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§0. Introduction. 

The objective of this research is to provide new analytic approaches and new mathe- 

matical tools for combat modeling and simulation. In this paper we focus on three methods 

for assigning values (scores, importances) to various weapons in a simulated engagement. 

The potential/antipotential or eigenvalue method and the method used by the U.S. Army 

Concepts Analysis Agency as part of its ATCAL (Attrition Calibration) procedure, are 

part of current practice. The fire allocation methods are, relatively speaking, a new idea 

and lead to some very interesting systems of non-linear equations that can be viewed as 

non-linear generalizations of the simultaneous eigenvalue problem that occurs in the (lin- 

ear) eigenvalue method. This similarity with the eigenvalue method is striking and leads 

one to conclude that fire allocation methods are the "right" non-linear generalization of 

the eigenvalue method. 

We have been able to derive a number of useful results. For example, as part of our 

investigation of the ATCAL weapon importances, we were able to establish the existence 

and uniqueness of the solution to the importance equations. The proof, which is amazingly 

similar to the proof of the Perron-Frobenius Theorem that gives existence and uniqueness 

for the eigenvalue method, provides a new iterative scheme for solving the ATCAL impor- 

tance equations. Again, the similarity with aspects of the (linear) eigenvalue method is 

interesting, and one is led to conclude that the ATCAL importances will inherit many of 

the same problems that occur with the eigenvalue method. 

We also discuss various methods for dealing with the systems of non-linear equations 

that occur in the fire allocation methods. These problems take us to the frontiers of modern 

mathematical research into computational methods for finding resultants and Gröbner 

bases. 

Finally, we conclude with some numerical experiments that tested the sensitivity of 

the three scoring methods to changes in various inputs and that made some comparisons 

between them. Because large examples would be computationally expensive, these exper- 

iments were run only for small examples having at most three weapons per side. 

Clearly warfare involves many dynamically interacting "variables" and a large mea- 

sure of unpredictable human behaviour.   As a result, it is not all that suited to seien- 



tific/mathematical analysis. Nevertheless, we feel that it is worthwhile to examine a variety 

of mathematical paradigms and techniques, so as to be able to build the richest possible 

models that can accommodate the widest range of phenomena. Moreover, the mathemat- 

ical understanding of a model's behavior is critical to effectively moving results between 

models in a hierarchy. For those reasons, basic research into foundational issues in combat 

modeling and simulation is important. 

The author would like to thank the U.S. Army Concepts Analysis Agency, particularly 

the Chief of its Advanced Research Projects Office (ARPO), Mr. Gerald E. Cooper, for 

their support of this research and their hospitality during visits to the agency. 



§1.    An Analysis of the Potential/Anti-Potential or Eigenvalue  Method for 

Assigning Values (Scores) to Weapon Types. 

a. The Method. 

Numerous methods have been proposed for assigning "values" to weapons in combat 

models (Anderson [56]). Typically the resources of the two opposing sides are grouped 

into a number of generic types (e.g. M1A1, MLRS, BMP, TRUCK, etc.), with the object 

of the method being to compute a value (or score) for each weapon of a particular type. 

These values are then used to make comparisons across types and to make overall force 

comparisons. 

Our purpose in considering here the Potential/Anti-Potential method and some of its 

variants is three-fold. First, we will use it to illustrate how some rather sophisticated math- 

ematical ideas and important computational issues can arise in a relatively simple context. 

For example, Anderson [56] points out that some methods of assigning weapons scores are 

in everyday use, eventhough it is not known whether solutions of the equations used in that 

method always exist, and if they exist, whether or not they are unique (e.g. ATCAL, see 

Section 3 below). Second, it is always important to know the limitations of your mathemat- 

ical methodology. Fortunately, with the Potential/Anti-Potential method we can describe 

those limitations precisely. In addition, whenever one selects a particular mathematical 

paradigm to use in building a model, one frequently can derive additional properties of 

the model as consequences of the initial assumptions. These derived features can serve as 

a kind of check on the reasonableness of the choice of mathematical technique/paradigm. 

Such "derived consequences" can be illustrated with the Potential/Anti-potential method. 

Our final purpose in considering this method is that many of its features carry over to the 

other two methods we will be discussing — fire allocation and ATCAL importances. Thus 

this method will serve to illustrate some of our later ideas. For all of these reasons, we 

have chosen to discuss the method in considerable detail. 

We suppose that the two opposing forces (Blue and Red) are made up of a mix of 

weapons systems broken down into m types for the Blue force and n types for the Red 

force. Let Bi denote the number of weapons of type i in the Blue force (i = 1,..., m) and 

let Rj denote the number of weapons of type j in the Red force (j = 1,..., n). We denote 



the sought after values by VBi and VRj. Thus VBi (VRj) represents the value per type 

i (j) weapon in the Blue (Red) force. We also let Kij denote the rate at which one Blue 

weapon of type i kills Red weapons of type j and let Lj{ denote the rate at which one Red 

weapon of type j kills Blue weapons of type i. Kij is therefore measured in units of Red 

weapons of type j per Blue weapon of type i per unit of time. 

In a very general setting, the Kij and Lji would be functions of the B^s and i?/s so 

that the values VBi and VRj would change as the composition of the Red and Blue forces 

changed. To the extent that the Ki} and Lji are non-constant, the total value for each 

force 
m n 

B = ^2 VBi xBi    and    R = ^ VRj x Rj 
t=i i=i 

would be a non-linear function of the force components B{ and Rj and of time. However 

the eigenvalue method can be viewed as instantaneous so that Kij and Lji may be taken 

as constant. 

The basic assumption of the potential/anti-potential or eigenvalue method is that the 

value per weapon of a particular type is proportional to the rate at which a weapon of that 

type destroys the value of the enemy's weapons. We can assume a single positive constant 

of proportionality C or separate positive constants CB and CR for the Blue and Red forces 

respectively. We also impose the obvious constraint that all the values be non-negative. 

This leads to the following system ofm + n equations: 

CB xVBi=J2 KijVRj       i = 1,. 

m 

CR x VRj = J2 LjiVBi       3 = 1,. 

,m 

,n 
i=l 

or in matrix terms: 

(1) CBxVB = K x VR 

(2) CRxVR = LxVB 

subject to the constraints VBi > 0 for i = 1,..., m, VRj > 0 for j = 1,..., n, CR > 0, 

and CB > 0.  Note that all the Ktj and Lji are always non-negative and that CB and 



CR, in addition to VB and VR, are unknowns. Substituting (2) into (1) and vice versa 

yields the simultaneous eigenvalue problem 

(3) A VB = MKL VB 

(4) \VR = MLK VR 

where A = CR x CB is a scalar, MKL is the m x m matrix product of K with L, and MLK 

is the n x n matrix product of L with K. Note that both MKL and MLK are non-negative, 

that is, have non-negative entries. For future reference, we also note that this system 

(3), (4) is remarkably similar to a system of non-linear equations that occurs in the fire 

allocation method of Section 2. 

Because MKL and MLK are obtained as the product of K and L in different orders, 

it can be shown that they have the same non-zero eigenvalues (counted with multiplicity). 

Moreover, the Perron-Frobenius Theorem (see below) implies that if MKL and MLK are 

irreducible, then our system (3) and (4) will have an essentially unique solution. Specif- 

ically, MKL and MLK will have a common positive real eigenvalue A whose associated 

eigenvectors VB and VR will have all positive entries. This eigenvalue A = Amax will be 

the largest real eigenvalue of both MKL and MLK-, and the corresponding eigenvectors 

VB and VR will be unique up to a positive scale factor. Simply put, there will be (up to 

scale) only one eigenvector for each of MKL and MLK with non-negative entries, and both 

will correspond to the largest eigenvalue. If either matrix is reducible, then zero values are 

possible, and the solution may no longer be unique. 

It is important to note that any choice of positive eigenvectors VB and VR will 

provide a solution to our original system (1) and (2). To see this, suppose we have selected 

two such positive eigenvectors VB and VR, then 

MKL x (K x VR) = (K x L) x (K xVR) = K x MLKVR = \{K x VR) 

so that K x VR is also a non-zero non-negative eigenvector of MKL- By the uniqueness 

result mentioned above, K x VR must therefore be a positive multiple, call it CB, of VB, 

so that 

CBxVB = K x VR 



as desired. A similar calculation gives 

CR x VR = L x VB. 

If instead, we select VR = r VR, r > 0 and VB = b VB, b > 0 as our eigenvectors, then 

CB x VB = K x VR 

and 

CRx VR = Lx VB 

where CB = CB ■ \ and CR = CR • £, so that CR ■ CB = CRCB = Amax remains 

invariant. Notice that if 6 = r then CR and CB do not change. We thus have two ways 

to view our two degrees of freedom: we can freely scale the eigenvectors VB and VR 

independently, or we can scale CB freely (and hence CA reciprocally) and then scale VB 

freely (in which event VR is uniquely determined). 

Thus all we really have at this point is relative weapon values for Blue and Red 

(¥£p- and 777T1-) with no way to compare Blue weapons to Red weapons. One common 

normalization which overcomes this, is to set CB = CR = \/Amax (which in effect equates 

units of Red value with units of Blue value). One can then do relative comparisons across 

Red and Blue weapons types. Finally, to obtain fixed values, one can normalize one weapon 

type to have value = 1, which in effect amounts to a change of scale in the units of "value". 

Whether we chose to normalize or not, it is easy to see that the quantity 

y/CRxR 

VCBxB' 

n n 

where R = Y, VRj x Ri aXid B = Y, VB* x B* are the total Red and Blue values 

respectively, is constant independent of our two scaling degrees of freedom. We shall see 

below that this quantity has a natural interpretation as the effective force ratio. It is a 

combination of the quantitative ratio § and the qualitative ratio §§. Note that doubling 

quantitative strength is equivalent to a four-fold increase in qualitative strength. 

We remark that other normalization schemes have been criticized (Anderson [56]) on 

the grounds that dividing a weapon type into two "very similar" types should not upset 



the force ratio. Those arguments appear to be based on interpreting f as the force ratio, 

which is not the appropriate measure. Finally, note that redefining value to be VCR VRj 

and y/CBVBi (i.e. r = y/CR and b = \/CB) is equivalent to setting CR = CB = y/\ max- 

In general CB(CR) involves units of (time)-1 and can be regarded as the rate at 

which one unit of Blue (Red) value kills units of Red (Blue) value. This is because 

CB =   3   -._     for every    i = 1,...,m 
V Bi 

so that _ „ ,_^ _,        Tr_ 
ZBiZKijxVRj 

rn       '        i  
ZBtxVBi      ' 

i 

The numerator is the units of Red value killed per unit time, and the denominator is total 

Blue value. Thus CB is the number of units of Red value killed per unit of Blue value 

per unit time. Hence, if CR and CB are different, the units of Red and Blue value are 

qualitatively different. 

The invariant quantity \JCB x CR = \/Amax = I can be regarded as a measure of 

the intensity of combat. If we scale all kill rates K{j and Lij by c, then KxL and LxK 

scale by c2, and the common maximum eigenvalue changes by a factor of c2. This in turn 

means that I scales by c, which is appropriate for a measure of intensity. In addition, if 

we consider the Lanchester model for direct fire (the square law) using our interpretation 

of CB and CR as kill rates and B(t) and R(t) as units of Blue and Red value at time t, 

i.e.: 

^ßl = -CB x B(t) 

(3) 4M = -CHxB(0 
at 

then T = \JCB x CRt is the unit of non-dimensional time (see Przemieniecki [40]). The 

quantity \JCB x CR reflects the rate at which we trace the attrition path - a clear mea- 

sure of intensity. {\JCB x CRt appears as the argument in the cosh and sinh terms of the 

solutions of (3).) Finally the quantity $0 = yH**^ is known as the superiority param- 

eter (see Przemieniecki [40]). If $0 > 1, Red will annihilate Blue before being annihilated, 

and vice versa if $0 < 1- Thus $0 is the initial effective force ratio. 



We can also regard the potential/anti-potential method as a means of aggregation 

which is consistent with the Lanchester square law. Consider the Lanchester system of 

differential equations: 

(&BX dBm   dRx dRn 
(4) j = —(-Si,... ,Bm,Ri,..., Rn] 

0    K 

or 

V dt '      '   dt   '   dt '      '   dt )        v   *'      '    ""    " \L    0 

dBi/dt 

dRn/dtJ \Rn 

Here we have assumed that at all times t the kill rates are constant. If we fix CB and CR, 

then the values VBi and VRj will be constant up to some common positive scale factor. 

(Normalize the value of some weapon type, say VBU to 1 to remove this ambiguity, or 

carry it through the argument below.) 

If one now defines the aggregate Blue value at time t by 

B(t) = YJVBix Bi(t) 

and the aggregate Red value at time t by 

n 

R(t) = Y^VRj xRj(t), 
i=i 

then one can show that B(t) and R(t) satisfy: 

^- = -CRxR 

(5) dR 
^ = -CB x B. 
dt 

The proof of this fact is straight-forward (see Section lc below). 

This result says that given 'the eigenvalue method as a means of aggregation, (5) 

is a consistent aggregated attrition model (see Section lc below).   In effect, aggregation 

commutes with attrition - we can run the attrition model (4) for a period of time and 

aggregate the result, or first aggregate and then run the attrition model (5) - either way, 

the result will be the same! 



Note that the converse is also true. If we seek a linear aggregation 

m 

B(t) = Y,VBi xB,(t) 
i=l 

n 

R(t) = TVRjxRJ(t) 
3 = 1 

where £;(*), Rj(t) are the solutions to (4) and VB{, VRj are some constant "weights", 

then imposing the attrition model (5) on the aggregated forces compels the relations 

n 

CBxVBi = ^jKliVRj 

i=i 
m 

CRxVRj = J2LaVBi 

i.e.  the weights must be the ones derived from the eigenvalue method.  (Again, see Sec- 

tion lc below.) 

We conclude this section with a number of additional observations: 

1) If L x K and K x L are irreducible (as required by the Frobenius-Perron theorem) 

then one can show that 

Thus increasing even one kill rate (holding the others constant) will increase Amax and 

our measure of intensity I = ^Am„. This is a derived result which lends credence 

to the eigenvalue method and our interpretation of / as intensity. For numerical 

computation of these derivatives see Section 4. 

2) We have included in the last part of Section 1 a geometric proof of the Frobenius- 

Perron theorem that uses the Brouwer Fixed Point Theorem. This theorem says that 
n 

every continuous map from the closed n-ball Bn = {(xi,... ,xn) G Rn | Yl xi — M 

into itself has a fixed point. This leads to the consideration of more general fixed point 

techniques as a basis for assigning force values and/or aggregating force components. 

Fixed point methods involving contractive maps often lead to iterative procedures 

which permit the effective computation of the fixed point.  This is the case with the 



eigenvalue method, and as we shall see, it is also the case with the ATCAL weapon 

importances. 

3) When the K{j and Lji depend on other variables, including possibly B1,...,Bm, 

Ri,..., Rn, it is important to try to understand the resulting dependence of VBt and 

VRj on these variables. This is especially interesting in a stochastic setting where 

Kij, Lji are random variables. We can ask for the distribution of the VBt, VRr We 

have investigated these questions for small examples and the results are presented in 

Section 4. 

4) The potential/anti-potential method has come under various criticisms. 

a) First, it is clear that the values VBt, VRj are really measures of relative lethality 

and that vulnerability is not accounted for. That is because they are instanta- 

neous measures. If the Kij, Lji depend on time, perhaps via a dependence on 

the current force structure Bi, Rj, then the values will vary over time. It is in 

this change over time where vulnerability enters. 

b) "... The numeric values of the scores are sometimes over sensitive to small changes 

in the input kill rate matrices. Zero score values sometimes occur for major 

weapons. Also, the method sometimes splits an engagement into two disconnected 

separated engagements 

All of these problems stem from the failure of LK and KL to be irreducible (or from 

numerical problems that are the result of being close to reducible). Simple examples 

where such problems occur are given by: 

K=fKu      0^1 T _ (Lu      0 

K = ( Kn    "^12^ L = ' Ln    Ll2 

0 K22 J \    0        ^22 

and 

K= V0      K22)        ~~ V  0     L22 

b. Relationships with Lanchester Attrition Models and Aggregation. 

In previous reports, we have shown that aggregation cannot be considered in isolation 

from the attrition model. It is only by linking the two that we can account properly for 

the dynamics of force-on-force dependence in any theory of combat values.  To illustrate 

10 



a case where compatibility can be achieved, consider the potential/anti-potential method 

explained above. We have 

/    dt 

dBr, 

\ 

dt 

dt 

dRn 
dt 

0       -LT' 

-KT       0 

/2*i\ 

Bm 

Ri 

\RnJ 

aggregating to 
dB 

dt 
dR 

dt 

= -CRx R 

= -CBx B 

where B = J2 VBi x B{ and R = J2 VRi x Ri is the aggregation process. 

If we assume that the Kij and LJ: are constant, then the values VBi and VRj are 

constant and the Jacobian J of our aggregation process is the 2 by m + n matrix 

T_fVB1    ...    VBn       0       ...       0 
J ~ \   0      ...       0       VÄi    ...    VRn 

Now suppose our initial force composition is (B°,..., B^, R®, ■ ■ •, Rn)    an^ that 

tp(t) = (Sa(<), • • •, Bm(<), Äi(«), • • ■ > ^m(0)T 

is the "path" of attrition in the state-space Rm+n. This means that <p(t) satisfies 

0       -LT' 
dtp 

~dl V 
-KT      0 

and 

V(o) = (ß1°,...,Ä°m)
r 

(These conditions uniquely determine ip.) Now consider the projection of this path 

T(*) = (E yß»X S<(*)'   E yÄi x Äi(*) 
i=l 

11 



into the state-space R2. It satisfies 

T 

dt  \k      dt   h      dt 

(This is where the fact that Kij and Lj{ are constant comes into play.) In other words, 

d'y dtp 

dt ~       dt 

which is the standard relationship between the velocity vectors of a path and those of its 

image under some map. On the other hand, 

s-(° ~CRY M      \-CB       0    / 

because of our choice of attrition model for the aggregated forces. The compatibility we 

have been discussing is the requirement that 

0       -CR' 

For example, we must show 

m 

-CR xR=^VBi 
dBi 

i=i 

But the right-hand side is ^ - just differentiate the aggregation equation 

B = £) Bi x VBi. Thus the projected path -y(t) is the path of attrition in the aggregated 

variables B and R\   This establishes consistency of the potential anti-potential method 

with the Lanchester attrition models. 

c. The Frobenius-Perron Theorem. 

