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A New Method of Edge Correction for Estimating 

the Nearest Neighbor Distribution 

Ernesto M. Floresroux 

Michael L. Stein 

Abstract 

Analysis of data in the form of a set of points irregularly distributed within a region 
of space usually involves the study of some property of the distribution of inter- 
event distances. One such function is G, the distribution of the distance from an 
event to its nearest neighbor. In practice, point processes are commonly observed 
through a bounded window, thus making edge effects an important component in 
the estimation of G. Several estimators have been proposed, all dealing with the 
edge effect problem in different ways. This paper proposes a new alternative for 
estimating the nearest neighbor distribution and compares it to other estimators. 
The result is an estimator with relatively small mean squared error for a wide variety 
of stationary processes. 

1. Introduction 

Spatial point processes have been widely used as models in many scientific and technological 

fields including ecology and biology (Diggle, 1983), astronomy (Neyman and Scott, 1958), and 

archeology (Donnelly, 1978). Exhaustive sampling of patterns is becoming more commonplace 

because images can be easily digitized, and data sets in such a form are more readily available. 

In order to describe, analyze, and make inference on such patterns, properties of the distribution 

of inter-event distances are usually studied. There is considerable work in estimating the reduced 

second moment measure (Ripley. 1988: Stein, 1993), the empty space function (Baddeley and Gill. 

1993). and the nearest neighbor distribution (Diggle, 1983). This work proposes a new way of 

estimating the nearest neighbor distribution function, G(i), which is defined as the probability 

that a ball of radius t, centered at an arbitrary event of the process, contains at least one other 

event: this is equivalent to the probability that the distance between an arbitrary event and its 

nearest neighbor is less than or equal to t. Heuristically, by an arbitrary event we mean that we 



have a large but finite number of events in some finite region, and one of these events is selected 

by simple random sampling. A precise definition can be found in Daley and Vere-Jones (1988). 

An example of when G is a useful description of a spatial point process is the locations 

of trees in a forest (Diggle. 1983). A simple model for their locations would be a homogeneous 

Poisson process with intensity A, for which G{t) = 1 - exp(-~Ai2) in two dimensions. However, 

due to the nature of the process of seed dispersal, there may be more clumping of trees than would 

occur under the Poisson model. Alternatively, there may be a competitive relationship between 

trees that would cause trees to be more evenly spaced than under the Poisson model. The nearest 

neighbor distribution provides one method of distinguishing between these various possibilities and 

is particularly relevant when dependencies of the process over short distances are of interest. 

Since mapped patterns are usually observed through windows with boundaries, events close 

to the boundary of the observation region might have their true nearest neighbor outside it. This 

makes edge effects an important component in the estimation of G, and any reasonable estimator 

should account for them. Several estimators have been proposed in the literature (Baddeley and 

Gill. 1993; Doguwa and Upton. 1990; Hanisch, 1984; Ripley, 1977), all of which deal with the edge 

effect problem in a different way. For observations near the boundary of study, the ball of radius t 

around these events is not entirely observed, rendering incomplete information about the nearest 

neighbor. Instead of discarding this information, a simple method for imputing the probability of 

an event in this ball conditioning on the data is proposed. It is based on considering other events 

in the observed part of the process for which a translation (if the process is stationary) and a 

rotation (if the process is stationary and isotropic) make it comparable in an appropriate sense to 

the problem event. The result is an estimator that has a smaller mean squared error than the two 

most commonly used estimators and its bias is of roughly the same order. 

Furthermore, as opposed to Doguwa and Upton's estimator, it performs well in certain 

large sample scenarios where edge effects are kept approximately constant as the observed region 

grows. For this purpose, suppose $ is a stationary point process on Ht2. If the observed area is a 

rectangle, keeping one side constant while letting the other one increase, edge effects will be severe 

even though the total area and the number of observed points tend to infinity. A second scenario 

where edge effects do not diminish occurs if instead of sampling only one window, the process is 

observed through a whole set of similarly sized windows. Baddeley, et. al. (1993) give an example 

for a three-dimensional spatial point process in which the events are locations of a certain feature 



in monkey skulls and multiple windows arise because the point pattern is mapped in a number of 

well separated sampling volumes from the skull. 

To study the performance of the estimators in different scenarios, three qualitatively differ- 

ent point processes covering a wide spectrum of alternatives are used as examples. As an example 

of an aggregated process, a Xeyman-Scott cluster process (Neyman & Scott. 1958) is analyzed. 

