the sweep 
operation so it can be used in regression analysis and 
analysis of experimental designs, the operation must be 
studied in detail. 

3. Parallelize Sweep Operation 

Given a n x m regression matrix X the positive 
semidefinite symmetric matrix S=(5y) with dimension 
m in Ith sweep, can be divided into four different areas 
as follows: 

Area A: Sy, i=I+l, and I+l< j <m 
Area B: 5y, I+2< i <m, and I+l< j <m 
Area C: Sy, 1< * <I, and I+l< j <m 
Area D: Sy, 1< * <I, and 1< j <I 
Since the I+lth sweep must use the value of Si+u+i, 

area A and B can be performed first and the elements in 
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area C and D during Ith sweep does not depend on the 
next sweep. Hence area C and D of the current sweep 
can be performed concurrently with area A and B of the 
next sweep. By overlapping the area C and D and area 
A and B of the problem domain, we can save part of 
the total sweeping time. Areas A, B, C and D will be 
processed concurrently by computers A, B, C and D in 
a network. Since matrix S is symmetric, we can only 
compute either upper or lower diagonal elements during 
sweeping in order to save execution time. Results will 
be distributed from computer A to B, B to C, C to D. 

In the next section PVM will be used to implement 
the parallel concept. 

4.    Implementation Under PVM 

PVM can be started heterogeneously in different hosts 
through a background daemon process called pvmd in 
each host. Users are very easy to add or delete hosts 
as their wishes in PVM environment. Each daemon will 
communicate each other through message passing. Un- 
der master-slave model it is easy to set a central control 
for user to do input and output. That is, the master 
program will allow user to enter the initial data and also 
collect the results to the user. Master program and each 
slave program will be run on each different host. And 
data sent as messages will be passed between master and 
slaves. Each host runs the same number of sweep opera- 
tions except that host A will sweep on only the elements 
in area A. Similarly for other hosts. 

The process of writing a program under PVM is a 
little complicated. Once user has run a sequential pro- 
gram successfully in one host, one will implement the 
corresponding parallel program with different tasks (or 
processes) into the same host. Finally, the successful par- 
allel program will be implemented under different hosts. 

4.1.    Algorithm 

Based on master-slave model, the master program will 
spawn four different processes, i.e. module A, B, C and 
D. Each module receives initial matrix information and 
sweeps on the corresponding area of the matrix by us- 
ing message passing to maintain the order of sweeping. 
The sweeping oder is by executing module A first. Then 
the results of module A will be sent to module B. After 
module B finishes, the results will be sent to module C 
to continue the current sweep. In the mean time the re- 
sults of module B will be sent to module A again to start 
the next sweep operation if necessary. Once module C 
finishes, it will send the results to module D to finish up 
the current sweep operation. If necessary, the results of 
module D of the current sweep and the results of mod- 
ule B of the next sweep will be sent altogether to module 

C of the next sweep to continue. After the number of 
sweeping user requested to do, the final resulting matrix 
will be sent back to master program. 

The following are the algorithms for each program 
used: 

Algorithm for master program: 
1. spawn tasks module A, B, C and D. 
2. enter user's data matrix S 
3. pack all data 
4. broadcast data to module A, B, C and D. 
5. wait lor receiving results from module D 
6. unpack the results 
7. output the results 

Algorithm for module A program: 
i. receive the matrix S from master program 
2. unpack data 
3. loop until no more sweeps 

(i) receive the last sweep from module B 
(ii) unpack results 
(iii) sweep the matrix in area A 
(iv) pack results 
(v) send the results to module B 

endloop 

Algorithm for module B program: 
1. receive the matrix S from master program 
2. unpack data 
3. pack initial S data matrix 
4. send initial S data matrix to start 

module A and trigger the start of the 
sweep operation 

5. loop until no more sweeps 
(i) receive the results from module A 
(ii) unpack results 
(iii) sweep the matrix in area B 
(iv) pack results 
(v) send the results to module C 
(vi) send the results to module A 

endloop 

Algorithm for module C program: 
1. receive the matrix S from master program 
2. unpack data 
3. loop until no more sweeps 

(i) receive the results from module B 
(ii) unpack results 
(iii) receive the last sweep from module D 
(iv) unpack results 
(v) sweep the matrix in area C 
(vi) pack results 
(vii) send the results to module D 
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endloop 

Algorithm for module D program: 
1. receive the matrix S from master program 
2. unpack data 
3. loop until no more sweeps 

(i) receive the results from module C 
(ii) unpack results 
(iii) sweep the matrix in area D 
(iv) pack the results 
(v) send the results to module C 

endloop 
4. pack the final results 
5. send the results back to master program 

4.2. Example 

Given m=4 and w=3, the matrix X is 

X = 

Suppose Pi denotes the initial matrix going to module P 
before sweeping on area P in ith sweep, then following 
the algorithm above, we have 

C2 = 

D2 = 

A3 = 

B3 = 

C3 = 

D3 = 

'-0.25     1.75 1.5 
1.75 2.75 -1.5 
1.5 -1.5 4.182 

1.25 -0.75 -3.909 

-0.25      1.75 2.455 
1.75       2.75 -0.545 

2.455 -0.545 4.182 
1.727 -0.273 -3.909 

'-0.25     1.75 
1.75 2.75 
1.5 -1.5 

1.25 -0.75 

1.5 
-1.5 
4.182 

-3.909 

/-0.25 1.75 1.5 
1.75 2.75 -1.5 
1.5 -1.5 4.182 

\ 1.25 -0.75 -3.909 

'-1.364 0.636 2.455 
0.636 -0.364 -0.545 
2.455 -0.545 4.182 
1.727 -0.273 -3.909 

'-1.364 
0.636 
2.455 
4.02 

0.636 
-0.364 
-0.545 
-0.78 

2.455 
-0.545 
4.182 

-0.935 

1.25 
-0.75 
-3.909 
8.545 

1.727 
-0.273 
-3.909 
8.545 

1.25 
-0.75 
-3.909 
8.545 

1.25 
-0.75 
-3.909 
4.891 

1.727 
-0.273 
-3.909 
4.891 

4.02 
-0.78 
-0.935 
4.891 

Ai=S = 

£,= 

'4 
7 

4 7 6 5 
7 15 9 8 
6    9     14 4 
5 8     4 15, 

6 5 
-1.5 -0.75 

14 4 
4 15 

And the resulting matrix is 

A2 = 

B2 = 

Ci = 

Dy = 

'4765 
7     2.75     -1.5   -0.75 
6 -1.5       5       -3.5 

,5   -0.75   -3.5     8.75 

7 6 5 
2.75       -1.5 -0.75 
-1.5 4.182 -3 

,5    -0.75 -3.909      8.75 

'4765 
7 2.75     -1.5    -0.75 
6    -1.5       5       -3.5 

,5   -0.75   -3.5     8.75 

/  4 1.75 1.5 1.25 
1.75 2.75 -1.5 -0.75 
1.5 -1.5       5 -3.5 

\l.25 -0.75 -3.5 8.75 

'-2.805 0.956 0.587 4.02 
0.956 -0.435 -0.130 -0.78 
0.587 -0.130 -0.239 -0.935 
4.02 -0.78 -0.935 4.891 

5.    Performance Evaluation 

Using the parallel algorithm used in the last sec- 
tion, the number of different arithmetic operations is 
described in the following table: 

At Ith sweep:  
Module 

B 

D 

Number of +,- 
m-I 

(m-I)^ 
7TTT 

(i-iH 

Number of *,/ 
2(m-I) 

(m-I)(m-I-l) 
(m-I)(2I-l) 

I(I-1)+I 
For Sparc Station, the time to execute a floating point 

* or / is about twice as much as that of + or -. Let 
u be the time to perform one + or - operation, then in 
terms of u time unit, at Ith sweep, module A, B, C and 
D take 5(m-I), 5(mrl)^^, (m-I)(5I-3) and (51-1)\ 
times, respectively. 

Since module C of the current sweep starts at the same 
time as module A of the next sweep, the time which the 
parallel algorithm can be saved is either 
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Y^timeC + -D) on the Ith sweep if time A+B on the 
(I+l)th sweep > time C+D on Ith sweep. That is, 0 < 
I < [ a J or f b 1 < I < w, 

or £Xü'meA + -5) on *ne (I-M)th sweep otherwise. 
That is, fa]<l<[bj, where w is the number of 
sweeps user request to do, 

and 

a = 

b = 

10m- - V50m2 - -10m 
10 

10m + \/50m2 - -10m 
10 

with m is the dimension of the data matrix S. 
Then the total time saved after w sweeps using the 

parallel algorithm over the sequentail algorithm in terms 
of time unit u is 

f[W*(W-i)*(2W-i)-L«J*(L«J+i)*(2W+i)J 
-&w(w-l)(2w-l) +(5m+f) |w(w-l) +5m [|aj * (|aj + 
1)_ [6J *([6j - 1)] -3m(w-l) +(§m2 + f) ([b\ - [a\ -1) 

The total time after w sweeps for the sequential algo- 
rithm is 222i*2=ll. 

Assuming no delaying time for the messages being 
sent,wait and received, then for m=200 matrix S after 
w=197 sweeps, [aj = 58 and [6J = w =197. In terms of 
time unit u, the total time saved is 3849535 out of total 
time being 19680300. The spee up is 1.24. 

Both the sequential and parallel algorithms are imple- 
mented in Fortran 77 and executed by Sparc Station. 
The results are about 10 seconds for a randomly gener- 
ated m=200 matrix after w=197 sweeps. The parallel 
algorithm does not show the advantage is just due to a 
lot of the waiting time spent on distributing data, send- 
ing and receiving results between tasks. 

In order to reduce the number of message passing we 
can combine module A and module B as one slave, and 
also combine module C and module D as another slave, 
then the number of message passing after w sweeps will 
be changed from 5w-2 to w. Then after w=197 sweeps, 
the actual parallel sweeping time will go down from 10 
seconds to 8.4 seconds. And the speed up can be reached 
to 1.19 in practice. 

6.    Conclusion 

In this study we gain a lot of experience of doing 
parallel computation by using a networked workstation 
clusters even though we don't have any access to a par- 
allel computer. We found that it is very easy to de- 
velop and implement a parallel algorithm under PVM 
although the debugging is difficult. However, the disad- 
vantage of using this distributed memory is that more 
waiting time will be spent on message passing. The rea- 
son why the speed up for this parallel algorithm can only 

reach to a maximum of 1.33 is due to fine grain size and 
unbalanced load. In addition, in order for the paral- 
lel algorithm to be advantageous over a sequential algo- 
rithm, a lot of sweeping must be done in the computa- 
tion. This will cause the round-off error being significant. 
We will look for other parallel algorithms for computa- 
tion of analyses of regression and experimental designs. 
A more user friendly extension of PVM called Hetero- 
geneous Network Computing Environment(HeNCE) can 
be used([5]). 
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SUMMARY 
Computers generate log files containing reports on system performance, status, and faults. To analyze these 
log files more efficiently, we have developed an interactive visualization system, SeeLog,™ that displays 
temporal patterns and facilitates exploratory analysis of large log files. We apply our system and visualization 
techniques to analyze command accounting log files from a Unix compute server, although our motivating 
example was log files generated by software development lab testing. 

1. Introduction 

Many computer systems generate log files as part 
of their normal operation. Such files typically 
contain reports on system performance, status, and 
software faults. The reports are often free-format 
and time-stamped. These files are used by 
engineers for detecting and correcting system 
problems, hopefully before they become service- 
affecting. One attribute common to many log files 
is that they often contain many unimportant 
reports. These "noise" reports can clutter log 
files, obscure important reports, and thereby result 
in real problems going undetected. 

Although our motivating example comes from 
analyzing log files created during the software 
development process, our analysis technique 
applies to other log files equally well. To 
illustrate our technique, we use the Unix System 
V command accounting facility. This log file 
contains a report for each command executed and 
is automatically generated as part of standard 
operations. It contains a detailed history of the 
machine's activity and it is used by system 
administrators for performance tuning, security 
monitoring, and could be used for usage billing. 
We find it particularly interesting because, by 
studying the logs from one of our own machines, 
we gain insight into how we in a research 
department use computing resources. By 
analyzing this data, we have gained some 
interesting insights into our own work patterns. 

2. Visualization Technique 

Our log file analysis paradigm involves two steps: 
parsing and visualization. Parsing a complicated 
log file involves lexicographically scanning it to 
note the times, types, and locations of all reports. 
This step can be done using tools like grep, 
AWK,m Perl,[2] or even a C program. The data 
from the scanning are placed in a table that is the 
input to SeeLog. 

To create a visual display of a log file, the reports 
are arranged chronologically and grouped by type. 
Each report is then represented as an angled "tick 
mark" on a grid with time running along the pr- 
axis and report type along the y-axis. The report 
types listed along the y-axis may be placed into 
bands of related types. The result is a pattern of 
horizontal bands, each containing a number 
related of rows, with ticks indicating occurrences. 
(See Figure 1.) 

Within each band, there are rows for the distinct 
values of each type. The type name is printed at 
the left side of the display and the type value is 
printed next to its corresponding row. The rows 
may be sorted in decreasing tick mark frequency 
or in alphabetical order. 

In most datasets, there are several dimensions of 
type information. For example, in the command 
accounting dataset, the type information includes 
the user-id, number of characters transferred, and 
process size. There are three methods that the tick 
marks encode type information: rows (primary 
method), color, and angle. The color and angle of 
each tick mark may encode different dimensions, 
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but often redundantly encode the same dimension. 

3. An Example 

The display of the log file in Figure 2 shows ten 
hours of data from 4:00 to 13:59 from our 
department's compute server. During that period, 
6179 command accounting reports were 
generated. The display shows two bands of 
reports: system commands (upper band)—those 
executed by either the root, adm, or various 
daemon logins and user commands (lower 
band)—those executed by ordinary users. The 
system commands are sorted alphabetically by 
command name; the user commands are sorted 
descendingly by the number of times each 
command was executed. The tick marks are 
display color- and angle-coded by the user-id. 
The user-ids are color-coded according to the 
interactive color scale on the left side of the 
display. The total number of occurrences for each 
command is shown on the right side of the display 
in the form of a bar chart, and the total number of 
occurrences for all commands is shown on the 
bottom of the display in the form of a stacked 
histogram. The slider in the bottom-left corner 
controls the bin size for the stacked histogram and 
is currently set at five minutes. 

Many things are apparent from the display in 
Figure 2. The system commands chkconf ig 
and rpc. mount, spawned by sh (Bourne shell), 
execute continuously throughout the ten-hour 
period. These involve the network file system 
(NFS). Another sequence of commands is 
executed hourly, on the hour, and involves 
accounting and periodic administrative tasks. 

The user commands follow a different pattern. 
The stacked histogram at the bottom of the display 
shows that there was little user activity before 9, 
between 10 and 11 and during the noon hour. On 
this particular day, there was a department 
seminar between 10 and 11 and a lunch for our 
visitor. The most popular user command was the 
CC shell script, the front-end for the C++ 
compiler, which executed 1170 times. 

There are large bunches of commands executed by 
user-id pjl (Paul Lucas). Those "waves" of 
commands were all started by the CC command. 
(He was actually compiling SeeLog a few times.) 
The first few were recompiles of selected object 
files; the compile performed around noon was a 
complete recompile. 

Some of the commands have tails indicating that 
they ran for a noticeable length of time. A few 
commands have tiny tails, particularly pjl's 
makes and CCs, that are at different heights. The 
height of the tails varies when they would 
otherwise overlap on the display. A make 
command typically executes several other 
commands in sequence. On a single processor 
machine we would expect the commands spawned 
by the make to be executed one after each other 
with no overlap. The make command on our 
multi-processor compute server can make object 
files in parallel. The overlapping tails are 
instances when parallelization occurred, since the 
commands are executing concurrently. 

The first set of user commands were executed by 
user-id eick. He started ksh (Korn shell) and 
read mail at 6:50 (from home) and executed 
several other commands at 7:47 (at work). 

4. Summary 

The SeeLog system embodies a graphical 
technique for visualizing large, computer- 
generated log files. The system graphically 
displays log file reports and provides interactive 
mechanisms for manipulating the display. All of 
the reports are displayed on a single grid as tick 
marks, using position, color, and angle to encode 
the type, time, attributes and subattributes of each 
report. Using our technique we have analyzed log 
files with over 80,000 error messages, in a fraction 
of the time required by conventional methods. 
This log file analysis technique generalizes to 
analyzing any stream of time-stamped, typed 
reports. This includes output from transactions 
systems, data networks and even electronic-mail 
logs. 
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Figure 1. Log File Display 

Each tick mark represents one report and is positioned on a grid chronologically and grouped by type. The x-axis encodes 
time and the y-axis type. 

Figure 2. Who did what: Coded by user-id 

Each tick mark represents one Unix command or shell script that executed during a ten hour period on our compute server. 
The tick marks are positioned on a chronological-by-type grid and color- and angle-coded to show the user-id executing that 
command. 
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Abstract 
The Multi-String Rearranging Memory (MSRM) is a 

computer memory system designed for use with standard 
(e.g., IBM 486 or larger) computers. Simultaneous input, 
output, and data rearrangement operations are permitted 
when it is installed in a computing system. Such common 
computations as formation of the transpose of a matrix, 
order statistics ranking operations, construction of empirical 
cumulative distributions, quantiles, etc., require no more 
time than linear time. 

Other operations for which the MSRM is designed 
include "skimming" and searching. When the MSRM is 
used for skimming, the largest (smallest) m of a list of n 
entries can be selected in the amount of time consumed by a 
single scan of the n entries. This use of the MSRM permits 
such operations as removal of outliers, the extraction of sets 
of extremal observations, and trimming of data. When the 
MSRM is used for searching, m entries may be matched 
with n entries in the MSRM; the amount of time required for 
this operation is the amount of time needed for transmission 
of the m entries to the MSRM. Delay between successive 
members of the list of m entries is not required. 

Performance characteristics, statistical uses, and 
intrinsic cost of the MSRM are discussed in the paper. 

0.   Introduction. 
The Multi-String Rearranging Memory (MSRM) is a 

computer memory system. It is hardware, not software. It 
consists of standard RAM and some control circuitry 
suitable for VLSI construction. The RAM can be used as 
ordinary RAM storage when it is not being used for the 
special purposes described below. The cost of the MSRM is 
dominated by the cost of its RAM. 

The functional characteristics of the MSRM are 
described in Ref. 1. The principal operations and their 

performances will be reviewed in the first section. 
Discussion of the speed advantages of the MSRM appears in 
the second section. The third section describes some 
advantages of its use in statistical computing. In particular, a 
somewhat detailed example related to isotonic regression is 
presented. It serves to indicate an advantage of the usage. 

1.   Specialized Operations. 
A main data management operation is that of sorting; 

i.e., the placement of data in increasing (decreasing) order. 
Most conventional computers use n log2(n) serial operations 
to sort data where n is the number of records. The MSRM 
sorts records in linear time. More specifically, the n records 
are read in serially without any delay between successive 
records. When they are written out serially, again without 
any delay, they will be in sorted order. One can think of 
filling a pipe; during the input process the records undergo 
some rearrangement. The final rearrangement takes place 
during the output process. 

The insert operation can be performed, also in linear 
time. On occasion we have need to withdraw some data, 
modify it, and put in back in. This takes time proportional to 
the number of records that are modified. 

A data skimming operation is valuable and fast. 
Suppose we desire the m largest (smallest) records. These 
can be placed in the MSRM in the time it takes for a single 
pass of the data. Thus this operation is just as fast as the 
seemingly similar operation of screening all records that 
satisfy a given inequality or property. 

Basic searching operations can also be performed in 
linear time. If an ordered sequence of size n is placed in the 
MSRM and q individual query records are submitted, then 
these records can be input serially, without delay, and the 
records with matching keys can be located in time 
proportional to q. 

iThe text of this paper was prepared by R. R. Read. The portion of the paper that pertains to the MSRM was obtained in 
part from various papers prepared by myself. We suggest that any inquiry regarding the procedures mechanized with the 
MSRM be directed to me; it is unfortunate that proprietary considerations interfere with publication of some of the details of 
the MSRM.        Philip N. Armstrong 



P.N. Armstrong and R.R. Read     147 

There is an additional advantage in that input and 
output operations can take place simultaneously; as one 
record is going in, another one can be withdrawn. If this is 
done in sort mode, then the input records must be for a new 
sorted file. If non-destructive output from the MSRM is 
desired, the records received by the processor may be 
reinserted into the MSRM either as a new file or into the 
original file. The bi-directional transmission is indicated in 
Figure 1. 

MSRM 

Processor 

General Computing System with MSRM 

Figure 1 

The use of the MSRM relieves the computer's system 
control of many of its tasks. One requires but a single 
address in the MSRM and writing the file, all records 
serially, to that address. On output, the records are read 
serially from that address. Thus the MSRM behaves as a 
pipe; it has the added advantage that the records are 
rearranged while being placed in and withdrawn from "the 
pipe". 

2.   Timing Comparisons. 
The importance of sorting has received some recent 

attention [4, 5]. Typically computer centers use software 
systems to perform sorting operations when sorting is 
required. Normally these calls are not visible to the user. 
Time spent sorting is buried in the elapsed time of a job and 
the number of calls to sorting operations is also lost. 

Some idea of the size and speed of an MSRM system 
may be gained by comparing it with a large computer, e.g., 
an IBM 9012. The MSRM, operating at currently feasible 
frequency, is faster than the IBM system, according to the 
published IBM specifications [4]. An MSRM system can be 
constructed in accordance with the parameters: 

Capacity: 1.2 gigabytes; MSRM word size: 4 bytes 
Record Length is any fixed number of words 
Memory Input/Output speed: 107 words per second 

The amounts of time required for sorting files of various 
sizes with the IBM system and with the MSRM are 
tabulated in Table 1. In it, the column I/M is the ratio 

defined by the amount of time consumed by the RAM 
(IBM) system divided by the amount of time consumed by 
the MSRM system. 

The file and record sizes used in Table 1 may seem 
larger than those contemplated in many statistical 
computations. Generally, the sorting advantage is a factor of 
log2(n). The MSRM advantage increases with the number of 
records in a file (data set); and never is it at a disadvantage. 

Table 1 
MSRM Sort Timing 

File Size MSRM Elapsed2 IBM Elapsed3 Ratio 
(Megabytes) MTime I Time I/M 

10 .25 8 32 
20 .5 13 26 
40 1.0 26 26 
80 2.0 50 25 

150 3.75 93 24.8 
300 7.5 182 24.2 
600 15 366 24.4 

1200 30 725 24.2 

3.   Statistical Computing. 
The sorting and skimming capabilities of the MSRM 

serve nicely for the elementary operations in data analysis. 
Suppose the data are (x\, X2,.... xn) and we require the 
order statistics, the empirical distributive function, 
histograms, and ranks. The order statistics 

2The quoted amounts of time do not include time for 
access to the mass store, if any, in which the data is stored; 
it is assumed that the file passes to the MSRM at the rate of 
107 bytes per second. It is also assumed that, since data can 
pass from the MSRM in sorted order, that it is not necessary 
to record the file in mass memory after it is received in the 
MSRM. The computed time is thus, for the file of 300xl06 

bytes, 300xl06/4xl07 = 7.5 seconds. This would also be the 
output time if output is required before other uses for the 
sorted file requires such storage. 

3The IBM data is published in Ref. 4. In trials to 
determine the accuracy of the data assumed here, an Amdahl 
computer was used (the Amdahl 5995-700A installed at the 
Naval Postgraduate School at Monterey, CA) with the 
collaboration of the Defense Manpower Data Center at 
Monterey. The Amdahl system is somewhat slower than the 
IBM system, but still the input/output time was reported to 
be negligible compared to the sort time. This suggests that 
the timing shown for the MSRM is at least nearly attainable 
in the large IBM or Amdahl systems and neglect of the 
input/output time is not a distortion of the MSRM 
performance. 
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*(l)M2)^-5*(») 
can be obtained in linear time. The pairs (pcyy l/n) 
effectively form the empirical cdf. The construction of 
histograms follows directly from the order statistics for the 
empirical cdf. Indeed the latter is useful for the construction 
of histograms having equi-probable cells. 

The generation of ranks seems to require an extra step: 
form the pairs (xj.j) as records and rearrange the file 
according to increasing XJ in the MSRM. The output file has 
records of the form (*(,>./(,•> i) and j(\y fa will be the 
inverse permutation of the ranks. The indices i are appended 
during the output process. Then the pairs (/(,), i) are input to 
the MSRM and sorted according to increasing values of the 
{/(,•)}. The output will be the pairs (j, *)•) where [rj\ is the set 
of ranks. 

The skim operation allows immediate trimming of the 
data set without prior ordering. The top m =<pn> of the data 
(where 0 < p < 1) can be removed with a single pass. That 
top portion will reside in the MSRM and can be withdrawn 
in sorted order. Such operations permit rapid access for the 
study of extrema and outliers. The remainder of the data will 
be in its original order 

Both tails can be trimmed virtually simultaneously: the 
observations enter a single address of the MSRM which will 
accept (and order) the first m. As the next observation goes 
in it is compared with the smallest of the first m\ the larger 
of these two replaces the smaller which in turn is sent to a 
different MSRM file address (for skimming the lower <qn> 
observations in a similar manner). This continues serially 
and the file retained at the original address will contain the 
<pn> largest while the file retained at the second address 
will contain the <qn> smallest. These latter will be in 
decreasing order. Of course p + q < 1. The remainder of the 
data returns to ordinary storage (or perhaps is discarded). 

The summation of the observations in a large data set 
may be accomplished profitably using the MSRM in some 
instances. If we insert {x\,...,x,ij for withdrawal in 
decreasing order of magnitude, then a sharp approximation 
to the total may be computed without summing them all. 
More specifically we can accumulate 

Sm = *(l)+*(2)+ ... +*(/n) 
and the error in Sm is dominated by 

\n-m\ ■ \xQn+i)\. 
We close with a more complex example of exploitation 

of the MSRM in statistical computing. It serves to illustrate 
the effective use of the MSRM in a statistical estimation 
method. Consider isotonic regression in the simply ordered 
case. We use the notation of [2,3]. We hope to convince the 
reader that the pool-adjacent-violators-algorithm (PAVA) 
can be modified to exploit the capabilities of the MSRM and 
that the estimates can be produced in less time. 

The setting is a set of k linearly ordered entities 
x\<X2<xj) <...<Xk 

and to each there is a value, g[ = g(xf) and a weight w; > 0. 
The goal is to compute the isotonic regression values [g*] 
for i = 1 k. These are the ordered values 
(1) gl*Zg2*Z...<gk* 
that most closely resemble the original {#,-}. The sense for 
which this holds is described in the first chapters of [2, 3]. 
The development considers the cumulative sum diagram 
(CSD) defined by the scatter plot of {Wj, Gj) for j = 
0,1 k where WQ = Go = 0 and 

/                                   j 
Wj = 2>,-     and    G;-= ]►>,•&•. 

t=l                            i=l 
See Figure 2 for an example. The development of the PAVA 
involves the construction of the greatest convex minorant 
(GCM) of the CSD; i.e., the supremum of all convex 
functions whose graphs are below the CSD. It is known that 
g* is the left derivative of the GCM at Wi for / = 1 k. 

The first step is to check whether 
gl<g2<...<gk 

is the original condition. If so then g* = gi for all i = 1,.... k 
and there is nothing more to be done. The MSRM can make 
this check in linear time. (If this condition is satisfied then 
the CSD is a scatter plot which, when the successive points 
are connected with straight line segments, forms a convex 
function.) 

If the first check fails, then the PAVA seeks a set of 
levels or blocks of subscripts so that the [gi*} are constant 
within blocks but variable from block to block. Initially each 
subscript is a block. The polling of subscripts to form larger 
blocks is accomplished through the selection of "violators", 
i.e., adjacent pairs having the property gi > gi+\. This pair 
combines two blocks into one using the weight of average 

(w/ gi + wi+i gi+i) I (wi + wi+i) 
for its value and (w; + w;+i) for its weight. Then the 
monotone inequality (1) is checked again. The algorithm is 
finished if it is satisfied; otherwise choose another violator 
pair and repeat the method. 

The construction of blocks is done sequentially. That is, 
a block size grows in increments of one during each 
iteration. It is possible to speed up this process. 

In the interest of brevity let us suppose there are many 
violators. Our goal is to illustrate the usefulness of the 
MSRM without unnecessary details. 

Form records of the type 
{Wj,GjJ) forj = 0,l,...,k 

and send this file to an address in the MSRM so that the 
records can be withdrawn in increasing order of the [Gj). It 
is convenient to include the index j in each record. When 
withdrawing records from the MSRM we must make 
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comparisons and assign each to either the left pool, LP, or 
the right pool, RP, according to whether j < TL orj > TR. 
We also need a base value for computing slopes: GL for the 
left pool and GR for the right pool. Initially GL = GR = 
min{G/} and TL = TR = j of the First record to come out of 
the MSRM. The common horizontal accumulated weight is 
WL = WR = W. 

G 
< 

• 

• 

• • 

• 
• 

■ V 

TL 

""TR 

w 

0 * 

Scatter Plot that Supports the Cumulative Sum Diagram 
Steps to Construct the Greatest Common Minorant 

Figure 2 

The diagram can be used to visualize an iterative step in 
the construction of the GCM. The records come out in 
increasing order of [Gj). The record is assigned to LP if 
j< TL and to RP if j > TR. As the records come out we 
compute the appropriate slope 

GL-G G-GR 
WL-W °r W-WR 

and send records (SL, W.j) to a new file in the MSRM for 
the left pool, and records (SR, W, j) to another new file for 
the right pool. The left pool is sorted in descending order, 
(i.e., ascending order of magnitude), and the right pool is 
sorted in ascending order. The iterative step stops when 
either y = 0 or; = k. 

For definiteness suppose we are stopped at y = 0. Then 
we address the file that contains the SLs (i.e., the left slopes) 
and extract the first one (the largest slope). We set g* = SL 
for ally < i £ TL; we update TL =j, WL = W and purge the 

left slope file. Next check the updated (1) for violators at TL 
or to its left. The left pool can be abandoned if there are 
none. We also return the {W, G,j) records, fory <, TL, to the 
original MSRM file address. The others are discarded. Then 
start another iteration. It may begin a new left pool or it may 
complete the existing right pool or both. Note that it is never 
necessary to use slopes of segments connected to CSD 
points that are above zero for the left pool, or above Gk for 
the right pool. It is clear that the process will finish and 
produce the desired isotonic regression. 

The algorithm, with obvious modification, can be used 
to find the convex hull of a two dimensional point cloud. 
Also there is an obvious simplification to this version of the 
PAVA. One can add a known constant to all of the [gi) so 
that there are no negative values. This will circumvent the 
need for a left pool. 

The speed of the procedure rests on the fact that there is 
but a minimal amount of addressing. Each address merely 
opens a "pipe" from which all needed information appears 
and in the proper order. The number of addresses is not 
determined by the magnitude of the data set; it appears to be 
small, perhaps 3 or 4. Also, the original PAVA appears to 
have more intermediate steps, more overt comparisons, and 
more weighted averages to compute. It would be interesting 
to have timed comparisons for a variety of cases. 

The advantages of using an MSRM lie in simplified 
programming, fewer address and fetch operations, and 
greater speed. 
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Abstract 
Histogram-type density estimators have some 

notable computational advantages over other forms of 
density estimation by virtue of the WARPing 
algorithm. However, traditional fixed-bin-width have 
less than satisfactory smoothing properties, being too 
coarse in regions of high density and too fine in 
regions of low density. Scott (1992) suggests the ASH 
algorithm as a means of overcoming these problems, 
but the ASH algorithm is computationally intensive 
somewhat negating the benefits of WARPing. 
Wegman (1975) proposed a variable bin-width 
technique for one dimensional density estimators and 
used sieve-type methods to show strong consistency 
results that did not depend on smoothness properties 
of the underlying density. In this paper, we extend 
this idea to high-dimensional, variable bin-width 
meshes. The boundaries of the bins are determined 
by a random subsampling of the observations. An 
extension of the WARPing algorithm may still be 
used for fast computation. We give combinatorial 
arguments for calculating the number of bins and also 
the conditional expectation and variance of the 
number of observations per bin. Conditional on the 
random hyper-rectangular tessellation, we calculate 
the maximum likelihood density estimator. 

Introduction 

In this paper, a density estimation method is 

developed that is computationally more tractable than 

kernel density methods, and has better smoothing 

properties   than   traditional   fixed   binning  methods. 

The basic method is easy to describe in one 

dimension. Randomly select a subset of m 

observations \Y*} from a set of n observations {Y>, 

m < n, together with the maxiY} and miniY}. Order 

the set \Y*} in the set {^(*.)}- A set of random 

width bins {B\ can be can be constructed using 

adjacent elements in the set I Y? \ I. Then attribute 

the probability mass of all observations in {Y} to the 

bins in iB). The probability density on an element 

Bi 6 {B) is the relative probability mass on Bi 

divided by the length of Bit cf. Wegman (1975) and 

Hearne and Wegman (1991). There are many ways to 

generalize these results to a d-dimensional support 

space. The generalization that we have adopted here 

is to define random-width d-dimensional rectangular 

bins generated by a random sample from the set of 

observations. 

Random-width (/-Dimensional Bin Tessellation 

Given a set of n observations, iY), in a d- 

dimensional Euclidian space, let A„ be the minimum 

(/-dimensional rectangular cover of iYh Each 

observation   Y-£iY)  can   be   written   in   the  form 
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Yj = (Y),Y2
j,--;YJ\ Then Ad

n can be defined by 

the set of maximum and minimum values for the d 

coordinate axes, 

A* = {z € »rf: *•' > min(y*) A «*' < maa^F*')}. 

A (/-dimensional rectangular tessellation of Ad 

can be generated by selecting a random subsample of 

N observations {SN} from {Y>. For each of the d 

coordinate axes let < S^ r be the set of the i 

coordinate for all Y £iSN\ together with rnaxyY1) 

and min{Yl). Let < 5/. \ \ be the ordered set of unique 

elements in < S^ > and s% = cardl SI. > >. A set of one 

dimensional bins, {ß1}, can be generated for each of 

the d coordinate axes by adjacent elements in the set 

j £(.)}) and card\B,f = s* — 1. The tf-dimensional 

rectangular random tessellation s JBjy > of A^ can then 

be generated by the cross product of the sets of one 

dimensional bins for each coordinate axis; 

{^} = {B1}x{B2}x..-x{ßd},and 

m = card{Bd\ = ]J {s{ - 1). 

The upper bound on the cardinality of the set of 

one dimensional bins that are generated for each of 

the coordinate axes is «* — 1 < N +1, 1 < i < d, since 

the random sample {SN} may have observations that 

contain mai^Y*) or miniY*), observations are 

recorded only to finite precision, and computers 

operate on a subset to the rational numbers. The 

cardinality of the tessellation {##[ then has an 

upper bound, given the random subsample {S^} of 

m = card{Bd\ - \[ (**" - l) < (N + if. 

In Figure 1 a set of observations {Y} in 3?2 have 

values maa^y1), miniY1), maj\Y2\ and min\Y2). 

These values define the minimum 2-dimensional 

rectangular cover A2
n of iYh   A random subsample of 

observations is drawn from {Y>, {53} = (pvp2,p3\ 

These three points together with the maximum and 

minimum values for each of the coordinate axes 

generate the set of bins {.B2,} of A^. 

At 
ma, 4Y>) 

mm\ (y2) 

Ps r 

-|P3 

Pl r 

min(Yl) mad^Y1) 
Figure 1 

The tessellation < B„ | of A^ is adaptive in the 

sense that the elements of the tessellation tend to be 

large where the observations are sparse and small 

where the observations are not sparse. 

Conditional Expectation and Variance of the Number 

of Observations per Bin 

Let Bk, 1 <k <m, be the Jb d-dimensional bin 

in the tessellation s Bd > of Ad, and let Zk be the 

number of observations in {Y) that are in Bk. The 

expected value of Zk given the tessellation i B„ > is 

the number of observations that might be attributed 

to the Jb bin times the probability that the d- 

dimensional random variable X is in the k    bin; 

^Zk\{Bdn}] = ^-N)P(X€Bk). 

Let Up 1 < Ji < d, be the empirical probability 

mass      on      the      j one      dimensional      bin, 

1 < j < s* — 1, for the i    coordinate axis, 
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Using order statistical arguments, cf. Rohatgi 

(1976) pp.575-580, it can be shown that; 

t[v) | {*•"}] = -j-f 1 < i < *' - 1, and 

Since the tessellation < Bn > of An is generated by the 

cross product of the one dimensional bins on each of 

the d coordinate axes then the probability mass that 

is on a given d-dimensional bin Bk G \ £„ f, given the 

tessellation j £„ >, is; 

\vk | {l?*}] = n^TJ. 1 < * < m, and 

Multiplying by the number of observations that might 

be attributed to a d-dimensional rectangular bin, 

n — N, and applying the inequality bounding the 

cardinality of the number of bins in the tessellation; 

A Class of Probability Density Estimators 

Let n be the number of observations in the set of 

observations {Y}, and let nk be the number of 

observations in the ib rectangular bin in the 

tessellation -s J5„ k Let W(Nk\ be the probabilistic 

mass of observations in the tessellation generating set 

{5jy} that are attributed to an adjacent bin in the 

tessellation Bk G\B*\ by the function W( ■). And 

let Ck be the cf-dimensional content of the Jfc 

element of the tessellation.    Then we can define a 

class    of    probability    density    estimators    on    a 

tessellation < Bn > by; 

nk + W(N.) 
f(xZBK)=      n.Ck        and 

P(^{ß"}) = °- 
This class of probability density estimators is 

constant on each bin in the tessellation, and the 

content of each of the d-dimensional bins in the 

tessellation Ck is easily computed. The probabilistic 

mass attribution function W( •) is closely related to 

the likelihood function. 

The Likelihood Function 

The likelihood function was introduced as a 

means for optimizing the parameter values in the 

parametric density estimation setting so that the 

fitted parametric function would best fit a set of 

observations. In the nonparametric setting the 

likelihood function has utility if there is a variable in 

the class of density estimators. The weight that is 

attributed to bins in the tessellation by observations 

in {Sjy} is variable and can be used to optimize the 

likelihood function. 

The likelihood function for this class of 

probability density estimators is 

UX)~^ n-Ck • 

the product of the density estimates for each of the 

observations. But the class of density estimators that 

are presented here are estimators on the set of bins in 

the tessellation of A^ so the likelihood function can be 

reformulated in terms of the elements of the 

tessellation; 
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Taking the first derivative of the log of the 

likelihood function with respect to W(JVfc); 

d _ m I        nk W(Nk)    \ 
dW{NZf9Ux) =£\nk + W(Nk)] nk + W(Nk)j 

+  £  (log(nk + W(Nk)) -log(n.Ck)\ 
k = 1 * 

If the first derivative is set equal to zero and solved 

for W(Nk) then the estimator will be optimized, 

either maximized or minimized depending on the sign 

of the second derivative of the log of the likelihood 

function. Taking the second derivative of the log of 

the likelihood function; 

i2 m Tit 

dWiNtf l°gUX) =£ink + W(NkJ 

The second derivative of the log of the likelihood 

function with respect to W(Nk) is positive on all bins 

in the tessellation that have observations in them, 

nk > 0, and is undefined where nk = 0. The likelihood 

function is thus convex and the likelihood function is 

maximized when the probabilistic mass of all 

observations in {5^} are attributed to the adjacent 

bin where -^— will be largest. 

A Random Bin-width Warping Algorithm 

For the proposed probability density estimation 

method to be of utility it is important that density 

estimates be readily computable, given a set of n 

observations, {Y), in a ef-dimensional Euclidian space. 

The principal computational complexity is in the 

attribution of observations to bins in the tessellation, 

\B^\, of the minimum d-dimensional rectangular 

cover of {Y>, A*. In conventional fixed width binning 

methods an algorithm called warping has been 

developed that increases the speed and reduces the 

computational complexity for attributing observations 

to bins in the tessellation. This algorithm has been 

extended to variable bin-width tessellations. 

Given N the number of observations in the 

random sample of observations used to generate the 

rectangular bins in the tessellation, the cardinality of 

the set of bins, m, is bounded by; 

m = card{Bd\= \[ (s''- l) <(iV + l)d. 
1     J    i = l 

For each coordinate axis there is an upper bound on 

the number of one dimensional bins that can be 

generated. Let Bound_Values[i, j] be a matrix with 

the ith row, 0 < i < d, corresponding to < S{.) > and 

Bound_Value[i,0]=mm(y'). Then for each row i, 

0 < j <s* - 1. Let Bin_Index[i, k] be a matrix with 

the ith row a vector of integer indices into the matrix 

Bound_Values[i,j], with 0 < k < w', where w* is the 

selected   number   of   warping   indices   for   the   i 

coordinate axis, s* — 1 < wx. 
T  * t«         • (vi\     J   »'     mcuKY*)- min\Yx) » Let b = min\Y ) and a = ^ -. for 

w 

the  ith  coordinate  axis,  0 < i < d.     For any  point 

z'e mire inM, mar (Y')\ then the value 

V-6') Index = Truncate 

;th is an integer in the range 0 < Index < w*. Let the i 

coordinate axis and the kth entry in the matrix 

Bin_Index[i, k] be the smallest index j into the 

matrix Bound_Values[i, j] such that 

a'(lndex + b') < Bound_Values[i, j]. 

Then an efficient algorithm to compute the bin index 

for the ith coordinate axis, 0 < i < d, is shown in the 

following code fragment. 
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Get_Bin_Index(i, x') 

Table_Index = Truncate((a:'-6')/a') 

Index = Bin_Index[z, Table_Index] 

While(i' > Bound_Values[i, Index]) Index++ 

Return Index 

The size of the number of warping indices, w*, is 

specified by the user of the density estimation 

method. The question of how large tu* should be is of 

interest. We want to maximize the probability of 

selecting the correct bin index on the first attempt for 

each of the d coordinate axes. The bounds on the 

probability of selecting the correct bin index on 

the first attempt is; 

I\x* < Bound_Values[i,Bin_Index[t,Table_Index]]) 

^ u>*' - s* + 1 

The larger w* is relative to s% — 1, the larger the 

probability that the correct bin index will be 

computed on the first attempt. If the density 

function is symmetric then the expected value of the 

probability is : —. 

function is convex a function that can be maximized 

or minimize to give a maximum entropy estimate by 

selecting the appropriate probabilistic weight 

distribution function W{ •), cf. Hearne and Wegman 

(1992). By applying an extension to the WARPing 

algorithm, the computational complexity of the 

random-width binning method is only slightly more 

computationally intensive than fixed-width binning 

methods. 

One of the natural extensions to random-width 

binning methods is to apply a resampling scheme, cf. 

Billard and LaPage (1992). Given smoothness 

assumptions about the underlying probability density, 

then the size of the set of observations, the dimension 

of the observations space, and the expected value and 

variance bound on the number of observations that 

are attributed to each bin might be used to find the 

optimal subsample size, and the number of resampling 

repetitions necessary to achieve the desired density 

estimate smoothness. Resampling in an optimal way 

is believed to be less computationally intensive than 

either kernel or ASH methods, cf. Scott (1992). 

Conclusions and Extensions 

Random-width binning methods are a 

computationally tractable alternative to fixed-width 

binning methods. The size of the bins in a d- 

dimensional space are adaptive so that the bins will 

tend to be large where the observations are sparse and 

small where the observations are not sparse. Bounds 

on the expected value and variance of the number of 

observations that are attributed to each bin can be 

calculated, given the size of the subsample that is 

randomly selected from the set of observations to 

generate   the   (/-dimensional   bins.      The   likelihood 
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Abstract 

A non-greedy approach for constructing globally optimal 
multivariate decision trees with fixed structure is pro- 
posed. Previous greedy tree construction algorithms are 
locally optimal in that they optimize some splitting crite- 
rion at each decision node, typically one node at a time. 
In contrast, global tree optimization explicitly considers 
all decisions in the tree concurrently. An iterative linear 
programming algorithm is used to minimize the classifi- 
cation error of the entire tree. Global tree optimization 
can be used both to construct decision trees initially and 
to update existing decision trees. Encouraging computa- 
tional experience is reported. 

1    Introduction 

Global Tree Optimization (GTO) is a new approach for 
constructing decision trees that classify two or more sets 
of n-dimensional points. The essential difference between 
this work and prior decision tree algorithms (e.g. CART 
[5] and ID3 [10]) is that GTO is non-greedy. For greedy al- 
gorithms, the "best" decision at each node is found by op- 
timizing some splitting criterion. This process is started 
at the root and repeated recursively until all or almost 
all of the points are correctly classified. When the sets 
to be classified are disjoint, almost any greedy decision 
tree algorithm can construct a tree consistent with all 
the points, given a sufficient number of decision nodes. 
However, these trees may not generalize well (i.e., cor- 
rectly classify future not-previously-seen points) due to 
over-fitting or over-parameterizing the problem. In prac- 
tice decision nodes are pruned from the tree. Typically, 
the pruning process does not allow the remaining deci- 
sion nodes to be adjusted, thus the tree may still be over- 
parameterized. The strength of the greedy algorithm is 
that by growing the tree and pruning it, the greedy al- 
gorithm determines the structure of the tree, the class 
at each of the leaves, and the decision at each non-leaf 

node. The limitations of greedy approaches are that lo- 
cally "good" decisions may result in a bad overall tree 
and existing trees are difficult to update and modify. 

GTO overcomes these limitations by treating the deci- 
sion tree as a function and optimizing the classification 
error of the entire tree. The function is similar to the one 
proposed for MARS [8], however MARS is still a greedy 
algorithm. Greedy algorithms optimize one node at a 
time and then fix the resulting decisions. GTO starts 
from an existing tree. The structure of the starting tree 
(i.e. the number of decisions, the depth of the tree, and 
the classification of the leaves) determines the classifica- 
tion error function. GTO minimizes the classification er- 
ror by changing all the decisions concurrently while keep- 
ing the underlying structure of the tree fixed. The advan- 
tages of this approach over greedy methods are that fixing 
the structure helps prevent overfitting or overparameter- 
izing the problem, locally bad but globally good decisions 
can be made, existing trees can be re-optimized with ad- 
ditional data, and domain knowledge can be more readily 
applied. Since GTO requires the structure of the tree 
as input, it complements (not replaces) existing greedy 
decision tree methods. By complementing greedy algo- 
rithms, GTO offers the promise of making decision trees 
a more powerful, flexible, accurate, and widely accepted 
paradigm. 

Minimizing the global error of a decision tree with fixed 
structure is a non-convex optimization problem. The 
problem of constructing a decision tree with a fixed num- 
ber of decisions to correctly classify two or more sets is 
a special case of the NP-complete polyhedral separabil- 
ity problem [9]. Consider this seemingly simple but NP- 
complete problem [9]: Can a tree with just two decision 
nodes correctly classify two disjoint point sets? In [4], 
this problem was formulated as a bilinear program. We 
now extend this work to general decision trees, resulting 
in a multilinear program that can be solved using the 
Frank-Wolfe algorithm proposed for the bilinear case. 

This paper is organized as follows. We begin with a 
brief review of the well-known case of optimizing a tree 
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Figure 1: A typical two-class decision tree 

consisting of a single decision. The tree is represented as 
a system of linear inequalities and the system is solved 
using linear programming. In Section 3 we show how 
more general decision trees can be expressed as a sys- 
tem of disjunctive linear inequalities and formulated as 
a multilinear programming problem. Section 4 explains 
the iterative linear programming algorithm for optimizing 
the resulting problem. Computational results and conclu- 
sions are given in Section 5. 

GTO applies to binary trees with a multivariate deci- 
sion at each node of the following form: If a; is a point 
being classified, then at decision node d, if xwd > fd the 
point follows the right branch, if xwd < jd then the point 
follows the left branch. The choice of which branch the 
point follows at equality is arbitrary. This type of decision 
has been used in greedy algorithms [6, 1]. The univariate 
decisions found by CART [5] for continuous variables can 
be considered special cases of this type of decision with 
only one nonzero component of w. A point is classified 
by following the path of the point through the tree until 
it reaches a leaf node. A point is strictly classified by 
the tree if it reaches a leaf of the correct class and equal- 
ity does not hold at any decision along the path to the 
leaf (i.e. xwd ^ yd for any decision d in the path). Al- 
though GTO is applicable to problems with many classes, 
for simplicity we limit discussion to the problem of clas- 
sifying the two sets A and B. A sample of such a tree is 
given in Figure 1. Let A consist of k points contained in 
Än and B consist of m points contained in Rn. Let Aj 
denote the jth point in A. 

As0 ..   .  L 

(a)   Tree found by Greedy LP Algorithm 

• • ♦.      •        -   •   .       ,  .      » 

♦     ♦ ♦♦ 
♦*     * .♦    ♦   *    **    * 

♦      ♦    .. +     + 

(b) Tree found by GTO 

Figure 2: Geometric depiction of decision trees 

consisting of a single decision node. We briefly review 
one approach which formulates the problem as a set of 
linear inequalities and then uses linear programming to 
minimize the errors in the inequalities [3]. The reader is 
referred to [3] for full details of the practical and theoret- 
ical benefits of this approach. 

Let xw = 7 be the plane formed by the decision. For 
any point x, ifxw<y then the point is classified in class 
A, and if xw > y then the point is classified in class B. If 
xw = 7 the class can be chosen arbitrarily. All the points 
in A and B are strictly classified if there exist w and 7 
such that 

AjW-j<0   j — l...m /jx 
k BiW - 7 > 0    i = 1 

or equivalently 

-AjW + f>l   j = l...m 
Btw - 7 > 1    i = 1 • • • k 

(2) 2     Optimizing a Single Decision 
Many methods exist for minimizing the error of a tree   Note that Equations (1) and (2) are alternative definitions 
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min 
tu,7 

1   m          1   * 
-!> + *£>• 

;=1                i=l 

s.i. Hi > AjW-y + 1 w>o i = i. . .m 
z{> -Bitv + 7 + 1 * > 0    i=l. .ib 

of linear separability.   The choice of the constant 1 is 
arbitrary. Any positive constant may be used. 

If A and B are linearly separable then Equation (2) 
is feasible, and the linear program (LP) (3) will have a 
zero minimum. The resulting (w, 7) forms a decision that 
strictly separates A and B. If Equation (2) is not feasible, 
then LP (3) minimizes the average misclassification error 
within each class. 

(3) 

LP (3) has been used recursively in a greedy decision 
tree algorithm called Multisurface Method-Tree (MSMT) 
[1]. While it compares favorably with other greedy de- 
cision tree algorithms, it also suffers the problem of all 
greedy approaches. Locally good but globally poor deci- 
sions near the root of the tree can result in overly large 
trees with poor generalization. Figure 2 shows an exam- 
ple of a case where this phenomenon occurs. Figure 2a 
depicts the 11 planes used by MSMT to completely clas- 
sify all the points. The decisions chosen near the root 
of the tree are largely redundant. As a result the deci- 
sions near the leaves of the tree are based on an unnec- 
essarily small number of points. MSMT constructed an 
excessively large tree that does not reflect the underlying 
structure of the problem. In contrast, GTO was able to 
completely classify all the points using only three deci- 
sions (Figure 2b). 

3      Problem Formulation 

For general decision trees, the tree can be represented as 
a set of disjunctive inequalities. A multilinear program 
is used to minimize the error of the disjunctive linear 
inequalities. We now consider the problem of optimizing a 
tree with the structure given in Figure 1, and then briefly 
consider the problem for more general trees. 

Recall that a point is strictly classified by the tree in 
Figure 1 if the point reaches a leaf of the correct classifi- 
cation and equality does not hold for any of the decisions 
along the path to the leaf. A point Aj G A is strictly 
classified if it follows the path through the tree to the 
first or fourth leaf node, i.e. if 

or equivalently 

(AJW
1
 - 71 + 1)+ • (Ajw2 - T

2 + 1)+ = 0 
or 

/ AJW
1
 - 71 + 1 < 0 \ 

\ Ajw2 -7
2 + l<0 / 

-Ajw
l+j1 + 1 <0 

Ajw3-y3 + 1 <0 
-AJW

4+ y* + l <0 

(4) 

(-Ajw1 + 71 + 1)+ • (Ajw3 -J3
 + 1)+. ^ 

(-A,-«;4 + 74 + l)+ = 0 

where (Q+ := max{£, 0}. 
Similarly a point B{ € B is strictly classified if it follows 

the path through the tree to the second, third, or fifth leaf 
node, i.e. if 

/     Biw1 - 71 + 1 < 0 \ 
\ -5,u;2 + 72 + l<0 / 

or 
-Biw1 + 71 + 1 < 0 

Biw3 - 73 + 1 < 0 
Biw4 - 74 + 1 < 0 (6) 

or 
/ -ß,U'1+71+l<0 \ 
\ -B,u;3 + 73 + l <0 / 

or equivalently 

(Biw1 - 71 + 1)+ ■ (-Biw2 + 72 + 1)+ = 0 
or 

(-Biw1 + 71 + 1)+ • (Biw3 - 73 + 1)+. 
(Bi«/4-74 + l)+ = 0 

or 
(-Biw1 + 71 + l)+(-BiW3 + 7

3 + 1)+ = 0 

(7) 

A decision tree exists that strictly classifies all the 
points in sets A and B if and only if the following equation 
has a feasible solution: 

X)(2/l; + V2j) ■ (Zlj + 3/3; + Z4j) + 
3=1 

^2(uu + v2i) ■ (vu + u3i + u4i) ■ (vu + v3i) = 0 
1=1 

where   ydj = (Ajwd - jd + 1)+     ; = 1... m 
zdi=(-Ajwd + jd + l)+ 
udi = (BiWd-yd + l)+     i = l...k 
vdi=(-BiWd + jd + l)+ 

for d=\...D 
and D =  number of decisions in  tree. 

(8) 

Furthermore, (w ,7"), d = 1...D, satisfying (8) form 
the decisions of a tree that strictly classifies all the points 
in the sets A and B. 

Equivalently, there exists a decision tree with the given 
structure that correctly classifies the points in sets A and 
B if and only if the following multilinear program has a 
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zero minimum: (m) „•+i - (1 - X')xi + AV where 

mm ^£(yii+y*i) ■ fa*+y*i + ***) + 
i=i 

l£fai + "2')' fa' + U3i + U4i)' fa' + V3i^ 
s.t. . .m Vds > Ajwd-yd + 1    i = l. 

«di > •B,«;d - -yd + 1     i=l...* 
vdi > -B{Wd + yd + l 
for d=l...j 
y,z,u,v>0 

(9) 
The coefficients ^ and £ were chosen so that (9) is 

identical to the LP (3) for the single decision case, thus 
guaranteeing that w = 0 is never the unique solution 
for that case [3]. These coefficients also help to make 
the method more numerically stable for large training set 
sizes. 

This general approach is applicable to any multivariate 
binary decision tree used to classify two or more sets. 
There is an error term for each point in the training set. 
The error for that point is the product of the errors at 
each of the leaves. The error at each leaf is the sum of 
the errors in the decisions along the path to that leaf. If a 
point is correctly classified at one leaf, the error along the 
path will be zero, and the product of the leaf errors will 
be zero. Space does not permit discussion of the general 
formulation in this paper, thus we refer the reader to [2] 
for more details. 

4    Multilinear Programming 

The multilinear program (3) and its more general for- 
mulation can be optimized using the iterative linear pro- 
gramming Frank-Wolfe type method proposed in [4]. We 
outline the method here, and refer the reader to [2] for 
the mathematical properties of the algorithm. 

Consider the problem min f(x) subject to x G X where 

f : R" —> R, X is a polyhedral set in Rn containing the 
constraint x > 0, / has continuous first partial deriva- 
tives, and / is bounded below. The Frank-Wolfe algo- 
rithm for problem is the following: 

Algorithm 4.1 (Frank-Wolfe algorithm [7, 4]) 
Start with any x° 6 X. Compute xi+1 from xi as fol- 
lows. 

(i) v' G arg vertex min V f{x%)x 

(«)        stop if v/(*V = v/(*V 

A*' G arg min  /((l - \)xl + Aw*) 

In the above algorithm "arg vertex min" denotes 
a vertex solution set of the indicated linear program. 
The algorithm terminates at some x> that satisfies 
the minimum principle necessary optimality condition: 
Vf(x*)(x ~ xJ) ^ 0> for all x G X, or each accumula- 
tion point x of the sequence {a;'} satisfies the minimum 
principle [4]. 

The gradient calculation for the GTO function is 
straightforward. For example, when Algorithm 4.1 is ap- 
plied to Problem (9), the following linear subproblem is 
solved in step (i) with (w, j, y, z, ü, v) = x': 

1   m 

min       — Y](yij + y2i)(zh + % + *4;) + 

1 
m 

^(yi,- + J/2J) • {hj + y3i + z4i)+ 

1 * 
1 T](ÜU + *2i) • (hi + «3i + "4<) 

.•=i 
•(«I; + v3i) + 

1 * 
i ]0«i*+^ ■ fa«+U3i+U4^' 

(til, + V3i) + 

k< 
i=l 

fc 

T ]Cfa< + V2') ' fa' + Ü3i + "4')' *^ 
i=l 

(hi + #3.) 
s.t.        ydj>AjW>-jd + l      Ford=l,...,D 

Zdj>-AjWd + 'Yd + l      j = l...m 
udi > BiWd - jd + 1      t = l...* 
vdi >-BiWd + jd + l 
y,z,u,v>0       fixed y,z,u,v,>0 

5    Results and Conclusions 

GTO was implemented for general decision trees with 
fixed structure. In order to test the effectiveness of the 
optimization algorithm, random problems with known so- 
lutions were generated. For a given dimension, a tree 
with 3 to 7 decision nodes was randomly generated to 
classify points in the unit cube. Points in the unit cube 
were randomly generated and classified and grouped into 
a training set (500 to 1000 points) and a testing set (5000 
points). MSMT, the greedy algorithm discussed in Sec- 
tion 2, was used to generate a greedy tree that correctly 
classified the training set. The MSMT tree was then 
pruned to the known structure (i.e. the number of de- 
cision nodes) of the tree. The pruned tree was used as a 
starting point for GTO. The training and testing set error 
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of the MSMT tree, the pruned tree (denoted MSMT-P), 
and the GTO tree were measured, as was the training 
time. This experiment was repeated for trees ranging 
from 3 to 7 nodes in 2 to 25 dimensions. The results were 
averaged over 10 trials. 

We summarize the test results and refer the reader to 
[2] for more details. Figure 3 presents the average results 
for randomly generated trees with three decision nodes. 
These results are typical of those observed in the other 
experiments. MSMT achieved 100% correctness on the 
training set but used an excessive number of decisions. 
The training and testing set accuracy of the pruned trees 
dropped considerably. The trees once optimized by GTO 
were significantly better in terms of testing set accuracy 
than both unpruned and pruned MSMT trees. 

The computational results are promising. The Frank- 
Wolfe algorithm converges in relatively few iterations to 
an improved solution. However GTO did not always find 
the global minimum. We expect the problem to have 
many local minima since it is NP-complete. We plan to 
investigate using global optimization techniques to avoid 
local minima. The overall execution time of GTO tends 
to grow as the problem size increases. Parallel compu- 
tation can be used to improve the execution time of the 
expensive LP subproblems. The LP subproblems (e.g. 
Problem (9)) have a block-separable structure and can 
be divided into independent LPs solvable in parallel. 

We have introduced a non-greedy approach for opti- 
mizing decision trees. The GTO algorithm starts with an 
existing decision tree, fixes the structure of the tree, for- 
mulates the error of the tree, and then optimizes that er- 
ror. An iterative linear programming algorithm performs 
well on this NP-complete problem. GTO optimizes all 
the decisions in the tree, and thus has many potential ap- 
plications such as: decreasing greediness of constructive 
algorithms, reoptimizing existing trees when additional 
data is available, pruning greedy decision trees, and in- 
corporating domain knowledge into the decision tree. 
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Abstract1 

Most algorithms which induce model structure from 
sample data proceed, to varying degrees, "greedily". That is, 
they sequentially add to the current model the candidate 
component which works best with the existing structure. 
(Such components include a linear term with stepwise 

regression, a small polynomial with GMDH-like methods2, 
or a threshold split with decision trees.) 

This greedy search procedure is relatively fast, but is not 
optimal, as there can exist models within the "reachable" 
space which have less complexity and/or greater accuracy on 
the training data. Indeed, this difference in training perfor- 
mance between optimal and greedy models can be surpris- 
ingly large. Still, it is not clear how much greediness hurts 
in practice, and whether greedy models typically under 
perform on unseen, but similar data. 

Here, we review example effects of greediness in regres- 
sion to motivate study of the issue with another popular 
model form: decision trees. A new tree algorithm, "Texas 
Two-Step", is introduced which looks ahead one more gener- 
ation than standard procedures. In other words, it judges a 
potential split not by how the resulting child nodes turn out, 
but by how the grandchildren do. Preliminary results are 
compared on a recent field application: identifying a bat's 
species by its chirps. 

1. Automated Induction 

Inductive algorithms are, at one level, "black boxes" for 
developing classification, estimation, or control models 
from sample data. They automatically search a vast space of 
potential models for the best inputs, structure (terms and 
interconnections), and parameter values. The models are 
pieced together in a stepwise manner into a feed-forward 
network (e.g., tree) of simple nodes. The better methods 
also prune unnecessary terms or nodes from the model, 
thereby regulating complexity to reduce the chance of 
overfit. Overfit models are over-specialized to the training 

data and generalize poorly (fail on new data). This is widely 
held to be the chief danger of using inductive methods. 

Complexity is regulated either through 
1) term penalties, as with model selection criteria such 

as Cp (Mallows, 1973) and Minimum Description 
Length, MDL (Rissanen, 1978), 

2) roughness penalties (integrated second derivatives of 
the estimation surface), or 

3) tests on withheld data (e.g., V-fold cross-validation). 

The penalties add to an error measure, and models having the 
lowest combined score are judged the best candidates for use. 

Stepwise regression can be considered a low-level auto- 
mated induction algorithm. Though the set of possible 
models (linear combinations of a subset of original candidate 
inputs) is quite constrained, the procedure does identify 
which variables to employ and can increase or reduce the size 
of the set under consideration. 

In contrast, Artificial Neural Networks (ANNs) are not 
inductive methods by the definition used here, as their struc- 

ture is fixed a priori? They can more precisely be viewed 
as a class of nonlinear models whose parameters are typi- 
cally set through a local gradient search called back-propaga- 

tion.^ (One suspects that ANNs, which can perform well 
even when they appear over-parameterized, may avoid overfit 
partly because of the weakness of this search algorithm! It 
is possible that improvement of the search procedure 
without simplification of the model structure may result in 

better training but worse out-of-sample performance.)^ 

Leading automated induction methods, using "building 
blocks" consisting of logistic functions, splines, polynomi- 
als, planes, non-parametric smoothes of weighted sums, etc. 
- are briefly described in (Elder, 1993) along with their chief 
strengths and weaknesses.   Here, we focus on one of the 

*This work was partially supported by an NSF Research 
Associateship in Computational Science and Engineering. 
2Group Method of Data-Handling (Ivakhenko, 1968).   See also 
the book edited by Farlow, 1984. 

^Removing small terms within ANN nodes does not address 
over-parameterization, where useless terms can appear 
significant though their coefficients collectively cancel. (The 
dangers of collinear variables in regression are analogous.) 

^This iterative search converges relatively slowly to a local 
minimum in parameter space, and it has recently been shown 
(Mulier and Cherkassky, 1993) that the presentation order of 
the data affects the particular minimum found. 

^If this danger is real, then the "greedy" nature of the gradient 
search may have benefits as well. 
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Figure 1: Greedy vs. Optimal Subset Selection 

latter: greediness, and look briefly at its effect on regression 
and decision trees. 

2. Subset Selection in Regression 

Due to the combinatorial explosion of a trial-and-error 
search process (the methods are at least polynomial in the 
inputs and often exponential), a greedy heuristic is often 
employed: models are constructed in stages, and only the 
current step is optimized at a given time. Forward selection 
finds the single best term, then adds to it the term which 
works best with the first, then the one which best assists the 
pair, and so on. (Note that this is very much more useful 
than a "first impression" model, which ranks the candidate 
terms according to their individual performance and employs 
the top K.) Reverse elimination begins with a "full" model 
and sequentially removes the least useful term. 

A combined method, stepwise selection (e.g., Draper 
and Smith, 1966) considers removing variables after each 
new variable is introduced. The standard selection mecha- 
nism, checking "F-to-enter" and "F-to-exit" significance 
values, is a kind of heuristic term penalty method, but not a 
correct use of F-tests. (The static significance measure is 
invalid in the dynamic modeling situation and can lead to 
highly inflated confidences in the resulting parameter values; 
see, e.g., Miller, 1990). 

This greedy growth strategy makes the search feasible 
and often discovers useful features, but can miss "reachable" 
structure in the data; that is, within the form of the basis 
functions employed. For example, given Y= {1,1,1,1}, 
X]={ 1,1,1,0}, X2={ 1,1,0,0}, Xy={0,0,l,l}, a stepwise pro- 
cedure would first choose xj with which to estimate Y, and 
then seek to add another x. However, an exact model, Y = 
x2 + x3> would not include that single best input. 
Surprisingly, even if there is agreement between the forward 
and backward procedures on the best model of each size, they 
can differ by an arbitrarily large amount from some of the 
best subsets (Berk, 1978). 

For example, Desroachers and Mohseni (1984) presented 
a purportedly optimal algorithm for model selection, and 
demonstrated it on a problem of estimating rocket engine 
temperature (from Lloyd and Lipow, 1962), where their 
small set results agreed with earlier analyses by Draper and 
Smith (1966). However, the approach turned out to be a 
version of forward selection. To compare these models with 
optimal subsets (of the candidate set defined by Desroachers 
and Mohseni), a new technique for term elimination had to 
be developed (Elder, 1990). Figure 1 shows the SSE of the 
greedy and optimal models of each size. The former leveled 
off at a limit of 40, while the latter were able to reach nearly 
the minimum error possible for the data (approximated by 
the Y axis base). Clearly, greedy methods can be improved 
upon significantly, in training, on real applications. 

For regression model building, a logical extension of 
the greedy growth strategy (while stopping short of the hope 
of "optimal" models) is to add chunks of terms at a time, 
rather than just one. This is the heart the approach taken in 
GMDH-like techniques, such as ASPN (Algorithm for the 
Synthesis of Polynomial Networks, Elder, 1985). There, 
sets of several terms, employing a few independent 
variables, are considered for inclusion simultaneously, then 
pared down by reverse elimination. Nodes of such equations 
are built up until the added complexity cannot be justified, 
according to a penalty criterion — either Predicted Squared 
Error (A. Barron, 1984) or MDL. An ASPN regression 
network, such as that shown in Figure 2, can have multiple 
layers of diverse nodes, each with several terms, resulting in 
a flexible compound function form. 

Extensive comparison with more greedy algorithms has 
yet to be performed, but several researchers have successfully 
employed such regression networks on applications which 
had proven very difficult by other methods, including auto- 
matic pipe inspection (Mucciardi, 1982), fish stock classifi- 
cation (Prager, 1988), reconfigurable flight control (Elder 
and Barron, 1988), tactical weapon guidance (Barron and 
Abbott, 1988), and temperature distribution forecasting 
(Fulcher and Brown, 1991). Though several areas of possi- 
ble improvement have been identified (Elder and Brown, 
1994), its success suggests that taking complex, rather than 
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Figure 2: Sample Regression Network 
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simple, steps might improve other constructive algorithms 
for induction, such as those used to build decision trees. 

3. Constructing Decision Trees 

Though there are other and earlier decision tree algo- 
rithms (e.g., ID3 and CHAID), CART (Classification and 
Regression Trees, Breiman, Friedman, Olshen and Stone, 
1984) is perhaps the best known and, arguably, most power- 
ful. Some of its nicer features include built-in cross-valida- 
tion, the ability to handle categorical variables and missing 
data, and a good presentation of the output. (Versions are 
also appearing which tie into commercial statistical pack- 
ages and improve the interface.) Still, the basic classifica- 
tion algorithm is very simple: try to discriminate between 
classes by recursively bifurcating the data until the resulting 
groups are as pure as can be sustained. That is, start with 
all the training data and choose the univariate threshold split 
(e.g., x3 < 1.14) which divides the sample into two maxi- 
mally pure parts (i.e., minimizes the sample variance of the 
sum). (Multi-linear splits (e.g., xl + 2x2 < 3) are possible, 
but do not seem to work well in practice, perhaps because of 
a poor internal search algorithm.) Then, continue with each 
of the parts (child nodes) until either no splits are possible, 
or the leaves (terminal nodes of the tree) are pure (represent 
only one class) or have some minimum size. Then, CART 
prunes back (simplifies) the tree, typically using cross-vali- 
dation, to avoid overfit. This over-training followed by 
pruning was found by CART's authors to lead to better trees 
than under the competing method of trying to select the 
growth stopping point. 

For estimation, the leaves are set to the mean or median 
value of the cases contained, forming a piecewise-constant 
surface, as shown in Figure 3 for a 4-node tree. 

This simple splitting approach is nevertheless powerful, 
as a sequence of threshold questions quickly conditions an 
individual case. Each path down the tree can have its own 
important variables and outliers have no special influence. 
Also, as with other methods which implicitly select 

Tabl lei: GreedyCounter-Examplefor 

Y a b c 
0 0 0 0 
0 1 0 0 
1 0 0 1 
1 1 0 1 
1 0 1 0 
1 1 1 0 
0 1 1 1 
0 1 1 1 

CART 

variables, a user can feel free to try more candidates than 
otherwise, since CART will sift through them unfettered by 
concerns about multicollinearity, which can hurt regression 
methods. However, if the candidate variables are jointly use- 
ful, relatively independent, and not beset by many outliers, 
other methods of discrimination can outperform CART. 

Here, we wonder simply if CART's strategy of choos- 
ing the greedy split cannot be improved. As a motivating 
example, consider the XOR-like data of Table 1. CART 
forms the approximation tree of Figure 4a (using a leaf size 
limit of < 2 cases). Its greedy search does not find the 
simpler, exact tree of Figure 4b. 

To explore whether an extension of the horizon to two 
steps ahead would be beneficial, a decision tree algorithm 
called "Texas Two-Step" was written. 

0,1 1 0,1 c ) 

0> ̂ \J 

1 0,0 

Figure 4a: Inaccurate Greedy Decision Tree 

Figure 3: Example Decision Tree Surface Figure 4b: Correct Decision Tree 
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4   Texas Two-Step  (TX2step) 

The algorithm TX2step is a slimmed-down version of 
CART for classification which is not able to handle missing 
data, perform internal cross-validation, set misclassification 
costs, or adjust priors, and so on. Yet it can look two steps 
ahead to choose the current split, and thereby finds the tree 
of Figure 4b given the data of Table 1. TX2step has one 
other new feature:: given more than one split which results 
in the same score, it uses the split with the largest relative 
gap between border training cases. That is, the tie-breaker to 
choose the dimension d of the split depends on 

r,,   » - min Right Xd - max Left Xd 
gap[d] = 0.5  b ——r-^-j  6 r maxAü-minAÜ 

The algorithm can optionally be greedy as well; in that 
mode, and ignoring gaps, it was validated on several test 
problems to reproduce the same tree as CART without 
cross-validation. Therefore, to focus solely on the greedi- 
ness issue, TX2step-l (with gap measurement) was actually 
run in place of CART on the example application shown 
next. Training was performed until all nodes were pure, but 
those leaves with a majority class having <3 cases were 
pruned back (i.e., re-absorbed into their parent node). 

5   Example:   Identifying Bat Species 

Researchers from the University of Illinois, Urbana/ 

Champaign" have measured bat echolocation calls and 
extracted time-frequency features from the signals, toward 
developing an automated classifying system to track species 
of bats - especially those considered endangered. After visu- 
alization of projections of the data by the author, and analy- 
sis of correlations, multicollinearity, redundancy, and out- 
liers (for suggested techniques see e.g., Elder, 1993), some 
variables were eliminated and other new ones tried at URJC, 
resulting in a database of 93 cases, each with 15 candidate 
input features, representing 5 different species (classes) of 
batsP'° One of the better projections of the data is shown 
in Figure 5, where the classes are noted by different sym- 
bols. Note that the groups do tend to cluster but that a fair 
amount of overlap is evident in this (and all low-d) views. 

Trained on all the data, the 1-step tree, shown in Figure 
6, had 5 splits (17 prior to pruning) and made 13 training 
errors. (In the trees, "Yes" answers travel to the left child; 

"Biologists Ken White, Curtis Condon, and AI Feng, and 
Electrical Engineers Oliver Kaefer and Doug Jones. 
'A single bat from a sixth "Long-Eared" species contributed 5 
signals originally, but was removed since it could be easily 
distinguished by its low-frequency signals and since having 
only one representative did not allow proper evaluation testing. 

°\t takes less than a second on a SPARC-2 to run the 1-step 
algorithm on this problem, but about 75 seconds for 2 steps. 

Figure 5: Example Projection of Bat Classes 
"No" to the right.) The 2-step tree of Figure 7 started out 
simpler, with 14 splits, but pruned less, ending with 10 
splits and only 5 training errors. The best root node split 
happened to be greedy but several other splits were not. For 
example, the data in the right child node of the root, shown 
in Figures 8 and 9, are those 58 of 93 cases where x5 > 
101.5. The greedy tree was drawn to split first on x20 
<3.59, then on x4 < 44.5, and it missed 6 cases on that 
branch. The 2-step tree instead first chose xll < 0.39 — a 
seemingly worse split, but when followed by x4 < 43.5 on 
one branch, one which allowed it to correctly classify 4 
more cases. (The difficulties the split caused its sibling 
branch were cleared up by subsequent splits.) The 2-step 
cuts were often more appealing visually; that is, they 

xs < 
102 
I 

xl5 < 
71 

x20< 
3.6 

u ■3ft 
94 

£ je 
45 

Figure 6: CART (1-step) Tree (using all data) 
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5 3 x3< 
54 

LJ 

x4< 
44 

in 
x3< 
62 

xll 
<.74 

x20 
<3S 

i5m[5m 
Figure 7: TX2step Tree (using all data) 
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accorded more with what an analyst would do when viewing 
two dimensions of data simultaneously, rather than one. 

As expected, the less greedy algorithm performed better 
on training data. The best test, of course, involves new 
data. Since there were not many cases, a cross-validation 
evaluation was performed, where all 3-8 signals for each bat, 
in turn, were held out of training and independently run 
down the tree for testing (18 runs for each method). Tables 
2-4 show the resulting confusion matrices for CART, 
TX2step, and a neural network (courtesy of Oliver Kaefer 
and Doug Jones of UIUC) trained on the variables selected 
by the two tree methods. Correct classifications are along 
the diagonal and the hit percentage is shown in the corner. 

CART gets 43 of 93 signals correct (46%), TX2step 54 
(58%), and the ANN performs best with 64 (69%). The 
difference in accuracy for the tree methods appears more 
critical when using a voting scheme, where several different 
signals from a single bat are classified and the majority class 
is assigned. Then, CART misses 11 of the 18 bats but 
TX2step only 6. (The voting ANN misses just 4.) 

In this experiment (counter to our usual experience), the 
tree methods were outperformed by an ANN. However, the 
variable selection performed by CART and TX2step proved 
helpful to the ANN; one trained on all 35 original data 
features got only 52% correct in bat-wise cross-validation, 
and one trained on 17 variables (those given as candidates to 
the tree methods) was 63% correct. Here, simpler ANNs 
performed better on new data. Clearly, an inductive ANN 
algorithm, which adapts the network structure to the data, 
would be a useful tool. The data characteristics - filtered 
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Figure 8: CART View at Right Node 
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Figure 9: TX2step View at Right Node 

features, lack of outliers, clustered classes ~ which helped 
the neural network perform well, should also be agreeable to 
exemplar-based statistical techniques, such as kernels and 
nearest neighbors. (We hope to soon try them, as well as 
regression networks and other inductive methods.) 

Table 2: CART 
True Class 

12      3     4     5    Tot 

" 18 

Confusion Matrices 
Table 3: TX2step 

True Class 

12     3     4     5    Tot 

Table 4: 8-Input Neural Network 
True Class 

P C 

R L 
E A 

D S 

. S 

Tot   18 19 14 26 16 4 6% Tot 18 19 14 26 16 5 8% 

Tot 

14 

21 

19 

25 

14 

Tot 18 19 14 26 16 6 9% 

1 2 3 4 5 

1 6 1 1 5 1 

2 2 16 1 3 

3 2 11 2 

4 5 2 18 

5 3 1 13 

6   Performance on New Data:   Remarks 

We have seen that regression subsets and decision 
trees can be sub-optimal if the single best step is always 
taken. This is true in other venues as well. Cover (1974) 
showed an investigation in which greed hurts, where: If 
only one experiment is allowed, Ej provides the most 
information, but if two are possible, then independent 
versions of the "worse" experiment E2 are better. 

But the degree to which greediness generally hurts 
performance in practice, on new data, is an open question. 
Berk (1978) sounded a slightly cautionary note in the case 
of regression subset selection. Using nine well-studied 
data sets (having from 4 to 15 predictors, 13 to 541 cases, 
and often more analysts!), he noted the maximum training 
error difference between all-subsets (optimal) models and 
both 1) forward selection and 2) reverse elimination mod- 
els. An improvement of up to 29% in SSE was observed. 
Then, the sample distributions of each data set were 
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Figure 10: Ex. Training vs. Evaluation Improvement of 
Optimal over both Forward and Reverse Greedy Methods 

employed to generate synthetic data with known popula- 
tion characteristics, and the study again performed for this 
new evaluation data. Figure 10 plots the training vs. 
evaluation data differences for the forward and reverse 
models from the (Berk, 1978) study. Most evaluation 
differences were smaller and in a tighter range (-2 to 7%, 
with one exception). In two cases, a greedy method won 
on the evaluation data by a slight margin. 

Note that the differences are somewhat exaggerated, as 
the maximum disagreement between methods is shown, 
not that at some automated stopping point. For instance, 
the two worst reverse values (one training, one evalua- 
tion), are for models of size 1 and 2 — where the forward 
method would clearly be preferable. Still, the greedy 
training and evaluation under-performances are correlated, 
and it can tentatively be concluded that regression differ- 
ences on new data, while usually less dramatic than on 
training data, are still likely to be significant. 

This was also shown to be the case for decision trees, 
where a version of CART was out-performed on an exam- 
ple problem by TX2step, which looks ahead an additional 
step when selecting a threshold for the current node. 
Further research is planned to examine the effects of 
greedy model construction strategies in these and other 
inductive methods, with the hope of understanding better 
the trade-offs between complexity (in the algorithm as 
well as model) and accuracy (training and evaluation). 
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Tree Structured Density Estimation 

Clifton D. Sutton 
George Mason University- 

Abstract 
Tree structured density estimates are produced via a 

technique which is similar to CART's tree growing al- 
gorithm. Various splitting rules are investigated and 
both the univariate case and the multivariate case are 
considered. For high-dimensional densities, determining 
the prominent features of the density through an exam- 
ination of a binary tree structured estimate is an alter- 
native to attempts at direct visualization of estimates 
constructed using kernals and other methods. 

1     Introduction 
Suppose that it is desired to estimate the pdf 

f(xi,..., x&) of the (^-dimensional random variable X = 
(Xi,...,Xd), where d > 1. One could begin by letting 
Ax,..., Am be a partition of the sample space and esti- 
mating the average density for each set in the partition. 
Letting Vi be the content (or volume) of Ai, we have 

-/-/. 
dx\... dxi- 

The average density for Ai is defined by 

fi=vT1 [■■• I   f(x1,...,xn)dx1...dxd 

and so 
fi = P(X € Ai)/vi. 

Letting Ni (i = 1,..., m) be the number of observations 
in a random sample of size n which belong to Ai, we have 
that 

fi (?)* 
is an unbiased estimator for /» which converges to fi with 
probability 1. 

Now consider the problem of estimating f{x*), for 
some x* belonging to the sample space. If / is every- 
where continuous in a neighborhood containing x*, then 
by considering a suitably fine partition, /* can be made 
to be arbitrarily close to /(£*), where f* - U iff x* £ Ai 
(i.e., /* is the average density for the set in the partition 
to which x* belongs).  So if the partition is sufficiently 

fine and the sample size is sufficiently large, then the 
density estimator 

m 

which assigns a constant value to all points belonging to 
a given set in the partition, should perform well. 

If we have a finite sample size, the problem of selecting 
a good partition to use for the density estimator / given 
above is an interesting one. Even for the simplest case of 
d = 1, the problem of determining the best partition on 
which to construct a histogram estimator has received 
considerable attention. Scott [7] reviews various rules 
which have been suggested for choosing the bin width 
for fixed bin width histogram estimators, including those 
of Sturges [8], Scott [6], Freedman and Diaconis [4], and 
others. Histograms constructed using adaptive meshes 
(i.e., the selection of a constant bin width is eschewed in 
favor of a data-based method of creating bins of unequal 
width) have been considered by Wegman [10,11], Van 
Ryzin [9], and others, but Scott [7] warns that in prac- 
tice caution should be taken in using adaptive methods. 
Compared to the d = 1 case, much less is known about 
histogram estimators for d > 2. 

Besides histograms, other methods have been sug- 
gested for density estimation, among them frequency 
polygons, average shifted histograms, and kernal estima- 
tors. Assuming that the chief purposes of constructing 
a density estimate are to determine key features of the 
density, discern the general nature of the relationships 
among the variables, and develop some idea about what 
the density "looks like", as opposed to merely wanting to 
know the value of /(a?) at one or more particular points 
in the sample space, a drawback associated with all of 
these methods is the difficulty in visualizing or effectively 
summarizing the resulting estimate if d is greater than 
2, or perhaps 3. Computer graphics methods incorpo- 
rating features such as slicing, contour shells, rotation, 
color, and stereo effect can certainly help, but for high- 
dimensional cases it can still be very difficult to even get 
a rough idea about the overall structure of the estimate. 

The suggestion put forth here is to construct a d- 
dimensional histogram estimate having the form given by 
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f(x) above, using an irregular adaptive partition consist- 
ing of d-dimensional hyper-rectangles created by a recur- 
sive partitioning scheme which is similar to the method 
used by CART (see Breiman et al. [1]) for growing clas- 
sification and regression trees. At each stage in the cre- 
ation of the partition, an attempt will be made to best 
divide a hyper-rectangle into two hyper-rectangles for 
which the average densities differ and for which the di- 
vision leads to an improved density estimate. By ex- 
aming the splits leading to the final estimate, noting on 
which variables and which values the splits are made and 
how the average density estimates differ in the hyper- 
rectangles created, it might be possible to determine re- 
lationships among the variables which may be otherwise 
difficult to detect. By inspecting the density estimates 
for the terminal nodes, it will be easy to locate the re- 
gions of high density in the sample space. So the goal will 
be to create a useful density estimate, having the sim- 
ple form of a binary tree, which will allow one to detect 
the salient features of the density without attempting to 
directly visualize the estimate. 

2     Tree Growing Methodology 

For simplicity, it will be assumed that the density 
to be estimated has a compact support which is con- 
tained within a d-dimensional hyper-rectangle that will 
be taken to be the initial partition used in the tree grow- 
ing process. (If the density does not have compact sup- 
port, then one can choose an initial hyper-rectangle that 
contains the convex hull of the data and use the proce- 
dures described below to produce an estimate of the con- 
ditional density of X, given that X belongs to the hyper- 
rectangle.) The tree structured density estimate will be 
produced by recursively partitioning the initial hyper- 
rectangle, dividing each new hyper-rectangle which is 
created until there is insufficient evidence to warrent fur- 
ther divisions. 

At each step in the tree growing procedure, a hyper- 
rectangle in the existing partition of the sample space 
is split into two hyper-rectangles. The quality of the 
density estimate produced will depend heavily on the 
method used to determine the variable on which the split 
should be made and the exact location of the split (the 
value of the selected variable that corresponds to the 
division into two hyper-rectangles). The various rules 
considered below are all based on the same general prin- 
ciple: to select the split from among all candidates under 
consideration which provides the strongest evidence that 
the density is nonconstant over the set in the partition 
to be split. 

With all of the rules, the location of the splits will 
be based on the empirical marginal distributions formed 

from the sets of observations belonging to each set of the 
existing partition. At each step in the tree growing pro- 
cess, there will be d conditional marginal distributions 
associated with a particular partition set to consider 
and the split ultimately selected will be the "strongest" 
of all of the splits which can be made based on the d 
empirical distributions, provided that this best split is 
strong enough. Therefore, it will suffice to develop split- 
ting rules for univariate random samples, have associated 
ways of comparing the strengths of splits made on differ- 
ent samples, and determine criteria with which to assess 
the strength of the strongest split. Below, I will describe 
several methods of choosing a split point based on a set 
of values asi,...,xn belonging to the interval (a,b] and 
associated ways to characterize the strength of the split 
point candidates. For d > 2, the procedure for selecting 
and assessing the overall best split is given as well. Note 
that although conditional distributions are used to de- 
termine the splits, the final density estimate needs to be 
based on the original full sample, using fc = rii/(nvi). 

The sample median method prescribes that the inter- 
val (a, &] be split if the location of the sample median 
is inconsistent with the hypothesis that the conditional 
density is constant on (a, b]. That is, if the location of 
the sample median differs significantly from (a + 6)/2, it 
will be concluded that the conditional density is not uni- 
form on (o, b] and the interval will be split at the sample 
median into two intervals, one having an estimated den- 
sity higher than the other one. For the case of n being 
odd, an assessment of whether or not the location of the 
sample median provides strong evidence against a uni- 
form conditional density on (a, b] can be based on the 
value of 

P(\M-(a+b)/2\>c), 

where M is the ((n + l)/2)th order statistic from a uni- 
form (a, 6] distribution and c is the value of the observed 
difference |a!((n+i)/2) — (a + &)/2|. Using a normal ap- 
proximation, the above probability is about 

2$ \   \Jb-a-c) 

Thus, as a measure of the strengths of the various can- 
didates for the splits, we can use 

z = 
nc 

b— a 

and select the split which maximizes this value, where 
we consider all d variables, for each case letting n be the 
number of observations in the partition set and letting 
a and 6 be the endpoints of the hyper-rectangle corre- 
sponding to variable under consideration.   Although a 
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modification should be made if n is even, the adjust- 
ment will be slight unless n is rather small and so in 
pratice the z-score above is used for all split candidates. 

If the maximum value of z is greater than some critical 
value zai/2, then the split is made and the search for the 
next split begins. If a' is taken to be 

l-(l-«)1/d, 

then a decision to split the hyper-rectangle based on the 
maximum value of z corresponds to a decision to reject 
with a size a test of the null hypothesis that the condi- 
tional density of X is the joint density of d independent 
uniform random variables against the general alterna- 
tive. 

Letting 

a!(») + g(»+i) 
g. = _ (i= l,...,n-l), 

gi will be called the ith gap point. If the location of the 
sample median in (a, b] results in the decision to create 
a split, the split will be made at gj, where j = n/2 if n 
is even and j is either (n - l)/2 or (n + l)/2 if n is odd. 

If the partition set under consideration contains a 
mode, then it may be that none of the d sample medians 
will be very far from the center of the hyper-rectangle 
even though the joint density is not constant. In order 
to prevent the recursive partitioning from terminating 
prematurely with such a partition set, a trial split can 
be made. If either of the two hyper-rectangles which 
result from the trial split produce a sufficiently strong 
split, then the trial split is accepted and the search for 
further splits continues. Otherwise, the trial split is not 
retained and the tree growth terminates in that region 
of the sample space. 

The all possible split points method considers many 
possible split points for each interval. The set of n— 1 gap 
points will be taken to be the split point candidates. The 
strength of the split for the candidate s £ (a, b] is based 
on the proportion of observations which lie in (a,s\. If 
the proportion differs significantly from j^, which is 
the expected value of the proportion if the conditional 
density is uniform over (a, b], then it is concluded that 
the average density for (a, s] is different from the average 
density for (s, b]. The strength of the evidence in support 
of the split is measured by 

z = |*i-np»|-f 
i/np,(l-p5)' 

where ts is the number of observations in (a, s] and p, = 
(s-a)/(b-a). 

When considering the strength of the strongest split 
overall using the z-score given above, in addition to the 

simultaneous inference phenomenon due to the fact that 
more than one marginal distribution is being examined, 
it is now the case that many possible split points are 
being considered for each marginal distribution. One 
might think that this additional source of multiple com- 
parisons can be accounted for by determining if a one- 
sample Kolmogorov-Smirnov goodness-of-fit test for the 
uniform distribution produces a significant result, but 
in fact there is a discrepancy since the Kolmogorov- 
Smirnov test depends on the maximum value, for all 
s € (a, b], of \t, — rip, |, which is not equivalent to as- 
sessing the hypothesis of a constant density using the 
maximum value of the «-score above. This suggests yet 
another tree growing procedure, called the Kolmogorov- 
Smirnov method, for which the one-sample Kolmogorov- 
Smirnov statistic is computed based on each of the d em- 
pirical marginal distributions and if the largest of these 
values is sufficiently large (say, corresponding to a rejec- 
tion of the null hypothesis of a uniform distribution with 
a size a' test), then the hyper-rectangle is split. 

The split will be made on the variable which produces 
the largest value of the K-S test statistic. The split will 
be made at the gap point gj which maximizes 

\Fx(9j)-Knif{gj)\, 

where Fx is the empirical cdf and 

-PW(ffi) = (»;' - a)/(b ~ °)- 

It is interesting that maximizing \F(gj) - Funif(9j)\ is 
equivalent to maximizing 

["\fa^)-(b-ar1\dx> 
Ja 

where fg. (x) is the piecewise constant density estimate 

and tgs is the number of observations in (a, gj]. Thus 
splitting at the value for which the empirical cdf differs 
the most from the cdf of a uniform (a, b] random variable 
corresponds to selecting the two-bin histogram density 
estimate which differs the most, in an L\ sense, from the 
density of a uniform (a, 6] random variable. 

The squared difference method is similar to the K-S 
method in that the decision of whether or not a split 
should be made is based on the the value of a test statis- 
tic for a goodness-of-fit test. The null hypothesis that 
the density is constant over (a, 6] is tested against the 
general alternative using the Cramer-von Mises type of 
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statistic given by 

Q = jf[*W- 
x — a -|2 dx 

b — a 

A split is made on the variable which produces the 
largest of the observed values of Q, provided that the 
value exceeds the upper level a' critical value of the dis- 
tribution free statistic. The split will be made at the 
gap point gj which is associated with the two-bin his- 
togram density estimate which differs the most, in an 
£2 sense, from the density of a uniform (a, 6] random 
variable. That is, gj is selected to maximize 

jT (/*(»)-(*—r1)' dx 

_ [tgi{b-a)-n{gj-a))2 

n2(b - a)(b - gj)(gj -a)' 

The likelihood ratio method is based on a generalized 
likelihood ratio test of the null hypothesis that the condi- 
tional density is constant on (a, 6] against the alternative 
that the density has the form 

where 

W(a,.](aO + h'I(,ib](x), 

b-s 
-1 s £ (a, 6], and h ^ (b — o)-1. A rejection of the null 

hypothesis supports the conclusion that the density over 
(a, b] is better estimated by splitting the interval into two 
pieces and estimating the density for each piece seper- 
ately with a constant than it is by not splitting the inter- 
val and using only one value for the density over (a, b]. 

For a given value of a, the likelihood function for the 
sample xi,...,xn is maximized by letting 

n(s — a)' 

where t, is the number of observations belonging to (o, s]. 
It follows that to maximize the likelihood over both pa- 
rameters, it is necessary to find the value of s that max- 
imizes 

(*./»)! mn -1 n—t. 

The likelihood ratio is 

n(b — s) 
A = 

(n - ts)(s — a) 

Xn-ti)(b-a)\   [     ti{b-s) 
and the null hypothesis is rejected whenever A is suffi- 
ciently small. The regularity conditions required to in- 
sure that the null distribution of —2 log A is asymptoti- 
cally X2 are n°t satisfied for the testing situation under 

consideration. Nevertheless, I found that a splitting cri- 
terion based on the x| distribution works satisfactorily. 
For each variable, the function given for A above was 
maximized over all choices of s € {<7i 9n-i}- Let- 
ting A' be the largest such value obtained with all of the 
variables, a split is made at the maximizing gap point if 
-21ogA'>xi,a, = -21oga'. 

For all of the methods described above, gap points 
were removed from consideration as split points if a split 
at the gap point would result in a hyper-rectangle being 
created which did not contain at least a minimum num- 
ber of observations. Values considered for this minimum 
ranged from 3 to 50, but perhaps using a value less than 
3 will improve the accuracy of the estimate for the tails 
of the distribution. 

The regression tree method of creating a tree struc- 
tured density estimate makes direct use of CART's pro- 
cedure for constructing a regression tree and is rather 
different from the methods previously discussed. First, a 
regular partition is created by dividing the initial hyper- 
rectangle into a large number of identically shaped small 
hyper-rectangles. Next, the number of observations in 
each small hyper-rectangle is determined and the cor- 
responding density estimate for the partition set is as- 
signed as the y value corresponding to the x located at 
the center of the hyper-rectangle. CART's regression 
procedure is then used to construct a regression tree 
based on these (y, x) values. The partition for this re- 
gression tree serves as the partition for the density es- 
timate. Thus, the density estimate based on the initial 
fine partition is smoothed by CART's regression algo- 
rithm to produce an estimate based on a coarser (and 
most likely irregular) partition. 

A nice feature of the regression tree method is that 
CART's cross-validation procedure can be easily invoked 
to select the right sized tree. In general, cross-validation 
could be used in conjunction with the other methods as 
well. The criterion parameter a which partially governs 
tree size can be chosen to be large and the minimum 
number of observations allowed in a partition set can 
be made small, so that too complex of a tree is first 
constructed. Then a cross-validation based pruning pro- 
cedure can be performed to select the tree which corre- 
sponds to the most honest estimate, using the estimated 
likelihood function 

to judge accuracy (however, this may not be satisfactory 
unless it were the case that the estimated likelihood func- 
tion should be nonzero over the convex hull of the data). 

Using CART's regression algorithm also allows for an 
easy implementation of linear combination splits, al- 
though this may make it more difficult to identify the 
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key features of the density with a quick inspection of the 
tree. Some of the other methods described above are 
not easily modified to handle linear combination splits, 
but modifications of the Kolmogorov-Smirnov method 
and the squared difference method can be considered. 
Splits can be made which produce the greatest overall 
difference between the single constant estimate based on 
the partition set under consideration and the two con- 
stant estimate which would result from a split, where the 
integrated absolute difference or the integrated squared 
difference can be used as a measure of overall difference. 

3     Results 

C programs were written to compute density esti- 
mates based on the methods described above. A per- 
formance study was done using samples of non-uniform 
pseudo random variates, created using standard tech- 
niques (such as those described in Dagpunar [2], Devroye 
[3], and Knuth [5]). Numerous samples were used, based 
on combinations of normal, beta, and gamma distribu- 
tions and having 1 < d < 3 and 1000 < n < 4000. The 
well-known Buffalo snowfall data set (having n = 63) 
was also considered. Values used for a ranged from 0.005 
to 0.1. Usually, the choice of a had little effect on the 
density and letting a equal 0.05 seems to be a reasonable 
choice (but additional study is warrented here). Over- 
all, it appears that the best trees are created when the 
minimum number of observations allowed in a partition 
set is more responsible for the size of the tree than is the 
value of a. 

In general, most of the methods tended to produce 
very similar results in a lot of the cases considered. But 
not all of the methods have been throughly investigated 
and so any conclusions are tentative at this time. For 
the univariate cases, the tree structured estimates were 
typically quite a bit coarser then histograms constructed 
from the same samples using some of the common fixed 
bin width rules. While they might have an overall lack of 
accuracy based on a criterion such as the MISE (see Scott 
[7], p. 38), the tree structured estimates very rarely indi- 
cated more modes than what was proper, provided that 
partition sets containing only a small number of obser- 
vations were disallowed. Furthermore, for all values of d, 
if partition sets containing only a small number of obser- 
vations are disallowed, then the average densities for the 
partition sets (the /») were often very closely estimated 
by the /». In general, the ft were highly correlated with 
the fi and in almost every case considered the partition 
set having the largest estimated average density was the 
partition set having the largest average density. So, all 
in all, the tree structured estimators seem to be very 
good with regard to finding modes. Also, although the 

coarseness contributes to an overall lack of accuracy, for 
large d, a finer partition may correspond to a tree struc- 
tured estimate from which it would be more difficult to 
identify the main features of the density. 
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Abstract 

Due to the "curse of dimensionality" and the expression 
difficulties, high-dimension density estimation is usu- 
ally an ill-defined problem. However, many practical 
problems involve in issues of estimating high-dimension 
densities. Certain kind of dimensionality reduction is 
then necessary. A computation extensive density estima- 
tion method is developed based on the tree-structured 
methodology. The method has the ability to identify 
noises in the density structure, therefore greatly reduces 
the dimensionality. It also provides a simple way to 
present a high-dimensional density, thus helps us to ex- 
plore the data structure. Simulation studies show that 
the method is often more accurate than other regular 
methods when the density structure is complex. 

1    Introduction 

The problem of density estimation is to construct a func- 
tion from a random sample to approximate the real den- 
sity. The purposes of density estimation is to present 
and explore the density structure as well as to obtain 
accurate estimation for other applications. A survey of 
methods can be found in books like Silverrnan [1986], 
Scott [1992]. When data dimension is high, these regu- 
lar methods as well as density estimation itself suffer the 
so called "curse of dimensionality". It is also impossi- 
ble to visualize a density surface when the dimension is 
higher than five. 

It has been realized that in practical situations, the 
dimension of a true data structure is often much lower 
than the number of variables in the study. (Scott [1992]). 
Therefore it is desirable to project the high-dimension 
data onto an manageable lower dimensional subspace. In 
practice, projection pursuit method (Friedman, Stuetzle, 
and Schroeder [1984]) and some regular techniques like 
principal components decomposition are used to reduce 
the dimensionality. 

Complex environmental modeling studies (Spear, 
Hornberger  [1980]) result in many multivariate data 

analysis problems which are essentially density estima- 
tion problems. Many variables involved behave like 
noises. In fact, it seems that different sets of variables 
feature local data structures at different subspaces, while 
adding or removing other variables in these subspaces 
has little effects. If we can locate these subspaces and 
can identify the noises, the dimensionality will be greatly 
reduced. 

In Section 2, we will discuss about the noises in den- 
sity structure. In Section 3, the CART (Classification 
And Regression Tree) tree methodology (Breiman et al. 
[1985]) will be applied to construct a density estimation 
method according to the insights obtained from Sec- 
tion 2. Although the idea has been circulated among 
the authors of CART and other researchers, there are 
many serious problems in applying CART to density es- 
timation. We solved these problems through defining a 
roughness parameter and following a tree optimizing ap- 
proach developed by Shang [1993], Breiman and Shang 
[1994]. Similar type of application has been explored in 
contingency table analysis, (see Shang [1993], [1994]). 

The performances of the method are studied through 
simulations. Spear, Grieb and Shang [1994] applied it to 
study the uncertainty of complex environmental model- 
ing. Some techniques to enhance its interpretations were 
discussed in that paper. 

2    Noises in Density Structure 

In this section, we will provide an application back- 
ground for multivariate density estimation. This will 
give us some insights about noises in density structure. 

2.1    Pass Region and Density 

An environmental model is usually very complex and 
is applicable to many similar environmental processes. 
When it is applied to a specific situation, it is necessary 
to study the sensitivity of the model to the local phe- 
nomena. Sensitivity analysis can help us to understand 
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more about the model structure, to be more efficiently 
monitoring an environmental process and to build a more 
reliable procedure for risk assessment. A model can be 
simplified as: 

Y = f(X,6) (1) 

where X is background information of a local experi- 
ment; Y is output; 0 is the vector of parameters which 
varies in a parameter space 0. At a local point X, we 
may be interest in when the model produces outputs sim- 
ilar to our observations or we may be interest in when 
the outputs exceed some extreme limits. We use Cy to 
denote the region of these outputs and call it as a crite- 
rion region. The parameter set which produces outputs 
in Cy is called a pass region: 

V = {9:f(X,0)£CY} (2) 

The pass region summarizes information of parameter 
sensitivity with respect to the local background and the 
criterion. 

It is usually impossible to solve equation (2) analyti- 
cally. An alternative is to use Monte Carlo simulations. 
If we take a uniform sample from the parameter space 
0, then the points that produces outputs falling in Cy 
construct a uniform sample from the pass region V. Our 
problem is: how to reconstruct the pass region from the 
random sample. This is equivalent to estimate the indi- 
cator function of V or its smoothed version: 

g(0) = Jim U, 
v,->o V0Ve 

0G0 (3) 

if the boundary of V is continuous. Here V$ is the volume 
of Ne, a small neighborhood of 0. Ue is the volume of 
N» H P- Vo is the volume of V. 

Notice that g(0) is a density function. The process of 
getting a pass point can be defined as a 0 —»■ 0 random 
variable £ with g(9) as its density. If there is a prior 
distribution it{0) on 0, then the corresponding distribu- 
tion of parameters in V is just the posterior distribution 
f(6 | f). Now it is this posterior distribution rather than 
the region itself featuring the parameter sensitivity. If 
we take points from 0 according to ir(9), then the pass 
points construct a sample from f(0 | £). 

In any case, the problem of parameter sensitivity anal- 
ysis is essentially a density estimation problem. We are 
trying to recover some main features of a distribution 
from samples. 

We may replace the terms criterion region by criti- 
cal region, and pass region by confidence region in above 
context. Then we are dealing with a typical statistics 
problem: exploring features of a complex confidence re- 
gion. Obviously, same idea can be applied to many other 
problems either in statistics or in other fields. 

2.2    Noises and Dimensionality 

The number of parameters (variables) in model (1) is 
usually very large. However it is expected that only a 
few of them will be useful in a local experiment. The 
traditional sensitivity analysis reduces the dimension- 
ality through examining each individual variable. The 
simplest way is to compare the sample's range with the 
variable's range. The larger the difference, the more sen- 
sitive the variable. 

This simplest way ignores the distribution of variables 
and their interactions. However if there is no inter- 
actions among variable and all variables are uniformly 
distributed, or equivalently if the variables as a whole 
follow a uniform distribution on a hyper-rectangle, the 
rectangle will completely feature the local experiment. 
Individually, if a variable is independent with the oth- 
ers and follows a uniform distribution in the variable's 
range, then the variable will be useless in featuring the 
local experiment. It behaves like a noise. We call it as a 
global noise. 

It may not be easy to detect a global noise before es- 
timating the density. There may not be enough global 
noises to reduce the dimensionality to a manageable level 
too. However, a variable may be important in some sub- 
spaces and completely have no influence in others. We 
call it as a local noise. Being able to locate these sub- 
spaces and to identify the local noises in each of the 
subspaces will greatly reduce the dimensionality of our 
problem. 

Notice that if the underlying density is a smooth func- 
tion and if one subspace is sufficiently small, the real den- 
sity in the subspace can be approximated by a constant. 
In this subspace all variables can be considered as local 
noises. Therefore if we can find a way to partition the 
whole space into some subspaces such that the density 
is a constant (approximately) in each of the subspaces, 
then all features of the density will be summarized (ap- 
proximatedly) by the partition process. 

Here comes our approach of estimating high- 
dimension density: through identifying feature variables 
and noise variables, we partition the data space with the 
feature variables until all variables are local noises. The 
density can be estimated immediately by the constants 
in the subspaces and the density structure is summarized 
by the partition. The approach needs to be insensitive 
to noises. It is also necessary to organize the partition 
into a simple, understandable format. 
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3    Tree-Structured Density Esti- 
mation 

The CART tree methodology has the features we desired 
at the end of last section. Some of its important ideas 
will be briefed in subsection 3.1. A few serious prob- 
lems exist if we apply the method to density estimation 
directly. We will discuss these problems and their solu- 
tions in subsection 3.2 and 3.3. Simulation results are 
presented in subsection 3.4. 

3.1    Tree-Structured Methodology 

The procedure of applying the tree-structured method- 
ology to a statistics problem includes the following steps: 
defining problem; defining splits; tree growing; pruning; 
and tree selection. 

First we need to have a measure of lack of accuracy. It 
will decrease as the partition gets finer. We also need to 
define a pool of splits. The splitting rule decides which 
split should be selected from the pool. The tree will keep 
on growing until some stopping rules are reached. This 
results in a big tree. 

The essential idea in CART is in the pruning and tree 
selection process. It adapts an idea from variable se- 
lection in regression analysis. The idea selects the best 
dimensionality rather than the best combination of vari- 
ables as the first is more stable than the second from 
sample to sample. In CART, the dimensionality is the 
tree size (number of terminal nodes). The pruning al- 
gorithm produces a "best" subtree for each given tree 
size. This "best" subtree has the smallest estimation er- 
ror among all possible subtrees with the same tree size. 
After the "best" tree list is established, an independent 
test data set or cross-validation will be applied to select 
the "best" tree size. Then the method produces the final 
"best" tree. 

A tree optimizing approach was developed by Shang 
[1993], Breiman and Shang [1994] to make the "best" 
trees list even better. It tries to adjust the existing splits 
to nullify the effects made by the "greedy" nature of 
CART stepwise procedure. 

3.2    Roughness Parameter 

For density estimation, a measure of accuracy is the 
mean integrated square error. 

MISE = EJ(f-tf (4) 

Without loss of generality, we assume the data is de- 
fined on the p-dimension unit cubic:   S = (0, l)p.   n 

random points X\, X2,.. ■, Xn have been sampled from 
some underlying density / defined on S. 

Suppose S has been partitioned into m subspaces: 

s = \Jsi 
«=i 

(5) 

by some partition r. Each Si has volume Vi. r also 
divides the n data points into m parts. Let n,- be the 
number of data points in Si. Then the density can be 
estimated by: 

f(x) = di = ^    if xE Si (6) 

For this estimator /, the last two items of the inte- 
grated square error /(/ — /)2 can be calculated easily: 

(rii/nf 
I(T)=jr-tj,,=-£!& p) 

If one of the Vi is very small, yet 5,- still contains at 
least one data point, then I(T) will be very small. If we 
use number of subspaces to build the "best" tree list, 
then rough estimations will be selected no matter what 
the real density is. A better smoothness measure should 
consider both the fineness (number of subspaces) and the 
evenness together. 

We define a roughness parameter as the harmonic av- 
erage of the volumes of the subspaces: 

1   m   1 

(8) 

It is easy to show that: R(T) > m and R(r) = m if and 
only if T is the even partition, i.e. Vi = 1/m. In general, 
the larger the m and/or the more uneven of the r, the 
larger the R(r). These are the properties we desired. 
We also call P(r) = m * R{r) as the penalty function of 
r. 

Since R(r) takes continuous values, it is necessary to 
make it discrete. For a positive number q, we define: 

C(k) = {r : &-0.5 < qR(r) < Jfe+0.5} k = 1,2,... (9) 

AU r in C(k) will be considered to have same roughness 
parameter k. Here q is a scaling factor, normally we take 
it as 1. 

Another possible roughness measure is: 

Vi 
^(r) = -2E^ = E(l^)2 (10) 

»'=1 

It has better probability interpretations but penalizes 
unevenness less than R(T) does. 
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3.3    Tree Growing and Pruning 

Due to the restriction on paper length, here we will only 
discuss three issues which is more essential to density 
estimation. 

Pool of Splits 

Since the volumes of subspaces influence 7(r) too, 
there are essentially infinite ways to make a split. Our 
splits will be selected from the following: 

£ = {a : a = (*,- < j/G)  l<i<P]l<j<G}   (11) 

Here G is an positive integer. We usually take it as 100. 

Splitting Rules 

Suppose current subspace is So and a £ S split So into 
Si and Sr. Let n0, nj, nr and V0,Vi, Vr be the correspond- 
ing number of data points and the volumes. Then the 
integrated square error defined in (7) will be decreased 
by: 

AI(a) = 
vi 

n2V0ViVr^V0 

V\      ni 11L)2 

no 
(12) 

Maximizing A7((r) favors splits close to the boundaries 
of So, thus makes the estimation rough. At the same 
time, the penalty function P increases: 

AP(a) vi v,vr 

VoVlVr 
(13) 

a better splitting rule would be: 
actually use a simpler version: 

A7((T)/AP((T).   We 

D(<r)=( 
Vi      n; 
Vn n0 

(14) 

Maximizing D(cr) is maximizing the distance between 
the empirical c.d.f of samples in subspace So and the c.d.f 
of the local uniform density. As we are going to apply 
the tree optimizing procedures, this initial selection is 
not quite essential. 

Tree Pruning 

The roughness parameter R(r) defined in (8) will be 
used to make the "best" tree list. For each positive in- 
teger k, we will try to find the subtree 7> with smallest 
I(r) among all subtrees in C(k). A better definition of 
the "best" is: 

I(rk) _ mm 
I(T) 

R(rk)     rec(k) R(T) 
(15) 

Ck is defined as in (9). 
The roughness parameter R(r) depends on the num- 

ber of terminal nodes. It is impossible to generate the 

subtree in (15) directly. We make the list through a 
two-step approach. First, we build the "best" tree list 
according to the penalty function P(T) although still us- 
ing the criterion in (15). Then the "best" tree list for 
R(T) can be obtained easily. Here P(T) needs to be made 
discrete as in (9). 

4    Simulations 

Extensive simulations have been made to study the per- 
formance of the tree method. Two aspects need to be 
examined. The first, how the method captures the fea- 
tures. The second, how it responses to the influences of 
noises. Both contributes to the accuracy of estimation. 
In this paper, only the results of second aspect will be 
presented due to the limitation of paper length. 

Three types of simulations are designed. Each of the 
underlying densities is a random composition of four sim- 
pler densities: /(as) = ]Ci=i c>9i{x)- Here (ci, c2,c3,C4) 
is a random point from the four dimension simplex. f(x) 
is restricted in the unit hyper-cubic (0, l)p. 

For the first type of simulation, each gi(x) is a five 
dimensional normal densities: iV(//', I!'). fJ.' comes from 
uniform distribution (7(1/6,5/6)5. £' is a diagonal ma- 
trix, the diagonal elements are from (7(0,5/9). For each 
data set generated from the first type of simulation, five 
global noises are added to make the gi(x) of the the sec- 
ond type of simulation. The noises are from (7(0, l)5. 

We consider local noises in the third type of simula- 
tion. Each of the g,(x) contains five feature variables and 
five noise variables. The noises are from (7(0, l)5 and the 
features are from a five dimensional normal densities as 
in the first type of simulation. Whether a variable is 
noise or not is randomly decided. 

Each type of simulation is repeated eight times. As 
there are so many random factors in the design, they are 
essentially 24 different simulations. The sample size is 
500. A Monte Carlo sample with 3,000 points is used to 
calculate the integrated square loss /(/ - f)2. The re- 
sults are compared with results from kernel estimation. 
In the kernel estimation, different window sizes are used 
for different variables. The best window sizes are se- 
lected through a grid search. The window sizes change 
from 0 to 1 at a step of 0.02. The simulation results are 
presented in Table 1. 

In Design 1, there is no designed noises. So Both 
methods are trying to capture the features. Although 
the tree estimation uses a jumped step function to es- 
timate a smooth function, its accuracy is comparable 
with kernel's. In two of the situations, it is even bet- 
ter. However when global noises are added in Design 2, 
the efficiency of kernel estimation reduces dramatically 
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Simulation Design 1 Design 2 Design 3 
kernel tree kernel tree kernel tree 

1 1.190 1.305 3.145 1.309 2.830 0.807 
2 6.616 5.986 19.000 6.102 5.086 3.050 
3 0.628 0.816 1.800 0.816 1.864 0.852 
4 0.869 1.305 2.328 1.343 1.635 0.782 
5 0.927 0.867 2.768 0.886 1.829 1.082 
6 1.080 2.195 3.969 2.195 1.133 0.631 
7 4.797 7.028 14.125 7.475 1.928 1.132 
8 0.633 0.715 3.545 0.830 2.014 1.115 

Table 1: Comparing Tree-based Estimation and Kernel Estimation 

while there is hardly any changes in tree estimation. In 
Design 3, a variable could be a feature here and a noise 
there. Still tree estimation is much better. 

Spear for his constant support and encouragements. His 
comments and insights from application perspective are 
very enlightening and valuable. 

5    Summary and Conclusions 

The information carried by a density function is how the 
density is distributed or how it is different from a uniform 
distribution. If a variable is uniformly distributed and it 
is independent with the others, it should be considered 
as a noise. In a high-dimension situation, many vari- 
ables may behave like local noises: they are condition- 
ally independent with other variables and are uniformly 
distributed in some subspaces. A good density estima- 
tion method should be able to identify these noises while 
capturing the real data features. 

The tree-structured density estimation has the power 
to identify these noises locally. The method is based 
on the CART tree methodology. However significant 
changes have been made to adapt the methodology into 
density estimation. These include defining a roughness 
parameter and applying a tree optimizing approach. The 
method is compared with kernel method through simu- 
lations. The simulations presented in this paper concern 
only the influence of noises. 

More simulations are made to study how the method 
captures the features of density functions in one or two 
dimension situations. Although the underlying densi- 
ties are continuous, the tree method still have compara- 
ble performance when it is compared with other regular 
methods. Actually it is often more accurate when the 
underlying density is complex. These results will be pre- 
sented in a more complete paper. 
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Abstract: Rankings of n items are often constructed 
from paired comparisons within the set (football rank- 
ings, for example). Collections of paired comparisons, 
however, are subject to inconsistencies: e.g., A > B, 
B > C, C > A. Treating the set of all possible out- 
comes of the (j) paired comparisons of n items as ver- 
tices on a hypercube, inconsistencies can be removed by 
orthogonal decomposition. The resulting consistent sub- 
structures lie imbedded in permutation polytopes. 

1. Introduction 

Given a set of n items, it is often desirable to be 
able to assign a ranking to the set of items, indicating 
first place, second place, and so on. A situation that 
often arises is that the rankings of n items are not given 
per se; rather, the data consist of the outcomes from 
some subset of the (£) possible paired comparisons, from 
which a ranking must be inferred. For example, if the 
three items A,B,C were to be compared in pairs, the 
collection of outcomes A > B, A > C and B > C would 
imply that item A should be ranked first, item B second, 
and item C third (here and in the sequel, A > B means 
that item A is preferred to item B). 

A common problem that arises with paired compar- 
isons is that some collections of outcomes are internally 
inconsistent, e.g. A> B, B > C, and C > A. These in- 
consistent triples were denoted circular triads by Kendall 
and Babington Smith (1940). How to deal with these 
inconsistent groupings is a matter of some dispute. In 
most formulations of ranking models, inconsistent col- 
lections of outcomes are simply ignored. However, some 
information can occasionally be gleaned from inconsis- 
tent collections. Given four items and the collection of 
outcomes A > B, A > C, A > D and B > C, C> D, 
D > B, it can be asserted that item A is preferred to the 
other three, even though the relative ordering amongst 
items B, C and D is not discernible. 

2. Permutation Polytopes as Projections of Hy- 
percubes 

When a comparison of two items is conducted, the 
outcome is binary - either item A is preferred to item 
B, or item B is preferred to item A. Each paired com- 
parison can thus be thought of geometrically as defining 
an axis, for example the AB axis, where the particular 
outcome determines the value along that axis: 1 if (using 
the example above) A is preferred to B, and —1 {—AB) 

ÜB is preferred to A. In this manner, a space containing 
the overall structure arising from a collection of paired 
comparisons can be specified by the cartesian product of 
these axes. The collections of outcomes of the (!J) paired 
comparisons arising from the possible pairings of 2 out of 
n items can be viewed as vertices on an (j)-dimensional 
hypercube, with coordinates of either 1 or -1. These 
vertices can then be thought of as points in 3fo.a/. As an 
example, consider the collections of paired comparisons 
possible among three items, A, B, C. If (for purposes 
of orientation) the axes defined are taken to correspond 
to AB, AC and BC, respectively, then (1,1,1) would 
indicate A > B, A > C, and B > C, (-1,-1,1) would 
indicate A < B, A < C and B > C, and so on. The 
eight possible collections correspond to the vertices of a 
cube in three dimensions. 

To address the problem of inconsistent sets of com- 
parisons, consider the cube defined by the collections of 
paired comparisons of three items. Of the eight vertices, 
two correspond to triples which are linearly inconsistent: 
(1, -1,1) and (-1,1, -1), using the AB-AC-BC coordi- 
nate system as before. The other six vertices correspond 
to the six possible rankings of three items. The two in- 
consistent triples both lie along a single vector through 

the origin, ABC = (1,-1,1). (In the sequel, the nota- 

tion IJK will be used to indicate the vector correspond- 
ing to an inconsistent arrangement of the three arbitrary 
items I, J, K, specifically I > J, J > K and K > I). 
This vector defines an "inconsistent subspace" associ- 
ated with this set of paired comparisons; this in turn 
suggests the existence of a "consistent subspace". The 
linear (ranking) information present within a collection 
of paired comparisons can be viewed as a function of the 
projection of the vector associated with that particular 
vertex of the hypercube onto the consistent subspace. 
This projection is illustrated in Figure 1. 

To establish the general procedure, we need to show 
that a decomposition into inconsistent and consistent 
subspaces is always feasible. 

As a first step, note that any triplet of items can give 
rise to inconsistent pairings. There are (3) item triplets, 
defining an equal number of vectors corresponding to in- 
consistencies. These vectors must be linearly dependent, 
as (3) grows faster than (!J) (the dimension of the hyper- 
cube). Thus, it is necessary to establish the dimension 
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(-1.-1.1) 

H.-i.-i) 

(l.i.i) 

(1.-1.-1) 

(-1.-1.D (1.-1.-1) 

(-i.-i.-i) 

Figure 1: Cube of Paired Comparisons of Three Items, 
and the Associated Projection onto the Consistent 

Subspace. Inconsistent Triples are Indicated by Dark 
Circles. Coordinates are in the (AB, AC, BC) System. 

of the space spanned by the vectors corresponding to 
these inconsistent triples. 

Consider the vectors corresponding to the inconsis- 
tent triples arising from the comparisons of four items. 
These are shown in the rows of Table 1. An entry of 1 in 
the table indicates that the specified pair was preferred 
in the given order, a —1 indicates that the pair was pre- 
ferred in the reverse order, and a 0 indicates that no 

direct pairing has occurred. As Bc3 = ABC - ABD + 

ACD, the vectors are linearly dependent. However, if 
attention is constrained solely to the triples containing 
a specific item (e.g. A), those vectors are not linearly 
dependent. 

Lemma 1: The vectors corresponding to inconsistent 
triples involving item A are linearly independent. 

Proof: For any items I and J, the vector AlJ has a 1 in 
the entry corresponding to the IJ axis, and the vectors 
corresponding to all other inconsistent triples containing 

A have a 0.  Thus, AIJ cannot be formed as a linear 

Table 1: Vectors Associated with Inconsistent Triples 
Arising from Paired Comparisons of Four Items. 

AB AC 
Axis Labels 
BC   AD    BD CD 

Inconsistent 

Triples: 

ABC points to 

ABÖ 

ABf> 

ACt) 

1 

1 

0 

-1 

0 

1 

1 

0 

0 

0       0 

-1       1 

-1       0 

0 

0 

1 

A>B,B>C,C>A Bcti 0 0 1 0      -1 1 

combination of such vectors. 

Lemma 2: Any vector corresponding to an inconsistent 
triple can be expressed as a linear combination of vectors 
corresponding to inconsistent triples involving item A. 

Proof: As the lemma is trivially true if the inconsistent 
triple involves A, it suffices to show that it holds for an 
arbitrary inconsistent triple I, J, K not involving A. This 
is most easily shown using unit vectors corresponding to 

the various paired comparison axes; e.g., ABC = eAs — 

eAC +ZBC- 

UK 

=    eu - eiK + CJK 

—    eu - eiK + ejK+ 

(eAI - eAi) + (eAJ - eAJ) + (eAK - eAK) 

=    (eAi - eAJ +eu)- (eAI - eAK + e>/<-)+ 

(eAj - eAK + ejK) 

=   Äfi-Alit + ÄJK'. 
Lemma 3: Any vector corresponding to an inconsistent 

fc-tuple (for example, ABCD = eAß -feec +ecD —eAo 
corresponds to an inconsistent 4-tuple) can be written 
as a linear combination of vectors corresponding to in- 
consistent triples. 

Proof: The lemma holds trivially if k = 3, and incon- 
sistency is impossible if k < 3, so the lemma holds then 
as well. If k > 3, the vector corresponding to the in- 
consistent fc-tuple can be written as the sum of a vector 
corresponding to an inconsistent triple and a vector cor- 
responding to an inconsistent (k — l)-tuple as follows: 

IJKL...N 

=    eu + ejK + eKL + ... - e/w 

=     (e/if - e/ür) + eu + eJK + eKL + • • • - e/jv 

=     (eu - eiK + eJK) + eIK + eKL + ■••- e*iN 

=    IJK + IKL...N. 

The (k - l)-tuple can then be reduced, and the lemma 
follows by induction. 
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Theorem 1: Given the space defined by the (,) axes 
associated with the paired comparisons possible among 
n items, the set of vectors corresponding to inconsistent 
triples involving item A forms a basis for the inconsistent 
subspace. 

Proof: The theorem follows immediately from Lemmas 
1-3. 

Corollary 1.1: The dimension of the inconsistent sub- 
space is ("21)- 

Corollary 1.2: The consistent subspace exists and has 
dimension (£) — ("J ) = n — 1. 

Further, it can be shown (cf. Baggerly (1994)) that 

if II is the vector corresponding to item I being ranked 
first (item I beats all other items, and pairings of items 
not including I do not occur) then the collection of vec- 

tors {(II + aAl)/y/n}, where I is any item other than 
A and a = 1+v, forms an orthonormal basis for the 
consistent subspace. 

Putting this basis into use, the projection of the six- 
dimensional hypercube arising from the pairwise com- 
parisons of 4 distinct items onto the corresponding 3- 
dimensional consistent subspace is shown in Figure 2. 
The completely consistent sets of paired comparisons 
correspond to rankings of the four items; these are situ- 
ated at the vertices of the resultant polytope. In terms 
of cartesian coordinates, these vertices lie at the 24 per- 
mutations of (0, ±1, ±2). Those sets of paired compar- 
isons with only one inconsistent triple (slightly inconsis- 
tent) are situated at the centers of the hexagonal faces 
of the resultant polytope; these each have multiplicity 2 
(i.e., two vertices of the initial hypercube map to each 
such point). In terms of cartesian coordinates, these 
vertices lie at the 8 permutations of (±1,±1,±1). Fi- 
nally, those sets of paired comparisons with two incon- 
sistent triples (grossly inconsistent) are situated behind 
the square faces of the resultant polytope; these each 
have multiplicity 4. In terms of cartesian coordinates, 
these vertices lie at the 6 permutations of (0,0, ±1). It 
is impossible to have more than two inconsistent triples 
arising in the paired comparisons of 4 items. The edges 
defining the convex hull of these points are also shown. 

Several features of this figure should be noted. First, 
each edge of the initial hypercube has been shortened by 
the same amount. This equal shortening follows from 
the fact that each edge of the hypercube corresponds 
to a shift along a single paired comparison axis and the 
projection acts upon the axes in a symmetric manner. 
Thus, the vertex labelled CBAD is the same distance 
from the circled points as it is from the vertex labelled 
CBDA. Second, the projections of the hypercube ver- 

tices corresponding to full rankings of the items define 
the convex hull of the projection of the hypercube onto 
the consistent subspace. The polytope thus defined is a 
truncated octahedron, having eight hexagonal faces and 
six square faces, and is equivalent to the permutation 
polytope associated with the rankings of four items. 

3. Permutation Polytopes 

A permutation polytope is the convex hull defined 
by the n! points in S" whose coordinates are permuta- 
tions of the first n integers. Using these polytopes in 
to analyze ranked data was first suggested by Schulman 
(1979); this procedure has recently been generalized and 
expanded on by Thompson (1993). 

Consider the rankings of four items, A, B, C, D, and 
let ir; be a vector in 3J4 whose coordinates are the ranks 
of A, B,C,D, respectively. Thus, 7?,- = (1,2,3,4) would 
correspond to the ordering (.4., B, C, D); item A is ranked 
first, item B second, item C third, and item D fourth. 
Similarly, TT; = (3,4,1,2) would correspond to the order- 
ing (C,D,A,B); item A is ranked third, item B fourth, 
item C first, and item D second. 

As each vector ir,- has the same components, 

4 

X)^0') = 1 + 2 + 3 + 4=10 

a constant, so this polytope is constrained to lie in a 3- 
dimensional subspace of SR4. Similarly, as the average of 
the components, 7f;, is always the same, 

4 

£(xi(;) - f;)2 = 2-25 + -25 + -25 + 2-25 = 5> 
7=1 

another constant, so this polytope is constrained to lie 
on a 4-dimensional hypersphere. These constraints gen- 
eralize to n dimensions, so a permutation polytope must 
lie imbedded in an (n — l)-dimensional hypersphere. 

Two vertices of the permutation polytope are joined 
by an edge if and only if they differ by a single transpo- 
sition of two consecutive integers: (3,4,1,2) is joined to 
(3,4,2,1), (2,4,1,3) and (4,3,1,2). In terms of item or- 
derings, this transposition of consecutive integers corre- 
sponds to a transposition of two adjacent items: 
(C,D,A,B) is joined to (D,C,A,B), (C,A,D,B), and 
(C,D,B,A). 

The connection structure imparts a powerful prop- 
erty to the permutation polytopes: every face on the 
polytope has a direct interpretation in terms of rank- 
ings. 

This feature is illustrated in Figure 2, where eight of 
the vertices have been labelled with their corresponding 
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CADB 

Figure 2: Projection of the 6-dimensional Hypercube Arising from the Paired 
Comparisons of Four Items onto the Consistent Subspace. 

item orderings. The labelled hexagon in the upper left 
corresponds to the collection of all rankings in which 
item C is ranked first. Similarly, three of the remaining 
hexagonal faces correspond to items A, B and D being 
ranked first, respectively. The other four hexagonal faces 
correspond to a given item being ranked last. The six 
square faces correspond to a given pair of items being 
ranked in the first two positions; the labelled square in 
front corresponds to items B and C being jointly ranked 
first and second. Methods of determining what faces can 
arise and assigning interpretations to them are provided 
in Thompson (1993) and Baggerly (1994). 

Hence, the ranking information present in a collec- 
tion of paired comparisons can be inferred by noting 
what face of the permutation polytope is indicated by 
the projection of the collection onto the consistent sub- 

space. The inconsistent collections mapping to the cir- 
cled dot at the center of the hexagonal face in the upper 
left of Figure 2 correspond to item C being ranked first, 
while the relative ranking of items A, B and D is left 
indeterminate. Similarly, the large circled dot behind 
the square face in the center indicates a slight preference 
for items B and C over items A and D. The fact that 
the vertex is within the convex hull (as opposed to on 
the surface) indicates that some ambiguity is present. In 
general, the magnitude of the projection onto the consis- 
tent subspace can be taken as an indicator of the strength 
of the expressed preference. 
4. Future Work 

Several avenues remain to be explored. There are 
questions of what to do if the collections of paired com- 
parisons are incomplete (in that not every comparison 
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has been made), or if some comparisons have been made 
multiple times. It is not immediately clear how to scale 
the projections to account for the missing information. 
These problems have been addressed analytically by 
Kendall (1955) and recently by Andrews and David 
(1990). A good overview of much of the analytic work 
done on paired comparisons is provided by David (1988). 

If all comparisons have been made, but some ties 
have resulted (yielding a 0 as opposed to a 1 or —1 in 
the appropriate entry), the projection onto the consis- 
tent subspace is still well-defined. Every full ranking can 
be represented as a collection of paired comparisons; if 
ties are allowed, every partial ranking (e.g., A first) can 
also be represented by a collection. This fact suggests 
new geometric ways of examining mixtures of full and 
partially ranked data. 

Finally, there may exist other projections of the 
paired comparison hypercubes which may be of interest, 
as these other projections can potentially reveal trends 
in exactly how inconsistencies tend to occur. 
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ABSTRACT 

A new procedure is proposed for the analysis of multiple 
correlated binary endpoints. The procedure is based on the 
exact distribution of -2£,log(pj), where p;'s are 
transformations of the statistics z/s used to test the 
individual endpoints. We show how to make global, as 
well as local inferences regarding the hypotheses. We also 
compare this approach with several recenüy proposed 
multiple comparison procedures for the analysis of multiple 
correlated binary endpoints in terms of Type-I error control, 
and power. 

Key words: endpoints, multiple comparison procedures, 
familywise error rate. 

INTRODUCTION 

Suppose there are c treatment groups, a control group and 
c-1 treated groups with increasing doses, and k endpoints 
with binary response were measured on each experimental 
unit. For endpoint i, i = 1, 2,..., k, we test the null 
hypothesis H,- of no treatment effect, against the alternative 
hypothesis that the response rate increases with dose. It is 
well known that the Type I error for testing HQ = n,Hj 
could increase if we conclude that there is a treatment effect 
by rejecting HQ when observing any significant result 
among the k endpoints. Several methods are available in 
the literature to control the overall Type I error. These 
include the Bonferroni procedure and its improvements, 
[see Holm (1979), Simes (1986), Hommel (1988), Rom 
(1990)], and procedures taking discreteness into account 
[see Brown and Fears (1981), Heyse and Rom (1988), 
Westfall and Young (1989), Tarone (1990), Rom (1992)]. 
In this paper, we study the conditional exact test of Fisher's 
combination procedure using T = -2Z,log(pj) as test 
statistic, where pt- is the asymptotic p-value for testing the i- 
th endpoint. 

NOTATION 

Suppose that there is a total of r (r < 2* ) different 
combinations of binary responses (response vectors) from 

the k endpoints, denoted by D = [ dmi ]r x # = [ dj, d2,..., 
dr], where dm,- = 1, if the i-th endpoint in the m-th 
combination has response; else dmi = 0; m = 1, 2,..., r, i = 
1,2,..., k. Let nm  = [ nmj, nOT2 nmc] be the number 
of subjects in the c groups corresponding to the m-th 
response vector dm > m = 1,2,..., r, then our test procedure 
is based on G = [ D^ | N0 p^], where N0 = [ nj, n2,..., 

nr]. Notice that the m-th row margin nm. = S^_i»m/ is 

the total number of subjects among the c groups that have 
response vector dm, and the j-th column margin n.y = 

Xm=:1«m/ is toe size of group;'; m = 1,2,..., r; j = 1,2  

c. 

ANALYSIS OF INDIVIDUAL ENDPOINTS 

For each endpoint /, a 2 x c table Ej = [ e,-/y] can be derived 
from G, where the cell count of they-th column in the first 
( second) row is the number of subjects that do not respond 
(respond) for endpoint i, i.e., 

r 
Hlj=  £ n»yl{/-l}(rfmi), 

m=l 
l{l-l}(dmO  =1>    ifdmi = l-1> 

= 0,    otherwise; 
i = l,2 *;/=l,2;;=l,2,...,c. (1) 

The analysis for endpoint / can be done by Mantel's score 
test using: 

2   k 
Ti = S  'Lui-vj-euj, where w/ = / -1 and v;- =; -1. (2) 

/=1/'=1 

The column scores v.'s reflect the progressive response at 
increasing doses. For other possible values of the scores, 
see Tukey, Ciminera and Heyse (1985). To test an upward 
trend in the response rate, the asymptotic p-value is: 

Pi = 1 - 0(Z:), where Zt = %™T 
<JVar(Ti) (3) 
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OVERALL TEST PROCEDURE 

To test the overall null hypothesis HQ of no treatment effect 
at any endpoint, we propose to use: 

r = -2Slog(p,-). 
i=l 

which is equivalent to using: 

k 
T'= UPt • 

i=l 

(4) 

(5) 

When the k endpoints are continuous and independent, T 
has chi-square distribution with 2k degrees of freedom, and 
it is known as Fisher's combination procedure. In our case, 
the overall p-value is calculated using the exact distribution 
of 7", conditional on the row and column margins of the 
observed rxc table N0. It is the probability of observing 
any rxc table N, under the null hypothesis and conditional 
on the margins of N0, which is at least as extreme as N0, 
where the extremity is measured by 7". We denote the 
overall p-value by adj-p, and express it as: 

adj- p = Pr(7"< remargins of N0) 

=    £Pr(Nlmarginsof N0) • 
T<To 

(6) 

where T0 is the observed test statistic. Notice that the 
dependence of the k endpoints is reflected by the row 
margins and that N, conditional on the margins, follows 
multivariate hypergeometric distribution under the null 
hypothesis. 

Our algorithm is as follows: 
1. Calculate the observed statistic T0 = Oj p/, using D and 

the observed table N0. 
2. Set adj-p to zero. 
3. Enumerate rxc tables N satisfying the row and column 

margins of N0. 
4. Use D and the enumerated table N to form klxc tables 

and calculate their asymptotic p-values. 
5. Calculate the corresponding test statistic T = IIj p/. 
6. If T is less than or equal to T'0, then adj-p is increased by 

p, where p is the probability of observing the enumerated 
table N, conditional on the margins. 

7. Return to 3, until all possible (given the margins) rxc 
tables are enumerated. 

SOME COMPUTING ISSUES IN OUR PROGRAM 

We have implemented our procedure in SAS using 
complete algorithm (see Verbeek and kroonenberg, 1985) 
to enumerate all the r x c tables satisfying the margins. 
When large problems are encountered, we use Monte Carlo 
simulation to estimate the adjusted p-value by taking 
random samples from all possible tables (see Boyett, 1979). 
Gail and Mantel's (1977) method to approximate the total 
number of r x c tables satisfying the margins can help 
making the decision of selecting the exact or Monte Carlo 
procedures. 

EXAMPLE 1 

The following example is from Rom (1992). In a 
carcinogenicity study, 100 mice were randomly assigned to 
either control or tested groups, with 50 mice in each group. 
Tumor incidence at site A and B were observed from each 
mouse. The experimental outcome is summarized in Table 
1, where D is the 4 x 2 table under Endpoint 1 and 
Endpoint 2, and N0 is the 4 x 2 table under Group 1 and 
Group 2. From Table 1, we can derive two 2x2 tables for 
endpoint 1 and 2, and calculate the observed test statistic 
T0 (see Table 2). Then, we start enumerating 4x2 tables 
N satisfying the margins of N0. From each enumerated 
table N, two 2x2 tables are derived and the corresponding 
test statistic T is calculated. If T < T0, the overall p-value 
adj-p is increased by the probability of observing N, under 
the null hypothesis and conditional on the margins of N0. 
Part of the SAS output is shown in Table 3. There are 128 
tables satisfying the margins, and the overall p-value is 
about 0.0190. 

Note that for this example, the Fisher's Exact test 
statistic for site A (B) is the number of mice in the treated 
group with tumor A (B), i.e., 8 (5). 

Table 1. Summary of number of mice with tumors 
Tumor 

site 
Endpoint 1 Endpoint 2 
(Tumor A) (Tumor B) 

Group 1    Group 2 
(Control) (Treated) 

Total 

None 
A only 
Bonly 

AandB 

D No 
87 

7 
3 
3 

0 0 
1 0 
0                1 
1           1 

48             39 
1              6 
0 3 
1 2 

Group size 50            50 100 
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Table 2: 2 x 2 tables for A and B generated from Table 1 
Tumor Incidence Control      Treated Asymptotic 

p-value 
A No 

Yes 
48             42 

2               8 0.02275 

B No 
Yes 

49             45 
1               5 0.04606 

T'o = 0.02 275 x 0.04606 = 0.001048 

Table 3: Part of SAS output for Example 1 
Obs n11n21n31 P1     P2     T'       P      adJ-p A B 

1 50   0 0 .0004.0058.0000 .00005 .00005 10 6 
2 49   1 0 .0038.0058 .0000.00046.00051 9   6 
3 49   0 1 .0004.0461.0000.00020.00071 10 5 
4 49   0 0 .0038.0461.0002 .00020.00090 9   5 
5 48   2 0 .0228.0058 .0001.00173 .00264 8   6 
6 48   1 1 .0038 .0461.0002 .00173 .00437 9   5 

127 38   6 3 .9962.9942.9904.00046 .01900 1   0 

128 37   7 3 .9996.9942.9938 .00005 .01900 0   0 

T0 = 0.001048 
Note: 
1. pj is the asymptotic p-value for site A. 
2. p2 is the asymptotic p-value for site B. 
3. p is the probability of observing N. 
4. A is the number of tumors at site A in the treated group. 
5. B is the number of tumors at site B in the treated group. 

MAKING LOCAL INFERENCES 

When rejecting the global null hypothesis HQ, we conclude 
that at least one of the H,'s is false. The closure principle of 
Marcus, Peritz and Gabriel (1976) can be employed to 
make inferences on individual hypotheses. With two 
endpoints, one can reject any individual hypothesis Hj, i = 
1,2, if HQ = Hj n H2 is rejected at level a, and Hj is also 
rejected at level a using the same procedure. 

In our example, the hypothesis corresponding to tumor 
site A has a corresponding p-value of 0.0458 (see Table 4). 
Since both the global null hypothesis and this individual 
hypothesis are rejected at level 0.05, we can conclude that 
treatment causes an increase in the rate of tumor A. Note 
that our procedure, when applied to one endpoint only, is 
equivalent to Fisher's Exact test. 

Table 4: Joint distribution and rejection regions 
B 

0       12      3      4      5        6   Margin 
.0006 0001.0002.0003.0001.0000.0000 

.0005.0019.0028.0017.0003.0000 

.0017.0080.0136.0106.0036.0004 
0035.0182.0366.0353.0164.0031 
.0040.0250.0600.0698.0409.0110 
.0026.0212.0622.0872.0622.0213 
.0009.0110.0409.0698.0600.0250 
0001.0031.0164.0353.03661.0182 

.0009 

.0026 

.0040 
0035 

.0000.0004.0036.01071.01361.0080.0017 

0000.0000 
.0000.0000 

.0000 

.0000 

.0000 

.0001 

.0003.0017.0028.0019 .0005 
0000.0001.0003.0002 .0001 

Margin.0133.0889.2367.3223.23671.0889 .0133 

Rejection region: 

.0072 

.0380 

.1131 

.2114 

.2593 

.2114 

.1131 

.0380 

.0072 
0006 

.0458 

.1022 
Ordered p-values (Rom) 

Product of p-values 

Table 5: Actual levels and p-values 
Method Rejection Region Actual level P-value 

Bonferroni Pm< 0.025 
= A>9orB = 6 

0.02050 0.0916 

Heyse and 
Rom (1988) 

Pa)< 0.0133 
= A>9orB = 6 

0.02050 0.0568 

Rom (1992) {P(D< 0.0458} u 
{Pm = 0.0458 & 
P(2) ^ 0.3389} 

0.04226 0.0286 

Proposed PrP2< 0.004306 0.04664 0.0190 

Note: 
1. P(i\ and P(2) are the ordered p-values of the individual 

endpoints, where Pn \ < Pn\ ■ 
2. Pj and P2 are the asymptotic p-values. 

COMPARISON WITH OTHER PROCEDURES 

Using the above example, we compare our method with the 
Bonferroni procedure and two other exact procedures: 
Heyse and Rom (1988) procedure using the minimum p- 
value of the k endpoints as test statistic, and Rom (1992) 
procedure using the ordered p-values of the k endpoints as 
test statistic. The joint distribution of the tumor incidence 
at site A and B in the treated group, as well as the rejection 
regions of two exact procedures, are displayed in Table 4. 
The joint distribution can be obtained from Table 3 by 
summing up the hypergeometric probabilities of identical 
tumor incidence at the two sites in the treated group, where 
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(A, B) = (8, 5) is the observed value. The p-values and 
actual significance levels under a = 0.05 are summarized 
in Table 5. We can see that the proposed procedure has the 
smallest p-value and the least conservative Type I error 
controls 0.05. 

CALCULATION OF POWER FUNCTION 

Here we only discuss the case of two treatment groups with 
two endpoints. The method can analogously be extended to 
the general case. Assume P,s- is the actual response rate of 
the t-th endpoint at the ;'-th group and that Vy is the 
covariance between the two responses, where i, j = 1,2. It 
is straightforward to calculate the probabilities of observing 
the four possible outcomes of the two endpoints from the 
given configuration. The result is shown in Table 6. 
Notice that V; must satisfy the following inequalities to 
ensure non-negative probabilities: 

Vfl<Vj<Vju, where 

(l-PyXl-Pa and 
il/2 

V,-! = max {- Pi/2/
1-W-py)1    •" PVP# 
 n2;vK 

P2/I-PI7»1 
Vju = min { [Pi/^l-PljXl^;)]172. pl/ ^2p> 

Po,<l-Pi,)} . (7) 

We assume that the two treatment groups are independent 
and that the group sizes are known, then we have two 
independent multinomial distributions. A 4 x 2 table can 
be formed by taking an observation from each multinomial 
distribution. It is possible to observe 4x2 tables that have 
zero row margin in one or both of the corresponding 2x2 
tables. If only one of the observed 2x2 tables contains a 
zero row margin, the test statistic is defined as the 
asymptotic p-value of the other 2x2 table. If both 2x2 
tables contain zero row margin, the test can not be done 
because the individual p-values are not defined. We define 
such 4x2 tables as non-testable. 

For the given response rates and covariances of the two 
responses, the power is defined as the probability of 
observing 4x2 tables, after excluding the non-testable 
tables, on which the overall null hypothesis can be rejected 
by our test procedure. The exact power can be calculated 
by exhausting all possible outcomes of the two multinomial 
distributions and by summing up the product of the two 
multinomial probabilities that the corresponding 4x2 
tables can be rejected under a pre-determined level a, then 
divided by the probability of observing testable tables. That 
is, 

Power = 

ZPri-Pr2 
adj-p < a 

1-Pr( non-testable 4x2 tables) 
(8) 

where Pry is the multinomial probability of observing the 
outcomes of group j, j=l,2. 

The group sizes are sometimes so large that calculation 
of the exact power becomes infeasible. The power can be 
estimated by taking random samples from the two 
independent multinomial distributions and by calculating 
the proportion of rejected tables, after deleting non-testable 
4x2 tables. 

Table 6: Configurations and the corresponding 
multinomial probabilities 

Tumor Control Treated 

A Pll Pi 2 
B P21 P22 

Cov Vi v2 

Tumor Group 1 Group 2 

No (l-PnXi-p^ + V! (1-P12)(1-P22) + V2 

A only Pnd-p^-V! P12(1-P22)-V2 

Bonly (I-PH^-VT (1-P12)P22-V2 

AandB P11-P21+VJ Pl2-P22 + V2 

Table 7: Configurations and the corresponding 
multinomial probabilities 

Tumor Control Treated 
A 0.04 0.16 
B 0.02 0.10 

Cov 0.0192 0.024 
Correlation 0.70 0.22 

Tumor Group 1 Group 2 
No 0.96 0.78 

A only 0.02 0.12 
Bonly 0.00 0.06 

AandB 0.02 0.04 
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Example 1 (continued) 

Suppose the tumor incidence rates at site A and B and their 
correlations are given in Table 7. Following Table 6, the 
marginal probabilities of the two independent multinomial 
distributions can easily be derived. Notice that the 
expectation for each combination, using group size of 50, is 
exactly the one observed in Table 1. The powers under 
level 0.05 using Rom (1992) and the proposed procedures 
are estimated by Monte Carlo simulation with 5,000 
samples. The results are displayed in Table 8. Both 
procedures have similar power in this example. Running 
on VAX 6000-620, the CPU time used by the proposed 
procedure is only about 5 minutes, in contrast to 1 hour and 
44 minutes used by Rom's procedure. 

Table 8: Powers of Rom (1992) and the proposed 
procedures 

Method Power Confidence Interval # of samples 
Rom 0.697 (0.685,0.710) 5,000 
Proposed 0.699 (0.687,0.712) 5,000 

CONCLUDING REMARK 

Our proposed procedure can easily be extended to ordered 
multinomial response by evaluating the asymptotic p-values 
of the rj x c tables instead of 2 x c tables, where r± is the 
number of possible outcomes at the j-th endpoint. 

Although the powers of the proposed procedure under 
different configurations are not reported here, from our 
experience, the procedure has the best power when the 
asymptotic p-values are positively correlated, or, if several 
(all) endpoints are affected by the treatment. 
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Abstract 
The number of calculations in the classical Cross 
Validation (CV) method grows very fast with the 
size of the sample. Hence various methods redu- 
cing the number of necessary calculations have been 
proposed: a Monte Carlo Cross Validation appro- 
ximation [4], [5]; WARP-ing [10] ,[17]; and Binning 
[9]. In the present paper we discuss a new approach, 
Partial Cross Validation (PCV), saving on the com- 
putational effort while choosing the optimal smoo- 
thing parameter. In classical CV and in Generalized 
Cross Validation (GCV) it is necessary to calculate 
the sum of n squares of differences between Yi and 
the leave-one-out estimates of the regression func- 
tion at Xi. In PCV this sum is calculated only over 
a relatively small number k„ of properly chosen in- 
dices i. By choosing PCV-optimal window width we 
end up with both window width and estimator very 
close to their GCV-competitors. In Section 4 we pre- 
sent performance of the PCV and GCV methods in 
simulations with n = 100 and kn — 8. In Section 3 
we find conditions under which PCV has the same 
feature as GCV: it is, up to a constant, an unbia- 
sed estimator of the Mean Integrated Square Error 
(MISE). 

1    Introduction. 

One of the simplest representations of the regression 
function is given by 

Y = r{X) + e, (1) 

where X and e are independent, E(e) = 0, and 
Var(e) = a2 < oo. In case our information about 
r() is poor, e.g. when we know no adequate para- 
metric model to which r(-) belongs, nonparametric 
methods provide reliable estimation tools. Nonpara- 
metric estimators of r(x) based on i.i.d. observations 
(Xi,Yi), i = 1, •••,n considered in the literature 
include Nadaraya-Watson, k-th Nearest Neighbor, 

p-th Optimal Quantile, spline estimators, Gasser- 
Müller, LoEss, Local Polynomial, Local Parametric, 
and we refer for more comprehensive references to 
[3], [8], [11], [12], and [15]. 

Users of nonparametric methods must pay for the 
universal consistency with a slower rate of conver- 
gence and, so far, with much greater computational 
complexity. Methods called Randomized Cross Va- 
lidation [4],[5], WARP-ing [10], [17], and Binning [9] 
considerably reduce (from 0(n2) to 0(n)) the co- 
sts of calculation of the estimator which are related 
to the necessity of multiple evaluation of the kernel. 
In the present paper we consider an application of 
Numerical Analysis to the estimation of the opti- 
mal smoothing parameter of nonparametric regres- 
sion estimators. We propose PCV, a modification 
of CV and GCV (see [1]), by appropriate skipping 
over most of the terms in the original formula and 
weighting the remaining ones. The main idea con- 
sits in approximating an integral (Integrated Square 
Error (ISE))by using some of the standard methods 
available in the Numerical Integration Theory and 
then approximating the knots of integration by the 
closest points from the sample. This approach seems 
applicable also in the multivariate case, in nonpara- 
metric density estimation, in spline estimation, and 
in tomography [4], [5],[14] as well. We shall not pur- 
sue generality here and concentrate on presenting 
the method in case of the Nadaraya-Watson estima- 
tor. It is clear that especially the Binning can also 
be incorporated into the methodology. However for 
the sake of simplicity of presentation we shell refer 
here direct to kernels. The idea of PCV has been 
to our knowledge first implemented in tomography 
[14] in the version of approximation of order one (see 
the rectangular version of the PCV listed at the end 
of section 2). The experience shows that it works 
reasonably well, at least for small sample sizes. 

In Section 3 we show that for higher order ISE ap- 
proximations PCV„(h) is asymptotically an unbia- 
sed estimator of MISEn(h), see Theorem 2. We 
implemented both versions of PCV in nonparame- 
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trie and user friendly Fit Short 2.4 package, cf. [15]. 
A comparison of the performance of GCVn(h) and 
PCVn(h) in simulations is reported in Section 4. 

2      The Partial Cross Valida- 
tion 

Consider the Nadaraya-Watson estimator of r(X) 
which is given by 

_E?=i**(^)    fi 

where 

K(0) 

S(u)    =    l + 2u + 0(u2),   (u->0). 

PCV, a simple modification of the GCV has em- 
pirically determined computational complexity 0{n) 
(as implemented in the package Fit Short 2.4). Let 

2^i=lA I.    A    )        i=1
n i=l * 

(2) 
Estimator fh(x) depends on a smoothing parameter 
h called a window width. The quality of the esti- 
mator strongly depends on the proper choice of the 
window width and is measured by the Mean Inte- 
grated Squared Error (MISE) given by 

MISEn(h) = E(ISEn(h)), (3) 

where 

(7) 
where k„ is the number of components, m are the 
weights, and i   is a function of argument i from 
{l,...,k„} into{l, ...,n}. 

We shall need the following definitions and nota- 
tion (cf. [2], pp.57 and 75). 

Definition 1 A  numerical integration  method of 
the form 

»*(*) =/(M.)-r(.))M.j«.)*. (4) / «.*=X>«>•«+*.<■>   m 

/(•) is the density function of X, and w(.) is the 
indicator function of an interval A, such that 

7 < f(x) < -     for some 7 > 0 and for every x G A. 

A related random measure of discrepancy between 
fh{x) and r(x) is given by the Averaged Squared 
Error (ASE) 

ASEn(h) =  ^Efara-K*,))3 «,(**)• 

ASE and ISE have been proved asymptotically equ- 
ivalent to MISE [6], [7], [13],[10], [16], and the pro- 
blem consists in finding h = h„(Xi, • • •,Xn) mini- 
mizing any of them. Despite of a range of competi- 
tors (cf. [8]) CV-type methods are among the most 
popular in finding asymptotically optimal h. The 
original CVn(h) is given by 

where r^ (x) is the leave-one-out estimator. CV ad- 
mits some generalizations, here we shall refer to the 
GCV in the form discussed in [11],[12]: 

GCVn(h) = ^(Yi-hiXitf.ErwiXi), (6) 

is said to be of order s in a class of functions T 
s+ 1 times differentiable on A if Rm(u) — 0(m~') 
for every u £ T. 

Definition 2 A numerical integration method is 
called a compound kn-points Gauss rule with k = 
m- p if it results from from dividing the interval of 
integration into m equal subintervals and applying 
the p-point Gauss method to each of them. 

In applying any numerical integration rule to ap- 
proximate an expected value of g{X) we shall use 
representation 

EFg{X) =   I   g{F-\x))dx 
Jo 

(9) 

»=i 

and apply the numerical integration rule to the right 
hand side expression or, equivalently, transform the 
original knots a;,- into the corresponding quantiles 
of the probability distribution function F. In what 
follows we shall assume that all necessary regularity 
and smoothness assumptions required in theorems 
in [2] on pp.57 and 75 are fulfilled. 

Let (Xi,Yi),. ..,(Xn,Yn) be a given sample of 
independent pairs of random variables. We order 
them according to the increasing values of X's 
(with ties broken by the chronological order) get- 
ting (X(1),Y(i),...,X(n-),Y(„)) with X(1) < X(2) < 
... X(ny Let (j) denote the index in the original sam- 
ple corresponding to the j—th order statistic and [a] 
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be the best integer approximation of the real number 
a, rounding towards zero in case of ambiguity. 

