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Abstract 
This review broadly examines the interactions between freeze-thaw processes 

and soil chemistry, focusing on 1) the effect of solutes on physical properties 

such as freezing-point depression, unfrozen water and frost heaving, 2) the 

effect of freeze-thaw cycles and low temperatures on soil chemistry, and 3) 

modeling of freeze-thaw processes and chemistry. The presence of solutes 
causes a freezing-point depression, which increases the amount of unfrozen 
water in soils. Liquid films on soil particles provide the dominant route for the 

flow of water and associated solutes in frozen soils. In general, salts reduce the 

hydraulic conductivity and water flow to the freezing front, which reduces frost 

heaving. Solute exclusion during freezing leads to supersaturated solutions, 

which promotes the precipitation of secondary minerals in soils. At the water- 
shed level, ionic concentrations in early meltwaters are often 2-9 times higher 

than snowpack concentrations. Temperature is the dominant factor controlling 

decomposition rates, with minimal detectable rates occurring at temperatures 

as low as -10°C; both bacteria and fungi are physiologically active at subzero 

temperatures. Extracellular enzymes are active in soils at temperatures as low 

as -20°C; this activity is thought to occur in unfrozen water on surfaces of soil 

particles. Nitrogen mineralization is reported at temperatures as Iowas 1 °C and 
is promoted by freeze-thaw cycles. There are strong and complex interactions 

among soil properties that control solute and water flows along concentration, 

temperature and hydrostatic gradients in freezing and frozen soils. These com- 
plex interactions necessitated development of computer simulation models 

that can integrate physical-chemical properties and processes. 

For conversion of SI units to non-SI units of measurement consult Standard 
Practice for Use of the International System of Units (SI), ASTM Standard E380- 
93, published bythe American Societyfor Testing and Materials, 1916 Race St., 

Philadelphia, Pa. 19103. 

This report is printed on paper that contains a minimum of 50% recycled 

material. 
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Freeze-Thaw Processes and Soil Chemistry 

GILES M. MARION 

INTRODUCTION 

This review will broadly examine the interac- 
tions between freeze-thaw processes and soil 
chemistry, relying primarily on the empirical 
record; the theoretical foundations for freezing and 
chemical interactions were discussed in another 
report (Grant, in prep.). In the first part of this re- 
port, I examine the effect of soil chemical proper- 
ties on physical factors associated with freezing 
and thawing, such as freezing-point depression, 
unfrozen water content and frost heaving. The 
second part of this report will examine the effect 
of physical factors such as freeze-thaw processes 
and subzero temperatures on chemical reactions 
and chemical transport in soils. Then the effect of 
freeze-thaw processes and subzero temperatures 
on soil biology and soil remediation will be exam- 
ined. And finally I will examine theoretical mod- 
els for freezing and thawing processes that 
explicitly include chemistry. 

EFFECTS OF CHEMISTRY ON 
SOIL FREEZING AND THAWING 

Two important ways in which soil chemical 
properties influence soil physical properties in 
freezing and thawing environments are through 
freezing-point depression and unfrozen water con- 
tent. These properties, in turn, affect water and 
solute movement in frozen soils, which influenc- 
es soil strength, frost heaving and contaminant 
transport. 

Soil moisture 
Solutes lower the freezing point of water. The 

freezing-point depression in dilute solutions is 
given by the Van't Hoff equation (Lewis and Ran- 
dall 1961): 

dT/dmB « -RT7(55.5 AH) (1) 

where mB = molality of solute B (mol kg-1) 
T = temperature (K) 
R = gas constant (J K_1 mol-1) 

AH = enthalpy of fusion of ice (J mol-1). 

This equation simplifies to: 

AT = -1.860 (vmB) (2) 

where AT is in °C and v is the number of aqueous 
species resulting from the dissolution of the solute 
(e.g., 1 for sucrose, 2 for NaCl, 3 for CaCl2) (Lewis 
and Randall 1961). Therefore, the freezing point of 
a 0.1-mol kg-1 NaCl solution would be 0.37°C lower 
than the corresponding freezing point of pure 
water. 

Equation 2 is general for "dilute" solutions and 
holds for all chemical species regardless of their 
degree of dissociation. However, departures from 
the limiting slope of -1.86°C/vm are apparent at 
concentrations > 0.2 vm (Fig. 1). These departures 
are most significant for electrolytes that dissociate 
into ions of higher valences (i.e., MgS04 > Na2S04 

> NaCl). Part of the explanation for the deviations 
from the limiting slope are attributable to ion pair- 
ing between oppositely charged species, which de- 
creases the true concentration of chemical species 
in solution (e.g., one MgSO° ion pair instead of two 
separate Mg2+ and SO4" ions). In general, the 
strength of ion pairing is proportional to the prod- 
uct of the ionic charges (Davies 1962). Therefore, 
di-divalent ion pairs such as MgSO° are much 
stronger than uni-univalent ion pairs such as 
NaCl0. 

For a few salts, primarily highly soluble chlo- 
rides and sulfates, it is possible to construct com- 
plete phase diagrams at subzero temperatures. A 
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Figure 1. Freezing-point depression for three salt solutions. The data were taken 
from Linke (1965). 

phase diagram for the H20-NaCl system at sub- 
zero temperatures (Fig. 2) is very useful in describ- 
ing the change in the solution phase as ice and 
NaCI precipitate during the freezing process. 
Assume an initial NaCI concentration of 1.00 mol 
kg"1 and an initial temperature of 0°C. As this so- 
lution cools below 0°C, the NaCI concentration will 
remain constant until the temperature reaches 
-3.3°C, when ice, largely a pure phase, will begin 
to precipitate, concentrating NaCI in the remain- 
ing unfrozen solution. If equilibrium is maintained 
between the solution and ice phases during freez- 

ing, then the NaCI concentration in solution will 
follow the ice-solution equilibrium line, increas- 
ing in concentration as temperature decreases until 
it reaches the eutectic composition at -21.2°C and 
5.17 mol kg^1, at which point the residual solution 
will solidify as a mixture of ice and NaC12H20. 

The phase diagram (Fig. 2) can be used to esti- 
mate the unfrozen water content at any point in 
the freezing process. To facilitate these calculations, 
the following polynomial equations were fitted to 
the ice-solution and solution-NaC12H20 equilib- 
rium data: 
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Figure 2. Stability diagram for the NaCl-H20 system at subzero temperatures. 



(3) 

AT = -0.13-2.978 mNaC1 

-0.211 m^aci   (ice-solution) 

K2 = 1.000 

AT = -42.37-12.082 mNaC1 

+ 3.131 mäaci(solution-NaCl-2H20)   (4) 

R2 = 0.964 

and 

Wu = mBi/mBf (5) 

where     AT = freezing-point depression 
mNaC1 = NaCl molality 

Wu = fraction of unfrozen water 
mBi and mBf = initial and final molalities. 

Equation 5 assumes the precipitation of a pure ice 
phase. At -10° and -20°C, the corresponding NaCl 
molalities are 2.77 and 4.94 mol kg-1, respectively 
(eq 3). Therefore, the unfrozen water contents at 
-10° and -20°C for a solution that was initially 1.0 
mol kg-1 are 0.361 (1.0/2.77) and 0.202 (1.00/4.94), 
respectively (eq 5). Conversely the frozen percent- 
ages are 63.9 and 79.8%. If the initial NaCl solu- 
tion was 0.01 mol kg-1, then the unfrozen fraction 
at -20°C would be 0.00202 (0.01/4.94), with a fro- 
zen percentage of 99.8%. Clearly the concentration 
of salts in the solution phase during the freezing 
process, because of salt exclusion from the ice 
phase, can substantially alter the freezing point 
and unfrozen water contents of solutions. 

The NaCl-H20 phase diagram also demon- 
strates that an NaCl aqueous solution with an ini- 
tial concentration <5.17 m will not precipitate 
NaCl -2H20 until the temperature drops to -21.2°C 
and the NaCl molality increases to 5.17 mol kg-1 

(the eutectic point). On the other hand, if the ini- 
tial NaCl molality is >5.17 mol kg-1, then 
NaCl-2H20 will be the initial phase to precipitate 
and ice will not form until the temperature drops 
to -21.2°C and the NaCl concentration decreases 
to 5.17 mol kg"1. 

