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Executive Summary 

This documentation is the final technical report for work performed under AFOSR grant 

F49620-94-1-0228. The title of this project was "Atomistic calculations of defects in ZnGeP2" 

and the Principal Investigator was Ravi Pandey, Physics Department, Michigan Technological 

University, Houghton, MI 49931. This was a one-year research program to use atomistic 

modeling techniques to study defect energetics in ZnGeP2- During the grant's active period, the 

following reports have been published/submitted for the publication. 

(i)       M. H. Rakowsky, W. J. Lauderdale, R. A. Mantz, R. Pandey and P. J. Drevinsky, 

Symposium A, Proceedings of the Fall meeting of MRS 1994. 

(ii)      P. Zapol, R. Pandey, M. Ohmer and J. Gale, 1995, submitted for publication. 

Our atomistic approach uses two- and three-body interatomic potentials to simulate the 

perfect ZnGeP2 in the framework of the shell-model with fractional charges for the constituting 

ions in the lattice. The lattice and dielectric constants are well described by this potential model. 

This model is then used to calculate defect energies of several plausible types of ionic and 

electronic defects using the Mott-Littleton methodology. 

Although cation lattice disorder is predicted to be the dominant native defect, the dominant 

defects controlling the properties of interest would seem to be the zinc acceptor vacancy (binding 

energy of 0.57 eV) which is partially compensated by a phosphorus donor vacancy (binding 

energy of 0.68 eV). For the EPR-active acceptor center, the calculated binding energies and 

lattice distortion corroborates the ENDOR spectrum associating the zinc vacancy with the 

acceptor center. 
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I. Introduction 

Ternary chalcopyrite semiconductors are known to have large nonlinear opti- 

cal coefficients making them candidates for second harmonic generation and 

optical parametric oscillator applications.1-3 In this group, zinc germanium 

phosphide (ZnGePj) is one of the most promising member and has been 

proposed for 2.05 ^m-pumped type-1 oscillators.4-6 However, the presence 

of an absorption band near the pump wavelength limits the effectiveness of 

this material for device applications. This absorption band in the spectral 

region of 1-2/im has been attributed to photo-ionization of a highly compen- 

sated deep native acceptor center (referred to as ALI).'-10 The acceptor is 

attributed to a zinc vacancy and its binding energy (E„) is given as 0.4 to 0.6 

eV. It is suggested that the compensating donor is a phosphorous vacancy. 

There is no indication in the literature of its binding energy since it can not 

be easily determined as all bulk crystals are semi-insulating p-type. In an 

analogous way, it should be a deep donor since in CdSiP2 the P vacancy 

donor binding energy (Ec) has been given as 0.63 eV8 and the P vacancy 

donor in GaP, the binary analog of ZnGeP2, is estimated as 0.3 eV.9 The 

concentration of both acceptors9 and donors7 has been typically in the range 

of 1019 cm"3. 

The EPR studies on as-grown ZnGeP2 have observed an acceptor center 

in the lattice with concentrations exceeding 1019 cm-3. This EPR-active 

center (related to the ALI center) is considered to be associated with the 



native defect-complex involving either a zinc vacancy (Vzn) or a zinc ion on 

a germanium site (ZnGe).n A recent ENDOR study favors the singly ionized 

zinc-vacancy model.12 In addition, a photoinduced EPR13 study indicates 

that the P vacancy is the dominant donor in this highly compensated mate- 

rial. Thus, the experimental work on defect identification provides support 

for the traditional model described in the previous paragraph. 

Theoretical studies on this material have been limited to perfect lattice 

only. The results of electronic structure calculations based on density func- 

tional theory were compared to x-ray photoemission spectra.14 A successful 

attempt has also been made to perform lattice dynamics calculations within 

the framework of rigid ion model.15 However, none of the theoretical efforts 

have been directed to understand the properties of defects in this material. 

In this paper, we make such an attempt to perform a study on defective 

ZnGeP2 using atomistic simulation techniques based on the shell model. 

