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Abstract 

This paper describes two different approaches to dealing with the ini- 
tial transient problem. In the first approach, the length of the "warm-up 
period" is determined by obtaining analytical estimates on the rate of con- 
vergence to stationarity. Specifically, we obtain an upper bound on the 
"second eigenvalue" of the transition matrix of a Markov chain, thereby 
providing one with a theoretical device that potentially can give estimates 
of the desired form. The second approach is data-driven, and involves us- 
ing observed data from the simulation to determine an estimate of the 
"warm-up period". For the method we study, we are able to use a cou- 
pling argument to establish a number of important theoretical properties 
of the algorithm. 

Key Words: Initial transient, Markov processes, eigenvalues, coupling, total 
variation norm, rates of convergence, simulation. 

1     Introduction 
In many applications settings, it is of interest to compute steady-state perfor- 
mance measures. To be specific, suppose that the system under consideration 
is described by a Markov process X = (X(t) : t > 0) living on state space S. 
For a given / : S —»R, the steady-state simulation problem is concerned with 
the estimation of the time-average limit a defined via the law of large numbers 

1 r* 
- \   f{X(s))ds -> a  Px a.s. 
t Jo 
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as t -+ oo for all x e S (assuming such a limit exists), where 

P*(-)  ^ P(-|X(0)=i). 

Such laws of large numbers hold, in great generality, for Markov processes ex- 
hibiting some type of positive recurrence condition. In addition, for such pro- 
cesses, there typically exists a unique probability distribution TT, known as the 
stationary distribution, such that 

a = J f(x) ix{dx). 

Furthermore, n has the property that if X(0) has distribution TT, then X is a 
(strictly) stationary process. It follows that if X is initiated with distribution 
IT. then the sample mean a(t) given by 

a(t) ä IJ f(X(s))ds 

is unbiased as an estimator of a. 
Unfortunately, the distribution 7r is typically unknown and, consequently, it 

is generally impractical to generate X(0) from TT. AS a result, bias is induced 
in a(t) and the initial segment of the simulation may be unrepresentative of 
steady-state behavior. This introduces certain complications into the estima- 
tion problem that do not arise in Monte Carlo environments in which unbiased 
estimators may easily be constructed. The "initial transient problem" focuses 
both on the effect of this initial bias, and on developing effective algorithms for 
mitigating the impact of this bias. 

One means of attacking this problem is to note that the positive recurrent 
Markov processes (satisfying some sort of aperiodicity condition) typically ex- 
hibit "total variation convergence" to stationarity, by which we mean that 

||P(X(e-)-Px(Xe-)ll-0 

as t -> oo, where Xt £ {X(t + s) : s > 0) is the "post-t" process, Pw(-) is 

the distribution under which X has initial distribution TT, and || • || is the total 
variation norm defined by 

|M|=SUP|77(A)| 
A 

for any signed measure 77. Thus, if one can compute a time s for which 

\\P(Xse-)-Pv(Xe-)\\<e, 

we have an e-guarantee that the post-s process is close to stationarity, and hence 
any data collected subsequent to s should have relatively low bias. 



The remainder of this paper describes two different approaches to accom- 
plishing this task. In section 2, we establish a new analytical bound for the total 
variation distance from stationarity that takes explicit advantage of the known 
transition structure of the system. By contrast, section 3 is concerned with 
developing a new method for identifying s that is purely data-driven, and takes 
no explicit advantage of the transition structure of the system being simulated. 

2    Upper Bounds on Rates of Convergence to 
Stationarity 

As indicated in section 1, we are concerned here with developing upper bounds 
on the rate of convergence to stationarity, as described via the total variation 
norm. For the remainder of this section, we shall assume that X is an aperiodic, 
irreducible, discrete-time Markov chain with finite state space (although one 
would expect appropriate analogs in both continuous time and general state 
space). 