Below we list two versions we used in simulations. 
The first one corresponds to the 'rectangular' rule of 
numerical integration. We do not know if Theorem 
2 holds true for this numerical integration rule. The 
second one corresponds to the compound fcn-points 
Gauss rule of order 2p with kn — m„ -p, mn = nw*, 
and we will show in Section 3 that it is, up to a 
constant, an unbiased estimator of MISE. 

1. a rectangular version of the PCV: kn = c • 

log(n), in = £ for every i, and t* = ([17]) . 

2. a compound gaussian version of the PCV: kn = 

n5FFT -p, p > 3, /ii are the weights in the fen- 
points compound Gauss numerical integration 

method, i* = ([afi + a=i • *i]) , i = 1,..., i„, 
and Xi's are the z'-th ordered abscissas of the kn- 
knots of the compound Gauss integration rule 
on [-1,1]. 

3    Main results 

The ISE given by (4) is an integral over interval A, 
on which the density function f(x) is positive. Hence 
for large n and smooth kernel K the estimator fh{x) 
is well defined and smooth. So, if the regression 
function is also smooth the integrand of the ISE is a 
smooth function and the integral can be approxima- 
ted with the use of numerical methods of integration. 
We shall pursue this program while paying attention 
to retain the proper order of approximation. 

Let us approximate ISE = ISEn uniformly for 
ft € H = h= [^n~s, Cn~1+S] for some C > 0 and 
6 > 0 using a compound kn,-point integration me- 
thod of order s, kn = p ■ m„, and then approximate 
the knots x,- by corresponding the closest sample po- 
ints X *. We have 

t 

ISEn(h)    =     f g(x)w(x)f(x)dx 

=   X>-*(*i) + 0,(-|-)' 

= pisEn(h) + op(—y + 0P(—) 
mn n 

The first equality follows just from the property of 
the numerical integration method, see [2] pp. 58 and 
75, while the second one is implied e.g. by the Ba- 
hadur representation of quantiles [18]. To minimize 

the order of the error of approximation we choose 
m„ = n^r yielding the error of order 0(n~&). To 
keep the error on level o(n~») we take s > 4. So, we 
get 

Theorem 1 If the estimator fn(x) and the regres- 
sion function r(x) belong to T and the integration 
method is of order s on T then for s>4ue have 
forheH 

ISEn(h) = PISEn(h) + op(n~>).       (10) 

In the next step we consider relations between PISE 
and PCV assuming the same mn in both cases and 

also the same index selection method i . Indeed we 
have 

PISEn(h) = J2 /*,.* (ft - rf) (x *)-S.*-u>(*.*) 

+ Y^N.e\-Z{X.*)-w{Xj*) 

m„ 
+ 2 Y, K-e.*\Y.*-h(X.*)yS(Xj*yw(X.*) 

i=i       }       ' 3 

= PCK„(A)+ £/*/*%•«'(*,*) 

+ 2 ]T w.e.*.(y.* - fh(x. *)j.u»(xi*) 

+ lVW,V«(I.*)+Op(n4) 
n f^        j J v       ' 

= PCVn(h)+Ti+T2+Ta+Op (""«) . 

Ti does not depend on ft while in a way similar to 
[12], p. 154-155 one can verify that 

E{T2\Xu...,Xn) = -T3. (11) 

Hence we get the following theorem. 

Theorem 2 Under the assumptions of Theorem 1 
PCVn(h) given by (7) is, up to a constant, an unbia- 
sed estimator ofMISE„(h), i.e. for h£H, 

EPCVn(h)   =   MISEn(h) 

+  E\fli1re2.*-W{x
i*) 

+    o(n-4/5) (12) 
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Theorem 2 suggests that arguments h„ minimi- 
zing PCVn can be used in 2 instead of hn mini- 
mizing GCVn. It is plausible that paralleling ar- 
guments in [6] or [13] one can show optimality of 
the hn minimizing PCVn(h) in the sense of mini- 
mizing MISEn(h). However detailed verification of 
this conjecture is beyond the scope of the present 
note. 

4    Simulations 

Using package Fit Short 2.42 we compared PCV and 
GCV on many both simulated and real data. In 
general, the behavior of the PCV is on the level of 
CV and GCV with very often only minor differences 
in estimators from these methods. We shortly report 
here on two typical simulations. In both cases we 
applied 8-point Gauss integration method with n = 
100, mn = 1, and k„ = p = 8. 

1. r(x) = (sm(27TX3))3, X's uniform on [0,1], 
e ~ N(0, a = 0.7), see Figures 1 and 2, 

2. r{x) = T4(ar) = 8x4 - 8z2 + 1, 
X's uniform on [0,1], e ~ N(0,<r = 0.7), see 
Figures 3 and 4. 

In the former case we have almost identical resul- 
ting estimators of the regression curves, in the latter 
one hpcv oversmoothes the regression curve. The 
regression function in 1 was considered by Härdle in 
[12] for n = 256 and a2 = 0.5. 
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Abstract 

For the estimation of additive regression models in a nonparametric fashion based on some linear scatterplot smoother 
the solution of large linear, often ill-posed, systems is required. Standard iterative approaches of the Jacobi and Gauss- 
Seidel type only apply to non-singular system matrices, although their use for ill-posed problems is most common. In 
this paper an iterative projection method with some favourable properties is proposed: Convergence can be established 
without restrictions on the system matrix. For singular systems an optimal solution can be obtained. Finally, it is 
possible to take advantage of the shape of specific system matrices when calculating the solution. 

1. Introduction and motivation 

Projection pursuit regression (FRIEDMAN and 
STUETZLE, 1981) and generalized additive models 
(HASTIE and TIBSHIRANI, 1990) are well-known 
examples of non-parametric regression problems with 
scatterplot smoothers. These approaches require solving 
large linear equation systems. To reduce the 
computational costs the so-called backfitting algorithm 
was introduced, a numerical procedure related to Jacobi 
and Gauss-Seidel iteration. The basic idea is to determine 
estimates for the covariates successively in a non- 
parametric manner (scatterplot smoother). Backfitting 
uses currently available information from all covariates, 
except the covariate of which the estimates are just 
computed. This leads to a splitting of the system matrix 
into d blocks, each block corresponding to one of the 
predictor variables Xj, j=l, 2, ... ,d. Finally an iterative 
procedure, most often Gauss-Seidel is applied to these 
blocks. Relaxation can improve the speed of convergence, 
but is usually not implemented in statistical software. For 
a discussion of iterative procedures to solve linear 
equation systems in the context of additive regression 
modelling see SCHIMEK, NEUBAUER and STETTNER 
(1994). 

Although there are reports that backfitting works well 
(e.g. BUJA, HASTIE, and TIBSHIRANI, 1989) in most 
situations alternative procedures should be considered. 
First of all, Jacobi and Gauss-Seidel iteration as well as 
variants of it were not developed for solving (nearly) 
singular systems. In' non-parametric regression linear 

scatterplot smoothers such as spline and kernel 
techniques are most common. The smoothed data are 
design-dependent (number and location of knots, 
smoothing parameter, kernel characteristics and 
bandwidth), hence ill-posed or singularity problems must 
be expected and in principle the associated normal 
equation system should not be solved by standard 
algorithms. Further we have to be aware of concurvity, 
also contributing to the singularity of the system matrix. 
As a direct consequence we cannot predict the speed of 
convergence and the quality of the obtained results. 

Direct, non-iterative procedures could be applied to such 
singular normal equation systems. SCHIMEK, 
STETTNER, and HABERL (1992) proposed a Tichonow 
regularization technique. It yields exact solutions on the 
one hand. On the other hand it is too expensive for 
routine use. Tichonow regularization is rather a valuable 
tool for the comparison of results obtained by other 
numerical concepts. 

In this paper we propose an alternative procedure with a 
number of favourable properties. The idea is to obtain 
correct solutions for large linear systems in an iterative, 
cheap manner, even when the system matrix is singular. 
For that purpose wflj take a projection-oriented, 
geometrically motivated approach. 
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2. An iterative projection method 

The iterative projection method we want to develop is 
related to a row-oriented procedure introduced by 
KACZMARZ (1937) and a column-oriented technique 
due to de la GARZA (1951, see also HACKBUSCH, 
1991, p. 203 and HOUSEHOLDER, 1975, section 4.2). 
We assume a sequence of iterative projections which 
forms an "instationary process" in the terminology of 
MAESS (1988, p. 116). 

Let us have a linear equation system Ax = b to be solved 
in x with A a nxn matrix, x and b «-dimensional 
vectors. Further we define A = (a(l),a(2),...,a(«)) 
where a(/) denotes the i-th column vector of A. We 
represent b step by step via a sequence of the form 

b = £>('>'(/)+„(£)        (1) 

where /-l, 2,..., k, k=l, 2, and 

a'(/) = a*((/-l)modw + l). 

The a*(l),a*(2),...,a*(n) are a permutation of the 
a(l),a(2),...,a(«) to improve the convergence speed 
(compare with the "cyclical criterion" described in 
MURTY, 1983, p.457). The vector u(k) represents the 
"unexplained" component of b and is the perpendicular 
from u(k-l) to the dimension a'(£)at iteration step k. 
The coefficients fi(i) are determined in each step by an 
optimality criterion 

/(£,/i(£);a'(l),a'(2),...,a'(A:)) = 0 

they have to fulfil (e.g. require that u(£) is the 
perpendicular of u(fc-l) onto a'(£). We can establish 
conditions for the optimality criterion under which u(k) 
converges towards 0. 

For the evaluation of the coefficients n(i) we can take 
advantage of structural features of the system matrix A. 
This is an important aspect when solving the normal 
equations associated with additive regression models. 
According to BUJA, HASTIE, and TIBSHIRANI (1989, 
p.477) we have to solve the system 

(I    S, Si 

s2 s2 

\Sd  sd  sa 

xl 

*2 s2y 

lAxd) {Sdyj 

in our notation Ax = b, where A and b are block 

matrices of smoothing operators (matrices) S;, x; 

solution vectors and y a dependent variable vector in an 
additive regression model. 

3. Features of the iterative projection method 

There are a number of advantages of the proposed 
method: 

• It always converges because convergence does not 
depend on the characteristics of the system matrix A, 
such as diagonal dominance. 

• For singular systems an optimal solution can be 
obtained. 

• The shape of specific system matrices A (e.g. due to 
certain scatterplot smoothers like cubic smoothing 
splines) can be exploited for the calculation of the 
solution. 

As disadvantage has to be mentionend: 

• Slow convergence in its standard version (see e.g. 
HACKBUSCH, 1991, p.204 for the Kaczmarz 
procedure). 

To overcome this weak point of the iterative projection 
method two approaches can be taken: The one is to 
introduce a projection-specific relaxation concept. The 
other is to resort to parallel processing. 

4. Proof of convergence 

We prove convergence for the optimality criterion 

H(k) = {u(k-l),a\k))/(*'(kW(k)), 

a*(it) = a(k). (2) 

In this situation equation (1) can be written as 
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b = I ZM(0   aO)+u(A:). 
/=lla'(/)=a(./),/<£ 

Aggregating in m(j) all //ft) belonging to some./' yields 

b=£</)a(/)+u(A-) 

Another important advantage of the proposed method is 
its convergence for singular equation systems. Let us 
have b not a member of the linar space spanned by the 
columns of A, and 

b = bA + b0 

the unique partition of b with b0 orthogonal to the 
column space of A. For reason already given u(k) 
converges in 

and (2) takes the form 

*»(/)= (M(y)) -XX/)(a(Aa(/)). (3) 2>(0 \aU)+u(k) 
[aXO=aUy<lc) 

Formula (3) can be understood as an iterative solution of     t0 °- when calculating the \i(i) successively from b 
an equation system with the system matrix instead of bA, the same coefficients are obtained, because 

b0 does not contribute to the solution uft): 

H = (/3j7) = ((a(/),a(y))). 

For the convergence of this sequence we apply a classical 
theorem on the convergence of iterative procedures (see 
TODD, 1962, p. 222ff for details): Is some matrix H 
Hermitian and positive definite then the iterative 
procedure 

x(r+7) = d + C x(r),   r = 0,1,2,... 

converges for arbitrary x(0) towards the solution of 
Hx=b, where 

C = -L1 U 

L = {hik,i> k) 

V = (hik,i<k) 
H = L + U 

d = L"1 b. 

As a direct result the approach in (1) is self-correcting 
and numerically stable. Numerical errors in step k are 
compensated during the computation of m in step k+1. 
These advantages are not shared with other procedures 
recalculating x(k) in each step. 

5. Singular equation systems 

M(v+1) = 
(b0+u(v),a(v+l)) 
(a(v+l),a(v+l)) 

(u(v),a(v+l)) 
(a(v+l),a(v+l)) 

Finally we have 

b-2>(0a(0 =:ii'(£)->b0 

with u(/) forming the solution x of min |Ax - b||. 

6. The algorithm 

The algorithm is simple in its structure and can be 
expressed as follows. 

read n, a(), b, * 

* = 0,x() = 0 

repeat 

k = k+l 

a'(k) = a*((it-l)modn + l) 

so\\eftk,H(k),aXl),...,a'(k)) = 0 

update x() 

until 
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terminating condition = true 

end ß{k) = (an(* - l),a'(*)) / (a'(*),a'(*)) 

An interesting aspect of the algorithm is the possibility to 
develop it into a parallel processing procedure. The 
necessary computer architecture is characterised by a 
multiple instruction stream, single data stream 
organization (see e.g. KRISHNAMURTI and 
NARAHARI, 1993, p. 69f). 

7. An illustrative example for standard and 
relaxed iterative projection solutions 

Let us solve the equation Ax = b, where A does not have 
diagonal dominance. We assume A = [col(2,2,l), 
ool(l,3,l), ool(l,2,2)] and b = col(4,7,4). Applying the 
optimality criterion 

we obtain the standard solution for a = 1 and a relaxed 
solution for a = 1.2 (larger than one to improve the speed 
of convergence). Table 1 displays the approximations x 
in comparison with the exact result x = col( 1,1,1) for n = 
50 and n = 100. 

100 take about twice the time of 50 unrelaxed iterations. 
For the relaxed solution the computational costs are only 
a factor 1.1 higher (reference 50 iterations) but the 
precision of the obtained result is improved by a factor 2 - 
4 . Hence the relaxation technique is quite promising and 
should be studied in more detail (i.e. in a simulation 
experiment). 

Table 1: Results for standard and relaxed iterative projections 

exact x approximations x 

a = 1, n = 50 a = 1. n = 100 a=1.2,» = 50 

1 
1 
1 

0.99981 
0.99959 
1.00058 

0.99999 
1.00000 
0.99999 

1.00005 
1.00022 
0.99974 
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Abstract 

A problem of nonparametric curve estimation from in- 
direct observations is considered. Asymptotically opti- 
mal orthogonal series estimator is suggested for regu- 
lar setting. For irregular setting a consistent estimator, 
which is also rate optimal for some familiar cases, is sug- 
gested as well. Particular applications are density, fil- 
tering and nonparametric regression deconvolution and 
nonparametric regression with errors in predictors. 

1    Introduction 
Consider a problem of estimating function / : JR —*■ R 
when only convolution g(t) = f f(x)k(t — x)dx of / with 
the known function k is available for direct statistical 
observation. 

The familiar examples are: (i) Density deconvolution 
when one estimates density / of a random variable U 
based on n i.i.d. observations Xi,...,Xn having the 
same distribution as that of X and X = U + e where U 
and e are independent and probability density k of the 
measurement error e is given; (ii) Nonparametric blurred 
image reconstruction when one estimates / using n i.i.d. 
observations {(Yi = g(ti) +&, <,), / = 1 n}, here £ is 
the error; Nonparametric regression with errors in pre- 
dictors when one observes n i.i.d. realizations of (Y, X) 
where Y = f(U) + £ and X = U + c. 

For a regular case when the Fourier transformation 
hk(v) = f exp(ivt)k(t)dt does not vanish, i.e., hk(v) ^ 0, 
the most relevant results to our research are obtained 
by Donoho and Low (1992), Fan (1991,1993) and Fan 
and Truong (1993) where rate optimal deconvolution 
kernel estimates are suggested for a wide varieties of 
settings. Particularly, for the density deconvolution 
Fan (1991,1993) suggests the following kernel estima- 
tor. Let K{x) be a traditional kernel function and 
A/c(u)  = Jexp(iux)K(x)dx be its Fourier transform 

with hjc(0) = 1.  Then the deconvolution density esti- 
mator is 

/»(*) = (27T)-1 J erpi-ivxjhKivQtyv^fädv 

for suitable choice of a bandwidth tn, where 

hx(v) = n 1'^2 exp(iuXj) (1) 
i=i 

"This research supported by NSF Grant DMS-9123956 

is the empirical characteristic function of X. 
Fan (1991,1993) shows that this estimate is rate opti- 

mal (as sample size increases) for two important classes 
of distributions of e. Namely, for supersmooth distribu- 
tions of order ß when the corresponding characteristic 
functions he(v) of noise e satisfy 

doM^expHvl^) < \ht(v)\ < djvf'api-lvf/y) 

and for the ordinary smooth distributions of order ß 
when the characteristic functions are not decaying and 
satisfy 

do\v\~ß < \ht{v)\ < dM~ß 

as v —» oo, here do, d\, ß and 7 are some positive con- 
stants and y0o and ß\ are constants. The examples of 
supersmooth distributions are normal, mixture normal 
and Cauchy, the examples of ordinary smooth distribu- 
tions are gamma and double exponential distribution. 

Similar results, which again hold for these two classes 
of distributions, are known for the other settings, includ- 
ing nonparametric regression with errors in predictors 
(see Fan and Truong (1994)). 

There are two main questions which will be addressed 
in this paper: 

- What is the optimal risk convergence for arbitrary 
function h which Fourier transform does not vanish, in 
particular, for arbitrary ht(v) ^ 0 ? 

- Can we suggest an optimal estimate for irregular case 
when the Fourier transform of k vanishes? 

To explore the problem we shall use the orthogonal 
series approach. Below a short heuristic explanation of 
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this approach is given for the model of density deconvo- 
lution. 

Suppose that estimated density /(u) is supported over 
a given finite interval, for instance [0,27r]. Then, under 
some very mild assumptions on the estimated density / 
it may be approximated for different loss functions with 
a desired accuracy via appropriate choice of the array 
{Ajj J} by orthogonal series 

/(«, J, {Xj}) = (2*)-1 £ hMo) exp(-iju)      (2) 
\i\<-f 

where hu(v) is the characteristic function of the random 
variable U. Here 0 < Ay < 1 are the smoothing coeffi- 
cients and J is a cutoff. 

It is well known that for the independent U and e the 
characteristic function of the sum X = U + e is equal to 
the product of the characteristic functions of U and e, 
that is, hx{v) = hu{v)he(v) . 

Thus, using the empirical characteristic function 
hx{v) denned in (1) as an estimate for hx{v) and as- 
suming that he does not vanish (recall that distribution 
of noise e is known and therefore the characteristic func- 
tion is known as well) we obtain an estimate 

/n(u,J,{Ai}) = (21r)-
1 £ XjhxWKHtitM-iJ«) ■ 

Hereafter h~1(v) = h(v)/\h(v)\2 where h is the complex 
conjugate of h. 

Surprisengly enough, we shall see that this estimate 
may be used for the other discussed statistical models as 
well with the only difference that instead of the empirical 
characteristic function we use the corresponding familiar 
estimates for the case of direct observations. 

Now we are in a position to explain how to solve the 
deconvolution problem when he(j) is equal to zero for 
some j; the familiar examples are uniform, triangle and 
lattice-valued e. We restrict our attention to the case 
when there exist decaying as m —► oo sequences Sjm 

such that 
Mi + sJm) > 0 (4) 

for every integer j. Notice that for deconvolution of an 
arbitrary density / such assumption is necessary for con- 
sistent estimation. Thus, one can estimate hf (j + Sjm) 
rather than hj(j) and then use the continuity of hj(j). 
In this paper we will use this idea; slightly different ap- 
proach, based on the L'Hopital's rule, is explored in Efro- 
movich (1994). 

Section 2 is devoted to rate- and sharp-optimal estima- 
tion for the regular setting. Using the modern approach, 
which maps the different models into filtering in white 

noise (see Brown and Low (1990)), we explore the prob- 
lem on example of a signal recovery in white noise. In 
Section 3 the irregular setting is considered on example 
of density deconvolution. Some possible extensions are 
discussed in Section 4. 

2    Optimal Signal Recovery 

The considered problem is to recover a periodic signal 
/(<) from an observation Yn(t) such that 

dYn(t) = {Kf)(dt) + n-1'2dw{t),   0<t<27T     (5) 

where w(t) is the Brownian motion (dw(t) is a so-called 
white noise), Kf = / is the given operator such that 
the Fourier transform of / satisfies J0 * exp(ivt)f(t)dt = 

hf{v)hK{v) where hf(v) = /Q
2ir f(t) exp(ivt)dt and the 

function kjr(t)) is given. Our problem is to estimate the 
Z-th derivative of /. 

Let ||/||p = [ft* |/(*)lPd*]1/p be the familiar Xp-norm 
of / where 1 < p < oo and H/H«, = ess supte[0i2ir](/(i)); 

let /W mean the i-th derivative and |aj be the integer 
part of the positive a. 

Throughout the paper we always assume that / be- 
longs to either Lipschitz class Lip(a) of periodic func- 
tions when the functions are [aj-fold continuously differ- 
entiable and periodic on the circle [0,2ir], ||/||2 < A < oo 
and |/(L«J)(u) _ /(L°J)(«)| < Q\u-v\a-W for u,v 6 
[0,27r], or to a Sobolev H(a, Q) class of periodic square 
integrable functions such that the corresponding Fourier 
transformations hf(v) = /Q

2ir f(t) exp{ivt)dt of / satisfy 
inequality Ejl.Jl + \j\2a]\hj(j)\2 < Q . 

We shall consider the Lipschitz classes of functions 
when rate optimal estimation is investigated and refer to 
the Sobolev classes when sharp optimal Mean Integrated 
Squared Error (MISE) convergence is explored. 

Our assumption on periodicity of estimated function 
is not crucial for our approach but it is very convenient, 
the interested reader is also referred to discussion of ape- 
riodicity in Efromovich (1994). 

It is well known that (5) may be rewritten as an infinite 
array of discrete observations 

Yj = hj (j)hK (j) + n"1'^ ,   j = . • •, -1,0,1,...   (6) 

where Yj = /<** exp(ijt)dY (t) and (,• are i.i.d. standard 
normal random variables. 

Set 

£(«.«.')= E iiialiMi)r2(i-(i;i/j»r) (7) 
lil<J. 
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where the cutoff Jn is defined as the smallest positive 
integer such that 

E   lilaK(i)ra((Vlil)" -i)>nQ.    (8) 
o<|;|</» 

The following sequence r„ plays a role of the indicator 
which shows when sharp optimal estimation is possible. 

Set 

rn = minm<J„{*2(a, Q, J)/|iV(j)|a} .        (9) 

We shall see that if rn —► oo then sharp optimal esti- 
mation is possible and otherwise it is impossible. The 
underlying idea of the sequence rn is as follows. If 
rn < C < oo then, following the terminology of Donoho 
and Liu (1991) and Fan (1993), the difficulty of the non- 
parametric problem may be captured by the hardest one- 
dimensional subproblem. As a result there is no sharp 
lower bound because there is no sharp lower bound for 
a one-dimensional problem. 

Define a real-valued estimate 

Ä')(*,^{>i» = (2x)-1 E *iW0")Hi)'«p(-y*)- 

The following assertion shows that this estimate has 
the property of optimal MISE convergence under ap- 
propriate choice of J and {Xj}. Here we assume that 
Xj = 1 — (|j'|//n)

a and whenever the Lipschitz space is 
under consideration we set Q = 1. 

Theorem 1 Let 0 < \hK(j)\ < oo and I < a. Then 
the estimate (10) has the following optimal asymptotic 
(as n —* ex) properties of MISE convergence: 

(i) Ifrn-*oo then estimate ffl(t) = $\t, Jnt {A?}) 
has sharp optimal minimax MISE convergence over the 
Sobolev class H(a,Q) of functions f, that is, 

sup    E}{f\ft\t)-fM(t)?dt} 
f£H(a,Q) JO 

= inf    sup     Ej{       (fW(t,a,Q,hK)-fW(t))2dt} 
feH(a,Q) JO 

= (1 + O(l))^(a,<?,0 

where the inf is over all possible estimates 
fV(t,a,Q,hK). ^ 

(ii) Estimate ffl(t) = fk'\t, Jn,{l}) has rate opti- 
mal MISE convergence over either Sobolev H(a, Q) or 
Lipschitz Lip{a) classes of estimated functions and 

supEf{ f\fW(t) - /«(*))»*} = 0(1)£ 
Jo 

where the sup is over either the Sobolev H(a, Q) or Lip- 
schitz Lip{a) classes of estimated functions f. 

We see that the smoothing coefficients {Xj} have been 
employed only to obtain sharp optimal MISE conver- 
gence, that is, the best constant and rate of MISE 
convergence. They reflect the statistical nature of the 
problem rather than approximation of a function via a 
trigonometric polinom. 

The situation drastically changes when Xp-norms with 
p ^ 2 are used to measure the accuracy of fitting. 
Unfortunately, straightforward implementation of the 
Fourier approximation gives the optimal fitting only 
within the logarithmic factor, see more in Butzer and 
Nessel (1971)). However, implementing of a smoothing 
allows us to avoid this decreasing in accuracy of approxi- 
mation. For arbitrary p the familiar de La Vallee Poussin 
sum is a good alternative and the corresponding esti- 
mate is defined as fk'(t, 13, {fi[j, J)}) with p{j, J) = 1 
if lil < J, riJ>J) = 2- \j\fj if J < \j\ < 2J and 
/i(j, /) = 0 otherwise. 

Note that this sum gives an excellent approximation 
to the considered functions f(t). In fact, de La Vallee 
Poussin sums are within a constant factor 4 of the best 
sup-norm approximation by trigonometric polynomials 
of a given order. See more about estimates based on 
this sum in Ibragimov and Khasminskii (1981) and Efro- 
movich and Low (1994). 

The interested reader is referred to Efromovich (1994) 
where risks in £p-norms, 1 < p < oo, are investigated. It 
is shown that the sequence Sn = \/6£ defines both sharp 
optimal and rate optimal risk convergence in different 
ip-norms for estimates of /O whenever 1 < p < oo, 
moreover, this is the optimal rate for p = oo as well 
whenever hk corresponds to the supersmooth case. 

3    Density Deconvolution for Ir- 
regular Case 

Consider the discussed in Introduction problem of den- 
sity deconvolution when ht(j) = 0 for some integers j 
but (4) holds. 

Let Sjn be a sequence in n and j such that a_jn = 
—Sjn and for each j > 0 and n the sequence min- 
imizes up to a constant factor the error e(s,j,n) = 
Isf + n-^htiJ+sy-3 over |«|2 < Cn-^h^j+s)\-3. Set 
R(J, n) = [n-1! £m<, \hk(j + sjn\-> + J"2«]1/2. The 
sequence R(J, n) is the upper bound (up to a constant 
factor) for risk of the recommended orthogonal series 
estimate with the cutoff J. Then we define optimal se- 
quence Jn as an increasing sequence of positive integers 
which minimizes rate of decaying R(J, n) as n —+ oo. 



S. Efromovich     199 

We are now in a position to define a consistent real 
-valued orthogonal series estimate of the l-th derivative 
of density / as 

Ä')(«) = (2^-1 £ Hi)' 

X /i(ii Jn)hx{j + Sjn^U + sin) exp(-ijx)       (11) 

where n(j, J„) = 1 if \j\ < J„ and /x(j, Jn) = 2- \j\/Jn 

if Jn < \j\ < 2Jn are the discussed above smoothing 
coefficients of de La Vallee Poussin sum. 

The reader who is primarily interested in a traditional 
MISE may simplify the estimate and consider ft' which 
is defined by (11) with /i(j. J) = 1- 

Theorem 2 Suppose that (4) holds, 1 < p < oo, 
x0 6 [0,2ir) and I < a. Then: 

(i) Estimate (11) is consistent and 

sup   EfiWfP -fW\\p}<CJnR(Jn,n) 

where JnR(Jn, n) —► 0 as n —► oo. 
(ii) If distribution of e is supersmooth then the esti- 

mate (11) is rate optimal in sense of the lower bounds 
of Fan (1991,1993), namely, 

sup   Ef{\\fP-fW\\p} = 0((Hn))-l«-lVV) , 

sup   J5/{|Äl)(»o)-/(,)(-o)l1} = 0((ln(n))-2(-')^)). 
/6i«p« 

(iii) For p = 2 statements (i) and (ii) also hold for the 
simplified estimate fn and under assumption of part (ii) 
MISE of this estimate decreases as O((ln(n))-2(a-'>/0)). 
for all f £ Lip{a) 

Several remarks are to be made. In the first place, 
in contrary to the blurred image reconstruction model 
of Korostelev and Tsybakov (1994), for the considered 
setting irregularity does not necessarily implies inconsis- 
tency. Secondly, for the supersmooth case there is no 
influence of p, i.e. the loss function, on risk convergence, 
recall that this is not the case for direct observations (see 
Ibragimov and Khasminskii (1981)). Thirdly, slightly 
modified procedure allows to construct rate-optimal pro- 
cedure for the ordinary smooth case as well, see Efro- 
movich (1994). Finally, the procedure (11) may be rec- 
ommended for the practically important case of small 
samples whenever \he(j)\ takes on relatively small val- 
ues. 

The following examples clarify the issue of the irregu- 
larity for density deconvolution model. 

Example 1. In this example we analyze some familiar 
measurement errors which may lead to irregular setting. 

Let e be uniformly distributed over interval (a, b) 
then hc(v) = exp(iou)[exp(i(6 - a)v) - l]/(i[b - a)v) 
(see Feller (1966)). The irregularity occurs whenever 
(b — a)j = 2irr for some integers j and r. However, 
for this familiar measurement error consistent estimation 
is always possible because (4) holds. For if he(j) = 0 
then it is elementary to verify that for some positive 
constants C\, Cj and \s\ < (ir/2)/(6 - o) the relations 
CikHil-1 < \he(j + s)\ < CJMIJI-

1
    hold. 

Recall that s-jn = -Sjn. To find Sjn for j > 0 let Kj 
be such that \KJ \ < ir and (6 — a)j = 2irr + Kj for some 
integer r. Then one can set Sjn = 0 if \KJ\ > n-1/4^'!1/2 

and Sjn = n~1^\j\1^2agn(Kj) otherwise. Notice that 
even if KJ ^ 0, i.e. for regular case, it may be worthwhile 
to implement our method and to estimate hj(j + Sjn) 
rather than hf(j). 

Interesting situation occurs when e is a discrete ran- 
dom variable, that is, it takes on values a, with nonzero 
probability pr. Particularly, if a\ = 0, 02 = T and 
p1=p2 = 1/2 then hc(j) = 0 for odd j. 

Example 2. A wide class of "irregular" measurement 
errors can be generated by mixing the random variables 
described in Example 1 and traditionally studied "reg- 
ular" measurement errors whose characteristic functions 
do not vanish. 

Consider a mixture c = ex+c2 of two random variables 
where ex is any random variable from Example 1 with the 
characteristic function hCl(v) which vanishes when v is 
equal to some integers and £2 is a random variable whose 
characteristic function he,(v) does not vanish. Then ir- 
regularity always occurs because he(v) = hei(v)hC3(v). 

Such modelling a measurement error is very conve- 
nient for Monte Carlo simulations. For instance, to 
model an irregular supersmooth setting one chooses C2 
from the list of the supersmooth random variables (re- 
mind that it includes all non-degenerated stable random 
variables and their mixtures) and then adds any random 
variable ei discussed in Example 1. 

Example 3. Interesting situation occurs if random 
variable X is projected onto a circle with unit radius 
and we observe this projection rather than X, that is, 
we observe X' = X— |X/2TJ instead of X. It is plain to 
see that for regular setting with a;n = 0 this reduction 
of information does not effect our estimate (2.2). 

Situation changes for irregular setting when this pro- 
jecting does effect our estimate (11). However, it is not 
difficult to verify that whenever Ej{\ exp(is(X' —X)) - 
1|2} < C|a|2, for instance the latter is the case when X 
has a finite second moment, then similarly to the regular 
case this reduction of information does not change the 
assertion of Theorem 2.1. Moreover, the procedure of 
Efromovich (1994) is not so sensitive to such projection. 
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Example 4- Recall that for nonparametric regression 
deconvolution Korostelev and Tsybakov (1993) have ex- 
plored an example when vanishing of hx(j) implies in- 
consistency. Is there similar setting for the density de- 
convolution? 

To implement the underlying idea of their example we 
are to suppose that both / and k are periodic with period 
2T over all reals, however there is no periodic densities 
since any density is to be integrated to one. 

Therefore, we are to change our setting. Let the ran- 
dom variable X be distributed on a circle with unit ra- 
dius according to the density g(x) = J0 f(t)k(t — x)dx 
where k{x) is a known periodic function and f(x) is es- 
timated periodic function. For this mathematical model 
we may conclude that there is no consistent estimator 
whenever A*(j) = 0 for at least one j. 

The last circular model is a very special one and it 
sheds light on the circumstances when irregularity im- 
plies inconsistency, see also Hall (1990). 

4    Extensions 

The interested reader can easily extend the obtained re- 
sults to the different models. The only model, which 
requires some explanation, is the nonparametric regres- 
sion with errors in predictors. 

Recall that for this model the unobserved predictor U 
is a random variable with density p(u) > 0. The recom- 
mended procedure of estimation is as follows. First, we 
use the estimate (3) where the empirical Fourier trans- 
form n-1 5^"=1 Yiel'x% is used instead of the empirical 
characteristic function. Notate the obtained estimate as 
^„(u). It is not difficult to verify that ij>(u) is an es- 
timate for the ratio f(u)/p(u). Thus, if p(u) is known 
then one can set /n(w) = ^n(u)p(u), otherwise estimate 
of p(u) discussed in Section 3 can be plugged-in. 

An interesting possible extension is a construction of 
an adaptive procedure. There are two different kinds 
of adaptation. The first one is to adapt to unknown 
smoothness of the underlying function /. The second 
one is a data-driven procedure of estimation / when KR, 
the kernel of convolution, is unknown. 

5    Conclusion 

We have explored a problem of nonparametric curve esti- 
mation for convolution model. The proposed orthogonal 
series estimator has asymptotically sharp-optimal prop- 
erty of MISE convergence as well as rate-optimal risk 
convergence for a wide variety of loss functions. The pro- 
cedure allows to treat both regular and irregular cases. 

An interesting feature of this estimator is that it is 
similar to the estimators based on direct observations. 
The estimator may be used for density, filtering and non- 
parametric regression deconvolution as well as for non- 
parametric regression with errors in predictors. 
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Open Questions in the Application of Smoothing Methods to Finite Population Inference 

Alan H. Dorfman 
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Survey sampling, or finite population estimation, has been 
a domain unto itself, with theory and methods distinct from 
mainstream statistics. Nonparametric regression applied to 
survey results can yield more efficient estimation of 
population quantities than standard methods of survey 
inference, and, conceptually, bridges the gap between 
traditional mainstream statistics and survey sampling. The 
application of nonparametric regression to finite population 
estimation raises new questions for survey sampling and for 
the field of nonparametric regression.. 

1. INTRODUCTION 
In this paper, we consider the application of nonparametric 
regression to the estimation of finite population 
"parameters" based on a sample from the population. 
Given a population P of N units for each of which there is a 
variable Y of interest, with values available on a sample s 
of P, we wish to estimate the population total  7" = ^ Yr 

We assume that an auxiliary variable x related to Y is 
available for the entire population. 

Typically (although not always) the sample is 
selected according to a probability design, and the 
probabilities that an item is included in the sample is 
incorporated into the estimator. For example, stratifying on 
the auxiliary, and using stratified random sampling without 
replacement    leads    to    the    "expansion    estimator" 

^Z^Z/b" where' for A=1>2>->H> *k ** to 
probabilities of including unit YH in the sample component 

sh of the Äth stratum. 
Here we suggest a new estimator which uses 

nonparametric regression and is based on the prediction 
approach to survey inference (for example, see Royall and 
Herson, 1973). Related work in the application of 
nonparametric regression to sampling may be found in 
(Cheng 1994, Dorfman and Hall 1992, Jones and Bradbury 
1993, Kuk 1993). 

2. A NEW ESTIMATOR OF TOTAL 
Consider the model 

Yi = m(xi) + a(xi)ei,i = l,..,N     (1) 

with TW(-) a smooth function and the et independent with 
mean 0 and constant variance. Let K(u) be a symmetric 

density function, for example the standard normal density 
function. For a chosen scaling factor ("bandwidth") b, 
define Kb(u) = b~lK(ulb), and weights 

w 
l   n 

i{x) = Kb{xi-x)r^\iKb{xi-x).    We consider the 
i=i 

(2) 

Nadaraya-Watson estimator of tn(x) given by 

*(*)=!>»(*)*;■ 

i 

Under reasonable conditions on m(x) and the design 
points x, ih(x) is consistent for m(x), as 
b->0, «fi-^oo. 

If we let x = x., the values of x in the part of the 

population which has not been sampled, then a natural 
estimate of T is 

As with prediction-based estimators generally, this 
estimator ignores sampling probabilities. 

The conditional mean and variance of Tnp—T 

under (1) are readily expressed as 

E{fnp-T\XP)=^PJs^i)~\nb)-1 

*Zj*(fo -*;)A}k*;)-™W}]   (?) 
and 

vzx(fnp-T\XP)= Xwfa2(Xi)+Syfo), (4) 

where ds{Xj) ^"'Z^fe-*,)/*}. 

wi=T,J{nbT1K{(xi-xJ)/b}{ds(xJj\~\ and Xp is 

the population vector of x-values.  Note that dt(x-) is the 

standard Nadaraya-Watson estimator of d,(x-)- We have 

the following theorem along lines suggested in (Chambers, 
Dorfman, and Hall 1992), (Dorfman and Hall 1992), and 
(Ruppert and Wand 1993): 
Theorem 1.   Let K(u) be a symmetric density function 

with f uK(u)du = 0 and k2 = \u2K(u)du > 0; assume n 

and N increase together such that n/N->7r, with 
0 < 71 < 1; assume sample and non-sample values of x are 
in the interval [c,d] and are generated by densities ds and 
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dp_s respectively, both bounded away from zero on [c,d], 
and assumed to have continuous first derivatives;    let 
m(x) be defined as at (2) above; assume m(x) has a 

continuous second derivative, and let 
ß(x) = dt{x)m"(x) + 2d;{x)rri{x); then 

E{fnp-T\XP)=b2(N-n){k2/2)* 

]${x)ds{x)~l dP_Xx)dx 

+Op{nb3+nmby2)        (5) 
and 
v2x(fnp-T\XP) = {N-n)2n-1 

*ja2(x)ds(x)-1[dP_i(x)fdx 

+{N-n)n-1b-1JK2{u)du*ja2(x)d;\x)dP_s(x)dx 

+{N-nfnlb2kl\c\x)ds (x)dx 

+(N-n)ja2(x)dP_s(x)dx+Op{nb3 + n,/2Zr"2) (6) 

We leave unspecified c * (x), a complicated function of the 
derivatives of ds(x) and dp_s(x). Proof of Theorem 1. 
The basic mechanism driving the proofs is that if, for any 
expression Z, E(Z\u)=A(u)+0(B), and var(Hu)=0(C), then 
Z = A(U)+OP(B+ C1'2), a result that follows  from the 
Chebychev inequality.  In the following remarks, i, i' etc. 
index sample units, and/, f nonsample units. 
Transition     from     (3)     to     (5): Note     that 
^(^.) = ^(x;) + &Xh).+0P(^

3+»",/V/2)aresult 

that follows directly from calculation of the mean and 
variance of ds(x■)■   In similar fashion, conditional on Xj, 

oi&rx*!^ - *,]/*){»u) - 4*j )}= 
b2dl(xj)k2/2 + Op(b

3 +nU2bm), since the left-hand 

expression has mean b2d",\Xi)k2j2 + 0{bi) and variance 

n-^iE^Kilx.-Xjyblmix^-mi^pXj) 

-E^K^x.-x^lmix^-mix^x^oin'b)-, 

the last equahty follows from 

E^K^-x^mix.ynix^x^ 

JK2([w-xj]/b\m(w)-m{xJ)]2ds(w)dw= 

bJK2(u)[ubm (x}) + 0(u2b2)f 

*\ds (x}) + ubds (xj) + 0(u2b2 )]rf« Combining the (N- 

n) terms and repeating the argument leads to (5). 

Transition from (4) to (6): Let M=N-n. The second term 
of (4) is straightforward to deal with. The main task is 
developing    an    expression    for    wi.        We    have 

E(w2\x) = Mn2b-2 

*E{K
2
([XJ -x]lb)d?(X]){l + Op[b2 +»-"*-"])*,} 

+M(M-l)n-2b~2 

MiM-lh-'b-'E'iKilxj-x^djixj) 

*(l + c(Xj)b2 +Op(b* +n~y2b-l,2))\xi} By the usual 

Taylor expansion, the first term equals 
Mn2b~l J K2 (u)dud;2 (*,. )dP_s (xt) 

+0(n_1 +n~l5b~25);     the     second     term     equals 

0(n_1 +b3+ nmb~m). Further, in 

vai(w2{xi)\xi) = E{w4(xi)\xi)-E2{w2(xi)\xi), the 
dominant terms of these two terms cancel, and we find 
var(w2 (xt )l JCJ = 0\ri~lb~l).     Combining  expressions 
yields 
w?=M2n-2{d?{xi)dL{xi) + k2c{xi)b2}+ 

Mn2b-X J K2 (u ]dudf (Xi )dP_s {Xi)+ 

Op (n~l +b3+ nmb~m ). Summing over i yields (6). ♦ 
We note the following consequences: 
(i) The conditional relative bias is Op(b* +n~U2b112); this 
goes to zero so long as b —> 0. (ii) The variance is Op (n) 
so long as the weak conditions b -> 0, nb —» oo are met. 
(iii) If b = Cne for e<-174, then the ratio 
E(fnp-T\XP)/vaxll2(fnp-T\XP) is asymptotically zero 

in probability, a next-best-to-unbiasedness condition that 
allows for constructing confidence intervals for T based on 
estimates of variance; we note that the standard bandwidth 
b = Cn~y , optimal under mean square error criteria for 
m(x) itself, is too large for the bias to become negligible, so 
that other than standard methods of selecting bandwidth 
seem to be in order, (iv) Under simple random sampling, 
or more generally when ds {x) = dp_s (x), the variances of 

the simple random sample based 7^, and T   are equal (to 
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first order), but the bias of T    is of the same order exp 

O [n1'2) as the root of the variance, unless m(x) is a 

constant on [c,d\; hence Texp lacks the desirable property 

mentioned in the previous remark. In the case of stratified 
random sampling, where a finite number of strata grow 
without limit, the bias of 2^ is likewise in general 

O \nm) unless m(x) is constant on each stratum.      (v) 

The results on the bias of Tnp hold whether or not the 

sample and non-sample densities are the same; this 
suggests that balance (Royall and Herson 1973) plays a less 
important role with this estimator; however, we cannot be 
indifferent to the spread of the x's, since the efficiency of 
nonparametric regression can be affected; compare (Chu 
and Marron 1991). (vi) In the variance the implicit term 
O (nll2b~m) is of larger order than the explicit 0\b~l) 

term for b = Cn£, £>-l; this suggests that plug in 
methods for estimating bandwidth based on (4) and (6) 
will be ineffective, (vii) The condition of the theorem that 
n is of the same order as N can be loosened to n=0(N), at 
the price of complicating the expression of the Op( ) 

terms in (4) and (6). 
To the end of estimating variance, we follow a 

suggestion of Rose (1978) and define 
a2(x) = m2l(x)-mh(x), (7) 

where mh(x) is a pilot estimator of m(x) based on 
bandwidth A, as in (2), and 
m21(x) = (nlTl^K([xi-x]/l)Y^ ldsl{x) is a non- 

parametric regression estimator of m2(x) = E\Y2\x) based 

on a possibly different bandwidth /. We allow h and / to be 
different 
Theorem 2. Let 

var(t - T\XP) = Xw^M + X^M«** 

a2 (x) as defined in (7). Then vär(fn;, - T\XP)- 

var(fv-71XP)= 

0(n/2) + 0p(n/3+n,/2[/,/2+(»Z)-"2+l]. 

+n[(nh)-in+h2] + l) 

3. EMPIRICAL RESULTS 
We consider a population consisting of N=400 
establishments. The data is taken from the United States 
Bureau of Labor Statistics' 1991 Occupational 
Compensation Survey.   The variable of interest Y is the 

total wages paid to workers in a selected group of 
occupations; x is the total number of workers in each 
establishment including those in occupations outside the 
selected group. From this population, 100 samples were 
taken, using stratified random sampling without 
replacement; for A= 1,2,3 , nh=20 points were taken from 
each of three strata of sizes Nh= 202, 114, and 84 
respectively. Three classes of company size, viz. 
0<x<250, 250<*< 1000, and 1000<x, determined 
the strata. 

For each sample, we calculated (i) the 
nonparametric regression-based estimator; (ii) several 
design-based estimators of the total, namely the expansion 
estimator, and the combined and separate ratio and 
regression estimators (Cochran 1977); and poststratified 
estimators and (hi) the linear-model based estimator with 
different assumed variance structures. The auxiliary 
variable was log-transformed for the nonparametric 
regression-based estimator, and for the design-based 
estimators in some instances. Three bandwidths were used 
which were judged to give reasonable results based on 
visual inspection of fits on a single sample, in two ways, 
namely, for immediate use in the nonparametric estimator 

of total T , or as seeds to choose the bandwidthin by the 

algorithm of Hardle, Hall, and Marron (1992). 
Table 1 gives summary results in the form of the 

100     /»      \ / 
average relative error YjT'l[Tr-T)/100 md && r0°t 

average squared error j 2 (fr - r) /1001    (RASE), where 

Tr is one of the estimators of T computed for sample r. In 
terms of the RASE, we note that the combined and separate 
regression estimators do not much improve the expansion 
estimator, and in fact do a lot worse unless the auxiliary 
variable is log-transformed. The nonparametric regression- 
based estimator is more efficient (i.e. has smaller average 
squared error) than the best of the design-based estimators, 
at the two larger bandwidths. It has about the same 
efficiency as the expansion estimator at the smaller 
bandwidth. The bandwidth selection procedure does not do 
as well as the naked eye. 

Greatest efficiency was achieved by the model- 
based estimator relying on a linear model, with variance 
assumed proportional to x2, but there is a drop in 
efficiency with the other variance structures well below the 
nonparametric estimator at larger bandwidth. Note that the 
nonparametric regression estimator does not require us to 
specify the variance structure. Table 2 gives results on 
variance estimation for the expansion, poststratified, and 
nonparametric regression estimators. The mean root of the 
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variance estimates tends to be lower than the RASE, 
especially for the nonparametric regression estimator, and 
coverage is low. For the stratification estimator with finest 
stratification, the variance estimator was available in only 
82% of runs. We note the anomalous behavior of the 
nonparametric regression variance estimator, which tends 
to get smaller at smaller bandwidths, when the RASE is 
largest Allowing /, the bandwidth used to estimate the 
m^ix) component of O

2
(JC), to be chosen independently 

worked to moderate advantage here, somewhat increasing 
the average root variance estimates, and the coverage. In 
one run for seed(ib)= 0.25, the variance estimate was 
negative. In practice, one could have recourse to forcing 
l=h, in such a case. 

4. QUESTIONS 
The empirical results suggest that the nonparametric 
regression-based estimator of a finite population total is a 
strong rival to established estimators. It has the quality of 
automaticity we associate with design-based estimators, but 
is likely to reflect better the actual structure of the data, 
yielding greater efficiency. It can be costly in computer 
power, and may not do as well as a parametric-model based 
estimator, when the modelling process is done carefully on 
well-behaved data. 

Further research on the nonparametric regression- 
based estimator is needed: 
* Automatic bandwidth selection. Standard bandwidth 
selection methods such as that of Hardle, Hall, and Marron 
(1992) which we used in the simulation study aim at 
estimating a bandwidth that minimizes the average square 
error of the /«(x,.),    ies.    This bandwidth has the 

property that h = Cn~ , outside the range of acceptable 
bandwidths in note (ii) of Section 2. It is in fact larger, so 
that curves based on standard methods will tend to be too 
smooth for deriving the estimate of total. One is tempted to 
use plug-in methods that would minimize the MSE of T , 

but as in note (vi) of Section 2, there seem to be intrinsic 
barriers to this approach. 
* Variance estimation. The results of the simulation 
suggest a need for further work here that would give better 
coverage,    and   estimated    standard    deviations    with 

expectation closer to root mean sauare error of T. 

* Can we improve Tnp by alternatives to straightforward 

Nadaraya-Watson? Many methods deserve serious 
consideration, including adaptive bandwidth and local 
linear  regression  (Fan   and  Gibjels   1992).     Possibly 

estimates or a priori guesses of the variance structure could 
profitably be incorporated into the nonparametric 
regression based estimator. 
* As noted in section 2 note (v), the sample design is much 
less of a concern when we use nonparametric regression 
than in strictly model-based estimators. But because of the 
dangers of extrapolation and "internal extrapolation" 
(dealing with holes), this cannot mean that any sample is 
permissible; what are the boundaries of the permissible 
and also what characterizes samples with smallest MSE? 
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Table 1. Summary Statistics for Estimators of Total in Wage Population 
Estimator Average Relative Error 

stratified expansion 0.035a 

poststratified 6 strata 0.033 
9 strata 0.023 
12 strata 0.15d 

combined ratio 0.040 
separate ratio 0.042 
combined regression 0.070 
combined regression(log) 0.033 
separate regression 0.069 
separate regression (log) 0.032 
linear model 

a2(*,)~*° 0.102 

a2(x(.)°c*. 0.067 

a20c,.)~;t,2 -0.063 
nonparametric regression 

6=0.25 0.040 
b=0.5Q 0.013 
6=0.75 0.001 

seed(6)=0.25 0.042 
seed(6)=0.50 0.025 
seed(6)=.75 0.018 

Standard deviation for all entries is approximately 0.02. 
c The paired two sample f-test on the hypothesis fj; E< if. 

Root Average Squared Error/106     RASE(f)/ RASE(f   ) 

6.34b(.42) 1.00 
6.36 (.51) 1.00 
6.07 (.53) 0.96 
6.43d (.56) 1.01 
6.22 (.56) 0.98 
6.32 (.58) 1.00 
7.56 (.79) 1.19 
6.16 (.40) 0.97 
7.71 (.80) 1.22 
6.33 (.56) 1.00 

6.72 (.39) 1.06 

6.94 (.62) 1.10 

4.56c(.33) 0.72 

6.50 (.59) 1.02 
5.67c(.42) 0.89 
5.40c(.38) 0.85 
6.58 (.60) 1.04 
6.13 (.54) 0.96 
5.90 (.50) 0.93 

1 Standard deviation is given in parentheses. 

")2-(tp-7f} = 0 is significant at p = 0.05    Based on 95 

runs. 

Table 2 Summary Statistics for Estimators of Variance of Total in Wage Population 

Estimator Root Average Average Coverage~95% 
Squared Error/106 v1/2/106 nominal 

stratified 6.34 6.63 91 
expansion 

poststratified 6 6.35 6.29 92 
strata 

9 strata 6.07 6.20a 88a 

12 strata 6.42b 5.95c 88 c 

nonparametric l=h=b 
regression 

6=0.25 6.50 5.36 87 
6=0.50 5.67 5.67 89 
6=0.75 5.40 6.20 

l=h=b 
93 

seed(6)=0.25 6.58 5.59 86 
seed(6)=0.50 6.14 5.71 88 
seed(6)=0.75 5.90 5.91 90 

Average 
v1/2/106 

Coverage~95% 
nominal 

aBased on 97 runs. bBased on 95 runs. cBased on 82 runs. d Based on 99 runs 

h=b, seed(7)=6 

5.46 88 
5.90 91 
6.33 94 

5.61 a 
-b, seed(/)=seed(6) 

88 d 

5.75 88 
6.03 91 
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Abstract 
Robust estimators are generally computationally inten- 
sive. A method which we call the inner products method 
(IP) is examined which is computationally comparable to 
Least Squares (LS) but is robust with respect to outliers. 
The algorithm consists of multiplying both the original 
model function and the interpolated data points by a set 
of "test functions" 4>i,<j>2,---,<f>n and then integrating 
each to form the inner products. The two results are set 
equal to one another, yielding a system of constraints on 
the unknown parameters. This system of constraints is 
then used to solve for the unknown parameters. For lin- 
ear models, the algorithm requires no initial estimate of 
the parameters, and the equations generated are always 
linear. With only Gaussian noise, least squares (LS) does 
slightly better than IP. When outliers are introduced IP 
does significantly better than LS and comparably with 
other robust methods such as Least Median of Squares 
(LMS) and Iteratively Reweighted Least Squares (IRLS). 
As with LMS, it can be used to predict model errors. 
Data from the literature, as well as simulated data, have 
been used to evaluate IP's performance. The algorithm 
generalizes to, and has been applied to, certain nonlinear 
models. 

Introduction 

Modeling of data arises in numerous applications in the 
natural and social sciences. Regression analysis, perhaps 
the most commonly used statistical technique, is used to 
fit observed data to a theoretical model function. While 
least squares methods are usually employed, they break 
down in the presence of non-Gaussian noise. Data sets 
often contain non-normally distributed noise including 
one or more wild observations (Rousseeuw 1987, Clancy 
1947, Phillips 1983). Several robust methods have been 
suggested (Rousseeuw 1987, Huber 1981, Hampel 1986), 
but the algorithms are generally computationally inten- 
sive and often require initial guesses for the parameters, 
even in the linear case. 

Background 

Consider a set of n data points, (a;,-, j/,), which are to be 
fitted to a model, 

y(x) = y(x;a1,...,am), (1) 

where the a,-, j = l,...,m are unknown parameters. 
The method of least-squares (LS) involves minimizing 
the function 

71 

$(ai,...,am) =^2[y(xi;a1,...,am)-yi]
2.     (2) 

The least-squares estimator is a maximum likelihood es- 
timator of the found parameters, if the errors in the data 
are independent and normally distributed with a con- 
stant standard deviation (Brownlee 1960). When the 
set of data points is thought to fit a linear combination 
of more than one function, one may use the generalized 
least squares (GLS) method. The least-squares method 
has been extended to the nonlinear setting using the 
Levenberg-Marquardt method (Bates 1988, Marquardt 
1963, More 1977). 

For linear problems several robust alternatives to LS 
estimation have been proposed which reduce the influ- 
ence of outliers (Rousseeuw 1987, Hampel et. al. 1986). 
Among them are M-estimators (for a survey see Huber 
1981). These estimates yield a system of equations which 
is typically nonlinear and difficult to solve. Iteratively 
reweighted least squares (IRLS) methods are then used. 
For a review see Holland 1977 and O'Leary 1990. 

Rather than minimizing the sum of a function of the 
residuals, the least median of squares (LMS) method 
minimizes the median of the squares of the residuals 
(Rousseeuw 1987). LMS is robust with respect to out- 
liers and leverage points but has a slow convergence rate. 

Inner Product Method (IP) 

Let E{x) be an experimental data function whose do- 
main is a finite set of points in the interval \p,q]. Let 
M (x) = M(x; ai,ü2..-, am) be the model function with 
unknown parameters ai, a-i, ■. ■, am where x is defined in 
\p,q]. Ideally, 

M{x) = E{x) 
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where both are defined. Thus we expect 

/ M{x)dx= I E{x)dx 
Jp Jp 

where the data points are linearly interpolated. More 
generally, if 4>i, fa,..., 4>m are arbitrary integrable func- 
tions on the interval \p,q] (called test functions), we ex- 
pect, 

/ M(x)<t>i(x)dx=  I E{x)<j>i(x)dx,    i=l,2,...,m. 
Jp Jp 

.(3) 
Choosing good test functions, and integrating both sides 
of (3), we obtain a system with m equations and m un- 
knowns. 

We now solve for the unknowns to obtain the desired 
parameters. The motivation for this method is that the 
effect of the "random" noise in the data will be mini- 
mized after integrating against an integrable test func- 
tion. 

This algorithm, the inner product method (IP) (Sturm 
1992), differs from other robust methods. To show this 
we define the following "universal" estimator system (U) 
where 6 is the vector of unknown parameters and Xi = 
{xii,Xi2,.-.,Xin)T. 

£tf(W-**<-*) 
( M*i) \ 

h(xi) 

»=i 

= 0. (4) 

V <i>m{xi)  I 
Here ip, <j>i are real valued functions of one variable 

with the property V"(0) = 0. This last condition is im- 
posed in order that the true values for the parameters 
are solutions to (4) when the data is perfect. 

In matrix form for IP (4) becomes AB — Y, where 
A- 

52*il4>m+l(Xi)     52xi2<f>m+l(Xi)---     E^«n+l(*») 

/   01    \ 

6 = ,and, 

y = 

V   b   ) 
T,yiMxi) 

Note that LS for simple regression is obtained from U 
by specializing as follows: ip(x) = x, <j>i(x) = x,<f>2(x) = 
1. The IRLS method and the M-estimator method for 
simple regression are obtained from U by specializing as 
follows: 4>\{x) = x and <j>2{x) = 1 and allowing rj> to be 
arbitrary. In our technique, the inner products method, 
we specialize r/;(x) = x but allow <f>i to be arbitrary. A 
key advantage of IP is that for all linear model functions 
the resulting equations are linear. Therefore, there are 
no initial guesses for the parameters. 

If we restrict the test functions to be the same as in 
LS, then the IP method can be restated as a minimiza- 
tion problem as follows. If we define the residual vector 
r(0) = Ad — Y then we can state the general data-fitting 
problem as the solution to 

minf(6) = p(r(8)). (5) 
e 

In the case of least squares, the function p is 

p(*) = l/2j>(*)3). 

For the IP method, we define Z as a diagonal matrix 
with (Z(i)) along the diagonal, then the function p(0) = 
ll^llz- where the weighted norm ||a:||z is defined as 
xTZx. 

Augmented test functions 

In order to find a better set of test functions than LS 
(i.e. one which produces a smaller error), we exploit the 
fact that the simple linear case satisfies the differential 
equation f"(x) = 0. Hence, if the data points (a;,-, y,) are 
thought to lie close to a straight line, then the discrete 
second derivative, i/j+i — 2yi + y,_i should be close to 
zero. Thus if we set D(i) = j/,+i - 2j/; + yi-i, then D(i) 
measures how far y,- is from the model function. If D(i) 
is big, then j/,- is far from the line. Since D(i) is not 
defined when i is an endpoint, we set D(p) to D(p + 1) 
and D(q) = D(q — 1) where the data is defined on the 
interval [p, q]. 

We modify the previous test functions <j> using D(i) 
to mollify the effect of the outliers. Let 

Z(i) = 
1 

cD{if + 1 

where c is a relatively large positive number. Then 
Z(i) PS 1 if j/,-,y,-_i and y,+i are "good" points, and 
Z(i) » 0 if 2/j,2/i-i or j/j+i is an outlier. Now we replace 
<j>(x) by (p(x)Z(x). Note that the farther the outlier is 
from the other data points, the less its influence will be. 
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However if several consecutive outliers happen to lie on 
a line, their influence will be exaggerated. 

This method generalizes to higher dimensions. For 
purposes of explanation we will restrict our attention to 
two dimensions. If the data is equally spaced within a 
grid, we replace the discrete second derivative by the dis- 
crete Laplacian. In this case every interior point (x,i, x^) 
has four immediate neighbors: pi = (xn + l,xa), pi = 
(ar,-i-1, xi2), p3 = (xn,xi2 +1), PA = (xn, xi2 - 1). The 
four vectors determined by these points, Vk = Pk—po, & = 
1...4, satisfy the following equation of linear depen- 
dence: 

Vi + V2 + vz + l>4 = 0 (6) 

This equation of dependence is then used in order to 
adjust the data as shown above. 

In higher dimensions, we will assume initially that 
the Xi are arranged in a cubical lattice. In other words, 
we shall assume that the a:,- are the integral lattice points 
in a large cube. We shall say that two such points are 
"close neighbors" if their difference is a standard basis 
vector; in other words their difference equals 
±(0,0,..., 0,1,0,..., 0,0). Thus each point has 2ra close 
neighbors. Then if j/,- is the response variable at the point 
Xi, the discrete Laplacian at r,- is the sum of the values 
at all the close neighbors minus 2m times the value at 
the center. 

If the t/i all lie on a plane then the discrete Laplacian 
will be zero. Thus the discrete Laplacian measures how 
far the data is from being perfect. We note that an im- 
perfect center value will create a much larger Laplacian 
than a neighboring value, since the coefficient of the cen- 
ter is 2m while the neighboring coefficients are all one. 
Note that this approach should improve with higher di- 
mensions. For the boundary points which do not have 
2m neighbors one can use fewer neighbors. At the cor- 
ners, one might extrapolate or assume that the corners 
are outliers. 

If the data is not equally spaced, we do not have 
the notion of immediate neighbors and a replacement for 
(6) is required. This replacement is obtained as follows: 
For every data point po, we divide the plane into three 
regions, by drawing three rays emanating from po in such 
a way that the angle between any two is 120 degrees. 
Then choose one point p,- from the first region, pi from 
the second, and pz from the third (this will be possible 
for "most" points). Let v, = pi -po, i = 1,2,3 and solve 
the equation of dependence: 

a\V\ + Ü2V 2 + azV3 + 041)4 = 0. 

The choice of p,- implies that all a,- may be taken to be 
positive. We normalize by taking a\ -f a\ + a§ = 1. This 
is used as a replacement for (6). 

Numerical Results 

Numerical results indicate that the IP method is more 
robust than least squares and compares favorably with 
other methods. The inner products method was ex- 
amined using data from the literature. Figure 1 shows 
calibration data with least squares(LS), least median of 
squares (LMS), and inner products (IP) fits. The data 
is taken from (Massart 1986). The true relationship was 
y = x; note that only IP returns the exact slope. 

Massart et. al. (Massart 1986) cite an application 
for robust estimation to calibration. They apply both 
LS and LMS to the same data set. If the two lines do 
not coincide, then LS is usually pulled by outliers at 
the end of the calibration range. As an example they 
study the calibration of lead measurements by plasma 
emission spectrometry. There are 13 data points, 10 of 
which are at the low end of the scale. These low con- 
centration points determine the slope of the LMS and 
the IP line. The LS method fits the high end points. 
By comparing the two methods (Figure 2), the model 
error caused by curvature of the calibration line is re- 
vealed. Visual inspection alone would not have revealed 
this. Massart et. al. make the point that although this 
method of determining model errors is not a statistical 
test, there are no very good alternatives. Analysis of 
variance requires repeated measurements which may not 
be available. Residual analysis is affected by outliers in 
the least squares case. An F-test applied to this data 
did not show that a second-order model would be signif- 
icantly better. Therefore, like LMS, IP can be useful in 
detecting model errors. 

Figure 3 shows a two dimensional data set with two 
outliers where the data points are not uniformly spaced. 
LS does predictably poorly whereas IP returns the pa- 
rameters exactly. 

Our method extends to nonlinear models as follows: 
Let D be a differential operator which annihilates the 
model. Then, proceeding as in the linear case, we re- 
place the test function <f> by <j>Z. For example, for an 
exponential model, y — aeXx, ln(y) = ln(a) + Xx. So, 
uL = x => (y")(y)-(y')2 = 0. So we take, 

D{i) = D2{i)yi-{D1{i)Y 

where D\ is the discrete first derivative, and £>2 is the 
discrete second derivative. We have also shown [Sturm 
1994] how the inner product method can be applied to a 
nonlinear model for three dimensional eye movements. 

Conclusions 

We have shown that the integral inner products method 
is more robust than least squares for simple and multi- 
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variate model functions. It compares favorably to more 
robust methods such as LMS and IRLS for outlying re- 
sponse variables and is computationally simpler. For 
linear models, no initial guesses for the parameters are 
required. IP extends naturally to nonlinear models as 
well. 

0 12 3 4 5 

Concentration 

Figure 1.  Calibration Data. True relationship: y = 
LS: 1.26* -0.48 
IP: l.Ox - 0.37 
IRLS: .92* + .19 
LMS: .90* + .20 

20 40 60 80 

lead concentration 

100 

Figure 2. Calibration of lead measurements by plasma 
emission spectrometry. The difference between LS and 
IP shows a possible model error. 

0 10 0 12 0 0 0 0 
8 0 0 11 0 13 0 15 
0 8 9 0 11 12 13 0 
0 7 0 9 0 11 12 0 
5 0 7 (15) 9 0 0 0 
0 5 0 7 0 9 (-3) 11 
0 4 5 0 0 8 0 10 
2 0 0 0 6 0 8 0 

Figure 3. Multivariate data, y = X\ + *2- Outliers are 
shown in parentheses. 

LS: .76*i + 1-08*2 + -45 
IP: *i +*2 
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variate model functions. It compares favorably to more 
robust methods such as LMS and IRLS for outlying re- 
sponse variables and is computationally simpler. For 
linear models, no initial guesses for the parameters are 
required. IP extends naturally to nonlinear models as 
well. 
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Figure 1. Calibration Data. 
LS: 1.26*-0.48 
IP: l.Or - 0.37 
IRLS: .92* + .19 
LMS: .90x + .20 

True relationship: y = x. 
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Figure 2. Calibration of lead measurements by plasma 
emission spectrometry. The difference between LS and 
IP shows a possible model error. 
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0 5 0 7 0 9 (-3) 11 
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Figure 3. Multivariate data, y = x\ + x2. Outliers are 
shown in parentheses. 

LS: .76xi+ 1.08*2+ -45 
IP: Xi +*2 
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Jump and sharp cusp detection by wavelets with 
applications to estimation of functions with jumps 
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ABSTRACT 

A wavelet method is proposed to detect jumps 
and sharp cusps in a function which is observed 
with noises. We detect jumps and sharp cusps by 
checking if the wavelet transformation of the data 
has significantly large absolute values at fine scales. 
The theory and fast algorithm for the detection are 
established. For estimating a function with jumps, 
jump detection is used in construction of a wavelet 
estimate of the function. The estimate has better 
visual quality than the direct threshold wavelet es- 
timate (e.g. VisuShrink estimate). 

1. INTRODUCTION 

The recently developed theory of wavelets has 
drawn much attention from both mathematicians, 
statisticians and engineers. Orthonormal bases 
of compactly supported wavelets have been used 
to estimate functions (see Donoho and Johnstone 
(1992a, b)). The theory of wavelets permits de- 
composition of functions into localized oscillating 
components. This provides an ideal tool to study 
localized changes such as jumps and sharp cusps in 
one dimension as well as several dimensions. This 
paper describes only results about one dimension 
case in Wang (1994a). 

The detection techniques are applied to estima- 
tion of a function with jumps. In the seminal 
work of Donoho (1993a, b), Donoho and Johnstone 
(1992a, b, c) and Donoho, Johnstone, Kerkyachar- 
ian and Picard (1993), orthonormal bases of com- 
pactly supported wavelets are introduced to esti- 
mate a function. The estimate is the reconstruction 

of the thresholded empirical wavelet coefficients of 
the data.  This simple estimate enjoys a wide va- 
riety of spatial adaptivity and theoretical optimal- 
ly.  If the function has jumps, however, the esti- 
mate will have an annoying visual appearance - the 
reconstruction exhibits many undesirable spurious 
oscillations near jump locations.   Donoho (1993b) 
considered segmented multiresolution analysis to 
remedy this drawback. The phenomenon also hap- 
pens in digital image compression. Because digital 
image has sharp variations along its edge curves, 
compression by directly thresholding wavelet coef- 
ficients results in oscillations near the edge curves. 
These oscillations produce so called Gibbs errors 
at the locations of the edge curves, which degrade 
considerably the image quality (see Froment and 
Mallat (1992)). The reason for the phenomenon is 
explained as follows.   When the underlying func- 
tion has sudden changes such as jumps, the wavelet 
coefficients are reflected by "large" wavelet coeffi- 
cients at fine scales near the change locations. After 
thresholding, only these "large" wavelet coefficients 
remain at fine levels, and then artificial oscillations 
which resemble the mother wavelet appear in the 
reconstruction. The approach here is to divide sup- 
port of the function into several blocks according 
to the detected jumps and then use boundary cor- 
rected wavelets to estimate the function on each 
of the blocks.   The estimate has a visual advan- 
tage that there are no annoying oscillations near 
the jumps. 

The rest of this paper is organized as follows. Sec- 
tions 2 and 3 introduce the white noise model and 
wavelet transformation, respectively.   Testing hy- 
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potheses and estimation are considered in Sections 
4 and 5, respectively. Section 6 discusses imple- 
mentation of the method in practice and Section 7 
features an application of jump detection to esti- 
mation of functions with jumps. Section 7 presents 
discussion. 

2. THE WHITE NOISE MODEL 

Suppose / is observed from the white noise model 

Y{dx) = f(x)dx + rW(dx),  a; €[0,1],     (1) 

where W is a standard Wiener process, and r is a 
formal noise level parameter which we think of as 
small, / is an unknown function which may have 
jumps and sharp cusps. The problem is to detect 
these jumps and cusps. 

We say a function / has an a-cusp (0 < a < 1) 
at x0 if there exists a positive constant K such that 
as h I 0 or h f 0, 

\f(xo + h)-f(x0)\>K\h\a. (2) 

For the case a = 0, / has a jump at x0. 
The white noise model (1) is closely related to 

the following nonparametric regression model: 

Vi = f(xi) + °zii   i = !> (3) 

with xi — i/n, Z{ a standard normal error and a > 0 
parameter, / an unknown function. Define the re- 
gression process {Yn(x) : x G [0,1]} via xQ = 0, 
yn(0) = 0 and YB(a?,-) = yx + ... + »,-, « = 1,. • .,n, 
with interpolation between the X{ by Wiener pro- 
cess W for Xi < x < xi+i. Then Yn is a white 
noise process with the function fn(x) = f{x{) for 
xi < x < Xi+i and r = a n~1/2 (see Donoho and 
Johnstone (1992a)). 

3. WAVELET TRANSFORMATION 

Let ip be Daubechies "mother wavelet" (see Chui 
(1992)/Daubechies (1992) and Donoho and John- 
stone (1992a,b)), and define ips(x) = s'1/2 ^(x/s). 
The wavelet transformation of / is defined as 
Tf(s,x) = f ips(x - u)f(u)du. The wavelet trans- 
formation Tf(s,x) is a function of the scale (fre- 
quency) s and the spatial position (time) x.   The 

plane defined by the pair of variables (s, x) is called 
the scale-space (or time-frequency) plane. 

For compactly supported wavelets, the value of 
Tf(s, x) depends upon the value of / in a neigh- 
borhood of x of size proportional to the scale s. At 
small scales, Tf(s, x) provides localized information 
such as local regularity on /(x). For example, if / is 
differentiable at x, Tf(s, x) has the order s3/2, and 
if / has an a-cusp at a;, the maximum of Tf(s, x) 
over a neighborhood of x of size proportional to 
the scale s converges to zero at a rate no fast than 
sa+i/2 as s ten(js to zero (see Daubechies (1992)). 

The wavelet transformation of the white noise 
W(dx) is define to be TW(s,x) = J>,(z - 
u)W(du). The wavelet transformation of Y is 

TY(s, x)=  I il>s(x-u)Y(du) = Tf(s, x)+rTW(s, X). 

(4) 
At a given scale s, TW(s, x) is a stationary Gaus- 

sian process with zero mean and covariance function 

E(TW(s, x)TW(s, y)) = / ij)s{x - u)i>s(y - u)du, 

(5) 
and 

var(TW(s,x)) = J[i>(u)]2du = 1. 

Note that TW(s,x) follows a standard normal 
distribution and that the orders of Tf(s, x) are, re- 
spectively, 5a+1/2 and s3/2 for the two cases that 
f(x) has an a-cusp at x and f(x) is differentiable 
at x. By (4) we can see that, at a very fine scale 
s, TY(s, x) is dominated by TTW(S, X), while at a 
coarse scale 5, Tf(s,x) dominates TY(s,x). Since 
the localized information of /(x) is provided by 
Tf(s, x) at fine scale, if the scale s is too large, the 
wavelet transformation can not detect local changes 
with enough precision. Our idea is to select fine 
scales sT such that at those x where f(x) is differen- 
tiable, the orders of Tf(sT,x) and TTW(ST,X) are 
balanced. If / has sharp cusps, for x near the loca- 
tions of the sharp cusps, TY(s, x) will be dominated 
by Tf(s, x) for s > sT and hence significantly larger 
than the others. Therefore, the sharp cusps will be 
detected by the wavelet transformation TY(s, x) at 
the scale levels s> sT. 
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Throughout this paper, take rj to be any constant 
that great than 1, and let sT be a constant with the 
exact order (r2 ^o^rl77)1^2""1"1). Denote by supp(ij)) 
the support of ij). 

4. TESTING HYPOTHESES 

Consider the testing problem HQ\ f is differen- 
tiable against H%: f has a;-cusps, i = l,...,q, 
q > 1, where cc; < a < 1. 

Our test statistic is the maximum of TY(sT,x) 
over 0 < x < 1. Given a type I error 7, under jffo 
the critical value CT)7 satisfies 

Pr{ max \TY(sT,x)\ > CT,7} = 7. 
0<a;<l 

Theorem 1 If 0 < 7 < 1, then under Ho, 

limipr{ max |TY(sT,a:)| > CT,7} = 7. 
T—*-0        0<a;<l 

where 

CTa   =   r(2\logsT\)-1/2[2\logsT\ 

+log{{jW{u)?duyl*l{2*)} 
-log(-log(l-7)/2)}. (6) 

The proof of Theorem 1 is given in Wang (1994a). 
Theorem 1 provides a test to check if the underlying 
function is smooth or has jumps or sharp cusps. 

5. ESTIMATION 

Because of space we discuss only the case that / 
has one jump or sharp cusp. See Wang (1994) for 
multiple jump and sharp cusp detection with known 
and unknown number of jumps and sharp cusps. 

Suppose / has an a-cusp at 9 and is differentiable 
elsewhere. An estimate of 9 is the location of the 
maximum of \TY(sT,x)\ over 0 < x < 1, that is 

§ = Argm*x{\TY(srtx)\}. (7) 

Theorem 2 

lim pr{ s"1 (6 — 9) 6 suppfip) } = 1. 
T-+0 

The compact support of xß implies that the estimate 
0 has the convergence rate sT. 

Moreover, suppose that f(x) = f(9)+Ai\x—0\a + 
o{\x -0\a) asx-^6 ifa>0, and f(9+) - f(9~) = 
A-2 if a = 0, where A{ / 0, i = 1,2. Then, as 
T —* 0, (9 — 0)/sr converges in probability to the 
location of the maximum of {\ f ij){u — i) \u\a du \ : 
t £ supp(i^)} ifa>0, and \ f ip(u — t) sign(u) du\: 
t £ supp(ip)} if a = 0. 

The proof of Theorem 2 is given in Wang (1994a). 
Theorem 2 establishes asymptotics for the detec- 
tion. Since jump detection has been studied in the 
nonparametric regression setting, we compare the 
convergence rate with those in the literature. By 
Theorem 2, for the white noise model and the jump 
point case, a = 0, the convergence rate is r2 \logT\n. 
Using the relation between the models (1) and (3) 
described in Section 2 and letting r = cr/^/n, we ob- 
tain this rate corresponds to the rate n-1 (log n)v 

for the nonparametric regression model, which are 
known to be the best possible convergence rates (see 
Müller (1992)). So the convergence rate sT is the 
best possible rate and the wavelet method is theo- 
retically optimal. 

6. IMPLEMENTATION IN PRACTICE 

In practice, we may not have a realization of Y(x) 
at all points x but discrete observations Y(i/n), 
i = l,...,n = 2J. Or equivalently, we observe / 
from the model (3), that is, yi = f(i/n)+azi, a > 0, 
Zi ~ iV(0,1), i = 1,...,n = 2J. The datayi,---,yn 

are discrete and consequently a discrete version of 
the wavelet transformation must be performed. 

The discrete wavelet transformation (DWT) can 
be written as a rc-by-n orthogonal matrix W 
which depends on parameters M (number of van- 
ishing moments), S (support width), j0 (Low- 
resolution cutoff), and boundary adjustments (see 
Cohen, Daubechies, Jawerth, and Vial (1993) and 
Daubechies (1994)). The rows of W correspond to 
discretized version of the wavelets ^A- Denote by 
Wjk(i) the ith element of the (j,k)th row of W. 
Then ^/nWjk(i) w 2^V(2^) for t = i/n - k2~j 

(see Donoho and Johnstone (1992b)). 
Let y = (yi,---,yn)- The DWT of the data y is 

given by w = Wy. Because W is orthogonal, the 
inverse DWT is easy and y is recovered from w, 
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that is, y = WTw. Mallat's pyramidal algorithm 
(see Chui (1992) and Daubechies (1992)) requires 
only 0{n) operations for computing DWT and re- 
construction of DWT. 

Using Mallat's pyramid algorithm, we can com- 
pute the discrete wavelet transformation of the data 
(yi). The elements of w are indexed dyadically 
as follows: w_i,o and Wjtk,k = 0,.. . ,2J - l,j = 
0,..., J - 1. Wjtk are corresponding to DWT at 
the scale levels 2~^ and spatial positions k2~:>, 
k = 0,...,2J' - 1, j = 0,...,J - 1. These dis- 
crete wavelet transformations are also called em- 
pirical wavelet coefficients. 

In practice, for a given data set, we can use Mal- 
lat's pyramid algorithm to compute the wavelet 
coefficients and then carry out the detection (see 
Wang (1994a) for simulations and real examples). 

7. AN APPLICATION TO ESTIMATION OF A FUNCTION 

WITH JUMPS 

Suppose we are given n noisy data of / from the 
regression model (3). The unknown function / has 
jumps and we want to recover /. The direct thresh- 
old estimate (e.g. VisuShrink estimate) will have 
many undesirable spurious oscillations near jump 
locations (see Donoho and Johnstone (1992b,c)). 
The approach here is to divide [0,1] into several 
blocks according to the detected jumps and then use 
boundary corrected wavelets to estimate the func- 
tion on each of the blocks. 

Suppose / has q jumps at 6e, £ = 1,..., q, where q 
is a finite integer. For simplicity, suppose q is known 
(see Wang (1994a) for the case that q is unknown). 
Let 0i,---,9q be the estimated locations of the 
jumps and let It = [&i+K log n/n, 0£+i —K log n/n], 

The data are divided into q blocks: yt = {yi : 
%i £ It}, & = 1)•••><?• On each of the Ie, 
£ = 1, • • •, q, using boundary corrected wavelets, we 
compute the wavelet coefficients of y^. Because of 
the partition, no "large" wavelet coefficients of ye 
will appear at fine levels. On each of the Ie, we ap- 
ply the VisuShrink method (see Donoho and John- 
stone (1992b)) to the data y^ to obtain an estimate 
{ft{xi) '■ xi € It) of the function {/(a;) : Zj € It}. 
The estimate fn of / on [0,1] is obtained by pasting 

{ft(xi) : Xi e h} together. The visual advantage of 
the approach is that fn has no annoying oscillations 
near the jumps (see Wang (1994a) for simulations 
and real examples). 

8. DISCUSSION 

It is very important to point out that the detec- 
tion by wavelets has the nature of multiresolution. 
In the detection we check empirical wavelet coef- 
ficients across resolution levels and locate jumps 
and sharp cusps by empirical wavelet coefficients 
at these levels. Like smoothing methods with vari- 
able smoothing parameters, the multiresolution ap- 
proach has spatial adaptivity. The detection with 
spatial adaptivity has many advantages over tra- 
dition methods such as kernel methods with fixed 
bandwidth. For example, a jump is easier to de- 
tect than a sharp cusp; because of multiresolution, 
for fixed sample size and fixed signal - to noise ra- 
tio, the jump can be located more accurately by 
wavelet coefficients in higher resolution levels while 
the cusp is detected by wavelet coefficients in lower 
resolution levels. 

As a summary, detection by wavelets enjoys theo- 
retical optimality and has fast computational algo- 
rithms and can be easily implemented in practice. 
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1 Abstract 

Fitting distributions to data has many applications. First, most 
analyses make assumptions about the distribution of the data or 
the residuals, and these assumptions should be checked whenever 
possible. Second, inferences about the fraction of observations 
above or below some particular point are often needed, and 
modeling the distribution may be the best way to obtain these 
estimates. Third, biological models often require the parameter 
estimates from a distribution. There are several numerical 
methods used in distribution fitting, and this paper will discuss 
three: the standard Newton-Raphson method, a modified 
Gauss-Newton method, and the EM Algorithm. 

2 Introduction 

This paper restricts its discussion to maximum likelihood 
techniques. Distributions with range parameters to be estimated 
are not considered because of the difficulties in estimating these 
parameters using maximum likelihood methods. Several differ- 
ent numerical methods are commonly used to derive estimates, 
and this paper will discuss three of these: the standard 
Newton-Raphson method, a modified Gauss-Newton method, 
and the EM Algorithm. The performance of these methods for 
problems of distribution fitting will be discussed. 

Even with these restrictions, there are several problems in 
distribution fitting which are challenging. These include 
grouping and censoring of data, truncation of distributions, and 
mixtures of distributions. Truncation differs from censoring in 
that the values below (or above) some cutoff point are never 
seen. For example, lengths of fish gathered by net will not 
include fish below a certain size since those fish pass through the 
net. The number of fish below this size is never known. With 
censored data, information is available on the number below the 
limit. Censoring is a common problem with environmental 
pollutants which often exist in concentrations below the mini- 
mum detectable limit of the measuring instrument (left censor- 
ing). Censoring also occurs in time-to-tumor studies where 
some animals die before they get a tumor (right censoring). 
Grouping occurs when the number of observations is so large 
that it is impractical to retain the individual values. 

3 Newton-Raphson Method 

The Newton-Raphson method is described in every 
book on numerical analysis (e.g., see Burden and 
Faires, 1985). Unfortunately, it performs rather poorly 
for many distributional fitting problems. However, one 
particular problem for which it is very useful is in 
estimating the inverse of a cumulative distribution 
function, F. Assume that we want to solve for x given 
the probability p and the parameters a and ß: 

x = F^foa.ß) 

or equivalently   F(x,a,ß) - p = 0. 

The Newton-Raphson iteration scheme becomes 

xP+i) _ x(n F(*»>>C,ß) - p 
/(*<»a,ß) 

where x°° denotes the k4 estimate of x and / is the 
probability density function. 

As an example, consider the problem of evaluating 
the inverse incomplete beta function. The incomplete 
beta function is given by 

P l r(a)IXß) 
where T(d) is the gamma function. The problem is to 
solve for x when p is specified. Assume p = 0.025, a 
= 3.5, and ß - 12.5. Using the approximate formula 
in Abramowitz and Stegun (p. 945) for an initial 
estimate, the following are the estimates by iteration. 

Iteration F(x,a,ß)-p 

0 0.06643 0.0090519 

1 0.06033 0.0006947 

2 0.05978 0.0000056 

3 0.05977 0.0000000 

This is the standard quadratic convergence expected 
from the Newton-Raphson method. 
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4 Modified Gauss-Newton Method 

A very good general method for obtaining a maximum likelihood 
estimates of the parameters of a distribution is a modified 
Gauss-Newton method. This method is normally applied to least 
squares estimation, but it has some advantages for maximum 
likelihood estimation. There appear to be no references which 
describe the procedure given below exactly — the closest is that 
of Berndt et al. (1974). The following notation will be used in 
the estimation formulas. Let the i* observation be denoted by x,. 
In general, the log-likelihood function for continuous data can be 
written as 

L = E Logift), 
i* l 

where/ is the density function for the distribution evaluated at 
x„ f(X)). If a single distribution is truncated, then/ is given by 

ft=f(x)l[F(B) -F(A)], where 

A is the left truncation point, B is the right truncation point, and 
f(Xj) is the complete (not truncated) distribution evaluated at JC„ 

and F(x) is the cumulative distribution function. The first partial 
derivative can be written as 

f(x) = «-««-«>»/ß[l + e-('-«)/P]2   where ß > 0. 

aiog(/p 
d/Cx.) 
ae 

dF(B)      3F(A) 
36           36 

36 fix) F(B) - F(A) 

The method involves estimating the expected values of the 
second partial derivatives using first partial derivatives. Using 
the results of Cramer (1946, p. 502), we know that 

E[VL]2 = -£[V(vX)']. 

where v is the gradient function. This suggests replacing the 
matrix of second partial derivatives with the expected value of 
the first partial derivatives squared. The calculation of the 
expected value is difficult, but we can finesse this problem by 
using the observed sample distribution instead of taking expecta- 
tions. Asymptotically, the distribution of our sample will 
approach the true (but unknown) distribution. Furthermore, the 
sum of cross products of the first partial derivatives will be 
guaranteed to be positive definite. The estimated matrix is 
inverted and used in the standard Newton formulation. For 
some problems, the change is estimates may be too large, 
resulting in a decrease rather than an increase in the likelihood. 
In those cases, it is necessary to successively chop the change in 
half until the likelihood is increased. Iteration is stopped when 
the change in the parameter values is arbitrarily small. 

To demonstrate the method, consider the truncated logistic 
distribution (also known as the sech-squared distribution). One 
form of the density is given by 

It is often derived from a differential equation, 
cumulative logistic distribution is defined as 

Fix) = 1/[1 +«-<*-«)/?]. 

The 

It is commonly used in dose-response analysis, but the 
use of the logistic distribution for distribution fitting is 
less common. The distribution is similar in shape to 
the normal distribution, but has more mass in the tails. 
Thus it may be a good alternative to the normal distri- 
bution in situations where the data are symmetric, but 
the tails are heavier. 

In order to use the modified Gauss-Newton method, 
the required partial derivatives are: 

df(x) 
da 

fix), 

df(x) 
3ß 

fix), 

dF 
da 

8F 
3ß 

-fix)   and 

ix - a)fix) 
ß 

The asymptotic covariance matrix can also be calculated 
from the same inverse matrix of partial derivatives. 

To illustrate the method, consider the data of 
Kenyon, Scheffer, and Chapman (1954) on the Pribilof 
fur-seal herd in Alaska. The herd has been on the 
verge of extermination several times. During the 
commercial sealing season, male seals whose length (tip 
of snout to base of tail) is between 41 and 45 inches (to 
the nearest inch) are killed (clubbed to death). Note 
that the data are naturally truncated at 40.5 and 45.5 
inches (see Figure 1). The estimates of alpha, beta, 
and the log-likelihood by iteration are in the following 
table. 

ration a ß log-likelihood 

0 42.328 0.8398 -651.3232 
1 41.960 0.9558 -587.3418 
2 41.835 0.9580 -586.6463 
3 41.846 0.9483 -586.6409 
4 41.843 0.9497 -586.6407 
5 41.844 0.9494 -586.6407 

Note the rapid convergence, comparable to standard 
quadratic methods.  The actual fit is shown Figure 1. 
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Figure 2 shows the data for 1974. 

41 42 43 44 

Length (inches) 

45 

Figure 1. Fit of a truncated logistic distribution to lengths of 
fur seals in the Pribilof Islands. 

5 EM Algorithm 

Another method for estimating the parameters of a distribution 
is the EM algorithm as described by Dempster, Laird, and Rubin 
(1977). This method works well for the problems created by 
mixtures and grouping, and can be described as follows 

E step: estimate the expected values of the sufficient statistics for 
the missing data using the current estimates of the parameters. 

M step: recompute the estimates the parameters from the 
expected values of the sufficient statistics. Iterate by returning 
to the E step until the desired accuracy is attained. 

Grouped data are common and yet standard Shephard 
correction estimates can be quite biased. As an example, 
consider the grouped blood lead data shown in Figure 2. The 
city of New York conducted a blood lead screening program in 
children for several years to prevent lead poisoning from paint 
chips (Billick et al., 1970). A detailed discussion of the analysis 
of this data set was given by Hasselblad et al., 1980. Because 
the data were collected for screening purposes, the actual blood 
lead values (in micrograms per deciliter) were not recorded, but 
were grouped into ten unit intervals (except for the first inter- 
val). The data from the years 1970 to 1973 showed both larger 
means and larger standard deviations than did data from later 
years. The larger means were undoubtedly due to the lead in air 
and dust resulting from the high lead content in gasoline. The 
larger standard deviations were probably due to the seasonal 
changes in automobile travel and outdoor activities of the 
children. After most lead was removed from gasoline, the 
means of both the blood lead and air lead levels dropped. 

35 55 
blood lead lf/g/dl) 

Figure 2. Fit of a grouped lognormal distribution to 
blood lead levels in black children aged 1-3 in New 
York City in 1974. 

In order to use the EM algorithm, the expected 
value of x and x2 assuming a normal (after transforma- 
tion) distribution must be calculated for each interval. 
If the endpoints of the intervals are denoted as q, then 
these expectations are given by 

E(x | ci.1<JC<c,) = u - a2zu 

E(xf\cl_1<x<c) = o2(l + zj + v? - »zuo2 

where 
ht =fi.c)IF(c) -Ac^/Fffi^   md 

z* = cflcjIFic) - cM/(cM)/F(cM). 

This same technique can be used to fit a linear model 
to grouped data (see Hasselblad et al., 1980). For 
grouped data problems, the EM algorithm converges 
quite quickly, and the estimates and log-likelihood by 
iteration are shown in the following table. 

ation M a log-likelihood 

0 3.1629 0.4823 -3337.0311 

1 3.2033 0.4118 -3265.2098 

2 3.2121 0.3968 -3260.8766 

3 3.2143 0.3934 -3260.6353 

4 3.2148 0.3926 -3260.6220 

5 3.2149 0.3924 -3260.6212 

6 3.2150 0.3924 -3260.6212 
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A more difficult problem is the estimation of parameters from 
mixtures of distributions. The algorithm is quite simple and was 
given by Hasselblad (1966). Part of the numerical problem 
results from the likelihood function itself. For example, Ali and 
Giaccotto (1982) show data for the logarithm of the ratio of 
consecutive monthly prices of Bethlehem Steel stock over a ten 
year period (shown in Figure 3). 

-0.2 -0-1 0.0 0.1 

change in logarithm of price 

0.2 

Figure 3. Fit of a mixture of two normal distributions to the 
logarithm of the ratio of consecutive monthly prices of 
Bethlehem Steel stock. 

Because the data are already log-transformed and show two 
peaks, it is logical to fit a mixture of two normal distributions to 
the data. If we look at a graph of the log-likelihood function as 
a function of y^ and <r2 with p, /i„ and a2 fixed at their maxi- 
mum likelihood estimates, we get the graph shown in Figure 4. 

0.24 

0.005 

0.010 

0.015 0.20 

Figure 4. Graph of the log-likelihood function as a function 
of ßi and a2 with p, nu and <r2 fixed at their maximum 
likelihood estimates for monthly prices of Bethlehem Steel 
stock. 

The spikes on the left actually go to infinity where to ^ 
takes on the value of any data point and a2 •* 0, a fact 
which was reported by Day (1969). Thus we can only 
hope to find a relative maximum of the likelihood 
function. Furthermore, the likelihood function can be 
very flat over regions near the solution (see the right 
hand part of Figure 4 which is close to the maximum 
likelihood solution). 

This is a difficulty for any method, but the EM 
algorithm will continue to move to a relative maximum 
of the likelihood without and step size correction even 
under these difficult conditions. A graph of the likeli- 
hood as a function of the number of iterations for the 
Bethlehem Steel stock data is shown in Figure 5. Note 
that once the estimates get reasonable close (after 1960 
iterations), they zoom in quite quickly to the solution. 
The fitted curve was shown in Figure 3. 
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Figure 5. Graph of the log-likelihood function as a 
function of the number of iterations for monthly 
prices of Bethlehem Steel stock. 

As indicated earlier, the blood lead data of New 
York City in the years prior to 1974 tended to have 
extra variation. For the data of 1972, the fit to a 
mixture of two lognormal distributions is shown in 
Figure 6. This is an application of the EM algorithm 
to solve both the problems of a mixture as well as 
grouping in the same example. Although there is no 
visual evidence of a mixture, the likelihood ratio test 
for the improvement in fit over a single lognormal 
gives a chi-square of 65.914 for three degrees of 
freedom (p < 0.00001). The existence of the two 
distributions may be an artifact of the seasonal variation 
in lead exposure which was not included as a covariate 
in the analysis. 
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As might be expected, the convergence to the maximum 
likelihood estimate is quite slow using the EM algorithm, taking 
approximately 2500 iterations to converge. 

35 55 
blood lead (jug/dl) 

75 

Figure 6. Fit of a grouped lognormal distribution to blood 
lead levels in black children aged 1-3 in New York City in 
1974. 

6 Discussion 

The three numerical techniques just discussed have proved to be 
useful in distribution fitting. The modified Gauss-Newton 
method as described here is useful for a wide range of distribu- 
tions, including truncated distributions. In conjunction with the 
EM algorithm, it will handle grouped distributions. For 
mixtures of distributions, the EM algorithm is superior, although 
it can converge very slowly. 

In combination, these methods can estimate parameters from 
normal, lognormal, exponential, gamma, Weibull, logistic, 
extreme value, and beta distributions, as well as mixtures of 
normal, lognormal, and exponential distributions. For informa- 
tion on software using these techniques for distribution fitting 
contact the author. 
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Abstract 

This paper presents some preliminary results on a new 
method of density estimation that models an unknown distri- 
bution as a mixture of normal components. The model is first 
built using the recursive adaptive mixtures procedure of 
Priebe. This preliminary model is allowed to come to equilib- 
rium with the data via a sequence of term annihilations based 
on the Aikaike Information Criterion in combination with 
adjustment of the remaining model parameters via the stan- 
dard expectation maximization algorithm. 

Introduction 

Given X={xj, x2,..., xn} where each Xj is i.i.d. 
according to an unknown density f(x) then one is often inter- 
ested in estimating f(x). This problem occurs in such areas as 
exploratory data analysis, classification, and regression. 
There are a variety of approaches to the multivariate density 
estimation problemfl]. 

An often used parametric approach is that of finite 
mixture models[2] in combination with the expectation max- 
imization (EM) method of Dempster, Laird, and Rubin[3]. 
One difficulty with this tactic is that one needs some idea as 
to the appropriate number of terms in the mixture model. 
Given this information the EM algorithm is guaranteed to 
convergence to at least a local maxima in the likelihood sur- 
face. 

Some of the previous nonparametric approaches 
include histograms [4], frequency polygons [5], adaptive his- 
tograms^], average shifted histograms [7], and kernel esti- 
mators [8]. These approaches are beneficial in that they 
possesses nice asymptotic consistency properties and robust- 
ness with regard to nonnormality. They are at a disadvantage 
as compared to the mixture model approach when it is sus- 
pected that the unknown true density is a mixture of a number 
of components and one would like to estimate the posteriori 
probability of underlying component membership for an 

unlabeled observation. 

This type of problem exists in the areas of medical 
diagnosis and image processing. In medical diagnosis the 
component membership may play an important role in iden- 
tification of the underlying mechanism of disease or the iden- 
tification of appropriate tissue type in an image. In the general 
problem of image analysis the component membership may 
pertain to region type. 

A recently developed density estimation technique 
that circumvents some of the problems of the above tech- 
niques is the adaptive mixtures procedure of Priebe and Mar- 
chette [9]. This procedure is a blend of the finite mixtures and 
kernel estimator approach. It is essentially a mixtures type 
approaches that allows for the creation of new terms as indi- 
cated by the data complexity. We have successfully applied 
this technique in combination with fractal-based features to 
the detection of man-made objects in landflO] and aerial[ll] 
images, the general problem of texture classification[12], and 
the measurement of breast parenchymal tissue density[13]. 
The adaptive mixtures estimator is asymptotically consistent 
like the kernel estimator, but it has the added benefit of creat- 
ing additional terms at a rate which is considerably less then 
the rate n creation associated with the kernel estimator. 

One drawback to the adaptive mixtures estimator is 
that even though there is asymptotic LI convergence for the 
procedure there is no finite sample or asymptotic assurance 
that the match between the complexity of the final model and 
the data is optimal. Another way of saying this is that if the 
underlying distribution is a finite mixture of M terms, one 
would like M terms in the adaptive mixtures solution. The 
goal of our work is to modify the adaptive mixtures procedure 
so that it produces a model that not only matches the 
unknown density in a functional sense, but also in terms of 
model complexity. 

Approach 

Given an unknown distribution a(x) we seek to 
model the distribution using a*(x) defined by 
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of (x;SO = £*i*(*;r,), (1) 

where K is some fixed density parameterized by r, and *F = 
(jt!, r^ JI2, T2 7V, rm). The Tq's are referred to as the mix- 
ing proportions. (We can assume for much of what follows 
that K is taken to be the normal distribution, in which case Tj 
becomes {&, a,).) In the simplest case the mixture is 
assumed to have a single term and the parameters that need to 
be estimated are the mean and covariance of the distribution. 
It is important to note that unlike finite mixture models the 
number of terms m is not fixed but is driven by the data. 

The basic stochastic approximation approach is to 
recursively update the estimate *F* of the true parameters *F0 

based on the latest estimate ¥t* and the newest data point 
xt+j. That is, 

¥t+r = < + *t(xt+i;<) (2) 

for some update function Ot. This approach is usually used 
when it is known that the true distribution is a finite mixture 
of components. However, one can certainly approach the 
problem from the perspective of fitting the data to a finite 
mixture model where one finds the 4V i* that produces the 
best fit 

The specific form of the update equation that we 
use is the one suggested by Titterington [14]. If we let I(T) 
be the Fisher information then the version of the recursive 
update formula we will use is 

*\+1 = ^t+(nI(^t))~\^)log(a* (*,+1;*\)) (3) 

where the derivative represents the vector of partial deriva- 
tive with respect to the components of ¥. 

The AMDE stochastic approximation approach is 
to recursively update ¥*, the estimate of the true parameters 
¥0, while at the same time providing the capability to 
expand the extent of the parameter space ¥ if dictated by 
the underlying complexity of the data. We note that in the 
AMDE case our parameter space *P is given by (^ ,0 j, rc2,92, 
 ,7tn,9n,...). The procedure 

*t+l* = < + A*Ut(xt+1;<) + B*Ct(xt+1;<,t),    (4) 

is used to recursively update the density where A=[l-Pt(x- 
t+l^t*)]. and B=Pt(xt+l^t*)- pt represents a possibly sto- 
chastic create decision and takes on values 0 or 1. Ut updates 
the current parameters using (3) while Q adds a new compo- 
nent to the model. As is implicit in the equation, the decision 

to add a new term is a function of the current data point, our 
current estimation of the parameters, and time. The time 
dependence is important in those cases that we wish to anneal 
the probability of creation as a function of training time. 

Previous work in the literature has examined the 
application of the Akaike Information Criterion (AIC) [ 15] to 
the determination of the number of components in a finite 
mixture[16]. The AIC estimates the expected value of the 
Kullback-Leibler information between the estimated model 
and the unknown true density 

AIC = E[KL(a,a)] = [alog-^ . (5) J       a 

AIC is defined in terms of likelihood, L, and the number of 
free parameters in the model, M, as 

AIC(f) =- 2ln (f(x) )+2M. (6) 

Using this idea as a starting point we have developed 
a procedure that uses a single or set of adaptive mixtures den- 
sity estimates and produces a pruned model with a lower 
complexity. This procedure uses AIC to evaluate the appro- 
priateness of lower complexity models that have been sub- 
jected to the iterative EM method. In the iterative EM method 
the update equation takes the form 

^t+l'^ + WPt*). (7) 
where <J> is the update function and x is the set of observa- 
tions. 

Our approach to the pruning process is as follows. 
Given a*k an initial adaptive mixtures approximation to a 
containing k terms the AIC of each of the k-1 term models is 
computed after application of the EM method of equation 7 
to each of the models. If AIC(a*k.!) < AIC(a*k) for one of the 
k-1 term models then the pruning process is repeated using 
this model. This process of pruning and expectation maximi- 
zation is repeated until no further improvement is possible. It 
is important to point out that at each pruning step the remain- 
ing terms TC'S are updated based on their Mahalonobis dis- 
tance to the pruned term prior to relaxation with the EM 
method. 

Results 

This pruning approach was tested on data sets drawn 
from two different bimodal two term distributions and from 
one four mode four term distribution, see Figure 1. In each 
case 10,000 points were drawn from each distribution. 
Twenty-five bootstrap resamples were extracted from each of 
the data sets. A ten term adaptive mixtures model was created 
for each of the resampled data sets. Each of these models 
were then subjected to the AIC based pruning process. This 
process provides a model complexity distribution based on 
the data set. 
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Caseb 

Casec 
"W&&C 

Figure 1 - ct(x)=.5*N(-2,l)+.5*N(2,l), 

oc(x)=.5*N(-1.25,l)+.5*N(1.25,l), 

a(x)=.25*N(-6,l)+.25*N(-2,l)+.25*N(2,l) 

+.25*N(6,1) 

dF Estimate 

• o • -O ■ 

Figures 2 a and b - Adaptive mixtures estimates for two of 
the resamplings of the data set drawn from case a. 

Li Figures 2a and 2b we present adaptive mixtures 
solutions for two of the resamplings of the data set drawn 
form a(x)=.5*N(-2,l)+.5*N(2,l). We have included dF space 
plots along with the standard functional representation of the 
distributions. dF space plots are an effective way to display 
the terms in a mixture. Each term j^NG^Ci2) is plotted as a 
circle whose radius is proportional to jq and whose center is 
given by (m,Oi2). We notice that the terms in each of the two 
solutions are markedly different This phenomena falls under 
the adage that there is "more then one way to skin a cat." We 
also notice that there are more then the "theoretical" number 
of terms needed. Each of the models is made up of ten terms. 
The occurrence of a matching number of terms in each model 
is the result of our initial constrainment of the model com- 
plexity. 

Figure 3 illustrates the results of the pruning pro- 
cess. For each of the three distributional types we have plot- 
ted a histogram of the number of terms in the final pruned 
models for each of the twenty-five resamples. In case a the 
procedure converged to the correct solution 11 of 25 times. In 
case b the procedure converged to the correct solution 7 of 25 
times, and 17 of 25 times in case c. In all cases models of 
more appropriate complexity are provided by the procedure. 

The last thing left to be discussed is the output of the 
pruning procedure. In Figures 4 a, b, and c we present an 
expectation maximized adaptive mixture solution along with 
the output of pruning this solution. We notice that the number 
of terms in the solution has been reduced from ten to the 
appropriate number in each case. We also notice that the 
terms left from the process are in approximately the correct 
location and have about the right mixing coefficients and 
variances. 

Summary 

We have presented some very preliminary results 
concerning a new nonparametric density estimation tech- 
nique that combines the flexibility of term creation with the 
parsemoneousness of term annihilation. Much work needs to 
be done to strengthen these initial anecdotal results. 
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Figure 3 - Histograms of the number of terms in 
the final pruned models for each of the three test 
cases. 
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Abstract 
Terrell [1989] showed that the probability of a compact 

polyhedron under a normal distribution could be obtained via 
Parseval's Theorem and a fast, accurate numerical quadrature. 
Unfortunately, the efficiency drops with the size of the re- 
gion, so it is not a particularly good way to obtain tail prob- 
abilities, which are often of more practical interest. However, 
an analogous technique leads to efficient trapezoidal and 
Gaussian quadratures for normal tails, which actually improve 
in efficiency as the region moves away from the mean. 

I. Introduction 
The first demand that statistics makes on numerical com- 

putation is for probabilities associated with a normal distribu- 
tion, since mainstream mathematics has declared that these 
are not elementary functions in the sense that, for example, a 
tangent is. Good algorithms are well-known for many such 
problems; but by no means all. Terrell [1989] shows that one 
of the more important but difficult cases, that of finding the 
probability of a polyhedron in a normal multivariate problem, 
may be well-handled by a class of techniques called Parseval 
quadratures: The probability is expressed as an integral, which 
is then transformed to an integral involving the Fourier trans- 
forms of functions in the original integral, by an application 
of Parseval's Theorem. The new integral involves smooth func- 
tions on all of space, so that trapezoidal quadratures converge 
rapidly. Furthermore, one of the factors is a normal density, so 
that Gauss-Hermite quadrature works very well. 

Unfortunately, the method of Terrell [1989] applies only 
to compact polyhedra, and its efficiency drops rapidly as the 
maximum distance of the polyhedron from the mean increases. 
Very often our practical concern is with tail probabilities, ap- 
plied to regions extending arbitrarily far from the mean. This 
paper will show how to apply a variant of Parseval quadrature 
to certain of these probability calculations, in such a way that 
their efficiency actually increases with the minimum distance 
of the region from the mean. The paper derives the technique, 
and then gives examples. 

2. An Application of Parseval's Theorem 
By a tail probability, we mean in the univariate case for Z 

standard normal, P(z >z) = Q(z) = J   ^=e'Z dZ where 

z>0. Our trick will be first to transform to positive real sup- 
port by T = Z - z. Then 

"H-f 1   »-lT+z?LT-„-Ur   1   „-Tth„- 
V2¥' HT = e Jo   SIK

( 
-&. 

Doubling the integral by reflection about the origin, and ex- 
pressing the integrand as the product of two densities, we get 

Parseval's Theorem says that if/and g are densities, and 
<|> and y their Fourier transforms (characteristic functions of 

the associated random variables), then f fg = J-/ 97. This 

is easy to remember if you think of the Fourier transform as a 
rotation through a right angle; therefore, it leaves the inner 
product of two vectors unchanged. Then 

ß(z)= z-flii' '[. -TV2 

V2¥' l+(%): 
rdr 

where I have used the familiar characteristic functions for the 
normal and Laplace families. We may then compute the inte- 
gral either by the trapezoidal rule, which will be seen to work 
well because the integrand is smooth and evaluation points 
far from zero quickly make negligible contribution. Alterna- 
tively, Gauss-Hermite quadrature will turn out to work well, 
because one of the factors under the integrand is a Gaussian 
density; and the other factor is smooth and very cheap to com- 
pute. 

Before we look at these techniques, notice that the Cauchy 
factor under the integral sign is usually close to one for z large, 
which is the case of most interest when calculating tail prob- 
abilities. Therefore by subtraction we may rewrite 

ßM- 
_  1 

z-na1 1 -T*k 
V21T i + (z/r) 

rdJ 

Quadrature in this form will often be convenient, because we 
are now making a small correction to a classic upper bound 
for the tail probability. 

3. Trapezoidal Quadrature 
A trapezoidal rule quadrature formula for the real line is 

J[" f[x)Ax ~ £ hf[a + ifi), where a is a starting point and 

h is the spacing between the quadrature points. We expect the 
accuracy to increase for small h; but of course the computa- 
tional burden increases too. We apply this to the integral in 
the previous expression, with a = 0: 

e~"dT. 
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Irtzl.O 2.0 3.0 4.0 
0.8   .1590 .02275028 .001349898090       3.16712418566-5 

0.57.15867 .0227501322 .0013498980316344 3.1671241833129-5 

0.4   .15865540    .02275013194820  .0013498980316301 

0.28.158655254  .0227501319481792 

0.2   .15865525393148 

0.14 .1586552539314571 
Trapezoidal Quadrature of Q(z) 

The last entry in each column is accurate to the stated preci- 
sion. About 9/A quadrature points were required to achieve it. 

The error for the trapezoidal rule on the line is given by 
the Poisson summation formula; in the case of Parseval quadra- 
ture, that becomes, in our notation, 

for zero a quadrature point. Notice that we have written it as a 
sum of inverse Fourier transforms of a product. These are con- 
volutions of the original functions, so that 

Theorem: For a trapezoidal Parseval quadrature of 

/ fg  with zero a knot and diameter h, the error is 

«{>)*(¥-*) x \dx. 

In 

Iß" 

our        application        this        becomes 

J- ^ ^eW~Th T, We notice that this 

quadrature always overestimates the answer. By contrast, the 
other symmetric mesh, in which zero is a midpoint, has error 
the same expression with alternating signs. In particular, the 
first term is negative. Therefore, in practical cases this other 
estimate has almost the same size error with opposite signs. 

To estimate our error, use the obvious inequality 

g~l*l <e~x in the second factor of the integrand. After an 

Ä      _2refct i 
integration we get error < 2- e   * =-35 • For ex- i=1 gT-1 
ample, letting h = 0.8 and z = 1 we estimate an error .000388; 
the actual error from our table is .000245. More accurate 
quadratures give tighter error bounds. 

4. Gauss-Hermite Quadrature 
Gauss-type quadratures approximate integrals of the form 

/ fw where w is a positive weight function of finite integral 

by a sum of the form L wjfa), where the constant weights 

w, and quadrature points jq are chosen simultaneously so that 
the quadrature is exact on all polynomials of degree 2n. In the 

integral of section 2, the obvious choice of weight is a normal 
density; in that case quadrature is called Gauss-Hermite quadra- 

ture. This is because the points ^ are the roots of the Hermite 
polynomial of degree n. These are orthogonal with respect to 

the normal weight function. Then f(x) = j—^ ', the cost 
1 + [z/x) 

of each evaluation of this function is amazingly small, and by 

symmetry we need only % of them. 
The constants were obtained from Abramowitz and Stegun 

[1972, p.924], and the following examples evaluated: 

n\z 1.0 2.0 3.0 4.0 
5 .1675 .022813    .00135020 3.167212e-5 
10 .15717 .02274823 .0013498962 3.167124069e-5 
exact .158655 .02275013 .00134989803 3.1671241833e-5 

These examples do not exhibit the very high degrees of accu- 
racy in the earlier table; but you must remember that the first 
row corresponds to only two evaluations of/, and the second 
to only five! 

There exists an error estimate for Gauss-type quadratures, 
due to Markoff (see e.g. Davis [1975, p.344]); but it seems to 
be enormously larger than the observed error in all examples 
tested, and so is of no practical value. 

5. Multivariate Normal Tails by Parseval's 
Theorem 

There are well-known, rapid methods for finding 
univariate normal tail probabilities; but not so for the multi- 
variate case. We will let a multinormal tail region be defined 

as follows: let X »iV(o,s). Then by X > z we will mean that 

the random variable exceeds the fixed vector z coordinate by 
coordinate. Then 

p(x >X)"L(2«W 
^XTl-lXdX 

We move the corner of our orthant to the origin by the change 
of variables Y = X - z, and expand the exponent to get 

^-^LM^ 
-lVir'Y -YT£- zdY 

As before, our tactic will be to expand the integrand by reflec- 
tion to cover Euclidean n-space; then the second factor will 
be a product of Laplace densities. This only works when we 
impose a condition on the orthant corner z: 
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Def l For a multinormal X = #(o,z) random vector, 

X > z will be called a tail orthant whenever 2T xz > 0 . 

This requires that the marginal density along each edge 
of the region be everywhere decreasing. In this case, 

?(X>z). 

Now apply the multivariate Parseval's theorem to get 

P(X>z) = 

which has a smooth integrand, well suited to quadrature. The 
computations become much cheaper if we transform to a 
spherically-symmetric normal distribution: 

P(X>z) = e-V*-1' 
ft (2T'4(2^(2:) ih Ja» 

■& 
..öl M dt 

We may compute this by a trapezoidal quadrature on a 
square mesh of width h. The error analysis parallels the 
univariate case. For example, let (X,Y) be standard normal 

variables with correlation 0.5; we compute p(X >z,Y>z\ 

for various values of z: 

hVM.O 2.0 3.0 4.0 
0.57.05215 .003611099 7.57171105e-5     4.60706480176-7 

0.4   .052294 .00361111817 7.57171115636-5 4.6070648020069-7 

0.28.05230034      .00361111821034    7.57171115629858-5 

0.2   .0523004066   .0036111182103472 

0.14 .052300406764267 

0.1   .0523004067642894 

Trapezoidal Quadrature of P(X>z, Y>z) 

Here the starting point was not the origin, but (h/2,h/2); there- 
fore the estimates are on the low side. Approximately the square 
of the number of function evaluations were required here com- 
pared to the univariate case; but a Mac Quadra 800 took less 
than a second to do the longest of these computations. 

Gauss Hermite quadrature may be productively applied 
here; the evaluation points and weights are just the tensor prod- 
uct of those in the univariate case. 
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PROBABILITIES 

OVER 
CONVEX REGIONS 
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ABSTRACT 
A method is presented for numerical evaluation of a 
multivariate normal integral over any convex region. 
The method is efficient for interactive analyses for 
moderate accuracies (e.g. approx. two decimal 
places). The method has been applied to the 
computation of critical values for multiple comparison 
methods in the general linear model. 

INTRODUCTION 
Let x = (xp x^ ... ,X/e)' have the multivariate normal 

distribution f(x) = MVNfacPZ) where 27 is the 
correlation matrix of x and a is a scalar. There are 
many problems in statistics that require computation 
of f(x) over some region R. That is 

/, f(x) dx. 

For the case when the region of integration is 
rectangular, the problem has been addressed by many 
authors. They include Gupta (1964), Milton (1972), 
Schervish (1984), Deak (1986), Olson and Weissfeld 
(1991), Genz (1992), Drezner (1992), and Kennedy 
and Wang (1991, 1992). However, regions of 
integration for statistical applications such as multiple 
comparison procedures are not rectangular. For 
example, the critical value q for (1 - a) simultaneous 
confidence intervals for Tukey's (1953) pairwise 
differences of population means can be obtained by 
solving the following probability equation for q 
Prob {[(y, - yj) - r>,- - MJ)J < q(^)1/2 for i *j} = 1-a 

where y, is the least squares estimate of n, and Vg is 
the MVUE for the variance of y, - yj. The region of 
integration is convex and bounded by k(k - 1) 
hyperplanes. In this paper, we describe a method for 
computation of the multivariate normal integral over 
any convex region. The region of integration is 
essentially reduced to a single dimension and 
integration is accomplished with the assistance of 
Monte Carlo methods. 

2. METHODOLOGY 
Although the method is valid for any convex region, 
we shall assume the region of integration includes the 
origin. With no loss of generality, we assume the 
mean is at the origin. Further, in our development, we 
shall assume the region R is bounded by m (> 1) 
hyperplanes and is described by 

Lx<d 
where U = (Ipl, ... ,y and the /h hyperplane is 
given by 1,'x < dy Our first step is to make a 
transformation so that the new variables w^w^ ...,wk 

are NID(0, I). Let I = T T (Cholesky decomposition), 
and set x = T w. The region R becomes 

Gw<d 
where G = LT. Setting G' = (g1t g2, ..., g,J, the /h 

hyperplane becomes gjw = dj. 
We discuss two cases. 
Casel £, a2 known 
Case 2   27 known, a2    unknown, s2 is an unbiased 
estimate of a2 with v degrees of freedom. 

Our strategy is as follows. 
a) Choose a unit random direction c = (c1tc2,...,c^. 
b) Obtain distance r to the boundary in the direction c. 

Case 1. 
c) Since r2 = wW, r2 = c'c has a % distribution 

with k degrees of freedom. 
d) Probfc 2 < r2] is an unbiased estimate of 

the integral value. 

Case 2. 
c)(fi/k)/s? has Ffc „distribution. 
d) Prob[Fkv  <   (fi/ty/s2]  is   an   unbiased 

estimate of the integral value. 
e) Repeat steps a) to d) until the average of 

the estimates has a specified standard error. 
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3. DISTANCE TO THE BOUNDARY 
For a given direction c, the distance from the origin to 
the plane j is dj /(gjc) = dj /aj = rj (say).    The 

intersection of the line with the plane; is w = dJ(gjc) c 

= rjC. The above intersection will be in the region R if 

gjw = gjrjc = r}a-,<d-,   i*j-1,2, ...,m. 

The distance to the boundary in the direction c is the 
distance to the plane for which /}a;-< o^for all ;V /. 

4. ALGORITHM 
1. Input data: I, a2 or s2 and v, L, d, m, k, e, NMAX 
and SEED. 

2. Obtain the matrix G = L T, where T is the lower 
triangular matrix of the Cholesky decomposition for o2 

or a2!. 

3. Set SUM = SUMSQ = 0, N = 0, STD = 0. 

Do while STD < s and N < NMAX 
Set TSUM = 0 and TSUMSQ = 0 
Repeat (a) to (c) 10k2 times 

a) Generate a unit random direction c. 

bJifforsomey; /ya;<d,forall/#/= 1,... ,m, 

where a,- = gjc, r} = dj/aj, 

then r = r-f set tt = Prob[%k 
2< r2] or 

ff = Pro6/FM<(/-2A;/s2;, 
else set tt = 1. 

c) TSL/M = TSUM + tt, 
TSUMSQ = TSUMSQ + tt*tt. 

d)N = N+1, SUM = SUM + TSUM, 
SUMSQ = SUMSQ + TSUMSQ, 
MVN = SUM/10Nk2, 
STD = ((SUMSQ - SUM*MVN)/(10Nk2 

(10Nk2-1)))1/2. 

4. Output is MVN, STD, and 10Nk2. 

5. EXPERIMENTAL RESULTS 
The following integral was calculated for 40 different 
sets of parameters. 

J...JMVN(0,2) dx 

I was a correlation matrix with equal non-diagonal 
elements p, and the limits of integration for each 
variable were -°° to a. Values for p were 0 (.1 ) .9 and 
four diferent values of a were randomly chosen from 
the interval (1.5,2.5). Sufficient random directions 
were obtained to obtain a standard error of .002 for 
the calculated value of the integral. The number of 
random directions required was approximately 100 k2. 
The following table gives the average absolute error 
and the standard deviation of the average absolute 
error for various values of k. 

average sd of average 
k absolute error absolute error 
3 .0016 .0014 
4 .0018 .0015 
5 .0013 .0011 
6 .0022 .0019 
7 .0016 .0013 
8 .0018 .0014 
9 .0019 .0015 

10 .0021 .0018 
12 .0011 .0007 
14 .0016 .0014 
16 .0013 .0010 
20 .0013 .0011 

6. CONCLUSIONS 
A method is presented for the evaluation of a 
multivariate normal integral over any convex region. 
The method is efficient for moderate acuracies ( e.g. 
approximately two decimal places. Quoting from 
Berger (1991), "...for statistical problems ... two 
significant digit accuracy typically suffices, and only 
rarely are more than three ... needed." The method is 
thus practical for a wide variety of statistical problems. 
A typical application is to problems in multiple 
comparisons. Application of the methods presented 
here are given in Somerville (1993a,b, 1994). 
Computation times are such that interactive statistical 
analyses are practical on 80386 or 80486 processors. 

Future research on more sophisticated sampling and 
computational methods should significantly decrease 
processing times. The method is well adapted to the 
use of parallel processors. 
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Abstract 

There is no program for doing order restricted 
statistical inference in any major statistical 
software package due to the hurdle of compu- 
tation. As a first step, we now develop a set 
of efficient programs for simulating p-values 
of chi-bar square statistics and level proba- 
bilities, which includes complete order, ma- 
trix order, cubic order, tree order and general 
partial order. We discuss efficiency and accu- 
racy of these programs, compare two meth- 
ods of simulating p-values for chi-bar square 
statistics, (1) a direct method and ^com- 
puting p-values by Monte Carlo estimates of 
the level probabilities. We give an example 
of a clinical trial to illustrate the applications 
of these programs. 

1    Introduction 
The x2 distributions are the most impor- 

tant kind of distributions in order restricted 
statistical inference. The book <cOrder 
restricted statistical inference^ written by 
Robertson, Wright and Dykstra (1988) stud- 
ied x2 distributions in Chapters two and 
three. Because of the variety and complex- 
ity of partial orders, it is difficult to study x2 

distributions for general partial orders from 

their point of view. Therefore, the book 
only deals with several simple cases, such as 
a complete order or a simple tree order on 
an index set with small size. This situation 
made application of order restricted inference 
be very restrictive, none of major statistical 
software packages contains x2 distributions 
and order restricted inference. Because of 
development of efficient algorithms for iso- 
tonic regressions and modern computers, we 
are able to study x2 distributions from ap- 
plication point of view with computer inten- 
sive method. In this article, we provide two 
methods, RF(relative frequency) method and 
LP(leveI probability) method, to obtain p- 
values of x2 distributions, and compare their 
accuracy. 

For simplicity, we first introduce isotonic 
regressions on a two dimensional grid. Let 
x = {('.i) : t = 1,.... J;j = 1,.... J} be an 
7x7 grid. A function /(•, •) on X is said to 
be isotonic if /(•, •) is increasing in both vari- 
ables. A function </*(•, •) on X is said to be an 
isotonic regression of a given function </(•,•) 
with known weights w{-, •) on X, if </*(•, •) is 
a solution of the following minimization prob- 
lem: 

min/ X^1'J) ~ /(•ii))2tt'(*ii) 
•>i 

subject to /(•,•) is isotonic on X. 
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Let g(i,j),i = l,...,I;j = 1,..., J be n = 
I x J independent normal random variables 
with mean 0 and variance l/w(i,j), g~ be 
their weighted sample mean, and g*(-,-) be 
the isotonic regression of g(-, •) with weights 
«,(-, •)• Then X01 = ZijWJ) - 5)a«»(«".i) 
is called a Xoi random variable; and Xu = 
J2ij(9*(i,j) ~ ff(»>i))M'.i) is called a xh 
random variable. Let M be the number 
of distinct values of the isotonic regression 
<;*(•, •), then M is a random variable taken 
values 1,..., n. The probability distribution 
of M is called level probabilities. \2 distri- 
butions are mixture of x2 distributions. Re- 
bertson et al(1988) shows that, 

P(Xoi > c) = £ P(M = k)P(xl-i > c);   (1) 
Jfc=2 

n-1 

P(Xi2 >c) = ^2P(M = k)P(xl-k > c).   (2) 
*=i 

The definitions of isotonic regression, x2 

distributions and level probabilities can be 
generalized to a partially ordered finite index 
set X. 

2    An Example 

Cornfield (1962) provides a data set from a 
clinical trial. It is also listed in Agresti(1990). 
This is a sample of male residents of Fram- 
ingham, Massachusettes, aged 40-59 clas- 
sified both by blood pressure and serum 
cholestrerol level. In this data set, the re- 
sponse variable is a binary variable with 1 
for occurrence of heart disease and 0 for non- 
occurrence. By medical theory, the rate of 
presenting heart disease increases when blood 
pressure(x) or serum cholesterol(y) increases. 
The covariate x is divided into 8 ordered 
levels, and the covariate y is divided into 7 
ordered levels.   Therefore, we have 56 cells 

in total. The cell sample proportions can 
be viewed as a function g(-, •) on an 8 x 7 
grid. The ordered maximum likelihood esti- 
mate function g*(-, •) of the rate of present- 
ing heart disease, which is increasing both in 
blood pressure and serum cholesterol, is an 
isotonic regression of g(-, •) with given weights 
tu(-, •), where w(i, j) is the number of observa- 
tions in the (i, j) cell. The ordered maximum 
likelihood estimates are listed in Table 1. 

In order to verify the statement that the 
rate of presenting heart disease increases 
when blood pressure or serum cholestrerol in- 
creases, we consider following models for the 
data set. 

Mo: constant rate model, that is, the rate 
of heart disease depends on neither blood 
pressure nor serum cholestrerol. 

M±: isotonic rate model, that is, the rate 
of heart disease is increasing both on blood 
pressure and serum cholestrerol. 

M%: saturated model, that is, the rate of 
heart disease is arbitrary. 

Let Toi be a likelihood ratio test statistic 
for testing independence model Mo vs iso- 
tonic model Mi - Mo. Let Ti2 be a likeli- 
hood ratio test statistic for testing M\ vs sat- 
urated model Mi — M\. Computational for- 
mulas for Toi and T\2 can be found in Robert- 
son et al(1988). For the Cornfield data set, 
Toi = 70.66 and Tr2 = 50.50. Robertson and 
Wegman (1978) has shown that, the asymp- 
totic distributions of the likelihood ratio test 
statistics Toi and Ti2 are Xoi ai*d X12 distri- 
butions respectively. 

3    P-values 

There are two ways to obtain p-values of x2 

distributions by computer intensive method. 
The first one is a direct method. We gen- 
erate a random sample of a x2 distribution 
with size of N, count the frequency f of which 
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Table 1: Ordered Maximum Likelihood Estimates for the Cornfield Data 

-200 200-209 210-219 220-244 245-259 260-284 284- 
-117 0.0106 0.0106 0.0106 0.0106 0.0106 0.0303 0.0303 

117-126 0.0106 0.0250 0.0364 0.0478 0.0478 0.0990 0.0990 
127-136 0.0242 0.0250 0.0364 0.0478 0.0478 0.0990 0.0990 
137-146 0.0242 0.0250 0.0364 0.0741 0.0943 0.0990 0.1618 
147-156 0.0364 0.0364 0.0364 0.0845 0.0943 0.1618 0.1618 
157-166 0.0364 0.0364 0.0364 0.0845 0.0943 0.1618 0.2679 
167-186 0.0811 0.0811 0.0811 0.0845 0.2500 0.2679 0.2679 
186- 0.1667 0.1667 0.2500 0.2500 0.2500 0.2679 0.2679 

exceed the specified test statistic c, then the 
relative frequency p = f/N is an unbiased 
estimate of p = P(x2 > c). We call this 
method RF(relative frequency) method. In 
RF method, Np is a binomial random vari- 
able with mean Np and variance Np(l — p). 
Thus, p has mean p and variance p(l - p)/N. 
The second method is using simulation to ob- 
tain estimates of level probabilities, then ap- 
plying formula (1) or (2) to get an estimate p 
of p. We call this method LP(level probabil- 
ity) method. Let 7rj, be an unbiased estimate 
of P(M = k), for k = 1,.. .,n. Then a LP 
estimate p of p can be obtained by following 
formulas. 

P = Yl*kP(xl-i>c), (3) 
*=2 
n-1 

°rp=£>*^(x'-*>c). (4) 
*=i 

The LP estimate p is also an unbiased, con- 
sistent estimate of p. Applying results in sec- 
tion 12.1.5 of Agresti(1990), we obtain follow- 
ing theorem. 

Theorem 1  (1). E(p) = p. 
(2a).   For XQI random variable, Var(p) = 
E*=2 PixU > c)2P(M = k) - p*]/N; 

(2b).    For Xi2 random variable,  Var(p) = 
E2=2 P(xl-k > cfP{M = k)- p2]/AT; 
(3).Var(p) < Var(p). 

Thus, We can estimate variance of p by fol- 
lowing formulas. 

Varip) = [J2 P(xt1 > c)\k - f]/N;   (5) 
t=2 

Var(p) = [f^P(xl-k>c)2^-p2]/N;  (6) 
*=i 

4    Programs 
Programs we developed for x2 distributions 

are based on algorithms described in Eddy 
and Qian(1994) and Qian(1992), which are 
shown to be better than other algorithms for 
isotonic regressions. The xbarg program for 
p-values of x2 distributions on an arbitrary 
partial ordered set, which is written in C lan- 
guage, applies acceptance sampling method 
to generate normal random variables, uses the 
IBCR algorithm in Qian(1994) to find iso- 
tonic regressions, and utilizes recursive for- 
mula to find p-values of x2 distributions. This 
program requires to input a partial order. 
To simplify the input and make the program 
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Table 2: Time(in seconds) of the programs 
size time 

xbarl 1000 930.87 
xbart 15 16.34 
xbar2 20x20 6003.75 
xbar3 3x3x3 210.99 
xbarg 30 262.07 

independence model Mo. The p value of 
Ti2 is 0.393, so there is no significant dif- 
ference between isotonic model Mi and sat- 
urated model Mi- Thus, we prefer isotonic 
model Mi — Mo, in other words, we have sta- 
tistical evidence that the rate of heart dis- 
ease increases when blood pressure or serum 
cholestrerol increases. The Table 1 gives es- 
timates of the rate of heart disease in dif- 
ferent levels of blood pressure and serum 
cholestrerol. 

P-values for x2 statistics in Corn- Table 3 
field(1962) Example 

Toi = 70.66 Ti2 = 50.50 
p        stdev p         stdev 

RF 0.000    0.0000 0.394    0.0015 
LP 0.000    0.0000 0.393    0.0003 

more efficient, we implement other four pro- 
grams, xbarl, xbart, xbar2 and xbarZ pro- 
grams for simulating p-values of x2 distribu- 
tions on a completely ordered set, a tree or- 
dered set, a rectangular grid with componen- 
twise increasing order, and a cubic grid with 
componentwise increasing order respectively. 
These five programs are both for equal and 
unequal non-negative weights. 

Utilizing results in Eddy and Qian(1994) 
and Qian(1992), we find that xbarl, xbart, 
and xbar2 are strongly ploynomial time pro- 
grams. Qian(1992) also gives worst time com- 
plexity of xbarZ and xbarg programs. Table 
2 lists the time(in seconds) to run these pro- 
grams on an HP 9000 model 735 workstation 
with 100,000 simulations. 

We use xbar2 program to find p-values 
of x2 statistics in Cornfield example with 
100,000 simulations on a 486 DX/50 PC. It 
took 1159 seconds to obtain p-values of these 
X2 statistics. Results are listed in Table 3. 

The p value of Toi is 0.0, so we reject 

5    Accuracy 

The accuracy of the results is the most im- 
portant issue for simulations. It depands on 
good quasi-random number generators. We 
use several ways to test our normal random 
number generators. 

We use tables in the appendix of Robert- 
son et al(1988) to check our programs. In Ta- 
bles 1-5 in their appendix, excluding bound- 
ary points, there are 99 cases for Xoi distribu- 
tions and 99 cases for x?2 distributions, each 
case has 6 critical values which have p-values 
0.1, 0.05, 0.025, 0.01, 0.005 and 0.001 respec- 
tively. We calculated all the p-values for these 
critical values by both RF method and LP 
method. Among 1188 RF estimates p we cal- 
culated, there are 44 estimates that the true 
p-values are not within two standard devia- 
tions of its estimate p. The failure rate is 
about 3.7%. For LP estimate p of p, we say a 
case is failure, if one of the true values is not 
within two standard deviations of its estimate 
p. We find there are 5 failures among 99 cases 
for Xoi distributions, and 4 failures among 99 
cases for x2

2 distributions. The failure rate is 
approximately 4.5%. The results are agreed 
with theoretical analysis. We computed level 
probabilities for complete orders, simple tree 
orders and unimodel orders, and compared 
results with Tables 10, 11 and 20 in the ap- 
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pendix of Robertson et al(1988). We also 
computed level probabilities for rectangular 
grids and compared results of Moonesinghe 
and Wright(1994). They are all very close. 

Then , we apply theoretical results in Sec- 
tion 3 to do more checks. Let p = P(xli > c)- 
First, we can use different seeds to get a ran- 
dom sample of p, so we can obtain sample es- 
timate and sample standard deviation(SSD). 
Clearly SSD should be almost same as the 
standard deviation by the formulas listed in 
Section 3. Second, If the numbers of sim- 
ulations are different, then the ratio of the 
standard deviation estimates should be the 
square root of the ratio of the numbers of sim- 
ulations. Third, the LP estimate p is better 
than the RF estimate p. Actually what we 
did is the following. In Cornfled data exam- 
ple, we choose six values for Xoi statistics, 
and six values for x\2 statistics, we get esti- 
mates of p by 1000 simulations, 10,000 simu- 
lations and 100,000 simulations respectively. 
We repeated this procedure 100 times. Table 
4 lists statistics for p = P(xli > 12.571289). 
Due to the length of this paper, the other 
eleven tables are omitted. Our simulations 
show that, the SSDs are almost the same as 
the one calculated by (5); the ratios of stan- 
dard deviations are near A/ÖTT = 0.316228; 
the LP estimate p is statistically better than 
the RF estimate p. We applied this method 
for complete orders, tree orders and special 
partial orders with equal weights or unequal 
weights and got same conclusions. So we are 
sure our normal random generator works re- 
ally well. From our extensive simulations, we 
have following recommandations for simulat- 
ing x2 distributions. 

1. Use LP estimate p instead of p. 
2. Apply formulas (5) and (6) to get an 

estimate of the standard deviation of p. 
3. In hypothesis testing, do 1000 simula- 

tions first, then run 100,000 simulations if 
necessary. 

Table 4:  Some Statistics for p — P(xli 
12.571289) in Cornfield Example 

1000 10000 100000 

p 0.102418 0.101287 0.099986 
stdev 0.003269 0.001065 0.000333 
ratio 0.325788 0.312676 
SSD 0.00347 0.00108 0.00031 

P 0.093 0.0989 0.10152 
stdev 0.009184 0.002985 0.000955 
ratio 0.325022 0.319933 
SSD 0.00936 0.00308 0.00096 
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Abstract 

Recently, interest concerning the utilization of 
statistical process control (SPC) and engineering process 
control (EPC) has increased. This research is concerned 
with the utilization of SPC techniques in process control. 
For simplicity, this research considers the case where no 
feedback control action is in a process: an open loop 
control. In order to explain the utilization of the cuscore 
control charts, two cases — one case's underlying process 
follows AR(1) and the other follows ARMA(1,1) process 
with mean shifts in the process -- will be discussed. In 
addition, some simulation studies will be presented. 

Introduction 

Recently, interest concerning the utilization of 
statistical process control (SPC) and engineering process 
control (EPC) has increased. This research is concerned 
with the utilization of SPC techniques in process control. 

In this research, the main objective of using the 
SPC techniques is to detect the mean shift or transient 
disturbance in real time. Since the traditional Shewhart 
control charts are not sensitive in detecting small shifts 
in the process [2] [4], the Shewhart control charts were 
not used in this research. Although the cumulative-sum 
(or cusum) control chart is effective in detecting small 
shifts in the process, the cusum chart would be very slow 
to detect large process shifts [2] [4].  Therefore, this 

research will not consider cusum charts to detect the 
unplanned transient disturbances. Instead, since the 
cuscore chart is not only effective in detecting the small 
shifts in the process but also provides cuscore statistic 
which is helpful to identify the unplanned transient 
disturbances, the cumulative score (or cuscore) chart [1] 
is appealed in this study. 

Cuscore Charts For Open Loop Control 

Shao et al. [3] have addressed the control of 
transient disturbance. For simplicity, this research 
considers the case where no feedback control action is in 
a process: an open loop control. In order to explain the 
utilization of the cuscore control charts, two cases — one 
case's underlying process follows AR(1) and the other 
follows ARMA(1,1) process — will be discussed. 

The details of the cuscore chart can be 
referenced in [1]. The concept of the cuscore charts is 
described as follows. Consider a model which can be 
written as 

at-f{yc,Xc,m),   fc-l,2,..,n (1) 

where yt is the output observations, xt is the independent 
variable, m is a certain unknown parameter, and f() is 
some certain function. If m is the true value of the 
unknown parameter, the resulting a/s would follow a 
white noise sequence.   Apart from a constant, the log 



238     Cuscorefor an Open Loop 

likelihood for m=m0 is 

*<»> --^iE 

where a^'s are obtained by setting m=mo in Equation 
(1). Let 

dat. 
dm 'm"mb " fft0 ' 

then the following relationship holds: 

(2) 

dl(m) 
dm 2 £-*l at0  9t0 

The cuscore statistics with the parameter value m=m0 is 
defined as: 

0 ~ £ * to 9to ■ 
t-i 

(3) 

Box and Ramirez [1] addressed that the following 
relationship holds if the model is linear in parameter m 
and approximate otherwise: 

ae0 -  (m-m0)gt0+at . (4) 

Furthermore, Box and Ramirez [1] remarked the so 
called centred cuscore (CC) is the cuscore evaluated at 

m -m - (m0+mj /2   , and the CC is defined as: 

n 

cc - X) ä; Tt • 

<t>yt 

where y, is the output deviation from target at time t, <j> 
is a certain parameter, and a/s stand for white noise. 

Now consider the utilization of cuscore control 
chart to detect the mean shift. Suppose that one want to 
detect the mean shift which has the magnitude of one 
standard deviation (i.e., for simplicity, this research 
considers that one standard deviation equals 1), then the 
underlying process can be reformed as: 

yc - mb+$yt_x+at , (5) 

where m is a certain parameter, and 8 stands for the 
magnitude of the mean shift. If the process is operated 
correctly, the parameter m should be zero and there 
should be no mean shift in the process. On the other 
hand, if some disturbances exist in the process, the mean 
shift would be present in the process. Therefore, in this 
case, the utilization of cuscore chart is equivalent to 
doing a hypothesis test for the parameter m; that is, 

testing   m=m, = (l-0) 
m=mo=0. 

Since this study wants to detect the mean shift 
with one standard deviation, the 5 is set to be 1 and m, 
is set to be (l-<£). The reason why this study sets m, 
equal     (l-<£)     is     because    of    the    following 

fact:   u - —2^TT-   with the substitution ofu and 5 with 
(l-<t>) 

1. 
By using Equations (2), (3), and (4), one is able 

to obtain the cuscore statistics: 

0 ~ E ^e-*ye-i> 8 • (6) 
t-i 

where  at - at(m)  and gt - gt{m) .      This   CC   is 

used to signal the out of control situation, and the details 
of CC can be referenced in [1]. 

AR(1) Process With Mean Shifts 
And Cuscore Charts 

Since one step ahead prediction for AR(1) process is 

j?r - ^y,;.! ,    Equation (6) can be reformed as: 

Q - E ^t-yt)   (since 5 - 1) .       (7) 
t-i 

Consider the case in which the underlying 
process can be modelled as an AR(1) process; that is, the 
process follows 

Therefore, by viewing Equation (7), one knows that the 
utilization of cuscore statistics is equivalent to using 
cusum statistics on the residuals. 
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ARMA(1,1) Process With Mean Shifts 
And Cuscore Charts 

Consider the case in which the underlying 
process can be modelled as a ARMA(l.l) process; that 
is, the process follows 

yt - <byt-i
+at-Qat-i > (8) 

where yt., is output deviation from the target at time t, <£ 
and 9 are certain parameters, and a^s stand for white 
noise. 

Now consider the utilization of cuscore control 
chart to detect the mean shift. Suppose that one wants to 
detect the mean shift which has the magnitude of one 
standard deviation (i.e., again, this study considers that 
one standard deviation equals 1), then the underlying 
process can be reformed as 

yt - .mS+^y^+at-ea^ , (9) 

where m stands for some unknown parameter and 5 
stands for the magnitude of the mean shift. If the 
process is operated correctly, the parameter m should be 
zero and there should be no mean shift in the process. 
On the other hand, if some disturbances exist in the 
process, the mean shift would be present in the process. 
Therefore, the utilization of the cuscore chart is 
equivalent to doing a hypothesis test for the parameter m; 
that is, 

testing   m=m,=(l-0) 
m=m0=iO. 

Again, since one wants to detect the mean shift with one 
standard deviation, 8 is set to be 1 and m, is set to be (1- 
(j>). The reason why m, equals (1-0) is same as previous 
case. 

By using Equation (2), (3), and (4), one is able 
to obtain the cuscore statistics: 

Qt - 2QQt_l-&Qt_2+ 
n 
£ (yt-*yt-i)o. 

(10) 

Since in this study one wants to detect the mean 
shift with one standard deviation, 8 is set to be 1, m0=0, 
andm, = (l-0). Thus, 

m -     °    1 -   (l-4>) 

and 9t "    (1-6B)  " 

The centred cuscore then would be: 

CCt - 28CCt._1-62CCt_2+ 

Ely£-(^ii)o-4>ye.a)6. 
fc-1 

Simulation Studies 

To show the utilization of the cuscore statistics, 
this research examines a simulation study. Assume that 
the underlying process can be modelled as an 
ARMA(l.l) process. This study uses Equation (8) to 
represent a certain process, and a white noise sequence 
which has mean of zero and a standard deviation of 1 is 
generated for this certain process. Since this study wants 
to detect the mean shift with magnitude of one standard 
deviation, this study shifts the process mean from 0 to 1 
after observation 25. In addition, this study arbitrarily 
chooses $=0.7 and 0=0.6. 

Figures 1, 2, 3, and 4 display the process 
outputs with no mean shift, residuals of process output 
with no mean shift, process outputs with mean shift 1 
starting at observation 26, and residuals of process output 
with mean shift 1 starting at observation 26, respectively. 
Notice that the prediction of the ARMA(1,1) process is 

Yt - ♦yew1-e(ye.1-j?^7). 

Therefore, the residual of the ARMA(1,1) is calculated 
as follows: 

Residual t - yt-y~t . 

Figure 1, in fact, represents an ARMA(l.l) 
process which has the parameters 0=0.7 and 0=0.6 and 
has a white noise sequence which has mean of zero and 
a standard deviation of 1. Since there is no mean shift 
in the process, the residuals plot should behave like a 
random noise. This characteristic can be seen in Figure 
2. Figure 3 represents an ARMA(1,1) process with 
mean shift of 1 starting at observation 26. Furthermore, 
since there is a mean shift in the process, the residuals 
plot should not behave like a random noise.    This 
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characteristic can be observed in Figure 4. 
Figure 5 shows the plot of cuscore statistics, 

centred cuscore statistics, and summation of the residuals 
of process output when the ARMA(l.l) process has 
mean shift of 1 starting at observation 26. Since in this 
study the process has no mean shift occurring before 
observation 26, one can expect that the values of cuscore 
statistics and the summation of the residuals are around 
zero before observation 26. Also, since the process has 
a mean shift of 1 starting at observation 26, one can 
expect that the values of cuscore statistics and the 
summation of the residuals are positively increased over 
time after observation 26 (i.e., since the mean shift is a 
positive value.) In addition, since the centred cuscore is 
used to signal the out of control situation, one can expect 
that the slope of the centred cuscore would be changed 
some certain time around (or after) observation 26. 
These characteristics are all shown in Figure 5. 

Furthermore, one can observe that the minimum 
point of centred cuscore statistics line is at observation 
25. The meaning of the minimum point is that the slope 
of the centred cuscore line is changed. One should take 
the difference between the value of the centred cuscore 
at time t (i.e., the time after the occurring minimum 
point) and this minimum point to determine whether the 
out of control signal is given or not. For example, in 
this simulation study, the minimum point, which is equal 
to -20.587, occurs at observation 25. Therefore, one can 
expect that the out of control signal is given at 
observation 34 since the value of the difference between 
cuscore statistics (at observation 16) and the minimum 
point is 15.62, and this value is greater than the 
boundary h, 15.35.  The boundary h is defined as [1]: 

h - 
[a2 ln(-i-)] 
 g 

(ify-in,,) 

Therefore, h= 15.35 if one chooses a=0.01. 

Summary 
This study is concerned with the utilization of 

cuscore control chart in an open loop process. The 
concept of using cuscore control chart is discussed for 
two open loop processes, AR(1) and ARMA(1,1). In 
addition, the simulation study demonstrates how to use 
the cuscore control chart to detect the mean shift in the 
process. 

The objective of this paper is to show that the 
cuscore control chart is useful in detecting the mean shift 

or transient disturbance. Ongoing research is developing 
a technique for detecting the mean shift or transient 
disturbance in real time for a closed loop process. 
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Figure 1: 
Plot of output deviations from target which are 
generated by an ARMA(l.l) process with no mean 
shift 

Figure 2: 
Plot of residuals which  are generated by an 
ARMA(1,1) process with no mean shift 
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Figure 3: 
Plot of output deviations from target which are 
generated by an ARMA(l.l) process with mean 
shift 1 starting at observation 26 
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Figure 4: 
Plot of residuals which are generated by an 
ARMA(l.l) process with mean shift 1 starting at 
observation 26 
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Figure 5: 
Plot of cuscore, centred cuscore, and summation of the 
residuals of process output when the ARMA (1,1) 
process has mean shift 1 starting at observation 26 
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Abstract 

A tree-based method for censored survival data with 
time-dependent covariates is proposed. A likelihood es- 
timation procedure is used in the recursive partitioning 
algorithm to grow trees. Time-dependent covariates are 
incorporated in the partitioning procedure under a piece- 
wise proportional hazards structure. If time-dependent 
covariates are present, the estimated hazard at a node 
gives the relative risk for a group of individuals during 
a specific time period. Both cross-validation and boot- 
strap resampling techniques are implemented in tree se- 
lection procedure. The performance of the model is in- 
vestigated through simulation and application on real 
data. 

1    Introduction 

The tree-based methods are originally used in the re- 
gression and classification (Breiman, Friedman, Olshen, 
and Store, 1984), later on the principle is adapted to 
censored survival data. The need of tree-based methods 
for survival data comes from clinical investigators who 
usually are interested in grouping patients with differing 
interpretable prognoses. 

Including time-dependent covariates in the survival 
analysis leads to dynamic prognosis, where the esti- 
mated risk of the patient's survival may change from 
one time point to the next as the values of the covariates 
change. The investigation of time-dependent covariates 
in survival analysis has received considerable attention 
recently in both the statistical and biomedical literature 
(Cox and Oakes, 1984; Andersen, 1991). 

LeBlanc and Crowley (1992) extended the propor- 
tional hazards regression to tree-structured relative risk 
estimates for censored survival data with one-step full 
likelihood estimation procedure. This method works 
well with time-independent covariates. Other tree-based 
methods have also been proposed for analyzing survival 

data. Gordon and Olshen (1985) presented a method 
using distance measures between Kaplan-Meier curves 
and their nearest continuous approximation. Davis and 
Anderson (1989) proposed a method based on the expo- 
nential log-likelihood structure. Segal (1988) presented 
a totally nonparametric application using the Tarone- 
Ware or Harrington-Fleming classes of two-sample rank 
statistics. LeBlanc and Crowley (1993) developed a re- 
cursive partitioning procedure based on maximizing the 
dissimilarity in the survival distributions of patients be- 
tween regions of the covariate space. Existing survival 
trees methods are only suitable for dealing with censor- 
ing data with time-independent covariates. Few have 
been done for time-dependent covariates. 

In this paper, based on LeBlanc and Crowley's work 
(1992), we propose a model which accommodates time- 
dependent covariates into piecewise proportional hazards 
survival trees for censored survival data (Huang, un- 
published Ph.D. dissertation, Department of Biostatis- 
tics, University of Alabama at Birmingham, 1994). This 
methods splits nodes through the product space of the 
covariate and time, and establish measures of improve- 
ment based on piecewise proportional hazards. The esti- 
mated hazard function or the estimated proportionality 
at each branch node summarize the risk of a group of 
individuals during each specific time period. The next 
section briefly describes the basic ideas of the piecewise 
proportional hazards survival trees. Section 3 investi- 
gates the proposed method based on simulation studies. 
Section 4 exemplifies the method by an analysis of the 
UAB Localized Melanoma Data. Section 5 gives some 
discussion. 

2    A New Survival Trees Method 

Generally, tree-based methods recursively partition the 
covariate space into disjoint regions and the correspond- 
ing data into groups. For each split node some measure 
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of separation in the response distribution between the 
two daughter nodes is calculated, Although many types 
of partitions could be considered, we will consider only 
splits on a single variable at a time, which is easily gen- 
eralized to combinations of covariates. All possible splits 
for each of the covariates are evaluated, and the variable 
to be split and the split point are chosen to best separate 
the nodes. The same procedure is applied recursively to 
increase the number of nodes until each contains only 
a few observations. The resulting model can be repre- 
sented as a binary tree. After a large tree is grown, there 
are rules for recombining nodes and for readjusting the 
size of the tree. 

LeBlanc and Crowley's (1992) relative risk trees 
adopts the proportional hazards model which specifies 
the following hazard function at time t, for an individ- 
ual with covariate vector z 

A(*|z(0) = Ao(*)«(z), (1) 

where s(z) > 0 and A0(<) is the unknown baseline hazard. 
The first step of a full likelihood estimation procedure 
is used in a recursive partition algorithm to grow the 
tree. If the covariate vector z also changes with time, 
obviously, we can generalize (1) to a more general form, 
that is 

A(t|s(-)) = Ao(*)*(*(t)). (2) 

The trees method we propose is to split nodes through 
the product space of the covariate and time based on 
a rule to minimize a loss function that is defined by 
the log likelihood of piecewise proportional hazards as- 
sumptions. If there are only time-independent covari- 
ates to be considered to associate with failure time, this 
method reduces to LeBlanc and Crowley's (1992) rela- 
tive risk trees. However, we can always add an auxiliary 
time-dependent covariate to monitor the change of haz- 
ards with time. If time-dependent covariates are also 
involved, our new algorithm may give different piecewise 
proportional hazards survival estimates for different in- 
dividuals. Even for the same individual in different time 
periods, he or she may be partitioned to different nodes. 

If we consider time-dependent covariates that asso- 
ciate with the event time, the proposed piecewise pro- 
portional hazards trees method approximates the pro- 
portional hazards model (2) with the following hazard 
function 

where Xo(t) is the baseline hazard function and 0:i, (?,-2, 
..., $ik are positive. For mathematical convenience, some 
of tij may be defined as oo so that Xi(t) may have less 
than k pieces. 

For simplicity, we illustrate the case with only one 
time-dependent covariate which is assumed to be mono- 
tonically increasing in time for each individual. Sup- 
pose we choose a split point 5i for a time-dependent 
covariate Z(t). There are three possible relationships 
between z,(<) and Si for each individual: (1) Z{(t) < 
Su 0 < t < Xi; (2) Zi(t) < Si, 0 < t < U.1 and 
*•(*) > Si, U,i < t < xf, (3) Zi(t) > Su 0 < t < Xi. 

We start to grow our survival tree from the root node 
Ti, which consists of the whole sample based on a con- 
stant risk for all individuals. Under the piecewise pro- 
portional hazards assumption, it follows that the contri- 
butions of the left and right daughters of root node Ti 
to the likelihood are 

W=     El (Ao(*,-)0/)'''exp(-Ao(*i)*i) 
te/i 
IT exp(-Ao(t<,i)0i), 

«e/2 

where h = {i | *,(r) < Si, 0 < t < x{} and I2 = {i 
Zi(t) <Si,0<t< tiA; zi(xi) > Si}, and 

Wr)=     U (Ao(*.-)*r)'' exp(-(Ao(*,) - Ao(i;,i))0r) 

'n   (Ao(*i)*r)'' exp(-A0(*0*r), 
«e/s 

where 73 = {i \ Si < Zi{t), 0 < t < x,}. A0(0 is the 
baseline cumulative hazard function. Hence the likeli- 
hood function is 

i(e,,er) = i(ö,)i(9r) 

If we know the baseline cumulative hazard, the maxi- 
mum likelihood estimates of 9] and 6r are 

«i 
2 A0(x,-)+ J2 Aofc,i) 

and 

Xi(t) = 

Ao(t)fci.    0<t<tix, 

Ao(t)ötJt,   Uk_1 < t < tik 

0r = 

£ *+ E * 
i€li i€h 

£(Ao(zi)-Ao(r,-,i))+£A°0D,)' 
ie/2 *eh 
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However, since we do not know the cumulative haz- 
ard, a natural estimator of the cumulative hazard given 
estimates 9\ and 6r, 

Ao(0 = £ Si 

i.Xi<t  2^ijz{itr}   2^i:Xi>t   i 

is used. Similar to LeBlanc and Crowley's model (1992), 
only the first iteration will be used in the recursive parti- 
tioning procedure to grow the tree. The Breslow estima- 
tor evaluated at $i = 1 and 9r = 1, which is the Nelson 
(1969) cumulative hazard estimator, is used. Q\ and 9r 

can be interpreted as the observed number of deaths di- 
vided by the expected number of deaths when z,-(i) < Si 
and when z,-(i) > Si, respectively. 