For soils the major factors influencing the freez- 
ing-point depression and unfrozen water contents 
are temperature, adherence of water to soil parti- 
cles and solute concentrations (Hoekstra 1969, 
Anderson and Morgenstern 1973, Perfect et al. 
1991, Frolov and Komarov 1993). The pure NaCl- 
H20 phase diagram (Fig. 2) neglects soil solid- 

water interactions and as a consequence only dem- 
onstrates qualitatively what might occur in a soil. 
For example, Frolov and Komarov (1993) demon- 
strated that NaCl solutions in soil remain unfro- 
zen to temperatures lower (-24°C) than the eutectic 
for pure NaCl (-21.2°C, Fig. 2), presumably due to 
capillary effects. 

Banin and Anderson (1974) examined solute 
effects on freezing-point depression by comparing 
the freezing points of soils, with and without NaCl 
additions. They found excellent agreement be- 
tween experimental measurements and a theoret- 
ical solute model at low NaCl concentrations and 
a small but consistent underestimate (10-20%) of 
the experimental freezing point at higher NaCl 
concentrations. Suleimanov and Andronova (1990), 
using a similar theoretical solute model, reported 
a similar underestimate of the measured freezing 
point. Both studies suggested that this discrepan- 
cy was due to the inhomogeneous distribution of 
salt in water because of the negative adsorption of 
anions (anion repulsion) near negatively charged 
surfaces, which resulted in abnormally high salt 
concentrations in the bulk solution. 

Yong et al. (1979) developed an unfrozen soil 
water model that explicitly accounts for negative 
salt adsorption using diffuse double-layer theory. 
This model showed excellent quantitative agree- 
ment with a montmorillonite soil sample but only 
qualitative agreement for kaolinite and grundite 
soils. This discrepancy was attributed to the mod- 
el requirement for interlamellar migration of 
water in soil freezing, which is a reasonable 
assumption for montmorillonite but not for kaolin- 
ite or grundite. Yong et al. (1979) also pointed out 
examples where pure solution theory contradicts 
experimental measurements. For example, the 
unfrozen water content at subfreezing tempera- 
tures first decreases with the addition of salt to a 
minimum value around 10-3 mol L-1, then increas- 
es with increasing salt concentration, as would be 
predicted from pure solution theory. There are 
strong interactions among soil surface area, 
charged surfaces, soil salts and moisture that con- 
trol freezing-point depression and unfrozen water 
content of soils. A model that can describe these 
interactions quantitatively over a broad range of 
salt concentrations does not exist at present. 

A number of papers have reviewed the physics 
of moisture movement in freezing and frozen soils 
(Hoekstra 1969, Anderson and Morgenstern 1973, 
Miller 1980, Perfect et al. 1991). This is a broad field, 
much studied and for the most part beyond the 
scope of this review. For the purposes of this re- 



view, I want specifically to examine the roles of 
soil chemical properties on moisture movement in 
freezing and frozen soils. Before discussing chemi- 
cal effects, however, we need a theoretical frame- 
work for the discussion. 

Following Perfect et al. (1991), we will use the 
nonequilibrium thermodynamic approach, where 
fluxes are written as explicit functions of both 
direct and coupled transport phenomena. For ex- 
ample, 

L=-K^T/T-LwwVpl 

-LwsV7t-LweVe 

:-LshV77r-LswVpZ 

-LssVm-L^Ve 

(6) 

(7) 

where       ;w and ;'s= fluxes of liquid water and 
solute 

VT, Vpl, Vn and Ve= gradients in temperature, 
hydrostatic pressure, solute 
concentration and charge 

Lmn = transport coefficient relating 
the mth flux (/m) to the nth 

component. 

Fluxes and their driving forces (gradients) in fro- 
zen porous media are summarized in Table 1. 

Water moves in soil (/w) in response to changes 
in the chemical potential of water, which is related 
to gradients in the hydrostatic pressure (VpZ) (Dar- 
cy's Law), temperature (thermo-osmosis), solute 
concentration (capillary osmosis) and electrical 
potential (electro-osmosis) (Table 1, eq 6). 

At the freezing front in dilute solutions, anions 
(generally) are preferentially absorbed into the ice 
phase, leading to a measurable charge separation 
(freezing potentials); this phenomenon is called the 

Workman Reynolds Effect (Drost-Hansen 1967, 
Murphy 1970, Hartley and Rao 1982). Freezing po- 
tentials are properties of dilute solutions and pure 
water and disappear at high concentrations (Drost- 
Hansen 1967, Murphy 1970). Although Hanley 
and Rao (1982) developed a model to quantify the 
relation between freezing potentials and the mi- 
gration of moisture and ions in freezing soil, the 
overall significance of this phenomenon for soil 
freezing is unclear. Another electrical phenome- 
non, electro-osmosis, can cause considerable wa- 
ter movement, but this is only important in cases 
where induced electrical potentials are applied to 
soils (Hoekstra and Chamberlain 1964). Outcalt et 
al. (1989) monitored electric potentials in freezing 
soils during diurnal and seasonal freeze-thaw 
cycles. They concluded that the rapid and system- 
atic pattern of electrical potential variation dur- 
ing freeze-thaw events demonstrates that the 
effects of electrolyte concentration and dilution are 
products of evaporation-distillation, melting of 
frost-purified ice, soil water advection to the freez- 
ing region, electrolyte expulsion from the freez- 
ing region and infiltration of rain and snowmelt. 
They further concluded that soil electrical poten- 
tials will yield valuable information concerning 
the state and mobility of soil water in freezing and 
thawing soils. 

In general, water moves from warm to cold, 
from regions of low solute concentration to high- 
solute regions and from high-moisture zones to 
low-moisture zones (Perfect et al. 1991). Chemical 
potentials of water due to gradients of hydrostat- 
ic pressure, solute concentration and temperature 
interact additively to create a strong thermody- 
namic sink for liquid water at the freezing front 
(Fig. 3). As soils freeze from the top downward, 
the thermal gradient will induce an upward flow 
of water to the freezing front. Solutes are largely 
excluded in the freezing process, and maximum 
solute concentrations are generally found imme- 

Table 1. Matrix of direct and coupled transport phenomena in frozen 
porous media. (After Perfect et al. 1991). 

Flux VT 
Drivingforce 

Vpl VTI VE 

;h FOURIER'S LAW* 

;w Thermo-osmosis 

;'s Soret Effect 

Jc 

Thermofiltration 

DARCY'S LAW 

Reverse osmosis 

[Dufour Effect]1" 

Capillary osmosis 

FICK'S LAW 

Peltier Effect 

Electro-osmosis 

[Electrophoresis] 

[Seebeck Effect]    Streaming potential    [Diffusion potential]       OHM'S LAW 

* Direct processes are upper case; coupled processes are lower case. 
+ No reference to bracketed processes found in the soil freezing literature. 



Soil Surface 

Frozen Fringe 

Cold 

c o 

5 

Chemical 
Potential 
of Water 

Freezing Front 

Unfrozen Soil 

1 
-I 

/ 
/ 

/ Salt 
#        Concentration 

Water Table Warm 

Low 
Salt Concentration 

Chemical Potential of Water 
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diately in front of the freezing front (Hallet 1978, 
Miller 1980, Kay and Groenevelt 1983, Hofmann 
et al. 1990). This solute (or osmotic) gradient will 
generally induce an upward movement of water. 
And last, freezing of soil water, which is analo- 
gous to soil drying (Lahav and Anderson 1973, 
Miller 1980), creates a strong sink for water and 
induces an upward movement of water to the 
freezing front. 

Under subzero temperatures some soil water 
remains unfrozen as thin films around soil parti- 
cles and serves as an avenue for the movement 
of both water and solutes in frozen soil. From 0°to 
-1°C there is an exponential decrease in the 
hydraulic conductivity (Lww, eq 6) of a frozen soil 
from 10"8 to 10-12-10"14 m/s; below -1°C the 
hydraulic conductivity remains essentially con- 
stant (Perfect et al. 1991). Solutes can theoretically 
increase the water flux, in part because of the di- 
rect effect on water diffusion (Lws in eq 6) but also 
because of indirect effects on freezing-point de- 
pression, unfrozen water content and increases in 
the thickness of soil moisture films (Anderson and 
Morgenstern 1973, Henry 1988). Despite these the- 
oretical considerations, it appears that the domi- 
nant effect of solutes is generally a reduction in 
hydraulic conductivity (Lww) that overwhelms the 
other terms in the water flux equation (eq 6). As a 
consequence, water flux to the freezing front is 
generally reduced by solutes (Kay and Scott 1973, 
Sheeran and Yong 1975, Chamberlain 1983, Cary 
1987, Ershov et al. 1992). 

Factors controlling the upward flux of water into 
the freezing and frozen soil zones are of critical 
importance in understanding practical problems 
associated with freezing and thawing phenomena 
such as soil strength and frost heaving. 