We will first calculate the energies of Frenkel, Schottky and antisite disorder 

in the lattice and will simulate the EPR-active acceptor center to provide 

the microscopic description for its identification. We note here that the shell 

model calculations have been shown as a highly effective tool for prediction 

of defect energetics in ionic and semi-ionic materials including sixfold and 

fourfold-coordinated structures.16,17 

In the following section, we briefly describe the shell-model and potential 

parameters to calculate the ZnGeP2 properties. The energetics and structure 



of ionic and electronic defects are discussed in Sec. III. The results are 

summarized in Sec. IV. 

II. Perfect Lattice 

We begin with the pair-potential description of the perfect lattice consisting 

of the shell-model ions. The two-body interionic potential energy is then 

the sum of the long-range Coulombic and the short-range non-Coulombic 

contributions. We use a simple analytical expression of the Buckingham 

type for the short-range interaction between ions i and j : 

Vij = A exp(-rij/p) - Cr'f, (1) 

where the term in r~6 is referred to as the dispersive term. 

In the shell-model,18 each point ion consists of a core of charge X, and 

a shell of charge Y, such that the total charge is the sum of the core and 

shell charges. The polarization of a shell-model ion is then described by the 

displacement of a shell from a core, the two being connected by a harmonic 

spring with a force constant K. 

Potential parameters, both in the analytical representation of short- 

range interactions (A,p and C) and in the shell-model treatment of ionic 

polarization (Y and K) are obtained by empirical fitting to the crystal struc- 

ture19 and known elastic and dielectric constants.20 The fractional coordi- 

nate of the P shell was also taken as a parameter because the location of the 



shell in the lattice is unknown.21 Fitting and all calculations were performed 

using the program GULP.22 

ZnGeP2 crystallizes in the chalcopyrite phase with a symmetry space 

group of Dj2. The chalcopyrite phase can be considered as a superlattice 

of the cubic zincblende with the c/a — 2.1 It can easily be obtained by 

replacing each half of cations by Zn and Ge ions respectively, and introducing 

slight distortion (i.e. c/a = 1.958) along z-axis in the zincblende phase (see, 

Fig.l). The tetrahedral coordination in the ZnGeP2 lattice suggests that 

the covalent bonding (with sp3 hybrid bonds) predominates. On the other 

hand, the composition of the cation sublattice (consisting of Zn and Ge) 

indicates a significant presence of the ionic character in the bonding. 

Realizing this, we therefore do not begin with fully ionic model assuming 

Zn2+, Ge4+ and P3_ ions, rather we fit the charges of the constituting ions 

to experimentally measured crystal constants.19 In this way, covalency is 

taken into account by use of the empirical fitting method which yields the 

fractional charges of +1.2 for Zn, +1.8 for Ge and -1.5 for P. A similar use 

of fractional charges was proposed in the lattice dynamics calculations of 

ZnGeP2.
15 

In addition, three-body potentials were used for more accurate treatment 

of the many-body effects. They were taken in the Axilrod-Teller form,23 

which is derived from third-order perturbation theory as a triple-dipole in- 



teraction: 

Vijk = kijk (1 + 3 cos9i cos 9j + cos 9k) / RfR}R%, (2) 

where k^k is a coefficient, 0, and Ä,- are i-th angle and side of the triangle 

formed by ions i, j and k. 

Table 1 lists the potential parameters representing the interionic inter- 

actions in the lattice. In this potential model, we neglect the cation-cation 

short-range interactions and treat the Zn and Ge ions as rigid ions in the 

lattice. The calculated lattice properties are compared with the experimen- 

tal data in Table 2. Accordingly, the potential model reproduces the lattice 

structure very well. The overall good agreement between the calculated and 

experimental properties for the perfect lattice provides us a sound basis for 

extending the model to defect calculations. In the absence of experimetal 

data for elastic constants, we take guidance from the lattice dynamics calcu- 

lations where a phenomenological rigid ion model with partial ionic charges 

was used to reproduce the vibrational spectrum of ZnGeP2-24 

III. Defects 

Defect energies of several plausible types of ionic and electronic defects have 

been calculated using the Mott-Littleton methodology.25 Here, the lattice 

containing a defect is divided into two regions. Atoms in the inner region 

(immediately surrounding the defect) are treated explicitly and allowed to 



relax during the minimisation procedure. The response of the outer region is 

obtained using macroscopic dielectric theory. In the present calculations the 

inner region consists of approximately 150 atoms. An increase of this region 

size introduces the change in defect energies less than 0.03 eV showing a 

satisfactory accuracy of our results. Note that given adequate pair-potential 

description of the lattice, these calculations have been proven to provide 

reliable values of defect energetics.1' 