In this part of Section 1, we discuss the Frobenius-Perron Theorem which plays a key 

role in the development of the so-called potential/anti-potential or eigenvalue method for 

assigning values (scores) to weapon types. It turns out that a very similar method, based on 

the same Brouwer fixed point theorem, can be used to establish existence and uniqueness 

12 



for ATCAL's weapon importances. We conclude our discussion with some observations on 

computational methods which implement the theorem. 

Let A be a real n x n matrix with a;j > 0 for every i,j: 

/ au     ai2 
a2\     a22 

\ani     an2 

O-ln \ 
a2n 

0.nn / 

Such an A is said to be non-negative. 

Definition 1.  A matrix A is said to be reducible if the index set {1,2,... ,n} can be 

partitioned into two disjoint sets {ii,..., i^} and {&!,...,&„} (// + v = n) such that 

ai»kß =0    o = 1,...,^    ß = l,...,i/. 

In other words, after applying a suitable permutation to both the rows and columns of A, 

it takes the form 
\x v 

H (*    :    0^ 

v \*    :    */ 

If a matrix is not reducible it is said to be irreducible. D 

In 1907 Perron proved a remarkable theorem concerning the eigenvalues and eigen- 

vectors of a positive matrix (a^- > 0). This was later generalized by Frobenius to the case 

of irreducible non-negative matrices. 

Theorem 2. (Perron-Frobenius.) An irreducible non-negative matrix A = (a^) has a 

unique largest real positive eigenvalue Amax which is a simple root of the characteristic 

polynomial xn-trA xn_1 H h (-1)" det A of A. The modulus (complex absolute value) 

of any other eigenvalue will be less than or equal to Amax, and it will always be strictly less 

than Amax if A is positive. To this maximal eigenvalue Amax there corresponds a positive 

eigenvector 1) = (ui,..., vn)T with u,- > 0 for every i. Of course, v is determined only up 

to a positive scalar. 

13 



We will not prove this result in its full generality here. The reader should consult 

Gantmacher [20] for complete details. Instead, we will give a topological proof that makes 

use of Brouwer's fixed point theorem. 

Let A be a real non-negative irreducible nxn matrix and let x = (xi,...,xn) , 

Xi > 0 alH, ~x ^ 0 be a non-zero non-negative (column) vector. Since the theorem is 

trivial for n — 1, we will assume n > 2. 

Lemma 3. Ax ^ 0. 

Proof: ~x has at least one strictly positive component, say Xj > 0. If Ax were to be 0, 

we would be forced to have a^ = 0 for every j = 1,..., n, but a column of zeros would 

make A reducible, contrary to our assumption. L-J 

Recall that the standard (n - l)-simplex An_1 C Rn is defined by 

An_1 = I Oi,..., xn)T G R" s.t. Xi > 0 for every i and J^ xt = 1 
i=\ 

For example, when n = 2, A1 is a line segment in the plane: 

and when n = 3, A2 is a triangle in space 

Proof of Theorem 2. We define a continuous map g: A"  J 

Ax 
g{x) 

cr(Ax) 

14 
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where a((yu. .., yn)T) = J2 Vi-> 1-e- a means ac^d the entries in the n-vector to which it is 

applied. 

Note that a: R" -> R is continuous, so that its reciprocal will be continuous away 

from places where it is zero. In fact, Lemma 3 shows that cr(Ax) > 0 for x G An_ . Also 

note that g(x) is again in A"-1 since g(x) is a non-zero non-negative vector with 

r a(Ax) 

a{Ax) 

Now Brouwer's Fixed Point Theorem says the following: 
, n 

Let Bn = {x € R" s.t. |x|2 = £ x? < l} be the unit n-ball.in Rn consisting of all 

vectors of length less than or equal to 1 in Rn, and let /: Bn -+ Bn be any continuous 

map, then / has a fixed point, i.e. there exists a vector x E Bn such that f(x)= x. 

This theorem applies as well to any topological space which is topologically equivalent 

(homeomorphic) to Bn.  This includes A".  Thus our map g:  An_1 -+ An_1 has a fixed 

point x e An_1. We have 
Ax — 

-=- = x, 
o(Ax) 

or, setting A = a(Ax) > 0, 

Ax = Xx. 

In other words A > 0 is an eigenvalue for A with non-negative eigenvector x . In fact, every 

component of ~x must be strictly positive. To see this, suppose to the contrary that x has 

some 0 entries. Without loss of generality, we can permute the coordinate axes so that 

x = Oi,..., zfc, 0,..., 0)T with Xi ^ 0 for i = 1,..., k where 1 < k < n. We then have 

/x1\       /Axi\ 

Ax = 
Xjfc 

0 

\0/ 

Axjt 
0 

V   0   / 

so that  A21 

x\ 

>xk 

However,  this relation,  plus the fact  that  x\   >   0, 
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x2 > 0,..., xjt > 0, forces A2\ to be an (n - k) x k block of zeros, making A a reducible 

matrix. 

We have thus established that a real non-zero non-negative irreducible matrix A has 

a positive eigenvalue with corresponding positive eigenvector. Additional arguments are 

needed to show that this eigenvalue has the largest absolute value among the real eigen- 

values of A, and that no other real eigenvalue has a positive eigenvector. Notice that the 

fixed points of g are in one-to-one correspondence with the "non-negative" eigenvectors 

"y = (yi,... ,yn)T, Vi > 0 all i, of A (up to positive scale), and that the argument above 

shows that all the fixed points lie in the interior of An_1, which is equivalent to yi > 0 for 

all i. The theorem of course implies that g has a unique fixed point. 

We remark that reducible non-negative matrices will still have non-negative eigenval- 

ues with non-negative eigenvectors, however there may be several such. Examples to think 

about are: 

"0    1" "1    0' "1    0' 
0    0 ) 0    1 » 0    2 

Computational Issues 

One can compute the unique fixed point of the map g: An_1 -» An-1, where g(x) = 

AlL , by an iterative procedure. For this to work, we must assume that A, in addition to 
a{Ax ) 
being non-negative and irreducible, is primitive. If all the entries of A are positive, then A 

is primitive. If A has some zero entries, then A will be primitive if and only if some power 

of A is positive. 

To compute the fixed point, we pick any initial vector  x(1)  G A"-1, say 

(x^,..., xLX))T where x^ > 0 all j = 1,..., n and f) x^ = 1, and set 

x^  = 

X (i+1)=g(xU) 

so that 

x(2> = y(^))    x^ = y(x<2>) = g(g(xM)) 

and so on. One can show that: 
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Proposition 4.   lim x(i) =  x0 where g(x0) = x0 is the unique fixed point of g and 
i—>-oo 

therefore, up to scale, the unique positive eigenvector of A. 

This iterative method breaks down if A is reducible or if A is not primitive, as the 

example: 

shows. 

Sensitivity 

Let A be a non-negative irreducible matrix.    The largest eigenvalue Amax can be 

characterized as follows: 

Amax =    max    I   mm 
^An-1   I   l<«'<n        Xi 

where the maximum is taken over all vectors x   = (xi,...,xn)T with x,  > 0 for all i 
n _^ n -^ 

and £ Xi = 1 and where (Ax)i = £ aijxi is the *th component of the vector Ax (see 

Gantmacher [ ]). Moreover, the unique vector x(0) in An_1 giving the maximum is in the 

interior of An_1 and is an eigenvector with eigenvalue Amax: 

4z(°) - A      x(0) 
.fix — />mixx 

(0) 

Now suppose every element in the jth column of A is increased by e > 0 yielding a 

new non-negative irreducible matrix Aj,£. We compute that {A^ex
w)l = (Ax(0))l +exJ 

so that 
(A-   x(0)V xi 

=^7v^ ^ Amax T   mm   £    ,  . =j55— -  -m« T 1--   ^    (o) min 
i<»<"       ^?>       ~   ""     1<'<n   x^ 

.(0) 

It follows that Amax, the largest eigenvalue for Ajt£ is at least Amax + e mm ^07 > Amax. 

Now suppose in addition that A is primitive. From the definition of primitive, it 

follows that Aq = (a\f) has only positive entries for some q > 1. If we increase the i,j- 

entry of A by e, then every entry in the jth column of Aq+1 = AqA increases by at least 

( min afj*i)e. The argument above then shows that the largest eigenvalue of Aq+1 (which 
Kk<n 
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is A*+i) increases by at least c0e where c0 is fixed positive constant independent of e.  It 

follows that 

so that ^ is positive.   Moreover, we can give a positive lower bound for this value. 
odij 

Numerical confirmation of this result can be found in Section 4. 
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§2. Fire Allocation Methods for Assigning Weapon Values 

a. The Methods. 

i. Introduction to Fire Allocation Methods. 

Fire allocation methods for assigning values to the weapons present in an engagement 

are based on the principle that the value of opposing weapons at an instant in time will 

determine (along with other factors/variables) how we allocate the fire of friendly weapons. 

This allocation of fire simultaneously impacts the rate of attrition of various weapon types, 

so we will need attrition models that capture this effect. Finally attrition rates (at a given 

instant in time) effect value at that instant, because we will assume, as we did in the 

eigenvalue method (see §1), that the value of a weapon is proportional to the. rate at which 

it is destroying enemy value. 

As one might expect, working with models and equations that portray such a com- 

plex interaction between value, fire allocation, and attrition can be difficult. Unlike the 

relatively simple linear equations and matrix techniques of the eigenvalue method, fire al- 

location methods invariably lead to non-linear equations with parameters. In this section, 

we will illustrate fire allocation methods with examples that use a Lanchester-like attrition 

model. Other attrition models could be used. In fact, in a very general sense, the ATCAL 

model (see §3) also embodies a fire allocation method. 

Because the examples lead to complex systems of non-linear polynomial equations, 

we also spend some time in this section discussing methods to solve these equations. For 

relatively few weapon types on each side, such systems of non-linear equations can be 

solved with the aid of a mathematical computation/symbolic computation package such 

as Mathematica or Maple. Finally, we can observe that despite the presence of non-linear 

equations in our fire allocation examples, the method exhibits features that are surprising 

similar to the eigenvalue methodv 

ii. A Simple Model. 

We first consider a simple example with two weapon types on each side. We denote 

by bi(t), b2(t) the number of blue weapons of type 1 and type 2 respectively, present in 

the engagement at time t. Likewise rx(i), r2{t) are the respective numbers of each type of 
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red weapon present at time t. 

Our attrition model will be a simple Lanchester square law based on the ordinary 

differential equations: 
dbi ■. 
— = -p1(cnr1 + c12r2) 

db2 / , \ — = -P2\.c2\rx +c22r2) 
at 

—f = -gi(an6i +012^2) 
at 

—— = -q2(a2ib1 + a22b2). 
at 

The Cij and a{j are attrition rates that reflect the rate at which one unit of a particular 

weapon destroys units of another. The pk and qt represent an allocation of fire. Specifically, 

we will have pi,p2, q\,qz > 0 with pi + p2 = 1 and qi + q2 = 1. 

In this particular model we are assuming both red weapon types fire at a given blue 

target in the same proportion and likewise for blue. A more realistic model would perhaps 

be db, 
—- = -cnpiirx - cx2pi2r2 
at 

db2 —— = -c2Xp2iri - c22p22r2 
dt 

*i J. k —— = -an^iiOi - ai2qi2b2 
dt 

—— = -a2iq2ibi - a22q22b2 
at 

where pkt > 0, qkt > 0 with plk + p2k = 1 for fc = 1,2 and qlt + q2l = 1 for £ = 1,2. 

In general pi,P2,9i,?2 wm De functions of various parameters. To illustrate the 

method, we select an allocation of fire that assumes we fire at each target in propor- 

tion to its value. Thus if a unit of 61 is twice as valuable as a unit of b2, then 2/3 of red's 

fire will be directed at type bx and 1/3 at type b2. Specifically, we set 

Mi(0) 
Pi = 

P2 = 

hMO) + h2b2(0) 
h2b2(0) 

Mi(0) + M2(0) 

giri(O) 
qi      0iri(O) + flr2r2(O) 

_ g2^(0) 
92 ~ «WO) + g2r2(0) 
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where hi is the "value" of one unit of bi at the current time (which we take as t = 0 for 

simplicity) and h2 is the "value" of one unit of b2. Thus Mi(0) + h2b2(0) is the total 

"value" of blue at the current time.  Similarly gi, g2 are the values for red at the current 

time. 

This may or may not be a "realistic" model of fire allocation. What is important is 

that the fire allocation factors (pk and qe in this case are functions of the unknown values 

and other known quantities (6j(0) and r,(0) in this case). For a discussion of the general 

case, see Section 2.a.v below. 

As with the eigenvalue method, we assume that value is proportional to the rate at 

which a weapon destroys opposing value. For example, 

/ <W0) \ ,       ( 92r2(0) \ 
Xhl = 9l Wrm + g^iO)) au + 92 Uin(0) + ff2r2(0)J °21 

which says that the value of one unit of &i is proportional to the rate at which it destroys 

red value.   Note that the units on the constant of proportionality A are (time)- .   This 

equation can be viewed as being derived from 

which says that the total value of all weapons of type 6a is proportional to the rate at 

which they collectively destroy red value at the current time. 

This leads to the following system of non-linear equations: 

\u   = 
anffiri(°) + a2ig2r2(0) 

1_       <W0) + g2r2(0) 

Xh2 
fli2gin(0) + q225,fr2(0) 

giri(0) + g2r2(0) 

ciih2M0) + c2ih
2

2b2(0) 

or 

91 ~      hihiO) + h2h(0) 
c12h

2M0) + c22h
2

2b2(0) 
9\      hMQ) + WO) 

\ri(0)higi + \r2(0)hig2 - anri(O)^ - a21r2(0)gl = 0 

Ari(0)Mi + Xr2{Q)h2g2 - ai2ri(0)gl - a22r2(0)gl = 0 

Xh(0)higi + Xb2(0)h2gi - ciM0)h2 - c2162(0)^ = 0 

Xbi(0)hig2 + Xb2(0)h2g2 - c126i(0)h? - c22i2(0)^ = 0. 
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We see that for each A, we have a system of four homogeneous quadratic equations in 

four variables h,h2, g\,gi- In general we expect such a system to have no solutions 

other than the trivial one hx = 0, h2 = 0, gi = 0, g2 = 0. However for certain values 

of A (the analogue of an eigenvalue in the linear case) there will be non-trivial solutions. 

The problem is to determine what values of A > 0 cause the associated system to have 

a solution with hY > 0, h2 > 0, gx > 0, g2 > 0. Thus our fire allocation method is a 

non-linear analogue of the eigenvalue method. Note that value is determined only up to 

scale, so that we must normalize the value relative to one type (which then has value 1). 

There are two procedures for solving this problem. The first treats the whole system of 

equations and uses classical elimination theory to compute a polynomial R(\) whose roots 

are the values of A for which the system has a non-trivial solution. The coefficients of R(\) 

are polynomial expressions in atj, cjt, b^O) and rj(0). The specific computational device 

for finding R(\) is known as the Macaulay resultant and it is discussed below. 

A second approach leads to two sets of equations analogous to a simultaneous eigen- 

value problem 

Pi(X,huh2) = Q 

P2(\,huh2) = 0 

Q\(X,g\,92) = o 

Q2(A,0i,#2) = 0 

where the first set of equations Pi = 0, P2 = 0 involves only blue values and A and the 

second set Qi,Q2 involves only red values and A. These equations are quartic, homogeneous 

in hi,h2 or gi,g2 and are derived by substitution. For example, using 

1_    \iri(0)9l + Xr2(Q)g2 

h2 = 
«12^1(0)91+022^2(0)^2 

Ari(0)gi+Ar2(0)fif2 
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and substituting into the equations for gx and g2 yields: 

_ Cll&l(0)^    Ar1(0)gi + Ara(0)g2     )     + C2lM»)y^    Arx(0)gi + Ar2(0)g2     ) 
X91  = ,   /nN /,aiiri(0)g? + »2ira(0)gn    ,   .   /pN /°i2ri(0)g?+g22r2(0)g2

2 \ 
6H°) ^    Ar1(0)3l + Ar2(0)92     ) + °2W \    Ar1(0)9l + Ar2(0)52     j 

Cl2Ol(0)^     Ar1(0)gl + Ar2(0)32     j     + C22&2(
U^     Art (0)gi + Ar2(0)g2     ) 

X92 = ,    ,^  /'aiir1(0)g? + aaira(0)gn        ,    ,m / ai»n (0)g2 + 322r2(0)gn ' 
&l(°) V     Ar1(0)9l + Ar2(0)92     j + WJ V     ArxfO^ + Ar^O),,     j 

Clearing denominators gives 

0 = A2(/i(n(0)flfi + r2(0)</2) [(01161(0)^(0) + ai262(0)ri(0))^2 

.     +(a2i6i(0)r2(0) + a22M0)r2(0))<72
2] 

- cii&i(0)(anr1(0)^1
2 + a21r2(0)^)2 - c2162(0)(ai2ri(0)ff

2 + a22r2(0)fff)2 

0 = A2<72(n(0)<7i + r2(0)g2) [(an6i(0)ri(0) + ai262(0)ri(0))g2 

+(a216i(0)r2(0) + a2262(0)r2(0))<?2] 

- ci26i(0)(anr1(0)g1
2 + a21r2(0)flf|)2 - c2262(0)(ai2ri(0)fif2 + a22r2(0)^)2. 

The right had sides are Qi(\,gi,g2) and Q2(A,5i,fif2) respectively. 

Again, the system 
Pi(A,/*i,/i2) 

P2(A,/ii>2) 

generally has no solutions. However for certain values of A it will. Likewise for 

Q2(A,gi,fl'2) = 0. 

In each case there is a polynomial in A, Rp(X) or -RQ(A), whose roots are those A for which 

that particular system has a non-trivial solution. Optimally, we will find a unique positive 

A, call it Amax, with 

iMAmax) = 0      and      -MAmax) = 0 

which will lead to a unique solution for the weapon values (after normalizing). We cannot 

as yet prove this. 

23 



iii. An Iterative Scheme with Shifting Fires and Changing Values. 

Before giving a specific numerical example and discussing more general fire allocation 

schemes for determining weapon values, we note that the simple method above leads to an 

interesting iterative time-step scheme that links value, attrition, and fire allocation. 