After a survival tree is grown based on the above pro- 
cedure, an estimated cumulative hazard function is also 
obtained by iteration. Then, we take this estimated cu- 
mulative hazard function as the given baseline cumula- 
tive hazard to grow another tree from the root node, and 
pruning and tree selection will be based on this second 
tree. 

If time-dependent covariates are included in splitting 
and growing a survival tree, it may no longer true that 
every split will create two exclusive individual groups 
according to the value of the covariate. When time- 
dependent covariates exist, the ratios of estimated haz- 
ards between nodes are used to summarize the relative 
risk of a group of individuals during a specific time pe- 
riod, and as the tree grows, the relative risk functions 
may have many pieces. 

As with CART, a nested sequence of subtrees is de- 
fined by minimal cost-complexity pruning. The cross- 
validation and bootstrap resampling (Efron, 1982) are 
used to make "honest" estimates of the loss associated 
with each tree in the sequence and the final tree is se- 
lected based on these estimates. 

3    Simulation Studies 

In order to investigate the performance of the piecewise 
proportional hazards trees, simulation studies were con- 
ducted. In this section, procedures and results of the 
simulation experiments are reviewed. The comparison 
among the trees model and the Cox proportional haz- 
ards regression (Cox, 1972) with time-dependent covari- 
ates are studied. The proposed tree and the Cox model 
are applied to three types of random samples which are 
to be examined in different perspectives. 

Each of the three simulations was designed from dif- 
ferent perspectives. In the first simulation, the random 

samples were generated by piecewise exponential distri- 
butions with non-monotonous underlying hazards asso- 
ciated with a time-dependent covariate. In the second 
simulation, the random samples were generated by piece- 
wise exponential distributions with monotonous underly- 
ing hazards associated with a time-independent covariate 
and a time-dependent covariate. In the third simulation 
the random samples were generated by Weibull distri- 
butions with mixed underlying hazards associated with 
a time-independent covariate, and an auxiliary time- 
dependent covariate was added for assessing nonconstant 
hazard functions. The reason for doing this was to ex- 
amine the capability of the tree method dealing with 
different survival distributions. The Cox proportional 
hazards regression model was also applied to each of the 
random samples from three survival distributions for the 
purpose of comparison. In each simulation, one hundred 
random samples were generated. 

The sample sizes are 400 for the first and the third 
simulations and 450 observations for the second simula- 
tion. The average censoring rate among three simulation 
studies is approximately 20%. The minimum terminal 
node size permitted for splitting was 20 observations. 
The right pruned subtree was selected in each method 
by minimizing the ten-fold cross-validation and the boot- 
strap estimates of the prediction error. 

The piecewise proportional hazards trees performed 
well in all three survival distributions and basically re- 
covered the changes of the hazard rates. The Cox pro- 
portional hazards regression model totally failed in two 
of our three simulations and seriously underestimated in 
one simulation. In the tree selection, the cross-validation 
procedure tended to underestimate the prediction error. 

In the simulation, the proposed trees method with the 
add-on of auxiliary time-dependent covariates showed 
some strength. Our example demonstrated that with 
an auxiliary time-dependent covariate the proposed trees 
method was capable of detecting underlying hazards, 
which were changing with time. As the exploratory 
methods, the proposed trees are superior to some previ- 
ous trees methods even when time-dependent covariates 
are not existent. 

4    Example 

Survival for patients with cutaneous melanoma, a cancer 
of the skin, is strongly associated with a number of clini- 
cal and pathological factors, in the past two decades, ex- 
tensive studies have been done and remarkable progress 
has been made in the identification of dominant factors 
that affect the outcome of melanoma (Belch, Houghton, 
Sober, Milton, and Soong, 1992).  Using the multivari- 
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ate regression analysis methods for survival data, tu- 
mor thickness at diagnosis, tumor ulceration, invasion 
level, and lesion location are found to be the key prog- 
nostic factors for localized melanoma. Additionally, a 
fine model has also been developed recently to predict 
survival and recurrence in localized melanoma (Soong, 
Shaw, Balch, McCarthy, Urist, and Lee, 1992). 

In this section, we reanalyze the University of Al- 
abama at Birmingham (UAB) localized melanoma data 
using the piecewise proportional hazards trees method. 
In cancer clinical trials, discussion has largely been re- 
stricted to the analysis of mortality data, where each 
patient is classified as dead or alive (censored), or to the 
analysis of disease-free survival data, where each patient 
is classified as either disease-free or not. From a differ- 
ent perspective, with recurrence as one of the potential 
prognostic factors, in this analysis we would like to see 
the possible dynamic impact of recurrence and other fac- 
tors on survival in localized melanoma. Recently, some 
studies have been done by considering multistate models 
instead of the simple two state models for survival data 
(Andersen, 1988). Multistate models provide a flexible 
framework for the study of the effects of covariates on 
several transition rates and important biological insight 
may be gained from the analysis of such a model. 

The analysis presented here is based on 702 localized 
melanoma patients from the Surgical Oncology Service 
at the University of Alabama at Birmingham from 1955 
to 1980. Patients have been referred primarily from Al- 
abama, with some coming from the surrounding states of 
Florida, Mississippi, Tennessee, and Georgia. Approxi- 
mately 78.6% of the patients had censored survival times. 
Four clinical and pathological factors previously known 
to be associated with survival are included in the analysis 
as time-independent covariates. They are tumor thick- 
ness, lesion location, ulceration, and level of invasion. 

Tumor thickness has values 1 to 6 which are coded 
for tumor less than 0.76mm thick, between 0.76mm and 
1.49mm thick, between 1.50mm and 2.49mm thick, be- 
tween 2.50mm and 3.99mm thick, between 4.00mm and 
7.99mm, and more than 8.00mm thick, respectively. Le- 
sion location has values 0 and I corresponding with ex- 
tremity and axial. Ulceration with values 0 and 1 means 
no and yes. Invasion with value 0 represents level II, 
and 1 represents level III, IV and V. In addition, we 
treat recurrence as a time-dependent covariate based on 
multiple measures recorded at each time of recurrence. 

Clinically, the severity of melanoma is defined in three 
stages. If recurrence occurs, it must be one of the three 
clinical stages. Each measure of the recurrence in the 
analysis depends on the clinical stages of melanoma 
recurrence.   Therefore, we code recurrence as a step- 
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Figure 1: Survival Tree of Localized Melanoma Data 

function of the time that takes values 1, 2 and 3 cor- 
responding to the clinical stages. The recurrence time 
is included in this covariate. Three follow-up melanoma 
recurrences are used to construct the time-dependent co- 
variate. In other words, each patient has a maximum of 
three possible measures for melanoma recurrence. 

Trees were grown with a minimum node size of 25 
patients. The reason for doing so is that we are not 
interested in extremely small prognostic groups. The 
piecewise proportional hazards trees grown and selected 
a survival tree with six terminal nodes as shown in Fig- 
ure 1, where the number of patients are inside the upper 
level of the nodes and the estimated proportionalities 
are inside the lower level of the nodes. The first split 
to the tree was on tumor thickness with less 0.76mm 
thick versus thicker. The next split was on recurrence 
with clinical stage 3 versus other. For patients who had 
clinical stages 1 or 2 recurrence, the split was on tu- 
mor thickness again with between 0.76mm and 1.49mm 
thick versus thicker and again with 1.50mm and 2.49mm 
thick versus thicker. Finally, for patients who had clini- 
cal stage 3 recurrence, the split was on extremity or axial 
lesions. 

The results were consistent with the previous analyses 
that tumor thickness and lesion location were important 
prognostic factors. Based on these brief analyses, there 
is evidence to show that time-dependent covariate recur- 
rence also is a key prognostic factor. We can see clearly 
that patients who had the recurrence, and it changed 
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from local to distant sites, would have much high risk of 
death. 

Due to the adjustment of a baseline, the final piece- 
wise proportional hazard tree shows that the tumor 
thickness is the most important predictor of the clini- 
cal course. Patients who had tumor less than 0.76mm 
thick had the best prognosis whether or not they had 
melanoma recurrence. In contrast, patients who had a 
thick tumor had a worse prognosis. However, patients 
who had a thick tumor could have been divided accord- 
ing to recurrence. Patients with stage 2 recurrence or 
less were doing better than patients with stage 3 recur- 
rence, although their prognosis still could been assessed 
by tumor thickness in which the thicker the tumor, the 
worse the prognosis. Finally, patients who had stage 3 
recurrence still could been partitioned with primary le- 
sion site. Patients with axial melanomas had the worst 
prognosis. Again, the analysis reveals a certain interac- 
tion among these significant factors. 

5    Discussion 

Parallel to relative risk trees (LeBlanc and Crowley, 
1992), based on a piecewise proportional hazard struc- 
ture, a new survival trees methods has been proposed 
to appropriately handle time-dependent covariates. As 
more flexible alternatives to the previous works (LeBlanc 
and Crowley, 1992), if no time-dependent covariates are 
included in the data, an auxiliary time-dependent covari- 
ate could be created to monitor the change of the haz- 
ard. Even when time-dependent covariates are present, 
including such a covariate might fit the model better. 

Simulations were conducted on each of the three data 
patterns with 100 repetitions, respectively. The Cox pro- 
portional hazards regression model was also applied to 
the random samples for comparison. The proposed trees 
method performed well on simulated data. 

The UAB localized melanoma data set, with 
melanoma recurrence as a time-dependent covariate and 
other factors as time-independent covariates, was ana- 
lyzed by the proposed trees method. The melanoma re- 
currence was found to be a dynamic prognostic factor 
that affected survival. Patients who had a recurrence 
that changed from local to distant sites would have little 
chance of surviving. 

We emphasize the importance and the necessity of 
including time-dependent covariate in survival analysis. 
With time-dependent covariates, the analysis is led to 
dynamic prognosis. We also realize the difficulty and 
the complication of involving time-dependent covariates 
in the analysis, it is noted that time-dependent covari- 
ates, in principle, are easy to be included in the Cox 

model, but strict data requirements may have prevented 
widespread use of the Cox regression model with time- 
dependent covariates. However, the main problem is 
that the interpretation of the results from a model with 
time-dependent covariates is less obvious. Although we 
have introduced the survival trees models with time- 
dependent covariates, the ways we interpret the results 
might not be the only one or the best one. A great deal 
of work remains to be done. 
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Abstract 

Prospective studies often involve rare events as study 
outcomes, and it is of primary concern to identify risk 
factors and risk groups associated with the outcomes. 
Practical solutions to risk factor analyses in prospective 
studies are discussed. We address strategies to determine 
tree structures, to estimate relative risks, and to man- 
age missing data in connection with some important epi- 
demiological problems. Some of the basic ideas behind 
our strategies follow from work of Breiman, Friedman, 
Olshen, and Stone (1984) although we propose exten- 
sions to their methods in order to resolve some practical 
problems that arise in implementing these methods in 
epidemiologic studies. 

1    Introduction 

Rare events or diseases, such as AIDS and birth defects, 
are common targets in epidemiologic studies. Accom- 
panying the study outcome, data on a number of pu- 
tative risk factors and covariates are typically gathered. 
The goal is to identify risk factors associated with the 
outcome. Logistic and log-linear regressions, unified as 
generalized linear models (GLM), are popular statistical 
tools for analyzing these studies. One key element in 
the GLM is the link function between the log-odds of 
the events and a linear form of covariates and parame- 
ters; see McCullagh and Neider (1989) for an excellent 
discussion on the subject. The GLM is very attractive in 
applications for many reasons such as the simplicity of 
the linear models and the interpretability of the param- 
eters in the logistic models. In this paper, we present 
an alternative nonparametric approach which is more 
appropriate and flexible in many instances because this 
approach does not rely on most of the restrictive assump- 
tions made in the GLM. 

The tree-based method is useful to explore data when 
there are large numbers of variables and considerable 
missing information, and when a linear combination of 
covariates does not have an intuitive interpretation. In 

particular, epidemiologic studies often have categorical 
variables that do not have meaningful linear combina- 
tions. The tree-based method indentifies risk factors by 
specifying groups at risk. In the following discussion, 
a familiarity with the work of Breiman et a/. (1984) is 
assumed. 

2    The Tree-based Method 

2.1    Determination of Tree Structures 

Statistical inference is typically based on optimality cri- 
teria such as maximum likelihood. In the context of the 
tree-based methods, we use an impurity function. An ad- 
vantage of this is that the statistical outputs are "best" 
in some specified sense. The disadvantage is that the 
results may not be intuitive and convenient to interpret. 
We now explain situations for which adjustments may 
need to be made for tree structures. Therefore, a re- 
pairing step may be required for the tree-based method. 
The repairing may be done during the tree growing step 
and/or after the tree is pruned. 

In a tree the same covariate may be used to split more 
than one nodes while the cut-off points are different but 
close. We would naturally question whether the cut-off 
points are indeed different. This can be answered sta- 
tistically using significance tests or clinically according 
to whether one really cares about that difference. If the 
answer is negative, one may want to force the cut-off to 
be the same so that the interpretation is simpler. Now 
suppose that a split on x,- is suggested by the optimality 
criterion in constructing a tree, but Xj is very compet- 
itive in terms of the impurity of the resulting left and 
right nodes. When there are other good reasons (e.g., 
the reliability and nature of the measurement) to use 
Xj, the user may prefer Xj to Xi. Moreover, if we use, 
say, cigarettes smoked as a covariate, suppose that the 
computer splits the population according to whether one 
smoked at least 19 cigarettes per day. It may make more 
sense to use 20 instead of 19 because 20 corresponds to 
a pack of cigarettes. 
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It has been observed (cf. Breimän ei al., pp. 313-317) 
that the splitting rule used in the tree growing step tends 
to favor end-cut splits. To avoid the end-cut preference 
problem, a solution provided by Breiman et al. is to 
take a different splitting criterion. A much less technical 
solution could be replacing the suspicious split with a 
competitive one that does not suffer from this problem. 
This is possible in our implementation of the tree-based 
method by allowing the user the option of selecting their 
own splits. 

2.2    Tree Pruning 

Breiman et al. (1984) described an automated pruning 
procedure via cross validation. An implicit assumption 
for this automated procedure is that the grown tree is 
intacted. As discussed in the previous section, the tree 
produced by an automated procedure may not be satis- 
factory and certain repairs may be needed. This would 
violate the premise under which the cross validation is 
used. To address this concern, we change the pruning 
step for the present study as follows. Since we are aim- 
ing at finding high risk individuals in a population, we 
will prune off a node if the risks for the left and right 
daughters are not significantly different at a nominal sig- 
nificance level in terms of the relative risk. In epidemiol- 
ogy, a significance level of 0.05 is usually an acceptable 
choice. In our pruning step, repeated significance tests 
are actually performed. A lower significance level may 
be more appropriate if our purpose is to test certain 
hypotheses. However, we use the significance test as a 
tool to select splits in the same way as in linear regres- 
sion one uses the significance test to select variables via 
step wise procedures. After the determination of the tree 
structure, our main purpose is to generate hypotheses 
for future studies. For this reason, it is not critical to 
use a "perfectly" rationale choice. 

Start with a level of 0.05 and prune off a pair of left 
and right nodes from the bottom of the big tree if we can- 
not reject the hypothesis that the relative risk (estimated 
from the resubstitution method) for the two nodes equals 
1 at this significance level. This yields a primary tree, 
which usually has a reasonable size. Next, we examine 
the primary tree to see (a) which splits are superficial 
by estimating the relative risk using cross validation as 
described below; (b) which splits may be scientifically 
uninterpretable by reviewing the literature; (c) which 
splits may need more data to justify. After this exami- 
nation step, we have a final tree. Furthermore, one may 
use this final tree to explore alternative trees. There- 
fore, our pruning procedure is not completely automatic 
and we deliberately leave room for users to apply their 
knowledge of the data. See Zhang and Bracken (1994) 

for an application of this procedure. 

2.3    Risk Estimation 

In the preceding section, the relative risk is used to prune 
an over-grown tree. The impurity function used to se- 
lect splits is closely related to the relative risk. Hence, 
a split of low impurity tends to result in a high relative 
risk. This suggests that the resubstitution estimate of 
the relative risk may be biased upward because impu- 
rity was the selection criterion. Despite the bias, the 
resubstitution estimates are still useful for pruning the 
large tree although they are not reliable for interpreting 
the final tree. Because the resubstitution estimates are 
upward biased, the splits of a tree tend to be more 
statistically significant than they really are. We expect 
that the number of terminal nodes after deletion using 
the resubstitution estimates is larger than that resulting 
from more realistic estimates, e.g., the cross validation 
method as described shortly. 

To correct the bias in the resubstitution estimates, 
we describe an alternative method using cross validation 
locally. It is based on the idea that a fair estimate of 
relative risk may be derived from another data set that 
has been collected under similar conditions. 

Breiman et al. (pp. 150-155, 1984) proposed an ad 
hoc but well-designed cross validation procedure to cal- 
culate within node misclassification rates. Unfortunate- 
ly, their procedure is not directly applicable for the esti- 
mation of relative risk because: (a) the procedure focuses 
on the node instead of the splitting variable; (b) the rel- 
ative risk may be derived from the misclassification rates 
if we assign the unit misclassification cost that is obvi- 
ously inappropriate for the present application; and, (c) 
the global cross validation is not applicable when repairs 
must be made to the grown tree. 

The local cross validation method proceeds as fol- 
lows. First, we randomly divide the population of in- 
terest into v sub-populations. For instance, we may 
take v = 5. Let £,• (i = 1,2,3,4,5) denote the 5 sub- 
populations. First, we leave C\ alone and use Uf/3,' to 
select the split s* based on variable x. It is conceptu- 
ally important to note that the split s* is searched only 
over the variable that has already been chosen. This re- 
striction is enforced in particular to address the effect 
of a specified factor. Then, we can use s| to stratify 
£i and record the 4 entries (a, b, c, d) in a 2 x 2 ta- 
ble based on the factor level and the response for C\. 

event 
yes    no 

low risk group 
high risk group 

Next, we repeat this process by leaving out each of £,• 
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(j = 2,3,4,5) in turn and using only the remaining sub- 
populations to select a split s\ again based on race. The 
entries based on &, which will be stratified by s*, will be 
recorded. Sum the cell entries over the five 2x2 tables 
produced by the 5-fold cross validation procedure, and 
calculate the relative risk using the combined the 2 x 2 
table. 

Suppose that we apply the root node split in a tree to 
an independent, ideally similar data set, then we would 
have a 2 x 2 table, called T, with entries (a0, b0, c0, d0). 
Again, ao/b0 is the odds for the low risk group and c0/do 
is the odds for the high risk group. Now, every 2x2 table 
obtained in the cross validation is an approximation to T 
provided that the total sample size is taken into accoun- 
t, despite the fact that different splits may be chosen. 
The combination of these 2x2 tables is a way of aver- 
aging and generally provides better approximation to T 
than those individual tables. Since potentially different 
splits may be chosen, the combined 2x2 table does not 
have an intuitive interpretation, but the combination is 
legitimate from a statistical point of view. Here is the 
reason. All individual 2x2 tables are generated by the 
same algorithm and the variation among them is sole- 
ly due to the random sampling in the cross validation. 
Therefore, these 2x2 tables can be viewed as i.i.d. ran- 
dom 4-vectors and equal to the originally selected split 
in distribution. Therefore, mathematical operations on 
these tables are well-defined. This is a key idea behind 
the cross validation that is also used in Breiman et al. 
as elaborated in Remark 1. 

When the selected split is not spurious but real, the 
constitutents of the low and high risk groups determined 
in the cross validation should be similar although they 
may be different, and hence the cross validation estimate 
of relative risk should be close to the resubstitution es- 
timate. In contrast, if the selected split is spurious, the 
split is hardly reproducible and the constitutions of the 
low and high risk groups from the cross validation can 
be very different. The resubstitution and the cross val- 
idation estimates should also be very different. In this 
case, neither the resubstitution nor the cross validation 
method may provide an accurate estimate for the rela- 
tive risk. What is important is that the spurious split is 
identified and the precise level of the relative risk is no 
longer of great interest. To some extent, we must make 
a subjective call on the basis of the discrepancy between 
the two types of estimate - the same dilemma as was 
seen in determining a spurious split. 

It is also helpful to draw a line between an a priori 
defined split, s0, and a split, s, selected from the impurity 
criteria using a learning sample C. Where so and s are 
conceptually different even if they are actually the same. 

For example, before performing the tree-based analysis 
we might have decided to calculate the relative risk of a 
disease comparing black vs white. Then, «o is black vs 
white. The relative risk can be obtained directly from 
the data without any adjustment because there is no bias 
due to the split selection. After the tree-based procedure 
is applied to the data, a selected split s may turn out 
to be so- This time, there is a potential bias when the 
relative risk for s is calculated by resubstitution. We 
cannot treat s in the same way as so even though they 
look identical. Instead, this s should be regarded as the 
same as a split s* which may be obtained by the same 
algorithm from a learning sample C* that is the same as 
C in distribution. 

Remark 1. This cross validation procedure is in fact 
inspired by the analogy with Breiman et al. (pp.75- 
78). The connection can be made as follows. As pointed 
out earlier, we attempt to evaluate the influence of each 
variable selected to form the tree. They are interested in 
the misclassification rate of a sub-tree corresponding to 
a specified complexity parameter. Therefore, two pro- 
cedures are similar in the sense that they require some- 
thing fixed, i.e., a variable versus a complexity parame- 
ter. In the step of using cross validation, the cut-off for 
the fixed variable may vary in our procedure while the 
structure of the sub-tree corresponding to the specified 
complexity parameter changes, too, in that of Breiman 
et al. Therefore, the two procedures are similar in the 
sense that they allow something to vary during cross val- 
idation. Finally, both procedures take an average step 
over the results during cross validation. Breiman et al 
(p.77) acknowledge that the cross validation estimates of 
misclassification rates tend to be conservative in the di- 
rection of overestimating misclassification rates. In our 
situation, we would then expect that the cross valida- 
tion estimate of relative risk may be biased toward the 
null value. Therefore, it is useful to look at both the 
resubstitution and the cross validation estimates of rela- 
tive risk because they are potentially biased in opposite 
directions and presumably the resubstitution estimates 
are more biased. 

2.4    Missing Data 

In most applications of the generalized linear model, 
users take naive approaches to deal with missing data 
such as deleting subjects which have missing data in any 
covariates. As pointed out by Breiman et al. (1984, 
Section 5.3.2), this strategy may result in a loss of a 
substantial portion of the data. The nature of the recur- 
sive partitioning procedure makes it possible to handle 
missing data in a more efficient manner. 

Two notable approaches have been proposed in the lit- 
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erature by Breiman et al (1984, Section 5.3) and Clark 
and Pregibon (1992). The former uses surrogate splits 
to mimic the best splits. When a subject has a missing 
value on a covariate by which the best split is defined, 
a surrogate split, based on another covariate, would be 
used to assign the subject. We call the latter "missings 
together" (MT) method. In other words, the cases with 
missing values for the splitting variable are assigned to 
one node. 

The strategy of using the surrogate splits fits perfect- 
ly into the tree-based method and is a most thoughtful 
idea. The surrogate splits are implemented in CART 
and can be carried over without user involvement. Nev- 
ertheless, we have a practical concern with this strategy, 
that is, when a reader looks at a published tree, it is not 
clear how a case with missing information is assigned 
unless the authors give all (primary and secondary) sur- 
rogate splits associated with a tree. This information 
is in fact available in the original CART printout, but 
unfortunately only a limited amount of information may 
be published. In classification problems, we can incorpo- 
rate surrogate splits into an automated procedure with- 
out worrying about what they are. In contrast, for the 
present application, we must know the surrogate splits in 
order to report and interpret them. It could be tedious 
to describe all possibilities of applying the primary and 
secondary splits. 

The MT strategy provides an alternative, simple ap- 
proach for handling missing data although it may not use 
the data as efficiently as the surrogate splits. Now, we 
describe the implementation of the MT strategy. Sup- 
pose that a;,- is a nominal covariate taking two distinct 
levels a and b (the idea extends immediately for more 
levels). The candidate splits accommodating missing 
values are NA—ab, NAa—b NAb—a, where NA stands 
for missing values. The idea is to treat NA as an extra 
level of Xi. If Xi is ordinal, Clark and Pregibon suggest- 
ed the use of the same strategy by quantifying x first 
and then treating it as if it is nominal. Suppose that 
Xi = (1,2,3,4,5, NA)' is an ordinal predictor, x may 
first be converted to, say, £,■ = (a, a, a, b, b, NA)' in which 
a covers 1,2,3 and b covers for 4 and 5. Then, x would 
replace x in partitioning. 

Clark and Pregibon's implementation of the MT 
strategy has two limitations. First, the quantification ig- 
nores the original order of Xi. From the example above, 
the natural order in {1,2,3} versus {4,5} vanishes. How- 
ever, the order of x,- is very important for interpreting 
the results. Second, the quantification often uses arti- 
ficially coarser measurements of the covariates than the 
original values of the covariates which presumably re- 
sults in coarser splits.  For instance, 2 in the example 

above can never be a cut-off value for xt. The round-off 
effect may be minor, but unnecessarily. 

We propose a new implementation for the MT strat- 
egy by replacing the original x with two new variables. 

Let Xi = (Xu,- • •, X,JV)'. Define the components of xf' 
(2) 

and x)    to be the same as those of X{ when the compo- 
nents of Xi are not missing. For all missing components 
of Xi, the corresponding values of xf' and x^ are re- 
spectively defined as min,(a;,j) - 1 and maXj(xtJ) + 1. 
The idea is to regard the missing value as an additional 
distinct value of x,-. The assigned values per se are not 
important and should be viewed as a generic labeling for 
missing values. What is important is that the labeling 
ensures that all subjects having missing data will be sen- 
t to the one (left or right) side of a split. For example, 
taking N = 6, let Xi=(2.1, -4.0, NA, 1.5, 7.3, NA), then 

xp)=(2.1, -4.0, -5.0, 1.5, 7.3, -5.0) and ar4
(2)=(2.1, -4.0, 

8.3,1.5, 7.3, 8.3). The two copies introduced for the ordi- 
nal variable with missing values compete independently 
with other covariates while, obviously, only one of them 
may be selected at each node.   For example, if x^ is 
chosen as a splitting variable, it sends all subjects whose 
values are missing for this variable to the left daughter 
node.  It is worthwhile to note that both x^ and x[2) 

may be used again to split lower nodes thus allowing the 
cases with missing values to go to either side of the node. 

Remark 2. We create two copies of one variable on the 
basis of the variable, not individual subjects.   Suppose 
that xi and x2 are two variables. If xi has missing values 
in any of its components, two copies, x^ and x^\ will 
be created.   Similarly, if £2 has missing values in any 
of its components, two copies, x^ and x^\ will also be 
created. However, if subjects 1 and 2 have missing values 
in both xi and x?, we do not create four copies of x\ and 
X2 for subject 1 and another four copies for subject 2. 
We use the same copies to cover both subjects. 

3    Discussion 

In this paper, we have advocated the use of a tree-based 
method for epidemiologic studies. This nonparametric 
method is particularly convenient and appropriate when 
the objective is to identify risk factors associated with a 
certain event, to discover interactions among the factors, 
and to find high risk subpopulations. When applying 
CART to epidemiologic studies, some modifications are 
necessary. We have designed a more user-friendly pro- 
gram that provides users with options to control the tree 
structures. Prior to using the existing CART technology, 
there were two fundamental decisions that users would 
have to make: the prior probability of the outcome and 
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the cost of misclassification. Since our data come from a 
prospective study, it is reasonable to estimate the prior 
probability from the data. Therefore, the prior selection 
is not a problem for us. However, it has been observed in 
the literature that the final tree structure is sensitive to 
the choice of misclassification costs [e.g., Breiman et al. 
(pp. 175-181, 1984)]. With the low prevalence rate of 
the outcome in the present application, it is even more 
difficult and subtle to specify misclassification costs and 
then to justify these choices. If a user changes the tree 
structure for various reasons, it violates the basic condi- 
tion for using the procedure of Breiman et al. (Section 
3.4.2,1984). When this occurs, we suggest the use of an 
alternative pruning procedure. 
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Abstract - We study the problem of detection 
and size measurement of discontinuities from 
sampled noisy data of an univariate function. The 
proposed tests and estimators are of the form of 
linear convolution filters with characteristics 
employing orthogonal series expansions. In 
particular, the standard and conjugate Fourier 
series are taken into consideration . The 
convergence properties (consistency and rate of 
convergence) of the proposed estimates are 
established. 

I. INTRODUCTION 

Consider an univariate regression model 

yi = f(xi) + z(xi) ,i= 1, 2,..., n, (1) 

where x,, x2, ..., xn are fixed-design points in 
[-7C, 7c], say, z(x,), z(x2),..., z(xn) are uncorrelated 
random errors with zero mean and finite variance 
o2 and f is the unknown regression function. 
The detection of some singular points 
(discontinuities, comer points, etc) in an otherwise 
smooth function is an important problem in a 
number of areas as, e.g., system theory, 
signal/image processing and statistics [1], [5], [7], 
[8]. In the area of image processing a large variety 
of different operators for locating of changes in 
image intensities have been suggested. 
Traditionally, the proposed techniques have been 
introduced ad hoc and their performance has been 
justified by simulation studies over selected 
images. 
More recently, however, optimal detection filters, 
obtained in the process of optimizing a criterion 
being a combination of signal-to-noise ratio, the 
localization measure, and resolution (quantified 
by number of false responses ), have been 

proposed [2],[3], [4], [5], [6]. The local maxima 
in the thresholded output of such filters have been 
used as an estimate of the discontinuity position. 
No rigorous statistical analysis of the proposed 
techniques has been carried out. 

All the above works concern finding location 
of the edge, they do not, however, estimate the 
edge size. The latter, clearly, can be an useful 
component in the image reconstruction and 
understanding processes. The problem of 
measurement of the size of discontinuities in a 
function was first ( in the image processing 
literature) studied in [5], [6]. In [8], [9] the kernel 
type nonparametric regression techniques for 
estimating the locations of jumps points and the 
corresponding sizes of jump values have been 
proposed. 

In this paper we propose a class of linear 
filters which are able to localize discontinuities of 
a function of virtually any form, i.e., the behavior 
of the function in the neighborhood of the 
discontinuity need not be in the form of step , 
ramp, or a polynomial  of a finite order. Thus, 
we can copy with a nonparametric class of 
discontinuous functions. The proposed techniques 
give consistent estimates of the discontinuity size, 
see [10] for a complete account of our techniques. 
Our approach stems from the theory of Fourier 
series, and specifically, from results that are related 
to the so called Gibbs phenomenon [11]. The 
problem of measuring of the discontinuity size 
was first addressed as early as 1913 by Fejer[12], 
see also [11].   There, it was elaborated in the 
context of convergence of the partial sum of 
Fourier  series  in  the  neighborhood   of   a 
discontinuity of the function being expanded. Here 
we utilize this approach in the case when sampled 
noisy data generated by the regression model (1) 
are available. We observe also that the proposed 
techniques are of the form of linear filters with 
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odd impulse response functions having multiple 
zeros. We prove that the filters responses at a 
given point converge to the discontinuity size at 
this point. This reveals, how the error depends 
on the distribution of discontinuities (our 
techniques allow multiple discontinuities), the 
function smoothness away from discontinuity, 
noise characteristics, sampling rate, and the filter 
bandwidth. As a result, an optimal value of the 
filter bandwidth is obtained. The problem of the 
discontinuity localization is also examined. 

II.  DISCONTINUITY  MEASUREMENT 
AND LOCALIZATION 

Let f(x) be a real, integrable function defined, 
without loss of generality, over [-%,%]■ Let 
A(x) = f(x+) - f(x-) be a discontinuity size of f at 
the point x. 
Our aim is to estimate A(x) using the convolution 
operators of the following form 

f 
/-7l 

f(t) Kq(x-t) dt (2) 

where the filter characteristic Kq(x) of order q 
satisfies two properties: (1) it is an odd function, 
(2) it has 2q+l zeros in [-JC,JC] , including 0 and 
±K . Furthermore, the operator should have the 

property that      f(t) Kq(x-t) dt -» A(x) as q->°° 

for possible general class of discontinues 
functions. 

Filters of this form, in the context of edge 
detection, has been studied in the computer vision 
literature [1], [2], [3], [4], [5], [6]. Typically, 
however, the value q = 0, i.e. , only one zero- 
crossing at x=0, has been assumed and they not 
estimate the size of the discontinuity. 

In this paper we propose (other alternatives 
are also possible) the following two prescriptions 
forKq(x) 

Kq(x) = -aS JsinJx (3) 
j = i 

Kq(x) = 
foqjl 

sinjx (4) 

Both techniques have been originated in the theory 
of Fourier series, see [10], [11], [12]. The kernel 
in (3) results from a simple integration by parts 

and observation that Kq(x) = -1 x~ Dq(x)>wnere 

Dq(x) is the Dirchlet kernel of order q. The kernel 
Kq(x) is related to the theory of conjugate Fourier 

series  [11], i.e., Kn(x) = - -r^- Dq(x), where n mq 
Dq(x) is the conjugate Dirchlet kernel of order q. 

Since only the discrete and noisy data (1) are 
available one has to replace the integral in (2) by 
some its discrete approximation. Combining this 
with the definition of Kq(x) and Kq(x) we can 

define the following estimates of A(x). 
^ n ^ 
A(X) = X Yj(xj+1 - Xj)Kq(X" Xj) , (5) 

j = l 

A(X) = X Yj(Xj+l - xj)Kq(x- Xj) 
j = l 

(6) 

Our results model the performance of 
discontinuity estimates on grids which become 
increasingly fine, i.e., as 8n -> 0, where 
8n = maxj (xj+i - Xj). As a measure of discrepancy 

between the estimates  A(x), A(x) and A(x) we 

choose the mean square error E(A(x) - A(x)) . 
The behavior of both estimates is described in the 
following theorem. 

Theorem 1.   Let f be a function of bounded 

variation. 

Then 

E(Ä(X)-A(X))
2
« 7lC25nq + V2(f)(q8n)2 

+ (    f(t)Kq(x-t)dt-A(x))2 , (7) 
/-it 
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E(A(x) -A(x) )2 - KG
2
 %ä. + V2(f)(q8n /In q )2 

ln2q 

{ + (    f(t)Kq(x-t)dt-A(x)y (8) 

where V(f) is a total variation of f. 
The first terms in (7) and (8) are caused by 

the presence of noise, while the second ones 
represent the bias due to discreteness of data . 
The third terms are due a finite q used in the 
definition of the filter characteristics, see (3) and 

(4). Theorem 1 exhibits that var A(x) is smaller 
than var A(x) . As for the behavior of the last 
term in (7) we can show, see [10] for details, that 
if f(x) has right-hand and left-hand derivatives 
for all x e (-%, it) then it is of order 0(l/q2). 
Regarding the filter Kq we show that the last term 
in (8) is of order 0(l/ln2q) assuming that f(x) is 
of bounded variation. Thus, the filter Kq requires 

weaker assumptions than Kq in order to extract 

the discontinuity size. On the other hand, A(x) 

has much smaller bias than A(x) . 
It is apparent that the first two terms in (7) and 
(8) are increasing as q becomes larger. This 
manifests a trade-off between random (quantified 
by the variance) and systematic (bias) errors. That 
is, to eliminate a systematic error one should use 
a large value of q, whereas a small value of q will 
reduce the random variation and discretization 
error. 

It is evident from (7) and (8) that in order to 
reduce the error one has to relate q with   8n . 

Hence, let q = c 5„  ,   c, a > 0. Clearly, if a > 

1 then the error tends to infinity , while for 0< a 

< 1 the error goes to zero as 8n ->0 . Direct 
rninimization of (7) and (8) with respect to q implies 

that the optimal q is of order 6'n and dn /In dn , 
respectively. Furthermore, for 8n ~ c/n, c> 0 the 
corresponding errors are n"2/3 and l//n2 n. Hence, 
the estimate A(x) tends to A(x) much faster than 

A(x). It is worth noting that the kernel estimate 

proposed in [8], [9] can reach the rate 0(n*2/3) 
provided that f(x) = v(x) + A l[e ^(x), where 
v(x) is Lipschitz continuous. 

Although A(x) is slower estimate of A(x) it can 
have a better localization properties than A(x). In 
fact, let 0 be a point where the discontinuity in 
f(x) takes place. Assume, without loss of 
generality, that there is a single discontinuity and 

that A09) > 0. Then^ clearly, 6 = arg maxx A(x) 

and 0 = arg maxx A(x) can define estimates of 
0. 

It can be shown [10] that  E(0-0J =0(n-4/5) 

while E10 -0j = 0(n-4'5 In- 6/5(n)). Thus, the 

discontinuity localization detector 0 based on A(x) 

can outperform that one which uses A(x) . 

This is a very surprising result since A(x) tends 
slower to A(0) than A(x). 
Furthermore, one can recover 0 faster than A(0). 
Thus, one can conclude that the problem of edge 
localization is "easier" than the problem of edge 
measurement. 
All the above considerations imply that a 
combination of both techniques can be an attractive 

alternative, i.e., apply first A(x) to detect 0 and 

then use A(0) as an estimate of A(0). 
To illustrate the aforementioned results let us 

consider a piecewise constant function 

0     ifx<0 

f(x) = {   Ai if0<x<l 

Ai+A2 ifl<x 

Figure 1 shows A(x) and A(x) for q = 10 and 
two different combinations of A] and A2 . Figure 

2, on the other hand, plots A(x) and A(x) locally 
in the neighborhood of x=l, here q=6. The noise 
variance is 0.01 and n = 128. It is clear that the 

A(x) method reaches maximum at the wrong 



M. Pawlak     255 

location, i.e., x=1.15, whereas the A(x) estimate 
perfectly localizes the discontinuity at x = 1. 

Nevertheless, the value A(l) is much greater than 
the size of the discontinuity A(l) = 1. 

Figure 1. A(x) and A(x), q= 10, 
(a) Ai= A2 = 0.5, (b) Ai= 0.5, A2 

0.7 0. 0.9 1 1 .1 1.2 1-3 

Figure 2. A(x) (in gray) and A(x) (in black) in the 
neighborhood of x= 1; Ai= A2 = 1 
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Abstract 

Change-point models have attracted attention in a va- 
riety of fields, and there are many approaches to infer- 
ence, both parametric and nonparametric. This paper 
discusses some asymptotic results for change-point in- 
ference in the context of nonparametric regression. In 
one dimension, a change-point can be defined as a point 
with a discontinuity in one or more derivatives of the re- 
sponse function. A method for fitting change-points with 
semiparametric models is discussed which can be used 
with arbitrary linear smoothers. Techniques are given 
to identify the number and location of change-points, to 
estimate the size of the jump discontinuities, and to fit 
the entire response function with discontinuities. 

KEYWORDS:   change-point, nonparametric regression, 
semiparametric model 

1.    Introduction 

This article reports on progress in adapting fairly gen- 
eral nonparametric regression smoothers to estimating 
curves with features such as jumps and cusps at known 
or unknown locations. The key idea is to use paramet- 
ric models for the features (e.g. jumps or cusps) and to 
correspondingly modify an otherwise smooth fit to in- 
corporate these features. 

There is a very large literature on statistical methods 
for "change-point" problems (e.g. see Siegmund, 1986). 
A prototype for such problems is that of detecting a 
possible shift in a normal mean in independent obser- 
vations over time. Assuming independent observations 
Vii • ■ •, Vn, a change occurs at time r, 1 < r < n, if 

Vi 
2)> 
2). 

i < r, 
i > T, 

(1.1) 

where /*i ^ \ii. The classical problems are to (i) de- 
termine if a change has occurred and (ii) if so, estimate 
when this happened. 

A natural generalization is to relax the assumption of 
piecewise constant mean and to consider models in which 

•Research supported in part by NSF Grant DMS-9308444 

the mean varies smoothly except for one or more isolated 
change-points. As an example, consider the regression 
model 

y% = /*(*«) + £«,    i = l,...,n, 

where the e,- are i.i.d. errors with E(a) = 0, E(e2) = 
cr2 < oo. For simplicity, we will take t, = i/n. A non- 
parametric regression version of the change-point prob- 
lem is 

for some r € [0,1], where / is a smooth function on [0, r], 
g is a smooth function on [r, 1], and f(r) £ g(r). As in 
(1.1), T will be called a "change-point" in this setting 
as well. The situation where /z is continuous but has a 
jump discontinuity in the first derivative at some point 
T can be described similarly. 

There is a growing body of literature on the nonpara- 
metric regression version of the change-point problem. A 
parametric version in the spirit of the problem here was 
given by McDonald and Owen (1986), and Hall and Tit- 
terington (1992) proposed methods specific to estimating 
curves with peaks and edges. Müller (1992) and Wu and 
Chu (1993), among others, have proposed methods based 
on differences of nonparametric kernel estimates. Loader 
(1993) has recently treated change-point problems using 
local polynomial estimators. There is also a vast related 
literature in image processing devoted to edge detection 
(see e.g. Tagare and deFigueiredo, 1990). 

The methods discussed here are applications of a gen- 
eral class of semiparametric models. In principle, they 
solve a variety of problems, and they have the advan- 
tage of not requiring specialized smoothers. Instead, the 
methods modify arbitrary smoothers to allow estimation 
and preservation of features like jumps and cusps. 

2.    Semiparametric change-point models 

Semiparametric models for this setting go back at least 
as far as Wahba (1984) and Engel, Granger, Rice and 
Weiss (1986) for spline smoothing. Eubank and Speck- 
man (1994) and Clive, Eubank and Speckman (1993) 
have recently extended these models for arbitrary linear 
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smoothers. Suppose 

/*(<) = WO+ /(*0. 
where 

*(<) = M* - r) 
with 

/(*-!)!,   <>r 
*<r, 

for k > 1. Here / is assumed smoother than fa (i.e. 
/(i_1) is continuous at r), and hence the parameter ß is 
identified as /i(*-1)(r+) - //*-1)(7--), the size of a jump 
discontinuity in /i(*-1) at r. 

This simple model generalizes immediately to models 
with discontinuities in more than one derivative at r, e.g. 

MO = Mx(* -T) + ß2fo(t - T) + /(*), 

or to models with multiple change-points (rx,...,rr) 
such as 

MO = £!>***(*-Ti)+ /(*)• 
i=it=i 

Note that the latter model has p = «i H 1- sr param- 
eters. 

We will adopt vector notation for the nonparametric 
regression model letting 

y = 

and write y = /x + e. Suppose that a linear smoother is 
used to estimate /z. We will denote the result of smooth- 
ing by 

ß = (ß(h),...,ß(tn))' = Sy 

for a suitable n x n matrix 5. 
Assuming known change-points, a semiparametric 

model with p parameters can be written in terms of an 
n x p matrix, for example 

/! = 

. A*(*») . 

£ = 
£2 

x = <f>i(U-n)   ■■•  <f>,r(U-Tr) 

nxp 

with ß = (/?!,..., ßp)', to obtain 

y = f + Xß + e. 

2.1.    Estimation with known change-points 

A general method (independently derived by Denby 
(1986), Speckman (1988), and Robinson (1988)) for esti- 
mating ß with good properties in this setting is to min- 
imize 

min    \\(I-S)(y-Xß)\\2. 

The solution can be expressed as ß = (X'X)-1^'^ — 
S)y, where X = (7 - S)X. 

To motivate this estimator, note that 

(/ - S)y = (I- S)f +(I- S)Xß + (7 - S)e. 

If / is a smooth function and S is a smoother matrix 
suited to the smoothness class of/, then (7—5)/ is neg- 
ligible in comparison with (7 - S)X, so the regression of 
(7 — S)y on (7 — S)X produces an approximately unbi- 
ased estimate of ß. Letting / = S(y - Xß), the entire 
function can be estimated as 

ß = f + Xß = Sy + (I- S)Xß. (2.1) 

Eubank and Speckman (1991) showed that 

\E\\V - ßtf < ±||(7 - 5)/||2 + ^trS'S + ^. 

Since the first two terms on the right give the average 
mean square error for estimating / with smoother S, if 
5 is any nonparametric estimator, the convergence rate 
is slower that 0(1/n), so the last term is asymptoti- 
cally negligible. Thus ß has the same global convergence 
properties as / = Sy does when ß has the usual smooth- 
ness assumptions. This result is independent of choice 
of smoother. 

2.2.    Example: penny data 

The first example concerns the penny data given in 
Scott (1992) and displayed in Figure 1. The data set 
consists of measurements in mils of the thickness of a 
sample of 90 U.S. Lincoln pennies, two per year, from 
1945 through 1989. Penny thickness was reduced in 
World War II, restored to its original thickness sometime 
around 1960, and reduced again in the '70s. Superim- 
posed on the plot in Fig. 1(a) is a kernel smooth with 
bandwidth h = 7. Fig. 1(b) shows the fit from (2.1) 
with change-points for the years 1958 and 1974. With 
T\ - 58.5 and r2 = 74.5, the model 

H(t) = f(t) + Mx(t - 58-5) + Mx{t - 74.5) 

was estimated with a Gasser-Müller smoother. (Details 
on the choice of T\ and T2 are given below.) 
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Figure 1: (a) Penny thickness data with kernel smooth, 
bandwidth 7. (b) Fit with change-points 58.5 and 74.5. 

3.    Change-point  detection and  estima- 
tion 

In practice, the location and even number of change- 
points may be unknown. The strategy implemented here 
has three steps. First, a detection scheme is used to de- 
termine how many change-points (if any) are present. 
Second, the exact location of these change-points is es- 
timated. Finally, the entire function is fit with the esti- 
mated change-points using (2.1). 

3.1.    Detecting one or more change-points 

The semiparametric model can be used to detect 
change-points as follows. Suppose one is searching for 
a sudden change in the (k — l)st derivative of p. At 
each of a possibly large number of candidate points r, 
the model 

/*(<)=/tyk(*-r) + /(t) 

is fit. Denote the parameter estimate as ß(r). Clearly, 
if //fc-1) is continuous at r, then ß(r) should be near 
0. But if T is a change-point for ^fc-1\ then ß(r) is an 
estimate of /^"^(r-f) - ^"^(r-) # 0. To calibrate, 
let 

ß(r) 
Z{T) = 

y/Var(ß(r)) 

The problem is to determine a critical value c such that 
\Z(T)\ > c denotes a change-point in the vicinity of r 
while controlling for false signals. 

The behavior of the process Z{T), h < T < 1 — h, 
is detailed in Speckman (1993) under the following as- 
sumptions. Assume equally spaced points in [0,1] with 
t{ = i/n, i = 1,. ..,n, and further assume i.i.d. errors 
satisfying £(e,) = 0, E(e2) = a2 < oo. To be specific, 
the smoother 5 is taken to be defined by 

where h is the bandwidth and K is a continuous, sym- 
metric function with compact support [—1,1]. We as- 
sume further that K possesses the mth order smooth- 
ing properties / K(u)du = 1, furK(u)du = 0, r = 
l,...,m - 1, and jumK(u)du ^ 0. (For simplicity, 
boundary effects are ignored, so attention is restricted 
to ß(t), h< t < 1 - h.) 

In this setting, let 

far = (Mh - r),..., M^ - r))', (3.1) 

and   for   fixed   T   let   (7  -  S)2(j>kT 

(w1(T),...,wn(T)y. Then 
W(T)     = 

ß(r)    = 
y'(I - Sf<j>kT 

<t>'kT{i - sy<t>kT 

ELi m(r)yi 

4fkr{I - S)HhT' 

It follows that 

Z(T)    = ß(r) 

/ 
Var(ß(r)) 

<VE;=I^)2' 
Speckman (1993) showed that Z{r) can be well ap- 

proximated by a convolution process with weights W{(T) 

of the form w(ti — r). Figure 2(a) displays actual weights 
for detecting a jump in the function, i.e. k = 1, with 
n = 100, h = .1 and r = .5. Several aspects of the equiv- 
alent filter function are apparent. In Speckman (1993), 
it is shown that w(t) has support [—2h,2h] and that 
w(t) = g+(t)-g-(t), where g+(t) = g-(-t), and g+ is a 
one sided kernel satisfying f g+(t)dt = 1, ftg+(t)dt — 0 
with support [0,2/i]. Thus the semiparametric estimate 
of/? can be viewed as the difference of two one-sided ker- 
nel estimates. This compares with the explicit estimates 
constructed with differences of kernel estimates in Müller 
(1992) and Wu and Chu (1993), for example. Figure 2(b) 
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Figure 2: Actual filter weights Wi(r) with n = 100, h = 
.1, (a) k - 1 and (b) k = 2. 

shows weights for an example of cusp detection, k = 2, 
with n = 100, A = .1 and r = .5. Once again, w{t) 
can be seen to to be the difference of two one-sided ker- 
nels w(t) = g+(t) - g-(t), where now g+(t) = -g-(-t), 
fg+(t)dt = 0 and ftg+(t)dt = 1. 

The following theoretical results concerning the 
asymptotic bias of Z(T) are obtained in Speckman 
(1993). 

Theorem 1 If ß = ^(fc-1)(r+) - /^-^(r-) ^ 0, 

E{Z(r)) = ß 
v/CinÄ2*-1 (l + o(l)) 

asn-+oo /or some constant Ci depending only on K, 
k and m. 

Ifß =0andf€ C2m~k[0,1], then 

E{Z{T)) K C2V^/2m-fc+7(2m-*)(r) 

for some constant C2 depending only on K, k and m. 

This result gives some guideline to choice of bandwidth 
for the detection problem. In order to avoid false detec- 
tion of change-points, one needs relatively low bias. As 
an example, suppose a second order smoother (m — 2) 
is used. In searching for a jump in the function, k = 1, 
and it is easy to see that the bandwidth must satisfy 
h — o(n-1/7) to have asymptotically negligible bias. 

This is a relatively large bandwidth, especially in com- 
parison with the usual "optimal" h ~ ra-1/5 typically 
recommended for smoothing in this context. Note that 
the constant in this case depends on f"'(r), so it is pos- 
sible for finite samples that a region of high curvature 
could be mistaken for a jump by this method. 

If one is searching for a potential change in the first 
derivative (a cusp), k = 2 and the bandwidth must sat- 
isfy h = o(n-1/5). This suggests that undersmoothing is 
necessary relative to the usual widths chosen for smooth- 
ing. From a practical standpoint, if too large a band- 
width is used, a point of sharp curvature may show up 
as a cusp. 

3.2.    Choice of critical value 

For fixed k, the problem is to determine a constant ca 

such that 

^(.m«    \Z(T)\ > ca) ss a 
ft<r<l—A 

provided //*-1)(<) is continuous. For finite samples, this 
problem is not well posed because /(2m-fc)(r) could be 
arbitrarily large. However, asymptotic results are pos- 
sible. Assume the usual sequence of problems y,-n = 
Ktin) + ei„, i = 1,. ..,n, n = 1,2, — If /i is fixed and 
sufficiently smooth and hn —* 0 at a suitable rate, it is 
possible to find a sequence can such that 

hn<T<l-nn 

a. 

In Speckman (1993), the asymptotic distribution is 
given explicitly, and simulation studies are reported. Un- 
fortunately, the asymptotic distribution is not very ac- 
curate for finite samples, even when bias is negligible, 
especially for k — 1. For k > 2, the tube formula (c.f. 
Johansen and Johnstone, 1990, or Sun and Loader, 1993) 
can be used for improved estimation of ca, and the au- 
thor has also had some success in applying the Pois- 
son clumping heuristic (see Aldous, 1989). However, for 
k = 1, the author has found that often the best approx- 
imation to the critical value can be obtained by a sim- 
ple application of the Bonferroni inequality, ca = zaf2n, 
where Za is the 1 - a percentile of the standard normal 
distribution. 

Figure 3 shows the plot of Z(r) for the penny data 
with h = 4. Here the data occurred in pairs, so the 
natural independent estimate <r = .820 on 45 degrees 
of freedom was used. There are 45 years in the data 
set, and the middle 35 were searched, so the Bonferroni 
bound z.05/70 = 3.189 is shown. The change-points in 
1958 and 1974 are clearly visible. (Note that for k = 1, 
Z(T) is actually a piecewise constant function in r.) 
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Figure 3: Plot of Z(r) for k = 1, ft = 4. Dashed line 
shows approximate critical value by Bonferroni for a = 
.05. 

3.3.    Estimating change-points 

Having located a change-point by the above detection 
scheme, the next step is to estimate the exact location. 
Again, this can be accomplished in principle with the 
semiparametic model for quite general smoothers using 
nonlinear least squares. For fixed k, recall the definition 
(3.1) of the weight vector d>kT. The (perhaps local) model 

/i(t)=/fy*(*-*t>)+/(0 

can be estimated by minimizing 

\\(I - S)(y - d>kTß)\\2 

simultaneously in ß and T. Noting that 

\\(I-S)(y-<t>kTß)\\2 = \\(I-S)y\\2-ß(r)^'kr(I-S)2<l>kr, 

it can be shown that <j>'kT(I - S)2<j>kT is essentially in- 
dependent of T, so the nonlinear least squares estimate 
of r is asymptotically equivalent to the estimator which 
maximizes \ß(r)\. Thus the asymptotic distribution of f 
is obtained by studying the Z(r) process in a neighbor- 
hood of ro. The asymptotics are different because ß is 
assumed nonzero, and the situation is analogous to the 
results obtained by Müller (1992). Related results are 
obtained by Wu and Chu (1993). 

The case fc = 2 is worked out in detail in Speckman 
and Eubank (1994). (Similar results hold for Ar > 2.) 
Assu mc 

H(t) = M3(t - T0) + /(*). 

Under the assumptions of the previous section for m = 2, 
the following results are obtained. 

Theorem 2 If ßo ^ 0 and ft«1/5 is bounded, 

Vnft(f-Tb) -*• N 
2/?o    ' 

where Ax = f"(rQ+) - /"(r0-), L = limVnh* and Ci 
and Ci art constants depending only on K. 

Here L is defined to be zero if ft = o^"1!*) or a 
nonzero constant if ft converges to zero at exactly the 
rate n-1/5. Note that f is asymptotically unbiased only 
if ft = o(n"1/5), i.e. if slight undersmoothing is used rel- 
ative to the usual rate for best estimation of fi. Note also 
that if ft ~ n-1/5, f - T0 = Op(n~2/5), the best possible 
nonparametric rate for estimating fi(t) with two deriva- 
tives. 

Asymptotic results also are available for estimating ß. 

Theorem 3   Under the conditions of Theorem 2, 

V^ftä(/?(f) - ßo) £ N(C4A2L,Cs), 

where A2 = \ (f"(r0+) + f"(r0-)) and C4 and C5 are 
constants depending only on K. 

Thus if ft ~ n"1/5, ß - ßo = O^n"1/5), the optimal 
rate for estimating fi'(t) with two continuous derivatives. 
Note that it is possible to estimate ro better than ßo- 

3.4.    Data-based bandwidth choice 

If the primary goal is to fit a function with disconti- 
nuities, a global estimate of \i is given by 

ß = Sy + P(I-S)y, 

where P = X{X'X)-lX' with X = (I-S)X. Thus the 
influence matrix is S + P(I - S), and it is natural to 
modify generalized cross-validation to estimate a global 
optimal bandwidth choice. To that end, define 

T(y) = 
I|y-fll7" 

(l-(tr(S+P(I-S))/ny 

Another variant which might be less sensitive to under- 
smoothing follows a suggestion of Rice (1984): 

Ti(ft) 
112/ — 

l-2(tr(S-rP{I-S))/n 

Note that tr(S+P(I-S)) = tr(S)+p-tr(PS) since the 
projection matrix P has rank p by assumption. If S is 
symmetric with all eigenvalues between 0 and 1, it is not 
hard to show that 0 < tr(PS) < p. Since tr(S) -+ooas 
n —► oo, the terms involving P are negligible for large n. 
It is feasible to compute tr(PS) directly by noting that 

tr(PS)    =   tr{X{X'X)-lX'S) 
=   triiX'X^X'SX). 

Since SX can be obtained by smoothing the columns of 
X, the diagonal elements needed for the trace can be 
computed directly by matrix operations or by regressing 
the columns of SX on X. 
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(a) Motorcycle data with kernel smooth, bandwidth 4; (b) crZ(t) versus time, h = 7; (c) Fit with change- 
23.2 and 32.0; (d) Fit with initial constant to 13.2, changepoints at 23.2 and 32.0, h = 5.2. 

4.    Application to motorcycle data 

To illustrate the use of change-point models for first 
derivatives, consider the "motorcycle data" in Silverman 
(1985). The data consist of 132 observations made on ca- 
davers in simulated motorcycle collisions. The explana- 
tory variable is time (in milliseconds) after impact, and 
the dependent variable is the head acceleration (in g) of 
a post mortem human test object. Figure 4(a) shows the 
data with a Gasser-Miiller kernel smooth (h = 4 chosen 
by cross-validation). 

The plot and the smooth show sudden changes in the 
direction of acceleration somewhere around 13, 23 and 
32 milliseconds. In private communication, S. Portnoy 
has suggested that these features might be modeled as 
change-points in the first derivative. Such a model does 
not necessarily imply that there are actual corresponding 
physical change-points, but a model with cusps might 
provide a better fit to the data than smoothing and also 
have useful interpretation. 

Figure 4(b) shows a plot of (?Z{t) for these data. Un- 
fortunately the data are too noisy to apply the detection 
criteria above, so the plot is not calibrated. For visual 
clarity, a bandwidth of h — 7 was used, and a was not 
estimated.  (With smaller bandwidths, the last peak is 

not as apparent.) There are three obvious local maxima, 
approximately at 13.2, 23.2 and 32.0 ms. Of course, it is 
very difficult to determine from the data alone if these 
points are "real" or if they are the result of large values 
oty'C)- 

The semiparametric fit with change-points 23.2 and 
32.0 is shown in Figure 4(c). Unfortunately, the severe 
imbalance in variance between the initial data (when the 
head is at rest) and subsequent data prevented a good 
fit at the first change-point. This can be handled with 
weighted least squares, but an alternative strategy is pre- 
sented below. 

5.    Constrained estimation 

In the motorcycle data, it is reasonable to model po- 
sition as initially constant until impact. This motivates 
fitting a model of the form 

tit) = { t <r, 
t >r, 

where /(r) = c and f(t),t > r is smooth but otherwise 
unspecified. (As in the treatment in the last section, this 
procedure can be modified to fit a function with addi- 
tional cusps as well.) This problem can be addressed in 
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several ways with semiparametric models. One method 
is as follows. 

Since r is a change-point of order 2, it can be located 
with the methodology of Section 3.3. Letting f denote 
the result, the natural estimate of c is 

53yi- c = 
#{*.-<*} ti<f 

Thus the problem is to construct a semiparametric curve 
estimate, say f(t) with a cusp at f satisfying /(f) = c. 
Then 

"W = { f(t),   t > f, 
will be an estimate with the desired properties. The 
required / can be obtained by weighted least squares 
subject to a constraint. Consider the model fi(t) = 
ß(f>2(t - T) + f(t) as in Section 2., and let L' be the 
nxl vector such that L'f = /(f). Then the problem is 
to solve 

min||(J-S)(v-X/?)llS 

subject to 
L'(Sy + Xß) = c. 

The solution is easily seen to be 

f = f + PL{L'PL)-\c-L'f), 

(5.1) 

where / = Sy + Xß (the unconstrained semiparametric 
fit) and P = X{X'X)-lX' as before. 

A mixed semiparametric model was applied to the mo- 
torcycle data. All three potential change-points were in- 
cluded, and the fit was subject to the constraint (5.1). 
Generalized cross-validation of the combined model was 
used to obtain a new bandwidth h = 5.2, and the results 
are displayed in Figure 4(d). 

6. Summary and conclusions 

Change-point problems have a long history and large 
literature in statistics. Ideas from change-point modeling 
are also very closely related to topics such as edge de- 
tection and fitting functions with features such as jumps 
and peaks. The semiparametric modeling discussed here 
provides a general and flexible way to fit models with 
such features using a variety of linear smoothers. These 
models also provide simple ways to fit functions with 
properties such as local constancy. 
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Abstract A nonparametric algorithm for restoring digital 
images corrupted with additive noise is presented. Itt is 
assumed the noisy image is realization of a spatial 
autoregressive process which also has a regression 
component On the basis ofo the nonparametric functional 
estimation theory, a nonparametric estimate of the image is 
given as a restoration result The edge preserving issue is 
under consideration in this study. With the proper selection 
of the algorithm's parameters, the estimate can preserve step 
edges while suppressing noise. The proposed algorithm is 
not sensitive to the estimation accuracy of the parameters, 
and can be run almost as quickly as a local averaging filter. 

1. Introduction 

Image restoration is a process to recover the 
original image from degradations due to blurring and noise 
corrupting. In this paper, the degradation sources are limited 
to additive noises. The most common model in this setting 
is the following 

y*f = ^< J ) +« i.J (1) 

where L j = 0,1 m-1, {yy} is the degraded observation, 
fy = fftj) is the original signal, {eM} is a zero mean noise 
that may contain outliers. The assumption on e^ implies any 
restoration procedure must be resistant to the outliers, or 
robust restoration. In statistical point of view, image 
restoration under this model can be given by a robust 
regression. This approach, however, can have three 
problems. Firsdy, an ordinary parametric regression 
procedure will make various assumptions on the signal 
function and the distribution of noises, which limits their 
practical usefulness. Secondly, model (1) does not capture 
the nonstationarity of the image random field and so current 
smoothing techniques have various limitations in 
performance.   And finally, these smoothers lack efficient 

means to accommodating the need for edge preserving. 
Recently, nonparametric functional estimation theory[l] 
provides us some versatile regression tools that can be 
utilized to recover noise-degraded images. 

It is well known that image restoration is an ill- 
posed inverse problem, i.e., no unique solution exists. 
Hence, Previous studies either employ minimum mean 
square error (MMSE) criteria or Bayesian analysis to 
estimate {f^} given observations {y^}. In the MMSE 
approach, images are initially assumed to be a stationary 
random field, and later to be a nonstationary mean, 
nonstationary variance (NMNV) image stochastic model[2]. 
The Bayesian approach to restoration is based on the a 
priori knowledge of the statistical properties of the 
ensemble of objects {0- This usually takes the form of a 
Markov random field[3,6]. The use of local properties is the 
characteristic of both NMNV and Markovian models. In this 
paper, local dependence is expliciüy modeled as a spatial 
autoregressive process compounded with a regression 
component, which we call the AutoRegressive-REgression 
(ARRE) model. Parametric linear ARRE models have been 
studied by Ripley[4] and Cliff and Ord[5]. This paper 
extends the linear ARRE to be a general ARRE model 
which is adaptive to the image. The smoothing algorithm 
based on this model can smooth out both additive noises and 
outliers (impulse noises) while preserving sharp edges and 
corners and therefore keeping most details clear. It is very 
time efficient as well. If no impulse noise is present, 
restoration can be done in one loop on an image matrix. In 
addition, each pixel can be processed separately without 
waiting for the results of its neighboring pixels. This makes 
it suitable for parallel processing. 

2. ARRE Image Model and Its Nonparametric Estimator 

Let N„ = {y„ | grid point (ij) is within a local 
neighborhood of (u,v)}, where (u,v) is not necessarily a grid 
point. The ARRE image model assumes 



266    Non-parametric Edge Preserving Smoothing 

Yii = sr( Wy , i , j )  + e u (2) 

where i, j = 0, 1 m-1, fjj = g(Ns4j) is the unknown 
image function that needs to be estimated by a restoration 
procedure. In contrast with this model, we would like to 
call Eq.(l) the REgression (RE) model. We assume that this 
image field {yav} satisfies the qwnixing condition[7]. We 
also assume that random field {yuJ is homogeneous in <p- 
mixing, i.e., coefficient <pr does not depend on position (u,v). 
To give an ARRE restoration, we only need to know r, 

where N„(k) refers the k-th element of Nm, W! and w0 are 
weights satisfying w0 > wt > 0 and w0 + 4Wi = 1. These 
weights play important roles in regulating smoother's outlier 
resisting and detail preserving abilities. Our experiment 
results show this four-neighborhood system works well for 
various types of images. We define dist(y) as the square 
of Euclidian type of distance function just for the 
convenience of analyzing the mean distance Udist(NIlvJ'Iij). 
We denote the restored image by {f^}, where mxm is the 
image size. We give a nonparametric estimate of ARRE 
model (2) in the following equation (3). 

= IBUTL        u,v=0,l, 
Jc^ (diet{Nw.Ny))kj^ (u-1) k2-ht (v-j) 

,m-l. (3) 

which determines the size of neighborhoods NU¥. 

The nonparametric estimator for RE model (1) and 
their properties have been well studied by 
researchers[8,9,10]. e^'s can be both dependent and non- 
identically distributed random variables satisfying the <p- 
mixing condition. One recent research which is analogous 
to our study in the time domain is the nonparametric 
prediction for an autoregressive time series, by Collomb[7] 
who studies the autoregressive time series in Rp is of the 
form: y^r^,.... y J+e,. 

To give a nonparametric estimator for the ARRE 
model (2), we assume observations {y^} come from a cp- 
mixing random field and letting N^ s contain equal number 
of pixels. The neighborhood structure NU¥ is determined by 
the cp-mixing condition of the given image. In this study, 
for the simplicity, we empirically use a four-neighbor system 
for each pixel. N„ is then the following 1x5 vector: 

N    = {  ,(yi-U-i Yl-U  .  Ya 
YiJ • 

> Y±I-L 
Yij+i > 

where k^C^kiC'/hi), i=l,2, are two kernel functions[l]. 

This estimate can be justified in two ways. Firstly, 
note that the random sequence in [7] is implicitly assumed 
to be generally nonstationary. When we explicitly include 
a deterministic spatial variable (ij) to capture the 
nonstationarity and assume image signals are cp-mixing, the 
course of proof of the asymptotical properties[7] is still valid 
as long as the joint density function of y9 and Ny is 
continuous in the spatial position variable (ij). 

Secondly, if we let kljh](') be the rectangular kernel, 
(3) will degrade to the RE estimator when window size h, is 
large enough and (u,v) locates itself within the smooth area 
of the image. The ARRE model is then reduced to RE 
model. It is worth noting again that, in [10], random noises 
do not necessarily have to be identically distributed nor 
independent of each other. What the ARRE model and its 
estimator differ from RE model is the results in edge areas 

if (i-l<u<i)A(j-Kv<j) 
if (i=u)A(j=v) 

where the center pixel y6 = (y^ j.1+yi., j+y; j-i+y^ is the 
initial value for the interpolation. For the purpose of 
robustness against outliers, we let y„ be the center of Nu and 
leave this center pixel out of the summations in (3). We 
then measure the distance of NUT and Nu by the following 
weighted sum of squares: 

and in the areas with discontinuities. Our restoration 
algorithm based on the ARRE model preserves edges and 
details while RE model does not In finite sample situation, 
we have found through simulations that the triangular kernel 
based estimate performs better than the rectangular one in 
suppressing certain type of impulse noises but worse in 

dist(Nuv, ,  iV1J=w1(JVuv(l) -tf„(l> )2+w1(Nwr(2) -NiJ(2))3+w0[Nuv(3) -i^(3) ) 
+ur1(itfuv(4)-^(4))2+v1(^uv(5)-^(5))2 
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smoothing regular noises. In our image restoration 
experiments in section 3, we always let k^O be the 
rectangular kernel. 

There are four parameters hx, h* w„, and wt. We 
believe that regular MSE-based cross-validation[7] with a 
smoothness constraint is no longer sufficient for edge 
preserving and the MSE of the second order derivatives 
should be included in the objective function of the 
optimization. While this is the direction to go, the possible 
performance improvement of using this type of optimization 
would be restrained by the complexity of the restoration 
filter. Our approach in this paper is to consider the effects 
of these parameters separately in the following way. 

We determine h, by studying the mean distance 
Edist(Nu¥rNjj). For the ease of analysis, we assume the noise 
field {ey} is a zero-mean independent sequence with a 
standard deviations (std) on. Outliers are zero-mean with a 
std CT„ which is significantly greater than crn. 

It is easy to calculate that, in the smooth area with 
no outliers, EdistCNJNjj) = 2o£, and in the smooth area with 
an outlier, £d«t(Nuv,Ny) = w0(a£-oi) + 2oi When f„, and 
f. are located on the opposite sides of an edge that has a 
grey level contrast d, inwu^vU1J))i?dist(Nav,Nij) = w^2+2of. 
When f„ and fM are located on the same side of this edge, 
max,(0,vUU))£dist(Nuv^ = 4wxd

2+2oi Therefore, for the 
object of robust restoration, we should choose ht such that 

2oi < hi < wotö-of) + 2a2 (4) 

For the object of edge-preserving restoration, we should 
choose ht such that 

4w1d
2+2of < hi < w0d

2+2a£ , (5) 

where d is the minimum grey level contrast of all the edges 
that need to be preserved. An additional condition on the 
weights follows from (5): 4wx < w0. Obviously, to select h, 
to satisfy both (4) and (5), we have to have o£ > dMw^w,, 

+ <4 

As for the value of 1^, since it is the parameter to 
control the balance between fidelity and smoothness, we 
choose its value according to the nature of the data. In this 
image processing application, we choose to use either 2.5 or 
3.5 to let the weighted averaging (3) take place over 5x5 or 
7x7 windows in the image plane. 

Note that the denominator in (3) will become zero 
on the edges or outlying noise corruption occurs.   To 

distinguish outliers from edge elements, a local statistical test 
is sufficient when it is pluged in (3). A complete 
nonparametric ARRE image restoration algorithm can be 
found in [13]. 

3. Experimental Results 

In all the experiments, we use w0 = 0.6 and wt = 
0.1 so that w„ + 4wx = 1 and 4wx < w0. We let ht be 
(4w!d2+2oi + Wod2+2oi)/2, hj be 2.5 (5x5 averaging 
window) except for the tool image where hf=3.5 (7x7 
averaging window). For each experimental object, we run 
the ARRE restoration algorithm twice, called twicing. That 
means that, after we get first output from the algorithm, we 
take this output as the input of the second run. The results 
are summarized in Table 1 in terms of the Signal-to-Noise 
Ratio (SNR) improvement Actual photos of all images can 
be found in [13]. 

4. Conclusions 

In this paper, we present an edge-preserving 
restoration algorithm based on the nonparametric estimation 
of an autoregressive-regression model. We also demonstrate 
its performance by the experiments. It smooth both additive 
noise and additive impulse noise while preserving details 
including sharp corners. Whereas the priority is detail- 
preserving, the balance between noise suppressing and detail 
preserving can be adjusted by the input parameters d and h2. 
Because of the nonparametric nature, no assumption is 
required concerning the distribution and the independence of 
the noises. 

In this algorithm, we need one a prior information 
an, the standard deviation of the additive noise, to determine 
the parameter ht. A method that estimates CTB directly from 
the degraded image can be found in [12]. We can also 
simply estimate cn in a flat area of the image. In [13], we 
showed that the ARRE restoration algorithm is not sensitive 
to the estimation error of on and d. 
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degraded 
image 

ARRE 
restoration 

ARRE 
twicing 

recursive 
median 

simulated image 19.880 28.807 33.656 30.652 

girl image 16.541 23.936 23.203 18.923 

tool image 12.053 22.592 27.387 21.932 

scene image 18.534 21.550 22.775 22.660 

Table 1. Signal-to-noise ratio improvement with the ARRE restorations. 
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Abstract 

Epi Meta, Version 1.2, is a meta-analysis software 
package developed for the Centers for Disease Control 
and Prevention (CDC) with the intent of distribution to 
those who analyze public health data.  The software was 
designed to 1) be user-friendly from both a software and a 
statistical point of view; 2) provide meta-analysis options 
not previously available to this group of users in a 
menu-driven user-friendly package; 3) include the features 
necessary to produce a meta-analysis for particular data 
structures without needing additional software or 
knowledge of a programming language; and 4) interface 
with CDC's Epi Info comprehensive data management and 
data display system. 

Throughout the design and implementation of Epi 
Meta a balance was maintained so that the novice user 
would not be overloaded with too many decisions, yet the 
more experienced user would not be limited to a "canned" 
meta-analysis.  Built into the system are default choices 
which provide the novice user with a standard meta- 
analysis and enough summary information and graphs to 
understand program output and analysis results.  Program 
and system design and architecture features include heavy 
emphasis on graphical displays to evaluate the fitted 
models, and menus to make it easy to choose and iterate 
on models and data. Although Epi Meta is primarily 
focussed on the meta-analysis of dose-response studies of 
relative risks, the underlying methods are much more 
widely applicable.   The analysis methods fit straight-line 
relations within each study relating relative risk to 
exposure dose using transformations and weighted least 
squares.   Goodness-of-fit of the dose-response model is 
assessed and an outlier analysis is performed by means of 
graphical and tabular diagnostic displays. The comparison 
across studies takes the resulting slopes and intercepts 
from the within study analysis and individually and jointly 
compares the results using fixed and random effects 
inferences.   Epi Meta uses menus and on-screen 
information to guide the user through the analysis of the 
multiple individual studies and the comparison across all 

the studies. Integrated into the package is the data 
management facility of Epi Info, allowing for easy data 
entry and editing of the data throughout the meta-analysis 
session.  The software was developed by Battelle under 
Contract No. 200-87-0540 with CDC.  This paper 
discusses the design decisions involved in producing a 
stand-alone statistical software package through 
presentation of the decisions made in developing Epi 
Meta. 

Overview 

Epi Meta was developed by Battelle for CDC to 
provide public health officials with a tool to help them 
draw appropriate inferences when combining results 
across multiple epidemiological studies.  The software is 
oriented toward epidemiological studies and is intended to 
be used by public health officials with an excellent 
understanding of the data but not necessarily advanced 
training in either statistical theory or computer 
programming. The statistical methods to be included in 
the software were determined by a literature review of 
methodology and application papers dealing with meta 
analyses of epidemiologic and medical studies and by 
CDC's experience with the target audience of public 
health officials.  The literature review revealed one 
striking dissimilarity between the statistical approaches 
suggested in the methodological papers and those actually 
utilized in application papers.  The methodology 
discussions nearly unanimously recommended the use of 
random effects model based inference procedures, 
whereas almost all the meta-analysis applications reviewed 
were based on fixed effects models and inference 
procedures. Therefore, a primary goal of Epi Meta was 
to provide user-friendly software that offered easy 
implementation of the random effects model to address the 
disparity between the methodological recommendations of 
the statisticians and the methodological practice carried 
out by the medical and epidemiological meta-analysts. 

Other requirements included: 

* Development of this software was carried out by Battelle under Contract No. 200-87-0540 with 
the Centers for Disease Control Epidemiology Program Office. 
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1. The package needed to be user-friendly from a 
computing standpoint, i.e., it would not require 
any computer programming and would be easy to 
learn to use.  As a corollary, the program 
documentation needed to be equally user-friendly. 

2. The package needed to be user-friendly from a 
statistical standpoint, providing: 

a. a default analysis but also alternative 
analyses, options and diagnostic displays 
and statistics. 

b. the ability to quickly and easily iterate on 
the analysis — deleting studies, choosing 
transformations, changing models, making 
predictions, etc. 

3. The package needed to be portable and widely 
available, not requiring expensive or specialized 
software or hardware. 

The software and statistical design decisions made 
in developing Epi Meta are illustrative of programming 
issues that are characteristic of the development of stand- 
alone statistical software for customized applications. 
These distinctive statistical programming requirements 
arise from the fact that in developing user-friendly 
customized statistical software for individuals who are not 
professional statisticians, there is not necessarily a single 
series of steps or a single right answer for any given 
analysis and certainly no right answer for all analyses. 
The added layer of complexity in statistical programming 
comes with the difficult decisions concerning such issues 
as: 

■ how much of a canned analysis (a black 
box) do you provide 

■ how many options do you make available 
■ how much guidance do you give 
■ how many warnings and diagnostic tools 

are required 
■ how do you lead the unsophisticated user to 

conclusions while still guarding against 
inappropriate inferences. 

Most often, statistical analysis is dynamic and 
iterative, leading to the additional question of how do you 
develop a software interface and output so that it is easy 
to iterate and the user has the information necessary to 
perform these iterations. 

The software design decisions that address these 
specific statistical programming needs involve the user- 
friendliness of the system (from a computing standpoint): 

use of a menu-driven system, on-line help, ease of data 
entry and data editing, etc.  The statistical design 
decisions that address these needs can be viewed in a 
hierarchical manner.  On the first or primary level are the 
statistical methodology and programming decisions that 
are made by the software developers. These decisions are 
embedded in the product and transparent to the user, 
noted only in the technical software documentation.  An 
example of this level of decision in Epi Meta would be 
the weighting algorithm (Dersimonian and Laird) used in 
the random effects analysis.  On the second level are 
decisions made by the developers that cannot be changed 
by the users but which are noted in the user's program 
output as informative messages.  An example of this in 
Epi Meta is the use of the theoretical weighted residual 
mean square (WRMS) of 1 if there is not significant 
heterogeneity in the weighted linear regression for 
determining the within study dose-response slope.  On the 
third and highest level are decisions that are so specific to 
an individual analysis or so capable of changing the 
results of the analysis that they are incorporated as user 
options in the software package. An example of this level 
of decision in Epi Meta is the choice of whether to use an 
intercept or no-intercept model in determining the within- 
study dose-response slope. Further examples of these 
types of decisions are given in the presentation of Epi 
Meta that follows. 

Epi Meta 

Data Management System 

As mentioned above, a key requirement of user- 
friendly statistical software is the ability to quickly and 
easily iterate on the analysis. This, in turn, requires ease 
of data entry and editing.  In the case of Epi Meta, it was 
essential that users be able to easily add and remove 
dose/exposure levels and studies.  For this reason, Epi 
Info, a CDC-distributed data management and analysis 
software package familiar to many public health officials, 
was chosen as a data management "front-end" to Epi 
Meta. Epi Meta transparently calls Epi Info's data 
management facilities to allow the user to create, edit and 
save data sets within an Epi Meta session. 

Epi Meta allows the user to create two types of 
data files.  The first type is for the case where there are 
multiple dose levels per study. 

Figure 1 illustrates the first data entry screen for this type 
of file.  For each study in the analysis, the user can enter 
up to eight dose levels. Within each dose level the user 
enters the units of the dose level, the relative risk, and the 
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Study Number 1 

DOSE RESPONSE HETA ANALYSIS 

Please enter the following Information for EACH study: 
Study Name 
Dose/Exposure level Data (Maximum of 8 Levels): 

Relative 
Risk(RR) 

Std Error 
(RR) 

95* Confidence Bounds*« 
Lower Upper 

** Note:   Substitute for the Standard Error of the Relative Risk. 

PAGE DOWN to enter STUDY LEVEL CHARACTERISTICS 
STuDYHAHE: All entries allowed   You must enter data 
<Ctrl-N>-New   <Ctrl-F>-F1nd   F5-Print F6-Delete F9-Cho1ces   F10-0one   Rec- 

Figure 1.  Data Entry in Epi Meta 

The within-study analysis is only operative in the case 
where there are multiple dose/exposure levels per study. 

Once the data file for analysis has been specified, 
a within-study analysis options screen is presented as 
illustrated in Figure 2. 

= Within-Study Analysis 

Choose the following parameters: 
Model:     0 

0 ■ Fixed Intercept 
1 • Estimated Intercept 

Transformation: 
Relative Risk: 1 
0 ■ None 
1 - Natural Log 

Dose Level: 0 

standard error or upper and lower 95 % confidence bounds 
for the relative risk. 

The types of statistical decisions mentioned above 
are already operative at this stage of Epi Meta.  For 
instance, if the user enters both the standard error and the 
95% confidence interval, the program will use the 
standard error as the measure of variability for that 
exposure level, representing a primary level decision 
transparent to the user. 

The second type of data file allowed is for the case 
where there is a single dose/exposure level per study.  In 
this case, for each study the user enters the study name, 
the relative risk, and the standard error or upper and 
lower 95% confidence bounds for the relative risk. 

The data entered into either of these study level 
data files is not limited to dose/exposure levels and 
relative risks.  An option allows for entry of user-defined 
response variables and an associated measure of 
variability. However, for this discussion, a series of dose 
levels with associated relative risks within each study will 
be used for illustration of the software. 

After the data have been entered into Epi Meta, 
the analyst has the opportunity to edit the data prior to 
analysis. The analysis process is divided into two 
portions, a "within-study" analysis and an "among-study" 
analysis. Each portion is discussed in turn below. 

Within-Study Analysis 

The within-study analysis provides the user the 
ability to calculate the summary statistic(s) for each study 
(a slope, or a slope and an intercept) that will 
subsequently be used in the among-study meta-analysis. 

Figure 2.  Within-Study Options Screen 

This screen is an example of the third and highest level of 
decisions required in statistical programming:  those 
decisions that are presented as options to the user.  Even 
here, however, there are difficult primary level choices to 
be made, for only a subset of all possible options will be 
made available to the users.  The options presented allow 
the user reasonable flexibility in determining the type of 
analysis without providing all possibilities.  In Epi Meta, 
the user has a choice of intercepts and data 
transformations, but is limited to the straight line model 
and weighted linear regression chosen by the software 
developers.  The user's data transformation options are 
limited to a natural log transformation. As explained 
earlier, defaults are provided at all levels of the program 
as guidance for less experienced users.  These defaults 
represent a compromise between providing a "black box" 
analysis and providing a wide variety of options.  In this 
case, the default option for the user is to run the within- 
study analysis using a fixed intercept model, a log 
transformation of the relative risk and no transformation 
of the dose level.  Decisions concerning the default 
choices are often very difficult.  For example, in the case 
of Epi Meta, many epidemiologists prefer a fixed 
intercept model because of the contention that the relative 
risk at dose zero is known to be 1.  On the other hand a 
statistician may prefer the use of a variable intercept 
model to allow for a better fit within the range of the data 
if there is non-linearity at low dose levels.  Because the 
target audience for this software is public health officials, 
the fixed intercept model was chosen as the default. 

Since Epi Meta was designed primarily as a tool 
for public health officials, many of the design decisions, 
such as the use of defaults, were made with the intention 
of helping those target users. However, other options 
were included to allow users to modify the analysis. A 
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good example of this occurs in the case where the user 
chooses the variable intercept model.  Here the user is 
given the option to center the dose levels, reducing 
correlation between the estimated intercept and slope for 
each study.  The screen for this option is illustrated in 
Figure 3. 

: Choose Dose Centering Value * 

In a normal regression, the Intercept represents 
the response value at a dose level of 0.   To 
reduce correlation, the doses or ln(doses) nay 
be adjusted about a centering value.   Choose one 
of the following as the centering value: 

Default 
Average 
User-Specified 

0.0000 
106.5567 

Range of dose levels across studies: 
(3.0000, 403.0000) 

Wlthln-Study Analysis ~]| H to Hove"! EHTER to Select 

Figure 3. Dose-Centering Options Screen 

The average dose level is provided for those that would 
like to center the doses at the mean level, and the range 
of dose levels is provided for those who wish to specify 
some other level.  This on-screen information is an 
example of a second level design decision that is user- 
friendly both from a computing and a statistical 
standpoint.  Note that if die user specifies a dose level 
outside the range of the reported dose levels, the user is 
warned and asked for confirmation. Here the user is 
provided guidance, but left with the final analysis option. 
The default option is no dose centering, allowing users 
unfamiliar with the reasons for choice of a centering value 
to pass through this stage. 

The actual calculation of the within-study slope 
and intercept involves many primary and secondary level 
decisions, including the appropriate weighting scheme for 
the weighted linear regression, the heterogeneity test, and 
an algorithm for determining the appropriate weighted 
residual mean square.  In general, options for primary 
and secondary level decisions are not offered to the users 
for one of two reasons:   1) the chosen methodology is 
determined to be most appropriate; or 2) the different 
options that could be made available would have only a 
minor effect on the calculated results. 

Presentation of diagnostics and results in Epi Meta 
includes both numerical and graphical displays and output. 
Many primary and secondary level decisions are made 
here to help determine both the manner in which 
unsophisticated users are led to appropriate conclusions 
and the amount of information available to more 
sophisticated users to evaluate and choose among results. 

An example of the first screen of numerical output in Epi 
Meta for the within-study analysis is presented in 
Figure 4. 

Hodel Type: Estimated Intercept, ln(Relat1ve Risk). Dose/Exposure Level 
Study Käme: EXAMPLE STUDY 1 Study Nurter: 1 
Number of Dose Levels: 6      Dose Centering Value:   0.0000 (no centering) 

Estlmate(s) SE(Est1mate(s)l 
Estimated Intercept: -0.21262682 0.07713190 
Slope: 0.00230901 0.00066787 
Calculated   URHS: 0.6601 df: 4 p-value: 0.6197 
Theoretical URHS of 1.0000 with Infinite df 1s used 1n the analysis since 

the calculated HRMS offers no evidence of extra variability. 
STUDY SUHHARY 

Studentlzed 
Dose Level Relative Risk SE (Relative Risk)     Residuals 

60.0000 0.8900000 0.0507 -1.5119 
90.0000 1.0900000 0.1023 1.0961 

144.0000 1.2800000 0.1879 0.9313 
204.0000 1.2400000 0.2193 -0.2789 
258.0000 1.4700000 0.3519 0.0104 
403.0000 1.7000000 0.5501 -0.7608 | 

Note: '**' after studentlzed residual Indicates 1t 1s a possible outlier    | 

Figure 4. Within-Study Output 

The first few lines of the output are devoted to 
summarizing the user-specified input decisions made 
earlier.  Next, a summary of the within study analysis, 
the parameter estimates and the associated standard 
errors, is listed.  Immediately following the estimates is 
the goodness-of-fit result discussed above.  The calculated 
WRMS and degrees of freedom are listed as well as the 
associated p-value for the chi-square statistic which is 
used as a test of heterogeneity.  If the p-value is not 
significant at the 5 percent level, a note is placed on the 
next line letting the user know that an internal decision 
has been made to use the theoretical WRMS of 1 with 
infinite degrees of freedom.  This message alerts the user 
to a statistical methodology decision that may not have 
been anticipated, while still maintaining internal control of 
the analysis. 

The last half of the page provides a summary of 
the study, listing for each dose level, the response 
variable, the standard error of the response, and the 
studentized residual.  An outlier test is performed on the 
studentized residuals, flagging possible outliers with a 
double asterisk. Here the analyst can use either the 
double asterisk as an indicator of a possible outlier or 
examine the actual studentized residuals. 

Graphical diagnostics are provided through three 
types of graphs:   1) a normal probability plot of the 
studentized residuals, 2) a plot of the studentized residuals 
versus the dose levels, and 3) a plot of the estimated line 
and the observed relative risks, appropriately transformed. 
These graphs were chosen because they help the user 
visually assess in a simple and straightforward manner 1) 
the normality of the data; 2) possible outliers; and 3) the 
fit of the model to the data.  An example of the type of 
diagnostic graphical display available is illustrated in 
Figure 5. 
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STUDY : EXAMPIE STUDY 1 
ln(Relative Risk) vs. Dose/Exposure Level 

0.4600 

I        1         !         i    / i 

1              I              !           /'              "• 

j               ■) j                  1                   I                  1 

 L/L....1 1 j 

-0.24*0" 

A         i         i         i         i 
/     !                         '                          '                          i                         i 

/                      \                         \                          \                          \                          \ 
 1 1 1 ! !  

aOOOO 73.6000 1B7.2000 238.6000 314.4000 333.0000 471.6000 

DOMSEXROSUI-* L*ual 

Figure 5.  Within-Study Diagnostic Graph 

Among-Study Analysis 

All the features and statistical analysis of Epi Meta 
discussed so far were designed to provide the input 
information and capabilities required to conduct the 
among-study meta-analysis.  The input for the among- 
study analysis is either the file created by Epi Meta in the 
Within-Study Analysis or the Single Dose Level Per Study 
data file created using the data management system, 
where both files contain the point estimate(s) and their 
associated standard error(s) for each study which will be 
used in the meta-analysis. 

A slightly different approach was taken for 
handling the statistical programming decisions in the 
among-study meta-analysis as compared to the within- 
study analysis.  The user is given no control over the type 
of analysis to be conducted. The only program choice 
made available to the user is the choice of the data file on 
which to run the analysis.  Rather than allow the user to 
choose certain analysis options, such as a fixed versus 
random effects model, or an individual versus joint 
parameter analysis, the decision was made to present all 
results for several selected analyses, along with certain 
warnings and guidance.  Two levels of output reports are 
offered:  a "Complete Analysis Report" and a "Summary 
Only" report. Therefore, in a similar fashion to the 
within-study analysis, the user is given options concerning 
which analysis to use; however, the results for all options 
are always presented. In a like manner, a "default" 
analysis is available in the form of the summary report, 
where the summary results presented are offered as the 
default "answer". 

As in the within-study analysis, the most difficult 
statistical design decisions occurred in deterrnining which 
results should be presented, in what manner, and with 
what degree of interpretation and guidance. Again both 
numerical and graphical displays and output were 
provided. 

An example of the "Complete Analysis Report", 
which presents all analysis results and graphs for 
individual and joint parameter analysis, is provided in 
Figure 6. 

The first three lines of the "Complete Analysis 
Report" provide general information concerning the model 
on which the individual study parameter estimates are 
based and the file used for the analysis.  This kind of 
simple user-friendliness from a computing standpoint also 
has benefits from a statistical standpoint, making for 
easier iteration and comparison of analysis.  The first set 
of results presented is the individual parameter analysis 
(slope or slope and intercept).  The F-value or chi-square 
statistic, degrees of freedom, and the associated p-value 
for the test of homogeneity of the parameter across 
studies is listed.  If significant heterogeneity is indicated, 
an asterisk (*) is placed after the p-value and a warning is 
placed on the line immediately after the test of 
homogeneity letting the user know that the fixed effects 
model estimates are judged inappropriate because of 
significant heterogeneity.  The flag and warning strike a 
compromise between refusing to present the results 
because they are judged questionable by the software 
developer's judgement, and presenting the results with no 
guidance or warning when inferences based on the 
analysis might be inappropriate. 

Immediately following the test of homogeneity of 
the parameter is the fixed effects model analysis.  The 
combined parameter estimate and standard error of this 
estimate are listed along with 95% confidence intervals. 
An outlier analysis is presented, listing both the 
studentized residual and an outlier indicator, similar to 
that found in the within study analysis.  The final line of 
the fixed effects model analysis always reminds the user 
of the assumptions on which the model is based, i.e. the 
validity of the fixed effects model estimates is based on 
the assumption that all study parameters are 
homogeneous. The output for the random effects model 
for the individual parameter estimates is similarly 
displayed if the among-study variance component estimate 
is positive.  If this estimate is not positive, then only the 
among-study variance component estimate is listed along 
with a warning that the random effects analysis is not 
estimable. 
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AHONG-STUDV ANALYSIS 
MODEL TYPE:   Estimated Intercept. ln(RR). Dose/Exposure 
FILE: C:\EPIHETA\EXAHPLES\EXAHPLE.REC (DEFAULT.HTA) 

INDIVIDUAL PARAMETER ANALYSIS 

ANALYSIS OF INTERCEPTS 
"est of Homogei 

Chl-Sq Value 
Test of Homogeneity of Intercepts 
------* 3.670825     df: p-value: 0.159548 

Fixed Effects Model 
Combined Intercept 

-0.16563291 
SEtComMned Intercept) 

0.07052021 

Combined Intercept 95» Confidence Interval 
( -0.30385252. -0.02741330) 

Study Studentlzed Residual Outlier Indicator 
'1 -1.50406114 

2 -0.07031039 
3 1.91348599 

NOTE: Fixed Effects estimate validity based on the assumption all 
study Intercepts are homogeneous 

Random Effects Hodel 
Combined Intercept 

-0.09429109 
SE(Coab1ned Intercept) 

0.14035810 

Combined Intercept 95* Confidence Interval 
( -0.69372430. 0.50514212) 

Among Study Variance Component 0.02893749 

Outlier Indicator Study Number Studentlzed Residual 
1 -0.96025834 
2 -0.30627719 
3 1.37299328 

' «*■ Indicates the Studentlzed Residual greater than 2 
•«*»■ indicates the Studentlzed Residual greater than 3 

ANALYSIS OF SLOPES 
Te!n,OSfaHV°Suert,0f

2z!S?e!44309     df: 2 p-value: 0.000013« 
* WARNING: Fixed Effects Model Inappropriate -- Significant Heterogeneity 

Fixed Effects Model 
Combined Slope 

0.00299949 
SE(Comb1ned Slope) 

0.00064700 

Combined Slope 95* Confidence Interval 
( 0.00173137. 0.00426762) 

Outlier Indicator Study Number Studentlzed Residual 
1 -4.16887527 
2 1.12484845 „ 
3 4.56416075 *** 

NOTE: Fixed Effects estimate validity based on the assumption all 
study slopes are homogeneous 

Random Effects Model 
Combined Slope 

0.00915249 
SEKomblned Slope) 

0.00521883 

Combined Slope 95* Confidence Interval 
< -0.01313578. 0.03144075) 

Among Study Variance Component 0.00007295 

Outlier Indicator Study Number Studentlzed Residual 
1 -1.00730318 
2 -0.24616392 
3 1.28972219 

• **• indicates the Studentlzed Residual greater than 2 
'***• indicates the Studentlzed Residual greater than 3 

JOINT ANALYSIS 

Test of HOHOGENEITY of Slopes and Intercepts Jointly  
F-Value: 83.098032       df: 4.27 p-value: 0.000000* 

* WARNING: Fixed Effects Model inappropriate -• Significant Heterogeneity 

Fixed Effects Hodel , „,„..„, 
Combined   Estimates CovrtomMned Estimates) 

Interceot 0 40652180 0.00393325 -0.00003200 
Slope -0.00009200 -0.00003200 0.00000038 

Individual 95* Confidence Intervals for Combined Estimates 
Est. Intercept ( 0.27783740, 0.53520620) 
SloV ( -0.00136209. 0.00117809) 

Study Number Quadratic Form Outlier Indicator 
'l 277.82533287 *** 

2 4.76512035 „ 
3 326.01328099 *** 

NOTE: Fixed Effects estimate validity based on assumption of 
homogeneity of straight lines across all studies Included 
in the analysis. 

Random Effects Hodel . 
Combined  Estimates Cov'Combined Estimates) 

Intercept              -0.06646357 2-SJJJJiIJ 
Slope                      0.00984438 0.00032883 
Individual 95* Confidence Intervals for Combined Estimates 

Est. Intercept (           -0.51730860. H!23!KS! 
Slope                 (           -0.01039752. 0.03008629) 

0.00032883 
0.00002246 

I Study Varlance-Covariance 
0.01958782 
0.00112293 

0.00112293 
0.00006438 

Outlier Indicator Study Number Quadratic Form 
1 1.48733859 
2 0.29681320 
3 3.08044045 

• *»■ indicates the Quadratic Form greater than Chi-Squaretdf - 2. 0.95) 
•**»• Indicates the Quadratic Form greater than Chi-Square(df - 2. 0.9975) 

Figure 6.  Among-Study Output 

The results of the joint parameter analysis are 
printed immediately following the individual parameter 
analysis.  Included in this analysis is an F-value or chi- 
square statistic for a joint test of homogeneity of the slope 
and intercept along with the associated degrees of freedom 
and p-value.  Similar to the individual analysis, if the p- 
value is less than 0.05 an asterisk is printed after the p- 
value and a warning printed immediately following the 
results cautioning the user that the fixed effects joint 
estimates may be inappropriate. 

The fixed effects combined weighted joint estimate 
of the intercept and slope, the variance-covariance matrix 
of the joint estimates, the 95% confidence limits for both 
the intercept and slope, and the joint studentized residuals, 
flagged if the study is a possible outlier, are all listed. 

The random effects model results for the joint 
analysis are presented next if, analogous to the random 
effects individual parameter analysis, the among-study 
variance-covariance matrix estimate does not have all 
elements equal to zero.  If the among-study variance- 
covariance matrix estimate does have all elements equal to 
zero, then the random effects estimates are not presented 
and an appropriate warning is listed.  Otherwise, output 
similar to the fixed effects estimates joint parameter 
analysis is listed. 

The last part of the output, not shown in Figure 6, 
presents a summary of the data used in the meta-analysis. 
This allows the user to store the actual data with the 
results for future reference. 

Note that Figure 6 shows warnings in two places 
that the fixed effects model is inappropriate. The results 
obtained from the fixed effects individual parameter 
analyses are inconsistent with those from the fixed effects 
joint parameter analyses.  This inconsistency does not 
occur for the random effects analyses.  Thus the 
unsuspecting user is warned of impending pitfalls. 

As shown, the "Complete Analysis Report" 
presents the user with both fixed and random effects 
model based inferences for both an individual and joint 
parameter analysis, with certain flags, warnings and 
guidance. Many primary level decisions concerning the 
statistical methodology (where different reasonable options 
were possible) made during the among-study analysis are 
explained to the user only in the technical appendix to the 
user documentation. These include, for the individual 
parameter estimates: the estimate of degrees of freedom 
for the fixed effects standard error, the joint analysis test 
of heterogeneity, the degrees of freedom for the test of 
"significant" studentized residuals, the method of 
estimating the random effects variance component, and 
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the estimate of the degrees of freedom for the random 
effects standard error.  For the joint parameter estimates 
they include: the degrees of freedom for the fixed effects 
variance-covariance matrix, the estimate of the among- 
study variance-covariance matrix, the degrees of freedom 
associated with the among-study variance-covariance 
matrix, the estimate of joint residuals, and the estimate of 
joint confidence levels on predicted values. As mentioned 
for the wifhin-study analysis, these decisions that are 
functionally transparent to the user are usually imbedded 
in the software because either 1) the chosen methodology 
is determined to be most appropriate; or 2) the different 
options that could be made available would have a minor 
effect on the calculated results.  In Epi Meta, decisions 
concerning appropriate methodology were based on a 
prior literature review of methodology and applications 
papers and represent the current recommended 
methodology. However, there are some cases where 
evolving methodology must be incorporated into a 
statistical program.  One methodology choice in Epi Meta 
that is transparent to most users who do not read the 
technical documentation, is the ad-hoc method of 
estimating the random effects among-study variance- 
covariance matrix in the joint parameter analysis.  As 
discussed in the technical documentation, the among-study 
variance-covariance matrix is not invariant to the choice 
of a value on which to center the dose/exposure levels. 
Therefore alternative choices of a centering constant may 
result in differing values of the joint analysis among-study 
variance-covariance matrix.  In general, the more 
customized the statistical application, and the more 
advanced the methodology, the more difficult will be the 
choices concerning which decisions should and should not 
be embedded in the software. 

The graphical displays and diagnostics associated 
with the complete analysis report include, for each model 
and each parameter, the following graphs:   1) a normal 
probability plot of studentized residuals; 2) a plot of 
studentized residuals versus the study number; 3) a plot, 
for each parameter (slope and intercept), of the estimated 
parameter versus the study number; 4) a plot of the 
quadratic forms of the joint residuals versus the study 
number for each model; and 5) a plot, for each individual 
parameter analysis, of the parameter estimates for each 
study with associated 95 % confidence bounds versus the 
overall estimate and its 95% confidence limits.  An 
example of the diagnostic plot of the quadratic forms of 
the joint residuals versus study number is provided in 
Figure 7 below. 

Elsfid Effects Model 
Joint Residuals (QF) vs. Study Number 
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Figure 7.  Among-Study Diagnostic Graph 

An example of the plot of the overall meta-analysis 
estimate and associated confidence intervals along with the 
individual study results is provided in Figure 8. 

Individual Parameter Analysda 
Slope Estimates with 95% Confidence Bounds 

1- MM                                  | 
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Figure 8. Among-Study Summary Graph 

The "Summary Only" report provides a 
compressed summary of the results of the analysis 
providing a "default" best estimate of the combined 
weighted slope or combined weighted slope and intercept. 
This report is for the user who does not wish to choose 
between the alternative analyses presented in the Complete 
Analysis Report.  The decision on which analysis to 
present is based on a decision tree determined by the 
software developers.  If the fixed intercept model was 
used to combine the data within each study, then the 
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random effects model estimates are given provided the 
variance component is positive, otherwise the fixed effects 
model estimates are given. When the estimated intercept 
model is used to combine the information within each 
study and the among-study variance-covariance matrix 
does not have all elements equal to zero, the joint analysis 
random effects model estimates are presented, otherwise 
the joint analysis fixed effects model estimates are given. 
An example of the Summary Report output is presented in 
Figure 9 below. 

SUHHARY OF AMONG-STUDY ANALYSIS 
MODEL TYPE:   Estimated Intercept. ln(Relat1ve Risk), Dose/Exposure 
FILE: C:\EPIHETA\EXAHPLES\EXAMPLE.REC (DEFAULT.HTA) 

JOINT PARAMETER ANALYSIS 

Rand« Effects Model 
Combined Estimate (SE) 

Intercept -0.0665 (   0.1056) 
Slope 0.0098 (   0.0047) 

95* Confidence Intervals 
( -0.5173. 0.3844) 
( -0.0104. 0.0301) 

WITHIN-STUDY SUHHARY 
Study Number Intercept (SE) Slope (SE) 

1 -0.2126 (   0.0771) 0.0023 (   0.0007) 
2 -0.1846 (   0.2787) 0.0072 (   0.0038) 
3 0.2390 (   0.2229) 0.0190 (    0.0036) 

Among Study Analysis ~|| ENTER to Select ||~E5C to Putt 

Predicted Relative Risk »1th 951 Confidence Bounds 
at User-Specified Dose Levels 

Original Data File: C:\EPIHETA\EXAMPLES\EXAHPLE.REC 

Within Study Model: 
Estimated Intercept. ln(Relat1ve Risk), Dose/Exposure Level 

Among Study Model: 
Random Effects:    Intercept - -0.0665   Slope - 0.0i 

User-Specified 
Dose Level 

0.0000 
25.0000 
50.0000 
75.0000 
100.0000 

Predicted 
Relative Risk 

0.9357 
1.1968 
1.5307 
1.9579 
2.5042 

95* Lower and Upper 
Confidence Bounds 

0.4881. 
0.3403. 
0.2175. 
0.1363, 
0.0848. 

1.7937) 
4.2095) 

10.7720) 
28.1169) 
73.9287) 

NOTE:   Dose/Exposure Levels are NOT Centered. 

Among Study Analysis ~| Page Down"T|| Page UpT"| ESC to Quit 

Figure 10. Results of User-Specified Predictions 

Figure 9.  "Summary Only" Report 

Similar to the Complete Analysis Report the first 
three lines of the numerical Summary Report provide a 
summary of the model used to combine the data within 
each study and the file from which the data came. Next, 
the default best estimates and the standard errors of the 
estimates are presented in accordance with the above 
described rules.    Finally, a brief summary of the actual 
data used in the meta-analysis is given. 

Only one type of graph is provided in the 
Summary Report.  For each study, the parameter 
estimates (slope and intercept) with the associated 95% 
confidence bounds are displayed in comparison with the 
overall default best model parameter estimate and 
associated 95% confidence interval (See Figure 8 above). 

A final among-study analysis output option allows 
the interested user to generate predicted relative risks and 
associated 95% confidence bounds for various dose levels. 
The model used to generate these estimates is determined 
using the same decision tree discussed above.  The user 
can enter up to five dose levels and is warned if any of 
the dose levels are outside the range of the model. 

Figure 10 illustrates the output provided when 
user-specified predictions have been chosen. 

The first half of the output page summarizes both 
the within and among-study analyses so that the user is 
aware of the analysis performed to generate the estimates. 
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Abstract 1.0   Motivation 

The concept of statistical strategy is introduced and used 
to develop a structured graphical user interface for guided 
data analysis. The interface visually represents statistical 
strategies that are designed by expert data analysts to 
guide novices. The representation is an abstraction of the 
expert's concepts of the essence of a data analysis. 

The interface consists of two interacting windows: the gui- 
demap and the workmap. Each window contains a graph 
which has nodes and edges. The guidemap graph repre- 
sents the statistical strategy for a specific statistical task 
(such as describing data). Nodes represent potential data- 
analysis actions that can be taken by the system. Edges 
represent potential actions that can be taken by the analyst. 
The guidemap graph exists prior to the data-analysis ses- 
sion, having been created by an expert. The workmap 
graph represents the complete history of all steps taken by 
the data analyst. It is constructed during the data-analysis 
session as a result of the analyst's actions. Workmap nodes 
represent datasets, data models, or data-analysis proce- 
dures which have been created or used by the analyst. 
Workmap edges represent the chronological sequence of 
the analyst's actions. One workmap node is high-lighted to 
indicate which statistical object is the focus of the strategy. 

Data are the lifeblood of science. Because computerized 
data-analysis systems help scientists understand data, they 
have become of central importance to the scientific enter- 
prise, evolving into extensive and powerful systems capa- 
ble of performing many kinds of very sophisticated and 
complex analyses. 

Unfortunately, the structure of data-analysis systems has 
evolved willy-nilly over the years. While much thought 
has been focused on the kinds of analyses that can be per- 
formed by these systems, less thought has been given to 
their overall structure: It seems that the more powerful a 
statistical system is, the more clumsy it is to use. 

In all statistical systems that we are familiar with, even 
when simple data-analysis procedures are used, novice 
users are soon at a loss as to how to combine several data- 
analysis procedures into a cogent statistical strategy that 
reveals the basic information in the data. The very power 
of many systems can actually hinder the data-analysis 
task, especially for users who are novices. We have the 
paradoxical situation that for many users, the increasingly 
powerful and sophisticated data-analysis systems are actu- 
ally less suited to most users for understanding data. 

Copyright © 1994 by Forrest W Young & David J. Lubinsky. All rights reserved. 
Contact the first author for information or for software at forrest@unc.edu, or at the 
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and of their expression in this paper that we have had with Richard A. Faldowski. 
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In this paper we propose that data-analysis environments 
should support the visualization of statistical strategies 
and structures. We present an environment that guides the 
data-analysis steps taken by novice data analysts. Our 
environment also aids data analysts at all levels of sophis- 
tication by showing them the structure of their analysis 
session. In addition, sophisticated users can perform anal- 
yses simply by typing commands, if they don't want to use 
the graphical interface. Finally, our environment includes 
graphical tools that can be used by expert data analysts to 
create the analysis strategies that are used to guide novice 
analysts. 

2.0   Background  

We hold that data analysis is a highly complex activity 
(Young & Smith, 1991) that involves repetitive actions 
that occur over and over again. Thus, data analysis is a 
repetitive, cyclical search for understanding (Lubinsky & 
Pregibon, 1988). We believe that data analysis productiv- 
ity, accuracy, accessibility and satisfaction will improve in 
an environment that guides and structures the actions that 
occur during the search for meaning in data. 

One of our main design principles is that a data-analysis 
system should incorporate a variety of environments, each 
suited to a specific level of data analysis sophistication 
that a user might have, so as to maximize the data analyst's 
productivity and satisfaction. We believe that data-analysis 
software should be designed to accommodate the complete 
range of data analyst sophistication, from novice to expert. 

We identify four kinds of data analysts: novice, competent, 
sophisticated and expert. Accordingly, we propose four 
kinds of environments: First, there should be guidemaps to 
guide novice data analysts through complete data analy- 
ses; second, there should be workmaps to inform novice 
and competent data analysts of the overall structure of 
their data-analysis sessions; third, there should be com- 
mand lines to let sophisticated data analysts dispense with 
the visual aids when they find them unnecessary; finally, 
there should be an authoring mode to help expert data ana- 
lysts create the guidance diagrams that are used by nov- 
ices. In addition to these four environments, which are all 
highly interactive, there should be a script environment for 
automating repetitive data analyses. These five environ- 
ments should be seamlessly integrated within the statisti- 
cal analysis environment. Analysts should be able easily 
switch between them whenever desired, as we believe that 
analysts do not have the same level of expertise for all 
aspects of data analysis. 

Structuring Data Analysis: Young & Smith (1991) argue 
that the process of data analysis is improved when the 
environment structures the actions taken by the data ana- 
lyst. They suggest that an on-going data analysis should be 
represented by an icon-based graphical user interface 
which constructs a map of the analysis as it proceeds. This 
map shows the structure of the actions taken by the data 
analyst, and the data, models and analysis procedures 
involved in those actions. The map presents the analyst 
with a visualization of the structure of the analysis session, 
and can be used to return to previous steps. 

For our work, the formal representation of session struc- 
ture is the workmap. Our definition is: A workmap is a 
directed acyclic graph consisting of nodes and edges (as 
suggested by Young & Smith, 1991), where a node repre- 
sents a data-analysis object (a dataset or a data model) or a 
data-analysis procedure that has been used by the analyst, 
and an edge represents the chronology sequence of the 
objects and procedure (the creation dependencies) during 
the analysis session. Taken as a whole, the workmap is a 
visual, object-oriented, directly manipulable, structured 
representation of the history of a data-analysis session. 

Notice that a node is a self-contained unit of existing data 
(dataset), statistical computation (analysis procedure), or a 
combination of the two (data model), whereas edges repre- 
sent the choices, actions and decisions that a data analyst 
made during the session. Nodes, which are the basic build- 
ing blocks of the on-going data-analysis session, can be 
selected and reviewed at any time. The workmap visual- 
izes the history of the on-going data analysis. It is a real- 
ization of a specific statistical strategy. 

Guiding Data Analysis: At each step of a data analysis 
the data analyst is faced with many choices. Often, the 
data analyst returns to previous steps in order to make dif- 
ferent choices. As stated by Lubinsky and Pregibon 
(1988), "Like a detective, a data analyst will experience 
many dead ends, retrace his steps, and explore many alter- 
natives before settling on a single description of the evi- 
dence in front of him." We argue that data analysis will 
improve when it occurs in an environment that guides the 
actions taken by the analyst to understand data. 

We use the Artificial Intelligence (At) notion of strategy as 
a basis for developing methods for guiding data analysts. 
Several statisticians have developed the notion of a statis- 
tical strategy. These developments are extensively 
reviewed by Gale, Hand & Kelly (1993). Our definition of 
statistical strategy is: A statistical strategy is a formal rep- 
resentation of an expert statistician's conceptual structur- 
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ing of 1) the data-analysis procedures to accomplish a 
specified data-analysis task; 2) the data analyst's actions 
(choices, decisions, etc.) that are possible with the proce- 
dures; and 3) the relationships between the procedures and 
actions needed to accomplish the task. The data-analysis 
task is to understand a specified data-analysis object (a 
dataset or data model). 

For our data-analysis environment guidemaps are the for- 
mal representation of statistical strategy. Our definition is: 
Aguidemap is a directed cyclic graph consisting of nodes 
and edges. The nodes of the graph represent data-analysis 
procedures, whereas the edges represent the analyst's pos- 
sible actions. The structure of the map indicates the order 
dependencies between the procedures and the actions that 
can be taken with the procedures to accomplish the data- 
analysis task of understanding the data-analysis object. 
Finally, the data-analysis object (dataset or data model) is 
represented by a highlighted node of the workmap. It is 
said to be the focus object. 

Notice that a guidemap node is a self-contained unit of 
potential statistical computation, while a guidemap edge 
represents the expert's guidance about moving from one 
computation to the next. Nodes are the basic building 
blocks of potential data analyses, i.e., of statistical strate- 
gies. On the other hand, the edges in the strategy represent 
the data analysts's possible choices, actions and decisions 

regarding the use of data-analysis procedures. They indi- 
cate permissible paths for traversing the nodes. Nodes can 
only be selected when they are highlighted. As a whole, 
the guidemap visualizes and abstracts the essence of an 
expert's statistical strategy. 

3.0   Representing Statistical Strategy 

In this section we discuss our definition of statistical strat- 
egy in detail, focusing on the four key aspects of the defi- 
nition: the formal representation; the data-analysis object 
that is the focus of the strategy; the role of the expert stat- 
istician; and the objects, procedures and actions. 

3.1    The Formal Representation of Strategy 
First, our definition states that a statistical strategy is based 
on a formal representation. Our formal representation con- 
sists of graph structures like that shown in the guidemap 
window of Figure 1 .This figure is a screen image from 
UiSta, the visual statistics research and development test- 
bed (Young, 1994) that implements the ideas in this paper. 

The guidemap, titled Analysis Cycle, presents the over- 
all statistical strategy. This specific guidemap is always the 
first guidemap for a newly created dataset object. It is only 
a small portion of the overall strategy, since it causes addi- 
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Figure 1: Formal Representation of Statistical Strategy in the WorkMap and GuideMap 
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tional "sub"-guidemaps to be displayed in the window. 
Taken as a whole, the guidemap in Figure 1, plus all of the 
additional guidemaps, are our formal representation of sta- 
tistical strategy. 

The strategy concerns a specific data or model object, 
thus, a data or model object is the focus of the analysis. 
The focus object is represented in the workmap window 
by the highlighted (dark) icon. The workmap itself shows 
where this object fits into the structure of the overall on- 
going analysis. The two separate windows emphasize the 
separation between the on-going data analysis (mapped in 
the workmap) and the strategy that is guiding the data 
analysis (mapped in the guidemap) We discuss the work- 
map in the next subsection. Here, we discuss the 
guidemap. 

As stated above, the guidemap is a directed (possibly) 
cyclic graph consisting of edges and nodes. In our work, 
guidemap nodes are represented by the rectangular button 
icons, and guidemap edges are represented by the arrows. 
Thus, the buttons show potential steps in the analysis that 
the analyst is guided to take, whereas the arrows indicate 
the flow of guidance from one step to the next. A node is a 
self-contained unit of potential statistical computation 
which may do its own computations, or, recursively, call 
another strategy. 

Buttons can be "active" or "inactive". Active buttons are 
highlighted (such as the Link:Explore button in Figure 1) 
and are ready to cause an action. Clicking on the ?? side of 
an active button enters a hypertext which causes help to be 
displayed about the action of the button. Clicking on the !! 
side of an active button enters a hypercode which causes 
the button's action to be initiated. Once the button's action 
has taken place, the high-lighting (activation) of the but- 
tons changes: The clicked button deactivates, and the but- 
tons that it points to are activated. Inactive buttons (such 
as the Link:Transform button in Figure 1) are not ready 
to do anything: Clicking on them has no effect. 

There are two kinds of buttons: Flow Buttons, which con- 
trol the flow between various portions of the large struc- 
ture of guidemaps, and Procedure Buttons, which control 
the use of data-analysis procedures. 

Flow buttons include the Link, and GoTo buttons in Figure 
1, and the Return button in Figure 2. These buttons take 
the user to other guidemaps. The Link button takes the 
analyst to a new strategy, whereas the Return button 
returns to the linked-from strategy. The Link button is, in 
essence, a macro data-analysis procedure which is itself a 

GuideMap: Explore Data 

DHelp 
X 
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Show Datasheet 

mm    I    gam 
List VaHables |    List Obs^-vations 

Visualiza Data 

Report Data Summarise Data 

Return Create Data 

GoTo :Nev Data 

ti 
Figure 2: Formal Representation of 

Strategy for Exploring Data 

strategy, since this button opens up new strategies. For 
example, clicking on the !! portion of the Link:Explore 
button in Figure 1 causes the Explore Data guidemap, 
shown in Figure 2, to appear. Correspondingly, clicking on 
the Return button in Figure 2 (when it is highlighted) will 
take you back to Figure 1. Upon return to the guidemap in 
Figure 1, the high-lighting of the buttons will change 
according to the connecting arrows. That is, the 
Link:Explore button will de-activate, and the 
Link:Transform and Link:Analyze buttons will activate. 

The GoTo button changes the focus of the data analysis, 
and of the strategy, to a new data or model object. When a 
new object has been created and named, then the name of 
that object replaces Data or Model in the GoTo button. 
Then, when the GoTo button is clicked, the appropriate 
data or model icon is highlighted in the workmap, and the 
appropriate strategy is displayed in the guidemap window. 

All buttons other than flow buttons are procedure buttons 
that activate data-analysis procedures. In Figure 2 we see 
procedure buttons such as List Variables and Visualize 
Data. When an active procedure button is clicked, the 
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indicated data-analysis procedure (listing variables, show- 
ing the datasheet) is activated. 

3.2    The Focus of the Strategy 

The focus of a statistical strategy is a data-analysis object 
(a dataset or a model). In Figure 1, the icons named Car- 
Ratings and Norm-CarRatings are data icons, whereas 
PCA-CarPrefs is a model. The focus object is repre- 
sented by the icon that is highlighted in the workmap. 

Each time a new object is created, it is represented by a 
new icon. Whenever a new dataset or model object is 
derived from an existing dataset object, an arrow is drawn 
from each of the new object's parents (usually only one) to 
the new object to show the creation dependency. These 
arrows have a meaning that parallels, but is somewhat dif- 
ferent from, their meaning in the guidemap: They repre- 
sent the flow of data into or out of a data-analysis object 
(dataset or model) or procedure as a result of a data ana- 
lyst's action. In the guidemap, on the other hand, a arrows 
represent potential actions a data analyst might take. 

The evolving progress of the data-analysis session is 
shown in the workmap. Certain actions taken via the 
guidemap create new nodes in the workmap. A new 
dataset object may be created by a mathematical procedure 
(such as normalization or principal components analysis) 
or by a non-mathematical operation (such as removing 
variables or merging datasets). A new model object is 
always created by a mathematical procedure. A procedure 
icon appears between the original and new objects when 
the creation involved mathematical operations, otherwise, 
no procedure icon appears. If a procedure icon appears, the 
creation dependency arrow is drawn from the parent 
objects through the procedure to the new object. Naturally, 
a new object may be brought in from "outside" of the sys- 
tem, in which case the new object is not connected to a 
parent (e.g., CarRatings in Figure 1). 

The specific object which is the focus of the analysis (and, 
therefore, of the analytic strategy) is highlighted in the 
workmap. In Figure 1, Scores & Ratings is the focus 
object. Any data or model object in the workmap can be 
selected at any time to be the new focus object. When a 
new focus object is selected, the new strategy associated 
with it is displayed in the guidemap window, and the user 
enters that strategy. 

The workmap and guidemap graphs differ in several 
respects. First, the structure of the guidemap graph doesn't 
change, it remains as shown throughout the analysis, 

although its high-lighting changes. The workmap graph, 
on the other hand, grows as new data and model objects 
are created and as new analysis procedures are used (both 
structure and high-lighting change). Second, the guidemap 
is a (potentially) cyclic graph, whereas the workmap is an 
acyclic hierarchical tree graph. This represents Lubinsky 
and Pregibon's (1988) observation that actions taken dur- 
ing data analysis are not hierarchical, but are cyclical, 
although the resulting analysis is hierarchical. Third, the 
guidemap (as represented by the initial guidemap shown 
in Figure 1, and all its sub-guidemaps) has an entry point 
but no exit point, whereas workmaps have both entries and 
exits. This represents the fact that a strategy has a begin- 
ning step but no final step. The lack of an exit point from a 
strategy reflects the fact that a strategy is cyclic, and that 
users should be able to quit a strategy (with the window's 
close box) whenever they choose. 

3.3 The Role of the Expert Statistician 

We turn now from the first two aspects of our definition of 
strategy (the formal representation and the focus) to the 
third aspect, namely that a statistical strategy represents 
the conceptual structure of an expert statistician. 

It is assumed that the expert is only expert in a proscribed 
domain of statistical analysis, not for the entire domain. 
The role of such an expert is to decide, for the expert's 
area of statistical analysis expertise, what steps are 
involved, and in what order the steps should be taken. 
Thus, the representation shown in the guidemaps in Fig- 
ures 1 and 2 (and in other guidemaps that are not shown) is 
on an experts knowledge about exploratory data analysis. 
These guidemaps represent the expert's conceptual struc- 
ture of the sequence of steps involved in exploratory data 
analysis. The expert creates these guidemaps by using the 
"guidetools" that are discussed in Section 5.0. 

3.4 The Objects, Procedures and Actions 

The final aspect of our definition of strategy is that the 
expert's conceptual data analysis structure concerns three 
classes of things and the relationships among these things. 
The things are the data-analysis objects, the data-analysis 
procedures, and the data analyst's actions. All three are 
included in our representation of statistical strategy. 

Data-analysis Objects: There are two types of data-anal- 
ysis objects: dataset objects and model objects. Both types 
of data-analysis objects are represented by icons in the 
workmap (but not in the guidemap). Datasets are repre- 
sented by tall rectangular icons containing very narrow 
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vertical bars (representing variables). Models, like data, 
are represented by tall rectangular icons, but they contain 
mathematical symbols as well as "variable" bars to reflect 
the fact that models are data that have been subjected to 
mathematical operations. The highlighted data-analysis 
object is the focus of the statistical strategy. 

Data-analysis Procedures: Procedures are represented by 
the wide rectangular icons in the workmap and guidemap 
windows. The procedures are the nodes of the guidemap's 
strategy structure, with each node being a self-contained 
piece of statistical computation, including visualizations 
(construction and presentation of dynamic statistical 
graphics), tables and textual results. These procedure- 
nodes, in the exploratory data-analysis example shown in 
Figure 2, include the show datasheet, list variables and list 
observations nodes, the data visualization, reporting, and 
summary nodes, and the node to create new data. These 
are the kinds of exploration procedures the expert deems 
to be appropriate parts of the analysis strategy. 

Data Analyst's Actions: The possible actions of the data 
analyst are represented in the guidemap by the arrows con- 
necting the procedure icons. On the other hand, in the 
workmap the arrows indicate actions that the data analyst 
has already taken. In the guidemap window, the direction 
of the arrow indicates the order in which the expert thinks 
the novice should use the data-analysis procedures. Thus, 
the data exploration strategy in Figure 2 indicates that the 
expert thinks the first three steps should be looking at the 
data themselves or listing their variable names or observa- 
tion labels. Note that these procedure-buttons are high- 
lighted and others are not. Once all three of these actions 
are taken, the next three buttons become highlighted (and 
the first three become gray), indicating that the next three 
analysis procedures are now available. In this way, the 
novice is guided through the data exploration strategy. At 
least one of the procedure-buttons in the guidemap win- 
dow is always active, indicating which of the procedures 
can be used next by the analyst. Initially, when a strategy 
is entered, certain procedure(s) are highlighted, indicating 
what the analyst should do, and that the system is waiting 
for an action. 

4.0   Using Statistical Strategies 

In the previous section we described how we represent our 
concept of statistical strategy, a representation involving 
two graphs, called the guidemap and workmap. In this sec- 
tion we describe how the data analyst uses these two 
graphs. 

4.1     Using the Guidemap 

The guidemap window presents a map of an expert's sta- 
tistical strategy. This map is used to guide data analyses 
performed by novice analysts. At the very beginning of the 
analysis of a new dataset object (see Figure 1), the 
guidemap window contains the Analysis Cycle 
guidemap. This guidemap presents the overall flow of a 
data analysis, emphasizing the major steps and their cycli- 
cal relationship. The initial highlighting of this map guides 
the user to explore the data, since the Link:Explore button 
is the only active (highlighted) button. 

The flow of guidance is indicated by the arrows connect- 
ing buttons: When an active button's action is completed, 
the button deactivates (changes to gray), and the buttons 
that are pointed to by its arrows are activated. The change 
in high-lighting indicates the actions that the user is 
guided to take next, and the arrows indicate how guidance 
flows. Therefore, in Figure 1, after the data are explored 
the analyst is guided to transformation or analysis. 

Lets consider how the guidemap in Figure 1 works. First 
of all, note that all of the buttons in the guidemap are 
macro buttons: Whenever one of them is used a new strat- 
egy map will replace the one shown in the figure. When 
the new strategy map is completed, the user will once 
again be shown the map in the figure, although it's pattern 
of high-lighting will have changed as indicated by the 
arrows. Thus, after exploring the data, the transformation 
and analysis (i.e., model fitting) buttons become high- 
lighted. If transformation is chosen first, then when this is 
completed the analyst will be guided to analyze the data. 
If, instead, analysis is chosen before transformation, then 
when the analysis is complete the GoTo:Model button will 
become highlighted. Note, however, that if the Trans- 
form button was not used before the analysis, it will 
remain highlighted, so that the user now has the choice of 
either transforming the data and then re-analyzing, or of 
proceeding to look at the model. Finally, after looking at 
the model, the user can either transform the data once 
again, or start over with a new set of data. Thus, this map 
represents the expert's view that data analysis is a cycle 
that begins with exploration and which may or may not 
involve transformation before the first data analysis 
(model fitting). Then, the model resulting from the analy- 
sis should be looked at. The model may or may not sug- 
gest re-transformation, with this cycle of transformation, 
analysis and model inspection continuing indefinitely. 

Note that when a new dataset object is created (for exam- 
ple, by transformation) the user will always be given the 
choice to change the focus of the strategy to the new data, 
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thus beginning the analysis cycle all over again with a 
brand new, unused Analysis Cycle guidemap, starting 
with data exploration. On the other hand, the analyst may 
also continue focusing on the old data, if desired, although 
usually when new data are created the user will shift focus 
to them. Thus, there is an implicit cycle in the data-analy- 
sis process that does not appear in the guidemap: When- 
ever new data are created the analysis cycle usually 
recommences. 

Let us now turn to consider what happens when the 
Link:Explore button is used. Since this button is a macro 
button (i.e., a button which corresponds to another gui- 
demap), when it is used the map in the window changes to 
the Enplore Data guidemap shown in Figure 2. Now, as 
indicated by the button highlighting, the analyst has the 
choice of three actions: show the datasheet, list variable 
names or list observation labels. When the user chooses 
any one of these three actions, the action takes place and 
the chosen button turns gray, since it is no longer a recom- 
mended action. The other two buttons remain highlighted. 

Notice that the just-used button is connected to a short ver- 
tical arrow rather than to another button. This short verti- 
cal arrow is called an and icon because it is an "and gate" 
that restricts the flow of guidance from one action to the 
next. Specifically, all of the buttons that are connected to 
an and icon must be used before guidance can flow 
through the icon to the buttons that follow it. 

Thus, when one of the active buttons in Figure 2 is used, 
no other buttons become highlighted until all three active 
buttons are used. Then, all of the buttons that have arrows 
pointing to them from the and icon are activated. In this 
way the user is guided to use all three active buttons in 
Figure 2 before doing anything else. They can be used in 
any order. Once they are all used, the next group of three 
buttons is activated, and the analyst must use them (in any 
order) before going on. After these three buttons have been 
used, the map appears as shown in Figure 3. 

The guidemap in Figure 3 has changed from the one in 
Figure 2: The data analyst is now being guided to either 
return to the guidemap which led to this one (the one 
shown in Figure 1, but with the Transform and Analyze 
buttons activated) or to create a new dataset object. The 
analyst may wish to take the latter step to create a subset 
of the original data. If the decision is made to create new 
data, then the analyst has the choice of going to those data, 
which brings up a brand new Analysis Cycle map (iden- 
tical to that shown in Figure 1) or of returning to the old 

Analysis Cycle map (with the structure shown in Figure 
1, but with Transform and Analyze activated). 

Note how the strategy has guided the analyst: As shown in 
Figure 1, the analyst must explore the data first. The ana- 
lyst must analyze the data before inspecting the model. In 
Figure 2 and 3 the analyst must look at the data and their 
identifying information before visualizing the data or get- 
ting summary statistics. On the other hand, the data ana- 
lyst has choices: In Figure 1, it is not required, though it is 
possible, to transform the data before fitting the model. 
Similarly, in Figure 2, it is possible to visualize the data 
before seeing summary statistics, or to do the actions in 
the reverse order. 

4.2    Using the WorkMap 

In the example shown in Figure 1, the workmap shows a 
data-analysis session that has already involved several 
major steps. In the first step, the analyst read in the data 
that defined the CarPrefs dataset object. These data were 
then submitted to a Principal Components Analysis, as 
indicated by the PrnCmp procedure icon. This analysis 
produced the PCA-CarPrefs model object. The analyst 
then requested that a new dataset object Scores-PCA- 

DHelp 

GuideMap: Enplore Data 
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I Show Datasheet 

List VaHables List Observations 
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«ifag 
Creat< Data 

GoTo :New Data 

Figure 3: Strategy for Exploring Data 
after using several analysis procedures. 
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CarPrefs be created by the model object. Separately, the 
analyst also read in data that denned the CarRatings 
dataset object. These data were normalized, as indicated 
by the Norm procedure icon, creating a new dataset object 
named Norm-CarRatings, which was merged with the 
Scores-PCA-CarPrefs dataset object to obtain another 
dataset object named Scores & Ratings (the current 
focus of the statistical strategy). 

It should be emphasized that portions (or all) of the data 
analysis can be created directly in the workmap window, 
without using the guidemap window, whenever a suffi- 
ciently sophisticated data analyst wishes. An entire data 
analyses can be created from the workmap without ever 
seeing a guidemap.This can be done by clicking the mouse 
on the body of an icon to obtain a pop-up menu of actions 
that the icon supports. These menu-items are also accessi- 
ble from the Data and Transform menus of the menu- 
bar shown at the top of Figure 1. The pop-up menu for 
model icons corresponds to the Model menu in the menu- 
bar. The analysis procedures are accessed from the 
menubar's Analyze menu (and from an optional work- 
map toolbar that is now shown). 

It should also be emphasized that a previous portion of the 
data analysis can be revisited at any time by simply click- 
ing on the appropriate workmap icon. Then, the analysis 
can be continued in a new direction by simply taking dif- 
ferent steps than were taken previously. Thus, the work- 
map graph provides a very convenient and simple way of 
backtracking, a feature that can be very hard with conven- 
tional systems which do not keep a full history of a data 
analysis session. This can be done across sessions by sav- 
ing (portions of) the workmap and reloading it in a later 
session (only partially implemented at this time). 

Also, note that if the data analyst is performing the analy- 
sis directly from the workmap guidance is available at 
anytime by simply requesting that the guidemap be shown. 
When so requested, the appropriate portion of the 
guidemap structure is displayed in the guidemap window. 
Thus, it is possible for the data analyst to use guidance 
when needed, and to avoid it when it is not needed. 

5.0   Creating Statistical Strategies 

The guidemaps that embody statistical strategy are created 
while in "authoring" mode. In this mode there is an 
Author's WorkBench window in which new guidemaps 
are created. In addition, a Tools menu is added to the 
menubar, and the action of all Data, Transform, Analyze 
and Model menu items is enhanced. 

Taken together, the modified menu items and the new 
Tools menu items are "guidetools" that are used to create 
new guidemaps.The expert uses these guidetools to create 
the buttons that are to become the nodes of the guidemap. 
Recall that there are flow buttons, which control the flow 
between portions of the analysis, and procedure buttons, 
which control the use of data-analysis procedures. The 
Tools menu creates flow buttons, while the other menus 
create procedure buttons. 

Procedure buttons are created by using those menu items 
that are needed to perform the specific type of data analy- 
sis for which guidance is being created. When in authoring 
mode, the action of the menu items is modified so that, in 
addition to the analysis action taking place, a button is 
placed on the author's workbench (the button's title is the 
same as the menu item's name). 

Note the basic design philosophy underlying the creation 
of statistical strategies: The expert creates the guidemap's 
data-analysis procedure buttons by using the menu system 
in exactly the same way that s/he would use it when it is 
not in authoring mode. Since the system is in authoring 
mode, buttons appear in the workbench window. Other- 
wise, everything is the same as when the system is not in 
authoring mode. This design feature means that the expert 
is free to perform whatever analysis is desired, using what- 
ever data-procedures are appropriate, without any new 
authoring "features" changing the process. 

On the other hand, flow buttons, which do not correspond 
to data-analysis actions, are created by using the new 
authoring "features" that are represented by items of the 
Tools menu. There is a menu item for each type of flow 
button, including Link, GoTo, Return and And items (for 
icons shown in previous figures), AutoLink and AutoRe- 
turn items that cause a guidemap to automatically link to 
another guidemap and to automatically return to the 
linked-from guidemap, and an Initial item to indicate 
which buttons are to be activated when the guidemap is 
initially displayed. Thus, while the author does not need to 
learn any new aspects of the system while creating the pro- 
cedure steps of the data analysis, new features must be 
learned to indicate flow control (the actual guidance). In a 
more complete implementation, many additional flow- 
control features would be available. 

Once the expert has placed two or more buttons or icons 
on the workbench, s/he can connect them together with an 
arrow drawing tool. Of course, at any time the buttons and 
icons can be dragged to new locations to give the 
guidemap a more pleasing and comprehensible layout. The 
arrows automatically reposition themselves to reflect the 
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new layout. Of course, when the map is entirely created, 
the expert saves it for later use by the novice. 

Finally, the expert must create the help information that is 
displayed when the novice clicks on the ?? side of a but- 
ton. This is done by using an ordinary text editor, and by 
saving files with certain naming conventions so that they 
can be found when needed. 

6.0   Discussion 

In this section we discuss the relation of our work to 
hypertext and to visual programming, two concepts with 
their origins in computer science. 

6.1     Hypertext and Hypercode 
Hypertext (or, more generally, hypermedia) is a generic 
approach to linking and structuring all forms of computer- 
ized materials so that non-linear, dynamic documents can 
be constructed (for more information, consult Woodhead 
(1990) or Martin (1990)). Hypermedia consist of nodes 
that are connected by links. The nodes contain the materi- 
als, which may be text, diagrams, animations, images, 
video, sound, computer programs or any other computer- 
ized information. The links provide a mechanism for non- 
linear navigation among the nodes. The nodes may be 
linked together into web, hierarchical, cyclic, or other 
structures. Hypermedia always have tools for navigating 
the link structure and for displaying the node material. 

Clearly, our help system is a hypertext: Guidemap buttons 
are nodes that contain help text, and arrows are links 
between nodes. In addition, the ?? side of a guidemap but- 
ton is the tool that accesses and displays the hypertext. The 
buttons also navigate the hypertext. Finally, the structure 
of the hypertext is shown by the structure of the guidemap. 

Of much more interest is the fact that our guidance system 
is a "hypercode", a form of hypermedia where the materi- 
als are computer programs. Note that the structure of the 
hypercode is represented by the structure of the guidemap, 
and that the hypercode is navigated by clicking on the !! 
side of guidemap buttons. When the naive analyst clicks 
on the !! side of a button, the button not only navigates to a 
particular piece of hypercode, but also causes the execu- 
tion of that piece of code. Thus, from the point-of-view of 
the naive user, the guidemaps display the structure of the 
guidance hypercode, provide a means of navigating 
through it, and a means of executing pieces of it. (Note 
that the guidemaps also display the structure of the help 

hypertext, provide a means of navigating through it, and 
for displaying pieces of it. Thus, both the hypertext and 
hypercode are seamlessly unified.) 

It follows that the expert user's process of authoring 
guidemaps is, in fact, a process for writing hypercode. As 
described above, authoring involves creating two kinds of 
buttons: action buttons and flow buttons. When an action 
button is created, the code that is written is a ViSta func- 
tion which parallels a data-analysis menu item and which 
causes a data-analysis step to take place. On the other 
hand, when the author creates a flow button, the code that 
is written consists of standard Lisp flow control functions. 

Thus, authoring guidemaps is computer programming. 
However, it is not the usual type of programming in which 
the programmer types statements. Rather, it is one in 
which the statements get generated automatically when the 
author (programmer) selects a button. This form of com- 
puter programming is known as visual programming, 
which is discussed in the next section. 

6.2    Visual Programming & Program 
Visualization 

Visual programming and program visualization are very 
active areas of research in computer science. There goal is 
to simplify programming, and to make programming 
accessible to a wider audience. They attempt to reach this 
goal by combining the disciplines of interactive graphics, 
computer languages and software engineering to take 
advantage of a person's non-verbal visual capabilities and 
a computer's interactive graphical capabilities. 

Conventional textual computer languages process program 
instructions that exists in one-dimensional, nongraphical 
(textual) streams. Visual programming, by contrast, refers 
to a way for people to create programs using graphical 
methods. These icons can be viewed as two-dimensional 
graphical instructions (Myers, 1990), as opposed to one- 
dimensional textual instructions (although the two-dimen- 
sional visual program is translated into an underlying one- 
dimensional textual program). 

Program visualization, on the other hand, is an entirely 
different concept: Here, the program is specified in the 
usual textual manner, but is then illustrated visually in 
some form. Thus, the program is specified as text and 
translated into graphics. Note that this reverses the process 
involved in visual programming, where the program is 
specified as graphics and is translated into text. 
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Guidemaps and workmaps are simple examples of visual 
programming and program visualization. Guidemaps are 
visual programs which have been created by an expert 
using a visual authoring system, and which are "executed" 
by the novice. Workmaps are program visualizations 
which have been created textually (or visually). In fact, 
when a workmap is saved and re-executed, it becomes a 
visual program as well as a program visualization. 

The earliest visual languages were computerized flow- 
charts. More recently, visual languages are formally based 
on graph theory, consisting of nodes and edges (note the 
connection with hypertext). Often the edges are directed 
(and called arrows). There are graphs such as "higraphs", 
which allow nodes to contain other nodes and which per- 
mit arrows to split and join, or "colored petri nets" which 
allow parallel processing systems to be constructed. A 
number of visual programming systems use dataflow dia- 
grams. Here the operations are typically put in nodes, and 
the data flow along the arrows connecting the nodes. 

We have based guidemaps on directed cyclic graphs and 
workmaps on directed acyclic dataflow diagrams (Young 
& Smith, 1991). Our developments are limited, however, 
in that we have not developed looping or conditional 
branching. Thus, one can argue that our workmaps and 
guidemaps do not constitute a full visual programming 
language, since the abstract definition of a computer lan- 
guage requires the inclusion of these capabilities. 

We recommend investigating the feasibility of developing 
(or using an existing) visual dataflow language as the basis 
for a structured graphical interface for performing and 
guiding data analysis. Two interesting existing systems are 
VisaVis (Poswig, Vrankar & Morara, 1994) and Khoros 
(Rasure & Williams, 1991). Both are functional visual 
programming languages with looping and conditional 
branching. Khoros is also a dataflow language. 

7.0   Conclusion 

Understanding and representing statistical strategy is a rel- 
atively new area of research that is just now gaining 
momentum. Within this area of research, it appears that 
our visual approach to statistical strategy is new and 
unique, and is firmly based on current computer science 
thinking. As the capability of computers continues to 
increase, while their price continues to decrease, the audi- 
ence for complex software systems such as data-analysis 
systems will become wider and more naive. Thus, it is 
imperative that these systems be designed to guide data 

analysts who need the guidance, while at the same time be 
able to provide full data-analysis power. An efficacious 
way of doing this is certainly needed, and we believe that 
our visualized statistical strategies have the potential for 
great payoff in the improvement of the quality, satisfaction 
and productivity of statistical data analysis. 

Naturally, we hope that our visual methods for guiding 
naive data analysts by visually representing, using and cre- 
ating statistical strategies will prove useful. Of much 
greater importance, however, is our basic point: Concen- 
trated attention should be given by computational statisti- 
cians to the representation, usage and creation of statistical 
strategies. We believe that such strategies should be avail- 
able to guide and structure the data-analysis process so 
that relatively naive users can perform high-quality data 
analyses. And we believe that guidance systems should be 
empirically tested to see if they deliver on their promise. 
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Abstract 

This paper demonstrates the ability of ViSta-MDS (Young, 
1994; McFarlane, 1992) to facilitate guided data analysis 
in the framework of multidimensional scaling. The paper 
begins with a brief description of the goals of a multidi- 
mensional scaling analysis. Next, the guidance properties 
of the ViSta-MDS module are described. The paper illus- 
trates each step in a guided data analysis, and shows many 
of the GuideMaps encountered along the way. 

1.0   Multidimensional Scaling 

The data for a multidimensional scaling analysis are in the 
form of dissimilarity matrices, e.g., a group of judges rates 
the dissimilarity between a number of stimuli. Each stim- 
ulus in the set is compared with every other stimulus to 
form a matrix of dissimilarity judgments. Each judge con- 
tributes one matrix of dissimilarities to the data set. 

The goal of a multidimensional scaling (MDS) analysis is 
to produce a low-dimensional solution space such that the 
Euclidean distances between the points in the solution 
space most closely approximate the dissimilarity judg- 
ments provided by the judges. A popular measure of fit in 
multidimensional scaling analyses is stress, defined as the 
square root of the sum of the squared differences between 
the dissimilarity judgments provided by the judges and the 
Euclidean distances in the MDS solution space. 

2.0   Guided Statistical Analysis  

As is true with many statistical models, users of multidi- 
mensional scaling are often not familiar with the tech- 

niques and assumptions associated with such an analysis. 
In order to accommodate the wide variety of users, we 
have developed a guided statistical analysis system in 
which expert users may provide guidance for less experi- 
enced or novice analysts. In this system, expert users cre- 
ate a statistical strategy for novice users to follow. The 
strategy may be represented either graphically or in a text 
file; for the purposes of this exposition, we will focus on 
the graphical representation of the expert's statistical strat- 
egy, called the GuideMap. 

A user begins a guided data analysis session by selecting 
"Show GuideMap" from either the "Command" menu or 
the WorkMap; the first GuideMap, shown in Figure 1, 

X 
WXt[M L 
Loadpata 

i 
Link:Data Analysis 

FIGURE 1.   The initial ViSta GuideMap prompts the user 
to load data. 

appears. As described in more detail by Young & Lubin- 
sky (1994), a GuideMap consists of buttons which can be 
used to carry out steps in the analysis. The initial 
guidemap is very simple: It simply prompts the user to 
load data. If the user clicks on the left half of the "Load 
Data" icon (on the ??), a help screen appears and the user 
is given information about the loading of data in ViSta. If 
the user clicks in the right half of the icon (on the !!), load- 
ing a data file is initiated. All guidemap buttons can pro- 
vide help about an analysis step and can cause the step to 
be taken. 

Copyright © 1994 by Mary M. McFarlane. All rights reserved. For further information 
contact the author at marymc@gibbs.oit.unc.edu or at the address above. 
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FIGURE 2.   The Dissimilarity Analysis GuideMap guides 
the user to explore the data. 

When the user selects a dissimilarity data set to be loaded, 
the GuideMap is updated, becoming the one shown in Fig- 
ure 2. As is the case for most guidemaps, this one has sev- 
eral buttons. Some of these buttons are "active" (the dark, 
highlighted ones), whereas some are "inactive" (the gray 
ones). Active buttons (such as the "Link:Explore" button 
in Figure 2) are ready to cause an action. Once the button's 
action has taken place, the highlighting (activation) of the 
buttons changes: The clicked button deactivates, and the 
button(s) to which it points are activated. Inactive buttons 
(such as the "Multidimensional Scaling" button in Figure 
2) are not available for any action: Clicking on them has 
no effect. 

The GuideMap in Figure 2 prompts the user to explore the 
data. Clicking the "Link: Explore" button causes the 
GuideMap that guides users through a data exploration to 
appear. This GuideMap is shown in Figure 3. This 
GuideMap has three sections: First, the user is guided to 
examine the datasheet, list the variables, and list the obser- 
vations. Note that only these three buttons are highlighted, 
so only these actions can take place. Once all three of 
these actions occur, the next three buttons are highlighted, 
indicating that the user is now guided to visualize the data, 
to get a data report, or to compute summary statistics. 
Finally, when the user has used these three buttons, the 
"Return" and "Create Data" buttons are available, permit- 
ting the user to return to the previous guidemap (the one 
shown in Figure 2, but with the highlighting changed) or 
to create new data. 

Let us examine the data-visualization step in greater detail. 
Though the visualization of the multidimensional scaling 
solution space is more informative than the visualization 
of the data, the data-visualization step often results in 
interesting revelations. Figure 4 shows the ViSta-MDS 
data-visualization screen. The ratings from each judge are 
plotted against the ratings of every other judge in the Scat- 
terplot Matrix at the upper left of the screen. The Scatter- 
plot Matrix serves as a control panel for the visualization 
in the other plots; clicking on any cell of the Scatterplot 
Matrix causes a larger version of that cell to appear in the 
Scatterplot at the lower left.   Clicking on any two cells in 
the same row or column of the Scatterplot Matrix causes 
the three dimensions common to the two cells to appear in 
the SpinPlot at the upper center of the screen. Finally, the 
Histogram at the bottom center of the screen reflects the 
ratings provided by the judge represented by the row of 
the currently selected cell of the Scatterplot Matrix.   By 
examining the Histogram, the user can determine whether 
a particular judge is inclined to give extreme, possibly 
biased, dissimilarity ratings. By examining the higher- 
dimensional plots, the user may better understand the 
degree to which judges agree with each other. 

After the data are visualized, the GuideMap shown in Fig- 
ure 3 prompts the user to Report Data and Summarize 
Data. A click on the Report Data icon produces a text 

m SÜ 
cam 

List VaHables 
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mm 
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Return 
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FIGURE 3. The data-exploration GuideMap prompts the 
user to explore the data both graphically and 
textually. 
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FIGURE 4.   The spreadplot provides information about each judge in the data set. Judges' ratings may be viewed 
individually or may be compared with other judges'ratings.  

screen showing each matrix in the data set, labelled by 
judge, and the stimuli on which the ratings were given. A 
click on the Summarize Data icon produces standard sum- 
mary statistics such as mean, variance, skewness, kurtosis, 
range, and quartiles for each matrix in the data set. These 
summary statistics provide the user with some knowledge 
as to the rating style of each judge. By presenting both 
graphical and textual displays of this information, ViSta- 
MDS facilitates understanding of multidimensional scal- 
ing data by a wide range of users. 

After visualizing, summarizing and reporting the data, the 
GuideMap for exploring data looks like the one shown in 
Figure 5. The button highlighted now guides the user to 
either return to the GuideMap which led to this one or to 
create data from a subset of the current data. By choosing 
the "Return" option, the user returns to the GuideMap 
shown in Figure 6. This GuideMap guides the user to per- 
form a multidimensional scaling analysis. It is important 
to realize that the expert author of the GuideMap has 
already selected desirable options for a multidimensional 
scaling analysis; thus, when a novice clicks on the Multi- 
dimensional Scaling button, the computations are carried 
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FIGURE 5.   The GuideMap for exploring data after the 
data have been explored. 

out with the set of options provided by that expert. The 
novice effectively places the decisions about the options in 
the analysis in the hands of the expert author of the 
GuideMap. When the analysis is complete, the highlight- 
ing of the GuideMap in Figure 6 changes so that the user is 
prompted to "Goto: Model". When this button is clicked, 
the GuideMap for modeling data (Figure 7) appears. 

1 
Link-Explore 

mim 
Multi dimensional Scaling 

GoTo :Hodel 

Link load Data 

FIGURE 6.   The basic data analysis guidemap, after the 
data are explored, now guides the user to 
perform the Multidimensional Scaling. 

Visualizb Model   I Report Node! ... 

X 

Return Create Data 

Link :Model 

FIGURE 7.   The model-exploration GuideMap prompts 
the user to explore the multidimensional 
scaling model both graphically and textually. 

In this GuideMap, the user is first required to save the cur- 
rent model; next, the Interpret Model button must be 
clicked. This produces a text window that contains a 
description of the various components of the multidimen- 
sional scaling model, and a brief summary of the best way 
to examine and interpret those components. In order to 
examine the components of the multidimensional scaling 
model described in the Interpret Model screen, the user 
must use the Visualize Model and Report Model buttons. 

The Visualize Model button produces the spreadplot 
shown in Figure 8. The Scatterplot Matrix shows each of 
the dimensions of the solution space plotted against every 
other dimension of the space. The Scatterplot Matrix is the 
control panel for the Stimulus Plane and Stimulus Space 
plots in a manner analogous to that of the Scatterplot 
Matrix, Scatterplot and SpinPlot in the data-visualization 
screen. The visualization of the model includes a scree 
plot, showing the variance accounted for by each dimen- 
sion in the multidimensional scaling solution space, with a 
vertical line indicating the dimensionality of the current 
model. The Stress Plot at the lower right of the screen 
shows the value of the stress index for the current model. 
This index may be optimized by clicking the "Iterate" but- 
ton in the Stimulus Space plot, as described in McFarlane 
and Young (1994). 

The Report Model icon produces a text screen that pro- 
vides information about the multidimensional scaling 
model. The analyzed matrix is shown, along with the 
additive constant required to make that matrix positive- 
definite. The initial stimulus coordinates are shown, fol- 
lowed by the current stimulus coordinates, which reflect 
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changes made by either iteration or visual sensitivity anal- 
ysis (McFarlane and Young, 1994). The current value of 
the stress index is also reported. Again, ViSta-MDS pro- 
vides both graphical and textual displays of information to 
enhance the understanding of users at all levels of exper- 
tise. 

3.0   Conclusion 

ViSta-MDS is a testbed for visual statistical analysis that 
is still under development. The goal of the software is to 
provide novice, sophisticated and expert users the neces- 
sary guidance to perform appropriate statistical analyses. 
This goal is reached through the use of GuideMaps and 
WorkMaps that provide both graphical and textual dis- 
plays of information. ViSta-MDS also facilitates visual 
sensitivity analysis of the multidimensional solution 
space, as described in McFarlane and Young (1994). It is 
hoped that the guidance and interactive graphical capabili- 
ties provided by ViSta-MDS will lead to the enhanced 
understanding of multidimensional scaling analysis by a 
variety of users. 
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Abstract: In this paper we describe a new statistical envi- 
ronment for correspondence analysis which incorporates 
the traditional analysis methods with dynamic graphical 
procedures. We make use of algebraically linked plots to 
visualize the solution space and the quality of representa- 
tion under various dimensions. We also introduce interac- 
tive graphical modeling as a complementary tool to the 
traditional algebraic analysis, which allows the data analyst 
to modify the configuration of points and to examine the re- 
sultant effect. 

1 Introduction  

Correspondence analysis has been used primarily to ana- 
lyze two-way contingency tables, in which the observed 
associations of two categorical variables are summarized by 
the cell frequencies. The name is a translation of the 
French Analyses des Correspondences, where the term 
correspondences denotes a "system of associations" 
between the elements of the data. 

In essence, correspondence analysis performs a form of per- 
ceptual mapping similar to multidimensional scaling, 
where the categories are represented as a set of row and 
column points in the multidimensional space, and proxim- 
ity indicates the level of association among the row or col- 
umn categories. The objective is to represent the inter-point 
distances in a smaller dimensional subspace—such that the 
original distances are preserved as much as possible—for 
ease of visualization. 

To illustrate correspondence analysis, consider the multi- 
dimensional time series on the number of science doctor- 
ates conferred in the USA from 1960 to 1975 that is shown 
in Table 1 (Greenacre, 1984). Correspondence analysis of 
these data yields the graphical display shown in Figure 1, 

In Figure 1, there are two sets of points, as indicated by the 
two types of point symbols. The points are row points for 
the 12 disciplines (represented by crosses) and column 
points for the 8 years (represented by disks). Distances 
between points within the same set (row-to-row and 
column-to-column) are defined in terms of chi-square dis- 
tances, which can be interpreted as a measure of similarity 
between the frequency profiles. For example, the anthropol- 
ogy degree and the engineering degree are far from each 
other because their profiles are different, whereas the 
mathematics degree is near the engineering degree because 
their profiles are similar. On the other hand, distances be- 
tween points of different sets (row-to-column) do not 
approximate any defined quantity and are not directly com- 
parable. The interpretation of such distances is governed by 
the barycentric relationship between the rows and columns 
(Greenacre and Hastie, 1987). In this example, each disci- 
pline point lies in the neighbourhood of the year in which 
the discipline's profile is prominent. Thus, there are rela- 
tively more chemistry and agriculture degrees in 1960, 
while the trend from 1965 to 1975 appears to be away from 
the physical sciences. 