Soil strength 
Freezing, per se, invariably increases the me- 

chanical strength of soils because of the strong 
bonding between ice and soil particles (Mahar et 
al. 1983). Freezing and thawing can either increase 
or decrease soil strength, depending on the degree 
of thaw weakening. With respect to clays, Cham- 
berlain (1989) concluded that strength increases can 
be expected where there is an increase in consoli- 
dation and density during freezing and thawing; 
decreases in mechanical strength can be expected 
with highly cemented clays and clay soils that are 
highly overconsolidated before freezing. Rowell 
and Dillon (1972) found that clay aggregates were 
produced by freezing. After thawing, these aggre- 
gates swelled and dispersed, depending on elec- 
trolyte concentration, in a manner similar to 
aggregates formed by drying. 

The presence of salts in soils generally decreas- 
es mechanical strength (Tyutyunov and Derbene- 
va 1970, Tsytovich et al. 1973, Mahar et al. 1982, 
1983, Ogata et al. 1982, Chamberlain 1983). This 
decline in mechanical strength with increasing salt 
concentration is generally attributed to a lowering 
of the freezing point and, as a consequence, an in- 
crease in unfrozen water content. In addition to 



unfrozen water films around soil particles, larger 
unfrozen brine pockets can form during especial- 
ly rapid ground freezing of saline soils, which also 
decreases the mechanical strength of soils (Mahar 
et al. 1982, Chamberlain 1983). 

Kostetskaya (1977) found that NaCl brines freez- 
ing at the eutectic point (-21.2°C, 5.17 mol kg"4; 
Fig. 2) are sludge ice and have zero strength. How- 
ever, the addition of Na2S04 to the NaCl brines or 
to gravel soils containing the same brines increased 
strength. Ogata et al. (1982) found that the com- 
pressive strength for sands, silts and clays gener- 
ally decreased with increasing salinity. An 
exception to this generality occurred where soils 
were frozen at -32°C, where the compressive 
strength at 2 and 3% salinity was actually higher 
than at 1% salinity. They attributed this anomaly 
to the fact that -32°C was beyond the eutectic tem- 
perature of NaCl. Clearly complex interactions are 
possible among specific solutes, freezing and thaw- 
ing, and soil physical properties. 

Frost heaving 
From the classical papers of Taber (1929,1930) 

and Beskow (1935) to more recent reviews (Ander- 
son and Morgenstern 1973, Sheeran and Yong 1975, 
Gilpin 1980, Miller 1980, Chamberlain 1981, O'Neill 
1983, Derjaguin and Churaev 1986, Nakano 1990, 
Black and Hardenberg 1991, Perfect et al. 1991), 
frost heaving has been the subject of intense inter- 
est because of its importance for engineering in 
frost-susceptible environments. The stability of 
soils for road, railroad, airfield, building, under- 
ground storage and pipeline construction in cold 
regions are critically dependent on frost suscepti- 
bility. 

Frost heaving is due primarily to the formation 
of segregated ice lenses in soil and only secondari- 
ly to volumetric expansion of water during freez- 
ing (Anderson and Morgenstern 1973, Mageau and 
Morgenstern 1980, Miller 1980, Chamberlain 1981). 
Three conditions must occur simultaneously for 
frost heaving to occur: 

• A prolonged period of subfreezing tempera- 
tures; 

• Frost-susceptible soils; and 
• A source of water. 

Several models have been proposed to explain frost 
heaving (Miller 1980, Chamberlain 1981, O'Neill 
1983, Black and Miller 1985, Horiguchi 1987, 
Nakano 1990, Black and Hardenberg 1991), includ- 
ing: 

• The capillary (or primary) heaving model; 
• The secondary heaving model; 

• The adsorption model; and 
• The osmotic model. 

Although these models differ in the details of the 
mechanisms responsible for frost heaving, there 
is general agreement on the factors influencing 
frost heaving (Miller 1980, Chamberlain 1981, 
O'Neill 1983, Perfect et al. 1991). These factors in- 
clude: 

• Soil texture (silts are more frost-susceptible 
than either sands or clays); 

• Pore size (pore size controls capillary rise, soil 
suction and hydraulic conductivity, all of 
which are important in the movement of 
water to the freezing front); 

• Rate of heat removal (there is a maximum rate 
of frost heave at intermediate rates of heat 
removal); 

• Temperature gradient (this affects the thick- 
ness and hydraulic conductivity of the fro- 
zen fringe where ice lensing occurs) (Fig. 3); 

• Moisture conditions (saturated soils with 
high water tables are most susceptible to frost 
heaving) and 

• Overburden stress (the greater the overbur- 
den stress, the lower the frost heaving). 

In general, salts reduce frost heaving (Beskow 
1935, Kay and Scott 1973, Yong et al. 1973a,b, Shee- 
ran and Yong 1975, Chamberlain 1983). Exceptions 
to this generality exists. For example, Beskow 
(1935) found that dilute NaCl solutions (< 0.05 M*) 
accelerated frost heaving, but more concentrated 
NaCl (0.1 M) as well as CaCl2 (0.025-0.5 M) de- 
creased frost heaving. Because of the generally 
ameliorative effect, solutes have been examined 
for their ability to reduce frost heaving. Lambe and 
Kaplar (1971) and Lambe et al. (1971) evaluated 
more than 50 additives classified under four func- 
tional groups (void fillers and cements, ag- 
gregants, waterproofers, and dispersants) for their 
ability to modify frost heaving. They found that a 
dispersant, tetrasodium pyrophosphate (TSPP), 
and an aggregant, ferric chloride, possessed good 
frost heave modifying capabilities. Both additives 
reduced frost susceptibility in soils from "medi- 
um to high" to "very low to low." 

Sheeran and Yong (1975) have proposed five 
hypotheses to explain the effect of salts on frost 
heaving. Salts may affect: 

• The position and temperature of the freezing 
front; 

• The chemical condition of frozen soil; 
• The permeability of frozen soil; 

h M is molarity (mol L_1). 



• The rate of water movement to the feezing 
front; and 

• The freezing process. 
Salts are excluded in the freezing process, freez- 
ing points are depressed by salts, and unfrozen 
water contents are increased in the presence of 
salts. (See previous discussion on Soil moisture.) 
These factors would reduce the water available for 
forming segregated ice. Additionally, lower tem- 
peratures reduce the soil hydraulic conductivity 
(Perfect et al. 1991). Salts in feezing soils reduce 
the capillary rise and soil hydraulic conductivity 
(Kay and Scott 1973, Sheeran and Yong 1975, 
Chamberlain 1983, Cary 1987). These factors that 
reduce water flow to the feezing zone are proba- 
bly the most significant factors explaining lower 
frost heaving in the presence of salts. The frozen 
fringe generally thickens in the presence of salts 
(Sheeran and Yong 1975, Yong and Sheeran 1978, 
Chamberlain 1983), which could reduce the wa- 
ter flux to segregated ice lenses. 

Solutes clearly affect the lensing process (Shee- 
ran and Yong 1975, Chamberlain 1983). Chamber- 
lain (1983) found plentiful but thin ice lenses 
forming in the presence of salts. This type of ice 
lens formation could reduce the flow of water in 
the frozen fringe, where segregated ice forms. Salts 
can interact with soil particles, causing them to 
either aggregate or disperse, depending on solute 
type and concentration (Lambe et al. 1971, Sposi- 
to 1989); this, in turn, will affect soil permeability 
and the resultant water flux. 

Salts may also affect the depth of frost penetra- 
tion. The deeper the zone of feezing, the more 
important overburden pressure becomes in limit- 
ing segregated ice formation. Sheeran and Yong 
(1975) found that the depth to the feezing front 
decreased with increasing salt concentration. On 
the other hand, Mahar et al. (1983) found that the 
rate of advance of the freezing front increased with 
increasing salinity; they attributed this to the grad- 
ual release of the latent heat of fusion over a range 
of temperatures and depths due to changing sol- 
ute concentrations. Cary (1987), using a simula- 
tion model, predicted a greater depth of frost 
penetration with increased salt concentration. 

Contradictions abound in the literature on frost 
heaving, probably because of the complex inter- 
actions among the driving forces controlling this 
process. Frost heaving is clearly a complex pro- 
cess dependent on soil properties, moisture con- 
ditions, solute concentrations and eneigy balance. 
Such complexity can not be explained by simple 
models. Only a continuing effort to model this 

important phenomenon in all its complexity cou- 
pled with judiciously selected empirical lab and 
field studies, will ultimately lead to the ability to 
accurately predict frost heaving. 