At time tQ with forces &i(t0), 62(<o), n(M> r2(M present in the engagement, we 

calculate the current values Ai(M> MM, 0i(M, 02(M- With these values known we can 

update the attrition for a time step At by setting 

&i(<o + A*) = &i(M + A6i 

etc., where the attrition over the time step is: 

A6' = - (u, J'^illv, rn) (""r'('o) + "»"(''»^ \fci(M&i(M + h2{to)b2{to) J 

etc.   This updates the forces present at time ia  = t0 + At.   We now cycle through the 

process again. With this sort of model, we expect to see values change and fires reallocate 

as losses occur. 

To obtain a time independent value for a unit of say 61, we could average its value 

over time 

hi = —— /        hx{t)dt 
*final       'init Jtlnn 

or 

-I7 f^l(*init) + Äl(*init + At) + • • • + /M(ti„it +(n- l)At) + ^i(<init + nAt)) 
nAt \2 z / 

where nAt = ifinai - t;nit is the duration of the engagement which begins at time tinit and 

ends at time tfinai. Alternatively, we could compute a somewhat different average 

^=ft mi11) rnai b^k^dt 
Ol(l>)(tfinai - tinit) Jflnit 

which measures the average contribution to blue's total value by a single unit of bx at 

the start of the engagement over the duration of the engagement. Weapons with high 

vulnerability will not fare as well as weapons of equal lethality but less vulnerability with 

this measure of value. 
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iv. A Numerical Example of the Procedure for Solving the Simultaneous Sys- 

tem of Non-linear Equations Arising in our Simple Fire Allocation Model. 

Let's take our initial force strength to be 

&!(()) = 100 ri(0) = 150 

with attrition coefficients 

&2(0) = 40 r2(0) = 50 

an = -05 ai2 = .03 

a21 = .02 a22 = .07 

en = .06 ci2 = -04 

c21 = .03 c22 = .08 

so that the attrition model becomes 

^ = _/_100^_\ 

dt \100h, + 40h2 J K       1X       2> 

(.03ri +08.r2) 
db2 (        40/i 

dt \150g1+50g2 

dr2 (        50fif2 

dt \100h1+A0h2 

dr' (      15°91        ^(.0561 + .0362) 

, (.026i + .0762). 
dt \150gi+50g2J v 

Note that the red weapons have the better kill rates and can be expected to have better 

values. Thus gi,g2 should be larger than hi, h2 respectively. 

Our equations for the values are 

7.5<?2 + l.Oo2 

1) \hi = 

2) Xh2 = 

150flfi + 5052 

4.5g2 + 3.5g2
2 

150flfi + 50<72 

6.0/1? + 1.2/i2 

3) Xgi ~ 100Ä! + 40/>2 

4.0ft2+ 3.2fr2 

^ Xg2 ~ 100/n + 40h2 ■ 

After clearing denominators, we are led to a system of four homogeneous quadratic equa- 

tions in four variables h1, h2, g\,g2. We treat A as a coefficient rather than a variable. The 
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Macaulay resultant of this system will be a polynomial in A whose roots are those values 

of A for which the system has a solution. (See Section 2b for details on the Macaulay 

resultant.) 

An alternative approach that is computationally more tractable, is to solve equations 

1) and 2) for hx and h2 and substitute those expressions into 3) and 4). Likewise we can 

solve 3) and 4) for g1 and g2 and substitute into 1) and 2). This leads, after some simple 

algebra, to two systems of two equations each linked by A. Specifically, if we let u = h1/h2 

and v = <7i /g2, we arrive at 

5) 0 = (-286 + 1000A2)u4 + (44000A2)u3 + (-133.6 + 34000A2)u2 

+ (13600A2)w + (-21.04) 

6) 0 = (-218)u4 + (110000A2)u3 + (-154.4 + 44000A2)u2 + (34000A2)u 

+ (-42.32 + 13600A2) 

and 

7) 0 = (-361.8 + 139500A2)t;4 + (45600A2)i;3 + (-127.8 + 36000A2)ü2 

+ (12000A2)u + (-20.7) 

8) 0 = (-289.8>4 + (139500A>3 + (-160.8 + 46500A>2 + (36000A2> 

+ (-43.2 + 12000A2). 

Note that (5)-(8) is very similar to the simultaneous eigenvalue problem that arises in the 

potential/antipotential or eigenvalue method in Section 1. 

Now consider equations (5) and (6). For a fixed value of A we have two polynomials 

in the single variable u. In general they will not have a root in common, but for certain 

A's they will. These values are found by computing the resultant (an 8x8 determinant in 

this case) of the two polynomials (see Section 2b). This resultant (up to a constant factor) 

is: 

0 = 4.13749 - 16328A2 + 2.66084 x 107A4 - 2.22584 x 1010A6 + 9.42028 x 1012A8 

- 1.5669 xl015A10. 

The only positive root is A = .0467053. 
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Similarly taking the resultant of (7) and (8) we get another polynomial in A which 

also has A = .0467053 as a root! Taking this common value of A, we find the common root 

of (5) and (6) to be 

u = hi/h2 = 1-09535 

and the common root of (7) and (8) to be 

v = gi/g2 = 1.05002. 

Normalizing h2 to 1, we get 
^ = 1.09535 

h2 = 1.00000 

gx = 1.20256 

g2 = 1.14534. 

Note that there is error in these computations and that the results are accurate only to 

five significant figures. 

v. General Fire Allocation Methods. 

The simple example presented in section 2.a.ii above can be easily generalized. For 

example, we could consider a more general Lanchester attrition model 

dbi(t) 
= -J2pikCikrk(t) ~ 5^p';/c'tf6,-(t)r/(<)        i = 1,... ,m 

dt 

^M = -JTqjrajMt) - f>>W*)M0      i = i, 
dt 

r=X s=l 

that includes both the square and linear laws (direct and indirect fire). The fire allocation 

factors pik, p'it, qjr, and q'js must satisfy 

n n 

^9i«- + I^9i.- = l    for    * = l,"-,m 
j=X j=l 

and 
m m 

^2pij + ^tij = l   for  i = 1' 
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These factors can be functions of numerous parameters including the kill rates aji: aji, ci3, 

and c'ij, the force levels bi(t0), rj(t0) at the current time t = t0, and other constant factors 

(for example the analogues of the availability factors in ATCAL). Most importantly they 

should involve the unknown weapon values, hi and gjf of the blue weapons of type i and 

the red weapons of type ;', respectively. These values ht,gj, once determined, should be 

interpreted as values at the current time hi(t0), gj(tQ). 

We are assuming here that each weapon type mounts one weapon. If this is not the 

case, then that particular type must appear more than once on the right hand side of our 

attrition equations. Moreover, if a particular weapon is not capable of both direct and 

indirect fire, it would not appear in both places, and the corresponding allocation factors 

would not appear. For example, the system below: 

rlh 
-JT = -PiiaiiH -Pua'uhri - p[2

ai2bir2 
at 
j* 

—2- = -P2ia2iri - p'21a'21b2ri - p'22a'22b2r2 
at 
dr\ ,        .   _    , /    /      , 
—- = -911C11Ö1 - gnCllOi + 9l2c12rlÖ2 
at 

dr2 ,        ~   ~   1    ,    / u 
-—- = -921C21O1 - 921C21O1 + 922c22^2 02 
at 

represents a red type, r2, that mounts a weapon capable of both direct and indirect fire, 

a red type, r2, that mounts an indirect fire weapon, a blue type, 61, that mounts two 

separate direct fire weapons, and a blue type, b2, that is an indirect fire weapon. 

As always, we assume that a weapon's value is proportional to the rate at which it 

destroys opposing value; so that 

i=i i=i 

A/im = ^2qjmajmgj + Y^l'jrna'jm9jrj(to] 
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A#i = ^PiiCiiK + ^p'nc'uhibiito) 
i=l i=l 

This is a system of m + n equations inm + n variables hi,...,hm, g\,... , gn, treating A 

as a parameter in the coefficients. It is non-linear in general, because the expressions for 

qjr, q'js, pik, and p'ie will involve hu ... ,hm, gu ... ,gn. Moreover the equations should be 

homogeneous, since scaling all the values by the same amount should not cause a change 

in the allocation of fire, because the relative values will remain the same. To solve systems 

of this sort see 2b below. Solving the system in this case means finding those A for which 

the system has a non-trivial solution. Again this is done with resultants. 

Fire allocation methods are not limited to use with Lanchester attrition models. Any 

attrition model is a candidate for this method as long as we can link attrition rates, values, 

and allocation of fires as we have done above. 

b. Resultants and Non-linear Equation Solving Techniques 

This section is meant to serve as an introduction to resultants. Simple examples 

are presented which illustrate each technique. The reader should have little difficulty in 

applying the various methods to any particular problem. 

Resultants are used to solve systems of non-linear polynomial equations, to determine 

whether or not solutions exist, or to reduce a given system to one with fewer variables 

and/or fewer equations. 

The typical input will be a system of m equations in n-variables: 

/i(xi,...,xn) = 0 

Jm\x\ i • • • ixn) — "• 

Each equation has an associated degree d{ > 1.  Recall that /;(xi,... ,xn) has degree di 
n 

if all monomials x^ xe
2
2 ...x^n appearing in fi have £ e, < dt and at least one monomial 
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has £ e{ = di. Example: f(x1,x2,x3) = 3xfx3 +4xxx2 -x2 + 7x3-l has degree d = 3. 

The integers m,rc,di,... ,dm are important indicators of the specific resultant that will 

need to be employed. 

We remark that the coefficients of the fc may involve other unknown parameters. For 

example in our discussion of the fire allocation method, we constructed a simple example 

(2.a.ii) that led to a system of four homogeneous quadratic (degree 2) equations in four 

variables <7i,<72> hi,h2 whose coefficients involved a parameter A. 

The typical output of a resultant depends on the number of equations versus the 

number of variables. It is important to note that when all the equations are homogeneous, 

we count the number of variables as being one less than the actual number. In this case 

we are interested in solutions other than the trivial solution (all zeros). There are two 

essentially different cases: 

Case 1: m > n (overdetermined). 

This is the case where we have more equations than unknowns, and where we generally 

expect to have no solutions. The resultant will be a system of equations (one equation 

when m = n + 1) in the symbolic coefficients of the fc, that has the following property: 

when we substitute the specific coefficients of the /;, we will get zero in every equation in 

the resultant system if and only if the original overdetermined system has a solution. 

Case 2: m < n (exact and undetermined). 

In this case the number of equations is less than or equal to the number of variables, 

and we expect to have solutions. In fact, if we allow complex solutions and solutions at 

infinity, we are guaranteed to have solutions. 

Of course, only when m = n do we expect a finite number s of solutions. Bezout's 

Theorem then provides a count of s = d}d2 .. .dm solutions (counting complex solutions, 

solutions at infinity, and counting with appropriate multiplicities). Unfortunately, the 

possibility also exists (even when m = n), that there will be an infinite number of solutions. 

In general, for m < n, the resultant will be one equation in n - m + 1 of the variables. 

In effect, the resultant makes it possible for us to eliminate m - 1 of the variables. For ex- 

ample, if we choose to eliminate xn_m+2, ...,xn, then the resultant R will be a polynomial 

R(xi,..., xn-m+i). If (c*i,..., an_m+1) is a solution to R = 0, then there will exist values 
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an_m+2,...,an such that (au ... ,a„-m+i,a„_m+2,... ,a„) is a solution to the original 

system. (One must be a little careful here. The system should be modified to make it 

homogeneous with respect to xn_m+2, • • •, xn by adding appropriate powers of a variable 

w. The values a„_m+2,..., an should then be regarded as points (an-m+2 : ... : a„ : 1) 

in projective m - 1 space Pm~l. We must allow for the possibility that this point will be 

at infinity, where w = 0. In that case, a solution to R = 0 would not necessarily give rise 

to a solution of the original system. 

Example: Consider the system of m = 2 equations in n = 3 variables: Axyz -1 = 0 and 

y + xz-1 = 0. The resultant eliminating z is R(x,y) = x(4y2-4y + l). When x = 0 we will 

have R = 0, but clearly our system has no solution when x - 0. However, homogenizing 

with respect to z gives the system 

4xyz — w = 0    and    (y — l)u; + xz = 0. 

Now when we look at the condition x = 0 we find that (z,u;) = (1 : 0) is a solution. This 

is a point at infinity. 

Notice that we also have solutions to R = 0 when x / 0 by taking y = f. This 

yields z = j^. Geometrically the solution set is a hyperbola in the plane y = 1/2 in space. 

The resultant "projects" that hyperbola to the line y = 1/2 in the xy-plane, except that 

(x,y) = (0,1/2) is not hit. 
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D 

In this context (the underdetermined case) the resultant can be viewed as a projection 

of the nominally n-m dimensional locus of solutions in R" to an n - m dimensional locus 

(hypersurface) in R"~m+1. Note that in our example n = 3, n = 2, and we are projecting 

the one-dimensional locus of solutions in R3 to a one-dimensional locus in R2 which is 

described by one equation y — 1/2 — 0. 

Our discussion in this section begins with the first major distinction in methods, 

namely the one based on the number of variables n. The case n - 1 of a single variable is 

discussed first). We then move onto the multivariate case n > 2. 

i. Resultants of Polynomials in One Variable 

Given two positive integers r, s > 1 and two polynomials in one variable 

f(x) = arx
r + ■ ■ ■ + axx + a0        g(x) = b3x

s + ■ ■ ■ + bxx + b0 

of degree less than or equal to r and s respectively, we define their resultant Rr,3{f-,g) by 
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Sylvester's formula: 

Är,»(/,ff) = det 

/ao ai ... ar 0 
0 a0 a\ ar 0 

0 0 0 a0 ax 

bo 6i bs-i bs 0 
0 ^0 h bs 

0 

ar 

0 
0 

\ 0      0     ... 0       b0     h     ...    bsJ 

which is the determinant of an r + s by r + s matrix with s rows involving the a's and r 

rows involving the 6's.   (Note that the a's and fe's can be functions of other parameters, 

e.g. A in our fire allocation examples; see page 27 for a case where r = 4, s = 4.) 

For example the resultant of two quadratic equations is: 

R2,2(a2X2 + a-ix + a0, b2x
2 + b\x + b0) = 

a\b\ + a0a2bl - aodib^ + a2
1b0b2 - ^a^oh 

+albl — 2a0a2b0b2. 

Note that each monomial in the resultant has total degree r+s and that it is bihomogeneous 

of bidegree (s, r) in the a's and 6's respectively. 

Basic properties of the resultant Rr,s(f,g)- 

1) Relationship to Common Roots 

Är,j(/, g) = a'bs H(xi ~ Vj) wnere a?i,..., xr are the roots of / and yx,. .., y3 are the 

roots of g. (Here we are assuming ar ^ 0 and b3 ^ 0.) Thus Rr,,(f,g) will be zero 

if and only if / and g have a root in common. When the a's and 6's involve other 

parameters, Rr,3(f,g) will be a function of those parameters. Setting Rr,a(f,g) = ° 

will then tell us which values of the parameters cause / and g to have a root in 

common. 

2) Irreducibility 

Är,*(/, flO € Z[a0,...,ar,60,---A] is irreducible, i.e. the resultant is an irreducible 

polynomial with integer (Z) coefficients in (r + l)(a + l) = rs + s + r + l variables. 

(Here we are treating the coefficients of / and g as symbolically, i.e. as independent 

variables.) 
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3) Symmetry 

4) Factorization 

ii.   Resultant Methods for Systems of Polynomial Equations in Several Vari- 

ables 

The linear algebra techniques discussed in this section can be used to solve systems 

of polynomial equations in several variables. If there are only two equations, then the 

Sylvester technique (discussed above) can be employed, by treating all but one variable as 

part of the coefficients. However, when the number of equations exceeds two, the Sylvester 

approach can be misleading. For example, taking the equations two at a time using the 

Sylvester determinant can lead the user to the conclusion that there is a common solution, 

when in fact, there are no common solutions for the system of equations taken as a whole. 

What it means to "solve" a given set of polynomial equations depends upon the num- 

ber of variables and the number of equations. Assuming the equations are inhomogeneous, 

let "n" be the number of variables and "m" be the number of equations. The expected 

dimensionality of the set of solutions is n - m when viewed over the complex numbers. For 

example, if there are three equations (m = 3) and five variables (n - 5), then the space of 

solutions is expected to have dimension n-m = 5-3 = 2. Geometrically, the solutions 

are surfaces. Sometimes, however, components of excess dimension occur in the space 

of solutions. These are geometric loci of higher dimension than the expected dimension. 

They occur because, in a very loose sense, the equations have certain dependencies. 

Finally a word about homogeneous equations. Recall that a set of polynomial equa- 

tions is considered homogeneous if in each equation, all the terms have the same degree. 

If this is not the case, even for only one of the equations, the set is regarded as inhomoge- 

neous. For systems of homogeneous equations, the number n of variables should be taken 

as one less than the actual number of variables when computing expected dimensions. 

The Macaulay Resultant and the [/-Resultant 

The Macaulay resultant is the ratio of two determinants formed from the coefficients 

of the given polynomials in a manner to be described later in this section. If the number 
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of equations exceeds the number of variables by one (n - m = -1), then the Macaulay 

resultant tests whether or not a common solution exists. (For systems of homogeneous 

equations where the number of equations equals the number of variables, the expected 

dimension is still -1, and the Macaulay resultant tests for a non-trivial common solution, 

i.e. a solution other than (0,..., 0).) 

If there are as many inhomogeneous equations as unknowns (n - m = 0), then the 

equations can often be solved by adding the [/"-equation (explained later in this section) 

to the homogenized set and forming the Macaulay resultant. The Macaulay resultant is 

then called the [/-resultant. 

In some cases, however, there will be an excess component which masks some or all of 

the desired solutions. In this case Canny's Generalized Characteristic Polynomial (GCP) 

approach is useful (see [11]). 

In order to illustrate the various methods, the following system of three polynomial 

equations will be used: 
fx = y - 3x + 5 = 0 

f2 = x2+y2-b = 0 

/3 = y - x3 + Zx2 - Zx + 1 = 0. 

Here we have three inhomogeneous equations in two variables (n — m = 2 — 3 = —1). 

The multiresultant techniques described below can be used to test for the existence of a 

solution. 

Step 1: Homogenization 

The equations must first be homogenized. This is done by adding a third variable, z. 

Specifically x is replaced by x/z and y is replaced by y/z, and the factors of z are cleared 

from the denominators. In the above example this leads to three equations 

ft = y - 3x + 5z = 0 

f2 = x2 + y2 - hz2 = 0 

h = yz2 - x* + 3a;22 - 3xz2 +z$ = °- 

This is the homogenized version of the original system. 
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Step 2: Degree Determination 

Each of the multiresultants being considered involves the coefficients of various monono- 

mials that appear in the equations of the system. The variables involved in the monomials 

are the set of variables that appear in the homogeneous form of the polynomial equations. 