For a process exhibiting some regularity or repulsion, a perturbed grid is chosen. In such a model. 

points on a grid are randomly moved according to a certain distribution. Finally, since no analysis 

is complete without studying the behavior under what is considered the canonical model for point 

processes, a homogeneous Poisson process is considered. 

Section 2 defines some necessary notation. Section 3 reviews previously suggested estima- 

tors for the nearest neighbor distribution. Section 4 defines the new estimator. For simplicity, it 

is only defined for processes in Ht2. although the basic idea behind it applies in any number of 

dimensions. Section 5 provides a heuristic argument as to why our estimator should be preferred to 

the one suggested by Doguwa and Upton (1990). Section 6 describes the results of the simulation 

study. 

2. Notation 

Suppose $ is a simple stationary point process in IR^ and only a part of it is observed 

through a bounded window W C K.^. As is customary in the literature, $ will denote both a 

random set in \Rd and a random measure. For any Borel set A C Dtd, the random variable ${A) 

counts the number of points of $ that fall in A. Let i'd\A) represent the d-dimensional volume of 

the set A; the subscript d will be suppressed if its meaning is unambiguous from the context. For 

any two points Pi,P2 € E.d, the Euclidean distance between them is denoted by d(Pi,P2). Finally, 

b(x,t) represents the ball of radius t around the point x. 

The objective is to estimate G. the nearest neighbor distribution function for the underlying 

point process $. Denote the events in W by Pl5 • • ■, Pn. so that $(W) = n. For every event P, 6,- 

denotes its distance to the nearest border of W and u\ the distance to its nearest neighbor inside 

W. That is, u>,- = minj^{d(p-, Pj)}. 

For all observed events P, Doguwa and Upton (1990) analyze the six possible orderings of 

the distance t at which we are estimating G, the distance b{ to the nearest border, and the distance 

ii'i to the nearest neighbor. For five cases, it is known with all certainty whether the nearest 

neighbor is within t from the point of interest.   This is not true in the case where &,• < t < u>i 
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(hereafter, this situation will be referred to as the maybe case), since the part of the circle that is 

not observed may or may not contain an event of the process. For ail cases, including this last one, 

for large enough t. the balls of radius t around most events intersect the border, and thus are not 

completely observed. 

Following Doguwa and Upton's (1990) notation, define the function f(u, v) for u. v 6 IR as 

f[u. it = I{u < v}, where I is an indicator function. For the observed window W, W=.* denotes 

the window W eroded by a ball of radius t. which can be written as Wat = {x € W\b(x.t) C W}. 

Thus. Wat is the set of points in W that are more than a distance t away from the border. 

3. Existing Estimators 

3.1 Reduced Sample Estimator 

The most widely used estimator, usually referred to as the reduced sample estimator, was 

proposed by Diggle (1979) following Ripley (1977). For those events that are more than a distance 

t away from the boundary (all events p such that t < 6,-; that is, P,- € Wet), the whole circle 

of radius t around them is observed. Thus, with all certainty it can be said whether the nearest 

neighbor is within t. By selecting those events p e W for which this condition is met. that is, 

by allowing a guard area around the border, the sample gets restricted to events that satisfy only 

three cases out of the six possible orderings of the ranks of 6,-, W{, and t. As t grows, the size of the 

available sample decreases, and for large enough t. it will be zero. Formally, this estimator can be 

written as 

Li=i/(*A) 
This estimator of G counts the number of events in the eroded window Wet for which the nearest 

neighbor is observed within t, and divides it by the total number of events in Wet- -Although 

this method is intuitively appealing, it has certain drawbacks. Its range of estimation is quite 

limited: for example, in the case of a rectangle of sides sx and sy, the largest value of t for which 

the estimation is possible is t < min{sr,5y}/2. This estimator sometimes renders a nonmonotone 

empirical distribution function, and for large t, the reduced sample estimator might be undefined. 

3.2 Hanisch's Estimator 

Hanisch (1984) proposed an alternative estimator for G. Instead of restricting the study to 

those events that lie in Wc.u attention is focused on all objects for which the distance to the nearest 

neighbor is known.   This is the subset of events p 6 $ n W for which W{ < &,-. This estimator 



restricts itself to a different subset of events than the reduced sample estimator. It can be written 

as 

p, „,_ i:r=i/(tty-!)/(tt,-A)p(w«) 

A weight function p is added to account for the area within W in which any pair of events separated 

by a distance t could lie. In general. p{z\ = l/v(Waz), which renders p(z) — [&x -2z)~l(sy-2z)~l 

ior a rectangle of sides sx and sy. The purpose of this function is to make G2 a ratio-unbiased 

estimator of G: that is. the ratio of expectations of the numerator and denominator is equal to the 

true nearest neighbor distribution. Such a property is often encountered in estimators of this kind. 