We start by noting that for t € Z+, 

||P(Xt€-)-P*(*e-)ll   =   ||P(X(*)e-)-PT(Xe-)ll 

-     2mxaX^'P^_7ry'' 
v 

where P = (Pxy : x, y G S) is the transition matrix of X. Let ir be the unique 
stationary distribution of X, and let II be the matrix having all rows identical 
to 7T. Since PÜ = UP = II2, it is evident (via an inductive proof) that for 
n > 1, 

pn - n = (p - u)n. 
Clearly, the rate of convergence of Pn to II is therefore related to the structure 
of the eigenvalues of P — II. In particular, let Ai, A2, • • •, A^ be the distinct 
(complex-valued) eigenvalues of P - II, with corresponding (complex-valued) 
eigenvectors ui, U2,. ■ ■,Ud- Note that 

lim - log(||P(Xt € •) - PAX G -)ll) < l°g(7) (1) 
n—+00 Tl 

where 7 = max( |A»| : 1 < i < d). Thus, a bound on 7 yields a bound on the 
rate of convergence to stationarity. 

In view of this, let (A, u) be an eigenvalue-eigenvector pair corresponding to 
P - IT so that 

Pnu -Uu = \nu, 

for n > 1. In other words, 

ElU(Xn) - 7TU = Xnu(x) (2) 



for x £ S. Assume A ^ 0, and set 

Mn = \~n [u(Xn) - iru{l - An)(l - A)"1] . 

(Clearly, |A| < 1 since (P - n)n -» 0, and thus (1 - A)"1 is finite.) We claim 
that (Mn : n > 0) is a martingale with respect to Tn = a{X0,..., Xn). 

To verify this, note that since S is finite, Mn is integrable and adapted to 
(-^n : n > 0). Furthermore, (2) implies that 

Ex(Mn+1\Fn)    =   A-"-1(Au(Xn) + 7rU-^u(l-A"+1)(l-A)-1) 

=    A-n(u(Xn)-^u(l-A")(l-A)-1) = Mn, 

so (Mn : n > 0) is indeed a (complex-valued) martingale. 
Let T(x) = inf{n > 1 : Xn = x} be the (first) hitting time of x.   Set 

Dj = Mj - Mj_i and observe that for n > 1, 

n 

E*MT(T)An    =    EXM0 + J2 ExDjI(T{x) > j) (3) 

n 

=    EXM0 + ^E^r^) > jJE^^I^-.O 
3=1 

=    EXM0. 

(Thus, the optional sampling identity continues to hold despite the fact that 
(Mn : n > 0) is not real valued). Note that MT{x)An -► MT(x) a.s. (since 
T(x) is finite valued). Furthermore, if EX|A|-T(X> < 00, then the Dominated 
Convergence Theorem, applied to (3), yields 

EXMT{X) = EXM0, 

so that 

Ex(X-T^(u(XT{x)) - ™(1 - AT^)(1 - A)-1)) = u(x). 

But u{XT{x)) = u(x) and Ex(l - AT(*>) ^ 0 (since |A|-T^) > |A|-X > 1), from 
which it follows that if ET|A|-T(X> < 00, 

U(x) = 7Tu(l - A)_1. 

Thus, if E„|A|-T^) < 00 for all y e S, evidently we would obtain u{y) = 
7TU(1 - A)-1 for all y e S. This is a contradiction (as is easily seen by taking TT 

of both sides). Hence, there exists y € S such that E2/|A|_T(y) = +00. 
Let ß(y) = sup{|A| : Ey\\\~T^  < 00} be the radius of convergence of 

the probability generating function of T(y).   We have just shown above that 



there exists y <E S such that ß(y) < |A|_1. So |A|_1 > mm(ß(y) : y € S) or, 
equivalently, 

|A|<max(/3(y)-1:y€5), 

yielding the bound 
7<max(/3(2/)-

1 :y€S). 

We can summarise the above discussion with the following theorem. 

Theorem 1 Let X be a finite state aperiodic irreducible discrete-time Markov 
chain.  Then, 

lim - log(||P(Xt € •) - PAX G -)ll) < logimaxßiy)-1), 
n-»oo n y£S 

where ß(y) = sup{ z : EyzT(3/' < oo }. 

This result bounds the rate of convergence to stationarity, in terms of the 
rate at which the chain X returns to the various states of S. In certain settings, 
probability arguments can then be used to a priori dominate the ß(y)'s. 