For example, the homogeneous polynomial equations above have the variables x, y, and z. 

All the monomials in a given equation are constrained to have the same degree because 

we have homogenized. The "overall degree" of the system is determined from the degrees 

of the individual homogeneous equations by the following rule: 

m 

d= 1 + ^(^-1) 
i=l 

where 
m = the number of equations 

di = the degree of the "ith" equation. 

For the homogeneous polynomials above (/i,/2, and /3) the degrees are: 

Equation        Degree 

/i <*i = 1 
f2 d2=2 
/3 d3 = 3. 

Therefore, 

d=l + (l-l) + (2-l) + (3-l) = 4. 

(As another example, in our simple fire allocation model we had four homogeneous quadratic 

equations in the weapon values #i,#2, h1,h2 - this yields d = 5.) 

Step 3: Matrix Size Determination 

Each of the multiresultants to be discussed involves the ratio of two determinants. 

The numerator is the determinant of a matrix, the formation of which will be discussed 

in subsequent sections. The denominator determinant is formed from a submatrix of the 

numerator matrix. 

The number of variables in the inhomogeneous equations is n. Since one additional 

variable has to be added to homogenize the equations, the number of variables in the 
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homogeneous equations is n + 1.   The size of the numerator matrix equals the number 

of monomials in the n + 1 variables that have overall degree d (discussed in the previous 

section). 
(n + d 

Numerator Matrix Size = I 

For the three polynomial equations (/1? /2, fz) we have already calculated that d = 4. 

Since the original set of inhomogeneous variables consisted of x and y, n equals 2. Thus 

for our example, 

(2 + 4\       (6\ 6!      _ 
Numerator Matrix Size  = I 1 = 11^ (O\\(A\\ ~ 

i.e. it is a 15 x 15 matrix. (In the fire allocation case mentioned above the numerator size 

would be (®) = 56 which is rather large.) 

Step 4: Determining "Big" vs. "Small" Exponents 

A few of the 15 monomials involving the variables x,y, and z with an overall degree 

of 4, include: 

(i) yz3 

(2) x2y2- 

In the next step, we will discuss whether certain monomials are reduced. This will be 

determined by whether the exponents are "big" or "small". In this step we discuss how 

"bigness" is defined. 

Each variable will be associated with a particular equation. For example the first 

variable, x, will be associated with the first equation, fx. The second variable, y, will 

be associated with the second equation, f2, etc. The degrees of the associated equations 

define "bigness" for the exponents of that variable. Specifically, since dx (the degree of fx) 

is 1, if the exponent of x is greater than or equal to 1, it is considered big. Since d2 = 2, 

whenever the exponent of y is greater than or equal to 2, it is considered big. The degree of 

fz is 3, therefore, whenever the exponent of z is greater than or equal to 3, it is considered 

big. 

For example, consider the monomial numbered (1), namely, yz3. The exponent of y 

is 1. This is less than d2, and is considered small. The exponent of z is 3. This is equal to 
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d3, and is therefore big.  On the other hand, if we consider the monomial numbered (2), 

namely, x2y2. The exponent of x is 2. This is greater than du and is big. The exponent 

of y is 2. This is equal to d2, and is big. 

Step 5: Determining the Reduced Monomials 

If for a particular monomial of degree d the exponent of only one variable is big, the 

monomial is said to be reduced. In the previous step only monomial (1) is reduced. For 

monomial (1) only the exponent of z is big; whereas for (2), both the exponent of x and 

the exponent of y are big. Thus monomial (2) is not reduced. 

The Macaulay Resultant 

The Macaulay Resultant is the ratio of two determinants. The numerator is the deter- 

minant of a matrix which we will call the A matrix. The denominator is the determinant 

of a matrix which we will call the M matrix 

detJA[ 
det|M|' 

Step 6: Creating the A Matrix: 

We have discussed above how the size of the A matrix is determined. In this step we 

will show how the matrix elements are obtained. 

Each row and column of the matrix should be thought of as being labeled by one of 

the monomials of degree d. Recall that for /i, /2, and /3 there were 15 possible monomials 

of degree 4 in x, y, z, and therefore the A matrix would be 15 x 15. 

There are three rules for determining the elements of the A matrix. After presenting 

the rules, the example involving /i,/2, and /3, will be used to illustrate the process. The 

reader may find it helpful to read the example simultaneously with the rules. 

Rules for the elements of each column: 

(1) Search the monomial labeling that column from left to right for the first variable 

with a big exponent. Such a variable must exist. Call it the marker variable. 

(2) Form a new polynomial from the polynomial associated with this marker variable 

by multiplying the associated polynomial by the monomial and dividing by the marker 

variable raised to the degree of the associated polynomial. 
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(3) The coefficients of the new polynomial are the elements of the columns. Each 

coefficients goes in the row labeled by the monomial it multiplies. All the other rows get 

zeroes. 

Recall that for our example system of equations /i, /2, /3 there are 15 monomials of 

degree 4 that can be formed from x, y, and z. Two of these were considered above, namely 

yz3 and x2y2. 

(a) For the column labeled by yz3: 

(1) The first variable with a big exponent is z, so z is the marker variable. 

(2) The polynomial associated with z is /3. Multiply /3 by the monomial yz3, and 

divide this product by z3. 

/»(**') = (y*2 - x3 + Zx2z - 3xz2 + z3)(yz3) = y2^ _ ^ + ^^ _ ^ + ^ 

z3 z3 

(3) The coefficient of y2z2 is +1. Therefore the element of the row labeled y2z2 is 

+1. The coefficient of x3y is -1. Therefore the element of the row labeled x3y is 

-1. The coefficient of x2yz is +3. Therefore the element of the row labeled x2yz 

is +3. The coefficient of xyz2 is -3. Therefore the element of the row labeled 

xyz2 is -3. The coefficient of yz3 is +1. Therefore the element of the row labeled 

yz3 is +1. All other entries in the column are zero. 

(b) For the column labeled by x2y2: 

(1) The first variable with a big exponent is z, so x is the marker variable. 

(2) The polynomial associated with z is fx. Multiply /i by the monomial x2y2, and 

divide this product by z. 

MüVi = to-3» + 5»)(«V) = v _ w + 5xy^ 
x '        z 

(3) The coefficient of xy3 is +1. Therefore the element of the row labeled xy3 is +1. 

The coefficient of x2y2 is -3. Therefore the element of the row labeled x2y2 is 

-3. The coefficient of xy2z is +5. Therefore the element of the row labeled xy2z 

is +5. 
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When all the columns are determined, the A matrix in our example takes the form: 

A MATRIX 

x4 x3 x3 x2 x2 
X2 X X X X 

y y2 y y3 y2 y y4 y3 y2 y 
z g z2 z z2 z3 z -.2 

4, 
„3 z4 

x4 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

x3 
y 1 -3 0 0 0 0 0 0 0 0 0 0 0 -1 0 

x3 z 5 0 -3 0 0 0 0 0 0 0 0 0 0 0 -1 

x2 
y2 0 1 0 -3 0 0 0 0 0 0 0 1 0 0 0 

x2 
y z 0 5 1 0 -3 0 0 0 0 0 0 1 0 3 0 

x2 z2 0 0 5 0 0 -3 0 0 0 0 0 0 1 0 3 

X y3 0 0 0 1 0 0 -3 0 0 0 0 0 0 0 0 

X y2 z 0 0 0 5 1 0 0 -3 0 0 0 0 0 0 0 

X y z2 0 0 0 0 5 1 0 0 -3 0 0 0 0 -3 0 

X z3 0 0 0 0 0 5 0 0 0 -3 0 0 0 0 -3 

y4 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 

y3 z 0 0 0 0 0 0 5 1 0 0 . 0 1 0 0 0 

y2 z2 0 0 0 0 0 0 0 5 1 0 -5 0 1 1 0 

y z3 0 0 0 0 0 0 0 0 5 1 0 -5 0 1 1 

z4 0 0 0 0 0 0 0 0 0 5 0 0 -5 0 1 

The determinant of the above A matrix is zero. If the M matrix is nonzero, this would 

imply that the system has a solution. 

Step 7: Creating the M Matrix: 

The denominator of the Macaulay Resultant is the determinant of the M matrix. The 

M matrix is a submatrix of the A matrix. It consists of the elements which have row and 

column monomial labels which are not reduced. Recall that a monomial is not reduced if 

it has more than one variable with a big exponent. 

The size of the M matrix equals the size of the A matrix minus D, where 

m 

* = EIR 
«=1 ijtj 

In our example, 

D = d2d3 + d,d3 + d,d2 = (2)(3) + (1)(3) + (1)(2) = 11. 
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So that the size of the M matrix is 15 - 11 = 4. The actual M matrix for /i, f2 and /3 is: 

M MATRIX 

x2y2        xy3        xy2z        xz3 

x2y2 -3000 
xy3 1-3 0 0 
xy2z 5 0-30 

0 0 0-3 xz3 

The determinant of this M matrix yields a value of 81. Since the A matrix was zero, 

the Macaulay Resultant is zero which implies that there is a solution to our system. A 

quick plot of the three polynomials (/j, /2, and /3) confirms that there is a common point 

at x = 2 and y = 1. 

Sometimes both the A matrix and the M matrix have zero determinant. This inde- 

terminacy can often be circumvented if the polynomials are first written with symbolic 

coefficients. The determinants of the A and M matrices are then computed, and polyno- 

mial division is performed. At that point the symbolic coefficients are replaced by their 

numerical values to check if the resultant is zero. Since one does not know ahead of 

time whether or not this "division by zero" condition will arise, the symbolic coefficient 

approach is the best strategy. It is also often sufficient to treat just a subset of the co- 

efficients symbolically - sometimes as few as a single symbolic coefficient will remove the 

indeterminacy. 

The {/-Resultant 

For problems with as many inhomogeneous equations as variables, the U resultant can 

often be used to solve for the point solutions. The three polynomial equations /i, /2, fz do 

not satisfy these conditions since there are three equations in two inhomogeneous variables, 

x and y. However, if we take just'the first two equations, namely /i and /2, we would have 

a system with as many equations as variables. 

The given equations must first be homogenized. This adds one additional variable. We 

then add one additional equation to the system. This equation is called the {/-equation. 

If x and y are the given variables and z is the homogenizing variable, then the U equation 
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takes the form: 

u\x + u2y + u3z = 0. 

The Macaulay Resultant, R, is then computed for these m +1 equations, treating the 

Ui as symbolic coefficients. The result is called the [/-resultant. Notice that R will be a 

polynomial in the tt.-'s and the coefficients of the original equations. 

After R is determined, it is then factored into linear factors. For each linear factor 

there is a point solution of the original system of equations. The coordinates of each 

solution are determined as ratios of the coefficients of the it's. The denominator is always 

the coefficient of the U{ associated with the homogenizing variable. In our example, this is 

the coefficient of «3. Thus 

coeff. of u\ coeff. ofu2 
x =  :=—:    y 

coeff. of u3 coeff. of U3 

For example, if a linear factor turned out to be 

u\ — u2 — U3, 

then the coordinates of the associated solution would be 

+ 1 1 _1 -LI x = — = -1       y = — = +1. 

As mentioned above, we can use the [/"-resultant to solve fx and f2 for x and y (n-m = 

0). In this example, we will also demonstrate the symbolic approach alluded to in the 

previous section. Recall that the homogenized form of /1 and f2 is: 

/2 = y - 3x + bz = 0 

h = x1 + y2 - 5z2 = 0. 

Rewriting these two equations with symbolic coefficients and including the [/-equation 

yields: 
fi = aix + hy + ciz = 0 

f2 = a2x
2 + b2y

2 + c2z
2 = 0 

U = u\x + u2y + U3Z = 0 
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where, ax = -3; bx = 1; Q = 5; a2 = l;h = 1; c2 = -5. 

The {/-resultant is calculated in the same way as the Macaulay resultant, i.e. with the 

A matrix and the M matrix, except now we are using symbolic coefficients. 

A MATRIX 

x2 xy xz y2 yz z2 

x2 
a\ 0 0 0-2 0 0 

xy h a\ 0 0 «l 0 

xz C\ 0 ai 0 0 Ul 

y2 0 h 0 h u2 0 

yz 0 C\ h 0 «3 «2 

z2 0 0 C\ C2 0 "3 

The corresponding M matrix is a single element, namely a\. 

The determinant of M is divided into the determinant of A to obtain the {/-resultant. 

Finally, the symbolic coefficients are replaced by their numeric equivalents. (This could 

have been done from the outset, unless ai had been zero.) The result is 

10(ui - 2u2 + u3)(2ui + u2 + u3). 

This yields two solutions: 

Solution #1: 

coeff. of ui       +1 , , coeff. of u2 _ -2 
x = = +1    and    V = -__g' ^r ..    = TT = _2- coeff. of u3       -1 coeff. of u3       +1 

Solution #2: 

coeff. of ui       +2 , coeff. of u2       +1       . . 
a; = —; = —r = +2    and    y =  —— = —r = +1- 

coeff. of u3       +1 coeff- of "3       +1 

We remark that the {/-resultant will be identically zero and give no information if the set 

of common solutions contains a component of excess dimension one or more.  Moreover, 

this component may be at infinity where the homogenizing variable is zero. 

The GCP Approach 

The Generalized Characteristic Polynomial (GCP) approach avoids the problem of 

components of excess dimension in the space of solutions. It can be used together with 

the {/-resultant which was discussed above.  If the {/-resultant leads to an indeterminant 
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(0/0) form even when symbolic coefficients are used, an "excess" solution exists. The GCP 

takes the form 

R —  ! L   evaluated at s = 0 (after division) 
det \M - sl\ 

where A and M are the matrices defined above, s is a perturbation parameter, and I is 

the identity matrix. 

One way to carry out the above operation is the following: 

(1) Set up the A matrix (as described above). Subtract an s along the diagonal. 

Evaluate the determinant. Retain the coefficient of the lowest surviving power of 

s. 

(2) Repeat (1) for the M matrix. 

(3) Divide the result of (1) by the result of (2). 

All of these multiresultant techniques have one thing in common. They require that 

there be one more equation than variable, n - m = -1. If there are as many equations 

as variables n - m = 0, then the U equation is added and the effective situation is again 

n - m = — 1. If there are more variables than equations (n - m is a positive integer), 

then enough of these variables must be regarded as parameters in the coefficients, so that 

effectively n - m = -1. Geometrically this amounts to projecting the locus of solutions to 

a hypersurface in a lower dimensional Euclidean space. Finally, if the number of equations 

exceeds the number of variables by more than one (n - m < -2), then some technique 

other than the above Macaulay resultant (e.g. a systems of resultants) must be employed 

to determine if a solution exists. 

c. Similarities with and Differences from other Methods. 

The fire allocation method is by far the most general method we discuss in this paper. 

It couples fire allocation, attrition or kill rates, and weapon values in a natural way, and 

leads to a system of non-linear equations in the weapon values and the proportionality 

constant A which has units of (time)-1. 

This system can in turn be written as two systems of non-linear equations - one for 

the blue values and one for the red values - linked by the common "eigenvalue" A2. The 
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similarity of this result with the simultaneous eigenvalue problem arising in the eigenvalue 

or potential/antipotential method is quite striking. Unfortunately, we have not yet been 

able to prove an existence or uniqueness result for these non-linear systems. In the poten- 

tial/antipotential case, the existence and uniqueness is assured under some mild hypothe- 

ses. We have however done some numerical experiments that have led us to conjecture 

that these non-linear systems do indeed have solutions and that they are unique. 

The major drawback with the fire allocation models discussed above is that solving 

coupled system of non-linear equations is not an easy task. The resultant methods we 

suggest grow exponentially in size with the number of weapon types. Dealing with 50 plus 

types per side would require very large computations. Perhaps some blend of symbolic 

and numeric techniques could be employed to make such a computation. Canny [11] has 

successfully explored such an approach in computing very large resultants. 

Another drawback is that the pure kill rates (the aji and Cij that appear in our 

example) need to be known in advance. The best approach here is to make use of the 

results of a high resolution low level simulation (e.g. COSAGE) where fire allocation can 

be more or less determined, so that along with the killer-victim scoreboards, the pure 

attrition coefficients can be estimated. 

Finally, on the positive side, we believe that the iterative scheme we have outlined 

for coupling attrition, fire allocation, and weapon values is potentially quite useful. It 

certainly warrants further investigation. 
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3. Weapon Importances in ATCAL 

a. The Methods 

ATCAL is a calibrated attrition model used to determine attrition in a theater level 

simulation called CEM at the U.S. Army Concepts Analysis Agency. Certain parameters 

are determined (calibrated) using the results of a high resolution, low level (division level 

for example) simulation called COSAGE. Multiple COSAGE runs are done with a mix of 

all the weapons systems available in order to capture all possible interactions. 

ATCAL weapons importances are calculated from entries in the killer-victim score- 

board. Let 

(AM,-), (ANi)j 
a- = U^r   and  6

" 
=
 ^XT 

for 1 < i < n and 1 < j < m. Here (AMj)i is the number of type j killed by opposing 

type i during the engagement, AT is the length of the engagement, and Mj is the initial 

number of type j present at the beginning of the engagement. Thus atj is the fraction of 

type j killed by opposing type i per unit time. Likewise bji is the fraction of type i killed 
n 

by opposing type j per unit time. Note that £ akj equals the fraction of j killed per unit 
fc=i 

m 
time and J^ bsi equals the fraction of i killed per unit time. 

3 = 1 

The weapon importances Xi, i = 1,..., n and Yj, j = 1,..., m are defined by: 

m    IVY* 
X3 = £j£a2_y.   for   ,- = !,...,„ 

j=i Y, o,kj 
jb=i 

Yf = j^^pLxt    for    i = l,...,m 

s=l 

Xt >o 

v   ^i>0. 

Notice that Xi = 0 for all i and Fj = 0 for all j is a solution to the above system of 

equations. Clearly we want a non-trivial solution where not all these values are zero. Note 

also the Xi is the total importance of all weapons of that type as is Yj. 
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In this system of non-linear equations the quantity 

bji     _ (AJVQj 

L b*i 
s=l 

is the fraction of all kills of i that were caused by j. Likewise 

ajj     _ (AMj)j 

E akj 
fc=l 

is the fraction of all kills of j that were due to i. 