Stoyan. Kendall & Mecke (1987. p. 128) proposed another version of this estimator that 

does not take into account the weight function. We made a comparative analysis of these two 

versions and we found no reason for not using p, except for a minor increase in computational 

effort, and ratio-unbiasedness is lost by doing so. 

The estimator G2 is well defined if at least one event in the study region has its nearest 

neighbor closer to it than the border.   Conditional on the observed process, the denominator is 

constant, and thus the estimator is nondecreasing. 

3.3 Doguwa and Upton's Estimator 

Doguwa and Upton (1990) proposed another estimator that avoids some of the problems 

encountered by G\ and <52. It is well defined unless $(W) = 0, and it is monotone in t. Most 

importantly, instead of just considering those events P,- for which only certain orderings of the 

distances t. b,. and W{ are satisfied, it accounts for all the events simultaneously. For an event 

P. for which 6, < t < W{ (the maybe case), an ad hoc method of imputation is proposed. Figure 

1 illustrates the problem solved by this method. It works well in certain cases, but it makes an 

inappropriate correction when the process is badly non-Poisson. 

To construct such an estimator, the number of events p e $ n W for which W{ < t is 

counted. This is known with all certainty in five out of the six ordering of t, 6,-, and W{. For 

the maybe case, only part of the ball of radius t around such an event is observed in W, and 

no other events of the process lie in it. Denote by IPi{t) = 6(P,-,i) l~l W the part of 6(P,-,f) 

that is inside W. and by 0Pl{t) = b(P,.t) n Wc the part outside W. The objective is to estimate 

H(t:Pi) = P|$(Op,(0) > 0|P, $(/Pl.(r)) = l}, the conditional probability of finding at least one 

event in the unobserved part of the ball of radius t around the event P given that there are no 

other events in the observed part. 



If the process is assumed to be homogeneous Poisson. this imputation is trivial since the 

numbers of events of the process in disjoint regions are independent. Let VQ = v(W). and let 

V{ = v{lpi(t)} and h{ = r{Op,(i)} be the areas of the observed and unobserved parts of b(Pi,t) 

respectively: clearly, r, -r h,• = nt2 in two dimensions. For a Poisson process with intensity A. 

H(t;Pi) = 1 - exp(-A/),). Estimating A by the standard estimator A = n/v0 yields H{t:Pi) = 

1 - exp< —Xh, 

This probability has to be estimated for every event P, for which 6,- < t < W{. Notice that 

t is considered fixed, and the set of events for which H(t; Pi) has to be estimated is different for 

different values of t. For both small and large values of t, the number of events in the maybe case 

is zero. 

;From this, Doguwa and Upton (1990) recommend 

This result is independent of whatever is observed in Ip,(t), which makes estimating G by Gz 

easy because only areas of parts of circles have to be calculated. However, in certain cases it can 

introduce serious bias problems if the process is sufficiently non-Poisson. 

3.4 Other Estimators 

Another estimator for G recently proposed by Baddeley and Gill (1993) treats edge effects 

as a censoring problem. Based on the analogy with censored survival data, the distance from 

an event to its nearest neighbor is taken to be right-censored by its distance to the border. By 

extending the Kaplan-Meier estimator and computing a cumulative hazard function, they construct 

a ratio-unbiased estimator that has the following expression: 

G(o-i-mi- Er=i/(r)U,)/(rA.} y 

where r in the product ranges over those elements of {wi, wn} that are at most t.  Baddeley 

and Gill (1993) show that this estimator has advantages over the reduced sample estimator G\. A 

direct comparison with the estimator suggested here remains to be done. 



The estimators G\ and G'2 can be combined rendering another way of estimating G. This 

can be done by considering 

G(f 
W; 

This combination yields an estimator that performs better than G\ and G2 both in terms of bias 

and mean squared error. This is due mainly to the fact that each estimator uses different sets of 

the orderings of t. it-, and W{. Though trivial, this seems to have been overlooked in the literature. 