A new statistical environment for correspondence analysis 
has been created in ViSta (Young, 1994), called ViSta-CA, 
which incorporates the traditional analysis methods of 

Copyright © 1994 by Bee-Leng Lee and Forrest W. Young. All rights reserved. 
Contact the second author for information or for software at forrest@unc.edu, or 
at the address above. 
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correspondence analysis with graphical procedures. Results 
of correspondence analysis are presented visually via dy- 
namic statistical graphics, the purpose being to help the 
analyst visually explore the structure of the geometric 
model. 

2 Algorithm  

Let X be an (n x m) matrix of observed frequencies of rank 
q such that the row sums and column sums are nonzero. 
Let 1 be a row vector of ones and I be an identity matrix, 
each of appropriate orders. Denote a matrix-valued function 
that creates a diagonal matrix from a vector by diag( ). 
Define 

i. s = l'Xl as the sum of all elements in X; 

ii. P = jX as the matrix of relative frequencies; 

iii. r = PI as the vector of row masses; 
iv. c = P'l as the vector of column masses; 
v. Dr = diag(r) as a diagonal matrix of row masses; and 

vi. De = diag(c) as a diagonal matrix of column masses. 

The generalized singular value decomposition (abbreviated 
SVD) of P provides the required solution to the point co- 
ordinates of correspondence analysis: 

P = AD„B/ 

where 

i. A is an (n x q) matrix whose columns are the left gen- 
eralized singular vectors; 

ii. D„ is a (q x q) diagonal matrix of generalized singu- 
lar values; 

iii. B is an (m x q) matrix whose columns are the right 
generalized singular vectors; and 

iv. A'D;'A=B/D;'B = I. 

There is a trivial part of the generalized SVD of P consist- 
ing of a singular value of 1 and the associated left and right 
singular vectors which is discarded before any results are 
displayed. The remaining left and right singular vectors de- 
fine the orthogonal principal axes of the column points and 
row points respectively. In practice, the generalized SVD is 
computed indirectly by performing an ordinary SVD, where 
the ordinary SVD of any matrix Q is given by 

Q = UDaV 

under the constraint U'U = V'V = I. Thus, to compute the 
generalized SVD of P, we perform the following steps: 

i. LetQ = D;1/2PD;12. 

ii. Obtain the ordinary SVD of Q, giving Q = UD0V'. 

iii. Let A = Dr
wU, B = D^V, and D„ = Da. 

iv. Then P = AD„B' is the required generalized SVD. 

Table 1       Science Doctorates in the USA, 1960-1975 

Discipline/Year 1960 1965 1970 1971 1972 1973 1974 1975 

Engineering 794 2073 3432 3495 3475 3338 3144 2959 

Mathematics 291 685 1222 1236 1281 1222 1196 1149 

Physics 530 1046 1655 1740 1635 1590 1334 1293 

Chemistry 1078 1444 2234 2204 2011 1849 1792 1762 

Earth Sciences 253 375 511 550 580 577 570 556 

Biology 1245 1963 3360 3633 3580 3636 3473 3498 

Agriculture 414 576 803 900 855 853 830 904 

Psychology 772 954 1888 2116 2262 2444 2587 2749 

Sociology 162 239 504 583 638 599 645 680 

Economics 341 538 826 791 863 907 833 867 

Anthropology 69 82 217 240 260 324 381 385 

Others 314 502 1079 1392 1500 1609 1531 1550 
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Figure 1       Correspondence Analysis of Science Doctorates Data 

The row coordinates F and column coordinates G are then 
computed according to the appropriate selection of the for- 
mulas in Table 2. Greenacre (1984) introduced the terms 
"principal" and "standard" coordinates to distinguish 
between the two most common normalizations in literature. 
Standard coordinates are the coordinates D;'A or Dj'B 
having unit normalization, while principal coordinates are 
the coordinates D;' AD„ or D^, BD„ having weighted sums 
of squares equal to the squared singular values: 

rVr1 = J)l      G'DCG = D2. 

The joint plot of the rows and columns in k dimensions, 
where k£min(n-l,m-l), is obtained from the first k 

columns of the matrices F and G. A symmetric plot dis- 
plays both the row points and column points in principal 
coordinates, whereas an asymmetric plot displays one set of 
points in principal coordinates and the other set of points in 
standard coordinates. 

The squared singular values, or "principal inertias", quan- 
tify the amount of variation accounted for by the corre- 
sponding principal axes. If a large percentage of the total 
inertia lies along the k principal axes, it means that the chi- 
square distances among row profiles and among column 
profiles are well represented along these axes. Note that in 
an asymmetric plot, the principal inertias refer only to the 
set of points displayed in principal coordinates. 

Table 2       Formulas for Coordinates 

Analysis Options Row Coordinates Column Coordinates 
Analyze Row Profiles 

Analyze Column Profiles 

Analyze Both 

F = D;,ADI, 

F = D;'A 

F = D;'AD„ 

G = D;'B 

G = D7'BD„ 

G = D;'BD„ 
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3 Statistical Visualization 

The statistical visualization of correspondence analysis in 
ViSta-CA presents the results of the analysis in a group of 
interacting plots, called spreadplot (Young, 1994), which is 
based on the notion of a "graphical spreadsheet". The indi- 
vidual plots can be thought of as "cells" in the spreadsplot 
that can communicate with other cells via equations that 
define their relationships. Figure 2 shows the spreadplot for 
correspondence analysis of the Science Doctorates data. 

The Spinplot is a plot of the row and column points in the 
first three of the dimensions selected in the Dimensions 
window. The mouse can be in one of three modes: Spin- 
ning, Brushing, and Selecting. The default mouse mode is 
Spinning. In this mode, the cursor looks like a hand. Hold- 
ing the mouse button down and moving the cursor around 
the plot causes the plot to rotate. If you first hold the shift 
key down, then the plot will continue to rotate when you let 
up on the mouse button. You can also make the plot rotate 

by using the Pitch, Roll, and Yaw buttons at the bottom. 
When you place the mouse mode in Brushing, the cursor 
looks like a tiny paint brush with a rectangle attached to it. 
Moving the brush across the plot selects the points in the 
rectangle and highlights these points. When the mouse 
mode is changed to Selecting, the cursor looks like an ar- 
row and any points that are clicked on will be selected and 
highlighted. In addition, if the cursor is dragged across an 
area, any points inside the area are also selected and high- 
lighted. Labels of selected points will be shown in whatever 
plots are linked to the Spinplot. With the Spinplot, the 
analyst can search for those views in the various three- 
dimensional perspectives that display to him interesting 
structure of the geometric model. 

The Scatterplot plots the first two dimensions that are se- 
lected in the Dimensions window. This plot has two 
mouse modes—Brushing and Selecting—which are the 
same as those modes for the Spinplot. The information in 
the Scatterplot was displayed in Figure 1. 

Figure 2       Visualization Spreadplot for Correspondence Analysis 
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The Rows & Columns window, which contains the 
labels for the row and column points, is useful for locating 
or identifying points in the Spinplot, Scatterplot, and 
Residual Plot windows. Since each cell frequency corre- 
sponds to the intersection of a row and a column in a con- 
tingency table, when more than two labels are selected or 
when the two labels belong to the same way of the table, the 
points in the Residual Plot window will not respond to 
the selection. 

The Residual Plot is a plot of the residuals versus the 
centered observed frequencies. The centered data are calcu- 
lated by the formula P-rc'. The reconstitution of the 
correspondence matrix P based on the rank k weighted 
least squares approximation is given by the formula 

P = A[i]D„wBw 

where the subscripts [k] refer to the fact that only k of the 
dimensions are involved in the calculation. The specific 
columns of Aw and Bw that are involved correspond to the 
dimensions selected in the Dimensions window, which 
are not necessarily the first k singular vectors. The specific 
diagonal elements of D^q are the associated singular 
values. The residual matrix is given by 

(P-rcO-P. 

The Residual Plot can be used for diagnostic checking as 
in a regression analysis. 

The Fit Plot is a plot of the principal inertias against each 
dimension, showing the relative amount of fit for each di- 
mension of the analysis. It serves the same purpose as the 
scree plot in principal component analysis. 

The Dimensions window contains a list of dimensions. It 
serves as a control panel for the visualizations in the Spin- 
plot, Scatterplot, and Residual Plot windows. Select- 
ing at least two dimensions will change the current display 
of the row and column points in the Scatterplot window 
to that formed by the first two selected dimensions. For ex- 
ample, shift-clicking Dimension 2, Dimension 3, and 
Dimension 5 produces a display of the points in the sec- 
ond and third dimensions. Selecting three or more dimen- 
sions will change the display in both the Spinplot and 
Scatterplot. In addition, selections in the Dimensions 
window are tantamount to a re-specification of the dimen- 
sionality of analysis—the k selected dimensions will deter- 
mine the k singular vectors from the matrices A and B and 
the associated singular values from the diagonal matrix D„ 
that are to be used to calculate P and the associated 

residuals. The residuals will be updated and re-plotted in 
the Residual Plot window to reflect the change in fit. 

When the visualizations provided by the spreadplot is com- 
bined with the traditional reporting technique, which is 
also available in ViSta-CA, the analyst gains a greater 
understanding of the results of correspondence analysis 
than when either technique is used alone. 

4 Statistical Re-Vision  

Statistical re-vision is a set of statistical visualization tools 
that is used to help the analyst search for meaningful and 
parsimonious model parameterizations. In ViSta-CA, the 
analyst is able to move row or column points to new loca- 
tions which may be more "interpretable", but which no 
longer satisfy all of the geometric properties of correspon- 
dence analysis. 

When the analyst moves a point, the software responds by 
adjusting the positions of the other points so that they 
approximate the correspondence analysis equations as well 
as possible. For example, when a column point is moved by 
the analyst, the software calculates new positions for the 
row points. 

The calculations of the new positions of the "other" set of 
points is done so that the basic relationship P = ADaB' is 
maintained. This is done by noting that 

P = AD„B' = DrFGD<! 

when the normalization is asymmetric (Analyze Row Pro- 
files or Analyze Column Profiles). However, the relation- 
ship specified by the equation does not hold when the 
normalization is symmetric (Analyze Both), which is why 
point-moving is not possible in that case. 

Understanding of the statistical re-vision technique may be 
enhanced through the use of examples. To this end, con- 
sider the spreadplot for the correspondence analysis of the 
Science Doctorates data shown in Figure 3. In the Spin- 
plot and Scatterplot windows, the column points are dis- 
played in principal coordinates; the row points, which are 
represented in standard coordinates, are masked using the 
Hide Row Points menu item in the Scatterplot menu. 
When normalization is asymmetric, the Scatterplot win- 
dow supports an additional mouse mode—Point-Moving. In 
this mode the cursor looks like a finger, with which the 
analyst can move a column point by clicking on the point 
and dragging it to a new location. 
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The two-dimensional correspondence plot in the Scatter- 
plot window, which accounts for approximately 95% of the 
total inertia, is almost an exact display of the column pro- 
files. The spread of the column points along the first axis, 
Dimension 1, indicates a deterministic trend; whereas 
the second axis, Dimension 2, is difficult to interpret. To 
facilitate interpretation, the analyst may decide to move the 
1960 year point in a way such that the distance between 
1960 and 1965 is approximately equal to the distance 
between 1965 and 1970, to reflect the five-year gap (note 
that the other points are separated by a one-year interval). 

When the year point 1975 js moved, the column coordi- 
nates G is changed to, say, G. We must calculate a new set 
of row coordinates F such that 

P = DrFG'D, 

Note that FG' = D;'PD 

We solve for F by the equation 

F-D^PD^G^G'G) '1. 

While the basic relation P = DrFG'D,. is maintained, the 
orthogonality constraint of correspondence analysis may be 
violated since the left singular vectors are related to the row 
coordinates through the equation A = D;'F. The "principal 
axes" defined by the new set of "left singular vectors" 

A = D;lF 

may no longer satisfy the orthogonality constraint 

ÄD;1Ä = I. 

The new row coordinates are displayed in both the Spin- 
plot and Scatterplot if the row points are not masked. 

Figure 3 Correspondence Analysis of Science Doctorates Data—Asymmetric Normalization With 
Column Points In Principal Coordinates. 
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The residuals are re-calculated using the new values in F 
and G to update the Residual Plot. To obtain an approxi- 
mate measure of the quality of fit after point moving, we 
calculate a new set of "inertias" by the equation 

5 Conclusion 

)B = (ä'A)"' AUF 

and plot the squared diagonal entries against each dimen- 
sion as a dashed line in the Fit Plot window. Note that 
since the orthogonality constraint has been violated, the 
squared diagonal entries of D„ will overestimate the true 
inertias. 

The results of moving the 1960 column point is presented 
visually in Figure 4. Notice that in the Fit Plot window, 
the inertia along the second axis decreased, reflecting the 
fact that the variation of the column points in the second 
dimension has been reduced. In addition, the magnitude of 
the residuals in the Residual Plot has increased. 

ViSta-CA is a widely applicable tool for research involving 
correspondence analysis. It features state-of-the-art statisti- 
cal visualization techniques for exploring the structure of 
the geometric model. When this technique is combined 
with the traditional reporting techniques, the analyst may 
gain considerable insight into the multidimensional proper- 
ties of his data. A key feature of ViSta-CA is statistical re- 
vision, which allows the analyst to explore for a model that 
provides a better interpretation of the data than the one pro- 
vided by traditional algebraic analysis. The principle be- 
hind this design is best summarized by a quotation from 
Marriott (1974): 

If the results disagree with informed opinion, do not ad- 
mit a simple logical interpretation and do not show up 
clearly in a graphical presentation, they are probably 
wrong. There is no magic about numerical methods... 

Figure 4       Statistical Re-Vision For Correspondence Analysis 
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Abstract 

Logistic regression is the accepted parametric method for 
analyzing data with continuous predictors and a binary 
response. As with general linear models the relation 
between the predictors and the logit of the response 
probability is assumed linear. When the observed response 
is continuous, visual techniques, such as scatterplots, are 
useful in ascertaining the nature of this relation, but 
scatterplots offer little information when the observed 
response is binary. A system offering visual model 
exploration techniques, derived specifically for binary 
response data, is proposed. 

1.0 Introduction 

Many models used by social and biological statisticians fall 
within the realm of generalized linear models. These models 
consist of three components. The random component, 
comprising the independent observations of the dependent 
variable y, the systematic component which is the 
explanatory model 9 = XßjXj where i indexes the independent 

variables, and the link function /(E(y)) = 0. The simplest 
link is the identity link, /(E(y)) = E(y). 

Correct application of generalized linear models includes the 
assumptions of linearity and additivity. The linearity 
assumption specifies that a straight line describes the 
relation between XJ and 9, that is a unit change in xj always 
yields the same change in 0. Additivity means that mere are 
no interactions; a change in any xj results in the same 
change in 0 independent of the values of all x; i * j. 

where the association is nonlinear or nonadditive results in 
incorrectly large error and systematically biased predicted 
values. For example, if the true relation is quadratic, the 
linear model may result in ßj = 0, indicating that there is no 
association between xj and y. 

The methods for applying the generalized linear models to 
continuous response variables and one or more continuous 
or categorical predictor variables are well understood, 
especially linear models solved by the least squares normal 
equations. The solution to these equations yields the 
unbiased estimates for the equation E(y) = a + Xßixj. 

2.0 Binary Responses  

A binary response presents problems for the general linear 
model. Because the response is categorical, the normal 
equations will not yield reasonable solutions for the 
regression of y on x. Since the analyst will likely be more 
interested in the probability of a response conditional on 
having observed x than the specific value of the outcome, 

we consider p(x) = p(y = llx), the probability of responding 
1 given x, as the response variable of interest. Clearly, p(x) 
is not suitable for use as a linear model response variable as 
it is bounded by 0 and 1. A linking function is required to 
transform p(x) to a variable that is continuous, unbounded 
and may reasonably be expected to have linear relation with 
Xj.  Logistic regression employs the logit link, that is 0 = 
logfofriya-pfri))). 

3.0 Visualizing GLM's 

Violation of these  assumptions will lead to model 
misspecification.   Incorrectly forcing a linear additive fit 

If one is unsure of the shape of the relation between y and Xj 
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one may choose to construct a scatterplot. This allows 

visual inspection of the relation and may suggest that a 
transformation of the xj variable is necessary to effect a 

linear model. That is the model E(y) = x; + x} or E(y) = 
log(xj) may better describe the linear model than would E(y) 

= Xj. 

3.1 Smoothing 

Another choice for the relation between xj and y is the 
function E(y) = S(xi) where S is a nonparametric function, 
such as a smoother. Here the predicted value of y is found 
by a weighted average of the y's for observations that lie in 
close proximity (in the x space) to the target observation. 
Weighting schemes include simple means as well as linear 
and polynomial smoothers (Cleveland, 1979; Cleveland, 
Devlin and Grosse, 1988; Cleveland and Devlin, 1988; Fan, 
1992). 

As in the continuous response case, the analyst may wish to 
visualize binary response data in conjunction with analysis. 
Unfortunately, a scatterplot is of little utility when the 
response variable is binary as the plot will merely be rows 
of points at 0 and 1. A solution to this problem is found in 
smoothing (Copas, 1983), where the smoothed response 
variable is p(xj). Here smoothing is used not necessarily to 
form a model but rather to visualize the shape of p(xj) vs xj. 

If the logistic regression model appears to fit the smoothed 
p(Xj) then we may choose that model. If not then we may 
wish to transform the xj variable. Transformations of an x; 
variable may not be immediately suggested by the shape of 
S(xj). Since logistic regression assumes a linear relation 
between x; and logit(p(xi)), observing the plot of 
logit(S(xi)) vs XJ may prove useful. This plot may be used 
to choose some transformation of xj, in much the same way 
a scatterplot is used with a continuous response variable. 
As in the continuous outcome case, the model may also be 
defined by a smooth. 

4.0 Visualization For Binary Response 
Data in the XLisp-Stat Environment  

XLisp-Stat provides an ideal environment for implementing 
the ideas discussed for visualizing models with continuous 
predictors and binary responses. Smoothing is a 
computationally intensive procedure that requires 
visualization for a true appreciation and understanding of the 
result. XLisp-Stat offers both the computational efficiency 
and high resolution graphics to effectively smooth binary 
response models. 

The proposed system provides two stages of data analysis. 
At stage 1 the user smoothes the data using generalized 
additive model methods (Hastie and Tibshirani, 1989). The 
resulting smooth is then inspected visually. Visual 
techniques include: 

1) Plots of both the smoothed probability and smoothed 
logistic surface with predicted values. 

2) Residual plots. 

3) The marginal smooth for each independent variable. 

Statistics indicating the importance of each variable in the 
model are also given. 

After inspecting the smooth, the user may go to stage 2, 
fitting a parametric model. The visual parametric techniques 
include: 

1) Biplots with a vector indicating the relative magnitude of 
the effect of each variable in the model. 

2) The predicted response surface with predicted values. 

3) Residual plots for each independent variable. 

4) Influence plots. 

Parameter estimates and standard errors are also included. 

The user may, at any time, alter the X matrix by adding or 
dropping variables or transforming variables. The result of 
adding a transformed variable will be seen in the predicted 
response surface. 

5.0 Example 
Figure 1 shows the smooth for data generated by the model 
logit(y) = 40*xi + 0*x2 + 40*x3 + 0*X4. The upper left 
plot is the function p = inverse logit [S(xi) + S(x4)]; the 
upper middle plot is the function y = S(xi) + S(x2). Both 
plots include predicted values for the full model for all 
observations. At the lower middle is the residuals plot and 
at the lower left is the single dimension plot of X4. All of 
these plots are dynamic as the variables viewed are 
changeable. The upper right window contains observation 
names while the lower right window is for statistics. The 
statistics SSQ and %Total indicate the contribution of each 
independent variable to the overall variance of the predicted 
logits, but assume that the X  matrix is orthogonal. 
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Inspecting the various plots and windows indicates that: 

1) The smooth adequately describes the data. 

2) The relation between each x; and tne response 
logit(y) is linear. 

3) The variables xl and x3 are salient while x2 and x4 
are not. 

The X matrix menu option may be used to remove X2 and 
X4 from the X matrix and a parametric model is fitted using 
the Model menu option Parametric. The resulting model 
is shown in Figure 2. The plots are, clockwise from upper 
left, a biplot of independent variables with the parameter 
vector added, a probability function plot with full model 

predicted values, an influence plot and a residuals plot. All 
plots are dynamic in that the variables viewed may be 
changed. The observation window is as in the smooth 
model and the statistics window contains statistics common 
for a logistic regression analysis. 

The point indicated by a "+" is an observed 1 that had a 
predicted probability near 0; it has both a large residual 
(lower left) and a large effect on the chi-square (lower right). 
Had this been actual data, thsese findings could indicate that 
a closer inspection of this observation was necessary. 

Figure 1. A smooth model 
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Figure 2. A parametric model 
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Abstract 

Principal components analysis is a well known statistical 
model used to approximate a high dimensional data space by 
a subspace of lower dimensionality. Like many multivariate 
statistical procedures, when the principal components model 
is fit to data based on a purely algebraic criteria, it can be 
plagued by problems of data sensitivity and interpretability. 
An interactive technique called visual components analysis 
is proposed as one solution to these difficulties. Visual com- 
ponents analysis allows a user to visualize, evaluate, and 
modify a principal components model within a unified 
graphical environment. It is believed that visual components 
analysis will yield subjectively more satisfying solutions 
than solutions obtained from classical algebraic analyses. 

1.0   Motivation 

The principal component model is a well-known statistical 
model commonly used for reducing data dimensionality, 
assessing linear relationships in data, or identifying the 
"latent dimensions" presumed to underlie observed vari- 
ables. It is written: 

X = U (AV) = UV (EQ1) 

where 

• X is a matrix of n observations measured on m variables, 
• Columns of U are unit standardized components, 

2 
• Matrix A   is the diagonal matrix of eigenvalues, and 

• Columns of V' are component coefficients (parameters 
of the principal component model) with crossproducts 
equal to the eigenvalues. 

Traditionally, the principal component model is fit through 
algebraic equations that both reflect desired data characteris- 
tics, as well as possess appropriate analytic properties. How- 
ever, a variety of common data conditions can lead awry a 
principal component model fit by algebraic methods. Exam- 
ples of such conditions include: data matrix ill-conditioning, 
outliers, leverage points, and influential observations (Bar- 
nen:^ Lewis, 1984; Jolliffe, 1986; Belsley, 1991; Critchley, 
1985; Radhakrishnan & Kshirsagar, 1981). 

Algebraic solutions to these difficulties have previously been 
proposed. They include detection-based strategies—that is, 
find the problematic variables, observations, or model char- 
acteristics and eliminate them— as well as robust, resistant, 
and local fitting methods. Unfortunately, the robust/resistant 
estimators and local fitting methods with the most desirable 
properties frequently suffer limitations that they are compu- 
tationally intensive, require iterative solutions, and contain 

arbitrary constants that substantially affect the solutions 
they ultimately attain (Belsley, 1991; Cleveland, 1993; 
Cleveland, Grosse & Shyu, 1991; Huber, 1981). 

2.0   Statistical Revision 

I propose an dynamic, user-interactive approach called sta- 
tistical re-vision as an additional solution to the problems 
suffered by many ordinary algebraic statistical modeling 
techniques. Statistical re-vision is a cyclic, iterative approach 
to model fitting that utilizes the analyst as an active element 
in the statistical estimation process. Although it begins with 
algebraically optimal model parameter estimates, during the 
course of statistical re-vision operations, a subjective, aes- 
thetic estimated parameter optimality is substituted for the 
initial algebraic criteria. Specific characteristics of the sub- 

1. E.g. tuning constants or bandwidths. 

Copyright © 1994 by Richard A. Faldowski. All rights reserved. For more informa- 
tion, contact the author at richf@gibbs.oit.unc.edu or at the address above. 
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jective criteria are determined by the analyst (Young, Fal- 
dowski, & McFarlane, 1993). 

Statistical re-vision conducted in two phases. The first phase 
is interactive graphical modeling. In it, the user graphically 
modifies the estimated parameters of the model by moving a 
representation of the model in a computer display. A new set 
of subjectively adjusted parameter estimates (coefficients) 
and predicted values for the model are produced as a result. 
The second phase is interactive graphical exploration. Here, 
the analyst explores the implications of his subjective adjust- 
ment of estimated parameters in terms of fit, and he has 
option of further refining his choice of the subjective param- 
eter estimates. 

When statistical re-vision is applied in the context of the 
principal component model, I call the resulting modeling 
process visual components analysis and the resulting set of 
components, visual components. The interactive graphical 
modeling phase of visual components analysis consists of 
user modification of the initial component coefficients matrix 

(V') , resulting in a set of subjective component coefficients 

(V*') . Based on the new set of coefficients, a corresponding 

set of subjective components U* are calculated. 

The interactive graphical exploration phase in visual compo- 
nents analysis consists of graphical exploration of the com- 
ponents and coefficients derived from the altered parameter 
estimates using structure and fit plots. It also entails consid- 
eration of alternative sets of coefficients different from the 

initial ones (V') , but not as extreme as those specified dur- 

ing interactive graphical modeling (V*') . The interactive 
graphical exploration phase of statistical re-vision is highly 
dynamic with plots of component structure and fit indices 
continually updated throughout the exploration process. 

Note that when statistical re-vision is used to adjust the alge- 
braically optimal parameters estimated from a set of data, 
"subjective" fit increases, but objective fit virtually always 
decreases. In addition, it is often necessary to violate primary 
constraints of the model. For example, the principal compo- 
nents model provides the only decomposition of a data 
matrix that is orthogonal in both scores and coefficients. 
During visual components analysis, one of these properties 
must be sacrificed. Since characteristics of variable space 
were assumed of primary interest, in the remaining discus- 
sion the orthogonality of component scores was selected to 
be maintained. In other applications, compelling arguments 
might be made for choosing the alternative constraint. 

3.0   A System for Visual Components 
Analysis 

Figure 2 shows mock-ups of plots from a statistical graphics 
system designed to support visual components analysis. It 
contains two general types of plots: 

• Structure plots, which are designed to show the structure 
of the data and model, and 

• Fit plots, which are designed to help the analyst assess 
the degree to which a component model objectively fits 
the data. 

Through the joint use of these plots during statistical re- 
vision, the analyst attempts to balance the subjective quality 
of the structure displayed in the structure plots against the 
objective quantification of fit relayed by the fit plots. The 
visual components system is designed to help the analyst 
balance trade-offs between subjective and objective fit as he 
attempts to optimize subjective characteristics of the compo- 
nents solution. 

The structure plots include the two "BiPlot" and the "Tour 
Plot" windows, which present the structure of the data and 
model as classic biplots (Gabriel, 1972). The "TourPlot" also 
serves as a control center for the system. It manages which 
space (data space, model space, error space, or interactive- 
graphical-exploration space) is currently visible in the struc- 
ture plots. It controls whether the system is operating in visu- 
alization or statistical re-vision modes. In addition, it 
supports guided tours (Young, Kent & Kuhfeld, 1988; Buja, 
Asimov, Hurley & McGill, 1988) between the spaces shown 
in the "BiPlot" windows and provides graphical tools for use 
in the two phases of statistical re-vision. The "BiPlot" win- 
dows, meanwhile, control what variables are displayed in the 
"TourPlot" and show the initial and target spaces for guided 
tours presented in the "TourPlot". 

The "Scree Plot" is a standard display in principal compo- 
nents analysis. It portrays the variances of the components 
plotted against component number. The "Variable-Model 
Variance Trace Plot" shows what percent of each variable's 
variance is accounted for by the current model components. 
The "Variable-Component Variance Trace Plot" shows what 
percent of each variable's variance is accounted for by spe- 
cific components within the current components model. 

4.0   Interactive Graphical Modeling 

Although interactive graphical modeling for visual compo- 
nents analysis may be performed in either the model or data 
spaces, for illustrative purposes I will describe it in the 
model space. To begin interactive graphical modeling, the 
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analyst switches from visualization to re-vision mode in the 
"TourPlot". At that point, he gains access to the interactive 
graphical modeling tools shown at the bottom of the "Tour- 
Plot" window. The "Direct" and "Indirect" buttons describe 
two ways of performing interactive graphical modeling. 
Figure 1 shows the "TourPlot" window during "Direct" 
interactive graphical modeling mode. In the left-hand panel, 
note that the cursor has changed to a finger which the analyst 
used to "grab" one of the component vectors in the display. 
He then orthogonally rotated the component vector to a new 
location among stationary representations of the observa- 
tions and variables. This is portrayed in the right-hand panel 
of Figure 1. 

When the analyst finds a suitable new location for the com- 
ponent vectors, he presses the "Compute" button. At this 
point, the system translates the user's graphical rotation into 
an orthogonal transformation matrix, R, which is used to 
define a new set of adjusted coefficients and components, 

V'* and u*» respectively. The components model, modified 
through interactive graphical modeling, may be written: 

X = (UR) (R'V) =  (TJ*) (V ) (EQ2) 

where 

• R equals the orthogonal rotation matrix, 

• u* is the new graphically altered set of components, and 

• V'* is the new graphically altered set of coefficients 
(estimated model parameters). 

The system now automatically enters the second phase of 
visual components analysis, interactive graphical explora- 
tion. 

5.0   Interactive Graphical Exploration 

As the system enters the interactive graphical exploration 
phase of visual components analysis, the information dis- 
played in the structure plots ("BiPlotl", "BiPlot2", and 
"TourPlot" windows) change. Regardless of what space the 
interactive graphical modeling was performed in, during 
interactive graphical exploration, all structure plots show 
model spaces. The "BiPlotl" window displays the structure 
determined from the initial set of component coefficients, 
while the "BiPlot2" window displays the structure deter- 
mined from the graphically-altered component coefficients. 
The "TourPlot", meanwhile, shows the structure of a set of 
components determined from a linear combination of the 
initial and the graphically-altered coefficients. 

It is convenient to think about the structure shown in the 
"TourPlot" window during interactive graphical exploration 
as formed by conducting a guided-tour between the compo- 
nents represented in the "BiPlotl" window and the corre- 
sponding components in the "BiPlot2" window. Each step in 
the guided tour (a trigonometric interpolation between the 
model spaces shown in the "BiPlotl" and "BiPlot2" win- 
dows) defines an alternative composite set of components 
and parameter estimates. That is: 

Uj    = (cosB-JU + (sinBJU 

Vj   = (cosBJY+isinB.JX 

(EQ3) 

(EQ4) 

where 

• U and V are the initial components and coefficients 
(defined prior to interactive graphical modeling), 

• U   and V   are subjective components and coefficients 
(determined through interactive graphical modeling), 

• U** and V** are the alternative, composite set of compo- 

nents and coefficients (determined at the ith step in a 
guided tour rotation during interactive graphical explora- 
tion), and 

• 8j is the cumulative rotation angle on the ith step, 

[Oo<0i<9O0] . 

Note that each step in the guided tour results in a composite 
set of component coefficients different from the initial ones, 
but less extreme than those determined through interactive 
graphical modeling. In practice, it is also usually necessary 
to build an implicit correction factor into the guided tour 
rotation in order to maintain component orthogonality. This 
detail is a minor technicality that does not substantively alter 
the nature of the procedure. 

The system is set up so that the analyst may rotate from the 
initial into the graphically altered components and back as 
many times as needed to fully appreciate the effects of the 
graphical alteration and to determine whether an intermedi- 
ate set of coefficients is more appropriate or not. Throughout 
the interactive graphical exploration rotations, all of the fit 
displays are continually updated in order to give the analyst a 
sense of the objective quality of each intermediate set of 
parameter estimates. At any point, the analyst has the option 
of stopping the rotations and updating the initial components 
and coefficients with those from the currently visible com- 
posite set. 
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6.0   Conclusion 

Statistical re-vision was presented as the framework within 
which visual components analysis was organized and it pro- 
vided the structure through which visual component model- 
ing interactions were carried out. Over a number of 
iterations through a cycle of visualization and statistical re- 
vision, it is anticipated that the analyst will generate visual 
components that mitigate many of the effects of outlying or 
influential observations in the component solution, that 
visual components should more closely conform with the 
analyst's knowledge about his substantive research problem, 
and that visual components analysis will yield a subjectively 
more satisfying solution than that obtained from classical 
algebraic component analyses. 
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FIGURE 1. A View of Interactive Graphical Modeling in the Component Model Space. 
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Abstract 
We propose computationally feasible diagnostics within 
the Bayesian paradigm, We focus on the detection of 
influential observations and the assessment of the sen- 
sitivity of the analysis to prior assumptions. We quan- 
tify differences in the inferential conclusions that might 
be drawn under modeling conditions that depart from 
an assumed setting by estimating, via a Monte Carlo 
approximation based on a single draw from the Gibbs 
Sampler, the Kullback-Leibler divergence of the baseline 
posterior distribution of the model parameters from the 
alternative posterior distributions obtained by deleting 
some observations or by altering the modeling assump- 
tions. We illustrate these ideas in the context of a normal 
means hierarchical model. 

1    Introduction 
In this article we propose computationally feasible diag- 
nostics within the Bayesian paradigm. We focus on two 
issues: (a) detection of influential observations, and (b) 
assessment of the sensitivity of the analysis to prior as- 
sumptions. In both cases we wish to quantify differences 
in the inferential conclusions that might be drawn un- 
der modeling conditions that depart from an assumed 
setting. We do so by measuring the Kullback-Leibler 
divergence (Kullback 1959) of the baseline posterior dis- 
tribution of the model parameters from the alternative 
posterior distributions obtained by deleting some obser- 
vations or by altering the modeling assumptions. 

The difficulty with such an approach is that, in 
principle, it entails reperforming the analysis for 
each dataset/model considered. Within the Bayesian 
framework this implies repeated evaluations of multi- 
dimensional integrals to obtain the posterior distribu- 
tions of the model parameters. While closed form 
analytic expressions for  these posterior  distributions 
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are available for simple models (DeGroot 1986; Berger 
1985), for more realistic cases either numerical quadra- 
ture methods (Smith et al. 1987), asymptotic approxima- 
tions (Walker 1969; Tierney and Kadane 1986), or suc- 
cessive substitution sampling techniques (Gelfand and 
Smith 1990; Tanner 1991) must be used. The majority 
of these methods, with the exception of some asymptotic 
approximations, require a large computational effort. 

Similar problems do not occur, for example, when 
computing deletion diagnostics—such as the Cook's 
distance—in classical linear (or generalized linear) mod- 
els because of the existence of exact (approximate) up- 
date formulas for the required terms (Cook and Weisberg 
1982). Approaches of this type have also been explored 
for a limited number of Bayesian problems (Carlin et 
al. 1992; Kass and Vaidyanathan 1992; McCulloch 1989; 
Tierney et al. 1989). 

The methods we propose in this article have similar 
goals. We assume that a sample from the baseline pos- 
terior distribution of the model parameters can be gen- 
erated through the Gibbs Sampler (Gelfand and Smith 
1990). Expanding on ideas of Tanner (1991, p. 54), 
Gelfand et al. (1992) (who consider the issue of model 
determination from a predictive viewpoint), and Smith 
and Roberts (1993), we estimate the Kullback-Leibler 
divergence of this distribution from an alternative poste- 
rior distribution via a Monte Carlo approximation. The 
various terms in the approximation are functions of the 
likelihood ratios of the two distributions evaluated at the 
different points in the sample. 

This approach has the desirable property that the 
same sample from the baseline posterior distribution can 
be used to estimate the Kullback-Leibler divergence from 
several alternative posteriors. Generation of one sample 
via the Gibbs Sampler may be computationally expen- 
sive in practical situations. By circumventing the need 
to redo the analysis for each alternative being consid- 
ered, the proposed approach dramatically reduces the 
time needed to identify potentially influential observa- 
tions and to probe the modeling assumptions. 
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2    The  Gibbs  Sampler  and  the 
Gibbs Stopper 

The Gibbs Sampler is a successive substitution sampling 
scheme that allows one to generate samples from the 
joint distribution of a set of random variables having 
density g{x) = g(xi,...,Xd) with respect to a domi- 
nating measure A(a:) (Gelfand and Smith 1990; Tanner 
1991). In Bayesian statistical applications g(x) = g(x\y) 
will usually be the posterior probability density for the 
model parameters x conditional on the observations y, 
and the samples will be used to estimate functionals of 
g(x). The algorithm generates a path {x^} of a Markov 
chain whose invariant probability distribution coincides 
with g{x). Under mild regularity conditions the iterative 
scheme is guaranteed to converge in the sense that, if j is 
large enough, as^-) can be regarded as a realization from 
g(x) (Tierney 1991; Schervish and Carlin 1992). 

Ritter and Tanner (1992) introduce a diagnostic cri- 
terion, called the Gibbs Stopper, to assess convergence 
in practical applications. Denote by gj(x) the density of 
the distribution of the chain at the j-tb. stage of the itera- 
tive procedure. If convergence has been attained, so that 
gj(x) is "close" to g(x), then the ratio g(x)/gj(x) should 
be close to one over the whole range of possible x values. 
In general, the target density g(x) will only be known 
up to a renormalization constant C, i.e. g(x) = Cj(x), 
and gj(x) will have to be estimated. Ritter and Tan- 
ner (1992) propose an estimate fjj(x) given by a Monte 

Carlo sum based on the two final sets of draws x&, 
and Xm\ m = 1,..., M, from M independent paths of 
the Gibbs Sampler carried out to depth j. 

Upon convergence the ratios 

ug,m — wg,m — 

9} 

,   for m= 1,...,M,      (1) 

should be concentrated around a constant value. The 
Gibbs Stopper amounts to monitoring the ratios in 
Equation (1) and halting the algorithm once visual in- 
spection of their histograms and evaluation of some func- 
tional of their distribution (e.g. their standard deviation) 
indicate that they have stabilized around a constant. 

We will refer to the ratios in Equation (1) as GS- 
weights. Note that, for a fixed number of cycles j, by as- 
sociating a probability wgim = u^,m/ J2k=i w9,* to eac^ 
of the points x&), m = 1,..., M, one can regard them 
as a sample from g{x) instead of gj(x) (Geweke 1989). 
In the sequel, when referring to a sample xm from g(x) 
obtained through M independent replicates of j cycles 
of the Gibbs Sampler, we will more precisely mean a 
sample 3%  from gj(x) reweighted according to wgim. 

3 Monte Carlo Estimation of 
the Kullback-Leibler Diver- 
gence and Bayesian Analysis 

Let two distributions have densities / and g with respect 
to a common dominating measure A. The Kullback- 
Leibler divergence of g from / is defined as 

IC(f,g) = J log f(x)d\{x). 

The use of the Kullback-Leibler divergence to evaluate 
discrepancies between distributions in an attempt to as- 
sess case deletion influence and sensitivity to prior as- 
sumptions is well documented in the statistical literature 
(Johnson and Geisser 1983; McCulloch 1989; Gelfand et 
al. 1992). Observe that, not being symmetric in its ar- 
guments, The Kullback-Leibler divergence is not a dis- 
tance. 

Throughout the section we will denote by p(x) = 
p(x\y) the posterior density for the model parameters 
x = {x\,...,Xd) conditional on the set of observa- 
tions y = (2/1,..., j/n)- We first discuss a comprehensive 
screening method for identifying influential observations 
within a Bayesian framework. Let / be a subset of the 
integers 1 through n and let p\i(x) = p\i(x\y\T) be the 
posterior density for the model parameters x conditional 
on the reduced set of observations y\T = {m : i £ 1}, 
Denote by q(x) = q(x,y) and q\i(x) = q(x,y^j) the 
joint densities of (x,y) and (x,y\j) respectively. Then 
p(x) = q(x)/C and p\i(x) = q\I(x)/C\I, with C = 
fq(x)d\(x) and C\i = J q\i(x) d\(x). 

Suppose that a sample from p(x) obtained through 
the Gibbs Sampler is available and that we wish to de- 
termine the effect that the presence or absence of indi- 
vidual observations has on our inferential conclusions by 
means of comparison between the posterior distribution 
p, conditional on the entire set of observations y, and the 
n posterior distributions p\i, I = {i}, conditional on the 
n reduced subsets of observations obtained by deleting 
observation y, in turn. 

We propose to employ the available sample fromp(a;) 
to compute Monte Carlo estimates of the n values of the 
Kullback-Leibler divergence )C(p\i,p) of p from each of 
the p\j. This is done in an attempt to obtain a mea- 
sure of the effect that inclusion of the i-th observation 
would have on our inferences. Large divergence values 
would suggest that the observation has small likelihood 
under the assumed model and was possibly generated by 
a stochastic mechanism that differs from the one gener- 
ating the remainder of the dataset. 

Suppose then that, having run M independent Ginbs 
paths to depth j for the full model, we have draws 
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xm from p(x) together with their associated GS-weights       4      The Normal Means Model 
w. p,m , for m = 1,.. . M. We show in Peruggia (1994) 
that a Monte Carlo estimate of the Kullbak-Leibler di- 
vergence JC(p\i,p) is given by: 

M M 

£\I = ^(logUV.tJWpv.m - log I  ^2 w\I,mÜ>P,> 

where 

m=l 

«V,m 

\m=l 

9\l(xm) 
q(xm) 

m= 1,. ..,M. 

(2) 

(3) 

While the numerical values of the Kullback-Leibler di- 
vergence can be used to express a quantitative judgment, 
the ratios in Equation (3) can be used to make a graph- 
ical assessment of influence. In fact, if p(x) is close to 
P\i(x), then the distribution of the M ratios should be 
concentrated around a constant value, which implies that 
the renormalized ratios 

w„ 
EM m= 1,..., M, (4) 

should be concentrated around l/M. Examination of the 
box-plot of the set of weights in Equation (4), preferably 
after having applied a logarithmic transformation, can 
therefore be used to make a judgment. 

These ideas generalize immediately to the case in 
which one is concerned with the influence that some as- 
pects of the modeling assumptions (in particular prior 
specification) have on the inferential process (robustness 
and sensitivity analysis). Suppose a "baseline" specifica- 
tion of the model yields the joint density q(x, y) = q(x) 
for the parameters x and the data y. As before, we can 
run the Gibbs Sampler for this model and obtain M inde- 
pendent draws xm from the posterior distribution p(x) 
with their associated GS-weights wVim. Assume further 
that the modification of some aspects of the model leads 
to the alternative joint density qA(&,y) = 9A(^), with 
corresponding posterior density pA(x\y) = PA(&) for the 
same parameter vector x. 

Then, once the set of ratios 

U>A,m 
q(vm) ' 

m = 1, .,M, (5) 

has been constructed, the analysis can proceed as be- 
fore. In particular, we can examine the box-plot of the 
logarithms of the renormalized ratios to determine how 
concentrated they are, and we can estimate IC(PA,P) by: 

M M 

£A = ^2(^gWA,m)WpAtm -log I   ^2 WA,> 
m=l \m=l 

(6) 

We illustrate these ideas with an example. Consider the 
hierarchical Normal Means Model (Gelfand and Smith 
1990). We observe Lk data points from the fc-th of 
K normal populations, i.e. ykj ~ N(6k, erf), for k = 
1,..., K, and / = 1,..., i*. Conditional on the param- 
eter values 6k and a\, the observations are assumed to 
be independent within and between groups. Further, we 
assume the group means and variances to be indepen- 
dent with 0k ~ N(fi,T2) and a\ ~ IG(ai,bi) (aj and 
&i known). Finally, we assume p and r2 to be indepen- 
dent with n ~ N(fj,o,Co)> an<l r2 ~ ^^(02,62) (ßo, <7"o, 
Ü2 and 62 known). In the notation of the previous sec- 
tion, x = ({6k}, {0fc},/J,T2), a (2 x K + 2)-dimensional 
parameter vector, and y = {yk,i}- 

We ran our experiment using simulated observations. 
Data y was generated from two independent normal pop- 
ulations (K = 2): the first sample, of size L\ = 10, from 
a Af(0,1) distribution, and the second, of size Li = 8, 
from a AT(0.5,1) distribution. We completed the spec- 
ification of the prior distributions by setting /xo = 0, 
(To = 1, a\ = 02 = 4, and 61 = 62 = 0.333. These choices 
imply that both a2 and r2 have mean 1 and variance 0.5. 
Based on these assumptions we performed the following 
influence and sensitivity analyses. 

4.1    Influence 

In order to illustrate how our method can be applied to 
detect influential observations we artificially introduced 
a spurious data point. Specifically, we shifted j/2,1 by 6 
standard deviations to the left of its observed value of 
-0.067, setting it equal to -6.067. We then ran M = 
100 independent Gibbs Sampler paths to depth j — 200, 
thus obtaining 100 draws xm and associated GS-weights 
wPtm from the posterior distribution p(x) conditional on 
the 18 observations, and assessed convergence using the 
Gibbs Stopper criterion of Section 2. 

We then implemented the have-one-out strategy for 
influence detection outlined in Section 3. In this setting, 
if we take / = {(k, /)} (i.e. if we consider removing the 
/-th observation in the fc-th group from the dataset), 
we obtain the following functional form for the ratios 
in Equation (3): 

«V,. 
g\jQcm) 1 

q(xm)   ~ <p(yk,i\0k,> ,)' 
m = 1,. ..,M, 

(7) 
where <p(-\6, <r2) denotes the density function of a normal 
random variable with mean 6 and variance cr2. Adjacent 
box-plots of the 18 sets (corresponding to all I = {(k, /)}) 
of 100 ratios defined in Equation (7) (after renormaliza- 
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(1.1) (1.2) (1.8) (1.4) (1.B) (1.S) (1.n (1.B) (1.0}(1.1O)(2,1) 12.Z] (2.3) (2.4) (2.SJ (Z.fl) (2.)-) (2.0) 

Figure 1: Box-Plots of the Logarithm of the Leave-One- 
Out Renormalized Ratios 

Figure 2: Sensitivity of Posterior to Prior Specification 
of (no MA,(To 0 

tion and transformation on the logarithmic scale) are 
displayed in Figure 1. 

As expected, the box-plot of the set of ratios cor- 
responding to J = {(2,1)} appears strikingly different 
from the others. In particular, in this case, there is a 
renormalized ratio as large as 0.465, while the overall 
maximum ratio over the remaining 17 sets belongs to 
the set corresponding to J = {(1,4)} and equals 0.132. 
This suggests that suppressing observation J/(2,i) from 
the data will exert a strong influence. More precisely, 
the posterior distributions for the parameters x given 
all 18 observations and given all 18 observations but 
the (2, l)-th will differ significantly. Visual inspection 
of the box-plots indicates that observations 2/(i,4) and 
2/(1,3) may also be considered mildly influential. 

Next we used Equation (2) to compute K.\j, the esti- 
mated Kullback-Leibler divergence of p from p\j, for all 
/ = {(fc, /)}. While the great majority of the estimated 
values are of the order of 10-2, JC\{(2,i)} & 2.8, in strong 
agreement with the conclusions we had already drawn 
from visual inspection of the box-plots. Also in agree- 
ment with those conclusions is the fact that £\{(i|3)} 
and /C\{(i|4)} are of the order of 10-1. Peruggia (1994) 
contains a detailed analysis offering evidence of the con- 
siderable location shift and reduced variability in the 
marginal posterior density of #2 induced by the deletion 
of the outlying observation 2/(2,1) = —6.067. 

4.2    Sensitivity 

Now we illustrate how the same approach can be em- 
ployed to perform a sensitivity analysis. For the original 
dataset, we probed the effect of varying the prior spec- 
ification of the mean fto for the parameter ft as follows. 
Let q(x) denote the joint density of (x,y) corresponding 
to the "baseline" specification of ^0 = 0. We considered 
101 equally-spaced, alternative values fto — HA in the 
interval [—5,5]. Each such value yielded a correspond- 
ing joint density qA(x) for (x,y). We used the Gibbs 

Sampler to generate M = 100 independent observations 
xm and corresponding GS-weights wPim from the poste- 
rior distribution having density p(x) = q(x)/C, where 
C = f q(x)dx. We then computed the 101 sets of ratios 
corresponding to each alternative HA according to Equa- 
tion (5). More explicitly, with ftm denoting the M values 
of ft generated via the Gibbs Sampler, we computed 

U>A,m 
_ qAJXm) _ <P(fim\ßA,Q-o) 

<i{*m)     <p(n, >l/*0,Oo) 
m 1, ,M, 

and from these we derived, according to Equation (6), 
the estimated Kullback-Leibler divergence KA of p(x) 
from PA{X) = qA(x)/CA, where CA = JqA(x)dx, for 
the 101 alternative values of fiA being considered. 

The plot of KA versus ft A was fairly symmetric around 
fi0 = 0, with a rate of increase only slightly higher for 
positive values of fto = ft A ■ Although the actual numeri- 
cal values of the Kullback-Leibler divergence are difficult 
to interpret directly, it appeared that a prior specifica- 
tion of ft0 — 0 when the "true" value of ft0 is some other 
value HA in the interval [—2,2] should not have an over- 
whelming impact on the resulting posterior distribution 
for the model parameters. 

In a similar manner, and with little additional com- 
putational burden, it is possible to assess the effect of 
varying more than one prior parameter at a time. Fig- 
ure 2 illustrates the results we obtained by altering 
simultaneously the values of fto and OQ in the speci- 
fication of the prior distribution of ft. At each point 
(fto = ßA,Co = °A) > tne figure displays the Kullback- 
Leibler divergence of the posterior distribution for x 
arising from the original specification (fto = 0, <TQ = l) 
from the one arising from the alternative specifications 
(^0 = PA, CO = <TA) • Darker shades of gray correspond 
to larger divergence values, as indicated by the gray-scale 
bar on the right hand side of the figure. The display in- 
dicates clearly that a shift in the prior specification of po 
away from 0 has stronger repercussions on the inferential 
process for smaller values of CQ . 
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It is intrinsically difficult to evaluate the numerical 
values of the Kullback-Leibler divergence on an abso- 
lute scale (see for instance McCulloch 1989). We looked 
at this problem from the point of view of equivalency 
between model specification and the presence of influen- 
tial observations. Denote by p the posterior distribution 
for x conditional on all 18 observation y when y(2,i) = 
-6.067, and by p\{(2,i)} the posterior for x arising from 
the same model after removing V{2,\) from the analy- 
sis. We estimated before that K, (P\{(2,I)}>P) = 2.817. 
Observe that both p and p\{(2,i)} are based on a prior 
specification of the parameter value po = 0. 

By employing the proposed Monte Carlo technique 
based on a random sample from P\{(2,i)}> we estimated 
that an alternative specification \XA « —4.7 of po 
would yield a posterior distribution P\{(2,I)},/XA f°r which 
£(p\{(2,i)},P\{(2,i)},/iJ is also approximately equal to 
2.8. In other words, introducing the aberrant observa- 
tion 2/(2 i) = —6.067 into the analysis has the same effect 
on the posterior distribution for x (in term of Kullback- 
Leibler divergence) as moving the prior specification of 
po from 0 to —4.7. Thus, if we consider a shift from 0 to 
-4.7 in our prior beliefs about po to be important, we 
should also attach the same degree of relevance to the 
presence of the outlying observation 2/(2,1) in our dataset. 

It is important in practical applications to be able to 
assess the Monte Carlo variance of the proposed esti- 
mates of the Kullback-Leibler divergence between two 
distributions. In Peruggia (1994) we discuss this issue 
and illustrate it within the context of the normal means 
model example. 
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Abstract 

We generalize the linear mixed-effects model introduced 
by Laird and Ware (1982) to include random change- 
points, in a manner similar to Stephens (1994). We use 
a fully Bayesian hierarchical model in which the para- 
metric forms are known between the changepoints and 
we estimate the changepoints and model parameters us- 
ing Gibbs sampling. These techniques are applied to 
investigate prostate specific antigen (PSA) as a diagnos- 
tic indicator for prostate cancer by modeling longitudi- 
nal PSA measurements for which the changepoint is the 
onset of cancer. We are most concerned with the goal 
of accurate early detection. Diagnostic rules previously 
proposed in the medical literature are compared with 
measures based on the posterior probability of disease 
onset. 

1    Introduction 

Laird and Ware (1982) introduced a family of mixed- 
effects models which capture the serial correlation found 
in longitudinal data. We are interested in modeling lon- 
gitudinal data where the underlying process changes at 
a random point in time. We extend the mixed-effects 
model to include this continuous random changepoint 
and use the Gibbs sampler to estimate model parame- 
ters including the changepoint. 

There is a great deal of literature on identifying when 
a process has changed and estimating the changepoint. 
Page (1955) used non-parametric methods to test the 
hypothesis that all observations are from the same dis- 
tribution. Hinkley (1969, 1970) used maximum likeli- 
hood estimation to identify a shift in process mean and 
the intersection of a two-phase regression. Smith (1975) 
presented a Bayesian approach to estimating change- 
points for normal and binomial distributions along with 
an informal sequential procedure.   Carlin et al. (1992) 

gave a fully Bayesian hierarchical analysis of change- 
point problems, including the use of the Gibbs sam- 
pler to solve for the posterior distributions of model pa- 
rameters. Stephens (1994) looked at continuously dis- 
tributed changepoints and multiple changepoint identi- 
fication from a retrospective point of view. 

We describe a mixed-effects model with linear growth 
before and after the changepoint. We then apply the 
model to a simulated data set based on the longitudi- 
nal PSA measurements found in the study by Carter et 
al. (1992). We perform a prospective sequential analysis 
to see how quickly this method identifies a changepoint 
after it occurs and compare the results with other pro- 
posed diagnostic rules using receiver operator character- 
istic (ROC) curves. 

2    Hierarchical model 

The mixed-effects model for linear growth before and 
after the changepoint, I,-, can be written as 

Vij = a0i + aiXij + bi (xij — U)+ + €tj (1) 

where y,j is the measured value for subject i at obser- 
vation j, and x^ is the time of observation j for subject 
i. The index i takes values 1,...,N and j takes values 
1,..., rii when there are N subjects in the study and the 
ith has n,- observations. The complete model assumes 
the following distributions. 

:) (:•)■=• 
~   MVN{(-),Sa} (2) 

C) 
s.-1 ~   Wishart((p7)_1,/3) 

bi\ß,'l ~    N(/?,<r6
2) 

ß ~     N(^,0r|) 



K.A. Cronin, E.H. Slate, B.W. Turnbull, andM.T. Wells     315 

*? 
r*s Gamma(Aj, r&) 

••b".0? **** N(r,<r2) 

r «"*»» N(/ZT,(72) 

1 /">*» Gamma(At,rt) 

c«k?, ~ N(0,4) 
i 

•> r\^ Gamma(Ae, r£) 

-2 r. er, -2    „-2 The prior distributions for ("£), Ea, /?, <7j 
are assumed known. 

The Gibbs sampler, as described in Gelfand and 
Smith (1990), is used to solve for the posterior distri- 
butions of the model parameters. The procedure is sim- 
ilar to that in Lange et al. (1992), but with a continu- 
ous changepoint as described in Stephens (1994). The 
complete conditional distributions for each parameter, 
with the exception of the {*,}, are standard paramet- 
ric distributions and can be easily sampled. Although 
the form of the complete conditional distribution for U 
changes at each observation point, the form of the dis- 
tribution between observation points is known. Hence 
the {U} can be generated in a two step procedure which 
first generates an interval and then generates a point 
within that interval. Thus it is straightforward to gener- 
ate from all the complete conditional distributions. This 
procedure leads to estimates of the subject specific pa- 
rameters, including the {U}, based on posterior distribu- 
tions. The hierarchical approach permits the "borrowing 
of strength" from the population to estimate the individ- 
ual parameters while accounting for the within-subject 
serial correlation. 

3    Application:   Prostate disease 
and PSA 

Prostate cancer is the second leading cause of cancer- 
related deaths among American males (Pearson et al. 
1994). Garnick (1994) discusses the prevalence of 
prostate cancer and the dilemmas associated with diag- 
nosis and treatment. There has been much controversy 
over the benefits and the possible dangers of screening 
for prostate cancer. In this application we do not address 
the larger question of whether screening should be per- 
formed, but look at a methodology that could be used 
to evaluate diagnostic rules used in screening. 

Prostate specific antigen (PSA) is a glycoprotein pro- 
duced by the prostate gland. The level of PSA found by a 
blood test increases with the volume of the prostate. The 

work of Catalona et al. (1991, 1993) supported the use- 
fulness of PSA levels as a diagnostic marker for prostate 
cancer. Gerber (1991) discussed the value of screen- 
ing along with a review of current screening methods. 
Oesterling et al. (1993) performed a prospective study 
to understand the link between PSA and age. He con- 
cluded that PSA increases gradually with age in normal 
men and suggested normal ranges of PSA for different 
age groups. 

Carter et al. (1992), and Pearson et al. (1991, 1994) 
looked at serial PSA readings on men over a period of 7 
to 25 years. They used a mixed-effects regression model 
to test whether the changes in PSA readings were dif- 
ferent in men with and without prostate disease. Model 
parameters were estimated using a Newton-Raphson re- 
stricted maximum likelihood method. Carter et al. 
(1992) observed that PSA increases only very slowly with 
age before the onset of cancer and then increases more 
rapidly when cancer is present. As an approximating 
model, we will assume that it is the square root of the 
PSA level that follows the linear changepoint model (1). 

Our work is motivated by longitudinal readings from 
the Nutritional Prevention of Cancer Trial (Abu-Libdeh 
et al. 1990, Clark et al. 1991). Over the course of the 
trial, participants have been giving blood at approximate 
six month intervals. Of these participants, some have 
developed prostate cancer. The principal investigator, 
Dr. L. C. Clark, plans to determine the PSA levels of 
the frozen blood samples from subjects with and without 
prostate cancer to further study the relationship between 
PSA levels and prostate disease. 

We present results for an analysis based on simulated 
data. These data represent square root PSA measure- 
ments taken annually on 60 men over a 30 year period, 
with initial ages ranging from 28.4 to 89.6 years. First, 
random intercepts {aoi} and initial slopes {a,} were gen- 
erated. Then, for 30 of these subjects ("cases") we simu- 
lated age-at-onset times by generating changepoints {U} 
from a normal distribution with a mean of 70 years and 
a standard deviation of 10 years. For those subjects 
with changepoints, post-change slopes {6,} were gener- 
ated. Finally, subject-specific and measurement errors 
were included to yield simulated square root readings 
{yij}. The parameters used for the simulation were de- 
rived from the longitudinal data presented by Carter et 
al. (1992). 

We now analyze this simulated data set using the 
model described in Section 2.   The prior distributions 

for (aa°), S0, ß, 0-r2> r> ^_2>and «7? are listed in the 

Appendix and are also based on the longitudinal study 
described in Carter et al. (1992). We take y^ to be the 
square root of the PSA reading for subject i at obser- 
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vation j, and x,j is the age of subject i at observation 

3- 
We are primarily interested in sequentially estimating 

the marginal posterior distributions for the {£<} and the 
{bi}. Figure 1 shows the trajectories for the square root 
PSA readings for one of the 30 simulated cases as it 
evolves over time. This subject's initial reading was at 
age 48.3 years and the changepoint occurred at age 65.5. 
Figure 2 shows the evolution of the posterior distribution 
of the changepoint <,■ for this subject. 

.2 years before changepoh! .8 years after changepoint 

.2 years before changepoint .8 years after changepoint 

Figure 1: Trajectory of a typical simulated case. Dot at 
age 65.5 years indicates the changepoint 

4    Comparison of diagnostic rules 

Three different diagnostic rules or criteria have been sug- 
gested for use in screening for prostate cancer (Carter et 
al. 1992). The first is based on a normal range, whereby 
any PSA reading above a threshold value (typically 4 
ng/ml) is considered a positive test result. The second 
and third diagnostic rules are based on a rate of increase 
over a given time period (e.g. 1.0 ng/ml/year over one 
year and .75 ng/ml/year over a two year period). The 
formulation we have proposed leads naturally to a fourth 
rule. At the time of the current test for a particular 
subject, we compute the posterior probability that the 
changepoint has already occurred. If the probability ex- 
ceeds some specified cutoff value, then a positive result 

.YäKT""   1 

——             * 

1.8 years after changepoint 2.8 years after changepoint 

3.8 years after changepoint 4.8 years after changepoint 

.A  
SO M 79 10 10 100 

v£ü 

W 70 » K IM 

Figure 2:  Posterior distributions of the changepoint t{ 
for the case illustrated in Figure 1. 

is indicated. We would like to compare these four sug- 
gested criteria — threshold, one year increase, average 
two year increase and posterior probability. 

A standard method of comparing diagnostic rules 
is to use receiver operator characteristic (ROC) curves 
(Centor, 1991). ROC curves plot sensitivity versus 
(1-specificity) as the cutoff value for the given criterion 
varies. Specificity is defined as the proportion of non- 
diseased subjects that test negative, and sensitivity as 
the proportion of diseased subjects that test positive. 
These definitions were developed for a single test and 
do not directly apply to a sequence of tests taken pe- 
riodically over time. This is because, with longitudinal 
data, a single subject can be classified as a false positive 
at one observation time and as a true positive at a later 
observation time. Murtaugh et al. (1991) discussed ROC 
curves for repeated markers. They classified each sub- 
ject as either true positive, false positive, true negative 
or false negative using the series of observations, thus 
effectively reducing the problem to the single test case. 

We define a specificity rate, spect, for subject i as 

spec,- = 
number of negative tests before changepoint 

number of tests before changepoint 

An estimate of population specificity is obtained by av- 
eraging the subjects' rates. This definition weights each 
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subject in the sample equally and incorporates all the 
data available. 

We use a different approach to define sensitivity than 
we do specificity for two reasons. The first is that sensi- 
tivity is time dependent, a negative result ten years after 
the changepoint cannot be compared with a negative re- 
sult within two years of the changepoint. Second, a true 
positive result ends the series of observations. This leads 
us to define a sensitivity indexed by time, K-period sen- 
sitivity, where a period is the time between tests. Here, 
for convenience, we assume the same period for all sub- 
jects. A true positive is a subject with any positive test 
result within K periods after the changepoint, and a false 
negative is a subject with no positive test results within 
K periods after the changepoint. Ä-period sensitivity is 
the proportion of diseased subjects that test positive at 
any time within K periods after onset. 

We now use these definitions to compare the four 
diagnostic rules. We construct ROC curves using our 
simulated data for which the period is one year. Fig- 
ure 3 shows ROC curves for four different values of K 
(K=l,2,3,4).   The curves show that the threshold cri- 

1 year 2 years 

0.00.10.2 0.3 0.40.50.6 
1-specKicity 

3 years 

).0 0.1 0.2 0.3 0.4 0.5 0.6 
1-specificity 

4 years 

0.00.10.2 0.3 0.40.50.6 
1-specHlcity 

  threshold 
— one yr increase 
 ave.twD 

0.00.10.20.3 0.40.50.6 
1-specificity 

ave.twD vr increase 
posterior probability 

Figure 3: ROC Curves For Simulated Data 

terion is inferior, but that the others perform similarly 
two or more years after the changepoint. In practice, 
one may choose a rule by first identifying an acceptable 
level for specificity and then selecting the rule with the 
highest sensitivity. For our simulated data, the posterior 
probability achieves the highest sensitivity for specificity 
values greater than 95 percent. 
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Appendix: Prior Distributions 
We list here the prior distributions used for the applica- 
tion described in Section 3. 

:) - -»{UXo'Z)} 

= w((Pvr\p) 
ß   ~   N(.4,.01) 

1 
-2    ~    Gamma(3, .03) 

T   ~   N(70,25) 

-2    ~    Gamma(3,675) 

—    ~    Gamma(3, .27) 
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Abstract 

One of the most difficult aspects of using the Gibbs sam- 
pler in practice is knowing when to stop the algorithm. 
In order to answer this we need to have some method 
which will tell us when we have completed enough it- 
erations for the chain to have converged sufficiently. In 
this paper I will look at some of the methods that have 
been suggested in the literature. Most of these meth- 
ods require input from the user throughout the length 
of the chain. This aspect of the diagnostics extends the 
length of time that it takes for the algorithm to termi- 
nate and is quite tedious for the user. Ideally one would 
like to have an automatic algorithm which would test 
for convergence and stop the Gibbs sampler when it is 
sufficiently close to convergence. I will look at some of 
the issues involved in finding such a diagnostic. 

1     Introduction 

Markov Chain Monte Carlo (MCMC) methods have re- 
cently become very popular tools for the analysis of 
Bayesian posterior distributions of relatively high dimen- 
sion. The simplest of these algorithms is the Gibbs Sam- 
pler which was introduced by Geman and Geman (1984) 
in the context of image processing. It was then applied 
to Bayesian problems by Gelfand and Smith (1990) and 
Gelfand et al (1990). With this method we set up a 
Markov chain which has the posterior distribution of in- 
terest as its stationary distribution. Then by running 
the chain long enough we can sample from the posterior 
and so make inferences about it by simulation. 

The major problem with the application of the Gibbs 
sampler is that it is very hard to know when the chain 
is sufficiently close to the target distribution for us to 
use it for inference. In some cases it is possible to calcu- 
late bounds on the total variation distance between the 
distribution of the chain after n iterates, -K^-n\ and the 

target distribution, ir. Then we can find out a priori how 
many iterations we need in order to make this distance 
as small as we. like. At present, however, such meth- 
ods have proved successful only in a very limited class of 
mathematically tractable models. Also the bounds are 
often quite loose and so can seriously over-estimate the 
number of iterations required to convergence. For exam- 
ples of this method see Rosenthal (1991, 1993, 1994) and 
Meyn and Tweedie (1993). 

A more applied approach to the problem is to use the 
output of the Gibbs sampler itself to assess when the 
chain is close to its target distribution. It is only nec- 
essary to run one implementation of the Gibbs sampler 
for the theoretical convergence results of MCMC' to hold, 
however, it is often very difficult to differentiate conver- 
gence from transient behaviour based on a single run. 
Gelman and Rubin (1992) gave an example of the Ising 
model in which they ran two chains from different start- 
ing values. Individually, each chain appeared to have 
converged well after 2000 iterations but the two chains 
appeared to have converged to different distributions. 
Since the stationary distribution is unique for the Gibbs 
sampler, it is clear that the chains had not actually con- 
verged. For this reason I believe that it is essential for 
applied Gibbs sampling that a number of independent 
chains, each with the required stationary distribution, 
are used. Then, if only the. final iterates from each chain 
are used, we have an iid sample from the target distri- 
bution. Even with multiple chains, the problem remains 
that one is trying to assess convergence of a sequence of 
(/-dimensional distributions based on a finite sample. 

2    Existing Methods for Assess- 
ing Convergence 

The first method that was proposed to assess conver- 
gence was the Thick Pen method (Gelfand et al- 1990). 
In this method the user plots successive density esti- 
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mates of the univariate variable of interest and claims 
that convergence has been achieved when the density es- 
timates differ by only a very small amount. Although 
this method appeared to work for some models it was 
clear that a better diagnostic was needed for the more 
complex problems which it was hoped the Gibbs sampler 
would be applied to. 

More recent diagnostics include the Gibbs Stopper 
(Ritter and Tanner 1992). This method was one of the 
first methods to try to assess convergence in 5Rd. The 
method is based on importance sampling. After n iter- 
ates of the m chains we estimate the current approxima- 
tion 7K"1) to the target distribution ir. We then find the 
importance weights evaluated at the nth iterates of each 
chain. 

(n) _ i(»)(x|">) 
IV, 

<x\n)) 
The chains are assessed to have converged when the dis- 
tribution of the weights is close to a spike at l (or some 
constant if 7r is not normalized). This method has a 
number of disadvantages. First, it requires knowledge of 
the normalizing constants in the full conditional densi- 
ties or at the very least a good estimate of them. In most 
non-conjugate models such constants are not known and 
the estimation process is very time consuming. Secondly, 
the assessment of convergence is very subjective and re- 
quires that the user monitor the weight distribution for 
quite a while before being able to say that the weight 
distribution is close to a spike. Finally, the code for this 
method is highly dependent on the densities involved. 
Hence it is necessary to write new code each time a new 
model is used. 

Another very popular convergence diagnostic was pro- 
posed by Gelrnan and Rubin (1992). This method looks 
at convergence of 1-dimensional variables of interest. In 
this method each of the in independent chains are al- 
lowed to run 2n iterations. The first n iterates are then 
discarded and we just look at the variable of interest in 
the second n iterates of each chain. An ANOVA type 
analysis is then applied to this m x n matrix of obser- 
vations. The algorithm then calculates the within chain 
and between chain variances as well as estimates of the 
overall mean and variance. This method assumes that 
the variable of interest is approximately normally dis- 
tributed so a conservative Students t distribution is used 
to give the current estimate of this distribution. Finally 
we find the potential scale reduction if sampling was al- 
lowed to continue to infinity. When this value is close 
to 1 convergence is said to have been achieved. This 
method has the advantage that we get a numerical value 
which is easier to assess. Also generic code is available 
which allows the method to be used on the output of 

any Gibbs sampler. One drawback is the assumption of 
approximate normality of the variable of interest and the 
cases that are of more applied interest are those where 
the assumption of normality is not justified. 

The most mathematically sound convergence diagnos- 
tic was proposed by Roberts (1992). This method re- 
quires that we run a reversible Gibbs sampler which in 
one iteration cycles from the first component of X to the 
last and then from the last component back to the first 
again. Based on this sampler Roberts defines a distri- 
butional norm such that ||^n^ — vr11 J 0. He then con- 
structs an unbiased estimator of 1 + ||7r(n) — irj|. The 
sequence of true values being estimated is a monotone 
sequence with 1 as its limit, hence by looking at the 
estimates after each iteration we should be able to see 
if convergence is indicated. Note that if the normaliz- 
ing constant for ir is not known then the convergence is 
to an unknown constant. The major problem with this 
method is that the estimator can have very high vari- 
ance which often masks the monotone convergence of the 
quantity it is estimating. We must also know the nor- 
malizing constants for the full conditionals or find good 
approximations to them in order to calculate the esti- 
mate. Once again this method requires that, new code 
be written for each new problem. 

All of these methods require some sort of subjective 
assessment by the user as to when the chain has reached 
convergence. In practice this means that the user must 
monitor these diagnostics while the Gibbs sampler is run- 
ning. Due to the often slow convergence of the Gibbs 
sampler this can require a lot of interaction between the 
user and the algorithm and so take a lot of user time and 
also slow down the running time for the Gibbs sampler. 
In the next section I will look at whether it is possible 
to reduce this user interaction in the convergence assess- 
ment process. 

3     Automating   the   Termination 
Procedure 

Ideally one would like a totally automatic procedure 
which would run the Gibbs sampler without any user 
interaction until the chains had converged to the target 
distribution and then return a sample from this distribu- 
tion. This requires a convergence diagnostic which can 
be monitored for signs of convergence by a computer 
algorithm without any user involvement. Glearly such 
a convergence diagnostic would need to be totally nu- 
merical and there would need to be some test of when 
the value of the convergence diagnostic indicates con- 
vergence. Unfortunately, such a totally automatic algo- 
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rithm does not seem to be possible. It is very easy for the 
Gibbs sampler to become stuck in areas of the sample 
space which have a local mode for long periods of time 
and if all the chains should happen to become stuck at 
the same mode then any convergence diagnostic would 
indicate convergence even though it had not occurred 
yet. It should be possible, however, to reduce user inter- 
action by having an algorithm which could detect when 
convergence has not occurred and only ask for user in- 
put when the. diagnostic indicates that convergence may 
have been achieved. 

Suppose that the user runs m independent chains from 
an initial distribution. The initial distribution should be 
over-dispersed relative to the target distribution so that 
important areas of the target distribution are not missed. 
Let Z be a 1-dimensional variable of interest which is a 
function of X. Then the goal is to have the algorithm 
continue sampling when the. current distribution of the 
variable of interest is not the true target distribution of 
Z, and to alert the user when it may be at the correct 
distribution. 

If we assume that we do not start the chains from 
the stationary distribution but from some other distribu- 
tion, then convergence cannot have been achieved while 
the chains are still sampling from the initial distribu- 
tion. Therefore the first part of the proposed method is 
to continue sampling until the chains appear to have left 
the initial distribution. In order to test this we need only 
look at the initial sample and the current sample of final 
values from each chain. We then need a way of compar- 
ing the distributions which produced these two samples. 
Since the distribution of Z^> is unknown we need a non- 
parametric test for the equality of two distributions. The 
usual tests do not appear to have enough power to detect 
the small differences that are possible and so I have con- 
structed another test. This test is more powerful than 
the standard tests as long the effective, support of the 
two distributions are equal. 

The  test,   for   the  two samples  Z\ ',...,Z, 7(0) and 

Z\ 
in) Z{m] is as follows. ■ • , &m 

1. Fit a line to the q - q plot of the two samples. Let 

(«,/)) be the estimates of the intercept and slope 

respectively. 

2. Under the hypothesis that the two samples are from 
the same distribution, the true values of («,/?) are 
(0,1). Hence a measure of the difference between 
the distributions would be the distance between the 
estimates and (0,1). This distance is given by 

(«,/5)" = «2 + (maX(/),!//))-!) 

3. Now take b pairs of bootstrap samples from the sam- 

ple {z\n\ . ■ •, Zm }| and repeat the first two steps 

for each pair. Since, each pair is a pair of samples 
from the distribution of Z^n\ this will estimate the 
variability of the. distance measure if the two sam- 
ples come from the same distribution. 

4. If less than 5% of the bootstrap distances are larger 
than the observed distance then we can conclude 
that the chains have left the initial distribution. If 
more than 5% of the bootstrap distances are greater 
than our observed distance continue sampling. 

It is inefficient for the algorithm to test departure from 
the initial distribution after every iteration so it is rec- 
ommended that it do the test every gap iterates where 
gap is a user supplied integer. The ideal value for gap 
will depend on the initial distribution and the true dis- 
tribution of Z. 

Once the algorithm has found n such that the distri- 
bution of Z^ is significantly different from the distri- 
bution of Z^ it can start testing for convergence. In 
order for convergence to have been achieved, it is nec- 
essary that all m chains be sampling from the true dis- 
tribution of Z. Also under convergence the across chain 
distribution should be the true distribution. The algo- 
rithm that I propose will test if all chains are sampling 
from the same distribution and if this is also the across 
chain distribution. It will not, however, test if this is 
the true distribution. Such a test would require that 
complex code be written for every new model and every 
new variable of interest. If all chains are. sampling from 
the same distribution then it is probable that it is the 
true distribution but the assessment of this is left to the 
user's knowledge of the actual model. 

In order to look for possible convergence I propose 
that the chains be allowed to run a further n iterations 
to give a total of 2n iterates. Then we can compare 
the m within chain distributions to the across chain dis- 
tribution at time 2n. We will use the same distance 
measure as before, so we must take a sample of size m 
from each chain. These m observations should be taken 
from the second half of the chain. I have used equally 
spaced iterates between n + 1 and 2?i. Compare each 

of these m samples with the. sample \Z\ ,..., A"" j- 

Then define the maximum squared distance to be the 
maximum of the m squared distances. For the boot- 
strap part take the pairs of bootstrap samples from the 
across chain sample at time In. The bootstrap distribu- 
tion for the squared distance measure for samples from 
?r(2n) is all that is needed to test convergence since the 
m chains are independent and under the null hypothesis 
they are samples from the. same distribution as Z^'inK 
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Hence, under the null hypothesis the squared distances 
are iid, and so the quantiles of their maximum can be 
derived from the quantiles of the distribution of squared 
distances for pairs of samples from ir(-2nK Therefore the 
null hypothesis of convergence should be rejected if the 
observed p-value is less than 1 — V0.95. 

If the null hypothesis of convergence is rejected at iter- 
ation 27i, then the algorithm should automatically con- 
tinue with sampling. For small n it is possible that the 
null hypothesis was rejected because the chains did not 
have sufficient time to move over the whole sample, space. 
Therefore, the algorithm should now double the length 
of the chain again and in the next test use the final 2n it- 
erates. Each time the chain length doubles the algorithm 
needs to store twice as many values so for the purposes of 
efficiency and physical storage the distance between tests 
cannot be doubled indefinitely. I propose that the chain 
length be doubled after each test until the time between 
tests is large enough that under convergence the chains 
should move over the whole sample space in that number 
of iterates. Clearly this will depend on the model that 
is being used and also will be determined by the storage 
capacity of the machine. For this reason I feel that this 
maximum number of iterates between tests should be a 
user supplied value. 

Once the hypothesis of convergence is not rejected, 
there is no more that the algorithm can say at that point. 
The user should then be notified that convergence may 
have been achieved. At this point it is up to the user to 
see whether convergence has actually been achieved or 
if the chains are simply stuck in a portion of the sample 
space. The easiest way of doing this is to plot the sample 
paths of each chain over the iterates on which the final 
convergence test was based. All of these plots should be 
similar and they should all cover the important areas of 
the sample space. At this point one could also try the 
Gelman and Rubin test on the same matrix of obser- 
vations as used by the final test. If both of these user 
checks seem to confirm the result that convergence has 
been achieved then it is probably safe to use the chains 
for inference. 

For this method, and most convergence diagnostics, to 
succeed it is very important that the initial distribution 
be chosen to cover the complete effective sample space. 
If all of the chains are started near a local mode then it 
is likely that the algorithm will assess convergence much 
sooner than is correct since each of the chains will tend 
to stay near the local mode and so all the chains will 
have the same distribution as the across chain sample 
but it not the correct target distribution. This situation 
can also arise due to chance if the starting values are 
selected at random.   For this reason it is vital that the 

user have some idea of what the sample space is and to 
make sure that this whole area is covered by all of the 
chains when the algorithm does not reject the hypothe- 
sis of convergence.  One way of avoiding a bad random 
sample is to select the starting points systematically to 
cover an area which is larger than the sample space of 
the target distribution.  This is the method that many 
users of Gibbs sampling actually use in practice to find 
starting values for the chains. The proposed algorithm 
will still work for starting values chosen in this way, the 
only difference being that for such starting values de- 
viation from the initial distribution would be detected 
sooner and so the second phase of the algorithm would 
start earlier than for starting values chosen from a dis- 
tribution which approximates the target better.   This 
difference does not appear to affect the number of itera- 
tions before, the algorithm detects possible convergence. 

Since the algorithm is totally free of any distributional 
assumptions, code can be written to do the testing which 
can then be applied to any situation. All that is required 
is the ability to incorporate the code for the convergence 
testing into the code for the Gibbs sampling, and there 
will need to be some global variables which keep track of 
whether the algorithm is testing for deviation from the 
initial distribution or testing for convergence, and when 
the next test is due.   The extra time that is used by 
the algorithm to complete the required tests is not pro- 
hibitive to its use in practice as long as gap is chosen well 
and the number of bootstrap samples is not excessive. In 
most cases I have found that about 1000 bootstrap pairs 
is sufficient. 

4    Examples 

Here I will present 2 examples on which I used this algo- 
rithm. Both of them are examples where previous con- 
vergence diagnostics have had trouble. In both of these 
cases I ran 25 independent chains and for each test I used 
1000 pairs of bootstrap samples. For the second stage of 
the convergence test the algorithm requires an observed 
p-value of greater than 1 - 2ffiM = 0.0021 in order to 
not reject the hypothesis of convergence. 

Example 1 
For the first example I used an equal mixture of bivariate 
normals. The distributions were centered at /«i = (0,0) 
and fi2 = (4,4). In both cases the covariance matrix 
was the identity matrix. The variable of interest was 
the first component of X. For starting values I took 
25 equally spaced points along the line a: = y between 
(-4,-4) and (8,8). For the first stage of the algorithm 
I tested deviation from the initial distribution every 50 



Table 1: Convergence test for example 1 

Iteration Max Squared Bootstrap 
Distance p-value 

200 8.447 0 
400 5.916 0.002 
800 6.307 0 
1600 2.872 0.009 
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Table 2: Convergence test for example 2 

Iteration Max Squared 
Distance 

Bootstrap 
p-value 

1200 
2400 

39.9537 
0.3588 

0 
0.052 
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iterations. 
It took only 100 iterations for the algorithm to de- 

tect deviation from the initial distribution and then took 
a further 1500 iterations until the. first time that con- 
vergence was indicated. Plots of the final 800 sampled 
values of the variable of interest showed that all chains 
moved between the two modes with approximately the 
correct frequencies at each mode. The convergence tests 
are. summarized in table. 1. In this example the algorithm 
quickly detected deviation from the initial distribution, 
but this simply meant that the points were no longer 
evenly spread. All that had happened by 100 iterations 
was that the chains had moved towards the closest mode 
and so there were two groups of chains. It then took a 
relatively long time for all the chains to move to conver- 

gence. 

Example 2 
For the second example I used the "Witch's Hat" distri- 
bution given by 

*(x')=(V2^exp{—£5—r^ i]« 

For this example. I took d = 8,/<i = 0.7; i = l,...,rf, 
a = 0.03 and 6 = 10~n. This distribution has a very 
sharp peak at the point /* and a flat brim on the rest of 
the set [0, l]d. Since the effective sample space is [0, l]d, I 
used the uniform distribution over this set as my initial 
distribution. The variable of interest that I looked at 

was the first component of X again. 
In this case it took 600 iterations before the algorithm 

detected deviation from the initial uniform distribution. 
The results of the second stage of the algorithm are in 
table 2. Convergence is suggested after only two tests in 
this case and sample path plots of the first component 
from iteration 1201 to 2400 showed that all 25 chains 
were sampling from the spike and so convergence could 

be assumed. 
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ABSTRACT 

In this paper, the likelihood method 
for confidence intervals estimation of 
traffic intensity for the M/M/l queueing 
system is investigated for the priority 
queues. The approximate confidence 
interval formulae of the mean queue 
lengths are derived for the M/M/l prior- 
ity queueing system. Numerical exam- 
ples illustrate the above techniques. 

1. Introduction 

The idea of statistical analysis to 
queueing data dates back to Clarke's 
(1957) paper where he estimated the 
parameters for a simple M/M/l queueing 
system using the principles of the max- 
imum likelihood. Later, Lilliefors (1966) 
examined the problem of finding the 
confidence interval for the traffic inten- 
sity p (p = — is the ratio of mean arrival 

rate to mean service rate). He used the 
estimates of traffic intensity to obtain the 
confidence intervals for the expected 
number of units in the system. A direct 
approach based on the number of arrivals 
during the nth service period for the 
M/Ek/\ queue discussed by Bhat and Rao 
(1987), was used by Jain (1991) to obtain 
confidence intervals for the traffic inten- 
sity p. This paper addresses the problem 

The first author is grateful to NSERC (Canada) for sup- 
porting this project. 

of priority queue in which the service dis- 
cipline is first come, first served; however 
the service could be interrupted if a cus- 
tomer with priority arrived. Obviously, 
the problem of modelling priority queues 
are generally more difficult to handle [see 
Gross and Harris (1985)]. However, it is 
that the real-life queueing situations for 
priority considerations are often required 
(viz. in an emergency department of a 
hospital and post office etc.). 

In this paper, we consider the situa- 
tion where the highest priority customer 
is allowed to enter the service immedi- 
ately even if another customer with lower 
priority is already present in the service 
when the higher priority customer arrives 
to the system.   Such system is called 
preemptive priority queueing system [see 
Gross and Harris (1985)]. The object of 
this paper is to estimate the parameters of 
such   a   system   and   then   to   obtain 
confidence     intervals     formulae     of 
expected number of queue length for the 
priority and nonpriority customers.   In 
section 2, preliminary results concerning 
the estimation of parameters for M/M/l 
queueing systems are given.  Section 3 
deals with the parameters estimation pro- 
cedures for the priority and non-priority 
customers. The approximate confidence 
intervals formulae for the mean queue 
length are obtained for the M/M/l prior- 
ity   queues.    Finally,   numerical   pro- 
cedures are illustrated with an example. 

2. Preliminary Results 
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Clarke (1957) considered the 
M/M/l queue, in which customers'arrival 
form a Poisson process with parameter X, 
and service times of the customers are 
independent and identically exponen- 
tially distributed random variables with 
mean 1/[A. The ratio p = X/\i is called the 
traffic intensity. The maximum likeli- 
hood estimates of the parameters X and \i 
are given by 

i-^-.       (2-1) 
t 

and 

p.= (2.2) 

Where, the system is observed for a 
fixed interval of time duration t. During 
this time period, there are Na arrivals, Ns 
service completions and the service facil- 
ity is busy for tb time units. 

Lilliefors (1966) has considered the 
problem of finding the confidence inter- 
vals for the actual M/M/l traffic intensity 
given by 

-     X 
p = — (2.3) 

Thus   ,   the   traffic   intensity   is 
estimated by 

K    Ns/tb 

Consider the following ratio 
^_{Na/t)/(Ns/tb) 

(Ml) 
(7]Ui/2Ns) 
(2Xt/2Na) 

(2.5) 

For large sample, Cox (1965) stated 
that 2Xt can be treated as a Chi-squared 
variate with 2Na degrees of freedom and 
2\itb as a Chi-squared variate with 2NS 
degrees of freedom. Thus, p/p has F- 
distribution with degrees of freedom 2NS 
and 2Na. An appropriate probability 
statement at significance level a can be 

written as follows: 

F1-a^(2Ns,2Na) <£< Fa/1(2Ns,2Na) 

= 1-06. (2.6) 

Therefore,   the  upper  and  lower 
confidence limits for p are given by 

P"     Fl.a/2(2Ns,2Na) ' 

PL = FanONsWa) 

(2.7) 

(2.8) 

If / (p) is a monotonically increas- 
ing function of p, then the 100(1 - a)% 
confidence intervals for / (p) is 

/(p.):S/(P)£/<Pi).       <2-9> 

3. Estimation Procedures for Priority 
Queues 

Taylor and Karlin (1984) considered 
a single server queueing system with two 
types of customers so-called priority and 
non-priority. The customers arrive 
independently and formed a Poisson pro- 
cess with parameters a and ß respec- 
tively. The customers' service times are 
independent and identically exponen- 
tially distributed with parameters y and 8 
respectively. Service discipline is FCFS 
and the service of priority customers is 
never interrupted. A priority customer is 
allowed to enter the service immediately 
even if another nonpriority customer is 
already present in the service. The inter- 
rupted customer's service is resumed 
when there is no priority customer 
present in the system. 

Notations 

System arrival rate = X = a + ß 
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Proportion   of  priority   customers 
= p =a/k 

Proportion of nonpriority customers 

The system mean service time is the 
approximately weighted means of the 
priority and nonpriority customers given 
by 

«+1 
Y     8 (3.1) 

where (0. is the system service rate. 
The traffic intensity for the system, 

priority customers and nonpriority custo- 
mers are given by 

X 
P=TT 

a 2 = 

(3.2) 

(3.3) 

and 

x = -I 
8 " 

It is clear from (3.1) that 

p = X + T. 

(3.4) 

(3.5) 

Taylor and Karlin (1984) obtained 
the mean queue length for the priority 
and nonpriority customers in the steady 
state as follows: 

^ = 7 
and 

L„ = 
1-Z-T i + (^K-~) .(3.7) 

Ln is finite if the system traffic 
intensity p(p = X + x) is less than 1. 

For a simple M/M/l queueing sys- 
tem with traffic intensity p, the mean 
queue length L is given by 

1-p 
(3.8) 

Suppose that the proportion p of the 
customers have priority and priority is 
independent of service time.  Let 8 = y, 

which implies Z>=pp and X = qp. Then 
the expected queue length for the priority 
and nonpriority customers are given by 

P     H>P 
and 

L„ = -_££_ 
1-p 

1 + M. 
l-pp 

(3.9) 

(3.10) 

Therefore, the expected difference 
of queue length between nonpriority and 
priority customers is given by 

D=Ln-Lp = p q-p+pp 
1-pp 1-p 

<■                               J 

(3.11) 

It can be shown that D is a mono- 
tonic increasing function of p (0 < p < 1) 
as follows: 

i(faz>)= l + l 

p    q-p+pv    i-p 

The above is greater than zero, if 
0 < p < 1 and 0 <p <, 0.5. Hence, 
confidence limits of D can be written by 
substituting lower and upper limits of p 
using formulae (2.7) and (2.8). 

(3 6)         *' Numerical Example 

The estimate of mean queue length 
difference between nonpriority and prior- 
ity customers by using equation (3.11) is 
given by 

D = 
.1-PP. 

g-P+PP 
1-p 

(4.1) 

where p is the estimated parameter of 
traffic intensity for the system. 

The upper and lower confidence 
limits for D are given by 

Du = P« 

1-PP« 

q-p+ppu 

i-p« 
, (4.2) 
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} 

I and 

D,= 

A. 

PL q-p+pPL 

1-PP/ 1-PL 

, (4.3) 

where p„ and pL are computed 
using formulae (2.7) and (2.8) respec- 
tively. Tables 4.1, 4.2 and 4.3 compute 
the width of 90% confidence intervals 
with various number of arrivals and ser- 
vice of customers at p = 0.2. Similarly, 
Tables 4.4, 4.5 and 4.6 present the 
corresponding results computed at 
p = 0.4. 

Table 4.1. 90% confidence intervals for 
various values of arrivals and services 
completions with traffic intensity p = 0.2 
andD = 0.1667 at p =0.2. 

Table 4.3. 90% confidence intervals for 
various values of arrivals and service 
completions with traffic intensity p = 0.5 
and D =0.7778 at /? = 0.2. 

na=ns Du DL Width of CI 

20 5.0449 0.2944 4.7505 

30 2.8940 0.3456 2.5484 

40 2.2792 0.3782 1.9191 

50 1.9558 0.4067 1.5491 

60 1.7648 0.4283 1.3365 

Table 4.4. 90% confidence intervals for 
various values of arrivals and service 
completions with traffic intensity p = 0.2 
and/) =0.0761 at p =0.4. 

na=ns Du DL Width of CI na=ns Du DL Width of CI 

20 0.3656 0.0854 0.2802 20 1.1759 0.0347 1.1412 

30 0.3105 0.0969 0.2136 30 0.1619 0.0402 0.1217 

40 0.2853 0.1032 0.1821 40 0.1460 0.0432 0.1028 

50 0.2673 0.1088 0.1585 50 0.1348 0.0459 0.0889 

60 0.2557 0.1127 0.1430 60 0.1277 0.0479 0.0798 

Table 4.2 90% confidence intervals for 
various values of arrivals and service 
completions with traffic intensity p = 0.4 
and D= 0.4927 at;? = 0.2. 

Table 4.5. 90% confidence intervals for 
various values of arrivals and service 
completions with traffic intensity p = 0.4 
and D =0.2857 at p= 0.4. 

na=ns Du DL Width of CI na=ns Du AL Width of CI 

20 1.7737 0.2095 1.5642 20 1.3452 0.1009 1.2443 

30 1.2983 0.2430 1.0553 30 0.9290 0.1200 0.8090 

40 1.1185 0.2642 0.8543 40 0.7768 0.1329 0.6439 

50 1.0020 0.2819 0.7201 50 0.6802 0.1439 0.5363 

60 0.9318 0.2945 0.6373 60 0.6229 0.1521 0.4708 
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Table 4.6. 90% confidence intervals for 
various values of arrivals and service 
completions with traffic intensity p = 0.5 
and Z) = 0.5 at/? =0.4. 

na=ns Du DL Width of CI 

20 4.4305 0.1518 4.2787 

30 2.3735 0.1847 2.1888 

40 1.8195 0.2063 1.1613 

50 1.5086 0.2256 1.2830 

60 1.3372 0.2405 1.0967 

Concluding Remarks 

The width of 90% confidence inter- 
vals for the expected difference of queue 
length for the nonpriority and priority 
customers in M/M/l queueing system are 
computed. Tables 4.1 to 4.6 indicate that 
the width of confidence interval 
decreases as the number of arrival and 
service of the customers increases. Obvi- 
ously, one can observe easily from 
Tables 4.3 and 4.6 that the confidence 
interval increases rapidly when the traffic 
intensity increases. There is a possibility 
that p„ could be greater than one when 
formula (2.7) is used for computing pu. 
Under such circumstances, the statistical 
techniques have limitations. The cau- 
tious approach is required for estimating 
the parameter. 
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Our developments are about a study on the representation and 
on the analysis of ergonomists knowledge. The context of 
this study is the evaluation of a control-room for nuclear 
power plants. 

It includes the creation and the adaptation of the theoretical 
framework chosen to resolve the problem (Symbolic Data 
Analysis) and a realization of a prototype coupling numerical 
algorithms with symbolic methods using the SAS software. 

I. Introduction 

j* 

EDF (French Electricity National Company) is testing a new 
type of control-room with computer-based interface. 

Ergonomists have to evaluate this new control-room. During 
trials, operators who drive a simulated nuclear power plant 
are observed by Ergonomists. The latters note down the 
operator's behaviour and they key in the principal actions 
(from the ergonomic point of view) : moving, grouping, 
speaking, etc. 

The evaluation of the control-room requires to have a global 
approach of the operator's operation methods: 

1. Activity of each operator 
2. Activity of the team 

II. Methods and algorithms  

1) Knowledge representation 

The heterogeneousness of data (operators have different 
tasks, described with different variables), and the studied 
themes (for example the notion of "activity" in a team), have 
imposed us to consider the problem of knowledge 
representation and computing, in the large framework of 
Symbolic Data Analysis [Diday 93]. The activity of a team 
can be defined by using the mathematical form of the 
synthetic objects: 

Activityl :[duration=[0h25, lhlO[ 
A [glance(operatorl)={0.9 screen, 0.1 synoptic}] 
A [glance(operator2)={0.8 screen, 0.2 elsewhere}] 

2) Methods 

The different proposed analysis for the studied themes have 
been conceived using both numerical classical methods and 
symbolic methods. A such idea is already used in the 
generalization of symbolic objects coming from machine- 
learning [Summa 93]. 

3) Algorithms 

In mind to tackle complex data structures, we couple a 
classical statistical software (SAS) with symbolic methods. 
To goal the different activities, we develop a statistical 
toolbox. 

The symbolic methods developed in the toolbox let us use: 
- variables with several levels in the same time 

(uncertainties on values) 
- links between variables 

(for example : if "groupment"=no then "with who" has 
no sense) 

The toolbox can be decomposed in two parts : 

Symbolic methods 
symbolic histograms 
symbolic hierarchical clustering 
symbolic pyramidal clustering (with base 
constrained) 
symbolic explanation of clusters 

Transformations methods 
dissimilarity computing 
probability computing 

and the toolbox lets us use all classical methods already 
available in the SAS System. 
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III. Application to the S3C project  

The interest of the coupling is the facility to toggle between 
classical methods and symbolic methods. 

A good example of this possibility is in the research of a 
plane representation of different observations and in the 
research of the operator's activity trajectories. These 
activities are described by the regroupment with the other 
operators in the control-room. 

Initial data describe the regroupment of the operator during 
regular time intervals (one minute). 

The methods used are a sequence of classical methods and 
symbolic methods. 

For the research of plane representation : 
1) Symbolic dissimilarity computing to transform 
data in numerical form 

then    2)    Classical    Multidimensionnal    Scaling    to 
represent data in a plane 

then    3) Classical K-means clustering 
then   4) Symbolic explanation of the cluster. 

For the research of the operator's activity trajectories : 
1) Symbolic computing of probability to transform 
data in a numerical table 
2) Classical Factorial analysis on the numerical 
table 
3) Compute the  trajectories  as  supplementary 
individuals 
4) Symbolic explanation of the axes 
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IV. Conclusion 

The union of classical data analysis methods with symbolic 
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possibility of using classical data analysis. 
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received yet) but the development of symbolic methods with 
a classical statistical software as the SAS system is very 
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VI. Slides 

Symbolic Data Analysis 

•  1 st feature : 

Individuals are described by logical expressions 

Cepe: [HatColor = { red, green}] 
x [FootHeight={ small}] 

The description can be complex 
Boletus: [HatColor = {yellow, brown }] 

»[Heights     [0,7] if HatCo!or=yelk>w, 
[7,15] if HatColonsbrown] 

and can use external knowledge 
if HatPresence=no then HatColor has no sense 
If HatColor=black then Smell Is nauseous or pleasant 

The mushroom data set 
Muih. Green    Begh End Hat Hat Hat Foot Smell 

HOUM Presence Shape Color Height 

cepe Pignacl 2 P C,S r. g S n,P 
•garte Plgiuc    1 »w a,m O.P 
chantaralU Plgnac     1 g 

Plgnac     2 r.g Im p 
agarie Plgnac     2 m,t n,p 
chantanVa nrac   i g a n 

Plgnac    3 w, g m P 
agaite Prgnao     3 t,B »» a,m o,n 
chanter*"»' Prgnao    3 U m 

Plgnac     4 m P.0 
agaric Plgnac     4 rut n.P 
chant***«*! Plgnac     4 0 

Plgnac     1 NS m,t P.0 
agaric Plgnac     3 m,t o,P 
chantmBi Plgnac     3 NS a o 

Tropic     1 t.a,e »w,y,b m,a o,n,p 
agaric Tropic     1 P>a tc,NS b,o,NS m,l n,p 
chantanBi Tropic     1 

Troplo     a a.c.1 a,t,m P.n 
agaric Tropic     t 

- 
P.a CtcNS g.r,NS a.1 n,p 

HC = {r g}: during the day, Hat Color has been either red, or green. 

•  2 nd feature: 

INDIVIDUALS 

CONCEPTS } 

SDA (continued) 

are described In the same syntax 

boletus: [HatColor = {white}] 
* [Height = [1,3]1 

meadow mushrooms: [HatColor = { white }] 
"[Height = [1,3]] 

Links between variables 
Strong link: the reverse link exists 

Ö 
HatPresence = absent 

HatColor 
:>     and HatShape 

have no sense 

HatColor has no sense 
or HatShape has no sense  =>     HatPresence = absent 

Simple link: no reverse link 

=> 
\\ I / 

=> 

SDA (continued) 

•  3 rd feature : 

Several ways to describe Individuals or concepts 

Intension 

meadow mushrooms : [HatColor = {white }] 
»[Height = [1,3]] 

Extension 

among the set of initial individuals Q 

extQ(meadow): {chanterelle, agaric) 

among the set of possible descriptions 8 

exte(cepe) = {(circle, red), (circle, green), (square, red) 

(square, green)} 

Study of the mushroom evolution 
Trajectories of the green house evolutions on the first factorial plane (PCA) 

» transformation of the data In a pseudo-disjunctive form 

» principal component analysis 

» trajectory drawings 

The green houae evolution tra|ectorlee 
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Transformation of the data 

Mushroom HP 

Hot 

Pnoanet 

HS 
Ha! 

Shapa 

FH 
Fool 

HoIgM 

».»■■• •*• i ■••   

becomes: 
Mushroom HP_p HP_a HS_e HS_s HS_I HS.ns FH_» FH_m FH_t 

- 

Proportion of poaalbla muahrooma having a hat 
and havhg a daacriptlon compatlbla wfth trio kidrvklual muahroom 

Disjonction of the data 
Computation by Individual and by variable 

Study of the mushroom evolution 
Trajectories of the green house evolutions on the first factorial plane (PCA) 

» transformation of the data In a pseudo-disjunctive form 
» principal component analysis 
» trajectory drawings 

Tha groan houaa avoaitlon trajoetoriea 

I lM*rO   ll 

•»««««-I \ 

Transformation of the data (continued) 

Mushroom HP HS 
agaric_tropic_1 P.a t,e,NS 

Not using links 

HP      HS 

t 
c 
NS 
t 
c 
NS 

a eomblnatlona 
ofHP/HSvakaa 

m * 

Using links 

HP      HS 

P        t 
c 

N HatPraaancasabaant 
flion HatShapa haa no ai 

NS 

Mushroom 

agarlc_tropic_1 

HP_p 

3/6 
HP_a 

3/6 
Mushroom HP_p HP_a 
agarlc_tropic_1 2/3 1/3 

Symbolic interpretation of the factorial axes 

•  The axes (ocs0.7) 

cuun    IHTXR PBRCXNT DXBCKXN MCOOV YUtl MODI VUt2 HOD2 

axaln 0.142«« 0.2413t 1.00000 1.0000 hp a 
MMlp 1.00000 0.03441 1.00000 1.0000 ho a an n 
un3n 0.21571 0.2413t 0.70000 1.0000 fb a 
ajc*2p 0.00000 0.55172 0.72727 1.0000 hp P 

•  Tne positive extremity of the second axe 
computing) 

[otss0.7, percentage 

CLUfll     IMTKR pncrai DI1CSIH MCOOV VJUtl MODI VJLR2 MOD2 

axala 0.14286 0.2413t 1.00000 1.0000 hp • 
ut*>lp 1.00000 0.0344« 0.7777« 1.0000 ha m 
UM2n 0.2IS71 0.24131 0.11000 1.0000 fh a 
ax»2p  0.00000 0.55172 0.72532 0.1125 KM P 
4uc«2p 0.00000 0.55172 1.00000 0.1250 ha t 
a»2P 0.00000 0.55172 1.00000 0.0625 ha e 

Principal Component Analysis 
Correlation Clrcla 

•to 

Mr** 

WJ HBa 
M*_f 

fe. ¥CJ 

\ **-" 

Aetlvaalndlvkluala 

ÜBStr^»— 

Variance explained: 61 % (40 + 21) 
Principal trend: hat absence/presence 
Second axis: small foot / medium height foot + pleasant smell 

Conclusions and Prospects 

Classical + Symbolic Data Analysis Methods 
• Supporting complex structures 

» uncertainty on variable values, links between variables 
• Keeping the power of classical methods 

Strategy of analysis 
• Mushroom evolution 

» combination of methods (symbolic + classical) 

Prospects 
• Application on real data sets 

• Interface with an Object Oriented Data Base 
• Exploration of other features of SDA 

» Modal objets 

» Hordes 
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Small Sample Conditional Inference in Biostatistics 

John E. Kolassa* 

Department of Biostatistics, University of Rochester Medical Center, Rochester, NY 14642 USA 

Abstract 

Kolassa and Tanner (1994) present the Gibbs-Skovgaard 
algorithm for approximate conditional inference. This 
algorithm makes use of the double saddlepoint ap- 
proximation to the conditional distribution function 
of a sufficient statistic given the remaining sufficient 
statistics. This approximation is used with the Gibbs 
Sampler to generate a Markov chain. The equilibri- 
um distribution of this chain approximates the joint 
distribution of the sufficient statistics associated with 
the parameters of interest conditional on the observed 
values of the sufficient statistics associated with the 
nuisance parameters. In this paper recent extensions 
to this methodology are recounted, and open questions 
related to the existence and accuracy of the resulting 
approximation to the desired distribution are discussed. 

1. Introduction 

Kolassa and Tanner (1994) construct an algorithm for 
simulating observations from distributions approximat- 
ing null conditional distributions in generalized linear 
models, in order to construct conditional significance 
tests. The suggest using the Gibbs sampler to construct 
a Markov Chain whose null distribution is the condi- 
tional distribution of interest, and approximating this 
chain by sampling from the double saddlepoint condi- 
tional cumulative distribution function approximation 
of Skovgaard (1987) instead of from the true conditional 
cumulative distribution functions. This approxima- 
tion depends on a parameter m roughly measuring 
the number of independent and identically distributed 
observations represented in the data set. Besag and 
Clifford (1989, 1991) discuss methods by which such 
a Markov chain may be used for frequentist inference. 
This paper surveys work extending that of Kolassa 
and Tanner (1994) in a number of ways. Theorems 
are cited governing irreducibility and ergodicity of the 
constructed Markov chain. Accuracy of the resulting 
equilibrium distribution as an approximation to the 
desired distribution, the use of a higher-order approxi- 

* Supported by grant CA 63050 from the National 

Institutes of Health 

mation of Kolassa (1992a), and the extension of Kolassa 
(1992b) to cases in which the saddlepoint is not defined, 
are all discussed. 

Tierney (1991) reviews Markov chain convergence 
results in the more general case in which Hilbert 
space techniques are inapplicable; this paper makes 
use of such methods. These methods are similar to 
those used by Roberts and Poison (1994), but are 
extended to the case where the sampling performed 
is only approximately according to the Gibbs scheme, 
using the double saddlepoint approximation. Roberts 
and Smith (1994) discuss conditions of aperiodicity 
and irreducibility necessary for convergence. These 
questions are considered in this paper. 

This paper is organized as follows. First, Markov 
chain terminology, Gibbs sampling, and the double 
saddlepoint distribution function approximation are 
reviewed. An example of the method of Kolassa and 
Tanner (1994) is recounted. Irreducibility of the their 
Markov chain is considered in the setting of regression 
problems. Results are recounted showing geometric 
convergence to an equilibrium distribution, dependent 
on m. A simple example is given demonstrating that 
stronger convergence is not in general possible. The 
equilibrium distribution is conjectured to converge to 
the target distribution as m increases. 

2. Markov Chain Terminology 

The methods used in this paper to prove convergence 
of the constructed Markov chains are similar to those 
used by other authors. To make connections between 
this work and other Markov chain literature clearer, 
some common definitions concerning Markov chains are 
introduced. The first defines the structure of transitions 
from one step in the chain to another. The second 
considers whether the state space may be divided into 
two spaces, between which the chain never travels. 
If this is the case, there are an infinite number of 
equilibrium distributions for the chain, depending on 
how much mass is initially allocated to each subspace. 
The third definition concerns whether the measure 
induced by certain transitions in the chain can be 
bounded below by a measure that does not depend on 
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the initial transition. Nummelin (1984) presents many 
Markov chain convergence results depending on this 
property. 

Definition 2.1 : Suppose transitions in a Markov 
chain (T^) with state space % from state y are given 
by the density P(y,t) with respect to a measure fi 
and Borel sets T relative to the relevant topology on 
%. Let P(y, •) be the associated measure on T, and 
recursively define the measures P^\y, •) = P(y, •), and 
P(nHv,-) = ftP(v,dz)Pln-1Kz,-). 

Definition 2.2 : For any measure // on T, the chain 
(T(n>) is /i-irreducible if P[3n 3 T<B> G A\T0 = t]>0 
for all * € 1 and for alM G T B ß(A) > 0. Equivalently, 
the chain is irreducible if /^({2/| 2Zm=o -P^H*»2/) = 
0}) = 0 V* G T. 

Definition 2.3 : A set C C £ is small if and only if 
there exists a constant a > 0, and a probability measure 
i/onl such that P(t, •) > av(-) for t€C. 

Nummelin (1984) describes several forms of conver- 
gence results for Markov chains. Two are considered 
here: 

Definition 2.4 : A Markov chain is uniform ergodic, 
if there exists a probability measure IT, a constant 
r G (0,1), and a constant M such that H-P^d/, •) — 
""(OIITV < Mrn, and is geometrically ergodic, if which 
there exists a probability measure w, a constant 
r G (0,1), and a function M(y) such that ||P(n)(y, •) - 
""(OIITV < M{y)rn. Here || • \\TV is the total variation 
norm on the space of finite measures on il. 

Definition 2.5 : A Markov chain has period q if 
there exist disjoint measurable subsets To,..., Tq-i ofZ 
such that £[T("> G 7Je|2<n-1> = t] = 0 whenever * G % 
and i = (j — 1) mod q, and if q is the largest integer 
having this property. 

3. Gibbs Sampling 

The Gibbs sampler is a popular Markov chain method 
useful for yielding a sample from a posterior or likelihood 
density. It was first introduced by Geman and Geman 
(1984) in the context of image reconstruction. The data 
augmentation algorithm of Tanner and Wong (1987), 
introduced as a device for the calculation of posterior 
distributions, is a 'two-component' version of the Gibbs 
sampler. See Tanner (1993) for background details and 
important references. 

Let the symbol p(- • • \ ■ • ■) denote the distribution of 
those random variables listed before the vertical line 
conditional on those listed after, and let the vector T_;- 

denote the vector T with component j deleted. To 
obtain a sample from the joint conditional distribution 
p(Ti,• • •,T„\Ta+i,...,Td), the systematic scan Gibbs 
sampler iterates the following loop: Sample 

1) 7f> from piTilTff-V, • • •, if-^Ta+i, ■ • -,Td). 

2) r2
(n)fromp(r2|T<,,)

IiiB-1)
>.-.l2in-1)

>ra+1,...>r(,). 

a) Ta
(n) from p(Ta \Tf\ ■■-, T£\ , Ta+1,..., Td). 

If the algorithm converges, for a sufficiently large 
value of n we can take Tj , ••-,Ta as a simu- 
lated observation from the equilibrium distribution 
p(Ti,• • •,Ta\Ta+i,...,Td) of the Markov chain. Inde- 
pendently replicating this Markov chain / times produces 
an independent and identically distributed sample of 
size / from the distribution of interest. 

4. Double Saddlepoint Approximation 

Often the one-dimensional marginal distributions re- 
quired for Gibbs sampling are unavailable. Kolassa and 
Tanner (1994) suggest instead sampling from double sad- 
dlepoint approximations to the appropriate conditional 
cumulative distribution functions. The double saddle- 
point cumulative distribution function approximation of 
Skovgaard (1987) generalizes the secant approximation 
due to Lugannani and Rice (1980) examined by Skates 
(1993). Suppose a vector T arises as the mean of m 
independent and identically distributed random vectors, 
each with cumulant generating function K, and one 
wishes to approximate the distribution of T„ conditional 
on the value of T_„ = (7i, • • ■, Tu_!, Tu+i, • • •, Td). In 
the context above this will be applied for u < a. The 
double saddlepoint approximation involves solving the 
multivariate saddlepoint equations both for the full 
distribution of T and for the distribution of the shorter 
random vector T_u. The approximate conditional 
distribution function is 

Wyfimhx) + m"1/2 tf(Vmuii) (4- - I) + 0(m"3/2), 

(1) 
where 

= ßiyj\K"{ß)\lyj\K'iu{ß) 

W! = sgn(ßu)^2[{ßT - ßT)K'(ß) - K(ß) + K(ß)],{2) 

and ß and ß solve 

K'{ß) = t> Vj and KUß) = t> Vj # ti, ßu = 0,    (3) 
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K"u is the (d—l)x(d-l) submatrix of second derivative 
matrix of K, corresponding to all components of ß and T 
except the first, and $ and <j> are the normal distribution 
function and density respectively. The vectors ß and 
ß represent maximum likelihood estimators for the 
canonical exponential family containing T. 

Also of interest are inversion techniques for lattice 
distributions. Skovgaard (1987) derives a counterpart 
of (1) in the lattice case, in which ßu is replaced by 
2sinh(|/?„) in the definition of z, and in which tu is 

corrected for continuity when calculating ß. That is, 
if possible values for Tu are A units apart, ß solves 
K'(ß) = t where V = V if j # u and fu = tu - \ A. 

Later results concerning using the double saddlepoint 
approximation in conjunction with Gibbs sampling will 
require that the approximation be monotone. The 
derivative of (1) is 

(dzldib\)z~xWiX — zxby3\ dibi 
m ) ~dF' 

(4) 
this constitutes an approximate conditional density for 
Tu in the continuous case, and in the lattice case 
probability atoms are integrals of (4). Then (1) is a 
distribution function for 

m > max(£ü>J"3 — (dz / dwi)z~x w^1). (5) 

Skates (1993) discusses monotonicity of similar distribu- 
tion function approximations. 

We evaluate the monotonicity criterion, (5).    Note 

that dz/dtu = z (ßf/ßi + %iiijKij'ß?), and 

dwjdt» = w^ß? (k* + (fij - %)& - ft') 

= w? ft {%-%)&. 

Also, Kl(ß) = t\ k'iß? = 6iu, and ft = kul. Then 

dz/dt" = i(ftuu//9u + |ftijft*'J'ftu/),   and  dm/dtu = 

y/m<f>(y/mwi )f(l+ 

w -1 (ßu - ßu) = w~lßu, since ßu = 0. Hence dz/dw\ = 

zwi(iiuu/ßu + lKijKij1Kui)/ßu- Furthermore, the density 
associated with (1) can be expressed as 

V^H^^>i)]/\K"(ß)\ I \i<"u(~ß)\ 

(dz/dw^z-1^1 — zibi3\ 
m )' 

Terms of order 0(y/m) comprise the double saddlepoint 
density approximation of BarndorfF-Nielsen and Cox 
(1979). For further discussion and references see 
Kolassa (1994a). 

1 + 

5. An Example 

Kolassa and Tanner (1994) apply Gibbs-Skovgaard 
approach to higher-way contingency tables. Consider the 
distribution of elements in d\ x d2 x <*3 contingency tables, 
expressed as Xijjs where i € {1, • • •, di}, j € {1, • • •,^2}, 
and k £ {!,••',da], conditional on one dimensional 
marginals. Express the table in terms of d\didz sufficient 
statistics, of which 1 is the overall total, d\ — 1 are first 
unidimensional totals, d-i — 1 are second unidimensional 
marginal totals, and d$ - 1 are third unidimensional 
marginal totals, (d\ — l)(d^ — 1) are first bidimensional 
totals, (di — l)(c?3 — 1) are second bidimensional totals, 
(d2 — l)(efo — 1) are third bidimensional totals, and the 
remaining (di — l)(d2 — l)(d3 - 1) sufficient statistics 
are the entries with none of their indices at the 
highest values. The first d\ + d2 + ^3 - 2 sufficient 
statistics are ancillary to the null hypothesis of complete 
independence nested within the saturated model for 
Poisson means. Other sufficient statistics are ancillary 
and are conditioned on. Consider the following data 
describing the presence or absence of torus mandibularis 
among male and female Inuits aged 41-50 in three 
different groups, collected by Müller and Mayhall 
(1971), and cited by Bishop, Fienberg, and Holland 
(1975): 

Sex   Igloolik Group Hall Beach Group Aleut Group 

Pres.     Abs.     Pres.        Abs.        Pres.    Abs. 

M       10 0 4 2 4 5 

F       6 4 4 0 2 2 

These data were chosen to assess the quality of the 
Markov chain algorithm in a situation in which usual 
asymptotic approximations may be inappropriate. The 
hypothesis of independence was tested by generating 
random tables using the Gibbs sampler and Skovgaard's 
approximation as described above. Statistics for 
Pearson's \2 Test and the Likelihood Ratio Test were 
calculated for each simulated table. 

We simulated 5,000 independent Markov chains for 
200 iterations. For each integer n between 1 and 200 
we estimated the p-value after iteration n generated by 
each test statistic by calculating the test statistic for 
the observed table, and for each of the simulated tables 
represented by the state of the chain at time n. We 
report as the estimated p-value the proportion of sample 
tables with a test statistic value as high or higher 
than the observed value. Convergence was assessed by 
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observing how these estimates change with n; in this 
example after fewer than 25 iterations the estimated 
p-values become stable. The asymptotic p-values based 
on the Pearson and likelihood ratio statistics are 0.004 
and 0.001, respectively. The corresponding values for 
the Gibbs-Skovgaard algorithm are 0.136 and 0.063. 

6. Irreducibility of Chains for Regression Models 

Kolassa (1994b) considers certain regression models, 
and determines when the Gibbs sampling Markov chain 
applied to the sufficient statistics 

T = ZTY, mthYeJlVj (6) 

is irreducible. The continuous case result is straight- 
forward: 

Theorem 6.1 : For the statistics T of (6), where 
each 2)y is a connected open subset of M., and if a 
formal Gibbs sampling scheme which, when sampling 
component u conditional on t°u, samples from a 
distribution on {tu\t € 1, t_u = i° „} having a positive 
density with respect to Lebesgue measure, then the 
chain is irreducible. 

The following example shows that the discrete case 
is more delicate. Suppose that 2)u is a subset of 
the integers from 1 to M — 1 for each u. Let Z 
be the dxm matrix with (1,M, M2,.. .,Mm_1) and 
(1, M + 1, (M + l)2, • • •, (M + l)m_1) as two columns, 
and the rest arbitrary. Conditioning on the sufficient 
statistic associated with either of these two columns in 
effect conditions on all of the Y, since the Y can be 
reconstructed from each of these sufficient statistics by 
themselves. Gibbs sampling in this situation will fail. 

Consider a second logistic regression example, in 
which the first and last components of the sufficient 
statistic are conditioned on: 

Index N y V 

1 1       0 0 0 1 1 0 

2 1       1 0 0 0 0 0 

3 1       0 1 0 0 0 0 

4 1     1 1 0 1 0 1 

5 1       0 0 1 1 0 0 

6 1     1 0 1 0 0 0 

7 1       0 1 1 1 0 0 

8 1     1 1 1 1 0 0 

s = Zy 1       0 0 0 

t = Zv 1     1 1 0 

No series of rearrangements of the indicators in v, each 
keeping the first, last, and second or third components 
of« fixed, will draw s closer to t. 

One might be tempted to try to extend the above 
argument to discrete distributions on T that will hold 
asymptotically as the density of discrete points of % 
increases. However, such applications usually involve 
positive probability on the boundary points of the sets 
?)j, which may leave vertices of X forming subsets of the 
state space not communicating with other state space 
points. 

Instead, combinatoric arguments examining rear- 
rangements of the counts in y are necessary to prove 
the following theorem: 

Theorem  6.2 :    For the statistics T of (6), where 
1. each tyj is the intersection of a connected subset of M. 

and Z, each with at least two elements. 
2. The matrix Z has a column of ones as its first column, 

and consists entirely of zeros and ones. 
3. There exists a path through the corresponding rows of 

Z, where two rows are connected if they are identical 
except for one entry. 

4. None of the first d components of the sufficient 
statistic are at their extreme values. 

Then the associated Gibbs sampling Markov chain 
associated with conditioning on the first d entries of T 
is irreducible. 

Corollary   6.3 :    The result of Theorem 6.2 holds if 
condition 3 is replaced by 

3. For each row z with a non-fixed unit entry, say in 
column u, there exists a row w identical to z in Z, 
except that w has a zero in column u, and these pairs 
exhaust Z. 

7. Convergence of the Markov Chain 

Kolassa (1994b) demonstrates convergence of the 
Markov chain constructed by Kolassa and Tanner 
(1994) by showing that certain sets are small in the 
sense of Definition 2.3, and by using convergence criteria 
given by Nummelin (1984) to demonstrate the existence 
of an equilibrium distribution. To apply this defini- 
tion a dominating distribution must be found. This 
dominating distribution is expressed in terms of W, by 
embedding the Markov chain <(") in a larger sample 
space, allowing the quantities W to be calculated from 
sample points, to obtain: 

Theorem 7.1 : If (dz/dw^z'1^1 - itüj"3 is uni- 
formly bounded above by a constant ei less than unity, 
and if it is uniformly bounded below, then the Markov 
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chain T^ is geometrically ergodic. 
Schervish and Carlin (1992) discuss strategies for 

demonstrating that a Markov chain is geometrically 
ergodic, and Tierney (1991) discusses strategies for 
demonstrating both kinds of ergodicity. The following 
counterexample shows that in a very simple example 
of Gibbs sampling, the resulting chain is not uniform 
ergodic, implying that Theorem 7.1 is as strong as 
one can expect. Tierney (1991) notes that uniform 
ergodicity holds if and only if the entire sample space is 
small, and I show that this is not the case. 

Suppose T is bivariate normal, parameterized as 
N(o,S), and hence K(ß) = \ßTSß.   Express S as 

(       \.\.    Applying the standard Gibbs sampler to 

T, the distribution of T<") conditional on T^"-1) is 
multivariate normal, ^T^lT^-1)] = p(l,p)Tt^l~1), 
and Var[r(">|T("_1)] is a positive definite matrix 
not dependent on aKn-1\ Hence for any bounded 
measurable set A C M2, P[T™ £ A\T("-V = i^""1)] -* 

0 as ty~ ' —* oo, and hence the entire sample space E2 

is not small. 

8. Accuracy of Equilibrium Distributions 

Schervish and Carlin (1992) define a space % = L2(p/p) 
consisting of the functions / on %, measurable with 
respect to T, such that ||/||« = / f2(y)ß(dy)/p(y) < 
oo, where p is the density of the equilibrium distribution. 
Then H is a Hubert space (Rudin, 1976), and H 3 p. 
For a transition density P formed from Gibbs sampling, 
let S be the operator g (->■ f^P(t,y)g(t)p(dt). This 
operator maps an unconditional distribution on the 
state space of the Markov chain to the distribution after 
one iteration. For every g € L2(p,/p), 

jg{y) dy =J(Sg)(y) dy, Jg{y) dy =J(S*g)(y) dy, 

where S* is the adjoint operator to S. These facts are 
used to show that when S is restricted to the set of 
functions in % integrating to unity, the norm of the 
resulting operator is strictly less than one. Liu, Wong, 
and Kong (1994) perform similar calculations for the 
space L2{p,p). The Banach space fixed-point theorem 
can then be used to show that the chain converges 
geometrically. 

In the absence of knowledge that the transition prob- 
abilities of the approximate Gibbs sampler correspond 
to conditional distributions from some unknown joint 
distribution, the conditional distribution p used to de- 
fine 7i is undefined, and the above construction fails. If, 

alternatively, another appropriate norming distribution 
is substituted, the second equality in (7) fails. Hence 
techniques of §7 were necessary to prove the existence 
of the equilibrium density pm. 

Once existence of an equilibrium density is demon- 
strated, Hilbert space techniques might be used to show 
that the equilibrium distribution pm approximates p to 
the proper order. This work is currently in progress. 

9. Further Work 

Kolassa (1992a) presents the following higher-order 
double saddlepoint approximation to conditional tail 
probabilities: 

Theorem 9.1 : The second-order saddlepoint ap- 
proximation to the conditional cumulative distribution 
function to 0(ro-5/2) is, 

1 - F(xl\x2, ...,xd) = l- $(y/mwi) + <l>(y/mwi) ( 

1 1 + 
(\frnw\)z     y/mwi      y/mz 

[l + — ik(P* ~ P*) ~ 1(^13 - Pis) ~ ^(^23 - faa) 

! kikk
ijkkij 

where f is given by (2). The invariants are given by 
Pi3 = k9ijkhk'kghkijkki, p23 = kgtjkhk'kghkukji, and 
P4 = k*ik,kijkki; pi, Pi3, and p\3 are the corresponding 
quantities calculated from K,J, K'-

7
*, and K,jfc'. 

Kolassa (1992b) considers application of these meth- 
ods in logistic regression problems when a solution to 
(3) does not exist. Consider a model for counts of 
binary outcomes Yf. For each i 6 {1,..., M} let Y< be 
the number of successes in N{ Bernoulli trials, each with 
success probability 7T,- = exp(?7j)/(l + exp(7;,)), where 
rji — Ziß. The quantities z,- € Md are row vectors of 
covariates. Let Y and N be the vectors of the number 
of successes Yi, and the number of binary trials AT,-, each 
with M components. Sufficient statistics T are given 
by (6). For some Y one or more components of the 
saddlepoint ß may be infinite. This is likely to happen 
when the binary outcomes associated with a certain 
covariate vector Z{ are all successes or all failures. 

Albert and Anderson (1984) provide a diagnostic for 
whether all saddlepoint components are finite. Clarkson 
and Jennrich (1991) determine which covariate vectors 
are associated with fitted probabilities of 0 or 1. Kolassa 
(1992b) extends (1) to this case: 
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Theorem 9.2 : Consider the logistic regression prob- 
lem above, with sufficient statistics given by (6). Let 
W be Z with the column corresponding to covariate j 
removed. Choose s and r in [0, l]M. Maximize the sum 
of all components of s and r subject to 

(t(WTW)~1WT - N)a - t(WTW)-1 WTr = o, 

(I - W(WTW)-1 WT){a -r) = o. 

Let ** and r* be the maximizing values of these vectors. 
Classify all observation indices j into one of three 
mutually exclusive and exhaustive sets as follows: An 
index j is assigned to VA if the maximum above occurs 
when rj = 1. An index j is assigned to VB if the 
maximum above occurs when s*j = 1. The remaining 
indices are assigned to to Vc if the maximum above 
occurs when s*, — rj = 0. Let W\ be the matrix of rows 
of W whose indices are in VA UX>B, multiplied by -1 if 
for rows corresponding to indices in VA, and let Wi be 
the matrix of the remaining rows of W whose indices are 
in Vc- Let V be the matrix formed by inserting as row 
j of W% a vector of zeros. Prepend as the first column 
of V a vector of zeros except with 1 in coordinate j. 
Let U1T be the result of performing Gram-Schmidt 
orthonormalization on the columns of V. Let U be any 
matrix with d — rank{V) orthogonal columns such that 
ULUT — o; U may be constructed by completing the 
Gram-Schmidt process. Solve ULTK'(ß; t) = o subject 
to Uß = o, using Newton iterations of the form 

ß-ßo = -(K"(ß0; t)ULULTK"{ß0; t) 

+ UUT)-1K"(ßo;t)U1UJ-TK'(ß0;t). 

The vector ß is obtained similarly. Let £y(/3) = 
53- zjir(ß)(l — ir(ß))zi + UTU, where the summation 
is over j G Vc ■ Then 

P(Tj < tj\T-j = t-j) = $(y/mw) - <i>{y/rnw)x 

x*TCß) fe-1^)].. \ 

\ H ßjJm\j^0)\ 
y/mw 

+ 0(m-3/2). 

7 
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ONE-STEP SADDLEPOINT APPROXIMATIONS AND 
APPLICATIONS IN CONDITIONAL INFERENCE 

Suojin Wang* 
Department of Statistics 
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College Station, Texas 77843-3143 

Abstract 

In this paper we propose two simple one-step meth- 
ods for approximating distribution quantiles of statis- 
tics. The methods are derived by approximately invert- 
ing saddlepoint formulas for the cumulative distribution 
functions of the sample mean. The resulting formulas 
are suitable for use with a pocket calculator. Their ex- 
tensions to conditional inference and finite population 
problems are also discussed. 

key words and phrases: Conditional distribution, 
Cornish-Fisher approximation, Finite population, Quan- 
tiles, Saddlepoint methods. 

1.    INTRODUCTION 

The problem of approximating the distribution of a 
statistic is an important one in statistical theory and in 
practice. The normal, Edgeworth and saddlepoint ap- 
proximations are the three most commonly used meth- 
ods. The normal approximation is very simple, but often 
inaccurate, especially for small sample sizes. The Edge- 
worth expansions are slightly more complicated, but the- 
oretically more appealing. While they usually improve 
over the normal approximations, their numerical accu- 
racy is still often questionable. Even worse, they have 
some undesirable properties, such as negative tail prob- 
abilities. 

Saddlepoint methods, on the other hand, generally 
provide accurate approximations whenever they are ap- 
plicable. They have played an increasingly important 
role in statistics since its introduction into statistics by 
Daniels' (1954) pioneering paper, especially during the 
last decade. See Daniels (1987), Reid (1988) and Field & 
Ronchetti (1990) for general reviews of the background 
and development of saddlepoint methods. 

'This material is based in part upon work supported by the 
Texas Advanced Research Program under Grant No. 160802 and 
the National Science Foundation under Grant DMS-9200610. A 
part of the work was performed while the author was visiting the 
U.S. Bureau of Labor Statistics. 

In many statistical problems we do not directly use 
the distribution of a certain statistic. Instead, we need 
the quantiles of the distribution, which can be obtained 
by inverting the distribution function. The inversion of 
the normal approximation is easily accomplished, even 
on a pocket calculator. Formulas for the inverse of the 
Edgeworth approximations are available. They are of- 
ten called Cornish-Fisher approximations; see Witters 
(1984) for a recent development in this area. 

One major disadvantage of saddlepoint approxima- 
tions has been that their analytic inversions are not avail- 
able and no quick and easy numerical procedures are 
developed for practitioners, possibly armed only with a 
calculator, although lengthier procedures do exist, e.g., 
the method of bisection search. This, together with the 
fact that the saddlepoint expansions are based on slightly 
more mathematical analysis, makes the accurate approx- 
imation methods less appealing to practitioners. 

Attempting to remedy this drawback, in this note we 
present two simple one-step methods to compute ap- 
proximate saddlepoint expansions for quantiles. Using 
the results of the interesting work of Jensen (1992), two 
Newton-Raphson type numerical procedures are derived 
in Section 2 that are easily implemented on a pocket 
calculator. We show that our one-step methods are gen- 
erally accurate enough for most applications. Iterative 
adjustments with quick convergence to the true saddle- 
point quantiles are suggested. Section 3 describes an 
extension of the one-step methods for quantiles of a con- 
ditional distribution. Two examples are considered in 
Section 4 to demonstrate their numerical performance. 

Note that the two proposed methods in this paper 
are aimed to make the saddlepoint approximations more 
convenient and easier to use, and thus more attractive to 
practitioners. When there are computers conveniently 
available, it is more natural to use in a program the 
well-known methods of bisection and Newton-Raphson 
to calculate quantiles, although the two new methods de- 
veloped here are still serious competitors. For example, 
the second method given in Section 2.2 does not even 
need to solve (2) for the saddlepoint. This is different 
from all the existing approaches. Hesterberg (1994) gives 
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alternative methods for obtaining saddlepoint quantile, 
distribution function, and inverse distribution function 
estimates. 

2. TWO ONE-STEP SADDLEPOINT 
APPROXIMATIONS FOR QUAN- 
TILES 

In this section we consider two one-step saddlepoint 
methods in the following subsections. 

2.1.    The first method 

Assume that Xi,...,Xn are independent and identi- 
cally distributed with the moment generating function 
existing in a non-trivial open interval containing the ori- 
gin. Further assume that we are interested in approx- 
imating quantiles of the distribution of statistic T. In 
particular, we consider here T = X, the sample mean. 
More general cases will be discussed in later sections. 

Let ft, = E(Xi) and K{t) = lnM(t) be the cumulant 
generating function of Xi - /x. The Lugannani & Rice 
(1980) saddlepoint formula for approximating Fn(x) = 
Pr(X — n < x) is defined as 

Then we have 

G„(») = *(w.) + *(»-)(^L-7-)» U/JE *JC 
(1) 

where 
wx = sgn(tx)[2n{txx - K(tx)}] *, 

zx=tx{nK"(tx)}$, 

tx is the solution to 

K\t) = x, (2) 

and $ and <f> are the standard normal cumulative dis- 
tribution and density functions, respectively. The rel- 
ative error in Gn(x) is of order 0(n~l) in a large de- 
viation region and 0{n~zl2) in the shrinking set of 
{a; : |a; — (i\ < c/y/ri} for any fixed c > 0. 

Given a G (0,1) let xa be the ath quantile of Fn, i.e., 
Fn(xa) = a. It is readily shown that the corresponding 
saddlepoint quantile xsa = G~1(a) satisfies 

xaa = xa{l + 0(n-3'2)} (3) 

for any fixed a as n —»■ oo. There are methods available 
to obtain xsa numerically, but they are all hardly work- 
able on a desk top calculator in general. The goal here 
is to derive a simple method to approximate xa that can 
be calculated on a calculator quickly and easily. 

First we state an important result of Jensen (1992) as 
follows. Let 

*                 1 i    rw*\ rx=wx log(—). 
wx        z~ (4) 

Hr*x) = Gn(x){l + 0(n-1)}, (5) 

and the error holds uniformly for x in a compact set. 
Furthermore, for any c > 0 the error Ofo-1) can be 
replaced by 0{n~zl2) for \x- y\< c/y/ri. This result is 
essentially Lemma 2.1 of Jensen (1992) and an elegant 
proof of this is given there. 

The basic idea of this paper is to use the transforma- 
tion (4) to obtain a much simpler relationship between 
a and an approximate ath quantile by (5). A one-step 
procedure based on this relationship is described as fol- 
lows. 

Let xja be the x value such that r* Ja = $-1(a). It is 
seen from (5) and (3) that 

xjcc    =    z,«{l + 0(n-3/2)} 
=   xa{l + 0(n-3'2)}. 

With a reasonable initial value xo (see (9), for exam- 
ple), we want to get a one-step approximation x\ for 
xja, and therefore for xa. Let 

x\ = XQ + AajQi (6) 

where Aa>o is a small adjustment given in (8). By (4) for 
X = Xja 

(vif    =    ^-2ln(^) + {i-ln(^)}2 

Zx Wx 

=     d, 

where d = {$_1(a)}2. Notice that for fixed a the last 
two terms of (r*)2 are of order at most 0(n-1/2). There- 
fore, for x - ß = 0(n~1/2) and thus *„ = 0(n~1/2) we 
have 

d •\*- M) + O(l) = 2nix + O(l). 
dx dx 

Hence, the expansion of (r*t)
2 at x = xo is 

(r*0)
2 + 2ntXoAx0 + O(Ax0), (7) 

where tXo is the solution to (2) for x = so. Setting (7) 
to be d we obtain 

Ax0 = {d-(r'Xo)
2}/(2ntXo). (8) 

Let qa = $-1(a)(r/-v/n and tqa be the corresponding so- 
lution to (2) for x = qa (when qa is not in the domain of 
x, a suitable substitute is needed), where a2 — Var(Xi). 
We suggest to use the following initial value 

xo = qa + {d-(r: )2}/(2ntqa). (9) 
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When the solution to (2) can be solved analytically 
in terms of x our one-step saddlepoint approximation 
xi can be calculated easily on a calculator. Note that 
in constructing confidence intervals or testing hypothe- 
ses we are mostly interested in the quantiles in the two 
tails rather than around the center of the distribution, 
so that y/ritXa is bounded away from zero. Note that 
the first and second terms in (9) are of order O^n-1'2) 
and 0(n-1), respectively. With this initial value we have 
that Aaio in (8) is of order 0(n~3/2) since 

d-(K0)
2   =   d-{(r;y + 2ntqa^-^^ 

+0(n-1)} = Oin-1) 

Moreover, by expanding (rXl)
2 at x = xo (first equation 

below) and at x = xja (second equation below) respec- 
tively as above, we obtain that 

d+O(Ax0)    =    (KJ^iKJ2 

+2ntxja(xi - XJa) + 0(X! - XJa). 

Prom the first equation we have that d — (rXl)
2 = 

0(n~3/2). Since (rJJo)
2 = d, it is seen that 2ntXja(xi — 

xJa) = 0(rT*l2) and thus 

•i = *Ja{l + 0(n~3'2)} = xa{l + 0(n"3/2)}.    (10) 

Our experience shows that the one-step approximation 
is numerically accurate enough for most applications. Its 
numerical accuracy is illustrated in Section 4. 

In the case where more accuracy is desirable, we could 
repeat the one-step method by using the previous ap- 
proximation Xi-i as the initial value of the current step: 

Xi = Xi-i + Axi-u    * = 2,3,..., (11) 

where 

The series {a;*} usually converges quickly to xja as i 
increases. When i = 2, it is seen that (r*3)

2 = (r* )2 + 
2ntXlAx! + O(Axi) = d + 0(n~2). Using the same 
expansion and by induction we have 

«*-(•■:_ Ja = 0(n-<*+1>'2) 

for i = 2,3,.... Thus, the argument leading to (10) may 
be used again so that 

d+OiAx^)    =    (rlf = ft, J2 

+2ntxja(xi - xJa) + 0(xi - xJa), 

which implies that 

xi = xja{l + 0(n-i'2-1)}. (12) 

The fast convergence is evident in the examples in Sec- 
tion 4. 

2.2. The second method 
The solution to (2) is often not in a simple analytic 

form and can not be easily solved numerically. In such 
cases, one-step formula (6) may not be very convenient 
and thus we suggest a slightly different version as follows. 

Let tja = <I;«,I the solution to (2) when x = xja. 
Instead of approximating xja directly as in (6) and (11) 
we could approximate tja first and then get the corre- 
sponding approximation for xja. Since r* in (4) can also 
be viewed as a function oft, we rewrite it as r*(t). For 
x = qa we now define tq<x = qa/<r2 (when it is not in the 
domain oit, use a reasonable substitute). The following 
initial value for tja is suggested 

to=tqa + [d-{r*(tqa)}
2]/(2nqa). 

A small adjustment A<o corresponding to Axo in (8) is 
obtained as 

Afo = [d- {r*(t0)}2]/{2nt0K"{t0)}. 

Thus the one-step approximation for tja is given by 

ti=t0 + At0, (13) 

and the corresponding one-step approximation for xja 

(and thus for xa) is K'{ti). Computational savings may 
be compounded to use this method in complicated cases 
where more computational efforts are involved to calcu- 
late K{t) and its derivatives. 

Similarly, further steps {<<} for ija and {K'(ti)} for 
xa can be obtained by using (13) with initial value U-i. 
It can be shown that K'{ti) and Xi have the same order 
of the relative error for xja, i.e., 

K'(ti) = xja{l + 0(n-i'2-1)} 

for i = 1,2,.... The proof is similar to that leading 
to (10) and (12), and is thus omitted here. The second 
example in Section 4 demonstrates the use of this second 
approach, among other things. 

3.    SADDLEPOINT   QUANTILES   OF 
CONDITIONAL DISTRIBUTIONS 

The simple idea considered in Section 2 can be ex- 
tended to other saddlepoint approximations. To be more 
specific, however, in this section we concentrate on the 
case of approximating conditional distributions explored 
by Skovgaard (1987). The results of that paper are of 
special importance and are widely used in various prob- 
lems, but as in other saddlepoint methods there has been 
no quick way to obtain the corresponding quantiles. 
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Let (Xlt Yi),..., (Xn, Yn) be independent and identi- 
cally distributed continuous random p-dimensional vec- 
tors with the cumulant generating function K(u, v) ex- 
isting in a neighborhood of the origin, where Yi and v 
are (p — l)-dimensional. Let 

ka(u,v) = —K(u,v), 

d2 

for a, b being either u or v. Denote the sample mean 
of (Xi,Yi) by (X,Y). Skovgaard (1987) derived a 
saddlepoint expansion for the conditional distribution 
P(X — Hy < x\Y = y) in the same form as in (1), 

The one-step approximation 

Gn(x\y) = *(tüs|j,) + <f>{v>x\y){ w, 'x\y       zx\y 
),       (14) 

where 

t^ij,    =     Bgn(ux)(2n[ux(ps + x) + vxy 

-K{ux ,vx)- {v0y- K(0, t>o)}])1/2, 

z*\y    =   ux{n\K(uxtvx)\/\kvv(0,vo)\y'2, 

vo and (us, vx) are the solutions to the saddlepoint equa- 
tions 

Kv(0,vo) = y,        v0eR 

and 
-£«(«*,«») = Py + x,    kv(ux,vx) = y, 

(ux,vx)eRp, 

respectively. Moreover, fiy = Ku(0,vo), and \A\ denotes 
the determinant of matrix A. 

Letting 

T~U, =V)X\V — r*\v '*\y W, 

1    log(^), 
'x\y ZX\y 

(15) 

and using Lemma 2.1 of Jensen (1992), one can show 
that (5) is true for our new r\ and Gn{x\y). To ap- 

proximate the ath quantile xa\y of P(X — fiy < x\Y = y) 
we first define the corresponding saddlepoint quantile as 
xJa\y such that $(Kja]y) = a. 

We can now construct a one-step approximation xi\y 

as in Section 2. Let the initial value be 

*o|v = 9a + {d- (r*a]y)
2}/(2nuqa). 

Since -§^{wx\y)2 = 2nux, we have the adjustment analo- 
gous to (8): 

**o\y = {d-(r:oiy)
2}/(2nuXoh). 

3% = x0\y + Ax0\y (16) 

is accurate up to order 0(n~3/2) as before. 
As in Section 2, further steps Xf|y (t = 2,3,...), when 

needed, are easily defined as well as computed to im- 
prove the accuracy until the convergence to the limit 
BJa\y The same relative error rate of 0(n-*/3-1) also 
holds. Furthermore, the second one-step method (13) 
can be readily extended analogously to the conditional 
distribution problem. We omit the details. 

4.    EXAMPLES 

In this section we consider two examples to illustrate 
how our one-step methods are quickly implemented and 
the numerical accuracy they obtain. 

Example  1.    Suppose that Xi,...,Xn is a sample 
drawn from the gamma distribution G(6,ß), i.e., 

/(») = ney 
9-le-ß* x>0, 

and T = £ 5Z£=i X<- ^ ia computationally convenient to 
make comparisons in this example, since the exact dis- 
tribution of T is known to be G(n6,nß). The cumulant 
generating function of X\ — y. is 

ÜT(<) = -ölog(l-i)-|t, 

with the solution to (2) tx = ß - 9/(x + 6/ß). 
To illustrate the performance of the one-step method 

defined in (6), (8) and (9) we take 0 = 0.1, ß = 1, a 
somewhat extreme case. Furthermore, let the sample 
size n be as small as 10. This choice is also convenient 
since X here has an exponential distribution with mean 
0.1, so that the ath quantile of X is in fact explicitly 
given by xa = — log(l — a)/10. On the other hand, 
this particular case is representative of the whole gamma 
family for the comparisons of several methods. 

In Table 1, the one-step approximation aJi is compared 
with other approximations. Note that when qa < 0 we 
replaced it with 0.01. It is seen that xi is close enough 
to saddlepoint approximation xja and thus to exact xa 

for most practical purposes. In some cases, a few more 
steps may be desirable and they are easily implemented. 

Example 2. This example is to demonstrate that one- 
step methods are also useful in finite population prob- 
lems. Let N be the population size and M\(t) be the mo- 
ment generating function. A random sample Xi,..., Xn 
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a exact one-step 2nd step exact SA normal two-term 
3<* Xl 22 BJa Cornish-Fisher 

0.005 0.00050 0.00036 0.00046 0.00048 -0.1576 0.0329 
0.01 0.00101 0.00098 0.00098 0.00098 -0.1326 0.0247 
0.05 0.00513 0.00489 0.00502 0.00504 -0.0645 0.0120 
0.1 0.0105 0.0104 0.0104 0.0104 -0.0282 0.0123 
0.2 0.0223 0.0212 0.0219 0.0222 0.0158 0.0208 
0.8 0.1609 0.1674 0.1589 0.1618 0.1842 0.1597 
0.9 0.2303 0.2312 0.2315 0.2315 0.2282 0.2305 

0.95 0.2996 0.2995 0.3014 0.3011 0.2645 0.3017 
0.99 0.4605 0.4600 0.4630 0.4626 0.3326 0.4694 

0.995 0.5298 0.5294 0.5325 0.5322 0.3576 0.5428 

Table 1: Approximations to quantiles of T = X in Gamma(0.1, 1) case; n = 10 

(n < N) is drawn from the population. We wish to ap- 
proximate the quantiles of X — p. Notice that the distri- 
bution of the X is generally significantly different from 
that of the mean of a sample drawn with replacement. 
The bootstrap is based on the latter sampling scheme. 
See Davison & Hinkley (1988) for an interesting account 
of saddlepoint approaches in this area where our one- 
step methods are applicable as in the infinite population 
case. 

The one-step methods described in Section 2 may be 
applied to our current problem with some modifications. 
Let Kn{t) be the cumulant generating function of X — 
p. Then Kn(t) can be expressed in terms of Mi(jt/n) 
(j = 1,2,...,n) and computed recursively. Moreover, 
if we use Rn{i) = ^Ki(nt) to replace K(t) in Section 
2, then with a negligible error due to discreteness, the 
saddlepoint approximation is still valid as n, JV —> oo 
and n/N < d < 1 for some constant d. These results 
have been given in Wang (1993). 

We now compare the one-step approximation obtained 
from (13) with the exact quantiles and other approxima- 
tions. To carry out the comparisons, the following pop- 
ulation with N = 36 was simulated from an exponential 
distribution: 

It is obtained that p = 8.8230. Table 3 lists approx- 
imations to quantiles of X — p with n = 5. It is seen 
that the one-step method provides good approximations 
for the quantiles. Explicit formulas for Cornish-Fisher 
type approximations in the finite population case are 
not available. Thus, they are not given in the table. 

a 'exact' one-step 2nd step exact SA normal 
3<* K'(h) K'{t2) Xja 

0.005 -6.253 -6.126 -6.283 -6.296 -8.551 
0.01 -5.898 -5.810 -5.935 -5.945 -7.722 
0.05 -4.766 -4.707 -4.781 -4.788 -5.460 
0.1 -4.020 -3.958 -4.027 -4.034 -4.254 
0.2 -2.981 -2.879 -2.945 -2.957 -2.794 
0.8 2.863 2.908 2.841 2.840 2.794 
0.9 4.630 4.735 4.628 4.623 4.254 
0.95 6.113 6.242 6.123 6.123 5.460 
0.99 8.961 8.996 8.933 8.929 7.722 
0.995 9.940 9.976 9.933 9.929 8.551 

Table 3: Approximations to quantiles of T = X — p in 
Example 2 with n = 5. 'Exact' distribution based on 
100,000 simulated samples 

4.295 34.636 11.204 3.041 3.694 0.570 
31.024 11.245 8.591 12.745 6.568 3.913 
18.615 6.332 6.841 0.905 13.610 14.981 
10.103 2.210 0.765 5.056 7.038 1.849 
1.594 18.450 1.591 6.656 22.752 12.753 
0.790 5.005 7.418 11.321 5.631 3.834 

Table 2: Population for the simulation in Example 2 

5.    Concluding Remarks 

In this note we have proposed two simple one-step sad- 
dlepoint methods for distribution and conditional distri- 
bution quantiles. We have also discussed their applica- 
tions in finite population problems which are common in 
survey sampling and other areas. The one-step approxi- 
mations are easily computed on a pocket calculator once 
the cumulant generating function is available.   Again, 
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we stress that in presenting the new methods here, their 
simplicity has been the main objective. It is indeed an 
important step to make great methods easily usable to 
attract the interest of practitioners in using them. 

The new methods were developed in the cases where 
sample means are the statistics under consideration. 
However, since Jensen's (1992) original theoretical re- 
sults that we have applied here are valid for many other 
more complicated problems, the one-step methods can 
be obtained similarly in those cases. Finally we note 
that our experience reveals that while the second method 
(13) is often more convenient, for it does not require to 
solve (2), it is generally slightly less accurate than the 
first method (6). This is because extra approximations 
are involved in the second method. Therefore we recom- 
mend using the first method whenever the solution to 
(2) is easily calculable. 
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We consider robust and resistant estimation of the 
covariance matrix of multivariate data. Using expansions 
for the influence of individual observations on the 
eigenvalues and eigenvectors of the covariance matrix 
derived by Critchley(1985), we develop an Eigenstructure 
Influence (ESI) method for estimating the covariance 
matrix. Motivated by lower rank approximations and 
graphical representations of covariance matrices, we 
extend the influence measures developed by Critchley to 
measure the influence individual observations may have 
on these approximations. We develop a downweighted, 
iterative estimation algorithm estimating the covariance 
matrix directly using the ESI influence measure. We 
illustrate the technique with sample data sets and lower 
rank bipiot graphics. 

KEY WORDS: Eigenvalues; Eigenvectors; Influence 
functions 

1. INTRODUCTION 

We consider a robust and resistant procedure to estimate 
the covariance matrix of multivariate data based upon the 
eigenstructure influence functions. The motivation behind 
the use of influence functions is that they measure the 
amount of change in parameter estimates at a point x e 
Rp. Outlying points x do not necessarily unduly influence 
parameter estimates, while conversely, non-outlying 
points with large influence may change parameter 
estimates by nature of their orientation. Distributional 
properties of the sample influence functions, graphical 
methods for the identification of influential points, using 

influence of both the eigenvalues and the eigenvectors, 
and specific application to biplots and other lower rank 
applications are discussed by Vetter (1992). The 
procedure will be referred to as the Eigenstructure 
influence (ESI) procedure. Its performance is compared 
with other methods available in the literature. 

2. MOTIVATION 

Exploratory and robust/resistant techniques are becoming 
a more widely accepted component of statistical practice. 
Estimation based upon a sample of points is often 
enhanced by the use of robust/resistant methods. These 
methods attempt to ameliorate the problem of distortion 
of the underlying structure of the main body of 
observations by a small number of observations. In 
addressing this problem there have been many creative 
and innovative ideas presented to handle what is 
frequently called contamination. Contamination can take 
many forms but basically can be defined as any point or 
set of points which unduly influence the outcome of an 
analysis or investigation. Specifically, in the estimation of 
dispersion matrices for a set of multivariate vector 
observations, there have been numerous schemes to 
ameliorate the effects of outlying points, roundoff errors 
and other forms of distortion which can be present in any 
set of observed data. Many of these schemes involve the 
use of Mahalanobis distance which measures the elliptical 
distance from a multivariate centroid. Jolliffe (1986) has 
suggested that the influence functions on both the 
eigenvectors and the eigenvalues be used instead of the 
Mahalanobis distance. The ESI procedure provides a 
systematic   method   of  using   both  these  influence 
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functions, as Jolliffe has suggested. 
The classical estimator for dispersion matrices is the 
maximum likelihood estimator (MLE), which has optimal 
properties when the data observed are from a multivariate 
normal distribution with a given mean vector and 
covariance matrix. The maximum likelihood estimator may 
not possess these optimal properties, however, when 
contamination is present in the data. 

In any analysis, one must determine whether 
contamination is present or not. For multivariate data it 
can be extremely difficult to identify the contaminated 
portion of data. The problem is particularly acute in small 
data sets, where the identification of the population 
distribution may be extremely difficult. 

3. MAHALANOBIS DISTANCE 

The Mahalanobis distance, as presented in the 
following discussion, has been the basis of most 
multivariate estimation procedures to date. The 
Mahalanobis distance quantifies in a scalar measure the 
elliptical distance from a vector centroid. Once the 
centroid vector is determined, the distance of a point in p 
dimensions is measured and is weighted by the inverse 
of the covariance matrix. Thus, points which lie along an 
axis with a large amount of variation may have the same 
elliptical distance as those points which lie closer in 
Euclidean distance to the centroid but lie along an axis 
with less variation. This measure has been proven to be 
an effective measure of outlyingness and has been used 
very successfully in the iterative procedures to detect 

outlying points. 
The ESI procedure is based upon the influence 

functions of the eigenvalues and eigenvectors of the 
covariance matrix which measure the rate of change in 
the eigenvalues and eigenvectors at a point x. It will be 
shown that these rates of change, though related to 
Mahalanobis distance provide more information and thus 
can be used to improve the estimation of covariance in 
the presence of contamination. The Mahalanobis distance 

is defined as: 

where it is assumed that 

XrN(\l,a) 

and 

"1*1 

fl ■ iS <xi-P) <xi-P} -rtV 

To date, techniques have been primarily focused 
on outlyingness of points and not on the influence of 
points on particular parameters. Since there are many 
forms of data contamination, the proposed procedure is 
offered as an alternative approach which considers all 
forms of contamination, i.e. any data which distort the 

parameters of interest. 

2. THE ESI METHOD 

It has been shown that the Mahalanobis distance 
is an increasing function of the eigenvalue influence 
functions of the covariance matrix (see Vetter (1992)). 
The existing methods, which use Mahalanobis distance 
are, in effect, using only the influence on the variation 
(eigenvalue), but not the influence on the eigenvector. To 
see why the consideration of the influence of the 
eigenvector as well as the influence on the eigenvalue is 
important, consider the following decomposition of a 

covariance matrix S: 

S = Y) Xjdja/ 
3=5 

where a, are the eigenvectors and X, the eigenvalues of 
S. It is logical therefore, to consider the influence of a 
point on this particular combination of both the 
eigenvalues and the eigenvectors. 
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The rank r approximation to S is 

Therefore, the influence on the vector functionate 

is the jth principal component score for the ith point. 