The theorem above complements the many other results that have been 
developed in recent years to bound the rate of convergence to stationarity; see, 
for example, Diaconis and Stroock [3], Fill [4], and Meyn and Tweedie [8]. 
In certain highly structured models, these analytic tools turn out to be quite 
powerful, and the bounds obtained are relatively tight. However, in general, 
it is probably fair to say that for unstructured systems, the bounds are often 
quite loose and consequently of less practical value. In addition, a glance at (1) 
makes clear that a bound on 7 does not necessarily provide a bound on the total 
variation distance between P(Xt € 0 and PK{X G 0 (although some analytical 
tools give a bound also on the total variation distance). 

Another criticism of the above approach is that for unbounded functions 
/ (as often arise in engineering applications), a bound on the total variation 
distance does not translate into a bound on \Ef(X(t)) - E7r/(X(0))|, and hence 
the information obtained about the bias of a(t) is somewhat limited. 

3    A Data-Driven Stationarity Detection Rule 

In section 2, our concern was with describing upper bounds on the total variation 
rate of convergence that takes explicit account of the specific transition structure 
of the process. However, historically, it is fair to say that the most widely used 
methods for determining the time to stationarity have made such assessments 
based purely on the observed data obtained by simulating the system itself; see, 
for example, Conway [2] and Gafarian, Ancker, and Morisaku [5]. A principal 
difficulty with this approach is that very few such data-driven methods have 
come equipped with any theoretical guarantees; see, however, Asmussen, Glynn, 
and Thorisson [1] for some noteworthy exceptions. 



Here, we analyze a data-driven rule first proposed in Glynn and Iglehart [6], 
and show that it enjoys some theoretically important properties. Our goal is to 
define a non-negative family of random variables (T(t) : t > 0) such that: 

a T(t) < t a.s., 

(4) 

b P(T(t) € -\X) = P(T(t) € -\X(s) : 0 < s < t) for t > 0, 

c \\P(XT(t) e •) - PV(X e -)ll - 0 as t - oo, 

d (T(t) : t > 0) is a tight family of r.v.'s (under P). 

For a simulation time horizon t, we then view T(t) as the epoch at which 
the process X is in approximate stationarity. Condition b above states that 
T(t) can be generated once X has been simulated to time t, whereas a forces 
T(t) to be in the interval [0,i\. Condition c asserts that X is in approximate 
stationarity at time T(t), whereas d rules out detection rules that throw out 
more and more data as t —> oo (e.g. T(t) = r.1/2). 

The rule proposed in Glynn and Iglehart [6] is described by the following 
algorithm: 

1. Simulate X to time t. 

2. Generate a uniform r.v. U, independent of X. 

3. Set T(t) = inf { s > 0 : X(s) = X(Ut) }. 

Clearly T(t) < t always holds. Set Z(t) = X{Ut) and note that 

P(Z(«) 6 -\X) = nt(.) 

where 7rt(-) is the empirical distribution of X defined by 

M-) \ j* I(X(s) e -)ds. 

Hence, (4)b also holds. To establish c, we need to restrict the class of 
processes X under consideration. Specifically, suppose that X is an irreducible, 
positive recurrent, continuous-time Markov chain living on a finite or countably 
infinite state space. Then, the law of large numbers for such processes guarantees 
that for each x e S, 

1   /"' 
7Tt(x) 4 - /   I(X(s) = x)ds -> ir(x) a.s. 

' Jo 



as t —* oo, where IT is the (unique) stationary distribution of X.   Since S is 
discrete, it then easily follows that 

||7rt-TT||-»Oa.s. (5) 

as t —> oo. 
We now use a coupling argument to complete the proof of c. For each t > 0, 

let Z(t) be an 5-valued r.v. having conditional distribution given by 

P(Z{t)=x\X,U)--&£^{x)] + 

£2,Ky)-fl"t(y)]+' 

where [y}+ Q y V 0 for y G JR. Let U' be a uniform r.v. independent of x, U, 

and Z(t) and set 

z.(t).z(()W.szl||L) + ^;r>^||L, 
Observe that 

P(Z'(t)=x\X)    =    TT,(X)(^-A1) 

+    Y. E(p(^W = *l*. CO!* - (4Ä A l)]/(Z(t) = y)\X) 
y€S *■"}' 

=      (TT(X) A 7Tt(x)) + J] P(Z(t) = x|X, ^)[7Tt(l/) - 7T(y)] + 
V€S 

=      7r(l). 