4. A New Estimator 

Based on Doguwa and Upton's idea, this section presents another estimator for G. The 

imputation problem is approached with fewer and less restrictive assumptions. As before, the goal 

is to estimate H(t; Pi), the probability of finding at least one event in the unobserved part of &(P;, t) 

if b(Pi,t) (ji W. For simplicity, we describe the estimator for processes on Et2, although the same 

approach can be used in any number of dimensions. 

For this purpose, the translation Au of a set A G Et2 for u G 1R2 will be defined as Au = 

A+u = {y+u\y £ A}. The rotation of a set A G Ht2 by an angle 6 is defined as RgA = {Rey\y G A}, 

where Re is the orthonormal matrix that rotates points in IR2 counterclockwise by an angle 6. 

For $ a stationary simple point process, t > 0 fixed, P,- e $ n W, and P, G $ fl WQt, Pj will 

be said to be analogous to Pt- if ${b(Pj.t) nWfl Wp^p } - 1. In other words. Pj is analogous to 

Pi if the only event of the translated process that is in the part of b(P:,t) intersecting Wp{-p is 

Pj itself. This is illustrated in Figure 2(c). 

If $ is also assumed to be isotropic, then the definition of analogous points can be extended. 

For 6 e (0,2-1. an event P2 is analogous at 9 to P; if ${6(P,-,i) n W n ReWPi-p}} = 1. Then, 

analogous as defined for stationary processes can be stated as being analogous at 0. This is 

illustrated in Figure 2(d). 

For P,. P; G $ C)W, where $ is a stationary simple point process, define 

T.(P-) = { 1 if Pj 1S analogous to P,- 
1    ] ■      I 0 otherwise. 

Lastly, for P,- G $ fl W and P, G $ fl WQt, where $ is a stationary and isotropic simple 

point process, define Oi(Pj) as the total angle of rotation that makes Pj analogous to P,-. This can 
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be written as d,(Pj) = JQ~ I{ analogous at 6}d9. This implies that if §(&(P,,/)) = 1. that is, the 

nearest neighbor of Pj is not within r. then dj(Pj) = 2TT. The angles of rotation at which Pj is 

analogous to Pj do not necessarily form a simple arc. 

To construct the estimator, we will first assume that the underlying process is simple 

and stationary. As before. H{t:Pj) denotes the probability of finding at least one event in the 

unobserved part of b(Pj,t). Instead of acting as if the process were Poisson. this probability can be 

estimated by 

HUUP^fiWjA) 
H*(t; Pi 

HUT<W 

This estimator looks for the events in the observed realization of the process $ that are 

analogous to p, assesses for such events whether an event of the process lies in the part of the 

circle corresponding to the unobserved part of b(Pj,t), and computes the ratio of these two counts. 

Although H{t\P{) might be undefined if there are no analogous points to Pt-, if at least one such 

point is observed, this conditional probability can be estimated. If there are no analogous points 

we will take H»(t;Pj) = 0. The new estimator then takes the same form as Doguwa and Upton's 

replacing H{t;Pi) with H*{t;Pt). 

To estimate H(t; Pj) this way the only assumption required was stationarity of the process. 

If it is believed that the process is also isotropic, a given realization of $ might provide even more 

information. An event Pj might not be analogous to P, in the first sense defined above, but there 

might exist a rotation of the process that makes it analogous to p. To see that this can be the 

case, consider Pi in Figure 2(a). Figure 2(c) illustrates why Pi is not analogous to Pi. However, 

if the orientation is changed, it can be seen that there is at least one rotation of $ that makes it 

analogous to Pi. This rotation is depicted in Figure 2(d). 

Apparently, assuming isotropy increases the number of analogous situations dramatically. 

Nevertheless, analogous points must be counted in a different way than before. In this case, it 

seems reasonable to define 

H„(t;Pi) = 
Ej=iW)/K->t) 

where 0,{Pj) is the angle of rotation of Ipi around Pj as defined above. This means that if Pj is 

analogous to Pj and its nearest neighbor is not within t of it, 9j(Pj) = 27r and 0j(Pj)f(wj.t) = 0, 

whereas if it is, the angle of rotation is added to both the numerator and the denominator of 

H*Jt:P,). 