We have developed the following equation for the 
perturbed vector VX.(EJ) a(Sj) 

yTJ ttj    j = 1 to p 

can be used to develop a metric which measures the 
change in the covariance matrix S or any lower rank 
approximation to S. 

fipjtfitj (Ci) =yT^C./+eJ (^■W5fc)«o (c3) 

From Critchley (1985), we have the following The empirical influence curve, which measures the 
perturbed parameters where e, represents the amount of rate of change in ^ a,   at the ith point can now be 
contamination in the jth eigenvalue and eigenvector at a written as the following vector: 
point X,: 

1-2. M€i>  " V«i*k+4ei*4j+0 (e3) 
*a<& --^«j + V*jß<* 

and 

1-2. «.,(€,.) = uj+eipii+-|e^Yii+0(e^) 

where for each point i, the influence function or relative 
rate of change in the jth functional X, (e,) is 

Vü - Yii2 ~ kj 

and the influence function for the functional a,^) is 

k+j   \Ak  Ajl 

where 

It should be noted from the form of these influence 
functions that there are two independent components. 
The first component 

'Jl —^-a, 
2^   * 

will be large when a point is outlying in the jth direction. 
The second component 

v*7 P« 

will be large when a point is influential on the direction of 
the jth principal component direction. When ß is large, 
the second part may dominate the value of the influence 
function. Since v(j is independent of ßij( points which are 
not outlying with respect to elliptical distances may yet be 
influential for a particular functional. 
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In order to use these influence functions in a weighted 
estimation procedure we need to convert the vectors to 
some scalar measure of influence. A natural scalar 
metric for measuring change to S or any lower rank 
approximation to S is the following: 

5=1 2^ 

where r is the rank of the estimated matrix and  ci are 
scaling factors. 
A scaling factor which allows a direct comparison with the 
Mahalanobis distance is: 

We then have, a comparison of the functional form of dv 
to the Mahalanobis distance dm as follows: 

dmr (xrx) 'CT1 {xrx) -^ to +lj 

portion of the d values but gives decreasing weights as 
the scores increase beyond a specific cutoff point k. 

Let w, = 1 if dv, < k 
w, =   k/ dv, if dv, > k 

For an iterative procedure, it is necessary to extend 
Critchley's equations to determine the influence of a point 
on a weighted estimate of the covariance matrix. 
Critchley's equations reflect the influence of a point as the 
difference between the covariance matrix with the point 
included and with the point deleted. In our iterative 
procedure the influence of a point is reflected as the 
difference between giving a point weight w,, where 0 < w, 
< 1, and giving it weight 0. 

Let 

m = -5>i' 
i^i 

denote a weighted mean and 

and 

dv* - E ^«J + M j-i    2*i 

If a point has a large Mahalanobis distance it will also 
have a large dv score, due to the first part which 
measures influence on the eigenvalue. The dv score also 
includes the influence on the direction of the eigenvectors, 
thus protecting against influential but not necessarily 
outlying points. 

4. ESTIMATION PROCEDURE: 

Any M-type estimation procedure may be used 
with weights based upon the dv metric. For example, an 
accepted and frequently used method is to apply a Huber 
influence function which gives equal weight to the middle 

denote a weighted covariance matrix. Then the weighted 
average with the ith point downweighted is denoted by 

m (i) ma^l£tf){x<-a) 

The empirical distribution function after downweighting the 
ith point becomes 

*w> " {1+ 
w* 

(1-Wj) 
} p- 

WJ 

(1-Wi) ■*i 
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we then get the downweighted covariance matrix 

0<*(i))  -O(^) - (T±r){{xrm)(xrm)'-tl(P)} 

Thus, W; / (1 - W|) replaces s, in the previous equations. 
We have also shown the equations for the downweighted 
eigenvalues and eigenvectors and their corresponding 
influence function. If X^ and o^ represent the weighted 
eigenvalue and eigenvector then the formulas for v(j and 
ßy are the same as deleted influence with y^ = (xrm)' a^. 

5. RESULTS 

It has been shown ( see Vetter, 1992) that the 
ESI procedure consistently outperformed several of the 
well known procedures based upon the Mahalanobis 
distance. The bias and mean squared error in estimating 
covariances and eigenvalues using the ESI procedure 
was compared to two M-type estimators (see Maronna, 
1976) and (Campbell, 1980) both based upon ellipsoidal 
distances. ESI performed as well as the two procedures 
when contamination existed in the form of outliers in the 
direction of the principal component axes, but provided 
visibly better results when contamination was present 
between the axes where point have more influence on the 
eigenvectors. 

Another advantage of the ESI procedure is that 
for problems of less than full rank, the construction of the 
proposed procedure facilitates improved estimation by 
exclusion or downweighting of the influence of points on 
directions not included in the analysis. As an example, in 
situations where the relationships of the minor principal 
components are of interest, the influence of points on only 
these last few components with the smallest variation 
need be considered. For graphical procedures such as 
the biplot, a robust/resistant biplot can be obtained by 
using the ESI method with scaling factors c, and c2 = 1 

and cr = 0 for r > 2. This bases the weights on the 
influence of points on the 1st 2 principal components 
upon which the biplot is based, (see Vetter, 1992). 

The proposed procedure can be applied to 
correlation matrices by substituting the formulas for 
influence of vector observations on the correlation matrix, 
which have been developed by Calder and described in 
Jolliffe (1986). This would be particularly beneficial for 
principal components based upon the correlation matrix, 
since it has been shown that points which are influential 
for the covariance  matrix  need  not be particularly 
influential for the correlation matrix. This is in part due to 
the fact that for a correlation matrix the eigenvalues sum 
to the number of variables in the observation vector. An 
investigation could be made of those points where large 
influence is indicated for either covariance or correlation 
but not the other. 
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Abstract 

Prior to performing an analysis on data, the statistician 
must address the problem of outliers. One way to do this is 
to use the Minimum Volume Ellipsoid (MVE) estimator, 
which has desirable robustness properties due to its 
breakdown point of 50%. It is defined as the ellipsoid of 
minimum volume that covers half of the data points. A 
major problem with using the MVE is that few 
computationally attractive methods exist for its calculation, 
especially in high dimensions and for large sample sizes. 
Determining the MVE consists of two parts. The first is to 
find the correct subset of points used to calculate the MVE, 
and the second is to find the ellipse that covers this set. 
Finding the subset of points to be covered by the MVE will 
be addressed in this paper. The solution proposed here is to 
use the Effective Independence Distribution (EID) method 
which chooses the subset by minimizing determinants of 
matrices based on the data. Results show that the volume 
of the ellipse using the EID subset of points differs from the 
optimal by less than 6% for some regression data sets 
where the true MVE is known. 

1. Introduction 

The existence of outliers and how to deal with them is 
an important problem in statistics. The MVE was first 
proposed as a robust estimator of location and shape by 
Rousseeuw [1], but its use has been hampered by the lack of 
a computationally feasible means of calculating it. The 
MVE is defined as the ellipsoid of minimum volume that 
covers approximately half of the points in a data set. From 
this one can see that it is a configuration of high content, 
but minimum volume. 

The problem of finding the MVE is two-fold. One must 
first find the subset of points that should be covered by the 
ellipsoid and then weight the data such that these points are 

covered by it. A solution for finding the weights is 
described in Hawkins [2]. Several methods have been 
described in the literature to find the subset of points. The 
first was the basic resampling method suggested by 
Rousseeuw and Leroy [3]. Subsequent methods that have 
been developed include the Feasible Solution Algorithm 
(FSA) by Hawkins [2], and some heuristic search 
algorithms are described in Woodruff and Rocke [4]. 
These authors compare the resampling or undirected 
random search method to simulated annealing, genetic 
algorithms, and tabu search. All of these methods are 
approximate ones, so obtaining the exact MVE is not 
guaranteed for a finite amount of resampling. 

This paper is based in part on the work done by Hawkins 
[2]. We propose a solution to the subset selection problem 
called the EID method. Some background information on 
the MVE estimator is provided, and the EID method is 
described. Results are presented that show the relative 
error in the volume of the ellipsoid found using the EID 
approach for several regression data sets where the true 
MVE is known. 

2. Minimum Volume Ellipsoid Estimator 

The problem of robust estimation of multivariate 
location and shape is that given a set of n observations x(, 
each one having p dimensions, find an estimate of location 
and shape that is resistant to outliers or contaminated data. 
The MVE is one such estimator and it is given by the 
ellipsoid [2] 

(x-cfr~\x-c) = p (1) 

where c and T are the location vector and scatter matrix 
respectively and p is the dimension of the data. The 
location vector is a weighted mean calculated as 
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c = £w,x* 

and the covariance or scatter matrix is 

h 

(2) 

r = Xw,.(x*-c)(x*-c)T 

;=i 

where x* is a column vector denoting the ith observation in 
the subset of h points, w{ is the weight for the ith 
observation, and h = [(n + p+l)/2] (the brackets denote 
the greatest integer function). The volume of the covering 
ellipse will be proportional to the determinant of T. It is 
evident from Eqs. 2-3 that to find the MVE one must 
determine which ft points should be covered and the 
corresponding weights to ensure coverage of the points. 

It is known [1,2,4] that the MVE has a breakdown point 
that approaches 50% as the number of points in the data set 
increases which is the best one can have. This means that 
approximately half of the data can be arbitrarily 
contaminated without affecting the estimate. 

The algorithm used in this paper to find the weights is 
one developed by Titterington [5] and is also used by 
Hawkins [2]. All of the weights are initially set to 
w}0) = l/ft, i = l,...,ft which is just the usual weights 
given to points when calculating the sample mean of a data 
set of size ft. Then at each iteration k calculate the 
weighted mean and covariance from Eqs. 2-3 and the 
Mahalanobis distances for each observation given by 

AW=(X;-C«)V,(X;-C(«) (4) 

If jDjf*' < p for every i, then the current ellipsoid using 
c(t), andr^1) is the MVE covering the ft observations. If 
the Mahalanobis distance for any of the observations 
exceeds p, then the weights must be adjusted. They are 
updated using the following 

wiw=w?)ä!l (5) 

and the calculations of Eqs. 2-4 are repeated until all of the 
distances are less than p. This procedure enlarges the 
ellipsoid until all of the ft points are covered. 

The algorithm for finding the weights can be somewhat 
computationally intensive for some data sets. However, it 
should be apparent that the real computational burden 
arises from the determination of which points should be 

covered by the ellipse. The EID algorithm is presented as a 
means of addressing this problem. 

3. Effective Independence Distribution 

(3%      3.1 Background 

Since the volume of the minimum covering ellipse is 
proportional to the determinant of the scatter matrix r, one 
could approach this problem as that of optimizing the 
determinant. In this application, the objective would be to 
minimize the determinant of T. This provides the 
motivation for using the EID method, since it can be shown 
that deleting points based on their EID value will optimize 
the determinant of the Fisher Information Matrix (FIM) 
defined below. Of course, the FIM is not exacüy the same 
as T of Eq. 3, however results indicate that it will be a 
reasonable approximation. 

The EID vector [6,7,8] for a data set of n ^-dimensional 
observations is calculated using the following equation 

EID = diag(X(XTXTlXT) (6) 

where X is an n x p matrix with n»p and each row 
contains one observation. The EID is just the diagonal 
elements of the 'hat' matrix which is familiar from 
regression theory. Note that there are n elements in the 
EID vector, one corresponding to each observation. Finally 
notice that 

it 

£EID,. = /> 
1=1 

and that 

0 < EID; < 1 

(7) 

(8) 

which can be shown from the fact that the matrix in Eq. 6 
is idempotent. The matrix XTX is called the FIM. 

It has been shown [7,8,9] that the following relationship 
between the determinants of the FIM holds as one 
observation is deleted from the data set 

XrX ^l-EID^X7^! (9) 

where the determinant on the left-hand side is calculated 
with the ith observation removed from the data set, the 
determinant on the right-hand side contains all of the data, 
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Table I. Data Set Parameters 
Data Set P n h 

Aircraft 4 23 14 
Coleman 5 20 13 
Delivery 2 25 14 

Education 3 50 27 
Gravity 5 20 13 
Salinity 3 28 16 

3. Delete  the  point  that  corresponds   to   the 
maximum EID value. 

4. Repeat steps 1-3 until only h points remain. 

—        5. Adjust the weights until the A points are covered. 

and the EID, denotes the EID value for the ith observation. 
From this one can see that there is a direct relationship 
between the determinants as the points are removed. Thus, 
if the situation calls for minimizing the determinant of the 
FIM then it is obvious from Eq. 9 that the observation with 
the largest EID value should be deleted. 

Two things should be noted from Eqs. 8-9. If an 
observation is deleted that has a value of zero, then nothing 
is lost by removing that point. If an observation has an EID 
value of one, then that point cannot be removed. If such a 
point is removed, then the determinant of the FIM becomes 
zero and the resulting matrix is singular. Thus, an 
observation with a value of one must be retained to keep the 
problem at full rank p. 

3.2 The EID method of subset selection 

The EID values can be used to successively remove 
points from the data set until h points remain. These h 
points will then be used with the algorithm described in 
Section 2 that will find the weights and the resulting 
ellipsoid. However, to better approximate the matrix T, the 
data will be centered by subtracting the p-dhnensional 
sample mean from each observation. This is repeated as 
each point is deleted. The procedure consists of the 
following steps: 

1. Calculate the matrix 

X'0')=(X0-)_X0'>) 

where X(j) is the set of raw data points at the jth 
iteration (at iteration ;'=0 there are n points in the 
set, at iteration j=\ there are n-1 points, etc.) and 
X~ is an (n-j) x p matrix with each row containing 
the p-dimensional sample mean for the current set of 
data. 

2. Use the matrix X'(j) in Eq. 6 to calculate the 
EID value for each point in the current data set. 

The EID tends to give points a large EID value if they 
have large magnitudes. However, this is not always the 
case; e.g., if an observation must be retained to keep the 
problem non-singular then it will have an EID value of one 
regardless of the magnitude. For a detailed discussion of 
this point and some examples see Kammer [6] and Poston, 
Priebe and Holland [8]. For this reason and because the 
desired output is a robust estimation of location, the 
centering of the data at each iteration is needed, which is 
the reason for the first step. 

4. Applications and Results 

To test the usefulness of this method, it is applied to 
several data sets where the true MVE is known. The paper 
by Hawkins [2] gives the correct subset and the resulting 
volume of the true MVE for these data sets. The relative 
error in the volume of the ellipse based on the subset 
obtained using the EID method can then be determined for 
comparison purposes. There are 6 data sets which are 
taken from Rousseeuw and Leroy [3]. These data are used 
for regression purposes, and only the predictors are used 
here to determine the MVE. The parameters of interest are 
shown in Table I. From this one can see that the data sizes 
are relatively small ranging in size from 

Cotoman 

DasVery 

Education 

Gravity 

Salinity 

Figure 1. Percent relative error in the volume of 
the MVE as determined by the EID approach. 
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Table II. Timing Results for Methods (sec) 
Data Set EID Splus, Genetic 

Algorithm 
Aircraft 0.22 68.0 
Coleman 0.17 67.0 
Delivery 0.11 28.0 

Education 0.77 74.0 
Gravity 0.11 62.0 
Salinity 0.22 50.0 

n=20 to n=50. The dimensionality of the data is also low, 
from 2 to 5 dimensions. 

For this study, the EID algorithm is implemented in 
MATLAB on a 486, 33 MHz computer. The relative error 
in the volumes of the minimum covering ellipsoid using the 
EID approach is shown in Figure 1. It is evident from the 
small error that ours is a feasible approach to finding the 
MVE. 

The time needed to determine the subset of points is 
given in Table II. Also in this table are some timings 
obtained using Splus 3.1 to determine the MVE estimate of 
a covariance matrix. This software uses a genetic 
algorithm to find the subset of points. The purpose here is 
to provide a very rough comparison of the two methods in 
terms of the computational effort involved. From these 
results, one can see that using the EID provides a savings 
in time when calculating the MVE. This would become 
more important as the dimensionality and size of the data 
set increases. 

The 2-dimensional 'delivery' data set is shown in 
Figure 2 to provide a qualitative assessment of the method. 
From this, one can see that the bulk of the data is clustered 
toward the origin. We would suspect then that the MVE 
would be in this area also. Figure 3 shows the data set that 
corresponds to the true MVE as given in Hawkins [2]. As 
expected, the MVE is near the origin. When the EID 
method is applied to this data set, the first observations that 
are deleted are the ouflying ones in the upper right-hand 
corner of the plot. It is not until the last points are deleted 
that the EID algorithm makes an incorrect choice. The set 
chosen by the EID approach is shown in Figure 4. Note the 
point that is incorrectly retained in the set. One reason for 
this error is that the point the EID deletes has a larger 
magnitude than the one that should be kept in the set. As 
stated before, these will be the points that tend to have a 
larger EID value in some cases. 

Finally, one last comparison is in order regarding the 
'salinity' data set. It is stated in Hawkins [2] that this set 
would require approximately 5,000 random starts with the 
FSA   to   reliably   determine   the   MVE   which   is   a 

computationally intensive task. Note that for this data set 
the EID method of subset selection finds a set of points in 
0.22 sec with only 3% error in the volume of the ellipse. 

5. Summary 

In this paper, the EID method of determining the subset 
of points used in the MVE has been described. Subset 
selection is what makes the MVE a computationally 
expensive algorithm to implement in daily practice. 
Preliminary results indicate that the EID method for 
selecting the set of points to be included in the MVE 
estimator is a useful one. The time required for subset 
selection is less than a second for the data sets considered 
here, and it is expected that for large n similar savings in 
time can be achieved. 

The 2-dimensional scatterplots of the 'delivery' data 
indicate qualitatively that the EID tends to pick a tighter 
cluster of points. Whereas the set of points making up the 
true MVE is somewhat narrower. This example helps 
illustrate an important point about the MVE. Since it is an 
ellipsoid of minimum volume it does not necessarily pick 
the tightest cluster of data. It is suspected that the EID 
approach might yield better results based on some other 
criterion; e.g., better covariance structure or clustering. 
These ideas will be examined in more detail as part of the 
future work in this area. 

Although the EID method is not guaranteed to find the 
true MVE, it has certain advantages that make it more 
attractive than the algorithms currently in use. As 
discussed previously, it involves little computational effort, 
and thus it is suitable for sets with large n and p. Also, due 
to the iterative nature of the method, it would be easy to get 
a family of estimators for different values of h which is a 
useful feature [2]. This makes the use of the EID method 
feasible, thus allowing the statistician to easily employ this 
robust method of estimating multivariate location and 
scatter. 
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Abstract: We discuss computational approaches to 
multivariate function estimation using strengths from the 
spline and local fitting worlds. In particular, we con- 
sider piecewise polynomial representations of the surface 
that can be easily evaluated at any point in the domain, 
and estimating parameters using local approaches. Ideas 
along these lines using rectangular partitions of the do- 
main have been used previously by Silverman (1981) and 
Cleveland and Grosse (1991). In this paper we propose 
triangular partitions which may offer greater efficiency 
and adaptability in modeling surfaces. 

1    Introduction 

Figure 1 is a contour plot of a density estimate. The 
sample here consists of 225 observations from an equal 
mixture of three standard bivariate normal distributions. 

This figure was constructed by direct application of 
the local likelihood density estimate, discussed in Loader 
(1993). In particular, for each point xona 100 x 100 grid, 
the following system of equations was solved for a: 

Xi — x 
h 

= JA(u- X)K (^~\ e^^'^du      (1) 

Here, A(v) is a vector of the ten cubic basis polynomi- 
als and a is a vector of unknown local coefficients. The 
density estimate is f(x) = exp((a, 4(0))). As an estimate, 
the local likelihood method performs quite well; the three 
peaks are clearly separated and are reproduced almost to 
full height; the true peak height is about 0.053. 

However, as a computational method direct applica- 
tion of the local likelihood method is wasteful and ineffi- 
cient. The local likelihood method assumes the underly- 
ing density is smooth, and therefore it seems unnecessary 
to work independently at very close points. 

Moreover, we only have the estimate evaluated on a 
discrete grid of points; for many purposes, this may be 
unsatisfactory. To use the fitted surface for classification 
or prediction requires us to be able to readily evaluate 
the surface at any point; not just the grid points. In 
the regression setting, a residual plot requires evaluation 
of the surface at the data points. Particularly in higher 
dimensions, one must visualize the surface by looking at 

Figure 1: Density Estimate from 225 points. Direct appli- 
cation of the local likelihood method. Local cubic fitting 
was used with a variable bandwidth covering 113 data 
points. 

lower dimensional sections. Or, one may be interested in 
looking more closely at part of the surface. 

The subject of this paper will be better ways to com- 
pute local fits. In particular, we require efficient ways to 
compute and represent the fitted surface. The examples 
presented are all density estimation, although very little 
is specific to this case. 

What Computation is, 
not 

and is 

The computation of local fits is often portrayed in the 
statistics literature as a race to evaluate the surface as 
fast as possible at a predetermined set of points. This 
represents a very narrow focus; while computation speed 
is certainly important, there are many other important 
considerations. 

Fundamentally, the fit must summarize the data; not 
vice versa. The surface should be represented in a com- 
pact manner to allow prediction, classification, resam- 
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pling, interactive visualization etc. Just computing the 
surface on a grid of points is in general not satisfactory. 

An algorithm for local fitting generally consists of a 
number building blocks. On top of basic fast algorithms, 
one may want additional features, such as choices in the 
order of fitting; robustness; variable band widths and ap- 
plication to a wide variety of settings such as regression, 
density estimation, local likelihood fitting and multivari- 
ate problems. Ideally, the basic computational algorithms 
should be as flexible to as many of these settings as pos- 
sible. Methods that require a fixed bandwidth, or only 
work in one dimension, are of very limited utility. 

For the statistician, it is important that procedures 
be implemented within the environments with which they 
are familiar, and that provide facilities for data manage- 
ment and interactive analysis and graphics and the like. A 
stand-alone C or Fortran program will certainly be much 
faster to execute than software incorporated in a statisti- 
cal computing environment; however it is much less use- 
ful to the statistician because of the overhead required to 
manage data, interface with other systems for display etc. 

We can now state why some of the 'fast' methods dis- 
cussed in the statistics literature are essentially useless as 
general purpose computational algorithms. As particular 
examples, we focus on binning and updating methods, 
presented for example by Fan and Marron (1994). First 
we note the comparisons in that paper are essentially 
meaningless in light of the preceding discussion: Figure 
8 of Fan and Marron (1994) compares times for local lin- 
ear smoothing; one curve for a weighted smoother with 
robustness iterations running in the S environment while 
the methods promoted by Fan and Marron use a uniform 
kernel smoother without robustness iterations and com- 
piled as a stand-alone C program. This comparison says 
nothing about the basic computational algorithms. 

The binning method divides the predictor space into 
intervals or a grid, and assigns observations to grid points. 
For a large samples, this effectively reduces the sample 
size, thereby speeding up the computations. But the bin- 
ning step is essentially a preliminary local constant fit; to 
avoid bias problems, large numbers of bins are required to 
avoid bias problems. This is particularly so in the multi- 
variate case. Fan and Marron report the major speedups 
result from reducing the observations to an equally spaced 
grid, reducing the number of kernel evaluations. However, 
this only works with a constant bandwidth! 

Updating methods are designed for polynomial weight 
functions, and expand sums such as those on the left hand 
side of (1) in powers of the Xi. The sums are then up- 
dated by moving to nearby x values. However, currently 
available implementations only address one dimensional 
problems, and the fastest implementations have serious 
stability problems. 

Most importantly, both of these methods require so- 

lution of the optimization problem (1) for each fitting 
point. Hence, particularly for our density estimation set- 
ting, these methods are unlikely to be particularly fast. 
Also, the methods are geared towards evaluating the esti- 
mate on a predetermined set of points (for binning, on an 
equally spaced grid), which is not satisfactory for many 
statistical purposes such as prediction, classification, re- 
sampling and interactive graphics. Neither method pro- 
vides a compact representation of the fitted surface. 

3    Piecewise Polynomials 

Suppose we have a sequence of vertices VQ < v\ < ... < 
Vk, and evaluations of a function f{vi) and its deriva- 
tive f'{vi) at each vertex. There exists a unique C1 

function that matches the function values and derivatives 
at each vertex, and is piecewise cubic on each interval 
(vi,Vi+i). This type of construction enables us to ap- 
proximate smooth functions quite cheaply using Hermite 
polynomials. See De Boor (1978, Chapter 4) for further 
discussion of this scheme. 

Another closely related method is the cubic spline ap- 
proximation. In the most common use, the cubic spline 
method enforces continuity of the first and second deriva- 
tives; it is not required to match the true derivatives. 

Several methods along these lines have been used in 
nonparametric function estimation. Penalized likelihood 
methods (Wahba, 1990) give rise to a cubic spline esti- 
mate with vertices at the data points. Regression splines, 
and the logspline density methods of Kooperberg and 
Stone (1991) estimate the parameters of a spline using 
criteria such as maximum likelihood; this enables the 
number of vertices to be substantially reduced. An alter- 
native method is to estimate the parameters using local 
regression or likelihood methods. For this approach to be 
computationally efficient, it is important to make effective 
use of the vertices; for this reason the Hermite polynomial 
rather than cubic spline approach is preferable. This is 
the idea underlying the LOESS method (Cleveland and 
Grosse, 1991). 

The computational advantage of local regression and 
likelihood appears in multidimensional cases. Global ap- 
proaches to fitting generally involve the solution of a large 
scale optimization problem, which is generally very ex- 
pensive. While sparse matrix techniques have been suc- 
cessfully applied to spline problems in one dimension, 
there use in multiple dimensions is much more difficult. 
By comparison, local regression methods solve a small 
optimization problem at each vertex. 

Two fundamental problems remain: The construction 
of a suitable partition of a multidimensional domain, and 
the construction of interpolants over this partition. The 
most common types of partition involve rectangular cells 
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or triangular cells. 
A rectangular partition is often preferred in theoreti- 

cal work, since it is often easier (or less difficult) to ana- 
lyze, and define suitable polynomial approximations. The 
earliest work using local fits in this direction appears to 
be Silverman (1981) who constructed an estimate based 
on evaluation of a fixed bandwidth kernel estimate and 
its derivatives over a coarse grid, and used a piecewise 
quadratic scheme to interpolate over the cells of the grid. 

A further development in this direction is the k-d tree 
structure introduced by Friedman, Bentley and Finkel 
(1977) and applied to local regression by Cleveland and 
Grosse (1991). In this algorithm, the data is initially 
bounded by a box, and the cells are recursively split. The 
splits in the k-d tree algorithm always divide observations 
in the parent cell into two subsets of approximately equal 
size, and hence the resultant structure has most vertices 
in regions of high point density. This is commensurate 
with the nearest neighbor bandwidths used in LOESS; 
however, other split rules could be used to adapt to other 
situations. 

This problem becomes particularly complex in three or 
more dimensions. 

An alternative to rectangular cells is partitions based 
on triangular cells. A triangle in d dimensions has d + 1 
vertices, against 2d for cubes. This suggests there are 
potential savings in multiple dimensions. The word po- 
tential is stressed here, since there are both 'good' and 
'bad' triangles. 

Some examples of good and bad triangles are shown in 
Figure 3. The ideal triangulation would consist of equilat- 
eral triangles. In two dimensions, these can be tessalated; 
unfortunately this is non-adaptive and therefore may be 
wasteful in regions of low density where a large bandwidth 
must be used. The right angled triangle scores 'ok'; this 
triangle can be interpolated over with reasonable success, 
but we are unlikely to gain much over the use of rect- 
angular grids. The tall isosceles triangle is poor, since 
some points may be far from the nearest vertex of the tri- 
angulation. Finally, the flat isosceles triangle scores bad; 
interpolating in the middle of the vertical edge will ignore 
the two side vertices. 
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Figure 2: Division of 225 data points by a k-d tree with 
34 vertices and 16 cells. Vertices are numbered in the 
order they are entered into the tree. 

An example of a k-d tree is shown in Figure 2. As 
required, this partition has most vertices in regions of 
high density. One can also identify some weaknesses; 
in particular, occasionally vertices occur at very close 
points suggesting inefficiency. Also, construction of in- 
terpolants over a rectangle depends on more than just 
the corners; for example, interpolating over the rectangle 
(10,11,18,19) cannot ignore the evaluation at vertex 20. 

Good 

Poor Bad 

Figure 3: Examples of good and bad triangles in a trian- 
gulation. 

In addition to requiring good triangles, there are sev- 
eral other competing criteria that must be considered 
when growing a triangulation. We wish to maintain adap- 
tiveness; in particular, there should be more vertices in 
regions where small bandwidths are used. The triangles 
must be small enough for interpolants to work reason- 
ably; however, the vertices should be sparse enough for 
efficiency. Finally, the triangulation must be fast to grow 
and search. 
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4    Recursive Partitioning 

In this section, one possible triangulation scheme based 
on recursive partitioning is presented. First, draw a box 
around the data, and divide the box into two triangles 
by the addition of a diagonal. The triangulation is then 
grown recursively by adding vertices to existing edges. 
Suppose existing vertices are Vi,..., vm, and hi,...,hm 

are the bandwidths used at these vertices. For each edge 
(vi, Vj) in the existing triangulation, assign a score: 

Pi,j ~ min(hi,hj)' 

If pitj > c split the edge. Let A = hi/(hi + hj), and create 
a new vertex at vm+i = Au,- + (1 - X)vi. We then create 
the new edges joining points to vm+i. This process is 
repeated until no more edges require splitting. 

The use of bandwidths in determining the splits allows 
the algorithm to preserve adaptivity. If hi is smaller than 
hj„ then A will be less than 0.5 and vm+i is closer to v^ 
In extreme cases this can over adapt, and so we restrict 
A to the interval (0.2,0.8). 

■<* - 

Figure 4: Recursive triangulation. Vertices are numbered 
in the order they were entered into the triangulation. 

Figure 4 shows a recursive triangulation grown on the 
trimodal data in Figure 1. The vertices are numbered in 
the order they were entered into the triangulation. The 
bandwidth used is variable, covering 113 nearest neigh- 
bors for each fitting point. Some adaptivity can be seen in 
this picture: There is a greater density of vertices around 
the three peaks, where a smaller bandwidth is used for 
the fit. 

The recursive partitioning presented here has both 
good and bad features. A big advantage is the triangula- 
tion can be stored in a tree-like structure; for any point x, 
it can then be rapidly determined which triangle contains 
x. The disadvantage is a recursive scheme scores only an 
'OK' in terms of goodness of triangles, and so one can't 
expect substantial gains in efficiency. There are also some 
bad splits in the algorithm; for example, point 7 was used 
to split the triangle (0,1,4); it would have been better for 
the algorithm to split the (1,4) edge first. 

5    Finite Element Interpolants 

The finite element method constructs interpolants over 
the cells of a partition. Only vertices on the boundary of 
a cell are used. This has computational advantages; the 
interpolants depend on only a small number of param- 
eters and hence do not require solving large systems of 
equations. 

The cell-based construction of finite elements leads to 
substantial difficulty in enforcing global smoothness con- 
ditions. For visualization purposes, we would like our 
surface to be continuous and differentiable. Also, the in- 
terpolant should be commensurate with our fitting pro- 
cedure; for example, an interpolant that only reproduces 
linear polynomials is not adequate for use with a local 
quadratic or cubic fitting procedure. 

A two dimensional element suitable for our purposes 
is the Clough-Tocher finite element (Clough and Tocher, 
1965; Lancaster and Salkauskas, 1986). This method uses 
twelve pieces of information: The function values and 
derivatives at each vertex of the triangle, and the normal 
derivatives at the midpoint of each side. The Clough- 
Tocher finite element is then piecewise cubic over each of 
three sub-triangles, with continuity and differentiability 
conditions enforced at the interior seams. See Figure 5. 
A remarkable feature of the Clough-Tocher method is it 
produces a globally C1 surface; when the method is ap- 
plied independently on adjacent triangles, the resulting 
surface is differentiable at the common boundary! 

The full twelve parameter Clough-Tocher method will 
reproduce a cubic polynomial. Unfortunately our local 
fitting procedure will not produce the normal derivatives 
at the midpoints of the sides; in practice, these are es- 
timated by linear interpolation. This reduced nine pa- 
rameter Clough-Tocher method reproduces all quadratic 
terms. A cubic reproducing scheme could be constructed 
by using second derivatives at the vertices and estimating 
normal derivatives using quadratic interpolation. 

Figure 6 shows the Clough-Tocher method applied to 
the data from Figure 1 using the triangulation in Figure 
4. Qualitatively the picture looks very similar to the di- 
rect fit; the three peaks are kept separate and reproduced 
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No. Vertices    d(fj)    d(f,f) 

Figure 5: Clough-Tocher method. The interpolant uses 
function values at the three vertices of the triangle, and 
the nine directional derivatives indicated. The inter- 
polant is made up of three piecewise cubics over the inte- 
rior triangles. 

to a similar height in both figures. Some differences are 
visible, particularly in the 0.01 contours. 

Figure 6: Density estimate using Clough-Tocher interpo- 
lation over a triangulation. Local cubic fitting. 

Alternative constructions of interpolants can be based 
on piecewise quadratic, rather than cubic, polynomials. 
This has advantages noted by Silverman (1981) for pro- 
ducing contour plots since level sets can be readily found. 
Another advantage is in locating local maxima of the esti- 
mate. The difficulty is that a quadratic has fewer degrees 

Direct 225 - 0.261 
Triangulation 55 0.0296 0.269 

k-d tree 34 0.0638 0.282 
k-d tree 66 0.0345 0.264 

Table 1: Comparison of direct fitting with triangulation 
and k-d tree based interpolation schemes. 

of freedom, and additional internal seams must be in- 
troduced to enforce boundary constraints. For example, 
Silverman divides each cell into sixteen triangles. For a 
construction of a C1 quadratic surface on a triangular 
partitions, see section 6.2 of Chui (1988). 

6    Concluding Remarks 

The triangulation approach is competing with the k-d tree 
as an approximation method. A natural question is to try 
to make an objective comparison of their performance. 
We consider 'comparable' estimates to consist of the same 
or similar numbers of vertices. The real question of course 
is how well do the interpolated estimates approximate 
the true estimate. In practice we cannot measure this, 
so we also consider how well the interpolated estimate 
approximates the direct. We consider the criterion 

%f> ft = IE i los to) - los to)i 

where f(x) is the direct density estimate and f(x) is the 
interpolated density estimate, where / is either density or 
log-density; /0 is direct and /i is triangulation or kdtree 
estimate. This is also an approximation to Li distance 
/ \f(x) - f(x)\dx between the two estimates. 

Table 1 shows the results for our triangulation and 
two different sizes of k-d tree. As we would hope, the 34 
vertex k-d tree is substantially beaten. The triangulation 
also slightly beats the 66 vertex k-d tree compared to the 
direct estimate, but loses slightly compared to the true 
density. Of course, not too much should be concluded 
from one example selected by the author; however we 
believe this certainly gives grounds for optimism. 

The triangulation used in section 4 is based on recur- 
sive partitioning. This enables the triangulation to be 
stored as a tree type structure, which facilitates rapid 
searching; in particular, one can rapidly determine which 
triangle contains an arbitrary point in the domain. There 
are however some disadvantages; in particular, we have 
noted the resulting triangulation will generally only score 
'OK' on the scale of Figure 3. We have also given up an- 
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other major advantage of triangulations; namely the abil- 
ity to well approximate fairly arbitrary nonlinear bound- 
aries and domains. 

There are alternative methods of growing triangula- 
tion, any of which may have advantages and disadvan- 
tages in our application. An obvious alternative is a se- 
quential scheme, beginning with a seed triangle in the 
center of the data, and adding neighboring triangles until 
the domain is filled. This loses the tree structure of our 
recursive scheme. Some advantages are that 'good' trian- 
gulations may result more readily, and easier adaptability 
to non-rectangular boundaries. 

Another step that might be considered is to attempt 
to optimize the triangulation in some sense. While a full 
blown optimization is the type of expensive problem we 
seek to avoid, some improvement may be obtained by 
moving vertices around or constructing triangulations on 
a given set of vertices. Some discussion of such schemes 
can be found in Barnhill (1977). 

There are a number of directions in which this work 
can be extended. Perhaps the most obvious is beyond two 
dimensions, where as already noted there is potential for 
triangulations to be much more efficient than rectangular 
grids. 

An obvious extension of this work (indeed the original 
motivation) is to higher dimensions, where the potential 
saving of triangular cells over rectangular by reducing the 
number of vertices seems much greater. Of course, any 
nonparametric fitting becomes much more difficult be- 
yond two dimensions due to data sparseness. However, 
the construction of good triangulations is more difficult; 
also difficult is the problem of enforcing global differen- 
tiability in finite element interpolants. 

There are also some theoretical questions that could 
be pursued. One obvious question is to analyze how well 
interpolated methods perform as estimates; in particu- 
lar, we hope to preserve good properties of local poly- 
nomial fitting. Such an analysis may also help suggest 
refinements to the triangulation; in particular, how deep 
should the triangulation be taken? Another question is 
how to estimate derivatives. The present implementation 
uses the local slopes from the local polynomial fits; this 
is convenient since the slopes are available at no extra 
computation costs. Theoretical analysis suggests these 
slopes have good properties as derivative estimates; how- 
ever, not always at the same bandwidth as for estimating 
the function itself. The author has found this problem 
severe in some cases for local quadratic fitting; hence the 
preference for local cubic fitting in the examples in this 
paper. 

Finally, we mention some ongoing work in nonpara- 
metric function estimation related to the topics discussed 
in this paper. Eric Grosse is considering alternative con- 
structions of Loess estimates based on the k-d tree parti- 

tion; in particular, placing vertices at the centers of the 
cells, rather than the corners. This solves the problem 
of nearby vertices mentioned in relation to Figure 2, and 
should improve efficiency of the scheme. Mark Hansen 
and Charles Kooperberg are using triangulation methods 
in a global likelihood estimation scheme, considering gen- 
eralized vertex splines (Chui, 1988) and other methods to 
construct estimates. 
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Abstract 

Electronic bulletin boards, client/server computing, 
and inter-network connectivity have promoted the trans- 
fer and exchange of data. Differences in computer hard- 
ware prevent seamless transfer of data from one com- 
puter system to another. Data transfer implies data con- 
version except when compatible hardware is employed. 
Even when compatible hardware is used, careless spec- 
ification of data formats may lead to serious problems. 
Situations arise where improper conversion may go unde- 
tected, leading to the statistical analysis of invalid data. 
This article addresses data conversion issues and high- 
lights pitfalls that impact the transfer of numerical data 
between different computer systems. 

1.    INTRODUCTION 

An insurance company must deliver an extract of 
claims data stored on an IBM mainframe computer to 
a small information services company which operates a 
network of UNIX workstations and personal computers. 
The insurance company provides the data on 3480 tapes 
using a variable length record layout. A block size B 
is specified, and records have no record delimiters. In- 
stead, individual records are determined by processing 
the first four bytes of a record as the record length in 
bytes. Blocking is determined by a four byte field that 
begins each block and gives the block size in bytes. A 
block may contain more than one record, but no partial 
records. Both block size and record length information 
is stored in binary. 

Fields in the data extract are copied directly from the 
claims system, so the extracted data contains a variety 
of data types, including a numeric format called "packed 
decimal" which will be described later. Furthermore, no 
conversion is applied to the extracted data, so character 
data is stored using EBCDIC encoding. 

On the information services company side, the UNIX 
and PC systems use ASCII encoding. The systems ad- 
ministrator reads the tape dataset directly onto the hard 
disk of a UNIX workstation. The blocks are converted 

from EBCDIC to ASCII before writing to disk. The sys- 
tems administrator reasons that data from an EBCDIC 
system must be converted to ASCII for the ASCII-based 
UNIX system. 

The statistician obtains a 66,077,850 byte file (approx- 
imately 63 Mb) with the above information, a detailed 
record layout, and block size B — 32000. She reads the 
first four bytes using a positive integer binary format 
and obtains the value 16,459, which she interprets to be 
the size of the first block. The documentation implies 
that record sizes are one of 260, 270, 280, or 290 bytes. 
An odd block size is not possible even with the four byte 
block header. 

The first 20 fields on all records are the same, and 
the fifth field is a four byte packed decimal field. Her 
attempts to read the fifth field of the first record as 
a packed decimal field fail. She gets the hex value 
0003A61Ch. The statistician is now convinced that the 
data is corrupt. 

In this example, the statistician received the data in- 
directly from a DP staff member. She was informed by 
the person who transferred the data from tape to disk, 
"I read the data and converted it using the system dd 
command with conversion equal ASCII turned on." At 
the time, it made sense to convert IBM 370 data created 
on an EBCDIC system to the standard ASCII encoding 
used on UNIX workstations. This seemingly insignificant 
conversion exercise effectively encoded the data into an 
unusable but salvageable form. Had the data remained 
in "EBCDIC" format, the block header would have been 
read as a realistic value of 31954, and the packed decimal 
field would have produced 0003471Ch, or 3,471. 

With the rise of client/server computing and networks 
of computers exchanging and sharing information, statis- 
ticians must be aware of the potential pitfalls inherent 
in the transfer and conversion of data. This paper ad- 
dresses some of the pitfalls and provides guidance for 
transferring data and diagnosing problems. 

2.    EBCDIC AND ASCII ENCODING 

The ASCII (American National Standard Code for In- 
formation Interchange) conversion standard associates a 
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one byte binary integer value with an interpreted 'char- 
acter', which can be: (1) a printable character, referred 
to as an ASCII character, (2) a communication or 'hand- 
shaking' code, or (3) an 'escape' or 'control' character. 
ASCII decimal values 32 through 126 (hex 20h through 
7Eh) are represented by standard keyboard symbols and 
are often referred to as 'printable characters'. These in- 
clude symbols like !, <, 9, A, a, and ]. If Shift-A, is 
typed, 'A' is displayed, and the decimal value 65 (hex 
41h) is placed in the keyboard input queue. ASCII dec- 
imal values 0 through 31 (hex Oh through lFh) have 
meanings that may vary depending on the software used 
or the device that is sending or receiving the values. For 
example, the linefeed character is ASCII decimal 10 (hex 
Ah), form feed is ASCII decimal 12 (hex Ch), and car- 
riage return is ASCII decimal 13 (hex Dh). ASCII dec- 
imal 3 is the familiar Control-C. ASCII decimal values 
128 through 255 may have standard meanings, but many 
software products do not recognize the standard values 
for 'extended ASCII'. 

The EBCDIC (Extended Binary-Coded Decimal In- 
terchange Code) conversion standard performs the same 
function as ASCII, except EBCDIC has a richer set of 
printable characters, including characters f. and ->. 

ASCII and EBCDIC imply a sort order for symbols, 
and the order is different. For example, EBCDIC sort 
order places b (decimal 130) before B (decimal 194), 
whereas ASCII sort order places B (decimal 66) before 
b (decimal 98). 

If data is stored as EBCDIC, it may be converted to 
ASCII, although conversions for extended ASCII or for 
non-printable characters may be dependent on the ap- 
plication. The UNIX dd command employs a one-to- 
one mapping between the two encodings. Some software 
products do not provide a one-to-one mapping for ASCII 
codes above 127. For non-standard encodings, such as 
ASCII 128 or EBCDIC 112, conversion from one encod- 
ing to another is risky, and data with non-standard en- 
codings should be investigated. Most data represents 
printable characters or numeric values. Character data 
with non-standard encoding should be suspect. 

When data is not encoded as pure ASCII or pure 
EBCDIC, then ASCII or EBCDIC conversions must be 
avoided. Packed decimal is neither ASCII nor EBCDIC. 
Numeric formats are more hardware dependent than are 
character formats like ASCII and EBCDIC. Two UNIX 
workstations may use ASCII encoding, but may use to- 
tally different binary or floating point storage. The mis- 
take that computer novices make is to assume an entire 
dataset is ASCII or EBCDIC, when in fact only certain 
data fields within records are ASCII or EBCDIC. 

3.    NUMERIC FORMATS 

The two most common numeric formats are integer bi- 
nary and floating point binary. While some systems may 
store integer values in reverse bit order or vary where 
the sign bit is located, many systems use a direct binary 
translation of integer values. Thus, the rightmost bit 
represents units, the next bit two's, the next bit four's, 
etc. 

Floating point storage is another matter, with system 
370 format and IEEE format dominating. Single preci- 
sion and double precision are the two standard floating 
point storage sizes. All floating point storage modes in- 
volve a mantissa that records all significant digits, and 
an exponent which defines the location of the decimal 
point. Floating point formats differ in: (1) the size of 
the mantissa and exponent, and (2) the method of stor- 
ing the numeric information. 

There are 4,278,190,592 valid floating point values us- 
ing the IEEE four byte (single precision) floating point 
storage format. There are 16,776,704 'invalid' floating 
point values using the same IEEE storage format. These 
invalid values may actually be interpreted as 'infinity' or 
'not-a-number' (NAN) values. If you randomly gener- 
ate four byte values using a uniform generator, approx- 
imately 99.61% of the values should be valid floating 
point representations. 

Since floating point is so dependent on hardware plat- 
form, it is rarely a good storage format for transferring 
data across systems. For this reason, numeric storage 
modes like packed decimal and zoned decimal are popu- 
lar. 

Packed decimal interprets the hex representation of a 
number as a decimal number. The last half-byte is hex C 
for positive values and hex D for negative values. Thus, 
973Ch is positive 973, and 450Dh is negative 450. 

Zoned decimal uses a single byte for each numeric 
digit. Fixed point storage is assumed with an implied 
decimal. The sign, plus or minus, is stored in the last 
byte, and the nature of the sign byte depends on whether 
the system is ASCII or EBCDIC. If the rightmost digit 
is 0, and the number is positive, the rightmost byte will 
have value'{' (EBCDIC hex CO) or '0' (ASCII hex 30). If 
the rightmost digit is 0, and the number is negative, the 
rightmost byte will have value '}' (EBCDIC hex DO) or 
'p' (ASCII hex 70). Positive sign bytes progress from hex 
CO to hex C9 on EBCDIC systems, and from hex 30 to 
hex 39 on ASCII systems. Negative sign bytes progress 
from hex DO to hex D9 on EBCDIC systems, and from 
hex 70 to hex 79 on ASCII systems. The rightmost hex 
digit is the value of the last digit in the number. 

The following table presents statistics on an arbitrary 
set of text files read in as 4 byte floating point words 
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using IEEE single precision floating point storage. 

Text Files Read as Floats, 4 Byte Words 
Source Mean Minimum Maximum 

IEEE value 3.047e296 2.646e-260 1.367e301 

IEEE exponent 161.85 -260 301 

S370 value 7.475e70 9.658e-67 2.057e74 

S370 exponent 39.17 -67 74 

The unusual magnitude of the values should be suffi- 
cient to indicate that the wrong conversion format was 
employed. Large ranges imply that the floating point 
format is invalid. 

4.    DATA CONVERSION EXAMPLES 

The conversion of data written on one computer to 
a form acceptable to another computer may appear to 
be straightforward, but problems may arise. If a record 
from a dataset contains non-numeric data in some fields 
and numeric data stored in binary or some other form 
in other fields, then a simple conversion of the entire 
record is not possible. A common situation that is of- 
ten encountered is the conversion of EBCDIC to ASCII. 
For such situations, the statistician must distinguish be- 
tween fields that contain EBCDIC values and fields that 
contain numeric values. A common misconception is 
that numeric values expanded into EBCDIC symbols are 
stored as numeric values. An example serves to illustrate 
this problem. In the following, the symbol '@' is used to 
represent an unprintable character. 

Record Layout: 
Field Columns Format Value 
NAME    1-20 EBCDIC JONES, ULYSSUS P. 

AMOUNT   21-24 EBCDIC $215 

LOSS   25-28 Binary $19,608 

112   2 

Column Number: 5 0 5 0 5  
DDDCE64EDEEEEE4D4444FFFF0049 

Record in Hex:   16552B0438224207B000021500C8 
Record in EBCDIC:  JONES,  ULYSSUS P.       0215<B(S<q 

Note that the display stacks hex digits so that the 
relationship between what is seen and the corresponding 
hex representation is clear. For example, the character 
J is hex Dl, O is hex D6, etc. The digits 0 through 9 
are represented in EBCDIC hex as FO through F9. 

In the example, AMOUNT is stored in EBCDIC 
rather than integer binary. This is wasteful, because 
amounts between $0 and $10,000 may be stored in bi- 
nary using two bytes rather than four bytes, because 

9999(decimal) = 0010 0111 0000 llll(binary). 

Nonetheless, it is convenient to store data in readable 
form when small numeric quantities are involved. The 
field LOSS is stored in integer binary using four bytes, 
which permits dollar amounts up to $2,147,483,647. Had 
EBCDIC been used, ten bytes would have been required. 
For values up to $8,388,607, only three bytes are re- 
quired. 

For the example, note that 

19,608(decimal)   =   4C98(hex) 

=    0100 1100 1001 1000(binary). 

If the four byte LOSS field was interpreted as EBCDIC, 
then the value would be treated as invalid. The repre- 
sentation "@@<q" cannot be interpreted as a number. 
On the other hand, if the four byte AMOUNT field had 
been interpreted as integer binary, the amount would 
have been read as $4,042,453,493. The lesson is that 
any data field interpreted as integer binary will produce 
valid numeric values, but EBCDIC fields may contain 
values that cannot be interpreted as numeric. 

The most serious consequence of poor conversion 
is that integer binary fields may be converted from 
EBCDIC to ASCII, thereby producing bogus results. 
For example, converting the above example record to 
ASCII produces 

112        2 
Column Number: 5 0 5 0 5  

4444522545555525222233330037 
Record in Hex:  AFE53C05C9335300E000021500C1 

Record in EBCDIC:   JONES, ULYSSUS P.       0215<BQ<q 

Note that the printable characters do not change, but 
since the LOSS field was not meant to represent printable 
symbols, the numeric value of LOSS has changed. In this 
case, LOSS takes the value 

3C71(hex) = $15,473(decimal). 

For many situations, descriptive statistics will reveal the 
conversion mistake, but as this example illustrates, situ- 
ations exist where the mistake would not be obvious. A 
small simulation reveals that the problem can be serious 
when numeric values are relatively small. The follow- 
ing table contains results for a simulated dataset having 
500 observations taken from a Gamma distribution with 
shape parameter 2 and scale parameter 100. Values were 
written to disk as four byte integer binary values. The 
column headed "ASCII Value" represents the data read 
in after using the UNIX dd command EBCDIC-to-ASCII 
conversion feature, and the column headed "EBCDIC 
Value" represents the data read in after using the dd 
command ASCII-to-EBCDIC conversion feature. 
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Original ASCII EBCDIC 
Statistic Value Value Value 
No. Obs. 500.00 500.000 500.000 
Mean 197.51 207.242 227.598 
Median 159.50 180.000 208.000 
Std Dev 141.78 143.748 142.722 
Min 6.00 4.000 5.000 
Max 1013.00 897.000 876.000 
Skewness 1.40 1.121 1.143 
Kurtosis 3.13 1.761 1.682 
5%-ile 36.50 26.000 52.500 
10%-ile 52.50 42.000 79.500 
25%-ile 94.50 103.000 117.000 
75%-ile 275.50 274.000 293.500 
90%-ile 391.50 421.500 461.000 
95%-ile 472.50 461.500 496.000 

Many programmers who have used the built-in fea- 
tures of programming languages are not aware of the im- 
plications of performing arithmetic operations or storing 
numeric values. In fact, many databases store numeric 
values in human readable form. The interaction with 
"user-friendly" software or hardware can lead to prob- 
lems or misconceptions. 

A subtle data conversion problem occurs when data 
fields contain codes that may have special meaning to 
data processing software. For example, if a software 
product is expecting to find a record delimiter, like a line- 
feed (ASCII hex 0A) or carriage return (ASCII hex 0D), 
the software may encounter the delimiter in a packed 
decimal, integer binary, or floating point field. If a record 
delimiter is encountered within a field, the software may 
assume that the end of the record has been reached 
prematurely and truncate the record. This occurs be- 
cause the algorithm reads a record into a buffer up to 
the record delimiter before it attempts to interpret the 
individual fields in the record. It may be necessary to 
specify record sizes rather than depend on record delim- 
iters when special numeric storage modes are used. 

When file transfer occurs using FTP or some other 
transfer mechanism, there are options for binary or text 
transfer. A fixed length record data set with numeric 
fields as described in the previous paragraph may be 
transferred as a text file. In particular, suppose the file 
is transferred from a DOS based system to a UNIX sys- 
tem. DOS terminates text records with a carriage re- 
turn and linefeed, hex OD0A. FTP replaces 0D0A with 
0D, and removes the file terminating 1A (Control-Z) 
which DOS uses as an end-of-file marker. A binary field, 
say 0D0A(hex)=3338(decimal), would be left shifted 
one byte and replaced with 0A(hex)=10(decimal). The 
record containing this value would be corrupted. This 
explains why data files are almost always transferred as 

binary files. 

5. DIAGNOSING BAD DATA 

The most obvious approach to diagnose bad data is 
to flag bad values and generate a frequency table for the 
flag. This approach may be adequate for packed decimal, 
zoned decimal, or character (printable) data, but binary 
fields will always be valid, and floating point fields will 
almost always appear to be valid. 

For numeric storage modes like integer binary and 
floating point binary, statistical summaries may be ad- 
equate. The source data set should be analyzed to de- 
rive means and percentiles. If the target dataset pro- 
vides statistics that compare to within expected round- 
off, then it is unlikely that conversion problems occurred. 
Some data sources will not have expertise or resources 
to calculate percentiles, so one solution is to request a 
sum for each numeric field and a sample dump of 10 to 
20 records, preferably in hex and human readable form. 

What about data that comes from an "unfriendly" 
source? This may occur when a source is a secondhand 
distributor of, say, government data. The source may 
only be set up to distribute copies and may have no 
software tools to validate data. For these situations, 
the statistician should have some idea of what to ex- 
pect from the numeric fields. A binary field will always 
produce valid results even if non-binary data is stored in 
the field, and a floating point field will appear to have 
valid values over 99% of the time even if the field actually 
contains binary or character data. On the other hand, 
packed decimal and zoned decimal fields that display in- 
valid numeric values are probably specified incorrectly. 

6. MISCELLANEOUS   CONVERSION 
ISSUES 

When the person writing the program to create a tape 
dataset has no direct interest in the statistical analysis 
that is to be performed, then communication problems 
may lead to data conversion problems. Following are a 
list of problems that arise from the source of the tape 
dataset. 

• The programmer uses a system cataloged procedure 
without understanding the defaults that are em- 
ployed. 

• The programmer uses a proprietary storage mode 
supported only by a given commercial software 
product that may not be available on the system 
reading the data. 
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• The programmer anticipates EBCDIC to ASCII 
conversion and performs the conversion at the 
source cite without considering the impact on 
packed decimal fields or other non-EBCDIC fields. 

• The programmer uses hardware specific storage 
modes, such as floating point and binary, and lacks 
the sophistication to define how these fields are in- 
terpreted on the source system. 

Single purpose programmers, such as COBOL pro- 
grammers performing systems analysis, may work for 
years without understanding how packed decimal fields 
are actually deciphered by the software. These program- 
mers may also use tape utilities without understanding 
how they work. Tape reading and writing for archiving 
and other purposes is routine, but sending tapes off site 
may be rare. Many companies have been collecting data 
for years, but are just now beginning to realize the value 
of data. These companies are likely to be the greatest 
source of data conversion problems. 

While only a few improper conversions are difficult to 
detect, a number of improper conversions may be diffi- 
cult to diagnose. Integer binary being converted using 
EBCDIC-to-ASCII conversion tables poses a dangerous 
problem that is difficult to detect. Trying to read float- 
ing point data as packed decimal readily reveals a prob- 
lem, but it may take some detective work to deduce the 
correct numeric format that should have been used. 

7.    CONCLUDING REMARKS 

The number of seemingly sophisticated computer 
users who thought EBCDIC to ASCII conversion should 
be done for an entire dataset rather than on each indi- 
vidual field of a record was surprising. In a non-random 
sampling of associates, over 90% of those queried thought 
that data from an IBM system should be transferred 
to a UNIX system using EBCDIC-to-ASCII conversion. 
Rather than reflecting a basic ignorance of computer 
data storage, this finding probably reflects that .many 
statisticians only use pure 'text' storage mode for data, 
which means that pure ASCII or EBCDIC is used. 

The following guidelines for the source of the data will 
help make data transfer and conversion relatively pain- 

3. If system dependent storage modes like packed dec- 
imal or floating point storage are to be employed, 
include a complete description of the format with 
the dataset documentation. Complete documenta- 
tion would allow the recipient to program a conver- 
sion algorithm from scratch if software tools did not 
exist that supported the format. 

4. Include statistical summaries for all numeric fields, 
and frequencies for categorical fields, along with a 
dump of some representative records to facilitate 
validation on the recipients end. 

Software products like the SAS System® provide 
tools and formats that make data transfer and conversion 
relatively painless. Base SAS software provides a rich 
collection of data conversion formats, including hardware 
specific formats such as IBM 370 and VAX floating point 
formats. The expository articles by Langston (1987) and 
Klenz (1992) provide insight into issues related to float- 
ing point storage of data. Kudlick (1980) is an older text- 
book with details about IBM System 370 numeric stor- 
age modes, such as packed decimal and floating point. 

In the analysis of data obtained from a "foreign" com- 
puter source, the first step in any statistical analysis 
should be to verify the validity of the data. The statisti- 
cian who proceeds with an analysis without having con- 
firmed the proper transfer and conversion of data is as 
foolish as the scientist who comes to a statistician for 
help only after the data has been collected. Academi- 
cians who rely on graduate students or data center per- 
sonnel should be particularly cautious, especially if their 
own computer skills are weak. 

1. If dataset size is not an issue, use pure EBCDIC or 
pure ASCII to store data. 

2. Avoid using floating point storage mode on any data 
that is to be transferred to another computer sys- 
tem. 

The SAS System is a registered trademarks of SAS In- 
stitute Inc., Cary, North Carolina. 

References 

[1] Klenz, Bradley W. (1992). "Handling Numeric Rep- 
resentation Error in SAS Applications." Observa- 
tions: The Technical Journal for SAS Software 
Users, 1, 19-30. 

[2] Kudlick, Michael D. (1980). Assembly Language 
Programming for the IBM Systems 360 and 370. 
Dubuque, Iowa: William C. Brown Company Pub- 
lishers. 

[3] Langston, Richard D. (1987). "Numeric Precison 
Considerations in SAS Software." Proceedings of 
SUGI '87. Cary, North Carolina: SAS Institute Inc. 



R.M. Heiberger and F.E. Harrell, Jr.     367 

Design of Object-Oriented Functions in S 
for Screen Display, Interface and Control 

of Other Programs (SAS and M^jX), and S Programming 

Richard M. Heiberger 
Temple University 

Philadelphia, PA 19122-2585 
rmh@astro.ocis.temple.edu 

Frank E. Harrell, Jr. 
Duke University Medical Center 

Durham, NC 27710 
feh@biostat.mc.duke.edu 

Abstract 

We describe a set of object-oriented S functions that 
harness the automatic printing facility in S to convert an 
S object to another format. We devise new classes and 
subclasses of objects in S: file (with subclasses source, sas, 
dvi, latex, ps, and xli), display, and expr (closely related to 
objects of mode expression); print methods (families of 
related functions that depend on the class of the argu- 
ment) for the new classes; and other families of functions 
that depend on environmental variables. We give exam- 
ples for displaying an S object in its own window on the 
user's workstation, for converting a data.frame to a MJQX 

table, for displaying S help files in a TßX window on a 
workstation, and for converting a data.frame to a system 
file for another software system. We show how to put 
a SAS program inside an iterative loop controlled by S. 
We give applications to programming and debugging in 
S. We discuss design issues in constructing the functions 
and relating the individual members of the set of func- 
tions to each other and to the object-oriented paradigm 
in the underlying S program. 

KEY WORDS:  S, Display software,  MfeX, Object- 
oriented programming, SAS, System Interfaces. 

1. Introduction 

S (Becker, Chambers, and Wilks, 1988) is a "Pro- 
gramming Environment for Data Analysis and Graph- 
ics" originally designed for Unix computers. S-Plus, a 
supported version of the program, including a port to 
the MS-DOS environment, is available from Statistical 
Sciences, Inc. (1991). 

S was extended by Chambers and Hastie (1992) to in- 
clude an object-oriented programming environment. Ob- 
jects in the environment include functions, data, and 
graphs. Generic function names in the language are 
sensitive to the class of their arguments, and call dif- 
ferent methods for the actual execution.   For example, 

S normally prints quotation marks around character- 
valued variables but suppresses the quotation marks for 
character-valued columns in a data.frame. 

An interactive S session consists of two types of state- 
ments: assignments, in which the value of an object or 
the result of a function call is assigned to another object; 
and automatic print statements, in which values or re- 
sults not explicitly assigned to an object are printed by 
an implicit call to a print method. An easy way to con- 
trol the behavior of a program is to define new classes of 
data and associated print functions. 

In this paper we introduce three new classes of data, 
display, file, and expr. The display class is used to change 
the destination of a print statement. Under normal cir- 
cumstances, printed information goes to the standard 
output. Objects with class="display" are printed to the 
"display" device, an alternative destination defined either 
in an environmental variable options()$display or as an ar- 
gument to an explicit call to the print.display() function. 
Typical display destinations are text editors in indepen- 
dent windows on a display screen, printers, or pipes into 
other software programs. A family of functions display.* 
has been defined to be sensitive to the environmental 
variable specifying the display destination. 

The mechanics of the display class lead to the second 
new class of objects. Objects of class display are printed 
to a system file (using the sink function) in the under- 
lying operating system (usually Unix) and the name of 
the file is returned as an object of class file. Objects of 
class="file" are printed by locating the operating system 
file and printing it by a method appropriate to its sub- 
class. There are various subclasses of the file class: latex 
files contain input to the BTjX text processing software 
(Lamport, 1986), dvi files (device-independent) contain 
the results of processing by BTjjX, ps files contain infor- 
mation in the page description language PostScript, source 
files contain the ascii definitions of S objects. The de- 
fault print method for a file object is to display the ascii 
text of the file on a display device. The print methods for 
latex, dvi, and ps use the unixQ function to call operating 
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system commands for each of these file types. The print 
method for source uses the S command source to bring 
revised function definitions into the working directory. 

The third new class, expr, holds statements in the S 
language of mode expression. By making expressions a 
class, not just a mode, we can harness the automatic 
print facilities to aid in debugging. Since we are chang- 
ing the behavior of the print method for many objects, 
we must use the default print method to find out what 
objects we have constructed. By defining the object L 
and the print method print.expr: 

> L <— expression(print.default(.Last.value)) 
> class(L) *- "expr" 
> 
> print.expr«- function(x) eval(x) 

typing 

> L 

has the same effect as typing the longer statement 

> print.default(.Last.value) 

The print methods are implemented as a family of func- 
tions print.*. The print.display method is implemented by 
a display.* family of functions. Examples of both the au- 
tomatic and explicit use of print.display are in Section 2. 
We describe the design of the functions in Section 3. 

The mechanism leads to a very general interface with 
other software systems, described and illustrated in Sec- 
tion 4. The statement print.display(x,display=" latex") de- 
scribed in Section 4.3 converts the S object x to a file 
that can be input to the BTjX typesetting system. The 
statement print.display(x, display="sas") described in Sec- 
tion 4.5 creates a SAS data set (SAS Institute Inc., 1990). 

2. Display of Objects 

It is often helpful to have an image of the data visible 
in a separate window from the one in which the S session 
is itself running. We provide a set of functions to display 
text images in their own windows. We assume we are 
working with an X-window workstation abd tell S which 
display device to use with the options(display="xedit") 
statement at the beginning of the S session: 

> options(display=" xedit") #X using xedit 

We know that we will be working with the S object 
my.data.frame and decide to assign it the "display" class: 

> class(my.data .frame) <— c("display", class(my.data.frame)) 

Note that we have placed the new class first, so the au- 
tomatic print mechanism will find it first, and retained 
all previous classes. We can now print the data.frame to 
the display just by typing its name: 

> my.data.frame 

The automatic print mechanism recognizes this to be an 
object of class display and sends it to the print method 
print.display. Subscripting retains the class of the object. 

3. Function Design 

The function print.display has been designed as a print 
method for objects of class=="display". Any object 
for which class(object)[l] == "display" is automatically 
printed with the print.display function. Any other S ob- 
ject can be forced to print on the display by explicitly 
using print.display. The function takes additional argu- 
ments of two types. First, it takes general arguments 
(width= and length=) to prevent folding of long lines, and 
otherwise take advantage of scroll bars in the displayed 
window. Second, it takes device-specific arguments that 
allow user control of fonts and/or pagination on the dis- 
play device (X.flags=, lpr.flags=, lp.flags=, pr.flags=). We 
have provided specific functions in the display.* family of 
function names for 18 different display devices (window 
systems, screen editors, typesetters, printers, software 
systems). It is easy for a user with a different software 
preference or hardware availability to add another simi- 
lar function. 

The visible effect of the print.display function is the ap- 
pearance of an ascii image of the object on a display 
device. The mechanism by which this happens is im- 
portant. We construct an intermediate file, using the S 
sink function, and forward that file to the print.ascii func- 
tion, the default print method for objects of class file. 
We optionally return the name of the file in the "file" 
attribute of the "result" attribute of the print.display func- 
tion. The print.ascii function prints the file on whatever 
device has been defined. Display devices can be defined 
with options(display="xedit") or by an explicit argument 
to the print.display function. 

Several of our functions create intermediate files in 
other formats, for example, display.latex creates dvi files 
(class=c("dvi","file")), which are in turn automatically 
printed by print.dvi. We have therefore provided sev- 
eral related functions to allow direct manipulation of dvi, 
PostScript, and scanned image files. We give applications 
using these display techniques and discuss the construc- 
tion of the sets of functions designed to work with them. 
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3.1 print.display as a Method for the print Function 

The initial impetus was the Vars function (Har- 
rell 1992a), which collected supplementary information 
about data.frames (class, factor levels, formats, variable 
labels) and displayed it in a window. The motivation for 
the present paper was the recognition that Vars() was a 
combination of two separable functions. First, it queried 
a data .frame and constructed a summary of the supple- 
mentary information. Second, it displayed its results in 
a window on the display screen. In this paper, we fo- 
cus on the design of the display technology and use the 
initial application as an example. 

The user-level function print.display is the print method 
for objects of class display. It acts like an ordinary 
method, in that its behavior depends on the class 
of its argument. It differs from an ordinary method 
due to its dependence on the normally hidden generic 
print.ascii function, print.ascii is aware of its environment, 
more specifically of the value of several components 
of the options() vector, principally of options()$display. 
When options()$display is NULL the visible behavior of 
print.display is identical to that of print: the output is 
sent to the standard output connected to the S process. 
When options()$display is non-NULL, the print.ascii func- 
tion sends the output file created by print.display to the 
appropriate display device. 

The display construct generalizes to include print- 
ers and software interfaces. We provide definitions of 
display="lpr", display="lp" for Unix printer spools. In Sec- 
tion 4.3 we describe the function display.latex to convert 
an S data.frame to a JäTjjjX tabular environment. In Sec- 
tion 4.5 we describe the function display.sas to convert an 
S data.frame to a SAS data file. In both examples, we 
have options that allow the target programming system 
to be executed under S control. 

3.2 Family of display.* Functions and the 
Programming Environment 

The new generic function print.ascii queries the value 
of options()$display to determine the specific display de- 
vice, say it finds "X", and then forwards the temporary 
file constructed by print.display and any additional argu- 
ments to the function display.X. The function display.X 
uses the arguments and any additional options and then 
constructs and executes a Unix command for the dis- 
play. End users will need to set the option(display="X"), 
but will otherwise not generally work directly with the 
display.* functions. 

The display.* functions are similar in behavior to the 
generic functions and associated methods of S, in that 
the user calls the generic print.ascii and lets it decide how 

it should behave. The difference is that the print.ascii 
function depends on environmental information, specifi- 
cally, the value of components of the options() vector, to 
determine its behavior. The S generic functions depend 
on only the class of their argument. 

3.3    print.file as a Method for the print Function 

The function print.file, a method of the generic print, 
is itself a generic function with methods print.ascii, 
print.latex, etc. The function print.ascii, the default 
method for objects of class "file", depends on the en- 
vironmental information of the options()$display. 

Objects in class="file" consist of vectors of file names. 
A typical example is the vector of names of files resulting 
from a call such as tmp2 from the function call: 

> tmp2<—print.Iatex("z.tex" ,dvi.command="dvips" ,safe=F) 
> # Side effect: the file "/tmp/z3906.ps"is printed using 
> # the method defined in options()$ps.command 

In this example, the print.latex function took the Unix 
file name z.tex containing a I&TjjjX fragment, appended 
the missing statements to created an expanded MjjX 
file, typeset the expanded file to create a dvi file, sent 
the dvi file to dvips for conversion to PostScript, and 
printed the PostScript file using the method defined in 
options()$ps.command. 

4. Applications 

4.1 Information About a Data.Frame 

The motivating application Vars is the display of sum- 
mary information about a data.frame: 

> my.data .frame *— 
+    data.frame(x=l:2, y=factor(c("a","b")), 
+   q=structure(3:4, label=" Z")) 
> my.data .frame 

x    y    q 
1 1     a     3 
2 2     b     4 

> Vars(my.data.frame) # default: sort by variable name 
Label      Class     Levels 

q Z 
x 
y factor a b 

The function Vars returns an object of class "display", 
therefore the result of the Vars function goes directly to 
the display (in this example, the terminal). 

4.2 Contents of a data.frame 

We often wish to view the contents of a data.frame while 
constructing or interpreting an analysis. Say we have a 
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data.frame with 26 variables, and we are currently study- 
ing a model based on columns 11:15. The statement 

> options(display="jot") # editor with SGI 
> print.display(cars93[,c(ll:15,1:10,16:26)], 
+   X.flags="-font CourierlO", width=280) 

displays the reordered columns. In addition, the width 
has been increased so each row of the data.frame appears 
on one row of the output file. The small font allows more 
columns on the screen simultaneously. The editor's scroll 
bars are used to move around in the window. 

4.3    Display S Objects in I*Tj}X Documents 

An S data.frame is often displayed in MjjX table 
and/or tabular environments. We provide the function 
display.latex, a member of the display.* family, to perform 
the conversion. At user level, the commands are: 

> print.display(my.object, 
+   display="latex", dvi.command="xdvi") 

The function display.latex uses the generic function latex, 
latex converts data.frame and matrix objects using the 
specific function latex.default, an enhancement of the 
latex.table package (Harrell 1992b, 1992c). Function ob- 
jects are converted by latex.function using either the stan- 
dard BTjjX verbatim environment or the S Example envi- 
ronment (Chambers and Hastie 1993). Lists are con- 
verted by latex.list, a recursive function that calls the 
generic function for each element of the list. 

The display.latex function is more complex than the 
other members of the display.* family. The others, so 
far, have been essentially alternate output destinations 
for the mono-width ascii font produced by the generic 
print function. The BTJJX program uses the complete 
data.frame structure of the actual S object. It finds the S 
object in the frame of the function that called display.latex 
(by backing up through the calling sequence using the 
sys.parent function) and sends that object to the generic 
latex function. Users may wish to call latex directly. 

The latex.default function uses format.df, a stand-alone 
function based on Harrell's latex.table package. Nu- 
meric, factor, and character data (including imbedded 
blanks) are correctly formatted. Matrix components of 
a data.frame are recognized. The function name format.df 
indicates that the function is a model for a method de- 
signed for data.frame objects. 

The primary result of the display.latex function is a 
MjjX input .lie fragment.tex that will be pasted into a 
complete document. Secondary results are the execu- 
tion of the latex program on the fragment, and display 
of the result with the print.dvi method, print.dvi uses 
another family of functions, with generic function dvi 

and specific functions dvi.*, for the display of the file.dvi 
files constructed by the latex function. Four examples 
are provided, dvi.xdvi for X-windows, dvi.dvips for con- 
version to PostScript, and dvi.lp and dvi.lpr for line print- 
ers. When dvi.dvips is used, one of two additional ar- 
guments (dvips.command or ps.command) may be used to 
define a command (ghostview, lp, or Ipr, for example) to 
view the PostScript. When dvips.command is used, dvips 
output is piped directly to the Unix command, usually a 
printer spooler. When ps.command is used, dvips creates 
a PostScript file and then calls print.ps to display the file, 
usually on a screen viewer that might need to re-read 
the input file to display an earlier page. 

4.4    Display of Related Files 

The next example uses the vector of file names of class 
"file". We have a data.frame constructed by entering data 
collected by means of a multi-page data collection form. 
The form is stored on the computer system in a set of 
files, one per page. There are occasions while studying 
the data when we wish to see the image of the paper 
data collection form. 

We construct an S variable form.page that records the 
page number in the form from which each variable was 
taken. For example, 

> my.data.frame«— data.frame(x=matrix(l:12,3)) 
> names(my.data.frame) «— 
+   c(" id"," age"," cholesterol"," pulse" ) 

> form.page ♦- paste("Study.R93.124",c(l,212,3),sep='7") 
> names(form.page) *- names(my.data.frame) 
> class(form.page) <— "file" 

> print.default(form.page[c(l,4)]) 
id pulse 

" Study.R93.124/l"     " Study.R93.124/3" 
attr(, "class"): 
[1] "file" 

The structure of form.page says that id comes from page 
1 of the form and pulse comes from page 3. 

Now when we wish to examine a particular page of the 
form, based on the current view of the data, we can just 
call it up. We assume the form is stored in ascii text: 

> form.page["age"]     # print page with "age" question 

Since form.page is a vector of class "file", the referenced 
page is automatically printed by the print.file method. 
This system generalizes to any subclass of file. 

4.5    Interface to Programs, SAS as an Example 

The print.display function takes an S object and con- 
verts it to another format.   The examples so far have 
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been conversions to visual formats. Conversion to the 
system file format of another software system also fits 
the general definition. Indeed, the *.tex file format is 
also an example of input to another software system. 

In this section we show the conversion to the format of 
another statistical system. We use SAS (SAS Institute, 
1990) as the example. The function display.sas is a mem- 
ber of the display.* family of functions. It is more complex 
than most members of the family as it must prepare not 
only a data file but also a stdin file that gives instructions 
to SAS to reproduce the variable names and the numeric 
or character values of the variables. It uses the complete 
data.frame structure of the actual S object by backing up 
through the calling sequence (using the sys.parent func- 
tion in the same way as does display.latex). Users will 
usually choose to call sas directly. Matrix components of 
the S data.frame are separated into individual columns. 
Character and factor data are identified as character in 
the stdin file. Missing values in numeric data and imbed- 
ded blanks in character data are converted correctly, sas 
also uses the format.df function. 

The simplest application is moving the data for anal- 
ysis or display using a technique that is available else- 
where. An extension of the simple application is placing 
the conversion inside an iteration loop in S and using 
the S function to drive an iterative technique using pro- 
cedures available in the other program. A working exam- 
ple of the iteration loop is included with the distribution. 

4.6    Use of nroff/troff or UT$L for S Help Files 

The help files in S are written in nroff/troff. When the 
nroff files are displayed in the S window they often run 
off the screen and are not visible at the same time as 
the command for which they provide guidance. We pro- 
pose three methods to print them in their own window 
elsewhere on the display screen 

The first method is a simple revision of the help func- 
tion in S. The help.display function places the nroff output 
on a temporary text file, then sends the name of the 
temporary file to the display command. 

The second method is more complex, but often needed 
because the nroff program is an option, not automatically 
distributed with Unix systems. The function help.tex con- 
verts the nroff source files from the .Data/.Help directory 
to MjjK (using the doc.to.tex files from Chambers and 
Hastie (1993)), runs the conversion through the MjjX 
program, and displays the dvi file on the display screen. 

The third method sends the troff output to the screen 
using a preview.troff program with the sequence 

IRIS 61% setenv S.LP preview.troff 
IRIS 62% S 
> help(function.name, offline=T) 
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Abstract 

Most computer users are not aware that 
placing a numerical value within a computer will 
result in a different stored value than the one used for 
input and commit this rounding error without obvious 
warning. In general, the output of a numerical 
computation program can only provide an 
approximated solution and execution of a numerical 
computation on one machine is different from the 
output     from     another. Therefore,     numerical 
computations are often not reliable. However, a 
method called interval arithmetic may be the solution 
for detecting the maximum error of the given 
computation problem. This paper addresses the use 
of LISP programming techniques to develop reliable 
components for interval arithmetic. The LISP 
programs are machine independent and provide self- 
validated computation. 

1.   Introduction 
All computer systems are finite state 

machines, they are not able to deal with the 
computation of real numbers. They can only compute 
a finite subset of rational numbers. Consequently, 
any numerical computation using computer systems 
will involve rounding errors and propogated errors, 
and the solution is only an approximation to certain 
problems. A general question should be, "What is the 
size of error in the result?" In resent years, some 
mathematicans developed a technique for keeping 
track of errors. This technique is called interval 
computation or analysis. These mathematicans 
considered for each real number x, there is an interval 
[a, b] such that x 6 [a, b] where a and b are real 
numbers. They treated an interval as a new kind of 
number. In this treatement, each real number 
induced two real numbers for computation. In 
general, both of these two real numbers are not able 
to be represented correctly in computer systems. The 
main deficit is that the length of the resulting interval 
is too big. 

To overcome the deficit, we need to create the 

shortest possible intervals for all initial values for 
computation. In this paper, we consider for each real 
number x, two computer floating-point numbers a and 
b such that z€[a, b], where b-a is the shortest interval 
the underlying hardware computer system can provide 
and the resulting interval will be the smallest we can 
get. High level programming languages that are 
commonly used for numerical computation like 
FORTRAN, the C language, even the C++ language 
are not able to implement this kind of computation. 
The author has found that the LISP is a suitable 
language to implement this interval computation. We 
have developed some fundamental functions using the 
Common LISP programming language [6]. The 
reasons for using the Common LISP are that the 
programs we developed in LISP are machine 
independent. LISP does not have a size limitation for 
integers thus, the language can simulate any floating- 
point number format with arbitrary number of bits in 
the mantissa, and any complicated computational 
problem only requires some basic programming skill 
to implement a complex and difficult algorithm. 

A mathematical foundation that supports 
interval computation is given in section 2. Functions 
for interval computation is developed in the section 3. 
Some examples is given in Section 4. Finally, 
conclusion is followed. 

2.   Mathematical Foundation 

In 1966 mathematican R. Moore [3] proved 
an important theorem that supports interval 
computation and since then interval computation has 
become a new and growing branch of applied 
mathematics. We will call this theorem the 
fundamental theorem of interval computation. It is 
necessary to state the theorem here to support our 
work. 

Theorem Let f(xu x2, . . . , xn) be a rational 
function of n variables. Consider any sequence of 
arithmetic setps which serve to evaluate f with given 
arguments xlf x2, . . . , xn.   Suppose we replace the 
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arguments x- by corresponding interval Xt- (i = 1, 2, 
. . . , n) and replace the arithmetic steps in the 
sequence used to evaluate f by the corresponding 
interval arithmetic steps. The result will be an 
interval f(Xi, X2, . . . , Xn). This interval contains 
the value of f(x1, x2, . . . , xn) for all x^€ Xj- (i = 1, 
2, .... n). 

The proof of this theorem was given by Moore 
[3]. We will present an example to justify the result 
of this theorem. 

An Example 
Consider the function of one variable 

f(x) = x (x2 - 2). 

Suppose that we evaluate this function with interval 
argument X= [—3, 3].  We first compute 

and 

X2=[0,9], 

X2-2 = [-2,7], 

then compute 

X(X2-2) = [-21, 21]. 

The Theorem guarantees that 

-21 < f(z) < 21 for all r6 [-3, 3]. 

The actual range of f(z) for x G X is [-21, 21]. We 
have obtained exact bounds on the range of f by an 
evaluation of f with an interval argument X. 
Anyhow, f has both a minimum and maximum within 
interval X. 

3.   The Interval Arithmetic 
The basic argument to use interval arithmetic 

instead of real numbers is to provide an error bound 
in solving a numerical computation. In numerical 
analysis, interval arithmetic will provide an interval 
that includes all the values in the range of the given 
mathematical expression over the designated domain 
for every computation step. The error is controlled 
within this interval. Some early work in this area are 
given by Aberth [1], Alefeld and Herzberger[2], 
Rotschek and Rokne [5] and Moore [3, 4]. 

Let A = [alt bx], and B = [a2, b2] be two 
closed intervals of real numbers. Then the interval 
arithmetic operations are generally defined as 

(1) Addition 

A + B= [av bx] + [a2, 62] 

= K+ a2, 
bi+ b2\ 

(2) Subtraction 

A - B = [au bx] - [a2, b2] 

= [ar b2, br a2] 

(3) Multiplication 

A * B = [au bx] * [a2, b2] 

— [mia^a^, axb2, bxa2, bxb2), 
max(a1a2, axb2, bxa2, bxb2)] 

(4) Division 

1/B     = [l/&i, 1/aJ,     if 0 is not in B 

A/B    = A * (1/B) 

= [min(a1/62, ax/a2, bx/b2, bja2), 

max(a1/62, aja2, b1/b2, b1/a2)] 

In a special case, if a real number x is a 
floating-point number with respect to a given machine 
then a degenerate interval [x, x] is used for 
computation. 

4.   The Implementation 

There are two different ways to represent a 
real number in binary digits, some computer systems 
use downward rounding and others use upward 
rounding. In our implementation, we assume that the 
computer system is using downward rounding. For an 
inputted real number, the system will provide us an 
output for the lower bound of the interval. The upper 
bound of the interval is obtained by adding 1 to the 
last bit of the lower bound. This method will assure 
that the obtained interval is the smallest interval for a 
given real number. The number of digits in the 
binary representation is arbitrary and is determined 
by the user at run time. 
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We have developed a manual driven 
procedure in LISP to handle interval arithmetic. The 
procedure includes six functions: addition, subtraction, 
multiplication, division, conversion real to binary, and 
conversion binary to real. The precision is arbitrary 
and determined or entered by user at run time. This 
can provide the most accurate computation for the 
given underlying hardware. To execute each function, 
the user inputs two real numbers, x and y, and the 
number of desired binary digits. Then the procedure, 
for each real number, will return an interval that 
contains the real number in binary digits. Next, the 
procedure returns the answer of the operation in two 
forms: a binary interval, and a decimal interval. The 
format  is shown below: 

Select your function: 
addition, subtraction, multiplication, or division 
Enter a number: a real number 
Enter the number of digits: an integer 
The lower bound in binary digits 
The upper bound in binary digits 

Enter a number: a real number 
Enter the number of digits: an integer 

The lower bound in binary digits 
The upper bound in binary digits 

Result = [binary lower bound, binary upper bound] 

= [decimal lower bound, decimal upper bound] 

The upper bound 
=11.1000111101011100001010001111010111000010100 

01111010111000011 
=3.56000000000000000038163916471489756077062338 

5906219482421875 

Enter a number: 3.5 
Enter the number of digits: 20 

The binary number 
= 11.10000000000000000000 

The lower bound 
= 11.10000000000000000000 
= 3.50000000000000000000 

The upper bound 
= 11.10000000000000000000 
= 3.50000000000000000000 

The result 
=[111.0000111101011100001010001111010111000010 

10001111010111000010, 
111.0000111101011100001010001111010111000010 
10001111010111000011] 

=[7.059999999999999999514277426726494013564661 
145210266113281250, 
7.060000000000000000381639164714897560770623 
385906219482421875] 

2. Subtraction 

5.   Sample Results 

We have carefully tested the procedure and 
found that the procedure does predefined functions 
correctly. The LISP program was run on a MicroVax 
II machine with the ULTRIX Version 2.0 operating 
system.   Some sample output are given: 

1.  Addition 

Enter a number: 3.56 
Enter the number of digits: 60 

The lower bound 

=11.1000111101011100001010001111010111000010100 
01111010111000010 

=3.55999999999999999951427742672649401356466114 
5210266113281250 

Enter a number: 3.56 
Enter the number of digits: 60 

The lower bound 

=11.1000111101011100001010001111010111000010100 
01111010111000010 

=3.55999999999999999951427742672649401356466114 
5210266113281250 

The upper bound 
=11.1000111101011100001010001111010111000010100 

01111010111000011 
=3.56000000000000000038163916471489756077062338 

5906219482421875 

Enter a number: 2.56 
Enter the number of digits: 60 
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The lower bound The result 
=10.1000111101011100001010001111010111000010100 =[110.01110001100010010011011101001011110001000 

01111010111000010 111111111111111111101111001010110000001000001 
=2.55999999999999999951427742672649401356466114 1000100100111000000000000000000000, 

5210266113281250 110.01110001100010010011011101001011110001101 
111001100110011010101001101110100101111000110 

The upper bound 1010011111110000000000000000000000] 
=10.1000111101011100001010001111010111000010100 

01111010111000011 =[6.443499999998039128966745292537293749470232 
=2.56000000000000000038163916471489756077062338 79471680992059521020376422484332579188048839 

5906219482421875 569091796875000000000000000000000, 
6.443500000000267393267250337629623815452620 

The result 771557605414614142147478048627817770466208457 
=[0.1111111111111111111111111111111111111111111 946777343750000000000000000000000] 

11111111111111111, 
1.0000000000000000000000000000000000000000000 4. Division 
00000000000000001] 

Enter a number: 3.63 
=[0.9999999999999999991326382620115964527940377 Enter the number of digits: 40 

59304046630859375, 
1.0000000000000000008673617379884035472059622 The lower bound 

40695953369140625] = 11.1010000101000111101011100001010001111010 
= 3.6299999999991996446624398231506347656250 

3. Multiplication 
The upper bound 

Enter a number: 2.45 = 11.1010000101000111101011100001010001111011 
Enter the number of digits: 60 = 3.6300000000001091393642127513885498046875 

The lower bound Enter a number: 2.66 
=10.0111001100110011001100110011001100110011001 Enter the number of digits: 40 

10011001100110011 
=2.44999999999999999982652765240231929055880755 The lower bound 

1860809326171875 = 10.1010100011110101110000101000111101011100 
= 2.6599999999998544808477163314819335937500 

The upper bound 
=10.0111001100110011001100110011001100110011001 The upper bound 

10011001100110100 = 10.1010100011110101110000101000111101011101 
=2.45000000000000000069388939039072283776476979 = 2.6600000000007639755494892597198486328125 

2556762695312500 
The result 

Enter a number: 2.63 =[1.0101110101011010011101110101011010011101000 
Enter the number of digits: 40 1001010100011111010011011011001110011, 

1.0101110101011010011101110101011010011101111 
The lower bound 1011000110111011111001001011101111110] 

= 10.1010000101000111101011100001010001111010 
= 2.6299999999991996446624398231506347656250 =[1.3646616541346455174907343363899815669431497 

8221171941186184994876384735107421875, 
The upper bound 1.3646616541354540314929603602400631670414632 

= 10.1010000101000111101011100001010001111011 4347846075397683307528495788574218750] 
= 2.6300000000001091393642127513885498046875 
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6.   Conclusion 

We have successfully developed a set of 
functions for interval arithmetic by using the 
Common LISP language. These functions are 
machine independent and the precision is determined 
by the user. The desired number of binary digits is 
assigned by the user, this number dominates the 
precision in the computation. The LISP environment 
stores integers and symbols in a linked list manner of 
memory cells. It has no range limitation on integer 
arithmetic; the only limit is its memory size. 
Therefore, it is ready to use these functions for any 
applications in interval computations. 
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Documentation with Online Programs Rather Than Programs with Online Documentation 
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0. Abstract 

Historically, computer programs (and especially those for 
statistical applications) used separate documentation. Online 
documentation, especially "help" integrated and customized 
to the program context, has become a common and useful 
feature of contemporary programs. 

This talk discusses some advantages of operating the 
program FROM the documentation rather than the 
documentation from the program. This approach allows users 
to focus on the task that they want to do, rather than 
learning the syntax or other details of a feature of the 
program. That is, we can set aside the peculiarities of the 
program design and concentrate on what has to be done. 
Moreover, the documentation can encompass several 
different pieces of software, allowing comparisons of 
different programs or their cooperative use for problem 
solving. 

The Software Taxi is a simple hypertext documentation and 
program launching system developed by the author with 
Mary M. Nash and assisted by Mary Walker-Smith. The 
discussion illustrates the idea outlined above and tests its 
strengths and limitations. 

1. The Problem 

The growth in the number and size of software packages, 
particularly those for scientific and statistical computation, 
presents users and prospective users with a learning-cost 
problem. That is, it is costly of time and effort, and often 
money for (unnecessary?) software acquisition, to 

• learn about software and its features and style 
• learn how to use (statistical) software 

This issue software acquisition and use is hardly new. It 
is, however, exaggerated by the burgeoning size and 
complexity of packages. Worse, there seem to be few 
serious attempts to address the issue of software learning 
costs. This paper considers the learning-cost problem and 
suggests one way to address it that works with many but 
unfortunately not all packages. 

2. Approaches to Learning about Software 

If one can afford the fees and the time, training courses 
are a very good way to learn about a particular software 
package. They tend to stress the "how to" aspects of using 
software rather than its features and capabilities. We must 
hope that the topics covered are those of interest to us. 

If we already have access to a particular software package, 
then we can read the manual. We should read it again 
before trying the program. Again, the manuals tend to 
focus on "how to". If we are in a hurry to do some 
specific calculation, we may find manuals quite 
frustratingly detailed. They may presume we have read the 
material starting at the beginning. The trend to multi- 
volume manuals renders this approach even less attractive. 

"Quick Start" manuals and on-line tutorials could be used 
to attempt to employ the program quickly. The tools 
illustrated, such as simple descriptive statistics or 
regression, may not be the ones we want to learn. 

Many of us will simply "try out" a program and look for 
pointers on its features and method of use. That is, we 
hope that the affordances of the design (Norman, 1992) 
— the layout, symbols, and other indicators in the user 
interface — are sufficient to let us infer what can be done 
and how to do it. This is difficult to arrange in a clear 
way for mathematical software of any sophistication. 

While there has been much investment in "intuitive" user 
interfaces, it is hardly evident that such developments are 
helpful to users trying to learn the features and use of 
statistical software. 

• The conventions used by the interface designer 
may be unfamiliar or not obvious to users. 

• Such conventions may not be easy to learn. For 
example, those who use a strong wrist-hand 
motion to play piano may move the whole mouse 
when trying to activate a button. 

• The typical icons and simple pull-down menus 
may be practically useless for even moderately 
complicated statistical operations. This may be 
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the reason that windowed spreadsheet software 
has introduced "analysis dialogue boxes" for 
statistical operations to allow for the setting and 
adjustment of options and control parameters. 

3. User Needs in Software Documentation 

The learning issue is intimately connected with that of the 
design of user-documentation for software. By looking at 
what the user needs in documentation, we may find some 
pointers to helpful user-interface features. 

First, user documentation needs the actual documentation 
material to be well-organized. We need to know 
• what can be done 
• how to do it, and 
• extra features available. 

Beyond the organization of material, users are helped by a 
good table of contents to provide map to the material. 

Third, and especially useful to users with some 
experience, a complete index is needed. This should have 
• listings of alternate terms for any concepts or 

topics where different nomenclature or usage 
exists; 

• appropriately distinguished meanings of terms 
where confusion may arise. For example, chi- 
squared statistics are used in a variety of 
situations, so that an unmodified entry under this 
topic is not very helpful. 

Fourth, documentation should include reasonable 
examples. This is an onerous requirement, since the 
description of non-trivial examples that do not overload 
the user with a plethora of details requires a good deal of 
effort and care. 

Finally, the documentation must, as concisely as possible, 
give a clear description of the software capabilities. 

4. Hypertext 

Hypertext provides a good way to structure software 
documentation. For those unfamiliar with hypertext, the 
term here refers to a mechanism for displaying units 
(usually screens) of material in which are embedded menu 
choices or "buttons" that a user can select to move to 
another unit or screen of material. The process of moving 
from one screen to another is called navigating the 
hypertext. In most examples, and in the Software Taxi 
mentioned below, the "buttons" can also start programs. 

While hypertext methods offer the potential to present 
material to users in a convenient and efficient way, we do 
need to ensure a very good organization of the material to 
be presented. Details can, and should, be "hidden" in 
screens that are off the main pathway users are likely to 
follow when navigating a documentation hypertext. 

By running programs under the hypertext manager, we can 
display graphs and tables, or play sounds or voice 
messages. Unfortunately, the file formats and file sizes 
remain a difficulty to the portability of the hypertexts. 

Similarly, we can run the program we wish to document, 
and this is one of the main messages of this paper. That 
is, after documenting a program feature, we can run the 
program to illustrate how it works. This gives us our 
"documentation with online programs", turning around the 
conventional approach of online "help" within a program. 
We do not, of course, need to eliminate the latter. Note 
that this idea offers a twist on the usual "write the 
documentation, then the program" maxim. 

5. The Software Taxi 

The Software Taxi was introduced at the 25th Interface in 
San Diego (Nash, 1994) as a prototype to test possibilities 
of running several programs to attack a computational 
problem. The design, partly because of its experimental 
nature, was of necessity kept deliberately simple and 
small, yet had to allow easy "jumps" between different 
hypertext files. Indeed its development was a result of 
dissatisfaction with two commercial and one shareware 
systems along with a lack of documentation of such 
features in some other systems. 

The 1993 version of the Software Taxi took only a few 
days of effort to prepare. The latest version, while adding 
little superficially, has been improved to more easily run 
other programs, has added utilities to verify hypertext 
files, allows users to access hypertexts in a given directory 
directly, and generally is better set up for use by both 
authors and general users. 

We still regard the Software Taxi as a prototyping tool to 
structure and test the material in a hypertext. Since it is 
based on plain text, the files are portable but are not 
"fancy". Should the Hypertext Markup Language (HTML) 
stabilize, we would consider extending the Software Taxi 
with an HTML "front-end". 

At the time of writing, the Software Taxi is being prepared 
for distribution. The Level 0 (user) version will be 
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freeware and can be obtained by electronic mail from the 
author. We hope to install it on various bulletin boards 
and ftp servers. For those wishing to author hypertexts, 
there are two other levels of the software incorporating 
various aids to hypertext preparation and support. 

6. Advantages of a Hypertext Approach 

The main advantage of the hypertext approach is that We 
can tell a user about a feature of some software then 
immediately and directly illustrate what we have just 
discussed. We need not worry that documentation 
describes a feature that has been altered or replaced. 

More importantly, we only need focus on elements in the 
software that are of current interest. A large statistical 
package will have many more capabilities than a single 
user is likely to be concerned with on a single occasion. 
Thus, if we are concerned about robust regression, for 
example, the documentation can discuss the merits of 
different approaches, the reasons for implementing one or 
another, the control parameters and other highly 
specialized matters, and the user can try out and learn 
about these options without having to learn a great deal of 
the rest of the package. Moreover, the hypertext scripts 
provide examples of how to control the program. 

Having achieved the title goal of "documentation with 
online programs", we note that the programs do need 
scripts. The preparation of these can be assisted by 
programs that are built into the hypertext. Such program 
generators are a form of tool that could be more 
generally used to good effect in scientific computation. 

In the Software Taxi we have found it useful to capture 
the sequence of screens or actions chosen by a user and to 
allow automatic playback of such sequences. This is a 
possible approach for organizing "work in progress", in 
essence attempting to automate the lab notebook. 

7. Disadvantages of the Hypertext Approach 

In trying to reduce learning costs, we can remove the 
bulky manual, but we still require the user to read at least 
a few of the documentation screens. (You still have to 
watch the movie, even if you don't wish to read the 
novel.) Moreover, the hypertexts must be prepared. Even 
though the Software Taxi is designed to make this as 
simple as possible, it is still a chore. 

More seriously, a lot of software cannot be run under 
control of a script. This is particularly true of such popular 

tools as spreadsheets. It also applies to almost all software 
set up for "windowed" operating environments. While 
there are some intrinsic obstacles to controlling certain 
graphic operations by scripts (P Velleman, in Goldstein, 
1993), it should be relatively simple to provide scripts at 
the level of "what" to do. However, after nearly a decade, 
the Apple Macintosh operating environment is just now 
getting command script capability. (There have been some 
third-party offerings.) 

A final caution with hypertexts is that changes in system 
configuration (or movement of hypertexts to different 
systems) can cause unpredictable results. This is, of 
course, a continuing issue for any program that behaves as 
an operating shell. 

8. Trends 

It seems obvious that personal computing equipment such 
as the Apple Newton and similar book-sized devices are 
likely to proliferate and become the principal computing 
interface for many users. Such devices use "pen-based" 
operating environments and are well-suited to the 
hypertext / action approach to documentation and use of 
programs. Moreover, as users need to run more 
complicated software, graphic icons are more likely to be 
confusing rather than helpful, especially with a small- 
screen in uncertain lighting. Plain text allows greater detail 
to be presented and may be more helpful to users. 

9. Summary 

In many situations we can document program features and 
processes then illustrate them "on-line". Moreover, this 
approach can be simple and effective. However, the need 
for scripting remains an obstacle to easy porting of the 
approach to windowed operating environments. 
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WHAT IS THE MOST APPROPRIATE SOFTWARE 
FOR A STATISTICS COURSE? 
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Abstract 
Last year the authors presented a preliminary report 

on the advantages and disadvantages of employing a 
widely-used spreadsheet package in an introductory applied 
statistics course. In that investigation there was a detailed 
comparison of the latest versions of Minitab, Microsoft 
Excel, and Lotus 1-2-3 for classroom use, in which the 
authors recommended the well-known statistical package 
over the two popular spreadsheet packages. Since that re- 
port, both authors have taught courses with Minitab for 
Windows and Excel. In addition, both Minitab and Excel 
have released new versions. In this paper the authors will 
present an updated recommendation on what is the most 
appropriate software to use in today's applied statistics 
courses. This recommendation will be based upon their 
classroom experiences with Windows-based software and a 
complete evaluation of the features introduced in the new 
releases of Minitab and Excel. 

Introduction 
Babson College is a small private college located in a 

suburb of Boston. It only offers undergraduate degrees in 
business and MB As. All of its students are required to take 
an applied statistics course or its equivalent. For over 20 
years statistical software has been a vital component of 
these courses. In recent years the platform for such soft- 
ware at Babson has been the school's VAX computer. But 
with students already exposed to and many businesses 
moving to a Windows environment, it was determined in 
the spring of 1993 that this should be the future environ- 
ment for Babson's statistical software. At that time we be- 
gan an extensive search for such software. Among the se- 
rious possibilities for our 1993-1994 academic year were 
using statistical software on the VAX for another year, us- 
ing a popular Windows-based spreadsheet package with 
statistical capabilities, and using newly developed Win- 
dows-based statistical software packages. 

At last year's Interface we presented a comparison of 
Minitab 9.0 for the VAX and two popular spreadsheets, Lo- 
tus 1-2-3 and Excel 4.0. Minitab is a very popular package 
for introductory statistics courses and has been used at Bab- 
son since the early 1980s. Among the reasons for consider- 
ing a change to a spreadsheet package were low incre- 
mental cost ($0), a familiar and user-friendly interface (all 
business students use spreadsheets), and expanded statisti- 

cal capabilities. After discovering that Lotus, at that time, 
had only descriptive statistics and regression available, we 
focused our analysis on Excel 4.0. Initially we were quite 
impressed by the statistical tools available in Excel 4.0. 
But soon we became dismayed by some serious problems 
with Excel 4.0. Thus at Interface '93 we gave a grade of C 
or D to Excel 4.0, but with the potential of an A grade in 
the future, and we recommended that users not move to a 
spreadsheet package at that time. 

Shortly after last year's Interface, Minitab announced 
its first Windows product. After further study Babson de- 
cided to use both this product and Minitab on the VAX 
during the 1993-1994 academic year. We also decided to 
reconsider our decision in 1994. In this paper we will dis- 
cuss our latest recommendation for the most appropriate 
software for our statistics courses. 

Windows-Based Software for Statistics 
For our 1994 search we did not consider any VAX 

software due to Babson's migration to Windows. Based 
upon the school's decision to use Excel and other Microsoft 
application software throughout the campus, we only exam- 
ined Excel 5.0. This decision was made even though the 
latest releases of Lotus 1-2-3 and Quattro Pro have many 
statistical functions. 

We also decided only to examine Minitab for Win- 
dows, even though most of the major statistical packages 
are now released on Windows. Here, with the assistance of 
a communication from Robin Lock, are some of this soft- 
ware where an asterisk (*) indicates the presence of a stu- 
dent edition: BMDP*, Minitab*, SAS, S-Plus, SPSS*, 
Stata, Statgraphics, Statistica, and Systat*/Mystat*. We 
made this decision due to our favorable reaction to Minitab 
Release 9.0 for Windows and the limited amount of time 
available to us for a thorough evaluation. 

Below is discussion of the similarities and differences 
between Excel 4.0 and Excel 5.0, and between Minitab 9.0 
for the VAX and Minitab 9.0 and 10.0 for Windows. Then 
there is comparison of Excel, as a representative of the 
Windows-based spreadsheets with statistical capabilities, 
and Minitab, as a representative of the Windows-based sta- 
tistical packages. This is followed by our thoughts about 
the future. 
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Excel 
Excel is a Windows-based spreadsheet application de- 

veloped and sold by Microsoft Corporation. Excel is in- 
tended to be user friendly with a graphical user interface. 
Thus it makes extensive use of graphics, the mouse, tool 
bars, and drop-down menus. It is currently being sold as 
part of the Microsoft Office Suite and shares Drawing, 
Equation, WordArt, and other objects with the other appli- 
cations in the suite. Excel has an installed base running in 
the millions. 

Although the "official list price" of Excel has been 
around $400. In reality the street price of an Excel upgrade 
is around $100. The price of an Office upgrade which in- 
cludes Word 6.0, PowerPoint 4.0, Access 2.0, and Excel 5.0 
is under $300. For students, the price of the Office Suite is 
under $200. Quantity pricing discounts are available for 
large purchases. 

The December 1993 EXCEL.EXE (version 5.0) file 
has a length of 4,185,600 bytes and the complete Excel 
Application Package occupies 16,367,256 bytes. Of course, 
there is some ambiguity associated with these numbers be- 
cause there are a host of Microsoft Applications such as 
Drawing, Equation, and WordArt which work with Excel 
and are not counted in the above numbers. 

Due to the fact that Excel is a spreadsheet package 
and not a statistical package, it is often difficult to find its 
statistical features. Furthermore, there are only a limited 
number of statistical capabilities in Excel. For example, it 
does not handle nonparametric analyses. Excel also has 
problems analyzing a large data set. 

There is only limited external documentation on the 
statistical capabilities of Excel. For example, it is difficult 
to determine the computational algorithms used in Excel, 
although the user guide does suggest that the most appro- 
priate algorithms are not being used. (A discussion on the 
computational weakness of spreadsheets recently appeared 
on the Internet Edstat Discussion List.) In addition, Micro- 
soft provides limited statistical support to its users. 

The statistical features of Excel are organized into 
Functions and Data Analysis Tools. The functions are 
characterized by requiring typically one, two, or three input 
parameters. These parameters are usually numbers, strings, 
or ranges. The functions return anything from a single 
number or string to a complex data structure such as a 
frequency distribution table in a vertical array. 

Examples of functions, along with their Excel descrip- 
tions, include 

CHHNV(probability, degrees of freedom) 
returns the inverse of the chi-squared distribution 

COVAR(arrayl, array2) 
returns covariance, the average of the products of 
paired deviations 

FORECAST(x, known y's, known x's) 
return a value along a linear trend 

NORMDIST(x, mean, standard deviation, cumulative) 
returns normal cumulative distribution 

Functions are invoked by using the Insert Function or 
the Function Wizard Button. To understand how these 
functions are used, consider NORMDIST. The meaning of 
x, mean, and standard deviation, are relatively obvious. 
What is not clear is that cumulative is a logical variable: a 
value of True or 1 causes NORMDIST to return the 
cumulative value of the normal distribution while a value of 
False or 0 causes NORMDIST to return the value of the 
normal density function. To help the user with the choice 
of inputs, Excel 5.0 has a Function Wizard with labeled 
boxes for the inputs and a display box for the output. Thus 
the user can vary the inputs and observe the output before 
telling the wizard to put the result in the spreadsheet. This 
feature is new in Excel 5.0 and is an improvement over 
Excel 4.0 but still needs additional development. The 
Function Wizard for NORMDIST does not make clear the 
meaning or possible values of cumulative. Although 
additional information can be determined by using the on- 
line help, this causes a time delay to wait for the help 
screen to appear. A major improvement would be to 
display a complete set of information in the Function 
Wizard Window. 

Many of the functions are add-ins which must be 
brought into Excel before they can be used. Unfortunately 
before an add-in can be part of a menu it must be loaded 
even if it is not used during a given session. A better 
choice would be to include all add-ins on the menu and 
load them only as needed. 

The data analysis tools are invoked by an entirely 
different mechanism than the functions. To activate a data 
analysis tool choose Tools from the Command Menu. This 
is then followed by choosing the Data Analysis subcom- 
mand. Since the Data command is next to the Tools com- 
mand, it is easy to confuse the sequence Tools Data Analy- 
sis with Data Analysis Tools. The later sequence does not 
exist. 

After a delay, the InputBox Window appears. This 
Window features a number of labeled spaces for input. 
This window look very similar to the Function Wizard In- 
putBox Window. It is very easy to forget whether to invoke 
a function or to invoke a tool in order to accomplish a 
particular statistical task. 

A more major problem occurs when you actually use 
one of the tools. Consider the use of the HISTOGRAM 
tool. While using the HISTOGRAM tool, you discover that 
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a range containing input categories is required in order to 
construct a histogram. Unfortunately in order to construct 
such a range you must cancel HISTOGRAM. Then you 
must construct the input categories without help. If needed 
you can use the on-line help, but you must remember your 
exact help topic. Now you must invoke HISTOGRAM 
again. Obviously if you need to do something in order to 
execute a command, you should be able to do so by pausing 
in the middle of the sequence to do whatever is necessary to 
resume the command sequence. It is hoped that this feature 
appears in the next version of Excel. 

We found a number of calculations which were 
statistically incorrect. Among these bugs were the naming 
of a unique mode in bimodal situation., the result of 0 for 
the maximum when only missing values were present, and 
the lack of tied rank values. Other serious computational 
problems involved p-values, output when alpha was 
specified as zero or one, and regression output from 
collinear data. 

The vocabulary used for describing statistical 
calculations often represents a poor choice of terminology 
and surprisingly sometimes is totally inappropriate. Some 
examples of such errors include the incorrect designation of 
one-and two-sided p-values, and the specification of a p- 
value as a test statistic. Another serious terminology gaffe 
is stating the equivalence of alphas and confidence intervals 
in performing confidence tests. Examples of additional 
problems with Excel are available upon request from the 
authors. 

Excel 4.0 versus Excel 5.0 
The philosophy behind Excel is to create a basic 

spreadsheet engine and then enhance it through a variety of 
specific add-ins. The good news is that this makes it easy 
to enhance the spreadsheet through a variety of user or 
commercial macros. This has become especially true since 
Microsoft switched from the Excel 4.0 macro language to 
Visual Basic for Applications. This is a user-friendly 
macro language which makes it easy to write user-friendly, 
visually-attractive, Windows-based applications. To pro- 
mote this development Microsoft sells an Excel Developer's 
Kit, Version 5 for under $50. 

The bad news is that this strategy makes macros much 
slower than if they were compiled to native code. For ex- 
ample, Excel requires 90 to 110 seconds to generate 1000 
random numbers with a mean of 10 and a standard devia- 
tion of 2. (Not all Excel tasks are slower. To produce a 
histogram of the above numbers in Excel requires less than 
30 seconds.) 

In addition to the introduction of Visual Basic, there 
were many improvements to the user friendliness of Excel 
with the introduction of version 5.0. Among these were the 

introduction of sheets, pivot tables, drop down identifica- 
tion labels for tool buttons, and tips. There were also more 
extensive use of tool bars, improvements to Wizards, and 
more convenient zoom capability. In contrast, as re- 
searched by Derek Upson there were few new statistical ca- 
pabilities introduced in Excel 5.0. Two exceptions of note 
were the capability to link graphs and spreadsheets in real 
time and the capability to specify boundaries for a probabil- 
ity calculation in one of the functions. 

When we first examined the statistical features in Ex- 
cel 4.0 we found problems with the vocabulary used for de- 
scribing statistical calculations and the accuracy of the cal- 
culations. Very few of these problems were fixed in version 
5.0. One such correction was the proper computation of the 
p-value mentioned above. Another correction dealt with 
the collinear regression output, but in this case another 
problem was introduced. 0/0 does not equal 65535. 

Excel as a Statistical Package 
Advantages 

Cost 
Large Installed Base 
Known Interface 
Extensive On-Line Help 
Visual Basic Macro 

Language 
Up-To-Date Features Such 

as Wizards 

Disadvantages 
Not a Statistical Package 
Limited Statistical Support 
Slow (Add-In Packages) 
Inconsistent Design 
Lack of 

Capabilities 
Computational 

Concerns 
Poor Choice of Terminology 
Bugs 

Minitab 
Minitab is a popular statistical package available on a 

large number of platforms. It is developed and sold by 
Minitab, Inc. Its mainframe, microcomputer, and PC ver- 
sions employ an easy-to-use session command interface, 
while its Macintosh and Windows versions employ graphi- 
cal user interfaces. 

More students have been introduced to statistical 
software by the use of Minitab than any other piece of soft- 
ware. Examples of its output are contained in a large num- 
ber of textbooks from a wide range of disciplines. It is also 
used by analysts in many companies and government 
agencies. 

The academic price for a single copy of Minitab for 
windows is under $500. Students may purchase the full 
package for under $200. In addition, a student edition may 
be purchased for about $50. Quantity purchase prices are 
also available for academic institutions. 

The MINITAB.EXE April 1993 file has a length of 
4,227,072 bytes while the Minitab application files total 
9,869,097 bytes excluding the data sets. 
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Minitab contains most of the capabilities needed for 
standard statistical analyses. In addition, it features a large 
number of quality tools. There appear to be few difficulties 
with running large data sets in Minitab. 

Minitab provides a variety of well prepared documen- 
tation. As with most of the statistical software mentioned 
above, Minitab uses respected statistical algorithms. 

For the most part due to its sole mission of providing 
statistical tools, Minitab provides a user-friendly environ- 
ment. Still there are some exceptions: users must type in 
functions when forming expressions and must leave dialog 
boxes in order to request help. Due to 20 years of provid- 
ing statistical software, Minitab presents few problems with 
terminology and is relatively bug-free. 

Minitab 9.0 for the VAX versus 
Minitab 9.0 and 10.0 for Windows 

Minitab 9.0 for the VAX is a powerful member of the 
Minitab command-driven family. It contains a compre- 
hensive set of statistical capabilities. Among the newer 
commands in this release are a factor analysis command, a 
multivariate analysis of variance (MANOVA) command, 
and many new commands for quality control and design of 
experiments. With the proper hardware, it can produce a 
variety of high-resolution graphs. This release of Minitab 
contains a powerful new macro capability. 

Minitab 9.0 for Windows contains all the capabilities 
of the VAX version (you do not need additional hardware 
to produce the high-resolution graphs). The major differ- 
ence between the two versions is the presence of the Win- 
dows graphical user interface. Hence Minitab 9.0 for Win- 
dows uses a mouse and keyboard to enter commands 
through drop-down menus, dialog boxes, and even session 
entries. There are five windows (Data, Session, Info, His- 
tory, and Graph) in this program. It does not use toolbars 
or smart keys. 

Minitab 10.0 for Windows is the newest Minitab 
product. It provides additional built-in help along with 
more powerful data management capabilities. Among 
these are a direct interface with Excel for the transfer of 
data and linking data using Dynamic Data Exchange 
(DDE). New statistical commands in this release are ones 
for cluster analysis, classical time series analysis, and the 
design of experiments. There are also many new plots 
along with the capability to edit and brush graphs. 

Excel versus Minitab 
We compared the statistical capabilities of Minitab 

and Excel in ten different areas: descriptive statistics, infer- 
ence on means, inference on proportions, ANOVA, regres- 
sion, contingency tables, nonparametric statistics, time se- 

ries analysis, quality, and probability. In seven cases we 
concluded that Minitab was clearly superior to Excel. In 
the case of inference on proportions they were equivalent 
because neither package performed that analysis. In two 
other cases, descriptive statistics and probability we rated 
the packages as equals. 

For example, let us consider the descriptive displays 
(graphs and tables) available in the two packages. A com- 
parison of the graphical capabilities of Minitab for Win- 
dows with those of Excel shows that the two packages are 
roughly equal. Perhaps a slight advantage goes to Minitab 
in terms of the diversity of graphs produced. A definite ad- 
vantage goes to Excel in terms of editing and manipulating 
the graphs which the package produces. We found it ex- 
tremely awkward and difficult to edit the Minitab graphs in 
release 9.0, while the Excel editing process soon became 
almost trivial through the use of the mouse. Minitab 10.0 
has greatly improved the easy of editing graphs and is more 
similar to Excel 5.0. 

Minitab does not do three-dimensional scatter, radar, 
or donut graphs. Excel does not do three-dimensional scat- 
ter, control charts, cause and effect, dot charts, unnotched 
box, or notched box graphs. Both packages did standard 
bar, grouped bar, stacked bar, histogram, two-dimensional 
scatter, Pareto diagrams, polygons, high low close, projec- 
tion, and contour/surface graphs. 

Both packages were similar in their ability to generate 
a variety of tables including cross tabulation, summary, 
cumulative distribution, frequency distribution, and per- 
centage distribution tables. The pivot table concept in Ex- 
cel 5.0 makes the manipulation of tables easy with the use 
of the mouse. 

For some tasks, Excel is far slower than Minitab. For 
example, the random number calculation presented above, 
requires less than five seconds in Minitab 9.0 for Windows. 

Excel has the advantage of a large installed base run- 
ning into the millions. As a result many users are already 
familiar with the user interface. There is extensive on-line 
documentation, but accessing it can be slow on older ma- 
chines. The addition of Visual Basic makes it much easier 
to write user-friendly macros. The cost of the statistical 
features of Excel is almost zero. It is not necessary to buy 
and support a separate statistical package. 

Still Excel is not a true statistical package, even 
though it provides many essential building blocks. Micro- 
soft only provides limited statistical support. There are 
problems with trying to analyze large scale problems. 
Speed is also a problem for Excel. The access to statistical 
features is somewhat inconsistent. Its statistical documen- 
tation is limited. Some of its terminology is poorly chosen. 
There are concerns about some of its algorithms. Finally, 
there are far too many computational errors. 
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Thus we gave a grade of C to Excel 5.0, again with 
the potential of an A grade in the future. In addition, we 
recommended the continued use of Minitab 10.0 for 
Windows for the 1994-1995 academic year. 

The Future 
In 1993 we were shocked by what we discovered about 

the statistical capabilities of Excel. How could Microsoft 
bring a product with so many weaknesses to market? Then 
we realized that this may be part of Microsoft's corporate 
strategy. It took the software leader many years to perfect 
Windows. The first release of Access, one of its data base 
management programs, also contained many bugs. Per- 
haps Microsoft is using all of its users as part of gigantic 
betatest. 

Still we were surprised that more of the Excel 4.0 
problems were not corrected in Excel 5.0. Going into our 
1994 comparison we expected more from Microsoft. Hope- 
fully future releases of Excel will contain fewer bugs, be 
better documented, and provide easier access to more sta- 
tistical analyses. Without a doubt more people will analyze 
data using Excel and other spreadsheets in the future due to 
their immense base of users and their companies' aggres- 
sive pricing policies. In addition, there soon will be well 
designed add-ins by commercial vendors to enhance the 
statistical capabilities of spreadsheets such as Excel. 

Statistical software vendors should be aware of these 
strong competitors for their market. In an environment in 
which only change is constant, they must continue to intro- 
duce easier-to-use products with increased capabilities at a 
low price more frequently. They should also be aware that 
many purchasers are sadly more concerned with the cost of 
a product than the accuracy of its algorithms. Hence these 
vendors must actively consider loss leaders such students 
editions in order to maintain, or hopefully increase, the 
number of users who buy their products. Otherwise, they 
may find themselves with far fewer customers. 

Finally, what does the future hold for us users? Still 
more change. In this market we believe that there will be 
many new interesting products for us to consider in the fu- 
ture. At Babson we are already preparing for next year's 
evaluation. 
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Using Multiple Processors to Compute Robust Regression Estimators 

Arnold J. Stromberg and Samuel J. Gardner* 

Abstract 
Robust regression estimators are notoriously hard to 
compute. Often algorithms require that fairly simple 
computations be done on many subsets of the data. 
Parallel processing machines would be ideal for such 
computation but they are often not readily available 
to researchers, and even if available, they often re- 
quire extensive modification to the code. A far sim- 
pler approach is to distribute the computation across 
several processors on a network. The code is modi- 
fied to do the computations on a specified portion of 
the subsets, then the problem is split into pieces and 
each available processor on the network is used to do 
a portion of the computation. The results from each 
processor are then collected and the final answer is 
computed. 

1 Introduction 
This paper is presents an improved version of the code 
used for distributing the computation of the exact 
least median of squares in multiple linear regression. 
The new version (available from the first author by e- 
mail to astroll@ukcc.uky.edu) is shown to be faster 
than the code discussed in Hawkins, Simonoff, and 
Stromberg (1994). 

2 Distributed versus Parallel Comput- 
ing 

The distinction between parallel and distributed com- 
puting is often nebulous but still extremely impor- 
tant. In parallel computing, multiple processors share 
memory and exchange information while performing 
a computational task. In an ideally parallelized com- 
putation using k processors, the computation would 
be completed in one kth the time or perhaps even less 
time. In a distributed computation using k proces- 
sors, each processor works on a portion of the total 

"Arnold J. Stromberg is Assistant Professor, Department 
of Statistics, University of Kentucky, 817 Patterson Office 
Tower, Lexington, KY 40506. He has support from NSF grant 
DMS-9204038 and NSA grant MDA-904-92-H-3088. Samuel J. 
Gardner is a Captain in the U.S. Air Force and is assigned 
to the Graduate Program, Department of Statistics, Univer- 
sity of Kentucky through Air Force Institute of Technology, 
AFIT/CISP, Wright-Patterson AFB, OH 45433-7765 

computation but the processors do not share mem- 
ory or other information. The partial solutions from 
each processor are collected and the final solution is 
reported. Because the processors do not share infor- 
mation, distributed computations are likely to require 
more computing time. This is likely to be the rea- 
son they have received far less attention in the litera- 
ture. The major disadvantages of parallel processing 
are that expensive parallel processing machines are 
required and that software code is usually machine 
specific so the user must learn the language for the 
available machine and then suffer with the fact that 
the code is not likely to be portable to other paral- 
lel processing machines. Distributed processes do not 
have these disadvantages. They can run on an exist- 
ing network of CPUs, and the code transfers with at 
most minor modifications (frequently none!). We be- 
lieve that these advantages more than make up for the 
fact that distributed processes may be slightly slower 
than idealized parallel processing. 

3    Steps   Required   to   Distribute    a 
Computation 

Hawkins, Simonoff and Stromberg (1994) discuss the 
steps required to distribute a serial computation 
across several processors. There steps are: 

1. Modify the serial code so that it can compute any 
portion of the total computation. 

2. Identify which processors are available to assist 
in the computation. 

3. Generate input files identifying the part of the 
computation to be done by each processor. 

4. Construct a file that sends the input files and the 
code from (1) to each processor. 

5. Execute the file in (4). 

6. Collect the output from each processor and re- 
port the final solution. 

As an example, they compute the exact value 
of the least median of squares (Rousseeuw; 1984, 
Stromberg; 1993) in multiple linear regression. Us- 
ing these steps and code referenced in Hawkins, et. 
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al., they provide examples showing the effectiveness of 
this type of distribution. In this paper we will discuss 
the distribution of the computation of the exact value 
of the LMS estimate for the data set "educat.dat" 
found in Rousseeuw and Leroy (1986). Hawkins et. 
al. report that the median computation time for five 
runs on one SPARC-IPC was 9705 wall clock seconds 
(162 minutes). Using four SPARC-IPCs, the median 
computation time was 2618 seconds (44 minutes). 
The distributed efEciency is then 2618*4/9705 = .95. 
This result is quite good, but as Hawkins, et. al. 
point out, the slowest processor will determine the 
overall computation time. If one or more of the pro- 
cessors in busy with other jobs, then the computation 
time could be much longer. For example if one of the 
processors can only devote 50% effort to the compu- 
tation then the overall computation time will be close 
to twice as long. 

One solution to the problem of differing loads 
on the CPUs used in distributing a computation is 
to split the computation into many small parts and 
then send the parts one at a time to processors as they 
become available. In this way, slower processors get 
fewer of the the parts and the overall computation 
time is likely to be significantly less than if larger 
parts were sent to each processor as in Hawkins et. 
al., thus we suggest the following modification to the 
steps required to distribute a serial computation: 

1. Modify the serial code so that it can compute any 
portion of the total computation. 

2. Identify which processors are available to assist 
in the computation. 

3. Generate a large number of input files splitting 
the computation into reasonable small parts. 

4. Construct a shell script that sends the first k in- 
put files to k available processors. 

5. As a processor finishes its computation, the out- 
put is appended to an output file for that proces- 
sor and a new input file is send to that processor. 

6. Collect the output from each processor and re- 
port the final solution. 

Software that implements these steps is available 
in the software package Chare (Kale, 1990) , used by 
Raphael Finkel at the University of Kentucky. The 
disadvantage of Chare is that it is basically a pro- 
gramming language that must be learned and it run 
only on a very limited number of platforms. 

Method 

SG 
HSS 

1CPU 

Median      Perfect0       Distributed" 
(sec)     Distribution     Efficiency 
2491c 2426 
2618d 2426 
9705 

97 
93 

"median time 4-4,1 CPU 
'ratio of perfect distribution to median distributed time 
cn=12, x=2525, s=65.3 
dn=5, 5=2569,s=116 

Table 1: Computation Times for 4 Sparc-IPCs 

The Appendix to this paper contains a Bourne 
shell script that can replace the file "distlms.sh" of 
Hawkins et. al. The only modifications that need to 
be made to the other programs provide in Hawkins 
et. al. are as follows: 

1. When prompted by "lmsd.f" for the workstation 
names, respond with the names of the individual 
parts of the computation, e.g., pi, p2,  The 
shell script requires that the input files have a 
numbered naming convention. We recommend 
parts of equal sizes. 

2. The program calling.f and its subroutines (which 
we refer to as "lmsr.f") found in UNDC.PRG (See 
Hawkins, et. al.) must be compiled for each 
processor it will be executed on. Modify lmsr.f 
so that it will print its output to a file called 
"host.ont" by adding after "READ(*,10) OUT- 
FIL" the line "OUTFIL = "host.out". (host is 
the name given to the machine in the host file 
for the shell script, e.g. gani.out for the host 
gani, brahms.out for the host brahms, ...) This 
must be done for each host. 

3. The changes needed to the shell script in the Ap- 
pendix for the user's network. 

As an example, we partitioned the exact compu- 
tation of the LMS estimate for "educat.dat" discussed 
above into 50 parts. Table 1 contains the compu- 
tation times as reported in Hawkins, Simonoff and 
Stromberg (1994), for their method (HSS) as well as 
results for the new Stromberg/Gardner (SG) method. 

Note that the new method has a better me- 
dian distributed efficiency. More importantly, note 
the lower standard deviation of the runs for the new 
method. The runs for Hawkins, et. al., are more vari- 
able because of the fact that the times are highly load 
dependent, while the new method is less sensitive to 
varying loads on the network. 
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As an example of how this new shell script takes 
advantage of the processors that are not as heavily 
loaded, the following test case was performed: A nu- 
merically intensive program was executed on a Sun 
Sparc-IPC (host name gani). The distributed com- 
putation was performed using four Sparc-IPCs (gani, 
brahms, bart, and utah). The other three proces- 
sors were relatively unloaded compared to gani, which 
could dedicate only 50% of its processing time to the 
calculations. The total computation time was 3104 
seconds, but more interesting was the number of in- 
dividual parts of the computation that each machine 
performed: of the 50 total, brahms did 13, utah did 
15, bart did 14, and gani did only 8.1f each of the ma- 
chines were equally loaded, then it would be expected 
that each machine would do 25% of the computation. 
In this case, gani had a workload that was twice as 
much as the others, and accordingly it only performed 
8/50 = 16% of the computation. Additionally, under 
the old method (HSS), the total computation time 
could be expected to be about 5236 (2*2618) seconds 
because of the higher load on gani. Thus the new 
method (SG) demonstrates about 60% faster comput- 
ing time compared to the HSS method. 
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Appendix 

#!/bin/sh 

# Don't delete this first line, it lets the system know which Unix shell 

# to use when executing this file. We are using the Bourne shell, but 

# other closely compatible shells could be used with minor modification. 

# This is a UNIX shell script that will execute a distributed 

# computation of the Least Median of Squares Regression Equation 

# (Ref: "Distributing a Computationally Intensive Estimator: The 

# Case of Exact LMS Regression", Computational Statistics (1994), by D. 

# Hawkins, J. Simonoff, and A. Stromberg.) This is a modification of 

# the previous method of distributing the simulation, which broke up the 

# computation into several parts, one for each machine available, and 
# executed the programs remotely. 
# 

# This method is very much like a multiple server, single line queueing 
# system where the shell sends out small pieces of the computation to 
# each of the machines, and as these machines become "available" (i.e. 
# finish their computation), the shell will send a new job to the 

# machine. The idea is to use the machines which are operating quicker 
# more often than the slower ones. 
# 

# As with all shells, this file must be given execution privilege on 

# your machine. This is done on most machines by the command: 
# chmod +x filename 
# 

# Modifications made by Capt Sam Gardner, U.S. Air Force. 
# June 1994 

# Beginning of the Script 

HOSTFILE=hostfile 

# This variable holds the name of the file which contains the list 
# of hosts/processors to use. Each hostname should be on a separate 
# line of the file. 

OUTFILE=outfile 

# This variable holds the name of the file into which all of the output 
# will be put into. 

NUMSENT=0 

# Variable to count the number of jobs sent. The input files should 

# have a numeric naming scheme, e.g. inputl, input.1, input-1, etc... 

# In this example (see the rsh command below), the input files are 
# named el, e2,e3, .... e50 

NUMT0TAL=50 

# Variable which contains the total number of inputs/jobs to be executed. 

# This checks to see if you created the file defined as HOSTFILE. If 
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# not, the shell informs you and exits. 

if C ! -f $H0STFILE ]; then 
echo "Cannot find $HOSTFILE" 
echo "Create file $HOSTFILE with a list of hosts to use. Exiting shell" 

exit 1 
fi 

# This checks to see if the file defined as OUTFILE above exists. If so, 
# the shell will ask if you want to delete it.  If you select no, the shell 
# will exit. 

if [ -f $0UTFILE ]; then 
echo "The output file $0UTFILE exists. Delete it and continue? (Y or N)" 

read query 
if [ $query = "Y" ]; then 

rm $OUTFILE 
else 

exit i 
fi 

fi 

# Opens an empty file with the name stored in OUTFILE 
cat /dev/null > $0UTFILE 

# This loop cleans up any files left over from a previous execution of 
# this shell and sets up some flag files that the shell needs later on. 
# Note that this requires a separate file called "falsefile" which 
# contains a single word, FALSE. Later on a file called "truefile" will 
# be needed also, and truefile should contain only the word TRUE. 

for name in 'cat $HOSTFILE'; do 
rm $name.out 2>/dev/null 
rm $name.sent 2>/dev/null 

# puts the word FALSE into the machine.sent file 
cat falsefile > $name.sent 
cat /dev/null > $name.job 

done 

# The following while loop will check to see first if NUMSENT is less 
# than NUMTOTAL. It then checks to see if a machine/host in the list 
# in HOSTFILE is busy.  If not, it sends a remote job to that machine, 
# increments NUMSENT by i, stores the number of the input file, and puts 
# the word TRUE in the host.sent file.  If the host is busy, then it 
# moves to the next machine. If a host has completed a job, the file 
# host.out will exist and the shell will append the output to OUTFILE, 
# remove host.out, and put the word FALSE into host.sent, letting the 
# shell know that the host is now available to execute a job. Otherwise, 
# the shell lets you know that the host is busy. 

DIRECTORY=directory_where_the_executables_are 
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while [ "$NUMSENT" -It "$NUMT0TAL" ]; do 

for name in 'cat $H0STFILE'; do 

hostflag='cat $name.sent' 

if C "$NUMSENT" -It "$NUMT0TAL" ]; then 

if C $hostflag = "FALSE" ]; then 

NUMSENT='expr $NUMSENT + 1' 

rsh $name -n "cd "$DIRECT0RY"; $name.lms < e$NUHSENT" ft 

# Note that the executable files should all have a naming pattern based 

# on the host name. In this case, the executables and input files are 

# all in the same directory, with the executable files having names 

# "gani.lms", "brahms.lms", etc... The variable DIRECTORY should be 

# changed to the working directory. If the input jobs are names 

# differently from e$NUMSENT then that variable should be changed 
# accordingly. 

rm $name.sent 

cat truefile > $name.sent 
rm $name.job 

echo "$NUMSENT" > $name.job 

echo "Job $NUMSENT sent to $name" 
elif [ -f $name.out ]; then 

echo "$name completed job, adding $name.out to $0UTFILE" 
rm $name.sent 

cat falsefile > $name.sent 

cat $name.out » $0UTFILE 
rm $name.out 

else 

echo "job pending at $name" 
fi 

fi 

done 

done 

# Now all of the jobs have been sent and the shell will wait until 
# they are all complete. It will tell you which input file it is 
# waiting on, also, so if you are waiting a long time for one of 

# final jobs to complete, you can kill the shell and run the last 
# job manually on a faster machine. 

echo "All jobs have been sent, waiting for final jobs to complete" 

for name in 'cat $H0STFILE'; do 

hostflag='cat $name.sent' 

if C $hostflag = "FALSE" ]; then 

echo "No jobs pending at host $name" 
else 

job='cat $name.job' 

until [ -f $name.out ]; do 

echo "Waiting for $name to complete job $job" 
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# If this is looping too fast and filling up the screen, the 

# following line can be used in the shell (just delete the pound sign) 

# sleep 5 

done 

echo "$name completed final job, adding $name.out to $OUTFILE" 

cat $name.out » $OUTFILE 

rm $name.out 

fi 

done 

# The following line executes the program that computes the LMS fit 

# from the output file. 

collect 

# Finally the LMS fit is printed to the screen, 

more lmsfit 

# End of the shell 
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Multivariate Outlier Detection 
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Abstract 

In this paper we give new insights into why the problem 
of detecting multivariate outliers can be difficult and why 
the difficulty increases with the dimension of the data. 
We then describe significant improvements in methods 
for detecting outliers and demonstrate using extensive 
simulation experiments that a hybrid method extends 
the practical boundaries of outlier detection capabilities. 
Based on simulation results, we investigate the question 
of what levels of contamination can be detected by this 
algorithm as a function of dimension, computation time, 
sample size, contamination fraction, and distance of the 
contamination from the main body of data. A more 
detailed presentation on this topic is contained in Rocke 
and Woodruff (1994). 

1    Introduction 

While methods of detection of sporadic outliers in mul- 
tivariate data have existed for many years (see Hawkins 
1980), the problem of detecting clusters of outliers can 
be extremely difficult. This essentially requires robust 
estimation of multivariate location and shape, and most 
estimators for the latter problem are known to fail when 
the fraction of contamination is greater than l/(p + 1), 
where p is the dimension of the data. Thus detecting 
outliers or a disparate population that compose more 
than a small fraction of the data has been impractical in 
high dimension. 

In this paper we give new insights into why the prob- 
lem of detecting multivariate outliers is so difficult and 
why the difficulty increases with the dimension of the 
data. We then describe significant improvements in 
methods for detecting outliers and demonstrate using 
extensive simulation experiments that a hybrid method 
extends the practical boundaries of outlier detection ca- 

*The research, reported in this paper was supported by grants 
from the National Science Foundation (DMS-93.01344) and the 
National Institute of Environmental Health Sciences, National In- 
stitutes of Health (P42 ES04699). 

pabilities. Determination of the exact boundaries is com- 
plicated by the fact that the probability of detecting out- 
liers depends on many things such as the computer time 
expended, dimension, number of data points, fraction 
of data contaminated, type of contamination and algo- 
rithm parameters. Nonetheless, based on simulations we 
are able to specify approximately what levels of contami- 
nation can be detected by this algorithm under a variety 
of conditions. 

The estimation of multivariate location and shape is 
one of the most difficult problems in robust statistics 
(Campbell 1980, 1982; Davies 1987; Devlin, Gnanade- 
sikan, and Kettenring 1981; Donoho 1982; Hampel et 
al. 1986; Huber 1981; Lopuhaä 1989 Maronna 1976; 
Rocke and Woodruff 1993; Rousseeuw 1985; Rousseeuw 
and Leroy 1987; Stahel 1981; Tyler 1983, 1991). For 
some statistical procedures, it is relatively straightfor- 
ward to obtain estimates that are resistant to a reason- 
able fraction of outliers—for example, one-dimensional 
location (Andrews et al. 1972) and regression with error- 
free predictors (Huber 1981). The multivariate location 
and shape problem is more difficult, since most known 
methods will break down if the fraction of outliers is 
larger than l/(p + 1), where p is the dimension of the 
data (Maronna 1976; Donoho 1982; Stahel 1981). This 
means that, in high dimension, a very small fraction of 
outliers can result in very bad estimates. 

We are particularly interested in obtaining estimates 
that are affine equivariant. A location estimator tn 6 W 
is affine equivariant if and only if for any vector b EW 
and any non-singular p x p matrix A 

tn(AX + b) = Atn(X) + b. 

A shape estimator Cn € PDS(p) is affine equivariant if 
and only if for any vector b G W and any non-singular 
p x p matrix A 

Cn(AX + b) = ACn(X)AT 

This implies, for example, that stretching or rotating 
measurement scales will not change the estimates. Drop- 
ping the requirement of affine equivariance does increases 
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the number of estimators that are available, and there 
may certainly be cases where a non-affine-equivariant es- 
timator provides superior performance, but it is also im- 
portant to have robust, computable, affine-equivariant 
estimators available for use. In fact, though, we know of 
no non-affine-equivariant estimator that can deal with 
difficult outliers any better than the best of the affine 
equivariant methods. 

Computational methods have been reported in the lit- 
erature for a number of approaches for finding robust es- 
timates of multivariate location and shape (and therefore 
identifying outliers). Combinatorial estimators, such as 
the minimum volume ellipsoid (MVE) and minimum co- 
variance determinant (MCD) estimators of Rousseeuw 
(1985; Hampel et al. 1986; Rousseeuw and Leroy 1987), 
have been addressed with random search (Rousseeuw 
and Leroy 1987: MINVOL), steepest descent with ran- 
dom restarts (Hawkins 1993a, 1993b: FSA), and heuris- 
tic search optimization efforts (Woodruff and Rocke 
1993a, 1993b). Iterative estimators such as maximum 
likelihood and M-estimators (Campbell 1980, 1982; Hu- 
ber 1981; Kent and Tyler 1991; Lopuhaä 1992; Maronna 
1976; Rocke 1992; Tyler 1983, 1988, 1991), and S- 
estimators (Davies 1987; Hampel et al. 1986; Lopuhaä 
1989 Rousseeuw and Leroy 1987) can be computed with 
a straightforward iteration from a good starting point 
(Rocke and Woodruff 1993) or using an ad hoc search for 
the global minimum (Ruppert 1992: SURREAL). Sequen- 
tial point addition estimators (FORWARD) have been 
defined algorithmically by Atkinson (1992) and Hadi 
(1992) working separately. The Hadi paper suggests 
the use of a non-affine equivariant starting point, but 
the point addition portion of the algorithm is affine- 
equivariant and is nearly the same as the point addi- 
tion portion of Atkinson's completely affine-equivariant 
algorithm. 

In the remainder of the paper, we discuss that nature 
of multivariate outliers, with a special view to what sorts 
of outliers are worth studying. We show that outliers 
that have the same shape as the main data are in some 
sense the hardest to find, and that the more compact 
the outliers are, the harder they are to find. We adopt 
shift outliers as a reasonable target, being of the hardest 
shape, but of a feasible size to locate. Then we study 
the comparative performance of the our new hybrid al- 
gorithm and previous methods such as MINVOL, FSA, 
and FORWARD, demonstrating the superiority of the new 
method. Then we investigate the question of what prob- 
lems can be practically tackled with our methods. 

2    The   Nature   of  Multivariate 
Outliers 

In this section, we investigate the difficulties of locating 
multivariate outliers. First, to frame the problem as this 
paper deals with it, we assume that there is a fraction 
greater than one-half of the data that come from a well- 
behaved multivariate population, for example multivari- 
ate normal. Of course, in practical cases, data trans- 
formations, may be required before this plausibly holds. 
In addition to the well-behaved data, there are other 
data that do not fit the pattern of this well-behaved 
majority—they may arise from a distinct population, or 
may be measurement errors; all that is required is that 
the pattern of these data points is different from the re- 
mainder. We will sometimes refer to the majority of the 
data that come from that well-behaved population as 
the good data, and the remainder as the bad data. There 
is supposed to be no implication that the bad data are 
necessarily errors—they may just arise from a distinct 
sub-population—but the locution is convenient. 

A second aspect of our viewpoint on this problem is 
that we aspire to methods that are affine equivariant, so 
that measurement scale changes or other linear transfor- 
mations do not alter the behavior of analysis methods. 
An implication of this viewpoint is that Mahalanobis 
distances become very important, since these are among 
the few potentially affine-equivariant outlier identifica- 
tion criteria. 

Definition 1 Let fi be a positive definite symmetric p x 
p matrix. The Mahalanobis Distance between points x 
and y in ffl with respect to fi is defined by 

d2
n{x>y) = {x-y)TSl-\x-y). (1) 

We refer to the distance and the matrix that defines it 
interchangeably as a metric. 

For data like those we consider here, the true metric 
is the covariance matrix of the population from which 
the good data arise; a good metric is one which is close 
to the true metric. In particular, when the covariance of 
the whole sample differs by a lot from the covariance of 
the good data, a good metric is one that resembles the 
latter rather than the former. 

We will find it convenient to distinguish the size and 
shape of a metric as follows: 

Definition 2 Let fi be a matrix defining a metric. The 
size of the metric is the determinant \fi\. The shape 
of the metric is the equivalence class of metrics S such 
that fi/\fi\ = S/\S\. Equivalently, we may identify 
the shape as the member of the equivalence class with 
determinant 1; that is, fi/\fi\. 
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This leads to similar definition of shape and size for sam- 
ples. 

Definition 3 Let X be an n x p matrix representing a 
sample ofn points in W. Let S = n~1(X — X)'{X — X) 
be the sample covariance matrix. The size or scale of X 
is the determinant \S\ of its covariance matrix, and the 
shape of X is S/\S\. By extension, we refer to the size 
and shape of other covariance-like estimators, such as 
the robust ones that are the subject of this paper. 

We now consider the question of what kind of outliers 
are hard to find. We begin by examining the case in 
which a good metric is available. This is the goal of most 
affine-equivariant outlier identification methods—find a 
good metric so that the outliers will reveal themselves. 

Lemma 1 Consider a sample ofn points in ffl. Let the 
"good" data have mean n0 and covariance S0. Let the 
"bad" data have mean fi0 + fi and covariance matrix fi, 
and let this comprise a fraction a of the overall data. 
Then the expected sample mean and covariance matrix 
are as follows: 

E(x)    =    A*O + «A* (2) 
E(S)    =    (l-ct)S0 + af2 + a(l-a)fifj.r     (3) 

PROOF.   See Rocke and Woodruff (1994).    D 

Theorem 1 Consider a sample of n points in $tp Let 
the "good" data be multivariate normal with mean fi0 

and covariance So- Let the "bad" data be multivari- 
ate normal with mean fj,0 + fi and covariance matrix Q. 
Consider the Mahalanobis square distance d2y (x,(j.) of 
a point from the true mean using the true metric. Then, 
for a fixed location displacement (i and size \fl\ of the 
outliers, the expectation of the Mahalanobis square dis- 
tance of a bad point from the true mean is least when the 
shape of fi is the same as the shape of So. This is thus 
the worst case from a detection point of view. 

PROOF.   See Rocke and Woodruff (1994).    D 
The above theorem implies that the hardest kind of 

outliers to find, when a good metric is available, is the 
kind that have a covariance matrix with the same shape 
as the good data. For this situation, this reduces the 
infinitely variable kinds of outliers to a single kind. If 
this kind of outlier can then be detected, so should other 
kinds. We intend therefore to focus on a situation in 
which there are good data drawn from a multivariate 
normal distribution, and bad data drawn from the same 
distribution and then displaced. These are often called 
shift outliers (Hawkins 1980; Rocke and Woodruff 1993). 

Shift outliers may be contrasted with classes of out- 
liers that may be easy to detect, in the sense of appearing 

disparate even with the bad metric obtained by using all 
the data. For easily detected outliers, no fancy robust 
techniques are required, merely examining the Maha- 
lanobis distances from the mean of the data using the 
covariance matrix of the data will suffice. While we have 
seen that the shape for bad data that maximizes their 
masking is the shape of the good data, we have not yet 
addressed the issue of size. The next theorem shows how 
easy detection is a consequence of the number and size 
of the contamination. 

Theorem 2 Consider a sample ofn points in $tp Let the 
"good" data be multivariate normal with mean fi0 and 
covariance So- Let the "bad" data be multivariate nor- 
mal with mean fi0 + /* an^ covariance matrix fi = XSQ, 

and let this comprise a fraction a of the overall data. Let 
S be the expected covariance matrix of the mixed sam- 
ple as above and consider d2y,{x, an), the Mahalanobis 
square distance in the bad metric between a data point x 
and the overall population mean.  Then 

1. The difference in the value of E{d2y{x,afi)) for a 
bad point and the value for a good point for large n 
is an increasing function of X, so that A = 0 is the 
worst case. 

2. If A = 0, so that the outliers form a point mass, 
and if rj is large, then the value of E(d2y,(x,afi)) 
for a bad point is less than the value for a good point 
whenever a > l/(p+ 1). 

3. IfX = l (pure shift outliers), and ifn is large, then 
the value ofE(d2y(x, a/x)) for a bad point is always 
larger than the value for a good point. However, for 
large p, the distribution of the distance of a good 
point and the distribution of the distance of a bad 
point converge. 

4- For large n, the value of X at which E(d2j,(x,a/J,)) 
has the same value for good points and baa points is 

x_ (1 - a)(ap - (1 - a)) 
a((l — a)p — a) 

whenever this is positive. 

PROOF.   See Rocke and Woodruff (1994).    D 

Remark 1 If a good starting estimate for the shape of 
the good data can be found, then the hardest kind of con- 
tamination to discover is that which has the same shape 
as the good data. Since substantial contamination can 
only be found by constructing a relatively good shape esti- 
mate, this is the most difficult case for such search meth- 
ods. 
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Remark 2 Although point-mass contamination is the 
most difficult to detect by the Mahalanobis distance from 
the sample mean, it is easy to detect in other ways, such 
as pair-wise distances. 

Remark 3 Although pure shift outliers might seem to be 
detectable, given that their mean Mahalanobis distance 
from the sample mean is larger than that of the good 
points, no method is known that can find the outliers 
with complete assurance. This is because the overlap in 
the distributions is very substantial. 

As we shall see later, pure shift outliers are sufficient 
to baffle previously proposed methods like the random 
search algorithm in the program MINVOL (Rousseeuw 
1985). Others like those proposed by Hawkins (1992) 
and Atkinson (1993) turn out to be better than random 
search. The method proposed in this paper, however, 
dominates all other methods examined in high dimen- 
sion. 

Because we are mainly interested in high dimension, 
we will rely primarily on extensive computational exper- 
iments to compare methods, rather than the standard, 
low-dimensional examples often used in the literature. 
However, we did examine the performance of the code 
on some of these standard examples, such as the data 
of Hawkins, Bradu, and Kass (1984), achieving the ex- 
pected outcomes. For the reasons outlined in this sec- 
tion, the experiments involve mainly pure shift outliers, 
although a few other cases were examined to check for 
any sensitivity to this specification. Dimensions as large 
as 50 were examined, even though the computation times 
can rise rapidly with the dimension, so that high dimen- 
sional cases would be represented. Previously, the liter- 
ature has concentrated almost exclusively on dimensions 
less than 10, and usually no larger than five. Methods 
that appear satisfactory for a problem with three dimen- 
sions and 20 data points can be completely impractical 
for even somewhat larger problems (Woodruff and Rocke 
1993a). We examine a range of contamination fractions 
from l/(p+ 1), which is the smallest non-trivial amount 
of contamination, to 40% or 45%, which can be almost 
impossible to find. There is a theoretical limit on the 
number of contaminated points that could be found even 
in principle; the number of good points must be at least 
h = (n + p + l)/2 (Lopuhaä and Rousseeuw 1991). The 
good data are defined to be multivariate standard nor- 
mal and the bad data to be multivariate unit normal 
with a shifted mean. We measure the amount of shift 
in terms of the unit of measurement Qp = ■Jxlfi.ooi > 
which is more or less the radius of the sphere around 
the mean that contains almost all the good points. If 
the outliers are centered at a distance of 2QP, then these 

spheres should not overlap. We implement outliers at 
a distance of dQp by adding dQ* to each component, 

where Q* = yXp-o.ooi/P- This places the outliers at the 

correct distance out a diagonal. In the experiments used 
in this paper, we use d = 2, which we call close outliers, 
and d = 4, which we call far outliers. 

This generation mechanism is sufficient for use 
with affine-equivariant methods, but for non-affine- 
equivariant methods, the data should then be standard- 
ized so that the entire sample has mean O and covariance 
I. This can be accomplished using the singular value de- 
composition as follows. Let S be the covariance matrix 
of the whole sample of good and bad data. This can 
be written as S = Q DQ, where Q is an orthogonal 
matrix and D is the diagonal matrix of eigenvalues. If 
X is the sample, then the sample XQ D~ ' Q has the 
desired properties. 

One convenient aspect of the use of shift outliers in 
this problem is that iterative methods such as M- and S- 
estimation usually have at most two roots: one that can 
be found by iterating from the good data (the good root) 
and one that occurs when iterating from all the data (the 
bad root). For small amounts of contamination, these 
may not be distinct, but only when they do differ is the 
problem interesting. 

Finally, we define the criterion of success for an outlier 
detection method. If the method yields a location fi 
and a metric 27, then the method is successful if the 
largest value of dy,(x,ß) for a good point is smaller 
than the smallest value for a bad point. This is a very 
strict criterion, but some experimentation has suggested 
that the ordering of the methods is not changed by use 
of a looser criterion. With pure shift outliers shifted by 
dQp, this is essentially always possible if d > 2 and if the 
metric is a good one. 

3    Affine-Equivariant      Methods 
for Outlier Detection 

All known methods for this problem consist of the fol- 
lowing three steps: 

1. Estimate a location and metric. 

2. Scale the metric so that it agrees on some calibrating 
distribution. 

3. Reject as outliers points whose Mahalanobis dis- 
tance from the location estimate are sufficiently 
large. 

The last two steps are not difficult, so the essence of the 
problem comes down to highly resistant estimation of 
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multivariate location and shape. All methods for this 
problem known to us come down to such an estimation 
problem. These methods fall into two classes: combina- 
torial and iterative. Combinatorial estimators construct 
estimates of location and shape from a subset of the data 
which itself is hoped to be at least mostly outlier-free. It- 
erative estimators attempt to satisfy a continuous equa- 
tion by iteration from a starting point. Unless iteration 
from the whole sample mean and covariance suffices— 
an uninteresting case—this requires either direct search 
or use of a prior combinatorial estimator as a starting 
point. 

Our point of comparison is the random search 
algorithm MINVOL for the MVE (Rousseeuw 1985; 
Rousseeuw and Leroy 1987; Roussseeuw and van 
Zomeren 1990, 1991). Until very recently, this was effec- 
tively the state of the art. 

Our proposed method is outlined below; the rest of 
this section is devoted to describing the steps in more 
detail and to comparing the method to those in the pre- 
vious literature. We will refer to the complete method as 
the hybrid algorithm because it uses both combinatorial 
and iterative features, as well as incorporating several 
other useful heuristics. 

1. Randomize the order of the data points. 

2. Partition the data into [n/j(p)j cells indexed by j. 

3. For each cell, 

(a) Spend T/\n/i(p)\ seconds on a Tabu Search 
for the MCD (Woodruff and Rocke 1993b). 

(b) Use MCD estimate as a starting point for a 
sequential point addition algorithm using the 
entire sample of size n starting from the p + 1 
points that have the smallest distance from the 
MCD location using the MCD metric. 

(c) Use this result as the starting point for trans- 
lated bi-weight M-estimation (Rocke 1993) us- 
ing the entire sample of size n. This yields es- 
timates fij and Sj of location and shape. 

4. Select the index j for which \£j\ is least and set 
fi = p,; and £ £j. 

5. Resize £ so that the median distance is consistent 
with an assumed (e.g., normal) distribution; that is, 
multiply by Xph/n/

m> where m is the /ith largest 

Mahalanobis square distance using the metric £. 

3.1    M- and S-Estimation 
An 5-estimate of multivariate location and shape is de- 
fined as that vector t and PDS matrix C which mini- 
mizes \C\ subject to 

"_1 E P (K*< - tfC-'ixi - t)]1'2) = b0     (4) 

which we write as 

-'EM-) An. (5) 

It has been shown by Lopuhaä (1989) and, using a differ- 
ent method, by Rocke (1993), that 5-estimators are in 
the class of M-estimators with standardizing constraints 
with weight functions v\(d) = w(d), V2(d) = pw(d), 
v3(d) = v(d), where ip(d) = p'(d), w(d) = tp(d)/d, 
v(d) = tj){d)d, with constraint (5). 

In Rocke (1993) it is shown that 5-estimators in high 
dimension can be sensitive to outliers even if the break- 
down point is set to be near 50%. We utilize the trans- 
lated biweight (or t-biweight) M-estimation method de- 
fined in Rocke (1993), with a standardization step con- 
sisting of equating the median of p(d{) with the median 
under normality. This is then not an 5-estimate, but is 
instead a constrained M-estimate. 

In accord with the theory in Rocke (1993), we have 
found that the use of the t-biweight M-estimator makes 
a large improvement in the performance of the hybrid 
algorithm compared to the use of biweight 5-estimation, 
at least when the outliers he relatively close in (d — 2). 
When d = 4, use of one iterative estimation method or 
the other made no important difference. Some detailed 
evidence is given in Table 1. The situation here is that 
twenty replicates of shift outliers at d = 2 and with indi- 
cated sample size, fraction of outliers, and computation 
time allowed (all computation times are CPU seconds 
on a DECStation 5000/200). The response is the per- 
centage of replicates for which the indicated estimator 
achieved the good root. Note that the t-biweight perfor- 
mance exceeds that of the biweight 5-estimate by large 
amounts in every case. A large number of additional 
experiments confirm this important difference in perfor- 
mance. 

6. Reject as outliers those points whose Mahalanobis 

4 distances exceed a chosen Xp quantile. 

3.2    Partitioning 

The simple iteration scheme for M-estimation fails with- 
out a good starting point. An M-estimator that begins 
iteration using an estimate based on all the data breaks 
down with l/(p+1) of the data contaminated (Maronna 
1976). Two methods of addressing this problem seem 
possible. One is to look directly for the global minimizer 
of the 5 criterion. The other is to find a good starting 
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Table 1: Comparison of Biweight S-estimation with t- 
biweight M-estimation. The columns headed "%" are 
the percentage of 20 trials that the given estimator cor- 
rectly identified the outliers. 