We will discuss the motivations advanced for these equations in section 3c. For now 

we content ourselves with showing one important property exhibited by this formulation 

of weapon importances, namely the so-called divisibility property. It says that if we divide 

a type into two types the total importance assigned to them does not change. 

To prove this, suppose we divide N{ for type i = 1 into N[ + N[' = Nx and apportion 

losses and kills accordingly: 
N[ N[' 

r 

KAM,-)! _ 

MjAT 

a"j = (1 ~ r)a'\j 

1-r 

fli; =  M.AT =ra^ 

r(AiV1)J- 

^ - (riVOAT " b]1 

b"jl=bjl. 

Our new set of importance equations are 

J=l   E akj J=1   E akj 
fe=l fc=l 

m     (a" \3 m     (n     \3 ~ 

i=1  E akj i=l E akj 
fc=i fc=i 

Xf=Y,^U]-^        i = 2,...,n. 
J=1   E akj 

fc=l 
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(Note: a'ij + a'{j + a2j + ■ • • + anj = axi + ■ ■ ■ + anj.) 

Y}~^-Xi + ^-X; + ±^-X{    i = l,...,m. 
E i-'.i       E %       »* E *.i 
j=\ 3=1 3=1 

(Note: (jkii = m^ = S^L.) 
5>.i      £*'A      Eft- 

Now if (Xi,!.., Xn, Fi,..., Ym) solves the original system then 

(Jf^X{',X2,...,Xn,y1,...,ym) = (rX1,(l-r)X1,X2,...,Xn,y1,...,Ym) 

solves .the new system.  Conversely, if (Xj, X'{, X2,..., Ym) satisfies the new system then 

—L = ^—*- and r 1 — r 

(X'     ~ ~ 
(X\,X2, ■ ■ ■ ,Ym) =    —,X2,... ,Y„ 

V r 

satisfies the original equations. In particular 

X[        X[' x, 
r 1 — r 

so that 

X[+X'{ = rX1 + {l-r)X1=Xl. 

This means that the total value of the prime and double prime weapon types equals the 

original total value Xx for type i = 1. This proves the desired divisibility property. 

Notice that there is nothing sacred in this proof about using cubes.   Any power a 

works as long as the exponents match 

X« = £ lHally,.   for   i = l,...,n 

J = l   YJ akj 
fc=l 

*7 = E%^*.    for   3=h...,™. 
«=i £ bsi 

3=1 

This makes the choice of cubes seem somewhat arbitrary. We remark that the existence 

and uniqueness proof below for a = 3 will also work for arbitrary a. 
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b. Existence and Uniqueness of Solutions to the ATCAL Weapon Importance 

Equations. 

ATCAL has been criticized on a number of counts (see Anderson [56]), including the 

lack of any proof that its weapon importance equations always have a solution and that 

such a solution is unique. In this section we provide that proof. While this is largely a 

mathematical exercise, the proof yields two important insights. The first is an efficient 

algorithm, based on an iterative fixed point method, for computing the importances, and 

the second is the observation that there is a striking similarity between this proof and the 

fixed point proof of the Perron-Frobenius Theorem (see §lc) which is the key result in es- 

tablishing existence and uniqueness for the so-called eigenvalue or potential/antipotential 

method of computing weapon scores. This observation leads to speculation that the eigen- 

value scores and the ATCAL importances will suffer from similar defects. 

We must establish our existence and uniqueness result for a system of polynomial 

equations of the form: 

n 

(1) X?=Y,biiXi        » = !,•••,« 

:   J  G 
X 7 

RnQ _ ^o,..., 0)T}, that is, a solution with all xt > 0 but not all xt = 0. Let 

9: R^o " {(0, • • •, 0)T} —> R|o - {(0, • • •, 0)T} 

be the mapping which sends x = I    ':       to 8( x) =        : 

\xn/ \Xn 
In order to show uniqueness, we must make one assumption. Namely, we assume 

that the null space of the matrix B = (bij) intersects the positive orthant R>0 only in 

the zero vector (0,...,0)T. This means that Bx G R>0 - {(0,...,0)r} for every x G 

R£o _ {(0, ...,0)T} and is a very mild assumption given that all the entries of B are 

non-negative. 
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Now consider the standard (n - l)-simplex A"   1 = {(xu.. .,xn)T G R>0 such that 

jr Xi = 1, and Xi > 0 all t = 1,..., n] in R£0 and the map 
2=1 

A"-l    y   A""1 

^1    . 
9(Bx) 

X   =   " 

,x 
a(6(Bx)) 

n 

n 

where a: Rn -» R sends (xa,..., xn)T to £ *i- BY the Brouwer fixed point theorem, there 
i=i 

is a vector 
wi 

€ A wo 

\wn 

with __ 
6{Bw0) 

WQ  =    — ■ 
a(8(Bw0)) 

Setting x = a(9(Bw0)), we have 

Xw0 = 9(Bw0) 

for a value x > 0- Equivalently, 

n-1 

X 

wl \ /wi 
3 I    •    ' -B 

•3  ' \wT 

This is almost, but not quite, a solution to (1). If we scale w0 by A, we observe that 

f(Xw1f\ /u;?\ (wx 

X3 ; =X3A3      :       =A3B      : 

(Xwi 

: 

Aiun, 

If we now pick A = yx3, then 

v0 = I   l   ] = (     i     I = Aw0 

,»„/       \\wn. 
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solves (1), i.e 

B 

v\\ /vi 

vll \Vr, 

This establishes the existence of a non-negative, not identically zero solution to (1). 

We now turn to uniqueness. By the argument above we know that 

n 

Xf =J^bljXj    bij>0    i = l,...,n 
i=i 

has at least one solution (under a mild hypothesis on B = (&ij)), call it 

\Vn. 

We will assume all ut- > 0.   (For example one can throw out all weapons with zero value 

and the corresponding equations.) 

Now set Yi = ^j- to get a new system of equations 

n 

(2) i? = £*;*; 

n 
where c{j = ^- > 0 and £ ctj = 1 for all t = 1,..., n. This new system has      :      as a 

W 
solution. 

Suppose there is another solution to (2) 

/ 

y = 

2/1 

y. > o 

with some t/i > 1. Let i0 be the index for which yio is a maximum. We have 

n 

= £c»oi(yj -yto)> 

51 



but yfo - y,0 > 0 while cioj(yj - yio) < 0. This yields a contradiction. Thus if 

V =      : 

\yn 

is another solution, then all y; are less than or equal to one and at least one y, is less than 

one. (We continue to assume all y; > 0.) 

Let i0 be the index for which yio is a minimum. Then 

n 
yio-yio=J2cioj(yio-yj) 

n 
but yio - y-0 > 0 while J2 CiojiVio ~ ?/j) < °-        D 

We caution that this "proof of uniqueness is, strictly speaking, incomplete. What 

we have shown is that we can't have two different solutions with all weapon importances 

being positive. But we can't rule out multiple solutions when some yi are zero. 

This problem with uniqueness breaking down is virtually identical to what happens 

in the eigenvalue method when multiple solutions occur. Moreover, our existence proof 

is virtually identical to the existence proof for the eigenvalue method given in Section 1. 

One is tempted to conclude that both the eigenvalue method and the ATCAL method will 

exhibit, at least qualitatively, similar behaviour. In particular both methods will suffer 

from similar defects in degenerate cases, and any criticism of the eigenvalue method is 

likely to apply equally to the method in ATCAL. 

Finally the existence proof above provides a very stable iterative algorithm for solving 

the importance equations. Specifically, compute the (i + l)st iterate by 

- 6(Bxi) 
v     Xi+l 

o{6(Bxi)) 

starting with x0 = (^,..., £) say. Once the fixed point is found, we scale as indicated in 

the proof to get a solution. 

c. Problems and Similarity with the Eigenvalue Method. 
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The ATCAL weapon importance equations have a somewhat ad hoc feel to them. We 

were not able to find any derivation of them from first principles, as we can for the other 

methods. Moreover, as indicated in 3a, the cubic exponent is not the only exponent that 

will produce a satisfactory notion of value. 

On the positive side, the importance equations reduce to the eigenvalue method when 

there is only one weapon per side: 

Xx = a12X2 

X2  
= a21-^l 

where a12 = §*$■ = $& and a^ = lW  = Ä are the fractional amounts killed 

per unit time. The solution to these equations is 

A. 1 — a12 a21 

Y l/4
n 3/4 

-A-2 — "12   a21   • 

Thus the value of a single unit of type 1 is Vx = Xi/Ni and of type 2 is V2 = X2/N2. 

Normalizing V\ to 1 gives 
V1_X1   Ni_ = Nj_   /ö^T 

Vl ~ N2 ' Xi      N2 V a12" 

Conversely the eigenvalue method for two weapons, one Red and one Blue, gives 

,      (AR)B       AÄ 
CBxVB = kVR k = ß  Ay = -j^ 

CRxVR = £VR 0 = (AB)fi = _^L 
R•AT      RAT 

where CB = CR = >A and where we normalize VB to 1.  The simultaneous eigenvalue 

equations are 
XVB = kl VB 

XV R = U VR 

and we see that A = kt = üRBO-BR where 

AB AR 
O.RB —   -r, Arr 

aBR 

We thus also get 

BAT °n     RAT 

VR^±=    ft      B   ft™ 
k        V k      R\ aBR 
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which is the same as ATCAL gave above (with indices 1 and 2 instead of B and R). 

One odd feature of the ATCAL importances is that they depend on the units of 

time used. The unit of importance is (time)-1 which is an intensity (by analogy with 

Lanchester and/or the eigenvalue method). However, for relative importances this effect 

cancels out. Moreover there is a certain logical inconsistency, in that the ATCAL attrition 

model assumes exponential averaging, i.e. that attrition follows an exponentially decaying 

curve over time, while the importance equation are based on constant fractional loss per 

unit time. Why not incorporate the exponential decay into the model? In fact, one could 

compute fractional losses as a function of time using COSAGE data. This would give time 

dependent importances which could be integrated over the duration of the engagement to 

give dimensionless numbers for weapon values. 

One possible derivation of the ATCAL importance equations is given below, but it is 

only heuristic, and is based on very poor assumptions about times to completion of various 

interactions. Recall that in the eigenvalue method: 
n 

CB xVB{ = J2KiJVRJ 
3 = 1 

m 

CRxVRj = ^LjiVBi 

i=l 

where CB = CR = y/\ = I (intensity). In other words, a weapon's value is proportional 

to the rate at which it destroys opposing value (at a given instant in time). This leads to 

CB x VBt x Bt = £ ^f^ x VRi x R} 

j=\ 3 

or 

CB x TVBi = J2 {4^T X TVR>        etCl 
3 = 1       3 

where TVs,, is the total value of Blue weapon's of type i, etc. This yields: 

TVBi=±aljTVRi^ 

and 
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where the units on a,j and bji are (time)-1 and the units on CB = CR = \/\ = I are also 

(time)"1. Now regard TVBi = J*T XBidt = XBiAT where XB> is the total value added 

to type Bi per unit time. Here we assume that XBi is constant over a short time interval 

AT. Note XBi has units (time)-1. 

The short time rate of contribution to value in the engagement, i.e. importance, is then 

proportional to the rate of contribution to opposing total value that the weapon eliminates: 

XBi =Y/alJXRj (CB)- 

Now relax assumption that CB is constant, making it dependent on the i,j pair. This 

is a kind of disaggregation into separate interactions! Set "CBij" = ^/XBi XRj which has 

units = (time)-1, and view "CBif as a time constant for the i,j interaction. If we then 

set fij equal to the fractional involvement of £, in kills of Rj, i.e. fa = AR
!. ', and if we 

replace 

with 
CB ^/XBiXRj 

and reaggregate with a weighted sum of squares, then 

xBi = JYäa}ixjtifalxBixRi 

or XB. = ^2,a]jfijXRj. 
i 

These are exactly the ATCAL equations! 

The assumption that y/XBiXRj is a time constant - in particular that /X^XR 
is 

some kind of time to completion of the i, j-interaction is a weak one. For example, in a 

simple Lanchester model: 

dBx[t) 

dt, 
dRi(t) 

= -LnRi(t)       Ln > 0 

= -KlxBx{t)       Kn > 0 
dt 

where at * = 0, #i(0) > 0 and R^O) > 0, and at t = tf, B^tj) > 0 and R^tf) > 0 with 

tf is being duration of combat, we would have the intensity / = y/KnLn being the 

"time constant" with units = (time)' \-i 

55 



Computations yield a time to completion of 

sinh -l (y/^lV^-bl 
a0 + bo 

where 

are the fractions remaining at end of engagement. In short the time to completion is not 

l 
r 

In addition, we recall that the eigenvalue method depends on constant kill rates to 

get non-time dependent values. Thus if our attrition model is not of Lanchester type: 

— = MX        M constant 
dt 

the values should either be time varying or thought of as instantaneous. On the other 

hand, ATCAL postulates the attrition as a function of time via its exponential averaging 

assumption, given initial and (derived) final forces. COSAGE does even better, giving 

actual time dependent loss data. This allows for the possibility of better (time dependent) 

values and (time dependent) shifting of of fires, and would move the ATCAL importances 

closer to our Fire Allocation Methods, which do exhibit shifting allocations of fire and 

changing values over time. As it stands, ATCAL gives no time dependent information; 

it is a static model giving the endpoint as a function of the initial point. In fact, AT- 

CAL postulates an exponential attrition path between the initial and final points, while 

Lanchester postulates a quadratic attrition path. 

Finally one can consider some extreme cases. For example, if we cause Blue weapons 

to kill twice as many Red in time AT then the ratio of importance doesn't double. ATCAL 

gives y/2 as the relative factor. Another such case to consider is when many Blue types 

oppose one Red type: 

Xu...,Xn    Blue X0    Red 
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Set c = 23 ako, then the ATCAL importances become: 
fc=i 

3/8 

QjQ    -^1/3 

rc 

Now letting fio equal the fractional involvement of Xi in the kills of X0, so that fl0 = ^ 

we get a relative value 
Xi v-2/3   2/3f 
— = X0   ' c < fro 

which strangely depends on XQ. 
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§4. Numerical Comparisons and Sensitivity - Results of Some Simple Numer- 

ical Experiments. 

We conducted a large number of simple numerical experiments for each of the three 

weapon scoring methods discussed above. Our purposes were two-fold. First, we wanted 

to examine how each method responded to various changes in its inputs. This led us 

to compute the amounts of change, certain numerical derivates, and the distributions 

obtained by treating various inputs as random variables. Our objective was to determine 

if the models responded in reasonable and consistent ways. Second, to the extent possible, 

we sought comparisons across methods that would allow us to evaluate the relative merits 

of each method. 

On the whole, the results offered no surprises; and while the methods produced dif- 

ferent values for various weapon systems, the results were usually qualitatively the same 

for all three methods. For that reason, we shall describe below only a small portion of the 

number of runs actually done. This sample is a good representative cross-section of the 

entire body of results. 

Eigenvalue or Potential/Antipotential Method. 

Following our notation in section one, we take as initial forces: 

and attrition rates: 
'.1 .05 

K = I  .075 .1 
.025 .025 

.075 .05    .01 
L = I .025 .1      .03 

.01 .01    .04 

Recall that Kij is the rate at which one Blue weapon of type i (i = 1,2, or 3) kills Red 

weapons of type j (j = 1,2, or 3) and that Lji is the rate at which a unit of Red j kills 

Blue i. 
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The eigenvalue method gives values: 

1.0 
1.25447 
.480896 ( 

.950282 \ 
1.09924 
.278556/ 

so that the total Blue value is 87.3208 and the total Red value is 144.569. This makes for 

a Red to Blue force ratio of 1.6556 to 1. Note that VBX has been normalized to be 1. Also 

the common eigenvalue A is .022497 and the intensity I = y/\ = .14999. 

Our first numerical experiment involved computing the numerical partial derivatives 

of the values, the eigenvalue, and the intensity as functions of Kij and L]Z. The results for 

Zu, Li2, Li3, L21 and L31 are shown below. 

deriv[K,L,NB,NR,{l,l}]//Timing 

Approximate Numerical Derivatives   (5 point) 
lambda:   0.0723231 
Sqrt[lambda]:   0.241093 
VB[2]:   -2.4844 
VB[3]:   -1.13314 
VR[1]:   4.2359 
VR[2]:   -3.64993 
VR[3]:   -0.915579 
B:   -76.6228 
R:   259.281 
step=0.00001 

{0.77 Second,   Null} 

deriv[K,L,NB,NR,{l,2}]//Timing 

Approximate Numerical Derivatives   (5 point) 
lambda:   0.0907275 
Sqrt[lambda]:   0.302445 
VB[2] -3.11662 
VB[3] -1.4215 
VR[1] 5.31383 
VR[2] -4.57875 
VR[3] -1.14857 
B:   -9( 5.1214 
R:   325 5.261 
step=( 5.00001 

{0.66 Second,  Null} 
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deriv[K,L,NB,NR,{l,3}]//Timing 

Approximate Numerical Derivatives   (5 point) 
lambda:   0.0347799 
Sqrt[lambda]:   0.115941 
VB[2]:   -1.19474 
VB[3]:   -0.544925 
VR[1]:   2.03703 
VR[2]:   -1.75524 
VR[3]:   -0.440299 
B:   -36.8476 
R:   124.687 
step=l.   10"6 

{0.77 Second,   Null} 

deriv[K,L,NB,NR,{2,l}]//Timing 

Approximate Numerical Derivatives   (5 point) 
lambda:   0.0677829 
Sqrt[lambda]:   0.225958 
VB[2]:   1.77313 
VB[3]:   0.0206782 
VR[1]:   -0.839129 
VR[2]:   6.19742 
VR[3]:   -0.295911 
B:   42.8652 
R:   158.066 
step=0.00001 

{0.71 Second, Null} 

deriv[K,L,NB,NR,{3,l}]//Timmg 

Approximate  Numerical Derivatives   (5 point) 
lambda:   0.0242435 
Sqrt[lambda]:   0.0808172 
VB[2]:   1.47834 
VB[3]:   3.78407 
VR[1]:   0.233072 
VR[2]:   1.1502 
VR[3]:   7.62474 
B:   92.2411 
R:   221.81 
step=l.     10~6 

{0.65  Second,   Null} 

For example increasing L12'amounts to making Red 1 more effective against Blue 

2. As a result the value of Red 1, VRU increases, as does the eigenvalue A, the intensity 

I = A/A, and the total Red value. All other values, including the total Blue value, decrease. 