Since computing angles can become quite a cumbersome task, this situation can be approx- 

imated by doing the following. For every event Pj, the translated part of the circle (Ip^t)) can 

be rotated a finite number of times m. That is, for every point Pj, m different values for Ti(Pj) 

are obtained.   Denote them by rf(P,j. for k — 1 m. The counting argument for calculating 

H„(t\ Pi) still applies, and it can be approximated by 

^From simulation studies it was observed that m need not be large. The difference between m = 1 

and TO = 4, though nonnegligible. is small. Between m = 4 and m — 8, this difference is hardly 

noticeable. Choosing TO = 4 is convenient for rectangular W. 

5. Discussion 

The basic problem with estimating H(t\P{) as suggested by Doguwa and Upton (1990), 

by acting as if the process were Poisson, is that it the resulting estimator of H(t;Pi) can be 

substantially biased if the process is not Poisson. Our procedure is designed to avoid this problem. 

More specifically, by letting the observation window W grow in an appropriate way, Hm(t;Pi) 

converges to H(t:Pi), whereas H(t\Pt) converges to 1 - expf -A v(6(P,-,i) l~l Wc) J, which does not 

in general equal H(t;Pi). However, it is awkward to give a precise meaning to these statements 

since the definition of H(t;P{) depends on W. Consider the following related problem, which does 

have a clear interpretation. For a fixed set A containing 0, we want to estimate 

r1(A) = P{T'(0,A)\T(0,A)) 

where 

T(x,A)= {§({x}) = §(Axnb(x,t))= 1}    and 

T"(x,A) = T(x.A)C) {$(b(x,t)) > 1}. 

Roughly speaking, we want to think of 77(A) as H(t; P,), with 0 as P,-, 6(0, t)r\A as IPi, and i(0, t)C\Ac 

as Op,. Doguwa and Upton are essentially estimating 77(A) by 1 - exp(-\v(b(0,t) n Ac) ], while 

we are using the empirical estimator of the conditional probability given by 

J2   I{T'(Pt,A)}/   £   I{T(Pi,A)}. 



Then, assuming the region W grows in an appropriate sense and $ is ergodic (Daley and Vere- 

Jones, 1988. p. 335), our estimator converges almost surely to rj(A), whereas Doguwa and Upton's 

converges almost surely to the generally incorrect 1 - exp(-A u{b(0,t) 0 A)). This suggests that, 

unlike Doguwa and Upton's approach, the proposed imputation procedure is a sensible way of cal- 

culating the conditional probability H(t: P,), whether or not the underlying process is Poisson. The 

simulations in the next section show that the bias in Doguwa and Upton's approach to estimating 

Hit: Pi) can lead to substantial bias in estimating G in situations where our approach does not 

have this problem. 

6. Simulation Results 

This section presents a comparative simulation study of the estimators G\, i = 1,...,4 

for the nearest neighbor distribution in order to evaluate their performance under different types 

of stationary and isotropic point processes. The estimator 6'4 will be taken as the non-rotating 

version of the estimator. Simulations considering the rotating version were run, yielding only a 

slight improvement over the non-rotating one. so we report only the results obtained from the 

non-rotating version. All the code was written in C following ANSI standards, and the simulations 

were run on a Sparc 2-Sparc 10 computer system. 

Simulations were run in order to study the behavior of the estimators in a specific large 

sample scenario. Though several large sample scenarios can be explored in the theory of point 

processes, since the estimators described above try to account for edge effects, it is of value to see 

how they perform if the sample size grows and edge effects remain roughly constant. That is, it 

is desirable to maintain the proportion of events close to the border constant and large. If the 

region W grows, for example, by letting both sides of a rectangle grow or by letting the radius 

of a circular region go to infinity, edge effects become negligible. In such cases, all the estimators 

described above perform well in terms of bias and variance, and the differences between them are 

small. 

In order to maintain constant edge effects, for the simulations we will consider processes 

defined throughout IR2 that are observed through several nonintersecting windows, and these 

windows are assumed to be sufficiently apart so that the observed realizations of the processes in 

each one of them are essentially independent. Simulations were run for one through five observation 

windows. 

For every process, several thousand replications (JV) were run. and the different estimators 

were calculated for each one.   The value of the z-th estimator of G in the j'-th realization is 
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denoted by GJ
{. By a replication we mean that the process was simulated in the relevant number of 

windows m (m = 1. 5) and G(t) and H(t;Pi) were calculated taking n = Y1T=\ $W')- which 

is the total number of observed events in the m windows. 