EFFECTS OF FREEZING AND THAWING 
ON SOIL CHEMICAL PROPERTIES 

Freeze-thaw processes and low temperatures 
influence chemical reactions, chemical transport 
and nutrient availability in soils. These interac- 
tions, in turn, influence mineral weathering rates, 
pedogenesis, contaminant remediation and reveg- 
etation of disturbed lands in cold regions. 

Chemical reactions 
Two of the most important chemical reactions 

affected by freezing and thawing are precipitation- 
dissolution and cation exchange. Solute exclusion 
during ice formation leads to supersaturated solu- 
tions, which promotes the precipitation of second- 
ary minerals in soil, alters solution-phase 
compositions (which may promote the dissolution 
of primary minerals) and shifts equilibrium to- 
ward increased mineral weathering (Fig. 4) (Hal- 
let 1978, Zvereva 1982, Sletten 1988, Richardson 
et al. 1990). Martynenko et al. (1992) subjected 
ground primary minerals in oxalic acid solutions 
to 70 freezing cycles. The interaction of acidic hy- 
drolysis and cryogenic comminution enhanced 
mineral grain fragmentation and chemical weath- 
ering. 

Exchange 
Complex 

Soluble 
Ions 

Precipitation ^_ 
Soil 

Minerals 
w 

Ion Exchange 
^ Dissolution 

Figure 4. Ion exchange equilibria in a soil system. 

The precipitation of silica in the lower horizons 
of soil profiles has been attributed to freezing 
(Slavnyy and Vorob'yeva 1962). The distribution 
of Na and Mg sulfate minerals in soils is tempera- 
ture dependent, with low temperatures favoring 
the precipitation of Na sulfates (e.g., mirabilite: 
Na2SO410H2O) relative to Mg sulfates (Arndt and 
Richardson 1989, Richardson et al. 1990); in these 
papers it was hypothesized that freezing from the 
top down may concentrate the more soluble Mg 
sulfates at greater depth, leading to the develop- 
ment of surficial sodic (Na) horizons. 

Freezing of Ca and Mg bicarbonate solutions 
leads to the precipitation of the more insoluble 
CaC03, thereby increasing the solution-phase 
Mg2+/Ca2+ ratio (Vlasov and Pavlova 1969, Ivanov 
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and Vlasov 1973, Sletten 1988). Sletten (1988) 
attributed the formation of aragonite, a relatively 
rare polymorph of CaC03 (Doner and Lynn 1977), 
to a more favorable Mg2+/Ca2+ ratio in solution 
brought about by the differential solubilities of Ca 
and Mg carbonates. Hallet (1976) demonstrated 
that freezing strongly concentrates solutes in 
CaC03 solutions, which leads to the precipitation 
of CaC03. Based on temperature-dependent solu- 
bility data, Hallet estimated the eutectic tempera- 
ture for pure CaC03 (-0.34°C). The relative 
insolubility of minerals such as CaC03 and CaS04 

make them difficult to study at subzero tempera- 
tures because of the limited temperature range in 
which their single-salt solutions can co-exist in 
equilibrium with solid phase ice. This is in marked 
contrast to soluble chloride salts such as NaCl, 
which has a eutectic temperature of -21.2°C (Fig. 
2), or CaCl2, which has a eutectic temperature of 
-50.4°C (Spencer et al. 1990, Marion and Grant 
1994). 

Ion exchange reactions play a major role in con- 
trolling many physical and chemical properties of 
soils, such as aggregation, pH buffering and ion 
transport. Hinman (1970) found that alternate 
freezing and thawing increased exchangeable NH4- 
N and decreased exchangeable K; there was no 
change in the cation exchange capacity (CEC) or 
exchangeable Ca and Mg. Pulubesova and Shir- 
shova (1992) found no significant change in CEC 
or exchangeable Ca, Mg, K and Na in two soils and 
two clays (kaolinite and bentonite) following pro- 
longed freezing (two months) and prolonged thaw- 
ing (two months). Alternate cycles of freezing and 
thawing have led to both fixation of fertilizer K 
and release of crystal lattice K from K-depleted soils 
(Graham and Lopez 1969). Freezing increased ad- 
sorbed bases (the pH increased), while thawing 
increased soil acidity (the pH decreased) (Fedorov 
and Basistyi 1974). Deep freezing of soils with liq- 
uid N2, which boils at -196°C, led to significant 
increases in the concentration of Ca, Mg and K in 
solution following thawing (Iskenderov 1976). 

Surprisingly little work in soil science has ex- 
amined the role of subzero temperatures on chem- 
ical thermodynamic equilibrium constants for 
cation exchange. Tyutyunova and Antipov- 
Karatatyev (1965) examined the Ca2+-K+ and the 
Mg2+-K+ exchange on montmorillonite, kaolin and 
soil over the temperature range from +20° to -17°C. 
Equilibrium constants at negative temperatures 
were determined in water-alcohol mixtures. There 
was an increased adsorption of K with decreasing 
temperature, which fell in the relative order: 

kaolin > soil > montmorillonite. They reported stan- 
dard Gibbs energies, enthalpies and entropies for 
ion exchange. 

Chemical transport 
When aqueous solutions freeze, solutes are large- 

ly excluded from ice. As a consequence, solute con- 
centrations are generally highest at the freezing 
front (Fig. 3). Kay and Groenevelt (1983) derived a 
simple equation: 

Q = Q + 80 k Q (8) 

where Q = original solute concentration 
Cf = solute concentration at the frost front 
k = solute inclusion coefficient. 

If there is no solute inclusion in the frozen zone (k 
= 1), then the solute concentration at the freezing 
front could rise to 80 times the original concentra- 
tion (assuming no salt precipitation). Such high 
concentrations can cause the freezing front to leap 
over solute pockets (Hallet 1978, Kay and Groen- 
evelt 1983, Romanov and Levchenko 1989). These 
solute pockets may ultimately freeze, resulting in 
alternating bands of high and low concentrations 
in frozen soils (Romanov and Levchenko 1989). Kay 
and Groenevelt (1983) have argued that solute ex- 
clusion, which leads to narrow alternating high- 
and low-solute bands in soils, may not be a signif- 
icant mechanism for macroscale solute redistribu- 
tion in soils. 

The dominant gradients that control the move- 
ment of solutes through freezing and frozen soils 
are concentration, temperature and hydrostatic 
pressure (Table 1, eq 7) (Cary and Mayland 1972, 
Baker and Osterkamp 1988, Qiu et al. 1988, Perfect 
et al. 1991). Solutes will diffuse from zones of high 
concentration (e.g., the freezing front) to zones of 
low concentration (Ficks Law, Table 1). In soils, sol- 
utes will move from warm to cold regions (Soret 
Effect, Table 1) (Cary and Mayland 1972, Qiu et al. 
1988). However, the direct effect of temperature 
gradients on solute movement in soils is generally 
insignificant (Cary and Mayland 1972). Much more 
significant is the movement of solutes with water 
along hydrostatic gradients from warm zones to the 
freezing front (reverse osmosis, Table 1). Freezing 
of water creates a strong thermodynamic sink, and 
water will move in both the vapor and liquid (car- 
rying solutes) phases to the freezing front (Cary and 
Mayland 1972, Gray and Granger 1986, Hof mann 
et al. 1990). In this process, solutes may move 
against a concentration gradient. 



The redistribution of solutes depends strongly 
on freezing rate, moisture content, soil texture and 
time. There are cases, especially in fine-textured 
soils, where maximum solute concentrations are 
found in the frozen zone (Ershov et al. 1992). Qiu 
et al. (1988) demonstrated that for single-salt so- 
lutions in moist sands, solutes migrate toward the 
unfrozen zone (Fig. 3); on the other hand, in silt 
and clay soils, solutes migrate toward the freez- 
ing zone. Over several freeze-thaw seasons, surf- 
icial salt applications may be leached to deeper 
soil horizons, effectively moving in the opposite 
direction of water during frost periods (Yong et 
al. 1973a). Baker and Osterkamp (1988) found that 
significant salt rejection and brine drainage oc- 
curred with downward freezing, but there was 
none with upward freezing. The amount of salt 
rejection increased with decreasing freezing rate. 
These differential responses are due to the role of 
soil physical properties such as porosity, surface 
area and hydraulic conductivity in controlling 
both water and solute flows along concentration, 
temperature and hydrostatic gradients. The com- 
plex interactions possible among soil physical and 
chemical properties is a strong incentive for de- 
veloping computer simulation models. 