At first this might seem odd, but the reader is urged to keep in mind that these values 

are relative values (relative to Bj), not absolute values, and this complicates the situation. 
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Recall also that L12 = .05 so that a 10% increase in effectiveness of Red 1 against Blue 2 

amounts to an increase of .005 in L12. This decreases the value of a unit of Blue 2 relative 

to a unit of Blue 1 by 3.11662 times .005 or .0155831. This is a relatively small change. 

Next, we did a direct check on the numerical derivative by altering (increasing) the 

Kij and Lj{ entries by 1%, 5% and 10% and recomputing all quantities. Sample results 

appear below: 

compentry[K,L,NB,NR,{l,l,}] 

Actual +1% +5% +10% 

lambda 0.022497 0.022551 0.02277 0.023045 

VB[2] 1.2545 1.2526 1.2453 1.2363 

VB[3] 0.4809 0.48005 0.4767 0.47262 

VR[1] 0.95028 0.95346 0.9661 0.9818 

VR[2] 1.0992 1.0965 1.0857 1.0725 

VR[3] 0.27856 0.27787 0.27516 0.27185 

B 87.321 87.264 87.037 86.761 

R 144.57 144.76 145.54 146.52 

compentry[K,L,NB,NR,{l,2}] 

Actual +1% +5% +10% 

lambda 0.022497 0.022542 0.022723 0.022949 

VB[2] 1.2545 1.2529 1.2468 1.2394 

VB[3] 0.4809 0.48019 0.4774 0.47403 

VR[1] 0.95028 0.95293 0.96344 0.97636 

VR[2] 1.0992 1.097 1.088 1.0771 

VR[3] 0.27856 0.27798 0.27573 0.27299 

B 87.321 87.273 87.085 86.856 

R 144.57 144.73 * 145.38 146.18 

61 



compentry[K,L,NB,NR,{2,2}] 

Actual +1% +5% 

lambda       0.022497 0.022582 0.022924 

VB[2] 1.2545 1.2567 1.2655 

VB[3] 0.4809 0.48092 0.48103 

VR[1] 0.95028 0.94923 0.94504 

VR[2] 1.0992 1.107 1.138 

VR[3] 0.27856 0.27819 0.27671 

B 87.321 87.374 87.587 

R 144.57 144.77 145.56 

comprow[K,L,NB,NR,l] 

Actual +1% +5% 

lambda        0.022497 0.0226 0.023014 

VB[2] 1.2545 1.251 1.2373 

VB[3] 0.4809 0.47929 0.47307 

VR[1] 0.95028 0.9563 0.98005 

VR[2] 1.0992 1.0941 1.074 

VR[3] 0.27856 0.27726 0.27222 

B 87.321 87.212 86.792 

R 144.57 144.94 146.41 

compcol[K,L,NB,NR,l] 

Actual +1% +5% 

lambda       0.022497 0.022571        0.022866 

VB[2] 1.2545 1.2532 1.2482 

VB[3] 0.4809 0.48043 0.47861 

VR[1] 0.95028 0.95327^        0.96516 

VR[2] 1.0992 1.0982 1.094 

VR[3] 0.27856 0.27856 0.27859 

B 87.321 87.283 87.137 

R 144.57 144.82 145.85 

+10% 

0.023353 

1.2762 

0.48116 

0.93983 

1.1767 

0.27489 

87.847 

146.55 

+ 10% 

0.023534 

1.2212 

0.46572 

1.009 

1.0501 

0.26623 

86.295 

148.23 

+10% 

0.023238 

1.2422 

0.4764 

0.97989 

1.089 

0.27865 

86.959 

147.12 
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Note that comprow[K,L,NB,NR,l] changes row 1 of L increasing Ln, £12, £13 all by 

the same percentage. This corresponds to making Red 1 more effective against all Blue 

types. Similarly compcol[K,L,NB,NR,l] changes column 1 of I increasing Ln, L21, Z,31; 

in effect making all Red weapons more effective against Blue 1. 

Finally, we treated various entries Kij and Lji as random variables. Besides varying 

them one at a time, we varied whole columns and rows of K and L by varying the entries 

both independently and together (correlated). We also treated the entire matrix K and 

L as random.   We used both normal distributions and beta distributions to model the 

stochastic behavior. 

Typical results are shown below. In this first example Ln is treated as a random 

variable subject to a normal distribution with mean .075 (the original value of Ln) and 

standard deviation equal to 5% of the mean value, i.e. .00375. The program did 1500 

draws from this distribution and calculated the distributions for the Red and Blue values. 

normentry[K,L,NB,NR,1500,.05,{l,l}]//Timing 

Lambda:   0.022497 
Mean:   0.0225001 
Median:   0.0225026 
Variance:   7.07888  10"8 

Standard Deviation:   0.000266062 
Range:   0.00163993 
Minimum:   0.0216807 
Maximum:   0.0233206 

Sqrt[Lambda] :   0.14999 
Mean:   0.149998 
Median:   0.150009 
Variance:   7.86735  10"' 
Standard Deviation:   0.000886981 
Range:   0.00546728 
Minimum:   0.147244 
Maximum:   0.152711 

VB[2]:   1.25447 
Mean:   1.25453 
Median:   1.25428 
Variance:   0.0000837406 
Standard Deviation:   0.00915099 
Range:   0.0564821 
Minimum:   1.22768 
Maximum:   1.28417 
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VB[3]: 0.480896 
Mean: 0.480924 
Median: 0.480809 
Variance: 0.0000174203 
Standard Deviation: 0.00417377 
Range: 0.0257613 
Minimum: 0.468676 
Maximum: 0.494437 

VR[1]: 1. 
Mean: 0.950323 
Median: 0.950607 
Variance: 0.000243054 
Standard Deviation: 0.0155902 
Range: 0.0961508 
Minimum: 0.901104 
Maximum: 0.997255 

VR[2]: 1.25447 
Mean: 1.09931 
Median: 1.09896 
Variance: 0.00018069 
Standard Deviation: 0.0134421 
Range: 0.0829561 
Minimum: 1.05971 
Maximum: 1.14266 

VR[3]: 0.480896 
Mean: 0.278573 
Median: 0.278486 
Variance: 0.0000113697 
Standard Deviation: 0.0033719 
Range: 0.020809 
Minimum: 0.268638 
Maximum: 0.289447 

B: 87.3208 
Mean: 87.3227 
Median: 87.3149 
Variance: 0.0796539 
Standard Deviation: 0.28223 
Range: 1.74199 
Minimum: 86.4946 
Maximum: 88.2366 

R: 144.569 
Mean: 144.576 
Median: 144.589 
Variance: 0.910026 
Standard Deviation: 0.953953 
Range: 5.88066 
Minimum: 141.606 
Maximum: 147.487 
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0 . 0211)5 OZß 022250225022D5 023 02325 

Sqrt[Lambda]   Distribution 

0.1480.149 0.15 0.1510.152 
VB[2]   Distribution 

1.23   1.24   1.25  1.26   1.27   1. 
VB[3]   Distribution 

28 

0.47 0.475 0.48 0.485 0.49 

VR[1] Distribution 

0.9  0.92 0.94 0.96 0.9£ 
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VR[2] Distribution 

1.06  1.08   1.1   1.12  1.14 

VR[3] Distribution 

0.27  0.275  0.28  0.285 

B Distribution 

200 

150 

100* 

/50 

86.336.75 87 87.2537.337.75 

R Distribution 

142 143 144 145 146 147 
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In order to make comparisons with ATCAL, it was necessary to create examples 

where the killer-victim scoreboard yielded essentially the same kill rates as those used in 

the eigenvalue examples. To some extent this is a guess, in that the attrition model is 

unspecified. We simply assumed straight line attrition. 

For example, take initial forces of 

/2000\ 
(    960 1     and 
\ 600/ 

/4000\ 
=     1600 

\ 800/ 

with killer victim scoreboard 

killer 
B2 

Bz 

Ri 

R3 

B1 

0 
0 
0 

B2 

0 
0 
0 

300    200 
40     160 
8       8 

victim 
B3 

0 
0 
0 

40 
48 
32 

Ri     R2 

200    100 
72      96 
15 
0 
0 
0 

A3 
0 

24 
15     45 
0 
0 
0 

0 
0 
0 

Assuming a duration of 1 time unit and straight line attrition, we get 

.1 .05       0 
K= I .075    .1        .025 

.025    .025    .075 

.075    .05    .01 
L = I .025    .01    .03 

.01      .01    .04 

as we had in the previous eigenvalue method examples. Using ATCAL, we obtain relative 

importances of 
VBX = 1 

VB2 = 1.5513 

VB3 = 1.7971 

VRx = .94595 

VR2 = 1.5396 

VR3 = 1.0477 

This result appears to differ from the eigenvalue result in that both Red and Blue type 3 

appear more valuable. 

The numerical derivatives with respect to varying various Lji (or equivalently vary- 

ing entries in the killer-victim scoreboard) are shown below. We give both the absolute 

derivatives and the relative derivatives with VB\ normalized to 1. 
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BK={{200,100,0}, {72,96,24}, (15,15,45 
RK={{300,200,40}, {40,160,48}, {8,8,32 
NB={2000,960,600}; 
NR={4000,1600,800}; 

deriv[BK,RK,NB,NR,{l,l}//Timing 

Approximate Numerical Derivatives (5 point) 
VB[1] 
VB[2] 
VB[3] 
VRCl] 
VR[2] 
VR[3] 

0.0000373978 
^6 

■6 

i-8 

6.85268 10 
1.31578 10' 
0.000179095 
1.07447 10" 
-9.29081   10" 

{9.5  Second,   Null} 

deriv[BK,RK,NB,NR,{l,2}]//Timing 

Approximate Numerical Derivatives   (5 point) 
VB[1]:   0.0000393462 

-0.0000469537 
-7 

VB[2] 
VB[3] 
VR[1] 
VR[2] 
VR[3] 

-6.93696 10 
0.000270991 
-0.000193113 
■5.39146   10   ' 

{9.23 Second,   Null} 

deriv[BK,RK,NB,NR,{l,3,}]//Timing 

Approximate Numerical Derivatives   (5 point) 

VB[1]: 3.38649   10"6 

VB[2]: -0.0000430005 
VB[3]: -0.000275548 
VR[1]: 0.0000618685 
VR[2]: -0.000107301 
VR[3]: -0.00048685 

{9.45  Second,   Null} 

deriv[BK,RK,NB,NR{2,l}]//Timing 

Approximate Numerical Derivatives   (5 point) 

VB[1] 
VB[2] 
VB[3] 
VR[1] 
VR[2] 
VR[3] 

-5.0077 10"6 

1.99616 10"6 

-2.68284 10"8 

-0.0000284272 
0.0000103152 
-5.92568 10 -8 

{11.09 Second, Null} 
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deriv[BK,RK,NB,NR,{3,l}]//Timing 

Approximate Numerical Derivatives   (5 point) 
VB[1]:   -3.02879  10~6 

VB[2]:   -4.93462   10~7 

VB[3]:   2.19239   10"6 

VR[1]:   -0.0000144314 
VR[2]:   -2.592   10~7 

VR[3]:   3.90199   10"6 

{13.34 Second, Null} 

deriv[BK,RK,NB,NR,{2,2}]//Timing 

Approximate Numerical Derivatives   (5 point) 
VB[1]:   0.000040094 
VB[2]:   0.000136194 
VB[3]:   1.74046   10"6 

VR[1]:   -4.4331   10"6 

VR[2]:   0.000463299 
VR[3]:   2.78241   10"7 

{12.42  Second,   Null} 
BK={{200,100,0}, {72,96,24}, {15,15,45}}; 
RK={{300,200,40}, {40,160,48}, {8,8,32}}; 
NB={2000,960,600}; 
NR={4000,1600,800}; 
deriv[BK,RK,NB,NR,{l,l,}]//Timing 

Approximate Numerical Derivatives (5 point) 
VB[2]: -1.37032 
VB[3]: -1.79654 
VR[1]:   3.84922 
VR[2]:   -1.51334 
VR[3]:   -1.05191 
{12.14 Second, Null} 

deriv[BK,RK,NB,NR,{l,2}]//Timing 

Approximate Numerical Derivatives   (5 point) 
VB[2]:   -2.89237 
VB[3]:   -1.91243 
VRCl]:   6.2611 
VR[2]:   -6.79461 
VR[3]:   -1.11854 
{13.78 Second,  Null} 
deriv[BK,RK,NB,NR,{l,3}]//Timing 

Approximate Numerical Derivatives   (5 point) 
VB[2] 
VB[3] 
VR[1] 
VR[2] 
VR[3] 

-1.29239 
-7.54303 
1.57123 
-3.0135 
-13.1236 

{20.55  Second,   Null} 
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deriv[BK,RK,NB,NR,{2,l}]//Timing 

Approximate Numerical Derivatives   (5 point) 
VB[2]:   0.26153 
VB[3]:   0.240317 
VR[1]:   -0.634494 
VR[2]:   0.482767 
VR[3]:   0.138934 
{9.45  Second,   Null} 

deriv[BK,RK,NB,NR,{3,l}]//Timing 

Approximate Numerical Derivatives   (5 point) 
VB[2]:   0.112628 
VB[3]:   0.204504 
VR[1]:   -0.309782 
VR[2]:   0.117952 
VR[3]:   0.189498 

{9.44 Second,   Null} 

deriv[BK,RK,NB,NR{2,2}]//Timing 

Approximate Numerical Derivatives   (5 point) 
VB [2] 
VB[3] 
VR[1] 
VR[2] 
VR[3] 

1.98182 
-1.88323 
-1.13453 
10.7553 
-1.11763 

{9.4 Second, Null} 

For the Fire Allocation method, we follow the simple model as outlined in Sec- 

tion 2.a.ii. NB and NR represent the initial forces and A and C are the pure kill rates 

following the notation of Section 2.a.ii, except that the indices on atJ and Cij have been 

switched. Thus a2\ in the program is a12 in the text of Section 2.a.ii. Note also that the 

value hi is normalized to 1. 
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Allocation Method 
Base Program 
June 3,1994 
This program determines the weapon values given the matrices A and C and 
the strength of the forces NB and NR. 
Off[Syntax::newl,General::spell,General::spelll,Part::partd] 

allocate[{{all_,al2_},{a21_, a22_}},{{cll_, cl2_},{c21_, c22_}}, 
{b01_,b02_},{r01_,r02_}] : = 

Block[{listl,list2,list3,list4,phi,psi,matx,philist,psilist,tl, 
t2,i,j,common,lam,x,list,xvec}, 

listl={-all b01A2 cllA2 r01+b01A2 ell phi r01-al2 b01A2 c21A2 r02 
+b01A2 c21 phi r02, bOl b02 ell phi rOl + bOl b02 c21 phi 
r02, -2 all bOl b02 ell cl2 rOl + bOl b02 cl2 phi rOl - 2 al2 
bOl b02 c21 c22 r02 + bOl b02 c22 phi r02, b02A2 cl2 phi rOl 
+ b02A2 c22 phi r02, -all b02A2 cl2A2 rOl - al2 b02A2 c22A2 
r02,0,0,0 } ; 

matx={}; 
For[i=0,i<=3,i++,AppendTo[matx,RotateRight[listl,i]]]; 
Iist2={-a21 b01A2 cllA2 rOl - a22 b01A2 c21A2 r02, 

b01A2 ell phi rOl + b01A2 c21 phi r02, -2 a21 bOl b02 ell cl2 
rOl + bOl b02 ell phi rOl - 2 a22 bOl b02 c21 c22 r02 + bOl 
b02 c21 phi r02, bOl b02 cl2 phi rOl + bOl b02 c22 phi r02, 
-a21 b02A2 cl2A2 rOl + b02A2 cl2 phi rOl - a22 b02A2 c22A2 
r02 + b02A2 c22 phi r02,0,0,0}; 

For[i=0,i<=3,i++,AppendTo[matx,RotateRight[list2,i]]]; 
philist=Select[phi /. NSolve [Det [matx]=0,phi] , lm[#]==0 &] ; 
list3={-allA2 bOl ell r01A2 - a21A2 b02 cl2 r01A2 + all bOl 

psi r01A2 + a21 b02 psi r01A2, all bOl psi rOl r02 + 
a21 b02 psi rOl r02, -2 all al2 bOl ell rOl r02 - 2 a21 a22 
b02 cl2 rOl r02 + al2 bOl psi rOl r02 + a22 b02 psi rOl r02, 
al2 bOl psi r02A2 + a22 b02 psi r02A2, -al2A2 bOl ell r02A2 - 
a22A2 b02 cl2 r02A2,0,0,0}; 

matx={}; 
For[i=0,i<=3,i++,AppendTo[matx,RotateRight[list3,i] ] ] ; 
list4={-allA2 bOl c21 r01A2 - a21A2 b02 c22 r01A2, all bOl psi 

r01A2 + a21 b02 psi r01A2, -2 all al2 bOl c21 rOl r02 - 2 a21 
a22 b02 c22 rOl r02 + all bOl psi rOl r02 + a21 b02 psi rOl 
r02, al2 bOl psi rOl r02 + a22 b02 psi rOl r02, -al2A2 bOl 
c21 r02A2 - a22A2 b02 c22 r02A2 + al2 bOl psi r02A2 + a22 b02 
psi r02A2,0,0,0}; 

For[i=0,i<=3,i++,AppendTo[matx,RotateRight[list4,i]]]; 
psilist=Select[psi /. NSolve[Det [matx]=0,psi] , Im[#]=0 &] ; 

common={}; 
tl=Length[philist] ; 
t2=Length[psilist]; 
For[i=l,i<=tl,i++, 
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For[j=l,j<=t2,j++, 
If[ Abs[philist[[i]]-psilist[[j]] ]<10A-10, 

AppendTo[common,philist[[i]] 3 

]; 
3; 

3; 
If [Length [ common] =0, Break [ ] ] ; 
lam=Max[common]; 
Print["Common Lambda Value: ",1am]; 

xvec={xA4,xA3,xA2,x,l}; 
list=Take[listl,5] /. phi->lam; 
xvalsl=Select[x /. Solve [list. xvec==0,x] , lm[#]=0 &] ; 
list=Take[list2,5] /. phi->lam; 
xvals2=Select[x /. Solve [list.xvec=0 ,x] , lm[#]=0 &] ; 

common={}; 
tl=Length[xvalsl]; 
t2=Length[xvals2]; 
For[i=l,i<=tl,i++, 

For[j=l,j<=t2,j++, 
If[ Abs[xvalsl[[i]]-xvals2[[j]] ]<10A-10, 

AppendTo[common,xvals1[[i]] ] 