For every process considered, several summary statistics were calculated: the estimated 

bias, the average squared error, and the difference of the absolute errors *. Since the estimated 

bias is usually small, the average squared error curves are in most cases a good approximation 

to the variance of the estimators. The difference of the absolute errors makes small differences 

between the estimators more noticeable than when the average squared error is used. T)AEij(t) 

will be positive for those values of t for which G{ is performing, on average, better than Gj, and 

negative otherwise. 

6.1 Parent-Offspring Process 

Poisson cluster processes, first suggested by Xeyman and Scott (1958) as a possible way 

of describing cosmological data, incorporate an explicit form of spatial clustering. A specific 

Xeyman-Scott process was considered, where the parent events form a Poisson process with in- 

tensity p = 10, and the distribution of offspring PM is given by M = (2,3,4) with probabilities 

P\i = (0.5,0.25.0.25). The offspring are then placed around their parent following a bivariate nor- 

mal distribution with covariance matrix cr2I, with a = 0.05. For simulation purposes, it is worth 

pointing out that parents outside the observation region can produce offspring inside W, so the 

process has to be simulated on a region larger than W. 

Figure 3 shows the estimated bias for G, i = 1 4 for N =25.000 replications of the 

cluster process simulated on unit square windows. The expected number of events per unit area is 

27.5. The bias curves of all four estimators follow a somewhat similar pattern. G3 has the largest 

bias, and in a small range of distances G± is the only one with a positive bias. The average squared 

error curves (not shown) are all of about the same order, though G4 always shows a smaller average 

squared error than G\ and G2- Except for large distances, this is also true for G3 when compared 

to G\ and G-i- G\ has the largest ASE. The average difference of the absolute error curves enlarge 

these differences, showing that G4 performs uniformly better than G\ and (52- For small distances, 

* For a fixed value of t, the computing formulas used were; 

Estimated bias: EB = ^ £$li {(%'(*) - G(t)}. 

U{Gi(t)-G(t)}2. 

Difference of the absolute errors: DAE^i) = £ £f=1 {\G$(t) - G(t)\ - \GkAt) - G(t)\}. 

Average squared error: ASE,-(i) = ^ £f=i{£;(0 - G(t)} . 
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G-i performs somewhat better than G4. and the trend gets reversed as the distance t increases. This 

can be appreciated in Figure 4, where the performance of the estimators in the multiple window 

scenario (2. 3. 4, and 5 unit square windows) is shown. The bias of G\, G2, and G'4 decreases in 

every case, whereas G'3 lias a nontrivial bias that does not diminish, regardless of the number of 

windows. DAEi,4 and DAE9.4 decrease, due mainly to the increase in the sample size and that 

both G'i and G2 are ratio unbiased. On the other hand, DAE3.4 shows the opposite trend, since 

its negative part gets closer to zero, and the range of positive differences gets larger as the number 

of windows increases, which means the relative performance of G4 improves with respect to that 

of G3. For five windows, except at very short distances. DAE3,4 is positive, suggesting that as the 

number of windows increases. G4 becomes a uniformly better estimator than G3. 

6.2 A Regular Process 

Several models for processes that exhibit some regularity have been proposed in the litera- 

ture. In order to investigate the behavior of the estimators in this case, a perturbed grid was chosen. 

First, a grid where the events are separated by a distance d in each direction is constructed. This 

grid is randomly placed on the plane after rotating it by an angle 6 chosen uniformly in the interval 

(0.2~]. Then every event is moved randomly from its position — hence perturbed — independently 

from the other events. The distance each event moves follows a bivariate normal distribution with 

covariance matrix a21 centered at their unperturbed position. The parameters of the grid consid- 

ered for this section were d = 0.15 and a = 0.02. The final pattern is definitely regular, but it is 

not apparent, given the expected number of events per observation window (1/0.152 % 44), that 

the original process was an evenly spaced grid. Given the time required to run this process on the 

multiple window scenario, for one and two windows, N =25,000 replications were run: for three, 

A =15.000, and for four and five, N = 7500. 

Figure 5 shows the bias of G3 and G4 for the multiple window scenario. The shaded 

regions represent approximate 95% confidence intervals for the bias at distance t. G4 appears to 

be unbiased, except at the the range 0.14 < t < 0.17, where there exists a small positive bias that 

seems to decrease as the number of windows increases. On the other hand, (§3 has a nontrivial 

bias that does not change with the number of windows. The estimators G\ and G2 (bias curves 

not shown) are for all practical purposes unbiased. Figure 6 shows the average squared error for 

the four estimators. It can be appreciated that overall, G4 has the smallest average squared error 

of the four estimators. The behavior of G3 is due mainly to the estimation of a nontrivial positive 
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value for H for events in the maybe case: the true value of this probability in this case is very close 

to zero. 