Liquid films exist on soil particles in frozen 
soils, which provides the dominant route for the 
flow of water and associated solutes in frozen soils 
(Murrmann et al. 1968, Hoekstra 1969, Cary and 
Mayland 1972, Murrmann 1973, Gray and Grang- 
er 1986, Hofmann et al. 1990). Murrmann (1973) 
found surprisingly high diffusion rates for Na ions 
in the temperature range of 0° to -15°C, which he 
attributed to the existence of thin water films. 
Murrmann (1973) concluded that the temperature 
dependence of ionic diffusion at subzero temper- 
atures is primarily a function of water film thick- 
ness. Even in Antarctic soils, which are 
continuously frozen and relatively dry, the liquid 
films at mineral surfaces are believed to be the 
dominant avenue for the movement of solutes 
(Ugolini and Anderson 1972,1973). 

Because many soil surfaces are charged and the 
solubility of different soil minerals are highly vari- 
able, ionic mobility depends on the specific ions. 
For example, Ugolini and Anderson (1972, 1973) 
found that Cl~ is more mobile in Antarctic soils 
than Na+, presumably because of the attraction 
between the negatively charged CEC and the posi- 
tively charged Na ion. Czurda and Schababerle 
(1988) found that the monovalent cations Na and 
K were more mobile than the divalent cations Ca 
and Mg in frozen clay columns. This is probably 

because divalent cations have greater electrostatic 
attraction to charged surfaces than monovalent 
cations. More-soluble soil constituents migrate 
more readily through freezing and frozen soils be- 
cause the less-soluble minerals precipitate; this can 
play a major role in horizonation and pedogenesis 
of cold regions soils (Hallet 1978, Zvereva 1982, 
Panin and Kazantsev 1986, Sletten 1988, Richard- 
son et al. 1990). 

The transport of solutes between water or snow 
and soil during freeze-thaw processes can play an 
important role in geochemical cycling in cold re- 
gions. Kadlec et al. (1988) found that the freezing 
of shallow waters in peatlands drives a consider- 
able portion of solutes into the topsoil. Ostroumov 
et al. (1992) examined the flux of solutes from soil 
into snow under laboratory conditions. The maxi- 
mum concentrations in snow were found at the 
snow-soil boundary. Solutes were transferred to 
snow in the same direction as the heat flux. The 
flux of ions in snow fell in the order: K > Cl» Li > 
Ca > Cu » Cd = Pb. They attributed the greater 
flux of K relative to Cl to greater anion adsorption, 
relative to cation adsorption, on the surface of ice 
particles. This charge separation phenomenon is 
identical to the Workman-Reynolds Effect, which 
is, however, usually thought to be due to absorp- 
tion of anions into the ice phase. 

Soil freeze-thaw processes can play a role in 
controlling geochemical cycling at larger scales, 
such as watersheds and geographic regions. Ed- 
wards et al. (1986) found that freeze-thaw cycles 
have significant effects on the chemical composi- 
tion of streams. Substantial amounts of many ele- 
ments that dominate stream chemistry become 
available upon thawing, especially Al, K and or- 
ganic C. They also hypothesized that soil freezing 
might also influence solute chemistry by altering 
hydrologic pathways. Everett et al. (1989) conclud- 
ed that snowmelt was the most important hydro- 
logic and geochemical event in a small arctic 
watershed in northern Alaska. Ion concentrations 
were highest during the first 15% of the snowmelt 
event. In all cases ion concentrations in the spring 
runoff were four to nine times those of the snow- 
pack. Potassium was present in surface waters only 
during meltoff and for a short time thereafter. Ed- 
wards et al. (1986) also reported the mobilization 
of K during the spring thaw. During winters with 
little or no snowmelt before spring, Johannessen 
and Henriksen (1978) found that 50-80% of the 
winter pollutant load is released with the first 30% 
of meltwater. Average solute concentrations were 
2-2.5 times higher than snowpack concentrations. 



The resulting increases in acid concentrations of 
low-buffered waters occasionally lead to severe 
physiological stress on aquatic organisms. They 
hypothesized that these high concentrations may 
be due to a freeze-concentration process during 
snow recrystallization and melting in which sol- 
utes preferentially accumulate at surfaces of ice 
particles. Clearly snowmelt is a major hydrologic 
and geochemical event in regions subject to f reeze- 
thaw cycles. 

Ivanov and Vlasov (1973) concluded that cryo- 
genic processes have the effect of forming waters 
that have low mineral concentrations and low 
Ca2+/Mg2+ ratios in the Transbaikal region of 
Siberia. Factors that influence low mineralization 
are the freezing of soil solutions and groundwa- 
ters, the redistribution of salts between ice and liq- 
uid phases, the slow transition of salts into solution 
during thawing, and the precipitation of carbon- 
ates of alkaline-earth metals. 

DECOMPOSITION AND 
NUTRIENT AVAILABILITY 

How low temperatures and freeze-thaw cycles 
alter the soil as a medium for microbial activity 
and plant growth in cold regions soils is an impor- 
tant factor affecting revegetation, contaminant sta- 
bility and carbon cycling. The availability of 
nutrients is critical for plant growth and, as a con- 
sequence, revegetation of severely disturbed lands. 
Organic contaminants can be directly decomposed 
by microbial activity, while mineral contaminants 
(e.g., Hg, Pb, Cd) can be absorbed by plants, re- 
ducing their mobility (Lagerwerff 1972, Page et al. 
1987). Carbon fluxes from northern ecosystems 
may play a role in global carbon balance, affecting 
the global climate (Kvenvolden 1993, Marion and 
Oechel 1993, Oechel et al. 1993, Zimov et al. 1993). 

Several chapters in a recent book edited by 
Chapin et al. (1992) discuss arctic ecosystems and 
microbial processes (Nadelhoffer et al. 1992), 
nitrogen fixation (Chapin and Bledsoe 1992) and 
plant nutrient absorption (Kielland and Chapin 
1992). In the present review, our primary focus will 
be on the effect of low temperatures and freeze- 
thaw cycles on decomposition and mineralization 
processes. For fuller discussions of factors influ- 
encing microbial activity and plant growth in cold 
ecosystems, see the Chapin et al. (1992) book. 

Temperature is the dominant factor controlling 
decomposition rates (C02 production), with mini- 
mal detectable rates occurring at -10° to -6°C 
(McCown et al. 1972, Flanagan 1978, Flanagan and 

Bunnell 1980, Nadelhoffer et al. 1992, Gilichinsky 
1992,1993). Flanagan and Bunnell (1980) conclud- 
ed that both bacteria and fungi are capable of 
growth at subzero temperatures. Decomposition 
rates increase with increasing temperature between 
5° and 20-30°C, and overall decomposition rates 
increase by 20% yr1 for every 1000 degree-days 
above 0°C (Nadelhoffer et al. 1992). 

It is well known that freeze-thaw cycles cause a 
respiratory burst of C02 and CH4 following thaw- 
ing (Mack 1963, Ivarson and Sowden 1970, Mc- 
Cown et al. 1972, Skogland et al. 1988, Christensen 
1993). Skogland et al. (1988) attributed the respira- 
tory burst to killing of bacteria, lysing of their cells 
and utilization of liberated carbon compounds as 
nutrients by the surviving bacteria. Ivarson and 
colleagues found strong correlations between ex- 
tractable free amino acids and sugars (nutrients) 
and soil respiration, suggesting that microbial stim- 
ulation by nutrients was the cause of the C02 burst 
upon thawing (Ivarson and Gupta 1967, Ivarson 
and Sowden 1966, 1970). Ross (1972) found in- 
creased dehydrogenase activity with thawed soil 
samples in aerobic assays. He attributed this re- 
sponse to increased availability of substrates rath- 
er than multiplication of microorganisms because 
in anaerobic assays with shorter incubation times, 
the effects of increase substrate availability were 
less evident. McCown et al. (1972) attributed a 
spring C02 burst to trapping of C02 within the soil 
matrix upon bidirectional freezing, with subse- 
quent release during spring warming; they be- 
lieved this to be primarily a physical effect and not 
biologically mediated. In the latter study, soil sur- 
face temperatures beneath a snowpack were in the 
range of -16° to -10°C; studies, previously cited, 
suggest that biological production of C02 does not 
become important until soil temperatures rise 
above -10°C. Christensen (1993) attributed the 
spring burst of CH4 to the release of trapped CH4 

in the frozen soil and possibly also to changes in 
the production and consumption of CH4 as tem- 
peratures increased and the active layer deepened. 