The calculated Schottky, Frenkel and antisite pair formation energies 

are listed in Table 3. In ZnGeP2, the Schottky defect is (V^n+VGe+2VF), 

the Frenkel defect pairs are (Vzn+Zn;), (Vce+Ge,) and (Vp+P;) and the 

antisite pair in the cation sublattice is (ZnGe+Ge^n). As shown, the lowest 

formation energy comes out to be for (ZnGe+Ge£n) antisite pair. The mag- 

nitude of this energy is small (0.25 eV) suggesting that appreciable disorder 

would occur in the cation sublattice at higher temperatures. These antisite 

defects are then followed by the Frenkel pairs of Zn and Ge. For Schottky 

pair, the large formation energies would seem to preclude their existence as 

intrinsic point defects in the lattice. 

Experimentally, electronic defects including both electron and hole cen- 

ters in as-grown ZnGeP2 have been identified by the magnetic resonance 

studies. An EPR spectrum associated with a hole center was first observed 

by Kiel26 who suggested the center to be Pip, analogous to the V^ cen- 

ter in halides. Recently, Rakowsky et al. have performed a detailed study 



of the angular dependence of the EPR spectrum suggesting that either a 

zinc vacancy or a zinc ion on a germanium site forms the acceptor center. 

Their hyperfine analysis indicates that the hole is equally shared between 

two near-neighbor phosphorous ions.11 A recent ENDOR study favors the 

singly ionized zinc-vacancy model based on the requirement of a large lat- 

tice distortion near the defect complex.12 It was suggested that the observed 

change in the angle between inter-phosphorus axis and the basal plane of 

the crystal can only be due to the presence of the zinc vacancy. 

For calculations, we follow a similar approach proposed first for tetra- 

hedrally coordinated semiconductor, ZnSe.16 Our aim is to obtain binding 

energy and lattice distortion in both the possibilities for the acceptor center 

i.e. a hole may be trapped near a zinc vacancy forming a center similar to 

the V- center in oxides27 or may be localized in the vicinity of an antisite 

defect, Znce- Since the EPR specta clearly identifies the hole be shared 

equally by a pair of near-neighbor phosphorous ions, its binding energy is 

then 

BE = TE(h2 + D)-TE{h2)-TE(D), (3) 

where D is either VZn or ZnGe and TE refers to the total energy of the 

defect-complex. Furthermore, we also consider the cases where either the 

hole is localized near only one of the near-neighbor P ion (i.e. 1-center 

case) or distributed over all of the near-neighbor P ions (i.e. 4-center case). 

In these calculations, we assume that the trapping of a hole only changes 

9 



long-range Coulombic interactions. Short-range interactions between P ions 

sharing the hole and the surrounding ions are taken to be that of the perfect 

lattice. 

Table 4 lists the calculated binding energies of the hole centers in ZnGeP2- 

The binding energy of a hole shared by two near-neighbor P ions (i.e. 2- 

center case) comes out to be much larger in the vicinity of the Zn vacancy 

than that of the Znae site. This clearly demonstrates that the (h2+V^n) 

defect complex is relatively more stable in the lattice. Comparing the bind- 

ing energies for different hole localization regions in both Zn vacancy and 

antisite cases we can see a striking distinction. The hole tends to be localized 

near Zn vacancy, i.e. the more hole is localized, the larger is binding energy. 