As shown in Woodruff and Rocke (1993b), use of data 
partitioning in this fashion allows the acquisition of the 
good root with high probability with a computational 
time increasing only linearly with n (instead of expo- 
nentially). 

n a time (sec) biweight % t-biweight % 

50 0.30 22 5 50 
50 0.30 202 5 70 
50 0.35 22 0 20 
50 0.35 202 0 25 

200 0.30 60 55 95 
200 0.30 240 55 95 
200 0.35 60 0 35 
200 0.35 240 0 55 

point for the iteration by use of a preliminary combina- 
torial estimator. 

Ruppert (1992) proposed an algorithm called SUR- 

REAL for direct search for the global minimizer of an 
S estimator used in multiple regression. He reported 
computational experiments that demonstrated the effec- 
tiveness of the SURREAL for this purpose. In the same 
paper, he proposed an extension of the method to ro- 
bust estimation of multivariate location and shape. It 
appears SURREAL is not as effective for this problem as 
for regression. In dimension 10, SURREAL rarely found 
the good root when the fraction of contamination was 
greater than about 12%. Since this was not competitive 
with other algorithms examined, detailed results are not 
presented. 

We also have examined direct search as a method of 
finding the good root for S- or M-estimation and have 
found that it seems superior to use a preliminary combi- 
natorial estimator such as the MCD (Rousseeuw 1985). 
As pointed out by Woodruff and Rocke (1993b), the use 
of the MCD to find a good starting point presents se- 
vere computational difficulties. Regardless of which al- 
gorithms are used to compute them, combinatorial esti- 
mators such as the MCD search a space that increases 
exponentially with the sample size and the dimension. In 
fact, when using the MCD as a first stage in a two-stage 
estimator, one can have the perverse situation of being 
made worse off by having more data. To cope with this 
problem, the data must be partitioned so that the search 
space for the MCD is kept in a reasonable range. After 
some modest experimentation, we settled on a cell size 
of 7 = 5p. This may possibly be too small for high di- 
mension, but determining the optimal value was beyond 
the scope of the present paper. 

3.3 Sequential Point Addition 

Working separately, Hadi (1992) and Atkinson (1992) 
have proposed algorithms which begins with an estimate 
of shape and location based on (p + 1) points and then 
selects successively larger sets—the set with k+1 points 
is consists of those points whose Mahalanobis distances 
from the mean of the k-set using the covariance of the k- 
set as a metric are smallest. Because Atkinson's method 
is completely affine equivariant, we concentrate on this 
rather than the method suggested by Hadi. 

Atkinson's method is affine equivariant. He suggests 
restarting the procedure many times with randomly se- 
lected sets of p + 1 points. For each trial, sequential 
addition is performed and for each stage in the sequen- 
tial addition, the covariance matrix is calculated, and 
the resulting shape matrix is expanded (or contracted) 
so that half (or (n-fp+l)/2) of the points are included in 
the ellipsoid defined by the current location and shape. 
The estimate over all trials and over all stages of each 
trial in which the scaled shape matrix has minimum de- 
terminant may be taken as the robust estimate of the 
shape and location of the data. Atkinson's algorithm is 
a large improvement over MINVOL. In the remainder of 
the paper, we refer to this procedure, following Atkinson, 
as the forward algorithm, or FORWARD for short. 

We found that including a sequential addition step 
between Tabu search for the MCD and the iterative es- 
timator improved the results in some cases. Here the 
preliminary MCD estimator is used to choose the p + 1 
points closest to the location estimate using the MCD 
metric, and then sequential addition as used by Atkin- 
son proceeds once, yielding a new location and shape 
estimator that is then use to start the iterations for the 
M- or S-estimator. The importance of including the 
point addition sub-algorithm is reduced if the contami- 
nation is further away from the good data. So, although 
the inclusion of the point addition sub-algorithm is not 
critical, it seems well worth the small effort required to 
code it. 

3.4 Minimum Covariance Determinant 

Faced with a subsample of contaminated data, our exper- 
iments indicate that the best way to find a good starting 
point for sequential point addition (or for M-iteration) 
is to search for the MCD. It was originally thought that 
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the MVE would be preferable for computational reasons 
(see Rousseeuw and Van Zomeren 1990), even though 
the MCD has greater asymptotic efficiency. This was 
based on the notion that MVE algorithms would make 
use of elemental subsets. Woodruff and Rocke (1993a) 
demonstrated that heuristic search algorithms that use 
larger subsample sizes perform better. Given this fact, 
there is no longer any reason to prefer the MVE to the 
MCD. Simulations done by Woodruff and Rocke (1993b) 
strongly support the contention that the MCD is in fact 
the better estimator to use. 

The MCD for any set of data is defined by the half 
sample whose covariance matrix has minimum determi- 
nant. It is convenient to search for MCD half-samples 
moving from half sample to half sample by the removal 
of one point in the current half sample and the addi- 
tion of one not currently in. Neighborhoods defined in 
this way can form the basis of a steepest descent to a 
local minimum. Hawkins (1993b) suggests the use of 
steepest descent with random restarts, which he calls 
FSA. Woodruff and Rocke (1993b) advocate the use of a 
steepest descent based meta-heuristic called tabu search 
(Glover 1989, 1990). A tabu search (TS) algorithm for 
the MCD is given in Rocke and Woodruff (1994). 

3.5    A Comparison of Algorithms 

Given that some runs in high dimension may take up to 
an hour of CPU time, and that there are many conditions 
under which one should compare estimators, a compre- 
hensive Monte Carlo study is impractical. In this section, 
we compare our algorithm with random search over el- 
emental subsets (Rousseeuw 1985: MINVOL). Compar- 
isons with the forward algorithm (Atkinson 1992: FOR- 

WARD), steepest descent with random restarts (Hawkins 
1993b: FSA), and SURREAL may be found in Rocke and 
Woodruff (1994). The hybrid algorithm proved to be su- 
perior to these methods, as well as to MINVOL, for high 
dimension or large data sets. 

The good data in the simulation are multivariate stan- 
dard normal; the bad data are multivariate normal with 
covariance I but with a mean displaced a distance of 
dQp, where values d = 2 and d = 4 were used. The 
dimension p was 10, 20, and 50, with sample sizes of 
n = 5p, n = 10p, and n = 20p. Several processing times 
t were tried for each case, varying from a few seconds to 
several hours in high dimensional examples. The degree 
of contamination a was varied from levels where the so- 
lution could almost always be found by most methods to 
levels where none of the methods could get them right. 

In order to increase the utility of the number of 
runs that were practical to perform, a generalized lin- 
ear model was fit to the outcomes of the experiments, 

Table 2: Fitted Performance Measures for the Hybrid 
Algorithm vs. MINVOL in Dimension 10. The columns 
headed "%" are the predicted percentage of trials that 
the given estimator correctly identifies the outliers. 

a n time (sec) Hybrid % MINVOL % 
.1 100 100 100.0 69.2 
.1 200 400 100.0 88.9 
.2 100 100 99.8 11.0 
.2 200 400 100.0 15.9 
.3 100 100 83.2 0.7 
.3 200 400 97.9 0.4 

which each consisted of 20 trials at each case. The logit 
of the probability that a given estimator would succeed 
in identifying all the outliers was taken to be a linear 
function of n, a, and log(i) and their interactions (non- 
significant interactions were removed). Different models 
were fit for each estimator, distance of outliers, and for 
each dimension examined. 

Table 2 shows the fitted probability of success for 
some choices of the amount a of contamination, the 
number of data points, and the estimation time for the 
hybrid algorithm and MINVOL in dimension 10. The 
clear superiority of the hybrid algorithm is apparent. In 
higher dimension, limited trials suggest that the the hy- 
brid algorithm is even more dominant. However, given 
the finite time available for computer simulations in high 
dimension, most of the runs were devoted to determining 
the envelope of feasible solution for the hybrid algorithm, 
rather than to documenting the exact degree of superi- 
ority over competing algorithms. 

4    Estimating the Envelope 

This section is devoted to the following question: for 
what dimensions, sample sizes, outlier distances, frac- 
tions of outliers, and computation times is the hybrid 
algorithm effective? The theoretical results in Woodruff 
and Rocke (1993b) demonstrate that any amount of con- 
tamination less than 50% can theoretically be handled 
with sufficient data and sufficient processing time. Here 
we ask a different question: what amount of contamina- 
tion can be practically detected with an amount of data 
that is given and with practical processing times. 

Table 3 shows some results. For each indicated com- 
bination of dimension and outlier distance, a generalized 
linear model was fit as described above. Then the level of 
contamination was found that allowed a predicted 90% of 
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Table 3: Critical Contamination Level for 90% success 
with the Hybrid Algorithm. The column headed a is the 
amount of contamination such that the hybrid algorithm 
is predicted to be able to identify the outliers correctly 
in 90% of the instances. 

p d n time (sec) a 
10 2 50 200 0.27 
10 2 100 200 0.29 
10 2 200 200 0.32 
10 4 50 200 0.29 
10 4 100 200 0.32 
10 4 200 200 0.36 
20 2 100 800 0.21 
20 2 200 800 0.24 
20 2 400 800 0.27 
20 4 100 800 0.24 
20 4 200 800 0.25 
20 4 400 800 0.28 
50 2 200 5000 0.15 
50 2 400 5000 0.16 
50 2 800 5000 0.17 

the data sets to be successfully completed. To avoid un- 
due extrapolation, computation times and sample sizes 
were set to within the bounds of what were used for 
problems of that nature in our study. 

The more data (and the more computation time), 
the greater the fraction of outliers that can be handled. 
Within our self-imposed bounds, we can say that outlier 
fractions in the 30-35% range can be reliably solved in di- 
mension 10, with 20-30% in dimension 20 and 15-20% in 
dimension 50. Although these bounds are crude, it does 
give some feel for what problems are feasible. It is likely 
that the sample sizes and processing times for dimension 
50 are actually a lot too small. For assured success with 
high contamination, substantially larger values of both 
than the ones we used may very well be necessary. 

A point that should not be overlooked is that advances 
in processor technology and parallel processing can have 
an important effect. For example, a DEC 3000/400 Al- 
pha AXP workstation is about 6 times faster than the 
DECStation 5000/200 on which these simulations were 
conducted, and multiple processor machines could also 
be used to multiply the effectiveness of the algorithm, 
which is parallelizable in a number of ways (Woodruff 
and Rocke 1993a). 

5    Conclusions 

In this paper, we have investigated the nature of multi- 
variate outliers and methods for their detection. We have 
shown that shift outliers provide a reasonable testbed for 
multivariate outlier detection, being difficult but not im- 
possible to detect. Using this testbed, we have shown a 
new hybrid algorithm to be superior to existing methods 
for this problem. Given sufficient data and processing 
time, even heavily contaminated data in high dimension 
can be dealt with. 
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Abstract 

There is a vast literature aimed at estimating the 
number of species in a diverse population and the 
frequency distribution of individuals across species. 
Regardless of the model or estimating method cho- 
sen, estimates of the "true number" of species typi- 
cally have a very large variance. A new model pre- 
sented here separates the observed class distribution 
into "well-defined" and "residual" classes with differ- 
ent generating distributions. 

1    Introduction 

The detection of abnormal or "novel" behavior in dy- 
namic mechanical systems is an emerging area of crit- 
ical importance in the aerospace industry. Sensors of 
acoustic or mechanical vibrations, optical patterns, 
etc. can be deployed in critical locations in an air- 
craft or space vehicle, and the resulting time series 
or space-time series can be monitored for unusual 
changes in a variety of ways. This complex data is 
typically generated at a very high rate, in very large 
volume or both, and real-time processing is desirable 
in some of the applications envisioned. Furthermore, 
the dynamics of the vehicle are too complex for a 
model based on physical understanding to be prac- 
tical. In this environment, engineers are seeking to 
use neural networks to reduce and analyze the data 
generated by the sensors. 

In order to be effective, neural networks gener- 

ally require data that has been carefully preprocessed 
(transformed). Postprocessing of the output of the 
neural network, to evaluate and interpret its "anal- 
ysis," is also commonly necessary. The composite 
species distribution model, which is the focus of this 
article, was motivated by the need to develop a sen- 
sitive statistical performance monitor to postprocess 
the output of an ART1 neural network (Carpenter 
and Grossberg [2]) used in the "novelty detection" en- 
vironment described above. However, this model may 
be used with any pattern recognition algorithm, and 
in fact with any classification system. The composite 
model may also prove valuable in ecology and genet- 
ics, and language suggestive of these applications is 
used whenever appropriate. 

2    Background:     Neural   Net- 
work Novelty Detection 

In the typical novelty detection application, the 
ART1 network is presented with long sequences of 
patterns generated from relatively short subsamples 
(windows) of the time series in question. The choice 
of window sizes, window overlap, and preprocess- 
ing is highly application-dependent. ART1 creates 
a binary-coded classification of these incoming pat- 
terns "on the fly" by creating internal representations 
(templates) of new patterns as they are presented. 
New patterns may classify to an existing template if 
they are close enough according to a Hamming met- 
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ric which is highly dependent on the preprocessing 
selected. Previously generated templates can be mod- 
ified to some degree by subsequent patterns. Patterns 
which do not match any existing template generate a 
new template. 

When the rate of generation of new templates slows 
down or stops, the network is "trained" to recognize 
the normal behavior of the suite of sensors it is mon- 
itoring. Abnormal or novel behavior may be indi- 
cated by a sudden increase in the generation of new 
templates, but in some cases a more sensitive indica- 
tor may be needed. In many applications, the rate 
of activation of at least some of the more "popular" 
templates encoded during learning appears to be rel- 
atively stable. The qualitative use of pattern activa- 
tion data is discussed and illustrated in the novelty 
detection context in Newman and Caudell [11]. 

The ART1 network itself will not be discussed fur- 
ther in this article, and the reader is referred to [11] 
and [2] for the specifics of ART1 and to surveys of the 
general neural network literature such as Grossberg 
[6] or Hecht-Nielsen [7] for further information. 

Estimates of u 
N MLE Good Starr NPMLE 

100 1.00 1.00 
(.014) 

.012 .015 

1000 1.00 1.00 
(0) 

.004 .006 

7440 .9999 .9999 
(.0046) 

.0007 .0024 

Estimates of C 
c MLE Good Starr Chao 

k. Lee 

5 5 
(222) 

5 423 5 

[0] 
29 29 

(12868) 
29 7217 29 

[0] 
86 86.01 

(7.5zl09) 
86.01 12797 86.01 

[0] 

Table 1: Estimates of coverage u and true number of 
classes C using several methods, for various values of 
sample size N and corresponding numbers c of classes 
observed 

3    Motivation:   Estimating the 
Number of Species 

The basic data used to monitor the neural network 
after N patterns have been processed is the vector of 
activation frequencies (or distribution of observed in- 
dividuals among species or classes) n = (n\,..., nc), 
where c is the number of classes which have actu- 
ally been observed (or templates which have been 
created). It is reasonable to represent the data as a 
sample from a multinomial distribution with a fixed 
but unknown number of classes C. But now C is 
a parameter to be estimated, and standard methods 
for estimating the class probabilities p = (pi, ■ ■ ■ ,pc) 
and testing hypotheses based on the multinomial as- 
sumption with C known a priori are no longer ade- 
quate. 

Bunge and Fitzpatrick [1] review the literature 
on estimation of the "true" number C of species or 
classes from a sample of size N. Direct estimation of 
C is frequently difficult, even when unrealistic simpli- 

fying assumptions are made, causing many authors 
to base estimates of C on estimates of the coverage 
u of the sample. Coverage is the true proportion of 
the population represented in the sample; formally, 
u — J2{im>o}Pi' wnere f°r notational simplicity it 
is assumed that the indices of the observed classes 
i = 1,..., c are consistent with the indexing of p, and 
c<C. 

Experiments have been conducted with neural net- 
work output using several of the multinomial, infinite 
population methods cited in [1]. Table 1 shows some 
typical results. Numbers in parentheses under the 
point estimates are estimates of standard deviations. 
Chao and Lee [3] gave estimators for the coefficient 
of variation of their estimator C; these are shown in 
brackets. 

The maximum likelihood estimate (MLE), Good 
and Chao estimates of u and C and Good's estimate 
of the standard deviation of u indicate that there 
are no new classes to be discovered, while the Starr, 
non-parametric MLE (NPMLE) and MLE standard 
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deviation of C indicate that only a tiny fraction of 
the classes have been discovered. The lack of agree- 
ment among the methods, and the inability of any 
of the estimates based on (JV = 100, c = 5) or 
(N = 1000, c = 29) to predict future behavior un- 
dermines the credibility of the fixed-but-unknown C 
multinomial model. It seems essential to regard C as 
a random variable. 

Returning to the review by Bunge and Fitzpatrick 
[1], methods which approximate the histogram of p by 
some kind of parametric model appear to give better 
results in practice than those which treat p as the 
primary vector of parameters, according to the au- 
thors. The results of Keener, Rothman and Starr [9] 
are especially pertinent in light of the considerations 
above. Following a number of previous investigators, 
they place a symmetric Dirichlet distribution 

Prob(p\a,C) = (r(a))C rr 
Pi (1) 

on p, although they still treat the number of classes 
C as a fixed parameter; their approach is empiri- 
cal Bayesian. They consider estimation of C with 
a known, and also with a unknown, the latter being 
the more realistic assumption. (Keener et al [9] use m 
instead of C, and A instead of a.) They tested their 
methods with numerous examples, and found that 
quite often one obtained estimates in which a —»■ oo 
or C —*• oo while aC approached a finite limit which 
will here be called 6 in what follows. In particular 
they show that in the more common case in which 
C —*■ oo while a —*• 0 but aC —+ 9, the limiting dis- 
tribution of c in this case is given by the Ewens [5] 
sampling distribution 

Prob(c\0)=&S$\ (2) 

where {0)N = 9(0 - 1)... (9 - N + 1) and sff is 
the Stirling number of the first kind. Furthermore, 
the total number of classes c observed is a sufficient 
statistic for 6. Further support for the use of Ewens 
distribution may be found in Table 1: note the be- 
havior of Starr's [12] estimate and the nonparametric 
maximum likelihood estimate [4], which suggest that 
large values of C are possible. 

Informal statistical analyses, including graphical 
examination of the template activation pattern, and 
numerical examination of changes in the "Pareto his- 
togram" of pattern activations as N increases, suggest 
that a subset of the classes (in particular the most 

frequently occurring classes) behave like a standard 
multinomial distribution, while the rate of activation 
of many templates is rather erratic. While the rate 
of addition of new templates generally slows down, it 
does not always cease, and will suddenly increase if 
some "new" phenomenon occurs in the data. 

The population biology analogue of this phe- 
nomenon would occur when some species are dom- 
inant (not necessarily in numbers, as in the neural 
network application), while many species are in some 
kind of competitive equilibrium. In genetics, highly 
selected alleles may follow one pattern, while neutral 
alleles (as in Ewens [5]) follow another. 

4    The Composite Species Dis- 
tribution Model 

These observations motivated the model presented 
here, which is a compromise between a "full multi- 
nomial" model and a limiting Ewens distribution. It 
is presented in Bayesian terms, although clearly an 
empirical Bayes interpretation is possible. The total 
number of observed classes c is divided conceptually 
into w "well-defined" and r "residual" classes. As a 
consequence, the total number of patterns N is par- 
titioned by the choice of w into N = Nw + Nr, the 
number of well-defined and residual patterns, respec- 
tively. A Dirichlet prior distribution is imposed on 
the multinomial probabilities q = (<j>i,.. .,qW)9w+i) 
associated with the w + 1 classes formed by lumping 
all the residual classes together into a single class, and 
appending it to the well-defined classes. 

The conditional distribution of r given w is then 
given by the Ewens distribution (2), with r replac- 
ing c, and Nr, the number of patterns classified to 
residual classes, replacing N, in (2). An approximate 
natural conjugate prior on 9 has been adopted: 

Prob(9\r0,n0) oc 
9r 

(')». 
(3) 

The hyperparameters r0 and n0 can be any small 
numbers (r„ < n0); the details of this prior are over- 
whelmed by the data in the examples which have been 
investigated. 

One of three "reference" or "informative" prior dis- 
tributions Prob(w) is imposed on w. Following the 
example of York and Madigan [13], the parameter w 
is regarded as defining the class of models of inter- 
est. The three priors are Jeffreys, Rissanen and the 
negative binomial; see [13] for details. 
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Finally, the choice of w is not treated as simply 
a matter of parameter estimation, but rather one of 
model uncertainty ([8], [10]). The "Occam's window" 
approach of Madigan and Raftery [10] is used to re- 
strict the number of values of w which are considered 
reasonable alternatives, and a posterior distribution 
over w is computed on this restricted set. The ratio- 
nale is that it is important to know whether or not the 
number of well-defined classes is itself well-defined by 
the data, or not; the answer is expected to be highly 
application specific. 
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The site at which a nascent polypeptide is cleaved 
and a glycosyl-phosphatidylinositol (GPI) anchor is at- 
tached is an important and difficult issue in biochemical 
research. Recently, two alternative methods to deter- 
mine the locus of cleavage (w) have been proposed. One 
is based on elegant experimental biochemical and molec- 
ular studies and assigns a priori probabilities to possible 
cleavage sites. The other method uses data from the 
amino acid frequency analysis and the nascent polypep- 
tide amino acid sequence to predict the locus of cleav- 
age using a Chi-square statistic, but ignores prior in- 
formation from the biochemical studies. In this paper, 
we propose a Bayesian approach for this inference which 
synthesizes both methods. This allows probability state- 
ments regarding predictions of cleavage sites to be made. 
S code for such analyses is described and an example il- 
lustrating the impact of different levels of prior informa- 
tion is provided. 

1. INTRODUCTION 

Although glycosyl-phosphatidylinositol (GPI) anchor- 
ing is only a recently recognized form of attachment of 
proteins to cell membranes, over 50 such proteins have 
been identified. The synthesis of proteins destined to 
be GPI anchored is a complex process. (Biological sys- 
tems create, transport and utilize many different types 
of proteins which can be thought of as strings of amino 
acids.) The newly translated, or nascent, full length 
polypeptide is further processed by removal of portions 
of the amino-terminal domain and, possibly, addition of 
carbohydrates or lipids. Nascent polypeptides destined 
for GPI anchoring contain features in their carboxyl- 
terminal amino acid sequence which are recognized by 
a specialized enzyme called GPI-transamidase. GPI- 
transamidase changes the polypeptide in two ways: (1) 
it endoproteolytically cleaves a hydrophobic amino acid- 
rich portion of the carboxyl end, and (2) it attaches 
a lipid-rich preformed GPI anchor. The mature GPI 
protein is therefore always a truncated version of the 
nascent polypeptide. These final processing steps give 
the mature protein its characteristics of attachment to 
cell membranes and probably play a role in its function. 

Perturbation of the normal mechanism of GPI anchor- 

ing of important proteins synthesized in hematopoietic 
cells is the basis for a severe life threatening hematologi- 
cal disease known as paroxysmal nocturnal hemoglobin- 
uria. Thus, for this as well as other GPI anchored pro- 
teins, the effects of altering the natural locus of GPI at- 
tachment are of particular interest to the researcher, but 
this locus must be determined first. By the time such 
research is contemplated, the cDNA deduced amino acid 
sequence of the nascent polypeptide, as well as the amino 
acid analysis of the mature GPI anchored protein, are of- 
ten available. Unfortunately, the locus at which the GPI 
transamidase cleaves the nascent polypeptide is not ob- 
vious from this information alone. Determining the locus 
of cleavage is labor intensive from the biochemical point 
of view, often involving several months of painstaking 
and expensive analysis. 

Recently, however, two alternative methods to deter- 
mine the locus of cleavage have been proposed. Antony 
and Miller (1994) used data from the amino acid fre- 
quency analysis and the nascent polypeptide amino acid 
sequence to predict the locus of cleavage using a Chi- 
square statistic. The other method, based on elegant 
biochemical and molecular studies by Kodukula, Gerber, 
Amthauer, Brink and Udenfriend (1993), assigns a pri- 
ori probabilities to possible cleavage sites. We propose 
a Bayesian approach for this inference which synthesizes 
both methods. The intention of the present research was 
to combine these two methods and allow for the inclusion 
of replicate amino acid frequency data if available. This 
paper describes the S software written to implement this 
new method. 

2. LIKELIHOOD AND PRIOR 

During an amino acid frequency analysis of the ma- 
ture protein, bonds between the amino acids are bro- 
ken and the relative frequency of acids present is de- 
termined. Adding a standard to the sample provides a 
measure of scale so that the total number of amino acids 
in each molecule can be estimated (see Table 1). The 
process is not, however, without error. It can destroy 
the amino acid tryptophan. It may also fail to distin- 
guish asparagine from aspartic acid, or glutamine from 
glutamic acid. As a result, the frequencies are not per- 
fectly determined: systematic as well as random errors 
occur. 
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Table 1: Results from an amino acid frequency analysis. 
Amino Acid    Frequency     Proportion 

A 1.9 0.02 
D or N 6.3 0.07 

F 0.0 0.00 
G 9.1 0.10 
I 0.1 0.00 
K 5.4 0.06 
L 1.0 0.01 
P 32.8 0.37 

Q or E 26.9 0.30 
S 1.0 0.01 
T 3.8 0.04 
W ? ? 

V 1.0 0.01 
Total 89.1 1.00 

When the sequence of the complete protein is known, 
the amino acid frequency analysis can be used to make 
inference on the cleavage point. Antony and Miller 
(1994) described "computerized exoproteolytic cleav- 
age", which computes and recomputes the frequency of 
amino acids from the known complete sequence after 
deleting one acid from the carboxyl-terminal end at a 
time. Inference for the cleavage point can then be done 
by comparing each theoretical frequency analysis to the 
observed amino acid analysis using a Chi-square statistic 
to compare theoretical and observed frequencies. This 
method enjoys a high degree of success for prediction; 
however, the Chi-square approach is not as flexible as a 
likelihood analysis and is not well suited for the inclusion 
of prior information. 

Information from the amino acid analysis can be 
thought of in two parts: (1) the proportions of each 
amino acid and (2) the total number of amino acids. We 
will assume these two are independent. Let K be the 
number of different amino acids in the nascent polypep- 
tide. Denote the proportions from the amino acid analy- 
sis by p = (pi,... ,PK), 

and the total number by T. De- 
note the theoretical frequencies by nw = (nwi,..., no,«-), 
and the sum of the theoretical frequencies £2 nui — Nu > 
where w = 1,..., N is a possible cleavage locus. Then 
L(u;p,T) = L(nu;p) x L{Nw]T) 

For observed proportions, we assume a Dirichlet dis- 
tribution parameterized as 

K 

L(nu;p)=   B-^nu + l) JJP^ 
t=i 

where B is the generalized beta function. This implies 
E (pi) = (riui + tf/iNu+K) instead of E (p,-) = nui/Nu 

which shrinks the observed proportions towards l/K. 
For the total, a good model is harder to specify. One 
choice is 

L{NU;T) = j^y^J"1 exp(-Nu) 

which is a gamma distribution with mean T and variance 
T; that is, shape parameter T and scale parameter set 
to 1. If the observed frequencies are all gamma with 
scale parameter 1, then the proportions are Dirichlet and 
the total is gamma with scale parameter 1. We do not 
consider direct modeling of the variability in observed 
frequencies, since replicate amino acid analyses are not 
typically available. If such data were available, it would 
be straightforward to estimate the scale parameter in the 
gamma distribution. 

Kodukula et al. (1993) conducted empirical studies to 
determine not only which amino acids could serve as 
cleavage points in GPI proteins, but also which amino 
acids could be adjacent to cleavage points. They pre- 
sented a table for the propensity of each amino acid to 
be at the cleavage site, and one or two amino acids from 
the cleavage site (towards the carboxyl-terminal). The 
"probability" of a specific amino acid being the cleavage 
site is the appropriate product from Table 2. For exam- 
ple, if serine (S) is at a given location, and the two loca- 
tions towards the carboxyl-terminal are arginine (R) and 
alanine (A), the "probability" is 1.0 x 0.5 x 1.0 = 0.5. We 
can compute such products for each site in the nascent 
polypeptide, and, after standardizing, treat the collec- 
tion as a prior probability for cleavage site. We denote 
the prior distribution pr(w). Although this has some 
weaknesses, it provides a great deal of quantitative in- 
formation about cleavage sites. Kodukula et al. sug- 
gest that this prior alone correctly identifies the cleavage 
point about 75% of the time. 

The posterior probability for the cleavage site occur- 
ring at a given point in the sequence is the product of 
the likelihood and the prior distribution. That is, 

prHp,T) = L(w;p,:r)xpr(u,) 

where L(u;p,T) is the product of the Dirichlet and 
gamma distributions described above. This posterior 
can be used to make predictions for the cleavage site 
and attach probability statements to those predictions. 

3. IMPLEMENTATION IN S 

We first describe how data for this problem are stored 
in S and define some special functions. Procyclic acidic 
r jetitive protein (parp) in T. brucei will be used as a 
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Table 2: Relative propensity as cleavage site: Table II 

from Kodukula et al. (1993) 

Amino Acid      u>      u + 1    u + 2 

A 0.4 1.0 1.0 
R ND 0.5 ND 
N 0.8 ND ND 
D 0.4 0.4 0.1 
C 0.2 0.3 0 

Q 0 0.1 ND 
E 0 0.4 0 
F ND ND ND 
G 0.4 ND 0.7 
H ND ND 0 
I ND ND ND 
L 0.1 ND ND 
K 0 ND ND 
M 0 0.3 ND 
P 0 0 0 
S 1.0 0.6 0.3 
T 0 0.3 0.1 
W 0 0.1 ND 
Y 0 ND ND 
V 0.1 ND 0.1 

running example. The known full sequence is stored as 
a character vector, with the carboxyl-terminal first: 

parp <- 
"A'V'E" 
"G","K" 
"A","D" 
lipil     M£M 

"P","E" 
tlDM MUM 

npii MUM 

itpit    MUM 

M«TMI     III M 

"A","A" 

rev(c( 
/'GV'P" 
»"G'V'K" 
,"DM,MT" 

lipil M£M 

npii    "T?" 

npii   »p» 

Itpil Ugll 

lip» "ptl 

IIVII    MOM 

,"A","L" 

MPM >     "     > 
,"G", 

,"■", 
Müll 

9     r      9 
HD If 

9     r      9 

IIDM 
9     *        9 

9     r      » 
lipil 

9     *        9 

nun 
9      ¥       9 

nun 
9      V       9 

"D","K" 

"E" MKM 

it/jti  tifn 

llpll     llpll 

ME"  "P" 
"E'V'P" 
npii  npii 

"E" "p" 
"A","L" 
"A","A" 

"G" 

"G" 

,"D". 
,"E", 
."E". 
,"E", 
,"E", 
,"E", 

llpll »     r      » 
,"F") 

"L", 
"T", 
"P", 
"P", 
"P", 
"P", 
"P", 
"P", 
"F", 

"T", 
"K", 
"D", 
"E", 
"E", 
"E", 
"E", 
"G", 
"A", 

"K","G", 
nyn IIQII 

npii   npii 

"PV'E", 
llpll M£ll 

lipil llgll 

llpll     Hull 

"A","A", 
"I","A", 

The amino acid analysis is stored as a numeric vector 
with labels distinguishing the amino acid types: 

parp.analysis <- 
c(1.9, 6.3,  0.0,  9.1,  0.1,   5.4, 

1.0,  32.8,  26.9,   1.0,  3.8,   1.0) 
names(parp.analysis) <- 
c("A","DN","F","G","I","K", 

"L","P","QE","S","T","V") 

The protein as it appears to the analysis is stored a 
factor object in S: levels (types of amino acid) with zero 
frequency appear in output from the S function table 
and "invisible" levels (e.g. tryptophan) can be excluded. 

parp.alt <- rev(factor(c( 
"A","QE","G","P","QE","DN","K","G","L","T","K", 
"G","G","K","G" ,"K","G","QE","K","G","T","K", 
"V","S","A","DN","DN","T","DN","G","T","DN","P", 
"DN","P","QE","P","QE","P","QE","P","QE","P","QE", 
"P","QE","P","QE","P","QE","P","QE","P","QE","P", 
"QE","P","QE","P","QE","P","QE","P","QE","P","QE", 
"P","qE","P","QE","P","QE","P","QE","P","QE","P", 
"QE","P","QE","P","QE","P","qE","P","QE","P","QE", 
"P","QE","P","QE","P","G","A","A","T","L","K","S", 
"V","A","L","P","F","A","I","A","A","A","A","L", 
"V","A","A","F"),exclude="W")) 

Computerized endoproteolytic cleavage is done using 
the table function. For the entire nascent polypeptide, 
deletion of the first amino acid, and deletion of the first 
30 amino acids: 

> table(parp.alt) 
ADMFGIKL PQESTV 

12 629174 33 32 253 
> table(parp.alt[-seq(l)3) 
ADNFGIKL PQESTV 

12 619174 33 32 253 
> table(parp.alt[-seq(30)]) 
ADNFGIKL PQESTV 
2 608061 28 29 141 

The function seq(i) produces the sequence 1,2, ...,t. 
Negative indices in the subset operator [] delete obser- 
vations. Thus the function table (parp. alt [-seq(i)] ) 
produces the theoretical frequency analysis for the pro- 
tein with cleavage site "i". The entire set of theoretical 
frequencies can be determined in two lines: 

> parp.cec <- table(parp.alt) 
> for (i in seq(parp)) 
+ parp.cec <- 

cbind(parp.cec, table(parp.alt[-seq(i)])) 

The first ten columns of the resulting matrix are: 

> parp. :ec[,seql 10) ] 
parp . cec 

A 12 12 11 10 10 10 9 8 7 6 

DN 6 6 6 6 6 6 6 6 6 6 

F 2 1 1 1 1 1 1 1 1 1 

G 9 9 9 9 9 9 9 9 9 9 

I 1 1 1 1 1 1 1 1 1 1 

K 7 7 7 7 7 7 7 7 7 7 

L 4 4 4 4 4 3 3 3 3 3 

P 33 33 33 33 33 33 33 33 33 33 

QE 32 32 32 32 32 32 32 32 32 32 

S 2 2 2 2 2 2 2 2 2 2 

T 5 5 5 5 5 5 5 5 5 5 

V 3 3 3 3 2 2 2 2 2 2 
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A function to evaluate the Dirichlet density is: 

> ddirich 
function(p, n, ...) 
{ 
# Dirichlet density 

if(length(n) != length(p)) 
stop("length(n) must be length(p)") 

if(sum(p, ...) > 1 + std.toleranceQ) { 
warning("sum of p > i") 
0 

} 
else prod(p~n, ...)/gbeta(n+l, ...) 

} 

The Dirichlet part of the likelihood can be computed for 
a given u> as 

> parp.proportions <- 
parp.analysis/sum(parp.analysis) 

> ddirich(parp.proportions, parp.cec[,2i]) 
[1]  2.803521e+15 

For the entire protein 

> parp.dlik <- 
apply(parp.cec,2.ddirich, p=parp.proportions) 

The gamma part of the likelihood is computed similarly: 

> args(dgamma) 
function(x,  shape = stopC'no shape arg")) 
> dgamma(sum(parp.analysis), seq(parp)) 

[1]   1.650072e-39 i.473514e-37 6.579239e-36 
> parp.glik <- 

rev(dgamma(sum(parp.analysis), seq(parp))) 

To utilize the prior from Udenfriend and co-workers 
at Roche Labs, several functions taking the complete, 
known sequence as an argument were written. Four in- 
creasingly complex versions were implemented, rochel 
assigns equal prior probability to all acids in the set (A, 
N, D, C, G, L, S, V). roche2 assigns prior probability in 
proportion to the second column in Table 2 (the u> site 
only). roche3 takes into account the w and UJ + 2 sites, 
but ignores the u> + 1 site. roche4 implements the full 
scheme using all three sites. In the last three functions, 
amino acids listed as "not done" (ND in Table 2) were 
assigned a value 0.1, and zeros were set to 0.01. 

A convenient summary of this analysis is graphical, 
and we have written a specialized plotting function called 
plot.summary. 

4. EXAMPLES 

We present an example with known sequence and 
cleavage point:   parp.   Inspection of the likelihood as 

Figure 1: Posterior for parp using the likelihood only. 

parp 

CO 

Number of residues removed 

well as biological considerations restricts the range of in- 
terest to no more than the 60 amino acids closest to the 
carboxyl-terminal. Both the likelihood alone and the 
posterior using any of the four priors correctly identify 
the locus of cleavage. 

Figure 1 shows the likelihood analysis for parp. The 
x-axis is the number of amino acids removed by com- 
puterized exoproteolytic cleavage, and the y-axis is the 
posterior probability under a noninformative prior (equal 
prior probability on all loci). The dots indicate the like- 
lihood based on the proportions from the amino acid 
frequency analysis, while the solid line indicates the 
full likelihood. At the top of the graph, symbols for 
each amino acid in the nascent polypeptide are shown 
(the carboxyl-terminal amino acid end is to the left). 
The likelihood has a maximum at the 22nd amino acid, 
glycine, which is the actual cleavage site for parp. 

Figures 2, 3 and 4 represent the impact of adding in- 
formative prior information to the likelihood analysis, 
using rochel, roche2, and roche4. In all three, the 
posterior concentrates more probability on the correct 
location, but the posterior (dashed line) based on the 
full specification suggested by Kodukula et al. (roche4) 
puts 90% probability on this location. 

5. DISCUSSION 

The Bayesian approach we propose has a number of 
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Figure 2: Posterior for parp using the rochel prior. 

parp 

Number of residues removed 

Figure 3: Posterior for parp using the roche2 prior 

parp 

Figure 4: Posterior for parp using the roche4 prior. 

parp 

0. 
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10 20 
-r~ 

30 
~■r~ 

40 

Number of residues removed 

Number of residues removed 

advantages over existing methods. It allows both prior 
information and the amino acid frequency data to con- 
tribute to the inference. Replicate frequency data, which 
may exist though it is not published, can be incorporated 
directly. By producing a posterior distribution, proba- 
bilistic statements concerning most likely cleavage loci 
can be made: this is important in distinguishing cases 
where the prediction is highly certain. 

The flexibility and presentation quality available from 
S makes it an ideal computing environment for this prob- 
lem. The functions written for the Bayesian analysis can 
be immediately applied to other proteins once the data 
are input appropriately. Alternative specifications for 
the likelihood or prior are easily programmed, as are 
customizations of the graphical summary. Since there 
appears to be some sensitivity to the prior, rapid recom- 
putation and redisplay is particularly useful. 

BIBLIOGRAPHY 

Antony, A. C, and Miller, M. E., Biochemical Journal 
298, pp 9-16, 1994. 

Kodukula, K., Gerber, L. D., Amthauer, R., Brink, 
L., and Udenfriend, S., Journal of Cell Biology, 120, pp 
657-664, 1993. 

Becker, R. A., Chambers, J. M., and Wilks, A. R., The 
New S Language, Wadsworth and Brooks/Cole: Pacific 
Grove, CA, 1988. 



410    Lethal Gene Study via Markov Chain Monte Carlo 

Inference for Lethal Gene Studies via Bayesian Markov Chain 
Simulation 

Jaekyun Lee, Michael A. Newton, Erik V. Nordheim, Hyun Kang* 
Department of Statistics, University of Wisconsin-Madison, 

1210 W. Dayton Street, Madison, Wisconsin 53706-1685 

Abstract 

The magnitude of the effect of deleterious genes 
on a population is classically characterized by 
the number of lethal equivalents. In conservation 
and breeding programs, it is often important to 
be able to distinguish among different combina- 
tions of the genetic parameters that lead to the 
same number of lethal equivalents, for instance, a 
large number of mildly deleterious genes or a few 
of fully lethals. This requires, at least, two con- 
secutive generations of mating. Because of the 
complexity of the likelihood and the existence of 
many missing data in this two generation case, 
Bayesian Markov chain simulation is used to in- 
fer these parameters and the missing data. In 
our Markov chain Monte Carlo approach, we in- 
troduce a Metropolis-Hastings algorithm for a 
two dimensional update of parameters having 
highly attenuated posterior density. 

Key Words: Deleterious genes, Lethal equiv- 
alents, Bayesian Markov chain simulation, 
Metropolis-Hastings algorithm. 

1    Introduction 

The overall effect of deleterious genes on a popu- 
lation is classically characterized by the number 
of lethal equivalents (Morton, Crow, and Müller, 
1956). In a diploid population where deleterious 
alleles exist at M loci with allele frequency g,- 
and selection coefficient s,- at the i-th locus, the 
number of lethal equivalents at the gametic level 

is expressed as (Morton et al. 1956), 

M 

1=1 
(1) 

'North Central Forest Experiment Station and De- 
partment of Forestry, University of Wisconsin - Madison 

At the zygotic level the number of lethal equiv- 
alents is E = 2e.   The selection coefficient st- 
is defined from the convention that the prob- 
abilities  of survival of the dominant homozy- 
gote, heterozygote, and recessive homozygote are 
1,1 — h{Si, and 1 - s,-, respectively, and h{ rep- 
resents the coefficient of dominance at the i-th 
locus.    Lee, Nordheim, and Kang (1994) sug- 
gested a new experimental and statistical mod- 
eling strategy that leads to an interval estimate 
of the number of lethal equivalents based on one 
generation mating design. In conservation biol- 
ogy and breeding programs, it is often important 
to have more information on the parameters in- 
volved in the genetic mortality, i.e., M, qi, S{, and 
h{, beyond the estimation of the overall mor- 
tality effect on a population.    To attack this, 
we introduce a two generation mating model, 
and construct a corresponding hierarchical like- 
lihood.   The complexity of the likelihood leads 
us apply a Bayesian Markov chain Monte Carlo 
(MCMC) to enable inference.  Data from a two 
generation mating system ensure identifiability 
of the selection coefficient.   For one generation 
data, this coefficient is confounded with the num- 
ber of letha) equivalents (Lee et al., 1994). In our 
MCMC implementation, a new two dimensional 
proposal distribution is used for parameter hav- 
ing an attenuated joint posterior distribution. 
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Missing 

2    Hierarchical     Modeling     of 
Two Generation Mating 

We consider selfing as the mating system of the 
experiment here because of its simplicity (see Lee 
et al., 1994). We assume that the dominance 
coefficient (hi) of lethal (=deleterious) alleles is 
zero, that is, the deleterious alleles are recessive, 
so that a heterozygous individual with these al- 
leles is always viable. We also assume a single 
lethal allele frequency q per gamete over all loci 
carrying lethals (M loci), and single selection co- 
efficient s for these lethal alleles. The selfing ex- 
periment has several hierarchical steps. First, 
we assume that our base (monoecious diploid) 
population has M loci with deleterious allele fre- 
quency q per locus. From this population we ran- 
domly sample N parents. This individual sam- 
pling can be expressed by two random variables 
- number of heterozygous (vu) and homozygous 
(wu) loci of the i-th parent for i = 1, ...N, for 
the lethal alleles. Next, we do selfing for each of 
these parents to obtain the selfed offspring of the 
first generation, nu,i = 1,—N. Next, we check 
the number of unviable offspring, du, for each 
family (parent). The genetic mortality of each 
offspring from the i-th parent can be represented 
as a random variable with the given parameter 
values vu,wii, which are the realizations of the 
first sampling distribution. The second genera- 
tion selfing is the same as in the first generation 
except that we randomly choose one viable off- 
spring from each family line, and proceed to a 
second generation of selfing. The sampling and 
mortality distributions in the second generation 
can be defined as n2i,d2i,v2i, and w2i as in the 
first generation. Family lines can be lost when 
no viable offspring is obtained in the first gener- 
ation (Figure 1). 

If we assume that all the loci with lethal al- 
leles act independently, we can define the sam- 
pling distribution of parents (Pi,) by a multi- 
nomial distribution with parameters M, total 

Observed 

DATA 

^    d1i       P2i 

i=1 N 

p4i 

Figure 1: Hierarchical structure of two genera- 
tion mating experiment and missing data 

upon the parent lethal counts is a function of the 
lethal counts vu,wu and selection coefficient s, 
but not of parameters M and q because if a par- 
ent having (vu,wu) lethal loci is chosen, no fur- 
ther information about mortality of the offspring 
is gained by knowing M and q; the relative fre- 
quencies of homozygous and heterozygous indi- 
viduals after viable selection is a function of both 
numbers of deleterious loci of the parent and se- 
lection coefficient (Falconer, 1981). JP3; can also 
be derived as another multinomial distribution 
with parameters vu, p3 = (xJa/4\.Pi = (1-I/4) • 
Note that homozygous loci will be transmitted 
as homozygous to offspring by selfing. If we 
assume that the viability of each progeny from 
one parent is conditionally independent upon a 
given parent genotype, (vu, wu) at the first gen- 
eration (or (v2i,W2i) at the second generation), 
the mortality distributions of the two genera- 
tions, P2i,Pn, are binomial trials with param- 
eters nki: Qki = 1- (l-f)w«(l-*r*''» * = 1.2, 
i = 1,..., N, respectively. So, the complete like- 
lihood including missing data can be derived as 
the product of these four distributions over all 
N families: LC(M, q, s : {vu, wu, v2i, w2i}) 

N 

=     l[PuP2i(P3iP4i)Ui, (2) 

lethal loci, Pl = ^f1, and p2 = 4ft^, rela- 
tive frequencies of homozygous and heterozygous 
genotypes, respectively. The sampling distribu- 
tion of the second generation (P3;) conditional 

i=l 

where Ü7; is the indicator function whether fam- 
ily i is extinct or not at the first generation. 
However, because we do not observe lethal loci 
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counts, Vki,wki, k = 1,2, i — 1,...,N, equation 
(2) is not the actual likelihood of the parameters. 
Importantly, the actual likelihood L(M,q,s) is 
a summation over all possible configurations of 
missing data in equation (2). 

3    Markov Chain Monte Carlo 

3.1    Strategy 

The Markov chain Monte Carlo (MCMC) 
method (Gelfand and Smith 1990, Smith and 
Roberts 1993, Besag and Green 1993) method 
is used to overcome the fact that the actual like- 
lihood is analytically intractable. Our strategy 
is to apply Bayesian analysis by formulating a 
prior distribution 7TQ(M, q, s) over the parame- 
ter space and then using MCMC to simulate 
the joint posterior distribution of parameters and 
missing data. This distribution has density TT 

■K oc LC(M, q, s : {vu, wu, v2i, w2i})irQ(M, q, s) 

and can be readily evaluated (up to constant). 
We use marginal posterior distributions as the 
basis for inference. 
So, our complete likelihood Lc is defined over a 
3 + 4 53i=i ni dimensional space of parameters 
and missing data, (M, q, s, v1,w1,v2,w2). We, 
first, consider independent uniform priors on the 
three parameters; independent uniform (0,1) pri- 
ors are used for the lethal allele frequency and 
selection coefficient; we consider a discrete uni- 
form prior on M between 100 and 10,000 because 
the total number of lethal loci of natural species 
is known to be bounded by a certain number. 

The MCMC algorithm has 3 component chains 
- each modifying different aspects of the state 
x = (M,q,s,vii,wli,V2i,w2i). Each component 
chain is defined by a proposal distribution 

q(x,x*) (3) 

that says how candidate state are generated 
given current state. A move to x* occurs with 
probability that is the minimum of 1 and the 
Metropois-Hastings (MH) ratio 

_ K(X*) q(x*,x) 

7r(x) q(x,x*) (4) 

These 3 components allow us to update each 
state value in the situation that a direct update 
is intractable. 

3.2    Missing Data Update 

A Metropolis-Hastings (MH) algorithm for 
updating each of the missing data values, 
vii,wu,v2i, and w2i is used. We use the sam- 
pling distributions, Pu,P3i, in the hierarchical 
model as the proposal distributions of the MH 
algorithm. For instance, the proposal distribu- 
tion of V\i can be derived as a binomial distribu- 
tion with parameters M — wu and j^-, where 
Pi and p2 are defined as in the previous section. 
Then, we sample a candidate v^ from the pro- 
posal distribution, and calculate the MH ratio in 
equation (4) to decide whether we move to the 
new state value uj",-. The other missing data can 
be updated in a similar manner to this. 

4    Parameter Updates 

Choice of proposal distribution in the MH al- 
gorithm can dramatically affect efficiency. For 
example, proposals which tend to be close to the 
current state yield high acceptance rates but may 
lead to slowly mixing chains. Similarly, overly 
disperse proposals will move far but have low 
acceptance rates. A good proposal distribution 
balances these opposing constraints. 

For updating s, we use a random walk pro- 
posal distribution, which chooses a candidate 
uniformly from a neighborhood of the current 
state value of s. Specifically, we choose a can- 
didate s* uniformly from a small interval with 
length 25 around the current state value s, and, 
then, decide whether to move to s* or not by 
calculating the MH ratio of s* and s in equa- 
tion (4). The width of the neighborhood can 
be determined by considering the acceptance ra- 
tio of the proposal chain; the wider the width, 
the lower the acceptance ratio. However, if it is 
too narrow, the chain also mixes slowly because 
a candidate cannot move far from the current 
value. So, we need to compromise. This pro- 
posal chain can be constructed to be symmetric 
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by adopting an interval width 25 from an edge if 
the current value of s is close to the boundary. 
Thus, the transition probabilities of the proposal 
distribution in equation (4) can be canceled out, 
so that the MH ratio can be reduced to the like- 
lihood ratio of the candidate s* and the current 
state value s. 

In a preliminary study, the M and q appeared 
to be highly correlated in their posterior; they 
are distributed in attenuated region along a re- 
ciprocal line (Figure 2). Note that the product 
of these two parameters should be kept as a con- 
stant under the fixed number of lethal equiva- 
lents because, basically, the product represents 
the average number of lethal alleles carried by 
an individual from the population. 

§ I 

1 

4000 6000 8000 

total lethal loci (M) 

Figure 2: Joint posterior of (M, q) 

Such high correlation is well-known to cause 
problems for any single-site or componentwise 
updating scheme. By using two single-site pro- 
posal distributions, our MCMC implementa- 
tion mixed extremely slowly (data not shown). 
To overcome this problem, we use a a two- 
dimensional proposal distribution based on the 
knowledge that lines of constant Mq will have 
approximately constant posterior density. This 
two dimensional proposal chain is not symmet- 
ric, and the ratio of the proposal transition prob- 
,.'     .        . q((M',q*),(M,q))  _  l/M*  _   M 

abilities is now l]\M,q),(M',q')) -\JKf-W- 

Two dimensional MH Proposal distribution 

1. sample M* from a discrete uniform dis- 
tribution in a bounded interval. 

2. for some constant 5, sample q* uni- 
formly from the interval 
Mq-S    , n*  s   Mq+S 
-jfrr- < 9   <    M- 
where M, q are current values. 

3. calculate the two-dimensional MH ra- 
tio 

_ HM*,q*\rest) M 
r ~    7r(M,?|resi)   M*' 

4. move   to   (M*,q*)   with   probability 
min(r,l). 

Note that, in step 2, if we are close to a boundary 
of the support of q, the interval with length jp- 
is chosen from the edge, and not centered at the 
current state value q. 

Intuitively, our update method does not 
reparametrize the parameters M, q in the model, 
but construct a proposal distribution that can 
move along a reparametrized space of them. 

5    Estimation     and     Marginal 
density 

We apply MCMC to a data set simulated un- 
der parameter values M = 3000, q = .002, and 
s = .45 (so, E = 2Mqs = 5.4). Using 1,500 
burn-in time and every tenth subsampling, we 
got 500 samples of (M, g, s, vu w\, v2) w2) from 
the MCMC run. The posterior means of s and 
E were estimated closed to the simulated param- 
eter values of them (Table 1). 

Table 1. Estimates of posterior samples 

E(.\data)    std. dev.(.\data) 

sei. coef (s) 
Lethal equiv.(E') 

.471                   .059 
5.55                    .35 

lethal loci (Af) 
allele freq. (q) 

6592.1               2328.4 
1.12e-3              -76e-3 

Our two generation mating data do not give a 
separate information about parameters M and 
q. As shown in figure 2, their posterior samples 
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were attenuated, and either mean of the two has 
a large sample variation of the posterior samples. 

In this problem, we have two different sources 
of error - how close the true posterior means are 
to the parameter (3000,.002,.45) and how close 
the Monte Carlo estimates are to the true poste- 
rior means. The error by the MCMC estimates 
is different from the distance between a posterior 
mean and a parameter value. So, we need a little 
of caution to interpret the estimates. 

Figure 3 shows the (posterior) marginal den- 
sity of s by using Rao-Blackwellization (Gelfand 
and Smith, 1990). It is highly concentrated 
around the posterior mean of s. 

0.0 0.2 0.4 0.6 0.8 1.0 

selection coeff (s) 

Figure 3: Marginal posterior density of selection 
coefficient using Rao-Blackwellization 

6    Discussion 

Our two generation data allow to get informa- 
tion about selection coefficient and to estimate 
the number of lethal equivalents as well. In our 
MCMC implementation, the two-dimensional 
proposal distribution drastically improves effi- 
ciency of the algorithm, and overcomes a typical 
difficulty of single-site or componentwise updat- 
ing scheme for highly correlated parameters. 

Our data and likelihood model do not give 
information about parameters M and q except 
highly attenuated joint distribution of them. 
This seems to be directly related to identifiability 

problem of likehood for the parameters. We also 
need to relax many restrictions, e.g., single al- 
lele frequency, single selection coefficient, and re- 
cessive lethal allele assumptions, which requires 
to investigate both different statistical modeling 
and experimental strategy. The difficulty may 
be turned by using a combination of different 
mating systems. 
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RELATIVE AGGREGATION AND 
RANDOM QUADRAT SAMPLING 

By C. Cheng and M. A. Johnson 
Upjohn Laboratories, Kalamazoo, MI 49007, USA 

ABSTRACT. 
A distributional parameter, the relative aggrega- 
tion coefficient (RAC), is derived from a proba- 
blistic model of random quadrat sampling. New 
insight of random quadrat sampling is obtained 
from the derivation. A firm theoretical ground for 
the interpretation and the uses of RAC in several 
statistical applications is established. 

1. INTRODUCTION 

Random quadrat sampling is a tool often used 
in statistical ecology (Pielou 1977, Lloyd 1967, 
Ripley 1981, and Cressie 1991) to study spatial 
distribution of individuals. A quadrat is a small 
neighborhood used as a sampling unit. The num- 
ber of observed individuals in each quadrat, the 
quadrat counts, are the primary data for infer- 
ence. A probabilistic model for random quadrat 
sampling is introduced here. The observed indi- 
viduals are regarded as i.i.d. realizations from a 
population distribution Py having a density /, and 
the positions of the quadrats are regarded as i.i.d. 
observations from a design distribution Pa having 
a density g. 

Let fj, be the mean of the quadrat counts, and let 
A be the variance-to-mean ratio of the quadrat 
counts. It is shown that under a proper condition 
of the population density /, A is approximately 
a linear function of fi: A « 1 + [a\f\g) - I]**, 
where the slope is determined by the relative 
aggregation coefficient (RAC) of the population 
density / with respect to the design density g, 
«(/Iff) := //2ff/(//ff)2- The derivation reveals 
new insights and uses of random quadrat sam- 
pling. 

The population density / can be explored using 
the RAC a(f\g) with different choices of g. It is 
shown that / is the uniform density on a finite 
region if and only if the RAC a{f\g) = 1 for any 
density g (/ itself in particular) totally concen- 
trating on the same region. The equivalence of 
two densities is characterized by equalities among 
six particular RACs. These characterizations pro- 
vide a firm theoretical ground for RAC-based in- 

ferences by random quadrat sampling. 

2. QUADRAT SAMPLING IN PROXIM- 
ITY SPACES 

A proximity space is a pair (Z>, d), where D is a 
point set, and d is a non-negative real function 
onDxD such that d(x,y) = d(y,x), x,y G D. 
The space ]Rfc with any tP metric (0 < p < oo) 
forms a proximity space (nt\F). For an exam- 
ple of random quadrat sampling in the Euclidean 
space ffi2, see Cressie (1991) pp.588-591. To ac- 
commodate applications with non-Euclidean data 
(see Johnson 1989, Johnson and Maggiora 1990 for 
examples), the concepts are developed for general 
proximity spaces. 

For convenience of discussion, the proximity func- 
tion d is regarded as a distance (the larger d(x, y), 
the further apart are x and y). For any x G D, a 
"quadrat" at x is simply a neighborhood BT(x) = 
{y € D : d{x,y) < r}, r > 0. Note BT{z) mono- 
tonically decreases as r | 0. Let (D,V,v) be a 
measure space, where V is a sigma algebra rich 
enough so that all the open neighborhoods are Im- 
measurable, and v is a complete and sigma-finite 
measure. 
REMARK 2.1. Given a proximity measure d, a 
topology T can be generated using the open neigh- 
borhoods JBr(se), x G D, T > 0 as basis. Then V is 
the smallest sigma algebra generated by the open 
sets of T. 
In the probabilistic model of random quadrat sam- 
pling, the data points (e.g. positions of plants 
in a field under study) are regarded as a random 
sample Xi,X2,...,XN from a population distri- 
bution P} on {D,V), Pf « v with the popula- 
tion density / = dPf/du. The positions of the 
quadrats are regarded as a random sample from a 
design distribution Pg « u with the design den- 
sity g = dPg/du. Let Z ~ Pg. Define the quadrat 
count for r > 0 at Z to be the random variable 

AfT = [number of Jf» 's in the quadrat BT(Z)]. 

Define the mean quadrat count /x, := E(A/*r), and 
the quadrat count variance-to-mean ratio Ar := 
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"Va,i(Afr)/nT. An approximate linear relationship 
between Ar and fiT can be derived under the con- 
dition that as r —> 0, o.e. v 

I 
JBr(z) 

/(W) = */W(/W + o((fW).   (2-1) 

The functions hf and ^ are assumed to depend on 
the population density / and the proximity mea- 
sure d (cf. Examples 2.1-2.3 below). For details 
see Cheng and Johnson (1994a). 

Theorem 2.1.  Under condition (2.1), as r 

AT = 1 + 

where 

N-l 
N 

A(f\g) -1 

0, 

llr+o(flr),    (2.2) 

Alf\ ) =   Sph2,(t)g(t)du(t) 
9     UDh}{t)g{t)du{t))2' 

(2.3) 

A(f\g) will be referred as the quasi relative aggre- 
gation coefficient (quasi RAC) of/ with respect to 
g. If hf coincides with / (see e.g. Example 2.1), 
the quasi RAC becomes the relative aggregation 
coefficient (RAC) 

*{f\g) = (2.4) 

The special case g = / gives a new distributional 

characteristic «(/) := a(f\f) = fD f/ (fD />)2; 

call it the self-aggregation coefficient of /. 

Condition (2.1) demonstrates the interplay be- 
tween the proximity measure d and the population 
density / that leads to the approximate linear re- 
lationship (2.2). It is instructive to consider the 
following examples. 

EXAMPLE 2.1. In the Euclidean space 
(IR*,^2), if / is at least twice continuously 
differentiable with bounded mixed derivatives, 
then Taylor expansion establishes JB . . f(t)dt = 

f{z)vr + o(vT), r —► 0, where vr is the volume 
of BT(z). Note when d is the Euclidean distance, 
BT(z) is a hyperball of radius r centered at z. In 
fact condition (2.1) is satisfyed for any IP distance 
(p = 1,2,..., co), if / is at least twice differentiable. 
In this case the function hf — f in (2.1). 

EXAMPLE 2.2. Consider the truncated bi- 
variate normal density 

/(*i, »a) = 4(2»)_1 «p{-(*?+*l)/2}f xu x2>0 

on (]R2,f2). / is infinitely continuously differen- 
tiable with bounded mixed derivatives except on 
an edge (xi = 0 or x2 = 0) with zero measure. 
Set the design density g — f. Then by Example 
2.1, A{f\g) = A(f\f) = //»/(//»)» = 4/3. 

EXAMPLE 2.3. Let / and g be the same 
as in Example 2.2, but now let d be the prox- 
imity d(x,y) = 1 - |x'y/(||x|| • ||y||)|, where the 
vectors x,y e 1R2, and ||x|| denotes the length 
of x. Note d(x, y) is simply one minus the ab- 
solute correlation coefficient between x and y. 
It is convenient to use polar coordinates in this 
case. For a point z G IR2 with polar coordinates 
(pz,&z), and 0 < r < 1, the quadrat Br{x) = {x: 
d(x, z) < r} can be represented in polar coordi- 
nates as Bs(z) = {(p,B) : p > 0, |0 - 9Z\ < 6}, 
with 6 = arccos(l — r). Note Bs(z) is a cone. 
In polar coordinates the truncated normal density 
/ reads f(p,9) = 4(2ir)-Vxp{-p2/2}, p > 0( 

0 < 9 < 2/TT. Thus fBs{t) f(p,6)dpdd = 

1^ Se6;-s 4(2*)_ Vexp{-p2/2}^0 = 2K~H. 

So condition  (2.1) holds with A/(z)   =   1 and 
if {6) = 25/*, giving A(f\g) = Jh}f/(Jh,f)' = 

///(//)2 = 1. 

These latter two examples demonstrate that the 
formation of the quadrats (determined by the 
proximity d) is essential to what may be observed 
from the quadrat counts. 

The integral JBtt\ f represents the local popula- 
tion density in the quadrat Br(z). When (2.1) 
holds, the discrepancy between the population 
density / and the function hf on the right-hand 
side represents the possible distortion introduced 
by quadrat counts in reflecting the true population 
density. When hf is constant, the quadrat counts 
reflect essentially uniformity in the population. 

Theorem 2.2. Under condition (2.1), hf = c 
(a constant) a.e. Pg if and only if the quasi RAC 
A(f\g) = 1. 

Let Z be a random variable following distribution 
Pt. Then A(f\g) = E[^(2)]/(E[M2)])2 > 1. 
The uniformity reflected by quadrat sampling is 
characterized by A(f\g) attaining the lower bound 
1. Similarly, the uniformity in the population rela- 
tive to a reference density g is characterized by the 
RAC a(f\g) = 1. Define the support of a density 
/ on D to be set supp / := {as G D :  /(as) > 0}. 
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A general characterization of uniformity is given 

by 

Theorem 2.3. RAC Characterization of unifor- 
mity. Let f and g be two densities on D with re- 
spective supports Sf and Sg. Assume u(Sf(~\Sg) > 
0. Then v{Sg) < oo and f = c (a positive con- 
stant) o.e. v on Sg) if and only ifct{f\g) = 1. 

Given a region R G V with 0 < v(R) < oo, 
the uniform density can be denned as u(x) = 
[i/(Ä)]-1Ijt(a!), x e D, with I the indicator func- 
tion. The special case g = / gives 

Corollary 2.4. Let f be a density with support 
Sf. Then v{Sf) < oo and f is a uniform density 
if and only ifa(f) = 1. 

Since ct(f\g) > 1, uniformity is characterized by 
certain RACs attaining the lower bound 1. 

Thereom 2.3 reveals the interpretation of the 
RAC a(f\g) - it measures the contrast between 
the dense and the sparse regions introduced by 
the population density / relative to the de- 
sign/reference density g. The uniform distribution 
over any finite region introduces no density con- 
trast relative to any density totally concentrating 
on that region. For further discussions and exam- 
inations of Examples 2.2 and 2.3, see Cheng and 
Johnson (1994a). 

REMARK 2.2. Note that although the RAC 
ct(f\g) is derived for the random quadrat sampling 
model which involves a proximity measure d, the 
definition of RAC requires nothing but two prob- 
ability densities. Theorem 2.1 demonstrates that 
if a proximity measure interacts properly with the 
population density / in the random quadrat sam- 
pling, one can arrive at the RAC as a result, 
and any proximity measure satisfying (2.1) with 
hf = f will do. In general, if another proxim- 
ity measure d' generates a sub-sigma algebra V 
of V (possibly V = V) in the way described in 
Remark 2.1, then all the quadrats formed by d' 
are ©-measurable. Quadrat sampling can be per- 
formed using d' as well, but the results may or 
may not agree with those from the sampling per- 
formed with d, as show in Examples 2.2 and 2.3. 
The use of quadrat sampling to estimate an RAC 
will be briefly discussed in Section 4. 

3. FURTHER PROPERTIES OF RAC 

Further properties of RAC are highlighted here. 
These properties establish a theoretical ground for 

the use and interpretation of RAC in statistical in- 
ferences using random quadrat sampling. Detailed 
discussions and elaborations appear in Cheng and 
Johnson (1994a, b). 

Let (D,V,v) be a measure space with v a com- 
plete and sigma-finite measure. A i/-density func- 
tion on D is a non-negative real function / satis- 

fying ID fdu = L 

The RAC a (f\g) possesses interesting invariance 
properties. For example, it is invariant under lin- 
eat transforms. 

Theorem 3.1. Let f and g be two densities on 
]Rfc with f fg > 0. Let T be a k x k nonsingular 
matrix, and J = det(T_1). Fix x0 € IR*. Let 
f(x) = f{T~\x - x0))\J\, and g(x) = gp-^x - 
x0))\J\. Then a(f\g) = a(f\g). In particular, 
a(f)=a(f). 

Theorem 3.2. Independence. Let f and g be 
two densities on ffi* with f fg > 0. If f and g 
are such that f = UT=ifi> 9 = UiLi9i, where 
fi and gi are densities on ]R*', with J ftgi > 0, 
YZLih = k, then a{f\g) = Jl?=i «(M*) ■ In 

particular, a(f) = fl^i «(/<)• 

Let /x, fi be two densities on D, and let / = 
(/i + /z)/2, i.e., the density of the even mixture. 

Theorem 3.3. a(/i|/) > a(/|/i) if and only if 
Sf! > ffifi- <*(h\f) > a{f\h) if and only if 
//!>/A2/2. 

By rewriting the inequality f ff > f f%fi as 
J fifi > f fifii it is seen tnat the inequality 
<x(fi\f) > «(/l/i) reflects the discrepancy in the 
concentration of the two densities. The following 
theorem demonstrates the equivalence of two den- 
sities is characterized by equalities among certain 
RACs. 

Theorem 3.4. f\ — fi o.e. v if and only 
if <*(/i) = a(/2), «nd a(/x|/) = a(/|/i) = 
«(/2|/) = "(/|/2). 

Theorem 3.2 shows the behavior of RAC under 
independence. As a consequence of Theorem 3.4, 
independence can be characterized by equalities 
among six particular RACs. For i = 1,2, let 
(Di,Vi,Vi) be a measure space with Ui a com- 
plete and sigma-finite measure, let P< be a proba- 
bility measure on (Ai^i), Pi « vu with den- 
sity fi = dPi/dvi, and let Yt be a A-valued 
random variable with distribution Pj.   Let P be 
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the joint distribution of (Yi,Y2) in the product 
space (Dx x D2,Vx(&V2,v), where Pi<g»2?2 is 
the product sigma algebra and v = v\ xvj. As- 
sume P «v with density / = dP/dv. By defi- 
nition, Yi and Y2 are independent if P = Pi x P2, 
or equivalently, / = fa a.e. u, with fa = fif2. 
Let g := (/ -)- fa)/2, the even-mixture density of 
the joint and the product. 

Corollary 3.5. a(f\g) > a(g\f) if and only if 
If3 > Sfnf- "(fn\g) > "(fll/n) if and only 
*///n t. //2/n- f = fa a.e. v if and only if 
«(/) = a{fa) and a(f\g) = a(g\f) = a{fa\g) = 
"(ffl/n). 

A general measure of dependence can be con- 
structed by combining the above RACs. 

A(Pi,P2):= «(/) 
H/n) 
«(/biff) 

+ «(/Iff) 

L«(ffl/n) 
+ 

L«(ffl/) 
-l + 

«(/nb) 
-1 

Note A(Plt P2) = 0 if and only if the two distribu- 
tions are independent; the greater A(Pi,P2), the 
stronger the dependence between the two distribu- 
tions. This RAC measure of dependence reflects 
the deviation from independence by detecting the 
discrepancy in the concentration of the joint and 
the product densities in the sample space. It has 
the advantage of being extremely general, and the 
drawback of not reflecting the detailed nature of 
the dependence. See Johnson et al. (1994) for a 
related measure of dependence calibrated against 
the correlation coefficient of bivariate normal dis- 
tributions. 

4. ESTIMATION OF RAC 

Estimation of the RAC ct(f\g) by quadrat sam- 
pling is briefly discussed here in general terms. 
Theorem 2.1 suggests the following quadrat count 
moment estimator of a(f\g) under the condition 
(2.1) with hf = f in a proximity space (D, d). 

3<>w=F^(1+lr£).   (41) 

where N is the total number of observed individ- 
uals, T > 0 is a number close to 0 in condition 
(2.1), and VT and m, are respectively the sample 
variance and sample mean of the quadrat counts 
from a sample of size-r quadrats taken from the 
the design distribution. 

Let n, be the number of random quadrats. The 
consistency of moment estimators implies that the 
cc(f\g) convergence in probability as min(i\T, n) | 
oo to the function a(Ar, (iT) = l+(^.r//ir)-(l//*r) 
with nT and Ar the quadrat count mean and 
variance-to-mean ratio respectively. Under condi- 
tion (2.1) with hf= /, a{Ar,ßr) = a(f\g) + o(l), 
r J. 0, N t oo, so a(f\g) consistently estimates an 
approximation of the RAC. 
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Efficient Computation of Statistical Procedures based on Subsetting the 
Observations 

John E. Hinkle and Arnold J. Stromberg 

Abstract 

Many statistical techniques require that computa- 
tions be done on all subsets of size r in a data set 
of size n. Typically, this is done lexographically, i.e., 
with nested do-loops. If an exchange one point update 
formula is available, then it is used on the inner loop. 
In this paper we discuss a method of counting through 
all subsets of size r in a data set of size n by chang- 
ing only one element as one goes from one subset to 
the next. The advantage of such methods is that an 
update formula can be used at every step, thus poten- 
tially saving computation time. The method used to 
compute the next subset in the list requires some com- 
putation time, and thus the new method will only be 
faster if the update formula is sufficienty faster than 
doing the computation from scratch. 

1    Introduction 

Statistical procedures such as jackknife estimation, 
influence diagnostics, cluster analysis, and permuta- 
tion tests call for computations on all size r sub- 
sets of an n element observation dataset. As a re- 
sult these procedures can be very computer-intensive. 
Though computational speed is improving, these pro- 
cedures can easily exceed available resources and 
therefore, are not considered for use in some appli- 
cations, thus algorithm efficiency plays an extremely 
important part in accessing applicability. In this pa- 
per we will combine different subset generating meth- 
ods with iterative updating techniques and build al- 
gorithms that minimize the number of floating point 
operations(FLOPs) necessary for computations. This 
FLOP minimization, as a result, will expand the sit- 
uations in which these procedures can be used. 

The remainder of this paper will be organized as 
follows. In section 2 we will describe subsetting proce- 
dures. In section 3 we will look at the computation of 
subsetting procedures based on different subset gen- 
erating techniques. In section 4 we will discuss the 
prove of the existence of change-one subset genera- 
tors and give an algorithm for one such method. In 
section 5 we will look at the relative efficiency of using 
different subset generators in general computational 

procedures that allow for iterative updating. 

2    Subsetting Procedures 
Computing the statistical procedures mentioned in 
the introduction requires sequentially generating 
all (") subsets of the n observations. If the obser- 
vations are indexed by the set {1,..., n), then let all 
size r subsets be denoted by Sn,r = {«1)^2, • • •> s(n)} 

where sjt = {z'i,...,ir} and 1 < r < n. Using this 
set of indice subsets we could, for example, compute 
Delete-d Cook's Distance, 

D,k<x(b-b,k)'(X'X)(b-bSk), (1) 

by sequentially counting through the subsets. 
Cook's Distance measures the influence that subset 
{Y,k,XSk) = {(Yi,Xi) : i € sk} has on the regression 
model 

Jnxl = Xnxpßpxl + £nxli (*) 

where 6 is an estimate of /?, and bSk is an estimate of 
ß based on the size r = n — d subset indexed by s*. 
Clearly the computer intensive part of this procedure 
is in computing b,k for each subset. Another example 
is the Delete-d Jackknife variance estimation, 

'J,n- -Ad)*     X)     \XskX».\(9-9*H)(9-9sJ > 
>k£Sn,n-d 

(3) 
given by Wu[l] for the regression model in (2). Here 
g = g (b) is a smooth function of the estimated regres- 
sion coefficients. The computer intensive aspect is in 
calculating bSk and |X^X3fc| for all subsets. 

The examples given above can be put into a gen- 
eral context which we will call Subseiting Procedures. 
A subsetting procedure is an aggregate calculation 
or operation involving a basic function of each spec- 
ified size subset of the observations of interest. For 
instance, Cook's Distance calculates regression coeffi- 
cients for each r = n — d size subset of the observation 
with the aggregate operation being a list or partial 
list of the influence measure of each subset. Likewise, 
Wu's jackknife variance estimation calculates a func- 
tion of the observations for each subset with the ag- 
gregate being the sequential sum over all the subsets. 
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So, based on these examples, every subsetting proce- 
dure will have a basic function or operation that is re- 
peatedly calculated. If this basic operation is called 0, 
then with the observations given by X = {xit..., x„} 
and the subset by XSk = {Xt :i€sk}, a subset- 
ting procedure will calculate 0,k = 0(XSk) for each 
s* £ Sn,d- Depending on the ultimate calculation in- 
volved, computing 0,k will usually involve part of the 
overall computations on the current subset. In Delete- 
d Cook's Distance the basic operation would be cal- 
culating the regression coefficients while the overall 
computation for each subset is the influence measure 
based on those coefficients. Hereupon we assume eval- 
uating 0Sk represents the bulk of calculations made 
involving the Fth subset in the subsetting procedure. 

3    Computing 
Calculating a subsetting procedure is easily accom- 
plished using the following algorithm, 

for k = 1 to (») 
generate  subset  Sk 

end. (4) 

The term / above is the aggregating operation of the 
subsetting procedure, this term will be suppressed in 
subsequent algorithms. The question now is how to 
generate the subsets. Usually the subsets are gen- 
erated lexicographically or alphabetically. An algo- 
rithm for computing the subsetting procedure in (4), 
generating Snp lexicographically, follows. 

i = l 
for J'I = 1 to n - 2, 

for £2 = J'I + 1 to n — 1, 
for »a = i2 + 1 to n, 

** = {*1,*2,«3} /f-x 

k = k + l 
end 

end 
end. 

For the above algorithm if we look at the subset gen- 
eration alone, we have for n = 5, 

I   s2 = 
$5,3 = {    «3 = 

{1,2,3}, 
= {1,2,4}, 

S3 = {1,2,5}, 
«4 = {1,3,4}, 
«B = {1,3,5}, 

s6 = {1,4,5}, 
S7 = {2,3,4}, 
«8 = {2,3,5}, 
«9 = {2,4,5}, 

sio = {3,4,5} 

The algorithm in (5) is straight forward and easy to 
code for any size problem, but depending on the pro- 
cedure involved, dataset size and subset size this can 
be a formidable task! To lessen this cost, we need to 
improve computational efficiency. If we assume that 
the formula or logical structure in computing 9Sk is 
already efficient then the only other choice we have is 
to use an iterative updating scheme that relies on the 
results or partial results of computing 0,^. So, to 
make the above algorithm more computationally effi- 
cient suppose we can calculate 6,k by updating 0Sk . 
The following code is based on using an update inside 
the inner loop of the algorithm (5). 

i = l 
for »! = 1 to n - 2, 

for i2 = i'i + 1 to n - 1, 
Sk = {»1,»2,«2 + 1} 

for i3 = i2 + 2 to n, 
** = {*1,*2,»3} 
0,k = Update (*„_,, X.k, Xi^Xiri) 
k = k+l 

end 
end 

end. 

(6) 
Notice the difference between this code and the code 
given in (5). The update formula relies on the single 
element change made in the subset during the inner 
loop of the algorithm. If we suppose that change-one 
generated subsets allow for more efficient computa- 
tion of subsetting procedures and we have a change- 
one type of update then we would want to use the 
update more often during the calculations. Code for 
such a procedure would have the form, 

9s1=0(si) 
for k = 2 to (?) 

generate  subset s* by 
changing one element in Sjfe_i 
0,k=  Update (0Sk_1>Sk) 

end. 

(7) 

4    Change-One Generator 
The use of iterative updates in scientific computing 
is well established. In our case since we are iterating 
through a sequence of subsets then, as we did above, 
placing the update where there is a minimal change 
between consecutive subsets will give a more efficient 
updating scheme. Assuming our.procedure allows for 
a change-one type updating scheme, does there exist 



J.E. Hinkle and A.J. Stromberg    Al 1 

an alternative method of generating subsets that will 
list all subsets by making single element changes? 

Leo W. Lanthroum discovered in 1965 an algo- 
rithm that generates Sn,r in which a single element 
is changed in one subset to generate next. Chase[2] 
presented code for this algorithm and subsequent 
methods based on a modified Binary Reflected Gray 
Codes were developed by Nijenhuis and Wilf[3], Bit- 
ner et.al.[4], and recently Brezovec and Lee[5]. These 
methods will be called change-one(Cl) subset genera- 
tors throughout the remainder of this paper. To illus- 
trate, 55,3 when generated by a change-one generator 
becomes, 

C1[S5,3]=< 

«i = {1,2,3}, 
«2 = {1,3,4}, 
S3 = {2,3,4}, 
«4 = {1,2,4}, 
s5 = {1,4,5}, 

S6 

S7 

{2,4,5}, 
{3,4,5}, 
{1,3,5}, 

s9 = {2,3,5}, 
*io = {1,2,5} 

Notice that one and only one change is made in go- 
ing from one subset to the next. By using only the 
changing element, Cl [Sn,r] can also be described by 
an initial subset s/>n>r and the set of ordered pairs, 
sj£ = (outfc,infc), where in* is the indice of the ele- 
ment entering the k'th. combination and outj; is the 
exiting indice. The resulting list of order pairs, call it 
Sn,r = {«r,n,r,«$,«3,...,S/„x}, will be for Cl[S5l3], 

Sis = < 

«7,5,3 = {1,2,3}, «8 = {1,2}, 
s^ = {2,4}, 4 = {2,3}, 
«5 = {1,2}, s8 = {4,l}, 
s\ = {3,1}, s9 = {l,2}, 
s*5 = {2,5}, s*0 = {3,l} 

The method for constructing and proving the ex- 
istence of change-one subset generators is given in Ni- 
jenhuis and Wilf([3, 1975]). Their method can be de- 

scribed, easily, by letting Sn,r = T si,*2> •••>*(») f 
be a change-one generated subset list with s% = 
{1,2, ...,r} and s/n\ = {1,2,.. .,r — l,n} . Then if 

Sn,r represents S„,r but in reverse order, we have 

&n,r — i 5„-2,r-2U{n- l,n}, 

Sn- 2,r-l U{n}. 

(8) 

Thus for any n and r, where 0 < r < n, it follows that 
Sn,r exists. A point of interest is that this method 
will build any subset list independent of how the mi- 
nor subsets Sn-i,r,Sn-2,r-2, and 5'n_2,r-i were gen- 
erated. For our case, assuming the minor subsets are 

change-one generated, the result is a change-one list. 
The proof is by induction. 

An algorithm that actually generates a change- 
one subset list is more complicated than the descrip- 
tion given in (8). The algorithm described below is 
by Brezovec and Lee[5]. 

4.1    A Change-One Subset Generating algo- 
rithm 

One method of generating a change-one subset list 
S„,r is to let «i = {1,..., r} and then go from Sk = 
{ii,.. .ir} to Sjt+i, by first determining 

(9) q = min (k : dk > 0)                     I 

where 

n — ir               if k = r, 
dk={ *jb+i — ik — 1    if * < r and r — k is even, 

1 ik — k               if r — k is odd. 

Then setting Sk+i = {i'i, ••-,*{•} where, 

ik if ke {q+l,...,p}, 
,, _j i,+(-ir? if*=«, 

i'k — 1 if k = q — 1 and r — k is odd, 
k — 1 otheriwse. 

If no k satisfies (9) then sk is the last member of the 
list. In addition, we can generate the list S*r, by 
using the subset sj, and the number q found in (9). 
Let «/,„,,. = {1, ...r} , and Sj = {r — l,r+ 1} , now 
setting Sj+1 = {out, in}, where 

in 

out 

j-i if q > 1 and r — q + 1 is even 
+ (—Vf~q    otherwise, I *. 

{iq-i    if q > 1 and r 
iq       otherwise. 

q + 1 is odd 

5    Relative Efficiency 
Our goal is to make subsetting procedures more effi- 
cient by reducing the computational cost. The spe- 
cific cost can be execution time, number of floating 
point operations or both combined. Here we will use 
the amount of floating point operations (FLOPs) to 
measure the cost, with the standard convention of 
counting each addition as one FLOP and each multi- 
plication as one FLOP. 

To improve the efficiency of a subsetting proce- 
dure we will concentrate on the basic function 0Sk and 
the subset generator, which will be either change-one 
or lexicographic. Suppose it takes at least F FLOPs 
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to compute 9Sk, where F is a function of the size of 
the subset dataset. The total FLOPs for computing 
0,k for all sk G 5„,r will be at most (£) • F. This 
would be the amount needed to compute a general 
algorithm like (5), call this method straight-forward- 
lexicographic (SFL). The amount of FLOPs need to 
compute a procedure based on the inner-loop update 
(ILU) algorithm (6) is at most ("Z{)-F+ (n;1) -y-F, 
where 7 • F is the amount of FLOPS needed to com- 
pute the update function and 0 < 7 < 1. Here we 
make the obvious assumption that the update is less 
costly to compute than the basic function. Addition- 
ally, if we base our computations on the change-one al- 
gorithm (7), updating 9Sk each time, then the FLOPs 
needed will be F + [(") - l] • 7 ■ F + a ■ (?) where a 
is the maximum FLOPs needed to generate an indice 
subset. Using the above naive FLOP counts to eval- 
uate the efficiency of computing a general subsetting 
procedures based on the three algorithms presented in 
section 5, we have the following relative efficiencies. 

rel(ILU,SFL)    =    r- + ^, (10) 

rel(Cl,SFL)    =    7+f, (11) 

rel(Cl,ILU)    =    n^_%. (12) 

Our use of relative efficiency (rel) implies that A is 
more efficient than B if rel (A, B) < 1. Using this def- 
inition of relative efficiency we see that a subsetting 
procedure utilizing a Cl type algorithm will be more 
efficient than a SFL algorithm if a < F ■ (1 - 7), or 
generating a subset costs less than the saved cost in 
updating the basic function. Moreover, a Cl algo- 
rithm is preferred when, 

a<F(l-7) (13) 

or the cost of computing a change-one subset is a frac- 
tion of the saved cost in updating the basic function. 

would be to find a subset generator that requires a 
minimal amount of FLOPs, hopefully depending on 
n. The algorithm we gave in section 4 requires at 
most n FLOPs to generate a subset. This limits the 
situation in which it will be useful. 
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6    Conclusion 
The above discussion relies on the existence of a stable 
update of the basic function. Finding a stable update 
may not be a trivial matter when looking for ways to 
improve a subsetting procedure. This is beyond the 
scope of this paper. We did show that a subsetting 
procedure can be improved if an update exists. That 
is nothing new, but from (13) we see that a Cl algo- 
rithm can only improve a subsetting procedure to a 
limit. The limiting factor being the cost of computing 
a change-one subset. This is certainly intuitive and it 
does open the door for further research. This research 
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Abstract. The properties of a bootstrap based on 
studentized periodogram ordinates are investigated. We give 
a correction which emulates the dependence structure of the 
periodogram. Furthermore, we study the case of tapered data. 

1. Introduction. In time series analysis there exists no 
canonical way to bootstrap the observed data set. The reason 
is that one essentially has only one multivariate observation 
available. In order to construct a bootstrap one therefore 
needs additional informations (e.g. on the dependence 
structure of the process or on the statistic to be 
bootstrapped). As a consequence a variety of different 
bootstrap methods have been suggested which have their 
merits in different situations (cf. Kiinsch, 1989; Liu and 
Singh, 1988; Politis and Romano, 1992; Freedman, 1984; 
Kreiss and Franke, 1989; Hurvich and Zeger, 1988). In this 
paper we study a frequency bootstrap based on studentized 
periodogram ordinates. Although, the periodogram ordinates 
at different frequencies are asymptotically independent 
(which is the basis for this bootstrap idea - cp. Franke and 
Härdle, 1992) the minor dependence sums up in certain 
statistics to a nonvanishing contribution. Thus, an ordinary 
bootstrap with an independent bootstrap sample does not 
lead to a valid bootstrap approximation for certain statistics. 
We therefore suggest in this paper a modification which 
leads to a dependent frequency domain bootstrap sample. 

2. The method. Let Xt, te Z be a real-valued stationary 
time series with spectral density fand 

Il<a) = 1 l£T=ih(.L)(xt-X)exp(&t)l2 

2% H2,T T 

be the tapered periodogram with the data-taper h: [0,1] -> R 

and Hk T = Y%=\ h(—)k- We are interested in the 

distribution of spectral mean estimates, i.e. in the 

This paper will appear in the Proceedings on the Interface 
'94. 

distribution of 

(2.1) VT(A(<MT)-A(<|>,f)) 

where 

A(<t>,f) = Jj4>(a) f(a) da. 

Examples are estimates for the covariance function 
(§(a) = 2 cos an) and the spectral measure 
(<t>(a) = Xro,3i](a))- Tne asymptotic distribution of (2.1) is 
well known. It is under suitable regularity conditions a 
Gaussian distribution with mean zero and variance 

(2.2)     v = ch[27rlj<l)2(a)f2(a)da + (K4/a
4) 

(fj<t>(a)f(a) da)2], where ch = llhllj / llhll' 

(cf. Dahlhaus, 1983). Here it is assumed that Xt is a linear 

process with innovation sequence et where var(et) = a2 and 
cum4(et) = K4 . 

We now approximate the distribution of (2.1) by a 
bootstrap in the frequency domain. The basic idea results 

from the fact that IT(a)/f(a) are for different a 4 0 mod n 
asymptotically independent. This suggests the following 

bootstrap procedure. Let n = [T/2] and Ij = Ix(—)• 

(2.3) Bootstrap procedure 
(a) Obtain the sample of periodogram ordinates {Ij} for 

j = 1, ... ,n. 
A 

(b) Obtain an estimate fj of the spectral density (e.g. a 

kernel estimate). Let {fj} = {frf^)}. 

(c) Calculate the studentized periodogram ordinates 

{ej}-{Ij/fj}. ^ 
(d) Rescale £j and consider {£]} = {EJ/E.} where 

(e) Draw independent bootstrap replicates {EJ } from the 
empirical distribution of {£j}. 

(f) Define the bootstrap periodogram values by 
*       *    * 

{Ijl^fjej}. 

The rescaling in (d) avoids an unneccessary bias at the 
resampling stage. We now can approximate the distribution 
of (2.1) by 

(2.4) Vf(B(<|),Ix)-B(<t),f)) 
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where 

B«t>.%)=j-s?=i<t»ji;. 

A 

If sup | fT(a) - f(a) I -* 0 a.s. then we can check under 
a 

suitable regularity conditions that (2.4) is also asymptotical 
normal with mean zero and variance 

(2.5) 2TC J0 <|>2(a) f2(a) da . 

modify the above bootstrap for a general taper. However, in 
the following theorem we modify the statistic to receive a 
valid approximation also in the tapered case. 

Franke and Härdle (1992) have used the bootstrap (2.3) 
without data-taper for bandwidth selection of a kernel 
estimate. Due to the lower rate of convergence the fourth 
order cumulant term disappears in the asymptotic variance 
for these estimates and the above problems therefore do not 
occur. 

An estimate of TI4 = K4/a
4 may be obtained e.g. by 

fitting a high order autoregression and calculating the 
empirical fourth order cumulant and the empirical variance 
of the estimated residuals (this is a bit contrary to the idea 
of a purely nonparametric bootstrap). A nonparametric 
estimate can be constructed in the following way (cp. 
Grenander and Rosenblatt, 1956, chapter 6.5): If 

ck = cov (Xt, Xt+k) and dk = cov(X2,X2
+k) then it is easy 

to show 

Ik=-o,dk=2 Xk=-< 

i.e. we obtain with the spectral density f2 of X2 

.71 

2TC f2 (0) - 4K J    f(a)2da 
K4/a4 = 

[Inftoöda^ 

A comparison with (2.2) implies that the bootstrap can 
only be consistent if ch = 1 and K4 = 0. 

To get an idea how to improve the above bootstrap we 
may look more detailed at the correlation of the periodogram 
at neighbouring periodogram ordinates. By some standard 
cumulant calculations (cf. Brillinger, 1981) we obtain for 

2 
j * ke {1 n} in the simplest case h(x) = 1, f(a) = S_ . 

2rc 

(2.6)     cov (Ij, Ik) = fj fk {8jk + (K4/a
4) T_1} 

(for arbitrary linear processes and h(x) = 1 one can establish 

the same result with a remainder 0(In  T) if j ,t k and 
T2 

0(!ILT) if j = k). This implies 

var(VT(B((|),IT)-B((t),f)) 

which tends to v as in (2.2) with cn = 1. Therefore, we need 
a bootstrap sample that fulfills the analogue to (2.6). As 
shown below this is fulfilled by the following. 

(2.7)  Modified  bootstrap  procedure. 
(a) - (e) as in the bootstrap procedure (2.3). 
(f) Take an estimate TU of T14 : = (K4/C

4
) and define the 

bootstrap periodogram values by 

^}-Ä[e;+{(l + ltr4)
1'2-l}j2£.1(eJ-l)]} 

As we show below this leads to a consistent bootstrap 
approximation if ch = 1, i.e. if no taper is used or if the 
taper disappears asymptotically. We have no idea how to      a strongly consistent estimate of t|4. 

,cCk)2 + (K4/o4)(f_Bf(a)do)2 

We may now obtain a consistent estimate of K4/a
4 by 

estimating the expressions in this formula. 

3. The validity of the bootstrap 
To  establish  the  validity  we  need  the  following 
assumptions. 

(A.1) Xt, teZ is a linear process, i.e. 

xt=  X  anet-n 
neZ 

with i.i.d. random variables et with Ee2 = a2 and 
cum4(et) = K4. Furthermore, let 

En lanl < eo    and       inf   f(oc) > 0 . 
ae [0,7c] 

A 

(A.2) f is a uniformly strong consistent estimate of f, T^ is 
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(A.3) <(>: [- rc,rc] -> R is of bounded variation and 

symmetric. Let §■. = <|>(-^-). 

(A.4) The data taper h: R -» [0,1] is of bounded variation 

with h(x) = 0 for xg (0,1) and Jo h(x)2 dx > 0. 

Furthermore, let d2(F,G) = Jnf {E(X - Y)2}m be the 
X~r 
Y~G 

2 
Mallow's metric and chT = T H4T / H2 T . 

Theorem. Assume (Al) - (A5). Then we have for the 
bootstrap procedure (2.7) 

VTC^(B(<MT) - B(<M)) = VT^F^. X?=1 

{<tjfj + (i/Ti) ^ XLi <t>k fk) (e* -1) 

with d4= {1 + -L T|4}1/2 - 1 the asymptotic normality 
2 

follows from the central limit theorem for a triangular array 
of independent variables. 

We therefore have found a frequency domain bootstrap 
which also works in the non-Gaussian case. Concerning the 
data taper the result is not satisfying since we emulate the 
increase of the variance only by a constant. However, in the 
case of an asymptotically vanishing taper (which is a 
realistic assumption from a practical point of view) we may 
omit the factor Cjj-p. 

daOff(A(4>,iT) - A(4>,f)), VTchT (B(<M*) - B(*.f)) -> 0 
a.s.. 

Proof. We only give a sketch. It is sufficient to prove the 
weak convergence of both statistics to the same limit and 
the convergence of the second moments. For 
VT"(A(<|>,IT) - A(<|>,f)) this follows e.g. from Dahlhaus 
(1983, Theorem 2). Standard time series calculations yield 
for the conditional expectation and the conditional variance 

of £j given the original sample 

E*ej = l 
aid 

TT: = var*ej= {ll?=1 Qfi)2-!} 

almost surely. Direct calculations now show that 

cov*(I*,Ik) = xT fj fk{8jk + V4 T-1} 

(i.e. we have emulated the expression (2.6)). This implies 

!«KVn£F(B(<Mr)-B(fci)) 

which almost surely tends to v as in (2.2). Since 
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Abstract 

A new system is discussed which allows one to access data 
buried in very large complex databases far faster, literally 
thousands of times faster, and with more data insight than is 
possible using conventional relational database management 
systems. The system known as TempleMW is based on U.S. 
Patent No. 5228119. It allows users to visually select records 
based on criteria imposed on one, two or up to ten indepen- 
dent variables and/or on the minimum, maximum, mean, sum 
or standard deviation of a dependent variable in any or all 
subspaces of the ten dimensional independent variable space. 
A multidimensional graph of the data is in view during the 
selection process. The independent variables may be categor- 
ical, ordinal, continuous or any mixture thereof. Data involv- 
ing tens of millions of records and ten variables can be 
viewed in seconds on a 486 computer running Microsoft Win- 
dows or a UNIX workstation. 

Introduction 

The technology to collect and store vast quantities of data 
has grown rapidly over the past decade. Satellite surveys, 
credit card reports and supermarket scanner records are all 
testaments to the perceived importance of collecting informa- 
tion. Unfortunately the techniques available to analyze and 
utilize these tremendous data warehouses are limited. 

The multivariate problem in general has many difficulties, 
but these problems are compounded by the quantity of data 
involved. Slow access times make even routine tasks tedious. 
Interactively exploring the dataset is nearly impossible with 
conventional methods. 

In previous papers1_7, we have described a novel method 
for analyzing multivariate data, called MultiVariate Visual- 
ization In this paper we apply MVV to the problem of access- 
ing the information in very large databases. 

A Discrete Approach 

MVV treats the three types of variables — categorical, 
ordinal and continuous — on an equal footing. Continuous 
variables are binned into intervals, ordinal variables may be 

grouped, and categorical variables are assigned an order. This 
converts any type of variable into a sequence of bins". Vari- 
ous binnings may be chosen to change the available resolu- 
tion and/or different orderings for categorical variable values 
may be better suited for different analyses. 

The Multivariate Summary Tree 

By binning the n variables, the n-dimensional space is 
divided into N = b!*b2*b3* ... *bn segments called primitive 
cells, where bj is the number of bins for the ith variable. Each 
primitive cell corresponds to a unique specification of bin val- 
ues for the variables. 

A "multivariate summary" is created by tabulating the fol- 
lowing five statistics for each primitive cell. The number of 
records in the cell are counted, and for one or more dependent 
variables the sum and the sum of the squares, as well as the 
minimum and the maximum are calculated. 

After specifying an order for the variables, a tree structure 
is created. The primitive cells are associated with the leaves, 
or the bottom level, of the tree. The nodes for the next level 
of the tree combine the values for the first, or fastest running, 

entire dataset 

root 

2nd H.C. 

IstH.C. 
B2 B3 B, B2 Bj B, B2 

Ci Cz c3 

P.C. 
^l   Ax    Ax     Ai    Aj 

A2   A,    A2     A2    A 
A1     A 

^2 
l     «l   Ai    At 

A2     A2   A2    A2 

B,     B, B, B,     B, B, B,     B, 

Figure 1 - The tree structure for three independent 
variables A, B, C with 2,3 and 3 bins respectively. Here A 
is called the "fastest" variable and C is the slowest 
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Number of People by Gender, Age and Education 
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Figure 2 - The number of people N with a given level of education E in a specific age bracket A of a 
particular gender G is represented by the heights of the narrow black vertical bars. The number N for given 
A and G irrespective of E is represented by the wider white bars. Finally, N for each G irrespective of E and 
A is represented by the two gray bars. Each bar type has its own scale. 

variable, creating statistics which correspond to specific bin 
values for the other n-1 variables. The next level excludes the 
second variable, and so on. A total of n+1 levels (including 
the root) are generated like this, with each level showing pro- 
gressively less detail. The root of the tree contains the five sta- 
tistics for the entire data set 

The resulting data structure is much more easily manipu- 
lated than the original dataset (its size depends only on the 
number of variables and their resolution—not on the size of 
the original dataset), yet it retains most of the multivariate 
information of the original data. If reference to the original 
records is required, this may be included for the relatively 
small overhead of a single integer per record. 

Figure 1 shows the nodes of an MVV tree for the simple 
case of three variables A,B and C with 2,3 and 3 bins respec- 
tively. Variable A is called the "fastest running" variable 
because it cycles through its values Al and A2 (at the bottom 
of the tree) faster than does variable B or C. B is the second 
fastest and C the slowest. Nodes at the bottom of the tree con- 
tain the five statistics described above for all records in each 
of the 2*3*3=18 "primitive cells" (P.C.). Each primitive cell 
corresponds to spanning just one bin for each of the three 
variables A, B and C. The first level of the tree above the bot- 
tom level consists of nodes which contain the five statistics 
for all records in the "first hierarchical cells" (1st H.C.). 
These cells span just one bin for variable B and one for vari- 
able C but span all bins for the fastest variable A (here just A1 
and A2). Similarly the next tree level up consists of nodes 

which contain the statistics for "second hierarchical cells" 
(2nd H.C.) which span all A and B bins but only one C bin. 
Finally the top level of the tree has just one node which con- 
tains the five statistics for the entire dataset i.e. the "root cell" 
which spans all A,B and C bins. 

These five statistics allow one to recursively calculate the 
number of records as well as the minimum, maximum, mean, 
standard deviation, standard deviation of the mean and sum 
for any variable chosen as the dependent variable of interest 
at all node levels of the tree. One or more of these statistics 
can then be used to drive attributes of symbols such as their 
size, location or color. 

A Nested, Hierarchical Display 

Figure 2 shows census data. Here N, the number of 
records, corresponds to the number of people and is broken 
down by gender, age and education. These variables have 2,7 
and 7 bins respectively with education the fastest running 
variable and gender the slowest The sum statistic (of number 
of people) is used to drive the symbol attribute, which in the 
case of Figure 2 is just the height of vertical bars. Each of the 
three bar types has its own scale. 

The black bars correspond to the primitive cells where 
education, age and gender have each been specified. The 
white bars represent the number of people for a specific age 
and gender irrespective of education, i.e. education has been 
summed over. These are the "first hierarchical symbols" cor- 
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responding to the statistics (here the sum) for the first hierar- 
chical cells. Finally, the two gray bars represent the number 
of people by gender alone. These are the second hierarchical 
symbols. 

Also shown in Figure 2 are a set of "IV Widgets" and a set 
of "DV Widgets" The bins for the independent variables are 
represented symbolically by the IV widgets. The DV widget 
bins represent the range of values for the chosen dependent 
statistic (sum, mean, etc.). 

Visually Guided Data Access 

For a single variable, a histogram is a valuable aid for 
determining which intervals of the variable are of interest. 
For two variables, there are many distributions which cannot 
be deduced from their marginal histograms alone. For more 
than two variables, the possibilities for complex behavior 
increase. A truly multivariate graph can help one specify 
ranges of interest, pick out important features or determine 
overall trends. 

For example, in figure 3 the size of the circles is propor- 
tional to the number of houses. We can clearly see a strong 
correlation between price and size for houses, moreover we 
can see how this correlation shifts with location. 

In previous papers, we have discussed the utility of the 
MVV technique for performing statistical analyses. Here we 
focus on using the graphics to intelligently access specific 
portions of a large database. 
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IV Range Restriction 

The simplest way to choose a subset of records is to 
restrict one of the variables to a portion of its range. We can 
represent this symbolically by coloring just the selected bins 
on the IV widget. This selects just those records whose value 
for the chosen variable is within the specified range. The abil- 
ity to see the distribution is obviously an advantage in making 
these selections. 

Consider figure 3. The slowest running variable is location 
(urban, suburban, rural). Selecting a single bin for this vari- 
able corresponds to picking all primitive cells in one of the 
three rectangular subgraphs. Restricting a faster running vari- 
able gives a differently shaped subset of primitive cells. Fig- 
ure 4 shows some examples for the case of four variables. 

Since including many variables can quickly lead to com- 
plicated graphs, an alternative is to restrict a variable which is 
not shown as an independent variable on the MVV graph. By 
adjusting the restriction, the displayed graph will evolve to 
display the dependence on the variable not shown. For exam- 
ple, we could include the age of the house as a fourth variable 
(represented by an IV widget) and watch how the graph of 

Figure 3 - A plot of the number of houses (indicated by 
the size of circles) versus price, size and location. Price, 
size and location have been binned to 10,10 and 3 values. 

figure 3 changes as we focus on houses of different ages. 
While this has the advantage of keeping the graphs simple, 
the visual guidance for making the restriction is lost. 

DV Contouring 

An alternative selection method uses the dependent vari- 
able. If we think of the graph symbols as "sticking out of the 
page" with different sizes corresponding to different eleva- 
tions, choosing all symbols of a certain size is like picking out 
a specific elevation on a topographic contour map. This is 
represented symbolically by highlighting a portion of the DV 
widget. Since the different symbols represent different levels 
of detail (depending on the number of variables included), 
several levels of "coarse grained" or "fine grained" contour- 
ing are available. 

It is important to understand the distinction between con- 
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touring a variable as a DV versus introducing it as an IV and 
restricting its range. The latter (IV) restricts records on a case 
by case basis, the former (DV) uses the properties of a group 
of records. For example, the independent variable income 
could be used to select only those individuals in the highest 
income bracket. As a dependent variable, income could be 
used to select a group (maybe a specific age group or a spe- 
cific age and education group) whose mean income has a cer- 
tain value, or whose purchasing power (sum of income) is 
highest 

In figure 5, we show the average capital gain of stocks as 
a function of four indices. Contouring on the highest value of 
the capital gain gives the groups (as determined by the values 
of the four indices) with the best average performance. 

DV Symbol Selection 

This selection method is more robust than the previous 
one. Instead of choosing all symbols of a specific size, one 
can choose individual symbols. This is more appropriate 
when the relevant quantity is not the absolute value of the 
dependent variable but rather its value with respect to neigh- 
bors. 

Consider figure 5. If we were just interested in the global 
maximum (or minimum) we could use DV contouring and 
select an extreme of the range. The graph, however, can also 
show us the behavior around the extrema. Both I and II indi- 
cate cells which are local maxima. However, I is a maximum 
which is stable with respect to changes in all four variables, 
but II is very sensitive to the value of C. 

Depending on the dependent variable rule or statistic cho- 
sen, such a selection process could choose particularly vola- 
tile stocks, or ones which are undervalued, etc. 

Other Graphical Access Systems 

Johnson and Shneiderman 8 have discussed "Tree Maps" 
an alternative multivariate graphical data access technique. 
Recently Tweedie et al9 have proposed a "drill down" type of 
data access tool in which parallel axes akin to those intro- 
duced by Inselberg10 are used to display multiple (con- 
strained or unconstrained) marginal distributions for all 
variables of interest. Unlike Inselberg, these authors deal only 
with discrete variables. That is, they follow the MVV model 
of binning any and all continuous variables to form discrete 
ones. 

Although the MVV technique, Tree Maps, and the modi- 
fied Inselberg approach of Tweedie et al., all utilize a multi- 
variate graphical approach to data access they are 
fundamentally different in terms of their computational 
engines, the nature of their graphical presentation of multi- 
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Figure 4 • Shown in parts a, b, c and d are the primitive 
cells that are selected when one constrains each variable 
(A,B, C and D respectively) to one of its three bins. Here 
A is the fastest and horizontal. B is the 2nd and vertical. 
C is 3rd and horizontal and D is 4th and vertical. In each 
case 27 primitive cells are selected. Constraining twoIV's 
e.g. A as in part a and B as in part b would select the 9 
primitive cells common to a and b, i.e. an intersection. 
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Figure 5 - The average capital gains for stocks in a four dimensional space of fundamental ratios A,B,C,D. 

variate data and their scope of data analysis capabilities. The 
MVV method can be used to analyze and select information 
from very large databases consisting of literally tens or even 
hundreds of millions of records with subsecond response. 
MVV's graphical presentation can be used to find trends and 
correlations which may be important factors in record selec- 
tion and can be generalized to displaying multiple dependent 
as well as independent variables. 

Conclusions 

By forcing all types of variables to be discrete, tremendous 
advantages can be gained in the manipulation of large, multi- 
variate databases. The summary tree described above can 
effectively capture most of the multivariate nature of a large 
dataset. The nested, hierarchical graph not only displays mul- 
tivariate information, but can also provide an intuitive data 
access system. 

MVV provides one method for intelligently extracting the 
information from large multivariate databases. 
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Abstract. This paper describes a link between a Geograph- 
ical Information System (GIS), ARC/INFO™ , and an in- 
teractive dynamic graphics program, XGobi. GISs provide 
a user with a standard and convenient software for spatial 
geographical data. In particular, the GIS ARC/INFO is a 
combination of two systems: ARC maintains the spatial in- 
formation of map features and provides tools for spatial anal- 
yses while INFO maintains the thematic or attribute infor- 
mation associated with the map features. XGobi is an inter- 
active dynamic graphics program for data visualization in the 
X Window System™. It is designed for the exploration of 
multivariate data, primarily by manipulating and displaying 
scatterplots in arbitrary dimensions. 

The motivation for the work is to link the dynamic, inter- 
active strengths of XGobi for visualizing high-dimensional 
data with the exhaustive map handling tools of ARC/INFO, 
specifically to explore spatial data. This paper presents in- 
formation about the technical realization of the link between 
ARC/INFO and XGobi as well as an introductory example 
of its use. 

1    Introduction 

Interactive and dynamic graphics for high- 
dimensional data have proved useful for exploring rela- 
tionships among multiple variables. Incorporating sim- 
ilar tools in the context of spatial data promises to be 
a valuable aid in exploring spatial dependencies. Ge- 
ographical Information Systems (GISs) have developed 
sophisticated capabilities for managing multivariate spa- 
tial data bases but limited capabilities for conducting in- 
teractive exploratory data analysis. The combination of 
a GIS and a dynamic graphics system for multivariate 
data comprises a potentially powerful tool for interactive 
exploratory spatial data analysis. 

In Section 2 we describe general features that should 
be available for an interactive dynamic graphics tool 
that operates on data available in a GIS data base. 
As one particular application, the interface between the 
GIS ARC/INFO™ and XGobi, an interactive dynamic 

™ ARC/INFO is a trademark of Environmental Systems Re- 
search Institute, Inc. 

X Window System is a trademark of MIT. 

graphics program for data visualization in the X Win- 
dow System™, is described in Section 3. An example is 
given in Section 4. We conclude this paper by describing 
possibilities for future work. 

2    Integration   of   Interactive   and   Dy- 
namic Graphics Tools into a GIS 

The inclusion of spatial location in data analyses can 
be addressed in different ways. Using a GIS, we maintain 
a geographic context of spatial location relative to land- 
cover, streams, roads, and other relevant information. It 
would also be feasible to include the spatial coordinates 
as two (or d) additional variables into the analysis, but 
this approach by itself does not exploit the considerable 
spatial capabilities of GISs. 

Emphasis in GIS development has been on the input 
of data, its management (storage, retrieval), and the dis- 
play of maps, graphs, and tables. GISs have some ca- 
pability to allow statistical analyses but it is generally 
limited. A number of recent suggestions have been made 
(e. g., Openshaw, 1991; Anselin and Getis, 1992; Ding 
and Fotheringham, 1992; Fotheringham and Rogerson, 
1993) to redress this imbalance. Still others have in- 
corporated some dynamic graphical tools into systems 
that lack the full features and flexibility of a GIS (e. g., 
Haslett et al., 1991). 

Our research addresses the extremely important prob- 
lem of multivariate exploratory spatial data analysis in 
a GIS. GIS data structures allow the representation of 
areal features (e. g., for the storage of information re- 
ported at an aggregated spatial level, such as counties 
or census tracts), linear features (e. g., for the storage 
of information collected from a stream or a transporta- 
tion network), and point features. The topological data 
structure of a GIS makes it possible to determine spatial 
relationships between sampling locations, such as stream 
sites, that would be difficult to determine otherwise. The 
display capabilities of a GIS allow the spatial variables to 
be overlaid on a background of hydrography, transporta- 
tion, population, land use, or other information relevant 



432    Dynamic Graphics in a GIS 

JMfc«s&:'*„.;, &<>■£'. *''*KPuyr>:<M 

Figure 1: ARC/INFO control panel and example map view linked to two XGobi views. 

to the attributes1 being considered. For example, in Fig- 
ure 1 the map view shows sampling sites along streams 
in Erath County, Texas. Information about the topog- 
raphy or land use near a sample site can give valuable 
insights into the values of attributes (e. g., ammonia con- 
centration) collected at the site. 

A GIS is intrinsically multivariate and yet this is ig- 
nored by the largely univariate statistical analyses cur- 
rently available. By building an interface between a GIS 
and software for dynamic graphics, we will also provide 
a platform for developing new spatial graphical methods 
for spatial data sets available in the GIS (e. g., Cook et 
al., 1994). 

1In the context of GISs the expression attribute is used instead 
of the statistical expression variable. 

3    The ARC/INFO to XGobi Interface 

Our efforts have focused on interfacing the GIS soft- 
ware ARC/INFO with XGobi (Swayne et al., 1991). 
ARC/INFO has been chosen because it is one of the most 
frequently used GIS systems and because it is extensible 
through its macro language, allowing the development 
of menus and programs to carry out ARC/INFO tasks. 
XGobi provides interactive and dynamic graphical tools 
in the X Window System environment for exploring mul- 
tivariate data through the manipulation of scatterplots. 
ARC/INFO is used to maintain the GIS data base and 
to display the geography, while XGobi is used primar- 
ily to explore the relationships within and between the 
attributes. Figure 2 shows how the communication be- 
tween these two programs is established. 
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Figure 2: Interface linking ARC/INFO with XGobi. 

3.1    The ARC/INFO Part 

ARC/INFO is used to display the location of sam- 
pling sites in a graphics window. The sampling sites can 
be displayed on a background of roads, streams, or any 
other relevant geographic data sets available. A control 
panel, the upper right window shown in Figure 1, allows 
the user to brush or subset the sampling sites interac- 
tively. The term "brush" refers to changing the sym- 
bol used to represent the specified points and "subset" 
refers to choosing a subset of the points for further anal- 
ysis, disregarding (temporarily) the other points. The 
brushed (or subsetted) sites are redrawn with the spec- 
ified glyph, size, and color, and the ARC/INFO data 
base is modified. These changes are detected and passed 
to XGobi by the intermediate process, as described in 
subsequent sections. 

The ARC/INFO portion of the application is imple- 
mented with AML (Arc Macro Language) and works as 
follows. An ARC/INFO data set consists of a set of 
spatial features, in this case points, each of which has a 
record in a data base table. When the application starts, 
a column in the table is initialized with a default value 
which represents the symbol, i. e., glyph, size, and color, 
with which to draw each point. As the user interactively 
queries the points, the values in this column are updated 
to reflect the user's actions. The changes to this column 
are detected by the intermediate ARC/XGobi server pro- 
cess and sent to XGobi. 

Pseudo code for the ARC/INFO part is given below. 
In this pseudo code, the control panel is represented by 
the repeat loop. 

set current symbol to default symbol 

repeat 

«rait for user action 

case user action { 

when "identify ARC/MFO data set" 

initialize the symbol column to current symbol 

when "brush" 

spatially select points to brush 

set symbol column of selected points to current symbol 

»hen "subset" 
spatially select points to subset 

set symbol column of selected points to current symbol 

set symbol column of other points to 0 

when "clear selection" 

reset the symbol column of all points to default symbol 

when "change color" 
reset current symbol to reflect changed color 

when "change glyph" 

reset current symbol to reflect changed glyph 

when "change size" 

reset current symbol to reflect changed size 

} 
until (forever) 

3.2    The Intermediate Process 

The intermediate process, denoted as ARC/XGobi In- 
terface in Figure 2, has to serve the requests of the XGobi 
clients by reading information from the ARC/INFO data 
base. The interprocess communication between this 
server and the XGobi clients is based on Stevens' (1990) 
concurrent server example, and uses a Transmission Con- 
trol Protocol (TCP) socket, i. e., an Internet stream 
socket. Upon receiving a connection request from an 
XGobi client, the intermediate process forks an identi- 
cal child process. Each child process communicates with 
one XGobi client; thus, one-to-one connections between 
server processes and XGobi clients are established. 
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Obviously, the forking of child processes is a heavy 
weight mechanism to provide a concurrent server. How- 
ever, we assume that this mechanism is available for all 
hardware environments that support ARC/INFO. An al- 
ternative for some workstations (e. g., DEC™) is the 
use of multithreads which are light weight processes, 
but this approach is not available on all systems (e. g., 
Sun™/Sparc™ workstations). 

The main task of the child processes is the follow- 
ing: If the XGobi client indicates that it wants the cur- 
rently selected ARC/INFO data set and future updates 
of this selection, the related ARC/XGobi server (child) 
has to check continually whether the ARC/INFO data 
base has been changed. If so, the modifications, such as 
new brushed or subsetted points, are immediately passed 
to the corresponding XGobi clients. 

A child process is terminated by a QUIT command 
of its XGobi counterpart, or if it detects the unexpected 
termination of the client process or the breakdown of 
the communication channel. The intermediate (parent) 
process will operate until it is explicitly terminated by 
the user. The pseudo code for the ARC/XGobi interface 
follows. 

Parent: 
init ARC/IHFO defaults 

init sockets 

repeat 

accept connection from XGobi client 

fork child process 

until (forever) 

Children: 
repeat 

wait for input from XGobi client or for Timeout 

if (input received = SEHD Filename) 

then {send data from file Filename; Update = false} 

else if (input received = SEHD current) 

then {send data from current selection; Update = true} 

else if (Timeout and Update) 
then if (current selection modified since last send) 

then send update of current selection 
until (input received = QUIT or abort of client 

or channel down) 

3.3    The XGobi Part 

There are several methods that we considered when 
initially contemplating a link from ARC/INFO to 
XGobi: directly writing new functionality into XGobi, 
accessing the XGobi data structures by calling XGobi as 
a subroutine, or using the linked brushing protocols ex- 
isting in XGobi. The first method is feasible because the 
code for XGobi is available, but it is undesirable because 
it would require maintaining updates with new releases 

™DEC is a trademark of Digital Equipment Corporation. 
™Sun is a trademark of Sun Microsystems, Inc. 
™ Sparc is a trademark of Sun Microsystems, Inc. 

of the XGobi code. The third option strictly limits the 
interaction to the data structures available in the XGobi 
linked brushing code. Calling XGobi as a subroutine 
from a small control panel was chosen as the method 
that best suited our needs. Almost all the data struc- 
tures used in XGobi are available for modification using 
this approach. 

The structure of the calling program is based on 
the subroutine template code provided with the XGobi 
source code. (The subroutine approach also has been 
used by Littman et al., 1992, for the implementation 
of the XGvis software system.) A control panel is ini- 
tiated for each instance of XGobi (see Figure 1), from 
which the user has the option of selecting data from an 
ARC/INFO data base file or to receive the data set that 
is currently selected within ARC/INFO. Once the data 
source has been determined and the data received, the 
XGobi window is initialized. 

Internally, an additional working procedure, namely a 
routine that runs once whenever the X Window System 
event loop finds no events, has been added to XGobi to 
check for incoming data from the ARC/XGobi server. If 
this routine receives updates of the data, the attribute 
values currently visible in XGobi linked to the brushed 
or subsetted coordinates in ARC/INFO will instanta- 
neously be set to the same glyph, size, and color. 

Otherwise, the entire functionality of XGobi has been 
maintained. The XGobi part can be described via the 
following pseudo code. 

init sockets 

connect to ARC/XGobi server 

init XGobi defaults 

init startup oindou 

repeat 

wait for user input 

send input to ARC/XGobi server 

wait for data from ARC/XGobi server 

if (XGobi not invoked) 

then invoke XGobi 

else update XGobi structures and data sets 

until (user input = QUIT) 

3.4    Usage 

ARC/INFO and the ARC/XGobi (parent) interface 
process must be activated on the host where the 
ARC/INFO data base is located. Then, XGobi client 
processes can connect to the ARC/XGobi server. Clients 
can reside on the same host or anywhere else on the In- 
ternet. Internet addresses, ports, and communication 
protocols are encoded into the program. So, the user 
does not have to worry about common setups for server 
and clients. If the user only wants to use XGobi to an- 
alyze the attribute data in an ARC/INFO data set, the 
invocation of ARC/INFO is not required. 
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4 An Example 

As an example of how the link between ARC/INFO and 
XGobi can be used to explore data we show a data set 
containing water-quality data collected during several 
weeks at seventeen surface-water sampling sites in Erath 
County, Texas (see Figure 1). The pollutants are being 
modelled inter alia through explanatory variables, such 
as the number of dairies per acre or the number of head 
of cattle per acre, to account for large-scale variability. 

As well as the sampling sites (numbered from 1 to 24 
with some numbers missing), the ARC/INFO mapview 
shows streams (continuous lines), boundaries of large 
basins (dashed lines), dairies (triangles), and a town 
(shaded area). After an initial examination of the map, 
two of the sampling sites, numbered 4 and 12, have been 
brushed in order to see if the data collected there is 
anomalous. 

Site 4 has been brushed because it is at the outlet 
of a very small basin containing four dairies. Thus, 
the response variables (i. e., pollutants) might be ex- 
pected to be unusually high. The XGobi view on the 
left shows that the explanatory variable "nda" (the num- 
ber of dairies per acre) is extremely large relative to the 
other sites. The XGobi view on the right shows that 
the responses "no3" (standardized nitrate) and "nh3" 
(standardized ammonia) at this site are high, though 
not outlying. 

Site 12 has been brushed because it is located just 
below the town of Stephenville, Texas; the waste wa- 
ter treatment plant of Stephenville discharges into the 
stream above the sampling site. The XGobi view on the 
right shows that standardized nitrate is consistently high 
at this site, but nothing remarkable can be said about 
standardized ammonia. Based on this result, an analyst 
doing an exploratory data analysis probably would be 
interested in how strong the nitrate concentration is fur- 
ther downstream of Stephenville and, therefore, the next 
site to be brushed in the ARC/INFO view might be site 
24. 

This example demonstrates briefly how geography can 
give an analyst insight into the exploration of a data set 
and, thus, why a link between ARC/INFO and XGobi is 
a useful tool. 

5 Future Work 
We have presented an interface linking ARC/INFO with 
XGobi. This interface allows the user to link ARC/INFO 
and XGobi views interactively such that modifications 
of the ARC/INFO view automatically change the other 
views in the different XGobi clients. So far, this link 
is only unidirectional. Future work will focus on the 
other direction of the link, that is, the update of the 

ARC/INFO view according to one (or several) XGobi 
view(s). However, this direction is more problem- 
atic since substantial questions, such as security (Who 
is allowed to modify the data?), concurrency (What 
if two XGobi clients send different update informa- 
tion at the same time?), and technical issues (How 
can events be incorporated into a primarily non-event- 
driven FORTRAN program?) have to be resolved. We 
are also looking towards a new release of ArcView™ . 
According to preliminary announcements from the dis- 
tributors of this software, this new version seems to be 
more suitable to facilitate the inverse link from XGobi 
to ARC/INFO. 
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Abstract 

This paper introduces the task of converting summary tables 
into row-labeled plots. The conversion task emphasizes 
exposition of important patterns in data rather than data 
archival. Attention to graphical design details yields plots 
that appear simple even though the tables are fairly 
complex. The more general task includes converting 
multiway tables and distributional summaries to plots. This 
brief paper focuses attention on two templates for expressing 
two-way tables as plots. These templates are variations on 
familiar dot and bar plots and have numerous applications. 

1.    Introduction 

This paper advocates the use of row-labeled plots for 
graphical presentation of tabular information. Row-labeled 
plots (or row plots for short) take three basic forms, dot 
plots (charts), horizontal bar plots (charts), and horizontal 
distributional summary plots, such as boxplots. While the 
plots are familiar, government reports still seem to favor 
tables over plots. Numerous reasons can be cited for the 
common usage of tables: historical inertia, an emphasis on 
data archival rather than on communication, limited access 
to software that produces presentation quality graphics 
(especially for dot plots), and an absence of graphical 
paradigms for handling the challenges posed by reexpressing 
tabular information. As part of the advocacy for row plots, 
this paper provides software and paradigms that address 
several of these challenges. 

The basic tasks in converting tables to plots involve 
accommodating the tabular structure and emphasizing chosen 
comparisons. Structure related challenges include 
representing several factors, handling nested factors, showing 
many levels within a factor, providing resolution for a large 
range of values, and showing distributional summaries. 
Emphasis considerations include stressing estimates over 
confidence bounds and calling attention to the more accurate 
estimates. Carr (1994) provides examples for all of these 
cases including redesigned boxplots. This paper presents 
two templates for converting two factor tables to plots. 

2.    Two-Factor Row Plots 

In row plots the levels of one factor become rows. Row 
plots accommodate a second factor in one of three ways: by 
using symbols, by using multiple panels, or by showing 
the levels of both factors as rows. Figure 1 provides and 
example using symbols. Rows represent the 16 levels of 
the carcinogens factor. Symbols represent the two levels of 
the years factor. Representing the two levels of the second 
factor using symbols is advantageous. All the values can be 
compared using a single common scale. No space is lost 
through adding panels or rows. 

The symbols used in Figure 1 emphasize change. Open 
circles show the 1987 values and the arrow tips designate the 
1988 values. A horizontal line from the 1987 value to the 
1988 value explicitly shows the change. When the change 
is small, a circle with a dot represents both the 1987 and the 
1988 values. This reflects a willingness to make small 
adjustments in symbol placement (the 1988 value) and style 
for graphical simplicity and clarity. 

Several additional facets of Figure 1 reflect design 
considerations: grid lines, sorting and grouping of rows, and 
the log scale. The horizontal grid lines in Figure 1 are 
white lines on a light gray background. The gray 
background gives the plot a value-added appearance. The 
small contrast between the light gray and white lines allows 
the lines to be perceived as part of the background rather 
than competing with the symbols in the foreground. The 
horizontal lines help in table lookup (matching of labels and 
symbols). 

Two design considerations, sorting and grouping of rows 
help the plot appear less complex. The sorting of rows by 
the 1987 values reduces the visual distance between the 
symbols as the reader scans the plot vertically. The 
conjecture here is that reducing the visual distance in 
looking from point to point makes the plot appear less 
complex. 

1 This work was supported by EPA under cooperative agreement No. CR8280820-01-0. The article has not been subject to 
peer review of the EPA and thus does not necessarily reflect the view of the agency and no official endorsement should be 
inferred. 
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Air Emission of Carcinogens 

Chemical 

Dichloromethane 
Tetrachloroethylene 
Benzene 
Styrene 

Chloroform 
Formaldehyde 
1,3-Butadiene 
Acrylonitrile 

1,2-Dichloroethane 
Ethylene Oxide 
Carbon Tetrachloride 
Propylene Oxide 

Acetonitrile 
Vinyl Chloride 
1,4-Dichlorobenzene 
Lead 

Top Chemicals By Weight 

O = 1987 Arrow Tip = 1988 © = Little Change 

5 10 

Million Pounds 

Figure 1. A row plot with symbols representing the levels of a second factor. 

The grouping of rows in Figure 1 creates smaller perception 
units. Four groups of four appears more manageable than 
one group of sixteen. Grouping rows also facilitates the 
matching of symbols to row labels. While the horizontal 
grid lines help, grid lines are not so crucial with grouping 
because matching say the third of four labels with the third 
of four symbols is trivial. The grouping of rows diminishes 
the advantage of using right-aligned row labels. Cleveland s 
examples (1984, 1985, 1993a, and 1993b) show the 
evolution from left-aligned labels to right-aligned labels. 
Right-aligned labels are closer to the horizontal grid lines 
and corresponding symbols, so right-alignment should 
reduce the chances of making an error in matching labels 
with symbols. However, the conjecture here is that 
grouping makes the error rate very low so that there is little 

advantage in using right-aligned labels. Here the preference 
is to follow the conventions for the dominant activity in 
each part of the plot. Reading is the dominant activity in 
the row-label part of the plot so the labels are left-aligned. 

Figure 1 uses a log scale. The carcinogens selected for the 
table motivating Figure 1 represent the most extreme cases 
in terms of pounds. The range of values for extreme cases is 
often large and using a log scale helps to provide resolution 
for the smaller values. The difference of values on a log 
scale is a monotonic function of the percentage change. The 
log scale is fine for mathematically sophisticated audiences. 
For more general audiences, a plot showing percentage 
change on a linear scale would be helpful. Of course 
sorting rows by percentage change and the other design 
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TRI Releases And Transfers For 1987 
Totals By State and Distribution Class 

Grand Total = 7 Billion Pounds 

STATE 

Texas 
Louisiana 
Ohio 
Florida 
Tennessee 

Michigan 
Illinois 
Indiana 
Utah 
Pennsylvania 

California 
Virginia 
New York 
Missouri 
New Jersey 

Mississippi 
Georgia 
North Carolina 
Alabama 
Kansas 

Kentucky 
Wisconsin 
South Carolina 
Arkansas 
Arizona 

Massachusetts 
West Virginia 
Minnesota 
Conneticut 
Oklahoma 

Iowa 
Maryland 
Washington 
Alaska 
Oregon 

Montana 
Wyoming 
New Mexico 
Colorado 
Maine 

Nebraska 
New Hampshire 
Idaho 
Delaware 
Rhode Island 

Hawaii 
South Dakota 
Vermont 
Nevada 
North Dakota 

Total Transfer Underground Water 

0       4       8 
(Reduced Scale) 

0      1 

Units: 100 Million Pounds 

Figure 2. A row plot with panels representing the levels of a second factor. 
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considerations still apply. 

Sorting and grouping considerations carry over to multiple 
panel displays as in Figure 2. Figure 2 uses rows to 
distinguish the values for the 50 states. In this case the 
design groups rows in units of five. Grouping rows into 
units of four likely has some cognitive advantages over 
units of five, but producing ten full groups of five seems 
reasonable. The toxic release class factor has 6 levels plus a 
marginal summary. Representing seven levels using 
symbols is a bad idea. In fact Kosslyn (1994) suggests that 
distinguishing among more than four elements gets 
complicated. Consequently Figure 2 represents the levels of 
the second factor using multiple panels rather than symbols. 

Figure 2 reflects several additional design considerations. 
The plotted symbols are bars. Bars are visually dominant 
area symbols that allow the reader to quickly scan the whole 
plot even though there are separating panel lines. Note that 
the bars in the right-most six panels are on the same scale 
so are directly comparable. 

The common approach to creating comparable bars is to use 
identical width panels with identical scales that cover the full 
range of data. The result of this approach is that panels with 
small values are largely blank. The right-most six panels in 
the Figure 2 have different widths. Since the "underground" 
values are the largest the "underground" panel is widest. 
This unequal panel width approach makes effective use of 
the available space while preserving comparability. Given a 
fixed plotting space, the range-driven panel width approach 
uses the otherwise blank space to increase the resolution 
within all panels. 

Figure 2 includes vertical grid lines. Cleveland (1993a, 
1993b) provides a demonstration that shows how helpful 
grid lines are in making more accurate comparisons across 
panels. Cleveland notes that the grid lines allow attention 
to be focused on smaller graphical elements and that Weber's 
law helps to explain the increased accuracy of comparison. 
Grid lines are an important facet of the graphical design. 

Figure 2 uses a different scale for state totals panel to save 
space for the other panels. The figure calls out this different 
scale in four ways, by using black bars rather than dark gray 
bars as in the other panels, by the slight separation from the 
other panels, by warning text below the panel and by the tic 
labels. In addition, the grid spacing turns out to be different. 
The design places the state total panel appear first among the 
panels because it is an executive summary and the basis for 
the sorting of rows. 

Figure 2 provides a quick state-based overview of the toxic 
releases for the different release classes. The table 
motivating this plot appears in Courteau 1990.  The table 

spans pages 37 and 38 and the summarizes the company 
self-reports with nine digits of accuracy. The table is truly a 
visually intimidating table. Table design considerations 
such as rounding numbers, sorting rows and grouping rows 
can substantially improve the table for exposition purposes. 
However most readers will still prefer the graphical 
summaries like Figure 2. 

A single plot will not necessarily cover all the major 
exposition objectives for a table. Most people are interested 
in the values for their state. People from states like Hawaii, 
won't see much in Figure 2. More resolution is desirable. 
An additional plot showing the six release class values as 
percentage of state totals would be helpful as a summary. 
Individual state maps can show further detail. The tabular 
summaries of the Toxic Release Inventory can lead to many 
visual representations. 

3.     Comments and Conclusions 

Historically, tables in government documents served a data 
archival role. Today electronic storage better serves this 
archival role. Government publications need to change from 
an archival orientation to a data exposition orientation. 
While some tables may remain because tables can be 
advantageous for careful quantitative analysis, most people 
prefer the more qualitative visual understanding provided by 
plots. The development of graphics templates and 
corresponding software will facilitate making this change. 

The government community primary has access to the 
spreadsheet-based business graphics developed in the 1970's. 
Much has been learned about graphic design in the last two 
decades. Those that study graphic design know that stacked 
bar plots and pie charts are inferior visual representations of 
data. Nonetheless such graphics commonly appear in 
government publications because the available software 
make the graphics easy to produce. 

The two figures in this paper provide templates for 
converting commonly encountered two-factor tables in to 
plots. More cases are covered in Carr (1994). The examples 
have face validity. If they appear better than numerous 
alternatives then likely they are better. However the 
examples have not been subject to rigorous cognitive tests 
and the plot that cannot be improved is exceedingly rare. 
Readers are welcome to develop their own templates for 
converting table to plots. Those wanting to modify or use 
the current templates can build upon the current work. The 
data, Splus functions and script files are in 
/pub/submissions/rowplot on galaxy.gmu.edu and can be 
obtained by anonymous ftp. 
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Abstract 
Probabilistic graphical models (directed and undirected 
Markov fields, and combined in chain graphs) are used 
widely in expert systems, image processing and other ar- 
eas as a framework for representing and reasoning with 
probabilities. They come with corresponding algorithms 
for performing probabilistic inference. This paper dis- 
cusses an extension to these models by Spiegelhalter and 
Gilks, plates, used to graphically model the notion of a 
sample. This offers a graphical specification language for 
representing data analysis problems. When combined 
with general methods for statistical inference, this also 
offers a unifying framework for prototyping and/or gen- 
erating data analysis algorithms from graphical specifi- 
cations. This paper outlines the framework and then 
presents some basic tools for the task: a graphical ver- 
sion of the Pitman-Koopman Theorem for the exponen- 
tial family, problem decomposition, and the calculation 
of exact Bayes factors. Other tools already developed, 
such as automatic differentiation, Gibbs sampling, and 
use of the EM algorithm, make this a broad basis for the 
generation of data analysis software. 

Introduction 
This paper argues that the data analysis tasks of learning 
and knowledge discovery can be handled using graphical 
models [11]. This meta-level use of graphical models was 
first suggested by Spiegelhalter and Lauritzen in the con- 
text of learning probabilities for Bayesian networks. An 
extension of the standard graphical model is used here 
that allows this kind of learning to be represented. The 
extension is the notion of a plate introduced by Spiegel- 
halter and GilksGilks.etal.stat. Plates allow samples to 
be represented explicitly on the graphical model, and 
thus reasoned about. This makes data analysis problems 
explicit in much the same way that utility and decision 
nodes are used for decision analysis problems. 

Consider, for instance, Figure 1. This presents a situ- 
ation where a mixture model with hidden variable class 
is used for subsequent prediction of var\ from vari and 
varz- The part to the left of the parameters 6 and <j> is 
the graphical representation of a sample, and the part to 
the right represents the prediction task. The value node, 

Figure 1:   Simple unsupervised learning, with general 
prediction 

the diamond, indicates that subsequent prediction accu- 
racy is the goal of learning, while the contents of the plate 
(the large box around the nodes for class, vari, vari and 
varz) indicates that a sample of N values of vari, vari 
and varz are given, because they are shaded, while class 
is hidden, being unshaded. The plate indicates that its 
contents are replicated N times, yielding a product Yl 
in the probability form. A legend for graphical models 
used in this paper appears in Figure 2. 

© 

varj 

Node for unknown variable $ 
(unshaded means unknown). 

Node forhnown variable varj 

(shaded means known). 

Box is an action node. We can 
set this value ourselves. 

Diamond is a value/utility node. 
We would like to achieve a high 
value for this variable. 

Plate around graph component implies ft 
Is repeated N times, so we have 

ni=i,^N pCvan' B) 

Double node im plies variable has 
deterministic equation: var - f(class, G) 

^§|>—►cg>«—0 
Undirected mc implies variables am 
correlated. 

Sei of arcs into node implies probability 
has component: p(vari I $, 81) 

Figure 2: A legend for graphical symbols 

A general approach to the design of learning and data 
analysis algorithms now becoming widespread is one of 
engineering using principles of probability. An example 
is given in [3] where decision tree algorithms, made pop- 
ular by the CART, ID3 and C4.5 programs, are devel- 
oped from basic probability principles. The basic tools 
of probabilistic (Bayesian) inference used for this type 
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of process are reviewed, for instance, by Tanner [10] and 
Kass and Raftery [9]: various exact methods, Markov 
chain Monte Carlo methods such as Gibbs sampling, the 
EM algorithm, and the Laplace approximation. With 
creative combination, these are able to address a wide 
range of data analysis problems. Gilks, Spiegelhalter 
and Thomas have taken this process a step further by de- 
veloping a compiler that generates Gibbs samplers from 
graphical specifications [8]. This handles a surprisingly 
broad number of statistical tasks. 

It is the thesis of this paper that these techniques are 
now sufficiently well developed so that software support 
can be provided for their use in data analysis problems. 
That is, we are now able to generate components of data 
analysis algorithms, and even entire algorithms them- 
selves from high-level specifications. More details of this 
general capability can be found in [2]. A software gener- 
ator needs two parts to make it work: 

Language to specify problems: 
probabilistic graphical models (chain graphs [11]) ex- 
tended with plates are used as a specification language. 
When augmented with specific functional forms such 
as the Gaussian and the logistic, this language is suffi- 
cient powerful to represent a broad range of problems 
across several fields: generalized linear models, feed- 
forward networks, Jordan and Jacobs mixture of ex- 
perts, unsupervised learning of many different kinds, 
and hybrids of these models. A simple connectionist 
feed-forward network and its corresponding Bayesian 
network is given in Figure 3(a) and (b) respectively. 
The Bayesian network represents the feed-forward net- 

to (b) 

Slgmoid 

•aitsskm 

Slgmoid 

Slgmoi 'igmold 

Figure 3: A simple feed-forward network: (a) in native 
form (b) as a DAG 

work using deterministic nodes and then tacks on an 
error model at the end of the network to indicate that 
the measured response variables are not determinis- 
tic functions of the inputs. The feed-forward network 
in this configuration therefore computes means of a 
Gaussian. 

Algorithm Schemas: these are templates for high- 
level algorithms prior to code generation and compi- 
lation. 

• Gilks et al [8] have developed general algorithms to 
perform Gibbs sampling on Bayesian networks with 
plates. 

• Other algorithms such as conjugate gradient, 
Fisher's scoring method, or Laplace approximations 
[9] can be applied once first and second derivatives 
are calculated for model parameters. 

• The automatic calculation of derivatives on struc- 
tures is a well understood problem. In neural net- 
works, this corresponds to the Back-propagation al- 
gorithm and its extensions for second derivatives. 
Likewise, the calculation of derivatives on proba- 
bilistic graphical models is an application of the 
chain rule for differentiation. Details appear in [2]. 

• The more general application of the EM algorithm 
for hidden variables is obvious. 

Component libraries: Almond et al. [1] point out 
that parts of a graph, components, are often shared 
in a series of applications. Learning and data analysis 
are no different. One useful component is the gener- 
alized linear model which can include basis function 
sets for orthogonal polynomials or wavelets. 

We can see that many parts of this ambitious plan, a 
software tool kit for data analysis, are already in place. 
The plan needs to be qualified, however. Proponents 
of Gibbs sampling, for instance, say that the design of 
an efficient sampler takes care and experience. Specific 
matrix forms might be used to advantage. It is often the 
case that some fine tuning is needed in algorithms. The 
aim here is to provide tools for software engineering, not 
complete packaged solutions. 

One task that can never have direct software support is 
the design of an appropriate model with an appropriate 
prior. This is a knowledge elicitation problem. Tech- 
niques here are varied and range from careful choice of 
the representation to simplify elicitation, to techniques 
for working with components and libraries [1]. But the 
elicitation task still has to be done afresh with each dif- 
ferent problem, except in those prototypical situations 
that are routinely addressed by standard statistical pack- 
ages. While one might use a standard package in initial 
modeling, as the problem becomes better understood, 
specific requirements are needed that canned software 
may not provide. Of course, tools for software gener- 
ation alleviate the modeling task greatly by providing 
rapid prototyping. Nevertheless, it is my view that a siz- 
able burden in the Bayesian analysis of data is software 
engineering rather than the statistical analysis itself, and 
therefore software generators and support tools are both 
a realistic and important goal. 

In this paper we discuss a few more pieces for this 
general software toolkit. The first is an algorithm for 
the decomposition of a chain graph with plates into in- 
dependent components. This technique has been used 
to develop efficient algorithms for learning Bayesian net- 
works from complete data [4]. The second contribution 
is some exact algorithms on graphical models with a sin- 
gle plate. Both these simplify calculation of the Bayes 
factor for a model, used widely in Bayesian methods [9]. 
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The Bayes factor is the support given to model M2 rel- 
ative to model Mi by the data sample. 

p(sample\M2) 
Bayes- factor(M2, M,) =  -^—^. 

We use the term evidence for the basic component, 

evidence(M) = p(sample\M) 

and consider its calculation throughout. 
While these techniques can be used in many places in a 

learning toolkit, one interesting by-product is that they 
show how to develop algorithms for learning DAGs from 
complete data where the conditional distributions are in 
the exponential family, including mixtures of Gaussians, 
Poissons, discrete variables, etc. All that is required is 
a conjugate prior. While this capability should not be 
surprising —and perhaps the hardest part, appropriate 
priors, is left out—it is interesting that we can construct 
these algorithms automatically using the operations pre- 
sented here. More recent work has focused on the devel- 
opment of priors and their use in the broader scheme of 
things. 

Exact algorithms on graphs with plates 
The removal of a plate from a graphical model requires 
conditions that are well known in statistics. The problem 
reduces to the existence of sufficient statistics giving a 
graphical version of the Pitman-Koopman Theorem from 
statistics. 

Comment 1 (Plate removal). Consider the model M 
represented by the graphical model for a sample of size 
N given in Figure 4(a)>    where x is in the domain X 

(b) 

Figure 4: The generalized graph for plate removal 

and y is in the domain Y, both independent of 9, and 
both domains have components that are real valued or fi- 
nite discrete. Let the conditional distribution for x given 
y,9 be f(x\y,9), which is positive for all x E X. If first 
derivatives exist w.r.t. all real valued components of x 
and y1, the plate removal operation applies for all sam- 
ples x* = xi,...,xN, y* = yi,.-.,VN, and 9, as given in 
Figure 4(b), for some sufficient statistics T(x*, y») of di- 
mension independent of N if and only if the conditional 
distribution for x given y, 9 is in the exponential family, 

1l have yet to find a clear development of this. Usually, 
y isn't included in the classic treatment, but we need it here 
and it works. 

with form 

p(x\y,l Ma>y) 9,M)  =  ^^exP[^^(öX(x,y)J   ,   (1) 

for some functions W{, U, h and Z and some integer k. 
In this case, T(x,,y*) is an invertible function of the k 
averages 

1   N 

Graph decomposition 
Learning problems can be decomposed into sub- 
problems in some cases. For instance, consider the learn- 
ing problem given in Figure 5 over two multinomial vari- 
ables vari and var2, and two Gaussian variables xi and 
x2. For this problem we have specified two alternative 
models, model Mi and model M2.     Model M2 has an 

Model = Mj 
Model - M2 

^0 
Figure 5: Two graphical models 

"^o 

additional arc going from the discrete variable var2 to 
the real valued variable x\. We will use this subsequently 
to discuss local search of these models evaluated by their 
Bayes factor. 

A straight forward manipulation of the conditional dis- 
tribution for this model yields, for model Mi, the condi- 
tional distribution given in Figure 6. When parameters, 

/fSV- 
NVW 

N 

Figure 6: A simplification of model Mi 

01, #2, etc., are a priori independent, and their data 
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likelihoods do not introduce cross terms between them, 
the parameters become a posteriori independent as well. 
This occurs for 0X, 02, and the set {//i,<7i}. This model 
simplification also implies the evidence for model Mx de- 
composes similarly. Denote the sample of the variable xx 

as Xit, = xltl,..., xitN, and likewise for var\ and var2, 
etc. In this case, we get, 

evidence{Mx) = p(varht,\Mi)p(var2^\var1^,M1)   (2) 

p(aJi,.|varli*,Mi)p(a;2I*|a;iI*,var1|*,M1) . 

The evidence for model M2 is similar except that the 
posterior distribution of px and ax is replaced by the 
posterior distribution for fi[ and a'x. 

This result is general, and applies to both DAGs, undi- 
rected graphs, and more generally to chain graphs. Simi- 
lar results results are covered by Dawid and Lauritzen [7] 
for a family of models they call hyper-Markov. The gen- 
eral result described above is an application of the rules 
of independence applied to plates. This uses a notion 
of local dependence, which is called the Markov blan- 
ket. The Markov blanket is a node's parents, children, 
and the children's parents. If deterministic nodes are 
involved, the definition requires a bit more care [2]. 

To perform the simplification depicted in Figure 6, it 
is sufficient then to find the finest partitioning of the 
model parameters such that they are independent. The 
decomposition in Figure 6 represents the finest such par- 
tition of model Mx. The evidence for the model will then 
factor according to the partition, as given for model M\ 
in Equation (2). For this task we have the following 
theorem. 

Theorem 1 (Decomposition). A model M is repre- 
sented by a chain graph G with plates and no determin- 
istic nodes. Let the variables in the graph be X. We 
have P possibly empty subsets of the variables X, X{ 
for i = 1,...,P such that unknown(Xi) is a partition 
of unknown(X). This induces a decomposition of the 
graph G into P subgraphs G, where: 

• the graph G,- contains the nodes X, and any arcs and 
plates occurring on these nodes; and 

• the potential functions for cliques in G,- are equivalent 
to those in G. 

The induced decomposition represents the unique finest 
equivalent independence model to the original graph if 
and only ifXifori=l,...,P is the finest collection of 
sets such that, when ignoring plates, for every unknown 
node u in X{, its Markov blanket is also in X{. This 
finest decomposition takes 0(|X|2) to compute. Further- 
more, the evidence for M now becomes a product over 
each subgraph, 

evidence(M)  = f0 JJfi(known(Xi^)) ,      (3) 
> 

for some functions /,• (given in the proof). 

In some cases, the functions /,• have a clean interpre- 
tation: they are equal to the evidence for the subgraphs. 
This result can be obtained from the following corollary. 

Corollary 1.1 In the context of Theorem 1 where 
there are no deterministic nodes, suppose there exists 
a set of chain components Tj from the graph ignor- 
ing plates such that Xj = TJ U parents(rj), where 
unknown(parents(rj)) = 0. Then 

fj(known(Xjt,))  = p(known(Tj)*\parents(Tj)*,M) . 

When deterministic nodes exist, this is altered by re- 
defining the notion of parent [2]. 

If we denote the j-th subgraph by model Mj, then the 
probability term in the corollary is the conditional evi- 
dence for model Mj given parents^)*. Denote by M0 

the subgraph on known variables induced by cliquesQ (as 
given in the proof [2]). If the condition of Corollary 1.1 
holds for Mj for j = 0,1,..., P, then it follows that the 
evidence for the model M is equal to the product of the 
evidence for each subgraph. 

evidence(M)  =  JJew'dercce(M,) (4) 
>=o 

This holds in general if the original graph G is a DAG, 
as used in learning DAGs [4]. 

Corollary 1.2 Equation (4) holds if the parent graph G 
is a DAG with plates. 

In general, we might consider searching through a fam- 
ily of graphical models. To do this we can use standard 
methods such as local search or numerical optimization 
to find high posterior models, or Markov chain Monte 
Carlo methods to select a sample of representative mod- 
els [2]. To do this, we first show how to represent a family 
of models. Figure 7, for instance, is similar to models of 
Figure 5 except that some arcs are hatched. We use this 

^5 
Figure 7: A family of models (optional arcs hatched) 

to indicate that these arcs are optional. To instantiate 
a hatched arc they can either be removed, or replaced 
with a full arc. This graphical model then represents 
many different models, for all 24 possible instantiations 
of the arcs.   Prior probabilities for these models could 
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be generated using a scheme such as in [4, p54] where 
a prior probability is assigned by a domain expert for 
the inclusion of each arc, and the prior for a full model 
found by multiplication. The family of models given by 
Figure 7 includes those of Figure 5 as instances. During 
search or sampling, an important property is the Bayes 
factor for the two models, Bayes-factor{M2,Mi). Be- 
cause of the decompositions above, the Bayes factor can 
be found by only examining component Bayes factors for 
nodes whose parents have changed between models Mi 
and M2. The difference here is the model for the variable 

xi- 

* ..    t*t   ur\        P(xit*\vari,*,var2,*,M2) 
Bayes-factor(M2, Mi)  =        p{xiAvari^Ml) 

That is, the Bayes factor can be computed from only 
considering the models involving /ii, ffi and fi[,cr[. 

This incremental modification of evidence, Bayes fac- 
tors, and finest decompositions is also general, and fol- 
lows directly from the independence test. It has been 
used in fast learning algorithms for DAGs [4]. This is 
developed below for the case of directed arcs and non- 
deterministic variables. 

Lemma 1 For a graph G in the context of Theo- 
rem 1 with no deterministic nodes, we have two vari- 
ables U and V such that U is given. Consider 
adding/removing a directed arc from U to V. We up- 
date the finest decomposition of G as follows: There 
is a unique subgraph containing the unknown variables 
in parents(chain-component(V)). To this subgraph 
add/delete an arc from U to V, and add/delete U to 
the subgraph if required. 

We can therefore add shaded non-deterministic par- 
ents at will to nodes in a graph and the finest decom- 
position remains unchanged except for a few additional 
arcs. The use of hatched arcs in these contexts there- 
fore causes no additional trouble to the decomposition 
process. That is, we form the finest decomposition for 
a graph with plates and hatched directed arcs as if the 
arcs were normal directed arcs, and the evidence is ad- 
justed during the search by adding the different parents 
as required. 

Bayes factors for the exponential family 
The above results are useful, but to make use of them 
automatically we need to be able to generate Bayes fac- 
tors or evidence for models. It generally holds that if a 
likelihood is in the exponential family, then the posterior 
distribution for the model parameters is also in the expo- 
nential family, although it is only really useful when the 
normalizing constant is readily computed. This holds 
for the Dirichlet, the conjugate to a multinomial, and 
the Gaussian-Wishart, the conjugate to a Gaussian. We 
give the results here. 

Let the normalizing constant for the conjugate distri- 
bution for Comment 1 be Z9{T), and let the normalizing 

constant for the distribution be Zi{9)Z2 where Z2 is a 
constant part independent of 9, then the Bayes factor 
can be readily computed. This is a common trick used 
widely by Bayesians, however, I have never seen it stated 
explicitly. 
Lemma 2 Consider the context of Comment 1. 
Then the model likelihood or evidence, given by 
evidence(M) = p(xi,...,xN\yi,.. .,yN,M), can be 
computed as: 

evidence{M)    =     P{0\T')  
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Abstract 

In two-sample studies with ordinal responses, the 
Wilcoxon rank-sum test is commonly chosen to test 
equality of the distributions, HQ : Fi = i^, in spite of 
its being a test of the specific hypothesis of location-shift 
between the distributions. Unless a specific alternative 
is hypothesized, use of an omnibus test instead should 
maximize power. We compare the power of the exact 
tests based on the omnibus classical Smirnov statistic 
with that based on the Wilcoxon rank-sum statistic un- 
der various alternatives, including shift in location. To 
compute exact power we use the methods described by 
Hilton and Mehta (1993) and Mehta, Patel and Tsiatis 
(1984). These algorithms are especially useful in evalu- 
ating the Smirnov test because its asymptotic non-null 
distribution has not been defined. Specific examples as 
well as results of a simulation study are presented. 

Introduction 

When two-sample data with categorical responses are 
analyzed, if the responses are ordinal then the Wilcoxon 
rank-sum test (Wilcoxon, 1945) is commonly chosen to 
test equality of the distributions, HQ ; F\ — F-i- The 
Wilcoxon rank-sum statistic is specifically sensitive to 
the hypothesis 

Ho : F(x) = F(x - A), 

where A represents a location-shift between the distri- 
butions of responses. However, especially in categorical 
data, little may be known about the types of differences 
that occurs between distributions, in which case an om- 
nibus test should generally increase power. For example, 
the responses may differ in scale, r, as well as in location, 

"•"«-'(s^) 
A candidate omnibus test for two-sample ordered cat- 
egorical data is that based on the Smirnov statistic 
(Smirnov, 1939). 

Attempting to obtain high power, Eplett (1982) 
proposed a statistic that is the sum of the Wilcoxon 
and Smirnov statistics and evaluated its power under 
location and scale alternatives. He showed that "for 
light-tailed distributions" his test becomes progressively 
more powerful compared with the Smirnov test as the 
scale-change part of the hypothesis becomes more dom- 
inant. When one of the two distributions was uniform 
over [0,1], the power of the tests based on these two 
statistics were similar for m = n = 50. More recently, 
O'Brien (1988) and Blair and Morel (1992) evaluated 
four tests in the presence of location and scale changes 
in continuous data: Wilcoxon's test, Student's t test, 
and O'Brien's generalized versions of these tests (1988). 
The generalizations were defined to increase the sensi- 
tivity of the tests to scale changes. However, Blair and 
Morel (1992) found that "heterogeneity of patient re- 
sponse (scale change) does not always lead to power ad- 
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vantage for the unconditional generalized tests." Thus, 
at least in the continuous response data realm, the need 
for a test that is sensitive to a broad range of alternatives 
has not yet been satisfied. 

Here, we compare the power of the Smirnov test 
with that of the Wilcoxon test, the standard in prac- 
tice, under alternatives that include changes in location 
and/or scale. The underlying data are ordered categor- 
ical. Because asymptotic power formulae that account 
for categorical data do not exist, we evaluate the exact 
power of these tests. Mehta, Patel and Tsiatis (1984) and 
Hilton and Mehta (1993) described methods for testing 
or finding power of exact tests which are illustrated via 
the Wilcoxon statistic. Hilton, Mehta and Patel (1994) 
and Nikiforov (1994) have recently reported algorithms 
for conducting exact Smirnov tests for continuous or cat- 
egorical data. Method are presented for computing exact 
power and for modeling alternatives of interest between 
the distributions of the two groups. Finally, we explore 
the relative power of the Wilcoxon and Smirnov tests 
against a range of these alternatives. 