The seasonal patterns of C02 and CH4 emissions 
are important in assessing the role of these gases 
in the global carbon balance. Most of the evidence 
to date indicates that CH4 emissions in the winter 
are insignificant in tundra soils (Whalen and Ree- 
burgh 1992, Christensen 1993); however, evidence 
to the contrary also exists (Panikov and Zelenev 
1992). Kelley et al. (1968) suggested that increased 
C02 concentrations at the soil surface beneath a 
snowpack at Barrow, Alaska, in the winter was due 
to microbial respiration as well as other physical 
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and chemical processes. Significant C02 emissions 
from wet tundra soils extended through February- 
March in some northern sites (Federov-Davydov 
1993, Zimov et al. 1993). On the other hand, in oth- 
er soils, C02 fluxes went to zero when soils froze 
(Federov-Davydov 1993, Zolotareva and Demkina 
1993). Zimov et al. (1993) hypothesized that ener- 
gy production by microbes was an important con- 
tributor to soil heat balance, preventing the freezing 
of the entire soil profile, which allows significant 
microbial activity to occur even during the winter. 
Because of the high temporal and spatial variabili- 
ty in winter gas fluxes (Federov-Davydov 1993, 
Zimov et al. 1993), their overall significance for the 
global carbon balance is unclear at present. 

Extracellular enzyme activities (urease, phos- 
phatase, sulfatase) have been detected in soils at 
temperatures as low as -20°C (Bremner and Zan- 
uta 1975); these low-temperature activities are be- 
lieved to be occurring in the unfrozen water at 
surfaces of soil particles. Freeze-thaw events in 
tundra water tracks in the fall can cause rapid de- 
creases in soil redox potentials; associated with 
these changes are concomitant increases in extra- 
cellular enzyme activity (cellulases, phosphomo- 
noesterase, proteases) (Linkins 1987). Enzyme 
activity continues to increase over three or four 
freeze-thaw cycles. It appears that the number of 
freeze-thaw events, rather than the duration of any 
one event, is the principal factor determining total 
enzyme activity. Linkins (1987) hypothesized that 

higher plants may obtain a significant proportion 
of their annual nutrients during the fall as the re- 
sult of increased soluble sugars, phosphorus and 
amino acids in solution. 

The effect of freeze-thaw processes on nutrient 
availability is a critical factor in revegetation of 
severely disturbed lands in cold regions. Because 
nitrogen (N) is the element that most frequently 
limits terrestrial plant growth (Raven et al. 1986), 
it has been the most intensively studied nutrient 
in cold regions. 

The dominant processes controlling the cycling 
of terrestrial N (Fig. 5) include: 

• N2 fixation, which directly converts atmo- 
spheric N2 gas into organic N via N-fixing 
bacteria; 

• Ammonification, which converts organic N 
into ammonium (NH4); 

• Nitrification, which converts NH4 into nitrate 
(NO3) through the nitrite (N02) intermedi- 
ary; 

• Cation-exchange reactions between NH4 and 
exchange complexes; 

• NH4 fixation, which can render NH4 diffi- 
cultly exchangeable; 

• Plant uptake of NH4 and NO3"; 
• Immobilization of NH4 and NO3 by microb- 

ial processes; 
• Denitrification, which converts NO3 into gas- 

eous nitrogen (N2) and nitrous oxide (N20); 
• Ammonia (NH3) volatilization, which con- 

verts NH4 into NH3 gas; 
• Adsorption of NH3 gas by soils; and 
• Leaching, which is a particular problem for 

the negatively charged NO3 ion (Clark and 
Rosswall 1981, Marion 1987). 

Figure 5. Nitrogen cycle in a terres- 
trial ecosystem. (After Marion 1987.) 

Deep 
Leaching 
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Many of the reactions controlling nitrogen 
cycling (Fig. 5 ) are controlled by biological mech- 
anisms. Examples include N2 fixation (bacteria), 
ammonification (bacteria and fungi), nitrification 
(bacteria), denitrification (bacteria), immobilization 
(bacteria and fungi) and uptake (plants) (Clark and 
Rosswall 1981, Marion 1987). Some of the nitrogen 
cycling processes can also be accomplished by 
strictly abiotic mechanisms [e.g., ammonification 
via fire (Marion et al. 1991) and chemodenitrifica- 
tion (Christianson and Cho 1983)]. Nevertheless, it 
is clear that biological processes play a dominant 
role in controlling the flow of nitrogen as well as 
other nutrients through terrestrial ecosystems. 

The responsiveness of nitrogen cycling process- 
es at low temperature is critical to assessing the 
nitrogen supplying power of cold regions soils. 
Field measurements indicate net nitrogen miner- 
alization at temperatures as low as 1°C (Gersper et 
al. 1980). Laboratory incubations have demonstrat- 
ed that nitrogen mineralization (ammonification 
and nitrification) is less temperature sensitive at low 
temperatures (3-9°C) than at high temperatures 
(15-35°C) (Marion and Black 1987, Nadelhoffer et 
al. 1991,1992). For example, at 35°C, nitrogen min- 
eralization follows an exponential curve that shows 
a high initial rate of nitrogen mineralization fol- 
lowed by a gradually declining rate with time (Fig. 
6); on the other hand, at 5°, 15° and 25°C, nitrogen 
mineralization follows a parabolic curve that shows 
a low initial rate of nitrogen mineralization fol- 
lowed by a gradual increase with time. The expo- 

nential mineralization curve is typical of temper- 
ate soils (Stanford and Smith 1972, Marion et al. 
1981) but atypical of tundra soils in the tempera- 
ture ranges normally encountered in cold regions. 
The slow release of nitrogen at low temperatures 
(Fig. 6) may be due to the generally unfavorable 
C/N ratios of the organic soils, which in one study 
ranged from 18 to 82 (mean = 40) (Marion and Black 
1987). Flanagan and Bunnell (1980) reported a sim- 
ilar response for decomposers (C02 production) 
that responded more linearly at low temperatures 
and more exponentially at high temperatures. 

Freeze-thaw cycles generally promote mineral- 
ization (ammonification and nitrification) of organ- 
ic nitrogen, which leads to increased concentrations 
of NH4 and NO3 (Soulides and Allison 1961, Mack 
1963, Hinman 1970, Honnolainen and Reppo 1975, 
Malhi and Nyborg 1979,1986, Gersper et al. 1980). 
An exception to this generality was reported by 
Read and Cameron (1979), who monitored miner- 
al nitrogen forms in several soil types over 10 years. 
Between fall and spring, they found some increase 
in NO3-N but a larger decrease in NH4-N, result- 
ing in a net decrease in mineral nitrogen during 
the winter. Malhi and Nyborg (1986) found large 
increases in mineral N when soils froze in the win- 
ter and large decreases in early spring when soils 
thawed; they attributed the spring loss to denitri- 
fication and not to leaching of NO3. Christianson 
and Cho (1983) found that the maximum produc- 
tion of N2 gas via chemodenitrification occurred 
at -3.5°C over the temperature range from -20° to 
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Figure 6. Cumulative nitrogen mineralization with time and temperature for an 
organic tundra soil. (After Marion and Black 1987.) 
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+20°C; they attributed this freezing effect to the 
concentration of NO2 into the unfrozen soil water. 
Goodroad and Keeney (1984) found that N20 con- 
centrations and fluxes during the spring thaw were 
some of the highest values observed during the 
entire season. They attributed these high N20 fluxes 
to the physical release of N20 upon thawing and 
to production by denitrification. Edwards and Kill- 
ham (1986) found that rates of both denitrification 
and NH3 volatilization were increased by freeze- 
thaw cycles, especially in the presence of soils pre- 
viously fertilized with urea (NH2CONH2). 
Campbell et al. (1970) found large and sudden un- 
explained decreases in exchangeable ammonium 
during the winter months following a steady fall 
buildup. Although they were unable to explain this 
phenomenon, possible explanations include en- 
hanced denitrification, NH3 volatilization and NH4 

fixation. These few papers indicate that freeze-thaw 
cycles affect mineral nitrogen forms, which are the 
forms utilizable by plants and also the forms that 
are most easily subject to gaseous losses (Fig. 5). 

Hinman (1970) found that freeze-thaw cycles 
significantly increased the availability of extract- 
able P in soils. On the other hand, Read and Cam- 
eron (1979) reported little change in the extractable 
P of soils from fall to spring over a ten-year period. 

Exchangeable K, Ca and Mg typically either de- 
crease in concentration or are unaffected by freeze- 
thaw cycles (Hinman 1970, Cheng et al. 1971). A 
decrease in exchangeable cation concentrations 
could be caused by the precipitation of soil miner- 
als, which is promoted by soil freezing, causing a 
shift in the equilibria (Fig. 4). 