(We have used the easily established fact that 

y y 

Hence, Z*(t) is a r.v. having the stationary distribution that is independent 
of X. Set T*(t) = inf{s > 0 : X(s) = Z*{t)}. Clearly, the aforementioned 
properties of Z* (t) imply that 

P(XT.it)e.) = P«(Xe-) 

for t > 0. Since T*{t) = T{t) on { Z(t) = Z*(t) }, it follows that 

\P(XT{t)eB)-PAXeB)\ 

=    \P(XT{t)eB)-P(XT.(t)€B)\ 

=    \P(XT{t) € B, Z(t) = Z*(t)) + P(XT{t) € B, Z(t) ± Z*{t)) 

-    P(XT.{t) G B,Z(t) = Z*{t)) - P(XT.it) G B,Z(t) ± Z*(t))\ 

< \P(Xnt) G B, Z(t) ± Z*{t)) - P(XT.{t) G B, Z(t) ± Z'(t))\ 

< P(Z(t) ± Z'{t)). 



We have therefore established the following coupling inequality: 

IIP(*T(O e •) - PA^ e Oil < P(Z(t) ± Z'{t)). 

But 

P(Z(t)*Z'(t)\X)    <    P([/'>Ä|X) (6) 

y 

On the other hand, the latter sum is just ||7rt - TT\\, which (5) asserts goes to 
zero a.s. The Bounded Convergence Theorem, applied to (6), then yields the 
conclusion 

P(Z(t)?Z'(t))-*0 

as t -> oo, verifying (4)c. As for condition (4)d, observe that for x > 0, 

P(T(t)>x)    <    P(T(t)>x,Z(t)^Z*(t)) + P(Z(t)?Z*(t)) 
<    P(T*(t)>x)+P(Z(t)?Z*(t)). 

But T*(t) has a distribution independent oft, and is finite-valued. Further- 
more, P(Z(t) ^ Z*(t)) -^Oast^oo, establishing, for each e > 0, existence of 
x = x(e) and t(e) such that P(T(i) > x) < e for t > t(e). On the other hand, 
over [0,t(e)], the non-explosiveness of X guarantees that there exists a finite 
deterministic set St^ C S such that 

P(%(%)) = l)>l-e. 

On the event {7rt(e)(5((e)) = 1} (namely, those outcomes for which X spends the 
entire interval [0,i(e)] in %}), T(u) (0 < u < t) is bounded by max{min{s > 
0 : X{s) =y},y £ St{e) }, which is a finite r.v. independent of u. Consequently, 
we can find x'(e) for which P(T{u) > x'(e)) < 2e for 0 < u < t(e). This proves 
the required tightness, and completes the proof of the second major theorem in 
this paper. 

Theorem 2 If X is an irreducible positive recurrent continuous-time Markov 
chain taking values in a finite or countably infinite state space, then the algo- 
rithm (l)-(3) produces a family of r.v. 's (T(t) : t > 0) having properties (4)a 
- d. 

Note that for a given model, one has no guarantee that a specifically chosen 
time horizon t will be sufficiently large so that the asymptotics associated with 
(4)c are in force. While this is clearly a drawback, the same drawback is shared 
by (for example) most applications of the central limit theorem in a statistical 
environment (in which one is never certain as to whether the sample size is suffi- 
ciently large so as to guarantee a good normal approximation). Mote, however, 



{ 
if 

that, as in section 2, bounds on total variation distance do not directly translate 
into bounds on bias. 

Nevertheless, we believe that the algorithm (l)-(3) has sufficient practical 
merit so as to be worthy of further investigation. Additional properties of this 
algorithm will be described in a forthcoming paper; see Glynn [7]. 
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