Methods 

Let x = (xi,...,xK), Y!,xi = m> an<i x' = 

(x[,...,x'K), J2xi — n> represent two samples of re- 
sponses from multinomial distributions with parameters 

(iri,...,irK), Yj*j = !> and (7ri>--->'ri<:)> Y.*'j = *> 
respectively. Denote the combined data by tj = Xj + 
x'j, j = 1,..., K, where K is the number of distinct cat- 
egories in the combined sample. Then the probability 
of a particular permutation of the data, conditional on 
t = (f i,..., IK ) is given by the generalized hypergeomet- 
ric distribution (Lehmann, 1975), 

Pr{X = x|t} = 

""«'Eft-TTT Ü 

where x, y € Tj, the set of all such permutations: 

K K 

Tt = {x : ^2Xj = m, ^x'j = n, and x + x' = t}. 
;=1 i=l 

Under an alternative hypothesis HA, T' specifies a 
particular alternative of interest. Then the power of, say, 
the test based on the Wilcoxon statistic, is 

ßt(w)   =    Pr{W>w\t;HA} (1) 

=       £    Pr{X = x\t;HA}, 
xert(tu) 

where Tt(w) = {x € Tt : J2j aixi ^ w> 3 = 1. • • -. %}■ 
Similarly, the test could be based on the Smirnov statis- 
tic, in which case the critical region would be Tj(s) = 
{x € Tt : m&Xj[Fm(j) - Fn(j)] > s, j = l,...,K}, 

where Fm(j) = -^Yji=ixi ~ 'ne empirical distribution 
function. 

Since power can be computed conditionally for all 
margins t (1), exact unconditional power can be ob- 
tained as the expected value of these terms, 

ten 
(2) 

where Q = {t : ^tj = m +n} and Pr{T = t; HA} = 
Exer ■Pr(X = x,X' = x'; HA}. In theory obtaining 

(2) is clearly not difficult, but in practice it is because 
the size of Q can be quite large. For example, for K — 5 
and m + n = 50, Q contains 316,251 distinct vectors t. 

To reduce the computational burden one can in- 
stead estimate exact power from a sample of 0, given 
m and n. Hilton and Mehta (1993) described a Monte 
Carlo estimator of exact power, 

ß(w) )=4xxw (3) 

and reported its high efficiency relative to the usual 
Monte Carlo estimator when using the Wilcoxon statis- 
tic in 5-category data. 

Modeling alternatives 

To account for the ordering of the responses, for group 1 
define the cumulative probability of responding in cat- 
egories 1 through j as jj = 7Ti -f 7r2 + • • • + Wj, and 
define the corresponding cumulative number of subjects 
responding in categories 1 through j as rrij = rrij-i + Xj, 
j = 1,..., K, where m0 = 0 and XXIK = m. For group 2 
define TJ- and rij, j - 0,..., K, analogously. The cumu- 
lative probabilities are useful in specifying the distribu- 
tions under alternative hypotheses. 

To simplify the problem of specifying alternatives 
in ordered categorical data, we find an extension of the 
proportional odds model (McCullagh, 1980) useful: 

,    ....      logit(Ti) — A    . 
logit TJ) =     *   K",\ , 3 = 1, 3 exp(r) 

,K-1, (4) 

where A,r £ (-00,00), and A = 0, r = 0 represents 
the null case. The model reduces the 2{K — 1) possi- 
ble parameters to K — 1 nuisance parameters, T; ■> 3 = 
1,. ..,K — 1, and two parameters of interest, A and r. 
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The nuisance parameters might represent, for example, 
the distribution of the control group whose values can 
be obtained from previous research. 

(a) 7i = (.2, .2, .2, .2, .2) 

I u 

I 
1 
§ 

(A, x): ■((), 0) cm(.67,0) E(0, 2) 
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o (^ 
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•8 
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0.4 

0.2 HUH 
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(b)y «(.?,.4, .6, .8,1.0) 

Figure 1. Distributions arising from equation (4) for 
three combinations of (A, r) as a function of (a) w = 
(.2, .2, .2, .2, .2) and (b) j = (.2, .4, .6, .8,1.0). 

Figure 1 illustrates some distributions that can 
arise from this model. Clearly, a rich field of alterna- 
tives can be specified through such a model, against 
some of which the Wilcoxon test may be more sensitive 
(A changes) and others the Smirnov test may be more 
sensitive (r changes). 

Example 

Lesaffre, Scheys, Frölich and Bluhmki (1993) described 
the problem of calculating sample size in studies with 
bounded outcome scores. Their responses fell into 21 
categories, obtained by collapsing a continuous 0 — 100 
scale, with high probabilities in the first and last cat- 
egories. They note that when the data have a U- 
shaped or J-shaped distribution, the assumptions un- 
derlying Lehmann's method of determining power via 
the Wilcoxon statistic are not met. This method indi- 
cates that 120 subjects per group are needed to detect 
a standardized difference of .38 with 80% power using 
a two-sided .05-level Wilcoxon statistic; we add that 95 
subjects per group are needed using a one-sided test. 

Their 21-point scale data are shown in Figure 2. 
Using the estimator described in (3) with N = 5, we 
estimated that the exact two-sided Wilcoxon power was 
47.1 ± 1.1% and Smirnov power was 44.1 ± 1.1%) — far 
less than the 80% obtained by the asymptotic approxi- 
mation. 

0.6 
HControl 

■Investigational 

50 100 
Barthel Index, categorized 

Figure 2. Distributions of Barthel's Index scores of 
control and treated subjects. (Modified from Lesaffre, 
Scheys, Frölich and Bluhmki (1993).) 
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Relative power 

We compared more generally the unconditional power of 
the .05-level one-sided exact Wilcoxon and Smirnov tests 
against location (A) and/or scale (r) alternatives in or- 
dered categorical data. Group 1 data were generated 
by transforming m = 50 (or 25) uniform[0,l] random 
variates into 5-category multinomial(m, ir) counts, where 
7T = (.2, .2, .2, .2, .2) (T = (.2, .4, .6, .8,1.0)). Group 2 
data with n = 50 (or 75) were generated similarly us- 
ing (4) to specify j'. We evaluated A=(0,.l(.2)1.3) 
by r= (0, .2, .4). These alternatives lead to large val- 
ues of the Wilcoxon and Smirnov statistics when testing 
HA '■ Ij < 7;-. i = 1,---,K - 1. For each combina- 
tion of parameters, N = 100 two-sample data sets were 
simulated. 

Figure 3 displays the relative power of the Smirnov 
to the Wilcoxon test in (a) balanced samples (m = 
50, n = 50) and (b) unbalanced samples (m = 25, n = 
75), as a function of A, for three values of r. The rel- 
ative power curves when r = 0 indicate that against 
location alternatives the Smirnov test was less power- 
ful than the Wilcoxon test in both balanced and unbal- 
anced samples. The relative power of the Smirnov test 
was lowest at A = 0, which demonstrated that it was 
more conservative (Smirnov size = 3.4 ± .07%; Wilcoxon 
size = 5.0 ± .00%). As A moved away from zero, the 
relative power of the Smirnov test increased. At A = .9, 
Wilcoxon power was 70% or 81%, depending on balance 
of samples, and Smirnov power achieved .84 — .86 times 
as much power. 

As r moved away from the null case, both tests had 
greater power than in the r = 0 case at all values of A. 
At A = .9, r = .2, Wilcoxon power was 77% or 88%, 
and Smirnov power achieved .88- .91 times these levels. 

For r = .4, in the absence of location changes (A = 
0) the Smirnov test had substantially greater power. The 
relative power decreased with the increasing influence of 
the location parameter, but remained > .95 for all A. 
At A = .9, T = .4, Wilcoxon power was 84% - 92%, and 
Smirnov power was .98-1.02 times as high. As expected, 
both tests generally had greater power in balanced than 
imbalanced samples. In addition, balance in sample sizes 
favored the Smirnov test. 

Conclusions 

The Wilcoxon rank-sum statistic is commonly used to 
analyze ordered categorical data. However, we believe 
that it should not be used without careful considera- 
tion of the alternative hypothesis of interest, since it was 
specifically designed to test a location-shift between dis- 

tributions. We compared the power of exact tests based 
on the Wilcoxon rank-sum statistic and the Smirnov 
statistic, focusing on the setting that is optimal for the 
Wilcoxon since it is the "standard" for 2 x K ordered 
categorical data. We estimated the relative power of the 
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Figure 3. Relative power of Smirnov to Wilcoxon test, 
as a function of location (A) and scale (r) changes be- 
tween distributions, in (a) balanced and (b) unbalanced 
samples. Nuisance parameters are n = (.2, .2, .2, .2, .2). 
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tests against location-shifts, with and without inclusion 
of local scale alternatives, using the method of Hilton 
and Mehta (1993). 

Under the null hypothesis of no difference between 
two distributions, the Smirnov test was more conserva- 
tive. This is because its support, or reference set, is more 
discrete than that of the Wilcoxon statistic. 

Against location-shifts alone, the setting in which 
the Wilcoxon test is optimal, the Wilcoxon test was 
substantially more powerful. In contrast, the Smirnov 
test was very sensitive to scale changes alone, while the 
Wilcoxon test had negligible power in this setting. 

For location-shifts in the presence of small scale 
changes, there was little difference in the power of these 
two tests. As the influence of the scale effect increased, 
so did the relative power of the Smirnov test. Without 
information on how two ordered categorical distributions 
differ, the test based on the Smirnov statistic is the safer 
choice. Our results held for two very different definitions 
of the nuisance parameters (only one shown here) and 
in balanced and unbalanced samples; they were strong 
enough to suggest that they hold fairly generally. 

The choice of the vector of nuisance parameters, 
representing a control group, can often be guided by 
previous research. Specification of the vector of param- 
eters in an experimental group can be more difficult; we 
proposed using a model, such as the proportional odds 
model, so that only location and/or scale differences be- 
tween the distributions need be specified. The choice of 
which model to use is somewhat arbitrary. Its selection 
is akin to choosing to base a power calculation for 2 x 2 
data on either the difference between binomial proba- 
bilities or on the odds ratio. Like the influence of the 
nuisance parameters, the impact of the model on the al- 
ternatives is much less than the impact of the location 
and/or scale parameters. 

In an example data set with an 11-point ordinal re- 
sponse and large probabilities in the extreme categories, 
we showed that Lehmann's asymptotic approximation 
can provide a very poor estimate of the power of the 
Wilcoxon test for ordered categorical data. We don't at- 
tempt to generalize this finding, but rather use it to illus- 
trate that Lehmann's approximation should be applied 
to categorical data with caution. Another drawback of 
asymptotic methods for power calculations is that the 
Wilcoxon statistic can be used but the Smirnov can- 
not - because its asymptotic non-null distribution has 
not been defined. In contrast, our exact method accom- 
modates a variety of statistics, including the Wilcoxon 
rank-sum and omnibus Smirnov statistics, and is most 

efficient when samples are small and response distribu- 
tions are discrete. 

In conclusion, if two ordered categorical distribu- 
tions differ at all in scale, with or without differences 
in location, then the Smirnov statistic should be used 
for designing and analyzing a study of the hypothesis of 
equality of distributions. 
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A SIMULATION STUDY OF SOME RANK TESTS FOR INTERACTION 
IN TWO-WAY LAYOUTS 

Guang-hwa Chang, Youngstown State University 
Department of Mathematics, Youngstown State University, Youngstown, OH 44555 

In this investigation, two versions of the F-statistic 
analogue of aligned rank test for interaction in two-way 
layouts are studied along with the classical F-test and 
the rank transform test. The Wilcoxon and the normal 
score functions are both considered in the study. The 
results from extensive simulation studies indicate that 
the aligned rank tests have better performance in gen- 
eral. None of these tests performs well for the Cauchy 
distribution. The use of the normal rank score function 
reduces the inflation in the Type I error rate of the rank 
transform statistic. 

1    INTRODUCTION 

In the traditional approach for testing main effects in 
two-way layouts, the existence of interaction needs to 
be tested first. In addition to the classical F-test, sev- 
eral nonparametric alternatives have been proposed by 
Mehra and Sen (1969), Mehra and Smith (1970), Bhap- 
kar and Gore (1974), and Mansouri and Govindarajulu 
(1990). The aligned rank methods studied by McKean 
and Hettmansperger (1976), Adichie (1978), and Chi- 
ang and Puri (1984) can also be used to form tests for 
interaction. 

The rank transform (RT) method consists of replacing 
the observations with their rank among the entire data 
set and performing the standard parametric analysis of 
variance (ANOVA) test to these ranks. Conover and 
Iman (1981) has suggested that the RT approach can 
be applied in a variety of circumstances such as analysis 
of experiment designs, multiple regression, cluster analy- 
sis, discriminant analysis. This type of testing procedure 
has many advantages over other procedures for its less 
strict distributional assumptions, greater power and also 
it is simple to apply because of the existing computer 
software for parametric tests. In the simulation stud- 
ies by Iman, Hora and Conover (1984), they show that 
this procedure has excellent power properties for test- 
ing main effects in two-way layouts without interaction. 
Hora and Conover (1984) has also found the limiting 
null distribution of the usual F statistic when applied to 
ranks for testing main effects in two-way layouts without 

interaction. The simulation results of Blair, Sawilowsky 
and Higgins (1987) show that the RT statistic is inappro- 
priate for testing interaction in two-way layouts. Under 
the assumption of normality and when both main effects 
are present, they found a severe inflation in Type I error 
rates as main effects are large. 

The reason for the RT technique to be so attractive 
is their simplicity, since the classical F-test is available 
in almost every statistical package. In this paper, two 
statistics, aligned RT statistic and modified aligned RT 
statistic, that have the same features of the RT statistic 
are studied. They are more powerful and robust then 
the RT statistic and are referred to as the aligned rank 
transform statistics. Through the use of the alignment 
technique, the inflation in Type I error rates is over- 
come. The formulas for these aligned RT statistics are 
presented in section 2. In section 3, tables are generated 
for Type I error rates and power analysis. It is concluded 
that the aligned rank transform test has the most robust 
test among the group of tests. None of these tests per- 
forms well for the Cauchy distribution. 

2    THE TEST STATISTICS 

Let Xtjk denotes the kth random observation from 
the (i, j)th cell follow the fixed effects model: 

Xijk =fi + ai+ßj+ Jij + tijk 

i = !,•••,r; j = !,-••,c; fc = !,-•• 

(2.1) 

. n: 

where r c-n = N, p. is the overall mean, a,- and ßj are the 
tth row and the jth column main effects, respectively, jij 
is interactions between the »th row and jth column, and 
e,ji are independent and identically distributed random 
variables having a continuous distribution function F(-). 
We wish to test the null hypothesis 

H0:jij=0,       Vi,j, 

against the alternative hypothesis 

Ha : fij ± 0,       for at least one (i,j). 
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The classical F-statistic is given by where 

F = 
MSINT 

MSE   ' 

n N 

(2-2) äN(RiJ.) = Y,aif(Rijk)/n, äN = J^aN(a)/N, 

where 
fc=i 0=1 

r    c and MSE(a) is obtained from (2) by replacing Xijk with 

MSINT = nY'Y'(Xij.-Xi..-X.i.+X...)/(r-l)(c-l)      M#0*)- It can be shown that under H0 the limiting 
tl h '       distributions of (r - l)(c - l)Fa and (r - l)(c - l)Fm 

(2.3)       are central X2 with (r - l)(c - 1) degrees of freedom, 
Mansouri and Chang (1994). 

.•=1 j=i 

ren 

MSE = £ V E<Xv* - ^•)2/rc(n - 1),     (2.4) 
t'xUtx 3    SIMULATION STUDY 

the combination of bar and dot notation means that the 
values are averaged over the subscript(s). 

Let Rijk denote the rank of X^k among Xm,---, 
-Xiin,---, Xrcn- The RT statistic F is obtained from 
(2.2) by replacing X^k with the ranks or the rank scores 
aN(Rijk)- We consider the rank score functions that 
satisfy the following general assumptions: 

• The scores aN(i) are generated by a non-constant 
and square integrable function <j> defined on (0,1), 
in one of the following ways: 

MO = ttjj^ni or> MO = E[<t>{uijN)i 

where 1 < i < N, and UitN is the ith order statistic 
in a sample of size N from a uniform distribution 
defined on (0,1). 

• The score generating function <f>(u) on (0,1) is such 
that 

0< a '(<i>)= I [<l>{u)-4>fdu< 00, j>= f <j>(u)du. 
Jo Jo 

Let {<*,•}[■_! and {ßj}j=1 denote some consistent esti- 
mators of {a>i}J_X and {ßj}]=1 under H0, respectively, 

such that NV2(&i - a,) and JV1/^/?,- - /?,) are bounded 
in probability for every i and j. Let the aligned rank 
Rijk be the rank of Xijk — <i. — ßj among X\\\ — <*i — 
ß\, • ■ ■, Xrcn -ar-ßc. The the aligned RT statistic Fa 

has the form (2.2) by replacing Xijk with aN(Rijk). 
The modified aligned RT is the F-statistic version of 

the aligned rank test suggested by Mansouri and Govin- 
darajulu (1990). The statistic for the modified aligned 
RT test is 

r      e 
F«> = nEE^(^')-^]2/[(''-l)(c-l)M5£(a)], 

•=i j=i 

In the Monte Carlo simulation studies, we present results 
from the design with r = 4 rows and c = 3 columns. 
Each design is replicated 5000 times to insure the stabil- 
ity of the simulated sampling distributions of the statis- 
tics that are considered. The least-squared estimators 
are considered for a,- and ßj in the aligned RT tests. 

Table 1 contains the empirical Type I error rates ver- 
sus the nominal a = .05 for normal underlying dis- 
tribution with the main effects a2 = ß\ = e, and 
«3 = ßi = —e and all other effects equal to zero. The 
Wilcoxon rank score function is used. As in Blair et al. 
(1987), a severe inflation in the Type I error rates is ob- 
served for the RT statistic Fr as e increases. Whereas 
the Type I error rates of Fa and Fm stay inside the 95% 
confidence bounds and behave nicely. 

The empirical power for these statistics with interac- 
tion effects are presented in Table 2. For cases where the 
empirical Type I error rates are not much larger than the 
nominal values, we can see that F, Fa, and Fm have bet- 
ter empirical power than Fr. 

The Type I error rates and power of these tests are also 
simulated under different distributions to examine their 
robustness properties. Table 3 and 4 contains results 
from exponential (EXP), double exponential (DEX) and 
Cauchy (CAU) distributions. None of these tests per- 
forms well for Cauchy. As both of the main effects 
increase, the inflation in Type I error rates of the RT 
statistic is observed in every distribution. However, it 
performs better than other tests when the underlying 
distribution is Cauchy. The aligned RT statistic has bet- 
ter performance in general. The other rank tests seem 
to have higher empirical power, but this is due to their 
over inflated Type I error rates. 

In table 5, the Type I error rates and power of the \2 

version of the aligned RT tests, A = (r- l)(c-l)Fa and 
M = (r— l)(c - l)Fm, are also presented. Comparisons 
can be made with the results of the F-statistics in table 
3 and 4. The empirical Type I error of the F-statistics 
converge faster than their \2 counterparts. The empir- 
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ical power of the F-statistic is slightly less than that of 
the x2-statistic. 

When the normal scores are used and the underly- 
ing distribution is normal, the empirical Type I error 
and power of the aligned RT tests perform as well as F 
(Mansouri and Chang 1994). Furthermore, the inflation 
of the empirical Type I error for the RT test is signifi- 
cantly reduced. 

Stat. 
Samp e size (n), a = .05 

c 5 10 20 50 
0.50 F .050 .053 .051 .052 

Fr .055 .052 .053 .057 
Fa .053 .052 .053 .050 
Fm .056 .058 .058 .055 

1.00 F .048 .047 .047 .047 
Fr .057 .069 .093 .189 
Fa .051 .051 .051 .045 
Fm .055 .056 .056 .051 

1.50 F .047 .050 .054 .053 
Fr .071 .136 .314 .848 
Fa .050 .045 .052 .053 
Fm .056 .050 .055 .058 

2.50 F .047 .051 .049 .056 
Fr .192 .684 .995 1.000 
Fa .052 .051 .048 .055 
Fm .056 .057 .053 .060 

Table 1:   Type I Error Rates of Tests for Interactions 
when a2 = ßi = e, a3 = ß2 = -e. 
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c Stat. EXP DEX CAU 

0.50 F .052 .049 .017 
Fr .086 .048 .053 
Fa .055 .047 .463 

Fm 
.212 .081 .999 

1.00 F .052 .054 .016 

Fr .399 .113 .059 
Fa .053 .052 .468 

Fm .215 .084 1.000 

1.50 F .045 .045 .012 

Fr .924 .368 .093 
Fa .052 .049 .458 

Fm .197 .079 .999 

2.50 F .043 .047 .018 
Fr 1.000 .994 .261 
Fa .046 .047 .472 
Fm .198 .073 .999 

Sample size (n), a = .05 
c       Stat. 5 10 20 50 

* Type I Error 
0.50    A .065 .060 .056 .051 

M .072 .066 .062 .056 
1.00    A .063 .057 .054 .046 

M .069 .063 .059 .052 
* Power Analysis 
0.50    A .138 .221 .425 .867 

M .150 .234 .440 .874 

1.00    A .421 .755 .985 1.000 
M .440 .770 .985 1.000 

Table 5: Type I Error and Power of R and M. 

[12] Mehra, K. L., k Smith, G. L. E. (1970). On non- 
parametric estimation and testing for interaction in 
factorial experiments. /. Amer. Statist. Assoc, 65, 
1283-96. 

Table 3: Type I Error Rates of Tests for Interactions 
when a2 = ß\ = c, c*3 = /?2 = —e, with a = .05, sample 
size n = 50. 

c Stat. EXP DEX CAU 
0.50 F .449 .540 .018 

Fr .997 .679 .311 
Fa .999 .727 .564 
Fm 1.000 .780 .999 

1.00 F 1.000 .996 .024 

Fr 1.000 .999 .823 
Fa 1.000 1.000 .806 
Fm 1.000 1.000 1.000 

1.50 F 1.000 1.000 .028 
Fr 1.000 1.000 .980 
Fa 1.000 1.000 .954 

Fm 1.000 1.000 1.000 

Table 4: Power analysis of Tests for Interactions when 
Til = e, 74i = ßi = —e, with a = .05, sample size 
n = 50. 
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Abstract 

Wilcoxon's signed rank sum test, Wilcoxon's rank sum 
test and Ansari-Bradley's rank sum test are three well 
known distribution-free tests. When the samples size 
is large enough, the lower tail probabilities PQ [T„ < x], 
Po [Wmin < x] and P0 [Am,n < x] may be easily com- 
puted, under H0, using some normal approximations. 
When the size of the samples is too small these nor- 
mal approximations become unfortunately insufficient. 
So the main goal of our work is to find some fast algo- 
rithms which compute the exact lower tail probabilities 
■Po [Tn < x], Po [Wm,„ < x] and P0 [Am,n < x] when the 
normal approximation is inefficient. 

When the size of the samples is too small (i.e. n < 15 
for Wilcoxon's T„ statistic and m + n < 20 for the 
others), these normal approximations become unfortu- 
nately insufficient. So the main goal of our work is 
to find some fast algorithms which compute the exact 
lower tail probabilities P0 [Tn < x], P0 [Wm,n < x] and 
Po [-4m,n < x] when the normal approximation is ineffi- 
cient. 

2    Wilcoxon's Tn statistic 

The T„ statistic can only take values between 0 and 
n(n + l)/2. So we can deduce a first elementary rela- 
tion 

f 0   if x < 0 
Po [Tn <x] = 

1    ifi> 
n(n + 1) 

1    Introduction 

Wilcoxon's signed rank sum test, Wilcoxon's rank sum 
test [2] and Ansari-Bradley's rank sum test [1] are three 
well known distribution-free tests. The two first may 
be used to investigate the presence of a shifi in location 
between two populations, whereas the last one may be 
used to investigate the presence of a difference in scale 
between two populations having unknown but equal me- 
dians. These tests are based respectively on Wilcoxon's 
Tn statistic, Wilcoxon's Wm)„ statistic (which is closely 
related to Mann-Whitney's Umin statistic [3]), and on 
Ansari-Bradley's Amt„ statistic. 

When the sample size is large enough, the 
lower tail probabilities P0 [Tn < x], P0 [Wmi„ < x] and 
•Po [Am,n < x] may be easily computed, under Ho : 9 = 0 
(no shift in location) and Ho : f2 = 1 (no difference 
in scale), using some normal approximations. For a full 
description of these approximations see [4] pages 28,68- 
69,85. 

The T„ distribution is, under H0 : 9 = 0, symmet- 
ric about n(n + l)/4. It is thus possible to compute 
P0 [T+ < x] using a value which is always smaller than 
n(n + l)/4. Therefore, when x > n(n + l)/4, we can 
apply a second elementary relation 

n(n + 1) 
Po [Tn < x] = 1 - Po Tn< x-l 

The lower probability Po [Tn < x] may be computed by 
counting the number T£x of fc-tuples, k £ {0,1,.. .,n}, 
among {1,2,..., n) having a sum less or equal to x and 
by divising it by C° + Cn + ■ ■ ■ + C£ = 2" 

Po[Tn<x}=-£r 

Now let us define Tn,k to be the set of all the ^-tuples 
among {1,2, ...,n} and T^l to be the number of fc- 
tuples of Tn,k having a sum less or equal to i.   With 
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these definitions, it is clear that 

T£X = ET% 
k=0 

Let us define T™j." and T^fx to be respectively the 
minimal and maximal sums of the elements of all k-tuples 
of Tn<k. If we now define k\ > 0 to be the largest integer 
verifying x > T™£* and k2 > k\ to be the smallest integer 
verifying x < T™).", then we have 

-i<r = EC* + E Tl 
*=0 

The values T^j." and 7™^x may be computed using the 
following recurrent relations 

J7»,0 = 0 
<r>max 
1n,0 = 0 
rnmin = r„T-i + * 

/T>max 
ir»,Jfe = ^T-i + n 

We can show that the value T~k may be computed 
using the following relation 

n-*+l 
ri<X 
(n,ib 

Erp<X-jk 
1n-j,k-l 

J'=l 

3    Wilcoxon's Wmn statistic 

m(m + l)/2. Then we can always suppose that m < n, 
and if it is not the case the following rule may be used 

Po[Wm<n<x] = P0 W      <x     m(m+1)  i "("+1) 

Let us define W£*n and W=*„ to be the number of m- 
tuples among {1,2,..., m+n] having a sum respectively 
less or equal to x and equal to x. Under Ho : 9 = 0, the 
lower tail probability Pa \Wm,n < x] is determined by the 
ratio 

Po [Wm,n <x] = 
W-x 

■'m+n 

Let us also define Wmin,k, * € {1,2,.. .,n+l} to be the 
set containing all the m-tuples among {1,2,...,m + n} 
beginning by k, and W™'£t, ff™t to be respectively 
the minimal and maximal sums of the elements of all m- 
tuples of Wmin,k- These values may be computed using 
the following recurrent relations 

W, mm          
m.n.l 

Wmax — "m,n,l — 

Wm,n . — "m,n,k — 
rymax _ 
"m.n.k — 

m(m + l)/2 

rn(m + 2n + l)/2 - n 

W^.k-i + m 
rrrmax 
" m,n,k- 1 + 1 

r<x We also introduce W~ n k to be number of m-tuples of 
Wmin,k having a sum less or equal to x. By definition, 
we have 

n + l 
W<* — V^ w-x 

"m,n — / , "m,n,k 
k=l 

The Wmin statistic can only take values between 
m[m + l)/2 (i.e. Xi,X2,.. .,Xm are all smaller than 
YUY2, ...,Ym) and m(m+2n+l)/2 (i.e. XUX2, ...,Xm 

are all greater than Y\, Y2,..., Ym). Thus, 

Po [Wm,n <x]=< 
0 if x< 

1 if x> 

m(m + 1) 

, 2 
m(m + 2n + 1) 

When m and n are exchanged, the distribution of 
Wmi„ under HQ : 6 = 0 is just shifted by n(n + l)/2 — 

By a similar reasonning, if we define Jfei > 1 to be the 
largest integer verifying x > WfH™k and k2 > ki to be 
the smallest integer verifying x < W™™ k , then we have 

^ = EC^ E WZ,* 
k=ki+l k=l 

r<x 

Under HQ : 6 = 0, Wmt„ has a symmetric distribution 
about m{m + n + l)/2. Hence we can deduce a relation 
which is usefull when 2i > m{m + n + 1) 

Po [Wm,n <x] = l-P0 [Wm,„ < m(m + n + 1) - x - 1]      and then 

We can show that W^ n k may be recursively com- 
puted using the simple following relation 

rYm,n,k — YYm-l,n-k+l 

Jb, *3-l 

YYm,n — / ^m+n-k T      / ,     "m-l.n-t+l 
Jb=l ifc=ii+l 
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The probability P0 [Wm>n = x] may be computed 
by counting the number W=*n of m-tuples among 
{1,2, ...,m + n} having a sum equal to x and by di- 
vising it by C£+n 

W~x 

Po[Wm,n=x] = -£± 
t-'m+n 

By a similar reasonning (and with the same notations), 
we get 

ta-l 

vym,n —     2Li     YYm~l,n-k+l 

4    Ansari-Bradley's Am,n statistic 

Let A'm „ and A'J^ „ be respectively the minimal and max- 
imal values that an Am<n statistic can take, such that 

n [Am,n < xj _ | j  .f x > ^„ 

These values depend on the parity of m and n. We can 
show that if m is even then 

,        _    m(m + 2) 

m(m + 2n + 2) 
4 

Thus, if m + n is even 

A"       — 

and if m is odd then 

AL (m + 1)2 

4 
'   m(m + 2n + 2) + 1    . 

A"        —    i Sim <l        — \ m(m + In + 2) - 1 

if n is even 

if n is odd 

Under Ho : j2 = 1, -<4m|„ has a symmetric distribution 
about its mean m(m + n + 2)/4 only if m + n is even. 
In this case we can apply the following relation when 
4x > m(m + n + 2) 

Po [Am,» < *] = l~P° Wm,n<
mim+

n
n + 2)-x-l 

When m and n are exchanged, the distribution of 
Wm,n under HQ : 0 = 0 is shifted and inverted such 
that 

Po [Am,n <x] = l-Po [An,m < A'min + A'^m - X - 1] 

Po [Am,n < x]     = 
l-Po[An,m<^+n^+n+^-x-l] 

and if m + n is odd then 

Po [Am,n <x] = l-P0 ■^sfcLt-i^-.-,] 

We can always suppose that m < n, and if it is not 
the case we have to apply one of the previous relations. 

Let us define -Aj£c„ to be the number of m-tuples, de- 
fined by Ansari-Bradley's rule, having a sum less or equal 
to x. Under HQ : y2 = 1, the lower tail probability 
Po [Amin < x] is determined by the following ratio 

Po[Am,„<x]=^- /~>m L/m+n 

If we define s > m to be 

'   (m + n) 

s= < (m + n-I) 

if m + n is even 

if m + n is odd 

then we can also define Amin>k, k € {0,1,...,m} to 
be the subsets containing all the m-tuples, defined by 
Ansari-Bradley's rule, having k elements among the s 
first ones. For each subset Am>n,k, we define j4-*n t to 
be the number of m-tuples of AmiTlik having a sum less 
or equal to x. Hence we have 

m,n        / j ^m.n.k 
k-0 

But for jfc = 0 we have Am*n>0 = W£*n_, and for k = m 

replaced by 
we have A^n m = W^x,_m.   So the previous may be 

m-l 

Am*n — ^m.n-t + Z_j ^m,n,k + ^m,»- 
i=l 

The s first elements of subset j4m,n,jb contain all the k- 
tuples of k integer among {1,2,...,«}. Let a,,* and ßtik 
be respectively the minimal and maximal sums of this s 
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first elements. We can easily show that these values may 
be computed using the following recurrent relations 

a,,o = 0 

Ä,o = 0 
«,,jt = aSik-i + k 

A,* = ß.,k-i+s-k + l 

If we denote (for clarity) ji = at<t and fa = A,*> we 
can show that 

Ja 

■^m,n,k = 2~/ ^*,»-*     m-Jfc,n-» +k 
J=Ji 

and finally 

A-x     =    W-x 

m-1   ji 

*=1 J=Ji 

5    Computer   performances   and 
Conclusions 

The algorithms for computing the Wilcoxon's and 
Ansari-Bradley's statistics have been written in C Lan- 
gage, compiled with the GNU GCC compilator and 
tested on a SUN-IPC. The average time for computing 
Po [T„ < x] is approximately 0.05 seconds for n = 20, 
and the average time for computing Po [Wmitl < x] and 
Po [Am,n < x] for each combination of m + n = 20 is also 
approximately 0.05 seconds. These results show clearly 
that the average response time of the three proposed al- 
gorithms is very small, and thus statistical tables become 
useless. 

These paper shows also that the Ansari-Bradley's 
Am<n statistic may be computed in term of Wilcoxon's 
Wm<n statistic. This reduces the size of the algorithms 
themselves. 
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Abstract 

Nonparametric estimation of functionals is performed 
in a biased sampling model. Several samples are inde- 
pedently drawn from different populations, with con- 
straints imposed on the underlying distributions. A 
functional of interest is expressed via a certain convex 
combination of the underlying distributions. 

A new estimation procedure is described here. It gives 
an asymptotically efficient estimate of a quite arbitrary 
functional. This procedure, properly modificatied, is 
also relevant to estimate the whole distribution function 
and various non-linear functionals. As an alternative to 
the known estimation procedure studied by Gill, Vardi 
and Wellner (1988), this technique seems to require less 
computations. 

1    Introduction 

Various studies conducted in technometrics and econo- 
metrics are based on data that emerge from a population 
with "slowly changing" features. Several mathematical 
models have been proposed to describe a drifting popula- 
tion via dynamic changes in the underlying distribution. 
A biased sampling model can be also considered as one 
of those. The model was initially considered by Vardi 
(1985) who derived nonparametric maximum likelihood 
estimates. Later Gill, Vardi, and Wellner (1988) proved 
asymptotic optimality results for a nonparametric max- 
imum likelihood estimate of a cumulative distribution 
function (CDF). 

Under biased sampling, subsamples are drawn inde- 
pendently, with constraints imposed on the underlying 
distributions. This paper describes an alternative esti- 
mation technique for a functional of interest, 

9(F) =  fK(x)dG(x) 

represented as an integral with respect to a convex 
combination, G, of the underlying distributions. The 
method studied in this paper requires less computations 

and attains the same asymptotic perfomance level as 
the one derived in Gill et al. (1988). Applications 
include a wide variety of more complicated transforms 
and functionals of G. Once the estimate, G, is derived 
for the entire CDF, G, the plug-in rule suggests to use 

9 =  9 (Ö) as an asymptotically efficient estimate of 

9(G), for a quite arbitrary transform, 9(G). As an 
illustration, a simple example emerging from economet- 
ric studies is considered and numerical results are pre- 
sented. The algorithm and its modifications are pre- 
sented. Heuristic considerations are aimed to explain 
why and how this technique does work. As to the proofs, 
they seem to be quite long and technical and will be pre- 
sented in the paper in preparation (Koshevnik, 1994). 

2    Construction of the Estimate 

Suppose that s samples (or strata), 

X = {Xij : 1 < i < nj; 1 < j < s} (1) 

are collected indepedently, so that the j-th stratum 
comes out from a distribution Fj, (1 < j < s). It is con- 
venient to use another probability mechanism to describe 
the data generation as follows. Consider a bivariate ran- 
dom variable. (J, X) where J takes values 1,2,..., s with 
certain probabilities, say P (/ = j) = Xj, which add up 
to 1, i.e. Yl'j=i ^j = *• Fach Fj is nothing but the con- 
ditional distribution of X, given J = j. A functional (or 
coparameter) of interest introduced as a convex combi- 
nation of integrals, 

* = X>i   lKi{z)dFi{x) (2) 

is the expectation taken with respect to a joint distribu- 
tion, P, of the pair (J, X), 

9 = J K(j,x)dP(j,x), (3) 
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where K (j, x) = Kj (x). Constraints on the condi- 
tionals (Fj : 1 < j < s) are expressed in terms of the 
marginal distribution, G, of X, i.e. 

G = ^AiFi. (4) 
i=i 

Under the biased sampling model, these conditionals sat- 
isfy an infinite system of equations 

dF- 
(5) 

and due to this reason, they all can be expressed by 
means of G. The weight functions, (Wj : 1 < j < s) 
are given, but the weight coefficients, or simply weights, 
(WJ : 1 < j < s) can be unknown. If there were no re- 
lation between the conditionals, the natural estimate of 
(3) that replaces G by a similar convex combination of 
empiricals (Fj : 1 < j < s), i.e. 

ö = EAi^- (6) 
i=i 

would have been impossible to improve. Additional in- 
formation provided by constraints enables one to adjust 
the initial estimate by means of the device that per- 
forms an orthogonal projection onto some subspace in 
the space of estimates. 

Practically, even the proportions (A;- : 1 < j < s) can 
be unknown, but in this case, it is natural to assume 
their empirical analogues to be consistent estimates, i.e. 

lim ^ = A,-, (7) 

for 1 < j < s. As far as the weights (wy : 1 < j < s) 
are concerned, they also can be either known or un- 
known. We consider both of the options. If the weights 
are given, they can be all made equal to 1, since other- 
wise each function, Wj, will be replaced by Uj Wj. With 
the weights unknown, since both G and each Fj are prob- 
ability measures, the following equations 

WJ =Uj(G)= (^JWj(x)dG(x^ 
-l 

(8) 

hold.  This suggests the estimation procedure that ap- 
proximates weights from the data. 

For a coparameter of interest, 

9(G) =  j K(x)dG(x), (9) 

an alternative representation, via the joint distribution, 
P, of a pair (J, X) is exploited.  Integration over P is 

nothing but a convex combination of integrals with re- 
spect to the conditionals, as in (2), with Kj — ^. This 

suggests an estimate, ^ = ^!ß, of \P (G) defined as 

*'=£[
ßtjw,d*'>> (10) 

with a vector of unknown coefficients 

ß = (ßj ■  1 < j < s) 

and empirical distributions [Fj : 1 < j < s 1 replacing 

the conditionals. If both the weights and proportions are 
specified, so that every uij can be made equal to 1, it will 
be explained later that the coefficients (ßj : 1 < j < s) 
can be selected equal to the corresponding A's. 

Generally, however, there will be an adaptive proce- 
dure required to construct the asymptotically efficient 
estimate. Asymptotically, this estimator differs from the 
one with the known weights. Asymptotic efficiency for 
the estimate can be attained in this case due to a two- 
step procedure. At first, the weights are empirically ap- 
proximated, via their consistent (even -v/iV-consistent) 
empirical estimates, and then, with these substitutes, 
the estimate is produced, as if the unknown weights were 
equal to their empirical analogues. An explanation of 
the algorithm is based on the minimization procedure. 
Among all possible estimates of $ (G) as in (9), pick up 
the one that minimizes the asymptotic variance in (10), 

Var (up)  —► min. 

This procedure will typically give a vector 

ß= {ßj = ßj(Fu...,Fa): l<j<s), 

whose components depend on G, or equivalenltly, on all 
conditionals. Weak convergence results valid for the em- 
pirical process defined by the estimate, G, of the cumu- 
lative distribution function, G, are shown in (Koshevnik, 
1994) to hold uniformly in P 6 U. Here U is a suitably 
chosen (small) neighborhood of P, so it becomes possible 
to replace unknown weights by their -y/^-consistent es- 
timates. The similar idea was successfully implemented 
in Koshevnik and Levit (1976), to construct an asymp- 
totically efficient estimator for a functional of interest 
from independent identically distributed data. 

3    Algorithm Description 

Here we outline the algorithm showing how the asymp- 
totically efficient estimates can be computed. Three op- 
tions are considered:  the first one faces with the case 
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when both weights and proportions are known; the sec- 
ond one is designed for known weights and unknown pro- 
portions; and the third one is aimed to estimate a func- 
tional of interest under both weights and proportions 
unknown. 

3.1 Known Weights and Proportions 

In this case, assume that all w;- = 1. Since all \j are 
known, the equation 

;=i 

contains uncertainty in the distributions only. Therefore, 
the functional of interest (9) can be expressed as a con- 
vex combination of integrals with respect to the distribu- 
tions Fj, which are constrained by (5). Putting a mass 
Xj (Wj (Xji))'1 into each Xu, and taking the empirical 
average with respect to this weighted empirical distri- 
bution, we obtain the desired estimate of a functional 
(9). In particular, this method gives an asymptotically 
efficient estimate of G(t) for any fixed t. 

3.2 Known Weights and Unknown Pro- 
portions 

Once we agree that sample proportions provide con- 
sistent estimates of unknown A;-'s, i.e. (7) takes place, 
the similar estimate can be proposed to estimate a func- 
tional (9) in this case. Replacing unknown proportions 
by their sample analogues and putting the mass 

into Xji, we obtain an estimate of G. Averaging with 
respect to this weighted empirical distribution will give 
an asymptotically efficient estimate of (9), as before. 

3.3 Unknown Weights and Proportions 

In this case we can no longer ingnore that the weights 
are unknown. As far as the proprotions are concerned, 
their sample versions still are assumed to be consistent 
estimates. The proposed estimate of (9) is as in (10), 
with the coefficients ß — (ßj : 1 < j < s) obtained from 
the minimization procedure followed by the plug-in rule. 
Equivalently, the first step of this algorithm defines ß as 
a vector of functional, with components depending on 
the conditionals, while the second step replaces these 
distributions by their empirical versions, each of them 
based on the corresponding stratum. 

4    Asymptotic   Efficiency: 
line 

Out- 

The constraints (5) imposed on the distributions 
can be exploited to derive the intormation inequali- 
ties similar to those presented in Bickel et al. (1993), 
see also Koshevnik and Levit (1976). To understand 
why the proposed methods provide asymptotically ef- 
ficient estimates, consider the case s = 2 here. Let 
Fi and Fj be mutually absolutely continuous. Again, 
G — Ai F\ + A 2 F2 is a convex combination of the un- 
derlying conditional distributions here. Assume that Ai 
and A2 are given and the weights are known. Then, a 
functional (9) can be written as 

U>1 / *« + hJw, Wi 
dF2 u2 

so having the weights known, it is easy to find out that 
the -adjustment proposed for this case generally will give 
just the weighted empirical distribution. With the pro- 
portions Ay's unknown, the similar procudure will be rel- 
evant due to a general result in (Koshevnik, 1994). This 
result implies in particular that the weighted empirical 
processes 

VÄT 

converge weakly to certain Gaussian processes, not 
only for every vector I = ((j : 1 < j < s) satisfying 
J2j=\ tj = li hu*' uniformly in £. Hence, convergence (7) 
implies that the replacing A;- by its consistent estimate 
jfr will not cause any change in asymptotic behavior of 
the estimate. 

A slightly more complicated argument can be ex- 
ploited to prove that in the case of unknown weights 
Wj's, the same general result from (Koshevnik, 1994) 
implies uniform (in ß G B, where B is a set of vectors 
ß) weak convergence of the weighted empirical distribu- 
tions. Hence, having replaced the unknown weights by 
their vW-consistent estimates, we will change only the 
variance-covariance structure of the limiting Gaussian 
process, 

VN (G(<) - G(0) 
Fortunately, this will be just the same limiting process 
that appears in Gill, Vardi, and Wellner (1988) to de- 
scribe both the limit in distribution for the proposed 
estimate and the lower bounds of asymptotic risks. The 
reasons of this coincidence are similar to those noticed 
by Koshevnik and Levit (1976) for the case of homo- 
geneous observations. (See also Koshevnik and Levit 
(1983) where a more general result is presented.) This 
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fact enables one to almost "automatically" prove asymp- 
totic efficiency of the proposed estimates. 

5    Example 

The application described here illustrates how the 
proposed technique works in a relatively simple case, for 
a combination of continuous and discrete data. Mean- 
while, this example also explains why and how the pro- 
posed method is relevant for partially observable data, 
which are subject to either censoring or truncation. 

A data set includes three strata. The first stratum, 
labelled as j = 0, is simply a collection of independent 
observations (Xo; : 1 < i: < ran), with a common cumu- 
lative distribution, F. For two given values, d\ and d2, 
the second and third strata contain values 

(Yji = IiXjiKdj}: l<i<nj), 

labelled as j = 1 and j = 2 respectively. These data 
came out from econometric studies where several polls 
were processed. The stratum with j = 0 contains com- 
plete answers on how much respondents had actually 
paid for the services provided, while the two remaining 
strata came from the polls aimed to indicate whether 
respondents would have agreed to pay a certain amount 
of money for the same services. Records included indi- 
cators of events such as X < d\ (the second stratum) or 
X < d2 (the third, stratum). These data are obviously 
incomplete. A coparameter to be estimated includes two 
components of interest, namely 

(FidO.Ffa)). (11) 

An asymptotically efficient estimate of (11) can be found 
from the competing estimates based on different strata. 
Notice that each of the cell probabilities in (11) can be 
estimated by means of either the empirical CDF based 
on the complete (j = 0) stratum or on the correspond- 
ing stratum, j = 1 or j = 2 respectively, of incomplete 
dichotomous data. Neither of these estimates is efficient 
generally, but both of them are unbiased. A general 
method suggest to use an initial estimate such as F(di) 
and F (d2), i.e. the empirical CDF based on the stra- 
tum 0. As a competitor, the proportions py = jjf, can 
be calculated via Yi and Y2, t-e. simply the sums over 
the 1-st and the 2-nd strata. Theoretically, these esti- 
mates have equal expectations, but to make them equal 
just means to find an adjusted (or balanced) estimate of 
(11). The following algorithm was developed to estimate 
(11) in Koshevnik and Schucany (1994). 

1. Calculate empirical proportions as described. 

2. The estimate, F(di), of (11), is proposed as 

F(di) - an (£(di) -pi) - a12 [F(d2) -p2) , 

and the similar expression can be written for the 
second component, with the coefficients 021 and 022 
replacing an and a12, respectively. 

3. For each of the components, the variance minimiza- 
tion problem is solved with respect to the coeffi- 
cients üj = (aji,a,j2). This gives the coefficients 
depending on the distribution F. 

4. The solution ay,- (F) is replaced by its empirical es- 
timate, using the empirical function, F, which will 
be vN-consistent, provided all three values, i.e. 
7M 7v"> 7M 

converge to strictly positive limits, as 
A' = no -t- "i + n2 —► 00. 

5. This will yield the asymptotically efficient estimate 
of (11). 

Asymptotic efficiency in this case is implied by the 
possibility to reduce the problem into a parametric one. 
In the meantime, the similar adjustment procedure was 
developed for any functional such as F (t) with the vec- 
tor of coefficients, a (t) = (aj (<), a2 (<)). Asymptotic 
efficiency of this general estimate requires some facts re- 
garding empirical processes. 

5.1    Numerical Illustration 

The sizes coincide for all three strata, i.e. 

no = ni = n2 = 100, 

while Fidi) = 0.3, and F (d2) = 0.6. The calcu- 
lations performed for incomplete strata have indicated 
Pi = 0.35 and p2 = 0.70. 

The coefficients calculated by means of minimization 
of the variance of a proposed estimate F(di) (respec- 
tively, F(d2)) gave 

an = 0.481  and    a12 = 0.067 

for the first component, and 

a2i = 0.154  and    a22 = 0.462 

for the second one. Under these values of the coefficients, 
the improved estimate, F(d\) of (11) is equal to 

0.30 - 0.481 • (0.30 - 0.35) - 0.067 • (0.60 - 0.70) = 0.331 

and similarly, F (d2) is calculated as 

0.60 - 0.154 • (0.3 - 0.35) - 0.462 • (0.6 - 0.7) = 0.654. 
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6     Conclusions 

The method presented here provides the same asymp- 
totic optimality of estimation as the initial proposal by 
Vardi (1985). Computationally, it turns out to be easier, 
for it does not require some auxiliary components to be 
estimated as precisely as possible. The asymptotic per- 
formance attainable by means of this method can hardly 
guarantee that it works perfectly for any reasonably large 
data set. Some additonal studies are needed to investi- 
gate its features for moderately large samples. 

Possible applications include various models with par- 
tically observable data, such as censored or truncated 
observations. Being focused on the asymptotic opti- 
mality only, this method provides a unified approach to 
estimation of various functionals and transforms of the 
unknown infinite-dimensional parameter. Both asymp- 
totic normality and asymptotic optimality of the pro- 
posed estimates are due to the same result, known as 
empirical central limit theorem and derived uniformly, 
as the infinite-dimensional parameter, G, in the consid- 
ered model, runs over a small neighborhood in the set 
of distributions. The only serious technical limitation of 
the applicability of the results presented in Koshevnik 
(1994) is that this neighborhood must be precompact 
with respect to the Kolmogorov distance between two 
distributions, i.e. 

d (Gi.Ga) =     sup     \G1(t)-G2(t)\. 
—oo<<<oo 
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Abstract 

Three different approaches to approximation of double 
bootstrap confidence intervals, each with the aim of im- 
proving computational efficiency, are considered. The 
first replaces the need for a second level of bootstrap 
sampling by analytic tail area approximations. The sec- 
ond performs the second level of sampling in a sequential 
manner. The third uses empirical versions of asymp- 
totic expansions for the end points of the double boot- 
strap confidence interval and for the additive correction 
to nominal coverage to avoid the need for resampling. 
The three methods are compared in relation to their re- 
spective set-up costs, the improvements in efficiency they 
yield, the coverage properties of the approximate inter- 
vals and the generality with which they may be applied. 

1    Introduction 

The iterated bootstrap provides a satisfactory theoreti- 
cal solution to the problem of producing non-parametric 
confidence intervals with high coverage accuracy, as well 
as stable lengths and endpoints: see [4] (Section 3.11). 
An iterated bootstrap confidence interval requires an ad- 
ditive correction to be made to the nominal coverage of 
an uncorrected interval. This correction will usually be 
made using a double bootstrap resampling procedure in- 
volving two nested levels of Monte Carlo simulation, and 
is therefore often computationally prohibitively expen- 
sive for routine use. 

Recently there has been much attention paid to pro- 
cedures by which the computational demands of the it- 
erated bootstrap confidence interval construction may 
be reduced. In this paper we consider three different 
approaches to approximation of iterated bootstrap con- 
fidence intervals. The first ([2], [3]) replaces the need for 
a second level of bootstrap sampling by use of analytic 
tail area approximations based on saddlepoint methods. 
The second ([5]) performs the second level of sampling 

in a sequential manner. The third ([6]) uses empirical 
versions of asymptotic expansions for the additive cor- 
rection to nominal coverage and for the end points of 
the iterated bootstrap intervals to provide two computa- 
tionally attractive methods of approximation. The first 
asymptotic interval replaces the need for a second level 
of bootstrap sampling by a series of simple numerical 
computations which are readily automated. The second 
interval requires no resampling. The three approaches 
are compared in relation to their respective set-up re- 
quirements, the improvements in efficiency they yield, 
the coverage properties of the approximate intervals and 
the generality with which they may be applied. 

Section 2 provides some background and a formal defi- 
nition of the iterated bootstrap confidence interval. Sec- 
tion 3 discusses the analytic approximation approach. 
Section 4 presents a discussion of the sequential sampling 
idea and Section 5 discusses the asymptotic calibration 
approach. A simulation study involving construction of 
bootstrap confidence intervals for the population vari- 
ance, together with general discussion, is presented in 
Section 6. 

2    Iterated Bootstrap Confidence 
Interval 

We will consider the following problem. We wish to con- 
struct an accurate bootstrap confidence interval for a 
scalar parameter 0 expressible as a smooth functon of a 
vector mean: 6 = g(fi), where 

» = &!,...,I'd) = (E{fi(W)},...,E{fd(W)}), 

with fi,...,fd smooth, real-valued functions and W de- 
noting a generic random variable with the underlying 
jb-dimensional distribution F. The form of F is unspeci- 
fied, but our data X = (Wi,..., Wn) consists of n obser- 
vations independently drawn from F.  Suppose further 
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that 9 is estimated by 9 = g(X), where 

x = (x1,...,xd) = n-1i:xi, 

with 

Xi = (Xu,....XM) = {fi(Wi),..., fd(Wi)}, 

i=l,...,n. 
We shall see later that assumption of such a 'smooth 

function model' is crucial to the analytic approximation 
and asymptotic calibration methods, but not to the ap- 
proach based on sequential sampling. 

Let X* denote a generic resample - or 'bootstrap 
sample' - of size n drawn from X, obtained by inde- 
pendently sampling with replacement from X. Denote 
by I0(a; X,X*) a bootstrap confidence interval for 9 of 
nominal coverage a. This interval I0 could, for example, 
be the percentile method confidence interval, defined be- 
low. 

The coverage probability of IQ is 

*(a) = P{9eI0(a;X, X*) \F}, 

and in many cases will be significantly different from a. 
The interval I0(a + i; X,X*), where 7r(a + t) = a, 

has coverage exactly equal to the nominal coverage a. 
Of course, the value of the 'calibration coefficient' t is 
rarely available. The idea behind the iterated bootstrap 
in this context is that a bootstrap estimator of t may be 
constructed using a second level of resampling. 

Let X** denote a generic resample from X* and let 
Io(a; X*, X**) be the version of I0(a;X,X*) computed 
using X* and X** instead of X and X*, respectively. 
Then the bootstrap estimate of ir(a) is 

ir(a) = P{9Elo(a;X*>X**)\X}) 

with the calibration coefficient i being estimated by f, 
where 

it(a + i) = a. 

The iterated bootstrap confidence interval for 9 is then 
I1(a;X,X*) = I0(a+i;X,X*). 

In practice, the iterated bootstrap confidence interval 
construction requires Monte Carlo simulation. A finite 
number B of bootstrap samples, X*,..., Xg, are drawn 
from X at an outer level of resampling, and it(a) esti- 
mated by the proportion 

card {1 < b < B : 9 e h{a; X£, X^*)}/B. 

Usually, exact evaluation of I0 is not feasible, so a second 
level of C resamples is drawn from X£ to approximate 

I0(a;Xb*,Xn,    b = l,...,B. 

We see, therefore, that to approximate i B resamples 
must be drawn at an outer level of resampling, and C 
resamples drawn, for each outer level resample, at the in- 
ner level. So a total of B(C+1) bootstrap samples must 
be drawn to construct the iterated bootstrap confidence 
interval 2i. Further, both B and C must be large, of the 
order of 1000s, in order to reduce Monte Carlo simula- 
tion error to acceptable proportions and ensure accurate 
approximation to the theoretical interval. Some means 
of improving computational efficiency is desirable. 

Typically the confidence interval I0 will be taken as 
the percentile-method interval. It is noted (see for exam- 
ple [4], Section 3.11.1) that the percentile method yields 
confidence intervals with stable lengths and endpoints: 
bootstrap iteration offers the prospect of retaining de- 
sirable stability while enhancing coverage accuracy. The 
percentile method is based on the premise that the sam- 
pling distribution of 9* = 9(X*) under sampling from 
X should be close to the unconditional distribution of 9 
under sampling from F. 

Define yß by P(9 < yß \ F) = ß. The bootstrap 
estimate is yp, where P(9* < yß | X) = ß. The (theo- 
retical) nominal a-level percentile confidence interval for 
9 is J0 = [yw, y(], where £ = (1 + a)/2. 

For the case of the percentile method interval 7o, the 
approximation to %{a) becomes 

card {l<6<B:l-e< P(9*b* < 0 I *?) < ti/B, 

where §1* = 9(X£*) and X£* denotes, as before, a generic 
bootstrap sample drawn from the outer level bootstrap 
sample X£. 

3    Analytic Approximation 

DiCiccio, Martin and Young ([2], [3]) consider analyt- 
ical methods which significantly reduce the computa- 
tional demands of the iterated bootstrap. Their methods 
employ saddlepoint approximations to replace the inner 
level of resampling. 
_ Define 9* = </(X*)_and 9** = g(X**), where X* and 

X** are versions of X computed using X* and X**, re- 
spectively, in place of X. 

The procedure described by DiCiccio, Martin and 
Young ([2]) is based on estimation of the tail probabil- 
ity P(9** < 9 | X*) through saddlepoint approximation 
to the joint density of the components XI*,..., X*d* of 
X** given X*, together with application of a tail proba- 
bility approximation of DiCiccio and Martin ([1]) to the 
saddlepoint density. 

The algorithm used by DiCiccio, Martin and Young 
([2]) for construction of an approximate iterated boot- 
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strap confidence interval involves first drawing B re- 
samples Xf,...,XB from X. For each resample Xf 
(b = 1,.,.,-B), the analytic approximation is used to 
estimate P{e? < 6 \ X^). DiCiccio, Martin and Young 
([2]) suggest choosing several nominal levels 71,72,--- 
close to the desired level a and determining whether the 
condition 

\{i-7i)<p(%* <o\x;)<\Q+yi) 

is satisfied for each 7,-. Then an estimate of £(7;) is the 
proportion among the B resamples for which the condi- 
tion holds for the respective 7,-. The desired calibration 
coefficient *, which has z(a + i) = a, is approximated 
by interpolation between the {7,-,Jr(7i)} pairs. The ap- 
proximate iterated confidence interval is the percentile 
method interval of nominal level a + i based on the re- 
samples X{,..., Xß. 

The key computational requirement of the procedure 
of DiCiccio, Martin and Young ([2]) is iterative solu- 
tion of a system of 2d + 1 non-linear equations in as 
many unknowns, together with a series of matrix inver- 
sions. In practice, for some first-level bootstrap samples 
the iteration may fail to converge. When this occurs 
we recommend use of the resampling approach instead. 
Computational efficiency is determined largely by the 
frequency with which the iteration fails to converge. Di- 
Ciccio, Martin and Young ([2]) give a number of exam- 
ples of use of their procedure, which demonstrate the 
value of the approach, both in terms of accuracy and 
computational efficiency. We restrict attention here to a 
series of general remarks on this approach. 

(1) It is observed that the analytic approximation ap- 
proach yields confidence intervals with little dis- 
cernible loss of coverage accuracy over the full- 
blown iterated resampling intervals constructed us- 
ing nested levels of resampling. 

(2) The advantages of using the methods - which may 
be a tenfold reduction or more in computation for 
simple problems - diminishes as the dimensionality 
d increases, for then the complexity of the iterative 
procedure increases. 

(3) The methods entail some setup costs, in terms of re- 
coding for different problems, and, as already noted, 
require use of fairly sophisticated packaged numeri- 
cal routines for root finding etc. 

(4) DiCiccio, Martin and Young ([3]) demonstrate how 
the analytic methods may be modified to make con- 
struction of iterated bootstrap confidence intervals 
by this approach both feasible and computationally 

worthwhile in more complicated situations. They 
approximate to the solution of the system of non- 
linear equations, and so avoid the costly iteration. 
Use of the resampling alternative to the analytic 
approach is then never required. The crude meth- 
ods DiCiccio, Martin and Young ([3]) describe incur 
some loss of coverage accuracy over the previous an- 
alytic approach, but computational savings are sub- 
stantial. While reliance on sophisticated numerical 
routines is reduced, setup costs are still substantial. 

(5) A weakness of the approach lies in the fact that the 
analytic methods are restricted in use to the partic- 
ular smooth function model described in Section 2 
above. 

(6) For a given problem, the computational advantage 
of using the analytic approximations of DiCiccio, 
Martin and Young ([2]) is most substantial for larger 
sample sizes n, for then the saddlepoint equations 
are generally easier to solve. However, the bootstrap 
is most likely to be indicated for use with smaller 
sample sizes. 

(7) Computational speed of the analytic methods of 
DiCiccio, Martin and Young ([2]) is observed also 
to depend heavily on the underlying distribution, 
as the iteration converges in many fewer steps for 
some data samples than others. Use of the alter- 
native analytic procedure of DiCiccio, Martin and 
Young ([3]) effectively eliminates the dependence of 
computational efficiency on n and F. 

4    Sequential Sampling 
Recall the algorithm for construction of the iterated 
bootstrap confidence interval. For each 7,-,i = l,---.' 
(/ = 3 is sufficient in practice) we wish to know whether 
the condition 

|(1 ~ 7,0 < Pißt* < 9 I *»*) < |(1 + 7.0 

is satisfied, for each of B bootstrap samples X{,..., X% 
drawn from X. The value of p = P{6*b* < § \ X£) is not 
actually required, but instead we wish to know whether 
the condition 

£(1-7.0<P<^(1 + 70 

is satisfied, » = 1,..., /. 
Assume 0 < 71 < 72 < • •' < 7/- Tflen we wish to test 

simultaneously a set of nested hypotheses Hi,...,Hi, 
where H{ is the hypothesis that £(1-7.) <P< |(1+7.)- 
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Lee and Young ([5]) demonstrate how to construct 
a simultaneous sequential probability ratio test of the / 
hypotheses. The idea now, therefore, is to use a differ- 
ent number of second level resamples for each first level 
resample, with the stopping rules of the sequential prob- 
ability ratio test designed to minimise the (asymptotic) 
expected number of second level resamples drawn. De- 
tails of the computation of the stopping rules are given 
by Lee and Young ([5]). Since the sequential probability 
ratio test is being proposed as an alternative to the use 
of inner level bootstrap sampling with a fixed number 
C of resamples, the approach is to constrain the error 
in testing Hj by the sequential approach to be the same 
as that incurred when testing Hj by a fixed-sample test 
with sample size C. Computation of the stopping rules 
then amounts to solving a straightforward constrained 
optimization problem. The fixed sample size C is used 
as a terminating upper bound on the sequential stop- 
ping time of the simultaneous sequential probability ra- 
tio test, so that we are guaranteed to draw fewer second 
level bootstrap samples than in the standard construc- 
tion of the iterated bootstrap interval. 

By use of the sequential sampling idea we may con- 
struct an approximation to the iterated bootstrap confi- 
dence interval with considerable computational savings 
over the standard procedure which draws a fixed num- 
ber C of second level resamples from each first level re- 
sample. By construction, the sequential sampling proce- 
dure has (asymptotically) the same error in estimation 
of 7r(7») as the standard procedure. Key remarks on the 
sequential sampling approach are the following: 

(1) The resulting intervals display no significant loss 
of accuracy over the full-blown iterated resampling 
intervals, by design. 

(2) In typical problems, the sequential intervals use 
only about 10-20% of the computational effort re- 
quired by the direct approach. Computational sav- 
ings are therefore competitive with those achieved 
by analytic methods in moderately complex prob- 
lems, though less in simple problems. 

(3) Computational gains through use of the sequential 
sampling idea are roughly problem independent and 
also roughly independent of the sample size n or un- 
derlying distribution F, and indeed of the param- 
eter 9 being studied. The approach may therefore 
be used in any new problem of interest, secure in 
the knowledge that it will yield a definite level of 
computational saving. 

(4) The sequential approach can be used for any pa- 
rameter 0, not just for the smooth function model 

described in Section 2. 

(5) Setup of the approach is performed just once. The 
method may then be applied without modification 
to construct a confidence interval for any parame- 
ter 0. No sophisticated numerical procedures are 
required for implementation. 

5    Asymptotic Calibration 

For the percentile method confidence interval Jo, the cal- 
ibration coefficient t satisfies 

P{6 G |&_€_«/a,Ve+t/a] I F) = «• 

As noted, t depends on F, which is unspecified, so is 
unavailable. 

The bootstrap version of t is t which satisfies 

where 

P0€[yl_(_i/2,y;+i/2]\X) = a, 

P(e**<yß\X\X) = ß. 

Given i, the two-sided iterated bootstrap confidence in- 
terval of nominal coverage a is 

h(a;X,X*) = [£i_f_(72>2/f-Ho- 

using Hall ([4]), we may establish, under mild conditions 
on F and g, asymptotic expansions for t and yß: 

t    =    2n-1Ti(ar€ )<f>(zt) + 2n-2ir2(z{)<t>(z{) + ■■■ 
yß    =    O + n-^aizß+n-Wpnizß) 

+ n~1p2i(zß) + ...} 

for 0 < ß < 1. 
In these expansions, the 7r/s are odd polynomials, 

the pjx's are polynomials of degree at most j +1 and are 
odd for even ,; and even for odd j, a2 is the asymptotic 
variance of n1/2(ö-ö), <j> is the N(0,1) density and Zß — 

In any given example these expansions are extremely 
complicated. However, since a2 and the coefficients 
of the polynomials depend only on moments of F, we 
may easily establish the corresponding expansions for 
the bootstrap versions i and yß of t, yß respectively: 

i   =    2n-17T1(ze)^(zf) 

+ 2n-2TT2(z()(f>(z() + • • ■ 

yß    =    e + n-1,2a{zß 

+ n~lf2pu(zß) + n-1]52i(z/j) + ...}• 
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Here rtj, pji and cr2 are obtained by substituting sample 
moments for population moments in the expressions for 
"J'J Pjii °"2 respectively. 

Define 
t = 2n~1jti(z()<l>(z() 

and 

yß    =   § + n-1/2&{zß 

+ n~1/2pn(zß) + n_1p2i(^)}- 

Note that both these quantities may be calculated di- 
rectly from sample moments: no Monte Carlo approxi- 
mation is required. 

We therefore arrive at two possible sample-based 
asymptotic approximations to the iterated bootstrap 
confidence interval: 

h    =    [yi_f_f/2>«f+*/2]i 

h   =    [s/i_f-t/2»S'e+f/2]- 

Key comments on these intervals, introduced by Lee and 
Young ([6]), are: 

(1) The interval 72 still involves sample quantities yß, 
to be approximated by one level of bootstrap resam- 
pling. But the inner level of sampling is avoided by 
use of i, computed directly without sampling. 

(2) In principle, the interval h requires no resampling 
at all. The procedure might, however, occasionally 
require some form of adjustment, if, for example, 
a + i £ (0,1) or j/i_f_f/2 > V(+i/2- m tnis case we 

suggest using 72 instead. 

(3) Construction of the intervals 72 and 73 is easily 
packaged. The required computation requires to be 
coded just once, for the general case. Application 
then requires only specification of the formula g for 
the parameter 9 of interest. The basis of an auto- 
matic packaging is use of techniques of exact numer- 
ical derivative evaluation. For details, see Lee and 
Young ([6]). In particular, no symbolic computation 
is required for practical use. 

(4) Through study of a range of problems, it would ap- 
pear that asymptotic calibration gives coverage cor- 
rection comparable to the analytic and sequential 
approaches, and the full-blown iterated bootstrap, 
at a fraction of the computational cost. An indica- 
tion of the levels of computational saving is given in 
the example of Section 6 below. 

(5) The asymptotic calibration requires purely arith- 
metic computation, and computational savings are 
therefore independent of sample size or underlying 
distribution. 

(6) Use of asymptotic calibration is, however, restricted, 
as with the analytic approach, to the smooth func- 
tion model. 

6    Simulation Study 

A simulation study has been carried out on the variance 
example studied by Schenker ([7]) and DiCiccio, Mar- 
tin and Young ([2]). The parameter of interest 9 is the 
population variance and its estimate 9 is the (biased) 
sample variance. The study compared the coverage ac- 
curacy of the (uncorrected) percentile confidence interval 
IQ with the full-blown iterated bootstrap interval 7i, ap- 
proximated using two nested levels of resampling. Also 
compared were the asymptotic intervals 72 and 73, the 
sequential interval 7, of Lee and Young ([5]) and the two 
approximate intervals TAI and 7A2 described by DiCic- 
cio, Martin and Young ([2]) and DiCiccio, Martin and 
Young ([3]) respectively. 

Four different underlying distributions with various 
degrees of skewness and kurtosis were used: the stan- 
dard normal N(0,1), with no skewness and no kurto- 
sis, the folded normal \N(0,1)|, with high skewness and 
low kurtosis, the double exponential of unit rate with no 
skewness and high kurtosis, and finally, the log normal, 
exp(JV(0,1)), which has high skewness and high kurtosis. 
The variances are respectively 1,1 — 2/TT, 2 and e(e — 1). 
Three different sample sizes were taken: n = 20, 35 and 
100 respectively. The full-blown iterated interval 7 was 
not constructed for n = 100 due to its immense compu- 
tational demands in this case. 

The coverage probabilities of the various confidence 
intervals were approximated from 1600 random sam- 
ples, so that each coverage figure has a standard er- 
ror of approximately 0.01. Intervals 7o, 72, TAI and IA2 

were constructed using B = 1000 bootstrap resamples. 
The full-blown iterated interval 7i was constructed us- 
ing C = 1000 inner level bootstrap samples. The se- 
quential interval I, was constructed using B = 1000 
outer level bootstrap samples: the inner level of sam- 
pling was performed sequentially, subject to an upper 
limit of C = 1000 bootstrap samples being drawn from 
any given outer level sample. The analytic interval 7>u 
generally requires no inner level resampling. However, 
occasionally the iteration required by the analytic ap- 
proximation failed to converge. In these circumstances 
the interval was constructed by the resampling method, 
using C = 1000 inner level resamples. The interval h 
generally requires no resampling. However, in the case of 
erratic asymptotic interval end-points where, for exam- 
ple, the lower limit exceeds the upper limit, the interval 
73 was replaced by 72. 
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Table 1: Estimated coverage probabilities for variance, based on 1,600 random samples of sizes n = 20, 35 and 100 
drawn from each of four different distributions, h is full-blown interval, I0 is uncorrected percentile interval. Is is 
sequential interval, J2 and J3 are asymptotic intervals, IA\ and IA2 are saddlepoint-based analytic intervals. 

Normal data N(0,1) (no skew, no kurtosis) 
Interval coverage, n = 20 coverage, n = 35 coverage , n = 100 

h 
h 
h 
h 
Is 
IAI 

lA2 

0.833 
0.832 
0.727 
0.848 
0.829 
0.820 
0.803 

(0.161) 

(190.2) 
(0.001) 

0.854 
0.853 
0.793 
0.859 
0.851 
0.843 
0.829 

(0.014) 

(166.8) 
(0.000) 

0.883 
0.884 
0.857 

0.883 
0.879 
0.873 

(0.000) 

(143.1) 
(0.000) 

Folded normal data \N(0,1)| (high skew, low kurtosis) 
Interval coverage, n = 20 coverage, n = 35 coverage , n = 100 

h 
h 
h 
h 
Is 

IAI 

IAI 

0.803 
0.800     (0.285) 
0.686 
0.815 
0.793     (195.4) 
0.792     (0.024) 
0.778 

0.821 
0.819     (0.101) 
0.753 
0.834 
0.823     (176.6) 
0.815     (0.003) 
0.798 

0.874 
0.880 
0.843 

0.876 
0.873 
0.860 

(0.003) 

(151.6) 
(0.002) 

Double exponential data ( ̂ exp(- |ar|) (no skew, high k urtosis) 
Interval coverage, n = 20 coverage, n = 35 coverage , n = 100 

h 0.811 0.846 0.869 

h 0.809 (0.304) 0.848 (0.118) 0.872 (0.013) 

h 0.698 0.776 0.834 

h 0.826 0.854 — 

h 0.796 (202.4) 0.844 (182.4) 0.871 (157.1) 

IAI 0.803 (0.026) 0.840 (0.002) 0.869 (0.000) 

lA2 0.783 0.817 0.850 

Log normal data exp {N(0,1)} (high skew, high kurtosis) 
Interval coverage, n = 20 coverage, n = 35 coverage , n = 100 

h 
h 
Jo 
h 
Is 
IAI 

IAI 

0.526 
0.526     (0.533) 
0.416 
0.544 
0.513     (218.7) 
0.529     (0.117) 
0.519 

0.602 
0.602     (0.393) 
0.504 
0.630 
0.589     (207.7) 
0.610     (0.059) 
0.591 

0.696 
0.696 
0.608 

0.706 
0.699 
0.663 

(0.216) 

(190.6) 
(0.007) 
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Table 2: Theoretical leading terms in asymptotic expansions of calibrating coefficient and coverage error correspond- 
ing to the standard iterated bootstrap confidence interval I\. 

True distribution Calibrating coefficient, 

t 
Coverage error, 

P(0 eh)-a 

Standard normal, JV(0,1) 

Folded normal, |iV(0,1)| 

Double exponential, exp(—|x|)/2 

Log normal, exp(iV(0,1)) 

3.109 n-1 

6.498 n"1 

1.206 X 10 n"1 

1.411 xlO6«"1 

-1.499 xlO2«-2 

-1.370 x 103n~2 

-1.240 xl04n"2 

-2.488 x 1020n-2 

The simulation results are reported in Table 1. For 
the interval I3, the proportion of simulations for which 
the end-points were erratic is given in parentheses. This 
proportion, though substantial for n = 20, diminishes 
to negligible values for larger sample sizes, except for 
the log normal case. For the interval IAI, the propor- 
tion of occasions when resampling was used instead of 
the analytic approximation is given in parentheses: this 
proportion also diminishes rapidly with n. The figure iv 
parentheses after each coverage value for the sequential 
interval is the average number of second level bootstrap 
samples drawn, to be compared with the fixed number 
C = 1000 of the conventional interval 7i. 

The results show very clearly the effect of iteration 
on the coverage accuracy of the intervals. Overall, the 
full-blown interval I\ offers the best coverage accuracy, 
though all the approximate intervals considered offer rea- 
sonable approximations, in terms of coverage accuracy, 
to that interval. As expected, the crude analytic interval 
IAI displays discernibly poorer coverage accuracy than 
the interval IAI it directly approximates. 

Considering the sequential interval I,, we note the re- 
quirement of slightly fewer inner level resamples as the 
sample size n increases. Also, the number of sequential 
resamples depends slightly on the underlying distribu- 
tion. Nevertheless, we observe that the computational 
savings due to drawing the inner level resamples sequen- 
tially are not much affected by the underlying distribu- 
tion, compared to the other intervals considered. 

Without giving full timing comparisons, we note that 
the computational savings through use of the asymp- 
totic interval 73 depend on the proportion of times that 
adjustment of that interval is required. Relative to I2, 
the interval J3 is most computationally advantageous for 
larger n and normal-type underlying populations. Use 
of 73 can reduce computation relative to 7z by as little 
as a factor of 2, for n = 20 in the log-normal case, or 
as much as 150 or so, for n = 100 and a normal distri- 
bution.  Compared to the sequential interval 7», use of 

73 reduces computation by a factor of at least 250 for 
n = 20: for n = 100 this factor increases dramatically to 
around 15000, except for the log-normal case where the 
factor remains of the order 400. The sequential interval 
I, requires about 3 times the amount of computation of 
the analytic interval IA2, uniformly over the cases con- 
sidered in the simulation. As we have previously noted 
we might expect, the computational savings through use 
of the analytic interval 7A 1 are very variable. Relative to 
7,, which we have already noted provides fairly uniform 
savings, requiring about 1/5 of the computation of the 
full-blown interval h, IAI can vary from requiring about 
twice as much computation to requiring only about 1/3 
as much computation, depending on the sample size and 
underlying distribution. 

It is to be noted that, even with iteration, the cover- 
age error is often very large, especially for the log normal 
underlying distribution. To illustrate further the impact 
on coverage error of different distributions, we have com- 
puted the theoretical leading terms of the expansions of 
the calibrating coefficient t and of the coverage error, for 
the theoretical iterated bootstrap confidence interval 7i. 
Note that all the iterated intervals considered here have 
coverage error of order 0(n-2), while the uncorrected 
interval 7o has coverage error of order 0(n-1). Results 
are listed in Table 2. We can readily appreciate why the 
log normal distribution yields large coverage error, and 
why the bootstrap iteration has relatively little success 
in eliminating coverage error in this case. 

In terms of coverage accuracy, the asymptotic calibra- 
tion proves very effective, and is also by far the best of 
the intervals considered in terms of computational speed. 
The interval 73 generally provides worthwhile computa- 
tional savings over I2. The interval 73 is perhaps, there- 
fore, to be favoured overall. In the variance example 
considered here, use of the asymptotic interval 73 re- 
duces computation by a factor of 1000s, compared to 7i, 
whatever the sample size or parent population. 



Acknowledgements 

We are grateful to Tom DiCiccio and Michael Martin for 
their valuable input to the ideas presented here. 

S.M. Lee, and A. Young    471 

References 

[1] DiCiccio, T.J. and Martin, M.A. (1991) Approxi- 
mations of marginal tail probabilities for a class of 
smooth functions with applications to Bayesian and 
conditional inference. Biometrika, 78, 891-902. 

[2] DiCiccio, T.J., Martin, M.A. and Young, G.A. 
(1992a) Analytical approximations for iterated 
bootstrap confidence intervals. Statistics and Com- 
puting, 2, 161-171. 

[3] DiCiccio, T.J., Martin, M.A. and Young, G.A. 
(1992b) Fast and accurate approximate double 
bootstrap confidence intervals. Biometrika, 79, 
285-295. 

[4] Hall, P. (1992) The Bootstrap and Edgeworth Ex- 
pansion. Springer: New York. 

[5] Lee, S.M.-S. and Young, G.A. (1993a) Sequential 
iterated bootstrap confidence intervals. Research 
Report 93-17, Statistical Laboratory, University of 
Cambridge. 

[6] Lee, S.M.-S. and Young, G.A. (1993b) Asymptotic 
iterated bootstrap confidence intervals. Research 
Report 93-18, Statistical Laboratory, University of 
Cambridge. 

[7] Schenker, N. (1985) Qualms about bootstrap con- 
fidence intervals. /. Amer. Statist. Assoc, 80, 360- 
361. 



472     Tail-specific /Bootstrap 

Tail-specific Linear Approximations for Efficient Bootstrap Simulations 

Tim C. Hesterberg 
Mathematics Department 

Franklin & Marshall College 
Lancaster, PA 17604-3003 
T_Hesterberg@FandM.edu 

Abstract 
Two effective variance reduction techniques for estimat- 
ing probabilities and quantiles in the tails of bootstrap 
distributions — importance sampling and concomitants 
of order statistics — are based on linear approximation- 
s. Although these techniques offer potential variance re- 
ductions by factors from nine to infinity, in practice the 
reductions may be only by a factor of two or smaller, 
because of inaccurate linear approximations. 

We develop tail-specific linear approximations that are 
more accurate where the accuracy is important, in the 
tails of distributions. Our methods fall into two cate- 
gories - influence function methods and regression meth- 
ods. Both can be applied without problem-specific ana- 
lytical calculations, and both have tail-specific versions. 

We apply the tail-specific approximations to impor- 
tance sampling and concomitants, and propose anoth- 
er technique that uses linear approximations, post- 
stratification implemented using the saddlepoint. This 
technique shares the same 0(n~1/2B~1) variance as the 
concomitants procedure. 

Keywords: Concomitants of order statistics, stratified 
sampling, empirical influence function, importance sam- 
pling, jackknife, variance reduction. 

1     Introduction 
This article concerns more efficient computational meth- 
ods for estimating tail probabilities and percentiles of 
bootstrap distributions. The primary focus of this ar- 
ticle is the development of tail-specific linear approxi- 
mations for bootstrap statistics. Such approximations 
do not stand on their own, but allow more effective use 
of other methods such as importance sampling (Johns 
1988, Davison 1988) and concomitants of order statis- 
tics (Efron 1990 section 5, Do and Hall 1992). We al- 
so propose another method, post-stratification using the 
saddlepoint. 

We concentrate on the nonparametric bootstrap; 
see e.g. Efron (1982, 1987), Efron and Tibshirani 
(1993) for further discussion. The original data is 
X = (xi,X2,- ■ ■ ,xn), a sample from an unknown dis- 
tribution (which may be multivariate). Let X* = 
(X*,X2, • • •, X*) be a "bootstrap" sample of size n cho- 
sen with replacement from X. We wish to estimate tail 
probabilities or quantiles for T* = T(X*), which may 
be a parameter estimate or a pivotal statistic used for 
inferences. 

Let G(a) = P{T* < a} be the bootstrap distri- 
bution function. The simple Monte Carlo estimate of 
G requires some large number B of bootstrap sam- 
ples samples X% for b = 1,..., B, then the estimate is 
G(a) = (1/B)J2?=1I(TZ < a), where / is the usual 
indicator function and T£ = T(X£) for each such sam- 
ple. Furthermore, some techniques such as the "iterated 
bootstrap" (Beran 1987) require that some number £i of 
bootstrap samples be generated from each of the original 
B bootstrap samples, requiring a total of B + BB2 boot- 
strap samples. For techniques that require tail probabil- 
ity or quantile estimates the total number of bootstrap 
samples required can be quite large. For example, Efron 
(1987) finds that B = 1000 observations are required to 
adequately estimate tail quantiles for his (non-iterated) 
confidence intervals, and Booth and Hall (1992) find that 
B2 = KB1!2 is approximately optimal for some constan- 
t K that depends on the desired coverage level, with 
K = 0.57 for a two-sided 95% confidence interval; this 
results in a total of about 19,000 bootstrap replications. 

The three variance reduction techniques (importance 
sampling, concomitants, and post-stratification) can re- 
duce the computational burden substantially, but all re- 
quire accurate linear approximations to T* in order to 
work well. For example, Do and Hall (1992) show that 
the concomitants procedure gives variance reductions 
that approach infinity, asymptotically, because their lin- 
ear approximations become more accurate as n increas- 
es.  But they note that the procedure does not do well 
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when a statistic is markedly non-linear. Similarly, Efron 
(1990) reports variance reductions by factors of only 1.8 
for the lower 2.5%-tile and 0.49 (half as efficient as sim- 
ple random sampling) for the upper 97.5%-tile of the 
law school data of Efron (1992, section 2.5). Do and 
Hall (1992) further note that the procedure does better 
in the center of a distribution than in the tails. We show 
that the usual linear approximations are more accurate 
in the center of a bootstrap distribution than in the tails. 

Our primary result in this article is the developmen- 
t of tail-specific (actually quantile-specific) linear ap- 
proximations, which are more accurate near their design 
quantiles. Such "local" accuracy is more important to 
the performance of variance reduction techniques than 
is overall accuracy. 

We begin with a general discussion of linear approxi- 
mations in section 2. We discuss linear approximations 
related to the empirical influence function (Efron 1982) 
in section 3, and approximations based on regression in 
section 4. In section 5 we return a topic raised in sec- 
tion 2, that transforming T* may improve linearity, and 
discuss how to choose a transformation. In section 6 we 
review the variance reduction techniques which can use 
the linear approximations, and show how sensitive these 
techniques are to the quality of the linear approxima- 
tions. We propose a new technique, post-stratification 
using the saddlepoint probability estimate. 

2     Linear approximations 

A "curvilinear approximation" to T* is determined by a 
vector L of length n, with elements Lj corresponding to 
each of the original observations Xj, such that 

^(T(X*)) = t2LiPi (2.1) 
i=i 

where ij> is a smooth monotone increasing function, Pf — 
Mj /n, and Mj is the number of times Xj is included in 
X*. For later use, define L* to be the right hand side of 
(2.1), and let L*(°), T<a\ and za be the true a quantiles 
of the distributions of I.*, T*, and the standard normal 
distribution, respectively. 

For example, consider the usual ^-statistic 

T(X*) = nxl2{X* - x)/sx. (2.2) 

where X* is the sample average and s2 is the sample 
variance of a bootstrap sample and x is the sample av- 
erage of the original data. We use as X the data of 
Graham et al. (1990): ( 9.6, 10.4, 13.0, 15.0, 16.6, 17.2, 
17.3, 21.8, 24.0, 26.9, 33.8), for which x = 18.7. Fix- 
ing the denominator of (2.2) at 7.3, the sample standard 

deviation of the original sample, results in a "central" 
approximation with Ic<antraij = ll1/2^ — 18.7)/7.3 and 
^central = H1/2(-X* -18.7)/7.3. The first panel of Figure 
1 shows a scatterplot of T* vs. this L*, for 1500 boot- 
strap samples. The approximation is very accurate near 
L* = 0, with very little scatter either above or below the 
line T* = L*, but is worse for L* farther from zero. 

The increasing conditional variability of T* for L* far- 
ther from 0 motivates the central theme of this article. 
We call the first linear approximation a central approx- 
imation because it is accurate in the center of the boot- 
strap distribution. Some other linear approximation may 
be more accurate elsewhere. Indeed, the approximation 
defined by Lright,j = —15.4 + 1.02XJ - 0.014z2 is more 
accurate in the right tail, as shown in the second panel of 
Figure 1. We obtain this approximation using the right- 
tail influence function method in the next section; the 
central approximation is also equivalent to the central 
influence function approximation. 

Furthermore, the relationship between T* and L* is 
nonlinear, and both versions of L* are better approxi- 
mations to some transformation i>(T*) than they are to 
T* itself. We discuss estimation of ■$ in section 5, and 
applications of that estimate; but estimating ip requires 
a linear approximation, and that is where we turn now. 

3    Influence Function and Knife 
Approximations 

We begin in this section by describing statistics T for 
which the linear approximation methods in this section 
are defined, then proceed to describe the general class 
of approximations and the specific approximations. The 
approximations differ in two regards — whether they are 
central or tail-specific approximations, and in the choice 
of one parameter, which in turn determines whether the 
approximation is implemented using analytically or nu- 
merically, and also determines whether the approxima- 
tion is suitable for non-smooth or only smooth functions. 

We begin by writing T(P*) = T(X*), where P* = 
(Pf,..., i3*); in other words, any bootstrap sample may 
be viewed as an empirical distribution with weight P? on 
original observation Xj. In this section we require that 
T be defined for all weight vectors P with nonnegative 
weights summing to 1, not just those which are realizable 
as bootstrap samples, i.e. those whose coordinates are 
integers/n. We say that such T are defined for weighted 
samples. 

For example, we may rewrite the ^-statistic (2.2) as 

T(P) = (n - l)1/2(xp - x)/ap 
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Figure 1: Central and right-tail influence function linear approximations for the 2-statistic. 

where x-p = Y^=i Pjx5 1S the weighted average and 
0p = J2]=i Pj(xj ~^p)2 is the weighted standard devi- 
ation of a sample. Other examples of statistics which are 
defined for weighted samples include functions of sam- 
ple moments (such as means, variances, regression co- 
efficients, and the usual (Pearson) bivariate correlation) 
and statistics defined by estimating equations (such as 
M-estimates of location). Functions such as Spearman's 
correlation, which is a function of the ranks of obser- 
vations, are not defined for weighted samples, and the 
regression methods in section 4 should be used for such 
functions. 

The linear approximations in this section are of the 
form 

LJ = *•<?<+<**-*<))-n*c)    m 

for some point Pc and some e. These are Taylor-series 
or finite-difference approximations to the gradient of the 
function T(P); the approximation differ in the choice of 
Pc and the choice of e. 

Central linear approximations use Pc = P0 = 
(1,1,.. .)/n, which corresponds to the original data, and 
one of four choices of e: 

■^butcher knife = n-!/2 e = n (3.2) 

■^negative jackknife 

^influence function 

■L<positive jackknife 

e=-l/(n-l) 

e = l/(n + 1) 

The first three are the negative jackknife, influence 
function (or infinitesimal jackknife), and positive jack- 
knife approximations of Efron (1982). The butcher 
knife (large jackknife) is motivated by the observation 
of Efron (1982) that the jackknife uses T evaluated at 
points which very close to P0, with a squared distance 
of |P - P0|

2 = l/(n(n - 1)), whereas E[\P - P0|
2] = 

(n — l)/n2 under simple random (bootstrap) sampling. 
The butcher knife matches the expected squared dis- 
tance, and so may be a more accurate approximation 
to the bootstrap distribution. 

3.1    Tail-specific methods 

Tail-specific linear approximations are also defined us- 
ing (3.1), using the same choices of e (3.2), but with 
the Taylor-series or finite-difference approximation per- 
formed about a different initial point Pc = Pa. We 
choose Pa so that T(Pa) = T<a) but that otherwise 
Pa is as close to Po as possible. 

If n is very large, a suitable initial point is 

P« = Po + cL, central > (3-3) 

where Lcentrai is a central linear approximation (normal- 
ized to sum to 0) and c = ZatT1^^ L2

centralJ)-
l/\ 
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If n is not large, or if Lcentral is skewed, we recommend 
instead to use exponential tilting, 

Pa = P[r], where Pjt[T] = Arexp(r£Centrai,j),      (3-4) 

and where k is a normalizing constant and r solves 
Lcentrai • P<* = L*(a\ with L*^ estimated from a nor- 
mal, Cornish-Fisher, or saddlepoint approximation. The 
right panel of Figure 1 shows the right-tail (a = 0.975) 
influence function estimate, using exponential tilting. 

3.2    Comparing   influence   function   and 
knife methods 

The four choices of e in (3.2) result in approximations 
which differ in implementation details, in the kind of 
problem where they may be used, and in accuracy. 

The knife approximations are evaluated numerically. 
They have the advantage that they do not require ana- 
lytical calculations, but the disadvantage of requiring n 
evaluations of T. 

The influence function L is the gradient of the func- 
tion T(P) at Pc, and is only suitable for statistics which 
are smooth (continuous and differentiate) functions of 
P; similarly for the jackknife versions, which are finite- 
difference approximations to the gradient. For a discon- 
tinuous function such as the sample median the influ- 
ence function estimate is undefined if n is even and has 
Lj = 0 for all j if n is odd; the jackknife methods may 
have Lj = 0 for all j if there are repeated observations 
at the median. The butcher knife is a finite-difference 
method, but evaluated at points farther from Pc, and 
can be used for non-smooth functions. 

For statistics which are smooth functions of P there 
are subtle but significant differences between the four 
methods. The correlations between T* and the nega- 
tive jackknife, influence function, positive jackknife, and 
butcher knife linear approximations, respectively, are 
0.942, 0.955, 0.957, and 0.955, for our ^-statistic exam- 
ple. The correlations between a nonparametric estimate 
i>(T*) and the approximations are higher (correlation 
.987 with the influence function approximation), but fol- 
low a similar pattern — only the negative jackknife does 
appreciably worse than the others. But even though the 
butcher knife approximation is as good overall as the in- 
fluence function approximation, it is not quite as good 
"locally", for values of L* near targets L • Pc. This dif- 
ference arises from the way the approximations are de- 
fined — the influence function is determined by a local 
approximation to T, the butcher knife by a more glob- 
al approximation. Local accuracy (in the tails) is more 
important for the variance reduction techniques than is 
global accuracy, so we recommend the influence function 

(or positive j ackknife approximation) for smooth statis- 
tics. 

4    Regression approximations 

Linear regression methods may be used to obtain linear 
approximations for any statistic, even those not defined 
for weighted samples. We begin with central regression 
methods, and follow with tail-specific methods. 

Let Mbj be the number of times original observation 
Xj is included in the 6'th sample and let P£j — Mtj/n. 
Run a linear regression without an intercept of the form 

and let 

T?=S^'jP'*i+residual6' 

•"centralj — Pj       P 

(4.1) 

(4.2) 

where ß = (l/n)H"=iA
-- The intercept is omitted be- 

cause otherwise the regression would be singular. This 
linear approximation was obtained by Efron (1990). 

Do and Hall (1992) propose an alternative which is an 
approximation to least-squares estimation in (4.1), but 
suffers from greater sampling variability in the terms of 
L, as shown in Figure 2. That sampling variability trans- 
lates into less accurate curvilinear relationships between 
T* and L*. 

4.1    Tail-specific   regression   approxima- 
tions 

We considered a variety of local and global regression 
methods for tail-specific approximations. The local 
methods did not work well, suffering from excessive sam- 
pling variability, because they are based on only a small 
fraction of all bootstrap samples (e.g. the 2aE>o replica- 
tions with the largest values of T*). Global regression 
methods suffer from other problems, but those can be 
fixed. 

Our global regression principle is to fit a nonlinear 
surface using all the bootstrap samples, and use the gra- 
dient of that surface at an appropriate point in the tail. 
However, fitting a quadratic relationship between T* and 
P* requires estimating n — 1 first derivatives (P is of 
rank n - 1) and n(n — l)/2 second derivatives, which 
may be too many coefficients to estimate with a modest 
bootstrap sample size. Our solution is to fit a restrict- 
ed quadratic surface, estimating only the linear combi- 
nation of second derivatives which affects the gradien- 
t at the tail evaluation point. Details of the restrict- 
ed quadratic fitting are available from the author.   It 
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Figure 2: Central Regression L for the /-statistic and an approximation. 

10 vectors L, each estimated from 500 bootstrap samples. 

works moderately well, but suffers from sampling vari- 
ability. Estimating the nonlinear transformation tp and 
fitting i}>(T*) (instead of T*) as a restricted quadratic 
function of P* reduces the sampling variability consid- 
erably, with improvement comparable to using the full 
regression rather than the approximation in Figure 2. 

5     Transformations of T* 

We have nearly concluded our discussion of linear ap- 
proximations, and are about ready to turn to applica- 
tions. But first we turn to a topic which applies to both 
the approximations and applications, that of estimat- 
ing the nonlinear transformation ip(T*) in (2.1). The 
butcher knife and regression approximations (and to a 
lesser extent the jackknife approximations) are not in- 
variant under nonlinear transformations, so we can im- 
prove those estimates by replacing T with an estimate 
V>(T). And the concomitants technique below is not e- 
quivariant under nonlinear transformations, and can be 
improved considerably using an estimate of tj). A third 
use for a transformation is for improving the bootstrap-f 
confidence interval; see Tibshirani (1988). 

We propose two ways to estimate tp, one deterministic, 
the other based on bootstrap observations. The former 
requires extra evaluations of T*, while the latter gives 

estimates which are subject to sampling variability. 
The deterministic procedure is to estimate ip by in- 

terpolating L = P • L (as y) against T(P) (as x), for 
points P determined using exponential tilting (3.4); ev- 
ery distinct value of the tilting parameter r results in 
one training point for the interpolation. 

The nondeterministic procedure is to estimate ip using 
a scatterplot smooth or nonlinear regression of L* (as y) 
against T*, for Bo bootstrap samples. This is motivated 
by the ACE algorithm of Breiman and Friedman (1985), 
and is nearly invariant under ifr, subject to limitations 
of the smoothing method. The estimate should then be 
rescaled so that ^'(T(P0)) = 1. 

Both the deterministic and nondeterministic transfor- 
mations nicely remove the curvilinearity observed in Fig- 
ure 1, and give much better regression linear approxi- 
mations, with sampling variability in the elements of L 
smaller by factors of approximately four and six for the 
central and tail-specific approximations, respectively. 

6    Variance Reduction 

We have three purposes in this section — to justify the 
effort put into accurate linear approximations by show- 
ing how sensitive variance reduction techniques are to 
that accuracy, to indicate when tail-specific approxima- 
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tions will give a significant improvement, and to propose 
a new variance reduction technique that uses linear ap- 
proximations. 

Figure 3 shows the relative efficiency for the three vari- 
ance reduction techniques as a function of the correlation 
between T* and L*. Note how quickly the concomitants 
and stratified sampling procedures lose efficiency as the 
correlation drops. This figure indicates why more accu- 
rate linear approximations are worth pursuing. 

The "efficiency" in Figure 3 and later is the efficiency 
of a technique relative to simple bootstrap sampling, for 
estimating tail probabilities corresponding to the 0.025 
and 0.975 percentiles of the distribution of T*. See Hall 
(1991) and Johns (1988) for asymptotic results in special 
cases that indicate that this efficiency is asymptotically 
equivalent to the efficiency for estimating the percentiles 
themselves. 

We assume in Figure 3 that the relationship between 
T* and L* is linear, that L* is a central approximation, 
and that the distribution of L* is normal, but do not 
assume that the joint distribution is bivariate normal — 
it was very clearly not in Figure 1. Instead, assuming 
that T* can be written as a smooth function of sample 
means, we find that the joint distribution is of the form 

tf(T*) = L* + (L* - L0)n-1/2J2adZd 

d=l 

+!»' -1/2 X>z- (6.1) 
d=l 

for some V, where (L* - L0) = Oi>(n~1/2)> the zd are 
independent standard normal random variables, L0 de- 
pends on the linear approximation, and D is a smal- 
1 integer that depends on the statistic, not on n. We 
omit the formal statement and proof of this theorem in 
this version of this article. It turns out that tail-specific 
linear approximations work best when the a's are large 
compared to the b's, and it is clear from (6.1) that the 
conditional variance of rp(T*) given L* is smallest in the 
center when any of the a's are nonzero. So a scatterplot 
of T* against L* can be used to diagnose if a tail-specific 
approximation may be useful, without actually comput- 
ing it; a small conditional variance in the center, as in 
Figure 1, indicates that a tail-specific approximation can 
help. 

The two panels in Figure 3 correspond to the "het- 
eroskedastic normal" case where bj = 0 for d = 1,... D, 
and the "single-x2" case where &i ^ 0 and the other 
a's and 6's are zero. In the heteroskedastic normal case 
the conditional distribution of i>(T*) given L* is normal 
with standard deviation proportional to \L*—L0\; we see 
similar behavior in Figure 1. The heteroskedastic normal 

case is interesting because it is offers the greatest poten- 
tial for tail-specific linear approximations, and because 
without tail-specific approximations it is a hard case for 
the concomitants and stratified sampling procedures. 

The single-x2 case is also interesting because it has 
the heaviest tails of all conditional distributions oitp(T*) 
given L*, for fixed p and distributions in the family (6.1). 
That those heavy tails are a problem for importance sam- 
pling is apparent in the right panel of Figure 2. Unfortu- 
nately, tail-specific approximations offer little help here, 
but the damage can be mitigated by using more conser- 
vative importance sampling. 

6.1    Concomitants of order statistics 

For simplicity of notation, sort the bootstrap samples by 
the values of L\. Then the concomitants estimate of the 

bootstrap distribution is G(a) = (l/S)Ef=i J(r» ^ a)~ 
where 

TI = T; + L\-LI (6.2) 

where L\ is an estimate of the (6-0.5)/5 quantile of the 
distribution of L*. Efron (1990) lets Li be the 6'th nor- 
mal score $-1((& - 0.5)/S), iteratively transformed us- 
ing cubic Cornish-Fisher transformations so that the first 
four sample moments match the theoretical moments of 
L*, but suggests that letting L\ be the saddlepoint esti- 
mate of £,*((*-°-5)/B) would be more accurate. 

In the case that L* and T* are jointly continuous we 
find the asymptotic variance of the concomitants esti- 
mate to be 

5Var(G(a)) =  f H(a- l\t)(l - H(a - l\l))f(l)dl 

+2 f      H'{a-h\h)H'(a-l2\h) 

F(h)(l-F(l2))dhdl2       (6.3) 

where F and / are the distribution and density func- 
tions of L\ H(a\l) = P(T* < a\L* = I), and H'(a\l) = 
§jH(a\l). Note, in Figure 3, how strongly the efficiency 
depends on the correlation between L* and T*. 

The concomitants procedure is not invariant under 
nonlinear transformations T*. If L* is a good approx- 
imation to some transformation ^(T*) rather than to 
T* the double integral in (6.3) can be substantial. E- 
fron (1990) replaced the right side of (6.2) with T6* + 
■4>~1(Ll)-i>~1(L*b) for the i-statistic, with ip'1 estimat- 
ed using cubic regression of T* against L*. We suggest 
replacing the right side of (6.2) with ^-^(IJ) + L\- 
L\) instead, which is invariant under transformations of 
T* (up to limitations of the procedure used to estimate 
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Figure 3: Efficiency for Tail Estimation as a function of the correlation between L* and T*. 

We show three variations of the concomitants proce- 
dure in Table 1. The first variation uses (6.2), the sec- 
ond uses Efron's procedure with cubic regression, and 
the third uses the invariant procedure with %j> estimat- 
ed using the deterministic procedure in section 5. In all 
cases we use the saddlepoint estimate of the inverse cu- 
mulative distribution function of L* (Hesterberg 1994) 
to determine L\. The transformations do result in higher 
efficiency, with the invariant procedure performing best, 
but the biggest improvement is obtained by using tail- 
specific linear approximations rather than central linear 
approximations. The efficiencies using tail-specific ap- 
proximations are three to four times higher than those 
obtained using central approximations. 

6.2    Importance sampling 

Importance sampling uses bootstrap samples of size n 
generated from a distribution g rather than by sim- 
ple random sampling /, and places weight Wj = 
(l/B)f(X^)/g(X*) on Tj* to counteract the sampling 
bias, resulting in the distribution function estimate 

<?(, 4-0 Ef=i WW(2? < «) left tail 
• Ef=i Wi/(I? > a)    right tail 

The   multi-part   definition   is   necessary   because   the 
weights do not add to 1, and G is inaccurate in the 

center; see Hesterberg (1988, 1991) for further discus- 
sion and methods suitable for problems other than tail 
estimation. 

We consider sampling distributions g of the form 

9A(X*) = Ao/O**) + Ai0i(*') + *292{X*) 

where the A's are nonnegative mixing proportions that 
add to 1 and gk indicates sampling with unequal proba- 
bilities P{X{ = Xj] = ckexp(rkLjik) for k = 1,2 respec- 
tively, where the ck are normalizing constants. This is a 
combination of exponential tilting (Johns 1988, Davison 
1988) with defensive mixture distributions (Hesterberg 
1988, 1991), and we stratify the mixing proportions by 
drawing exactly Bo = XoB bootstrap samples using sim- 
ple random sampling and BXk samples using gk. The 
weight 

Wt = Bm 1 
A0 + Aic? exp(nriL$) + \2c% exp(nr2Ll) 

is independent of which distribution was used to generate 
sample b. The variance of the distribution estimate is 

1    2 

(6.4) Var(G(a)) = -]TXkVa.x9k(WI(T* exceeds a)), 
i=0 

where "exceeds" means "<" and ">" for right and left 
tails, respectively. 
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Left Tail- -(a = 0. 025) Right Tail- -(a = 0.975) 
Central Tail-specific Central Tail-specific 

Concomitants 1 1.5 5.6 2.5 8.6 
Concomitants 2 2.0 6.3 2.4 9.0 
Concomitants 3 2.1 8.0 2.5 10.8 
Importance Sampling 1 8.0 16.6 
Importance Sampling 2 5.3 12.5 4.9 8.9 
Importance Sampling 3 4.4 9.8 4.3 7.2 

Post-Stratification 1.5 4.7 1.8 5.6 

Table 1: Efficiency using Central and Tail-Specific Linear Approximations 

Estimated efficiency for estimating tail probabilities, for B = 200, for the «-statistic, using the central and tail- 
specific influence function linear approximations. The importance sampling distributions parallel those in Figure 3, 
but with values of r chosen so that L • P« = L*(or), using saddlepoint quantiles (Hesterberg 1994). The estimates are 
based on 2000 bootstrap experiments. Standard errors are less than 4% of the estimates, except for the tail-specific 
post-stratification estimates (less than 7%). 

The first sampling distribution in Figure 3 uses sim- 
ple exponential tilting (A2 = 1) rather than a mixture, 
with r = 2.18/Var(L*), which Johns (1988) finds to be 
optimal for the 97.5 %-tile when T* = L* and L* is 
normal. This is a very anti-conservative sampling dis- 
tribution, as f/g is practically unbounded, and is not 
robust to imperfect linear approximations, particularly 
in the heavy-tailed single-x2 case. 

The second distribution uses B\ = £2 = 5/2 boot- 
strap samples computed using exponential tilting for 
the two tails, with -rj = r2 = za/Var(L*). The 
third uses Bo = 5/5 simple random bootstrap sam- 
ples, and 5i = 52 = 0.45 samples using the same n 
and T2. These distributions are more conservative (with 
Wb bounded above by approximately 6.8/5 and 3.2/5, 
respectively), and do slightly worse when p = 1, but 
do much better for smaller p. A description of optimal 
choice of the r's and A's is beyond the scope of this 
article, but we will note that the second and third dis- 
tributions are more conservative (larger Ao and smaller 
r's) for p > 0.95 than is optimal if (4.5) holds exact- 
ly, but do offer insurance against the effect of cubic and 
higher deviations from linearity, which result in heavier 
tails than a x2 random variable. 

Two practical considerations argue in favor of the sec- 
ond or third importance sampling distributions. Many 
bootstrap methods require estimates of quantiles from 
both tails; a mixture that incorporates g\eft and bright 
is a robust and more efficient alternative to performing 
separate simulations for each tail. Second, if importance 
sampling is combined with linear regression methods for 
determining L, the Bo bootstrap samples from / may be 
used as the training set for the regression. 

The tail-specific linear approximations result in sub- 
stantially better efficiency in Table 1, roughly by a factor 
of two. 

6.3    Post-stratification 
We propose I(L*   <   £*("))  as a variable for post- 
stratification, and let 

B 

G(a) = £KV(7?<a) 
4=1 

be the empirical distribution formed by placing weight 

Wh }   />{£,*>£♦<">}      -f r* r*(a) 
(6.5) 

on TJ*. The estimate is unbiased with variance 

Var(G(a)) 

+ 

h{P{T* < a\L* < L*(°0» 
#(L* < L*(a>) 

h(P{T* < a\L* > £*(">}) 
(#L* > L*(«)) 

conditional on #(L* < L*^), where h(p) = p{\ - p) is 
the variance of a Bernoulli random variable with mean 
p, and is asymptotically normal with asymptotic stan- 
dardized variance 

a-lh{P{T* < a\L* < L<a^}) 

+(1 - a^hiPiT* < a\L* > L*^}) 

as B —► 00. At a = T*(") this reduces to 2pi 2 — 
p\ 2/(a(l-a)) wherepl>2 = P{L* < L<a\T* >'T*W}. 
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Under fairly general conditions, including the smooth 
functions of means model considered in Do k Hal- 
1 (1992), the errors in linear approximations are such 
that pii2 = 0(n-1/2). Thus at a = T<a\ this post- 
stratification estimator shares the same factor of n-1/2 

in the variance as the concomitants procedure. The pro- 
cess may be repeated for for every level a for which an 
estimate is desired. 

Post-stratification requires an estimate of L*^a\ which 
we obtain using the saddlepoint quantile estimate of H- 
esterberg (1994), based on the saddlepoint formula of 
Lugannani and Rice (Daniels 1987). Davison and Hink- 
ley (1988) use the saddlepoint for linear bootstrap prob- 
lems; post-stratification uses a linear approximation for 
nonlinear problems. 

Post-stratification does not do as well as either con- 
comitants or importance sampling in Table 1. On the 
other hand, it is substantially simpler than those proce- 
dures. It uses simple random sampling, does not require 
an estimate of if>, and requires only one saddlepoint es- 
timate (of L*(a^) for each quantile desired. 

7    Conclusion 

The central and tail-specific influence function and pos- 
itive jackknife linear approximations work well in the 
^-statistic example and in other problems we investigat- 
ed where the bootstrap statistic T can be written as a 
smooth function of weights, including the bivariate cor- 
relation coefficient and sample variance, although in the 
latter cases the gains from tail-specific approximation- 
s are less than with the ^-statistic. The choice between 
the influence function and positive jackknife reduces to a 
question of implementation, whether the analytical cal- 
culations required by the influence function or the nu- 
merical calculations required by the jackknife are easier. 

The butcher knife worked nearly as well in the smooth 
function problems, and also worked for the sample medi- 
an and 25% trimmed mean. However, the butcher knife 
is a radical proposal. Where each numerical calcula- 
tion for the (central) positive jackknife is equivalent to 
repeating a single observation twice, the butcher knife 
corresponds to repeating the observation n1/2 times; this 
would be too many for statistics which are sensitive to 
the number of times observations are repeated. 

The central regression approximation calculated from 
T* worked reasonably well, but the tail-specific version 
suffered from excessive sampling variability. Both ver- 
sions were significantly improved by replacing T* with 

If estimates for multiple values of a in each tail are 
needed it should suffice to use a single tail-specific linear 

approximation for all. Particularly for importance sam- 
pling it would be impractical to use multiple approxima- 
tions and multiple sampling distributions for each tail. 

Simulation Details 

Simulations are run in S (version S-PLUS 3.0) (Becker et. 
al., 1988; Statistical Sciences, 1991) and C, using the Su- 
per Duper random number generator of Marsaglia, using 
common random numbers with the original observations 
sorted. Antithetic variates and balancing are not used. 
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Abstract 

Perhaps the most popular Markov chain Monte Carlo 
method from the class of Hastings-Metropolis algo- 
rithms, is the symmetric random walk Metropolis algo- 
rithm. This paper will discuss some of its theoretical 
properties. Conditions ensuring geometric convergence 
of the algorithm will be given, in terms of smootheness 
and exponential decay conditions on the target distribu- 
tion, and an example where geometric ergodicity does 
not happen is discussed. Finally, recent results on opti- 
mal scaling of proposal kernels as a function of dimension 
of the target distribution will be given, and the results 
related to overall acceptance rates of the algorithm. 

1    Introduction 

It is now well understood that the convergence proper- 
ties of the Gibbs sampler (see for example Gelfand and 
Smith, 1990), are closely linked to the correlation struc- 
ture of functionals of coordinate directions (see for exam- 
ple Amit, 1991, Hills and Smith 1992). Unfortunately, 
the Metropolis algorithm (Metropolis et. al., 1953) is 
considerably less well understood. In particular, there 
is no obvious connection between convergence rates of 
Metropolis algorithms, and the statistical propoerties of 
target densities. Although known to work well very of- 
ten in practice, Metropolis algorithms are not automatic 
preocedures - a proposal density needs to be chosen apri- 
ori - and the choice of proposal can often be critical to 
the efficiency of the algorithm. 

Very little progress has been made on the problem 
of choosing a proposal, even for the simplest algorithm, 
the random walk Metropolis algorithm. A number of 
authors have suggested scaling the proposal variance in 
proportion to the variance of the target density. In prac- 
tice, it is impossible to apriori obtain a reliable estimate 
of the target variance, so that Tierney (1991) and Müller 
(1993) suggest monitoring the proportion of accepted 
Metropolis jumps. This is an appealing approach since 

the acceptance rate, Pjump, is extremely easy to moni- 
tor. Müller observes that an acceptance rate of around 
0.5 often works well, but can any theoretical justification 
be given for using such rules? 

This paper will discuss two sets of results. First of all, 
we consider the problem of determining when the ran- 
dom walk Metropolis algorithm is geometrically ergodic. 
It turns out that geometric ergodicity is related to the 
tail behaviour of the target density, and to a curvature 
condition on the contours of the target density, but that 
the form of the proposal density is (essentially) unim- 
portant. Section 2 discusses these results; further details 
and proofs appear in Roberts and Tweedie (1994a). 

The second set of results consider a diffusion approxi- 
mation for high dimensional Metropolis algorithms with 
spherically symmetric proposal densities. The limiting 
diffusion process has a speed measure which we can in- 
terpret as the asymptotic efficiency of the algorithm. 
This speed measure depends only on the scaling of the 
proposal density variance, and this in turn can be re- 
lated to Pjump- Thus, efficiency can be related directly 
to Pjump: aQd it turns out that the optimal value for 
Pjump should be somewhere around 0.25. Perhaps more 
usefully in practice, an acceptance rate of between 0.15 
and 0.4 gives at least 85% of maximal possible efficiency. 
These results are covered in Section 3; further details in- 
cluding proofs and practical implications of these results 
appear in Roberts Gelman and Gilks (1994) and Gelman 
Roberts and Gilks (1994). 

2 Geometric convergence of the 
Random walk Metropolis algo- 
rithm 

We say that a Markov chain X with state space con- 
tained in Rd is geometrically ergodic (to TT) in total vari- 
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ation norm, if w is a probability measure and 

/       \Pt(x,y)-n(y)\dy<V(x)pi 

Vx Gsupp7T. Here, P* denotes the <-step transition kernel 
for X, V is a real-valued function, and p < 1. 

We argue here that geometric convergence is a min- 
imal, but important requirement that should be satis- 
fied by a Markov chain Monte Carlo algorithm. Ideally, 
we would like quantitative bounds on V and p. How- 
ever here we content ourselves with qualitative results 
because 

(1) Quantitative bounds for relatively complex prob- 
lems are extremely difficult to obtain (although see 
Rosenthal, 1994). 

(2) Non geometric algorithms have heavy tailed excur- 
sion, so have a tendency to get stuck. This can also 
make the choice of starting value highly critical. 

(3) Geometric convergence results at least allow the ex- 
istence of central limit theorems (see for example 
Roberts and Tweedie, 1994a), allowing some reas- 
surance for the use of ergodic estimates of Markov 
Chain Monte Carlo output. 

(4) Surprisingly perhaps, many of the algorithms com- 
monly used (including in some cases, the random 
walk Metropolis algorithm) fail to be geometrically 
ergodic. 

The following result can be used to demonstrate ei- 
ther geometric or non-geometric convergence. We do not 
state it in its most general form, although we will need 
the following definitions. We say that a set C is small if 
there exists e > 0, t € N, and a probability measure v{-) 
such that 

su-pPt(x,A)>eu(A) 
x€C 

for all sets A.  In our context compact sets are nearly 
always small, although it is frequently possible for un- 
bounded sets to be small also. 

Let TC = inf{t > 1; X« 6 C}. 

Theorem 1 (Meyn and Tweedie, 1993) The following 
three statements are all equivalent. 

(1) X is geometrically ergodic. 

(2) (Foster drifl condition) There exists a small set C, 
a function V > 1. A < 1, and 6 > 0 such that 

Ex[V(Xi)] < AV(x) + 67[x G C\. 

(3) There exists a small set C and a constant K > 1 
such that 

sup Ex[/cTc] < oo. 
xgC 

The second equivalence is most useful for demonstrat- 
ing geometric convergence whereas the third is partic- 
ularly useful for establishing that an algorithm is not 
geometrically ergodic. The following result is a simple 
consequence of (3). 

Theorem 2 (Roberts and Tweedie, 1994a) A necessary 
condition for geometric convergence of a Markov chain 
with stationary distribution IT, not concentrated at a sin- 
gle point is that 

ess supP(x, {x}) < 1. 

Here the essential supremum is taken with respect to the 
stationary distribution ir. 

We will now describe results for the random walk 
Metropolis algorithm which can be derived from The- 
orems 1 and 2. For simplicity (although this is not nec- 
essary in most of the results that we give), we shall as- 
sume that the random walk step is a spherically sym- 
metric continuous distribution, and that the target den- 
sity TT from which we wish to sample, is a rf-dimensional 
Lebesgue density on Rd. Let q denote the proposal ker- 
nel, and suppose a be the acceptance probability of any 
particular move. Therefore, the algorithm proceeds it- 
eratively as follows. Given X*"1, choose Y according to 
the density g(|Y - X'_1|). Accept Y and set X£ = Y 
with probability 

min{1'^x^}- 
Otherwise set Xf = X'-1. 

Roberts and Tweedie (1994a) gives very general con- 
ditions for geometric ergodicity of Hastings-Metropolis 
algorithms, and in particular the random walk Metropo- 
lis algorithm. We content ourselves with a brief summary 
of the main ideas. Therefore, regularity and smootheness 
conditions are omitted, as well as the most general state- 
ment of the result. 

Define 
Cc = {x; TT(X) = e} 

to be the contour of e for (typically) small e. Now define 
K(C) to be the supremum of the Ricci curvature over all 
points on C£. The Ricci curvature is the multidimen- 
sional analogue of curvature, and can be described in 
terms of the curvature of the largest hypersphere that 
can be inscribed (locally at least) within the interior of 
the contour manifold. 
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Essentially, the random walk Metropolis algorithm is 
geometrically ergodic when the following two conditions 
are satisfied: 

(A) 
limC£ = 0. 
£-+0 

(B) There exists constants A, B > 0 such that 

ir(x)<Ae-BM. 

Under these conditions, the test function V(x) = 
7r(x)-1/2 can be used in the second equivalence of The- 
orem 2. 

The exponential decay condition (B) is close to being 
necessary for geometric convergence. Intuitively, for tar- 
get dentities with tails heavier than exponential, there 
is too much mass in the tails for a random walk dynamic 
to be able to see quickly enough. In one dimension (A) is 
not relevant, and Mengerson and Tweedie (1993) essen- 
tially demonstrate necessity and and sufficiency of (B) 
for geometric convergence of the algorithm. 

Condition (A) is far from being a necessary condition, 
although some kind of restriction on /c(e) for small e is 
necessary as the following example demonstrates. 

Example 1 Suppose 

TT(X) oc exp{-x2 - x2y2 - y2}, 

then it is not hard to show that /c(e) -+ oo as e —► 0. 
Therefore the density has long ridges along the coordi- 
nate axes. The random walk Metropolis algorithm can 
be shown to be not geometrically ergodic by Theorem 2. 
(See Roberts and Tweedie, 1994a for further details). 

However large classes of densities can be shown to 
satisfy (A) and (B). 

Example 2 Suppose TT(X) is positive everywhere, and 
satisfies 

7r(x) = f(x)exp{—r(x)} 

where t and r are polynomials and r satisfies the fol- 
lowing "positive definiteness" property. Suppose r is of 
degree m, then if rm is the polynomial consisting of all 
r's m-th order terms, rm(x) —► oo as x —>■ oo. Then 7r 
satisfies (A) and (B), and so the random walk Metropolis 
algorithm is geometrically ergodic. 

ir is example 1 fails to satisfy the positive definiteness 
condition since rm = x2y2. 

3    Efficiency and scaling of pro- 
posals 

To fix ideas in this section, we shall assume that the 
proposal distribution is normal, so that 

?(*, y) = 
1 

(2TTCT2)^/2 -*i-<,-'%-'h 2a2 

The question we address here is: how should we choose 
a to make the algorithm as efficient as possible? 

Unfortunately this question is illposed - there is no 
unique measure of efficiency for such an algorithm. A 
discussion of different measures of efficiency appears in 
Gelman Roberts and Gilks (1994). Instead, we use an 
asymptotic argument as d gets large. Consider first the 
case where the d-dimensional target density ir<j has the 
product form: 

d 

Td(x) = IJ MO- (1) 
1 

For the d-dimensional problem, choose cr = <j>/Vd. It 
turns out that this is the right way of scaling the vari- 
ance. Now define 

yd _ XW 

to be a speeded up version of the first component of X. 
Now Yd is making smaller and smaller jumps, more and 
more often, so that if a sensible limit process exists as 
d —* oo, then we would expect it to be a continous pro- 
cess. Although Yd is not Markov for any d, the limiting 
process turns out to be a Langevin diffusion, and is hence 
Markov. The limiting process satisfies the stochastic dif- 
ferential equation 

dY^i^^dt + h^dBt, 

where 

and 

h{<}>) = 2<f>2$ m 
J -c 

2 

dx 

(2) 

(3) 

(4) 

is a Fisher's information measure for / (F = 1 for stan- 
dard normal /). The limiting value of pjUmP for this 
sequence of problems is h(<f>)/<f>2. 

The speed of the diffusion h(<j>) is maximized by the 
choice 

4> = $ = 2.38/F1'2. 

Therefore the asymptoticallyoptimal jumping kernel has 
variance-covariance matrix (4>2/d)Id, with jumping prob- 
ability approximately 0.234. 
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This is the simplest of such results. Many more gen- 
eral forms of target density are subject to similar results. 
In particular, it is not necessary for ■K to have the prod- 
uct form of (1). Moreover, the asymptotically optimal 
acceptance rate of 0.234 remains robust to many gener- 
alizations. These extensions and the proof of the above 
result appear in Roberts Gelman and Gilks (1994). 

4    Summary and Conclusions 

The random walk Metropolis algorithm is often thought 
of as a default option: it is easy to implement, and it 
requires and uses no information about the structure of 
the target density being sampled. As such, for specific 
problems, there is frequently a more efficient algorithm 
available. However in return, the random walk Metropo- 
lis algorithm has relatively robust theoretical properties, 
as discussed in Section 2. In contrast, more 'tailor-made' 
algorithms such as those derived from Langevin diffusion 
approximations can have highly undesirable properties 
(see Roberts and Tweedie, 1994b). 

The efficiency results of Section 3 suggest that the 
algorithm should perform best with overall acceptance 
rates in the range [0.15, 0.4]. However a number of words 
of caution are in order. 

There are many target densities for which the random 
walk Metropolis algorithm is inappropriate, for instance 
highly multi-modal or heavy tailed distributions. The re- 
sults of Section 3 only provide an efficiency measure rela- 
tive to other random walk Metropolis algorithms. There 
is no guarantee that there exists a proposal scaling that 
gives an absolutely efficient algorithm. 

The result is asymptotic, and although it is supported 
by simulation studies for relatively well-behaved uni- 
modal densities (see Gelman, Roberts and Gilks, 1994), 
it's performance on low-dimensional multimodal prob- 
lems is unlikely to be satisfactory. 

In practice, one might try to "fine-tune" the algorithm 
as the simulation proceeds in order to obtain actual ac- 
ceptance rates within the range suggested. Care has to 
be taken with such a procedure since the stationarity of 
the target density can be compromised by such a non- 
Markov procedure (for example see Gelfand and Sahu, 
1993). Moreover, observed acceptance rates may be mis- 
leading in an inefficient algorithm. Therefore monitoring 
acceptance rates should never be used as a diagnostic for 
efficiency. 
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Abstract. We present a general method for prov- 
ing rigorous, a priori bounds on the number of it- 
erations required to achieve convergence of Markov 
chain Monte Carlo. We describe bounds for spe- 
cific models of the Gibbs sampler, which have been 
obtained from the general method. We discuss pos- 
sibilities for obtaining bounds more generally. 

1. Introduction. 

Markov chain Monte Carlo techniques, includ- 
ing the Metropolis-Hastings algorithm (Metropolis 
et al., 1953; Hastings, 1970), data augmentation 
(Tanner and Wong, 1986), and the Gibbs sampler 
(Geman and Geman, 1984; Gelfand and Smith, 1990) 
have become very popular in recent years as a way 
of generating a sample from complicated probabil- 
ity distributions (such as posterior distributions in 
Bayesian inference problems). A fundamental is- 
sue regarding such techniques is their convergence 
properties, specifically whether or not the algorithm 
will converge to the correct distribution, and if so 
how quickly. Many general convergence results (e.g. 
Tierney, 1994), qualitative convergence-rate results 
(Schervish and Carlin, 1992; Liu, Wong, and Kong, 
1991a, 1991b; Baxter and Rosenthal, 1994), and 
convergence diagnostics (e.g. Roberts, 1992; Gel- 
man and Rubin, 1992; Mykland, Tierney, and Yu, 
1992) have been developed. However, none of these 
approaches are entirely satisfactory (Matthews, 1991; 
Cowles and Carlin, 1994). 

In a different direction, a number of papers have 
attempted to prove rigorous, quantitative bounds on 
convergence rates for these algorithms (Jerrum and 
Sinclair, 1989; Frieze, Kannan, and Poison, 1993; 
Meyn and Tweedie, 1993; Lund and Tweedie, 1993; 
Mengersen and Tweedie, 1993; Rosenthal, 1991,1993a, 
1993b, 1994). Such results often provide bounds 
which are very weak, and/or for very specific mod- 

els, but the area appears to be worthy of further 
work. 

In this paper we describe a general method (Sec- 
tion 2) for proving such quantitative bounds. The 
method requires only that we verify a drift condi- 
tion and a minorization condition, for the Markov 
chain of interest. We describe (Section 3) the appli- 
cation of this (and related) methods to various spe- 
cific examples of the Gibbs sampler, including vari- 
ance components models, hierarchical Poisson mod- 
els, and a model related to James-Stein estimators. 
In some cases, the bounds appear to be small enough 
to be of practical use. In other cases, they provide 
additional theoretical information about the Gibbs 
sampler for the model being studied. 

We close (Section 4) with a brief discussion of 
possibilities for further bounds of this type. 

2. The general method. 
The simplest form of our general method is the 

following, taken from Rosenthal (1993b, Theorem 
12). 

Proposition. Let P(x, •) be the transition proba- 
bilities for a Mar£ov chain XQ, X\, X2, ■ ■ ■ on a state 
space X, with stationary distribution ir(-). Suppose 
there exist e > 0, 0<A<l,0<A<oo, d> j^j, a 
non-negative function f : X —► R, and a probability 
measure Q(-) on X, such that 

E(f(X1)\X0 = x)  < A/(x) + A,        x£X (1) 

and 

P{x,-)  > eQ(-), *efd (2) 

where fd = {x 6 X | f(x) < d}, and where P(x, •) > 
e Q(-) means P(x, S) > e Q(S) for every measurable 
SCX. Then for any 0 < r < 1, the total varia- 
tion distance to the stationary distribution after k 
iterations is bounded above by 

Supported in part by NSERC of Canada. (l-e)r* + .(a-O-'Y)*  (i + 
1-A + E (/(*„)) 
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where 

a      = 
1 + 2A + Xd 

1 + d 
<   1;    7 =  l + 2(Ad + A). 

Inequality (1) above is called a drift condition, 
while inequality (2) above is called a minorization 
condition. The proposition thus allows for precise, 
quantitative, exponentially-decreasing upper bounds 
on the distance to stationarity, as a function of the 
number of iterations k, using just these two inequal- 
ities. 

The proof of this proposition involves the cou- 
pling inequality, which states that the total variation 
distance between the laws of two random variables is 
bounded by the probability that they are unequal. 
Proving the proposition thus amounts to (theoret- 
ically) constructing auxiliary random variables Yk, 
so that C{Yk) = r but P(Xk = Yk) is as large as 
possible. Inequality (2) allows us to construct Xk 
and Yk jointly so that, whenever (Xk,Yk) € fd x fd, 
they have probability e of becoming equal on the 
next generation. Furthermore, inequality (1) implies 
that the number of iterations k for which (Xk,Yk) £ 
fd x fd will be large with high probability. Combin- 
ing these two facts, we can construct Xk and Yk so 
that P(Xk # Yk) is small, and thus use the coupling 
inequality to prove the proposition. The reader is 
referred to Rosenthal (1993b) for details. 

3. Applications to specific models. 

The general method of Section 2 (and related 
methods) have been applied to a number of specific 
examples of the Gibbs sampler, to derive informa- 
tion about their rates of convergence to the appro- 
priate posterior distributions. 

In Rosenthal (1993), a version of the data aug- 
mentation algorithm (a special case of the Gibbs 
sampler) was applied to finite sample spaces. It was 
shown that, with n parameters and n observed data, 
the algorithm would converge in O(logn) iterations. 
Thus, the running time of the algorithm does not 
grow too quickly with the number of parameters. 

In Rosenthal (1991), the Gibbs sampler applied 
to variance components models (as discussed in Gel- 
fand and Smith, 1990; Gelfand et al., 1990) was 
analyzed. It was shown that, with K location pa- 
rameters each having J observed data, the (K + 
3)-dimensional Gibbs sampler would approximately 

converge in 0 (1 + ^j) iterations. So again, the 

running time of the algorithm does not grow too 
quickly with the number of parameters. 

In Rosenthal (1993b), the Gibbs sampler ap- 
plied to a hierarchical Poisson model was analyzed, 

using the same data as analyzed in Gelfand and 
Smith (1990). For this data, the (11-dimensional) 
Gibbs sampler was shown to have total variation 
distance to stationarity after k iterations bounded 
above by 

(0.976)* + (0.951)*(6.2 + E ((S(0) - 6.5)2)), 

where 5(0) = £ ^ is a sum of initial values. The 
i 

bound is thus explicit and quantitative, and depends 
explicitly on the initial distribution. The bound is 
also not absurdly large: for example, if E ((S^ - 6.5)2) 
2 and k = 150, this bound is equal to 0.03, implying 
that 150 iterations are sufficient to achieve random- 
ness. 

In Rosenthal (1994), the Gibbs sampler applied 
to a model related to James-Stein estimators (James 
and Stein, 1961) was analyzed. The model (sug- 
gested by Jun Liu) was designed to avoid the use of 
guesses and empirical estimates in the usual (empir- 
ical Bayes) formulation of James-Stein estimators. 
The Gibbs sampler was intended to facilitate com- 
putations related to the associated posterior distri- 
bution. A formula was provided which gave a bound 
on convergence of the Gibbs sampler explicitly, in 
terms of the number of iterations, the initial distri- 
butions, the prior distributions of the model, and 
the observed data. When applied to the baseball 
data analyzed in Efron and Morris (1975) and Mor- 
ris (1983), it proved that the Gibbs sampler would 
converge in less than 200 iterations. 

For certain other prior distributions, it was shown 
(Rosenthal, 1994) that this Gibbs sampler would in 
fact not converge at all. This information was used, 
together with standard convergence theory, to prove 
that for these (improper) priors, the model itself was 
improper, i.e. the posterior distribution was non- 
normalizable. Analysis of the Gibbs sampler was 
thus used to provide additional information about 
the model under consideration. 

Our method has thus been applied to a variety 
of realistic examples of the Gibbs sampler. It has 
provided useful quantitative bounds, convergence in- 
formation relating the running time to the number 
of parameters, and additional theoretical informa- 
tion about the underlying model itself. 

4. Discussion. 
It is now widely recognized that convergence 

issues are crucial for the successful implementation 
of Markov chain Monte Carlo algorithms. However, 
no method is entirely satisfactory for demonstrating 
such convergence or providing a convergence rate. 
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We have provided a general method (Section 
2) for rigorously and explicitly bounding the con- 
vergence of these Markov chain algorithms. The 
method requires only that we verify a drift condition 
and a minorization condition for the Markov chain 
under consideration. In principle the method can 
be applied to virtually any Markov chain algorithm, 
and does not require special structure such as spec- 
tral information or reversibility. However, it is to 
be admitted that, in complicated high-dimensional 
problems, even the verification of the two required 
conditions can be quite difficult. 

We have described the application of this method 
to several models of the Gibbs sampler. These mod- 
els are realistic and non-trivial, and our method pro- 
vides useful information about their convergence prop- 
erties. The theoretical results appear to be at the 
point where they can begin to have practical impli- 
cations. 

However, each of these applications has required 
additional, extensive computation. Furthermore, sim- 
ilar computation may be extremely difficult for more 
complicated models. Hence, further work is required 
before these methods are easily usable in very gen- 
eral applied settings. It is possible that the theoreti- 
cal approach described here can be combined with a 
more practical analysis, for example by attempting 
to verify drift and minorization conditions through 
additional simulation (Cowles and Rosenthal, 1994), 
which might allow for wider use. 

In any case, while there is much work to be 
done, the methods described here appear to hold 
promise for providing rigorous rates of convergence 
for many additional examples of Markov chain Monte 
Carlo. 
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Data Augmentation * 

Jun S. Liu 
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1    Introduction 

The Gibbs sampler and other MCMC methods 
(Gelfand and Smith 1990, Smith and Roberts 1993, 
Tanner and Wong 1987), which become popular re- 
cently in statistical analysis with complicated mod- 
els, are no more than some devices for generat- 
ing random samples from an analytically intractable 
target distribution. The basic idea underlying all 
these methods is to construct a Markov chain with 
the target distribution as its equilibrium distribu- 
tion. The methods differ only in the use of Markov 
transition functions. For example, the transition 
function for the Gibbs sampler with systematic scan 
can be expressed as a product of a sequence of con- 
ditional distributions (Smith and Roberts 1993, Liu, 
Wong and Kong 1994b); while the transition func- 
tion for a Metropolis-Hastings algorithm consists of 
a "proposed" transition and a "thinning down" de- 
vice (Metropolis et al. 1953, Hastings 1970, Smith 
and Roberts 1993). Many theoretical work has 
emerged in understanding convergence properties of 
the MCMC methods. See, for example, Geman and 
Geman (1984), Gelman and Rubin (1992), Geyer 
(1992), Liu, et al. (1994a,b), Liu (1992, 1994), 
Mykland, Tierney and Yu (1993), Roberts (1992), 
Roberts and Poison (1994), Rosenthal (1993a,b), 
Schervish and Carlin (1993), Tierney (1991), just to 
start a list. Here, by taking a slightly different angle 
to look at the convergence problem, we investigate 
relationships among various concepts in describing 
a Gibbs sampler and the associated Bayesian miss- 
ing data problem: the rate of convergence, sample 
autocorrelations, and the fraction of missing infor- 
mation. 

* The author thanks Alan Zaslavsky and Yingnian 
Wu for helpful discussions and computing assistance. 
This work is partly supported by NSF grant DMS 94- 
04344 and Milton Fund of Harvard University. 

We distinguish two different situations for the 
Gibbs sampler: Data Augmentation which refers to 
a Gibbs sampler with only two iterative components 
(see Tanner and Wong 1987 for its original version, 
and Liu et al. 1994a for structural study), and the 
general Gibbs sampler (Gelfand and Smith 1990). 
A reason for doing this is that the two component 
case provides us some extra structure that a general 
Gibbs sampler does not possess, and the analysis of 
this simple case can suggest some useful methods for 
dealing with more general ones. 

By making use of covariance structures of Data 
Augmentation established in Liu et al. (1994a,b), 
we find that the convergence rate of the induced 
Markov chain can be characterized by the maximal 
fraction of missing information, which is closely re- 
lated to the work of Meng and Rubin (1992) for the 
EM algorithms. Conversely, because of this charac- 
terization, we can use autocorrelations of a station- 
ary Gibbs sampling sequence to estimate the frac- 
tion of missing information of any quantity of inter- 
est, which is useful for deciding how many multiple 
imputations will be provided. 

This article is arranged as follows. We review the 
concept of fraction of missing information in Section 
2. In Section 3, we present structures and several 
connections for Data Augmentation. A generaliza- 
tion to the general Gibbs sampler is contained in 
Section 4. A graphical method for comparing dif- 
ferent schemes, using the relationships found in Sec- 
tions 3 and 4, is described in Section 5. In Section 6, 
we analyze an example for match-making in "broken 
regression" (DeGroot, Feder, and Goel 1971). 

2      The Fraction of Missing 
Information 

The concept of fraction of missing information was 
first introduced together with the so-called missing 
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information principle by Orchard and Woodbury 
(1972). It is later proved to be an important concept 
for studying the EM algorithms (Dempster, Laird 
and Rubin 1977). Specifically, Louis (1982) pre- 
sented a method for finding the observed informa- 
tion, and Meng (1991) and Meng and Rubin (1993) 
systematically explored the concept and used it to 
characterize the rate of convergence for the EM and 
the ECM algorithms. 

To introduce the fraction of missing information 
conveniently, we let 0 denote the parameter vector 
in our model, let Y denote the observed part of an 
imaginary complete data set, and let Z denote the 
missing part. A simple identity underlying the miss- 
ing information principle and the EM algorithms is 

log[p(©|Y)]    =    log\p(e\Y,Z)} 
- iog[p(z|e,y)] + iog[p(z|y)], 

which implies 

a2iogp(e|y) 
Ö©2 

+ 

32iogP(e|y,2Q 
Ö02 

d2iogP(z\e,Y) 
de2 

Integrating out the missing data Z with respect to 
p(Z\Q,Y), we arrive at the following missing infor- 
mation principle 

Observed Information   =   Complete Information 

—    Missing Information. 

Denoting each term by I0is, Icom, and Imi,, respec- 
tively, we can define the fraction of missing infor- 
mation as 

We) _!    W®1 7t = T^T - l - .(e) (©)' 

where the I functions are evaluated at the true pa- 
rameter value. When 0 is a 1-dim parameter, the 
above quantity is well defined. Otherwise, the above 
definition takes a matrix form. Meng (1991) used 
the largest eigenvalue of the missing fraction matrix 
Imis(®)Ic°™(®)to characterize the convergence rate 
of the EM algorithm. 

Now let us take a Bayesian viewpoint. Suppose 
a prior distribution po(©) is given, and we are in- 
terested in h = h(Q) (one can view this as a way of 
eliminating nuisance parameters). If one can impute 
the missing data, i.e., draw samples Z^\ ...,Z^> 
from the predictive distribution p(Z\Y), then the 

posterior distribution of h, p(h\Y), can be approxi- 
mated by 

p(h | y) « ^{p(h\Y, ZW) + ■ ■ -p(h\Y, £<■»>)}. 

For example, Z^\ ■ ■ ■, Z^> can be draws from an 
iterative sampling scheme. When using the above 
multiple imputation type of approximations, the 
fraction of missing information is usually important 
for one to understand the impact of the missing data 
on the estimation of h. Also, it is important for 
one to decide how many imputations should be pro- 
vided. As Rubin (1987) advocated, m can be chosen 
as small as 3 to 5 for estimating posterior mean of 
h. Of course, in this case, the fraction of missing 
information with respect to h can not be too high. 

The fraction of missing information in the 
Bayesian framework can be easily defined as (Ru- 
bin 1987) 

vat{E(h \Y,Z)\ Y} 

=    1- 

var(/i | Y) 
£{var(/i \Y,Z)\Y} 

var(A | Y) 

which can be explained as the extra variation caused 
by missing Z. 

Note that in large sample and when h=0, since 
var(Ä|Y) w 1/I0b, and ^{var^lY,^)} « 1/hom, 
the two definitions of the fraction of missing infor- 
mation, 7B and yL, are equivalent. 

3    Structures for Data 
Augmentation 

We call a special situation of the Gibbs sampler 
Data Augmentation if there are only two compo- 
nents for iterative sampling (Liu et al. 1994). We 
use © and Z to denote the respective components 
in Data Augmentation to emphasize its connection 
with Bayesian missing data problems. 

Let Q^,Z^>,e^2),Z^>,..., be consecutive 
draws from a stationary Data Augmentation. In 
other words, we assume that ©^ is drawn from 
the target distribution p(0|Y, Z). In the following, 
since everything is conditioned on Y, we will omit 
it in all expressions. For example, when we write 
E{h(e)\Z}, it actually means £{/i(0)|Y, Z}. 

Consider two consecutive draws from Data Aug- 
mentation, we find that 

£(A«M*+1))  =  E{E(h^h^k+^ | Z^)} (1) 



492    Missing Information and Convergence Rate 

= E{E(hW | zW)E(h(k+V | Z^)} 

=  E{E\h | Z)}, 

where the first equality follows from an elementary 
fact that E(A) = E[E(A\B)]; the second and third 
equalities follow from the fact that ©(*) and ©(fc+1) 
are conditionally independent and identically dis- 
tributed given Z(k\ These facts can be illustrated 
by the following diagram: 

©(i) 0(2) e<8> 

£(*) Z« Z&      •    •    • 

From the diagram, we observe that ©(*) connects 
with 0(2) through Z^\ and, from the definition of 
the scheme, (©W,^1)) and (0<2), Z^) have the 
same joint distribution when the chain is stationary. 
These two properties only hold for Data Augmenta- 
tion, not for the general Gibbs sampler. However, 
this type of dependence graph can be applied to a 
general Gibbs sampler and provide useful intuition. 
In Section 5 we will illustrate how to use these dia- 
grams to compare different schemes. 

As a consequence of (2), we have the following 
identity 

cov{fc(e(*)),A(0(i+1))} = var[£{/*(0) | Z}] 

The formula implies that the correlation coefficient 
between the two consecutive A's are 

An intuition of this is that the higher the frac- 
tion of missing information, the more "sticky" the 
sample outputs from Data Augmentation, and vice 
versa. The extra variance caused by the missing 
data, va,i{E(h\Z)}, can then be estimated as 

1 
m-1 

*-• = ^TT E *w*(*+1) - (M2- 
*=1 

If, on the other hand, g(Z) = E(h\Z) is easy to 
compute, one may also approximate va,i{E(h\Z)} by 

m 

«m«.=5>C0-ft»)a/(n»-l), 
»=1 

where gM = E(h\Z^) and gm = (gW + •■■ + 
g(m))/m. This is a variation of Rao-Blackwellization 
(Gelfand and Smith 1990, Liu et al. 1994a). 

Intuitively, it seems that the latter estimation is 
better. For example, 

var^WM2)}    =    E{(h^h^)2}-[E{E2(h\Z)}]2 

=   E{E2(h2 | Z)} - [E{E2(h\Z)}]2, 

while 

var(<72) = E{E\h \ Z)} - [E{E2{h \ Z)}}2. 

Hence, by the Cauchy-Schwarz inequality, we have 

var(<72) < v&x{hWhW}. 

Furthermore, by Theorem 3.1 of Liu et al. (1994) 

cov{(gW)2,(g(k+V)2} 

=   var^...^^2^)!©}^].-.)} 

where the right hand side has k expectation signs. 
Also, we notice that 

E{g2(Z)\Q} = E{E[g(Z)h(0)\Z]\e}. 

For vmis, we let /(©) = E[E{h(e)\Z}\&\, which 
is just £;(A(2)|©(1)). Then we have 

covC/i«^2),/^1)/^2)) 

=    cov^/W/iC**1)/^2)) 

which, for the same reason as above, has the follow- 
ing expression 

™{E(-.-E[E{h(G)f(e)\z}\e]...)} 

where there are k — 1 expectation signs on the right 
hand side. However 

E{h(e)f(e)\Z} = E{E[h{Q)g{Z) \©}\Z} 

If we compare the expression of lag-fe autocovariance 
for the (ffW)2 sequence with that for the h^hV+V 
sequence, we find that the former always has one 
more conditional expectation sign than the latter. 
However since the orders of the conditionings are 
different, there is no clear comparison between the 
two except for the case when lag=l, in which case, 
the autocovariance for the latter expression is always 
greater than or equal to the former. 

The following analogy is helpful for understand- 
ing the above discussion. Consider two scenarios: 
(i) a vector a is projected to vector b and then to 
vector c; (ii) a is directly projected to c. How do we 
compare the length of the projections? Apparently, 
if the three vectors are in the same plane and b 
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lies between a and c, the latter projection is smaller 
than the former one. But in most other cases, the 
former is smaller than the latter. This corresponds 
to comparing va,t[E{E(X\Y)\Z}] and va,i{E(X\Z)}. 

For any two random variables U and V, we define 
the maximal correlation between them as 

R(U,V) = sup 
var{t(tr)}=var{»(V)}=i 

corr{t(U),s(V)}. 

It is well understood that for a reversible sta- 
tionary Markov chain X^,X^2\..., the maxi- 
mal correlations between two consecutive states, 
Ä(X(*),X(*+1)), is equal to A, where 1 - A is the 
so-called "spectral gap." See Liu et al. (1994a,b) 
for more references. For discrete case, A is just the 
magnitude of the second largest eigenvalue (in ab- 
solute value). For nonreversible chain, the scaled 
long-range maximal correlation is equal to A (Liu et 
a. 1994b). That is, 

lim{fi(X(1>,x(*+1))}1/* = A. 

It is shown in Liu et al. (1994a) that the maxi- 
mal correlation between two consecutive draws of 
Data Augmentation, i?(0(*\ ©(*+1)) is the intrinsic 
rate of convergence of the scheme, and is equal to 
R?(e,z). 

On the other hand, under mild conditions (see 
Csäki and Fischer 1960), there exists a pair of func- 
tions ho(Q) and go(Z) with unit variance such that 
coTi(h0, go)=R(Q, Z) (denoted as R later), and 

E{g0(Z)\e}   =   Rh0(e) (2) 

E{h0(e)\Z}    =   Rgo(Z) (3) 

Therefore, ho suffers the maximal fraction of missing 
information 

yB(h0) = vai{E(h0\Z)}/vM(h0) = R2, 

and the maximal fraction of missing information is 
equal to the rate of convergence of Data Augmen- 
tation. If a function h is correlated with ho (with 
respect to TT), then 

{corKA«,^1))}1/*-^ 

as Ar goes to infinity. This follows from spectral de- 
composition of h (Liu 1991, Garen and Smith 1994, 
Roberts 1992). It suggests that the maximal frac- 
tion of missing information can be estimated by the 
output sequence of the Gibbs sampler. 

4    Missing Information in the 
General Gibbs Sampler 

We now turn our attention to the general Gibbs sam- 
pler with systematic scan. There are two situations 
commonly encountered in practice. We shall discuss 
them in the order of increasing complexity. 

Case 1. 0 = (0i,02), Z = Z. That is, given 
0, Z can be drawn directly; but 6\ must be drawn 
conditional on both 02 and Z, and 02 must be drawn 
conditional on 0i and Z. Note that this can be gen- 
eralized obviously. The following diagram illustrates 
the sampler: 

zw     z&) 

Hence, 

cov{A(0(
1
1)),A(0(

1
2))} 

=    2W#Wi2))}-iWi)a} 

=   var[£{/i(0i)|02,Z}] 

which implies that lag-1 autocorrelation of the h se- 
quence is in general not its fraction of missing in- 
formation with respect to Z, but is a quantity that 
reflects dependency between 0i and (02, Z). Note 
that 

var[£{/i(0i) | 02,Z}] > var[£{fc(0i)|Z}]. 

Another way around is to design a function g{Z) 
and to estimate the maximal correlation between 0 
and Z from it. For example, if it happens that we 
know go in (2) and (3), then by Lemma 4 of Liu 
(1994), 

cov{</0(£
W),<7o(£(*+1))}    =   ™[E{g0(Z) 10}] 

=    R2 var{fto(0)}. 

Here R2 is the maximal fraction of missing informa- 
tion and is an upper bound for 7B(A). This duality 
provides us the following scheme for obtaining an 
estimate of the maximal fraction of missing infor- 
mation. 

Step 1. Design a function g(Z). Usually this can 
just be a linear function (e.g., see Liu 1991). 
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Step 2. Estimate lag-& autocorrelation r* for the g 
sequence for k = 1,2,..., after the chain converges, 
and fit the exponential model 

rk = cph. 

Garren and Smith (1994) provided refined methods. 
The fitted value p is an estimate of R(Q, Z). 

Case 2. 0 = (0i,02) and Z = {zx,z2). This is 
the case where the fraction of missing information 
can not be estimated from the sample autocorrela- 
tions. The maximal fraction of missing information 
can be extracted from long range autocorrelations 
by the same reason as explained in Case 1. 

5     Compare Schemes via 
Diagrams 

In running a Gibbs sampler or a more general 
MCMC algorithm, one usually has flexibilities in de- 
signing sampling schemes. As with many iterative 
methods , we are usually faced with a dilemma: we 
either have to sacrifice computational ease for iter- 
ative simulation in exchange for fast convergence, 
or have to suffer slow convergence in exchange for 
computational simplicity. Only in some rare situ- 
ations as explored in Liu (1994) be we satisfied in 
both ways. Specifically, when the Bayesian predic- 
tive distribution is simple, one can use the predictive 
updated version to improve convergence without sac- 
rificing computational simplicity. Liu et al. (1994a) 
and Liu (1994) provided some theoretical arguments 
based on operator theory. Here we use diagrams to 
illustrate autocorrelation structures. We hope that 
the analysis in this section can shed light on more 
complicated general situations. 

For the sake of simple argument, suppose the 
sampler involves three components ($1,82, Z) and 
each component is visited in turn: 0i —► 9% —»■ Z. 
The following diagram shows dependency between 
two consecutive iterations. For example, 6\' is gen- 

erated by a draw from ir(6i\92 \z), which is illus- 
trated in the diagram by two arrows connecting 02 

(2) and Z with 6\ '. Other arrows have similar impli- 
cations. This diagram shows that the two consecu- 
tive states depend on each other via the connection 
between (0{1]\Z^) and (^2),02

2)) as illustrated by 
three arrows in the middle or the diagram. 

Next diagram illustrates a grouping scheme, 
where it is assumed that given Z, (61,62) can be 
drawn together. The diagram illustrates that de- 
pendency between two consecutive states is via the 
connection between Z^> and (0[2', 0\ ), where only 
two arrows are used for this connection. Compared 
with the above diagram for the original sampler, 
dependency between the two consecutive states for 
grouping is weaker. 

Our final diagram represents the collapsing 
scheme, in which we assume that $2 can be theoret- 
ically integrated out so that the sampler is applied 
only to the two remaining components. In this dia- 
gram, the only connection between two consecutive 
states is that between Z^> and 6\'. Only one ar- 
row is used, which indicates the weakest correlation 
among the three schemes. 

We expect that this type of analysis can be gener- 
alized to other situations to help one design efficient 
sampling schemes. 
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6    An Example: Broken 
Regression 

Suppose Xi, i — 1,...,100, are i.i.d. normal with 
variance r2; and y,- = a + ßxi + e,-, where the e,- 
are i.i.d. from N(0, <r2). It is a standard regres- 
sion problem if we observe (xi, y,) for i = 1, • • •, 100. 
Suppose, however, the pairing information is some- 
how lost and we can only observe «,-, i — 1,..., 100, 
a random shuffle of the y,-. The problem is no longer 
trivial. This can also be viewed as a special case of 
file matching problem. DeGroot et al. (1971) stud- 
ied this problem with an objective to maximize the 
number of correct matches. We are interested in es- 
timating ß and the corresponding fraction of missing 
information (for not knowing the matching). 

Let Q be the permutation that produces the u,- 
from the yj. The main difficulty is that Q is miss- 
ing. Let © = (a, ß) and U = («i,..., uioo)- With a 
prior distribution on ©, Data Augmentation can be 
applied if we can (a) draw Q from p(Q\&, U) and (b) 
draw © from p{Q\Q, U). Step (b) is simple since it 
only involves multivariate ^-distribution. Step (a) is 
nontrivial. As was implemented in a preliminary re- 
port of Y. Wu (Dept. of Statist., Harvard U.), step 
(a) can be accommodated by a "Metropolized shuf- 
fling" scheme. Roughly speaking, a random shuf- 
fling scheme is employed that provides us a Markov 
chain on the space of all permutations. Based on this 
chain, we can apply Metropolis-Hastings rejection 
rule to achieve our target distribution p(<5|0, U). 
In our simulation, we used switch shuffling (ran- 
domly draw two cards and switch them). Within 
each iteration (i.e., a cycle of Steps (a) and (b)), 
500 Metropolized shuffles were conducted, since, as 
theory suggested, 0(nlog(n)) steps are needed to 
shuffle n cards uniformly. 

We simulated a data set with r2 = 1, a2 = 1, 
and a = 0. Assuming that a — 0 is known, we 
used a flat prior for ß. Figure 1 illustrates our re- 
sults. Panel(l,l) shows the posterior distribution of 
ß, where the x's were simulated from N(0,1) and 
the true ß was zero. As indicated, its variance is 
0.12, considerably larger than 0.01, the complete- 
data posterior variance of ß. Panel(l,2) shows the 
autocorrelations among the /?'s. The fraction of 
missing information can be estimated as jB = 0.924 
from the autocorrelation plot. As theory in Sections 
2 and 3 indicated, 

(l-7B)var(/?|^) = S{var(/?|C/,Q)} 

where the RHS is average complete-data variance. 

This identity was experimentally confirmed since 
(1 - 0.923) x 0.12 = 0.009 which is close to the 
theoretical value 0.01. Panel(2,l) is the same pos- 
terior distribution, but the x's were simulated from 
JV(0,1) and the true ß=0. With the x's far from 
origin, both the posterior variance, 0.021, and the 
fraction of missing information, 0.619, were consid- 
erably smaller. In Panel(3,l), the x were simulated 
from N{\, 1) and the true ß = 1. It seems to sug- 
gest that the fraction of missing information is not 
related to the true value of /?, but is very sensitive 

toE*,?- 
An intuitive solution of the problem is to sort 

both the x and the u first and then do a regression on 
the sorted data. But this procedure overestimates ß 
and does not provide proper inference. The above 
Bayesian method we employed, however, is unbiased 
(with flat prior) and supplies proper variance esti- 
mation. When Yl xi ls extremely large, the sorting 
method (essentially any method) works well, imply- 
ing that the matching information is unimportant 
for the inference of /?. This, together with the fore- 
going simulation study, suggests a conjecture that 
the fraction of missing information for ß monotonely 
decreases as^if increases. 
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Abstract 
The ability to sample latent variables using Markov 
chain Monte Carlo (MCMC) has had a major impact on 
computations relating to the genetic analysis of complex 
traits, or traits observed on complex pedigrees. One 
area in which exact likelihood computation is often 
infeasible is multilocus linkage mapping. One method of 
linkage analysis for rare recessive traits is homozygosity 
mapping where data on affected inbred individuals are 
analysed. Key to this method are the patterns of au- 
tozygosity in the individuals, and MCMC provides also a 
method for studying these patterns. Algorithms for the 
exact computation of autozygosity probabilities on an 
arbitrary pedigree very rapidly become computationally 
infeasible. However, an MCMC algorithm can provide 
accurate estimates in reasonable computing time, and 
these probabilities can then be used to map the genes 
responsible for disease. 