6.3 Poisson Processes 

In the case of the Poisson process, it will not be surprising to see that for almost every 

t. G'3 performs better than the other three estimators. A Poisson process with intensity A = 20 

was simulated on the unit square. For each number of windows (one through five), A" =25.000 

replications were run. The patterns the estimated bias and average squared error curves show do 

not change qualitatively with the number of windows. Hence, Figure 7 shows these two curves for 

ony one window. G\ consistently has a larger bias than G2 and G3. It is noticeable that G? has 

overall the smallest bias. G4 has a small bias, but it is the only estimator that shows a positive 

bias in some range. G\ has the largest average squared error, which becomes indistiguishable from 

that of G2 as the number of windows increases. As expected, G3 has overall the smallest average 

squared error: that of G4 lies between ASE3 and ASE2. 

Figure 8 shows the average of the difference of absolute error curves. For all t, DAE14 

and DAE24 are positive. Hence, this criterion indicates that on average G4 performs better than 

G\ and Gi- On the other hand, DAE3.4 is negative for almost every t (except when t is large), 

indicating that G3 does a better job than G4 estimating the nearest neighbor distribution if the 

underlying process is Poisson. 

7. Conclusion 

The three types of processes studied in the previous sections were chosen in order to analyze 

and compare the behavior of four estimators of the nearest neighbor distribution under diverse 

alternatives. If the process is Poisson or very nearly Poisson. G3 will be the best estimator because 

of the way the maybe case is handled: the unknown probability is imputed with the approximate 

corresponding Poisson probability, which in these cases will be very close to the truth. On the other 

hand, by imputing using a more empirical approach, G\ does nearly as well in these circumstances. 

That is. G4 does not depend on a Poisson assumption for its edge correction to make sense, and 

that is the reason that in non-Poisson processes, where G3 sometimes performs badly, G4 performs 

well. In terms of mean squared error, in all three processes considered G\ performs uniformly 

better than G\ and G2, and the bias of the three is of the same order. Thus, overall, G4 appears 

to be a better estimator than Gi, G2, and G3. 
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Figure 1. P is an event for which biP.t) is not fully contained in W. Ip{t) and Op(t) (shaded 

area) represent the parts of b(P.t) that are inside and outside W respectively. Given that Ip(t) 

contains only one event of the process (P itself), the objective is to estimate the probability of 

there being at least one event in Op(t). 

Figure 2. Denote by Ha the part of b(Pi,t) that lies outside the window W. and va the part of 

it that lies inside. Since in (a) va is empty, Pi is in the maybe case as described in the text. In 

(b). it can be seen that P4 is analogous to Pi because w, only contains P4, whereas in (c) it can 

be observed that Pi is not because P3 is also in vc. In (d), by rotating b(P2,t) by approximately 

157° counterclockwise. Pi becomes analogous to Pi. In fact, there exists a continuum of angles for 

which this is case. 

Figure 3. This figure shows the estimated bias of the four estimators when the Neyman-Scott 

process described in the text is observed through multiple windows. For each number of windows, 

-V = 25.000 replications were run. G\. G2, and G\ are plotted using the same vertical scale. Since 

the bias of G3 is larger than the other biases by one order of magnitude, it is plotted separately. 

Figure 4. These plots show the average difference of the absolute errors for Gi, G2, and G3 when 

compared to Ö4 when the Neyman-Scott process described in the text is observed through two, 

three, four, and five independent unit square windows. 

Figure 5. These figures show the average bias curves of G3 and (54 in the multiple window scenario 

for the perturbed grid. The shaded areas represent 95% confidence intervals for the average bias. 

Notice that the vertical scales are not the same. 

Figure 6. These plots depict the average squared error curves of the four estimators when the 

perturbed grid is observed through multiple windows (one through five). All estimators have their 

ASE's in the same range. 

Figure 7. For one observation unit square window, the bias and average squared error of the four 

estimators when the process is Poisson are shown. 

Figure 8. These plots show the average difference of the absolute errors obtained by comparing 

G\, 6':. and G3 to G4 for simulations on one through five windows when the process is Poisson. 

All three plots have the same vertical scale. 
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