]; 
3; 

3; 
If [Length [ common ] =0, Break [ ] ] ; 
ratio=Max[common]; 

hl=l ; 
h2=l/ratio; 
gl=(b01 ell hlA2 + b02 cl2 h2A2)/(Sqrt[lam]*(bOl hi + b02 h2)); 
g2=(b01 c21 hlA2 + b02 c22 h2A2)/(Sqrt[lam]*(bOl hi + b02 h2)); 

Print["H[l]=",hl]; 
Print["H[2]=",h2]; 
Print["G[l]=",gl]; 
Print["G[2]=M,g2] 
] 
allocate[{{.l,.05},{.075,.l}},{{.075,.05},{.025,.l}},{50,25}, 

{100,40}] 

Common Lambda Value: 0.00561736 
H[l]=l 
H[2]=0.849138 
G[1]=0.371234 
G[2]=0.571781 

Base 2 
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Allocation Method 
Numerical Derivatives 
June 3,1994 
This program accepts the the input data of the A and C matrices, the strength of 
the forces NB and NR, and the indices of an element in the C matrix, returning the 
numerical derivatives of the weapon values with respect to this element. 
Off[Syntax::newl,General::spell,General::spelll,Part::partd] 

deriv[A_,C_,NB_,NR_,ind_]:= 
Block[{NA,NC,step,Rlist,Blist,base,process,b01,b02,r01,r02,x, 

xvec,vals}, 

base[matA_,matC_] : = 
Block[{all,al2,a21,a22,ell,cl2,c21,c22,listl,list2,list3,list4, 

matx,i,j,phi,philist,psi,psilist,common,tl,,t2,lam,list, 
xvalsl,xvals2,ratio,gl,g2,h2}, 

{{all,al2},{a21,a22}}=matA; 
{{cll,cl2},{c21,c22}}=matC; 

matx={}; 
listl={-all b01A2 cllA2 r01+b01A2 ell phi r01-al2 b01A2 c21A2 r02 

+b01A2 c21 phi r02, bOl b02 ell phi rOl + bOl b02 c21 phi 
r02, -2 all bOl b02 ell cl2 rOl + bOl b02 cl2 phi rOl - 2 al2 
bOl b02 c21 c22 r02 + bOl b02 c22 phi r02, b02A2 cl2 phi rOl 
+ b02A2 c22 phi r02, -all b02A2 cl2A2 rOl - al2 b02A2 c22A2 
r02,0,0,0}; 

For[i=0,i<=3,i++,AppendTo[matx,RotateRight[listl,i]]]; 
Iist2={-a21 b01A2 cllA2 rOl - a22 b01A2 c21A2 r02, 

b01A2 ell phi rOl + b01A2 c21 phi r02, -2 a21 bOl b02 ell cl2 
rOl + bOl b02 ell phi rOl - 2 a22 bOl b02 c21 c22 r02 + bOl 
b02 c21 phi r02, bOl b02 cl2 phi rOl + bOl b02 c22 phi r02, 
-a21 b02A2 cl2A2 rOl + b02A2 cl2 phi rOl - a22 b02A2 c22A2 
r02 + b02A2 c22 phi r02,0,0,0}; 

For[i=0,i<=3,i++,AppendTo[matx,RotateRight[list2,i]]]; 
philist=Select[phi /. NSolve [Det [matx]=0,phi] , lm[#]=0 fi] ; 

matx={}; 
list3={-allA2 bOl ell r01A2 - a21A2 b02 cl2 r01A2 + all bOl 

psi r01A2 + a21 b02 psi r01A2, all bOl psi rOl r02 + 
a21 b02 psi rOl r02, -2 all al2 bOl ell rOl r02 - 2 a21 a22 
b02 cl2 rOl r02 + al2 bOl psi rOl r02 + a22 b02 psi rOl r02, 
al2 bOl psi r02A2 + a22 b02 psi r02A2, -al2A2 bOl ell r02A2 - 
a22A2 b02 el2 r02A2,0,0,0}; 

For[i=0,i<=3,i++,AppendTo[matx,RotateRight[list3,i]]]; 
list4={-allA2 bOl c21 r01A2 - a21A2 b02 c22 r01A2, all bOl psi 

r01A2 + a21 b02 psi r01A2, -2 all al2 bOl c21 rOl r02 - 2 a21 
a22 b02 c22 rOl r02 + all bOl psi rOl r02 + a21 b02 psi rOl 
r02, al2 bOl psi rOl r02 + a22 b02 psi rOl r02, -al2A2 bOl 
c21 r02A2 - a22A2 b02 c22 r02A2 + al2 bOl psi r02A2 + a22 b02 
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psi r02A2,0,0,0} ; 
For[i=0,i<=3,i++,AppendTo[matx,RotateRight[list4,i]]]; 
psilist=Select[psi /. NSolve [Det [matx]=0 ,psi] , lm[#]==0 4] ; 

common={}; 
tl=Length[philist]; 
t2=Length[psilist]; 
For[i=l,i<=tl,i++, 

For[j=l,j<=t2,j++, 
If[ Abs[philist[[i]]-psilist[[j]] ]<10A-10, 

AppendTo[common,philist[[i]] ] 

]; 
]; 

]; 

I f [ Length [ common ] =0, 
Print["*** NO COMMON LAMBDA VALUE! ***"]; 
Break[] 

]; 
If[Length[common]>1, 

Print["***   MULTIPLE   COMMON  LAMBDA VALUES!    ***"] 

]; 
lam=Max[common]; 

list=Take[listl,5] /. phi->lam; 
xvalsl=Select[x /. Solve [list.xvec=0,x] , lm[#]=0 &] ; 
list=Take[list2,5] /. phi->lam; 
xvals2=Select[x /. Solve [list.xvec=0 ,x] , lm[#]=0 &] ; 
common={}; 
tl=Length[xvalsl]; 
t2=Length[xvals2]; 
For[i=l,i<=tl,i++, 

For[j=l,j<=t2,j++, 
If[ Abs[xvalsl[[i]]-xvals2[[j]] ]<10A-10, 

AppendTo[common,xvals1[[i]] ] 

]; 
]; 

]; 
I f [ Length [ common ] =0, 

Print["*** NO COMMON RATIO! ***»]; 
Break[] 

]; 
If[Length[common]>1, 

Print["*** MULTIPLE COMMON RATIOS! ***"] 

]; 
ratio=Max[common]; 

h2=l/ratio; 
gl=(b01   ell  + b02   cl2  h2A2)/(Sqrt[lam]*(bOl  + b02  h2)); 
g2=(b01  c21  + b02   c22  h2A2)/(Sqrt[lam]*(bOl  + b02  h2)); 
{{gl,g2},h2} 

Numdcriv 2 
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]; 

process[vals_]:= 
Block[{}, 

AppendTo[Blist,vals[[2]3   ]; 
AppendTo[Rlist[[l]],vals[[1,1]]    ]; 
AppendTo[Rlist[[2]],vals[[1,2]]    ]; 

]; 

calc[x_]:=(x[[1]]-8x[[2]]+8x[[3]]-x[[4]])/(12   step); 

NA=A; 
NC=C ; 
step=l; 
While[NC[[ind[[1]],ind[[2]]   ]]-2*step<=0,step*=.1] 

step*=.001; 
{b01,b02}=NB; 
{r01,r02}=NR; 
xvec={xA4,xA3,xA2,x,l}; 
Rlist={{},{}}; 
Blist={}; 
NC[[ind[[l]],ind[[2]]   ]]-=2*step; 
process[base[NA,NC]]; 
NC[[ind[[l]],ind[[2]]   ]]+=step; 
process[base[NA,NC]]; 
NC[[ind[[1]],ind[[2]]   ]]+=2*step; 
process[base[NA,NC]]; 
NC[[ind[[l]],ind[[2]]   ]]+=step; 
process[base[NA,NC]]; 
Print["Approximate Numerical  Derivatives"]; 

»,calc[Rlist[[l]]] ]; 
",calc[Rlist[[2]]] ]; 
»,calc[Blist]   ]; 

Print["G[l] 
Print["G[2] 
Print["H[2] 

] 

A={{.1,.05},{.075,.l}}; 
Cx={{.075,.05},{.025,.1}}; 
NB={50,25},■ 
NR={100,40}; 

Derivatives with respect to C[1,1] 
deriv[A,Cx,NB,NR,{1,1}] 
Approximate Numerical Derivatives 
G[l]: 4.29571 
G[2]: -4.59138 
H[2]: -2.36597 

Derivatives with respect to C[1,2] 
deriv[A,Cx,NB,NR,{1,2}] 

Approximate  Numerical   Derivatives 
G[l]:   1.54868 
G[2] :   -1.65528 
H[2] :   -0.852976 

Numdcriv 3 
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Derivatives with respect to C[2,1] 
deriv[A,Cx,NB,NR,{2,1}] 
Approximate Numerical Derivatives 
G[lj: 0.589737 
G[2]: 11.6787 
H[2]: 3.60508 

Derivatives with respect to C[2,2] 
deriv[A,Cx,NB,NR,{2,2}] 

Approximate  Numerical   Derivatives 
G [ 1] :   0.212611 
G[2]:   4.2104 
H[2] :   1.2 997 

Numdcriv 4 
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Allocation Method 
Entry Sensitivity Analysis 
May 27,1994 
This program receives the matrices A and C, the strength of the forces NB and NR, 
the number of iterations, the standard deviation of the distribution, and the indices 
of the entry in the C matrix to be altered. First, the program calculates the weapon 
values for the initial A and C. The program then repeatedly perturbs the indicated 
entry by a random draw from the given normal distribution. The statistics of the 
calculated weapon values are returned and the distributions are plotted. 
Off[General::spelll,General::spell,Syntax::newl,Part::partd] 
«Statistics * DescriptiveStatistics * 
«Statisticsx ContinuousDistributionsN 

normen try [A_, C_, NB_, NR_, i ter_, stdev_, ind_] : = 
Block [{NA,NC,Blist,Rlist,B,R,b01,b02,r01,r02,base,process,x,xvec, 

ndist,results,i}, 

base[matA_,matC_]:= 
Block[<all,al2,a21,a22,ell,cl2, c21,c22,listl,list2,list3,list4, 

matx,i,j,phi,philist,psi,psilist,common,tl,t2,lam,list, 

xvalsl,xvals2,ratio,gl,g2,h2}, 

Hall,al2},{a21,a22}}=matA; 
{{ell,cl2},{c21,c22}}=matC; 

matx={}; 
listl={-all b01A2 cllA2 r01+b01A2 ell phi r01-al2 b01A2 c21A2 r02 

+b01A2 c21 phi r02, bOl b02 ell phi rOl + bOl b02 c21 phi 
r02, -2 all bOl b02 ell cl2 rOl + bOl b02 cl2 phi rOl - 2 al2 
bOl b02 c21 c22 r02 + bOl b02 c22 phi r02, b02A2 cl2 phi rOl 
+ b02A2 c22 phi r02, -all b02A2 cl2A2 rOl - al2 b02A2 c22A2 
r02,0,0,0}; 

For[i=0,i<=3,i++,AppendTo[matx,RotateRight[listl,i]]]; 
Iist2={-a21 b01A2 cllA2 rOl - a22 b01A2 c21A2 r02, 

b01A2 ell phi rOl + b01A2 c21 phi r02, -2 a21 bOl b02 ell cl2 
rOl + bOl b02 ell phi rOl - 2 a22 bOl b02 c21 c22 r02 + bOl 
b02 c21 phi r02, bOl b02 cl2 phi rOl + bOl b02 c22 phi r02, 
-a21 b02A2 cl2A2 rOl + b02A2 cl2 phi rOl - a22 b02A2 c22A2 
r02 + b02A2 c22 phi r02,0,0,0}; 

For[i=0,i<=3,i++,AppendTo[matx,RotateRight[list2,i]]]; 
philist=Select[phi /. NSolve[Det[matx]=0,phi] ,lm[#]==0 &] ; 

matx={}; 
list3={-allA2 bOl ell r01A2 - a21A2 b02 cl2 r01A2 + all bOl 

psi r01A2 + a21 b02 psi r01A2, all bOl psi rOl r02 + 
a21 b02 psi rOl r02, -2 all al2 bOl ell rOl r02 - 2 a21 a22 
b02 cl2 rOl r02 + al2 bOl psi rOl r02 + a22 b02 psi rOl r02, 
al2 bOl psi r02A2 + a22 b02 psi r02A2, -al2A2 bOl ell r02A2 - 
a22A2 b02 cl2 r02A2,0,0,0}; 

For[i=0,i<=3,i++,AppendTo[matx,RotateRight[list3,i]]]; 
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list4={-allA2 bOl c21 r01A2 - a21A2 b02 c22 r01A2, all bOl psi 
r01A2 + a21 b02 psi r01A2, -2 all al2 bOl c21 rOl r02 - 2 a21 
a22 b02 c22 rOl r02 + all bOl psi rOl r02 + a21 b02 psi rOl 
r02, al2 bOl psi rOl r02 + a22 b02 psi rOl r02, -al2A2 bOl 
c21 r02A2 - a22A2 b02 c22 r02A2 + al2 bOl psi r02A2 + a22 b02 
psi r02A2,0,0,0}; 

For[i=0,i<=3,i++,AppendTo[matx,RotateRight[list4,i]]]; 
psilist=Select[psi /. NSolve [Det [matx]—0 ,psi] , lm[#]=0 &] ; 

common={}; 
tl=Length[philist]; 
t2=Length[psilist]; 
For[i=l,i<=tl,i++, 

For[j=l,j<=t2,j++, 
If[ Abs[philist[[i]]-psilist[[j]] ]<10A-10, 

AppendTo[common,philist[[i]] ] 

]; 
■ ]; 

]; 

If [Length [common] =0 , 
Print["*** NO COMMON LAMBDA VALUE! ***»]; 
Break[] 

]; 
If[Length[common]>1, 

Print["*** MULTIPLE COMMON LAMBDA VALUES! ***"] 

]; 
lam=Max[common]; 

list=Take[listl,5] /. phi->lam; 
xvalsl=Select[x /. Solve [list. xvec=0,x] , Im [#]=0 &] ; 
list=Take[list2,5] /. phi->lam; 
xvals2=Select [x /. Solve [list.xvec=0,x] , lm[#]=0 &] ; 
common={}; 
tl=Length[xvalsl]; 
t2=Length[xvals2]; 
For[i=l,i<=tl,i++, 

For[j=l,j<=t2,j++, 
If[ Abs[xvalsl[[i]]-xvals2[[j]] ]<10A-10, 

AppendTo[common,xvals1[[i]] ] 

]; 
1; 

]; 
If [Length [common] =0, 

Print["*** NO COMMON RATIO! ***"]; 

Break[] 

]; 
If[Length[common]>1, 

Print["*** MULTIPLE COMMON RATIOS! ***"] 

]; 
ratio=Max[common]; 
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h2=l/ratio; 
gl=(b01 ell + b02 cl2 h2A2)/(Sqrt[lam] *(bOl + b02 h2)); 
g2=(b01 c21 + b02 c22 h2A2)/(Sqrt[lam]*(bOl + b02 h2)); 
{{gl,g2},h2} 

]; 

process[v_,str_]:= 
Block[{scale,ints,list,min,max,temp,i,PI}, 

Print["Mean: ",Mean[v]]; 
Print["Median: ",Median[v]]; 
Print["Variance: ",Variance[v]]; 
Print["Standard Deviation: ",StandardDeviation[v] ] ; 
Print["Range: ",SampleRange[v] ] ; 
Print["Minimum: ",min=Min[v]]; 
Print["Maximum: ",max=Max[v]]; 
scale=0; 
While[Round[max*10Ascale]-Round[min*10Ascale]<10,scale++]; 
While[Round[max*10Ascale]-Round[min*10Ascale]>99,scale—]; 
ints=Round[v*10Ascale]; 
list={}; 
min=Min[ints]; 
max=Max[ints]; 
For[i=min,i<=max,i++, 

temp=N[{i/10Ascale,Count[ints,i]}]; 
If[temp [[2]]!=0,AppendTo[list,temp]] 

]; 
Pl=ListPlot[list,PlotJoined->True,PlotLabel->str, 

PlotRange->{0,Automatic},Ticks->{{N[min/10Ascale], 
N[(min+max)/(2*10Ascale)],N[max/10Ascale]},Automatic}, 
AxesOrigin->{Min[v],0}] 

]; 

NA=A; NC=C; 
(b01,b02}=NB;   {r01,r02}=NR; 
xvec={xA4,xA3,xA2,x,l}; 
Blist=Rlist={}; 
{R,B}=base[NA,NC]; 

ndist=NormalDistribution[0,stdev*NC[[ind[[1]],ind[[2]]   ]]    ]; 

For[i=l,i<=iter,i++, 
NC=C ; 
NC[[ind[[1]],ind[[2]]   ]]+=Random[ndist]; 

While[NC[[ind[[l]]/ind[[2]]   ]]<0   || 
NC[[ind[[l]],ind[[2]]   ]]>2*C[[ind[[1]],ind[[2]]   ]], 
Print["***   ERROR  -   OUT  OF BOUNDS   ***»]; 

Print[Abs[NC[[ind[[1]],ind[[2]]    ]] 
-C[[ind[[l]],ind[[2]]   ]]   ]   / 
(stdev*C[[ind[[l]],ind[[2]]   ]]),"   stand,   dev."]; 

N-cntry 3 

7i 



NC[[ind[[l]],ind[[2]]   ]]=C[[ind[[1]],ind[[2]]   ]]+ 
Random[ndist]; 

]; 

results=base[NA,NC]; 
If[i==l, 

Rlist={{results[[1,1]]},{results[[1,2]]}}; 
Blist={results[[2]]}, 
AppendTo[Rlist[[l]],results[[1,1]] ]; 
AppendTo[Rlist[[2]],results[[1,2]] ]; 
AppendTo[Blist,results[[2]] ] 

1; 
]; 

Print["H[2]: ",B]; 
process[Blist,"H[2] Distribution"]; 
Print[" "]; 
Print["G[l]:   ",R[[111   ]; 
process[Rlist[[l]],"G[l]   Distribution"]; 
Print["   "]; 
Print["G[2]:   ",R[[2]]   ]; 
process[Rlist[[2]],"G[2]   Distribution"]; 

] 
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Statistics from Sensitivity Analysis 
Fire Allocation & Attrition Method 
June 3,1994 
The following data was obtained by the sensitivity analysis routines for the Fire 
Allocation Method. The initial data for these routines were: 