Potassium and NH4 are special cases among 
exchangeable ions because both are subject to fixa- 
tion reactions (Fig. 5). Fixation is caused by the col- 
lapse of layer-lattice clay minerals, which renders 
ions in the interlayers slowly exchangeable. Fine et 
al. (1940) reported net releases of K subjected to 
freeze-thaw cycles in 75% of examined soils and a 
fixation in the remaining 25% of soils. Fine et al. 
(1940) also found that most clay minerals (bento- 
nite, nontronite, Putnam clay, montmorillonite) 
released nonexchangeable K when subjected to 
freeze-thaw cycles. An exception was illite, a non- 
expanding layer-lattice clay mineral, which fixed 
K. Graham and Lopez (1969) found that severely 
K-depleted soils will release K from fixed positions 
when subjected to freeze-thaw cycles. On the oth- 
er hand, when K was added to soils, repeated freez- 
ing and thawing led to K fixation. 

Manganese and Fe are also special cases among 
exchangeable ions because these ions may be 

present in both oxidized (Mn4+, Mn3+, Fe3+) and 
reduced (Mn2+, Fe2+) forms, with reduced forms 
being more soluble in soils (Lindsay 1979). In gen- 
eral, soil moisture saturation promotes reduced 
forms and soil unsaturation promotes oxidized 
forms. Cheng et al. (1971) found that increasing 
soil moisture increased the availability of Mn and 
Fe. Under water-saturated conditions, repeated 
freeze-thaw cycles increased exchangeable Mn and 
Fe, while repeated freeze-thaw cycles in unsatur- 
ated soils decreased exchangeable Mn and Fe. The 
result for unsaturated conditions agrees with the 
general tendency for exchangeable K, Ca and Mg 
previously cited. The increased Mn and Fe concen- 
trations under saturated conditions suggests that 
freeze-thaw processes may promote reducing con- 
ditions in soil, perhaps by excluding 02 gas in the 
freezing process or because of slow diffusion of 02 

in frozen soils. This hypothesis might also explain 
the previously cited increased denitrification un- 
der freezing conditions (Christianson and Cho 
1983, Edwards and Killham 1986) and the increased 
enzymatic activity under reduced conditions 
(Linkins 1987). Little work has been done on the 
effect of freezing and thawing on respiratory gas 
(02 and C02) balance in soils. This is a critical fac- 
tor in controlling both plant and microbial activity 
in cold regions soils, with potential significance in 
understanding the global carbon balance. 

SITE REMEDIATION 

There are a number of cases where chemical 
composition and freeze-thaw processes interact, 
affecting the remediation of problem soils. These 
problem soils include saline soils, contaminated 
soils and frost-susceptible soils. The effect of soil 
salts in reducing frost susceptibility was discussed 
previously. Here, our focus will be on natural and 
artificial ground freezing as means for desalinat- 
ing and decontaminating soils. 

Kizilova (1959) examined the mobility and solu- 
bility of Na+ and S04~ ions under winter, but gen- 
erally unfrozen, leaching conditions. The objective 
of winter leaching was to remove Na2S04 from the 
soil profile; concern existed that Na2SO410H2O 
(mirabilite) might precipitate at low temperatures. 
However, mirabilite did not precipitate even at 
subfreezing temperatures, and winter leaching was 
effective in removing Na+ and S04~ ions from 
these saline soils. Cary and Mayland (1972) exam- 
ined a similar, but hypothetical, case. They point- 
ed out that the lower solubility of CaS04 and 
MgS04 relative to Na2S04 could cause the former 
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minerals to precipitate more readily upon freezing, 
causing an unfavorable Na/(Ca+Mg) ratio in the 
solution, which could result in the dispersion of clay 
minerals and a sharp decrease in infiltration, prob- 
lems generally associated with Na-dominated soils. 
Actually, at 0°C, epsomite (MgSO4-7H20) is four 
times as soluble as mirabilite (Richardson et al. 
1990). At freezing temperatures, CaS04-2H20 (gyp- 
sum) should first precipitate from solution during 
freeze-concentration of equal molal solutions, fol- 
lowed by mirabilite and finally epsomite. De Jong 
(1981) examined the freeze-purification of saline 
groundwater as a source of water for reclaiming 
saline soils. The initial 30% of the meltwater had a 
higher salt content than the original solution, and 
the last 70% had a lower salt content. The results 
suggest that freeze-purification of saline waters 
could be used in reclaiming saline soils by: 

• Collecting and disposing of the initial meltwa- 
ter and leaching with the later meltwater; or 

• Using all the meltwater, which is a procedure 
similar to the high-salt-water dilution method 
of reclaiming saline soils (De Jong 1981). 

Freeze-thaw processes may have both adverse 
and beneficial effects on contaminant transport 
through soils (Iskandar and Jenkins 1985, Iskandar 
1986, Henry 1988). Adverse effects include frost 
heaving and reductions in the durability of clay lin- 
ers, both of which can cause increased leakage from 
hazardous waste landfills. Additionally, freezing 
causes solute exclusion, which pushes contaminants 
out of soils, potentially contaminating groundwa- 
ters. Ways in which freezing can be used for benefi- 
cial uses include dewatering hazardous materials, 
building ice walls to contain contaminants, freez- 
ing of entire soil blocks to immobilize contaminants 
and freezing to push contaminants out of soils. 
Whether solute exclusion of contaminants is a ben- 
eficial or adverse effect of freezing depends on the 
control of the unfrozen effluent. 

Since solute exclusion has been suggested as a 
possible mechanism for decontaminating soils 
(Iskandar and Jenkins 1985, Iskandar 1986, Ayor- 
inde et al. 1988), factors controlling the process are 
critical for evaluating practical applications. A crit- 
ical factor controlling the exclusion of solutes from 
ice is the rate of freezing. Romanov and Levchenko 
(1989) noted a marked increase in the effectiveness 
of exclusion with a decrease in the cooling rate from 
0.5 to 0.25°C/day. These workers also found that 
the effectiveness of solute exclusion increased with 
increasing solute concentration. In addition, the ef- 
fectiveness of solute exclusion was much less in a 

sand than in pure solutions. Baker and Osterkamp 
(1988) also found that the amount of salt rejection 
from the freezing region increased with decreas- 
ing freezing rate. Solute pockets that initially form 
in soils during freezing may ultimately freeze, re- 
sulting in alternating bands of high and low salt 
concentrations (Romanov and Levchenko 1989). On 
the other hand, Baker and Osterkamp (1988) found 
no evidence for salt banding in their freezing 
experiments. Solute exclusion that leads to alter- 
nating bands of high and low salt concentrations 
may not be a significant mechanism for macroscale 
solute redistribution in soils (Kay and Groenevelt 
1983). A more thorough discussion on solute ex- 
clusion is given in the section on Chemical trans- 
port. 

Iskandar and Jenkins (1985) examined the poten- 
tial use of artificial ground freezing for contami- 
nant immobilization. Frozen metal-contaminated 
soils eliminated metal leaching to groundwater. 
Freezing the soil from the bottom apparently en- 
hanced upward movement of volatile organics to 
the soil surfaces, where losses occurred by volatil- 
ization. The amount lost depended on the mobility 
of specific organics and ranged from 90% for chlo- 
roform, benzene and toluene to as low as 45% for 
tetrachloroethylene. 

Ayorinde and Perry (1990) examined the utility 
of freezing to move explosive compounds through 
soils. For one freeze cycle, they found a 40% 
reduction in concentration for meta-nitrotoluene 
(M-NT) and orthonitrotoluene (O-NT) and less than 
a 20% reduction for 2,6-dinitrotoluene (2,6-DNT) 
in frozen soil layers compared to unfrozen controls. 
At an average freeze rate of 0.4 cm day-1, statisti- 
cally significant movement was observed for M- 
NT and O-NT but not for 2,6-DNT. They postulated 
that for a given freeze rate, number of freeze-thaw 
cycles, type of soil and level of soil moisture, the 
ability to move contaminants through soils by freez- 
ing strongly depends on the type of contaminant, 
the initial concentration level and soil-contaminant 
interactions. 