But the trend is exactly opposite for the antisite defect and a hole cannot 

be localized near the ZUGC site. Thus, the acceptor center can only be sta- 

bilized by the Zn vacancy in the lattice. This conclusion is also supported 

by the defect geometry considerations in the lattice. For (h2+Vzn), the 

nearest neighbor P ions relax significantly (12% of a bond length) towards 

the vacancy, whereas only a small relaxation (2% of a bond length) occurs 

for these ions for the (h24-Znce) defect complex. The results therefore show 

that the the association of the zinc vacancy introduces a very large distor- 

tion in the lattice corroborating the analysis of the ENDOR spectrum. We 

also note here that the acceptor binding energy comes out ot be 0.57 eV as 

compared to the experimental value of 0.5-0.55 eV obtained from temper- 

10 



ature dependence of the Hall effect or of the resistivity.7,28 On the other 

hand, analysis of IR absorption spectra generally gives a value in the range 

of 0.6-0.7 eV.29 

For the acceptor center associated with the Ge vacancy, the calcula- 

tions predict binding for the hole only in the 1-center model. For the 2- and 

4-center cases, the defect-complex is not stable (Table 4). There is no experi- 

mental observation that the Vce defect-complex whose stability we calculate 

exists. The litreture just does not address the possibility that two native ac- 

ceptors exist. However, it is possible to re-interpret past data in light of this 

result. If the Vc?e defect is well compensated, then Hall effect data would 

reveal only the deeper Vzn defect. On the other hand, if the VG£ defect is 

only partially compensated, the Hall data would reveal its activation energy, 

or in the special case that the defect is nearly exactly compensated, the ap- 

parent activation energy from a two level acceptor-donor analysis would be 

the average of the deeper and shallower energy. Using the energies in Table 

4 as an example, one could expect to see a range of Hall activation energies 

(i.e. 0.2, 0.35 and 0.57 eV) due to changes in the compensation level. 

Sodeika et al.8 have reviewed observed Hall activation energies ranging 

from 0.3 to 0.57 eV in ZnGeiV Using a two level model, they have at- 

tributed this variation to interactions with a nearby compensated donor at 

high compensation levels which has the effect of moving the isolated acti- 

vation energy from the deeper value to the shallower value. In a three level 

11 



model such a change in Hall activation energy can be explained by vary- 

ing the compensation ratio of the shallower acceptor from less than one to 

greater than one. Very clear examples of shallow Hall activation energies 

ranging from 0.31, 0.33 and 0.35 eV are referenced.8 This could be inter- 

preted using a three level model as a case where the partially compensated 

shallow Vcve defect activation energy of 0.31-0.35 eV is being observed di- 

rectly. When it is overcompensated the activation energy of 0.50-0.57 eV of 

the \rzn defect is observed. Past photoluminescence studies of ZnGei^ rnay 

also have revealed the VG<. defect as compensated centers. For example, in 

a massive study of over a 100 samples grown in different ways and variously 

doped Averkieva et al.30 report that luminescence is generally seen at ap- 

proximately 1.6 and 1.3 eV attributed to two levels located 0.49 and 0.79 

eV from a band edge. In a three level model, we suggest that the 1.6 eV 

recombination energy could be attributed to the Voe defect and 1.3 eV to 

the Vzn defect. Therefore, reported Hall effect and photoluminescence data 

are compatible with a three level model (i.e. two acceptors and one donor) 

where one of the acceptor is significantly shallower, experimentally by 0.27 

eV, in reasonalble agreement with the calculated difference of 0.37 eV. 

While the zinc vacancy is the dominant acceptor in ZnGeP2, the phos- 

phorous vacancy(Vp) is found to be the dominant donor in the as-grown 

material that is associated with a photo-induced EPR center in the lat- 

tice.13 The proposed model for this EPR-center suggests that two zinc ions 

12 



neighbouring to the phosphorous vacancy unequally share an unpaired spin. 

At present, electron density distribution calculations are beyond the limita- 

tions of this atomistic shell model. However, we can calculate the binding 

energy of the defect complex assuming an equal sharing of the electron by 

two zinc atoms near the P vacancy. The binding energy comes out to be 

about 0.68 eV showing that the EPR-center is very stable in the lattice. 

Finally, in many previous studies14,15 the chalcopyrite phase was re- 

placed by the zincblende phase, assuming that the small distortion along 

z-axis does not significantly contribute to the ZnGeP2 properties. We veri- 

fied this point using identical potential parameters for the zinc blende phase. 

Defect energies for both phases show a very similar trend. We may there- 

fore conclude that the consideration of zincblende as the structural analog 

of chalcopyrite is also valid for defects calculations. 