A={{1,05},{.075,.1}} NB={50,25} 
C={{.075,.05},{.025,.1}} NR={100,40} 

Statistics from perturbing the C[1,1] entry by a random draw from a normal 
distribution with 5% standard deviation. 
H[2]: 0.849138 
Mean: 0.850096 
Median: 0.849214 
Variance: 0.0000909999 
Standard Deviation: 0.00953939 
Range: 0.0576209 
Minimum: 0.825638 
Maximum: 0.883259 

G[l]: 0.871234 
Mean: 0.870513 
Median: 0.871098 
Variance: 0.000288957 
Standard Deviation: 0.0169987 
Range: 0.101812 
Minimum: 0.819872 
Maximum: 0.921684 

G[2]: 0.571781 
Mean: 0.573207 
Median: 0.571927 
Variance: 0.000336314 
Standard Deviation: 0.0183389 
Range: 0.110249 
Minimum: 0.52304 
Maximum: 0.633289 

Statistics from simultaneously perturbing each entry in the first row of C by a 
random draw from a normal distribution with 5% standard deviation. 
H[2]: 0.849138 
Mean: 0.849598 
Median: 0.848658 
Variance: 0.000134497 
Standard Deviation: 0.0115973 
Range: 0.0714355 
Minimum: 0.82365 
Maximum: 0.895086 

G[l]: 0.871234 
Mean: 0.871896 
Median: 0.872109 
Variance: 0.000427619 
Standard Deviation: 0.0206789 
Range: 0.121111 
Minimum: 0.305736 
Maximum: 0.926846 
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^ L^ J 0.571781 
Medii:   0.572038 
Median: 0.570843 
Variance: 0.000496493 
Standard Deviation: 0.0222821 
Range: 0.1342 93 
Minimum: 0.518575 
Maximum: 0.652868 

Statistics from independently perturbing each entry in the first row of C by a 
random draw from a normal distribution with 5% standard deviation. 
H[2] : 0.849133 
Mean: 0.849416 
Median: 0.348763 
Variance: 0.0000862001 
Standard Deviation: 0.0092844 
Range: 0.0625471 
Minimum: 0.325587 
Maximum: 0.888134 

G[l]: 0.871234 
Mean: 0 . 8717 01 
Median: 0.871917 
Variance: 0.000278723 
Standard Deviation: 0.0166951 
Range: 0.107946 
Minimum: 0.8138 67 
Maximum: 0.921313 

'L^-J 571781 
Mean: 0.571909 
Median: 0.571052 
Variance: 0.000320908 
Standard Deviation: 0.0179139 
Range: 0.118523 
Minimum: 0.522927 
Maximum: 0.64145 

Statistics from simultaneously perturbing each entry in the first column of C 
by a random draw from a normal distribution with 5% standard deviation. 
H[2]: 0.849138 
Mean: 0.849248 
Median: 0.849159 
Variance: 0.0000196365 
Standard Deviation: 0.00443131 
Range: 0.0264521 
Minimum: 0.33903 6 
Maximum: 0.865538 

G[l]: 0.871234 
Mean: 0.871637 
Median: 0.871154 
Variance: 0.000286002 
Standard Deviation: 0.0169116 
Range: 0.0973707 
Minimum: 0.817552 
Maximum: 0.914 92 3 
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G [2] : 0.571781 
Mean: 0.572005 
Median: 0.571793 

-6 
Variance: 7.3137 10 
Standard Deviation: 0. 
Range: 0.0166747 
Mi n i mum: 0.566729 
Maximum: 0.533403 

Statistics from independently perturbing each entry in the first column of C 
by a random draw from a normal distribution with 5% standard deviation. 
H[2] : 0.849138 
Mean: 0.850224 
Median: 0.349267 
Variance: 0.000115784 
Standard Deviation: 0.0107603 
Range: 0.0654364 
Minimum: 0.818917 
Ma-ximum: 0.884353 

G[l]: 0.371234 
Mean: 0.370498 
Median: 0.8703 42 
Variance: 0.000298903 
Standard Deviation: 0.0172888 
Range: 0.100964 
Minimum: 0.316973 
Maximum: 0.917942 

G[2] : 0.571731 
Mean: 0.573444 
Median: 0.572479 
Variance: 0.000563436 
Standard Deviation: 0.0237368 
Range: 0.146793 
Minimum: 0.495818 
Maximum: 0.642611 

Stats 3 
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Graphs from Sensitivity Analysis 
Fire Allocation & Attrition Method 
June 3,1994 

The following graphs were obtained by the sensitivity analysis routines for the Fire 
Allocation Method. The initial data for these routines were: 

A={{.1,.05},{.075,.1}} NB={50,25} 
C={{.075,.05},{.025,.1}} NR={100,40} 

Graphs from perturbing the C[1,1] entry by a random draw from a normal 
distribution with 5% standard deviation. 

H[2] Distribution 

0.826        0.8545        0 

G[l] Distribution 

883 

0.32 0.87 0.92 

G[2]   Distribution 

0.52 0.575 0.63 
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Graphs from simultaneously perturbing each entry in the first row of C by a 
random draw from a normal distribution with 5% standard deviation. 

H[2] Distribution 

0.824        0.8595        0.895 

G[l] Distribution 

0.81 0.87 

G[2]   Distribution 

0.93 

0.52 0.585 0.65 
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Graphs from independently perturbing each entry in the first row of C by a 
random draw from a normal distribution with 5% standard deviation. 

H[2] Distribution 

0.326        0.357        0.388 

G[l] Distribution 

0.81 0.865 

G[2]   Distribution 

0.92 

0.52 0.58 0.64 
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Graphs from simultaneously perturbing each entry in the first column of C by 
a random draw from a normal distribution with 5% standard deviation. 

H[2] Distribution 

0.339        0.3525        0.866 

G[l] Distribution 

0.313        0.8665 

G[2] Distribution 

0.915 

0.567 0.575 0.583 

Graphs 4 
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Graphs from independently perturbing each entry in the first column of C by a 
random draw from a normal distribution with 5% standard deviation. 

H[2]   Distribution 

0.819 0.3515 0.884 

G[l]   Distribution 

0.32 0.37 0.92 

G[2]   Distribution 

0.: 0.57 0.64 
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This is just a sample of the numerical experiments that we ran. The results led 

to no substantial conclusions, except perhaps that the ATCAL method is somewhat less 

sensitive to changes in the initial data. All the methods produced reasonable results 

(although not consistent results across the methods). Efforts should be made to do large- 

scale comparisons perhaps using a set of COSAGE replications as a common data pool for 

all three methods. 
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§5. Conclusions. 

We have examined three methods for computing weapon scores (values, importances). 

Of the three, the fire allocation methods are the most general, but computationally they 

are the most difficult. The other two methods, the eigenvalue or potential/antipotential 

method and the method employed in ATCAL, are both in use in existing combat simula- 

tions. 

Among the results we have obtained is the proof of the existence and uniqueness 

for solutions to the ATCAL importance equations, under some mild conditions. This 

leads to a robust iterative scheme for solving these importance equations. While the 

ATCAL equations are somewhat ad hoc in nature, they do give reasonable scores for 

various weapons that are generally consistent with the other methods. (Our numerical 

experiments were limited to a small number of weapon types on each side (two or three) 

which limits our conclusions involving comparisons across methods.) 

Our most striking observation is that all three methods seem to be based on similar 

mathematical phenomenon. The potential/antipotential method and the fire allocation 

methods both result in a kind of "simultaneous eigenvalue problem" - a real simultaneous 

eigenvalue problem in the first case and a non-linear analogue in the second case. The 

potential/antipotential method and the method in ATCAL rely on virtually identical proofs 

for existence and uniqueness, both are centered around a common fixed point theorem. 

Thus ATCAL yields a different non-linear generalization of the linear eigenvalue method. 

The good news is that these similarities give us some assurance, albeit weak assurance, 

that all three methods will yield generally consistent results. This is confirmed by our 

relatively limited numerical experiments. Nevertheless the methods do not give identical 

results and caution is always in order whenever comparisons are being made, because 

results obtained from one method are not directly comparable to results obtained from 

another. 

The bad news is that we can also expect the methods to suffer from similar qualitative 

defects and degeneracies. One will probably be able to create examples where all the 

methods fail to give "reasonable" answers, if you can create an example for any one of the 

methods. More specifically, many of the criticisms leveled at the eigenvalue approach, in 
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all likelihood, apply (with appropriate modification) to the other two methods. 

The author would again like to express his thanks to the U.S. Army Concepts Analysis 

Agency and the Army Research Office for their support of this research. 

91 



Comprehensive Bibliography 

Books and Journal Articles 

1) Abraham, Marsden, and Ratiu, "Manifolds, Tensor Analysis and Applications," 2nd 

ed., Springer-Verlag (1988). 

2) Allen, T., "Wargames," McGraw Hill (1987). 

3) Arnold, "Stochastic Differential Equations," Wiley Interscience (1974). 

4) Barfoot, "The Lanchester Attrition-Rate Coefficient: Some Comments on Seth Bon- 

der's Paper and a Suggested Alternate Method," Operations Research 17 (1969). 

5) Bellman, "Dynamic Programming," Princeton University Press (1957). 

6) Belopolskaya and Dalecky, "Stochastic Equations and Differential Geometry," Kluwer 

Academic Publishers (1990). 

7) Bickel and Doksum, "Mathematical Statistics," Holden Day (1977). 

8) Bonder, "The Mean Lanchester Attrition Rate," Operations Research 18 (1970). 

9) Brewer, G. and Shubik, M., "The War Game," Harvard University Press (1979). 

10) Burke, "Applied Differential Geometry," Cambridge Univ. Press (1987). 

11) Canny, "Generalized Characteristic Polynomials," J. Symb. Comp., Vol. 9 (1990). 

12) Chatfield, "The analysis of time series," Chapman & Hall (1975). 

13) Crampin and Piran, "Applicable Differential Geometry," London Math. Soc, Lecture 

Notes 589. 

14) Do Carmo, "Riemannian Geometry," Birkhäuser (1992). 

15) Dupuy, "Can we rely on computer combat simulations," Armed Forces, J. August 

(1987). 

16) Dubrovin, Fromenko, and Novikov, "Modern Geometry - Methods and Applications," 

Part I, GTM 93, Springer-Verlag, New York (1984). 

17) Elele and Cole, "A New Approach for Modeling Small Conflict Area Gain/Loss, Troop 

Advance/Retreat Velocity, and Forward Line of Own Troops Movement," Proc. U.S. 

Army Oper. Res. Symp. (1991). 

18) Foias, Sell, and Temin, "Inertial manifolds for nonlinear evolutionary equations," Jour. 

Diff. Eqn., Vol 73, No. 2 (1988). 

92 



19) Frazer, "Elementary matrices and some applications to dynamics and differential equa- 

tions," Cambridge University Press (1938). 

20) Gantmacher, "Matrix Theory," Vol. 2, Chelsea Pub. Co. (1989). 

21) Gihman and Skorohad, "Stochastic Differential Equations," Springer-Verlag (1972). 

22) Graham, R., "Covariant Formulation of Non-Equilibrium Statistical Thermodynam- 

ics," Zeitschrift fur Physik B 26, 397-405 (1977). 

23) Grubbs and Shuford, "A New Formula of Lanchester Combat Theory," Operations 

Research 21 (1973). 

24) Hayward, "The Measurement of Combat Effectiveness," Operations Research 16 (1968). 

25) Helmbold, "Abstract for Rates of Advance in Historical Land Combat Operations," 

Proc. U.S. Army O.R. Symposium, Vol. Ill (1991). 

26) Hirsch, "Differential Topology," Springer-Verlag (1988). 

27) Hollis, "Yes, we can rely on computer combat simulations," Armed Forces J., October 

(1987). 

28) Howes and Thrall, "Theory of ideal linear weights for heterogeneous combat forces," 

(1973). 

29) Ingber, "Mathematical Comparison of Combat Computer Models to Exercise Data" 

and "Methodology to Extrapolate Killer-Victim Scoreboards to Higher Echelon Mod- 

els" (to appear). 

30) Kendall, "Multivariate Analysis," Charles Griffen and Co. (1975). 

31) Kimbleton, "Attrition Rates for Weapons with Markov-Dependent Fire," Operations 

Research 19 (1971). 

32) Koopman, "A Study of the Logical Basis of Combat Simulation," Opns. Res. 18, 

pp. 855-882 (1970). 

33) Krasnoshchekov and Petrov,v "Principles for Constructing Models," (1983). 

34) Loental, "Using the Vector-in-Commander Model: Experience and Insights," Proceed- 

ings U.S. Army Operations Research Symposium, Vol. Ill (1991). 

35) Mehata and Srinvivasan, "Stochastic Processes," McGraw Hill (1978). 

36) Nakahara, "Geometry, Topology, and Physics," Adam Hilger (1990). 

93 



37) Oksendal,  "Stochastic Differential Equations: An Introduction with Applications," 

Springer-Verlag (1985). 

38) Palmore, "Instability of Computer Simulations of Combat Models," Proc. U.S. Army 

Oper. Research Symp., Vol. Ill (1991). 

39) Pestien and Sudderth, "Continuous-Time Red and Black: How to Control a Diffusion 

to a Goal," Mathematics of Operations Research Vol. 10, No. 4 (1985). 

40) Przemieniecki, "Introduction to Mathematical Methods in Defense Analysis," AIAA 

Education Series (1990). 

41) Ross, "Stochastic Processes," John Wiley & Sons, New York (1983). 

42) Rustagi and Latinen, "Moment Estimation in a Markov-Dependent Firing Distribu- 

tion," Operations Research 18 (1970). 

43) Saigal, "On Piecewise Linear Approximations to Smooth Mappings," Mathematics of 

Operations Research, Vol. 4, No. 2 (1979). 

44) Sayre, "Map Maneuvers and Tactical Rides," 3rd ed. Ft. Leavenworth, Kansas, Army 

Services School Press (1910). 

45) Schuss, Z., "Theory and applications of stochastic differential equations," Wiley Series 

in Probability, Mathematics, and Statistics 80, John Wiley & Sons, New York (1980). 

46) Sibirsky, "Introduction to the algebraic theory of invariants of differential equations," 

Manchester University Press (1982). 

47) Stogan, Mecke, and Kendall, "Stochastic Geometry". 

48) Taylor, "Lanchester Models of Warfare," Military Applications Section, ORSA, Vol. 1 

(c/o Kendall Inc., 1700 N. Moore St., Suite 1800, Arlington, VA 22209). 

49) Taylor, "Lanchester Models of Warfare," Vol. 2. 

50) Taylor, "A Note on the Solution to Lanchester-Type Equations with Variable Coeffi- 

cients," Operations Research 19 (1971). 

51) Taylor and Brown, "Canonical Methods in the Solution of Variable Coefficient Lanchester- 

Type Equations of Modern Warfare," OR, Vol. 24, No. 1 (1976). 

52) Watson, R.K., "An application of Martingale Methods to Conflict Models," (1976). 

53) Wilks, "Mathematical Statistics," John Wiley & Sons, New York (1962). 

94 



54) Wu, "Stochastic Differential Equations," Pitman Advanced Publishing Program, Re- 

search Notes in Math. 130 (1985). 

Technical Reports 

55) Anderson, "Generic Formulas for Calculating Kill Rate Matrices," Institute for De- 

fense Analysis, Alexandria, VA (1988). 

56) Anderson and Miercort, "Combat: A Computer Program to Investigated Aimed Fire 

Attrition Equations, Allocations of Fire, and the Calculation of Weapons Scores," 

Institute for Defense Analysis, Alexandria VA (1989). 

57) Anker and Gafarian, "The validity of assumptions underlying current uses of Lanch- 

ester attrition rates," TRAC-WSMR-TD-7-88 (March 1988). 

58) Bode, Aldrich, "The Aggregation Problem in Models of Theater Levei War," BDM 

Corp., W-77-129-BR (9/77). 

59) Bonder and Farrell, "Development of Analytic Models of Battalion Task Force Activ- 

ities," Report No. SRL 1957 FR 70-1 (Sept. 1970). 

60) Cohen, "The Instability of Linear Heterogeneous Lanchester Equations," AMSAA 

Technical Report No. 501 (1991). 

61) Cohen,   "Inner  Product   Performance  Criteria for  Evaluating  Combat   Models," 

AMSAA Technical Report No. 489 (1991). 

62) Comptroller General, "DOD Simulations Improved Assessment Procedures Would In- 

crease the Credibility of Results," Report No. GAO/PEMD-88-3, U.S. GAO, Wash- 

ington, D.C. (1987). 

63) Comptroller General, "Models, Data, and War: A critique of the foundations of De- 

fense Analysis," Report No. PAD-80-21, U.S. GAO, Washington, D.C. (1980). 

64) Karr, "A Class of Lanchester Attrition Processes," Institute for Defense Analysis, 

Alexandria VA (1976). 

65) Girardini, "The Army's Conventional Munitions Acquisition Process," Rand Corp. 

(1988). 

66) McCoy, D.H., "Attrition Conference Information Paper," Workshop on Attrition Mod- 

eling in Large-Scale Simulations, Feb. 1989, Dallas, TX, US Army Research Office and 

US Army TRADOC Analysis Command. 

95 



67) Perla and Lehoczky, "A new approach to the analysis of stochastic Lanchester pro- 

cesses: 1. Time Evolution," Tech. Report No. 135, Dept. of Stat., Carnegie Mellon 

Univ., AD A045176 (Sept. 1977). 

68) "Proceedings from the Architecture for Stochastic Theater-Level Modeling," Naval 

Postgraduate School, Monterey, CA (1990). 

69) Stockfisch, "Models, Data, and War: A critique of the study of conventional forces," 

Rand Corp. (1975). 

CAA Internal Reports and Documentation 

70) AFPSYS Operator's and Programmer's Guide. 

71) "ATCAL: An Attrition Model Using Calibrated Parameters," CAA Technical Paper 

(1983). 

72) CEM IV documentation: Technical Handbook and User's Description. 

73) CEM VI Vol. 1 Technical Description (1987). 

74) CAA packet on "Defender's Advantage". 

75) Cooper, "A Heuristic Diffusion Theoretic Approach to FEBA Movement and Maneu- 

ver". 

76) COSAGE documentation: overview packet, Input/Output Guide, and Division Com- 

bat Sample Library. 

77) "Improved Method for Calculating Attrition in a Theater Model," CAA Technical 

Paper (1980). 

78) "Stochastic Concepts Evaluation Model (STOCEM)," (1991). 

96 