In another laboratory study, Ayorinde et al. 
(1988) showed significant mobility of volatile 
organics, such as benzene, chloroform and toluene, 
through a Lebanon silty soil frozen from the bot- 
tom up. They found a 25-67% reduction in contam- 
inant concentration in the frozen soil but no 
corresponding increase above the freezing front. 
They attributed this discrepancy to contaminant 
losses through volatilization, biodegradation and 
sorption. 
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MODELING 

Solutes in saline environments play a critical role 
in defining freezing and thawing of these systems. 
A few mathematical models have been developed 
that explicitly consider the effect of solutes on 
freeze-thaw processes. These models can be divid- 
ed into three classes: 

• Chemical thermodynamic equilibrium; 
• Solute segregation at the water-ice interface; 

and 
• Solute segregation in soil systems. 
Classical chemical thermodynamic models only 

provide information on the states of systems at 
equilibrium; they do not describe the pathways to 
the equilibrium states. Their utility depends on how 
well natural systems that are constantly fluctuat- 
ing can be approximated by the equilibrium states. 
Spencer et al. (1990) developed a chemical thermo- 
dynamic model (Spencer-Moller-Weare model) 
valid over the temperature range of -60° to +25°C, 
for the system Na-K-Ca-Mg-Cl-S04-H20. This 
model is parameterized with data from pure bina- 
ry and ternary salt solutions. This model predicts 
the formation of ice and the precipitation of 15 chlo- 
ride and sulfate salts, which allows the accurate 
prediction of the freezing point and chemical com- 
position of simple and complex solutions, includ- 
ing seawater. Marion and Grant (1994) have 
developed a Fortran version of the Spencer-Moller- 
Weare model called FREZCHEM. The FREZCHEM 
model has two reaction pathways: 

• Freezing at variable temperature and fixed 
water; and 

• Evaporation at variable water and fixed tem- 
perature. 
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Figure 7. Concentrations of major sea- 
water constituents during freezing. 
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These two models can accurately estimate the 
chemical composition (Fig. 7) and unfrozen water 
(Fig. 8) of seawater at least down to -30°C. At low- 
er temperatures some discrepancies exist [e.g., Mg 
concentrations (Fig. 7) and unfrozen water (Fig. 8)]. 
Given the difficulties in making experimental mea- 
surements at low temperatures, it is impossible with 
the presently available data to determine whether 
the model or the experimental measurements are 
most accurate at low temperatures (Marion and 
Grant 1994). Note that even at temperatures as low 
as -50°C, a small fraction of seawater (0.3%) re- 
mains unfrozen. The importance of salt precipita- 
tion during the freezing process is demonstrated 
for Na and Cl salts (Fig. 9), where only 0.3% of Na 
and 4.5% of Cl remain in the solution phase at 
-50°C. 

These papers make it clear that to accurately 
interpret or model solute effects during freezing 
and thawing of saline solutions such as seawater, 
we need accurate chemical thermodynamic data on 
mineral solubilities at subzero temperatures. 
Apparently the databases for handling chloride 
salts down to the eutectic temperature of seawater 
(-54°C) are adequate (Spencer et al. 1990, Marion 
and Grant 1994). However, there are problems in 
modeling some sulfate salts at subzero tempera- 
tures, which may be due to poor-quality solubility 
data, to lack of data for some salts such as CaS04 

and perhaps to an inadequate solution-phase model 
for concentrated sulfate solutions (Bukshtein et al. 
1953, Linke 1965, Spencer et al. 1990, Marion and 
Grant 1994). The quantity and quality of data for 
the bicarbonate and carbonate salts of Na, K, Ca 
and Mg at subzero temperatures are even more 
sparse (Bukshtein et al. 1953). More research is clear- 
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ly needed to accurately assess the solubilities of 
the sulfate, bicarbonate and carbonate salts of Ca, 
Mg, K and Na at subzero temperatures before 
these constituents can be accurately integrated into 
geochemical models and ultimately into soil phys- 
ical-chemical models. 

Leung and Carmichael (1984) developed a 
model to describe solute partitioning between 
water and ice during freezing. This model can be 
used to estimate partition coefficients from exper- 
imental data. Working with slurries, Hanley and 
Rao (1982) developed a model based on freezing 
potentials that takes into account the diffusion of 
cations in the unfrozen portion of the sample, the 
separation of ions at the freezing front, and the 
migration of moisture and ions towards the freez- 
ing front. 

Several models have been developed that 
describe the dynamics of freeze—thaw processes 
and solute redistribution in soils. Mahar et al. 
(1983) incorporated solute effects into a variation 
of the "Guymon" model to describe freezing of 
saline soils. They demonstrated that analytical 
modeling of freezing front penetration underpre- 
dicts the rate of freezing when no account is made 
for the effects of salinity. They also found that the 
rate of advance to a given depth of freezing in- 
creased with increasing salinity; they attributed 
this to the gradual release of the latent heat of fu- 
sion over a range of temperatures and depths due 
to changing solute concentrations. Osterkamp 
(1987) developed an analytical solution for freez- 
ing and thawing of soils containing water or 
brines. This model used empirical data on seawa- 
ter brine concentration as a function of tempera- 
ture to parameterize the model. Osterkamp (1987) 
found that maximum ice penetration is greater in 
the present of brines, which is similar to findings 
of Mahar et al. (1983). 

Kadlec et al. (1988) developed a mathematical 
model to describe the solute segregation process 
at the freezing front and solute transport in the 
unfrozen water of peatlands. This model demon- 
strated the downward movement of solutes, 
which is important for establishing the geochro- 
nology of deposits and determining the nature of 
pollutant burial. Cary (1987) developed a numer- 
ical model for calculating frost heave that couples 
flows of heat, water and solutes as unsaturated 
soils freeze. This model demonstrated, as noted 
previously under Frost heaving, that increasing 
solutes can decrease frost heaving by reducing 
water flows to ice lenses. To my knowledge, this 
is the only frost heaving model that explicitly in- 
cludes solute effects. 

As this review has shown, many factors with 
complex interactions contribute to the differential 
movement of water and solutes in freezing soils. 
Because of the complexity of solute-freezing phen- 
omena, modeling is an ideal approach for quanti- 
fying these relationships. However, quantifying 
aqueous-solute properties at subzero temperatures 
poses many experimental difficulties. As a conse- 
quence, our ability to model these systems is fre- 
quently limited by lack of basic data. The models 
reviewed in this section, however, do indicate that 
significant progress has been made in the past dec- 
ade, which bodes well for the future. 

RECOMMENDATIONS 

Much research in cold regions is ultimately 
prompted by a quest for solving practical problems. 
Five major problems of cold regions associated with 
freezing and thawing are soil strength, frost heav- 
ing, revegetation of severely disturbed lands, glo- 
bal carbon balance and contaminant transport. This 
review has identified several important aspects of 
chemistry and freezing-thawing processes that 
impact on these problems. 

• Chemical thermodynamic equilibria of aque- 
ous electrolyte solutions at subzero tempera- 
tures are poorly understood. This is especially 
true of the solubilities of Ca, Mg, K and Na 
Sulfates, bicarbonates and carbonates, impor- 
tant salts in many saline soils and seawater. 
Chemical activities and mineral solubilities 
play a fundamental role in controlling the 
chemical potential of water and ice in soils, the 
freezing-point depression and the unfrozen 
water content, which, in turn, play important 
roles in controlling the fluxes of water and sol- 
utes in soils. 

• There are strong and complex interactions 
among soil properties that control solute and 
water flows along concentration, temperature 
and hydrostatic gradients in freezing and fro- 
zen soils. These complex interactions necessi- 
tate the development of computer simulation 
models that can integrate physical and chemi- 
cal properties and processes. The ultimate goal 
is to develop models that can accurately ad- 
dress practical problems such as soil strength, 
frost heaving and contaminant transport in 
freezing and frozen soils. 

• Does the freeze-thaw process significantly al- 
ter soil gas (02, C02, N20, CH4) concentra- 
tions? This has important ramifications for car- 
bon and nitrogen balance; nutrient availability; 
microbial, enzymatic and plant activity; soil 
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oxidation-reduction status; and mineral solu- 
bility. 

• Microbial activity exists to temperatures as 
low as -10°C. The ability of microbes to de- 
compose contaminants or plants to absorb 
contaminants (immobilization) is poorly un- 
derstood for low temperatures. Recent work 
suggests that the winter "dormant" season 
may be a misnomer in describing microbial 
activity and carbon balance. Microbes and 
plants adapted to cold regions have been sub- 
jected to different selective pressures during 
evolution and may not respond the same as 
their better-studied temperate counterparts. 

• What are optimal conditions for solute exclu- 
sion in freezing soils? This has important im- 
plications for decontaminating soils. 

To further our understanding of chemistry and 
freeze-thaw processes in soils, future work should 
be directed along these lines, with major foci on 
both simulation modeling and empirical studies. 
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