IV. Summary 

The work described here has demonstrated that ZnGeP2 can be simulated 

successfully in the framework of the shell-model with fractional charges for 

the constituting ions in the lattice. The lattice and dielectric constants are 

well described by this potential model. 

The calculated defect energies and lattice distortion corroborates the 

END OR spectrum associating the zinc vacancy with the acceptor center in 

ZnGeP2 and the calculated binding energies for it are in agreement with 

13 



values reported from absorption and Hall effect measurements. The binding 

energy of the P vacancy donor has been found to be deep as anticipated and 

its value of 0.68 eV is reported here for the first time. 

On the other hand, cation sublattice disorder in the form of antisite 

defect pairs is predicted to be the dominant native defect on the basis of 

formation energies. If antisites are present in large concentration their be- 

havior must be quite benign. From our calculations, a hole cannot bind 

to a Zn antisite so this defect cannot behave as an acceptor as generally 

expected.11 If there is a similar inability to bind a charge carrier to the 

Ge antisite, then antisites will not play a dominant role in determining the 

properties of the material. 

There is no direct evidence that the Ge vacancy acceptor defect whose 

properties we calculated exists. However, reported Hall effect and photo- 

luminescence data are shown to be compatible with the existence of two 

accptors where one is significantly shallower, experimentally by 0.27 eV, in 

reasonable agreement with calculated difference of 0.37 eV. Furthermore, we 

note here that the observed cation vacancy defect corresponds to the cation 

with the larger ionic radius in diamond-like semiconductors as a result of 

a size mismatch driven process to minimize strain. Examples are HgCdTe, 

CuInSe2, CuInS2, CdGeAs2, and CdSiP2. 

The dominant defects controlling the properties of the material would 

seem to be the Zn vacancy with a binding energy of 0.57 eV which is partially 

14 



compensated by a P donor vacancy which has a binding energy of 0.68 

eV. However, a three level model which includes the shallower Ge vacancy 

acceptor defect which is usually overcompensated cannot be ruled out. 
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Fig. 1 : Crystal structure of ZnGeP2- 



Zn Ge P 



Table 1: Two-body and three-body short-range interaction and shell-model 
parameters for ZnGeP2- The charges on ions are taken to be -1.5e, 1.2e and 
1.8e for P, Zn and Ge respectively. 

A(eV) P(A) k(eVÄ~9) Y(e) K(eVA"2) 

Gec-P3 328.03 0.3937 
Znc-P5 675.61 0.3243 

P,-P, 52905.81 0.2795 

P.-P.-P, 1241.15 
Gec-P3-?s -99.37 
Znc-?s-?3 -258.9 

Pc-P, -1.674 1.01 

2\ 



Table 2: Calculated and experimental bulk properties of ZnGeP2. 

Property Calculated Experimental 
Lattice constants, A 
a 5.462 5.467° 
c 10.717 10.715° 
c/a 1.962 1.958 

Elastic constants, dyn < :m~2 

Cu 8.32 8.7b 

C\2 4.47 6.6* 
C\3 4.91 6.46 

C33 8.34 8.16 

C44 3.50 2.96 

C*66 3.23 2.8fc 

Dielectric constants 
€0 11 10.89 11.21fl 

€0 33 12.15 11.40c 

*co  11 9.44 9.75c 

foo 33 9.89 9.91c 

a. Ref. [19]. 
b. Values from lattice dynamics calcula- 

tions, Ref [24]. 
c. Ref. [20]. 
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Table 3: Defect formation energies in ZnGeP2. 

Defect Formation energy, eV 
Antisite pair 
{ZnGe+GeZn) 0.25 

Frenkel pair 
Zn 2.2 
Ge 4.1 
P 9.3 

Schottky pair 17.4 

Table 4:  Binding energies of electronic defects in ZnGeP2.   (The positive 
values indicate the stability of the defect complexes in the lattice.) 

Defect Binding energy, eV 

Hole near V'zn 

1-center 0.57 
2-center 0.35 
4-center 0.12 

Hole near ZnGe 
1-center -0.01 
2-center -0.08 
4-center 0.17 

Hole near Vc?e 

1-center 0.20 
2-center -0.18 
4-center -0.35 

Electron near Vp 
2-center 0.68 
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