1. Introduction 
Monte Carlo likelihood is becoming increasingly used 

where exact likelihood analysis is computationally in- 
feasible. One area in which such likelihoods arise is that 
of genetic mapping, where the locations in the genome 
of genes influencing a given trait are to be inferred. 

The elements of genetic models are straightforward: 
genes exist, genes segregate (are copied) from parents to 
offspring, and the types of genes carried by an individual 
influence observable trait characteristics. A locus is a 
specification of the' position of a gene on a chromosome. 
With modern molecular genetic techniques, individuals 
can be typed for a wide variety of DNA markers of 
known location in the genome. These DNA markers 
can be chosen to be highly polymorphic; there are many 
different alleles (types of genes) that an individual may 
have. The genes at these DNA marker loci segregate in 
a Mendelian way (Mendel, 1866); each individual has 

'Research supported in part by PHS grant GM-46255. 

two genes at the locus, one a copy of a randomly chosen 
one of the two in his father, and the other a copy of a 
randomly chosen one in his mother. Segregation of genes 
from different parents to a child, and from a parent to 
different children, are independent. These simple 50/50 
probabilities underlie all of genetics, but in considering 
the joint segregation at several genetic loci, or the 
pattern of single-locus segregations on an extended 
family, computations can rapidly become very complex, 
principally because not all the relevant information can 
be observed. 

Genetic loci, Li,...,Lk that index segments of DNA 
on the same chromosome are "linked"; the segregations 
of genes at two loci are not independent. If the maternal 
gene at locus Lh in a father segregates to a child, it 
is more probable that the gene that segregates at an 
adjacent locus, Lj, is also the father's maternal gene. 
Similarly for the father's paternal gene, and similarly 
also for genes segregating from the mother. This de- 
pendence can be expressed through the "recombination 
fractions", Thj, between the two loci. Specifically, the 
probability that genes at loci Lh and Lj segregating 
from one parent to the child have different grandparental 
origins is rhj. In fact, the value of a recombination 
fraction between two loci depends on numerous factors, 
most importantly on the sex of the parent. This fact 
can be incorporated into analyses, but, for simplicity, is 
ignored in the current paper. 

The biological phenomenon underlying recombination 
is a "crossover" between the two parental chromosomes 
in the formation of the offspring chromosome. There 
will be a recombination between loci Lh and Lj if there 
is an odd number of crossover events. The genetic 
(map) distance between two loci is the expected number 
of crossovers between them, and hence is additive 
(Haldane, 1919). However, the data provide information 
only on recombination frequencies between loci (Fisher, 
1922). This pattern is related to map distance, but also 
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depends on the pattern of interference. Interference 
is the name given to the biological phenomenon that 
a crossover at one point on a chromosome affects the 
chance that crossovers occur at other points • in the 
vicinity. Under an assumption of no interference, 
recombination events occur along the chromosome as 
a Poisson process rate 1, when the chromosome is mea- 
sured in units of map distance. In practice, interference 
exists, particularly where the loci are close together 
and recombination fractions between them are small. 
However, the amount of data required to estimate levels 
and patterns of interference seldom exists in human 
genetic studies. In genetic mapping, the objective is 
to detect linkage, to infer locus order, and place loci 
on a chromosome by estimating recombination fractions 
between them. For such purposes, interference can 
safely be ignored. 

Now in mapping a genetic disease, marker types 
will be available for some individuals in a pedigree in 
which the disease is segregating. Disease or relevant 
quantitative trait data will be available also for some 
members of the pedigree. However, first, not all 
individuals will be observed; some will be unavailable, 
particularly ancestors. Second, the genes underlying the 
trait phenotypes may not be determined; for example, 
for a recessive disease, two copies of the disease allele are 
needed to express the trait, but those who do not express 
it may have one copy of the disease allele, or none. 
Third, even where single-locus marker genotypes are 
observable the haplotype information is not; that is, it 
is not known which alleles are on the same chromosome, 
having been received from the same parent. One set of 
single-locus genotypes (a specification of the unordered 
pair of alleles at each locus) can correspond to many 
different multilocus genotypes (a specification of the 
alleles on each chromosome, at each of the loci). Thus 
in computing a likelihood, for a given locus order and 
set of recombination fractions, a huge sum over all 
the possible configurations of haplotypes is required. 
With the increasing availability of DNA markers there 
is an increasing potential for mapping traits with more 
limited trait data or more complex modes of expression. 
However, more markers, and marker loci with more 
alleles, and traits observable for a more limited subset of 
the pedigree members, all compound the computational 
difficulties, since the number of possible underlying 
configurations of genes on all the relevant members of 
the pedigree increases vastly. 

Thus, with the increasing desire to examine multiple 
markers, and markers with multiple alleles, a major 
limitation of linkage analysis has become the practical 
and theoretical bounds on the computational feasibility 

of likelihood evaluation. There are many further aspects 
of linkage analysis, and many alternative approaches to 
localising the genes responsible for a genetic disease. A 
much fuller description of standard statistical methods 
in linkage analysis may be found in the text by Ott 
(1991). 

In this paper, we consider one possible approach to 
the computations needed to map a rare recessive disease 
from data on affected inbred individuals. We consider 
only marker loci at which the types of the two genes 
carried by a observed individual are known, and a 
recessive disease for which it is known whether or not 
an observed individual carries two copies of the disease 
allele. The (multilocus) genotype G,- of individual i is a 
specification of the types of the genes on each of a pair 
of chromosomes of the individual. The phenotype Y* of 
i is a specification of the observed trait characteristics 
determined by the underlying genotypes. We subsume 
all the parameters of the genetic model into the parame- 
ter vector 0, and use Pe{-) to denote probabilities under 
the model. The total set of genotypes on a pedigree is 
denoted G, and of observed phenotypes Y. 

2. Monte Carlo likelihood 
Monte Carlo estimates of integrals or expectations 

are not new, either in general (Hammersley and Hand- 
scomb, 1964) or in genetic linkage analysis (Thompson 
et al. 1978). However, Monte Carlo methods have only 
become widely used with the explosion in use of Markov 
chain Monte Carlo (MCMC) which permits simulation 
from distributions known only up to a normalising 
constant, and hence simulation from conditional dis- 
tributions. The statistical problems involved in fitting 
genetic linkage models to trait data, Y, on a set of 
related individuals may be viewed as. latent variable 
or "missing data" problems. Were all the underlying 
genetic events observable, likelihood computation and 
parameter estimation would be trivial, but only trait 
data (phenotypes) of some individuals are observed. We 
denote the latent variables by X. 

The likelihood is 

L[ß) = Pe(Y) = £P*(Y,X) = £>(Y|X)Pe(X)   (1) 

X X 
Although the summation may be infeasible, we suppose 
that the latent variables, X, are chosen in such a way 
that each term of the expression is easily computed. 

Monte Carlo estimators of likelihood ratios can be 
based on 

L{6) _ P9(Y) _„   fPe(Y,X) 

P»o(Y) 
E0O (2) L(60)      Peo(Y)        °°\PSo(Y,X) 

(Thompson and Guo, 1991), provided simulation from 
the appropriate distribution is possible. Suppose X(/), 
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I  =   l,...,N, are realisations from P«0(X|Y) then a 
Monte Carlo estimate of the likelihood ratio (2) is 

1 ^fPe(Y,X(l))\ 
(3) 

From an importance sampling perspective, the estima- 
tor (3) is efficient; for values of 6Q close to 6 the sampling 
distribution mimics the shape of the integrand P$(Y, X) 
of (1). Further, equation (3), through simulation at a 
given 6o, provides a likelihood ratio approximant, as 
a function of 9, in the sense of Geyer and Thompson 
(1992). At least for values of 6 close to do, a single 
simulation provides an estimate of the local likelihood 
surface. 

In Monte Carlo approaches to complex problems with 
many latent variables, the key is simulation conditional 
upon data; that is from 

Pfio(X|Y)  =  P6o(X,Y)/Peo(Y) (4) 

With well chosen latent variables X, the numerator of 
this expression is readily evaluated, but the denominator 
is 

L(0o) = Pflo(Y) = £p,o(X,Y) 
X 

and this summation is often infeasible. The denomi- 
nator is, in fact, precisely the likelihood whose exact 
evaluation is often impossible, necessitating the Monte 
Carlo estimation. 

Metropolis-Hastings algorithms are Markov chain 
Monte Carlo methods designed to meet this need, pro- 
viding realisations (approximately) from a distribution 
known up to a normalising constant (Hastings, 1970). 
For each X a "proposal distribution" <jf(-,X) is defined. 
Then, if the process is now at X the next value is 
generated as follows: 
1. Generate X* from the proposal distribution q(-,X) 
2. Compute the Hastings ratio 

A = 
q(X,X*)Pe0(X*\Y)      q(X,X*)PBo(Y,X*) 
q(X*,X)P9o(X\Y)       q(X*,X)Peo(Y,X) 

Note that A can be computed without knowledge of 
ft.(Y). 
3. With probability A* = min(l,A) the process moves 
to X* and with probability (1 — A*) it remains at X. 
The distribution (4) is an equilibrium distribution of the 
Markov chain just defined. Provided q(-, •) is chosen so 
that the chain is ergodic, running the chain provides 
(after a sufficient number of steps for convergence) 
realisations from the distribution (4). The algorithm of 
Metropolis et al. (1953) is a special case; if q(X*,X) = 

q(X,X*) the Hastings ratio reduces to the odds ratio of 
the proposal state X* versus the current state X. 

In the genetic context, the latent variables X have 
normally been taken to be the underlying multilocus 
genotypes (the pairs of haplotypes) carried by each in- 
dividual in the pedigree. This makes for easy evaluation 
of P$a (X, Y) but not for easy sampling of the large space 
of possible X-values. The space of Lange and Matthysse 
(1989) is even larger, including also indicators of the 
grandparental origins of genes. Although local updat- 
ing methods are very slow, they are convenient for 
genetic analysis problems. If large changes in genotypic 
configuration are proposed, the Hastings ratio can be 
impossible to compute, and constraints in the feasible 
genotypic patterns on pedigrees mean that almost all 
proposals have zero probability. 

There are various approaches to improving sampler 
performance in genetic problems. Lin (1993) made great 
progress towards increasing the practicality of MCMC 
methods in linkage analysis, using Metropolis-coupled 
samplers (Geyer, 1991), and a form of "heating" in 
the Metropolis-Hastings steps to improve mixing of the 
chain. Geyer and Thompson (1994) used simulated 
tempering (Marinari and Parisi, 1992) to make sampling 
feasible on a very large complex pedigree with many 
constraints. These strategies result in a sampler that 
can sample genotypes efficiently on a large pedigree. 
However, for several linked markers, the huge space of 
possible genotypic configurations that then arises may 
render the sampler ineffective. 

An alternative approach is to consider alternative 
latent variables X, to produce a smaller space more 
easily sampled by MCMC methods. Note that the 
requirements on X are only that Ffl(Y,X) should be 
very quickly computable. Now P$(Y, X) is normally 
computed as Pe(Y | X)PS(X). Thus any X for which 
these two factors can be readily computed will suffice. 
For the problem of mapping rare recessive traits from 
data on inbred affected individuals, it is possible to 
bypass the multilocus genotypes of unobserved individ- 
uals, and use only segregation indicators as the latent 
variables. 

3. Homozygosity mapping. 
In linkage analysis, due to uncertainties as to whether 

an unaffected individual carries a disease gene, the 
computational difficulties on extended pedigrees, and 
the costs of typing large numbers of individuals, there 
have been many approaches towards basing linkage 
analyses on a small number of observed (usually af- 
fected) individuals. The extreme case is homozygosity 
mapping in which a rare recessive is mapped using only 
marker and trait data on independent inbred affected 
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individuals. 
It was first pointed out by Smith (1953), that in- 

dividuals affected with rare recessive diseases provide 
information for linkage analysis, even without any 
marker or phenotype data on other relatives. For a 
recessive disease, affected individuals are homozygous at 
the disease locus; that is, they carry two copies of the 
same allele. For a rare disease, many affected individuals 
are so through being the offspring of consanguineous 
marriages, and thus receiving two copies of the disease 
gene identical-by-descent or autozygous from a recent 
common ancestor of the two parents. In this case, the 
affected individual is likely to be homozygous also at 
closely linked markers, and this homozygosity provides 
evidence for linkage. Unrelated inbred individuals will 
be homozygous at independent segments of the genome, 
but the shared affected status of the individuals will 
cause shared homozygosity in the neighbourhood of the 
disease locus. The scope of homozygosity mapping, 
which is simply linkage analysis using data only on 
unrelated inbred affected individuals, was extended by 
Lander and Botstein (1987). With a dense map of 
highly polymorphic DNA markers, a small number of 
affected individuals can provide substantial information 
for mapping a recessive disease gene. 

Linkage analysis is the analysis of cosegregation of 
genes at different loci, from parents to offspring. If two 
loci are tightly linked, there is a high probability that if 
the individual receives a grandmaternal [grandpaternal] 
allele from his mother at one locus, he will do so 
also at the adjacent one, and similarly for the gene 
received from his father. The key underlying events that 
determine the data on the affected inbred individual are 
the segregations that specify the ancestral genes that he 
receives. Let m and p index the maternal and paternal 
segregations to some individual. Let Smj = 0 if the 
maternal allele received by the individual at locus j is 
of grandmaternal origin, and Smj = 1 otherwise, and let 
Spj be similarly defined for the paternal allele. Then, at 
any locus j, 

P(Smj = 0)  =  P(Smj = 1) = 

P(Spj = 0) =■ P(Spj = 1)  =  \ 

and at two loci h and j 

P(Smh = Smj) = P(Sph = Spj) = (l-rhJ) 

where rhj is the recombination fraction between the two 
loci. 

Then for a given segregation i, the recombination 
events are determined by segregation indicators Sy, 
j   —   l,...,k,  where Sij  is 0 or  1  as the origin of 

Figure 1: A first cousin marriage, showing segregation 
indicators. 

the segregating gene at locus j is grandmaternal or 
grandpaternal, respectively. That is, we shall take the 
indicators S = {Sij} as the latent variables X in the 
Monte Carlo likelihood framework of section 2. Figure 1 
shows the case of the offspring of a first-cousin marriage. 
At any locus, the offspring individual may receive genes 
autozygous from either of his parents' common grand- 
parents; there are eight relevant segregation indicators 
that will specify the gene descents. 

Table 1: Example of segregation array, for the 
pedigree of figure 1 

Segreg.: Si 52 s3 s4 S5 s6 s7 s8 
Locus 
Lx 0 1 1 1 0 1 0 0 

L2 0 1 1 0 0 1 0 0 
Lz 0 1 1 0 0 1 0 1 

U 0 1 0 0 0 1 0 1 

Table 1 shows four successive patterns of values for 
the eight segregation indicators of figure 1, such as 
might arise along a chromosome segment, or at four loci. 
In the first pattern, the paternal gene of the offspring 
individual derives from his grandmother (Si = 0), and 
is the paternal gene of this grandmother (S4 = 1), and is 
in fact the great-grandfather's maternal gene (S5 = 0). 
Likewise the final individual's maternal gene is this same 
maternal gene in his great-grandfather; the individual is 
autozygous for this gene. By locus 2, S4 has become 0; 
the final individual's paternal gene is now the paternal 
(Sg = 1) gene of his great-grandmother.   By locus 3, 
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Ss has become 1; this leaves the genes in the final 
individual unchanged, since 53 = 1, so the grandfather's 
maternal gene is not transmitted. However, by locus 4, 
53 becomes 0; now the final individual is autozygous for 
the paternal gene in his great-grandmother. 

Consider now Table 1 as illustrating a possible value 
of the state S at four loci being used in a genetic anal- 
ysis. The prior probabilities of S are straightforward. 
However, for implementation of a Metropolis algorithm, 
relative values of Ps0(Y,S) are required, or P$0(Y | S). 
The binary indicators, S = {Sij}, of grandparental 
origins of genes in each given offspring individual, at 
each locus readily determine the multilocus autozygosity 
patterns in the observed individual. This is done 
simply by following the descent paths of genes, as in 
the example described above; an efficient algorithm is 
easily implemented to update these descent paths, and 
hence the resulting autozygosity pattern, when a Sij 
changes. For a single observed individual, the autozy- 
gosity pattern is k binary indicators, specifying whether 
or not the Sij result in the individual having two genes 
autozygous at locus j, j = l,...,k. The probability of 
a genotype homozygous for an allele with frequency q 
is q2 or q, as the individual is not/is autozygous at the 
locus. The probability of a heterozygous genotype is 0 
if the individual is autozygous at the locus, and is 2q\q2 

otherwise, where qi and qi are the two allele frequencies. 

Table 2: Probability ratios of segregation 
indicators Sa 

Si 3-1 Sij+i 
1 
0 
1 
0 

probability ratio* 

(1 — *V-i)(1 — *V)/pi-irj 
(l-»V-i)'7/rj-i(1-ri) 
JV_i(l-r,-)/(l-*>_!),.,■ 
rj_1rJ/(l-rJ_1)(l-ri) 

* :P(Sij = 1 | S_(tf))/P(Si/= 0 | S_W)). 
r/j is the recombination frequency between Lh and Lh+i ■ 
Note also: 
P(Sij = 1 | S_(,-j-)) = P(Sij = 1 | Sij-i,Si,j+i) 
P(Sij = 0 | S_W)) = P(Si:i = 0 | Sij-i,Sij+i) 
S_(y) denotes all elements of S other than Sij. 

The space of S-values is also easy to sample from. 
The simplest algorithm uses a Metropolis proposals to 
change the grandparental origin of the gene at a random 
locus in a random segregation. The probability ratio for 
the proposed change in S depends only on the indicators 
at adjacent loci for the same segregation (Table 2). For 
example suppose the current. S were that of Table 1, and 
the proposal was to change 54,2 from its current value 
0 to 1. This would eliminate a recombination between 

loci 1 and 2 (S^i = 1) giving probability ratio 

(1 -rii2)/rii2, 

but create one between loci 2 and 3 (5^3 = 0) giving 
another factor 

»•2,3/(1 - r2,3). 

This recombination ratio is then weighted by the ap- 
propriate conditional probability of phenotypic obser- 
vations P$0(Y I S), for current and proposed S-values. 
This sampler is clearly irreducible: if a given pattern 
of autozygosity in the observed individual is compatible 
with the data, then so also is any pattern with fewer 
loci at which the affected individual is autozygous and 
hence homozygous. 

Werner's syndrome (WS) is a very rare recessive 
genetic disease of premature aging. It has recently 
been mapped to chromosome 8 using outbred affected 
relatives (Goto et al., 1992), and this linkage has been 
confirmed by analysis of a set of inbred affected individ- 
uals (Schellenberg et al., 1992) in 21 small pedigrees of 
Japanese and Caucasian origin. The frequency of the 
disease allele is assumed to be 0.004. A Monte Carlo 
linkage likelihood analysis of a subset of five of these 
pedigrees is given by Thompson (1994); here we use just 
two of the pedigrees for purposes of illustration. Two 
markers were of significance in the published linkage re- 
ports: D8S87 and ANK. Originally ANK and £»8587 
were thought to be flanking markers, but the likely order 
is now thought to be (WS, D8S87, ANK). For the 
purposes of illustration only,.we take the recombination 
fractions between WS and ZP8587 and between D8587 
and ANK each to be 0.1; this is probably larger than 
the true values., but of the correct order of magnitude. 
Data and information on these markers were provided 
by Dr. Ellen Wijsman (personal communication). 

4. Autozygosity probabilities 
In fact, for a single affected inbred individual, the data 

Y at a position A on a chromosome depend on S(h) only 
through Z(h), the autozygosity (I) or non-autozygosity 
(TV) in the inbred affected individual. Over multiple 
loci, or along the chromosome continuum, these patterns 
of autozygosity are themselves of interest. Although, 
for a very rare recessive trait, the posterior probability 
of autozygosity at the disease locus is very high, the 
probability that all of a set of unrelated affected inbred 
individuals are autozygous may be low. Further, the 
way in which such posterior probabilities are influenced 
by data on linked markers is non-trivial, for the patterns 
of autozygosity along a chromosome segment follow no 
simple process. Specifically, even in the absence of 
interference, the process is not Markov, since it is an 
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Figure 2: A half-sib marriage example. 

aggregate process and shows the clumping phenomenon 
typical of such processes (Aldous, 1989; Blossey, 1993). 

Consider first the prior, disregarding data Y. The 
smallest non-trivial example consists of the offspring of 
a half-sib mating (figure 2). This is also the largest 
example for which the space of S-values can be drawn 
readily (figure 3). As one moves along the chromosome, 
the process S(h) performs a random walk at rate n on 
the vertices of the n-dimensional hypercube (Donnelly, 
1983). Here, n = 4 and, without loss of generality, 
the two vertices positioned as shown in figure 3 are 
those which result in autozygosity of the inbred offspring 
individual: Z(h) = I if Si (A) = S2(h) = 1 and 
S3{h) = S4(h). Overall, P{Z(h) = /) = 2/16 = 0.125. 
When Z(h) — 7, the next jump of the random walk 
will require Z(h) = N; when Z(h) = N, the next 
jump results in Z(h) = I with overall probability 
(2 x \ + 4 x i)/14 = 1/7. However, although by 
symmetry Z(h) = I is a renewal point of the process, 
when the process leaves Z(h) = I, the probability that 
the next jump will result in a return to Z(h) = I is 
3/8. The overall probability, P(Z(h) = 7) can easily 
be computed on even a complex pedigree; it is simply 
the inbreeding coefficient of the individual. For two 
loci, at given recombination fraction, the probability 
of autozygosity at both loci can be computed by the 
algorithm of Thompson (1988), again even on a complex 
pedigree. However, due to the non-Markov pattern of 
autozygosity along the chromosome, these marginal and 

Figure 3:   Random walk structure,  corresponding to 
figure 2. 

Table 3: Prior autozygosity probabilities for 
cousin marriage. 

state Z True^~> Markov^ 
N    N N 0.8825 0.8811 

' N    N I 0.0264 0.0277 
N    I N 0.0131 0.0131 
N    I I 0.0155 0.0155 
I      N N 0.0264 0.0277 
I      N I 0.0022 0.0009 
I      I N 0.0155 0.0155 
I      I I 0.0184 0.0183 

(1) Results from 109 MCMC steps and 108 i.i.d realisa- 
tions are almost identical to 10~4. 
(2) Results from assuming (incorrectly) a first-order 
Markov chain for autozygosity at successive loci. 

pairwise probabilities do not suffice. 
Table 3 shows the autozygosity probabilities for three 

loci, with recombination fraction 0.1 between each pair 
of adjacent loci, for the case of a first-cousin marriage 
(figure 1). For this small problem, exact results 
could have been obtained, but in fact these are Monte 
Carlo results, obtained both by 109 Metropolis steps 
of MCMC, and also by 108 independent realisations 
from the prior. For this problem, these two simulations 
give comparable accuracy (to ±10~4) in comparable 
computing time (about 8 hours on a DEC3100). Also 
shown are the probabilities that would be given by a 
first-order Markov process with the same pairwise and 
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marginal probabilities. First, it can be seen that Z = I 
is a renewal point; where the central locus has Z — I the 
"Markov" results agree with the correct results. Second, 
the major effect, in terms of relative error, is in the case 
Z = (7, N, I); there is a clumping of states Z — I in the 
jump chain. Alternatively viewed, there is an increased 
probability of small regions of non-autozygosity (and 
hence likely heterozygosity at a highly polymorphic 
marker) within regions of autozygosity (and hence ho- 
mozygosity). In this example, the sequence (I, N, I) has 
probability 2.5 times larger than a "Markov" view would 
predict. 

Table 4: Prior autozygosity probabilities for 
pedigree of figure 4. 

state Z TrueW Markov1-2) 
N    N N 0.7901 0.7889 
N    N I 0.0478 0.0493 
N    I N 0.0257 0.0251 
N    I I 0.0271 0.0273 
I      N N 0.0478 0.0493 
I      N I 0.0050 0.0031 
I      I N 0.0271 0.0273 
I      I I 0.0295 0.0297 

(1) Results from 109 MCMC steps and 108 i.i.d realisa- 
tions are almost identical to 10-4 

(2) Results from assuming (incorrectly)  a first-order 
Markov chain for autozygosity at successive loci. 

Another example is given in Table 4. Many of the 
pedigrees in the Werner's syndrome data set are first 
cousin marriages. The more complex pedigree (figure 
4) was first ascertained as a first cousin marriage, but 
later it was discovered that each parent of the affected 
proband was also the offspring of a first cousin marriage, 
as shown. Although this is a small pedigree, exact 
linkage likelihood computations become infeasible with 
the standard methods with more than three loci, due to 
the pedigree complexity. The final offspring individual 
can be autozygous for a gene in any of the three original 
founders marked. Again, the "true" results in Table 4 
are Monte Carlo results (both 108 independent samples 
and 109 MCMC steps, agreeing to 4 decimal places). 
The "Markov" assumption again underestimates most 
severely the probability of Z = (I, N, I). However, note 
also that now there is no renewal when Z = I; the 
lack of symmetry of the three relevant founder ancestors 
destroys this property, even though numerically the 
discrepancies are small. 

Generally, for just three loci, only the low-probability 
state Z = (I,N,I) shows substantial departure from the 

Figure 4: A more complex pedigree. 

first-order Markov probability values. However, with 
data, this state may have high posterior probability. 
One of the first cousin marriages (figure 1) for the 
Werner's syndrome (WS) data illustrates this. The 
data consist of homozygosity (affected) at the WS locus 
(allele frequency 0.004), heterozygosity at the marker 
locus D8S87 (for two alleles, each frequency 0.5) and 
homozygosity at the ANK marker. The allele at ANK 
has population frequency 0.44, so homozygosity is not 
strong evidence of autozygosity, but the example will 
serve. 

Table 5: Posterior autozygosity probabilities for 
cousin marriage. 

state Z MCMC^ ratioW 
N    N    N 0.1001 0.1134 
N    N    I 0.0068 0.2576 
I      N    N 0.7491 28.3750 
I      N    I 0.1440 65.4545 

(1) Results   109   MCMC  steps,   agree  with prior x 
likelihood to within standard error. 
(2) Ratio of posterior to prior probability (see text). 

Table 5 shows the posterior probabilities of the four 
relevant autozygosity states; states autozygous at the 
D8S87 locus are eliminated by the data, and so not 
listed. As expected, the states with autozygosity at the 
WS locus have much increased probability a posteriori; 
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the WS disease allele has population frequency only 
0.004. Note in particular that the state with lowest 
prior probability now has a probability 0.1440, 65 
times higher than before. Of course, the posterior 
probabilities could also be obtained by multiplying the 
prior state probabilities by the likelihoods (and this 
was done as a check). Prior state probabilities can be 
efficiently obtained by i.i.d Monte Carlo, but conditional 
probabilities can only be sampled via MCMC. However, 
even in this simple example, the standard error of 
the MCMC estimate for the state INI is smaller, for 
an equal amount of computing time, due to the 65- 
fold factor between prior and posterior. When, as 
here, the range of the ratios of posterior to prior is 
3 orders of magnitude, sampling from the prior, and 
using importance sampling to reweight to the posterior, 
is far less efficient than sampling from the posterior, 
even though the latter requires use of MCMC. 

5. Discussion 
Monte Carlo estimation provides an approach when 

exact likelihood and probability computation is infea- 
sible, particularly in problems of complex dependent 
highly structured data, such as arise in genetic analysis. 
There are many ways to set up the Markov chain 
Monte Carlo likelihood estimates via a choice of latent 
variables. In this paper, we have focussed on one 
particular choice - the use of segregartion indicators. 
This seems to have promise in cases where a very 
few individuals are observed on each of a number of 
possibly large pedigrees, the individuals being observed 
for a number of DNA markers. A particular case is 
homozygosity mapping, where the key is the posterior 
pattern of autozygosity (gene identity by descent) in 
affected inbred individuals. 

MCMC is used to sample from posterior distribu- 
tions, but this does not require a Bayesian analysis. 
Realisations from the distribution of latent variables, 
conditional on the data, but at prespecified parameter 
values, can be used to provide efficient Monte Carlo 
estimates of a likelihood surface. Moreover, while 
multilocus genotypes are key unobservables in genetic 
analysis, it may not always be efficient to consider 
these the latent variables in a Monte Carlo analysis; 
segregation indicators that specify the passage of genes 
segregating in a pedigree are more fundamental even 
than genotypes, and, provided the relevant probabilities 
of observed data given the latent variables can be easily 
computed, the genotypes of individuals can be bypassed. 

Autozygosity patterns at multiple linked loci become 
of increasing relevance as multilocus linkage analyses are 
performed. The random walk framework of Donnelly 
(1983), and the Posson clumping heuristic of Aldous 

(1989) together make study of the prior probability 
distribution of patterns more feasible (Blossey, 1993). 
However, in order to assess autozygosity in the light of 
data, or to use realisations from the posterior distribu- 
tion of autozygosity consitional on data in a likelihood 
analysis, MCMC provides the most efficient computa- 
tional approach in many cases. Posterior probabilities 
of autozygosity patterns are more efficiently estimated 
by MCMC, than by reweighting prior probabilities 
estimated by i.i.d Monte Carlo. 
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Abstract 

One of the great success stories of modern 
molecular genetics has been the ability of biolo- 
gists to isolate and characterize the genes respon- 
sible for serious inherited diseases like Hunting- 
ton's disease, cystic fibrosis, and myotonic dys- 
trophy. Instrumental in these efforts has been 
the construction of so-called "physical maps" of 
large regions of human chromosomes. 

Constructing a physical map of a chromo- 
some presents a number of interesting challenges 
to the computational statistician. In addition to 
the general ill-posedness of the problem, compli- 
cations include the size of the data sets, com- 
putational complexity, and the pervasiveness of 
experimental error. The nature of the problem 
and the presence of many levels of experimental 
uncertainty make statistical approaches to map 
construction appealing. Simultaneously, how- 
ever, the size and combinatorial complexity of 
the problem make such approaches computation- 
ally demanding. 

In this paper we discuss what physical maps 
are and describe three different kinds of physical 
maps, outlining issues which arise in construct- 
ing them. In addition, we describe our experi- 
ence with powerful, interactive statistical com- 
puting environments. We found that the ability 
to create high-level specifications of proposed al- 
gorithms which could then be directly executed 
provided a flexible rapid prototyping facility for 
developing new statistical models and methods. 
The ability to check the implementation of an 
algorithm by comparing its results to that of an 
executable specification enabled us to rapidly de- 
bug both specification and implementation in an 
environment of changing needs. 

1    Overview 

One major goal of the Human Genome Project (Olson 
1993) is to reduce the time and expense required to iso- 
late and study regions of biological interest by construct- 
ing physical maps of the entire human genome. Such 
maps can then be used by other molecular biologists in- 
volved in the interesting and difficult task of understand- 
ing how the approximately 100,000 genes buried in our 
chromosomes conspire to make us human beings. 

In this article we will concentrate on issues involved 
in constructing physical maps. First, we will describe 
what physical maps are. Then we will discuss some of the 
statistical and computational problems associated with 
constructing various kinds of physical maps, specifically 

• STS content maps, 

• maps based on random fingerprinting, and 

• restriction maps. 

Finally, we will describe how we used a modern, statis- 
tical computing environment to help us with the tricky 
task of ensuring that the programs we implemented were 
faithful to the ideas and algorithms we designed. 

As an aside, the reader should be aware that biol- 
ogy is one of those sciences where exceptions and special 
cases abound: nearly every general statement one can 
make turns out to be wrong. Physical mapping is cer- 
tainly no exception to this situation. In the interests 
of clarity and brevity, however, we will confine our at- 
tention only to typical examples and refrain from the 
impulse to be general or encyclopedic. For a more thor- 
ough introduction, see Nelson and Speed (1994). 

Research was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under 
contract number W-7405-ENG-48, with additional support from NSF grant DMS-91-13527. 

2Research was partially supported by NSF grant DMS-91-13527. 
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2    What is a "physical map?" 

What are physical maps? The answer is not as precise as 
one would like. To understand this, we must first under- 
stand something about recombinant DNA techniques as 
well as current limitations in how regions of DNA can be 
analyzed by molecular geneticists. (See Brown (1990) 
for a readable introduction to recombinant DNA tech- 
niques and genetic analysis.) A fundamental problem in 
molecular genetics is that 

• current methods of chemically analyzing substan- 
tial stretches of DNA require a sample containing a 
large number of identical molecules, typically pro- 
duced by recombinant DNA amplification; however 

• the maximum size of a region that can be am- 
plified by current techniques is orders of magni- 
tude smaller than even the smallest human chro- 
mosome. 

For example, the size of the longest contiguous fragment 
of DNA that can be reliably amplified by a recombinant 
DNA process called "cloning" ranges from around 4 x 104 

to 1 x 106, depending on the vector and host. Similarly, 
the longest stretch of DNA that, can be reliably ampli- 
fied by a purely chemical technique known as polymerase 
chain reaction (PCR) is approximately 1 x 103 bases. In 
contrast, the twenty-two human autosomes range in size 
from around 3 x 108 bases for chromosome 1 down to 
about 5 x 107 bases for chromosome 21. Because of 
this mismatch in sizes, producing enough DNA to permit 
biochemical analyses currently requires a process called 
cloning, in which 

• a large number of identical chromosomes are bro- 
ken randomly into fragments by one or more of a 
class of enzymes known historically as restriction 
enzymes, 

• individual fragments of appropriate size are incor- 
porated by biological or chemical mechanisms into 
the DNA of host organisms such as E. coli or yeast, 

• the individual hosts are separated from each other 
and allowed to grow in into colonies, with the frag- 

ment in each host being replicated along with the 
DNA of the host during cell division (mitosis). 

In this way, the natural DNA replication machinery of 
the host organism is exploited to replicate the fragment 
along with the host's chromosomes. After enough mi- 
toses, each host colony can be harvested. The result of 
this process is a library of cloned chromosome fragments, 
where each fragment is present in large enough quantities 
to permit isolation and purification of the fragment and 
subsequent biochemical analyses. Unfortunately, the li- 
brary contains no information about the relative posi- 
tions of the fragments along the chromosome. Physical 
maps are data structures which provide the necessary in- 
formation to enable the order and distance among frag- 
ments to be deduced. Hence, they are essential if a col- 
lection of overlapping cloned chromosome fragments (a 
contiij) is to be treated as though it were a contiguous 
region of DNA. 

Outside of the genetics community, the process of 
physical mapping is much less well known than the 
process of genetic m.apping, as described by Elizabeth 
Thompson (this proceedings). Table 1 on the following 
page attempts to clarify the situation by contrasting sev- 
eral attributes of the two types of maps. In both cases, 
one is attempting to detect relationships and compute 
"distances" between genetic objects of interest. In ge- 
netic mapping, one uses data from pedigrees and pheno- 
types to estimate the expected number of recombinations 
between two loci of interest. 

In physical mapping, on the other hand, one uses 
data from experiments which we call "fingerprints" to 
determine order and distance between clones or more ab- 
stract objects called sequence-tagged sites (STSs), which 
we will define presently. In this context, a "fingerprint" 
for a clone consists of data from one or more experiments 
on that clone, the results of which depend in some way on 
the underlying DNA sequence. Hence, the results of these 
experiments can help identify or characterize the clone. 
Cloned fragments which overlap, i.e., share a portion of 
the genome, may produce fingerprints more similar to 
one another than clones which do not overlap. 
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Objects 
Distance 

Data 
Goal 

Why? 

Genetic Mapping 

Genes or loci 
Expected number 

of recombinations 
Pedigrees and phenotypes 
Order and distance among 

genes or loci 
Localize gene to small 

region of genome 

Physical Mapping 

Clones or STSs 
Base pairs 

"Fingerprints" 
Order and Distance among 

clones or STSs 
Prepare for biochemistry: 

sequencing, probing ... 

Table 1: A comparison of genetic and physical mapping. 

Ch 19 Marker Pairs 

Physical 
Distance 

D19S20 
D19S177 
D19S76 

D19S247 
D19S76 
D19S179 

1.5 Mb 
2.0 Mb 

12.0 Mb 

Genetic Distances 
Female        Male 

9.4 cM     30.5 cM 
6.1 cM       4.6 cM 

19.1 cM     10.7 cM 

Table 2: A comparison of genetic and physical distances. 

Since genetic maps provide information on distances 
between loci, and loci can often be associated with 
clones, one might wonder why geneticists don't just use 
the genetic map to determine distances between clones. 
Table 2 show why. It describes physical and genetic 
distances between four polymorphic markers on chro- 
mosome 19. These four markers span a region from a 
point near the end of the short arm of the chromosome 
(D19S20) down to a point near the center of the chro- 
mosome (D19S179). 

One immediately sees from this table that physical 
distance is only loosely correlated with genetic distance. 
What is more, genetic distances are sex-specific. Typ- 
ically, many more recombinations occur in sperm than 
in eggs. However, as can be seen from the three pairs 
in Table 2, this is not always the case. Consequently, 
although genetic distances are used as rough guides to 
physical distances (the rule-of-thumb is 106 bases per 
centimorgan), this correspondence is rough indeed, and 
physical maps must be constructed to determine the pre- 
cise physical relationships among genetic objects. 

3    Constructing Physical Maps 

Now, let us turn to the process of constructing physical 
maps to see what roles computers and statistics play. In 
this section, we will describe how three different kinds of 
maps are constructed. 

3.1    STS Content Maps 

Most of the large, low resolution physical maps now pub- 
lish are STS content maps (Green and Green 1991). A 
sequence-tagged site, or STS, is 

• a unique sequence in the genome, along with 

• a reliable biochemical assay for determining 
whether or not any given segment of DNA contains 
that sequence. 

Hence, one can determine with low probability of error 
whether or not a clone contains any given STS. In this 
case, the "fingerprint" for a clone is the collection of STSs 
it contains. 

Figure 1 contains a diagram of a toy example which 
we will use to describe issues in STS content mapping. 
Each horizontal line represents a clone. In the diagram, 
we show five clones, labeled 1 through 5. The five clones 
overlap in the way indicated, although we don't know 
that, of course. Each vertical arrow represents an STS. 
In the diagram, we show five STSs, labeled a through 
e. The task is to use information about which clones 
contain which STSs to determine the correct order of the 
STSs. If we can determine without error which clones 
contain which STSs, the following algorithm will produce 
a correct ordering. 
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■> 

a    e d 

■  1 

Figure 1: A simple example with five clones and five STSs. 

First, construct an incidence matrix A containing one 
row per clone and one column per STS probe. Let Aij = 1 
whenever clone i contains probe j, and 0 otherwise. For 
our example in Figure 1, the matrix would be 

matrix: 

Clones 

i STSs 
0 6 c    d e 

1 1 1 0   0 1 
2 0 1 0   0 0 
3 1 0 0    1 1 
4 0 0 0    1 0 
5 0 0 1    0 0 

Each ordering of the probes corresponds to a permuta- 
tion of the columns of A, which we can represent by 
AP, where P is a permutation matrix. As the clones in 
Figure 1 are intervals, and we have perfect detection, it 
is immediately clear that correct orderings P must per- 
mute the columns of A so that all the ones in each row of 
AP appear consecutively. Conversely, any permutation 
P for which AP has all ones in each row appearing con- 
secutively corresponds to a correct probe ordering. Thus 
the problem reduces to finding all permutation matrices 
P for which AP has all the ones in each row appearing 
consecutively. 

An incidence matrix whose columns can be permuted 
so that all the ones in its rows appear consecutively is 
said to have the consecutive ones property for rows. For- 
tunately, it is easy to check if a matrix has the consec- 
utive ones property for rows. Booth and Lueker (1976) 
describe linear time algorithms which perform the check 
and return all correct permutations in a data structure 
called a "PQ tree". Hence, if the data are perfect, the 
problem is solvable in linear time. 

In our example, the two permutations (J, a, e, d, c) 
and (b, e, a, d, c) both produce the identical permuted 

STSs 
b a    e    d c 

1 1 1    1    0 0 
2 1 0    0    0 0 
3 0 1    1    1 0 
4 0 0    0    1 0 
5 0 0    0   0 1 

Clones 

and hence both are orderings consistent with the data 
A. Also note that the locations of the runs of ones in 
the rows of AP provide an indication of precisely what 
spatial relationships among the clones can be deduced 
from the data. 

Unfortunately, the data are never perfect. False neg- 
ative rates of up to ten percent are not unusual (S. Lewis, 
private communication). Even more unfortunately, the 
existence of errors renders the problem much more dif- 
ficult. The consecutive ones property is lost, and the 
problem of finding some nearby matrix A' which does 
have the consecutive ones property is, in general, NP 
hard. 

Current approaches to handling data with errors 
treat the problem as one of combinatorial optimization. 
In general, combinatorial optimization problems involve 
searching over some large, but finite space in an attempt 
to minimize some objective function defined on elements 
ofthat space. Issues to be resolved include the structure 
of the space, the nature of the objective function, and 
the strategy used to search the space. In the case of STS 
content mapping, the search space is the space of all per- 
mutations on n letters, where n is the number of probes. 
The objective function is usually something like total 
number of runs of ones, or perhaps minus a pseudo log- 
likelihood of the data given the underlying probe order. 
At any given step in the search, the next permutation 
to be tested is determined heuristically, and simulated 
annealing is often used to escape from local minima. 

LLNL has taken this approach in their attempts to 
produce an integrated map of chromosome 19. The data 
for LLNL'S integrated map consists of over 2800 probes 
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on 725 different segments of DNA. An even larger exam- 
ple is provided by Genethon's 1st Generation STS map 
(Cohen et al. 1993), which contains information about 
2100 STSs and 6580 clones. Such large map construction 
efforts take many hours to compute, even when run on 
large workstations. Some recent work by Karp and his 
colleagues (R. Karp, private communication) indicates 
that solutions might be able to be more quickly com- 
puted by treating the problem as a Hamming distance 
Traveling Salesman Problem (TSP), and exploiting the 
wealth of heuristics developed to solve TSP problems. 

We then use log L(i,j) as our similarity measure in a 
"smarter-than-average" single-linkage clustering proce- 
dure (T. Slezak, personal communication). 

Now, computing L(i,j) can be quite laborious. In 
our case, we have over 104 clones to assemble into con- 
tigs. Hence, we need to compute over 5 x 107 different 
L(i,j) values to assemble a map, where each L(i,j) is a 
numerical integration. Currently this process, even with 
several heuristic screening procedures to screen out ob- 
viously non-overlapping clones, runs several days on a 
network of over 30 workstations. 

3.2    Maps Based on "Random" Finger- 
printing 

STS content maps are not the only kind of physical map 
currently being constructed. One can also build maps of 
clone libraries "bottom-up" by a two stage process: 

• use a fingerprint-based similarity measure to mea- 
sure the similarity of any pair of clones in the li- 
brary, and then 

• use this similarity measure in a clustering proce- 
dure (Mardia, Kent, and Bibby 1979) to construct 
contigs. 

The type of similarity measure used depends in large 
part on the nature of the fingerprint data. LLNL relied 
on a probability-based fingerprint when it used this ap- 
proach as its first step in constructing a map of chromo- 
some 19. In this situation, we obtain a random "match" 
vector Dij for each pair of clones i and j. In addition, we 
have a simplified statistical model which enables us to 
compute Pr(Aj 1t), where t G [0,1] is the proportion of 
DNA shared by the two clones. Using this model, we can 
compute the posterior odds of overlap, given the data, 
up to a constant: 

Pr(overlap | Dij) Pr(Aj | overlap) 
oc 

Pr(no overlap | Dij)      Pr(Ai | no overlap) L(hJ) 

where 

(1)        L(i,j) 
lte{OtllPT(Dij\t)dP(t\t>0) 

Fx(Dij 11 = 0) 

3.3    Restriction    Maps    for    Validating 
Contigs 

Once we have a putative map for a set of clones, we 
then need to validate the overlap configuration among 
the clones. We do so by constructing a restriction map 
of the clones. Constructing these maps rapidly currently 
poses a large, and as yet unsolved, computational chal- 
lenge. 

Figure 2 shows an example of a restriction map of 
a large contig containing twenty-eight clones, labeled 
F17252 through D716. (The labels are meaningful to 
the biologist, but are irrelevant to this discussion.) The 
DNA in each clone is represented by a horizontal line pro- 
portional to its length in bases. Each tick mark on each 
line represents a restriction site: a specific sequence (in 
this case GAATTc) that will recognized by a particular re- 
striction enzyme. Under the right conditions, restriction 
enzyme molecules will bind to DNA molecules at restric- 
tion sites and cut the DNA into fragments whose sizes can 
be measured. For instance, the five tick marks on clone 
F6320 indicate that that clone contains five restriction 
sites, and that when digested, it will produce six frag- 
ments whose relative sizes are indicated by the distances 
between the tick marks. The line of tick marks at the 
bottom of the figure indicate the positions and distances 
between all of the sites in the stretch of DNA spanned by 
the contig. 

One begins to construct a restriction map by digest- 
ing each clone and measuring the lengths of the resulting 
fragments. Then, given the list of clones and observed 
fragment sizes for each clone, one attempts to lay out the 
clones and line up all the fragments to produce a map 
like in Figure 2. 
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Figure 2: a restriction map of a large contig. 

Currently, these maps are all produced manually, by 
an experienced mapper using a spreadsheet. There are 
no automatic programs to produce these maps from a col- 
lection of clones and measured fragment sizes. A num- 
ber of issues complicate the construction of these maps. 
First, the problem is combinatorially explosive. Figure 3 
shows a graph of the number of possible consistent, topo- 
logically distinct arrangements of clone beginnings and 
endings, as a function of the number of clones in a contig 
(Newberg 1993). Note the log scale. 

Second, the measurement of fragment sizes is ap- 
proximate and incomplete. The measurements are ap- 
proximate in that, under good conditions, fragment 
lengths can be measured to within about one-half per- 
cent (Lamerdin and Carrano 1993). In addition, the 
measurements are incomplete in that it is sometimes 
difficult to determine exactly how many fragments of a 
given size have been digested. Also, there is left censor- 
ing: very small fragments are sometimes not measured 
at all. 
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Number of Distinct Ways to Form a Contig 

Number of Clones 
From Newberg (1993) 

Figure 3: number of distinct interleavings versus contig size. 

Third, perusal of the map will reveal that, the sizes 
of the first and last fragments in a clone do not match 
the sizes of interior fragments of other clones. This is 
because the ends of the clones do not correspond to re- 
striction sites for the enzyme used to create the restric- 
tion map. The sizes of the end fragments simply must 
not exceed the sizes of the interior fragments with which 
they are matched. Of course, the map constructor does 
not know beforehand which fragments are the end frag- 
ments. 

Potential programs have another barrier to overcome: 
experienced mappers can assemble an "average" map in 
about an hour, based on good information about the ap- 
proximate order of the clones. This apparent ability to 
recognize patterns in fragment sizes makes expert human 
mappers tough competitors to any program. 

4    Getting It Right 

The analysis and algorithms which go into a map assem- 
bly program can be quite complex. For instance, the 
integrand in Equation 1 involves several terms which in- 
corporate assumptions about the data generation and 
error contamination processes, and must be numerically 
integrated to provide the numerator to the integrated 
likelihood ratio. To add to the computational burden, 
Equation 1 must be evaluated over 5 x 107 times during 
the construction of a map. To make the overall map con- 
struction process feasible, this computation must fully 
optimized.   The problem we faced was how to ensure 

that the analysis we performed and algorithms we de- 
signed were fully specified and faithfully implemented. 

Our solution to this problem, arrived at only after 
other, more ad hoc methods failed, was to describe what 
we wanted to do in the very high-level language imple- 
mented by Splus (Statistical Sciences, Inc. 1991). This 
specification could then be tested and debugged by ex- 
ecuting it against sample data. After the specification 
was debugged, it was then reimplemented in C for speed 
of execution. After the C code was tested and debugged, 
the answers it produced for sample data could then be 
compared with the answers produced by the specifica- 
tion. Any differences represented bugs in the specifica- 
tion, implementation, or both. 

This simple method of operational specification 
proved invaluable to us in a number of ways. First, 
it highlighted communication problems and definitional 
ambiguities between designer and implementor. Prob- 
lems with defining exactly what a "match" meant, and 
how it was to be implemented, were quickly spotted and 
nailed down. Second, we found that as often as not, it 
was the specification that was ambiguous, indicating a 
need for further thought on the part of the designers. 
Third, having an executable specification could guide 
the debugging process, providing answers to partially 
complete calculations. Finally, the iteration process be- 
tween designer and implementor converged quite rapidly, 
producing complex working software much more quickly 
than had been possible in the past. The technique was 
so successful that we now use it on all our software that 
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has a significant mathematical or statistical component. 

5    Summary 

In this paper we have described several kinds of physical 
maps and outlined the methods currently employed for 
constructing these maps. These methods are character- 
ized by being computationally intensive, combinatorially 
complex, and sometimes containing a considerable sta- 
tistical component. It is clear from the descriptions that 
many computational and statistical challenges remain to 
be overcome. 

One important challenge that must be addressed is 
how to parallelize the computational burden. For some 
tasks, this is easy: each of the 5x 107 values of Equation 1 
is an independent computation. Given a shared database 
and a way to communicate tasks to various workstations, 
parallelization becomes a matter of dispatching compu- 
tations to free workstations and receiving the results. 

The Human Genome Center at LLNL has implemented 
such a scheme for its network of over thirty worksta- 
tions. However, for many tasks, such as combinatorial 
optimization using simulated annealing, it is not clear 
how to parallelize the computation. 

Another unsolved issue is how to combine informa- 
tion from various sources. The map of chromosome 19 in- 
tegrates information on well over a dozen different types 
of probes and DNA regions, each with its own size, probe 
resolution, and error characteristics. At the present 
time, most of this data is treated democratically, ignor- 
ing the special features of each data type. 

Finally, current procedures for constructing maps 
provide no information about the reliability of the re- 
sulting map. Developing statistics-based methods for 
map construction could provide a first step towards as- 
sessing the uncertainty of the resulting map as well as 
the sensitivity of the map to features in the underlying 
data. 
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ABSTRACT: The performance of new stepwise method 
for variable selection in regression will be evaluated in a 
large scale simulation study. This method is an extension of 
principal components regression. The on-going simulation 
is described. Preliminary results and previous tests on well 
known data sets show that the method is quite promising 
and may worked better that other methods in certain 
situations. 

1. INTRODUCTION 
Variable selection in regression is necessary when data 

are collected on a large number of variables, often 
correlated, while the goal is to obtain a model with only a 
few predictor variables. There are many variable selection 
methods commonly used, these include forward, backward 
and stepwise methods, or exhaustive search methods (using 
various criteria). While these methods often yield good 
outcomes, they have their shortcomings. Exhaustive search 
procedures may be very costly or even unfeasible in large 
scale problems, while systematic algorithms may 
sometimes fail to detect the best predictive subset of 
variables. For a comprehensive survey of variable selection 
methods, we refer to Miller [10]. 

Principal component regression, a well known and 
effective technique for reducing the dimensionality of the 
space of predictors, has the shortcoming that there is no 
corresponding reduction in the number of original 
variables. Jeffers [4] was the first to show that principal 
component analysis can be utilized to reduce the number of 
original variables. Realizing that the principal component 
transformation may be more informative than previously 
thought, more efforts were made in this direction in the 
subsequent years, most notably by Jolliffe ([5], [6], [7]), 
Hawkins [2], and Mansfield, Webster & Gunst [9]. 

Recently, a new method to select predictor variables 
based on principal components was proposed by Boneh & 
Mendieta [1]. The method is stepwise in nature, and it is 
based on repeated selections of principal components and 
inversions to the original variables. The main idea of this 
method is to combine the advantages of stepwise selection 

JWichita State University, 
Wichita, KS 67260-0033 

boneh@twsuvm.uc.twsu.edu 
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with those of principal component regressions. The method 
was tested on several benchmark data sets, and produced 
good results. (An example is given in Boneh & Mendieta 
[1]). Having established that the new method is statistically 
sound, is was called upon to further study its performance. 
In particular, to identify its strengths and possible 
weaknesses, and to determine in what circumstances it may 
be preferable to other methods. 

The goal of this paper is therefore to give a brief 
introduction to the method and to report on the design of an 
on-going simulation study aim at answering the above 
questions. In Section 2 we briefly describe the selection 
method, and in Section 3 we describe the layout and goals 
of the simulation. Some general remarks are given in 
Section 4. 

2. THE SELECTION METHOD 
We consider the standard linear regression model Y = 

Xß + £, where Y is an n x 1  vector of responses, X = 
[Xx Xp] is an nxp full rank matrix of predictor 
variables, ß is a p x 1 vector of unknown parameters, and 
£ is an nxl vector of uncorrelated and normally 
distributed random errors with mean 0 and common 
variance a2. Without loss of generality, all the variables are 
assumed to be standardized (with mean 0 and variance 1). 
Thus [XTX;XTY] is the sample correlation matrix. 

We assume that the reader is familiar with the basic 
concepts of principal component analysis. Otherwise, as 
good references on the subject we recommend Jolliffe [8] or 
Jackson [3]. 

Prior to starting the selection, we select a fixed level a 
through out the process. 

Step 0: Selection of the first variable 
0.1. Obtain the principal components, W = \W\ Wp], 

of [Xi Xp]. 
0.2. Fit the model Y=Wj + £, and let Ww be the subset 

of W containing the principal components for which 
the regression coefficient 7;- is significant at level a. 
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0.3. If W(s) is empty, the selection process terminates with 
the conclusion that no predictor variables should be 
included in the model. Otherwise, let SSEj, j=l,...,p, 
denote the error sum of squares when Xj is regressed 
on W(S). The first predictor selected is the one for 
which SSEj is minimal. 

Continue to select additional variables according 
to the following general steps: 

Step I: Let Y(s) and X(r) be respectively the sets of the 
previously selected variables and the remaining unselected 
variables. Regress each variable in X(r) on all the variables 
in X(s) and obtain the corresponding vectors of 
standardized residuals {Ej, j € (r)}. 

Step II: Obtain the principal components W, of {Ej}, 
and regress Y on X(s) and W. 

Step III: Let W(s) denote the subset of W containing 
the principal components with significant regression 
coefficients (at level a). 

Step IV: If W(s) is empty, the selection process 
terminates. Otherwise, let SSEj, j e (r), denote the error 
sum of squares when Ej is regressed on W(s). The next 
variable selected is the one corresponding to the minimal 
SSEj. 

After the selection of each variable, the previously 
selected variables are verified (essentially reversing the 
selection steps) as follows: 

Step V: Let Xk denote the most recently selected variable, 
i.e., the one which was selected in the current step, and let 
X(c) denote the set of the previously selected variables. 
Regress each of the variables in X(c) on Xk and obtain the 
standardized residuals E(c). 

Step VI: Obtain the principal components W(c) ofE^, and 
regress Y on Xk and W{c). 

Step VTI:If all the regression coefficients of W(c) are 
significant at level a, we conclude that all the variables in 
X(c) should stay in the model. 

Step Vni: Otherwise, one variable from X(c) must be 
dropped. To determine which one, let W(n) be the subset of 
W(c) containing the principal components with the non- 
significant coefficients. Regress each residual vector in E(e) 
on W(n), and obtain SSEj, j € (c). The variable in X^) 

corresponding to the minimal SSEj is dropped from the 
model. 

The verification is then carried out again to check if 
additional variables in X^) should be dropped. A predictor 
variable that was dropped is excluded from the pool of 
potential variables in all the future steps to avoid possible 
cycling in the process. 

The process terminates when no principal components 
have significant regression coefficients in the selection step, 
or when the pool of predictor variables is depleted. 

The method is described in detail in Boneh & 
Mendieta [1]. The following are the main formulas used in 
the implementation of the above steps. Proofs are given in 
[1]. 

(1) To select principal components in step 0.2 and the 
general steps III & VII, the hypothesis Ho: 7;- =0 is tested 
by the t-test as follows: 
Reject Ho if yj *f± • -$£- > tn^Uo/2 , where, 

7j = £ Vj ETY and SSE = 1 - (Y^VA"1 VT(ETY) - 

(^(.^(XjjXfor^XjjY). HereE denotes the matrix of 
standardized residuals of the regression of the remaining 
unselected variables on Jf(s). When selecting the first 
variable, E is replaced by X and Xjs) is empty. Note that 
the matrices V and A are computed each time from a 
different set of variables. 

(2) SSEj, j € (r) (Step IV), is calculated by    SSEj = 

(3) Let Ej be the vector of standardized residuals when 
regressing Xj (j e (r)) on Y(s) (Step I). Denote by E = 
{Ej, j € (r)}.  All we need for the next selection is ETE 

and ErY, which are given by ETE 
iTc = 7ft")' hj: 

2,...,p,   and   ElY = 'TV  = 

where,   Ay =(XjXj)-\xJX{s))(Xl)X{s)y\Xl)Xj) 
and  Bj - (YTXj)-(YTX{s))(Xl]X{s)yHXl)Xj). 

An important feature that emerges from Formulas (1)- 
(3) is that the method can be carried out with the 
correlation matrix only, without direct use of the raw data. 
This feature enhances the computational efficiency and 
convenience of the algorithm. 
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3.    LAY OUT OF THE SIMULATION 
EXPEDIMENT 
In this section we describe the layout of our simulation 

study. In designing our simulation experiment we made 
used of some results regarding the design of simulation 
experiments in regression given in [11]. 

Generation of the data: 
All data sets to be considered in this study will be 

generated from a normal distribution with mean 0 and 
covariance given by the (p+1) x (p+1) matrix 

c _ ( Px    PXY\ 

\PXY 1    )' 
Several types of correlations px between the predictors 

will be considered. The correlations pXY between the 
response and the predictors are such that they correspond to 
particular specifications of the slopes in the model 
Y = Xß + 6. 

Factors to be considered: 
Our simulation layout corresponds to a factorial 

experiment with the following factors: 
1. Number of predictors in the model: We will consider 

models with 4 and 8 predictors. 
2. Number of predictors with non-zero slope: We will 

consider models with 1 and 2 predictors with non-zero 
slopes. 

3. Sample size: 50 and 100 data points. 
4. Type of correlation structure between the predictors: 

We     will     study     correlations     of    the     form 
A       0   \ 
"^ ' where, I is the identity matrix of '*"(£   t) 

order p — q and A is one of the following matrices: 

Equi-correlation, 

A = 

Markovian, 

A = 

(\ 
P 
P 

\P 

( \ 

\P3 

P 
1 
P 
P 

P\ 
P 
P 
1/ 

P    P2   f?\ 
1     p    p2 

P     1     P 
1/ 

(I Pi P2 Ps\ 

A = P\ 1 Pi P2 

P2 P\ 1 p\ 
U P2 Pi 1/ 

Partitioned, 

P Pi 0 °\ 
A = Pi 

0 
1 
0 

0 
1 

0 

P2 

\o 0 Pi 1/ 

The predictors associated with I will be used as noise 
variables. 

5. Values of the parameters: We will set CT=1 and the 
values of the non-zero slopes will be selected in such a 
way that the 0.10 f-test for testing the hypothesis that 
ß=0, in the model Y = Xjß + £ has an approximate 
power of .90 and .99. The corresponding values of .43 
and .62 for a sample size of 50, and .31 and .45 for a 
sample size of 100 can be obtained from results 
reported in [11] 

For each of these factor-level combinations a total of 
1000 different data sets will be generated. Both, our 
algorithm and the standard stepwise algorithm as 
implemented in S-plus will be run and analyzed. 

4.    MEASURES OF PERFORMANCE 
The performance of the algorithms will be evaluated 

using the following measures: 
1. Mean Square Error of Prediction: For each model a 

prediction data set consisting of 100 data points from 
the true model will be generated. The quantity 

will be computed. Here Y^is the predicted response 
computed from the selected model, and p.j is the true 
response at they'-th observation. 

2. Proportion of times the correct model is selected. 
3. Proportion of time each of the predictors with non-zero 

slope was included in the final model. 
4. The mean number of noise variables selected in the 

final model. 
In addition such numerical performance measures as 

speed and number of iteration will also be measured. 

Equi-predict, 
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Saddlepoint Approximations for Robust M regression 
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Department of Mathematics, Mayaguez, PR 00681 

Abstract 

In this paper, first we use saddlepoint methods 
to approximate the density of an estimator Tn 

for a p-dimensional parameter 9, that is given 
implicitly as the solution of p nonlinear equa- 
tions £?=i V»j(*t»T) = 0, j = 1, • • • ,p. Here, 
the X{ are i.i.d. random variables with density 
f(x,0) and ipj is a nondecreasing function sat- 
isfying certain mild regularity conditions. The 
one-dimensional case was treated by H. Daniels 
(Biometrika, 1983). 

Then, we find saddlepoint approximations 
for the densities of the least squares and the ro- 
bust M estimator of regression Bj^. For the lin- 
ear regression model yi = xfß + ei, BM satisfies 
the system of equations £"=1 Xi^(yi-xfß) = 0 
where xf is a p-dimensional row vector and ß 
is a p-dimensional column vector. If iß(u) = u 
the least squares is obtained. 

1    Introduction 

Let Xi,X2,• • •,Xn be i.i.d. random variables 
with density function f(x), and generating mo- 
ment function, M(t) = f^0Oe

txf(x)dx which 
converges for each real t in the interval (ci,C2) 
that contains zero. 

Let /n(x) the density function of the sample 
mean x = £?=i Xi/n. H. Daniels (1954), ap- 
plied saddlepoint methods of asymptotic analy- 
sis to find /„(x) = 5n(x)[l + 0(£)] where, 

fln(x) = { 
2*K»(To) 

1/2 

is called the saddlepoint approximation to the 
density fn(x). Here K(T) = log M(T) is the cu- 
mulant generating function, and TQ is the sad- 
dlepoint, i.e K'{TQ) = x. Since gn(x.) does not 
integrate to 1, sometimes a renormalized sad- 
dlepoint approximation is used. 

The Saddlepoint approximation improves the 
one given by the two-term Edgeworth expansion 
for /n(x), which can give negative values for x 
values far away from the mean fx. 

The Saddlepoint approximation can also be 
obtained by using a conjugate family of den- 
sities for f(x) defined by f(x, A) = exp(Aa: — 
K(X))f(x), which has fi\ = K'(X) and variance 
a\ = K"(\). Notice that 

/„(x) = /(x, A) exp(n[ii:(A) - Ax])      (1.2) 

Then, using an Edgeworth expansion for /(x, A) 
at its center and letting A = To, we obtain the 
saddlepoint approximation (1.1). This proce- 
dure is called Tilted or indirect Edgeworth. 

0. Barndorff-Nielsen and D. R. Cox (1979), 
extended Daniel's result to multivariate den- 
sities. Let X\,---,Xn be p-dimensional ran- 
dom vectors with cumulant generating function 
K(T) where T is in Rp. Then, the saddlepoint 
approximation to the density function /n(x) of 
the p-dimensional mean x is 

f-\ - !—\pl2i—l— 

exp(n(ff(T0) - T0x)) 

(1.1) 

y1/2
en(K(To)-T>x) 

(1.3) 
where To is the p-dimensional saddlepoint, TQ 

its transpose and |A""(2o)| is the determinant 

of the matrix K"(T0) = [fj^]- 
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2    Saddlepoint methods for M- 
estimators 

Let X be a random variable with density func- 
tion f(x,9), where 9 is an unknown parame- 
ter. An M-estimator 9n of 9 based in a random 
sample X\, • • •, Xn is obtained by solving with 
respect to t 

X>0c,-,0 = 0 (2.1) 

where ip is a nondecreasing function. 
Notice that for ip(x,t) = x -1 we obtain the 

sample mean x, and for ip(x,t) = df(x,t)/dt 
we obtain the ML estimator of 0. If ip(u) is 
bounded then the estimator is said to be Ro- 
bust, for instance for %l>{u) = min(A;, max(u, -k)) 
we obtain the Huber estimator. 

H. Daniels (1983) found the saddlepoint ap- 
proximation to the density of fn(9n), where 9n 

solves the equation (2.1). At the point 6n = a, 
fn is approxinated by 

A2. J5a[||'0(a:,a.)||2] < oo and there exists 
an e > 0 such that 

E&[ max   \\D^{x,9)\\2]<oo 
||0-a||<e 

A3. The matrices A = (£aZ>r^(x,a))i<rj<p 

and C = COV[^(j!,a)] = f7atyt(a>,a)^j(>,a)] 
are nonsingular. 

Then Tn = yfn{9n — a) has a limiting p- 
variate normal distribution with mean 0 and 
dispersion matrix A~1C(A~1)T. 

Replacing the condition A2 by 
A2\ E&[\\Dv^(x,ai)\\3} < oo for |v| = 1,2 

and there exists an e > 0 such that 

E&[ max   \\Dvi>{x,9)f]<oo 
||0-a||<£ 

if H = 3 for j = 1,•••,?. 
The two term Edgeworth expansion for the 

distribution function of \/n(9n - a) can be ob- 
tained from the theorem 3 of Bhattacharya and 
Ghosh (1978, page 440). Thus 

9n{o) = { 
n 

2irK"(T0,a) 
VYK*(T<»a)cnK(n.a)]      P(V%-a) € B) = jB[l+n-^2P1(x)](i>M(x)da 

(2.2) 
where K(T, a) is the cumulant generating func- 
tion of W = ip(X,a), here a is a fixed value, 
K'(T0,a) = 0, and K* represents the derivative 
of K with respect to a. 

Now let us treat the multiparametric case. 
Here 9 is in RP and the M-estimator 9n is the 
solution (in t) of the system of p nonlinear equa- 
tions 

+o(n~1/2) (2.4) 

X)0j(a?,-,*) = O,    j -1,---,P (2.3) 
t=i 

Let us consider the random vector ip(x,&) = 
(^l» • • • > typ)- From now on consider the none- 
gative integral vector v = (vi,- • ^Vp).   Fur- 

Vx I., ■vp\ and ther write \v\ = Yji=\ 
vii v]- 

Dv = (Di)Vl •••(DP)VP for the v-th derivative 
with respect to 6 . 

If the following conditions are satisfied (see 
Huber (1981) pg. 132): 

Al. £a[0(x,a)] = O 

uniformly in B that belongs to the Borel system 
of RP. Here <J>M stands for the p-variate nor- 
mal density with mean 0 and covariance matrix 
M — A~1C(A~1)T. Also Pi(x) is a polynomial 
not depending on n whose coefficients are them- 
selves polynomials on the moments of order 3 or 
less of ^(x,a). 

Let us consider the conjugate family of den- 
sities for f(x) given by 

/(M) = e^-^^/tx) 
where K^(X, a) is the cumulant generating func- 
tion of the random vector ip(x,a.). Notice that 
Exty(x,a.)] = A-;(A,a) and COVA[^(x,a)] = 
Ä^(A,a). It is easy to prove that 

fL(a) = enK*^f§n(a,\) (2.5) 

Notice that fg(w,\) = np/2fTn(y/n(w - a), A). 

Therefore f§Ja,X) = np/2/rn(0, A).  Choosing 
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A = To such that ü^,(T0,a) = 0, it follows from 
2.4 that 

Saddlepoint approximations 
for estimators of regression 

JTnK  >   )     (27T)P/
2
|C|

1
/
2 Let us consider the multiple regression model 

where |A| is the determinant of the matrix A 
which is computed under the conjugate distri- 
bution, and C = K%(T0,&) where T0 denotes 
the p-dimensional saddlepoint. Finally turns 
out that the saddlepoint approximation to the 
density function of 9n at the point a is 

5n(a) = {^}P/2|A'"(To,a)|-1/2|A|^(To'a) 

(2.7) 
Usually the saddlepoint has to be computed 

numerically over a grid of values a. An equiva- 
lent result to (2.7) has been obtained by Field 
(1982), who also shows some numerical exam- 
ples. 

Example 1. Location and scale estimation in 
a normal density 

Let us consider a Normal randon variable X 
with mean // and standard deviation c, both 
of them unknown. Let a = (a, b) where a and 
b are the least squares estimators of // and a 
respectively.  In this case V>i(z,a) = ^^ and 

After long computations we obtain 

62 b 

b2 
ga(2(g-a)ta + Mi)8     1      ,  

+     2b\b2-2aH2)      +2   9Kb2-2aH2 
) 

The saddlepoint is T0 = (-^#,^). Also 

1 ft2      (0 - a)2 

2 2<72 if (To, a) = £ - ^ - ri2^- +lQg(-) 

|üf"(To,a)| = 2 and \A\ = £. Then, the saddle- 
point approximation is given by 

0n(a) = 
n 

{-} »A 
_n(8-q)2      n_nbj 

2      +2      5^? 2<r 

which results to be exact except for the con- 
stant. 

xfß + ei       i =!,••■, 7i (3.1) 

where ci, • • •, en are i.i.d random variables with 
common distribution F; xf,---,a;^ are known 
nonrandom p-dimensional row vectors and ß is 
the p x 1 vector of unknown parameters. We 
will use also the following notation: 

X — (xf,---,xT) represents a design ma- 
trix and X' its tranpose.   Notice that X'X = 

ZJt=l xixi • 
H = X(X'X)~1X> is a projection matrix 

with diagonal element ha. 
Next we will discuss the saddlepoint approx- 

imation for the density of the least squares es- 
timator of regression, which is based in the fact 
that can be expressed as a linear combination 
of the e\s. Later we will treat the case of the 
M-estimator of regression. 

3.1    Saddlepoint approximation in least 
squares regression 

The least squares estimator ß of ß in the regres- 
sion model (3.1) is given by ß = {X'XylX'Y. 

Huber (1981, pg. 159) proved that under 
the following conditions 

Bl. e's are i.i.d with mean 0 and finite vari- 
ance a1. 

B2. X has full rank p. 
B3. max\<_i<pha —► 0 

Then Tn = (X'X)^2(ß - ß) has a limiting 
p-variate normal distribution with mean 0 and 
dispersion matrix (T2IP, where Ip is the identity 
matrix of order p. 

Under the conditions Bl, B2 and the ones 
given below 

B3\ e\s have finite s-th absolute moment, 
for some integer s > 3 and, lim£ ]£"=1 \\xi\\s ^ 
oo . 

B4\ UmAn/rc > 0 and Mn = 0(ns) for 
some 6 € [0,1/2). Here Xn =the smallest eigen- 
value of X'X and Mn = maxi<;<n \\xi\\- 
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Qumsiyeh (1990) obtained the following two- 
term Edgeworth expansion for the density func- 
tion qn of Tn 

= 0{n-') (3.2) 

uniformly in x £ RP. Here <f>a2 represents the 
p-variate normal density with mean 0 and co- 
variance matrix a2IP. Also Pi(-D, {Xv})^2 = 

-EW^D»^) and, xv = $ZtiXv(Zi) 
where Xv(%i) denotes the v-th cumulant of Z,- = 
nll2(X'X)~ll2Xiei, which are independent with 
mean 0. 

Now let us derive the saddlepoint apprxima- 
tion to the density of Tn. Let Tn = EE=i ^iei 
being d{ = (X'X^^Xi apxl vector. Then 
AVn(t) = £"=1A'ei«t), where Kei(-) stands 
for the cumulant generating function of the e- 
rror ex. Also K'TJt) = £?=i <A'^(^t) and 

K'TJX) = E?=i diK[ (<*)<• On the other hand 

/r„(a) = e^"(A)-Aa/Tn(a,A) (3.3) 

Notice that Ex[Tn] = K'T (A). Also COV[T„] = 

Choosing A = to such that K'T (t0) = a 
then from (3.2) and (3.3) the saddlepoint ap- 
proximation to the density of Tn at the point a 
is as follows 

0n(a) = 
°KTn(t0 -t'n& 

WVftftoi1'2 (3.4) 

Example 2 Normally distributed errors 
In this case Kei(t) = ^a2, K'ei(t) = ta2 and 

K'e[ (t) = a2. Since £Li rf,-d< = /, then tQ = ^ 

also A£(t0) = a% and KTn(t0)-t'0a = -f£ 
yielding the saddlepoint approximation 

9n{a) 
(2W(T)P/

2 

which results to be exact. 

1 _a'a 
e  2Ö3" 

3.2    Saddlepoint approximation for M 
regression 

Let ij) a nondecreasing and bounded real-valued 
function, then an M-estimator BM of ß corre- 
sponding to V is defined as the solution (in t) 
of the vector equation 

n 

Yl Xi^(Vi ~ xft) = 0 
»=1 

It is well known (Huber, 1981, pg. 165) that 
under the following conditions on the error dis- 
tribution F, iß and the design matrix X: 

Cl. ip is twice differentiable and the second 
derivative ip" satisfies a Lipschitz condition of 
order u for some 0 < 2u < 1. 

C2. E^ier)) = 0, and r2 = §$$ £ 

(0,oo) 
C3. E?=i xix'i 1S invertible for some n> p. 

Then Tn = (EiLi Xixf)1/2(BM - ß) has a 
limiting p-variate normal distribution with mean 
0 and dispersion matrix r2Ip, where Ip denotes 
the identity matrix of order p. 

Write q = p(p+l)/2 and for each d,- = 
(du,- •■,dip)T define the q x 1 vector cf = (d^, 
d»id,-2, • • •, djidtp; <Z2

2, c^cfa, • • •, dj2d,P; • • •; d2
p). 

The spectral decomposition of the real sym- 
metric matrix J2i=i cicf yields a qxq nonsigular 
matrix B of rank r such that 

B(£cicf)Bf = 
i=i 

IT    0 
0    0 

Let B' = [-Bi|52] where Bi is of order r x q. 
Define the column vector &,- by bi = B\Ci for 
1 < i < n. 

iet7« = (E,-ll*lle)1/4 + (E,-INI4)1/a. 
For 6 > 0, define An(S) = {i : 1 < i < 

n,«-*i)2 + (6fo)2 > hi for all tx G R? and 
ta€Ärwith||i1||

2+||i2||
2 = l}. 

Consider the following two additional condi- 
tion: 

C4. 7n = o(l). 
C5. There exists 6 > 0 such that ~Affil" = 

o(l) where K(S) = #[A(£)]. 
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Under conditions C1-C5, Lahiri (1992b) has 
found the following two-term Edgeworth expan- 
sion for the distribution fumction of Tn 

P{Tn e B) = I (1 + PX{F, x))<t>T{x)dx + o(7„) 
JB 

(3.5) 
uniformly in B that belongs to the Borel system 
of Rp. Here <j>T stands for the p-variate variate 
normal with mean 0 and covariance matrix T2

IP 

PI(F,X) is a polynomial, whose coeeficients are 
continuous functions of the finite moments of 
^(e1),^'(e1)andV"(e1). 

Now let us obtain an approximated saddle- 
point approximation for the density function of 
T„. 

Using equation (3.12) from Lahiri's paper 
(1992b, pg. 1560) we can write 

n 
Tn = a-1 Y, di^(ei) + Rln (3.6) 

i=i 

where a = E[ip'(ei)] and R\n is a remainder. 
Using (3.6) we can approximate the cumu- 

lant generating function of Tn as is suggested for 
Easton and Ronchetti (1986). Thus KTn(t) « 
E"=i K^ei)(a~1d^t), where K^ei)(-) stands for 
the cumulant generating function of i>(ei). 

Also K'Tn{t) » ELi a^dtK^a-^t) and 
K'in{t) « £?=i a-2*A'» (o-^-tK. 

Evaluating the above expressions at the sad- 
dlepoint tQ and replacing them in (3.4) we ob- 
tain an approximated saddlepoint approxima- 
tion for the density of Tn. 
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Rank CUSUM For Testing Changes In Mean 

Tze-San Lee 
Western Illinois University 

Abstract. The cumulative sum (CUSUM) technique is widely used in industrial quality control to detect a small 
change in the mean. A shortcoming of the CUSUM technique is that it is not robust, namely, very sensitive to a 
few wild observations. A nonparametric version of the CUSUM method based on the rank statistics and its 
standardization is proposed which is more robust than the original CUSUM. Two examples are used to illustrate 
the proposed test. 

1. Introduction 
Many production processes subject to external 

stimulants may result in a change such that the mean of 
the process deviates from the specified target value. It is 
important that such a deviation could be detected as early 
as possible. The CUSUM technique proposed by Page [2- 
4] was more powerful for detecting a small change in the 
mean level of a continuous pocess than the conventional 
Shewhart's control chart. Therefore, it is widely used in 
the area of quality control. See, for example, Bissell [1] 
for a review. However, a shortcoming of the CUSUM 
method is that it is not robust, namely, very sentive to a 
few wild observations. 

To overcome this shortcoming, a nonparametric 
version of the CUSUM method and its standardization 
based on the rank statistics is proposed. Although other 
nonparametric tests were considered before (McGilchrist- 
Woodyer [2], Pettitt [6], Wolfe-Schechtman [8]), the one 
proposed here has advantages that it is easier to 
implement computationally and can be visualized 
graphically for the slope change between sucessessive 
points in the sequential plot of the rank cusum as 
characterized in the original CUSUM method. 

2. Rank CUSUM Test 
Let {X;}, i=l,..., n with n being given, be a 

sequence of independent, continuous random variables 
such that Xj, j = l,..., k, has a probability distribution 
F(x), and Xj, ,j=k+l,..., n, has a probability distribution 
F(x-8), where both k and 8 are unknown with 2^k<n -1 
and - oo <ö< oo. The integer k is called the change-point 
and 8 the magnitude of change. We consider the problem 
of testing the null hypothesis of no change, H,: 5=0, 
against the alternative of change, E^ : 8>0 (or 8<0, or 
5*0). 

Let Rj be the rank of Xt in the ordered sequence of 
X(i)<Xc2)<...<X(n). For testing Ho : 8=0 against H, : 5 
>0 (or 8<0) , the rank version of the CUSUM and its 
standardization are defined, respectively, by 

U,' = - min^^^U,,,} (1) 

(or U2- = - min2SqSn.,{U2iq} 

where Uliq and U^, are given by 

and 
Uu^iU.^-Oi+i)^) 

U2,, ^^(n-qXn+iyO)1 

(2)) 

(3) 

(4) 

Rreject Hg for large values of U," = - min2Sqs;n.1 

{U,,q} or U2- = - min»«,*»., {U^} (or reject Ho 
for large values of U,+ =  max2sqän.1{U,iq} or 
U2

+ = max 2£q£ll-l {U2,,}). 

For two-sided alternative H, : 8*0, reject H„ for 
large values of U,* =   max2sqsSll.i {| U1>q |} = 
max{U,-, U,+} or U2* =  max2Sqätt.,{|U2iq|} = 
max{U2\ U2

+}. Also, an estimate of the unknown 
change-point is given by K which satisfies the 
following 

|U,«| =  max2 äq£n-l {luj} (5) 

Upon a closer examination, both U1>q and U^,, are 
noticed to be of type of the Wilcoxon test. Due 
to the inherent nature of the Mann-Whitney- 
Wilcoxon statistics, U,* and U2*can be shown to 
be equivalent to the statistics KT of Pettitt [6] and 
V of Schechtman [7]. Although they are 
equivalent, the statistics U,* and U2* are more 
convenient to compute than KT and V because it 
only requires ranking n observations. In contrast, 
both KT and V based upon the Mann-Whitney 
counting form require the computation of q(n-q) 
differences which can become unmanageable 
even for moderate values of q and n - q. 

Also, note that the correct starting value of 
the index q should be from 2 rather than from 1 
as used in both Pettitt [6] and Schechtman [7]. 
The justification is that neither k=n nor k=l,due 
to symmetry, can be regarded as a change-point. 
Another reason is that at least two points are 
needed to estimate the slope in the rank cusum 
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plot as given in Section 3. 
Small sample null distributions of U2* can be 

obtained by evaluating the testing statistics U2* for all 
possible arrangements of the appropriate ranks for a 
sample of n observations. A C-program has been designed 
for the personal computer to generate the exact null 
distribution for any sample size. However, due to the 
limitation of computing speed and the storage constraint 
of the memory space of the personal computer, only the 
critical values of the null distribution of sample size n = 
6, 7, 8, 9, 10, and 11 are given in Table 1. 

Table 1 Critical values & exact significance levels of U2* 

Nominal 
n a=.10 a=.05 a=.01 

6 1.96 .10 
7 2.12 .10 
8 2.24 .08 2.31 .03 
9 2.20 .08 2.45 .03 
10 2.17 .10 2.40 .03 2.61 .008 
11 2.25 .09 2.46 .03 2.74 .008 

3. Application 
In practical applications, the interest is often aimed 

at the estimation of the unknown change-point k if such a 
change has occurred. Just like the original CUSUM, the 
emphasis is on plotting the rank cusum Uljq or U^, against 
q and the change-point can be visualized vividly at the 
point where the slope between successive points has 
changed dramatically. Two examples are given to 
illustrate the use of the rank cusum test. A C-program 
written to implement the rank cusum plot is available 
upon request from the author. 

Example 1.  The data given in the second row of Table 2 
is taken from Pettitt [6] which are some industrial data 
representing the percentage of a particular material in 27 
batches taken from a given source. 

To demonstrate the lack of robustness of the 
CUSUM method, the cusum calculated from the formula 
Sq = Ei=li q(Xi - Ä), where Ä is the sample mean of all 27 
observations, is given the sixth row of Table 2. The third, 
fourth and fifth rows of Table 2 represent the values of 
Rq, U,>q and U^,, respectively. As can be seen from Fig. 
1(a), the "spike" value of Sq occurs at q = 7, which 
reflects the undue effect of the wild observation of Xg = 
17.7, and certainly is not a satisfactory estimate of the 
change-point. An experienced analyst, the cusum plot of 
Sq is highly varied before q = 16, it is much less varied 

after q = 16; hence the mean has probably 
changed at q = 16. Both of U,* and U2* give the 
estimate of the change-point K = 16 since the 
slope has changed dramatically there (Fig. 1(b)- 
(c)). 

Table 2 The value of Xq, Rq, U1>q, U^,, and Sq. 

q 1 2 3 4 5 

\ 7.1 8.1 8.2 11.1 6.6 

K 8 12 14.5 25 5 
u,.q -6 -8 -7.5 3.5 -5.5 
u* -0.07 -0.74 -0.58 0.24 -0.34 

s. -1.33 -1.66 -1.89 0.78 -1.05 

q 6 7 8 9 10 
x, 4.9 4.0 17.7 6.5 4.6 
R, 3 1 27 4 2 
u.,, -16.5 -29.5 -16.5 -26.5 -38.5 

u*, -0.96 -1.63 -0.88 -1.36 -1.93 

s, -5.58 -9.01 0.26 -1.67 -5.7 

q 11 12 13 14 15 
xq 8.8 11.6 6.8 7.5 6.9 
R, 17 26 6 9.5 7 
uu, -35.5 -23.5 -31.5 -36 -43 
u*. -1.75 -1.15 -1.53 -1.75 -2.1 

s, -5.33 -2.16 -3.79 -4.7 -6.24 

q 16 17 18 19 20 

\ 8.1 9.3 7.5 10 8.7 
K 12 21 9.5 24 16 
u,,q -45 -38 -42.5 -32.5 -30.5 

u* -2.22 -1.91 -2.19 -1.73 -1.69 

s, -6.57 -5.7 -5.63 -4.06 -3.97 

q 21 22 23 24 25 
x, 9.1 8.9 9.1 9.6 8.1 

R, 19.5 18 19.5 22 12 
u.,«, -25 -21 -15.5 -7.5 -9.5 

u*,, -1.46 -1.31 -1.06 -0.58 -0.88 

s, -3.12 -2.65 -1.98 -0.81 -1.14 

q 26 27 
x, 9.8 8.2 
R, 23 14.5 

u.., -0.5 0 

u*«, -0.06 undefined 

s, 0.23 0 
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Fig. 1 The plot of cusum and its rank 
counterparts 

Example 2.  The data used here is taken from Sen- 
Srivastava [8], namely, the Illinois traffic data. After 
applying the rank cusum test (Fig. 2), the estimated 
change-points of deaths and injuries are the same, i.e., 
K=1965 with U,-=2.56, while <c=1966 (U,=2.61) and 
«=1967 (U!+=2.45) are the change-point estimates for 
the data of accident and death rate. Clearly, the mean 
level of the deaths, injuries and accidents was increased. 
Only the mean level of the death rates was decreased. 
Also, note that all changes are significant at the level of 
0.05 (Table 1 with n= 10). 

0 

*• 

'c) The rank cusum plot of accidents 

/ 

■I.S / 

•t x^         y 
•a.« 
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4. Concluding Remarks 
In this paper we have presented two nonparametric 

tests which are the rank version of the traditional CUSUM 
technique. Through an example the rank cusum test is 
demonstrated to be more robust than the traditional cusum 
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Fig. 2 The rank cusum plot of the 
Illinois traffic data 

method. In practice, the standardized rank cusum U2* is 
recommended over the ordinary rank cusum U,* because 
finite sample null distribution of U2* is already 
constructed, but not of U,*. In addition, the proposed test 
appears not limited to the change-point problem of having 
at most one change. If it is visualized to have more than 
one change-point from the rank cusum plot, all we have 
to do is to split the data set into two subsets using the first 
change-point estimate as a dividing point and then apply 
the rank cusum test to each of the two subsets. 

Evidently, more works are still needed to be done. 
For example, what is the sampling distribution of the 
change-point estimate /c? Without it, the confidence 
intervals and bounds for the change-point k can not be 
calculated. In practical applications, most data collected in 
a time order tends to be correlated. Then, the question 
arises: how robust is the rank cusum test when applied to 
the time series data? 
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Abstract 

This paper examines errors in the estimated solution vec- 
tor x to the linear regression problem 

y = Kx* + 6 ,     8(e) = o ,     £ (eeT) = S2 , 

when the dominant uncertainties are the measuring er- 
rors e. Backward error analysis gives the hopelessly pes- 
simistic bound 

< condCS-^), 
S-iKx* ||2 

by assuming the worst possible combination of random 
errors, an extremely unlikely occurence for nontrivial 
problems. A statistical treatment yields a more realistic 
bound on the expected uncertainty in a single element 
£i which does not depend on cond(S-1K). Classical 
regression theory provides easily computable confidence 
intervals for the individual £,• separately. 

Notation and Test Problem 

Statisticians write the m x n linear regression model as 

Y = Xß + e,   £(e)=o,   £ (c eT) = E2 ,      (1) 

where Y is a measured m-vector containing measuring 
errors e, X is a known m x n matrix with m > n = 
rank(X), and ß is the vector to be estimated. Numerical 
analysts write the linear least squares problem as 

PLS= ^\\b-Ax\\l 
EGA™ 

(2) 

where 6 is the measured m-vector, A is the mxn matrix, 
x is the vector to be estimated, ||&— Ax\\% is the squared 
two-norm of the residual vector, and p2

LS is the mini- 
mum sum of squared residuals. They usually assume 
(but seldom state) the linear regression model 

b = Ax* + 6b,  £(6b) = 0 ,  £ {6b 6bT) = (r*Im ,    (3) 

where Im is the mth order identity matrix, and the scalar 
cr is unknown. 

Since choosing either of the above notations would 
deeply offend one of the two schools, consider 

y = Kx*+e,   £{e) = o,   £ (e eT) = S2 ,      (4) 

where y is the measured m^vector, and K is the known 
mxn matrix with rank(K) = n. This notation is ap- 
propriate when linear regression is applied to systems of 
integral equations of the form 

ft= / xiCflicKK + S. 1=1,2, 
i/O 

,m (5) 

L 

where the ft are measured values, the Xi(£) are known 
functions, and x(£) is the function to be estimated. Such 
equations are widely used to model the effects of a mea- 
suring instrument on the thing being measured. One 
way to approximate a:(£) is to replace the integrals with 
quadrature sums, i.e., 

' mMtw « £>*&>«,•),    (6) 
J=I 

where the Wj are prescribed quadrature coefficients and 
the x(£j) form a discrete approximation to z(£). It is im- 
portant to choose n large enough so that the quadrature 
errors are small relative to the £. If the sums are substi- 
tuted for the integrals in (5) and the products wjKifä) 
collected into a matrix K, the result is the model (4). 

A test problem capturing many of the salient features 
of real instrument correction problems is obtained by 
discretizing the Phillips [5] equation 

y(t)= f   K(t,t)x(t)dt,  -6 < * < 6 ,        (7) 
J-3 

with 

K(t,t) = 
1 + COS Ltt=*i 

0 ,  otherwise , 

l*-*l<3 
|t|<6 (8) 
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and 
UNPACK   Method 

y(t) = { 

{  (6-|<l)[l + |cos(f)] 

+  £»(¥)' 
0 ,   otherwise . 

|i|<6 (9) 

The kernel K(t,£) is non-negative, with maximum value 
2, attained on the line t = £. The solution is 

a(0 = {1 + C°S(^)    '    lel^3 (10) 
I 0 ,    otherwise 

The functions y(t) and x(£) are plotted in Figure 1. 

x(f) and y(t) for Phillips Problem 

f  and  t 

Figure 1: 

Discretizing replaces continuous variables t and £ with 
meshes U,i = l,...,m and (j,j = l,...,n. Choosing 
m = 150 equi-spaced U on -5.925 < t < 5.925 and using 
an n = 121 point trapezoidal rule on —3.0 < £ < 3.0 gave 

y* = Kx* , (11) 

where x* is a 121-vector of x(£j) computed by (10), and 
y* was computed by (11) rather than (9) to assure that 
the ii were the only errorB in the model. The £ were 
obtained by random sampling from N(o, S2) with 

S = diag(Sl, s2, ..., sm) ,   Si = (10-6)tf ,       (12) 

which means that the errors in the ft were in the 6th 
digit. The discretized model can thus be written 

y* = Kx*.   y = Kx*+e,   e ~ N( o , S2 ) ,      (13) 

and the least squares estimate 

x=(KTS-2K)_1KTS-2y, (14) 

computed by LINPACK subroutines DQRDC and 
DQRSL [2], is shown in Figure 2.   The dashed curve 

Figure 2: 

is x(t) and the jagged curve is the estimate. The large 
oscillations are induced by errors in the 6th digit of the 
ft! Such ill-conditioning is typical of regression models 
arising from discretized first kind integral equations. 

Classical Perturbation Theory 

(15) 

To simplify the discussion in this section, let 

bEES^y,  AES-'K,  Sb^S^e, 

and rewrite (13) as 

b*=Ax*,   b = Ax*+*b,   a>~iV(o,Im).   (16) 

The problem of interest is to find bounds for the errors 
in the least squares solution x = (ATA)~1ATb. 

The traditional approach ignores x* and the statistical 
assumptions about 6h, seeking instead to bound the dif- 
ference between estimates corresponding to two different 
b vectors. One of these, b, corresponds to the problem 

||Ax - b||2 = min = pLS , (17) 

and the other, b +Ab, corresponds to a perturbed prob- 
lem 

||(A + AA)x-(b+Ab)||2 = min, (18) 

where Ab and AA represent the uncertainties in b and 
A. The regression model assumes that A is known ex- 
actly, or at least to much higher precision than b, but 
numerical analysts argue that truncation errors arising 
when A is read into a finite-accuracy computer should 
be taken into account. A long and intricate argument 
[3] leads to the following error bound: 

Hx-x||2 ^j2*(A)||b||a + />Lj[ic(A)] 
< e 

lb   "  I      V« PLS ■-} + 0(e2) 

(19) 
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where 

and 

IAAI 
e = max< 

jjAbJ 
IN* 

(20) 

/c(A) = cond(A) = 
Ormax(A)  _ a± 
O-min(A) <Tn 

is the condition number which is just the ratio of the 
largest to the smallest singular value of A. 

While numerical analysts are fascinated by the trunca- 
tion A A, people who actually make measurements usu- 
ally insist on a computer arithmetic with enough preci- 
sion to render such perturbations negligible in compar- 
ision to the measurement errors. When the Computer 
Acquisition Committee at the National Bureau of Stan- 
dards was writing specifications for a new computer in 
1984, some members insisted on a machine with 64-bit 
single precision because 32-bit machines give only 6 to 7 
digits of precision, and they routinely measured things 
better than that. Accordingly, let A A = 0. This leads 
to the more easily obtained [6] bound 

llXl|2 llbl|2 

which also depends strongly on cond(A). 

Multiplying (26) by ||x*||2 and squaring both sides gives 

_       2      [cond(S-iK)]2 ||x1|l ||s_lg||a        f28, 
I|X    X|la- ||S-iKx'||g l|S    e|'2-     (28) 

Since both sides are non-negative functions of the ran- 
dom vector e, it follows that 

£(ll*-1l?)<^f^P^(l|s-'«. 
(29) 

It follows from (13) that S_1e ~ N( o , Im ) which im- 
plies HS-^H2, ~ x2M, so S {\\S-le\\l) = m. Therefore 

m[cond(S-iK)]2 U*»||j 
fc ll|x-x  ||2J< ||R-lKVr*ll? S-iKx* 

(30) 

(22) 

which relates x to x*, but with the elements of |x — x* 
muddled together. To clarify, define |Aa;|rmi by 

\*x\lm, = E UJ2^-X'A =^(ll*-**lla) > 

so by (30), 

Assessing the Classical Bound ,A.    ^ ( /™\ ^/o-i^    Iix1l2        /„s B |A*|rm.<(^-Jcond(S    K)||s_1Kx.||2 .    (32) 
The bound (22) is computable, but it does not relate a 
computed estimate to x*. To obtain such a result, let 

b = b* = Ax*,  Ab = £b~2V(o,Im), (23) 

and replace problems (17) and (18) with 

||Ax* - b*||2 = min = 0 ,  ||Ax - (b* + *b)||2 = min . 
(24) 

The bound (22) then becomes 

-Mir -cond(A)pxih' 
(25) 

which is not practicable because it depends on x*. But 
x* is known for the test problem, and this provides a 
means for evaluating the perturbation bound. To restore 
the original notation, substitute (15) into (25) to obtain 

II*-**!!» 
II** Ha 

< condtS^K), 
|S-*Kxia ' 

(26) 

where 

cond(S-K) = "m"(g:;g = S. . (27) 

The quantity |Aü|rm, is the expected root mean 
squared absolute error for the components of x. The test 
problem has ||x*||2 = 13.82, o-^S^K) = 3.3950 x 109, 
and «rmfS^K) = 1.1610. Thus cond(S-1K) = 2.924 x 
109, and by (12), 

S_1Kx* = S~V = (106,106,..., 106)T ,        (33) 

so ||S-1Kx*||2 = 1.225 x 10r. Substituting these values 
into (32) gives |Aa:|rm, < 3.67 x 103, a wildly pessimistic 
bound. Figure 3 gives a componentwise plot of the actual 
errors x — x* with the true values of ±|Aa:|rmj = ±0.302 
plotted as dashed lines. 

The classical bound is hopelessly pessimistic because 
it does not take the random nature of the errors into 
account. Starting with a measured b and correspond- 
ing solution x, it considers all measured vectors b + 6b 
with ||£b||2 < ||Ab||2. These vectors define correspond- 
ing solutions x = x + Äx, and to make the bound hold 
with certainty for all b + 6b, it assumes the worst pos- 
sible combination of the 121 perturbations 6b. When 
the errors are drawn randomly, the probability of such a 
combination is negligibly small. 
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Errors in Estimated Solution Vector 

2 0 

°x o 
i 

^ o 

The two-norm is invariant with orthogonal rotations, so 

71 
5{||x-x*||l}< 

whence, by (31), 

|Aa;|rm, < — 
On 

(41) 

(42) 

-3.0 -2.0 0.0 1 .0 2.0 3.0 

Figure 3: 

Statistical Perturbation Bounds 

A more reasonable bound can be obtained by considering 
the statistical properties of the errors. By (13), 

This bound is computable without knowing x*, and it 
does not depend on cond(S-1K). For the test problem, 
|Aa:|Tm, < 0.861, which exceeds the true value by a fac- 
tor of only 2.85. 

Confidence Intervals 

Both the classical and statistical perturbation analyses 
are rendered moot by confidence interval calculations. If 
x is the least squares solution for the model (13), then 

N x*, (KTS~2K) 
-l 

(43) 

(x — x*) ~ 2V  o, (KT
S

-2
K)   *    , (34)       so the variances of the invidual Xj are given by 

>-i 
so 

(x-x*)TKTS-2K(x-x*)~X
2(n), (35) 

whence 

£{(x-x*)TKTS-2K(x-x*)}=n. (36) 

Now consider the singular value decomposition 

S-xK = Ur  o ) VT'   s = dias(<ri.°'2,...,ffn), 
uTu = im, vTv = in, o-^^y-'-y^. 

(37) 
Substituting into (36) and simplifying gives 

VOe^eJ (KTS-2KpeJ,  j = l,2,...,n,    (44) 

where e;- is the unit vector with 1 as the jth element. 
For any probability a(0<a<l),if«;is chosen to 
satisfy 

vB/r-c-T)*"'  <45) 

then 

Pr I L- - K^Vfa) <x*< < Xj + «\/vÄ^]}=a- 
(46) 

te*1 

and, since o~n is the minimum singular value, 

[v^x-x*)]; 

Dividing through by <72 gives 

(38) 

^JE^i-x^Un. (39) 

|^[Vr(x-x%2|=5{||VT(x-x*)||l}<^. 

(40) 

The «-value for a = .95 is K = 1.96. Figure 4 shows the 
95% confidence bounds for the test problem. The dashed 
line is the true solution and the jagged lines connect the 
upper and lower bounds for the individual £<. 

If S2 = s2Im, with s unknown, then the estimate 
a2 = (m — n)~lPiiS can be used to construct confi- 
dence intervals, though the relation between K and a 
will be different from (45). If the e-distribution is un- 
known, confidence intervals can be constructed from the 
Chebeyshev inequality. Though wider than those for 
normally distributed errors, these intervals are often or- 
ders of magnitude smaller than the ±|Aaj|rmj bounds 
from classical perturbation theory. 

The keynote speaker [7] pointed out that the variance 
matrix for £j was known to Gauss, and that modern 
least squares algorithms could easily compute it by in- 
verting an upper triangular matrix formed in solving 
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LINPACK Method LINPACK Method 

Figure 4: Figure 5: 

for x. Unfortunately, the least squares subroutines in 
the widely used LINPACK [2] and LAPACK [1] collec- 
tions do not return confidence intervals, or even the vari- 
ance matrix. The LINPACK manual describes how to 
compute variances from a reduced matrix returned by 
subroutine SQRDC, but the LAPACK manual is silent 
on the subject, and neither mentions confidence inter- 
vals, concentrating instead on the classical perturbation 
bounds. Secondary sources, which use these collections, 
have continued this preoccupation with what are essen- 
tially useless bounds. They also continue to propagate 
misinformation about the condition number. For exam- 
ple, the textbook of Kahaner, et. al [4] states that: 

One useful interpretation of the condition num- 
ber is that its logarithm approximates the num- 
ber of digits which will be lost while solving 
Ax = b. Thus if cond(.A) = 105 and if machine 
epsilon is 10~8, then the best we can expect 
is that the solution will be accurate to about 
three digits. 

The estimate in Figure 2 was calculated in double 
precision with £„&& = 2.22 x 10 ~16, and since 
cond(S_1K) = 2.92 x 109, the above reasoning would in- 
dicate that the computed x is accurate to 6 digits. But 
consider the same calculation in single precision with 
cmach = L19 x 10~7 and cond(S-xK) = 2.93 x 109. 
According to the conventional wisdom, a computed es- 
timate should not contain any digits of accuracy. The 
actual single precision estimate is shown in Figure 5. 
The slight differences from the double precision estimate 
are difficult to see by comparing the two plots. The rms 
average difference between the two estimates is 0.0033 
which is almost 100 time smaller than the |Ax|rrn< for ei- 
ther estimate, so in practice, either estimate would serve 

equally well. Clearly the condition number is not always 
a good indicator of the accuracy of the estimate. 
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Abstract 

Compartment models are widely used in pharmacokinet- 
ics. Our objective is to fit compartment models to da- 
ta. General numerical optimization methods frequently 
perform poorly for this purpose. A good book on nu- 
merical optimization, such as Dennis and Schnabel's[3] 
describes multiple techniques and discusses the advan- 
tages and disadvantages of each. In order to implement 
these methods in a software product, one must make a 
number of decisions. For example, should a line search 
method or a trust region method be used? How should 
variables on widely different scales be handled? In gen- 
eral, these are questions without clear-cut answers. 

Compartment models are defined by linear differen- 
tial equations. Consequently, compartment models have 
a particular structure. We have tailored general opti- 
mization methods to exploit this structure. Through 
study and experimentation we have found workable an- 
swers to the questions posed above. 

1    Introduction 

Compartment models are illustrated with a study of gold 
kinetics. I will give some background for the study, the 
kinetic diagram, the differential equations, and the da- 
ta. The scaling problem is described, and a method for 
dealing with it is presented. A variety of algorithms are 
described our preference is stated. 

2    An example model 

This example from Gerber, etal[4i\ deals with gold ki- 
netics. The effects of aurothiomalate therapy last far 
beyond the time where there are measurable serum lev- 

els. However, whole-body radiation counts can made 
over any interval of time. In this study, serum levels 
and whole-body counts are simultaneously fit to a two 
compartment model. We assume the blood serum is a 
compartment, and the remainder of the body is a com- 
partment. The compartments and flows are depicted in 
Figure 1. The parameters k21, k!2, and kOl are called 

k21 

kl2 

kOl 

Figure 1: Model for gold kinetics study 

rate constants. 

Aurothiomalate is injected into the blood serum. At 
several values of elapsed time, two types of observations 
are made: the concentration in the serum and a radioac- 
tive count on the whole body. Dose 1 is the initial val- 
ue in the serum compartment in units of concentration. 
Dose 2 is the initial value of the sum of the two compart- 
ments in units of counts. For theoretical discussions, the 
parameters are in an indexed vector 6. We use the fol- 
lowing correspondence: k21 = 6\, kl2 = 62, kOl — 63, 
Dose 1 = 04, and Dose 2 = #5. 

The differential equations associated with the kinetic 
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diagram are i    Site U 

( Ai(0 ^ - ( -0i-i 
Ox 

02 
-$2 

Pitt) 
P2i(t) 

The subscript j is used to distinguish between 
solutions resulting from different initial conditions. 

Specifically,  ( Pxj(t)    P2j(t) )    is the solution when 

( Pxj(0) P2j(0) ) is the jth elementary vector. Py(<) 
is the proportion of material that goes from compart- 
ment j to compartment i in the time interval (0,i). For 
the deterministic form of the model we need only the 
solution for j = 1 because the dose is administered in 
the first compartment. The solution is 

Ai,A2   = 

Pu(t) 

P-i(t) 

-(Ox +O2 + 63) ± y/{0\ + 02 + B3)2 - 4fl203 
2 

-Ai (03 + Aa) exp(Ai^) + A2(03 + AQ exp(A2f) 
03 (A2 - Ai) 

(93 + A3) exp(Aif) - (03 + AQ exp(A2f) 

A2 - Ai 

where P.x(t) = Pxx(t) + fti(<)- 

The analytical solutions given above are to make the 
example precise and self-contained. In practice, a com- 
puter can solve the required differential equations and 
also find the derivatives of the solutions with respect to 
the parameters. 

The data were read from figures in Gerber etal by 
Uno e<a/[5], and are given in Table 1. The expected 
values of the observations j/,- are 

sm = 
! 

04 X P\l(ti) for i < 7 

0tx(Pii(ti) + F2i(U))    fori>8. 

The method of estimation is to find the value of the 
parameter vector 6 so that 

m . t(^)2       w 
is minimized. The parameter A is specified by the data 
analyst to stabilize the variances of the j/,-. For example, 
A = 0.5 gives the square root transformation, and A = 
0.0 gives the logarithmic transformation. See Box and 
Cox[2] for theory and strategies of choosing A. 

1 serum 1.06 354.0 
2 serum 2.13 284.0 
3 serum 3.19 238.0 
4 serum 4.26 200.0 
5 serum 5.11 175.0 
6 serum 6.17 145.0 
7 serum 7.23 128.0 
8 body 0.00 100.0 
9 body 3.11 87.23 

10 body 5.19 79.79 
11 body 14.53 60.64 
12 body 21.79 54.26 
13 body 41.51 46.81 
14 body 62.26 44.68 
15 body 97.55 41.49 
16 body 174.34 36.17 
17 body 215.85 34.04 

Table 1 The dat a 

3    Dealing with the scaling prob- 
lem 

The two classes of parameters, rate constants, and initial 
values, have vastly different scales. Ordinary nonlinear 
regression algorithms can be very slow to converge. 

The problems can be demonstrated using a model 
simpler than the one presented in the preceding section 

Vt-D 
ka 

—ka T *i 
-(exp(-M.) - exp(-Mi)) + £«•• 

Figure 2 contains two response curves for this model. 
There are two rate constants, ka and ke, and they are 
the same for each curve. The initial value, D, for the low- 
er curve is one tenth the initial value in the upper curve. 
Artificial data are taken from the upper curve with no 
error term. Parameters of the lower curve are used as 
starting values for a common algorithm. Convergence is 
very slow even though two of the three parameter esti- 
mates are correct. 

We return our attention to the gold kinetics study. 
When A = 1.0, 04 and O5 are conditionally linear param- 
eters. Bates and Watts[l] discuss handling conditionally 
linear parameters. The method is to alternate between 
normal iterations and off iterations where the rate con- 
stants are fixed. 

I propose doing exactly the same thing even when 
A ^ 1.0. While these off iterations are not linear prob- 
lems, the process allows the initial value parameters to 
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Figure 2: A pathological example 

partially adjust to the current values of the rate con- 
stants. Experience with several examples has shown that 
speed of convergence can be dramatically improved using 
this technique. 

4    Choice of method 

Newton's method for minimizing the objective function 
(1) is probably best, but because it requires second 
derivatives, is infrequently used. A modified Gauss- 
Newton method is nearly always used. The question 
is which modification should we use? 

We use the following notation to describe possible 

estimators: 

m = £w) 

*> - (*=m 
All nonlinear regression algorithms are iterative. At each 
iteration the current values of the estimates are updated 
by adding an adjustment vector. Possible formulas for 
the adjustment vectors are: 

(j(e)TJ(e) + 7i)-
1mTr(e) 

aimTmriJ{8fr(e) 

(2) 
(3) 
(4) 
(5) 

Expression (2) is the Gauss-Newton formula which will 
often not converge. Expression (3) is the Levenberg- 
Marquardt formula. This method is popular, and many 
different strategies for choosing 7 have been proposed. A 
combination of expression (2) and expression (3) is called 
the trust region method and is detailed in Dennis and 
Schnabel[3]. Expression (4) is the line search formula 
and is used with a strategy for choosing <r. 

I prefer a line search algorithm, backtracking with 
cubic interpolation when required. This is also detailed 
in Dennis and Schnabel. For the search direction, I use 
expression (5) with 7 fixed at some small number. The 
search parameter a adjusted at each iteration using cubic 
interpolation. Fixing 7 to be positive avoids having to 
check if J(6) is singular. The nature of compartment 
models is such that Q{6) and its directional derivatives 
along the search line are easy to compute. The cubic 
interpolation provides an intelligent update. 
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ABSTRACT 

Extending results of Dawid (1973), O'Hagan (1979), 
Meeden & Isaacson (1977), and Angers & Berger (1991), 
we develop a general theory of model behavior for dif- 
ferent distributional assumptions in a hierarchal model 
in the presence of outlying data. The score function of 
a density allows characterization of densities into four 
groups based on their tail behavior. Using convolution 
theory, we characterize the behavior of a location pa- 
rameter estimator in a hierarchical model depending on 
the group membership of the densities involved. These 
results extend to multivariate distributions under the 
assumption of exchangeability. Using mixture distri- 
butions (Andrews and Mallows, 1974) we implement a 
Gibbs Sampler for prototypes from these groups. This 
theory indicates the model behavior for most commonly 
used distributions, including a variation of the multivari- 
ate Laplace. 

1   INTRODUCTION 

We are interested in the sensitivity of hierarchical models 
to the distributions specified for each level. If we assume 
a two level model, 

y\ey 
0\p,T fe\ß,T(8\i*,T), 

we can estimate the unknown parameters 6 using Em- 
pirical or Hierarchical Bayes methodology. We would 
like some method for knowing how the estimate of 9 will 
behave for different structural assumptions on fy and 
/©. It is well known that conjugate densities can lead 
to undesirable behavior (e.g. Lindley «k Smith, 1972) as 
the data and the prior information become discrepant, 
i.e. \Y — fi\ —y oo, by always compromising between the 

'Research supported by a National Defense Science and Engi- 
neering Graduate Fellowship 

likelihood and prior. This has led to research on the be- 
havior of the posterior mean for nonconjugate densities 
as \Y - n\ —> oo. Assuming 6 is a location parameter, 
Dawid (1973) and O'Hagan (1979) derived conditions 
such that the posterior tends to the prior, thus reject- 
ing the information from the likelihood. Reversing the 
conditions, the posterior behaves as the likelihood. Hill 
(1974) extended these results to the multivariate setting. 
Sansö and Pericchi (1992) examined behavior for a nor- 
mal likelihood and Laplace prior, finding that the pos- 
terior mean tends to y - c where c is some constant, 
and thus the prior exerts  bounded influence.    Angers 
and Berger (1991) examined the multivariate behavior 
for a Cauchy prior. Meeden and Isaacson (1977) devel- 
oped similar theory for fy an exponential family and 0 
the canonical parameter which was extended by Peric- 
chi, Sanso, and Smith (1993) to expectation parameters. 
Along similar lines, Lucas (1993) developed conditions 
for posterior normality when both densities belong to 
the Box-Tiao family. 

We refer to these results as "what-if" asymptotics. 
They indicate how the model behaves as \Y — fi\ —+ oo, 
such as ignoring either the prior or likelihood, always 
compromising between them, or exhibiting bounded in- 
fluence. Our aim is to develop a general theory that 
will describe the model behavior for arbitrary paramet- 
ric forms of the likelihood and prior when 8 is a loca- 
tion parameter. To accomplish this, we use a scheme 
for classifying densities into disjoint classes based on tail 
behavior, and demonstrate that the relative ordering of 
the tails determines posterior behavior. Thus, the prob- 
lem of selecting densities for each level of a hierarchical 
model simplifies to determining class membership. We 
extend the results to the multivariate setting and addi- 
tional levels in the hierarchy. While research in this area 
generally assumes the variance components are known, 
our results also indicate the behavior of the posterior dis- 
tributions of a1 and r for general priors on these scale 
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parameters. We also demonstrate a Gibbs Sampling im- 
plementation that immediately provides estimates of the 
desired posterior distributions for prototypes from each 
of these classes, and thus provides information for all 
densities in that class. 

2    DENSITY CLASSIFICATION 

To classify a density's tail behavior, we utilize the neg- 
ative log rate, NLR/(x) = -^log/(a;). This is equal 
to minus the score function and will be applied to likeli- 
hoods and priors. Using a classification scheme adapted 
from Gomez-Villegas and Main (1992), we classify a den- 
sity as 

• Very Light if NLR/(z) —► oo 

• Light if NLR/(x) ->■ c, 0 < c < oo 

• Medium-Heavy if NLR/(x) -+ 0 

- Medium if xNLR/(x) -* oo 

- Heavy if xNLR/(a:) —► c, c < oo, 

where all limits are as x -+ oo. This scheme agrees 
with our intuition by classifying a Normal density as 
Very Light, a Laplace density as Light, and the t as 
Heavy. We see that the tail of f\ is heavier that the tail of 
f2 if lim NLR/.(a;) < lim NLR/2(x). As shown below, 

x—KX> ar—*oo 
this tail characteristic determines if our estimates will 
compromise or ignore the information from the densities 
involved. 

3   CONVOLUTION THEORY 

Using ideas from convolution theory, we obtain a theory 
that determines posterior behavior based on the rela- 
tive NLR's of the likelihood and the prior. Since we 
are assuming 9 is a location parameter, fy\»{y\9) can be 
rewritten as /y_„(y - 9) for some pivot density /*, and 
the marginal density f fr-eiv ~ 9)*(9)d6 is the convo- 
lution of /* and IT. Berman (1992) developed theory for 
the behavior of this convolution as y —► oo. We have 
extended this theory so that it may be applied to our hi- 
erarchical models. Below is our main result, see Chance 
(1994) for details. 

Theorem 1 Suppose NLRV is a regularly varying func- 
tion, NLRj > 0, g(t) has finite expectation, and 

lim sup NLRJy) < lim inf NLRf(y) 

g(v-0)fY-t(v-0)*e(9)dO 

then 

J 
~My)j9(e)fY-e(oyNLR'(y)dO 

for y -» oo, when /~M eiNLR*Wfi_e(t)dt < oo, and 

When g(t) = 1, this tells us that when we have an ex- 
treme data value, the marginal behaves as the prior, eval- 
uated at the data point, times a correction factor. Note, 
assuming NLRr regularly varying is not a very restrictive 
assumption since taking the logarithm suitably dampens 
commonly used density functions. Applying Theorem 1 
with g(y - 9) = 1 and g(y — 0) = y - 9, we see that the 
posterior expectation of g(y — 9) behaves as: 

Ee\y(g(y-Q)\y) 
Jg(y-t)r(y-tMt)dt 

ff*(y-t)*(t)dt 

fg(t)f*(t)eiNLR'(-^dt 

~       ff*(t)e1^LR"Wdt 

We can further manipulate the equations to obtain an 
expression for the posterior density: 

Pe\y(9\y) 
SZo F(V ~ 9)e(y-»)NLR'(ti)d9 

/*(y_fl)e-gNLR,(y) 

/~  /•(y-0)e-»NLR-<»)cW' 

Thus, Theorem 1 directly implies that when the prior 
has the heavier tail, the marginal density behaves as the 
prior density times a correction factor and the posterior 
as the pivot density times a correction factor as y —► oo. 
When NLRT(y) -*■ 0, the marginal behaves as the prior, 
a result closely related to Brown's (1988) heuristic, and 
the posterior mean of g(y - 9) goes to f g(9)f*(9)d9. 
When m is an indicator function we see that the pos- 
terior distribution tends to the invariant distribution of 
the pivot Y - 9, and E(y - %) -» Ef.(y -9) = 0, that 
is E{9\y) —► y. This is the result given by Dawid (1973) 
and O'Hagan (1979). When the prior is a Light tailed 
density, we can often evaluate the correction factor ex- 
actly. 

Example Let f(y\9) ~ N(9,cr2) and *{&) ~ DE(0,r2). 

Since NLR/.fy) = y and NLRff(y) = A = ^, which is 
regularly oscillating, the conditions of the theorem are 
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met. Applying the result, 

Pe|y(%) 
f*{y-9)ex(y-9Ue 

Jf*(y-O)e*(y-<>)d0 

e-fr(v-»r+Hv- 
Je-^(y-»r+Ky-o)d9 

1 

to additional levels. 

3.2   Scale Parameters 

re    a»2 (9-(j,-<72A)2 

=    N{y-<r2\,c2). 

This implies that \y - E(6\y)\ -»■ cr2A, the result given 
by Sansö and Pericchi (1992), see also Pericchi, Sanso, 
k Smith (1993), and Lucas (1993). 

Note, because of the symmetry in the problem, we can 
reverse the role of the prior and likelihood. For example, 
if the likelihood is heavier, we see that the marginal tends 
to the pivot density, and the posterior to the prior, with 
the appropriate correction factors. 

The main power of these results is that once we know 
which classes the distributions belong to, we immediately 
see how our estimate for 0 will behave as y —> oo. While 
these are asymptotic results, we have found they provide 
reasonable approximations for intermediate data values. 
Moreover, we can extend the analysis to determine gen- 
eral behavior for additional levels in the hierarchy, scale 
parameters, and multidimensional parameters. 

3.1     Higher Levels 

Many applications of hierarchical models contain three 
or more levels. For example, in educational research, 
we may have repeat observations on students that are 
grouped by classroom. Thus, we can see how both the 
student level and classroom level parameter estimates 
will behave by repeatedly applying the above theorem. 

In general, in a three level model, the behavior of the 
first level parameter will depend on the first level distri- 
bution and the convolution of the higher level densities. 
Thus, if either of the higher level densities are Heavy, 
while the first density is not, the information from all 
higher levels will be asymptotically ignored in the poste- 
rior density. If only the first level is Heavy, the posterior 
tends to the heavier of the remaining densities. Similarly, 
when the second level parameter is a location parameter, 
we can describe the behavior of its posterior density. In 
this case, if only the first level is Heavy, the posterior 
tends to the prior, with mean at the third level mean. 
Clearly, the value specified for the third level parameter 
becomes important. This analysis can easily be extended 

Theorem 1 assumes 6 is a location parameter, how- 
ever, in many applications it would be fruitful to know 
the sensitivity of the variance component estimates. Of- 
ten, we can obtain similar theory for scale parameters by 
reparameterizing them as location parameters. This the- 
ory applies when the likelihood, /(<r|y), is proportional to 

K^r")- A likelihood of this form can be reexpressed as 

K a ) = 9(l°gs(y) -logo-). Transforming to 0 = logo-, 
0 is a location parameter and when Theorem 1 is appli- 
cable, we have an approximation for the posterior of 9 
as logs(y) -»• oo. While the NLRs of the transformed 
densities are often not regularly oscillating, in practice 
we have found the resulting approximations to still be 
quite reasonable. We are currently attempting to gen- 
eralize the behavior when location and scale parameters 
are assumed unknown simultaneously. 

3.3   Multidimensional Problems 

When Y is a p variate random vector with mean 
9 = (0i,...,0p), and we assume the j/,- 's are conditionally 
independent and the 0,- 's are exchangeable, we can apply 
Theorem 1 in each coordinate. Thus, if one coordinate, 
say yj becomes large, the limiting behavior for the pos- 
terior mean for 0j will converge to some limiting value as 
dictated by Theorem 1. When the variance components 
are assumed known, the posterior means for the other 
coordinates will behave as if the outlying coordinate did 
not exist, displaying the expected shrinkage phenomena. 
When the variance components are modeled as unknown, 
the mean components will still be linked together, and 
thus the other components will not completely reject 
the outlier. This was shown to be true for the Normal- 
Cauchy case by Angers and Berger (1991). 

4  IMPLEMENTATION 

Since class membership of the tails determines model 
behavior, if we can obtain estimates for a representative 
from each class, we will know how all members of that 
class behave as y —► oo. Below we describe a Gibbs Sam- 
pling implementation using scale mixtures of Normals 
that allows estimation for Normal (Very Light), Dou- 
ble Exponential (Light) and t densities (Med-Heavy) by 
multiplying the Normal scale parameter by A and then 
specifying a density for A. If we wanted to model a par- 
ticular density that is not easily implemented, we may al- 
ternatively obtain estimates from these prototypes that 
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will be robust to outliers. The final estimates for A also 
provide a diagnostic for outliers, see for example, Seltzer 
(1993) and Racine-Poon (1992). 

4.1   Student's t Density 

A multivariate t distribution can be obtained by mix- 
ing a multivariate Normal distribution with a Gamma. 
Let Y ~ JV„(/i,A£) and A ~ 7G(f, %). Then Y ~ 
£„(//, E) once we integrate out A because 

p{y) = 
Jo 

Nn{n,XL)IG{v/2,vl2)d\ 

v"/*T(i & [I/ + (y-/1)
,S-1(y-/i)] -(^) 

-  |S|l/2^n/2r(|) 

The conditional distribution for A|y will then be Inverse 
Gamma(iif11, §s2 + v), and we can immediately add this 
distribution to a Gibbs Sampler. 

4.2   Double Exponential/Laplace Density 

In the univariate case, the Double Exponential can 
be found by mixing a Normal with an Exponential with 
mean 2 (Andrews k Mallows, 1974): 

1      i»-fi 
7T- e 

2<7 Jo 
^(y-rfle -U\ 

Note, this density has variance 2a2, so we often use 
^- as the variance of the Normal distribution. If we 
extend this idea to the multivariate case, the resulting 
multivariate density for y unconditional on A is the sym- 
metric multivariate Bessel distribution. To see this, let 
Y ~ Nn(fi, A^S) and A ~ Exp{2). Then 

f(y) 
i r°° 

2 Jo 

^ * JO 

n   -*1   f -?e-MH«ldu 

where s   = V-rtfjy-ti, and K({w) is the modified 
Bessel function of the third kind. The final equation 
is the Multivariate Bessel density (Fang, Kotz, fe Ng, 
1990) with parameters a = 1 - f and b = -j=. The 
density is elliptically symmetric. If n = 1 the density is 
the univariate Double Exponential. If n = 2, the distri- 
bution has been labeled the bivariate Laplace distribu- 
tion. Thus, this mixture provides us with a variant of 
the multivariate Double Exponential, and we refer to the 

density resulting from this mixture as a Double Expo- 
nential. The full conditional for X\y will be Generalized 
Inverse Gaussian(l — j, 1, s2). 

4.3   Gibbs Implementation 

By adding A to our hierarchy, the distributions condi- 
tional on A will be Normal and we can utilize conjugacy 
to find their exact form. The Inverse Gamma is gener- 
ated by inverting a Gamma random variable. To gener- 
ate from the Generalized Inverse Gaussian, GIG, we use 
a rejection algorithm. If 7 < 0 we take the reciprocal 
of a GlG(-y,a,ß). If 7 > 1 the density is log concave 
and we use the "non-universal rejection algorithm" given 
by Devroye (1986). Let f(x) represent our GIG density 
function, and set h(x) = log f(x). Since / is log-concave, 
h can be majorized by the derivative of h at any point, 
which corresponds to fitting an exponential curve over /. 
Thus, we use a piecewise majorizing function, g(x), for 
f(x), where the first piece is an exponential curve, the 
second piece is / evaluated at the mode, and the third 
piece is another exponential curve. We select points a 
and 6 to attach the exponentials so that the area under 

g(x) is minimized. Let m = (y-^Vf^+»ß be the 
mode of /, fi the tail to the left of the mode, and fr the 
right tail. Theorem 2.6 of Devroye states that the area 
will be minimal if we choose a and b such that 

1.-1 //("Ox m + a = /r
1(^) 

.      t-uf(m)\ m-b = fj   ( ). 

We use a binary search to find these cross points. This 
tells us where to attach the exponential curves and gives 
us a piecewise majorizing function. 

If 7 < 1, we use the above algorithm for the three 
regions to the left of the infection point, a,- = j^j, and 
majorize the region to the right of the inflection point 
by a pareto curve (%%). In this case we need to calcu- 
late the Bessel function in the constant of integration in 
the GIG density. The inflection is always to the right 
of the mode. If the inflection point falls to the left of 
m + a, then we attached the second exponential curve at 
the inflection point. Figure 1 shows the density and the 
piecewise majorizing function for a = 1,7 = .5. If 7 = .5 
we actually generate from a Reciprocal Inverse Gaussian 
by inverting an observation from an Inverse Gaussian. 
To sample from an Inverse Gaussian we use the algo- 
rithm of Michael, Schucany, and Hass given in Devroye 
(1986) using a many-to-one transformation (p. 148-149). 
In our hierarchical models, 7 = 1 - \ so the only val- 
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Figure 1: Generating from a GIG density 

ues of 0 < 7 < 1 we need to consider are 7 = 0, .5 as 
n is an integer. The above algorithm extends that used 
by Carlin and Poison (1991) which dealt with the case 
n = l. 

5 CONCLUSION 

In summary, the negative log rate provides a charac- 
terization of densities based on their tail behavior. This 
characteristic determines when a Bayes estimate com- 
promises or rejects sources of information. This knowl- 
edge aids in model selection, by knowing the conse- 
quences of our assumptions in the presence of outlying 
data. Given a particular density selection, the theory 
also indicates when we could substitute alternative dis- 
tributions that have similar behavior but may be more 
tractable. The Gibbs Sampling implementation allows 
estimation for a prototype from each class. 
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PREDICTING URBAN OZONE LEVELS AND TRENDS WITH 
SEMIPARAMETRIC MODELING 

Feng Gao1, Jerome Sacks2 and William J. Welch3 
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1 Introduction 

High ozone concentration in the troposphere is believed 
to be harmful to human health and to crops (see National 
Research Council (1991)). The surface ozone concentration 
level is affected by the strengths of sources and precursor 
emissions, and by meteorological condition. To assess that 
part of the trend in ozone concentration levels that cannot be 
accounted for by meteorology, we need to build models which 
relate ozone to meteorology. 

In Bloomfield, Royle and Yang (1993), nonlinear least 
squares methods were used to model the dependence of o- 
zone on meteorology, and to estimate the trends. That report 
focuses on the urban Chicago area. 

In this report, a semiparametric modeling technique is used 
to build models that relate ozone to meteorology. 

2 Semiparametric Model 

The ozone concentration value to be modeled here is the 
daily network typical value. To obtain the daily network typ- 
ical value, the least absolute deviations decomposition (or the 
median polish decomposition, see Tukey (1977)) of yd,*, the 
maximum concentration on day d at station s, was performed 
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search Triangle Park, NC 27709-4162. Research supported in part by 
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search Triangle Park, NC 27709-4162. Research supported in part by 
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«CR819638-01-0. 
3Department of Statistics and Actuarial Science, University of Water- 

loo, Waterloo, Ontario N2L 3G1 Canada. Research supported in part by 

the U.S. Environmental Protection Agency under Cooperative Agreement 

#CR819638-01-0. 

for all the 45 ozone monitoring stations in the urban Chicago 

area: 
yd,s = p' + ad + ß'a + t'd,s 

The daily network typical value is then defined as ß' + a'd. 
The decomposition was also used to impute the missing data. 
This daily network typical value is called the network average 
in Bloomfield et al. (1993). The unit for ozone concentration 
is parts per billion (ppb). 

The same meteorological variables adopted by Bloomfield 
et al. (1993) are used here. The surface weather data were 
taken from O'Hare Airport and the upper air weather data 
were taken from a station at Peoria in the same period ozone 
data were taken. The variables used are: 

• maximum temperature from 9:00 am to 6:00 pm (maxt) 

• 12 noon wind speed (wspd) 

• 24 hr ave. wind vector (meanu and meanv) 

• 12 noon relative humidity (rh) 

• 12 noon visibility (vis) 

• 12 noon opaque cloud cover (opcov) 

• 7 am wind speed at 700 mb (wspd700) 

• 24 hr ave. temp, lagged 1 and 2 days (tlagl and tlag2) 

• 24 hr ave. wind speed lagged 1 day (wlag) 

• 24 hr ave. relative humidity lagged 1 day (rhlag) 

Also used is a variable for year, which takes the integer values 
1,2,..., 11, corresponding to years 1981 -1991, and a variable 
for day taking values from 1 to 365 to reflect seasonal effects. 

On day i, in year j, with meteorological condition met, 
where met is a 12-dimensional vector of the above meteoro- 
logical variables, let a; = (met,i,j). Soxisal4-dimensional 
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vector x = (£1,..., £14). The response y(x) (the network 

typical value) is assumed to be a realization of a stochastic 

process, Y(x): 

Y(met,i,j) = ßj + Z(met,i,j) + tij (1) 

where ßj are constants, j = 1,2,...,11, Z{x) = 

Z(met,i,j) is a zero mean Gaussian process with covari- 

ance function Cov(Z(x),Z(x')) = azR(x,x'), and tij ~ 

7V(0, a2
eI). See Sacks, Welch, Mitchell and Wynn (1989) for 

more discussion. 

Assume, as in Sacks et al. (1989), that the covariance be- 

tween Z(x) and Z(x') is 

14 

alR(x,x') = <r|exp(- ^6k\£k Ski     J 
k=l 

where x = (6, •••,64), x' = (£,..., £4), 0* > 0, 1 < 
Pk < 2, fc = 1,..., 14. This class of stationary processes 

provides us with a wide range of functions. 

Given the data (x\, yi), (x2,2/2), • • •, (xn, yn) for g consec- 

utive years starting from year 1 (1981) with Uj data points in 

year j and n\ -\ \-nq =n and, provided oz> Qe and R(-, ■) 
are known, the best linear unbiased predictor (BLUP) y(x) 

at a new point x in year j can be written as (see Sacks et al. 

(1989)) 

y(x) = ßj + Z{x) = ßj + r'(x)C-\y - Fß)     (3) 

where?/ = (yi,y2,---,yn), C = Corr(y) = (a2
z/a

2)R + 

(al/cr2)I, where cr2 = a\ + a2, and R = {R(xi,Xj), 1 < 

* ^ n'< 1 < J < n}, the nxn matrix of correlations among Z's 
at the data points, T-(X) = (CT|/O-

2
)[JR(2;I,2;), ... ,jR(xn,a;)]', 

F = 

/    lnixl 

0 

V    0 

0 

ln2Xl 

Ö 

0 
0 

\ 

ln«Xl   / nx, 

and/3 = (A,. ■ .,ßq)' = (F'C^F^F'C^y, which is the 

usual generalized least-squares estimate of ß = (ßi,..., ßq)'. 

In the model, values of p indicate smoothness of the re- 

sponse surface as a function of the corresponding variables. 

Larger values of 6 usually indicate greater importance of the 

corresponding variables if the variables are on normalized 
scales. 

To obtain the unknown parameters oz-, Ve, 0's and p's, 

maximum likelihood estimate (MLE) method is used. These 

estimates are then used in (3) to predict the response surface. 

This work focuses on the period from May 15 to Sept. 15, 

the period when ozone concentration is high. This period is 

divided into 4 smaller periods: May 15 - June 15, June 15 - 

July 15,July 15-Aug. 15andAug. 15-Sept. 15. Thereasons 

are: First, the assumption of stationarity of Z within a shorter 

time period is more plausible. Secondly, fitting a model for 

each of the 4 periods separately reduces the computational 

burden. For more details, please see Gao, Sacks and Welch 

(1994). 

W    3   Modeling the Network Typical Value 

A model is fitted using data from 1981 to 1991 for each of 

the 4 periods. 

3.1   Important Variables 

To see which meteorological variables have strong effects, 

we rescale them so that each meteorological variable ranges 

over [0,1]. The MLEs of the 9's and p's with the rescaled 

meteorological variables and the rescaled variables day and 

year are given in Table 1. 

The estimated 6 for year was 0 for the first 3 monthly peri- 

ods. For the fourth monthly period, the estimated 0 for year 

was small, indicating that year was not an important variable. 

Because the adjusted trend of ozone could be unambiguously 

interpreted through the ßj's if 9 for year was 0 (see Section 
3.3), we choose to set the 6 for year equal to 0 in the fourth 
period as well. 

From the table, it can be seen that temperature, relative hu- 

midity and wind (through wspd, wlag, meanu, meanv and/or 

wspd700) are consistently important across the months. For 

more discussion, please see Gao et al. (1994). 

3.2   Quality of the Fitted Models 

To check the quality of the model fit, the cross validation 

root mean square error (CVRMSE) was calculated. If the 

model fit is good, the CVRMSE should be close to cre or its 
MLE. 
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Table 2 lists the MLEs of az and ae and the CVRMSEs 

for the fitted models. The table shows that the model fits 

are generally good. The values of CVRMSE are close to 

the values of root mean square residual from the parametric 

model fitting in Table 6 of Bloomfield et al. (1993). For more 

discussion, please see Gao et al. (1994). 

3.3   Trend Estimation 

It is possible to interpret the adjusted trend through the 

ßj's in the model when the variable year does not appear in 

the stochastic process part of the model Z(-), or equivalently 

when 8 for year is 0. Under this circumstances, if met is 

held fixed, the change from year to year is, except for random 

errors e, reflected in the differences of the ßj's. Therefore the 

adjusted trend is defined as the trend in the ßj's. 

Let ß*j = ßj + {y-~ß), then ß* = y. These ß*'s can 

be interpreted as the adjusted (for meteorology) averages of 

ozone level across the years while the simple yearly averages 

y~j's are the unadjusted averages. The time series plots in 

Figure 1 demonstrate that a large portion of the variability in 

the unadjusted averages is eliminated in the adjusted averages. 

This portion of the variability is caused by meteorology. The 

plots suggest a linear trend for the adjusted averages. The 

lines in the plots are the least square regression lines. Let ä be 

the intercept at year= 81 and b be the slope of the line, then 

the estimate of the adjusted trend is 

trend = 10 x - 
a 

(%/decade). (4) 

Based on the model and using MLEs of the parameters, the 

standard errors of the estimates of the trend can be estimated. 

The standard errors of the estimates of the trend can also be 

estimated by jackknifing by day (see Chapter 8 of Mosteller 

and Tukey (1977)). Also see Gao et al. (1994) for more details. 

The estimates of the trends and their standard errors are listed 

in Table 3. 

3.4   Predictions 

The models constructed can be used to predict behavior 

of ozone in future years as a function of meteorology. The 

results in Gao et al. (1994) show that the model predictions 

closely match the actual ozone levels. 

4   Conclusions 

The semiparametric modeling technique is shown to pro- 

vide a good way to model the ozone concentration as a func- 

tion of meteorology. This method can be used to assess the 

adjusted trends. The models can also be used to predict ozone 

levels from meteorology. 

It is found that for the urban Chicago area, there are signif- 

icant downward trends for the network typical ozone values 

after adjusting for meteorology for the periods June 15 - July 

15 and Aug. 15 - Sept. 15 over the 11 years studied (see 

Table 3). 
In Bloomfield et al. (1993), for the period of Apr. 1 - 

Oct. 31, the adjusted trend for the network typical values is 

found to be -2.7%/decade with a (jackknife) standard error 

of 3.4%/decade. Results from the two reports appear to be 

consistent. 
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Table 1: Estimates of fl's and p's for models for the network typical value with meteorological variables rescaled. 
May 15 -June 15 June 15 -July 15 July 15 -Aug. 15 Aug. 15 -Sept. 15 

variables e V 9 V 0 V e P 
maxt 3.3222 2 4.8540 2 0.8202 2 1.7082 2. 

wspd 0.2368 2 0.0000 2 0.3261 2 0.0000 2 

meanu 0.0000 2 0.7052 1.185 0.0733 1.435 0.3849 1 
meanv 0.0000 2 1.4913 2 0.5097 2 1.6454 2 

rh 1.7655 2 0.7756 2 0.5506 2 1.9768 2 

vis 0.1833 2 1.1844 2 0.0333 2 0.6480 2 
opcov 0.0000 2 0.0731 2 0.0000 2 0.0617 2 

wspd700 0.5513 2 0.0000 2 0.0170 2 0.1922 2 

tlagl 0.0000 2 0.5948 2 0.0000 2 0.0000 2 
tlag2 0.0928 2 0.0000 2 0.0462 2 0.2011 2 

wlag 0.0481 1 0.6122 2 0.0000 2 2.2078 2 

rhlag 0.0000 2 0.3031 2 0.0000 2 0.1955 2 
day 0.0939 2 0.1270 2 0.0000 2 0.1172 2 

year 0.0000 2 0.0000 2 0.0000 2 0.0000 2 

Table 2: Estimates of erg and <r£, and CVRMSE for models for the network typical value. 
Models az <7£ CVRMSE 

May 15 - June 15 17.051 7.028 7.606 
June 15-July 15 17.584 7.028 8.433 
July 15-Aug. 15 33.194 9.236 9.828 
Aug. 15-Sept. 15 15.263 6.281 7.680 

Table 3: Estimates of trends and their standard errors for the adjusted averages for the network typical value. 
Model Estimates Jackknifed Estimates 

Models Trend Standard Error t Value Trend Standard Error «Value 

May 15 - June 15 0.0139 0.0280 0.4964 0.0149 0.0288 0.5174 
June 15 - July 15 -0.0635 0.0285 2.2281 -0.0651 0.0287 2.2683 
July 15 - Aug. 15 -0.0074 0.0313 0.2364 -0.0093 0.0310 0.3000 
Aug. 15-Sept. 15 -0.1094 0.0330 3.3152 -0.1146 0.0290 3.9517 
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Figure 1: Adjusted and unadjusted averages of the network typical values. 
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SYMPOSIUM SESSION SCHEDULE 

10:15 a.m.-12:00 p.m. 
Contributed Papers 2: Fractal, Neural, other Thursday June 16,1994 
•   Incorporating Segmentation Boundaries into 

8:15 a.m.-9:45 a.m. the Calculation of Fractal Dimension Features 
Keynote Session •   Overfitting in Neural Networks 
•   Gauss, Statistics, and Gaussian Elimination •   Likelihood Profiles for Studying Non - 

Identifiability 
10:15 a.m.-12:00 p.m. •   A Method for Estimation of Parameters of the 
Issues in Software Keeney & Raifa Utility Models Based on the 
•   Software as Property Normal Logistic Functions 

•   Developing Interactive Graphics in C++ •   Statistical Fitting of Financial Models 

•   Parallel Computing And Statistics 

10:15 a.m. -12:00 p.m. 12:45 p.m. -1:30 p.m. 
Fast Implementations of Smoothers POSTER SESSIONS 

•   Fast Implementations of Nonparametric Curve •   On Calculating the Distribution of Independent 

•   Estimation and Presentation of Regression in Trials with Changing Probabilities of Success 

Several Variables via Warping and the ASH •   Bayesian Estimation Using the Gibbs Sampler 

• Fast and Stable Computation of Local 
Polynomials 

• Fast Implementations of Average Derivative 
Estimation 

for the Inhibition/Promotion Cancer 
Chemoprevention Experiment 

•   Computationally Intensive Statistical Methods 
for Quality Control 

•   Interval Analysis and Self-Validating 

10:15 a.m. -12:00 p.m. Computation of Non-Central F Probabilities 

Longitudinal and Mixed Models, and Percentiles, 

•   Estimation Methods for Nonlinear Mixed- •   An Algorithm for Fitting and Displaying 

Effects Models Distribution Data 

•   Experiences with Derivative-Free REML for •   MCMC Methods When There Is Partial 

Large, Messy, Multiple Trait Genetic Models Exchangeability 

to Estimate Variances and Covariances •   Graphically Comparing Two Similarity 

•   Generalized Estimating Equations and Measures Defined over Large Databases 

Extensions for Various Clustered Data •   Robust Empirical and Hierarchical Bayes 
Structures Estimation of Normal Means and Rates in 

Longitudinal Studies 

10:15 a.m.-12:00 p.m. 
Contributed Papers 1: Experimental Design 1:30 p.m. - 3:15 p.m. 

•   Dual Space Algorithms for Designing Space 
Filling Experiments 

Green Thumbs: Extensions and Applications of 
Tree Modeling Methods, 

•   Experiment Design for Assessment of •   The Art of Growing Classification Trees 

Important Inputs to a Computer Code •   Trees for Event Rate Data 

•   Computations in a Finite Projective Geometry •   Hybrid Trees 
for Enumeration of Subdesigns 

•   Sampling Plans on the Sphere 
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1:30 p.m. - 3:15 p.m. 
Bayesian Curve Fitting 
• Gibbs Sampling schemes for Bayesian Density 

Estimation with Mixtures 

• Nonparametric Additive Regression with 
Autocorrelated Errors 

• Issues in Bayesian Analysis of Neural 
Networks 

• Wavelets and Bayesian Data Analysis 

1:30 p.m. - 3:15 p.m. 
Space Filling Experimental Designs: Theory, 
Computer Construction, and Analysis 

• Introduction to Space Filling Designs 

• Algorithms and Uses of Space Filling Designs 

• Analysis of Space Filling Designs 

1:30 p.m. -3:15 p.m. 
Contributed Papers 3: Longitudinal 
• A Monte Carlo E M Algorithm for Some 

Grouped and Partially Observed Data Models 
with Random Effects: Ordinal Probit, Censored 
Regression and Tobit Models 

• A Randomization Test for Diverging Trends in 
Longitudinal Data 

• Linearizing Transformations in Growth-curve 
Problems 

• An EM Algorithm Fitting First-Order 
Conditional Autoregressive Models to 
Longitudinal Data 

• REML in Generalized Linear Models: A 
Conditional Approach 

1:30 p.m. - 3:15 p.m. 
Contributed Papers 4: Computing 
• Random Integration Rules for Statistical 

Computation 
• Using PVM on Computation for Analysis of 

Repeated Measurement Designs 

• Large Visualizing Time-Stamped Log Files 
• The Multi-String Rearranging Memory and Its 

Use in Statistical Computing 
• Fast Multidimensional Density Estimation 

based on Random-width Bins 

3:45 p.m. - 5:30 p.m. 
Panel: Statistics Education in the Computer 
Age 

3:45 p.m. - 5:30 p.m. 
Contributed Papers 5: Enhancements to Tree 
Algorithms 

• Multivariate Split Classification Trees 

• Global Tree Optimization: a non-greedy 
decision tree algorithm 

• Growing Decision Trees less Greedily 

• Tree Structured Density Estimation 

• Tree-Structured Multivariate Density 
Estimation and Its Application In 
Environmental Modeling 

3:45 p.m. - 5:30 p.m. 
Contributed Papers 6: Multiple Comparisons 
• SIMMCOMP: an Splus Module for 
Simultaneous Inference 
• Classical Multiple Comparison via Naiman's 

Inequality From Hypercubes to Permutation 
Polytopes 

• On The Analysis of Multiple Correlated Binary 
Endpoints in Medical Studies 

3:45 p.m. - 5:30 p.m. 
Contributed Papers 7: Smoothers and 
Nonparametric Regression 
• On Partial Cross Validation in Nonparametric 

Regress 

• An Iterative Projection Method for 
Nonparametric Additive Regression Modeling 

• Nonparametric Curve Estimation from Indirect 
Observations 

• Open Questions in the Application of 
Smoothing Methods to Finite Population 
Inference 

• Empirical Examination of an Efficient Robust 
Linear Regressor 

3:45 p.m. - 5:30 p.m. 
Tutorial: Introduction to Perl, for Statisticians 

Friday June 17,1994 

8:15 a.m.-9:45 a.m. 
Neural Nets 
• The Accuracy of Bayes Estimators of Neural 

Nets 
• Using neural networks to estimate functions 

• Generalization and Exclusive Allocation in 
Unsupervised Category Learning 
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8:15 a.m. - 9:45 a.m. 
Contributed Papers 8: Density Estimation 
• Jump and Sharp Detection by Wavelets 
• Numerical Techniques in Distribution Fitting 
• Maximum Likelihood Density Estimation with 

Term Creation and Annihilation 
• The Bias-Optimized Frequency Polygon 

• Data Adaptive Density Estimation of DNA 
Distributions 

8:15 a.m. - 9:45 a.m. 
Contributed Papers 9: Numerical 
• Parseval Quadrature for Normal Tail 

Possibilities 
• A Method of the Computation of Multivariate 

Normal Probabilities Over Any Convex 
Region 

• Computer Random Variate Generation for 
Multinomial Distribution 

• Systematic Random Leapfrog Method for 
Parallel Random Number Generators 

• Efficient Programs for Simulating Chi-bar 
Square Distributions 

8:15 a.m. - 9:45 a.m. 
Contributed Papers 10: Trees II 
• The Cumulative Score Control Chart for an 

Open Loop Control 
• Piecewise Proportional Hazards Survival Trees 

With Time -Dependent Covariates 
• A Tree-Based Method of Analysis for 

Prospective Studies 
vTesting in High Dimensional Spaces via 

Recursive Partitioning 
• Tree Based Classification Using a Predictor 

with Many Categories 

8:15 a.m. - 9:45 a.m. 
Tutorial: Networking Innovations and 
Resources, The Internet as Toolbox 

10:15 a.m. -12:00 p.m. 
Nonparametric Regression for Edge and Peak 
Preserving 
• Cube splitting for multidimensional edges 
• Discontinuity estimation in nonparametric 

regression via orthogonal series 
• Semiparametric Change-Point Methods 
• Nonparametric autoregression-regression for 

edge preserving: The estimate and its 
application in computer vision 

10:15 a.m.-12:00 p.m. 
Software for MetaAnalysis 
• Epi-meta: Meta-analytic statistical software for 

epidemiological studies 
• Performing meta-analyses using commercial 

mixed-model software 
• Software for meta-analysis: a comparative 

review 

10:15 p.m. -12:00 p.m. 
Special Contributed Papers 11: Visual 
Statistical Analysis 
• Visually Guided Statistical Analysis 

• Visual Sensitivity Analysis for 
Multidimensional Scaling 

• Visual Correspondence Analysis 
• Visual Log-Linear Analysis 
• Visualizing High-Dimensional Space with 

Principal Components Analysis 

10:15 p.m. -12:00 p.m. 
Contributed Papers 12: Gibbs Samplers 
• Monte Carlo Assessment of Influence and 

Sensitivity in Bayesian Modeling 
• Bayesian Inference for Nonlinear Regression 

with Covariate Measurement Error via Gibbs 
Sampling 

• BUGS (Bayesian Inference Using Gibbs 
Sampling) 

• Using the Gibbs Sampler to Detect 
Changepoints: Application to Longitudinal 
Markers of Disease 

• Applied Convergence Diagnostics for the 
Gibbs Sampler 

10:15 p.m. -12:00 p.m. 
Contributed Papers 13: Computing 
• Statistical Inference for Priority Queues 
• On-Line Control of Stochastic Systems: 

Application to the Design of an Artificial 
Pancreas 

• Using both Symbolic and Classical Methods to 
Analyze Complex Data Set with the SAS 
System 

• Statistical Methods in Software Engineering 

1:30 p.m. - 3:15 p.m. 
Wavelets Tutorial 



574 

1:30 p.m. - 3:15 p.m. 
Smart Monte Carlo Methods for Conditional 
Inference in Exponential Families 
• Approximate conditional inference in 

exponential families via the Gibbs sampler 

• Saddlepoint approximations for the likelihood 
ratio statistic in exponential families 

• Monte Carlo sampling from exponential 
families under linear constraints 

1:30 p.m. - 3:15 p.m. 
Stochastic Modeling In Carcinogenesis 
• Computational issues in analyzing 

premalignant liver lesions 

• Multi-pathway multistage models of 
carcinogenesis 

• Time-dependent rates in interconnected birth- 
death models 

1:30 p.m. - 3:15 p.m. 
Contributed Papers 14: Multivariate 
• Stability of Homogeneity Analysis 
• Estimation of Covariance Matrices Using 

Eigenstructure Influence 

• Finding the Minimum Volume Ellipsoid 

• Triangulation and Multivariate Nonparametric 
Function Estimation 

1:30 p.m. - 3:15 p.m. 
Contributed Papers 15: Software 
• Data Conversion Pitfalls 
• Design of Object-Oriented Functions in S for 

Screen Display, Interface and Control, of Other 
Programs 

• LISP for Interval Computations 
• Documentation with Online Programs Rather 

Than Programs with Online Documentation 
• What is the Most Appropriate Software for a 

Statistics Course?, John D. McKenzie, Jr., and 
William H. Rybolt, Babson College 

3:45 p.m. - 5:30 p.m. 
Panel of Editors of Journals for Statistical 
Computing 

3:45 p.m. - 5:30 p.m. 
Robust Regression and Multivariate Analysis 
• Using Multiple Processors to Compute Robust 

Regression Estimators 

• Identification of Outliers in Multivariate Data 

• Robust Model Comparison for Autoregressive 
Processes with Robust Bayes Factors 

3:45 p.m. - 5:30 p.m. 
Applications of Wavelets 
• S+WAVELETS: An Object-Oriented Wavelet 

Toolkit 

• The Use of Wavelets for Spectral Density 
Estimation With Local Bandwidth Adaptation 

• An Application of Wavelets to Tomography 
• Use of Wavelets for Denoising and Feature 

Enhancement in Mammograms 

3:45 p.m. - 5:30 p.m. 
Contributed Papers 16: Genetics 
• A Composite Model for the Distribution of 

Species and Its Use in Monitoring Pattern 
Recognition Algorithms 

• Some Computational Problems in Modeling 
Molecular Evolution 

• Computation of Identity-by-Descent 
Proportion for Pedigree Data 

• Using S for a Bayesian Analysis of Cleavage 
Sites When the Amino Sequence in a Peptide 
Is Known 

• Inference for Lethal Gene Studies via Bayesian 
Markov Chain Simulation 

3:45 p.m. - 5:30 p.m. 
Contributed Papers 17: Bootstrap 
• Aggregation Coefficients of Clustering in 

Databases and Metric Spaces 
• On a Nearest Neighbours Oriented Algorithm 

for Missing Data Reconstitution-Application to 
a Magamatic Data Array 

• Efficient Computation of Statistical Procedures 
Based on Subsetting the Observations 

• A Frequency Domain Bootstrap for Time 
Series 
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Saturday June 18,1994 

8:15 a.m.-9:45 a.m. 
Tutorial: Markov Chain Monte Carlo in 
Bayesian and Likelihood Statistics 

8:15 a.m. - 9:45 
Statistics of Protein and Macromolecular 
Structures 
• Threading protein sequences through folding 

motifs 
• The Inverse Folding Problem: Analysis by 

Statistical and Machine Learning Methods 

• A Gibbs sampling algorithm for the 
identification and characterization of a 
structural motif in a data base of bioploymer 
sequences. 

8:15 a.m.-9:45 a.m. 
Contributed Papers 18: Graphics 
• Visualizing the Destructive Potential of 

Indirect Fire Weapons 
• A Robust Visual Access and Analysis System 

for Very Large Multivariate Databases 

• Dynamic Graphics in a GIS: A Link between 
Arc/Info and XGobi 

• Variations on Row-labeled Plots 

• Data Analysis with Graphical Models 

8:15 a.m.-9:45 a.m. 
Contributed Papers 19: Nonparametrics 
• Relative Power of Smirnov and Wilcoxon 

exact tests in two-sample . 
• A Simulation Study of Some Rank Tests for 

Interaction in Two-Way Layouts 
• Computation of the Wilcoxon's T(n), 

Wilcoxon's W(m,n) and Ansari-Bradley's 
A(m,n) Statistics When the Sample Size is 
Small 

• NonParametric Estimation of Functions from 
Stratified Samples 

10:15 a.m.-12:00 p.m. 
Efficient Bootstrap Computations 
• Concomitants of order statistics for bootstrap 

distribution estimation 
• Fast and accurate approximate double 

bootstrap confidence intervals 

• Saddlepoint Control Variates and Importance 
Sampling 

10:15 a.m. -12:00 p.m. 
Convergence of Markov Chain Samplers 
• Efficient Random-Walk Metropolis 

Algorithms 

• Theoretical rates of convergence for Markov 
chain Monte Carlo 

• The fraction of missing information and 
convergence rate for data augmentation 

10:15 a.m.-12:00 p.m. 
Computational Techniques in Genetics and 
Molecular Biology 
• Monte Carlo Estimation of Autozygosity 

Probabilities, Elizabeth Thompson, Univ of 
Washington; 

• Statistical and Computational Challenges in 
Physical Mapping, David Nelson & Terence 
Speed, Berkeley; 

• Bayesian Restoration of a Hidden Markov 
Chain with Application to Sequence 
Alignment,Gary Churchill, Cornell. 

10:15 a.m. -12:00 p.m. 
Contributed Papers 20: Robust 
• Regression Hazards Model with Markov 

Process 
• A Principal Components Based Algorithm for 

Variable Selection in Linear Models 
• Saddlepoint Approximations for Robust M 

Regression 

• Rank Cusum Test for Change in the Mean 

10:15 a.m.-12:00 p.m. 
Contributed Papers 21: Parametric Modeling 
• Perturbation Bounds for Linear Regression 

Problems 

• Tailoring Nonlinear Least Squares 
Algorithms for the Analysis of Compartment 
Models 

• Characterizing Hierarchical Model Behavior 

• Predicting the Urban Ozone Levels and Trends 
with Semiparametric Modeling 


